
SunOS Reference Manual

Sun Microsystems, Inc.
2550 Garcia Avenue
Mountain View, CA 94043
U.S.A.

Copyright 1997 Sun Microsystems, Inc. 2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and
decompilation. No part of this product or document may be reproduced in any form by any means without prior written authorization of
Sun and its licensors, if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark
in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, SunSoft, Solaris, SunOS, OpenWindows, DeskSet, ONC, ONC+, and NFS are trademarks, or
registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are
trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are
based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun
acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the
computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s
licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license agreements.

RESTRICTED RIGHTS : Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87) and
FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a).

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-
INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.
��

Copyright 1997 Sun Microsystems, Inc., 2550 Garcia Avenue, Mountain View, Californie 94043-1100 Etats-Unis. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution,
et la décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit,
sans l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la
technologie relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, SunSoft, Solaris, SunOS, OpenWindows, DeskSet, ONC, ONC+, et NFS sont des marques de fabrique
ou des marques déposées, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous
licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les
produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun
reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou
graphique pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox,
cette licence couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se
conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE "EN L’ETAT" ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y
COMPRIS DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE
UTILISATION PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE
GARANTIE NE S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

Please
Recycle

Preface

OVERVIEW
A man page is provided for both the naive user, and sophisticated user who is
familiar with the SunOS operating system and is in need of on-line information.
A man page is intended to answer concisely the question “What does it do?”
The man pages in general comprise a reference manual. They are not intended
to be a tutorial.

The following contains a brief description of each section in the man pages and
the information it references:

· Section 1 describes, in alphabetical order, commands available with the
operating system.

· Section 1M describes, in alphabetical order, commands that are used chiefly
for system maintenance and administration purposes.

· Section 2 describes all of the system calls. Most of these calls have one or
more error returns. An error condition is indicated by an otherwise
impossible returned value.

· Section 3 describes functions found in various libraries, other than those
functions that directly invoke UNIX system primitives, which are described in
Section 2 of this volume.

i

· Section 4 outlines the formats of various files. The C structure declarations
for the file formats are given where applicable.

· Section 5 contains miscellaneous documentation such as character set tables,
etc.

· Section 6 contains available games and demos.

· Section 7 describes various special files that refer to specific hardware
peripherals, and device drivers. STREAMS software drivers, modules and the
STREAMS-generic set of system calls are also described.

· Section 9 provides reference information needed to write device drivers in
the kernel operating systems environment. It describes two device driver
interface specifications: the Device Driver Interface (DDI) and the
Driver–Kernel Interface (DKI).

· Section 9E describes the DDI/DKI, DDI-only, and DKI-only entry-point
routines a developer may include in a device driver.

· Section 9F describes the kernel functions available for use by device drivers.

· Section 9S describes the data structures used by drivers to share
information between the driver and the kernel.

Below is a generic format for man pages. The man pages of each manual
section generally follow this order, but include only needed headings. For
example, if there are no bugs to report, there is no BUGS section. See the intro
pages for more information and detail about each section, and man(1) for more
information about man pages in general.

NAME
This section gives the names of the commands or functions documented,
followed by a brief description of what they do.

SYNOPSIS
This section shows the syntax of commands or functions. When a command or
file does not exist in the standard path, its full pathname is shown. Literal
characters (commands and options) are in bold font and variables (arguments,
parameters and substitution characters) are in italic font. Options and

ii

arguments are alphabetized, with single letter arguments first, and options with
arguments next, unless a different argument order is required.

The following special characters are used in this section:

[] The option or argument enclosed in these brackets is optional. If the
brackets are omitted, the argument must be specified.

. . . Ellipses. Several values may be provided for the previous argument, or
the previous argument can be specified multiple times, for example,
‘filename . . .’.

| Separator. Only one of the arguments separated by this character can
be specified at time.

{ } Braces. The options and/or arguments enclosed within braces are
interdependent, such that everything enclosed must be treated as a
unit.

PROTOCOL
This section occurs only in subsection 3R to indicate the protocol description
file. The protocol specification pathname is always listed in bold font.

DESCRIPTION
This section defines the functionality and behavior of the service. Thus it
describes concisely what the command does. It does not discuss OPTIONS or
cite EXAMPLES. Interactive commands, subcommands, requests, macros,
functions and such, are described under USAGE.

IOCTL
This section appears on pages in Section 7 only. Only the device class which
supplies appropriate parameters to the ioctl(2) system call is called ioctl and
generates its own heading. ioctl calls for a specific device are listed
alphabetically (on the man page for that specific device). ioctl calls are used for
a particular class of devices all of which have an io ending, such as mtio(7).

Preface iii

OPTIONS
This lists the command options with a concise summary of what each option
does. The options are listed literally and in the order they appear in the
SYNOPSIS section. Possible arguments to options are discussed under the
option, and where appropriate, default values are supplied.

OPERANDS
This section lists the command operands and describes how they affect the
actions of the command.

OUTPUT
This section describes the output - standard output, standard error, or output
files - generated by the command.

RETURN VALUES
If the man page documents functions that return values, this section lists these
values and describes the conditions under which they are returned. If a
function can return only constant values, such as 0 or −1, these values are listed
in tagged paragraphs. Otherwise, a single paragraph describes the return
values of each function. Functions declared as void do not return values, so
they are not discussed in RETURN VALUES.

ERRORS
On failure, most functions place an error code in the global variable errno
indicating why they failed. This section lists alphabetically all error codes a
function can generate and describes the conditions that cause each error. When
more than one condition can cause the same error, each condition is described
in a separate paragraph under the error code.

iv

USAGE
This section is provided as a guidance on use. This section lists special rules,
features and commands that require in-depth explanations. The subsections
listed below are used to explain built-in functionality:

Commands
Modifiers
Variables
Expressions
Input Grammar

EXAMPLES
This section provides examples of usage or of how to use a command or
function. Wherever possible a complete example including command line entry
and machine response is shown. Whenever an example is given, the prompt is
shown as

example%

or if the user must be super-user,

example#

Examples are followed by explanations, variable substitution rules, or returned
values. Most examples illustrate concepts from the SYNOPSIS, DESCRIPTION,
OPTIONS and USAGE sections.

ENVIRONMENT
This section lists any environment variables that the command or function
affects, followed by a brief description of the effect.

EXIT STATUS
This section lists the values the command returns to the calling program or shell
and the conditions that cause these values to be returned. Usually, zero is
returned for successful completion and values other than zero for various error
conditions.

FILES

Preface v

This section lists all filenames referred to by the man page, files of interest, and
files created or required by commands. Each is followed by a descriptive
summary or explanation.

ATTRIBUTES
This section lists characteristics of commands, utilities, and device drivers by
defining the attribute type and its corresponding value. (See attributes(5) for
more information.)

SEE ALSO
This section lists references to other man pages, in-house documentation and
outside publications.

DIAGNOSTICS
This section lists diagnostic messages with a brief explanation of the condition
causing the error. Messages appear in bold font with the exception of variables,
which are in italic font.

WARNINGS
This section lists warnings about special conditions which could seriously affect
your working conditions — this is not a list of diagnostics.

NOTES
This section lists additional information that does not belong anywhere else on
the page. It takes the form of an aside to the user, covering points of special
interest. Critical information is never covered here.

BUGS
This section describes known bugs and wherever possible suggests
workarounds.

vi

User Commands Intro (1)

NAME Intro, intro − introduction to commands and application programs

DESCRIPTION This section describes, in alphabetical order, commands available with this operating sys-
tem.

Pages of special interest are categorized as follows:

1B Commands found only in the SunOS/BSD Compatibility Package . Refer to the
Source Compatibility Guide for more information.

1C Commands for communicating with other systems.

1F Commands associated with Form and Menu Language Interpreter (FMLI).

1S Commands specific to the SunOS system.

OTHER SECTIONS See these sections of the man Pages(1M): System Administration Commands for more infor-
mation.

· Section 1M in this manual for system maintenance commands.

· Section 4 of this manual for information on file formats.

· Section 5 of this manual for descriptions of publicly available files and miscellaneous
information pages.

· Section 6 in this manual for computer demonstrations.

For tutorial information about these commands and procedures, see:

· Solaris Advanced User’s Guide

· Programming Utilities Guide

Manual Page
Command Syntax

Unless otherwise noted, commands described in the SYNOPSIS section of a manual page
accept options and other arguments according to the following syntax and should be
interpreted as explained below.

name [−option ...] [cmdarg...]
where:

[] Surround an option or cmdarg that is not required.

... Indicates multiple occurrences of the option or cmdarg .

name The name of an executable file.

{ } The options and/or arguments enclosed within braces are interdependent,
such that everything enclosed must be treated as a unit.

option (Always preceded by a “−”.)
noargletter ... or,
argletter optarg[,...]

modified 31 Dec 1996 SunOS 5.6 1-5

Intro (1) User Commands

noargletter A single letter representing an option without an option-argument. Note
that more than one noargletter option can be grouped after one “−” (Rule 5,
below).

argletter A single letter representing an option requiring an option-argument.

optarg An option-argument (character string) satisfying a preceding argletter .
Note that groups of optargs following an argletter must be separated by
commas, or separated by a tab or space character and quoted (Rule 8,
below).

cmdarg Path name (or other command argument) not beginning with “−”, or “−”
by itself indicating the standard input.

Command Syntax
Standard: Rules

These command syntax rules are not followed by all current commands, but all new com-
mands will obey them. getopts(1) should be used by all shell procedures to parse posi-
tional parameters and to check for legal options. It supports Rules 3-10 below. The
enforcement of the other rules must be done by the command itself.

1. Command names (name above) must be between two and nine characters
long.

2. Command names must include only lower-case letters and digits.

3. Option names (option above) must be one character long.

4. All options must be preceded by “−”.

5. Options with no arguments may be grouped after a single “−”.

6. The first option-argument (optarg above) following an option must be pre-
ceded by a tab or space character.

7. Option-arguments cannot be optional.

8. Groups of option-arguments following an option must either be separated
by commas or separated by tab or space character and quoted (−o xxx,z,yy
or −o "xxx z yy").

9. All options must precede operands (cmdarg above) on the command line.

10. “−−” may be used to indicate the end of the options.

11. The order of the options relative to one another should not matter.

12. The relative order of the operands (cmdarg above) may affect their
significance in ways determined by the command with which they appear.

13. “−” preceded and followed by a space character should only be used to
mean standard input.

ATTRIBUTES See attributes(5) for a discussion of the attributes listed in this section.

SEE ALSO getopts(1), wait(1), exit(2), getopt(3C), wait(3B), attributes(5)

1-6 SunOS 5.6 modified 31 Dec 1996

User Commands Intro (1)

DIAGNOSTICS Upon termination, each command returns two bytes of status, one supplied by the sys-
tem and giving the cause for termination, and (in the case of “normal” termination) one
supplied by the program [see wait(3B) and exit(2)]. The former byte is 0 for normal ter-
mination; the latter is customarily 0 for successful execution and non-zero to indicate
troubles such as erroneous parameters, or bad or inaccessible data. It is called variously
“exit code”, “exit status”, or “return code”, and is described only where special conven-
tions are involved.

WARNINGS Some commands produce unexpected results when processing files containing null char-
acters. These commands often treat text input lines as strings and therefore become con-
fused upon encountering a null character (the string terminator) within a line.

Name Description

acctcom(1) search and print process accounting files

adb(1) general-purpose debugger

addbib(1) create or extend a bibliographic database

admin(1) See sccs-admin(1)

aedplot(1B) See plot(1B)

alias(1) create or remove a pseudonym or shorthand for a
command or series of commands

apropos(1) locate commands by keyword lookup

ar(1) maintain portable archive or library

arch(1) display the architecture of the current host

as(1) assembler

asa(1) convert FORTRAN carriage-control output to print-
able form

at(1) execute commands at a later time

atoplot(1B) See plot(1B)

atq(1) display the jobs queued to run at specified times

atrm(1) remove jobs spooled by at or batch

audioconvert(1) convert audio file formats

audioplay(1) play audio files

audiorecord(1) record an audio file

awk(1) pattern scanning and processing language

banner(1) make posters

basename(1) deliver portions of path names

basename(1B) display portions of pathnames

modified 31 Dec 1996 SunOS 5.6 1-7

Intro (1) User Commands

batch(1) See at(1)

bc(1) arbitrary precision arithmetic language

bdiff(1) big diff

bfs(1) big file scanner

bg(1) See jobs(1)

bgplot(1B) See plot(1B)

biff(1B) give notice of incoming mail messages

break(1) shell built-in functions to escape from or advance
within a controlling while, for, foreach, or until loop

cal(1) display a calendar

calendar(1) reminder service

cancel(1) cancel print request

case(1) shell built-in functions to choose from among a list of
actions

cat(1) concatenate and display files

cc(1B) C compiler

cd(1) change working directory

cdc(1) See sccs-cdc(1)

chdir(1) See cd(1)

checkeq(1) See eqn(1)

checknr(1) check nroff and troff input files; report possible errors

chgrp(1) change file group ownership

chkey(1) change user’s secure RPC key pair

chmod(1) change the permissions mode of a file

chown(1) change file ownership

chown(1B) change owner

ckdate(1) prompts for and validates a date

ckgid(1) prompts for and validates a group id

ckint(1) display a prompt; verify and return an integer value

ckitem(1) build a menu; prompt for and return a menu item

ckkeywd(1) prompts for and validates a keyword

ckpath(1) display a prompt; verify and return a pathname

ckrange(1) prompts for and validates an integer

ckstr(1) display a prompt; verify and return a string answer

cksum(1) write file checksums and sizes

cktime(1) display a prompt; verify and return a time of day

1-8 SunOS 5.6 modified 31 Dec 1996

User Commands Intro (1)

ckuid(1) prompts for and validates a user ID

ckyorn(1) prompts for and validates yes/no

clear(1) clear the terminal screen

cmp(1) compare two files

cocheck(1F) See coproc(1F)

cocreate(1F) See coproc(1F)

codestroy(1F) See coproc(1F)

col(1) reverse line-feeds filter

comb(1) See sccs-comb(1)

comm(1) select or reject lines common to two files

command(1) execute a simple command

compress(1) compress, uncompress files or display expanded files

continue(1) See break(1)

coproc(1F) communicate with a process

coreceive(1F) See coproc(1F)

cosend(1F) See coproc(1F)

cp(1) copy files

cpio(1) copy file archives in and out

cpp(1) the C language preprocessor

crontab(1) user crontab file

crtplot(1B) See plot(1B)

crypt(1) encode or decode a file

csh(1) shell command interpreter with a C-like syntax

csplit(1) split files based on context

ct(1C) spawn login to a remote terminal

ctags(1) create a tags file for use with ex and vi

cu(1C) call another UNIX system

cut(1) cut out selected fields of each line of a file

date(1) write the date and time

dc(1) desk calculator

delta(1) See sccs-delta(1)

deroff(1) remove nroff/troff, tbl, and eqn constructs

df(1B) display status of disk space on file systems

dhcpinfo(1) display value of parameters received through DHCP

diff(1) display line-by-line differences between pairs of text

modified 31 Dec 1996 SunOS 5.6 1-9

Intro (1) User Commands

files

diff3(1) 3-way differential file comparison

diffmk(1) mark differences between versions of a troff input file

dircmp(1) directory comparison

dirname(1) See basename(1)

dirs(1) See cd(1)

dis(1) object code disassembler

disable(1) See enable(1)

dispgid(1) displays a list of all valid group names

dispuid(1) displays a list of all valid user names

dos2unix(1) convert text file from DOS format to ISO format

download(1) host resident PostScript font downloader

dpost(1) troff postprocessor for PostScript printers

du(1B) display the number of disk blocks used per directory
or file

dumbplot(1B) See plot(1B)

dump(1) dump selected parts of an object file

dumpcs(1) show codeset table for the current locale

dumpkeys(1) See loadkeys(1)

echo(1) echo arguments

echo(1B) echo arguments to standard output

echo(1F) put string on virtual output

ed(1) text editor

edit(1) text editor (variant of ex for casual users)

egrep(1) search a file for a pattern using full regular expres-
sions

eject(1) eject media such as CD-ROM and floppy from drive

enable(1) enable/disable LP printers

env(1) set environment for command invocation

eqn(1) typeset mathematics test

errange(1) See ckrange(1)

errdate(1) See ckdate(1)

errgid(1) See ckgid(1)

errint(1) See ckint(1)

erritem(1) See ckitem(1)

error(1) insert compiler error messages at right source lines

1-10 SunOS 5.6 modified 31 Dec 1996

User Commands Intro (1)

errpath(1) See ckpath(1)

errstr(1) See ckstr(1)

errtime(1) See cktime(1)

erruid(1) See ckuid(1)

erryorn(1) See ckyorn(1)

eval(1) See exec(1)

ex(1) text editor

exec(1) shell built-in functions to execute other commands

exit(1) shell built-in functions to enable the execution of the
shell to advance beyond its sequence of steps

expand(1) expand TAB characters to SPACE characters, and vice
versa

export(1) See set(1)

exportfs(1B) translates exportfs options to share/unshare com-
mands

expr(1) evaluate arguments as an expression

expr(1B) evaluate arguments as a logical, arithmetic, or string
expression

exstr(1) extract strings from source files

face(1) executable for the Framed Access Command
Environment Interface

factor(1) obtain the prime factors of a number

false(1) See true(1)

fastboot(1B) reboot/halt the system without checking the disks

fasthalt(1B) See fastboot(1B)

fc(1) See history(1)

fdformat(1) format floppy diskette or PCMCIA memory card

fg(1) See jobs(1)

fgrep(1) search a file for a fixed-character string

file(1) determine file type

file(1B) determine the type of a file by examining its contents

filesync(1) synchronize ordinary, directory or special files

find(1) find files

finger(1) display information about local and remote users

fmlcut(1F) cut out selected fields of each line of a file

fmlexpr(1F) evaluate arguments as an expression

modified 31 Dec 1996 SunOS 5.6 1-11

Intro (1) User Commands

fmlgrep(1F) search a file for a pattern

fmli(1) invoke FMLI

fmt(1) simple text formatters

fmtmsg(1) display a message on stderr or system console

fnattr(1) update and examine attributes associated with an
FNS named object

fnbind(1) Bind a reference to an FNS name

fnlist(1) display the names and references bound in an FNS
context

fnlookup(1) display the reference bound to an FNS name

fnrename(1) rename the binding of an FNS name

fnsearch(1) search for FNS objects with specified attributes

fnunbind(1) unbind the reference from an FNS name

fold(1) filter for folding lines

for(1) shell built-in functions to repeatedly execute action(s)
for a selected number of times

foreach(1) See for(1)

from(1B) display the sender and date of newly-arrived mail
messages

ftp(1) file transfer program

function(1) shell built-in command to define a function which is
usable within this shell

gcore(1) get core images of running processes

gencat(1) generate a formatted message catalog

genmsg(1) generate a message source file by extracting messages
from source files

get(1) See sccs-get(1)

getconf(1) get configuration values

getfacl(1) display discretionary file information

getfrm(1F) returns the current frameID number

getitems(1F) returns a list of currently marked menu items

getopt(1) parse command options

getoptcvt(1) convert to getopts to parse command options

getopts(1) parse utility options

gettext(1) retrieve text string from message database

gettxt(1) retrieve a text string from a message database

1-12 SunOS 5.6 modified 31 Dec 1996

User Commands Intro (1)

gigiplot(1B) See plot(1B)

glob(1) shell built-in function to expand a word list

goto(1) See exit(1)

gprof(1) display call-graph profile data

graph(1) draw a graph

grep(1) search a file for a pattern

groups(1) print group membership of user

groups(1B) display a user’s group memberships

grpck(1B) check group database entries

hash(1) evaluate the internal hash table of the contents of
directories

hashcheck(1) See spell(1)

hashmake(1) See spell(1)

hashstat(1) See hash(1)

head(1) display first few lines of files

help(1) See sccs-help(1)

helpdate(1) See ckdate(1)

helpgid(1) See ckgid(1)

helpint(1) See ckint(1)

helpitem(1) See ckitem(1)

helppath(1) See ckpath(1)

helprange(1) See ckrange(1)

helpstr(1) See ckstr(1)

helptime(1) See cktime(1)

helpuid(1) See ckuid(1)

helpyorn(1) See ckyorn(1)

history(1) process command history list

hostid(1) print the numeric identifier of the current host

hostname(1) set or print name of current host system

hp7221plot(1B) See plot(1B)

hpplot(1B) See plot(1B)

i286(1) See machid(1)

i386(1) See machid(1)

i486(1) See machid(1)

i860(1) See machid(1)

modified 31 Dec 1996 SunOS 5.6 1-13

Intro (1) User Commands

iAPX286(1) See machid(1)

iconv(1) code set conversion utility

if(1) evaluate condition(s) or make execution of actions
dependent upon the evaluation of condition(s)

implot(1B) See plot(1B)

indicator(1F) display application specific alarms and/or the "work-
ing" indicator

indxbib(1) create an inverted index to a bibliographic database

install(1B) install files

ipcrm(1) remove a message queue, semaphore set, or shared
memory ID

ipcs(1) report inter-process communication facilities status

isalist(1) display the native instruction sets executable on this
platform

jobs(1) control process execution

join(1) relational database operator

jsh(1) See sh(1)

kbd(1) manipulate the state of keyboard or display the type
of keyboard or change the default keyboard abort
sequence effect

kdestroy(1) destroy Kerberos tickets

kerberos(1) introduction to the Kerberos system

keylogin(1) decrypt and store secret key with keyserv

keylogout(1) delete stored secret key with keyserv

kill(1) terminate or signal processes

kinit(1) Kerberos login utility

klist(1) list currently held Kerberos tickets

ksh(1) KornShell, a standard/restricted command and pro-
gramming language

ksrvtgt(1) fetch and store Kerberos ticket-granting ticket using a
service key

last(1) display login and logout information about users and
terminals

lastcomm(1) display the last commands executed, in reverse order

ld(1) link-editor for object files

ld(1B) link editor, dynamic link editor

ldd(1) list dynamic dependencies of executable files or

1-14 SunOS 5.6 modified 31 Dec 1996

User Commands Intro (1)

shared objects

ld.so.1(1) runtime linker for dynamic objects

let(1) shell built-in function to evaluate one or more arith-
metic expressions

lex(1) generate programs for lexical tasks

limit(1) set or get limitations on the system resources avail-
able to the current shell and its descendents

line(1) read one line

lint(1B) C program verifier

listusers(1) list user login information

ln(1) make hard or symbolic links to files

ln(1B) make hard or symbolic links to files

loadfont(1) display or change font information in the RAM of the
video card on an x86 system in text mode

loadkeys(1) load and dump keyboard translation tables

locale(1) get locale-specific information

localedef(1) define locale environment

logger(1) add entries to the system log

logger(1B) add entries to the system log

login(1) sign on to the system

logname(1) return user’s login name

logout(1) shell built-in function to exit from a login session

longline(1F) See readfile(1F)

look(1) find words in the system dictionary or lines in a
sorted list

lookbib(1) find references in a bibliographic database

lorder(1) find ordering relation for an object or library archive

lp(1) submit print request

lpc(1B) line printer control program

lpq(1B) display the content of a print queue

lpr(1B) submit print requests

lprm(1B) remove print requests from the print queue

lpstat(1) print information about the status of the print service

lptest(1B) generate line printer ripple pattern

ls(1) list contents of directory

ls(1B) list the contents of a directory

modified 31 Dec 1996 SunOS 5.6 1-15

Intro (1) User Commands

m4(1) macro processor

mach(1) display the processor type of the current host

machid(1) get processor type truth value

mail(1) read mail or send mail to users

Mail(1B) See mailx(1)

mail(1B) See mailx(1)

mailcompat(1) provide SunOS compatibility for Solaris mailbox for-
mat

mailstats(1) print statistics collected by sendmail

mailx(1) interactive message processing system

make(1S) maintain, update, and regenerate related programs
and files

man(1) find and display reference manual pages

mconnect(1) connect to SMTP mail server socket

mcs(1) manipulate the comment section of an object file

mesg(1) permit or deny messages

message(1F) puts its arguments on FMLI message line

mkdir(1) make directories

mkmsgs(1) create message files for use by gettxt

mkstr(1B) create an error message file by massaging C source
files

more(1) browse or page through a text file

msgfmt(1) create a message object from a message file

mt(1) magnetic tape control

mv(1) move files

nawk(1) pattern scanning and processing language

neqn(1) See eqn(1)

newaliases(1) rebuild the data base for the mail aliases file

newform(1) change the format of a text file

newgrp(1) log in to a new group

news(1) print news items

nice(1) invoke a command with an altered scheduling prior-
ity

nis+(1) a new version of the network information name ser-
vice

NIS+(1) See nis+(1)

1-16 SunOS 5.6 modified 31 Dec 1996

User Commands Intro (1)

nis(1) See nis+(1)

niscat(1) display NIS+ tables and objects

nischgrp(1) change the group owner of a NIS+ object

nischmod(1) change access rights on a NIS+ object

nischown(1) change the owner of a NIS+ object

nischttl(1) change the time to live value of a NIS+ object

nisdefaults(1) display NIS+ default values

niserror(1) display NIS+ error messages

nisgrep(1) See nismatch(1)

nisgrpadm(1) NIS+ group administration command

nisln(1) symbolically link NIS+ objects

nisls(1) list the contents of a NIS+ directory

nismatch(1) utilities for searching NIS+ tables

nismkdir(1) create NIS+ directories

nispasswd(1) change NIS+ password information

nisrm(1) remove NIS+ objects from the namespace

nisrmdir(1) remove NIS+ directories

nistbladm(1) NIS+ table administration command

nistest(1) return the state of the NIS+ namespace using a condi-
tional expression

nl(1) line numbering filter

nm(1) print name list of an object file

nohup(1) run a command immune to hangups

notify(1) See jobs(1)

nroff(1) format documents for display or line-printer

od(1) octal dump

on(1) execute a command on a remote system, but with the
local environment

onintr(1) See trap(1)

optisa(1) determine which variant instruction set is optimal to
use

pack(1) compress and expand files

page(1) See more(1)

pagesize(1) display the size of a page of memory

passwd(1) change login password and password attributes

paste(1) merge corresponding or subsequent lines of files

modified 31 Dec 1996 SunOS 5.6 1-17

Intro (1) User Commands

patch(1) apply changes to files

pathchk(1) check path names

pathconv(1F) search FMLI criteria for filename

pax(1) portable archive interchange

pcat(1) See pack(1)

pcmapkeys(1) set keyboard extended map and scancode translation
for the PC console in text mode

pcred(1) See proc(1)

pdp11(1) See machid(1)

pfiles(1) See proc(1)

pflags(1) See proc(1)

pg(1) files perusal filter for CRTs

pkginfo(1) display software package information

pkgmk(1) produce an installable package

pkgparam(1) display package parameter values

pkgproto(1) generate prototype file entries for input to pkgmk
command

pkgtrans(1) translate package format

pldd(1) See proc(1)

plot(1B) graphics filters for various plotters

plottoa(1B) See plot(1B)

pmap(1) See proc(1)

popd(1) See cd(1)

postdaisy(1) PostScript translator for Diablo 630 daisy-wheel files

postdmd(1) PostScript translator for DMD bitmap files

postio(1) serial interface for PostScript printers

postmd(1) matrix display program for PostScript printers

postplot(1) PostScript translator for plot(4) graphics files

postprint(1) PostScript translator for text files

postreverse(1) reverse the page order in a PostScript file

posttek(1) PostScript translator for Tektronix 4014 files

pr(1) print files

prex(1) control tracing in a process or the kernel

print(1) shell built-in function to output characters to the
screen or window

printenv(1B) display environment variables currently set

1-18 SunOS 5.6 modified 31 Dec 1996

User Commands Intro (1)

printf(1) write formatted output

priocntl(1) display or set scheduling parameters of specified
process(es)

proc(1) proc tools

prof(1) display profile data

prs(1) See sccs-prs(1)

prt(1) See sccs-prt(1)

prun(1) See proc(1)

ps(1) report process status

ps(1B) display the status of current processes

psig(1) See proc(1)

pstack(1) See proc(1)

pstop(1) See proc(1)

ptime(1) See proc(1)

ptree(1) See proc(1)

pushd(1) See cd(1)

pvs(1) display the internal version information of dynamic
objects

pwait(1) See proc(1)

pwd(1) return working directory name

pwdx(1) See proc(1)

ranlib(1) convert archives to random libraries

rcp(1) remote file copy

rdist(1) remote file distribution program

read(1) read a line from standard input

readfile(1F) reads file, gets longest line

readonly(1) shell built-in function to protect the value of the given
variable from reassignment

red(1) See ed(1)

refer(1) expand and insert references from a bibliographic
database

regcmp(1) regular expression compile

regex(1F) match patterns against a string

rehash(1) See hash(1)

reinit(1F) runs an initialization file

remote_shell(1) See rsh(1)

modified 31 Dec 1996 SunOS 5.6 1-19

Intro (1) User Commands

remsh(1) See rsh(1)

renice(1) alter priority of running processes

repeat(1) See for(1)

reset(1B) See tset(1B)

reset(1F) reset the current form field to its default values

return(1) See exit(1)

rksh(1) See ksh(1)

rlogin(1) remote login

rm(1) remove directory entries

rmail(1) See mail(1)

rmdel(1) See sccs-rmdel(1)

rmdir(1) See rm(1)

roffbib(1) format and print a bibliographic database

rpcgen(1) an RPC protocol compiler

rsh(1) remote shell

run(1F) run an executable

rup(1) show host status of remote machines (RPC version)

rup(1C) show host status of remote machines (RPC version)

ruptime(1) show host status of local machines

rusage(1B) print resource usage for a command

rusers(1) who’s logged in on remote machines

rwho(1) who’s logged in on local machines

sact(1) See sccs-sact(1)

sag(1) system activity graph

sar(1) system activity reporter

sccs(1) front end for the Source Code Control System (SCCS)

sccs-admin(1) create and administer SCCS history files

sccs-cdc(1) change the delta commentary of an SCCS delta

sccs-comb(1) combine SCCS deltas

sccs-delta(1) make a delta to an SCCS file

sccsdiff(1) See sccs-sccsdiff(1)

sccs-get(1) retrieve a version of an SCCS file

sccs-help(1) ask for help regarding SCCS error or warning mes-
sages

sccs-prs(1) display selected portions of an SCCS history

1-20 SunOS 5.6 modified 31 Dec 1996

User Commands Intro (1)

sccs-prt(1) display delta table information from an SCCS file

sccs-rmdel(1) remove a delta from an SCCS file

sccs-sact(1) show editing activity status of an SCCS file

sccs-sccsdiff(1) compare two versions of an SCCS file

sccs-unget(1) undo a previous get of an SCCS file

sccs-val(1) validate an SCCS file

script(1) make record of a terminal session

sdiff(1) print differences between two files side-by-side

sed(1) stream editor

sed(1B) stream editor

select(1) See case(1)

set(1) shell built-in functions to determine the characteris-
tics for environmental variables of the current shell
and its descendents

set(1F) set and unset local or global environment variables

setcolor(1F) redefine or create a color

setenv(1) See set(1)

setfacl(1) modify the Access Control List (ACL) for a file or files

sh(1) standard and job control shell and command inter-
preter

shell(1F) run a command using shell

shell_builtins(1) shell command interpreter built-in functions

shift(1) shell built-in function to traverse either a shell’s argu-
ment list or a list of field-separated words

shutdown(1B) close down the system at a given time

size(1) print section sizes in bytes of object files

sleep(1) suspend execution for an interval

soelim(1) resolve and eliminate .so requests from nroff or troff
input

solregis(1) Solaris user registration

sort(1) sort, merge, or sequence check text files

sortbib(1) sort a bibliographic database

sotruss(1) trace shared library procedure calls

source(1) See exec(1)

sparc(1) See machid(1)

spell(1) report spelling errors

modified 31 Dec 1996 SunOS 5.6 1-21

Intro (1) User Commands

spellin(1) See spell(1)

spline(1) interpolate smooth curve

split(1) split a file into pieces

srchtxt(1) display contents of, or search for a text string in, mes-
sage data bases

stop(1) See jobs(1)

strchg(1) change or query stream configuration

strconf(1) See strchg(1)

strings(1) find printable strings in an object or binary file

strip(1) strip symbol table, debugging and line number infor-
mation from an object file

stty(1) set the options for a terminal

stty(1B) set the options for a terminal

sum(1) print checksum and block count for a file

sum(1B) calculate a checksum for a file

sun(1) See machid(1)

suspend(1) shell built-in function to halt the current shell

switch(1) See case(1)

symorder(1) rearrange a list of symbols

sysV-make(1) maintain, update, and regenerate groups of programs

t300(1) See tplot(1)

t300(1B) See plot(1B)

t300s(1) See tplot(1)

t300s(1B) See plot(1B)

t4013(1B) See plot(1B)

t4014(1) See tplot(1)

t450(1) See tplot(1)

t450(1B) See plot(1B)

tabs(1) set tabs on a terminal

tail(1) deliver the last part of a file

talk(1) talk to another user

tar(1) create tape archives and add or extract files

tbl(1) format tables for nroff or troff

tcopy(1) copy a magnetic tape

tee(1) replicate the standard output

tek(1) See tplot(1)

1-22 SunOS 5.6 modified 31 Dec 1996

User Commands Intro (1)

tek(1B) See plot(1B)

telnet(1) user interface to a remote system using the TELNET
protocol

test(1) See if(1)

test(1B) condition evaluation command

test(1F) condition evaluation command

tftp(1) trivial file transfer program

time(1) time a simple command

times(1) shell built-in function to report time usages of the
current shell

timex(1) time a command; report process data and system
activity

tip(1) connect to remote system

tnfdump(1) converts binary TNF file to ASCII

tnfxtract(1) extract kernel probes output into a trace file

touch(1) change file access and modification times

touch(1B) change file access and modification times

tplot(1) graphics filters for various plotters

tput(1) initialize a terminal or query terminfo database

tr(1) translate characters

tr(1B) translate characters

trap(1) shell built-in functions to respond to (hardware) sig-
nals

troff(1) typeset or format documents

true(1) provide truth values

truss(1) trace system calls and signals

tset(1B) establish or restore terminal characteristics

tsort(1) topological sort

tty(1) return user’s terminal name

type(1) write a description of command type

typeset(1) shell built-in functions to set/get attributes and
values for shell variables and functions

u370(1) See machid(1)

u3b(1) See machid(1)

u3b15(1) See machid(1)

u3b2(1) See machid(1)

modified 31 Dec 1996 SunOS 5.6 1-23

Intro (1) User Commands

u3b5(1) See machid(1)

ucblinks(1B) adds /dev entries to give SunOS 4.x compatible
names to SunOS 5.x devices

ul(1) do underlining

ulimit(1) See limit(1)

umask(1) get or set the file mode creation mask

unalias(1) See alias(1)

uname(1) print name of current system

uncompress(1) See compress(1)

unexpand(1) See expand(1)

unget(1) See sccs-unget(1)

unhash(1) See hash(1)

unifdef(1) resolve and remove ifdef’ed lines from C program
source

uniq(1) report or filter out repeated lines in a file

units(1) converts quantities expressed in standard scales to
other scales

unix2dos(1) convert text file from ISO format to DOS format

unlimit(1) See limit(1)

unpack(1) See pack(1)

unset(1) See set(1)

unset(1F) See set(1F)

unsetenv(1) See set(1)

until(1) See while(1)

uptime(1) show how long the system has been up

users(1B) display a compact list of users logged in

uucp(1C) UNIX-to-UNIX system copy

uudecode(1C) See uuencode(1C)

uuencode(1C) encode a binary file, or decode its encoded represen-
tation

uuglist(1C) print the list of service grades that are available on
this UNIX system

uulog(1C) See uucp(1C)

uuname(1C) See uucp(1C)

uupick(1C) See uuto(1C)

uustat(1C) uucp status inquiry and job control

1-24 SunOS 5.6 modified 31 Dec 1996

User Commands Intro (1)

uuto(1C) public UNIX-to-UNIX system file copy

uux(1C) UNIX-to-UNIX system command execution

vacation(1) reply to mail automatically

val(1) See sccs-val(1)

valdate(1) See ckdate(1)

valgid(1) See ckgid(1)

valint(1) See ckint(1)

valpath(1) See ckpath(1)

valrange(1) See ckrange(1)

valstr(1) See ckstr(1)

valtime(1) See cktime(1)

valuid(1) See ckuid(1)

valyorn(1) See ckyorn(1)

vax(1) See machid(1)

vc(1) version control

vedit(1) See vi(1)

ver(1) See tplot(1)

vgrind(1) grind nice program listings

vi(1) screen-oriented (visual) display editor based on ex

view(1) See vi(1)

vipw(1B) edit the password file

volcancel(1) cancel user’s request for removable media that is not
currently in drive

volcheck(1) checks for media in a drive and by default checks all
floppy media

volmissing(1) notify user that volume requested is not in the CD-
ROM or floppy drive

volrmmount(1) call rmmount to mount or unmount media

vplot(1B) See plot(1B)

vsig(1F) synchronize a co-process with the controlling FMLI
application

w(1) display information about currently logged-in users

wait(1) await process completion

wc(1) display a count of lines, words and characters in a file

what(1) extract SCCS version information from a file

whatis(1) display a one-line summary about a keyword

modified 31 Dec 1996 SunOS 5.6 1-25

Intro (1) User Commands

whence(1) See typeset(1)

whereis(1B) locate the binary, source, and manual page files for a
command

which(1) locate a command; display its pathname or alias

while(1) shell built-in functions to repetitively execute a set of
actions while/until conditions are evaluated TRUE

who(1) who is on the system

whoami(1B) display the effective current username

whocalls(1) report on the calls to a specific procedure.

whois(1) Internet user name directory service

write(1) write to another user

xargs(1) construct argument lists and invoke utility

xgettext(1) extract gettext call strings from C programs

xstr(1) extract strings from C programs to implement shared
strings

yacc(1) yet another compiler-compiler

ypcat(1) print values in a NIS database

ypmatch(1) print the value of one or more keys from a NIS map

yppasswd(1) change your network password in the NIS database

ypwhich(1) return name of NIS server or map master

zcat(1) See compress(1)

1-26 SunOS 5.6 modified 31 Dec 1996

User Commands acctcom (1)

NAME acctcom − search and print process accounting files

SYNOPSIS acctcom [−abfhikmqrtv] [−C sec] [−e time] [−E time] [−g group] [−H factor]
[−I chars] [−l line] [−n pattern] [−o output-file] [−O sec] [−s time]
[−S time] [−u user] [filename . . .]

DESCRIPTION acctcom reads filenames, the standard input, or /var/adm/pacct, in the form described by
acct(4) and writes selected records to standard output. Each record represents the execu-
tion of one process. The output shows the COMMAND NAME, USER, TTYNAME, START
TIME, END TIME, REAL (SEC), CPU (SEC), MEAN SIZE (K), and optionally, F (the
fork()/exec() flag: 1 for fork() without exec()), STAT (the system exit status), HOG FAC-
TOR, KCORE MIN, CPU FACTOR, CHARS TRNSFD, and BLOCKS READ (total blocks read
and written).

A ‘ # ’ is prepended to the command name if the command was executed with super-user
privileges. If a process is not associated with a known terminal, a ‘ ? ’ is printed in the
TTYNAME field.

If no filename is specified, and if the standard input is associated with a terminal or
/dev/null (as is the case when using ‘ & ’ in the shell), /var/adm/pacct is read; otherwise,
the standard input is read.

If any filename arguments are given, they are read in their respective order. Each file is
normally read forward, that is, in chronological order by process completion time. The
file /var/adm/pacct is usually the current file to be examined; a busy system may need
several such files of which all but the current file are found in /var/adm/pacctincr.

OPTIONS −a Show some average statistics about the processes selected. The statistics
will be printed after the output records.

−b Read backwards, showing latest commands first. This option has no
effect when standard input is read.

−f Print the fork()/exec() flag and system exit status columns in the output.
The numeric output for this option will be in octal.

−h Instead of mean memory size, show the fraction of total available CPU
time consumed by the process during its execution. This “hog factor” is
computed as (total CPU time)/(elapsed time).

−i Print columns containing the I/O counts in the output.

−k Instead of memory size, show total kcore-minutes.

−m Show mean core size (the default).

−q Do not print any output records, just print the average statistics as with
the −a option.

−r Show CPU factor (user-time/(system-time + user-time)).

−t Show separate system and user CPU times.

−v Exclude column headings from the output.

modified 11 Jan 1996 SunOS 5.6 1-27

acctcom (1) User Commands

−C sec Show only processes with total CPU time (system-time + user-time)
exceeding sec seconds.

−e time Select processes existing at or before time.

−E time Select processes ending at or before time. Using the same time for both
−S and −E shows the processes that existed at time.

−g group Show only processes belonging to group. The group may be designated
by either the group ID or group name.

−H factor Show only processes that exceed factor , where factor is the “hog factor”
as explained in option −h above.

−I chars Show only processes transferring more characters than the cutoff
number given by chars.

−l line Show only processes belonging to terminal /dev/term/line.

−n pattern Show only commands matching pattern that may be a regular expression
as in regcmp(3C), except + means one or more occurrences.

−o output-file Copy selected process records in the input data format to output-file;
suppress printing to standard output.

−O sec Show only processes with CPU system time exceeding sec seconds.

−s time Select processes existing at or after time, given in the format
hr [:min [:sec]].

−S time Select processes starting at or after time.

−u user Show only processes belonging to user . The user may be specified by a
user ID, a login name that is then converted to a user ID, ‘ # ’ (which
designates only those processes executed with superuser privileges), or ‘
? ’ (which designates only those processes associated with unknown
user IDs).

FILES /etc/group system group file
/etc/passwd system password file
/var/adm/pacctincr active processes accounting file

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWaccu
CSI enabled

SEE ALSO ps(1), acct(1M), acctcms(1M), acctcon(1M), acctmerg(1M), acctprc(1M), acctsh(1M),
fwtmp(1M), runacct(1M), su(1M), acct(2), regcmp(3C), acct(4), utmp(4), attributes(5)

System Administration Guide

NOTES acctcom reports only on processes that have terminated; use ps(1) for active processes.

1-28 SunOS 5.6 modified 11 Jan 1996

User Commands adb (1)

NAME adb − general-purpose debugger

SYNOPSIS adb [−k] [−w] [−I dir] [−P prompt] [−V mode] [objectfile [corefile [swapfile]]]

DESCRIPTION The adb utility is an interactive, general-purpose debugger. It can be used to examine
files and provides a controlled environment for the execution of programs.

OPTIONS −k Perform kernel memory mapping; use when corefile is a system crash
dump or /dev/mem, or when using a swapfile.

−w Create both objectfile and corefile, if necessary, and open them for reading
and writing so that they can be modified using adb.

−I dir Specify a colon-separated list of directories where files to be read with
$< or $<< (see below) will be sought; the default is /usr/platform/plat-
name/lib/adb:/usr/lib/adb, where plat-name is the name of the platform
implementation. plat-name can be found using the −i option of
uname(1).

−P prompt Specify the adb prompt string.

SPARC Only −V mode Specify the disassembly and register display mode. Options are: 1 (v8),
2 (generic V9), and 4 (v9 plus Sun Ultra-SPARC specific instructions).
The default mode is determined by the type of corefile being examined.

OPERANDS objectfile Normally an executable program file, preferably containing a symbol
table. If the file does not contain a symbol table, it can still be examined,
but the symbolic features of adb cannot be used. The default for
objectfile is a.out.

corefile Assumed to be a core image file produced after executing objectfile. The
default for corefile is core.

swapfile The image of the swap device used. It is valid only when used with the
−k option.

USAGE The adb utility reads commands from the standard input and displays responses on the
standard output. It does not supply a prompt by default. It ignores the QUIT signal.
INTERRUPT invokes the next adb command. adb generally recognizes command input of
the form:

[address] [, count] [command] [;]

address and count (if supplied) are expressions that result, respectively, in a new current
location and a repetition count. command is composed of a verb followed by a modifier or
list of modifiers.

The symbol ‘.’ represents the current location; it is initially 0. The default count is 1.

modified 17 Mar 1997 SunOS 5.6 1-29

adb (1) User Commands

Expressions . The value of dot .
+ The value of dot incremented by the current increment.
ˆ The value of dot decremented by the current increment.
& The last address typed. (In older versions of adb, ‘"’ was used.)
integer A number. The prefixes 0o and 0O indicate octal; 0t and 0T, decimal;

0x and 0X, hexadecimal (the default).
int.frac A floating-point number.
’cccc’ ASCII value of up to 4 characters.
<name The value of name, which is either a variable name or a register name.
symbol A symbol in the symbol table.
(exp) The value of exp.

Unary Operators ∗exp The contents of location exp in corefile.
%exp The contents of location exp in objectfile (In older versions of adb, ‘@’

was used).
−exp Integer negation.
˜exp Bitwise complement.
#exp Logical negation.

Binary Operators Binary operators are left associative and have lower precedence than unary operators.

+ Integer addition.
− Integer subtraction.
∗ Integer multiplication.
% Integer division.
& Bitwise conjunction (“AND”).
| Bitwise disjunction (“OR”).
lhs rounded up to the next multiple of rhs.

Variables Named variables are set initially by adb but are not used subsequently.

0 The last value printed.
1 The last offset part of an instruction source.
2 The previous value of variable 1.
9 The count on the last $< or $<< command.

On entry the following are set from the system header in the corefile or objectfile as
appropriate.

b The base address of the data segment.
d The data segment size.
e The entry point.
m The ‘magic’ number
t The text segment size.

Commands Commands to adb consist of a verb followed by a modifier or list of modifiers.

1-30 SunOS 5.6 modified 17 Mar 1997

User Commands adb (1)

Verbs ? Print locations starting at address in objectfile.
/ Print locations starting at address in corefile.
= Print the value of address itself.
: Manage a subprocess.
> Assign a value to a variable or register.
RETURN Repeat the previous command with a count of 1. Increment ‘.’.
! Shell escape.

?, /, and = Modifiers The following format modifiers apply to the commands ?, /, and =. To specify a format,
follow the command with an optional repeat count, and the desired format letter or
letters:

{ ? / = } [[r] f . . .]]

where r is a decimal repeat count, and f is one of the format letters listed below:

o (‘.’ increment: 2) Print 2 bytes in octal.
O (4) Print 4 bytes in octal.
q (2) Print in signed octal.
Q (4) Print long signed octal.
d (2) Print in decimal.
D (4) Print long decimal.
x (2) Print 2 bytes in hexadecimal.
X (4) Print 4 bytes in hexadecimal.
u (2) Print as an unsigned decimal number.
U (4) Print long unsigned decimal.
f (4) Print a single-precision floating-point number.
F (8) Print a double-precision floating-point number.
b (1) Print the addressed byte in octal.
c (1) Print the addressed character.
C (1) Print the addressed character using ˆ escape convention.
s (n) Print the addressed string.
S (n) Print a string using the ˆ escape convention.
Y (4) Print 4 bytes in date format.
i (4) Print as machine instructions. (SPARC)
i (variable) Print as machine instructions. (x86)
a (0) Print the value of ‘.’ in symbolic form.
p (4) Print the addressed value in symbolic form.
t (0) Tab to the next appropriate TAB stop.
r (0) Print a SPACE.
n (0) Print a NEWLINE.
". . ." (0) Print the enclosed string.
ˆ (0) Decrement ‘.’.
+ (0) Increment ‘.’.
− (0) Decrement ‘.’ by 1.

modified 17 Mar 1997 SunOS 5.6 1-31

adb (1) User Commands

? and / Modifiers l value mask Apply mask and compare for value; move ‘.’ to matching location.
L value mask Apply mask and compare for 4-byte value; move ‘.’ to matching loca-

tion.
w value Write the 2-byte value to address.
W value Write the 4-byte value to address.
m b1 e1 f1[?] Map new values for b1, e1, f1. If the ? or / is followed by ∗ then the

second segment (b2, e2, f2) of the address mapping is changed.
v Like w, but writes only bytes at a time.

: Modifiers The optional len is specified in decimal; if not specified, it defaults to 1.

b commands Set instruction breakpoint; set ‘.’ to address and execute commands when
reached.

len w commands Set write watchpoint (data breakpoint); set ‘.’ to the affected location
and execute commands when any byte in the range [address, address+len)
is written.

len a commands Set access watchpoint; set ‘.’ to the affected location and execute com-
mands when any byte in the range [address, address+len) is read or writ-
ten.

len p commands Set execution watchpoint; set ‘.’ to the affected location and execute
commands when any instruction in the range [address, address+len) is
executed.

r Run objectfile as a subprocess.
d Delete breakpoint at address or watchpoint containing address.
z Delete all breakpoints and watchpoints.
cs Continue the subprocess with signal s.
ss Single-step the subprocess with signal s.
es Single-step but do not step into called functions.
i Add the signal specified by address to the list of signals passed directly

to the subprocess.
t Remove the signal specified by address from the list implicitly passed to

the subprocess.
k Terminate (kill) the current subprocess, if any.
A Attach adb to an existing process ID. (For example, 0t1234:A would

attach adb to decimal process number 1234.)
R Release the previously attached process.

$ Modifiers <filename Read commands from the file filename.
<<filename Similar to <, but can be used in a file of commands without closing the

file.
>filename Append output to filename, which is created if it does not exist.
l Show the current lightweight process (LWP) ID.
L Show all the LWP IDs.
P Specify the adb prompt string.
? Print process ID, the signal which stopped the subprocess, and the

registers.
r Print the names and contents of the general CPU registers, and the

1-32 SunOS 5.6 modified 17 Mar 1997

User Commands adb (1)

instruction addressed by pc.
x Print the names and contents of floating-point registers 0 through 15.

(SPARC)
X Print the names and contents of floating-point registers 16 through 31.

(SPARC)
x or X Print the contents of floating point registers. $x and $X accept a count

which determines the precision in which the floating point registers
will be printed; the default is 25. Using $X will produce more verbose
output than using $x. (x86)

y Print the names and contents of floating-point registers 32 through 47.
(SPARC)

Y Print the names and contents of floating-point registers 48 through 63.
(SPARC)

b Print all breakpoints and watchpoints and their associated counts,
types, lengths, and commands.

c C stack backtrace. On SPARC based systems, it is impossible for adb
to determine how many parameters were passed to a function. The
default that adb chooses in a $c command is to show the six parameter
registers. This can be overridden by appending a hexadecimal number
to the $c command, specifying how many parameters to display. For
example, the $cf command will print 15 parameters for each function
in the stack trace.

C Same as $c, but in addition it displays the frame pointer values.
d Set the default radix to address and report the new value. Note: address

is interpreted in the (old) current radix. Thus ‘10$d’ never changes the
default radix.

e Print the names and values of external variables.
w Set the page width for output to address (default 80).
s Set the limit for symbol matches to address (default 255).
o All integers input are regarded as octal.
q Exit from adb.
v Print all non-zero variables in octal.
m Print the address map.
f Print a list of known source filenames.
p (Kernel debugging) Change the current kernel memory mapping to map

the designated user structure to the address given by u; this is the
address of the user’s proc structure.

i Show which signals are passed to the subprocess with the minimum of
adb interference.

V Change the current disassembly and register display mode. Options
are: 1 (v8), 2 (generic V9), and 4 (v9 plus Sun Ultra-SPARC specific
instructions). Omitting the numeric parameter prints information on
the current disassembly mode. (SPARC)

W Reopen objectfile and corefile for writing, as though the −w command-
line argument had been given.

modified 17 Mar 1997 SunOS 5.6 1-33

adb (1) User Commands

See largefile(5) for the description of the behavior of adb when encountering files greater
than or equal to 2 Gbyte (231 bytes).

EXAMPLES To start adb on the running kernel, use (as root):

example# adb -k /dev/ksyms /dev/mem

/dev/ksyms is a special driver that provides an image of the kernel’s symbol table. This
can be used to examine kernel state and debug device drivers. Refer to the Debugging
chapter in Writing Device Drivers for more information.

EXIT STATUS The following exit values are returned:

0 Successful completion.

non-zero The last command either failed or returned a non-zero status.

FILES /usr/lib/adb and /usr/platform/platform-name/lib/adb
default directories in which files are to be read with $< and $<<.
platform-name is the name of the platform implementation and can
be found using uname −i.

a.out default name for objectfile operand.

core default name for corefile operand.

/dev/ksyms special driver to provide an image of the kernel’s symbolic table.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO uname(1), a.out(4), core(4), proc(4), attributes(5), largefile(5), ksyms(7D)

Writing Device Drivers

DIAGNOSTICS When there is no current command or format, adb comments about inaccessible files,
syntax errors, abnormal termination of commands, and so forth.

NOTES The adb utility should be changed to use the new format symbolic information generated
by −g.

The adb utility is platform and release dependent. Kernel core dumps should be exam-
ined on the same platform they were created on.

1-34 SunOS 5.6 modified 17 Mar 1997

User Commands adb (1)

BUGS Since no shell is invoked to interpret the arguments of the :r command, the customary
wild-card and variable expansions cannot occur.

Since there is little type-checking on addresses, using a sourcefile address in an inap-
propriate context may lead to unexpected results.

The $cparameter-count command is a work-around.

modified 17 Mar 1997 SunOS 5.6 1-35

addbib (1) User Commands

NAME addbib − create or extend a bibliographic database

SYNOPSIS addbib [−a] [−p promptfile] database

DESCRIPTION When addbib starts up, answering y to the initial Instructions? prompt yields directions;
typing n or RETURN skips them. addbib then prompts for various bibliographic fields,
reads responses from the terminal, and sends output records to database. A null response
(just RETURN) means to leave out that field. A ‘−’ (minus sign) means to go back to the
previous field. A trailing backslash allows a field to be continued on the next line. The
repeating Continue? prompt allows the user either to resume by typing y or RETURN, to
quit the current session by typing n or q, or to edit database with any system editor (see
vi(1), ex(1), ed(1)).

OPTIONS −a Suppress prompting for an abstract; asking for an abstract is the default.
Abstracts are ended with a CTRL−D.

−p promptfile Use a new prompting skeleton, defined in promptfile. This file should
contain prompt strings, a TAB, and the key-letters to be written to the
database .

USAGE
Bibliography Key

Letters
The most common key-letters and their meanings are given below. addbib insulates you
from these key-letters, since it gives you prompts in English, but if you edit the bibliogra-
phy file later on, you will need to know this information.

%A Author’s name

%B Book containing article referenced

%C City (place of publication)

%D Date of publication

%E Editor of book containing article referenced

%F Footnote number or label (supplied by refer)

%G Government order number

%H Header commentary, printed before reference

%I Issuer (publisher)

%J Journal containing article

%K Keywords to use in locating reference

%L Label field used by −k option of refer

%M Bell Labs Memorandum (undefined)

%N Number within volume

%O Other commentary, printed at end of reference

%P Page number(s)

%Q Corporate or Foreign Author (unreversed)

1-36 SunOS 5.6 modified 14 Sep 1992

User Commands addbib (1)

%R Report, paper, or thesis (unpublished)

%S Series title

%T Title of article or book

%V Volume number

%X Abstract — used by roffbib, not by refer

%Y,Z Ignored by refer

EXAMPLES Except for A, each field should be given just once. Only relevant fields should be sup-
plied.

%A Mark Twain
%T Life on the Mississippi
%I Penguin Books
%C New York
%D 1978

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWdoc

SEE ALSO ed(1), ex(1), indxbib(1), lookbib(1), refer(1), roffbib(1), sortbib(1), vi(1), attributes(5)

modified 14 Sep 1992 SunOS 5.6 1-37

alias (1) User Commands

NAME alias, unalias − create or remove a pseudonym or shorthand for a command or series of
commands

SYNOPSIS /usr/bin/alias [alias-name[=string] . . .]

/usr/bin/unalias alias-name . . .
/usr/bin/unalias -a

csh alias [name [def]]

unalias pattern

ksh alias [−tx] [name[=value]] . . .

unalias name. . .

DESCRIPTION
/usr/bin/alias The alias utility creates or redefines alias definitions or writes the values of existing alias

definitions to standard output. An alias definition provides a string value that replaces a
command name when it is encountered.

An alias definition affects the current shell execution environment and the execution
environments of the subshells of the current shell. When used as specified by this docu-
ment, the alias definition will not affect the parent process of the current shell nor any
utility environment invoked by the shell.

/usr/bin/unalias The unalias utility removes the definition for each alias name specified. The aliases are
removed from the current shell execution environment.

csh alias assigns def to the alias name. def is a list of words that may contain escaped history-
substitution metasyntax. name is not allowed to be alias or unalias. If def is omitted, the
alias name is displayed along with its current definition. If both name and def are omitted,
all aliases are displayed.

Because of implementation restrictions, an alias definition must have been entered on a
previous command line before it can be used.

unalias discards aliases that match (filename substitution) pattern . All aliases may be
removed by ‘unalias ∗’.

ksh alias with no arguments prints the list of aliases in the form name=value on standard out-
put. An alias is defined for each name whose value is given. A trailing space in value
causes the next word to be checked for alias substitution. The −t flag is used to set and
list tracked aliases. The value of a tracked alias is the full pathname corresponding to the
given name. The value becomes undefined when the value of PATH is reset but the
aliases remained tracked. Without the −t flag, for each name in the argument list for
which no value is given, the name and value of the alias is printed. The −x flag is used to
set or print exported aliases. An exported alias is defined for scripts invoked by name. The
exit status is non-zero if a name is given, but no value, and no alias has been defined for

1-38 SunOS 5.6 modified 28 Mar 1995

User Commands alias (1)

the name.

The aliases given by the list of names may be removed from the alias list with unalias.

OPTIONS The following option is supported by unalias:

−a Remove all alias definitions from the current shell execution environment.

OPERANDS The following operands are supported:
alias alias-name Write the alias definition to standard output.

unalias alias-name The name of an alias to be removed.

alias-name=string Assign the value of string to the alias alias-name .

If no operands are given, all alias definitions will be written to standard output.

OUTPUT The format for displaying aliases (when no operands or only name operands are
specified) is:

"%s=%s\n" name, value

The value string will be written with appropriate quoting so that it is suitable for reinput
to the shell.

EXAMPLES 1. Change ls to give a columnated, more annotated output:
alias ls="ls −CF"

2. Create a simple “redo” command to repeat previous entries in the command history
file:

alias r=’fc −s’

3. Use 1K units for du:
alias du=du\ −k

4. Set up nohup so that it can deal with an argument that is itself an alias name:
alias nohup="nohup "

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of alias and unalias: LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS The following exit values are returned:

0 Successful completion.
alias >0 One of the alias-name operands specified did not have an alias definition, or an

error occurred.
unalias >0 One of the alias-name operands specified did not represent a valid alias definition,

or an error occurred.

modified 28 Mar 1995 SunOS 5.6 1-39

alias (1) User Commands

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO csh(1), ksh(1), shell_builtins(1), attributes(5), environ(5)

1-40 SunOS 5.6 modified 28 Mar 1995

User Commands apropos (1)

NAME apropos − locate commands by keyword lookup

SYNOPSIS apropos keyword . . .

DESCRIPTION apropos displays the man page name, section number, and a short description for each
man page whose NAME line contains keyword . This information is contained in the
/usr/share/man/windex database created by catman(1M). If catman(1M) was not run, or
was run with the −n option, apropos fails. Each word is considered separately and the
case of letters is ignored. Words which are part of other words are considered; for exam-
ple, when looking for ‘compile’, apropos finds all instances of ‘compiler’ also.

apropos is actually just the −k option to the man(1) command.

Try

example% apropos password

and

example% apropos editor

If the line starts ‘filename(section) . . .’ you can do ‘man −s section filename’ to display the
man page for filename. Try

example% apropos format

and then

example% man −s 3s printf

to get the manual page on the subroutine printf().

FILES /usr/share/man/windex table of contents and keyword database

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWdoc
CSI Enabled

SEE ALSO man(1), whatis(1), catman(1M), attributes(5)

DIAGNOSTICS /usr/share/man/windex: No such file or directory
This database does not exist. catman(1M) must be run to create it.

modified 20 Dec 1996 SunOS 5.6 1-41

ar (1) User Commands

NAME ar − maintain portable archive or library

SYNOPSIS /usr/ccs/bin/ar −d [−Vv] archive file. . .
/usr/ccs/bin/ar −m [−abiVv] [posname] archive file. . .
/usr/ccs/bin/ar −p [−sVv] archive [file. . .]
/usr/ccs/bin/ar −q [−cVv] archive file. . .
/usr/ccs/bin/ar −r [−abciuVv] [posname] archive file. . .
/usr/ccs/bin/ar −t [−sVv] archive [file. . .]
/usr/ccs/bin/ar −x [−CsTVv] archive [file. . .]

/usr/xpg4/bin/ar −d [−Vv] archive file. . .
/usr/xpg4/bin/ar −m [−abiVv] [posname] archive file. . .
/usr/xpg4/bin/ar −p [−sVv] archive [file. . .]
/usr/xpg4/bin/ar −q [−cVv] archive file. . .
/usr/xpg4/bin/ar −r [−abciuVv] [posname] archive file. . .
/usr/xpg4/bin/ar −t [−sVv] archive [file. . .]
/usr/xpg4/bin/ar −x [−CsTVv] archive [file. . .]

DESCRIPTION The ar utility maintains groups of files combined into a single archive file. Its main use is
to create and update library files. However, it can be used for any similar purpose. The
magic string and the file headers used by ar consist of printable ASCII characters. If an
archive is composed of printable files, the entire archive is printable.

When ar creates an archive, it creates headers in a format that is portable across all
machines. The portable archive format and structure are described in detail in ar(4). The
archive symbol table (described in ar(4)) is used by the link editor ld to effect multiple
passes over libraries of object files in an efficient manner. An archive symbol table is only
created and maintained by ar when there is at least one object file in the archive. The
archive symbol table is in a specially named file that is always the first file in the archive.
This file is never mentioned or accessible to the user. Whenever the ar command is used
to create or update the contents of such an archive, the symbol table is rebuilt. The s
option described below will force the symbol table to be rebuilt.

OPTIONS The following options are supported:

−a Position new files in archive after the file named by the posname operand.

−b Position new files in archive before the file named by the posname operand.

−c Suppress the diagnostic message that is written to standard error by default
when archive is created.

−C Prevent extracted files from replacing like-named files in the file system. This
option is useful when −T is also used to prevent truncated file names from
replacing files with the same prefix.

−d Delete one or more files from archive.

−i Position new files in archive before the file named by the posname operand
(equivalent to −b).

1-42 SunOS 5.6 modified 18 Mar 1997

User Commands ar (1)

−m Move files. If −a, −b, or −i with the posname operand are specified, move files to
the new position; otherwise, move files to the end of archive.

−p Print the contents of files in archive to standard output. If no files are specified, the
contents of all files in archive will be written in the order of the archive.

−q Quickly append files to the end of archive. Positioning options −a, −b, and −i are
invalid. The command does not check whether the added files are already in
archive. This option is useful to avoid quadratic behavior when creating a large
archive piece-by-piece.

−r Replace or add files in archive. If archive does not exist, a new archive file will be
created and a diagnostic message will be written to standard error (unless the −c
option is specified). If no files are specified and the archive exists, the results are
undefined. Files that replace existing files will not change the order of the
archive. If the −u option is used with the −r, option, then only those files with
dates of modification later than the archive files are replaced. If the −a, −b, or −i
option is used, then the posname argument must be present and specifies that new
files are to be placed after (−a) or before (−b or −i) posname; otherwise the new
files are placed at the end.

−s Force the regeneration of the archive symbol table even if ar is not invoked with a
option which will modify the archive contents. This command is useful to
restore the archive symbol table after the strip(1) command has been used on the
archive.

−t Print a table of contents of archive. The files specified by the file operands will be
included in the written list. If no file operands are specified, all files in archive will
be included in the order of the archive.

−T Allow file name truncation of extracted files whose archive names are longer
than the file system can support. By default, extracting a file with a name that is
too long is an error; a diagnostic message will be written and the file will not be
extracted.

−u Update older files. When used with the −r option, files within archive will be
replaced only if the corresponding file has a modification time that is at least as
new as the modification time of the file within archive.

−V prints its version number on standard error.

/usr/bin/ar −v Give verbose output. When used with the option characters −d, −r, or −x, write a
detailed file-by-file description of the archive creation and the constituent files,
and maintenance activity.

When used with −p, write the name of the file to the standard output before writ-
ing the file itself to the standard output.

When used with −t, include a long listing of information about the files within the
archive.

When used with −x, print the filename preceding each extraction.

modified 18 Mar 1997 SunOS 5.6 1-43

ar (1) User Commands

When writing to an archive, a message is written to the standard error.

/usr/xpg4/bin/ar −v Same as /usr/bin/ar version, except when writing to an archive, no message is
written to the standard error.

−x Extract the files named by the file operands from archive. The contents of archive
will not be changed. If no file operands are given, all files in archive will be
extracted. If the file name of a file extracted from archive is longer than that sup-
ported in the directory to which it is being extracted, the results are undefined.
The modification time of each file extracted will be set to the time file is extracted
from archive.

OPERANDS The following operands are supported:

archive A path name of the archive file.

file A path name. Only the last component will be used when comparing against
the names of files in the archive. If two or more file operands have the same
last path name component (basename(1)), the results are unspecified. The
implementation’s archive format will not truncate valid file names of files
added to or replaced in the archive.

posname The name of a file in the archive file, used for relative positioning; see options
−m and −r.

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of ar: LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS The following exit values are returned:

0 Successful completion.

>0 An error occurred.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

/usr/bin/ar ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWbtool

/usr/xpg4/bin/ar ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxcu4

SEE ALSO basename(1), cc(1B), cpio(1), ld(1), lorder(1), strip(1), tar(1), a.out(4), ar(4), attributes(5),
environ(5), xpg4(5)

NOTES If the same file is mentioned twice in an argument list, it may be put in the archive twice.

By convention, archives are suffixed with the characters .a.

1-44 SunOS 5.6 modified 18 Mar 1997

User Commands arch (1)

NAME arch − display the architecture of the current host

SYNOPSIS arch [−k | archname]

DESCRIPTION arch displays the application architecture of the current host system. Due to extensive
historical use of this command without any options, all SunOS 5.x SPARC based systems
will return "sun4" as their application architecture. Use of this command is discouraged;
see NOTES section below.

Systems can be broadly classified by their architectures, which define what executables
will run on which machines. A distinction can be made between kernel architecture and
application architecture (or, commonly, just “architecture”). Machines that run different
kernels due to underlying hardware differences may be able to run the same application
programs.

OPTIONS −k Display the kernel architecture, such as sun4m, sun4c, and so forth. This
defines which specific SunOS kernel will run on the machine, and has implica-
tions only for programs that depend on the kernel explicitly (for example,
ps(1)).

OPERANDS The following operand is supported:

archname Use archname to determine whether the application binaries for this applica-
tion architecture can run on the current host system. The archname must be a
valid application architecture, such as sun4, i86pc, and so forth.

If application binaries for archname can run on the current host system, TRUE
(0) is returned; otherwise, FALSE (1) is returned.

EXIT STATUS The following exit values are returned:

0 Successful completion.

>0 An error occurred.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO mach(1), ps(1), uname(1), attributes(5)

NOTES This command is provided for compatibility with previous releases and its use is
discouraged. Instead, the uname command is recommended. See uname(1) for usage
information.

modified 18 Jan 1996 SunOS 5.6 1-45

as (1) User Commands

NAME as − assembler

SYNOPSIS
Sparc as [−b] [−K PIC] [−L] [−m] [−n] [−o outfile] [−P] [−Dname] [−Dname=def]

[−Ipath] [−Uname . . .] [−q] [−Q y |n] [−s] [−S[a|C]] [−T] [−V]
[−xarch=v7] [−xarch=v8] [−xarch=v8a] [−xarch=v8plus] [−xarch=v8plusa]
[−xF] filename . . .

x86 as [−m] [−n] [−o outfile] [−P] [−Dname] [−Dname=def] [−Ipath]
[−Uname . . .] [−Qy | n] [−s] [−V] filename . . .

DESCRIPTION The as command creates object files from assembly language source files.

OPTIONS
Common Options The following flags are common to both SPARC and x86. They may be specified in any

order:

−Dname
−Dname=def When the −P option is in effect, these options are passed to the cpp(1)

preprocessor without interpretation by the as command; otherwise, they
are ignored.

−Ipath When the −P option is in effect, this option is passed to the cpp(1)
preprocessor without interpretation by the as command; otherwise, it is
ignored.

−m Run the m4(1) macro processor on the input to the assembler.

−n Suppress all the warnings while assembling.

−o outfile Put the output of the assembly in outfile. By default, the output file
name is formed by removing the .s suffix, if there is one, from the input
file name and appending a .o suffix.

−P Run cpp(1), the C preprocessor, on the files being assembled. The
preprocessor is run separately on each input file, not on their concatena-
tion. The preprocessor output is passed to the assembler.

−Q y | n If the n option is specified, it produces the "assembler version" informa-
tion in the comment section of the output object file. If the y option is
specified, the information is suppressed.

−s Place all stabs in the .stabs section. By default, stabs ares placed in
stabs.excl sections, which are stripped out by the static linker, ld(1),
during final execution. When the −s option is used, stabs remain in the
final executable because .stab sections are not stripped by the static
linker.

-Uname When the −P option is in effect, this option is passed to the cpp(1)
preprocessor without interpretation by the as command; otherwise, it is
ignored.

−V Write the version number of the assembler being run on the standard

1-46 SunOS 5.6 modified 28 Oct 1996

User Commands as (1)

error output.

SPARC Options −b Generate extra symbol table information for the Sun SourceBrowser.

−K PIC Generate position-independent code. The x86 assembler does not sup-
port the -K PIC flag.

−L Save all symbols, including temporary labels that are normally dis-
carded to save space, in the ELF symbol table.

−q Perform a quick assembly. When the −q option is used, many error
checks are not performed.
Note: This option disables many error checks. It is recommended that
you do not use this option to assemble handwritten assembly language.

−S[a|C] Produce a disassembly of the emitted code to the standard output.
· Adding the character a to the option appends a comment line to each
assembly code which indicates its relative address in its own section.
· Adding the character C to the option prevents comment lines from
appearing in the output.

−T This is a migration option for 4.x assembly files to be assembled on 5.x
systems. With this option, the symbol names in 4.x assembly files will be
interpreted as 5.x symbol names.

−xarch=v7 This option instructs the assembler to accept instructions defined in the
SPARC version 7 (V7) architecture. The resulting object code is in ELF
format.

−xarch=v8 This option instructs the assembler to accept instructions defined in the
SPARC-V8 architecture, less the quad-precision floating-point instruc-
tions. The resulting object code is in ELF format.

−xarch=v8a This option instructs the assembler to accept instructions defined in the
SPARC-V8 architecture, less the quad-precision floating-point instruc-
tions and less the fsmuld instruction. The resulting object code is in ELF
format. This is the default choice of the -xarch= options.

−xarch=v8plus This option instructs the assembler to accept instructions defined in the
SPARC-V9 architecture, less the quad-precision floating-point instruc-
tions. The resulting object code is in ELF format. It will not execute on a
Solaris V8 system (a machine with a V8 processor). It will execute on a
Solaris V8+ system.

−xarch=v8plusa This option instructs the assembler to accept instructions defined in the
SPARC-V9 architecture, less the quad-precision floating-point instruc-
tions, plus the instructions in the Visual Instruction Set (VIS). The
resulting object code is in V8+ ELF format. It will not execute on a
Solaris V8 system (a machine with a V8 processor). It will execute on a
Solaris V8+ system

−xF Generates additional information for performance analysis of the exe-
cutable using SPARCworks analyzer. If the input file does not contain

modified 28 Oct 1996 SunOS 5.6 1-47

as (1) User Commands

any stabs (debugging directives), then the assembler will generate some
default stabs which are needed by the SPARCworks analyzer. Also see
the manual page dbx.

ENVIRONMENT TMPDIR
as normally creates temporary files in the directory /tmp. You may specify another
directory by setting the environment variable TMPDIR to your chosen directory. (If
TMPDIR isn’t a valid directory, then as will use /tmp).

FILES By default, as creates its temporary files in /tmp.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWsprot

SEE ALSO cc(1B), cpp(1), ld(1), m4(1), nm(1), strip(1), tmpnam(3S), a.out(4), attributes(5)

NOTES If the −m (invoke the m4(1) macro processor) option is used, keywords for m4(1) cannot
be used as symbols (variables, functions, labels) in the input file since m4(1) cannot deter-
mine which keywords are assembler symbols and which keywords are real m4(1) mac-
ros.

Whenever possible, you should access the assembler through a compilation system inter-
face program such as cc(1B).

All undefined symbols are treated as global.

1-48 SunOS 5.6 modified 28 Oct 1996

User Commands asa (1)

NAME asa − convert FORTRAN carriage-control output to printable form

SYNOPSIS asa [−f] [file...]

DESCRIPTION The asa utility will write its input files to standard output, mapping carriage-control
characters from the text files to line-printer control sequences.

The first character of every line will be removed from the input, and the following actions
will be performed.

If the character removed is:

SPACE The rest of the line will be output without change.

0 It is replaced by a newline control sequence followed by the rest of the input
line.

1 It is replaced by a newpage control sequence followed by the rest of the input
line.

+ It is replaced by a control sequence that causes printing to return to the first
column of the previous line, where the rest of the input line is printed.

For any other character in the first column of an input line, asa skips the character and
prints the rest of the line unchanged.

If asa is called without providing a filename, the standard input is used.

OPTIONS −f Start each file on a new page.

OPERANDS file A pathname of a text file used for input. If no file operands are specified, or ‘ − ’
is specified, then the standard input will be used.

EXAMPLES The command

a.out | asa | lp

converts output from a.out to conform with conventional printers and directs it through
a pipe to the printer.

The command

asa output

shows the contents of file output on a terminal as it would appear on a printer.

The following program is used in the next two examples:

write(∗,’(" Blank")’)
write(∗,’("0Zero ")’)
write(∗,’("+ Plus ")’)
write(∗,’("1One ")’)
end

modified 18 Apr 1995 SunOS 5.6 1-49

asa (1) User Commands

Example 1. With actual files:

a.out > MyOutputFile
asa < MyOutputFile | lp

Example 2. With only pipes: a.out | asa | lp

Both of the above examples produce two pages of output.
Page 1:

Blank

ZeroPlus
Page 2:

One

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of asa: LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS The following exit values are returned:
0 All input files were output successfully.
>0 An error occurred.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO lp(1), environ(5), attributes(5)

1-50 SunOS 5.6 modified 18 Apr 1995

User Commands at (1)

NAME at, batch − execute commands at a later time

SYNOPSIS at [−c|−k|−s] [−m] [−f file] [−q queuename] −t time
at [−c|−k|−s] [−m] [−f file] [−q queuename] timespec. . .
at −l [−q queuename] [at_job_id. . .]
at −r at_job_id. . .

batch

DESCRIPTION
at The at utility reads commands from standard input and groups them together as an at-

job , to be executed at a later time.

The at-job will be executed in a separate invocation of the shell, running in a separate
process group with no controlling terminal, except that the environment variables,
current working directory, file creation mask (see umask(1)), and system resource limits
(for sh and ksh only, see ulimit(1)) in effect when the at utility is executed will be
retained and used when the at-job is executed.

When the at-job is submitted, the at_job_id and scheduled time are written to standard
error. The at_job_id is an identifier that will be a string consisting solely of alphanumeric
characters and the period character. The at_job_id is assigned by the system when the job
is scheduled such that it uniquely identifies a particular job.

User notification and the processing of the job’s standard output and standard error are
described under the −m option.

Users are permitted to use at and batch (see below) if their name appears in the file
/usr/lib/cron/at.allow. If that file does not exist, the file /usr/lib/cron/at.deny is checked
to determine if the user should be denied access to at. If neither file exists, only a process
with the super-user privileges is allowed to submit a job. If only at.deny exists and is
empty, global usage is permitted. The at.allow and at.deny files consist of one user name
per line.

batch The batch utility reads commands to be executed at a later time. It is the equivalent of
the command:

at −q b −m now
where queue b is a special at queue, specifically for batch jobs. Batch jobs will be submit-
ted to the batch queue for immediate execution.

OPTIONS The following options are supported. If the −c, −k, or −s options are not specified, the
SHELL environment variable by default determines which shell to use.

−c C shell. csh(1) is used to execute the at-job.

−k Korn shell. ksh(1) is used to execute the at-job.

−s Bourne shell. sh(1) is used to execute the at-job.

−f file Specify the path of a file to be used as the source of the at-job, instead of
standard input.

modified 18 Feb 1997 SunOS 5.6 1-51

at (1) User Commands

−l (The letter ell.) Report all jobs scheduled for the invoking user if no
at_job_id operands are specified. If at_job_ids are specified, report only
information for these jobs.

−m Send mail to the invoking user after the at-job has run, announcing its
completion. Standard output and standard error produced by the at-job
will be mailed to the user as well, unless redirected elsewhere. Mail will
be sent even if the job produces no output.

If −m is not used, the job’s standard output and standard error will be
provided to the user by means of mail, unless they are redirected else-
where; if there is no such output to provide, the user is not notified of
the job’s completion.

−q queuename Specify in which queue to schedule a job for submission. When used
with the −l option, limit the search to that particular queue. Values for
queuename are limited to the lower case letters a through z. By default,
at-jobs will be scheduled in queue a. In contrast, queue b is reserved for
batch jobs. Since queue c is reserved for cron jobs, it can not be used
with the −q option.

−r at_job_id Remove the jobs with the specified at_job_id operands that were previ-
ously scheduled by the at utility.

−t time Submit the job to be run at the time specified by the time option-
argument, which must have the format as specified by the touch(1) util-
ity.

OPERANDS The following operands are supported:

at_job_id The name reported by a previous invocation of the at utility at the time
the job was scheduled.

timespec Submit the job to be run at the date and time specified. All of the
timespec operands are interpreted as if they were separated by space
characters and concatenated. The date and time are interpreted as being
in the timezone of the user (as determined by the TZ variable), unless a
timezone name appears as part of time, below.

In the "C" locale, the following describes the three parts of the time
specification string. All of the values from the LC_TIME categories in the
"C" locale are recognized in a case-insensitive manner.

time The time can be specified as one, two or four digits. One- and
two-digit numbers are taken to be hours, four-digit numbers
to be hours and minutes. The time can alternatively be
specified as two numbers separated by a colon, meaning
hour:minute. An AM/PM indication (one of the values from
the am_pm keywords in the LC_TIME locale category) can
follow the time; otherwise, a 24-hour clock time is under-
stood. A timezone name of GMT, UCT, or ZULU (case insen-
sitive) can follow to specify that the time is in Coordinated

1-52 SunOS 5.6 modified 18 Feb 1997

User Commands at (1)

Universal Time. Other timezones can be specified using the
TZ environment variable. The time field can also be one of
the following tokens in the "C" locale:

midnight Indicates the time 12:00 am (00:00).

noon Indicates the time 12:00 pm.

now Indicate the current day and time. Invoking at
now will submit an at-job for potentially
immediate execution (that is, subject only to
unspecified scheduling delays).

date An optional date can be specified as either a month name
(one of the values from the mon or abmon keywords in the
LC_TIME locale category) followed by a day number (and
possibly year number preceded by a comma) or a day of the
week (one of the values from the day or abday keywords in
the LC_TIME locale category). Two special days are recog-
nized in the "C" locale:

today Indicates the current day.

tomorrow Indicates the day following the current day.

If no date is given, today is assumed if the given time is
greater than the current time, and tomorrow is assumed if it
is less. If the given month is less than the current month (and
no year is given), next year is assumed.

increment The optional increment is a number preceded by a plus sign
(+) and suffixed by one of the following: minutes, hours,
days, weeks, months, or years. (The singular forms will be
also accepted.) The keyword next is equivalent to an incre-
ment number of + 1. For example, the following are
equivalent commands:

at 2pm + 1 week
at 2pm next week

USAGE The format of the at command line shown here is guaranteed only for the "C" locale.
Other locales are not supported for midnight, noon, now, mon, abmon, day, abday,
today, tomorrow, minutes, hours, days, weeks, months, years, and next.

Since the commands run in a separate shell invocation, running in a separate process
group with no controlling terminal, open file descriptors, traps and priority inherited
from the invoking environment are lost.

EXAMPLES
at 1. This sequence can be used at a terminal:

$ at −m 0730 tomorrow
sort < file >outfile
<EOT>

modified 18 Feb 1997 SunOS 5.6 1-53

at (1) User Commands

2. This sequence, which demonstrates redirecting standard
error to a pipe, is useful in a command procedure (the sequence of
output redirection specifications is significant):

$ at now + 1 hour <<!
diff file1 file2 2>&1 >outfile | mailx mygroup
!

3. To have a job reschedule itself, at can be invoked from within the at-job. For exam-
ple, this "daily-processing" script named my.daily will run every day (although
crontab is a more appropriate vehicle for such work):

my.daily runs every day
at now tomorrow < my.daily
daily-processing

4. The spacing of the three portions of the "C" locale timespec is quite flexible as long as
there are no ambiguities. Examples of various times and operand presentations
include:

at 0815am Jan 24
at 8 :15amjan24
at now "+ 1day"
at 5 pm FRIday
at ’17

utc+
30minutes’

batch 1. This sequence can be used at a terminal:
$ batch
sort <file >outfile
<EOT>

2. This sequence, which demonstrates redirecting standard error to a pipe, is useful in a
command procedure (the sequence of output redirection specifications is significant):
$ batch <<!
diff file1 file2 2>&1 >outfile | mailx mygroup
!

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of at and batch: LC_CTYPE, LC_MESSAGES, NLSPATH, and LC_TIME.

SHELL Determine a name of a command interpreter to be used to invoke the
at-job. If the variable is unset or NULL, sh will be used. If it is set to a
value other than sh, the implementation will use that shell; a warning
diagnostic will be printed telling which shell will be used.

TZ Determine the timezone. The job will be submitted for execution at the
time specified by timespec or −t time relative to the timezone specified by
the TZ variable. If timespec specifies a timezone, it will override TZ. If
timespec does not specify a timezone and TZ is unset or NULL, an
unspecified default timezone will be used.

1-54 SunOS 5.6 modified 18 Feb 1997

User Commands at (1)

DATEMSK If the environment variable DATEMSK is set, at will use its value as the
full path name of a template file containing format strings. The strings
consist of format specifiers and text characters that are used to provide a
richer set of allowable date formats in different languages by appropri-
ate settings of the environment variable LANG or LC_TIME. The list of
allowable format specifiers is located in the getdate(3C) manual page.
The formats described in the OPERANDS section for the time and date
arguments, the special names noon, midnight, now, next, today, tomor-
row, and the increment argument are not recognized when DATEMSK is
set.

EXIT STATUS The following exit statuses are returned:

0 The at utility successfully submitted, removed or listed a job or jobs.

>0 An error occurred, and the job will not be scheduled.

FILES /usr/lib/cron/at.allow names of users, one per line, who are authorized access to
the at and batch utilities

/usr/lib/cron/at.deny names of users, one per line, who are denied access to the at
and batch utilities

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

at ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu
CSI Not enabled

batch ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu
CSI Enabled

SEE ALSO crontab(1), csh(1), date(1), ksh(1), sh(1), touch(1), ulimit(1), umask(1), getdate(3C), attri-
butes(5), environ(5)

NOTES Regardless of queue used, cron has a limit of 100 jobs in execution at any time.

There can be delays in cron at job execution. In some cases, these delays can compound to
the point that cron job processing appears to be hung. All jobs will be executed eventu-
ally. When the delays are excessive, the only workaround is to kill and restart cron.

modified 18 Feb 1997 SunOS 5.6 1-55

atq (1) User Commands

NAME atq − display the jobs queued to run at specified times

SYNOPSIS atq [−c] [−n] [username. . .]

DESCRIPTION atq displays the at jobs queued up for the current user. at(1) is a utility that allows users
to execute commands at a later date. If invoked by the privileged user, atq will display
all jobs in the queue.

If no options are given, the jobs are displayed in chronological order of execution.

When a privileged user invokes atq without specifying username, the entire queue is
displayed; when a username is specified, only those jobs belonging to the named user are
displayed.

OPTIONS −c Display the queued jobs in the order they were created (that is, the time that
the at command was given).

−n Display only the total number of jobs currently in the queue.

FILES /var/spool/cron/atjobs spool area for at jobs.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO at(1), atrm(1), cron(1M), attributes(5)

1-56 SunOS 5.6 modified 1 Mar 1994

User Commands atrm (1)

NAME atrm − remove jobs spooled by at or batch

SYNOPSIS atrm [−afi] [[job #] [user] . . .]

DESCRIPTION atrm removes delayed-execution jobs that were created with the at(1) command, but
have not yet executed. The list of these jobs and associated job numbers can be displayed
by using atq(1).

atrm removes each job-number you specify, and/or all jobs belonging to the user you
specify, provided that you own the indicated jobs.

You can only remove jobs belonging to other users if you have super-user privileges.

OPTIONS −a All. Remove all unexecuted jobs that were created by the current user. If
invoked by the privileged user, the entire queue will be flushed.

−f Force. All information regarding the removal of the specified jobs is
suppressed.

−i Interactive. atrm asks if a job should be removed. If you respond with a y,
the job will be removed.

FILES /var/spool/cron/atjobs spool area for at jobs

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO at(1), atq(1), cron(1M), attributes(5)

modified 2 Mar 1994 SunOS 5.6 1-57

audioconvert (1) User Commands

NAME audioconvert − convert audio file formats

SYNOPSIS audioconvert [−pF] [−f outfmt] [−o outfile] [[−i infmt] [file . . .]] . . .

DESCRIPTION audioconvert converts audio data between a set of supported audio encodings and file
formats. It can be used to compress and decompress audio data, to add audio file
headers to raw audio data files, and to convert between standard data encodings, such as
µ-law and linear PCM.

If no filenames are present, audioconvert reads the data from the standard input stream
and writes an audio file to the standard output. Otherwise, input files are processed in
order, concatenated, and written to the output file.

Input files are expected to contain audio file headers that identify the audio data format.
If the audio data does not contain a recognizable header, the format must be specified
with the −i option, using the rate , encoding, and channels keywords to identify the input
data format.

The output file format is derived by updating the format of the first input file with the
format options in the −f specification. If −p is not specified, all subsequent input files are
converted to this resulting format and concatenated together. The output file will contain
an audio file header, unless format=raw is specified in the output format options.

Input files may be converted in place by using the −p option. When −p is in effect, the for-
mat of each input file is modified according to the −f option to determine the output for-
mat. The existing files are then overwritten with the converted data.

The file(1) command decodes and prints the audio data format of Sun audio files.

OPTIONS −p In Place: The input files are individually converted to the format
specified by the −f option and rewritten. If a target file is a symbolic link,
the underlying file will be rewritten. The −o option may not be specified
with −p.

−F Force: This option forces audioconvert to ignore any file header for input
files whose format is specified by the −i option. If −F is not specified,
audioconvert ignores the −i option for input files that contain valid
audio file headers.

−f outfmt Output Format : This option is used to specify the file format and data
encoding of the output file. Defaults for unspecified fields are derived
from the input file format. Valid keywords and values are listed in the
next section.

−o outfile Output File: All input files are concatenated, converted to the output for-
mat, and written to the named output file. If −o and −p are not specified,
the concatenated output is written to the standard output. The −p
option may not be specified with −o.

1-58 SunOS 5.6 modified 10 Dec 1992

User Commands audioconvert (1)

−i infmt Input Format : This option is used to specify the data encoding of raw
input files. Ordinarily, the input data format is derived from the audio
file header. This option is required when converting audio data that is
not preceded by a valid audio file header. If −i is specified for an input
file that contains an audio file header, the input format string will be
ignored, unless −F is present. The format specification syntax is the
same as the −f output file format.

Multiple input formats may be specified. An input format describes all
input files following that specification, until a new input format is
specified.

file File Specification: The named audio files are concatenated, converted to
the output format, and written out. If no filename is present, or if the
special filename ‘−’ is specified, audio data is read from the standard
input.

−? Help: Print a command line usage message.

FORMAT
SPECIFICATION

The syntax for the input and output format specification is:
keyword=value[,keyword=value . . .]

with no intervening whitespace. Unambiguous values may be used without the preced-
ing keyword=.

rate The audio sampling rate is specified in samples per second. If a number is fol-
lowed by the letter k, it is multiplied by 1000 (for example, 44.1k = 44100).
Standard of the commonly used sample rates are: 8k, 16k, 32k, 44.1k, and 48k.

channels The number of interleaved channels is specified as an integer. The words
mono and stereo may also be used to specify one and two channel data,
respectively.

encoding This option specifies the digital audio data representation. Encodings deter-
mine precision implicitly (ulaw implies 8-bit precision) or explicitly as part of
the name (for example, linear16). Valid encoding values are:

ulaw CCITT G.711 µ-law encoding. This is an 8-bit format primarily used
for telephone quality speech.

alaw CCITT G.711 A-law encoding. This is an 8-bit format primarily
used for telephone quality speech in Europe.

linear8, linear16, linear32
Linear Pulse Code Modulation (PCM) encoding. The name
identifies the number of bits of precision. linear16 is typically
used for high quality audio data.

pcm Same as linear16.

modified 10 Dec 1992 SunOS 5.6 1-59

audioconvert (1) User Commands

g721 CCITT G.721 compression format. This encoding uses Adaptive
Delta Pulse Code Modulation (ADPCM) with 4-bit precision. It is
primarily used for compressing µ-law voice data (achieving a 2:1
compression ratio).

g723 CCITT G.723 compression format. This encoding uses Adaptive
Delta Pulse Code Modulation (ADPCM) with 3-bit precision. It is
primarily used for compressing µ-law voice data (achieving an 8:3
compression ratio). The audio quality is similar to G.721, but may
result in lower quality when used for non-speech data.

The following encoding values are also accepted as shorthand to set the sam-
ple rate, channels, and encoding:

voice Equivalent to encoding=ulaw,rate=8k,channels=mono.

cd Equivalent to encoding=linear16,rate=44.1k,channels=stereo.

dat Equivalent to encoding=linear16,rate=48k,channels=stereo.

format This option specifies the audio file format. Valid formats are:

sun Sun compatible file format (the default).

raw Use this format when reading or writing raw audio data (with no
audio header), or in conjunction with an offset to import a foreign
audio file format.

offset (−i only) Specify a byte offset to locate the start of the audio data. This option
may be used to import audio data that contains an unrecognized file header.

USAGE See largefile(5) for the description of the behavior of audioconvert when encountering
files greater than or equal to 2 Gbyte (231 bytes).

EXAMPLES Record voice data and compress it before storing it to a file:

example% audiorecord | audioconvert −f g721 > mydata.au

Concatenate two Sun format audio files, regardless of their data format, and output an 8-
bit µ-law, 16 kHz, mono file:

example% audioconvert −f ulaw,rate=16k,mono −o outfile.au infile1 infile2

Convert a directory containing raw voice data files, in place, to Sun format (adds a file
header to each file):

example% audioconvert −p −i voice −f sun ∗.au

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWaudio

1-60 SunOS 5.6 modified 10 Dec 1992

User Commands audioconvert (1)

SEE ALSO audioplay(1), audiorecord(1), file(1), attributes(5), largefile(5)

NOTES The algorithm used for converting multi-channel data to mono is implemented by simply
summing the channels together. If the input data is perfectly in phase (as would be the
case if a mono file is converted to stereo and back to mono), the resulting data may con-
tain some distortion.

modified 10 Dec 1992 SunOS 5.6 1-61

audioplay (1) User Commands

NAME audioplay − play audio files

SYNOPSIS audioplay [−iV] [−v vol] [−b bal] [−p speaker | headphone | line] [−d dev]
[file . . .]

DESCRIPTION audioplay copies the named audio files (or the standard input if no filenames are
present) to the audio device. If no input file is specified and standard input is a tty, the
port, volume, and balance settings specified on the command line will be applied and the
program will exit.

The input files must contain a valid audio file header. The encoding information in this
header is matched against the capabilities of the audio device and, if the data formats are
incompatible, an error message is printed and the file is skipped. Compressed ADPCM
(G.721) monaural audio data is automatically uncompressed before playing.

Minor deviations in sampling frequency (that is, less than 1%) are ordinarily ignored.
This allows, for instance, data sampled at 8012 Hz to be played on an audio device that
only supports 8000 Hz. If the −V option is present, such deviations are flagged with
warning messages.

OPTIONS −i Immediate : If the audio device is unavailable (that is, another process currently
has write access), audioplay ordinarily waits until it can obtain access to the
device. When the −i option is present, audioplay prints an error message and
exits immediately if the device is busy.

−V Verbose : Print messages on the standard error when waiting for access to the
audio device or when sample rate deviations are detected.

−v vol Volume: The output volume is set to the specified value before playing begins,
and is reset to its previous level when audioplay exits. The vol argument is an
integer value between 0 and 100, inclusive. If this argument is not specified,
the output volume remains at the level most recently set by any process.

−b bal Balance: The output balance is set to the specified value before playing begins,
and is reset to its previous level when audioplay exits. The bal argument is an
integer value between -100 and 100, inclusive. A value of -100 indicates left
balance, 0 middle, and 100 right. If this argument is not specified, the output
balance remains at the level most recently set by any process.

−p speaker | headphone | line
Output Port : Select the built-in speaker, (the default), headphone jack, or line
out as the destination of the audio output signal. If this argument is not
specified, the output port will remain unchanged. Not all audio adapters sup-
port all of the output ports. If the named port does not exist, an appropriate substi-
tute will be used.

−d dev Device: The dev argument specifies an alternate audio device to which output
should be directed. If the −d option is not specified, the AUDIODEV environ-
ment variable is consulted (see below). Otherwise, /dev/audio is used as the
default audio device.

1-62 SunOS 5.6 modified 26 Oct 1995

User Commands audioplay (1)

file File Specification: Audio files named on the command line are played sequen-
tially. If no filenames are present, the standard input stream (if it is not a tty)
is played (it, too, must contain an audio file header). The special filename ‘−’
may be used to read the standard input stream instead of a file. If a relative
path name is supplied, the AUDIOPATH environment variable is consulted
(see below).

−\? Help: Print a command line usage message.

USAGE See largefile(5) for the description of the behavior of audioplay when encountering files
greater than or equal to 2 Gbyte (231 bytes).

ENVIRONMENT AUDIODEV
The full path name of the audio device to write to, if no −d argument is supplied.
If the AUDIODEV variable is not set, /dev/audio is used.

AUDIOPATH
A colon-separated list of directories in which to search for audio files whose
names are given by relative pathnames. The current directory (".") may be
specified explicitly in the search path. If the AUDIOPATH variable is not set, only
the current directory will be searched.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWaudio

SEE ALSO audioconvert(1), audiorecord(1), attributes(5), largefile(5), audio(7I), audiocs(7D)
SPARC Only audioamd(7D), dbri(7D)

x86 Only sbpro(7D)

BUGS audioplay currently supports a limited set of audio format conversions. If the audio file
is not in a format supported by the audio device, it must first be converted. For example,
to convert to voice format on the fly, use the command:

example% audioconvert −f voice myfile | audioplay

The format conversion will not always be able to keep up with the audio output. If this is
the case, you should convert to a temporary file before playing the data.

modified 26 Oct 1995 SunOS 5.6 1-63

audiorecord (1) User Commands

NAME audiorecord − record an audio file

SYNOPSIS audiorecord [−af] [−v vol] [−b bal] [−m monvol] [−p mic | line | internal-cd]
[−c channels] [−s rate] [−e encoding] [−t time] [−i info] [−d dev] [file]

DESCRIPTION audiorecord copies audio data from the audio device to a named audio file (or the stan-
dard output if no filename is present). If no output file is specified and standard output
is a tty, the volume, balance, monitor volume, port, and audio format settings specified
on the command line will be applied and the program will exit.

By default, monaural audio data is recorded at 8 kHz and encoded in µ-law format. If
the audio device supports additional configurations, the −c, −s, and −e options may be
used to specify the data format. The output file is prefixed by an audio file header that
identifies the format of the data encoded in the file.

Recording begins immediately and continues until a SIGINT signal (for example, CTRL-C)
is received. If the −t option is specified, audiorecord stops when the specified quantity of
data has been recorded.

If the audio device is unavailable (that is, another process currently has read access),
audiorecord prints an error message and exits immediately.

OPTIONS −a Append: Append the data on the end of the named audio file. The audio dev-
ice must support the audio data format of the existing file.

−f Force: When the −a flag is specified, the sample rate of the audio device must
match the sample rate at which the original file was recorded. If the −f flag is
also specified, sample rate differences are ignored, with a warning message
printed on the standard error.

−v vol Volume: The recording gain is set to the specified value before recording
begins, and is reset to its previous level when audiorecord exits. The vol argu-
ment is an integer value between 0 and 100, inclusive. If this argument is not
specified, the input volume will remain at the level most recently set by any
process.

−b bal Balance: The recording balance is set to the specified value before recording
begins, and is reset to its previous level when audiorecord exits. The bal argu-
ment is an integer value between -100 and 100, inclusive. A value of -100 indi-
cates left balance, 0 middle, and 100 right. If this argument is not specified, the
input balance will remain at the level most recently set by any process.

−m monvol Monitor Volume: The input monitor volume is set to the specified value before
recording begins, and is reset to its previous level when audiorecord exits.
The monval argument is an integer value between 0 and 100, inclusive. A
non-zero value allows a directly connected input source to be heard on the
output speaker while recording is in-progress. If this argument is not
specified, the monitor volume will remain at the level most recently set by any
process.

1-64 SunOS 5.6 modified 26 Oct 1995

User Commands audiorecord (1)

−p mic | line | internal-cd
Input Port : Select the mic, line, or internal-cd input as the source of the audio
output signal. If this argument is not specified, the input port will remain
unchanged. Some systems will not support all possible input ports. If the named
port does not exist, this option is ignored.

−c channels
Channels: Specify the number of audio channels (1 or 2). The value may be
specified as an integer or as the string mono or stereo. The default value is
mono.

−s rate Sample Rate : Specify the sample rate, in samples per second. If a number is
followed by the letter k, it is multiplied by 1000 (for example, 44.1k = 44100).
The default sample rate is 8 kHz.

−e encoding
Encoding: Specify the audio data encoding. This value may be one of ulaw,
alaw, or linear. The default encoding is ulaw.

−t time Time: The time argument specifies the maximum length of time to record.
Time can be specified as a floating-point value, indicating the number of
seconds, or in the form: hh:mm:ss.dd, where the hour and minute specifications
are optional.

−i info Information : The ‘information’ field of the output file header is set to the string
specified by the info argument. This option cannot be specified in conjunction
with the −a argument.

−d dev Device: The dev argument specifies an alternate audio device from which input
should be taken. If the −d option is not specified, the AUDIODEV environ-
ment variable is consulted (see below). Otherwise, /dev/audio is used as the
default audio device.

file File Specification: The named audio file is rewritten (or appended). If no
filename is present (and standard output is not a tty), or if the special filename
‘−’ is specified, output is directed to the the standard output.

−\? Help: Print a command line usage message.

USAGE See largefile(5) for the description of the behavior of audiorecord when encountering
files greater than or equal to 2 Gbyte (231 bytes).

ENVIRONMENT AUDIODEV The full path name of the audio device to record from, if no −d argu-
ment is supplied. If the AUDIODEV variable is not set, /dev/audio is
used.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWaudio

modified 26 Oct 1995 SunOS 5.6 1-65

audiorecord (1) User Commands

SEE ALSO audioconvert(1), audioplay(1), attributes(5), largefile(5), audio(7I), audiocs(7D)
SPARC Only audioamd(7D), dbri(7D)

x86 Only sbpro(7D)

1-66 SunOS 5.6 modified 26 Oct 1995

User Commands awk (1)

NAME awk − pattern scanning and processing language

SYNOPSIS /usr/bin/awk [−f progfile] [−Fc] [’prog’] [parameters] [filename. . .]

/usr/xpg4/bin/awk [−F ERE] [−v assignment . . .] ’program’ | −f progfile . . .
[argument . . .]

DESCRIPTION The /usr/xpg4/bin/awk utility is described on the nawk(1) manual page.

The /usr/bin/awk utility scans each input filename for lines that match any of a set of pat-
terns specified in prog . The prog string must be enclosed in single quotes (′) to protect it
from the shell. For each pattern in prog there may be an associated action performed
when a line of a filename matches the pattern. The set of pattern-action statements may
appear literally as prog or in a file specified with the −f progfile option. Input files are read
in order; if there are no files, the standard input is read. The file name ’−’ means the stan-
dard input.

OPTIONS −f progfile awk uses the set of patterns it reads from progfile.

−Fc Use the character c as the field separator (FS) character. See the discus-
sion of FS below.

USAGE
Input Lines Each input line is matched against the pattern portion of every pattern-action statement;

the associated action is performed for each matched pattern. Any filename of the form
var=value is treated as an assignment, not a filename, and is executed at the time it would
have been opened if it were a filename. Variables assigned in this manner are not avail-
able inside a BEGIN rule, and are assigned after previously specified files have been
read.

An input line is normally made up of fields separated by white spaces. (This default can
be changed by using the FS built-in variable or the −Fc option.) The default is to ignore
leading blanks and to separate fields by blanks and/or tab characters. However, if FS is
assigned a value that does not include any of the white spaces, then leading blanks are
not ignored. The fields are denoted $1, $2, . . . ; $0 refers to the entire line.

Pattern-action
Statements

A pattern-action statement has the form:

pattern { action }

Either pattern or action may be omitted. If there is no action, the matching line is printed.
If there is no pattern, the action is performed on every input line. Pattern-action state-
ments are separated by newlines or semicolons.

Patterns are arbitrary Boolean combinations (!, ��, &&, and parentheses) of relational
expressions and regular expressions. A relational expression is one of the following:

expression relop expression
expression matchop regular_expression

modified 18 Mar 1997 SunOS 5.6 1-67

awk (1) User Commands

where a relop is any of the six relational operators in C, and a matchop is either ˜ (contains)
or !˜ (does not contain). An expression is an arithmetic expression, a relational expression,
the special expression

var in array

or a Boolean combination of these.

Regular expressions are as in egrep(1). In patterns they must be surrounded by slashes.
Isolated regular expressions in a pattern apply to the entire line. Regular expressions
may also occur in relational expressions. A pattern may consist of two patterns separated
by a comma; in this case, the action is performed for all lines between the occurrence of
the first pattern to the occurrence of the second pattern.

The special patterns BEGIN and END may be used to capture control before the first input
line has been read and after the last input line has been read respectively. These key-
words do not combine with any other patterns.

Built-in Variables Built-in variables include:

FILENAME name of the current input file

FS input field separator regular expression (default blank and tab)

NF number of fields in the current record

NR ordinal number of the current record

OFMT output format for numbers (default %.6g)

OFS output field separator (default blank)

ORS output record separator (default new-line)

RS input record separator (default new-line)

An action is a sequence of statements. A statement may be one of the following:

if (expression) statement [else statement]
while (expression) statement
do statement while (expression)
for (expression ; expression ; expression) statement
for (var in array) statement
break
continue
{ [statement] . . . }
expression # commonly variable = expression
print [expression-list] [>expression]
printf format [, expression-list] [>expression]
next # skip remaining patterns on this input line
exit [expr] # skip the rest of the input; exit status is expr

Statements are terminated by semicolons, newlines, or right braces. An empty
expression-list stands for the whole input line. Expressions take on string or numeric
values as appropriate, and are built using the operators +, −, ∗, /, %, ˆ and concatenation
(indicated by a blank). The operators ++, −−, +=, −=, ∗=, /=, %=, ˆ=, >, >=, <, <=, ==, !=,

1-68 SunOS 5.6 modified 18 Mar 1997

User Commands awk (1)

and ?: are also available in expressions. Variables may be scalars, array elements
(denoted x[i]), or fields. Variables are initialized to the null string or zero. Array sub-
scripts may be any string, not necessarily numeric; this allows for a form of associative
memory. String constants are quoted (""), with the usual C escapes recognized within.

The print statement prints its arguments on the standard output, or on a file if >expression
is present, or on a pipe if ’|cmd’ is present. The output resulted from the print statement
is terminated by the output record separator with each argument separated by the
current output field separator. The printf statement formats its expression list according
to the format (see printf(3S)).

Built-in Functions The arithmetic functions are as follows:

cos(x) Return cosine of x, where x is in radians.

sin(x) Return sine of x, where x is in radians.

exp(x) Return the exponential function of x.

log(x) Return the natural logarithm of x.

sqrt(x) Return the square root of x.

int(x) Truncate its argument to an integer. It will be truncated toward
0 when x > 0.

The string functions are as follows:

index(s, t) Return the position in string s where string t first occurs, or 0 if
it does not occur at all.

int(s) truncates s to an integer value. If s is not specified, $0 is used.

length(s) Return the length of its argument taken as a string, or of the
whole line if there is no argument.

match(s, re) Return the position in string s where the regular expression re
occurs, or 0 if it does not occur at all.

split(s, a, fs) Split the string s into array elements a[1], a[2], . . . a[n], and
returns n. The separation is done with the regular expression fs
or with the field separator FS if fs is not given.

sprintf(fmt, expr, expr, . . .)
Format the expressions according to the printf(3S) format given
by fmt and returns the resulting string.

substr(s, m, n) returns the n-character substring of s that begins at position m.

The input/output function is as follows:

getline Set $0 to the next input record from the current input file. get-
line returns 1 for successful input, 0 for end of file, and −1 for an
error.

Large File Behavior See largefile(5) for the description of the behavior of awk when encountering files greater
than or equal to 2 Gbyte (231 bytes).

modified 18 Mar 1997 SunOS 5.6 1-69

awk (1) User Commands

EXAMPLES Print lines longer than 72 characters:

length > 72

Print first two fields in opposite order:

{ print $2, $1 }

Same, with input fields separated by comma and/or blanks and tabs:

BEGIN { FS = ",[\t]∗|[\t]+" }
{ print $2, $1 }

Add up first column, print sum and average:

{ s += $1 }
END { print "sum is", s, " average is", s/NR }

Print fields in reverse order:

{ for (i = NF; i > 0; −−i) print $i }

Print all lines between start/stop pairs:

/start/, /stop/

Print all lines whose first field is different from previous one:

$1 != prev { print; prev = $1 }

Print a file, filling in page numbers starting at 5:

/Page/ { $2 = n++; }
{ print }

Assuming this program is in a file named prog, the following command line prints the
file input numbering its pages starting at 5: awk −f prog n=5 input.

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of awk: LC_CTYPE and LC_MESSAGES.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

/usr/bin/awk ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu
CSI Enabled

/usr/xpg4/bin/awk ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxcu4
CSI Enabled

SEE ALSO egrep(1), grep(1), nawk(1), sed(1), printf(3S), attributes(5), environ(5), largefile(5),
xpg4(5)

1-70 SunOS 5.6 modified 18 Mar 1997

User Commands awk (1)

NOTES Input white space is not preserved on output if fields are involved.

There are no explicit conversions between numbers and strings. To force an expression
to be treated as a number add 0 to it; to force it to be treated as a string concatenate the
null string ("") to it.

modified 18 Mar 1997 SunOS 5.6 1-71

banner (1) User Commands

NAME banner − make posters

SYNOPSIS banner strings

DESCRIPTION banner prints its arguments (each up to 10 characters long) in large letters on the stan-
dard output.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu

SEE ALSO echo(1), attributes(5)

1-72 SunOS 5.6 modified 14 Sep 1992

User Commands basename (1)

NAME basename, dirname − deliver portions of path names

SYNOPSIS /usr/bin/basename string [suffix]
/usr/xpg4/bin/basename string [suffix]

dirname string

DESCRIPTION The basename utility deletes any prefix ending in / and the suffix (if present in string)
from string, and prints the result on the standard output. It is normally used inside sub-
stitution marks (` `) within shell procedures.

/usr/bin/basename The suffix is a pattern defined on the expr(1) manual page.
/usr/xpg4/bin/basename The suffix is a string with no special significance attached to any of the characters it con-

tains.

The dirname utility delivers all but the last level of the path name in string.

EXAMPLES The following example, invoked with the argument /home/sms/personal/mail sets the
environment variable NAME to the file named mail and the environment variable
MYMAILPATH to the string /home/sms/personal:

example% NAME=`basename $HOME/personal/mail`
example% MYMAILPATH=`dirname $HOME/personal/mail`

This shell procedure, invoked with the argument /usr/src/bin/cat.c, compiles the named
file and moves the output to cat in the current directory:

example% cc $1
example% mv a.out `basename $1 .c`

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of basename and dirname: LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS The following exit values are returned:

0 Successful completion.

>0 An error occurred.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

/usr/bin/basename ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

/usr/xpg4/bin/basename ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxcu4

SEE ALSO expr(1), attributes(5), environ(5), xpg4(5)

modified 18 Mar 1997 SunOS 5.6 1-73

basename (1B) SunOS/BSD Compatibility Package Commands

NAME basename − display portions of pathnames

SYNOPSIS /usr/ucb/basename string [suffix]

DESCRIPTION basename deletes any prefix ending in ‘/’ and the suffix, if present in string. It directs the
result to the standard output, and is normally used inside substitution marks (` `) within
shell procedures. The suffix is a string with no special significance attached to any of the
characters it contains.

EXAMPLES This shell procedure invoked with the argument /usr/src/bin/cat.c compiles the named
file and moves the output to cat in the current directory:

example% cc $1
example% mv a.out `basename $1 .c`

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscpu

SEE ALSO sh(1), attributes(5)

1B-74 SunOS 5.6 modified 28 Mar 1995

User Commands bc (1)

NAME bc − arbitrary precision arithmetic language

SYNOPSIS bc [−c] [−l] [file. . .]

DESCRIPTION The bc utility implements an arbitrary precision calculator. It takes input from any files
given, then reads from the standard input. If the standard input and standard output to
bc are attached to a terminal, the invocation of bc is interactive , causing behavioural con-
straints described in the following sections. bc processes a language that resembles C
and is a preprocessor for the desk calculator program dc, which it invokes automatically
unless the −c option is specified. In this case the dc input is sent to the standard output
instead.

USAGE The syntax for bc programs is as follows:
L means a letter a−z,

E means an expression: a (mathematical or logical) value, an operand that takes a
value, or a combination of operands and operators that evaluates to a value,

S means a statement.

Comments Enclosed in /∗ and ∗/.

Names (Operands) Simple variables: L.
Array elements: L [E] (up to BC_DIM_MAX dimensions).
The words ibase, obase (limited to BC_BASE_MAX), and scale (limited to
BC_SCALE_MAX).

Other Operands Arbitrarily long numbers with optional sign and decimal point.
Strings of fewer than BC_STRING_MAX characters, between double quotes (").
(E)

sqrt (E) Square root

length (E) Number of significant decimal digits.

scale (E) Number of digits right of decimal point.

L (E , ... , E)

Operators + − ∗ / % ˆ (% is remainder; ˆ is power)

++ −− (prefix and postfix; apply to names)

== <= >= != < >

= =+ =− =∗ =/ =% =ˆ

Statements E
{ S ;. . . ; S }
if (E) S

modified 28 Mar 1995 SunOS 5.6 1-75

bc (1) User Commands

while (E) S
for (E ; E ; E) S
null statement
break
quit

.string

Function Definitions define L (L ,. . . , L) {
auto L ,. . . , L
S ;. . . S
return (E)

}

Functions in −l Math
Library

s(x) sine
c(x) cosine
e(x) exponential
l(x) log
a(x) arctangent
j(n,x) Bessel function

All function arguments are passed by value.

The value of a statement that is an expression is printed unless the main operator is an
assignment. Either semicolons or new-lines may separate statements. Assignment to
scale influences the number of digits to be retained on arithmetic operations in the
manner of dc. Assignments to ibase or obase set the input and output number radix
respectively.

The same letter may be used as an array, a function, and a simple variable simultane-
ously. All variables are global to the program. auto variables are stacked during func-
tion calls. When using arrays as function arguments or defining them as automatic vari-
ables, empty square brackets must follow the array name.

OPTIONS −c Compile only. The output is dc commands that are sent to the standard out-
put.

−l Define the math functions and initialize scale to 20, instead of the default zero.

OPERANDS The following operands are supported:

file A pathname of a text file containing bc program statements. After all cases of
file have been read, bc will read the standard input.

EXAMPLES In the shell, the following assigns an approximation of the first ten digits of π to the vari-
able x :

x=$(printf "%s\n" ’scale = 10; 104348/33215’ | bc)

Defines a function to compute an approximate value of the exponential function:

1-76 SunOS 5.6 modified 28 Mar 1995

User Commands bc (1)

scale = 20
define e(x){

auto a, b, c, i, s
a = 1
b = 1
s = 1
for(i=1; 1==1; i++){

a = a∗x
b = b∗i
c = a/b
if(c == 0) return(s)
s = s+c

}
}

Prints approximate values of the exponential function of the first ten integers:

for(i=1; i<=10; i++) e(i)
or

for (i = 1; i <= 10; ++i) {
e(i) }

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of bc: LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS The following exit values are returned:
0 All input files were processed successfully.
unspecified An error occurred.

FILES /usr/lib/lib.b mathematical library
/usr/include/limits.h to define BC_ parameters

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu

SEE ALSO dc(1), awk(1), attributes(5)

NOTES The bc command does not recognize the logical operators && and � �.
The for statement must have all three expressions (E’s).

modified 28 Mar 1995 SunOS 5.6 1-77

bdiff (1) User Commands

NAME bdiff − big diff

SYNOPSIS bdiff filename1 filename2 [n] [−s]

DESCRIPTION bdiff is used in a manner analogous to diff to find which lines in filename1 and filename2
must be changed to bring the files into agreement. Its purpose is to allow processing of
files too large for diff. If filename1 (filename2) is −, the standard input is read.

bdiff ignores lines common to the beginning of both files, splits the remainder of each file
into n-line segments, and invokes diff on corresponding segments. If both optional argu-
ments are specified, they must appear in the order indicated above.

The output of bdiff is exactly that of diff, with line numbers adjusted to account for the
segmenting of the files (that is, to make it look as if the files had been processed whole).
Note: Because of the segmenting of the files, bdiff does not necessarily find a smallest
sufficient set of file differences.

OPTIONS n The number of line segments. The value of n is 3500 by default. If the
optional third argument is given and it is numeric, it is used as the value for
n. This is useful in those cases in which 3500-line segments are too large for
diff, causing it to fail.

−s Specifies that no diagnostics are to be printed by bdiff (silent option). Note:
However, this does not suppress possible diagnostic messages from diff,
which bdiff calls.

USAGE See largefile(5) for the description of the behavior of bdiff when encountering files
greater than or equal to 2 Gbyte (231 bytes).

FILES /tmp/bd?????

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu
CSI enabled

SEE ALSO diff(1), attributes(5), largefile(5)

DIAGNOSTICS Use help for explanations.

1-78 SunOS 5.6 modified 14 Sep 1992

User Commands bfs (1)

NAME bfs − big file scanner

SYNOPSIS /usr/bin/bfs [−] filename

DESCRIPTION The bfs command is (almost) like ed(1) except that it is read-only and processes much
larger files. Files can be up to 1024K bytes and 32K lines, with up to 512 characters,
including new-line, per line (255 for 16-bit machines). bfs is usually more efficient than
ed(1) for scanning a file, since the file is not copied to a buffer. It is most useful for identi-
fying sections of a large file where csplit(1) can be used to divide it into more manageable
pieces for editing.

Normally, the size of the file being scanned is printed, as is the size of any file written
with the w (write) command. The optional − suppresses printing of sizes. Input is
prompted with ∗ if P and a carriage return are typed, as in ed(1). Prompting can be
turned off again by inputting another P and carriage return. Note that messages are
given in response to errors if prompting is turned on.

All address expressions described under ed(1) are supported. In addition, regular
expressions may be surrounded with two symbols besides / and ?:

> indicates downward search without wrap-around, and
< indicates upward search without wrap-around.

There is a slight difference in mark names; that is, only the letters a through z may be
used, and all 26 marks are remembered.

bfs Commands The e, g, v, k, p, q, w, =, !, and null commands operate as described under ed(1). Com-
mands such as −−−, +++−, +++=, −12, and +4p are accepted. Note that 1,10p and 1,10 will
both print the first ten lines. The f command only prints the name of the file being
scanned; there is no remembered file name. The w command is independent of output
diversion, truncation, or crunching (see the xo, xt, and xc commands, below). The follow-
ing additional commands are available:

xf file
Further commands are taken from the named file. When an end-of-file is
reached, an interrupt signal is received or an error occurs, reading resumes
with the file containing the xf. The xf commands may be nested to a depth of
10.

xn List the marks currently in use (marks are set by the k command).

xo [file]
Further output from the p and null commands is diverted to the named file,
which, if necessary, is created mode 666 (readable and writable by everyone),
unless your umask setting (see umask(1)) dictates otherwise. If file is missing,
output is diverted to the standard output. Note that each diversion causes
truncation or creation of the file.

: label
This positions a label in a command file. The label is terminated by new-line,

modified 20 May 1996 SunOS 5.6 1-79

bfs (1) User Commands

and blanks between the : (colon) and the start of the label are ignored. This
command may also be used to insert comments into a command file, since
labels need not be referenced.

(. , .)xb/regular expression/label
A jump (either upward or downward) is made to label if the command
succeeds. It fails under any of the following conditions:

1. Either address is not between 1 and $.
2. The second address is less than the first.
3. The regular expression does not match at least one line in the

specified range, including the first and last lines.

On success, . (dot) is set to the line matched and a jump is made to label. This
command is the only one that does not issue an error message on bad
addresses, so it may be used to test whether addresses are bad before other
commands are executed. Note that the command, xb/ˆ/ label, is an uncondi-
tional jump.

The xb command is allowed only if it is read from someplace other than a ter-
minal. If it is read from a pipe, only a downward jump is possible.

xt number
Output from the p and null commands is truncated to, at most, number char-
acters. The initial number is 255.

xv[digit] [spaces] [value]
The variable name is the specified digit following the xv. The commands
xv5100 or xv5 100 both assign the value 100 to the variable 5. The command
xv61,100p assigns the value 1,100p to the variable 6. To reference a variable,
put a % in front of the variable name. For example, using the above assign-
ments for variables 5 and 6:

1,%5p
1,%5
%6

will all print the first 100 lines.

g/%5/p

would globally search for the characters 100 and print each line containing a
match. To escape the special meaning of %, a \ must precede it.

g/".∗\%[cds]/p

could be used to match and list %c, %d, or %s formats (for example, "printf"-
like statements) of characters, decimal integers, or strings.

1-80 SunOS 5.6 modified 20 May 1996

User Commands bfs (1)

Another feature of the xv command is that the first line of output from a UNIX
system command can be stored into a variable. The only requirement is that
the first character of value be an !. For example:

.w junk
xv5!cat junk
!rm junk
!echo "%5"
xv6!expr %6 + 1

would put the current line into variable 35, print it, and increment the variable
36 by one. To escape the special meaning of ! as the first character of value,
precede it with a \.

xv7\!date

stores the value !date into variable 7.

xbz label
xbn label

These two commands will test the last saved return code from the execution of
a UNIX system command (!command) or nonzero value, respectively, to the
specified label. The two examples below both search for the next five lines
containing the string size:

Example 1: xv55
: l
/size/
xv5!expr %5 − 1
!if 0%5 != 0 exit 2
xbn l

Example 2: xv45
: l
/size/
xv4!expr %4 − 1
!if 0%4 = 0 exit 2
xbz l

xc [switch]
If switch is 1, output from the p and null commands is crunched; if switch is 0,
it is not. Without an argument, xc reverses switch. Initially, switch is set for no
crunching. Crunched output has strings of tabs and blanks reduced to one
blank and blank lines suppressed.

OPERANDS The following operand is supported:

filename Any file up to 1024K bytes and 32K lines, with up to 512 characters, including
new-line, per line (255 for 16-bit machines). filename can be a section of a
larger file which has been divided into more manageable sections for editing
by the use of csplit(1).

modified 20 May 1996 SunOS 5.6 1-81

bfs (1) User Commands

EXIT STATUS The following exit values are returned:

0 Successful completion without any file or command errors.

>0 An error occurred.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu

SEE ALSO csplit(1), ed(1), umask(1), attributes(5)

DIAGNOSTICS Message is ? for errors in commands, if prompting is turned off. Self-explanatory error
messages are displayed when prompting is on.

1-82 SunOS 5.6 modified 20 May 1996

SunOS/BSD Compatibility Package Commands biff (1B)

NAME biff − give notice of incoming mail messages

SYNOPSIS /usr/ucb/biff [y | n]

DESCRIPTION biff turns mail notification on or off for the terminal session. With no arguments, biff
displays the current notification status for the terminal.

If notification is allowed, the terminal rings the bell and displays the header and the first
few lines of each arriving mail message. biff operates asynchronously. For synchronized
notices, use the MAIL variable of sh(1) or the mail variable of csh(1).

A ‘biff y’ command can be included in your ˜/.login or ˜/.profile file for execution when
you log in.

OPTIONS y Allow mail notification for the terminal.

n Disable notification for the terminal.

FILES ˜/.login User’s login file
˜/.profile User’s profile file

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscpu

SEE ALSO csh(1), mail(1), sh(1), attributes(5)

modified 14 Sep 1992 SunOS 5.6 1B-83

break (1) User Commands

NAME break, continue − shell built-in functions to escape from or advance within a controlling
while, for, foreach, or until loop

SYNOPSIS
sh break [n]

continue [n]

csh break

continue

ksh † break [n]

† continue [n]

DESCRIPTION
sh break exits from the enclosing for or while loop, if any. If n is specified, break n levels.

continue resumes the next iteration of the enclosing for or while loop. If n is specified,
resume at the n-th enclosing loop.

csh break resumes execution after the end of the nearest enclosing foreach or while loop.
The remaining commands on the current line are executed. This allows multilevel breaks
to be written as a list of break commands, all on one line.

continue continues execution of the next iteration of the nearest enclosing while or
foreach loop.

ksh break exits from the enclosed for, while, until, or select loop, if any. If n is specified then
break n levels.

continue resumes the next iteration of the enclosed for, while, until, or select loop. If n
is specified then resume at the n-th enclosed loop.

On this man page, ksh(1) commands that are preceded by one or two † (daggers) are
treated specially in the following ways:
1. Variable assignment lists preceding the command remain in effect when the com-

mand completes.
2. I/O redirections are processed after variable assignments.
3. Errors cause a script that contains them to abort.
4. Words, following a command preceded by †† that are in the format of a variable

assignment, are expanded with the same rules as a variable assignment. This
means that tilde substitution is performed after the = sign and word splitting and
file name generation are not performed.

1-84 SunOS 5.6 modified 15 Apr 1994

User Commands break (1)

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO csh(1), exit(1), for(1), foreach(1), ksh(1), select(1), sh(1), until(1), while(1), attributes(5)

modified 15 Apr 1994 SunOS 5.6 1-85

cal (1) User Commands

NAME cal − display a calendar

SYNOPSIS cal [[month] year]

DESCRIPTION The cal utility writes a Gregorian calendar to standard output. If the year operand is
specified, a calendar for that year is written. If no operands are specified, a calendar for
the current month is written.

OPERANDS The following operands are supported:

month Specify the month to be displayed, represented as a decimal integer from 1
(January) to 12 (December). The default is the current month.

year Specify the year for which the calendar is displayed, represented as a decimal
integer from 1 to 9999. The default is the current year.

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of cal: LC_TIME, LC_MESSAGES, and NLSPATH.

EXIT STATUS The following exit values are returned:
0 Successful completion.
>0 An error occurred.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu

SEE ALSO calendar(1), attributes(5), environ(5)

NOTES An unusual calendar is printed for September 1752. That is the month 11 days were
skipped to make up for lack of leap year adjustments. To see this calendar, type:

cal 9 1752

The command cal 83 refers to the year 83, not 1983.

The year is always considered to start in January.

1-86 SunOS 5.6 modified 1 Feb 1995

User Commands calendar (1)

NAME calendar − reminder service

SYNOPSIS calendar [−]

DESCRIPTION The calendar utility consults the file calendar in the current directory and writes lines
that contain today’s or tomorrow’s date anywhere in the line to standard output. Most
reasonable month-day dates such as Aug. 24, august 24, 8/24, and so forth, are recog-
nized, but not 24 August or 24/8. On Fridays and weekends “tomorrow” extends
through Monday. calendar can be invoked regularly by using the crontab(1) or at(1)
commands.

When the optional argument − is present, calendar does its job for every user who has a
file calendar in his or her login directory and sends them any positive results by mail(1).
Normally this is done daily by facilities in the UNIX operating system (see cron(1M)).

If the environment variable DATEMSK is set, calendar will use its value as the full path
name of a template file containing format strings. The strings consist of conversion
specifications and text characters and are used to provide a richer set of allowable date
formats in different languages by appropriate settings of the environment variable LANG
or LC_TIME; see environ(5). See strftime(3C) for the list of allowable conversion
specifications.

EXAMPLES The following example shows the possible contents of a template:

%B %eth of the year %Y

%B represents the full month name, %e the day of month and %Y the year (4 digits).

If DATEMSK is set to this template, the following calendar file would be valid:

March 7th of the year 1989 < Reminder>

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of calendar: LC_CTYPE, LC_TIME, LC_MESSAGES, NLSPATH, and TZ.

EXIT STATUS 0 Successful completion.

>0 An error occurred.

FILES /etc/passwd system password file
/tmp/cal∗ temporary files used by calendar
/usr/lib/calprog program used to determine dates for today and tomorrow

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu

modified 1 Feb 1995 SunOS 5.6 1-87

calendar (1) User Commands

SEE ALSO at(1), crontab(1), mail(1), cron(1M), ypbind(1M), strftime(3C), attributes(5), environ(5)

NOTES Appropriate lines beginning with white space will not be printed.

Your calendar must be public information for you to get reminder service.

calendar’s extended idea of ‘‘tomorrow’’ does not account for holidays.

The − argument works only on calendar files that are local to the machine; calendar is
intended not to work on calendar files that are mounted remotely with NFS. Thus,
‘calendar −’ should be run only on diskful machines where home directories exist; run-
ning it on a diskless client has no effect.

calendar is no longer in the default root crontab. Because of the network burden ‘calen-
dar −’ can induce, it is inadvisable in an environment running ypbind(1M) with a large
passwd.byname map. If, however, the usefulness of calendar outweighs the network
impact, the super-user may run ‘crontab −e’ to edit the root crontab. Otherwise, indivi-
dual users may wish to use ‘crontab −e’ to edit their own crontabs to have cron invoke
calendar without the − argument, piping output to mail addressed to themselves.

1-88 SunOS 5.6 modified 1 Feb 1995

User Commands cancel (1)

NAME cancel − cancel print request

SYNOPSIS cancel [request-ID . . .] [destination . . .]

cancel −u user . . . [destination . . .]

DESCRIPTION The cancel utility cancels print requests. There are two forms of the cancel command.

The first form of cancel has two optional arguments: print requests (request-ID) and desti-
nations (destination). Specifying request-ID with destination cancels request-ID on destina-
tion . Specifying only the destination cancels the current print request on destination. If
destination is not specified, cancel cancels the requested print request on all destinations.

The second form of cancel cancels a user’s print requests on specific destinations.

Users can only cancel print requests associated with their username. By default, users
can only cancel print requests on the host from which the print request was submitted. If
a super-user has set user-equivalence=true in /etc/printers.conf on the print server, users
can cancel print requests associated with their username on any host. Super-users can
cancel print requests on the host from which the print request was submitted. Super-
users can also cancel print requests from the print server.

The print client commands locate destination information in a very specific order. See
printers.conf(4) and printers(4) for details.

OPTIONS The following options are supported:

−u user The name of the user for which print requests are to be cancelled. Specify
user as a username.

OPERANDS The following operands are supported:

destination The destination on which the print requests are to be canceled. destination is
the name of a printer or class of printers (see lpadmin(1M)). If destination is
not specified, cancel cancels the requested print request on all destinations.
Specify destination using atomic, POSIX-style (server:destination), or
Federated Naming Service (FNS) (. . ./service/printer/. . .) names. See
NOTES for information regarding using POSIX-style destination names
with cancel. See printers.conf(4) for information regarding the naming
conventions for atomic and FNS names, and standards(5) for information
regarding POSIX.

request-ID The print request to be canceled. Specify request-ID using LP-style request
IDs (destination-number).

user The name of the user for which the print requests are to be cancelled.
Specify user as a username.

EXIT STATUS The following exit values are returned:

0 Successful completion.
non-zero An error occurred.

modified 11 Apr 1997 SunOS 5.6 1-89

cancel (1) User Commands

FILES /var/spool/print/∗ LP print queue.
$HOME/.printers User-configurable printer database.
/etc/printers.conf System printer configuration database.
printers.conf.byname NIS version of /etc/printers.conf.
fns.ctx_dir.domain NIS+ version of /etc/printers.conf.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWpcu

SEE ALSO lp(1), lpq(1B), lpr(1B), lprm(1B), lpstat(1), lpadmin(1M), printers(4), printers.conf(4),
attributes(5), standards(5)

NOTES POSIX-style destination names (server:destination) are treated as print requests if destina-
tion has the same format as an LP-style request-ID . See standards(5).

1-90 SunOS 5.6 modified 11 Apr 1997

User Commands case (1)

NAME case, switch, select − shell built-in functions to choose from among a list of actions

SYNOPSIS
sh case word in [pattern [� pattern]) actions ;;] . . . esac

csh switch (expression)
case comparison1:

actions
breaksw

case comparison2:
actions
breaksw

. . .
default:

endsw

ksh case word in [pattern [� pattern]) actions ;;] . . . esac
select identifier [in word . . .] ; do list ; done

DESCRIPTION
sh A case command executes the actions associated with the first pattern that matches word .

The form of the patterns is the same as that used for file-name generation except that a
slash, a leading dot, or a dot immediately following a slash need not be matched expli-
citly.

csh The c-shell uses the switch statement, in which each comparison is successively matched,
against the specified expression, which is first command and filename expanded. The file
metacharacters ∗, ? and [. . .] may be used in the case comparison, which are variable
expanded. If none of the comparisons match before a “default” comparison is found,
execution begins after the default comparison. Each case statement and the default state-
ment must appear at the beginning of a line. The command breaksw continues execution
after the endsw. Otherwise control falls through subsequent case and default statements
as with C. If no comparison matches and there is no default, execution continues after
the endsw.

case comparison: A compared-expression in a switch statement.

default: If none of the preceeding comparisons match expression, then this is the default
case in a switch statement. The default should come after all case comparisons. Any
remaining commands on the command line are first executed.

breaksw exits from a switch, resuming after the endsw.

ksh A case command executes the actions associated with the first pattern that matches word .
The form of the patterns is the same as that used for file-name generation (see File Name
Generation in ksh(1)).

modified 15 Apr 1994 SunOS 5.6 1-91

case (1) User Commands

A select command prints to standard error (file descriptor 2), the set of words, each pre-
ceded by a number. If in word . . . is omitted, then the positional parameters are used
instead. The PS3 prompt is printed and a line is read from the standard input. If this line
consists of the number of one of the listed words, then the value of the variable identifier is
set to the word corresponding to this number. If this line is empty the selection list is
printed again. Otherwise the value of the variable identifier is set to NULL. The contents
of the line read from standard input is saved in the shell variable REPLY. The list is exe-
cuted for each selection until a break or end-of-file is encountered. If the REPLY variable is
set to NULL by the execution of list, then the selection list is printed before displaying the
PS3 prompt for the next selection.

EXAMPLES
sh STOPLIGHT=green

case $STOPLIGHT in
red) echo "STOP" ;;
orange) echo "Go with caution; prepare to stop" ;;
green) echo "you may GO" ;;
blue|brown) echo "invalid stoplight colors" ;;

esac

csh In the C-shell, you must add NEWLINE characters as below.
set STOPLIGHT = green
switch ($STOPLIGHT)

case red:
echo "STOP"
breaksw

case orange:
echo "Go with caution; prepare to stop"
breaksw

case green:
echo "you may GO"
endsw

endsw

ksh STOPLIGHT=green
case $STOPLIGHT in

red) echo "STOP" ;;
orange) echo "Go with caution; prepare to stop" ;;
green) echo "you may GO" ;;
blue|brown) echo "invalid stoplight colors" ;;

esac

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

1-92 SunOS 5.6 modified 15 Apr 1994

User Commands case (1)

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO break(1), csh(1), ksh(1), sh(1), attributes(5)

modified 15 Apr 1994 SunOS 5.6 1-93

cat (1) User Commands

NAME cat − concatenate and display files

SYNOPSIS cat [−nbsuvet] [file . . .]

DESCRIPTION cat reads each file in sequence and writes it on the standard output. Thus:

example% cat file

prints file on your terminal, and:

example% cat file1 file2 >file3

concatenates file1 and file2, and writes the results in file3.

If no input file is given, cat reads from the standard input file.

OPTIONS −n Precede each line output with its line number.

−b Number the lines, as −n, but omit the line numbers from blank lines.

−u The output is not buffered. (The default is buffered output.)

−s cat is silent about non-existent files.

−v Non-printing characters (with the exception of tabs, new-lines and form-feeds)
are printed visibly. ASCII control characters (octal 000 − 037) are printed as ˆn,
where n is the corresponding ASCII character in the range octal 100 − 137 (@, A, B,
C, . . ., X, Y, Z, [, \,], ˆ, and _); the DEL character (octal 0177) is printed ˆ?. Other
non-printable characters are printed as M-x, where x is the ASCII character
specified by the low-order seven bits.

When used with the −v option, the following options may be used:

−e A $ character will be printed at the end of each line (prior to the new-line).

−t Tabs will be printed as ˆI’s and formfeeds to be printed as ˆL’s.

The −e and −t options are ignored if the −v option is not specified.

OPERANDS The following operand is supported:

file A path name of an input file. If no file is specified, the standard input is used. If
file is ‘ − ’, cat will read from the standard input at that point in the sequence. cat
will not close and reopen standard input when it is referenced in this way, but
will accept multiple occurrences of ‘ − ’ as file.

USAGE See largefile(5) for the description of the behavior of cat when encountering files greater
than or equal to 2 Gbyte (231 bytes).

EXAMPLES 1. The following command:

example% cat myfile

writes the contents of the file myfile to standard output.

1-94 SunOS 5.6 modified 1 Feb 1995

User Commands cat (1)

2. The following command:

example% cat doc1 doc2 > doc.all

concatenates the files doc1 and doc2 and writes the result to doc.all.

3. The command:

example% cat start - middle - end > file

when standard input is a terminal, gets two arbitrary pieces of input from the termi-
nal with a single invocation of cat. Note, however, that if standard input is a regular
file, this would be equivalent to the command:

cat start - middle /dev/null end > file

because the entire contents of the file would be consumed by cat the first time ‘ − ’ was
used as a file operand and an end-of-file condition would be detected immediately
when ‘ − ’ was referenced the second time.

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of cat: LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS The following exit values are returned:

0 All input files were output successfully.

>0 An error occurred.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu
CSI enabled

SEE ALSO touch(1), environ(5), attributes(5), largefile(5)

NOTES Redirecting the output of cat onto one of the files being read will cause the loss of the
data originally in the file being read. For example,

example% cat filename1 filename2 >filename1

causes the original data in filename1 to be lost.

modified 1 Feb 1995 SunOS 5.6 1-95

cc (1B) SunOS/BSD Compatibility Package Commands

NAME cc − C compiler

SYNOPSIS /usr/ucb/cc [options]

DESCRIPTION /usr/ucb/cc is the interface to the BSD Compatibility Package C compiler. It is a script
that looks for the link /usr/ccs/bin/ucbcc to the C compiler. /usr/ccs/bin/ucbcc is avail-
able only with the SPROcc package, whose default location is /opt/SUNWspro.
/usr/ucb/cc is identical to /usr/ccs/bin/ucbcc, except that BSD headers are used and BSD
libraries are linked before base libraries. The /opt/SUNWspro/man/man1/acc.1 man page
is available only with the SPROcc package.

OPTIONS /usr/ucb/cc accepts the same options as /usr/ccs/bin/ucbcc, with the following exceptions:

−Idir Search dir for included files whose names do not begin with a slash (/)
prior to searching the usual directories. The directories for multiple −I
options are searched in the order specified. The preprocessor first
searches for #include files in the directory containing sourcefile, and then
in directories named with −I options (if any), then /usr/ucbinclude, and
finally, in /usr/include.

−Ldir Add dir to the list of directories searched for libraries by
/usr/ccs/bin/ucbcc. This option is passed to /usr/ccs/bin/ld and
/usr/ccs/lib. Directories specified with this option are searched before
/usr/ucblib and /usr/lib.

−Y P, dir Change the default directory used for finding libraries.

EXIT STATUS The following exit values are returned:

0 Successful compilation or link edit.

>0 An error occurred.

FILES /usr/ccs/bin/ld link editor
/usr/lib/libc C library
/usr/ucbinclude BSD Compatibility directory for header files
/usr/ucblib BSD Compatibility directory for libraries
/usr/ucblib/libucb BSD Compatibility C library
/usr/lib/libsocket library containing socket routines
/usr/lib/libnsl library containing network functions
/usr/lib/libelf library containing routines to process ELF object files
/usr/lib/libaio library containing asynchronous I/O routines

1B-96 SunOS 5.6 modified 1 Feb 1995

SunOS/BSD Compatibility Package Commands cc (1B)

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscpu

SEE ALSO ld(1), a.out(4), attributes(5)

NOTES The −Y P, dir option may have unexpected results, and should not be used.

modified 1 Feb 1995 SunOS 5.6 1B-97

cd (1) User Commands

NAME cd, chdir, pushd, popd, dirs − change working directory

SYNOPSIS /usr/bin/cd [directory]

sh cd [argument]
chdir [argument]

csh cd [dir]
chdir [dir]
pushd [+n | dir]
popd [+n]
dirs [−l]

ksh cd [arg]
cd old new

DESCRIPTION
/usr/bin/cd The cd utility will change the working directory of the current shell execution environ-

ment. When invoked with no operands, and the HOME environment variable is set to a
non-empty value, the directory named in the HOME environment variable will become
the new working directory.

sh The Bourne shell built-in cd changes the current directory to argument. The shell parame-
ter HOME is the default argument. The shell parameter CDPATH defines the search path
for the directory containing argument. Alternative directory names are separated by a
colon (:). The default path is <null> (specifying the current directory). Note: The
current directory is specified by a null path name, which can appear immediately after
the equal sign or between the colon delimiters anywhere else in the path list. If argument
begins with ‘ / ’, ‘ . ’, or ‘ . . ’, the search path is not used. Otherwise, each directory in the
path is searched for argument. cd must have execute (search) permission in argument.
Because a new process is created to execute each command, cd would be ineffective if it
were written as a normal command; therefore, it is recognized by and is internal to the
shell. (See pwd(1), sh(1), and chdir(2)).

chdir is just another way to call cd.

csh If dir is not specified, the C shell built-in cd uses the value of shell parameter HOME as the
new working directory. If dir specifies a complete path starting with ‘ / ’, ‘ . ’, or ‘ . . ’, dir
becomes the new working directory. If neither case applies, cd tries to find the desig-
nated directory relative to one of the paths specified by the CDPATH shell variable.
CDPATH has the same syntax as, and similar semantics to, the PATH shell variable. cd
must have execute (search) permission in dir. Because a new process is created to execute
each command, cd would be ineffective if it were written as a normal command; there-
fore, it is recognized by and is internal to the C-shell. (See pwd(1), sh(1), and chdir(2)).

1-98 SunOS 5.6 modified 28 Mar 1995

User Commands cd (1)

chdir changes the shell’s working directory to directory dir. If no argument is given,
change to the home directory of the user. If dir is a relative pathname not found in the
current directory, check for it in those directories listed in the cdpath variable. If dir is the
name of a shell variable whose value starts with a /, change to the directory named by
that value.

pushd will push a directory onto the directory stack. With no arguments, exchange the
top two elements.

+n Rotate the n’th entry to the top of the stack and cd to it.

dir Push the current working directory onto the stack and change to dir.

popd pops the directory stack and cd to the new top directory. The elements of the direc-
tory stack are numbered from 0 starting at the top.

+n Discard the n’th entry in the stack.

dirs will print the directory stack, most recent to the left; the first directory shown is the
current directory. With the −l argument, produce an unabbreviated printout; use of the ˜
notation is suppressed.

ksh The Korn shell built-in cd command can be in either of two forms. In the first form it
changes the current directory to arg . If arg is − the directory is changed to the previous
directory. The shell variable HOME is the default arg . The variable PWD is set to the
current directory. The shell variable CDPATH defines the search path for the directory
containing arg . Alternative directory names are separated by a colon (:). The default
path is <null> (specifying the current directory). Note that the current directory is
specified by a null path name, which can appear immediately after the equal sign or
between the colon delimiters anywhere else in the path list. If arg begins with a ‘ / ’, ‘ . ’,
or ‘ . . ’, then the search path is not used. Otherwise, each directory in the path is searched
for arg .

The second form of cd substitutes the string new for the string old in the current directory
name, PWD and tries to change to this new directory.

The cd command may not be executed by rksh. Because a new process is created to exe-
cute each command, cd would be ineffective if it were written as a normal command;
therefore, it is recognized by and is internal to the Korn shell. (See pwd(1), sh(1), and
chdir(2)).

OPERANDS The following operands are supported:

directory An absolute or relative pathname of the directory that becomes the new work-
ing directory. The interpretation of a relative pathname by cd depends on the
CDPATH environment variable.

OUTPUT If a non-empty directory name from CDPATH is used, an absolute pathname of the new
working directory will be written to the standard output as follows:

"%s\n", <new directory>

modified 28 Mar 1995 SunOS 5.6 1-99

cd (1) User Commands

Otherwise, there will be no output.

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of cd: LC_CTYPE, LC_MESSAGES, and NLSPATH.

CDPATH A colon-separated list of pathnames that refer to directories. If the directory
operand does not begin with a slash (/) character, and the first component
is not dot or dot-dot, cd will search for directory relative to each directory
named in the CDPATH variable, in the order listed. The new working direc-
tory will be set to the first matching directory found. An empty string in
place of a directory pathname represents the current directory. If CDPATH
is not set, it will be treated as if it were an empty string.

HOME The name of the home directory, used when no directory operand is
specified.

PWD A pathname of the current working directory, set by cd after it has changed
to that directory.

EXIT STATUS The following exit values are returned by cd:
0 The directory was successfully changed.
>0 An error occurred.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO csh(1), ksh(1), pwd(1), sh(1), chdir(2), attributes(5), environ(5)

1-100 SunOS 5.6 modified 28 Mar 1995

User Commands checknr (1)

NAME checknr − check nroff and troff input files; report possible errors

SYNOPSIS checknr [−fs] [−a . x1 . y1 . x2 . y2 xn . yn] [−c . x1 . x2 . x3 xn] [filename . . .]

DESCRIPTION checknr checks a list of nroff(1) or troff(1) input files for certain kinds of errors involving
mismatched opening and closing delimiters and unknown commands. If no files are
specified, checknr checks the standard input. Delimiters checked are:

· Font changes using \fx . . . \fP.

· Size changes using \sx . . . \s0.

· Macros that come in open . . . close forms, for example, the .TS and .TE macros
which must always come in pairs.

checknr knows about the ms(5) and me(5) macro packages.

checknr is intended to be used on documents that are prepared with checknr in mind. It
expects a certain document writing style for \f and \s commands, in that each \fx must
be terminated with \fP and each \sx must be terminated with \s0. While it will work to
directly go into the next font or explicitly specify the original font or point size, and many
existing documents actually do this, such a practice will produce complaints from
checknr. Since it is probably better to use the \fP and \s0 forms anyway, you should
think of this as a contribution to your document preparation style.

OPTIONS −f Ignore \f font changes.

−s Ignore \s size changes.

−a .x1 .y1. . .
Add pairs of macros to the list. The pairs of macros are assumed to be those
(such as .DS and .DE) that should be checked for balance. The −a option must be
followed by groups of six characters, each group defining a pair of macros. The
six characters are a period, the first macro name, another period, and the second
macro name. For example, to define a pair .BS and .ES, use ‘−a.BS.ES’

−c .x1 . . .
Define commands which checknr would otherwise complain about as undefined.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWdoc

SEE ALSO eqn(1), nroff(1), troff(1), attributes(5), me(5), ms(5)

BUGS There is no way to define a one-character macro name using the −a option.

modified 14 Sep 1992 SunOS 5.6 1-101

chgrp (1) User Commands

NAME chgrp − change file group ownership

SYNOPSIS chgrp [−fhR] group file . . .

DESCRIPTION The chgrp utility will set the group ID of the file named by each file operand to the group
ID specified by the group operand.

For each file operand, it will perform actions equivalent to the chown(2) function, called
with the following arguments:

· The file operand will be used as the path argument.

· The user ID of the file will be used as the owner argument.

· The specified group ID will be used as the group argument.

Unless chgrp is invoked by a process with appropriate privileges, the set-user-ID and
set-group-ID bits of a regular file will be cleared upon successful completion; the set-
user-ID and set-group-ID bits of other file types may be cleared.

The operating system has a configuration option {_POSIX_CHOWN_RESTRICTED}, to res-
trict ownership changes. When this option is in effect, the owner of the file may change
the group of the file only to a group to which the owner belongs. Only the super-user can
arbitrarily change owner IDs, whether or not this option is in effect. To set this
configuration option, include the following line in /etc/system:

set rstchown = 1
To disable this option, include the following line in /etc/system:

set rstchown = 0
{_POSIX_CHOWN_RESTRICTED} is enabled by default. See system(4) and fpathconf(2).

OPTIONS −f Force. Do not report errors.

−h If the file is a symbolic link, change the group of the symbolic link. Without
this option, the group of the file referenced by the symbolic link is changed.

−R Recursive. chgrp descends through the directory, and any subdirectories, set-
ting the specified group ID as it proceeds. When a symbolic link is encoun-
tered, the group of the target file is changed (unless the −h option is specified),
but no recursion takes place.

OPERANDS The following operands are supported:

group A group name from the group database or a numeric group ID. Either specifies
a group ID to be given to each file named by one of the file operands. If a
numeric group operand exists in the group database as a group name, the group
ID number associated with that group name is used as the group ID.

file A path name of a file whose group ID is to be modified.

USAGE See largefile(5) for the description of the behavior of chgrp when encountering files
greater than or equal to 2 Gbyte (231 bytes).

1-102 SunOS 5.6 modified 20 Dec 1996

User Commands chgrp (1)

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of chgrp: LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS The following exit values are returned:

0 The utility executed successfully and all requested changes were made.

>0 An error occurred.

FILES /etc/group group file

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu
CSI Enabled (see NOTES)

SEE ALSO chmod(1), chown(1), id(1M), chown(2), fpathconf(2), group(4), passwd(4), system(4),
attributes(5), environ(5), largefile(5)

NOTES chgrp is CSI-enabled except for the group name.

modified 20 Dec 1996 SunOS 5.6 1-103

chkey (1) User Commands

NAME chkey − change user’s secure RPC key pair

SYNOPSIS chkey [−p] [−s nisplus | nis | files]

DESCRIPTION chkey is used to change a user’s secure RPC public key and secret key pair. chkey
prompts for the old secure-rpc password and verifies that it is correct by decrypting the
secret key. If the user has not already keylogged in, chkey registers the secret key with
the local keyserv(1M) daemon. If the secure-rpc password does not match the login
password, chkey prompts for the login password. chkey uses the login password to
encrypt the user’s secret Diffie-Hellman (192 bit) cryptographic key.

chkey ensures that the login password and the secure-rpc password are kept the same,
thus enabling password shadowing, (see shadow(4)).

The key pair can be stored in the /etc/publickey file, (see publickey(4)), NIS publickey
map or NIS+ cred.org_dir table. If a new secret key is generated, it will be registered
with the local keyserv(1M) daemon.

If the source of the publickey is not specified with the −s option, chkey consults the pub-
lickey entry in the name service switch configuration file (see nsswitch.conf(4)). If the
publickey entry specifies one and only one source, then chkey will change the key in the
specified name service. However, if multiple name services are listed, chkey can not
decide which source to update and will display an error message. The user should
specify the source explicitly with the −s option.

Non root users are not allowed to change their key pair in the files database.

OPTIONS −p Re-encrypt the existing secret key with the user’s login password.

−s nisplus Update the NIS+ database.

−s nis Update the NIS database.

−s files Update the files database.

FILES /etc/nsswitch.conf
/etc/publickey

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO keylogin(1), keylogout(1), keyserv(1M), newkey(1M), nisaddcred(1M), attributes(5),
nsswitch.conf(4), publickey(4), shadow(4)

1-104 SunOS 5.6 modified 22 Feb 1993

User Commands chmod (1)

NAME chmod − change the permissions mode of a file

SYNOPSIS chmod [−fR] <absolute-mode> file. . .
chmod [−fR] <symbolic-mode-list> file. . .

DESCRIPTION chmod changes or assigns the mode of a file. The mode of a file specifies its permissions
and other attributes. The mode may be absolute or symbolic.

Absolute mode An absolute mode is specified using octal numbers:

chmod nnnn file . . .

where:

n a number from 0 to 7. An absolute mode is constructed from the OR
of any of the following modes:

4000 Set user ID on execution.
20 # 0 Set group ID on execution if # is 7, 5, 3, or 1.

Enable mandatory locking if # is 6, 4, 2, or 0.
For directories, files are created with BSD semantics for
propagation of the group ID. With this option, files and
subdirectories created in the directory inherit the group ID
of the directory, rather than of the current process. It may
be cleared only by using symbolic mode.

1000 Turn on sticky bit. See chmod(2).
0400 Allow read by owner.
0200 Allow write by owner.
0100 Allow execute (search in directory) by owner.
0700 Allow read, write, and execute (search) by owner.
0040 Allow read by group.
0020 Allow write by group.
0010 Allow execute (search in directory) by group.
0070 Allow read, write, and execute (search) by group.
0004 Allow read by others.
0002 Allow write by others.
0001 Allow execute (search in directory) by others.
0007 Allow read, write, and execute (search) by others.

Note that the setgid bit cannot be set (or cleared) in absolute mode; it must be set (or
cleared) in symbolic mode using g+s (or g-s).

modified 1 Feb 1995 SunOS 5.6 1-105

chmod (1) User Commands

Symbolic mode A symbolic mode specification has the following format:

chmod <symbolic-mode-list> file . . .

where: <symbolic-mode-list> is a comma-separated list (with no intervening whitespace) of
symbolic mode expressions of the form:

[who] operator [permissions]

Operations are performed in the order given. Multiple permissions letters following a sin-
gle operator cause the corresponding operations to be performed simultaneously.

who zero or more of the characters u, g, o, and a specifying whose permis-
sions are to be changed or assigned:

u user’s permissions
g group’s permissions
o others’ permissions
a all permissions (user, group, and other)

If who is omitted, it defaults to a, but the setting of the file mode crea-
tion mask (see umask in sh(1) or csh(1) for more information) is taken
into account. When who is omitted, chmod will not override the res-
trictions of your user mask.

operator either +, −, or =, signifying how permissions are to be changed:

+ Add permissions.

If permissions is omitted, nothing is added.

If who is omitted, add the file mode bits represented by
permissions, except for the those with corresponding bits in
the file mode creation mask.

If who is present, add the file mode bits represented by the
permissions.

− Take away permissions.

If permissions is omitted, do nothing.

If who is omitted, clear the file mode bits represented by
permissions, except for those with corresponding bits in the
file mode creation mask.

If who is present, clear the file mode bits represented by
permissions.

= Assign permissions absolutely.

If who is omitted, clear all file mode bits; if who is present,
clear the file mode bits represented by who .

If permissions is omitted, do nothing else.

If who is omitted, add the file mode bits represented by
permissions, except for the those with corresponding bits in
the file mode creation mask.

1-106 SunOS 5.6 modified 1 Feb 1995

User Commands chmod (1)

If who is present, add the file mode bits represented by per-
missions.

Unlike other symbolic operations, = has an absolute effect in that it
resets all other bits represented by who . Omitting permissions is useful
only with = to take away all permissions.

permission any compatible combination of the following letters:

r read permission
w write permission
x execute permission
l mandatory locking
s user or group set-ID
t sticky bit
u,g,o indicate that permission is to be taken from the current

user, group or other mode respectively.

Permissions to a file may vary depending on your user identification
number (UID) or group identification number (GID). Permissions are
described in three sequences each having three characters:

User Group Other
rwx rwx rwx

This example (user, group, and others all have permission to read,
write, and execute a given file) demonstrates two categories for grant-
ing permissions: the access class and the permissions themselves.

The letter s is only meaningful with u or g, and t only works with u.

Mandatory file and record locking (l) refers to a file’s ability to have
its reading or writing permissions locked while a program is access-
ing that file.

In a directory which has the set-group-ID bit set (reflected as either --
---s--- or -----l--- in the output of ’ls -ld’), files and subdirectories are
created with the group-ID of the parent directory—not that of current
process.

It is not possible to permit group execution and enable a file to be
locked on execution at the same time. In addition, it is not possible to
turn on the set-group-ID bit and enable a file to be locked on execu-
tion at the same time. The following examples, therefore, are invalid
and elicit error messages:

chmod g+x,+l file
chmod g+s,+l file

Only the owner of a file or directory (or the super-user) may change
that file’s or directory’s mode. Only the super-user may set the sticky
bit on a non-directory file. If you are not super-user, chmod will
mask the sticky-bit but will not return an error. In order to turn on a

modified 1 Feb 1995 SunOS 5.6 1-107

chmod (1) User Commands

file’s set-group-ID bit, your own group ID must correspond to the
file’s and group execution must be set.

OPTIONS The following options are supported:

−f Force. chmod will not complain if it fails to change the mode of a file.

−R Recursively descend through directory arguments, setting the mode for each
file as described above. When symbolic links are encountered, the mode of
the target file is changed, but no recursion takes place.

OPERANDS The following operands are supported:

mode Represents the change to be made to the file mode bits of each file named by
one of the file operands; see DESCRIPTION.

file A path name of a file whose file mode bits are to be modified.

USAGE See largefile(5) for the description of the behavior of chmod when encountering files
greater than or equal to 2 Gbyte (231 bytes).

EXAMPLES Deny execute permission to everyone:

example% chmod a−x file

Allow only read permission to everyone:

example% chmod 444 file

Make a file readable and writable by the group and others:

example% chmod go+rw file
example% chmod 066 file

Cause a file to be locked during access:

example% chmod +l file

Allow everyone to read, write, and execute the file and turn on the set group-ID.

example% chmod a=rwx,g+s file
example% chmod 2777 file

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of chmod: LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS The following exit values are returned:
0 Successful completion.
>0 An error occurred.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

1-108 SunOS 5.6 modified 1 Feb 1995

User Commands chmod (1)

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu
CSI enabled

SEE ALSO ls(1), chmod(2), attributes(5), environ(5), largefile(5)

NOTES Absolute changes don’t work for the set-group-ID bit of a directory. You must use g+s or
g-s.

chmod permits you to produce useless modes so long as they are not illegal (for instance,
making a text file executable). chmod does not check the file type to see if mandatory
locking is meaningful.

If the filesystem is mounted with the nosuid option, setuid execution is not allowed.

modified 1 Feb 1995 SunOS 5.6 1-109

chown (1) User Commands

NAME chown − change file ownership

SYNOPSIS chown [−fhR] owner[:group] file. . .

DESCRIPTION The chown utility will set the user ID of the file named by each file to the user ID specified
by owner, and, optionally, will set the group ID to that specified by group.

If chown is invoked by other than the super-user, the set-user-ID bit is cleared.

Only the owner of a file (or the super-user) may change the owner of that file.

The operating system has a configuration option {_POSIX_CHOWN_RESTRICTED}, to res-
trict ownership changes. When this option is in effect the owner of the file is prevented
from changing the owner ID of the file. Only the super-user can arbitrarily change owner
IDs whether or not this option is in effect. To set this configuration option, include the
following line in /etc/system:

set rstchown = 1

To disable this option, include the following line in /etc/system:

set rstchown = 0

{_POSIX_CHOWN_RESTRICTED} is enabled by default. See system(4) and fpathconf(2).

OPTIONS The following options are supported:

−f Do not report errors.

−h If the file is a symbolic link, change the owner of the symbolic link. Without this
option, the owner of the file referenced by the symbolic link is changed.

−R Recursive. chown descends through the directory, and any subdirectories, set-
ting the ownership ID as it proceeds. When a symbolic link is encountered, the
owner of the target file is changed (unless the −h option is specified), but no
recursion takes place.

OPERANDS The following operands are supported:

owner[: group] A user ID and optional group ID to be assigned to file. The owner portion
of this operand must be a user name from the user database or a
numeric user ID. Either specifies a user ID to be given to each file named
by file. If a numeric owner exists in the user database as a user name, the
user ID number associated with that user name will be used as the user
ID. Similarly, if the group portion of this operand is present, it must be a
group name from the group database or a numeric group ID. Either
specifies a group ID to be given to each file. If a numeric group operand
exists in the group database as a group name, the group ID number
associated with that group name will be used as the group ID.

file A path name of a file whose user ID is to be modified.

1-110 SunOS 5.6 modified 20 Dec 1996

User Commands chown (1)

USAGE See largefile(5) for the description of the behavior of chown when encountering files
greater than or equal to 2 Gbyte (231 bytes).

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of chown: LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS The following exit values are returned:

0 The utility executed successfully and all requested changes were made.

>0 An error occurred.

FILES /etc/passwd system password file

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu
CSI Enabled (see NOTES)

SEE ALSO chgrp(1), chmod(1), chown(2), fpathconf(2), passwd(4), system(4), attributes(5),
environ(5), largefile(5)

NOTES chown is CSI-enabled except for the owner and group names.

modified 20 Dec 1996 SunOS 5.6 1-111

chown (1B) SunOS/BSD Compatibility Package Commands

NAME chown − change owner

SYNOPSIS /usr/ucb/chown [−fR] owner[.group] filename . . .

DESCRIPTION chown changes the owner of the filenames to owner. The owner may be either a decimal
user ID (UID) or a login name found in the password file. An optional group may also be
specified. The group may be either a decimal group ID (GID) or a group name found in
the GID file.

Only the super-user can change owner, in order to simplify accounting procedures.

OPTIONS −f Do not report errors.

−R Recursively descend into directories setting the ownership of all files in each
directory encountered. When symbolic links are encountered, their ownership is
changed, but they are not traversed.

USAGE See largefile(5) for the description of the behavior of chown when encountering files
greater than or equal to 2 Gbyte (231 bytes).

FILES /etc/passwd password file

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscpu

SEE ALSO chgrp(1), chown(2), group(4), passwd(4), attributes(5), largefile(5)

1B-112 SunOS 5.6 modified 14 Sep 1992

User Commands ckdate (1)

NAME ckdate, errdate, helpdate, valdate − prompts for and validates a date

SYNOPSIS ckdate [−Q] [−W width] [−f format] [−d default] [−h help] [−e error]
[−p prompt] [−k pid [−s signal]]

/usr/sadm/bin/errdate [−W width] [−e error] [−f format]

/usr/sadm/bin/helpdate [−Wwidth] [−h help] [−f format]

/usr/sadm/bin/valdate [−f format] input

DESCRIPTION ckdate prompts a user and validates the response. It defines, among other things, a
prompt message whose response should be a date, text for help and error messages, and
a default value (which will be returned if the user responds with a RETURN). The user
response must match the defined format for a date.

All messages are limited in length to 70 characters and are formatted automatically. Any
white space used in the definition (including newline) is stripped. The −W option cancels
the automatic formatting. When a tilde is placed at the beginning or end of a message
definition, the default text will be inserted at that point, allowing both custom text and
the default text to be displayed.

If the prompt, help or error message is not defined, the default message (as defined under
NOTES) will be displayed.

Three visual tool modules are linked to the ckdate command. They are errdate (which
formats and displays an error message), helpdate (which formats and displays a help
message), and valdate (which validates a response). These modules should be used in
conjunction with FML objects. In this instance, the FML object defines the prompt. When
format is defined in the errdate and helpdate modules, the messages will describe the
expected format.

OPTIONS −Q Specifies that quit will not be allowed as a valid response.
−W width Specifies that prompt, help and error messages will be formatted to a

line length of width.
−f format Specifies the format against which the input will be verified. Possible

formats and their definitions are:
%b = abbreviated month name (jan, feb, mar)
%B = full month name %d = day of month (01 - 31)
%D = date as %m/%d/%y (the default format)
%e = day of month (1 - 31; single digits are preceded by a blank)
%h = abbreviated month name, identical to %b%
%m = month number (01 - 12)
%y = year within century (for instance, 89)
%Y = year as CCYY (for instance, 1989)

−d default Defines the default value as default. The default does not have to meet
the format criteria.

−h help Defines the help messages as help.
−e error Defines the error message as error.

modified 14 Sep 1992 SunOS 5.6 1-113

ckdate (1) User Commands

−p prompt Defines the prompt message as prompt .
−k pid Specifies that process ID pid is to be sent a signal if the user chooses to

abort.
−s signal Specifies that the process ID pid defined with the −k option is to be sent

signal signal when quit is chosen. If no signal is specified, SIGTERM is
used.

input Input to be verified against format criteria.

EXIT CODES 0 Successful execution

1 EOF on input
or negative width on −W option,
or usage error

3 User termination (quit)

4 Garbled format argument

NOTES The default prompt for ckdate is:

Enter the date [?,q]:

The default error message is:

ERROR - Please enter a date. Format is <format>.

The default help message is:

Please enter a date. Format is <format>.

When the quit option is chosen (and allowed), q is returned along with the return code 3.
The valdate module will not produce any output. It returns zero for success and non-
zero for failure.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO attributes(5)

1-114 SunOS 5.6 modified 14 Sep 1992

User Commands ckgid (1)

NAME ckgid, errgid, helpgid, valgid − prompts for and validates a group id

SYNOPSIS ckgid [−Q] [−W width] [−m] [−d default] [−h help] [−e error] [−p prompt]
[−k pid [−s signal]]

/usr/sadm/bin/errgid [−W width] [−e error]
/usr/sadm/bin/helpgid [−W width] [−m] [−h help]
/usr/sadm/bin/valgid input

DESCRIPTION ckgid prompts a user and validates the response. It defines, among other things, a
prompt message whose response should be an existing group ID, text for help and error
messages, and a default value (which will be returned if the user responds with a car-
riage return).

All messages are limited in length to 70 characters and are formatted automatically. Any
white space used in the definition (including newline) is stripped. The −W option cancels
the automatic formatting. When a tilde is placed at the beginning or end of a message
definition, the default text will be inserted at that point, allowing both custom text and
the default text to be displayed.

If the prompt, help or error message is not defined, the default message (as defined under
NOTES) will be displayed.

Three visual tool modules are linked to the ckgid command. They are errgid (which for-
mats and displays an error message), helpgid (which formats and displays a help mes-
sage), and valgid (which validates a response). These modules should be used in con-
junction with FML objects. In this instance, the FML object defines the prompt.

OPTIONS −Q Specifies that quit will not be allowed as a valid response.
−W width Specifies that prompt, help and error messages will be formatted to a

line length of width .
−m Displays a list of all groups when help is requested or when the user

makes an error.
−d default Defines the default value as default. The default is not validated and so

does not have to meet any criteria.
−h help Defines the help messages as help.
−e error Defines the error message as error.
−p prompt Defines the prompt message as prompt .
−k pid Specifies that process ID pid is to be sent a signal if the user chooses to

abort.
−s signal Specifies that the process ID pid defined with the −k option is to be sent

signal signal when quit is chosen. If no signal is specified, SIGTERM is
used.

input Input to be verified against /etc/group.

modified 14 Sep 1992 SunOS 5.6 1-115

ckgid (1) User Commands

EXIT CODES 0 Successful execution

1 EOF on input
or negative width on −W option,
or usage error

3 User termination (quit)

NOTES The default prompt for ckgid is:

Enter the name of an existing group [?,q]:

The default error message is:

ERROR: Please enter one of the following group names: [List]

If the −m option of ckgid is used, a list of valid groups is displayed here.

The default help message is:

ERROR: Please enter one of the following group names: [List]

If the −m option of ckgid is used, a list of valid groups is displayed here.

When the quit option is chosen (and allowed), q is returned along with the return code 3.
The valgid module will not produce any output. It returns zero for success and non-zero
for failure.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO attributes(5)

1-116 SunOS 5.6 modified 14 Sep 1992

User Commands ckint (1)

NAME ckint, errint, helpint, valint − display a prompt; verify and return an integer value

SYNOPSIS ckint [−Q] [−W width] [−b base] [−d default] [−h help] [−e error] [−p prompt]
[−k pid [−s signal]]

/usr/sadm/bin/errint [−W width] [−b base] [−e error]
/usr/sadm/bin/helpint [−W width] [−b base] [−h help]
/usr/sadm/bin/valint [−b base] input

DESCRIPTION ckint prompts a user, then validates the response. It defines, among other things, a
prompt message whose response should be an integer, text for help and error messages,
and a default value (which will be returned if the user responds with a carriage return).

All messages are limited in length to 70 characters and are formatted automatically. Any
white space used in the definition (including newline) is stripped. The −W option cancels
the automatic formatting. When a tilde is placed at the beginning or end of a message
definition, the default text will be inserted at that point, allowing both custom text and
the default text to be displayed.

If the prompt, help or error message is not defined, the default message (as defined under
NOTES) will be displayed.

Three visual tool modules are linked to the ckint command. They are errint (which for-
mats and displays an error message), helpint (which formats and displays a help mes-
sage), and valint (which validates a response). These modules should be used in con-
junction with FML objects. In this instance, the FML object defines the prompt. When
base is defined in the errint and helpint modules, the messages will include the expected
base of the input.

OPTIONS −Q Specifies that quit will not be allowed as a valid response.

−W width Specifies that prompt, help and error messages will be formatted to a
line length of width .

−b base Defines the base for input. Must be 2 to 36, default is 10.

−d default Defines the default value as default. The default is not validated and so
does not have to meet any criteria.

−h help Defines the help messages as help.

−e error Defines the error message as error.

−p prompt Defines the prompt message as prompt .

−k pid Specifies that process ID pid is to be sent a signal if the user chooses to
abort.

modified 14 Sep 1992 SunOS 5.6 1-117

ckint (1) User Commands

−s signal Specifies that the process ID pid defined with the −k option is to be sent
signal signal when quit is chosen. If no signal is specified, SIGTERM is
used.

input Input to be verified against base criterion.

EXIT CODES 0 Successful execution

1 EOF on input, or negative width on −W option, or usage error

3 User termination (quit)

NOTES The default base 10 prompt for ckint is:

Enter an integer [?,q]:

The default base 10 error message is:

ERROR - Please enter an integer.

The default base 10 help message is:

Please enter an integer.

The messages are changed from ‘‘integer’’ to ‘‘base base integer’’ if the base is set to a
number other than 10.

When the quit option is chosen (and allowed), q is returned along with the return code 3.
The valint module will not produce any output. It returns 0 for success and non-zero for
failure.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO attributes(5)

1-118 SunOS 5.6 modified 14 Sep 1992

User Commands ckitem (1)

NAME ckitem, erritem, helpitem − build a menu; prompt for and return a menu item

SYNOPSIS ckitem [−Q] [−W width] [−uno] [−f filename] [−l label] [[−i invis] [, ...]] [−m max]
[−d default] [−h help] [−e error] [−p prompt] [−k pid [−s signal]] [choice [...]]

/usr/sadm/bin/erritem [−W width] [−e error] [choice [...]]

/usr/sadm/bin/helpitem [−W width] [−h help] [choice [...]]

DESCRIPTION ckitem builds a menu and prompts the user to choose one item from a menu of items. It
then verifies the response. Options for this command define, among other things, a
prompt message whose response will be a menu item, text for help and error messages,
and a default value (which will be returned if the user responds with a carriage return).

By default, the menu is formatted so that each item is prepended by a number and is
printed in columns across the terminal. Column length is determined by the longest
choice. Items are alphabetized.

All messages are limited in length to 70 characters and are formatted automatically. Any
white space used in the definition (including newline) is stripped. The −W option cancels
the automatic formatting. When a tilde is placed at the beginning or end of a message
definition, the default text will be inserted at that point, allowing both custom text and
the default text to be displayed.

If the prompt, help or error message is not defined, the default message (as defined under
NOTES) will be displayed.

Two visual tool modules are linked to the ckitem command. They are erritem (which
formats and displays an error message) and helpitem (which formats and displays a help
message). These modules should be used in conjunction with FML objects. In this
instance, the FML object defines the prompt. When choice is defined in these modules, the
messages will describe the available menu choice (or choices).

OPTIONS −Q Specify that quit will not be allowed as a valid response.

−W width Specify that prompt, help and error messages will be formatted to a line
length of width .

−u Specify that menu items should be displayed as an unnumbered list.

−n Specify that menu items should not be displayed in alphabetical order.

−o Specify that only one menu token will be returned.

−f filename Define a file, filename, which contains a list of menu items to be displayed.
(The format of this file is: token<tab>description. Lines beginning with a
pound sign (#) are designated as comments and ignored.)

−l label Define a label, label, to print above the menu.

modified 14 Sep 1992 SunOS 5.6 1-119

ckitem (1) User Commands

−i invis Define invisible menu choices (those which will not be printed in the menu).
(For example, ‘‘all’’ used as an invisible choice would mean it is a legal option
but does not appear in the menu. Any number of invisible choices may be
defined.) Invisible choices should be made known to a user either in the
prompt or in a help message.

−m max Define the maximum number of menu choices that the user can choose. The
default is 1.

−d default Define the default value as default. The default is not validated and so does
not have to meet any criteria.

−h help Define the help messages as help.

−e error Define the error message as error.

−p prompt Define the prompt message as prompt .

−k pid Specify that the process ID pid is to be sent a signal if the user chooses to
abort.

−s signal Specify that process ID pid defined with the −k option is to be sent signal sig-
nal when quit is chosen. If no signal is specified, SIGTERM is used.

choice Define menu items. Items should be separated by white space or newline.

EXIT CODES 0 Successful execution

1 EOF on input, or negative width on −W option, or inability to open file
on −f option, or usage error

3 User termination (quit)

4 No choices from which to choose

NOTES The user may input the number of the menu item if choices are numbered or as much of
the string required for a unique identification of the item. Long menus are paged with 10
items per page.

When menu entries are defined both in a file (by using the −f option) and also on the
command line, they are usually combined alphabetically. However, if the −n option is
used to suppress alphabetical ordering, then the entries defined in the file are shown first,
followed by the options defined on the command line.

The default prompt for ckitem is:

Enter selection [?,??,q]:

One question mark will give a help message and then redisplay the prompt. Two ques-
tion marks will give a help message and then redisplay the menu label, the menu and the
prompt.

The default error message if you typed a number is:

ERROR: Bad numeric choice specification

1-120 SunOS 5.6 modified 14 Sep 1992

User Commands ckitem (1)

The default error message if you typed a string is:

ERROR: Entry does not match available menu selection. Enter the number of
the menu item you wish to select, the token which is associated with the menu
item, or a partial string which uniquely identifies the token for the menu item.
Enter ?? to reprint the menu.

The default help message is:

Enter the number of the menu item you wish to select, the token which is asso-
ciated with the menu item, or a partial string which uniquely identifies the
token for the menu item. Enter ?? to reprint the menu.

When the quit option is chosen (and allowed), q is returned along with the return code 3.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO attributes(5)

modified 14 Sep 1992 SunOS 5.6 1-121

ckkeywd (1) User Commands

NAME ckkeywd − prompts for and validates a keyword

SYNOPSIS ckkeywd [−Q] [−W width] [−d default] [−h help] [−e error] [−p prompt]
[−k pid [−s signal]] keyword [. . .]

DESCRIPTION ckkeywd prompts a user and validates the response. It defines, among other things, a
prompt message whose response should be one of a list of keywords, text for help and
error messages, and a default value (which will be returned if the user responds with a
carriage return). The answer returned from this command must match one of the defined
list of keywords.

All messages are limited in length to 70 characters and are formatted automatically. Any
white space used in the definition (including newline) is stripped. The −W option cancels
the automatic formatting. When a tilde is placed at the beginning or end of a message
definition, the default text will be inserted at that point, allowing both custom text and
the default text to be displayed.

If the prompt, help or error message is not defined, the default message (as defined under
NOTES) will be displayed.

OPTIONS −Q Specifies that quit will not be allowed as a valid response.

−W width Specifies that prompt, help and error messages will be formatted to a
line length of width .

−d default Defines the default value as default. The default is not validated and so
does not have to meet any criteria.

−h help Defines the help messages as help.

−e error Defines the error message as error.

−p prompt Defines the prompt message as prompt .

−k pid Specifies that process ID pid is to be sent a signal if the user chooses to
abort.

−s signal Specifies that the process ID pid defined with the −k option is to be sent
signal signal when quit is chosen. If no signal is specified, SIGTERM is
used.

keyword Defines the keyword, or list of keywords, against which the answer will
be verified.

EXIT CODES 0 Successful execution

1 EOF on input, or negative width on −W option, or no keywords from
which to choose, or usage error

1-122 SunOS 5.6 modified 14 Sep 1992

User Commands ckkeywd (1)

3 User termination (quit)

NOTES The default prompt for ckkeywd is:

Enter appropriate value [keyword,[...],?,q]:

The default error message is:

ERROR: Please enter one of the following keywords:
keyword ,[...],q

The default help message is:

keyword ,[...],q

When the quit option is chosen (and allowed), q is returned along with the return code 3.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO attributes(5)

modified 14 Sep 1992 SunOS 5.6 1-123

ckpath (1) User Commands

NAME ckpath, errpath, helppath, valpath − display a prompt; verify and return a pathname

SYNOPSIS ckpath [−Q] [−W width] [−a | l] [−b | c | f | y] [−n | [o | z]] [−rtwx]
[−d default] [−h help] [−e error] [−p prompt] [−k pid [−s signal]]

/usr/sadm/bin/errpath [−W width] [−a | l] [−b | c | f | y] [−n | [o | z]]
[−rtwx] [−e error]

/usr/sadm/bin/helppath [−W width] [−a | l] [−b | c | f | y] [−n | [o | z]]
[−rtwx] [−h help]

/usr/sadm/bin/valpath [−a | l] [−b | c | f | y] [−n | [o | z]] [−rtwx] input

DESCRIPTION ckpath prompts a user and validates the response. It defines, among other things, a
prompt message whose response should be a pathname, text for help and error messages,
and a default value (which is returned if the user responds with a RETURN).

The pathname must obey the criteria specified by the first group of options. If no criteria
is defined, the pathname must be for a normal file that does not yet exist. If neither −a
(absolute) or −l (relative) is given, then either is assumed to be valid.

All messages are limited in length to 79 characters and are formatted automatically. Tabs
and newlines are removed after a single white space character in a message definition,
but spaces are not removed. When a tilde is placed at the beginning or end of a message
definition, the default text is inserted at that point, allowing both custom text and the
default text to be displayed.

If the prompt, help or error message is not defined, the default message (as defined under
EXAMPLES) is displayed.

Three visual tool modules are linked to the ckpath command. They are errpath (which
formats and displays an error message on the standard output), helppath (which formats
and displays a help message on the standard output), and valpath (which validates a
response). These modules should be used in conjunction with Framed Access Command
Environment (FACE) objects. In this instance, the FACE object defines the prompt.

OPTIONS −Q Specify that quit is not allowed as a valid response.

−W width Specify that prompt, help and error messages be formatted to a line
length of width .

−a Pathname must be an absolute path.

−l Pathname must be a relative path.

−b Pathname must be a block special file.

−c Pathname must be a character special file.

−f Pathname must be a regular file.

−y Pathname must be a directory.

−n Pathname must not exist (must be new).

−o Pathname must exist (must be old).

1-124 SunOS 5.6 modified 14 Sep 1992

User Commands ckpath (1)

−z Pathname must have a file having a size greater than 0 bytes.

−r Pathname must be readable.

−t Pathname must be creatable (touchable). Pathname will be created if it
does not already exist.

−w Pathname must be writable.

−x Pathname must be executable.

−d default Defines the default value as default. The default is not validated and so
does not have to meet any criteria.

−h help Defines the help message as help.

−e error Defines the error message as error.

−p prompt Defines the prompt message as prompt .

−k pid Specifies that process ID pid is to be sent a signal if the user chooses to
quit.

−s signal Specifies that the process ID pid defined with the −k option is to be sent
signal signal when quit is chosen. If no signal is specified, SIGTERM is
used.

input Input to be verified against validation options.

EXIT CODES 0 Successful execution

1 EOF on input, or negative width on −W option, or usage error

2 Mutually exclusive options

3 User termination (quit)

4 Mutually exclusive options

EXAMPLES The text of the default messages for ckpath depends upon the criteria options that have
been used. An example default prompt for ckpath (using the −a option) is:

example% ckpath −a
Enter an absolute pathname [?,q]

An example default error message (using the −a option) is:

example% /usr/sadm/bin/errpath −a
ERROR: A pathname is a filename, optionally preceded by parent directories.
The pathname you enter: - must begin with a slash (/)

An example default help message (using the −a option) is:

example% /usr/sadm/bin/helppath −a
A pathname is a filename, optionally preceded by parent directories.
The pathname you enter: - must begin with a slash (/)

When the quit option is chosen (and allowed), q is returned along with the return code 3.
Quit input gets a trailing newline.

modified 14 Sep 1992 SunOS 5.6 1-125

ckpath (1) User Commands

The valpath module will produce a usage message on stderr. It returns 0 for success and
non-zero for failure.

example% /usr/sadm/bin/valpath
usage: valpath [−[a|l][b|c|f|y][n|[o|z]]rtwx] input

.

.

.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO face(1), attributes(5), signal(5)

1-126 SunOS 5.6 modified 14 Sep 1992

User Commands ckrange (1)

NAME ckrange, errange, helprange, valrange − prompts for and validates an integer

SYNOPSIS ckrange [−Q] [−W width] [−l lower] [−u upper] [−b base] [−d default] [−h help]
[−e error] [−p prompt] [−k pid [−s signal]]

/usr/sadm/bin/errange [−W width] [−e error] [−l lower] [−u upper] [−b base]

/usr/sadm/bin/helprange [−W width] [−h help] [−l lower] [−u upper] [−b base]

/usr/sadm/bin/valrange [−l lower] [−u upper] [−b base] input

DESCRIPTION ckrange prompts a user for an integer between a specified range and determines whether
this response is valid. It defines, among other things, a prompt message whose response
should be an integer in the range specified, text for help and error messages, and a
default value (which is returned if the user responds with a RETURN).

This command also defines a range for valid input. If either the lower or upper limit is
left undefined, then the range is bounded on only one end.

All messages are limited in length to 79 characters and are formatted automatically. Tabs
and newlines are removed after a single whitespace character in a message definition, but
spaces are not removed. When a tilde is placed at the beginning or end of a message
definition, the default text will be inserted at that point, allowing both custom text and
the default text to be displayed.

If the prompt, help or error message is not defined, the default message (as defined under
EXAMPLES) is displayed.

Three visual tool modules are linked to the ckrange command. They are errange (which
formats and displays an error message on the standard output), helprange (which for-
mats and displays a help message on the standard output), and valrange (which vali-
dates a response). These modules should be used in conjunction with Framed Access
Command Environment (FACE) objects. In this instance, the FACE object defines the
prompt.

Note: Negative "input" arguments confuse getopt in valrange. By inserting a "--" before
the argument, getopt processing will stop. See getopt(1) and intro(1) about getopt
parameter handling. getopt is used to parse positional parameters and to check for legal
options.

OPTIONS −Q Specifies that quit will not be allowed as a valid response.

−W width Specifies that prompt, help and error messages will be formatted to a
line length of width .

−l lower Defines the lower limit of the range as lower . Default is the machine’s
largest negative long.

modified 14 Sep 1992 SunOS 5.6 1-127

ckrange (1) User Commands

−u upper Defines the upper limit of the range as upper. Default is the machine’s
largest positive long.

−b base Defines the base for input. Must be 2 to 36, default is 10. Base conver-
sion uses strtol(3C). Output is always base 10.

−d default Defines the default value as default. default is converted using strtol(3C)
in the desired base. Any characters invalid in the specified base will ter-
minate the strtol conversion without error.

−h help Defines the help message as help.

−e error Defines the error message as error.

−p prompt Defines the prompt message as prompt .

−k pid Specifies that process ID pid is to be sent a signal if the user chooses to
quit.

−s signal Specifies that the process ID pid defined with the −k option is to be sent
signal signal when quit is chosen. If no signal is specified, SIGTERM is
used.

input Input to be verified against upper and lower limits and base.

EXIT CODES 0 Successful execution

1 EOF on input, or negative width on −W option, or usage error

2 Usage error

3 User termination (quit)

EXAMPLES The default base 10 prompt for ckrange is:

example% ckrange
Enter an integer between lower_bound and
upper_bound [lower_bound−upper_bound,?,q]:

The default base 10 error message is:

example% /usr/sadm/bin/errange
ERROR: Please enter an integer between lower_bound and upper_bound.

The default base 10 help message is:

example% /usr/sadm/bin/helprange
Please enter an integer between lower_bound and upper_bound.

The messages are changed from ‘‘integer’’ to ‘‘base base integer’’ if the base is set to a
number other than 10, for example, example% /usr/sadm/bin/helprange −b 36.

When the quit option is chosen (and allowed), q is returned along with the return code 3.
Quit input gets a trailing newline.

1-128 SunOS 5.6 modified 14 Sep 1992

User Commands ckrange (1)

The valrange module will produce a usage message on stderr. It returns 0 for success
and non-zero for failure.

example% /usr/sadm/bin/valrange
usage: valrange [−l lower] [−u upper] [−b base] input

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO intro(1), face(1), getopt(1), strtol(3C), attributes(5), signal(5)

modified 14 Sep 1992 SunOS 5.6 1-129

ckstr (1) User Commands

NAME ckstr, errstr, helpstr, valstr − display a prompt; verify and return a string answer

SYNOPSIS ckstr [−Q] [−W width] [[−r regexp] [. . .]] [−l length] [−d default] [−h help]
[−e error] [−p prompt] [−k pid [−s signal]]

/usr/sadm/bin/errstr [−W width] [−e error] [−l length] [[−r regexp] [. . .]]

/usr/sadm/bin/helpstr [−W width] [−h help] [−l length] [[−r regexp] [. . .]]

/usr/sadm/bin/valstr [−l length] [[−r regexp] [. . .]] input

DESCRIPTION ckstr prompts a user and validates the response. It defines, among other things, a
prompt message whose response should be a string, text for help and error messages,
and a default value (which are returned if the user responds with a RETURN).

The answer returned from this command must match the defined regular expression and
be no longer than the length specified. If no regular expression is given, valid input must
be a string with a length less than or equal to the length defined with no internal, leading
or trailing white space. If no length is defined, the length is not checked.

All messages are limited in length to 79 characters and are formatted automatically. Tabs
and newlines are removed after a single white space character in a message definition,
but spaces are not removed. When a tilde is placed at the beginning or end of a message
definition, the default text will be inserted at that point, allowing both custom text and
the default text to be displayed.

If the prompt, help or error message is not defined, the default message (as defined under
EXAMPLES) is displayed.

Three visual tool modules are linked to the ckstr command. They are errstr (which for-
mats and displays an error message on the standard output), helpstr (which formats and
displays a help message on the standard output), and valstr (which validates a response).
These modules should be used in conjunction with Framed Access Command Environ-
ment (FACE) objects. In this instance, the FACE object defines the prompt.

OPTIONS −Q Specifies that quit will not be allowed as a valid response.

−W width Specifies that prompt, help and error messages will be formatted to a
line length of width .

−r regexp Specifies a regular expression, regexp, against which the input should be
validated. May include white space. If multiple expressions are
defined, the answer need match only one of them.

−l length Specifies the maximum length of the input.

−d default Defines the default value as default. The default is not validated and so
does not have to meet any criteria.

−h help Defines the help message as help.

−e error Defines the error message as error.

−p prompt Defines the prompt message as prompt .

1-130 SunOS 5.6 modified 14 Sep 1992

User Commands ckstr (1)

−k pid Specifies that process ID pid is to be sent a signal if the user chooses to
quit.

−s signal Specifies that the process ID pid defined with the −k option is to be sent
signal signal when quit is chosen. If no signal is specified, SIGTERM is
used.

input Input to be verified against format length and/or regular expression cri-
teria.

EXIT STATUS The following exit values are returned:

0 Successful execution
1 EOF on input, or negative width on −W option, or usage error
2 Invalid regular expression
3 User termination (quit)

EXAMPLES The default prompt for ckstr is:

example% ckstr
Enter an appropriate value [?,q]:

The default error message is dependent upon the type of validation involved. The user
will be told either that the length or the pattern matching failed. The default error mes-
sage is:

example% /usr/sadm/bin/errstr
ERROR: Please enter a string which contains no embedded,
leading or trailing spaces or tabs.

The default help message is also dependent upon the type of validation involved. If a
regular expression has been defined, the message is:

example% /usr/sadm/bin/helpstr −r regexp
Please enter a string which matches the following pattern:
regexp

Other messages define the length requirement and the definition of a string.

When the quit option is chosen (and allowed), q is returned along with the return code 3.
Quit input gets a trailing newline.

The valstr module will produce a usage message on stderr. It returns 0 for success and
non-zero for failure.

example% /usr/sadm/bin/valstr
usage: valstr [−l length] [[−r regexp] [. . .]] input

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

modified 14 Sep 1992 SunOS 5.6 1-131

ckstr (1) User Commands

SEE ALSO face(1), attributes(5), signal(5)

1-132 SunOS 5.6 modified 14 Sep 1992

User Commands cksum (1)

NAME cksum − write file checksums and sizes

SYNOPSIS cksum [file . . .]

DESCRIPTION The cksum command calculates and writes to standard output a cyclic redundancy check
(CRC) for each input file, and also writes to standard output the number of octets in each
file.

For each file processed successfully, cksum will write in the following format:

"%u %d %s\n" <checksum>, <# of octets>, <path name>

If no file operand was specified, the path name and its leading space will be omitted.

The CRC used is based on the polynomial used for CRC error checking in the referenced
Ethernet standard.

The encoding for the CRC checksum is defined by the generating polynomial:

G (x) = x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x + 1

Mathematically, the CRC value corresponding to a given file is defined by the following
procedure:

1. The n bits to be evaluated are considered to be the coefficients of a mod 2 polyno-
mial M(x) of degree n−1. These n bits are the bits from the file, with the most
significant bit being the most significant bit of the first octet of the file and the last
bit being the least significant bit of the last octet, padded with zero bits (if neces-
sary) to achieve an integral number of octets, followed by one or more octets
representing the length of the file as a binary value, least significant octet first.
The smallest number of octets capable of representing this integer is used.

2. M(x) is multiplied by x 32 (that is, shifted left 32 bits) and divided by G(x) using
mod 2 division, producing a remainder R(x) of degree ≤ 31.

3. The coefficients of R(x) are considered to be a 32-bit sequence.

4. The bit sequence is complemented and the result is the CRC.

OPERANDS The following operand is supported:

file A path name of a file to be checked. If no file operands are specified, the stan-
dard input is used.

USAGE The cksum command is typically used to quickly compare a suspect file against a trusted
version of the same, such as to ensure that files transmitted over noisy media arrive
intact. However, this comparison cannot be considered cryptographically secure. The
chances of a damaged file producing the same CRC as the original are astronomically
small; deliberate deception is difficult, but probably not impossible.

Although input files to cksum can be any type, the results need not be what would be
expected on character special device files. Since this document does not specify the block
size used when doing input, checksums of character special files need not process all of
the data in those files.

modified 1 Feb 1995 SunOS 5.6 1-133

cksum (1) User Commands

The algorithm is expressed in terms of a bitstream divided into octets. If a file is
transmitted between two systems and undergoes any data transformation (such as mov-
ing 8-bit characters into 9-bit bytes or changing “Little Endian” byte ordering to “Big
Endian”), identical CRC values cannot be expected. Implementations performing such
transformations may extend cksum to handle such situations.

See largefile(5) for the description of the behavior of cksum when encountering files
greater than or equal to 2 Gbyte (231 bytes).

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of cksum: LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS The following exit values are returned:

0 All files were processed successfully.

>0 An error occurred.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO sum(1), attributes(5), environ(5), largefile(5)

1-134 SunOS 5.6 modified 1 Feb 1995

User Commands cktime (1)

NAME cktime, errtime, helptime, valtime − display a prompt; verify and return a time of day

SYNOPSIS cktime [−Q] [−W width] [−f format] [−d default] [−h help] [−e error] [−p prompt]
[−k pid [−s signal]]

/usr/sadm/bin/errtime [−W width] [−e error] [−f format]

/usr/sadm/bin/helptime [−W width] [−h help] [−f format]

/usr/sadm/bin/valtime [−f format] input

DESCRIPTION cktime prompts a user and validates the response. It defines, among other things, a
prompt message whose response should be a time, text for help and error messages, and
a default value (which is returned if the user responds with a RETURN). The user
response must match the defined format for the time of day.

All messages are limited in length to 70 characters and are formatted automatically. Any
white space used in the definition (including NEWLINE) is stripped. The −W option can-
cels the automatic formatting. When a tilde is placed at the beginning or end of a mes-
sage definition, the default text is inserted at that point, allowing both custom text and
the default text to be displayed.

If the prompt, help or error message is not defined, the default message (as defined under
NOTES) is displayed.

Three visual tool modules are linked to the cktime command. They are errtime (which
formats and displays an error message), helptime (which formats and displays a help
message), and valtime (which validates a response). These modules should be used in
conjunction with FML objects. In this instance, the FML object defines the prompt. When
format is defined in the errtime and helptime modules, the messages will describe the
expected format.

OPTIONS −Q Specifies that quit will not be allowed as a valid response.
−W width Specifies that prompt, help and error messages will be formatted to a

line length of width .
−f format Specifies the format against which the input will be verified. Possible

formats and their definitions are:

%H = hour (00 - 23)
%I = hour (00 - 12)
%M = minute (00 - 59)
%p = ante meridian or post meridian
%r = time as %I:%M:%S %p
%R = time as %H:%M (the default format)
%S = seconds (00 - 59)
%T = time as %H:%M:%S

−d default Defines the default value as default. The default is not validated and so
does not have to meet any criteria.

modified 14 Sep 1992 SunOS 5.6 1-135

cktime (1) User Commands

−h help Defines the help messages as help.
−e error Defines the error message as error.
−p prompt Defines the prompt message as prompt .
−k pid Specifies that process ID pid is to be sent a signal if the user chooses to

abort.
−s signal Specifies that the process ID pid defined with the −k option is to be sent

signal signal when quit is chosen. If no signal is specified, SIGTERM is
used.

input Input to be verified against format criteria.

EXIT CODES 0 Successful execution

1 EOF on input, or negative width on −W option, or usage error

3 User termination (quit)

4 Garbled format argument

NOTES The default prompt for cktime is:

Enter a time of day [?,q]:

The default error message is:

ERROR: Please enter the time of day. Format is <format>.

The default help message is:

Please enter the time of day. Format is <format>.

When the quit option is chosen (and allowed), q is returned along with the return code 3.
The valtime module will not produce any output. It returns 0 for success and non-zero
for failure.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO attributes(5)

1-136 SunOS 5.6 modified 14 Sep 1992

User Commands ckuid (1)

NAME ckuid, erruid, helpuid, valuid − prompts for and validates a user ID

SYNOPSIS ckuid [−Q] [−W width] [−m] [−d default] [−h help] [−e error] [−p prompt]
[−k pid [−s signal]]

/usr/sadm/bin/erruid [−W width] [−e error]
/usr/sadm/bin/helpuid [−W width] [−m] [−h help]
/usr/sadm/bin/valuid input

DESCRIPTION ckuid prompts a user and validates the response. It defines, among other things, a
prompt message whose response should be an existing user ID, text for help and error
messages, and a default value (which are returned if the user responds with a RETURN).

All messages are limited in length to 70 characters and are formatted automatically. Any
white space used in the definition (including NEWLINE) is stripped. The −W option can-
cels the automatic formatting. When a tilde is placed at the beginning or end of a mes-
sage definition, the default text is inserted at that point, allowing both custom text and
the default text to be displayed.

If the prompt, help or error message is not defined, the default message (as defined under
NOTES) is displayed.

Three visual tool modules are linked to the ckuid command. They are erruid (which for-
mats and displays an error message), helpuid (which formats and displays a help mes-
sage), and valuid (which validates a response). These modules should be used in con-
junction with FML objects. In this instance, the FML object defines the prompt.

OPTIONS −Q Specifies that quit will not be allowed as a valid response.

−W width Specifies that prompt, help and error messages will be formatted to a
line length of width .

−m Displays a list of all logins when help is requested or when the user
makes an error.

−d default Defines the default value as default. The default is not validated and so
does not have to meet any criteria.

−h help Defines the help messages as help.

−e error Defines the error message as error.

−p prompt Defines the prompt message as prompt .

−k pid Specifies that process ID pid is to be sent a signal if the user chooses to
abort.

−s signal Specifies that the process ID pid defined with the −k option is to be sent
signal signal when quit is chosen. If no signal is specified, SIGTERM is
used.

input Input to be verified against /etc/passwd.

modified 14 Sep 1992 SunOS 5.6 1-137

ckuid (1) User Commands

EXIT CODES 0 Successful execution

1 EOF on input, or negative width on −W option, or usage error

2 Usage error

3 User termination (quit)

NOTES The default prompt for ckuid is:

Enter the login name of an existing user [?,q]:

The default error message is:

ERROR - Please enter the login name of an existing user.

If the −m option is used, the default error message is:

ERROR: Please enter one of the following login names: <List>

The default help message is:

Please enter the login name of an existing user.

If the −m option is used, the default help message is:

Please enter one of the following login names: <List>

When the quit option is chosen (and allowed), q is returned along with the return code 3.
The valuid module will not produce any output. It returns 0 for success and non-zero for
failure.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO attributes(5)

1-138 SunOS 5.6 modified 14 Sep 1992

User Commands ckyorn (1)

NAME ckyorn, erryorn, helpyorn, valyorn − prompts for and validates yes/no

SYNOPSIS ckyorn [−Q] [−W width] [−d default] [−h help] [−e error] [−p prompt]
[−k pid [−s signal]]

/usr/sadm/bin/erryorn [−W width] [−e error]

/usr/sadm/bin/helpyorn [−W width] [−h help]

/usr/sadm/bin/valyorn input

DESCRIPTION ckyorn prompts a user and validates the response. It defines, among other things, a
prompt message for a yes or no answer, text for help and error messages, and a default
value (which is returned if the user responds with a RETURN).

All messages are limited in length to 70 characters and are formatted automatically. Any
white space used in the definition (including newline) is stripped. The −W option cancels
the automatic formatting. When a tilde is placed at the beginning or end of a message
definition, the default text is inserted at that point, allowing both custom text and the
default text to be displayed.

If the prompt, help or error message is not defined, the default message (as defined under
NOTES) is displayed.

Three visual tool modules are linked to the ckyorn command. They are erryorn (which
formats and displays an error message), helpyorn (which formats and displays a help
message), and valyorn (which validates a response). These modules should be used in
conjunction with FACE objects. In this instance, the FACE object defines the prompt.

OPTIONS −Q Specifies that quit will not be allowed as a valid response.

−W width Specifies that prompt, help and error messages will be formatted to a
line length of width .

−d default Defines the default value as default. The default is not validated and so
does not have to meet any criteria.

−h help Defines the help messages as help.

−e error Defines the error message as error.

−p prompt Defines the prompt message as prompt .

−k pid Specifies that process ID pid is to be sent a signal if the user chooses to
abort.

−s signal Specifies that the process ID pid defined with the −k option is to be sent
signal signal when quit is chosen. If no signal is specified, SIGTERM is
used.

input Input to be verified as y, yes, or n, no (in any combination of upper- and
lower-case letters).

modified 14 Sep 1992 SunOS 5.6 1-139

ckyorn (1) User Commands

EXIT CODES 0 Successful execution

1 EOF on input, or negative width on −W option, or usage error

2 Usage error

3 User termination (quit)

NOTES The default prompt for ckyorn is:

Yes or No [y,n,?,q]:

The default error message is:

ERROR - Please enter yes or no.

The default help message is:

To respond in the affirmative, enter y, yes, Y, or YES.
To respond in the negative, enter n, no, N, or NO.

When the quit option is chosen (and allowed), q is returned along with the return code 3.
The valyorn module will not produce any output. It returns 0 for success and non-zero
for failure.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO attributes(5)

1-140 SunOS 5.6 modified 14 Sep 1992

User Commands clear (1)

NAME clear − clear the terminal screen

SYNOPSIS clear

DESCRIPTION clear clears your screen if this is possible. It looks in the environment for the terminal
type and then in the terminfo database to figure out how to clear the screen.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO attributes(5)

modified 14 Sep 1992 SunOS 5.6 1-141

cmp (1) User Commands

NAME cmp − compare two files

SYNOPSIS cmp [−l] [−s] file1 file2 [skip1] [skip2]

DESCRIPTION The cmp utility compares two files. cmp will write no output if the files are the same.
Under default options, if they differ, it writes to standard output the byte and line
numbers at which the first difference occurred. Bytes and lines are numbered beginning
with 1. If one file is an initial subsequence of the other, that fact is noted. skip1 and skip2
are initial byte offsets into file1 and file2 respectively, and may be either octal or decimal; a
leading 0 denotes octal.

OPTIONS −l Write the byte number (decimal) and the differing bytes (octal) for each differ-
ence.

−s Write nothing for differing files; return exit statuses only.

OPERANDS The following operands are supported:

file1 A path name of the first file to be compared. If file1 is −, the standard input will
be used.

file2 A path name of the second file to be compared. If file2 is −, the standard input
will be used.

If both file1 and file2 refer to standard input or refer to the same FIFO special, block special
or character special file, an error results.

USAGE See largefile(5) for the description of the behavior of cmp when encountering files greater
than or equal to 2 Gbyte (231 bytes).

EXAMPLES The following example:
example% cmp file1 file2 0 1024

does a byte for byte comparison of file1 and file2. It skips the first 1024 bytes in file2
before starting the comparison.

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of cmp: LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS The following error values are returned:

0 The files are identical.

1 The files are different; this includes the case where one file is identical to the first part
of the other.

>1 An error occurred.

1-142 SunOS 5.6 modified 1 Feb 1995

User Commands cmp (1)

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu
CSI enabled

SEE ALSO comm(1), diff(1), attributes(5), environ(5), largefile(5)

modified 1 Feb 1995 SunOS 5.6 1-143

col (1) User Commands

NAME col − reverse line-feeds filter

SYNOPSIS col [−bfpx]

DESCRIPTION The col utility reads from the standard input and writes to the standard output. It per-
forms the line overlays implied by reverse line-feeds, and by forward and reverse half-
line-feeds. Unless −x is used, all blank characters in the input will be converted to tab
characters wherever possible. col is particularly useful for filtering multi-column output
made with the .rt command of nroff(1) and output resulting from use of the tbl(1)
preprocessor.

The ASCII control characters SO and SI are assumed by col to start and end text in an
alternative character set. The character set to which each input character belongs is
remembered, and on output SI and SO characters are generated as appropriate to ensure
that each character is written in the correct character set.

On input, the only control characters accepted are space, backspace, tab, carriage-return
and newline characters, SI, SO, VT, reverse line-feed, forward half-line-feed and reverse
half-line-feed. The VT character is an alternative form of full reverse line-feed, included
for compatibility with some earlier programs of this type. The only other characters to be
copied to the output are those that are printable.

The ASCII codes for the control functions and line-motion sequences mentioned above are
as given in the table below. ESC stands for the ASCII escape character, with the octal code
033; ESC− means a sequence of two characters, ESC followed by the character x.

reverse line-feed ESC−7
reverse half-line-feed ESC−8
forward half-line-feed ESC−9
vertical-tab (VT) 013
start-of-text (SO) 016
end-of-text (SI) 017

OPTIONS −b Assume that the output device in use is not capable of backspacing. In this
case, if two or more characters are to appear in the same place, only the last
one read will be output.

−f Although col accepts half-line motions in its input, it normally does not emit
them on output. Instead, text that would appear between lines is moved to
the next lower full-line boundary. This treatment can be suppressed by the −f
(fine) option; in this case, the output from col may contain forward half-line-
feeds (ESC-9), but will still never contain either kind of reverse line motion.

−p Normally, col will ignore any escape sequences unknown to it that are found
in its input; the −p option may be used to cause col to output these sequences
as regular characters, subject to overprinting from reverse line motions. The
use of this option is highly discouraged unless the user is fully aware of the
textual position of the escape sequences.

1-144 SunOS 5.6 modified 1 Feb 1995

User Commands col (1)

−x Prevent col from converting blank characters to tab characters on output
wherever possible. Tab stops are considered to be at each column position n
such that n modulo 8 equals 1.

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of col: LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS The following error values are returned:

0 Successful completion.

>0 An error occurred.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu
CSI enabled

SEE ALSO nroff(1), tbl(1), ascii(5), attributes(5), environ(5)

NOTES The input format accepted by col matches the output produced by nroff with either the
−T37 or −Tlp options. Use −T37 (and the −f option of col) if the ultimate disposition of
the output of col will be a device that can interpret half-line motions, and −Tlp otherwise.

col cannot back up more than 128 lines or handle more than 800 characters per line.

Local vertical motions that would result in backing up over the first line of the document
are ignored. As a result, the first line must not have any superscripts.

modified 1 Feb 1995 SunOS 5.6 1-145

comm (1) User Commands

NAME comm − select or reject lines common to two files

SYNOPSIS comm [−123] file1 file2

DESCRIPTION The comm utility will read file1 and file2, which should be ordered in the current collating
sequence, and produce three text columns as output: lines only in file1; lines only in file2;
and lines in both files.

If the input files were ordered according to the collating sequence of the current locale,
the lines written will be in the collating sequence of the original lines. If not, the results
are unspecified.

OPTIONS The following options are supported:

−1 Suppress the output column of lines unique to file1.

−2 Suppress the output column of lines unique to file2.

−3 Suppress the output column of lines duplicated in file1 and file2.

OPERANDS The following operands are supported:

file1 A path name of the first file to be compared. If file1 is −, the standard input is
used.

file2 A path name of the second file to be compared. If file2 is −, the standard input is
used.

USAGE See largefile(5) for the description of the behavior of comm when encountering files
greater than or equal to 2 Gbyte (231 bytes).

EXAMPLES If file1, file2, and file3 each contained a sorted list of utilities:
example% comm -23 file1 file2 | comm -23 - file3

would print a list of utilities in file1 not specified by either of the other files;
example% comm -12 file1 file2 | comm -12 - file3

would print a list of utilities specified by all three files; and
example% comm -12 file2 file3 | comm -23 - file1

would print a list of utilities specified by both file2 and file3, but not specified in file1.

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of comm: LC_COLLATE, LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS The following exit values are returned:

0 All input files were successfully output as specified.

>0 An error occurred.

1-146 SunOS 5.6 modified 21 Feb 1996

User Commands comm (1)

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu
CSI enabled

SEE ALSO cmp(1), diff(1), sort(1), uniq(1), attributes(5), environ(5), largefile(5)

modified 21 Feb 1996 SunOS 5.6 1-147

command (1) User Commands

NAME command − execute a simple command

SYNOPSIS command [−p] command_name [argument. . .]
command [−v | −V] command_name

DESCRIPTION The command utility causes the shell to treat the arguments as a simple command,
suppressing the shell function lookup.

If the command_name is the same as the name of one of the special built-in utilities, the
special properties will not occur. In every other respect, if command_name is not the name
of a function, the effect of command will be the same as omitting command.

The command utility also provides information concerning how a command name will
be interpreted by the shell; see −v and −V.

OPTIONS The following options are supported:

−p Perform the command search using a default value for PATH that is guaranteed
to find all of the standard utilities.

−v Write a string to standard output that indicates the path or command that will
be used by the shell, in the current shell execution environment to invoke
command_name.

· Utilities, regular built-in utilities, command_names including a slash charac-
ter, and any implementation-provided functions that are found using the
PATH variable will be written as absolute path names.

· Shell functions, special built-in utilities, regular built-in utilities not associ-
ated with a PATH search, and shell reserved words will be written as just
their names.

· An alias will be written as a command line that represents its alias
definition.

· Otherwise, no output will be written and the exit status will reflect that the
name was not found.

−V Write a string to standard output that indicates how the name given in the
command_name operand will be interpreted by the shell, in the current shell exe-
cution environment. Although the format of this string is unspecified, it will
indicate in which of the following categories command_name falls and include the
information stated:

· Utilities, regular built-in utilities, and any implementation-provided func-
tions that are found using the PATH variable will be identified as such and
include the absolute path name in the string.

· Other shell functions will be identified as functions.

· Aliases will be identified as aliases and their definitions will be included in
the string.

· Special built-in utilities will be identified as special built-in utilities.

1-148 SunOS 5.6 modified 1 Feb 1995

User Commands command (1)

· Regular built-in utilities not associated with a PATH search will be
identified as regular built-in utilities.

· Shell reserved words will be identified as reserved words.

OPERANDS The following operands are supported:

argument One of the strings treated as an argument to command_name.

command_name The name of a utility or a special built-in utility.

EXAMPLES 1. Make a version of cd that always prints out the new working directory exactly once:
cd() {

command cd "$@" >/dev/null
pwd

}

2. Start off a ‘‘secure shell script’’ in which the script avoids being spoofed by its parent:
IFS=’
’
The preceding value should be <space><tab><newline>.
Set IFS to its default value.

\unalias -a
Unset all possible aliases.
Note that unalias is escaped to prevent an alias
being used for unalias.

unset -f command
Ensure command is not a user function.

PATH="$(command -p getconf _CS_PATH):$PATH"
Put on a reliable PATH prefix.

. . .

At this point, given correct permissions on the directories called by PATH, the script has
the ability to ensure that any utility it calls is the intended one. It is being very cautious
because it assumes that implementation extensions may be present that would allow user
functions to exist when it is invoked; this capability is not specified by this document, but
it is not prohibited as an extension. For example, the ENV variable precedes the invoca-
tion of the script with a user startup script. Such a script could define functions to spoof
the application.

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of command: LC_CTYPE, LC_MESSAGES, and NLSPATH.

PATH Determine the search path used during the command search, except as
described under the −p option.

modified 1 Feb 1995 SunOS 5.6 1-149

command (1) User Commands

EXIT STATUS When the −v or −V options are specified, the following exit values are returned:

0 Successful completion.

>0 The command_name could not be found or an error occurred.

Otherwise, the following exit values are returned:

126 The utility specified by command_name was found but could not be invoked.

127 An error occurred in the command utility or the utility specified by
command_name could not be found.

Otherwise, the exit status of command will be that of the simple command specified by
the arguments to command.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO sh(1), type(1), attributes(5)

1-150 SunOS 5.6 modified 1 Feb 1995

User Commands compress (1)

NAME compress, uncompress, zcat − compress, uncompress files or display expanded files

SYNOPSIS compress [−fv] [-b bits] [file . . .]
compress [−cfv] [-b bits] [file]

uncompress [−cfv] [file . . .]

zcat [file . . .]

DESCRIPTION
compress The compress utility will attempt to reduce the size of the named files by using adaptive

Lempel-Ziv coding. Except when the output is to the standard output, each file will be
replaced by one with the extension .Z, while keeping the same ownership modes, change
times and modification times. If appending the .Z to the file name would make the name
exceed 14 bytes, the command will fail. If no files are specified, the standard input will be
compressed to the standard output.

The amount of compression obtained depends on the size of the input, the number of bits
per code, and the distribution of common substrings. Typically, text such as source code
or English is reduced by 50−60%. Compression is generally much better than that
achieved by Huffman coding (as used in pack(1)), and takes less time to compute. The
bits parameter specified during compression is encoded within the compressed file, along
with a magic number to ensure that neither decompression of random data nor
recompression of compressed data is subsequently allowed.

uncompress The uncompress utility will restore files to their original state after they have been
compressed using the compress utility. If no files are specified, the standard input will
be uncompressed to the standard output.

This utility supports the uncompressing of any files produced by compress. For files pro-
duced by compress on other systems, uncompress supports 9- to 16-bit compression (see
−b).

zcat The zcat utility will write to standard output the uncompressed form of files that have
been compressed using compress. It is the equivalent of uncompress −c. Input files are
not affected.

OPTIONS The following options are supported:

−c Write to the standard output; no files are changed and no .Z files are created. The
behavior of zcat is identical to that of ‘uncompress −c’.

−f When compressing, force compression of file, even if it does not actually reduce
the size of the file, or if the corresponding file.Z file already exists. If the −f
option is not given, and the process is not running in the background, prompt to
verify whether an existing file.Z file should be overwritten. When uncompress-
ing, do not prompt for overwriting files. If the −f option is not given, and the
process is not running in the background, prompt to verify whether an existing
file should be overwritten. If the standard input is not a terminal and −f is not

modified 20 Dec 1996 SunOS 5.6 1-151

compress (1) User Commands

given, write a diagnostic message to standard error and exit with a status greater
than 0.

−v Verbose. Write to standard error messages concerning the percentage reduction
or expansion of each file.

−b bits Set the upper limit (in bits) for common substring codes. bits must be between 9
and 16 (16 is the default). Lowering the number of bits will result in larger, less
compressed files.

OPERANDS The following operands are supported:

file A path name of a file to be compressed. If file is −, or if no file is specified,
the standard input will be used.

USAGE See largefile(5) for the description of the behavior of compress, uncompress, and zcat
when encountering files greater than or equal to 2 Gbyte (231 bytes).

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of compress, uncompress, and zcat: LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS The following error values are returned:

0 Successful completion.

1 An error occurred.

2 One or more files were not compressed because they would have increased in size
(and the −f option was not specified).

>2 An error occurred.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu
CSI Enabled

SEE ALSO ln(1), pack(1), attributes(5), environ(5), largefile(5)

DIAGNOSTICS Usage: compress [−fvc] [−b maxbits] [file. . .]
Invalid options were specified on the command line.

Missing maxbits
Maxbits must follow −b, or invalid maxbits, not a numeric value.

file: not in compressed format
The file specified to uncompress has not been compressed.

file: compressed with xxbits, can only handle yybits
file was compressed by a program that could deal with more bits than the
compress code on this machine. Recompress the file with smaller bits.

1-152 SunOS 5.6 modified 20 Dec 1996

User Commands compress (1)

file: already has . Z suffix -- no change
The file is assumed to be already compressed. Rename the file and try again.

file: already exists; do you wish to overwrite (y or n)?
Respond y if you want the output file to be replaced; n if not.

uncompress: corrupt input
A SIGSEGV violation was detected, which usually means that the input file is
corrupted.

Compression: xx.xx%
Percentage of the input saved by compression. (Relevant only for −v.)

− − not a regular file: unchanged
When the input file is not a regular file, (such as a directory), it is left unal-
tered.

− − has xx other links: unchanged
The input file has links; it is left unchanged. See ln(1) for more information.

− − file unchanged
No savings are achieved by compression. The input remains uncompressed.

filename too long to tack on .Z
The path name is too long to append the .Z suffix.

NOTES Although compressed files are compatible between machines with large memory,
−b 12 should be used for file transfer to architectures with a small process data space
(64KB or less).

compress should be more flexible about the existence of the . Z suffix.

modified 20 Dec 1996 SunOS 5.6 1-153

coproc (1F) FMLI Commands

NAME coproc, cocreate, cosend, cocheck, coreceive, codestroy − communicate with a process

SYNOPSIS cocreate [−r rpath] [−w wpath] [−i id] [−R refname] [−s send_string]
[−e expect_string] command

cosend [−n] proc_id string

cocheck proc_id

coreceive proc_id

codestroy [−R refname] proc_id [string]

DESCRIPTION These co-processing functions provide a flexible means of interaction between FMLI and
an independent process; especially, they enable FMLI to be responsive to asynchronous
activity.

The cocreate function starts command as a co-process and initializes communications by
setting up pipes between FMLI and the standard input and standard output of command.
The argument command must be an executable and its arguments (if any). This means
that command expects strings on its input (supplied by cosend) and sends information on
its output that can be handled in various ways by FMLI.

The cosend function sends string to the co-process identified by proc_id via the pipe set
up by cocreate (optionally wpath), where proc_id can be either the command or id specified
in cocreate. By default, cosend blocks, waiting for a response from the co-process. Also
by default, FMLI does not send a send_string and does not expect an expect_string (except a
newline). That is, it reads only one line of output from the co-process. If −e expect_string
was not defined when the pipe was created, then the output of the co-process is any sin-
gle string followed by a newline: any other lines of output remain on the pipe. If the −e
option was specified when the pipe was created, cosend reads lines from the pipe until it
reads a line starting with expect_string. All lines except the line starting with expect_string
become the output of cosend.

The cocheck function determines if input is available from the process identified by
proc_id, where proc_id can be either the command or id specified in cocreate. It returns a
Boolean value, which makes cocheck useful in if statements and in other backquoted
expressions in Boolean descriptors. cocheck receives no input from the co-process; it
simply indicates if input is available from the co-process. You must use coreceive to
actually accept the input. The cocheck function can be called from a reread descriptor to
force a frame to update when new data is available. This is useful when the default value
of a field in a form includes coreceive.

The coreceive function is used to read input from the co-process identified by proc_id,
where proc_id can be either the command or id specified in cocreate. It should only be
used when it has been determined, using cocheck, that input is actually available. If the
−e option was used when the co-process was created, coreceive will continue to return
lines of input until expect_string is read. At this point, coreceive will terminate. The out-
put of coreceive is all the lines that were read excluding the line starting with
expect_string. If the −e option was not used in the cocreate, each invocation of coreceive

1F-154 SunOS 5.6 modified 5 Jul 1990

FMLI Commands coproc (1F)

will return exactly one line from the co-process. If no input is available when coreceive is
invoked, it will simply terminate without producing output.

The codestroy function terminates the read/write pipes to proc-id, where proc_id can be
either the command or id specified in cocreate. It generates a SIGPIPE signal to the (child)
co-process. This kills the co-process, unless the co-process ignores the SIGPIPE signal. If
the co-process ignores the SIGPIPE, it will not die, even after the FMLI process terminates
(the parent process id of the co-process will be 1).

The optional argument string is sent to the co-process before the co-process dies. If string
is not supplied, a NULL string is passed, followed by the normal send_string (newline by
default). That is, codestroy will call cosend proc_id string: this implies that codestroy will
write any output generated by the co-process to stdout. For example, if an interactive co-
process is written to expect a "quit" string when the communication is over, the close
descriptor could be defined;

close=`codestroy ID ’quit’ | message`

and any output generated by the co-process when the string quit is sent to it via codes-
troy (using cosend) would be redirected to the message line.

The codestroy function should usually be given the −R option, since you may have more
than one process with the same name, and you do not want to kill the wrong one. codes-
troy keeps track of the number of refnames you have assigned to a process with cocreate,
and when the last instance is killed, it kills the process (id) for you. codestroy is typically
called as part of a close descriptor because close is evaluated when a frame is closed.
This is important because the co-process will continue to run if codestroy is not issued.

When writing programs to use as co-processes, the following tips may be useful. If the
co-process program is written in C language, be sure to flush output after writing to the
pipe. (Currently, awk(1) and sed(1) cannot be used in a co-process program because they
do not flush after lines of output.) Shell scripts are well-mannered, but slow. C language
is recommended. If possible, use the default send_string, rpath and wpath. In most cases,
expect_string will have to be specified. This, of course, depends on the co-process.

In the case where asynchronous communication from a co-process is desired, a co-
process program should use vsig to force strings into the pipe and then signal FMLI that
output from the co-process is available. This causes the reread descriptor of all frames to
be evaluated immediately.

modified 5 Jul 1990 SunOS 5.6 1F-155

coproc (1F) FMLI Commands

OPTIONS cocreate options are:

−r rpath If −r is specified, rpath is the pathname from which FMLI reads informa-
tion. This option is usually used to set up communication with
processes that naturally write to a certain path. If −r is not specified,
cocreate will choose a unique path in /var/tmp.

−w wpath If −w is specified, wpath is the pathname to which cosend writes infor-
mation. This option is usually used so that one process can talk to many
different FMLI processes through the same pipe. If −w is not specified,
cocreate will choose a unique path in /var/tmp.

−i id If −i is specified, id is an alternative name for the co-processinitialized by
this cocreate. If −i is not specified, id defaults to command. The argu-
ment id can later be used with the other co-processing functions rather
than command. This option is typically used, since it facilitates the crea-
tion of two or more co-processes generated from the same command.
(For example, cocreate -i ID1 program args and cocreate -i ID2 program
different_args).

−R refname If −R is specified, refname is a local name for the co-process. Since the
cocreate function can be issued more than once, a refname is useful when
the same co-process is referenced a second or subsequent time. With the
−R option, if the co-process already exists a new one will not be created:
the same pipes will be shared. Then, refname can be used as an argu-
ment to the −R option to codestroy when you want to end a particular
connection to a co-process and leave other connections undisturbed.
(The co-process is only killed after codestroy −R has been called as
many times as cocreate −R was called.)

−s send_string The −s option specifies send_string as a string that will be appended to
all output sent to the co-process using cosend. This option allows a co-
process to know when input from FMLI has completed. The default
send_string is a newline if −s is not specified.

−e expect_string The −e option specifies expect_string as a string that identifies the end of
all output returned by the co-process. (Note: expect_string need only be
the initial part of a line, and there must be a newline at the end of the
co-process output.) This option allows FMLI to know when output from
the co-process has completed. The default expect_string is a newline if −e
is not specified.

cosend options are:

−n If the −n option is specified, cosend will not wait for a response from the
co-process. It simply returns, providing no output. If the −n option is
not used, a co-process that does not answer will cause FMLI to per-
manently hang, waiting for input from the co-process.

1F-156 SunOS 5.6 modified 5 Jul 1990

FMLI Commands coproc (1F)

EXAMPLES .
.
.

init=`cocreate −i BIGPROCESS initialize`
close=`codestroy BIGPROCESS`

.

.

.
reread=`cocheck BIGPROCESS`

name=`cosend −n BIGPROCESS field1`
.
.
.

name="Receive field"
inactive=TRUE
value=`coreceive BIGPROCESS`

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO awk(1), cat(1), sed(1), vsig(1F), attributes(5)

NOTES If cosend is used without the −n option, a co-process that does not answer will cause
FMLI to permanently hang.

The use of non-alphabetic characters in input and output strings to a co-process should
be avoided because they may not get transferred correctly.

modified 5 Jul 1990 SunOS 5.6 1F-157

cp (1) User Commands

NAME cp − copy files

SYNOPSIS /usr/bin/cp [−fip] source_file target_file
/usr/bin/cp [−fip] source_file . . . target
/usr/bin/cp −r | −R [−fip] source_dir . . . target

/usr/xpg4/bin/cp [−fip] source_file target_file
/usr/xpg4/bin/cp [−fip] source_file . . . target
/usr/xpg4/bin/cp −r | −R [−fip] source_dir . . . target

DESCRIPTION In the first synopsis form, neither source_file nor target_file are directory files, nor can they
have the same name. The cp utility will copy the contents of source_file to the destination
path named by target_file . If target_file exists, cp will overwrite its contents, but the mode
(and ACL if applicable), owner, and group associated with it are not changed. The last
modification time of target_file and the last access time of source_file are set to the time the
copy was made. If target_file does not exist, cp creates a new file named target_file that
has the same mode as source_file except that the sticky bit is not set unless the user is
superuser; the owner and group of target_file are those of the owner. If target_file is a link
to another file with links, the other links remain and target_file becomes a new file.

In the second synopsis form, one or more source_files are copied to the directory specified
by target . For each source_file specified, a new file with the same mode (and ACL if appli-
cable), is created in target ; the owner and group are those of the user making the copy. It
is an error if any source_file is a file of type directory, if target either does not exist or is not
a directory.

In the third synopsis form, one or more directories specified by source_dir are copied to
the directory specified by target . Either −r or −R must be specified. For each source_dir,
cp will copy all files and subdirectories.

OPTIONS The following options are supported for both /usr/bin/cp and /usr/xpg4/bin/cp:

−f Unlink. If a file descriptor for a destination file cannot be obtained, attempt to
unlink the destination file and proceed.

−i Interactive. cp will prompt for confirmation whenever the copy would
overwrite an existing target . A y answer means that the copy should proceed.
Any other answer prevents cp from overwriting target .

−r Recursive. cp will copy the directory and all its files, including any subdirec-
tories and their files to target .

−R Same as −r, except pipes are replicated, not read from.

/usr/bin/cp The following option is supported for /usr/bin/cp only:

−p Preserve. cp duplicates not only the contents of source_file, but also preserves the
owner and group id, permissions modes, modification and access time, and
ACLs if applicable. Note that the command may fail if ACLs are copied to a file
system that does not support ACLs. The command will not fail if unable to
preserve modification and access time or permission modes. If unable to

1-158 SunOS 5.6 modified 18 Mar 1997

User Commands cp (1)

preserve owner and group id, cp will not fail, and it will clear S_ISUID and
S_ISGID bits in the target. cp will print a diagnostic message to stderr and return
a non-zero exit status if unable to clear these bits.

In order to preserve the owner and group id, permission modes, and
modification and access times, users must have the appropriate file access per-
missions; this includes being superuser or the same owner id as the destination
file.

/usr/xpg4/bin/cp The following option is supported for /usr/xpg4/bin/cp only:

−p Preserve. cp duplicates not only the contents of source_file, but also preserves the
owner and group id, permission modes, modification and access time, and ACLs
if applicable. Note that the command may fail if ACLs are copied to a file system
that does not support ACLs. If unable to duplicate the modification and access
time or the permission modes, cp will print a diagnostic message to stderr and
return a non-zero exit status. If unable to preserve owner and group id, cp will
not fail, and it will clear S_ISUID and S_ISGID bits in the target. cp will print a
diagnostic message to stderr and return a non-zero exit status if unable to clear
these bits.

In order to preserve the owner and group id, permission modes, and
modification and access times, users must have the appropriate file access per-
missions; this includes being superuser or the same owner id as the destination
file.

OPERANDS The following operands are supported:

source_file A path name of a regular file to be copied.

source_dir A path name of a directory to be copied.

target_file A pathname of an existing or non-existing file, used for the output when
a single file is copied.

target A pathname of a directory to contain the copied files.

USAGE See largefile(5) for the description of the behavior of cp when encountering files greater
than or equal to 2 Gbyte (231 bytes).

EXAMPLES 1. To copy a file:

example% cp goodies goodies.old
example% ls goodies∗
goodies goodies.old

2. To copy a list of files to a destination directory:

example% cp ˜/src/∗ /tmp

modified 18 Mar 1997 SunOS 5.6 1-159

cp (1) User Commands

3. To copy a directory, first to a new, and then to an existing destination directory:

example% ls ˜/bkup
/usr/example/fred/bkup not found
example% cp −r ˜/src ˜/bkup
example% ls −R ˜/bkup
x.c y.c z.sh
example% cp −r ˜/src ˜/bkup
example% ls −R ˜/bkup
src x.c y.c z.sh

src:
x.c y.c z.sh

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of cp: LC_COLLATE, LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS The following exit values are returned:

0 All files were copied successfully.

>0 An error occurred.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

/usr/bin/cp ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu
CSI enabled

/usr/xpg4/bin/cp ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxcu4
CSI enabled

SEE ALSO chmod(1), chown(1), setfacl(1), utime(2), attributes(5), environ(5), largefile(5), xpg4(5)

NOTES The permission modes of the source file are preserved in the copy.

A −− permits the user to mark the end of any command line options explicitly, thus
allowing cp to recognize filename arguments that begin with a −.
If a −− and a − both appear on the same command line, the second will be interpreted as a
filename.

1-160 SunOS 5.6 modified 18 Mar 1997

User Commands cpio (1)

NAME cpio − copy file archives in and out

SYNOPSIS cpio −i [bBcdfkmPrsStuvV6] [−C bufsize] [−E file] [−H header]
[−I file [−M message]] [−R id] [pattern . . .]

cpio −o [aABcLPvV] [−C bufsize] [−H header] [−O file [−M message]]
cpio −p [adlLmPuvV] [−R id] directory

DESCRIPTION The cpio command copies files in to and out from a cpio archive. The cpio archive may
span multiple volumes. The −i, −o, and −p options select the action to be performed. The
following list describes each of the actions (which are mutually exclusive).

Copy In Mode cpio −i (copy in) extracts files from the standard input, which is assumed to be the pro-
duct of a previous cpio −o. Only files with names that match patterns are selected. See
sh(1) and OPERANDS for more information about pattern . Extracted files are condition-
ally created and copied into the current directory tree based on the options described
below. The permissions of the files will be those of the previous cpio −o. Owner and
group will be the same as the current user unless the current user is super-user. If this is
true, owner and group will be the same as those resulting from the previous cpio −o.
Note that if cpio −i tries to create a file that already exists and the existing file is the same
age or younger (newer), cpio will output a warning message and not replace the file.
(The −u option can be used to overwrite, unconditionally, the existing file.)

Copy Out Mode cpio −o (copy out) reads the standard input to obtain a list of path names and copies
those files onto the standard output together with path name and status information.
Output is padded to a 512-byte boundary by default or to the user specified block size
(with the −B or −C options) or to some device-dependent block size where necessary (as
with the CTC tape).

Pass Mode cpio −p (pass) reads the standard input to obtain a list of path names of files that are con-
ditionally created and copied into the destination directory tree based on the options
described below.

Note: cpio assumes four-byte words.

If, when writing to a character device (−o) or reading from a character device (−i), cpio
reaches the end of a medium (such as the end of a diskette), and the −O and −I options
are not used, cpio prints the following message:

To continue, type device/file name when ready.

To continue, you must replace the medium and type the character special device name
(/dev/rdiskette for example) and press RETURN. You may want to continue by directing
cpio to use a different device. For example, if you have two floppy drives you may want
to switch between them so cpio can proceed while you are changing the floppies. (Sim-
ply pressing RETURN causes the cpio process to exit.)

modified 13 Mar 1997 SunOS 5.6 1-161

cpio (1) User Commands

OPTIONS The following options are supported:

−i (copy in) cpio −i extracts files from the standard input.

−o (copy out) cpio −o reads the standard input to obtain a list of path
names and copies those files onto the standard output.

−p (pass) cpio −p reads the standard input to obtain a list of path names of
files.

The following options can be appended in any sequence to the −o, −i, or −p options:

−a Reset access times of input files after they have been copied. Access
times are not reset for linked files when cpio −pla is specified (mutually
exclusive with −m).

−A Append files to an archive. The −A option requires the −O option.
Valid only with archives that are files, or that are on floppy diskettes or
hard disk partitions.

−b Reverse the order of the bytes within each word. (Use only with the −i
option.)

−B Block input/output 5120 bytes to the record. The default buffer size is
512 bytes when this and the −C options are not used. −B does not apply
to the pass option; −B is meaningful only with data directed to or from a
character special device, for example, /dev/rmt/0m.

−c Read or write header information in ASCII character form for portability.
There are no UID or GID restrictions associated with this header format.
Use this option between SVR4-based machines, or the −H odc option
between unknown machines. The −c option implies the use of expanded
device numbers, which are only supported on SVR4-based systems.
When transferring files between Solaris 1.x or Interactive UNIX and
Solaris 2.x use −H odc.

−C bufsize Block input/output bufsize bytes to the record, where bufsize is replaced
by a positive integer. The default buffer size is 512 bytes when this and
−B options are not used. (−C does not apply to the pass option; −C is
meaningful only with data directed to or from a character special device,
for example, /dev/rmt/0m.)

−d Create directories as needed.

−E file Specify an input file (file) that contains a list of filenames to be extracted
from the archive (one filename per line).

−f Copy in all files except those in patterns . (See OPERANDS for a
description of patterns.)

−H header Read or write header information in header format. Always use this
option or the −c option when the origin and the destination machines
are different types (mutually exclusive with −c and −6).

1-162 SunOS 5.6 modified 13 Mar 1997

User Commands cpio (1)

Valid values for header are:

bar bar head and format. Used only with the −i option (
read only)

crc | CRC ASCII header with expanded device numbers and an
additional per-file checksum. There are no UID or GID
restrictions associated with this header format.

odc ASCII header with small device numbers. This is the
IEEE/P1003 Data Interchange Standard cpio header
and format. It has the widest range of portability of
any of the header formats. It is the official format for
transferring files between POSIX-conforming systems
(see standards(5)). Use this format to communicate
with Solaris 1.x and Interactive UNIX. This header for-
mat allows UIDs and GIDs up to 262143 to be stored in
the header.

tar | TAR tar header and format. This header format allows UIDs
and GIDs up to 2097151 to be stored in the header.

ustar | USTAR IEEE/P1003 Data Interchange Standard tar header and
format. This header format allows UIDs and GIDs up to
2097151 to be stored in the header.

Files with UIDs and GIDs greater than the limit stated above will be
archived with the UID and GID of 60001.

−I file Read the contents of file as an input archive. If file is a character special
device, and the current medium has been completely read, replace the
medium and press RETURN to continue to the next medium. This
option is used only with the −i option.

−k Attempt to skip corrupted file headers and I/O errors that may be
encountered. If you want to copy files from a medium that is corrupted
or out of sequence, this option lets you read only those files with good
headers. (For cpio archives that contain other cpio archives, if an error
is encountered cpio may terminate prematurely. cpio will find the next
good header, which may be one for a smaller archive, and terminate
when the smaller archive’s trailer is encountered.) Used only with the −i
option.

−l Whenever possible, link files rather than copying them. (Usable only
with the −p option.)

−L Follow symbolic links. The default is not to follow symbolic links.

−m Retain previous file modification time. This option is ineffective on
directories that are being copied (mutually exclusive with −a).

modified 13 Mar 1997 SunOS 5.6 1-163

cpio (1) User Commands

−M message Define a message to use when switching media. When you use the −O or
−I options and specify a character special device, you can use this option
to define the message that is printed when you reach the end of the
medium. One %d can be placed in message to print the sequence
number of the next medium needed to continue.

−O file Direct the output of cpio to file. If file is a character special device and
the current medium is full, replace the medium and type a carriage
return to continue to the next medium. Use only with the −o option.

−P Preserve ACLs. If the option is used for output, ACLs if existed are
written along with other attributes to the standard output. ACLs are
created as special files with a special file type. If the option is used for
input, ACLs if existed are extracted along with other attributes from
standard input. The option recognizes the special file type. Note that
errors will occur if a cpio archive with ACLs is extracted by previous
versions of cpio. This option should not be used with the −c option, as
ACL support may not be present on all systems, and hence is not port-
able. Use ASCII headers for portability.

−r Interactively rename files. If the user types a carriage return alone, the
file is skipped. If the user types a ‘‘.’’ the original pathname will be
retained. (Not available with cpio −p.)

−R id Reassign ownership and group information for each file to user ID (ID
must be a valid login ID from /etc/passwd). This option is valid only for
the super-user.

−s Swap bytes within each half word.

−S Swap halfwords within each word.

−t Print a table of contents of the input. No files are created (mutually
exclusive with −V).

−u Copy unconditionally (normally, an older file will not replace a newer
file with the same name).

−v Verbose. Print a list of file names. When used with the −t option, the
table of contents looks like the output of an ls −l command (see ls(1)).

−V Special verbose. Print a dot for each file read or written. Useful to
assure the user that cpio is working without printing out all file names.

−6 Process a UNIX System Sixth Edition archive format file. Use only with
the −i option (mutually exclusive with −c and −H)).

OPERANDS The following operands are supported:

directory A path name of an existing directory to be used as the target of cpio −p.

pattern Expressions making use of a pattern-matching notation similar to that
used by the shell (see sh(1)) for filename pattern matching, and similar
to regular expressions. The following metacharacters are defined:

1-164 SunOS 5.6 modified 13 Mar 1997

User Commands cpio (1)

∗ Matches any string, including the empty string.

? Matches any single character.

[. . .] Matches any one of the enclosed characters. A pair of characters
separated by ‘−’ matches any symbol between the pair
(inclusive), as defined by the system default collating sequence.
If the first character following the opening ‘[’ is a ‘!’, the results
are unspecified.

! means not. (For example, the !abc∗ pattern would exclude all
files that begin with abc.)

In patterns , metacharacters ?, ∗, and [. . .] match the slash (/) character,
and backslash (\) is an escape character. Multiple cases of pattern can be
specified and if no pattern is specified, the default for pattern is ∗ (that is,
select all files).

Each pattern must be enclosed in double quotes; otherwise, the name of
a file in the current directory might be used.

USAGE See largefile(5) for the description of the behavior of cpio when encountering files greater
than or equal to 2 Gbyte (231 bytes).

EXAMPLES The following examples show three uses of cpio.

When standard input is directed through a pipe to cpio −o, it groups the files so they can
be directed (>) to a single file (../newfile). The −c option insures that the file will be port-
able to other machines (as would the −H option). Instead of ls(1), you could use find(1),
echo(1), cat(1), and so on, to pipe a list of names to cpio. You could direct the output to a
device instead of a file.

example% ls � cpio −oc > ../newfile

cpio −i uses the output file of cpio −o (directed through a pipe with cat in the example
below), extracts those files that match the patterns (memo/a1, memo/b∗), creates direc-
tories below the current directory as needed (−d option), and places the files in the
appropriate directories. The −c option is used if the input file was created with a portable
header. If no patterns were given, all files from newfile would be placed in the directory.

example% cat newfile � cpio −icd "memo/a1" "memo/b∗"

cpio −p takes the file names piped to it and copies or links (−l option) those files to
another directory (newdir in the example below). The −d option says to create direc-
tories as needed. The −m option says retain the modification time. (It is important to use
the −depth option of find(1) to generate path names for cpio. This eliminates problems
cpio could have trying to create files under read-only directories.) The destination direc-
tory, newdir, must exist.

example% find . −depth −print � cpio −pdlmv newdir

Note that when you use cpio in conjunction with find, if you use the −L option with cpio
then you must use the −follow option with find and vice versa. Otherwise there will be
undesirable results.

modified 13 Mar 1997 SunOS 5.6 1-165

cpio (1) User Commands

Note that for multi-reel archives, dismount the old volume, mount the new one, and con-
tinue to the next tape by typing the name of the next device (probably the same as the
first reel). To stop, type a RETURN and cpio will end.

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of cpio: LC_COLLATE, LC_CTYPE, LC_MESSAGES, LC_TIME, TZ, and NLSPATH.

EXIT STATUS The following exit values are returned:
0 Successful completion.
>0 An error occurred.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu
CSI enabled

SEE ALSO ar(1), cat(1), echo(1), find(1), ls(1), setfacl(1), sh(1), tar(1), vold(1M), archives(4), attri-
butes(5), environ(5), largefile(5), standards(5)

NOTES Path names are restricted to 256 characters for the binary (the default) and −H odc header
formats. Otherwise, path names are restricted to 1024 characters.

An error message is output for files whose UID or GID are too large to fit in the selected
header format. Use −H crc or −c to create archives that allow all UID or GID values.

Only the super-user can copy special files.

Blocks are reported in 512-byte quantities.

If a file has 000 permissions, contains more than 0 characters of data, and the user is not
root, the file will not be saved or restored.

The inode number stored in the header (/usr/include/archives.h) is an unsigned short
which is 2 bytes. This limits the range of inode numbers from 0 to 65535. Files which are
hard linked must fall in this inode range. This could be a problem when moving cpio
archives between different vendors’ machines.

When the Volume Management daemon is running, accesses to floppy devices through
the conventional device names (for example, /dev/rdiskette) may not succeed. See
vold(1M) for further details.

You must use the same blocking factor when you retrieve or copy files from the tape to
the hard disk as you did when you copied files from the hard disk to the tape. Therefore,
you must specify the −B option.

1-166 SunOS 5.6 modified 13 Mar 1997

User Commands cpp (1)

NAME cpp − the C language preprocessor

SYNOPSIS /usr/ccs/lib/cpp [−BCHMpPRT] [−undef] [−Dname] [−Dname=def] [−Idirectory]
[−Uname] [−Ydirectory] [input-file [output-file]]

DESCRIPTION cpp is the C language preprocessor. It is invoked as the first pass of any C compilation
started with the cc(1B) command; however, cpp can also be used as a first-pass prepro-
cessor for other Sun compilers.

Although cpp can be used as a macro processor, this is not normally recommended, as its
output is geared toward that which would be acceptable as input to a compiler’s second
pass. Thus, the preferred way to invoke cpp is through the cc(1B) command, or some
other compilation command. For general-purpose macro-processing, see m4(1), and the
chapter on m4 in Programming Utilities Guide.

cpp optionally accepts two filenames as arguments. input-file and output-file are, respec-
tively, the input and output files for the preprocessor. They default to the standard input
and the standard output.

OPTIONS The following options are supported:

−B Support the C++ comment indicator ‘/ /’. With this indicator everything
on the line after the / / is treated as a comment.

−C Pass all comments (except those that appear on cpp directive lines)
through the preprocessor. By default, cpp strips out C-style comments.

−H Print the pathnames of included files, one per line on the standard error.

−M Generate a list of makefile dependencies and write them to the standard
output. This list indicates that the object file which would be generated
from the input file depends on the input file as well as the include files
referenced.

−p Use only the first eight characters to distinguish preprocessor symbols,
and issue a warning if extra tokens appear at the end of a line containing
a directive.

−P Preprocess the input without producing the line control information
used by the next pass of the C compiler.

−R Allow recursive macros.

−T Use only the first eight characters for distinguishing different preproces-
sor names. This option is included for backward compatibility with sys-
tems which always use only the first eight characters.

−undef Remove initial definitions for all predefined symbols.

−Dname Define name as 1 (one). This is the same as if a −Dname=1 option
appeared on the cpp command line, or as if a

#define name 1

line appeared in the source file that cpp is processing.

modified 10 Feb 1995 SunOS 5.6 1-167

cpp (1) User Commands

−Dname=def Define name as if by a #define directive. This is the same as if a

#define name def

line appeared in the source file that cpp is processing. The −D option
has lower precedence than the −U option. That is, if the same name is
used in both a −U option and a −D option, the name will be undefined
regardless of the order of the options.

−Idirectory Insert directory into the search path for #include files with names not
beginning with ‘/’. directory is inserted ahead of the standard list of
‘‘include’’ directories. Thus, #include files with names enclosed in
double-quotes (") are searched for first in the directory of the file with
the #include line, then in directories named with −I options, and lastly,
in directories from the standard list. For #include files with names
enclosed in angle-brackets (< >), the directory of the file with the
#include line is not searched. See Details below for exact details of this
search order.

−Uname Remove any initial definition of name, where name is a symbol that is
predefined by a particular preprocessor. Here is a partial list of symbols
that may be predefined, depending upon the architecture of the system:

Operating System: ibm, gcos, os, tss and unix
Hardware: interdata, pdp11, u370, u3b, u3b2, u3b5,

u3b15, u3b20d, vax, ns32000, iAPX286,
i386, sparc, and sun

UNIX system variant: RES, and RT
The lint command: lint

The symbols sun, sparc and unix are defined for all Sun systems.

−Ydirectory Use directory directory in place of the standard list of directories when
searching for #include files.

USAGE
Directives All cpp directives start with a hash symbol (#) as the first character on a line. White space

(SPACE or TAB characters) can appear after the initial # for proper indentation.

#define name token-string
Replace subsequent instances of name with token-string .

#define name(argument [, argument] . . .) token-string
There can be no space between name and the ‘(’. Replace subsequent instances of
name, followed by a parenthesized list of arguments, with token-string , where
each occurrence of an argument in the token-string is replaced by the correspond-
ing token in the comma-separated list. When a macro with arguments is
expanded, the arguments are placed into the expanded token-string unchanged.
After the entire token-string has been expanded, cpp re-starts its scan for names to
expand at the beginning of the newly created token-string .

#undef name
Remove any definition for the symbol name. No additional tokens are permitted

1-168 SunOS 5.6 modified 10 Feb 1995

User Commands cpp (1)

on the directive line after name.

#include "filename "
#include <filename>

Read in the contents of filename at this location. This data is processed by cpp as
if it were part of the current file. When the <filename> notation is used, filename is
only searched for in the standard ‘‘include’’ directories. See the −I and −Y
options above for more detail. No additional tokens are permitted on the direc-
tive line after the final ‘"’ or ‘>’.

#line integer-constant "filename"
Generate line control information for the next pass of the C compiler. integer-
constant is interpreted as the line number of the next line and filename is inter-
preted as the file from where it comes. If "filename" is not given, the current
filename is unchanged. No additional tokens are permitted on the directive line
after the optional filename.

#if constant-expression
Subsequent lines up to the matching #else, #elif, or #endif directive, appear in
the output only if constant-expression yields a nonzero value. All binary non-
assignment C operators, including ‘&&’, ‘| |’, and ‘,’, are legal in constant-
expression. The ‘?:’ operator, and the unary ‘−’, ‘!’, and ‘˜’ operators, are also legal
in constant-expression.

The precedence of these operators is the same as that for C. In addition, the
unary operator defined, can be used in constant-expression in these two forms:
‘defined (name)’ or ‘defined name’. This allows the effect of #ifdef and #ifndef
directives (described below) in the #if directive. Only these operators, integer
constants, and names that are known by cpp should be used within constant-
expression. In particular, the size of operator is not available.

#ifdef name
Subsequent lines up to the matching #else, #elif, or #endif appear in the output
only if name has been defined, either with a #define directive or a −D option, and
in the absence of an intervening #undef directive. Additional tokens after name
on the directive line will be silently ignored.

#ifndef name
Subsequent lines up to the matching #else, #elif, or #endif appear in the output
only if name has not been defined, or if its definition has been removed with an
#undef directive. No additional tokens are permitted on the directive line after
name.

#elif constant-expression
Any number of #elif directives may appear between an #if, #ifdef, or #ifndef
directive and a matching #else or #endif directive. The lines following the #elif
directive appear in the output only if all of the following conditions hold:

· The constant-expression in the preceding #if directive evaluated to
zero, the name in the preceding #ifdef is not defined, or the name in
the preceding #ifndef directive was defined.

modified 10 Feb 1995 SunOS 5.6 1-169

cpp (1) User Commands

· The constant-expression in all intervening #elif directives evaluated to
zero.

· The current constant-expression evaluates to non-zero.

If the constant-expression evaluates to non-zero, subsequent #elif and #else direc-
tives are ignored up to the matching #endif. Any constant-expression allowed in
an #if directive is allowed in an #elif directive.

#else This inverts the sense of the conditional directive otherwise in effect. If the
preceding conditional would indicate that lines are to be included, then lines
between the #else and the matching #endif are ignored. If the preceding condi-
tional indicates that lines would be ignored, subsequent lines are included in the
output. Conditional directives and corresponding #else directives can be nested.

#endif End a section of lines begun by one of the conditional directives #if, #ifdef, or
#ifndef. Each such directive must have a matching #endif.

Macros Formal parameters for macros are recognized in #define directive bodies, even when
they occur inside character constants and quoted strings. For instance, the output from:

#define abc(a) | `|a|
abc(xyz)

is:

1 ""

| `|xyz |

The second line is a NEWLINE. The last seven characters are ‘‘| `|xyz |’’ (vertical-bar,
backquote, vertical-bar, x, y, z, vertical-bar). Macro names are not recognized within
character constants or quoted strings during the regular scan. Thus:

#define abc xyz
printf("abc");

does not expand abc in the second line, since it is inside a quoted string that is not part of
a #define macro definition.

Macros are not expanded while processing a #define or #undef. Thus:

#define abc zingo
#define xyz abc
#undef abc
xyz

produces abc. The token appearing immediately after an #ifdef or #ifndef is not
expanded.

Macros are not expanded during the scan which determines the actual parameters to
another macro call. Thus:

#define reverse(first,second)second first
#define greeting hello
reverse(greeting,

1-170 SunOS 5.6 modified 10 Feb 1995

User Commands cpp (1)

#define greeting goodbye
)

produces ‘‘ #define hello goodbye hello’’.

Output Output consists of a copy of the input file, with modifications, plus lines of the form:

#lineno " filename " "level "

indicating the original source line number and filename of the following output line and
whether this is the first such line after an include file has been entered (level=1), the first
such line after an include file has been exited (level=2), or any other such line (level is
empty).

Details
Directory Search Order #include files are searched for in the following order:

1. The directory of the file that contains the #include request (that is, #include
is relative to the file being scanned when the request is made).

2. The directories specified by −I options, in left-to-right order.

3. The standard directory(s) (/usr/include on UNIX systems).

Special Names Two special names are understood by cpp. The name _ _LINE_ _ is defined as the
current line number (a decimal integer) as known by cpp, and _ _FILE_ _ is defined as the
current filename (a C string) as known by cpp. They can be used anywhere (including in
macros) just as any other defined name.

Newline Characters A NEWLINE character terminates a character constant or quoted string. An escaped
NEWLINE (that is, a backslash immediately followed by a NEWLINE) may be used in the
body of a #define statement to continue the definition onto the next line. The escaped
NEWLINE is not included in the macro value.

Comments Comments are removed (unless the −C option is used on the command line). Comments
are also ignored, except that a comment terminates a token.

EXIT STATUS The following exit values are returned:
0 Successful completion.
non-zero An error occurred.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWsprot

SEE ALSO cc(1B), m4(1), attributes(5)

Programming Utilities Guide

modified 10 Feb 1995 SunOS 5.6 1-171

cpp (1) User Commands

DIAGNOSTICS The error messages produced by cpp are intended to be self-explanatory. The line
number and filename where the error occurred are printed along with the diagnostic.

NOTES When NEWLINE characters were found in argument lists for macros to be expanded,
some previous versions of cpp put out the NEWLINE characters as they were found and
expanded. The current version of cpp replaces them with SPACE characters.

Because the standard directory for included files may be different in different environ-
ments, this form of #include directive:

#include <file.h>

should be used, rather than one with an absolute path, like:

#include "/usr/include/file.h"

cpp warns about the use of the absolute pathname.

While the compiler allows 8-bit strings and comments, 8-bits are not allowed anywhere
else.

1-172 SunOS 5.6 modified 10 Feb 1995

User Commands crontab (1)

NAME crontab − user crontab file

SYNOPSIS crontab [filename]
crontab [−elr] username

DESCRIPTION The crontab utility manages a user’s access with cron by copying, creating, listing, and
removing crontab files. If invoked without options, crontab copies the specified file, or
the standard input if no file is specified, into a directory that holds all users’ crontabs.

crontab Access
Control

Users: Access to crontab is allowed:

· if the user’s name appears in /etc/cron.d/cron.allow.

· if /etc/cron.d/cron.allow does not exist and the user’s name is not in
/etc/cron.d/cron.deny.

Users: Access to crontab is denied:

· if /etc/cron.d/cron.allow exists and the user’s name is not in it.

· if /etc/cron.d/cron.allow does not exist and user’s name is in /etc/cron.d/cron.deny.

· if neither file exists.

Note that the rules for allow and deny apply to root only if the allow/deny files exist.

The allow/deny files consist of one user name per line.

crontab Entry Format A crontab file consists of lines of six fields each. The fields are separated by spaces or
tabs. The first five are integer patterns that specify the following:

minute (0−59),
hour (0−23),
day of the month (1−31),
month of the year (1−12),
day of the week (0−6 with 0=Sunday).

Each of these patterns may be either an asterisk (meaning all legal values) or a list of ele-
ments separated by commas. An element is either a number or two numbers separated
by a minus sign (meaning an inclusive range). Note that the specification of days may be
made by two fields (day of the month and day of the week). Both are adhered to if
specified as a list of elements. See EXAMPLES.

The sixth field of a line in a crontab file is a string that is executed by the shell at the
specified times. A percent character in this field (unless escaped by \) is translated to a
NEWLINE character.

Only the first line (up to a ‘ % ’ or end of line) of the command field is executed by the
shell. Other lines are made available to the command as standard input. Any line begin-
ning with a ‘ # ’ is a comment and will be ignored. The file should not contain blank lines.

The shell is invoked from your $HOME directory with an arg0 of sh. Users who desire to
have their .profile executed must explicitly do so in the crontab file. cron supplies a
default environment for every shell, defining HOME, LOGNAME, SHELL(=/bin/sh), TZ,

modified 20 Feb 1997 SunOS 5.6 1-173

crontab (1) User Commands

and PATH. The default PATH for user cron jobs is /usr/bin; while root cron jobs default
to /usr/sbin:/usr/bin. The default PATH can be set in /etc/default/cron; see cron(1M).

If you do not redirect the standard output and standard error of your commands, any
generated output or errors will be mailed to you.

OPTIONS The following options are supported:

−e edit a copy of the current user’s crontab file, or creates an empty file to edit if
crontab does not exist. When editing is complete, the file is installed as the
user’s crontab file. If a username is given, the specified user’s crontab file is
edited, rather than the current user’s crontab file; this may only be done by a
super-user. The environment variable EDITOR determines which editor is
invoked with the −e option. The default editor is ed(1). Note that all crontab
jobs should be submitted using crontab; you should not add jobs by just editing
the crontab file because cron will not be aware of changes made this way.

−l list the crontab file for the invoking user. Only a super-user can specify a user-
name following the −r or −l options to remove or list the crontab file of the
specified user.

−r remove a user’s crontab from the crontab directory.

EXAMPLES 1. Clean up core files every weekday morning at 3:15 am:

15 3 ∗ ∗ 1-5 find $HOME -name core 2>/dev/null | xargs rm -f

2. Mail a birthday greeting:

0 12 14 2 ∗ mailx john%Happy Birthday!%Time for lunch.

3. As an example of specifying the two types of days:

0 0 1,15 ∗ 1
would run a command on the first and fifteenth of each month, as well as on every
Monday. To specify days by only one field, the other field should be set to ∗, for
example:

0 0 ∗ ∗ 1

would run a command only on Mondays.

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of crontab: LC_TYPE, LC_MESSAGES, and NLSPATH.

EDITOR Determine the editor to be invoked when the −e option is specified. The
default editor is ed(1). If both the EDITOR and VISUAL environment
variables are set, the value of the VISUAL variable is selected as the edi-
tor.

EXIT STATUS The following exit values are returned:

0 Successful completion.

>0 An error occurred.

1-174 SunOS 5.6 modified 20 Feb 1997

User Commands crontab (1)

FILES /etc/cron.d main cron directory
/etc/cron.d/cron.allow list of allowed users
/etc/default/cron contains cron default settings
/etc/cron.d/cron.deny list of denied users
/var/cron/log accounting information
/var/spool/cron/crontabs spool area for crontab.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO atq(1), atrm(1), ed(1), sh(1), cron(1M), su(1M), attributes(5), environ(5)

NOTES If you inadvertently enter the crontab command with no argument(s), do not attempt to
get out with CTRL-D. This removes all entries in your crontab file. Instead, exit with
CTRL-C.

If a super-user modifies another user’s crontab file, resulting behavior may be unpredict-
able. Instead, the privileged user should first su(1M) to the other user’s login before mak-
ing any changes to the crontab file.

modified 20 Feb 1997 SunOS 5.6 1-175

crypt (1) User Commands

NAME crypt − encode or decode a file

SYNOPSIS crypt [password]

DESCRIPTION crypt encrypts and decrypts the contents of a file. crypt reads from the standard input
and writes on the standard output. The password is a key that selects a particular
transformation. If no password is given, crypt demands a key from the terminal and turns
off printing while the key is being typed in. crypt encrypts and decrypts with the same
key:

example% crypt key < clear.file > encrypted.file
example% crypt key < encrypted.file | pr

will print the contents of clear. file.

Files encrypted by crypt are compatible with those treated by the editors ed(1), ex(1), and
vi(1) in encryption mode.

The security of encrypted files depends on three factors: the fundamental method must
be hard to solve; direct search of the key space must be infeasible; “sneak paths” by
which keys or cleartext can become visible must be minimized.

crypt implements a one-rotor machine designed along the lines of the German Enigma,
but with a 256-element rotor. Methods of attack on such machines are widely known,
thus crypt provides minimal security.

The transformation of a key into the internal settings of the machine is deliberately
designed to be expensive, that is, to take a substantial fraction of a second to compute.
However, if keys are restricted to (say) three lower-case letters, then encrypted files can
be read by expending only a substantial fraction of five minutes of machine time.

Since the key is an argument to the crypt command, it is potentially visible to users exe-
cuting ps(1) or a derivative command. To minimize this possibility, crypt takes care to
destroy any record of the key immediately upon entry. No doubt the choice of keys and
key security are the most vulnerable aspect of crypt.

FILES /dev/tty for typed key

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO des(1), ed(1), ex(1), makekey(1), ps(1), vi(1), attributes(5)

1-176 SunOS 5.6 modified 14 May 1997

User Commands csh (1)

NAME csh − shell command interpreter with a C-like syntax

SYNOPSIS csh [−bcefinstvVxX] [argument. . .]

DESCRIPTION csh, the C shell, is a command interpreter with a syntax reminiscent of the C language. It
provides a number of convenient features for interactive use that are not available with
the Bourne shell, including filename completion, command aliasing, history substitution,
job control, and a number of built-in commands. As with the Bourne shell, the C shell
provides variable, command and filename substitution.

Initialization and
Termination

When first started, the C shell normally performs commands from the .cshrc file in your
home directory, provided that it is readable and you either own it or your real group ID
matches its group ID. If the shell is invoked with a name that starts with ‘−’, as when
started by login(1), the shell runs as a login shell.

If the shell is a login shell, this is the sequence of invocations: First, commands in
/etc/.login are executed. Next, commands from the .cshrc file your home directory are
executed. Then the shell executes commands from the .login file in your home directory;
the same permission checks as those for .cshrc are applied to this file. Typically, the
.login file contains commands to specify the terminal type and environment. (For an
explanation of file interpreters, see below "Command Execution" and exec(2).)

As a login shell terminates, it performs commands from the .logout file in your home
directory; the same permission checks as those for .cshrc are applied to this file.

Interactive Operation After startup processing is complete, an interactive C shell begins reading commands
from the terminal, prompting with hostname% (or hostname# for the privileged user). The
shell then repeatedly performs the following actions: a line of command input is read and
broken into words . This sequence of words is placed on the history list and then parsed,
as described under USAGE, below. Finally, the shell executes each command in the
current line.

Noninteractive
Operation

When running noninteractively, the shell does not prompt for input from the terminal. A
noninteractive C shell can execute a command supplied as an argument on its command
line, or interpret commands from a file, also known as a script.

OPTIONS −b Force a “break” from option processing. Subsequent command line argu-
ments are not interpreted as C shell options. This allows the passing of
options to a script without confusion. The shell does not run set-user-ID or
set-group-ID scripts unless this option is present.

−c Execute the first argument (which must be present). Remaining arguments are
placed in argv, the argument-list variable, and passed directly to csh.

−e Exit if a command terminates abnormally or yields a nonzero exit status.

−f Fast start. Read neither the .cshrc file, nor the .login file (if a login shell) upon
startup.

modified 23 May 1997 SunOS 5.6 1-177

csh (1) User Commands

−i Forced interactive. Prompt for command line input, even if the standard input
does not appear to be a terminal (character-special device).

−n Parse (interpret), but do not execute commands. This option can be used to
check C shell scripts for syntax errors.

−s Take commands from the standard input.

−t Read and execute a single command line. A ‘\’ (backslash) can be used to
escape each newline for continuation of the command line onto subsequent
input lines.

−v Verbose. Set the verbose predefined variable; command input is echoed after
history substitution (but before other substitutions) and before execution.

−V Set verbose before reading .cshrc.

−x Echo. Set the echo variable; echo commands after all substitutions and just
before execution.

−X Set echo before reading .cshrc.

Except with the options −c, −i, −s, or −t, the first nonoption argument is taken to be the
name of a command or script. It is passed as argument zero, and subsequent arguments
are added to the argument list for that command or script.

USAGE
Filename Completion When enabled by setting the variable filec, an interactive C shell can complete a partially

typed filename or user name. When an unambiguous partial filename is followed by an
ESC character on the terminal input line, the shell fills in the remaining characters of a
matching filename from the working directory.

If a partial filename is followed by the EOF character (usually typed as CTRL-d), the shell
lists all filenames that match. It then prompts once again, supplying the incomplete com-
mand line typed in so far.

When the last (partial) word begins with a tilde (∼), the shell attempts completion with a
user name, rather than a file in the working directory.

The terminal bell signals errors or multiple matches; this can be inhibited by setting the
variable nobeep. You can exclude files with certain suffixes by listing those suffixes in
the variable fignore. If, however, the only possible completion includes a suffix in the
list, it is not ignored. fignore does not affect the listing of filenames by the EOF character.

Lexical Structure The shell splits input lines into words at space and tab characters, except as noted below.
The characters &, |, ;, <, >, (, and) form separate words; if paired, the pairs form single
words. These shell metacharacters can be made part of other words, and their special
meaning can be suppressed by preceding them with a ‘\’ (backslash). A newline pre-
ceded by a \ is equivalent to a space character.

1-178 SunOS 5.6 modified 23 May 1997

User Commands csh (1)

In addition, a string enclosed in matched pairs of single-quotes (´), double-quotes ("), or
backquotes (`), forms a partial word; metacharacters in such a string, including any
space or tab characters, do not form separate words. Within pairs of backquote (`) or
double-quote (") characters, a newline preceded by a ‘\’ (backslash) gives a true newline
character. Additional functions of each type of quote are described, below, under Vari-
able Substitution, Command Substitution, and Filename Substitution.

When the shell’s input is not a terminal, the character # introduces a comment that con-
tinues to the end of the input line. Its special meaning is suppressed when preceded by a
\ or enclosed in matching quotes.

Command Line
Parsing

A simple command is composed of a sequence of words. The first word (that is not part of
an I/O redirection) specifies the command to be executed. A simple command, or a set
of simple commands separated by | or |& characters, forms a pipeline. With |, the stan-
dard output of the preceding command is redirected to the standard input of the com-
mand that follows. With | &, both the standard error and the standard output are
redirected through the pipeline.

Pipelines can be separated by semicolons (;), in which case they are executed sequen-
tially. Pipelines that are separated by && or | | form conditional sequences in which the
execution of pipelines on the right depends upon the success or failure, respectively, of
the pipeline on the left.

A pipeline or sequence can be enclosed within parentheses ‘()’ to form a simple com-
mand that can be a component in a pipeline or sequence.

A sequence of pipelines can be executed asynchronously or “in the background” by
appending an ‘&’; rather than waiting for the sequence to finish before issuing a prompt,
the shell displays the job number (see Job Control, below) and associated process IDs and
prompts immediately.

History Substitution History substitution allows you to use words from previous command lines in the com-
mand line you are typing. This simplifies spelling corrections and the repetition of com-
plicated commands or arguments. Command lines are saved in the history list, the size
of which is controlled by the history variable. The most recent command is retained in
any case. A history substitution begins with a ! (although you can change this with the
histchars variable) and may occur anywhere on the command line; history substitutions
do not nest. The ! can be escaped with \ to suppress its special meaning.

Input lines containing history substitutions are echoed on the terminal after being
expanded, but before any other substitutions take place or the command gets executed.

Event Designators An event designator is a reference to a command line entry in the history list.
! Start a history substitution, except when followed by a space character,

tab, newline, = or (.
!! Refer to the previous command. By itself, this substitution repeats the

previous command.
!n Refer to command line n.
!−n Refer to the current command line minus n.

modified 23 May 1997 SunOS 5.6 1-179

csh (1) User Commands

!str Refer to the most recent command starting with str.
!?str? Refer to the most recent command containing str.
!?str? additional

Refer to the most recent command containing str and append additional
to that referenced command.

!{command} additional
Refer to the most recent command beginning with command and append
additional to that referenced command.

ˆprevious_wordˆreplacementˆ
Repeat the previous command line replacing the string previous_word
with the string replacement. This is equivalent to the history substitution:

!:s/previous_word/replacement/.

To re-execute a specific previous command AND make such a substitu-
tion, say, re-executing command #6,

!:6s/previous_word/replacement/.

Word Designators A ‘:’ (colon) separates the event specification from the word designator. It can be omitted
if the word designator begins with a ˆ, $, ∗, − or %. If the word is to be selected from the
previous command, the second ! character can be omitted from the event specification.
For instance, !!:1 and !:1 both refer to the first word of the previous command, while !!$
and !$ both refer to the last word in the previous command. Word designators include:

The entire command line typed so far.
0 The first input word (command).
n The n’th argument.
ˆ The first argument, that is, 1.
$ The last argument.
% The word matched by (the most recent) ?s search.
x−y A range of words; −y abbreviates 0−y.
∗ All the arguments, or a null value if there is just one word in the event.
x∗ Abbreviates x−$.
x− Like x∗ but omitting word $.

Modifiers After the optional word designator, you can add one of the following modifiers, pre-
ceded by a :.

h Remove a trailing pathname component, leaving the head.
r Remove a trailing suffix of the form ‘.xxx’, leaving the basename.
e Remove all but the suffix, leaving the Extension.
s/l/r/ Substitute r for l.
t Remove all leading pathname components, leaving the tail.
& Repeat the previous substitution.
g Apply the change to the first occurrence of a match in each word, by

prefixing the above (for example, g&).
p Print the new command but do not execute it.
q Quote the substituted words, escaping further substitutions.

1-180 SunOS 5.6 modified 23 May 1997

User Commands csh (1)

x Like q, but break into words at each space character, tab or newline.

Unless preceded by a g, the modification is applied only to the first string that matches l;
an error results if no string matches.

The left-hand side of substitutions are not regular expressions, but character strings. Any
character can be used as the delimiter in place of /. A backslash quotes the delimiter char-
acter. The character &, in the right hand side, is replaced by the text from the left-hand-
side. The & can be quoted with a backslash. A null l uses the previous string either from a
l or from a contextual scan string s from !?s. You can omit the rightmost delimiter if a
newline immediately follows r; the rightmost ? in a context scan can similarly be omit-
ted.

Without an event specification, a history reference refers either to the previous command,
or to a previous history reference on the command line (if any).

Quick Substitution ˆlˆrˆ This is equivalent to the history substitution: !:s/l/r/.

Aliases The C shell maintains a list of aliases that you can create, display, and modify using the
alias and unalias commands. The shell checks the first word in each command to see if it
matches the name of an existing alias. If it does, the command is reprocessed with the
alias definition replacing its name; the history substitution mechanism is made available
as though that command were the previous input line. This allows history substitutions,
escaped with a backslash in the definition, to be replaced with actual command line argu-
ments when the alias is used. If no history substitution is called for, the arguments
remain unchanged.

Aliases can be nested. That is, an alias definition can contain the name of another alias.
Nested aliases are expanded before any history substitutions is applied. This is useful in
pipelines such as

alias lm ´ls −l \!∗ | more´

which when called, pipes the output of ls(1) through more(1).

Except for the first word, the name of the alias may not appear in its definition, nor in any
alias referred to by its definition. Such loops are detected, and cause an error message.

I/O Redirection The following metacharacters indicate that the subsequent word is the name of a file to
which the command’s standard input, standard output, or standard error is redirected;
this word is variable, command, and filename expanded separately from the rest of the
command.

< Redirect the standard input.

< < word Read the standard input, up to a line that is identical with word , and
place the resulting lines in a temporary file. Unless word is escaped or
quoted, variable and command substitutions are performed on these
lines. Then, the pipeline is invoked with the temporary file as its stan-
dard input. word is not subjected to variable, filename, or command
substitution, and each line is compared to it before any substitutions are
performed by the shell.

modified 23 May 1997 SunOS 5.6 1-181

csh (1) User Commands

> >! >& >&! Redirect the standard output to a file. If the file does not exist, it is
created. If it does exist, it is overwritten; its previous contents are lost.

When set, the variable noclobber prevents destruction of existing files.
It also prevents redirection to terminals and /dev/null, unless one of the
! forms is used. The & forms redirect both standard output and the
standard error (diagnostic output) to the file.

> > > >& > >! > >&!
Append the standard output. Like >, but places output at the end of the
file rather than overwriting it. If noclobber is set, it is an error for the
file not to exist, unless one of the ! forms is used. The & forms append
both the standard error and standard output to the file.

Variable Substitution The C shell maintains a set of variables , each of which is composed of a name and a value.
A variable name consists of up to 20 letters and digits, and starts with a letter (the under-
score is considered a letter). A variable’s value is a space-separated list of zero or more
words.

To refer to a variable’s value, precede its name with a ‘$’. Certain references (described
below) can be used to select specific words from the value, or to display other informa-
tion about the variable. Braces can be used to insulate the reference from other characters
in an input-line word.

Variable substitution takes place after the input line is analyzed, aliases are resolved, and
I/O redirections are applied. Exceptions to this are variable references in I/O redirec-
tions (substituted at the time the redirection is made), and backquoted strings (see Com-
mand Substitution).

Variable substitution can be suppressed by preceding the $ with a \, except within
double-quotes where it always occurs. Variable substitution is suppressed inside of
single-quotes. A $ is escaped if followed by a space character, tab or newline.

Variables can be created, displayed, or destroyed using the set and unset commands.
Some variables are maintained or used by the shell. For instance, the argv variable con-
tains an image of the shell’s argument list. Of the variables used by the shell, a number
are toggles; the shell does not care what their value is, only whether they are set or not.

Numerical values can be operated on as numbers (as with the @ built-in command).
With numeric operations, an empty value is considered to be zero; the second and subse-
quent words of multiword values are ignored. For instance, when the verbose variable is
set to any value (including an empty value), command input is echoed on the terminal.

Command and filename substitution is subsequently applied to the words that result
from the variable substitution, except when suppressed by double-quotes, when noglob
is set (suppressing filename substitution), or when the reference is quoted with the :q
modifier. Within double-quotes, a reference is expanded to form (a portion of) a quoted
string; multiword values are expanded to a string with embedded space characters.
When the :q modifier is applied to the reference, it is expanded to a list of space-
separated words, each of which is quoted to prevent subsequent command or filename
substitutions.

1-182 SunOS 5.6 modified 23 May 1997

User Commands csh (1)

Except as noted below, it is an error to refer to a variable that is not set.

$var
${var} These are replaced by words from the value of var , each separated by a

space character. If var is an environment variable, its value is returned
(but ‘:’ modifiers and the other forms given below are not available).

$var[index]
${var[index]} These select only the indicated words from the value of var . Variable

substitution is applied to index , which may consist of (or result in) a
either single number, two numbers separated by a ‘−’, or an asterisk.
Words are indexed starting from 1; a ‘∗’ selects all words. If the first
number of a range is omitted (as with $argv[−2]), it defaults to 1. If the
last number of a range is omitted (as with $argv[1−]), it defaults to $#var
(the word count). It is not an error for a range to be empty if the second
argument is omitted (or within range).

$#name
${#name} These give the number of words in the variable.

$0 This substitutes the name of the file from which command input is being
read except for setuid shell scripts. An error occurs if the name is not
known.

$n
${n} Equivalent to $argv[n].

$∗ Equivalent to $argv[∗].

The modifiers :e, :h, :q, :r, :t, and :x can be applied (see History Substitution), as can :gh,
:gt, and :gr. If { } (braces) are used, then the modifiers must appear within the braces. The
current implementation allows only one such modifier per expansion.

The following references may not be modified with : modifiers.

$?var
${?var} Substitutes the string 1 if var is set or 0 if it is not set.

$?0 Substitutes 1 if the current input filename is known or 0 if it is not.

$$ Substitute the process number of the (parent) shell.

$< Substitutes a line from the standard input, with no further interpretation
thereafter. It can be used to read from the keyboard in a C shell script.

Command and
Filename

Substitutions

Command and filename substitutions are applied selectively to the arguments of built-in
commands. Portions of expressions that are not evaluated are not expanded. For non-
built-in commands, filename expansion of the command name is done separately from
that of the argument list; expansion occurs in a subshell, after I/O redirection is per-
formed.

Command
Substitution

A command enclosed by backquotes (` . . . `) is performed by a subshell. Its standard out-
put is broken into separate words at each space character, tab and newline; null words
are discarded. This text replaces the backquoted string on the current command line.

modified 23 May 1997 SunOS 5.6 1-183

csh (1) User Commands

Within double-quotes, only newline characters force new words; space and tab characters
are preserved. However, a final newline is ignored. It is therefore possible for a com-
mand substitution to yield a partial word.

Filename
Substitution

Unquoted words containing any of the characters ∗, ?, [or {, or that begin with ∼, are
expanded (also known as globbing) to an alphabetically sorted list of filenames, as fol-
lows:

∗ Match any (zero or more) characters.

? Match any single character.

[. . .] Match any single character in the enclosed list(s) or range(s). A list is a
string of characters. A range is two characters separated by a dash (−),
and includes all the characters in between in the ASCII collating
sequence (see ascii(5)).

{ str , str , . . . }
Expand to each string (or filename-matching pattern) in the comma-
separated list. Unlike the pattern-matching expressions above, the
expansion of this construct is not sorted. For instance, {b,a} expands to
‘b’ ‘a’, (not ‘a’ ‘b’). As special cases, the characters { and }, along with the
string { }, are passed undisturbed.

∼[user] Your home directory, as indicated by the value of the variable home, or
that of user, as indicated by the password entry for user.

Only the patterns ∗, ? and [. . .] imply pattern matching; an error results if no filename
matches a pattern that contains them. The ‘.’ (dot character), when it is the first character
in a filename or pathname component, must be matched explicitly. The / (slash) must
also be matched explicitly.

Expressions and
Operators

A number of C shell built-in commands accept expressions, in which the operators are
similar to those of C and have the same precedence. These expressions typically appear
in the @, exit, if, set and while commands, and are often used to regulate the flow of con-
trol for executing commands. Components of an expression are separated by white
space.

Null or missing values are considered 0. The result of all expressions is a string, which
may represent decimal numbers.

The following C shell operators are grouped in order of precedence:

(. . .) grouping
∼ one’s complement
! logical negation
∗ / % multiplication, division, remainder (These are right associ-

ative, which can lead to unexpected results. Group combi-
nations explicitly with parentheses.)

+ − addition, subtraction (also right associative)
<< >> bitwise shift left, bitwise shift right
< > <= >= less than, greater than, less than or equal to, greater than

1-184 SunOS 5.6 modified 23 May 1997

User Commands csh (1)

or equal to
= = != =∼ !∼ equal to, not equal to, filename-substitution pattern match

(described below), filename-substitution pattern mismatch
& bitwise AND
ˆ bitwise XOR (exclusive or)
| bitwise inclusive OR
&& logical AND
| | logical OR

The operators: ==, !=, =∼, and !∼ compare their arguments as strings; other operators use
numbers. The operators =∼ and !∼ each check whether or not a string to the left matches
a filename substitution pattern on the right. This reduces the need for switch statements
when pattern-matching between strings is all that is required.

Also available are file inquiries:
−r filename Return true, or 1 if the user has read access. Otherwise it returns

false, or 0.
−w filename True if the user has write access.
−x filename True if the user has execute permission (or search permission on a

directory).
−e filename True if filename exists.
−o filename True if the user owns filename.
−z filename True if filename is of zero length (empty).
−f filename True if filename is a plain file.
−d filename True if filename is a directory.

If filename does not exist or is inaccessible, then all inquiries return false.

An inquiry as to the success of a command is also available:

{ command } If command runs successfully, the expression evaluates to true, 1.
Otherwise, it evaluates to false, 0. (Note: Conversely, command
itself typically returns 0 when it runs successfully, or some other
value if it encounters a problem. If you want to get at the status
directly, use the value of the status variable rather than this
expression).

Control Flow The shell contains a number of commands to regulate the flow of control in scripts and
within limits, from the terminal. These commands operate by forcing the shell either to
reread input (to loop), or to skip input under certain conditions (to branch).

Each occurrence of a foreach, switch, while, if. . .then and else built-in command must
appear as the first word on its own input line.

If the shell’s input is not seekable and a loop is being read, that input is buffered. The
shell performs seeks within the internal buffer to accomplish the rereading implied by the
loop. (To the extent that this allows, backward goto commands will succeed on nonseek-
able inputs.)

modified 23 May 1997 SunOS 5.6 1-185

csh (1) User Commands

Command Execution If the command is a C shell built-in command, the shell executes it directly. Otherwise,
the shell searches for a file by that name with execute access. If the command name con-
tains a /, the shell takes it as a pathname, and searches for it. If the command name does
not contain a /, the shell attempts to resolve it to a pathname, searching each directory in
the path variable for the command. To speed the search, the shell uses its hash table (see
the rehash built-in command) to eliminate directories that have no applicable files. This
hashing can be disabled with the −c or −t, options, or the unhash built-in command.

As a special case, if there is no / in the name of the script and there is an alias for the word
shell, the expansion of the shell alias is prepended (without modification) to the com-
mand line. The system attempts to execute the first word of this special (late-occurring)
alias, which should be a full pathname. Remaining words of the alias’s definition, along
with the text of the input line, are treated as arguments.

When a pathname is found that has proper execute permissions, the shell forks a new
process and passes it, along with its arguments, to the kernel using the execve() system
call (see exec(2)). The kernel then attempts to overlay the new process with the desired
program. If the file is an executable binary (in a.out(4) format) the kernel succeeds and
begins executing the new process. If the file is a text file and the first line begins with #!,
the next word is taken to be the pathname of a shell (or command) to interpret that script.
Subsequent words on the first line are taken as options for that shell. The kernel invokes
(overlays) the indicated shell, using the name of the script as an argument.

If neither of the above conditions holds, the kernel cannot overlay the file and the
execve() call fails (see exec(2)); the C shell then attempts to execute the file by spawning a
new shell, as follows:

· If the first character of the file is a #, a C shell is invoked.
· Otherwise, a Bourne shell is invoked.

Signal Handling The shell normally ignores QUIT signals. Background jobs are immune to signals gen-
erated from the keyboard, including hangups (HUP). Other signals have the values that
the C shell inherited from its environment. The shell’s handling of interrupt and ter-
minate signals within scripts can be controlled by the onintr built-in command. Login
shells catch the TERM signal; otherwise, this signal is passed on to child processes. In no
case are interrupts allowed when a login shell is reading the .logout file.

Job Control The shell associates a numbered job with each command sequence to keep track of those
commands that are running in the background or have been stopped with TSTP signals
(typically CTRL-z). When a command or command sequence (semicolon separated list) is
started in the background using the & metacharacter, the shell displays a line with the job
number in brackets and a list of associated process numbers:

[1] 1234

To see the current list of jobs, use the jobs built-in command. The job most recently
stopped (or put into the background if none are stopped) is referred to as the current job
and is indicated with a ‘+’. The previous job is indicated with a ‘−’; when the current job
is terminated or moved to the foreground, this job takes its place (becomes the new
current job).

1-186 SunOS 5.6 modified 23 May 1997

User Commands csh (1)

To manipulate jobs, refer to the bg, fg, kill, stop, and % built-in commands.

A reference to a job begins with a ‘%’. By itself, the percent-sign refers to the current job.

% %+ %% The current job.
%− The previous job.
%j Refer to job j as in: ‘kill −9 %j’. j can be a job number, or a string that

uniquely specifies the command line by which it was started; ‘fg %vi’
might bring a stopped vi job to the foreground, for instance.

%?string Specify the job for which the command line uniquely contains string.

A job running in the background stops when it attempts to read from the terminal. Back-
ground jobs can normally produce output, but this can be suppressed using the ‘stty tos-
top’ command.

Status Reporting While running interactively, the shell tracks the status of each job and reports whenever
the job finishes or becomes blocked. It normally displays a message to this effect as it
issues a prompt, in order to avoid disturbing the appearance of your input. When set, the
notify variable indicates that the shell is to report status changes immediately. By
default, the notify command marks the current process; after starting a background job,
type notify to mark it.

Built-In Commands Built-in commands are executed within the C shell. If a built-in command occurs as any
component of a pipeline except the last, it is executed in a subshell.

: Null command. This command is interpreted, but performs no action.

alias [name [def]]
Assign def to the alias name. def is a list of words that may contain escaped
history-substitution metasyntax. name is not allowed to be alias or unalias. If
def is omitted, the current definition for the alias name is displayed. If both
name and def are omitted, all aliases are displayed with their definitions.

bg [%job . . .]
Run the current or specified jobs in the background.

break Resume execution after the end of the nearest enclosing foreach or while
loop. The remaining commands on the current line are executed. This allows
multilevel breaks to be written as a list of break commands, all on one line.

breaksw Break from a switch, resuming after the endsw.

case label: A label in a switch statement.

cd [dir]
chdir [dir]

Change the shell’s working directory to directory dir. If no argument is given,
change to the home directory of the user. If dir is a relative pathname not
found in the current directory, check for it in those directories listed in the
cdpath variable. If dir is the name of a shell variable whose value starts with a
/, change to the directory named by that value.

continue Continue execution of the next iteration of the nearest enclosing while or
foreach loop.

modified 23 May 1997 SunOS 5.6 1-187

csh (1) User Commands

default: Labels the default case in a switch statement. The default should come after
all case labels. Any remaining commands on the command line are first exe-
cuted.

dirs [−l]
Print the directory stack, most recent to the left; the first directory shown is
the current directory. With the −l argument, produce an unabbreviated prin-
tout; use of the ∼ notation is suppressed.

echo [−n] list
The words in list are written to the shell’s standard output, separated by space
characters. The output is terminated with a newline unless the −n option is
used.
csh will, by default, invoke its built-in echo, if echo is called without the full
pathname of a Unix command, regardless of the configuration of your PATH
(see echo(1)).

eval argument . . .
Reads the arguments as input to the shell and executes the resulting
command(s). This is usually used to execute commands generated as the
result of command or variable substitution. See tset(1B) for an example of
how to use eval.

exec command
Execute command in place of the current shell, which terminates.

exit [(expr)]
The calling shell or shell script exits, either with the value of the status vari-
able or with the value specified by the expression expr.

fg [%job]
Bring the current or specified job into the foreground.

foreach var (wordlist)
. . .

end The variable var is successively set to each member of wordlist . The sequence
of commands between this command and the matching end is executed for
each new value of var . Both foreach and end must appear alone on separate
lines.

The built-in command continue may be used to terminate the execution of the
current iteration of the loop and the built-in command break may be used to
terminate execution of the foreach command. When this command is read
from the terminal, the loop is read once prompting with ? before any state-
ments in the loop are executed.

glob wordlist
Perform filename expansion on wordlist . Like echo, but no \ escapes are
recognized. Words are delimited by NULL characters in the output.

goto label The specified label is a filename and a command expanded to yield a label.
The shell rewinds its input as much as possible and searches for a line of the

1-188 SunOS 5.6 modified 23 May 1997

User Commands csh (1)

form label: possibly preceded by space or tab characters. Execution continues
after the indicated line. It is an error to jump to a label that occurs between a
while or for built-in command and its corresponding end.

hashstat Print a statistics line indicating how effective the internal hash table for the
path variable has been at locating commands (and avoiding execs). An exec is
attempted for each component of the path where the hash function indicates a
possible hit and in each component that does not begin with a ‘/’. These statis-
tics only reflect the effectiveness of the path variable, not the cdpath variable.

history [−hr] [n]
Display the history list; if n is given, display only the n most recent events.

−r Reverse the order of printout to be most recent first rather than oldest
first.

−h Display the history list without leading numbers. This is used to pro-
duce files suitable for sourcing using the −h option to source.

if (expr) command
If the specified expression evaluates to true, the single command with argu-
ments is executed. Variable substitution on command happens early, at the
same time it does for the rest of the if command. command must be a simple
command, not a pipeline, a command list, or a parenthesized command list.
Note: I/O redirection occurs even if expr is false, when command is not exe-
cuted (this is a bug).

if (expr) then
. . .
else if (expr2) then
. . .
else
. . .
endif If expr is true, commands up to the first else are executed. Otherwise, if expr2

is true, the commands between the else if and the second else are executed.
Otherwise, commands between the else and the endif are executed. Any
number of else if pairs are allowed, but only one else. Only one endif is
needed, but it is required. The words else and endif must be the first
nonwhite characters on a line. The if must appear alone on its input line or
after an else.

jobs[−l] List the active jobs under job control.

−l List process IDs, in addition to the normal information.

kill [−sig] [pid] [%job] . . .
kill −l Send the TERM (terminate) signal, by default, or the signal specified, to the

specified process ID, the job indicated, or the current job . Signals are either
given by number or by name. There is no default. Typing kill does not send
a signal to the current job. If the signal being sent is TERM (terminate) or HUP
(hangup), then the job or process is sent a CONT (continue) signal as well.

modified 23 May 1997 SunOS 5.6 1-189

csh (1) User Commands

−l List the signal names that can be sent.

limit [−h] [resource [max-use]]
Limit the consumption by the current process or any process it spawns, each
not to exceed max-use on the specified resource. If max-use is omitted, print the
current limit; if resource is omitted, display all limits. (Run the sysdef(1M)
command to obtain the maximum possible limits for your system. The values
reported are in hexadecimal, but can be translated into decimal numbers
using the bc(1) command).

−h Use hard limits instead of the current limits. Hard limits impose a
ceiling on the values of the current limits. Only the privileged user
may raise the hard limits.

resource is one of:

cputime Maximum CPU seconds per process.
filesize Largest single file allowed; limited to the size of the

filesystem. (see df(1M)).
datasize (heapsize)

Maximum data size (including stack) for the process.
This is the size of your virtual memory See
swap(1M).

stacksize Maximum stack size for the process. See swap(1M).
coredumpsize Maximum size of a core dump (file). This limited to

the size of the filesystem.
descriptors Maximum number of file descriptors. Run sysdef().
memorysize Maximum size of virtual memory.

max-use is a number, with an optional scaling factor, as follows:

nh Hours (for cputime).
nk n kilobytes. This is the default for all but cputime.
nm n megabytes or minutes (for cputime).
mm:ss Minutes and seconds (for cputime).

Example of limit: to limit the size of a core file dump to 0 Megabytes, type the
following:

limit coredumpsize 0M

login [username | −p]
Terminate a login shell and invoke login(1). The .logout file is not processed.
If username is omitted, login prompts for the name of a user.

−p Preserve the current environment (variables).

logout Terminate a login shell.

nice [+n | −n] [command]
Increment the process priority value for the shell or for command by n. The
higher the priority value, the lower the priority of a process, and the slower it
runs. When given, command is always run in a subshell, and the restrictions
placed on commands in simple if commands apply. If command is omitted,

1-190 SunOS 5.6 modified 23 May 1997

User Commands csh (1)

nice increments the value for the current shell. If no increment is specified,
nice sets the process priority value to 4. The range of process priority values
is from −20 to 20. Values of n outside this range set the value to the lower, or
to the higher boundary, respectively.

+n Increment the process priority value by n.

−n Decrement by n. This argument can be used only by the privileged
user.

nohup [command]
Run command with HUPs ignored. With no arguments, ignore HUPs
throughout the remainder of a script. When given, command is always run in
a subshell, and the restrictions placed on commands in simple if statements
apply. All processes detached with & are effectively nohup’d.

notify [%job] . . .
Notify the user asynchronously when the status of the current job or specified
jobs changes.

onintr [−| label]
Control the action of the shell on interrupts. With no arguments, onintr
restores the default action of the shell on interrupts. (The shell terminates
shell scripts and returns to the terminal command input level). With the −
argument, the shell ignores all interrupts. With a label argument, the shell exe-
cutes a goto label when an interrupt is received or a child process terminates
because it was interrupted.

popd [+n] Pop the directory stack and cd to the new top directory. The elements of the
directory stack are numbered from 0 starting at the top.

+n Discard the n’th entry in the stack.

pushd [+n | dir]
Push a directory onto the directory stack. With no arguments, exchange the
top two elements.

+n Rotate the n’th entry to the top of the stack and cd to it.

dir Push the current working directory onto the stack and change to dir.

rehash Recompute the internal hash table of the contents of directories listed in the
path variable to account for new commands added. Recompute the internal
hash table of the contents of directories listed in the cdpath variable to account
for new directories added.

repeat count command
Repeat command count times. command is subject to the same restrictions as
with the one-line if statement.

set [var [= value]]
set var[n] = word

With no arguments, set displays the values of all shell variables. Multiword
values are displayed as a parenthesized list. With the var argument alone, set

modified 23 May 1997 SunOS 5.6 1-191

csh (1) User Commands

assigns an empty (null) value to the variable var . With arguments of the form
var = value set assigns value to var , where value is one of:

word A single word (or quoted string).
(wordlist) A space-separated list of words enclosed in parentheses.

Values are command and filename expanded before being assigned. The
form set var[n] = word replaces the n’th word in a multiword value with word .

setenv [VAR [word]]
With no arguments, setenv displays all environment variables. With the VAR
argument, setenv sets the environment variable VAR to have an empty (null)
value. (By convention, environment variables are normally given upper-case
names.) With both VAR and word arguments, setenv sets the environment
variable NAME to the value word , which must be either a single word or a
quoted string. The most commonly used environment variables, USER,
TERM, and PATH, are automatically imported to and exported from the csh
variables user, term, and path; there is no need to use setenv for these. In
addition, the shell sets the PWD environment variable from the csh variable
cwd whenever the latter changes.

The environment variables LC_CTYPE, LC_MESSAGES, LC_TIME,
LC_COLLATE, LC_NUMERIC, and LC_MONETARY take immediate effect
when changed within the C shell.

If any of the LC_∗ variables (LC_CTYPE, LC_MESSAGES, LC_TIME,
LC_COLLATE, LC_NUMERIC, and LC_MONETARY) (see environ(5))
are not set in the environment, the operational behavior of csh for
each corresponding locale category is determined by the value of the
LANG environment variable. If LC_ALL is set, its contents are used to
override both the LANG and the other LC_∗ variables. If none of the
above variables is set in the environment, the "C" (U.S. style) locale
determines how csh behaves.

LC_CTYPE
Determines how csh handles characters. When LC_CTYPE is
set to a valid value, csh can display and handle text and
filenames containing valid characters for that locale.

LC_MESSAGES
Determines how diagnostic and informative messages are
presented. This includes the language and style of the mes-
sages and the correct form of affirmative and negative
responses. In the "C" locale, the messages are presented in
the default form found in the program itself (in most cases,
U.S./English).

LC_NUMERIC
Determines the value of the radix character (decimal point
(".") in the "C" locale) and thousand separator (empty string
("") in the "C" locale).

1-192 SunOS 5.6 modified 23 May 1997

User Commands csh (1)

shift [variable]
The components of argv, or variable , if supplied, are shifted to the left, dis-
carding the first component. It is an error for the variable not to be set or to
have a null value.

source [−h] name
Reads commands from name. source commands may be nested, but if they
are nested too deeply the shell may run out of file descriptors. An error in a
sourced file at any level terminates all nested source commands.

−h Place commands from the file name on the history list without exe-
cuting them.

stop %jobid . . .
Stop the current or specified background job.

stop pid . . .
Stop the specified process, pid. (see ps(1)).

suspend Stop the shell in its tracks, much as if it had been sent a stop signal with ˆZ.
This is most often used to stop shells started by su.

switch (string)
case label:
. . .
breaksw
. . .
default:
. . .
breaksw
endsw

Each label is successively matched, against the specified string, which is first
command and filename expanded. The file metacharacters ∗, ? and [. . .] may
be used in the case labels, which are variable expanded. If none of the labels
match before a “default” label is found, execution begins after the default
label. Each case statement and the default statement must appear at the
beginning of a line. The command breaksw continues execution after the
endsw. Otherwise control falls through subsequent case and default state-
ments as with C. If no label matches and there is no default, execution contin-
ues after the endsw.

time [command]
With no argument, print a summary of time used by this C shell and its chil-
dren. With an optional command, execute command and print a summary of
the time it uses.

As of this writing, the time built-in command does NOT compute the last 6
fields of output, rendering the output to erroneously report the value "0" for
these fields.

example %time ls -R

modified 23 May 1997 SunOS 5.6 1-193

csh (1) User Commands

9.0u 11.0s 3:32 10% 0+0k 0+0io 0pf+0w

(See below the "Environment Variables and Predefined Shell Variables" sub-
section on the time variable.)

umask [value]
Display the file creation mask. With value, set the file creation mask. With
value given in octal, the user can turn-off any bits, but cannot turn-on bits to
allow new permissions. Common values include 077, restricting all permis-
sions from everyone else; 002, giving complete access to the group, and read
(and directory search) access to others; or 022, giving read (and directory
search) but not write permission to the group and others.

unalias pattern
Discard aliases that match (filename substitution) pattern . All aliases are
removed by ‘unalias ∗’.

unhash Disable the internal hash tables for the path and cdpath variables.

unlimit [−h] [resource]
Remove a limitation on resource. If no resource is specified, then all resource
limitations are removed. See the description of the limit command for the list
of resource names.

−h Remove corresponding hard limits. Only the privileged user may do
this.

unset pattern
Remove variables whose names match (filename substitution) pattern . All
variables are removed by ‘unset ∗’; this has noticeably distasteful side effects.

unsetenv variable
Remove variable from the environment. As with unset, pattern matching is
not performed.

wait Wait for background jobs to finish (or for an interrupt) before prompting.

while (expr)
. . .
end While expr is true (evaluates to nonzero), repeat commands between the

while and the matching end statement. break and continue may be used to
terminate or continue the loop prematurely. The while and end must appear
alone on their input lines. If the shell’s input is a terminal, it prompts for com-
mands with a question-mark until the end command is entered and then per-
forms the commands in the loop.

%[job] [&]
Bring the current or indicated job to the foreground. With the ampersand,
continue running job in the background.

@ [var =expr]
@ [var[n] =expr]

With no arguments, display the values for all shell variables. With argu-
ments, set the variable var , or the n’th word in the value of var , to the value

1-194 SunOS 5.6 modified 23 May 1997

User Commands csh (1)

that expr evaluates to. (If [n] is supplied, both var and its n’th component
must already exist.)

If the expression contains the characters >, <, &, or |, then at least this part of
expr must be placed within parentheses.

The operators ∗=, +=, and so forth, are available as in C. The space separating
the name from the assignment operator is optional. Spaces are, however,
mandatory in separating components of expr that would otherwise be single
words.

Special postfix operators, + + and − −, increment or decrement name, respec-
tively.

Environment
Variables and

Predefined Shell
Variables

Unlike the Bourne shell, the C shell maintains a distinction between environment vari-
ables, which are automatically exported to processes it invokes, and shell variables,
which are not. Both types of variables are treated similarly under variable substitution.
The shell sets the variables argv, cwd, home, path, prompt, shell, and status upon initial-
ization. The shell copies the environment variable USER into the shell variable user,
TERM into term, and HOME into home, and copies each back into the respective environ-
ment variable whenever the shell variables are reset. PATH and path are similarly han-
dled. You need only set path once in the .cshrc or .login file. The environment variable
PWD is set from cwd whenever the latter changes. The following shell variables have
predefined meanings:

argv Argument list. Contains the list of command line arguments sup-
plied to the current invocation of the shell. This variable determines
the value of the positional parameters $1, $2, and so on.

cdpath Contains a list of directories to be searched by the cd, chdir, and
popd commands, if the directory argument each accepts is not a sub-
directory of the current directory.

cwd The full pathname of the current directory.

echo Echo commands (after substitutions) just before execution.

fignore A list of filename suffixes to ignore when attempting filename com-
pletion. Typically the single word ‘.o’.

filec Enable filename completion, in which case the CTRL-d character EOT
and the ESC character have special significance when typed in at the
end of a terminal input line:

EOT Print a list of all filenames that start with the preceding
string.

ESC Replace the preceding string with the longest unambiguous
extension.

hardpaths If set, pathnames in the directory stack are resolved to contain no
symbolic-link components.

histchars A two-character string. The first character replaces ! as the history-
substitution character. The second replaces the carat (ˆ) for quick

modified 23 May 1997 SunOS 5.6 1-195

csh (1) User Commands

substitutions.

history The number of lines saved in the history list. A very large number
may use up all of the C shell’s memory. If not set, the C shell saves
only the most recent command.

home The user’s home directory. The filename expansion of ∼ refers to the
value of this variable.

ignoreeof If set, the shell ignores EOF from terminals. This protects against
accidentally killing a C shell by typing a CTRL-d.

mail A list of files where the C shell checks for mail. If the first word of
the value is a number, it specifies a mail checking interval in seconds
(default 5 minutes).

nobeep Suppress the bell during command completion when asking the C
shell to extend an ambiguous filename.

noclobber Restrict output redirection so that existing files are not destroyed by
accident. > redirections can only be made to new files. >> redirec-
tions can only be made to existing files.

noglob Inhibit filename substitution. This is most useful in shell scripts once
filenames (if any) are obtained and no further expansion is desired.

nonomatch Returns the filename substitution pattern, rather than an error, if the
pattern is not matched. Malformed patterns still result in errors.

notify If set, the shell notifies you immediately as jobs are completed, rather
than waiting until just before issuing a prompt.

path The list of directories in which to search for commands. path is ini-
tialized from the environment variable PATH, which the C shell
updates whenever path changes. A null word specifies the current
directory. The default is typically (/usr/bin .). If path becomes unset
only full pathnames will execute. An interactive C shell will nor-
mally hash the contents of the directories listed after reading .cshrc,
and whenever path is reset. If new commands are added, use the
rehash command to update the table.

prompt The string an interactive C shell prompts with. Noninteractive shells
leave the prompt variable unset. Aliases and other commands in the
.cshrc file that are only useful interactively, can be placed after the
following test: ‘if ($?prompt == 0) exit’, to reduce startup time for
noninteractive shells. A ! in the prompt string is replaced by the
current event number. The default prompt is hostname% for mere
mortals, or hostname# for the privileged user.

The setting of $prompt has three meanings:

$prompt not set -- non-interactive shell, test $?prompt.

$prompt set but == "" -- .cshrc called by the which(1) command.

$prompt set and != "" -- normal interactive shell.

1-196 SunOS 5.6 modified 23 May 1997

User Commands csh (1)

savehist The number of lines from the history list that are saved in ∼/.history
when the user logs out. Large values for savehist slow down the C
shell during startup.

shell The file in which the C shell resides. This is used in forking shells to
interpret files that have execute bits set, but that are not executable
by the system.

status The status returned by the most recent command. If that command
terminated abnormally, 0200 is added to the status. Built-in com-
mands that fail return exit status 1; all other built-in commands set
status to 0.

time Control automatic timing of commands. Can be supplied with one
or two values. The first is the reporting threshold in CPU seconds.
The second is a string of tags and text indicating which resources to
report on. A tag is a percent sign (%) followed by a single upper-
case letter (unrecognized tags print as text):

%D Average amount of unshared data space used in
Kilobytes.

%E Elapsed (wallclock) time for the command.
%F Page faults.
%I Number of block input operations.
%K Average amount of unshared stack space used in

Kilobytes.
%M Maximum real memory used during execution of the

process.
%O Number of block output operations.
%P Total CPU time — U (user) plus S (system) — as a

percentage of E (elapsed) time.
%S Number of seconds of CPU time consumed by the

kernel on behalf of the user’s process.
%U Number of seconds of CPU time devoted to the

user’s process.
%W Number of swaps.
%X Average amount of shared memory used in Kilo-

bytes.

The default summary display outputs from the %U, %S, %E, %P,
%X, %D, %I, %O, %F, and %W tags, in that order.

verbose Display each command after history substitution takes place.

Large File Behavior See largefile(5) for the description of the behavior of csh when encountering files greater
than or equal to 2 Gbyte (231 bytes).

modified 23 May 1997 SunOS 5.6 1-197

csh (1) User Commands

FILES ∼/.cshrc Read at beginning of execution by each shell.
∼/.login Read by login shells after .cshrc at login.
∼/.logout Read by login shells at logout.
∼/.history Saved history for use at next login.
/usr/bin/sh The Bourne shell, for shell scripts not starting with a ‘#’.
/tmp/sh∗ Temporary file for ‘<<’.
/etc/passwd Source of home directories for ‘∼name’.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu
CSI Enabled

SEE ALSO bc(1), echo(1), login(1), ls(1), more(1), ps(1), sh(1), shell_builtins(1), tset(1B), which(1),
df(1M), swap(1M), sysdef(1M), access(2), exec(2), fork(2), pipe(2), a.out(4), environ(4),
ascii(5), attributes(5), environ(5), largefile(5), termio(7I)

DIAGNOSTICS You have stopped jobs.
You attempted to exit the C shell with stopped jobs under job control. An
immediate second attempt to exit will succeed, terminating the stopped jobs.

WARNINGS The use of setuid shell scripts is strongly discouraged.

NOTES Words can be no longer than 1024 bytes. The system limits argument lists to 1,048,576
bytes. However, the maximum number of arguments to a command for which filename
expansion applies is 1706. Command substitutions may expand to no more characters
than are allowed in the argument list. To detect looping, the shell restricts the number of
alias substitutions on a single line to 20.

When a command is restarted from a stop, the shell prints the directory it started in if this
is different from the current directory; this can be misleading (that is, wrong) as the job
may have changed directories internally.

Shell built-in functions are not stoppable/restartable. Command sequences of the form
a ; b ; c are also not handled gracefully when stopping is attempted. If you suspend b, the
shell never executes c. This is especially noticeable if the expansion results from an alias.
It can be avoided by placing the sequence in parentheses to force it into a subshell.

Control over terminal output after processes are started is primitive; use the Sun Window
system if you need better output control.

Commands within loops, prompted for by ?, are not placed in the history list.

Control structures should be parsed rather than being recognized as built-in commands.
This would allow control commands to be placed anywhere, to be combined with |, and
to be used with & and ; metasyntax.

1-198 SunOS 5.6 modified 23 May 1997

User Commands csh (1)

It should be possible to use the : modifiers on the output of command substitutions.
There are two problems with : modifier usage on variable substitutions: not all of the
modifiers are available, and only one modifier per substitution is allowed.

The g (global) flag in history substitutions applies only to the first match in each word,
rather than all matches in all words. The common text editors consistently do the latter
when given the g flag in a substitution command.

Quoting conventions are confusing. Overriding the escape character to force variable
substitutions within double quotes is counterintuitive and inconsistent with the Bourne
shell.

Symbolic links can fool the shell. Setting the hardpaths variable alleviates this.

It is up to the user to manually remove all duplicate pathnames accrued from using
built-in commands as

set path = pathnames
or

setenv PATH pathnames
more than once. These often occur because a shell script or a .cshrc file does something
like ‘set path=(/usr/local /usr/hosts $path)’ to ensure that the named directories are in the
pathname list.

The only way to direct the standard output and standard error separately is by invoking
a subshell, as follows:

example% (command > outfile) >& errorfile

Although robust enough for general use, adventures into the esoteric periphery of the C
shell may reveal unexpected quirks.

If you start csh as a login shell and you do not have a .login in your home directory, then
the csh reads in the /etc/.login.

When the shell executes a shell script that attempts to execute a non-existent command
interpreter, the shell returns an erroneous diagnostic message that the shell script file
does not exist.

BUGS As of this writing, the time built-in command does NOT compute the last 6 fields of out-
put, rendering the output to erroneously report the value "0" for these fields.

example %time ls −R
9.0u 11.0s 3:32 10% 0+0k 0+0io 0pf+0w

modified 23 May 1997 SunOS 5.6 1-199

csplit (1) User Commands

NAME csplit − split files based on context

SYNOPSIS csplit [−ks] [−f prefix] [−n number] file arg1 . . .argn

DESCRIPTION The csplit utility reads the file named by the file operand, writes all or part of that file into
other files as directed by the arg operands, and writes the sizes of the files.

OPTIONS The following options are supported:

−f prefix Name the created files prefix00, prefix01, . . . , prefixn. The default is xx00
. . .xxn. If the prefix argument would create a file name exceeding 14
bytes, an error will result; csplit will exit with a diagnostic message and
no files will be created.

−k Leave previously created files intact. By default, csplit will remove
created files if an error occurs.

−n number Use number decimal digits to form filenames for the file pieces. The
default is 2.

−s Suppress the output of file size messages.

OPERANDS The following operands are supported:

file The path name of a text file to be split. If file is -, the standard input will
be used.

The operands arg1 . . .argn can be a combination of the following:

/rexp/[offset] Create a file using the content of the lines from the current line up to, but
not including, the line that results from the evaluation of the regular
expression with offset , if any, applied. The regular expression rexp must
follow the rules for basic regular expressions. The optional offset must
be a positive or negative integer value representing a number of lines.
The integer value must be preceded by + or −. If the selection of lines
from an offset expression of this type would create a file with zero lines,
or one with greater than the number of lines left in the input file, the
results are unspecified. After the section is created, the current line will
be set to the line that results from the evaluation of the regular expres-
sion with any offset applied. The pattern match of rexp always is
applied from the current line to the end of the file.

%rexp%[offset] This operand is the same as /rexp/[offset], except that no file will be
created for the selected section of the input file.

line_no Create a file from the current line up to (but not including) the line
number line_no. Lines in the file will be numbered starting at one. The
current line becomes line_no.

1-200 SunOS 5.6 modified 20 Dec 1996

User Commands csplit (1)

{num} Repeat operand. This operand can follow any of the operands described
previously. If it follows a rexp type operand, that operand will be
applied num more times. If it follows a line_no operand, the file will be
split every line_no lines, num times, from that point.

An error will be reported if an operand does not reference a line between the current
position and the end of the file.

USAGE See largefile(5) for the description of the behavior of csplit when encountering files
greater than or equal to 2 Gbyte (231 bytes).

EXAMPLES This example creates four files, cobol00 . . . cobol03.

example% csplit −f cobol filename ’/procedure division/’ /par5./ /par16./

After editing the ‘‘split’’ files, they can be recombined as follows:

example% cat cobol0[0−3] > filename

Note: This example overwrites the original file.

This example splits the file at every 100 lines, up to 10,000 lines. The −k option causes the
created files to be retained if there are less than 10,000 lines; however, an error message
would still be printed.

example% csplit −k filename 100 {99}

If prog.c follows the normal C coding convention (the last line of a routine consists only
of a } in the first character position), this example creates a file for each separate C routine
(up to 21) in prog.c.

example% csplit −k prog.c ’%main(%´ ’/ˆ}/+1’ {20}

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of csplit: LC_COLLATE, LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS The following exit values are returned:

0 Successful completion.

>0 An error occurred.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu
CSI Enabled

SEE ALSO sed(1), split(1), attributes(5), environ(5), largefile(5)

DIAGNOSTICS The diagnostic messages are self-explanatory, except for the following:

arg − out of range The given argument did not reference a line between the current
position and the end of the file.

modified 20 Dec 1996 SunOS 5.6 1-201

ct (1C) Communication Commands

NAME ct − spawn login to a remote terminal

SYNOPSIS ct [options] telno . . .

DESCRIPTION ct dials the telephone number of a modem that is attached to a terminal and spawns a
login process to that terminal. The telno is a telephone number, with equal signs for
secondary dial tones and minus signs for delays at appropriate places. (The set of legal
characters for telno is 0 through 9, -, =, ∗, and #. The maximum length telno is 31 charac-
ters). If more than one telephone number is specified, ct will try each in succession until
one answers; this is useful for specifying alternate dialing paths.

ct will try each line listed in the file /etc/uucp/Devices until it finds an available line with
appropriate attributes, or runs out of entries.

After the user on the destination terminal logs out, there are two things that could occur
depending on what type of port monitor is monitoring the port. In the case of no port
monitor, ct prompts: Reconnect? If the response begins with the letter n, the line will be
dropped; otherwise, ttymon will be started again and the login: prompt will be printed.
In the second case, where a port monitor is monitoring the port, the port monitor reissues
the login: prompt.

The user should log out properly before disconnecting.

OPTIONS −h Normally, ct will hang up the current line so that it can be used to answer the
incoming call. The −h option will prevent this action. The −h option will also
wait for the termination of the specified ct process before returning control to the
user’s terminal.

−sspeed The data rate may be set with the −s option. speed is expressed in baud rates. The
default baud rate is 1200.

−v If the −v (verbose) option is used, ct will send a running narrative to the standard
error output stream.

−wn If there are no free lines ct will ask if it should if so, for how many minutes it
should wait before it gives up. ct will continue to try to open the dialers at one-
minute intervals until the specified limit is exceeded. This dialogue may be over-
ridden by specifying the −wn option. n is the maximum number of minutes that
ct is to wait for a line.

−xn This option is used for debugging; it produces a detailed output of the program
execution on stderr. n is a single number between 0 and 9. As n increases to 9,
more detailed debugging information is given.

FILES /etc/uucp/Devices
/var/adm/ctlog

1C-202 SunOS 5.6 modified 14 Sep 1992

Communication Commands ct (1C)

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWbnuu

SEE ALSO cu(1C), login(1), uucp(1C), ttymon(1M), attributes(5)

NOTES The ct program will not work with a DATAKIT Multiplex interface.

For a shared port, one used for both dial-in and dial-out, the ttymon program running on
the line must have the −r and −b options specified (see ttymon(1M)).

modified 14 Sep 1992 SunOS 5.6 1C-203

ctags (1) User Commands

NAME ctags − create a tags file for use with ex and vi

SYNOPSIS /usr/bin/ctags [−aBFtuvwx] [−f tagsfile] file. . .

/usr/xpg4/bin/ctags [−aBFuvwx] [−f tagsfile] file. . .

DESCRIPTION The ctags utility makes a tags file for ex(1) from the specified C, C++, Pascal, FORTRAN,
yacc(1), and lex(1) sources. A tags file gives the locations of specified objects (in this case
functions and typedefs) in a group of files. Each line of the tags file contains the object
name, the file in which it is defined, and an address specification for the object definition.
Functions are searched with a pattern, typedefs with a line number. Specifiers are given
in separate fields on the line, separated by SPACE or TAB characters. Using the tags file,
ex can quickly find these objects definitions.

Normally ctags places the tag descriptions in a file called tags; this may be overridden
with the −f option.

Files with names ending in .c or .h are assumed to be either C or C++ source files and are
searched for C/C++ routine and macro definitions. Files with names ending in .cc, .C, or
.cxx, are assumed to be C++ source files. Files with names ending in .y are assumed to be
yacc source files. Files with names ending in .l are assumed to be lex files. Others are
first examined to see if they contain any Pascal or FORTRAN routine definitions; if not,
they are processed again looking for C definitions.

The tag main is treated specially in C or C++ programs. The tag formed is created by
prepending M to file, with a trailing .c , .cc .C, or .cxx removed, if any, and leading path
name components also removed. This makes use of ctags practical in directories with
more than one program.

OPTIONS The precedence of the options that pertain to printing is −x, −v, then the remaining
options. The following options are supported:

−a Append output to an existing tags file.

−B Use backward searching patterns (?. . . ?).

−f tagsfile Places the tag descriptions in a file called tagsfile instead of tags.

−F Use forward searching patterns (/. . . /) (default).

−t Create tags for typedefs. /usr/xpg4/bin/ctags creates tags for typedefs by
default.

−u Update the specified files in tags, that is, all references to them are deleted,
and the new values are appended to the file. Beware: this option is imple-
mented in a way which is rather slow; it is usually faster to simply rebuild the
tags file.

−v Produce on the standard output an index listing the function name, file name,
and page number (assuming 64 line pages). Since the output will be sorted
into lexicographic order, it may be desired to run the output through sort −f.

−w Suppress warning diagnostics.

1-204 SunOS 5.6 modified 18 Mar 1997

User Commands ctags (1)

−x Produce a list of object names, the line number and file name on which each is
defined, as well as the text of that line and prints this on the standard output.
This is a simple index which can be printed out as an off-line readable func-
tion index.

OPERANDS The following file operands are supported:

file.c Files with basenames ending with the .c suffix are treated as C-language source
code.

file.h Files with basenames ending with the .h suffix are treated as C-language source
code.

file.f Files with basenames ending with the .f suffix are treated as FORTRAN-
language source code.

USAGE The −v option is mainly used with vgrind which will be part of the optional BSD Compa-
tibility Package.

EXAMPLES Using ctags with the −v option produces entries in an order which may not always be
appropriate for vgrind. To produce results in alphabetical order, you may want to run
the output through ‘sort −f’.

example% ctags −v filename.c filename.h | sort −f > index
example% vgrind −x index

To build a tags file for C sources in a directory hierarchy rooted at sourcedir, first create an
empty tags file, and then run find(1):

example% cd sourcedir ; rm −f tags ; touch tags
example% find . \(−name SCCS −prune −name \\

’∗.c’ −o −name ’∗.h’ \) −exec ctags −u {} \;

Note that spaces must be entered exactly as shown.

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of ctags: LC_COLLATE, LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS The following exit values are returned:

0 Successful completion.

>0 An error occurred.

FILES tags output tags file

modified 18 Mar 1997 SunOS 5.6 1-205

ctags (1) User Commands

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

/usr/bin/ctags ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtoo

/usr/xpg4/bin/ctags ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxcu4

SEE ALSO ex(1), lex(1), vgrind(1), vi(1), yacc(1), attributes(5), environ(5), xpg4(5)

NOTES Recognition of functions, subroutines and procedures for FORTRAN and Pascal is done
is a very simpleminded way. No attempt is made to deal with block structure; if you
have two Pascal procedures in different blocks with the same name you lose.

The method of deciding whether to look for C or Pascal and FORTRAN functions is a
hack.

The ctags utility does not know about #ifdefs.

The ctags utility should know about Pascal types. Relies on the input being well formed
to detect typedefs. Use of −tx shows only the last line of typedefs.

1-206 SunOS 5.6 modified 18 Mar 1997

Communication Commands cu (1C)

NAME cu − call another UNIX system

SYNOPSIS cu [−c device | −l line] [−s speed] [−b bits] [−h] [−n] [−t] [−d] [−o | −e]
[−L] [−C] [−H] telno|systemname [local-cmd]

DESCRIPTION cu calls up another UNIX system, a terminal, or possibly a non-UNIX system. It manages
an interactive conversation with possible transfers of files. It is convenient to think of cu
as operating in two phases. The first phase is the connection phase in which the connec-
tion is established. cu then enters the conversation phase. The −d option is the only one
that applies to both phases.

OPTIONS cu accepts many options. The −c, −l, and −s options play a part in selecting the medium;
the remaining options are used in configuring the line.

−c device Force cu to use only entries in the "Type" field (the first field in the
/etc/uucp/Devices file) that match the user specified device, usually the name
of a local area network.

−s speed Specify the transmission speed (300, 1200, 2400, 4800, 9600, 19200, 38400). The
default value is "Any" speed which will depend on the order of the lines in the
/etc/uucp/Devices file.

−l line Specify a device name to use as the communication line. This can be used to
override the search that would otherwise take place for the first available line
having the right speed. When the −l option is used without the −s option, the
speed of a line is taken from the /etc/uucp/Devices file record in which line
matches the second field (the Line field). When the −l and −s options are both
used together, cu will search the /etc/uucp/Devices file to check if the
requested speed for the requested line is available. If so, the connection will
be made at the requested speed, otherwise, an error message will be printed
and the call will not be made. In the general case where a specified device is a
directly connected asynchronous line (for instance, /dev/term/a), a telephone
number (telno) is not required. The specified device need not be in the /dev
directory. If the specified device is associated with an auto dialer, a telephone
number must be provided.

−b bits Force bits to be the number of bits processed on the line. bits is either 7 or 8.
This allows connection between systems with different character sizes. By
default, the character size of the line is set to the same as the current local ter-
minal.

−h Set communication mode to half-duplex. This option emulates local echo in
order to support calls to other computer systems that expect terminals to be
set to half-duplex mode.

modified 28 Mar 1995 SunOS 5.6 1C-207

cu (1C) Communication Commands

−n Request user prompt for telephone number. For added security, this option
will prompt the user to provide the telephone number to be dialed, rather
than taking it from the command line.

−t Dial a terminal which has been set to auto answer. Appropriate mapping of
carriage-return to carriage-return-line-feed pairs is set.

−d Print diagnostic traces.

−o Set an ODD data parity. This option designates that ODD parity is to be gen-
erated for data sent to the remote system.

−e Set an EVEN data parity. This option designates that EVEN parity is to be gen-
erated for data sent to the remote system.

−L Go through the login chat sequence specified in the /etc/uucp/Systems file.
For more information about the chat sequence, see TCP/IP and Data Communi-
cations Administration Guide

−C Run the local-cmd specified at the end of the command line instead of entering
interactive mode. The stdin and stdout of the command that is run refer to
the remote connection.

−H Ignore one hangup. This allows the user to remain in cu while the remote
machine disconnects and places a call back to the local machine. This option
should be used when connecting to systems with callback or dialback
modems. Once the callback occurs subsequent hangups will cause cu to ter-
minate. This option can be specified more than once. For more information
about dialback configuration, see remote(4) and TCP/IP and Data Communica-
tions Administration Guide

OPERANDS The following operands are supported:

telno When using an automatic dialler, specifies the telephone number with
equal signs for secondary dial tone or minus signs placed appropriately
for delays of 4 seconds.

systemname Specifies a uucp system name, which can be used rather than a tele-
phone number; in this case, cu will obtain an appropriate direct line or
telephone number from a system file.

USAGE
Connection Phase cu uses the same mechanism that uucp(1C) does to establish a connection. This means

that it will use the uucp control files /etc/uucp/Devices and /etc/uucp/Systems. This
gives cu the ability to choose from several different media to establish the connection.
The possible media include telephone lines, direct connections, and local area networks
(LAN). The /etc/uucp/Devices file contains a list of media that are available on your sys-
tem. The /etc/uucp/Systems file contains information for connecting to remote systems,
but it is not generally readable.

Note: cu determines which /etc/uucp/Systems and /etc/uucp/Devices files to use based
upon the name used to invoke cu. In the simple case, this name will be "cu", but you
could also have created a link to cu with another name, such as "pppcu", in which case cu

1C-208 SunOS 5.6 modified 28 Mar 1995

Communication Commands cu (1C)

would then look for a "service=pppcu" entry in the /etc/uucp/Sysfiles file to determine
which /etc/uucp/Systems file to use.

The telno or systemname parameter from the command line is used to tell cu what system
you wish to connect to. This parameter can be blank, a telephone number, a system
name, or a LAN specific address.

telephone number A telephone number is a string consisting of the tone dial charac-
ters (the digits 0 through 9, ∗, and #) plus the special characters =
and −. The equal sign designates a secondary dial tone and the
minus sign creates a 4 second delay.

system name A system name is the name of any computer that uucp can call; the
uuname(1C) command prints a list of these names.

LAN address The documentation for your LAN will show the form of the LAN
specific address.

If cu’s default behavior is invoked (not using the −c or −l options), cu will use the telno or
systemname parameter to determine which medium to use. If a telephone number is
specified, cu will assume that you wish to use a telephone line and it will select an
automatic call unit (ACU). Otherwise, cu will assume that it is a system name. cu will
follow the uucp calling mechanism and use the /etc/uucp/Systems and
/etc/uucp/Devices files to obtain the best available connection. Since cu will choose a
speed that is appropriate for the medium that it selects, you may not use the −s option
when this parameter is a system name.

The −c and −l options modify this default behavior. −c is most often used to select a LAN
by specifying a Type field from the /etc/uucp/Devices file. You must include either a
telno or systemname value when using the −c option. If the connection to systemname fails,
a connection will be attempted using systemname as a LAN specific address. The −l option
is used to specify a device associated with a direct connection. If the connection is truly a
direct connection to the remote machine, then there is no need to specify a systemname.
This is the only case where a telno or systemname parameter is unnecessary. On the other
hand, there may be cases in which the specified device connects to a dialer, so it is valid
to specify a telephone number. The −c and −l options should not be specified on the
same command line.

Conversation Phase After making the connection, cu runs as two processes: the transmit process reads data
from the standard input and, except for lines beginning with ˜, passes it to the remote sys-
tem; the receive process accepts data from the remote system and, except for lines begin-
ning with ˜, passes it to the standard output. Normally, an automatic DC3/DC1 protocol
is used to control input from the remote so the buffer is not overrun. Lines beginning
with ˜ have special meanings.

Commands The transmit process interprets the following user initiated commands:

˜. Terminate the conversation.

˜! Escape to an interactive shell on the local system.

˜!cmd . . . Run cmd on the local system (via sh −c).

modified 28 Mar 1995 SunOS 5.6 1C-209

cu (1C) Communication Commands

˜$cmd . . . Run cmd locally and send its output to the remote system.

˜%cd Change the directory on the local system. Note: ˜!cd will cause the
command to be run by a sub-shell, probably not what was
intended.

˜%take from [to]
Copy file from (on the remote system) to file to on the local system.
If to is omitted, the from argument is used in both places.

˜%put from [to]
Copy file from (on local system) to file to on remote system. If to is
omitted, the from argument is used in both places.

˜˜ line Send the line ˜ line to the remote system.

˜%break Transmit a BREAK to the remote system (which can also be
specified as ˜%b).

˜%debug Toggles the −d debugging option on or off (which can also be
specified as ˜%d).

˜t Prints the values of the termio structure variables for the user’s ter-
minal (useful for debugging).

˜l Prints the values of the termio structure variables for the remote
communication line (useful for debugging).

˜%ifc Toggles between DC3/DC1 input control protocol and no input
control. This is useful when the remote system does not respond
properly to the DC3 and DC1 characters (can also be specified as
∼%nostop).

˜%ofc Toggles the output flow control setting. When enabled, outgoing
data may be flow controlled by the remote host (can also be
specified as ∼%noostop).

˜%divert Allow/disallow unsolicited diversions. That is, diversions not
specified by ˜%take.

˜%old Allow/disallow old style syntax for received diversions.

˜%nostop Same as ˜%ifc.

The receive process normally copies data from the remote system to the standard output
of the local system. It may also direct the output to local files.

The use of ˜%put requires stty(1) and cat(1) on the remote side. It also requires that the
current erase and kill characters on the remote system be identical to these current con-
trol characters on the local system. Backslashes are inserted at appropriate places.

The use of ˜%take requires the existence of echo(1) and cat(1) on the remote system, and
that the remote system must be using the Bourne shell, sh. Also, tabs mode (see stty(1))
should be set on the remote system if tabs are to be copied without expansion to spaces.

1C-210 SunOS 5.6 modified 28 Mar 1995

Communication Commands cu (1C)

When cu is used on system X to connect to system Y and subsequently used on system Y
to connect to system Z, commands on system Y can be executed by using ˜ ˜. Executing a
tilde command reminds the user of the local system uname. For example, uname can be
executed on Z, X, and Y as follows:

uname
Z
˜[X]!uname
X
˜ ˜[Y]!uname
Y

In general, ˜ causes the command to be executed on the original machine. ˜ ˜ causes the
command to be executed on the next machine in the chain.

EXAMPLES To dial a system whose telephone number is 9 1 201 555 1234 using 1200 baud (where
dialtone is expected after the 9):

example% cu −s 1200 9=12015551234

If the speed is not specified, "Any" is the default value.

To login to a system connected by a direct line:

example% cu −l /dev/term/b

or
example% cu −l term/b

To dial a system with a specific line and speed:

example% cu −s 1200 −l term/b

To use a system name:

example% cu systemname

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of cu: LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS The following exit values are returned:
0 Successful completion.
>0 An error occurred.

FILES /etc/uucp/Devices device file
/etc/uucp/Sysfiles system file
/etc/uucp/Systems system file
/var/spool/locks/∗ lock file

modified 28 Mar 1995 SunOS 5.6 1C-211

cu (1C) Communication Commands

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWbnuu

SEE ALSO cat(1), echo(1), stty(1), uname(1), ct(1C), uuname(1C), uucp(1C), remote(4), attributes(5),
environ(5)

TCP/IP and Data Communications Administration Guide

NOTES The cu utility takes the default action upon receipt of signals, with the exception of:

SIGHUP Close the connection and terminate.

SIGINT Forward to the remote system.

SIGQUIT Forward to the remote system.

SIGUSR1 Terminate the cu process without the normal connection closing sequence.

The cu command does not do any integrity checking on data it transfers. Data fields with
special cu characters may not be transmitted properly. Depending on the interconnection
hardware, it may be necessary to use a ˜. to terminate the conversion, even if stty 0 has
been used. Non-printing characters are not dependably transmitted using either the
˜%put or ˜%take commands. ˜%put and ˜%take cannot be used over multiple links.
Files must be moved one link at a time.

There is an artificial slowing of transmission by cu during the ˜%put operation so that
loss of data is unlikely. Files transferred using ˜%take or ˜%put must contain a trailing
newline, otherwise, the operation will hang. Entering a CTRL-D command usually clears
the hang condition.

1C-212 SunOS 5.6 modified 28 Mar 1995

User Commands cut (1)

NAME cut − cut out selected fields of each line of a file

SYNOPSIS cut −b list [−n] [file . . .]
cut −c list [file . . .]
cut −f list [−d delim] [−s] [file . . .]

DESCRIPTION Use cut to cut out columns from a table or fields from each line of a file; in data base par-
lance, it implements the projection of a relation. The fields as specified by list can be fixed
length, that is, character positions as on a punched card (−c option) or the length can vary
from line to line and be marked with a field delimiter character like TAB (−f option). cut
can be used as a filter.

Either the −b, −c, or −f option must be specified.

Use grep(1) to make horizontal ‘‘cuts’’ (by context) through a file, or paste(1) to put files
together column-wise (that is, horizontally). To reorder columns in a table, use cut and
paste.

OPTIONS list A comma-separated or blank-character-separated list of integer field numbers
(in increasing order), with optional − to indicate ranges (for instance, 1,4,7;
1−3,8; −5,10 (short for 1−5,10); or 3− (short for third through last field)).

−b list The list following −b specifies byte positions (for instance, −b1−72 would pass
the first 72 bytes of each line). When −b and −n are used together, list is
adjusted so that no multi-byte character is split. If −b is used, the input line
should contain 1023 bytes or less.

−c list The list following −c specifies character positions (for instance, −c1−72 would
pass the first 72 characters of each line).

−d delim The character following −d is the field delimiter (−f option only). Default is
tab . Space or other characters with special meaning to the shell must be
quoted. delim can be a multi-byte character.

−f list The list following −f is a list of fields assumed to be separated in the file by a
delimiter character (see −d); for instance, −f1,7 copies the first and seventh
field only. Lines with no field delimiters will be passed through intact (useful
for table subheadings), unless −s is specified. If −f is used, the input line
should contain 1023 characters or less.

−n Do not split characters. When −b list and −n are used together, list is adjusted
so that no multi-byte character is split.

−s Suppresses lines with no delimiter characters in case of −f option. Unless
specified, lines with no delimiters will be passed through untouched.

OPERANDS The following operands are supported:

file A path name of an input file. If no file operands are specified, or if a file
operand is −, the standard input will be used.

modified 20 Dec 1996 SunOS 5.6 1-213

cut (1) User Commands

USAGE See largefile(5) for the description of the behavior of cut when encountering files greater
than or equal to 2 Gbyte (231 bytes).

EXAMPLES A mapping of user IDs to names follows:

example% cut −d: −f1,5 /etc/passwd

To set name to current login name:

example$ name=`who am i | cut −f1 −d’ ’`

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of cut: LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS The following exit values are returned:

0 All input files were output successfully.

>0 An error occurred.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu
CSI Enabled

SEE ALSO grep(1), paste(1), attributes(5), environ(5), largefile(5)

DIAGNOSTICS cut: −n may only be used with −b

cut: −d may only be used with −f

cut: −s may only be used with −f

cut: cannot open <file>
Either file cannot be read or does not exist. If multiple files are present, process-
ing continues.

cut: no delimiter specified
Missing delim on −d option.

cut: invalid delimiter

cut: no list specified
Missing list on −b, −c, or −f, option.

cut: invalid range specifier

cut: too many ranges specified

cut: range must be increasing

cut: invalid character in range

cut: internal error processing input

cut: invalid multibyte character

cut: unable to allocate enough memory

1-214 SunOS 5.6 modified 20 Dec 1996

User Commands date (1)

NAME date − write the date and time

SYNOPSIS /usr/bin/date [−u] [+format]
/usr/bin/date [−a [−] sss.fff]
/usr/bin/date [−u] [[mmdd] HHMM | mmddHHMM [cc] yy][.SS]

/usr/xpg4/bin/date [−u] [+format]
/usr/xpg4/bin/date [−a [−] sss.fff]
/usr/xpg4/bin/date [−u] [[mmdd] HHMM | mmddHHMM [cc] yy][.SS]

DESCRIPTION The date utility writes the date and time to standard output or attempts to set the system
date and time. By default, the current date and time will be written.

Specifications of native language translations of month and weekday names are sup-
ported. The month and weekday names used for a language are based on the locale
specified by the environment variable LC_TIME; see environ(5).

The following is the default form for the "C" locale:

%a %b %e %T %Z %Y

for example,

Fri Dec 23 10:10:42 EST 1988

OPTIONS The following options are supported:

−a [−] sss.fff Slowly adjust the time by sss.fff seconds (fff represents fractions of a
second). This adjustment can be positive or negative. The system’s clock
will be sped up or slowed down until it has drifted by the number of
seconds specified.

−u Display (or set) the date in Greenwich Mean Time (GMT—universal time),
bypassing the normal conversion to (or from) local time.

OPERANDS The following operands are supported:

+format If the argument begins with +, the output of date is the result of passing for-
mat and the current time to strftime(). date uses the conversion
specifications listed on the strftime(3C) manual page, with the conversion
specification for %C determined by whether /usr/bin/date or
/usr/xpg4/bin/date is used:

/usr/bin/date Locale’s date and time representation. This is the
default output for date.

/usr/xpg4/bin/date Century (a year divided by 100 and truncated to an
integer) as a decimal number [00-99].

The string is always terminated with a NEWLINE. An argument containing
blanks must be quoted; see the EXAMPLES section.

modified 18 Mar 1997 SunOS 5.6 1-215

date (1) User Commands

mm Month number
dd Day number in the month
HH Hour number (24 hour system)
MM Minute number
SS Second number
cc Century minus one
yy Last 2 digits of the year number

The month, day, year, and century may be omitted; the current values are
applied as defaults. For example:

date 10080045

sets the date to Oct 8, 12:45 a.m. The current year is the default because no
year is supplied. The system operates in GMT. date takes care of the
conversion to and from local standard and daylight time. Only the super-
user may change the date. After successfully setting the date and time, date
displays the new date according to the default format. The date command
uses TZ to determine the correct time zone information; see environ(5).

EXAMPLES The command

example% date ’+DATE: %m/%d/%y%nTIME: %H:%M:%S’

generates as output:

DATE: 08/01/76
TIME: 14:45:05

The command

example# date 1234.56

sets the current time to 12:34:56.

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of date: LC_CTYPE, LC_TIME, LC_MESSAGES, and NLSPATH.

TZ Determine the timezone in which the time and date are written, unless the
−u option is specified. If the TZ variable is not set and the −u is not
specified, the system default timezone is used.

EXIT STATUS The following exit values are returned:
0 Successful completion.
>0 An error occurred.

1-216 SunOS 5.6 modified 18 Mar 1997

User Commands date (1)

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

/usr/bin/date ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu
CSI enabled

/usr/xpg4/bin/date ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxcu4
CSI enabled

SEE ALSO strftime(3C), attributes(5), environ(5), xpg4(5)

DIAGNOSTICS no permission You are not the super-user and you tried to change the date.
bad conversion The date set is syntactically incorrect.

NOTES If you attempt to set the current date to one of the dates that the standard and alternate
time zones change (for example, the date that daylight time is starting or ending), and
you attempt to set the time to a time in the interval between the end of standard time and
the beginning of the alternate time (or the end of the alternate time and the beginning of
standard time), the results are unpredictable.

modified 18 Mar 1997 SunOS 5.6 1-217

dc (1) User Commands

NAME dc − desk calculator

SYNOPSIS dc [filename]

DESCRIPTION dc is an arbitrary precision arithmetic package. Ordinarily it operates on decimal
integers, but one may specify an input base, output base, and a number of fractional
digits to be maintained. The overall structure of dc is a stacking (reverse Polish) calcula-
tor. If an argument is given, input is taken from that file until its end, then from the stan-
dard input.

bc is a preprocessor for dc that provides infix notation and a C-like syntax that imple-
ments functions. bc also provides reasonable control structures for programs. See bc(1).

USAGE The following constructions are recognized:

number The value of the number is pushed on the stack. A number is an unbroken
string of the digits 0−9. It may be preceded by an underscore (_) to input a
negative number. Numbers may contain decimal points.

+ − / ∗ % ˆ The top two values on the stack are added (+), subtracted (−), multiplied
(∗), divided (/), remaindered (%), or exponentiated (ˆ). The two entries are
popped off the stack; the result is pushed on the stack in their place. Any
fractional part of an exponent is ignored.

sx The top of the stack is popped and stored into a register named x, where x
may be any character. If the s is capitalized, x is treated as a stack and the
value is pushed on it.

lx The value in register x is pushed on the stack. The register x is not altered.
All registers start with zero value. If the l is capitalized, register x is treated
as a stack and its top value is popped onto the main stack.

d The top value on the stack is duplicated.

p The top value on the stack is printed. The top value remains unchanged.

P Interprets the top of the stack as an ASCII string, removes it, and prints it.

f All values on the stack are printed.

q Exits the program. If executing a string, the recursion level is popped by
two.

Q Exits the program. The top value on the stack is popped and the string exe-
cution level is popped by that value.

x Treats the top element of the stack as a character string and executes it as a
string of dc commands.

X Replaces the number on the top of the stack with its scale factor.

[...] Puts the bracketed ASCII string onto the top of the stack.

1-218 SunOS 5.6 modified 28 Mar 1995

User Commands dc (1)

<x >x =x The top two elements of the stack are popped and compared. Register x is
evaluated if they obey the stated relation.

v Replaces the top element on the stack by its square root. Any existing frac-
tional part of the argument is taken into account, but otherwise the scale
factor is ignored.

! Interprets the rest of the line as a shell command.

c All values on the stack are popped.

i The top value on the stack is popped and used as the number radix for
further input.

I Pushes the input base on the top of the stack.

o The top value on the stack is popped and used as the number radix for
further output.

O Pushes the output base on the top of the stack.

k The top of the stack is popped, and that value is used as a non-negative
scale factor: the appropriate number of places are printed on output, and
maintained during multiplication, division, and exponentiation. The
interaction of scale factor, input base, and output base will be reasonable if
all are changed together.

K Pushes the current scale factor on the top of the stack.

z The stack level is pushed onto the stack.

Z Replaces the number on the top of the stack with its length.

? A line of input is taken from the input source (usually the terminal) and
executed.

Y Displays dc debugging information.

; : are used by bc(1) for array operations.

EXAMPLES This example prints the first ten values of n!:

[la1+dsa∗pla10>y]sy
0sa1
lyx

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu

SEE ALSO bc(1), attributes(5)

DIAGNOSTICS x is unimplemented x is an octal number.

out of space The free list is exhausted (too many digits).

modified 28 Mar 1995 SunOS 5.6 1-219

dc (1) User Commands

out of stack space Too many pushes onto the stack (stack overflow).

empty stack Too many pops from the stack (stack underflow).

nesting depth Too many levels of nested execution.

divide by 0 Division by zero.

sqrt of neg number Square root of a negative number is not defined (no ima-
ginary numbers).

exp not an integer dc only processes integer exponentiation.

exp too big The largest exponent allowed is 999.

input base is too large The input base x: 2<= x <= 16.

input base is too small The input base x: 2<= x <= 16.

output base is too large The output base must be no larger than BC_BASE_MAX.

invalid scale factor Scale factor cannot be less than 1.

scale factor is too large A scale factor cannot be larger than BC_SCALE_MAX.

symbol table overflow Too many variables have been specified.

invalid index Index cannot be less than 1.

index is too large An index cannot be larger than BC_DIM_MAX.

1-220 SunOS 5.6 modified 28 Mar 1995

User Commands deroff (1)

NAME deroff − remove nroff/troff, tbl, and eqn constructs

SYNOPSIS deroff [−m [m | s | l] [−w] [−i] [filename . . .]

DESCRIPTION deroff reads each of the filenames in sequence and removes all troff(1) requests, macro
calls, backslash constructs, eqn(1) constructs (between .EQ and .EN lines, and between
delimiters), and tbl(1) descriptions, perhaps replacing them with white space (blanks and
blank lines), and writes the remainder of the file on the standard output. deroff follows
chains of included files (.so and .nx troff commands); if a file has already been included, a
.so naming that file is ignored and a .nx naming that file terminates execution. If no input
file is given, deroff reads the standard input.

OPTIONS −m The −m option may be followed by an m, s, or l. The −mm option causes the
macros to be interpreted so that only running text is output (that is, no text
from macro lines.) The −ml option forces the −mm option and also causes
deletion of lists associated with the mm macros.

−w If the −w option is given, the output is a word list, one ‘‘word’’ per line, with
all other characters deleted. Otherwise, the output follows the original, with
the deletions mentioned above. In text, a ‘‘word’’ is any string that contains at
least two letters and is composed of letters, digits, ampersands (&), and apos-
trophes (′); in a macro call, however, a ‘‘word’’ is a string that begins with at
least two letters and contains a total of at least three letters. Delimiters are
any characters other than letters, digits, apostrophes, and ampersands. Trail-
ing apostrophes and ampersands are removed from ‘‘words.’’

−i The −i option causes deroff to ignore .so and .nx commands.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWdoc

SEE ALSO eqn(1), nroff(1), tbl(1), troff(1), attributes(5)

NOTES deroff is not a complete troff interpreter, so it can be confused by subtle constructs. Most
such errors result in too much rather than too little output.

The −ml option does not handle nested lists correctly.

modified 14 Sep 1992 SunOS 5.6 1-221

df (1B) SunOS/BSD Compatibility Package Commands

NAME df − display status of disk space on file systems

SYNOPSIS /usr/ucb/df [−a] [−i] [−t type] [filesystem...] [filename...]

DESCRIPTION df displays the amount of disk space occupied by currently mounted file systems, the
amount of used and available space, and how much of the file system’s total capacity has
been used.

If arguments to df are path names, df produces a report on the file system containing the
named file. Thus ‘df .’ shows the amount of space on the file system containing the
current directory.

OPTIONS −a Report on all filesystems including the uninteresting ones which have zero
total blocks. (that is, auto- mounter)

−i Report the number of used and free inodes. Print ‘∗’ if no information is avail-
able.

−t type Report on filesystems of a given type (for example, nfs or ufs).

EXAMPLES A sample of output for df looks like:

example% df
Filesystem kbytes used avail capacity Mounted on
sparky:/ 7445 4714 1986 70% /
sparky:/usr 42277 35291 2758 93% /usr

Note: used+avail is less than the amount of space in the file system (kbytes); this is
because the system reserves a fraction of the space in the file system to allow its file sys-
tem allocation routines to work well. The amount reserved is typically about 10%;
this may be adjusted using tunefs. When all the space on a file system except for this
reserve is in use, only the super-user can allocate new files and data blocks to existing
files. When a file system is overallocated in this way, df may report that the file system
is more than 100% utilized.

FILES /etc/mnttab list of file systems currently mounted
/etc/vfstab list of default parameters for each file system

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscpu

SEE ALSO du(1M), quot(1M), tunefs(1M), mnttab(4), attributes(5)

1B-222 SunOS 5.6 modified 14 Sep 1992

User Commands dhcpinfo (1)

NAME dhcpinfo − display value of parameters received through DHCP

SYNOPSIS dhcpinfo [−i interface] [−n limit] tag | identifier | name

DESCRIPTION dhcpinfo prints the value(s) of the parameter requested on the command line as supplied
by the DHCP protocol. If the DHCP parameter implies more than one value (that is, a list
of gateways), the values are printed separated by newline characters. The parameter may
be identified either by its numeric value in the DHCP protocol, or by its mnemonic
identifier, or by its long name. It is intended to be used in command substitutions in the
shell scripts invoked by init(1M) at system boot. It first contacts the DHCP agent daemon
dhcpagent(1M) to verify that DHCP has successfully completed. When a particular inter-
face is given with the −i option, the daemon verifies successful DHCP configuration of
that specific interface; otherwise, the client verifies that the interface marked as the "pri-
mary" has successfully configured, and supplies the name of that interface back to
dhcpinfo. Parameter values echoed by dhcpinfo should not be used without checking its
exit status. (See EXIT STATUS.)

See dhcptags(4) for the list of mnemonic identifier codes and names of all DHCP parame-
ters. See DHCP Options and BOOTP Vendor Extensions (RFC 2132) for more detail.

OPTIONS −i interface In general, it is not necessary to use this option, except on hardware
with two or more interfaces configurable by DHCP, and for a parameter
that is interface specific.

−n limit When the tag is one with a list of values, this option limits the number
printed.

OPERANDS tag Numeric value of the parameter (or option) returned to the client by the
DHCP protocol.

identifier Mnemonic symbol of the parameter returned to the client by the DHCP
protocol.

name Long name of the parameter returned to the client by the DHCP
protocol.

EXIT STATUS Exit codes are as follows:

0 Successful operation.

2 DHCP was not successful. The DHCP agent may not be running, the
interface might have failed to configure, or no satisfactory DHCP
responses were received.

3 Bad arguments.

4 A timer was set, using wait (see ifconfig(1M)), and the interface had not
configured before it expired.

6 Some system error (should never occur).

modified 9 May 1997 SunOS 5.6 1-223

dhcpinfo (1) User Commands

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsr

SEE ALSO dhcpagent(1M), ifconfig(1M), init(1M), dhcptags(4), attributes(5)

Alexander, S., and R. Droms, DHCP Options and BOOTP Vendor Extensions, RFC 2132, Sil-
icon Graphics, Inc., Bucknell University, March 1997.

1-224 SunOS 5.6 modified 9 May 1997

User Commands diff (1)

NAME diff − display line-by-line differences between pairs of text files

SYNOPSIS diff [−bitw] [−c | −e | −f | −h | −n] file1 file2
diff [−bitw] [−C number] file1 file2
diff [−bitw] [−D string] file1 file2
diff [−bitw] [−c | −e | −f | −h | −n] [−l] [−r] [−s] [−S name]

directory1 directory2

DESCRIPTION The diff utility will compare the contents of file1 and file2 and write to standard output a
list of changes necessary to convert file1 into file2. This list should be minimal. No output
will be produced if the files are identical.

The normal output contains lines of these forms:

n1 a n3,n4
n1,n2 d n3
n1,n2 c n3,n4

where n1 and n2 represent lines file1 and n3 and n4 represent lines in file2 These lines
resemble ed(1) commands to convert file1 to file2. By exchanging a for d and reading
backward, file2 can be converted to file1. As in ed, identical pairs, where n1=n2 or n3=n4,
are abbreviated as a single number.

Following each of these lines come all the lines that are affected in the first file flagged by
‘ < ’, then all the lines that are affected in the second file flagged by ‘ > ’.

OPTIONS −b Ignores trailing blanks (spaces and tabs) and treats other strings of
blanks as equivalent.

−i Ignores the case of letters; for example, ‘A’ will compare equal to ‘a’.

−t Expands TAB characters in output lines. Normal or −c output adds
character(s) to the front of each line that may adversely affect the inden-
tation of the original source lines and make the output lines difficult to
interpret. This option will preserve the original source’s indentation.

−w Ignores all blanks (SPACE and TAB characters) and treats all other strings
of blanks as equivalent; for example, ‘if (a = = b)’ will compare equal to
‘if(a= =b)’.

The following options are mutually exclusive:

−c Produces a listing of differences with three lines of context. With this
option output format is modified slightly: output begins with
identification of the files involved and their creation dates, then each
change is separated by a line with a dozen ∗’s. The lines removed from
file1 are marked with ’—’; those added to file2 are marked ’ + ’. Lines
that are changed from one file to the other are marked in both files with
’ ! ’.

modified 20 Dec 1996 SunOS 5.6 1-225

diff (1) User Commands

−C number Produces a listing of differences identical to that produced by −c with
number lines of context.

−e Produces a script of only a, c, and d commands for the editor ed, which
will recreate file2 from file1. In connection with −e, the following shell
program may help maintain multiple versions of a file. Only an ances-
tral file ($1) and a chain of version-to-version ed scripts ($2,$3,...) made
by diff need be on hand. A ‘‘latest version’’ appears on the standard
output.

(shift; cat $∗; echo ′1,$p′) � ed − $1

Except in rare circumstances, diff finds a smallest sufficient set of file differences.

−f Produces a similar script, not useful with ed, in the opposite order.

−h Does a fast, half-hearted job. It works only when changed stretches are
short and well separated, but does work on files of unlimited length.
Options −c, −e, −f, and −n are unavailable with −h. diff does not des-
cend into directories with this option.

−n Produces a script similar to −e, but in the opposite order and with a
count of changed lines on each insert or delete command.

−D string Creates a merged version of file1 and file2 with C preprocessor controls
included so that a compilation of the result without defining string is
equivalent to compiling file1, while defining string will yield file2.

The following options are used for comparing directories:

−l Produce output in long format. Before the diff, each text file is piped
through pr(1) to paginate it. Other differences are remembered and
summarized after all text file differences are reported.

−r Applies diff recursively to common subdirectories encountered.

−s Reports files that are the identical; these would not otherwise be men-
tioned.

−S name Starts a directory diff in the middle, beginning with the file name.

OPERANDS The following operands are supported:

file1
file2 A path name of a file or directory to be compared. If either file1 or file2 is −,

the standard input will be used in its place.

directory1
directory2 A path name of a directory to be compared.

If only one of file1 and file2 is a directory, diff will be applied to the non-directory file and
the file contained in the directory file with a filename that is the same as the last com-
ponent of the non-directory file.

1-226 SunOS 5.6 modified 20 Dec 1996

User Commands diff (1)

USAGE See largefile(5) for the description of the behavior of diff when encountering files greater
than or equal to 2 Gbyte (231 bytes).

EXAMPLES If dir1 is a directory containing a directory named x, dir2 is a directory containing a
directory named x, dir1/x and dir2/x both contain files named date.out, and dir2/x con-
tains a file named y, the command:

example% diff -r dir1 dir2
could produce output similar to:

Common subdirectories: dir1/x and dir2/x
Only in dir2/x: y
diff -r dir1/x/date.out dir2/x/date.out
1c1
< Mon Jul 2 13:12:16 PDT 1990

> Tue Jun 19 21:41:39 PDT 1990

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of diff: LC_CTYPE, LC_MESSAGES, LC_TIME, and NLSPATH.

TZ Determine the locale for affecting the timezone used for calculating file times-
tamps written with the −C and −c options.

EXIT STATUS The following exit values are returned:

0 No differences were found.

1 Differences were found.

>1 An error occurred.

FILES /tmp/d????? temporary file used for comparison

/usr/lib/diffh executable file for −h option

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu
CSI Enabled

SEE ALSO bdiff(1), cmp(1), comm(1), dircmp(1), ed(1), pr(1), sdiff(1), attributes(5), environ(5),
largefile(5)

NOTES Editing scripts produced under the −e or −f options are naive about creating lines consist-
ing of a single period (.).

Missing NEWLINE at end of file indicates that the last line of the file in question did not
have a NEWLINE. If the lines are different, they will be flagged and output; although the
output will seem to indicate they are the same.

modified 20 Dec 1996 SunOS 5.6 1-227

diff3 (1) User Commands

NAME diff3 − 3-way differential file comparison

SYNOPSIS diff3 [−exEX3] filename1 filename2 filename3

DESCRIPTION diff3 compares three versions of a file, and publishes disagreeing ranges of text flagged
with these codes:

==== all three files differ

====1 filename1 is different

====2 filename2 is different

====3 filename3 is different

The type of change suffered in converting a given range of a given file to some other is
indicated in one of these ways:

f : n1 a Text is to be appended after line number n1 in file f, where f =
1, 2, or 3.

f : n1 , n2 c Text is to be changed in the range line n1 to line n2. If n1 = n2,
the range may be abbreviated to n1.

The original contents of the range follows immediately after a c indication. When the
contents of two files are identical, the contents of the lower-numbered file is suppressed.

The following command will apply the resulting script to filename1.

(cat script; echo ′1,$p′) � ed − filename1

OPTIONS −e Produce a script for the editor ed(1) that will incorporate into filename1 all
changes between filename2 and filename3, i.e., the changes that normally
would be flagged ==== and ====3.

−x Produce a script to incorporate only changes flagged ====.

−3 Produce a script to incorporate only changes flagged ====3.

−E Produce a script that will incorporate all changes between filename2 and
filename3, but treat overlapping changes (that is, changes that would be
flagged with ==== in the normal listing) differently. The overlapping lines
from both files will be inserted by the edit script, bracketed by <<<<<< and
>>>>>> lines.

−X Produce a script that will incorporate only changes flagged ====, but treat
these changes in the manner of the −E option.

USAGE See largefile(5) for the description of the behavior of diff3 when encountering files
greater than or equal to 2 Gbyte (231 bytes).

FILES /tmp/d3∗
/usr/lib/diff3prog

1-228 SunOS 5.6 modified 14 Sep 1992

User Commands diff3 (1)

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu
CSI enabled

SEE ALSO diff(1), attributes(5), largefile(5)

NOTES Text lines that consist of a single ‘.’ will defeat −e.

Files longer than 64 Kbytes will not work.

modified 14 Sep 1992 SunOS 5.6 1-229

diffmk (1) User Commands

NAME diffmk − mark differences between versions of a troff input file

SYNOPSIS diffmk oldfile newfile markedfile

DESCRIPTION diffmk compares two versions of a file and creates a third version that includes “change
mark” (.mc) commands for nroff(1) and troff(1). oldfile and newfile are the old and new
versions of the file. diffmk generates markedfile, which, contains the text from newfile
with troff(1) “change mark” requests (.mc) inserted where newfile differs from oldfile.
When markedfile is formatted, changed or inserted text is shown by | at the right margin
of each line. The position of deleted text is shown by a single ∗.

USAGE See largefile(5) for the description of the behavior of diffmk when encountering files
greater than or equal to 2 Gbyte (231 bytes).

EXAMPLES diffmk can also be used in conjunction with the proper troff requests to produce pro-
gram listings with marked changes. In the following command line:

example% diffmk old.c new.c marked.c ; nroff reqs marked.c | pr

the file reqs contains the following troff requests:
.pl 1
.ll 77
.nf
.eo
.nh

which eliminate page breaks, adjust the line length, set no-fill mode, ignore escape char-
acters, and turn off hyphenation, respectively.

If the characters | and ∗ are inappropriate, you might run markedfile through sed(1) to
globally change them.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWdoc

SEE ALSO diff(1), nroff(1), sed(1), troff(1), attributes(5), largefile(5)

BUGS Aesthetic considerations may dictate manual adjustment of some output. File differences
involving only formatting requests may produce undesirable output, that is, replacing .sp
by .sp 2 will produce a “change mark” on the preceding or following line of output.

1-230 SunOS 5.6 modified 14 Sep 1992

User Commands dircmp (1)

NAME dircmp − directory comparison

SYNOPSIS dircmp [−ds] [−w n] dir1 dir2

DESCRIPTION The dircmp command examines dir1 and dir2 and generates various tabulated informa-
tion about the contents of the directories. Listings of files that are unique to each directory
are generated for all the options. If no option is entered, a list is output indicating
whether the file names common to both directories have the same contents.

OPTIONS The following options are supported:

−d Compare the contents of files with the same name in both directories and out-
put a list telling what must be changed in the two files to bring them into
agreement. The list format is described in diff(1).

−s Suppress messages about identical files.

−w n Change the width of the output line to n characters. The default width is 72.

OPERANDS The following operands are supported:
dir1
dir2 A path name of a directory to be compared.

USAGE See largefile(5) for the description of the behavior of dircmp when encountering files
greater than or equal to 2 Gbyte (231 bytes).

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of dircmp: LC_COLLATE, LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS The following exit values are returned:

0 Successful completion.

>0 An error occurred. (differences in directory contents are not considered
errors)

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu

SEE ALSO cmp(1), diff(1), attributes(5), environ(5), largefile(5)

modified 1 Feb 1995 SunOS 5.6 1-231

dis (1) User Commands

NAME dis − object code disassembler

SYNOPSIS /usr/ccs/bin/dis [−C] [−o] [−V] [−L] [−d sec] [−D sec] [−F function]
[−l string] [−t sec] file . . .

DESCRIPTION The dis command produces an assembly language listing of file, which may be an object
file or an archive of object files. The listing includes assembly statements and an octal or
hexadecimal representation of the binary that produced those statements.

OPTIONS The following options are interpreted by the disassembler and may be specified in any
order.

−C Display demangled C++ symbol names in the disassembly.

−d sec Disassemble the named section as data, printing the offset of the data
from the beginning of the section.

−D sec Disassemble the named section as data, printing the actual address of
the data.

−F function Disassemble only the named function in each object file specified on the
command line. The −F option may be specified multiple times on the
command line.

−l string Disassemble the archive file specified by string. For example, one would
issue the command dis −l x −l z to disassemble libx.a and libz.a, which
are assumed to be in LIBDIR.

−L Invoke a lookup of C-language source labels in the symbol table for sub-
sequent writing to standard output.

−o Print numbers in octal. The default is hexadecimal.

−t sec Disassemble the named section as text.

−V Print, on standard error, the version number of the disassembler being
executed.

If the −d, −D or −t options are specified, only those named sections from each user-
supplied file will be disassembled. Otherwise, all sections containing text will be
disassembled.

On output, a number enclosed in brackets at the beginning of a line, such as [5], indicates
that the break-pointable line number starts with the following instruction. These line
numbers will be printed only if the file was compiled with additional debugging informa-
tion, for example, the −g option of cc(1B). An expression such as <40> in the operand
field or in the symbolic disassembly, following a relative displacement for control
transfer instructions, is the computed address within the section to which control will be
transferred. A function name will appear in the first column, followed by () if the object
file contains a symbol table.

1-232 SunOS 5.6 modified 1 Feb 1995

User Commands dis (1)

OPERANDS The following operands are supported:

file A path name of an object file or an archive (see ar(1)) of object files.

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of dis: LC_CTYPE, LC_MESSAGES, and NLSPATH.

LIBDIR If this environment variable contains a value, use this as the path to
search for the library. If the variable contains a null value, or is not set, it
defaults to searching for the library under /usr/ccs/lib.

EXIT STATUS The following exit values are returned:
0 Successful completion.
>0 An error occurred.

FILES /usr/ccs/lib default LIBDIR

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWbtool

SEE ALSO as(1), cc(1B), ld(1), a.out(4), attributes(5), environ(5)

DIAGNOSTICS The self-explanatory diagnostics indicate errors in the command line or problems
encountered with the specified files.

modified 1 Feb 1995 SunOS 5.6 1-233

dispgid (1) User Commands

NAME dispgid − displays a list of all valid group names

SYNOPSIS dispgid

DESCRIPTION dispgid displays a list of all group names on the system (one group per line).

EXIT CODES 0 Successful execution

1 Cannot read the group file

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO attributes(5)

1-234 SunOS 5.6 modified 14 Sep 1992

User Commands dispuid (1)

NAME dispuid − displays a list of all valid user names

SYNOPSIS dispuid

DESCRIPTION dispuid displays a list of all user names on the system (one line per name).

EXIT CODES 0 Successful execution

1 Cannot read the password file

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO attributes(5)

modified 14 Sep 1992 SunOS 5.6 1-235

dos2unix (1) User Commands

NAME dos2unix − convert text file from DOS format to ISO format

SYNOPSIS dos2unix [−ascii] [−iso] [−7] originalfile convertedfile

DESCRIPTION dos2unix converts characters in the DOS extended character set to the corresponding ISO
standard characters.

This command can be invoked from either DOS or SunOS. However, the filenames must
conform to the conventions of the environment in which the command is invoked.

If the original file and the converted file are the same, dos2unix will rewrite the original
file after converting it.

OPTIONS −ascii Removes extra carriage returns and converts end of file characters in DOS format
text files to conform to SunOS requirements.

−iso This is the default. It converts characters in the DOS extended character set to the
corresponding ISO standard characters.

−7 Convert 8 bit DOS graphics characters to 7 bit space characters so that SunOS can
read the file.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu

SEE ALSO unix2dos(1), attributes(5)

DIAGNOSTICS File filename not found, or no read permission
The input file you specified does not exist, or you do not have read permission
(check with the SunOS ls −l command).

Bad output filename filename, or no write permission
The output file you specified is either invalid, or you do not have write permis-
sion for that file or the directory that contains it. Check also that the drive or
diskette is not write-protected.

Error while writing to temporary file
An error occurred while converting your file, possibly because there is not
enough space on the current drive. Check the amount of space on the current
drive using the DIR command. Also be certain that the default diskette or drive
is write-enabled (not write-protected). Note that when this error occurs, the ori-
ginal file remains intact.

Could not rename temporary file to filename.

Translated temporary file name = filename.
The program could not perform the final step in converting your file. Your con-
verted file is stored under the name indicated on the second line of this message.

1-236 SunOS 5.6 modified 14 Sep 1992

User Commands download (1)

NAME download − host resident PostScript font downloader

SYNOPSIS download [−f] [−p printer] [−m name] [−H directory] [file . . .]

/usr/lib/lp/postscript/download

DESCRIPTION download prepends host resident fonts to files and writes the results on the standard out-
put. If no files are specified, or if − is one of the input files, the standard input is read.
download assumes the input files make up a single PostScript job and that requested fonts
can be included at the start of each input file.

Requested fonts are named in a comment (marked with %%DocumentFonts:) in the
input files. Available fonts are the ones listed in the map table selected using the −m
option.

The map table consists of fontname−file pairs. The fontname is the full name of the
PostScript font, exactly as it would appear in a %%DocumentFonts: comment. The file is
the pathname of the host resident font. A file that begins with a / is used as is. Otherwise
the pathname is relative to the host font directory. Comments are introduced by % (as in
PostScript) and extend to the end of the line.

The only candidates for downloading are fonts listed in the map table that point down-
load to readable files. A font is downloaded once, at most. Requests for unlisted fonts or
inaccessible files are ignored. All requests are ignored if the map table can not be read.

OPTIONS −f Force a complete scan of each input file. In the absence of an explicit
comment pointing download to the end of the file, the default scan stops
immediately after the PostScript header comments.

−p printer Check the list of printer-resident fonts in
/etc/lp/printers/printer/residentfonts before downloading.

−m name Use name as the font map table. A name that begins with / is the full
pathname of the map table and is used as is. Otherwise name is
appended to the pathname of the host font directory.

−H directory Use dir as the host font directory. The default is /usr/lib/lp/postscript.

EXAMPLES The following map table could be used to control the downloading of the Bookman font
family:

%
% The first string is the full PostScript font name. The second string
% is the file name - relative to the host font directory unless it begins
% with a /.
%

Bookman-Light bookman/light
Bookman-LightItalic bookman/lightitalic
Bookman-Demi bookman/demi

modified 9 Sep 1996 SunOS 5.6 1-237

download (1) User Commands

Bookman-DemiItalic bookman/demiitalic

Using the file myprinter/map (in the default host font directory) as the map table, you
could download fonts by issuing the following command:

example% download −m myprinter/map file

EXIT STATUS The following exit values are returned:
0 Successful completion.
non-zero An error occurred.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWpsf

SEE ALSO dpost(1), postdaisy(1), postdmd(1), postio(1), postmd(1), postprint(1), posttek(1), attri-
butes(5)

NOTES The download program should be part of a more general program.

download does not look for %%PageFonts: comments and there is no way to force multi-
ple downloads of a particular font.

Using full pathnames in either map tables or the names of map tables is not recom-
mended.

1-238 SunOS 5.6 modified 9 Sep 1996

User Commands dpost (1)

NAME dpost − troff postprocessor for PostScript printers

SYNOPSIS dpost [−c num] [−e num] [−m num] [−n num] [−o list] [−w num] [−x num] [−y num]
[−F dir] [−H dir] [−L file] [−O] [−T name] [file. . .]

/usr/lib/lp/postscript/dpost

DESCRIPTION dpost translates files created by troff(1) into PostScript and writes the results on the stan-
dard output. If no files are specified, or if − is one of the input files, the standard input is
read.

The files should be prepared by troff. The default font files in /usr/lib/font/devpost pro-
duce the best and most efficient output. They assume a resolution of 720 dpi, and can be
used to format files by adding the −Tpost option to the troff call. Older versions of the
eqn and pic preprocessors need to know the resolution that troff will be using to format
the files. If those are the versions installed on your system, use the −r720 option with eqn
and −T720 with pic.

dpost makes no assumptions about resolutions. The first x res command sets the resolu-
tion used to translate the input files, the DESC.out file, usually
/usr/lib/font/devpost/DESC.out, defines the resolution used in the binary font files, and
the PostScript prologue is responsible for setting up an appropriate user coordinate sys-
tem.

OPTIONS −c num Print num copies of each page. By default only one copy is printed.

−e num Sets the text encoding level to num. The recognized choices are 0, 1, and
2. The size of the output file and print time should decrease as num
increases. Level 2 encoding will typically be about 20 percent faster than
level 0, which is the default and produces output essentially identical to
previous versions of dpost.

−m num Magnify each logical page by the factor num. Pages are scaled uni-
formly about the origin, which is located near the upper left corner of
each page. The default magnification is 1.0.

−n num Print num logical pages on each piece of paper, where num can be any
positive integer. By default, num is set to 1.

−o list Print those pages for which numbers are given in the comma-separated
list. The list contains single numbers N and ranges N1−N2. A missing
N1 means the lowest numbered page, a missing N2 means the highest.
The page range is an expression of logical pages rather than physical
sheets of paper. For example, if you are printing two logical pages to a
sheet, and you specified a range of 4, then two sheets of paper would
print, containing four page layouts. If you specified a page range of 3-4,
when requesting two logical pages to a sheet; then only page 3 and page
4 layouts would print, and they would appear on one physical sheet of
paper.

modified 9 Sep 1996 SunOS 5.6 1-239

dpost (1) User Commands

−p mode Print files in either portrait or landscape mode . Only the first character of
mode is significant. The default mode is portrait.

−w num Set the line width used to implement troff graphics commands to num
points, where a point is approximately 1/72 of an inch. By default, num
is set to 0.3 points.

−x num Translate the origin num inches along the positive x axis. The default
coordinate system has the origin fixed near the upper left corner of the
page, with positive x to the right and positive y down the page. Positive
num moves everything right. The default offset is 0 inches.

−y num Translate the origin num inches along the positive y axis. Positive num
moves text up the page. The default offset is 0.

−F dir Use dir as the font directory. The default dir is /usr/lib/font, and dpost
reads binary font files from directory /usr/lib/font/devpost.

−H dir Use dir as the host resident font directory. Files in this directory should
be complete PostScript font descriptions, and must be assigned a name
that corresponds to the appropriate two-character troff font name. Each
font file is copied to the output file only when needed and at most once
during each job. There is no default directory.

−L file Use file as the PostScript prologue which, by default, is
/usr/lib/lp/postscript/dpost.ps.

−O Disables PostScript picture inclusion. A recommended option when
dpost is run by a spooler in a networked environment.

−T name Use font files for device name as the best description of available
PostScript fonts. By default, name is set to post and dpost reads binary
files from /usr/lib/font/devpost.

EXAMPLES If the old versions of eqn and pic are installed on your system, you can obtain the best
possible looking output by issuing a command line such as the following:

example% pic −T720 file | tbl | eqn −r720 | troff −mm −Tpost | dpost

Otherwise,

example% pic file | tbl | eqn | troff −mm −Tpost | dpost

should give the best results.

EXIT STATUS The following exit values are returned:
0 Successful completion.
non-zero An error occurred.

FILES /usr/lib/font/devpost/∗.out
/usr/lib/font/devpost/charlib/∗
/usr/lib/lp/postscript/color.ps
/usr/lib/lp/postscript/draw.ps
/usr/lib/lp/postscript/forms.ps

1-240 SunOS 5.6 modified 9 Sep 1996

User Commands dpost (1)

/usr/lib/lp/postscript/ps.requests
/usr/lib/macros/pictures
/usr/lib/macros/color

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWpsf

SEE ALSO download(1), postdaisy(1), postdmd(1), postio(1), postmd(1), postprint(1), pos-
treverse(1), posttek(1), troff(1), attributes(5)

NOTES Output files often do not conform to Adobe’s file structuring conventions. Piping the
output of dpost through postreverse(1) should produce a minimally conforming
PostScript file.

Although dpost can handle files formatted for any device, emulation is expensive and
can easily double the print time and the size of the output file. No attempt has been
made to implement the character sets or fonts available on all devices supported by troff.
Missing characters will be replaced by white space, and unrecognized fonts will usually
default to one of the Times fonts (that is, R, I, B, or BI).

An x res command must precede the first x init command, and all the input files should
have been prepared for the same output device.

Use of the −T option is not encouraged. Its only purpose is to enable the use of other
PostScript font and device description files, that perhaps use different resolutions, charac-
ter sets, or fonts.

Although level 0 encoding is the only scheme that has been thoroughly tested, level 2 is
fast and may be worth a try.

modified 9 Sep 1996 SunOS 5.6 1-241

du (1B) SunOS/BSD Compatibility Package Commands

NAME du − display the number of disk blocks used per directory or file

SYNOPSIS /usr/ucb/du

/usr/ucb/du [−a] [−s] [filename]

DESCRIPTION du gives the number of kilobytes contained in all files and, recursively, directories within
each specified directory or file filename. If filename is missing, ‘.’ (the current directory) is
used.

A file which has multiple links to it is only counted once.

OPTIONS −a Generate an entry for each file.

−s Only display the grand total for each of the specified filenames.

Entries are generated only for each directory in the absence of options.

EXAMPLES Here is an example of using du in a directory. We used the pwd(1) command to identify
the directory, then used du to show the usage of all the subdirectories in that directory.
The grand total for the directory is the last entry in the display:

example% pwd
/usr/ralph/misc
example% du
5 . /jokes
33 . /squash
44 . /tech.papers/lpr.document
217 . /tech.papers/new.manager
401 . /tech.papers
144 . /memos
80 . /letters
388 . /window
93 . /messages
15 . /useful.news
1211 .
example%

ENVIRONMENT If any of the LC_∗ variables (LC_CTYPE, LC_MESSAGES, LC_TIME, LC_COLLATE,
LC_NUMERIC, and LC_MONETARY) (see environ(5)) are not set in the environment, the
operational behavior of du for each corresponding locale category is determined by the
value of the LANG environment variable. If LC_ALL is set, its contents are used to over-
ride both the LANG and the other LC_∗ variables. If none of the above variables is set in
the environment, the "C" (U.S. style) locale determines how du behaves.

1B-242 SunOS 5.6 modified 14 Sep 1992

SunOS/BSD Compatibility Package Commands du (1B)

LC_CTYPE
Determines how du handles characters. When LC_CTYPE is set to a valid value,
du can display and handle text and filenames containing valid characters for that
locale. du can display and handle Extended Unix Code (EUC) characters where
any individual character can be 1, 2, or 3 bytes wide. du can also handle EUC
characters of 1, 2, or more column widths. In the "C" locale, only characters from
ISO 8859-1 are valid.

LC_MESSAGES
Determines how diagnostic and informative messages are presented. This
includes the language and style of the messages, and the correct form of
affirmative and negative responses. In the "C" locale, the messages are presented
in the default form found in the program itself (in most cases, U.S. English).

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscpu

SEE ALSO pwd(1), df(1M), quot(1M), attributes(5), environ(5)

NOTES Filename arguments that are not directory names are ignored, unless you use −a.

If there are too many distinct linked files, du will count the excess files more than once.

modified 14 Sep 1992 SunOS 5.6 1B-243

dump (1) User Commands

NAME dump − dump selected parts of an object file

SYNOPSIS dump [−aCcDfghLlorstV] [−T index [, indexn]] filename . . .
dump [−afhorstL [v]] filename . . .
dump [−hsr [−d number [, numbern]]] filename . . .
dump [−hsrt [−n name]] filename . . .

DESCRIPTION The dump command dumps selected parts of each of its object file arguments.

OPTIONS This command will accept both object files and archives of object files. It processes each
file argument according to one or more of the following options:

−a Dump the archive header of each member of an archive.

−c Dump the string table(s).

−C Dump decoded C++ symbol table names.

−D Dump debugging information.

−f Dump each file header.

−g Dump the global symbols in the symbol table of an archive.

−h Dump the section headers.

−l Dump line number information.

−L Dump dynamic linking information and static shared library information, if
available.

−o Dump each program execution header.

−r Dump relocation information.

−s Dump section contents in hexadecimal.

−t Dump symbol table entries.

−T index or −T index1,index2
Dump only the indexed symbol table entry defined by index or a range of
entries defined by index1,index2.

−V Print version information.

The following modifiers are used in conjunction with the options listed above to modify
their capabilities.

−d number or −d number1,number2
Dump the section number indicated by number or the range of sections start-
ing at number1 and ending at number2 . This modifier can be used with −h,
−s, and −r. When −d is used with −h or −s, the argument is treated as the
number of a section or range of sections. When −d is used with −r, the argu-
ment is treated as the number of the section or range of sections to which the
relocation applies. For example, to print out all relocation entries associated
with the .text section, specify the number of the section as the argument to
−d. If .text is section number 2 in the file, dump −r −d 2 will print all

1-244 SunOS 5.6 modified 11 Oct 1990

User Commands dump (1)

associated entries. To print out a specific relocation section use
dump −s −n name for raw data output, or dump −sv −n name for interpreted
output.

−n name Dump information pertaining only to the named entity. This modifier can be
used with −h, −s, −r, and −t. When −n is used with −h or −s, the argument
will be treated as the name of a section. When −n is used with −t or −r, the
argument will be treated as the name of a symbol. For example,
dump −t −n .text will dump the symbol table entry associated with the sym-
bol whose name is .text, where dump −h −n .text will dump the section
header information for the .text section.

−p Suppress printing of the headings.

−v Dump information in symbolic representation rather than numeric. This
modifier can be used with −a (date, user id, group id), −f (class, data, type,
machine, version, flags), −h (type, flags), −o (type, flags), −r (name, type), −s
(interpret section contents wherever possible), −t (type, bind), and −L
(value). When −v is used with −s, all sections that can be interpreted, such as
the string table or symbol table, will be interpreted. For example, dump −sv
−n .symtab filename. . . will produce the same formatted output as dump −tv
filename. . . , but dump −s −n .symtab filename. . . will print raw data in hexa-
decimal. Without additional modifiers, dump −sv filename. . . will dump all
sections in the files interpreting all those that it can and dumping the rest
(such as .text or .data) as raw data.

The dump command attempts to format the information it dumps in a meaningful way,
printing certain information in character, hexadecimal, octal or decimal representation as
appropriate.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWbtool

SEE ALSO nm(1), a.out(4), ar(4), attributes(5)

modified 11 Oct 1990 SunOS 5.6 1-245

dumpcs (1) User Commands

NAME dumpcs − show codeset table for the current locale

SYNOPSIS dumpcs [−0123vw]

DESCRIPTION dumpcs shows a list of printable characters for the user’s current locale, along with their
hexadecimal code values. The display device is assumed to be capable of displaying
characters for a given locale. With no option, dumpcs displays the entire list of printable
characters for the current locale.

With one or more numeric options specified, it shows EUC codeset(s) for the current
locale according to the numbers specified, and in order of codeset number. Each non-
printable character is represented by an asterisk “∗” and enough ASCII space character(s)
to fill that codeset’s column width.

OPTIONS −0 Show ASCII (or EUC primary) codeset.

−1 Show EUC codeset 1, if used for the current locale.

−2 Show EUC codeset 2, if used for the current locale.

−3 Show EUC codeset 3, if used for the current locale.

−v “Verbose”. Normally, ranges of non-printable characters are collapsed into a sin-
gle line. This option produces one line for each non-printable character.

−w Replace code values with corresponding wide character values (process codes).

ENVIRONMENT The environment variables LC_CTYPE and LANG control the character classification
throughout dumpcs. On entry to dumpcs, these environment variables are checked in
that order. This implies that a new setting for LANG does not override the setting of
LC_CTYPE. When none of the values is valid, the character classification defaults to the
POSIX.1 “C” locale.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO localedef(1), attributes(5)

NOTES dumpcs can only handle EUC locales.

1-246 SunOS 5.6 modified 20 Dec 1996

User Commands echo (1)

NAME echo − echo arguments

SYNOPSIS /usr/bin/echo [string . . .]

DESCRIPTION The echo utility writes its arguments, separated by BLANKs and terminated by a NEW-
LINE, to the standard output. If there are no arguments, only the NEWLINE character will
be written.

echo is useful for producing diagnostics in command files, for sending known data into a
pipe, and for displaying the contents of environment variables.

The C shell, the Korn shell, and the Bourne shell all have echo built-in commands, which,
by default, will be invoked if the user calls echo without a full pathname. See
shell_builtins(1). sh’s echo, ksh’s echo, and /usr/bin/echo understand the back-slashed
escape characters, except that sh’s echo does not understand \ a as the alert character. In
addition, ksh’s echo, does not have a −n option. sh’s echo and /usr/bin/echo only have a
−n option if the SYSV3 environment variable is set (see ENVIRONMENT below). If it is,
none of the backslashed characters mentioned above are availible. csh’s echo and
/usr/ucb/echo, on the other hand, have a −n option, but do not understand the back-
slashed escape characters.

OPERANDS The following operands are supported:

string A string to be written to standard output. If any operand is “−n”, it will be
treated as a string, not an option. The following character sequences will be
recognized within any of the arguments:
\ a alert character
\ b backspace
\ c print line without new-line
\ f form-feed
\ n new-line
\ r carriage return
\ t tab
\v vertical tab
\\ backslash
\ 0n where n is the 8-bit character whose ASCII code is the 1-, 2- or 3-digit

octal number representing that character.

USAGE Portable applications should not use −n (as the first argument) or escape sequences.

The printf(1) utility can be used portably to emulate any of the traditional behaviors of
the echo utility as follows:

· The Solaris 2.x /usr/bin/echo is equivalent to:

printf "%b\n" "$∗"

modified 8 Jan 1997 SunOS 5.6 1-247

echo (1) User Commands

· The /usr/ucb/echo is equivalent to:

if ["X$1" = "X-n"]
then

shift
printf "%s" "$∗"

else
printf "%s\n" "$∗"

fi

New applications are encouraged to use printf instead of echo.

EXAMPLES You can use echo to determine how many subdirectories below the root directory (/) is
your current directory, as follows:

· echo your current-working-directory’s full pathname
· pipe the output through tr to translate the path’s embedded slash-characters

into space-characters
· pipe that output through wc -w for a count of the names in your path.

example% /usr/bin/echo $PWD | tr ’/’ ’ ’ | wc -w

See tr(1) and wc(1) for their functionality.

Below are the different flavors for echoing a string without a NEWLINE:

/usr/bin/echo % /usr/bin/echo "$USER’s current directory is $PWD\c"

sh/ksh shells $ echo "$USER’s current directory is $PWD\c"

csh shell % echo -n "$USER’s current directory is $PWD"

/usr/ucb/echo % /usr/ucb/echo -n "$USER’s current directory is $PWD"

ENVIRONMENT SYSV3 This environment variable is used to provide compatibility with
INTERACIVE UNIX System and SCO UNIX installation scripts. It is
intended for compatibility only and should not be used in new scripts.

See environ(5) for descriptions of the following environment variables that affect the exe-
cution of echo: LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS The following error values are returned:

0 Successful completion.

>0 An error occurred.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu
CSI enabled

1-248 SunOS 5.6 modified 8 Jan 1997

User Commands echo (1)

SEE ALSO echo(1B), printf(1), shell_builtins(1), tr(1), wc(1), ascii(5), attributes(5), environ(5)

NOTES When representing an 8-bit character by using the escape convention \ 0n, the n must
always be preceded by the digit zero (0).

For example, typing: echo ´WARNING:\ 07´ will print the phrase WARNING: and sound
the “bell” on your terminal. The use of single (or double) quotes (or two backslashes) is
required to protect the “ \” that precedes the “07”.

Following the \ 0, up to three digits are used in constructing the octal output character.
If, following the \ 0n, you want to echo additional digits that are not part of the octal
representation, you must use the full 3-digit n. For example, if you want to echo “ESC 7”
you must use the three digits “033” rather than just the two digits “33” after the \ 0.

2 digits Incorrect: echo "\0337" | od -xc
produces: df0a (hex)

337 (ascii)

3 digits Correct: echo "\00337" | od -xc
produces: lb37 0a00 (hex)

033 7 (ascii)

For the octal equivalents of each character, see ascii(5).

modified 8 Jan 1997 SunOS 5.6 1-249

echo (1B) SunOS/BSD Compatibility Package Commands

NAME echo − echo arguments to standard output

SYNOPSIS /usr/ucb/echo [−n] [argument]

DESCRIPTION echo writes its arguments, separated by BLANKs and terminated by a NEWLINE, to the
standard output.

echo is useful for producing diagnostics in command files and for sending known data
into a pipe, and for displaying the contents of environment variables.

For example, you can use echo to determine how many subdirectories below the root
directory (/) is your current directory, as follows:

· echo your current-working-directory’s full pathname
· pipe the output through tr to translate the path’s embedded slash-characters

into space-characters
· pipe that output through wc -w for a count of the names in your path.

example% /usr/bin/echo "echo $PWD | tr ’/’ ’ ’ | wc -w"

See tr(1) and wc(1) for their functionality.

The shells, csh(1), ksh(1), and sh(1), each have an echo built-in command, which, by
default, will have precedence, and will be invoked if the user calls echo without a full
pathname. /usr/ucb/echo and csh’s echo() have a −n option, but do not understand
back-slashed escape characters. sh’s echo(), ksh’s echo(), and /usr/bin/echo, on the
other hand, understand the black-slashed escape characters, and ksh’s echo() also under-
stands \ a as the audible bell character; however, these commands do not have a −n
option.

OPTIONS −n Do not add the NEWLINE to the output.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscpu

SEE ALSO csh(1), echo(1), ksh(1), sh(1), tr(1), wc(1), attributes(5)

NOTES The −n option is a transition aid for BSD applications, and may not be supported in future
releases.

1B-250 SunOS 5.6 modified 3 Aug 1994

FMLI Commands echo (1F)

NAME echo − put string on virtual output

SYNOPSIS echo [string . . .]

DESCRIPTION The echo function directs each string it is passed to the standard output. If no argument
is given, echo looks to the standard input for input. It is often used in conditional execu-
tion or for passing a string to another command.

EXAMPLES Set the done descriptor to help if a test fails:

done=`if [-s $F1];
then echo close;
else echo help;
fi`

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO echo(1), attributes(5)

modified 5 Jul 1990 SunOS 5.6 1F-251

ed (1) User Commands

NAME ed, red − text editor

SYNOPSIS /usr/bin/ed [−s|−] [−p string] [−x] [−C] [file]

/usr/xpg4/bin/ed [−s|−] [−p string] [−x] [−C] [file]

/usr/bin/red [−s|−] [−p string] [−x] [−C] [file]

DESCRIPTION The ed utility is the standard text editor. If file is specified, ed simulates an e command
(see below) on the named file; that is to say, the file is read into ed’s buffer so that it can
be edited.

The ed utility operates on a copy of the file it is editing; changes made to the copy have
no effect on the file until a w (write) command is given. The copy of the text being edited
resides in a temporary file called the buffer. There is only one buffer.

The red utility is a restricted version of ed. It will only allow editing of files in the current
directory. It prohibits executing shell commands via !shell command. Attempts to bypass
these restrictions result in an error message (restricted shell).

Both ed and red support the fspec(4) formatting capability. The default terminal mode is
either stty −tabs or stty tab3, where tab stops are set at eight columns (see stty(1)). If,
however, the first line of file contains a format specification, that specification will over-
ride the default mode. For example, if the first line of file contains

<:t5,10,15 s72:>

tab stops would be set at 5, 10, and 15, and a maximum line length of 72 would be
imposed.

Commands to ed have a simple and regular structure: zero, one, or two addresses fol-
lowed by a single-character command, possibly followed by parameters to that command.
These addresses specify one or more lines in the buffer. Every command that requires
addresses has default addresses, so that the addresses can very often be omitted.

In general, only one command may appear on a line. Certain commands allow the input
of text. This text is placed in the appropriate place in the buffer. While ed is accepting
text, it is said to be in input mode . In this mode, no commands are recognized; all input is
merely collected. Leave input mode by typing a period (.) at the beginning of a line, fol-
lowed immediately by a carriage return.

/usr/bin/ed If ed executes commands with arguments, it uses the default shell /usr/bin/sh (see sh(1)).

/usr/xpg4/bin/ed If ed executes commands with arguments, it uses /usr/xpg4/bin/sh, which is equivalent
to /usr/bin/ksh (see ksh(1)).

Regular Expressions The ed utility supports a limited form of regular expression notation. Regular expressions
are used in addresses to specify lines and in some commands (for example, s) to specify
portions of a line that are to be substituted. To understand addressing in ed, it is neces-
sary to know that at any time there is a current line. Generally speaking, the current line
is the last line affected by a command; the exact effect on the current line is discussed

1-252 SunOS 5.6 modified 18 Mar 1997

User Commands ed (1)

under the description of each command.

Internationalized Basic Regular Expressions are used for all system-supplied locales. See
regex(5).

ed Commands Commands may require zero, one, or two addresses. Commands that require no
addresses regard the presence of an address as an error. Commands that accept one or
two addresses assume default addresses when an insufficient number of addresses is
given; if more addresses are given than such a command requires, the last one(s) are
used.

Typically, addresses are separated from each other by a comma (,). They may also be
separated by a semicolon (;). In the latter case, the first address is calculated, the current
line (.) is set to that value, and then the second address is calculated. This feature can be
used to determine the starting line for forward and backward searches (see Rules 5 and 6,
above). The second address of any two-address sequence must correspond to a line in
the buffer that follows the line corresponding to the first address.

In the following list of ed commands, the parentheses shown prior to the command are
not part of the address; rather, they show the default address(es) for the command.

Each address component can be preceded by zero or more blank characters. The com-
mand letter can be preceded by zero or more blank characters. If a suffix letter (l, n, or p)
is given, it must immediately follow the command.

The e, E, f, r, and w commands take an optional file parameter, separated from the com-
mand letter by one or more blank characters.

If changes have been made in the buffer since the last w command that wrote the entire
buffer, ed will warn the user if an attempt is made to destroy the editor buffer via the e or
q commands. The ed utility will write the string:

"?\ n"
(followed by an explanatory message if help mode has been enabled via the H command)
to standard output and will continue in command mode with the current line number
unchanged. If the e or q command is repeated with no intervening command, it will take
effect.

If an end-of-file is detected on standard input when a command is expected, the ed utility
acts as if a q command had been entered.

It is generally illegal for more than one command to appear on a line. However, any
command (except e, f, r, or w) may be suffixed by l, n, or p in which case the current line
is either listed, numbered or written, respectively, as discussed below under the l, n, and
p commands.

(.)a The append command accepts zero or more lines of text and appends it
<text> after the addressed line in the buffer. The current line (.) is left at the last
. inserted line, or, if there were none, at the addressed line. Address 0 is legal

for this command: it causes the ‘‘appended’’ text to be placed at the beginning
of the buffer. The maximum number of characters that may be entered from a
terminal is 256 per line (including the new-line character).

modified 18 Mar 1997 SunOS 5.6 1-253

ed (1) User Commands

(.)c The change command deletes the addressed lines from the buffer, then
<text> accepts zero or more lines of text that replaces these lines in the buffer. The
. current line (.) is left at the last line input, or, if there were none, at the first

line that was not deleted; if the lines deleted were originally at the end of the
buffer, the current line number will be set to the address of the new last line; if
no lines remain in the buffer, the current line number will be
set to 0.

C Same as the X command, described later, except that ed assumes all text read
in for the e and r commands is encrypted unless a null key is typed in.

(. , .)d The delete command deletes the addressed lines from the buffer. The line
after the last line deleted becomes the current line; if the lines deleted were
originally at the end of the buffer, the new last line becomes the current line.
If no lines remain in the buffer, the current line number will be
set to 0.

e file The edit command deletes the entire contents of the buffer and then reads the
contents of file into the buffer. The current line (.) is set to the last line of the
buffer. If file is not given, the currently remembered file name, if any, is used
(see the f command). The number of bytes read will be written to standard
output, unless the −s option was specified, in the following format:

"%d\ n" <number of bytes read>

file is remembered for possible use as a default file name in subsequent e, E, r,
and w commands. If file is replaced by !, the rest of the line is taken to be a
shell (sh(1)) command whose output is to be read. Such a shell command is
not remembered as the current file name. See also DIAGNOSTICS below.
All marks will be discarded upon the completion of a successful e command.
If the buffer has changed since the last time the entire buffer was written, the
user will be warned, as described previously.

E file The Edit command is like e, except that the editor does not check to see if any
changes have been made to the buffer since the last w command.

f file If file is given, the f command will change the currently remembered path
name to file; whether the name is changed or not, it then will write the (possi-
bly new) currently remembered path name to the standard output in the fol-
lowing format:

"%s\ n" pathname

The current line number is unchanged.

(1 , $)g/RE/command list
In the global command, the first step is to mark every line that matches the
given RE. Then, for every such line, the given command list is executed with
the current line (.) initially set to that line. When the g command completes,
the current line number will have the value assigned by the last command in
the command list. If there were no matching lines, the current line number
will not be changed. A single command or the first of a list of commands

1-254 SunOS 5.6 modified 18 Mar 1997

User Commands ed (1)

appears on the same line as the global command. All lines of a multi-line list
except the last line must be ended with a backslash (\); a, i, and c commands
and associated input are permitted. The . terminating input mode may be
omitted if it would be the last line of the command list. An empty command list
is equivalent to the p command. The g, G, v, V, and ! commands are not per-
mitted in the command list. See also the NOTES and the last paragraph before
FILES below. Any character other than space or newline can be used instead
of a slash to delimit the RE. Within the RE, the RE delimiter itself can be used
as a literal character if it is preceded by a backslash.

(1 , $)G/RE/
In the interactive Global command, the first step is to mark every line that
matches the given RE. Then, for every such line, that line is written to stan-
dard output, the current line (.) is changed to that line, and any one command
(other than one of the a, c, i, g, G, v, and V commands) may be input and is
executed. After the execution of that command, the next marked line is writ-
ten, and so on; a new-line acts as a null command; an & causes the re-
execution of the most recent non-null command executed within the current
invocation of G. Note: The commands input as part of the execution of the G
command may address and affect any lines in the buffer. The final value of
the current line number will be the value set by the last command successfully
executed. (Note that the last command successfully executed will be the G
command itself if a command fails or the null command is specified.) If there
were no matching lines, the current line number will not be changed. The G
command can be terminated by a SIGINT signal. The G command can be ter-
minated by an interrupt signal (ASCII DEL or BREAK). Any character other
than space or newline can be used instead of a slash to delimit the RE. Within
the RE, the RE delimiter itself can be used as a literal character if it is preceded
by a backslash.

h The help command gives a short error message that explains the reason for
the most recent ? diagnostic. The current line number is unchanged.

H The Help command causes ed to enter a mode in which error messages are
written for all subsequent ? diagnostics. It will also explain the previous ? if
there was one. The H command alternately turns this mode on and off; it is
initially off. The current line number is unchanged.

(.)i The insert command accepts zero or more lines of text and inserts it before
<text> the addressed line in the buffer. The current line (.) is left at the last
. inserted line, or, if there were none, at the addressed line. This command

differs from the a command only in the placement of the input text. Address
0 is not legal for this command. The maximum number of characters that
may be entered from a terminal is 256 per line (including the new-line charac-
ter).

(. , .+1)j The join command joins contiguous lines by removing the appropriate new-
line characters. If exactly one address is given, this command does nothing.
If lines are joined, the current line number will be set to the address of the

modified 18 Mar 1997 SunOS 5.6 1-255

ed (1) User Commands

joined line; otherwise, the current line number is unchanged.

(.)kx The mark command marks the addressed line with name x, which must be an
ASCII lower-case letter (a−z). The address ′x then addresses this line; the
current line (.) is unchanged.

(. , .)l The l command writes to standard output the addressed lines in a visually
unambiguous form. The characters (\\ , \ a, \ b, \ f, \ r, \ t, \v) will be writ-
ten as the corresponding escape sequence; the \ n in that table is not applica-
ble. Non-printable characters not in the table will be written as one three-digit
octal number (with a preceding backslash character) for each byte in the char-
acter (most significant byte first).

Long lines will be folded, with the point of folding indicated by writing
backslash/newline character; the length at which folding occurs is
unspecified, but should be appropriate for the output device. The end of each
line will be marked with a $. An l command can be appended to any other
command other than e, E, f, q, Q, r, w, or !. The current line number will be
set to the address of the last line written.

(. , .)ma The move command repositions the addressed line(s) after the line addressed
by a . Address 0 is legal for a and causes the addressed line(s) to be moved to
the beginning of the file. It is an error if address a falls within the range of
moved lines; the current line (.) is left at the last line moved.

(. , .)n The number command writes the addressed lines, preceding each line by its
line number and a tab character; the current line (.) is left at the last line writ-
ten. The n command may be appended to any command other than e, E, f, q,
Q, r, w, or !.

(. , .)p The print command writes the addressed lines to standard output; the current
line (.) is left at the last line written. The p command may be appended to any
command other than e, E, f, q, Q, r, w, or !. For example, dp deletes the
current line and writes the new current line.

P The P command causes ed to prompt with an asterisk (∗) (or string, if −p is
specified) for all subsequent commands. The P command alternatively turns
this mode on and off; it is initially on if the −p option is specified, otherwise
off. The current line is unchanged.

q The quit command causes ed to exit. If the buffer has changed since the last
time the entire buffer was written, the user will be warned; see DIAGNOS-
TICS.

Q The editor exits without checking if changes have been made in the buffer
since the last w command.

($)r file The read command reads the contents of file into the buffer. If file is not given,
the currently remembered file name, if any, is used (see the e and f com-
mands). The currently remembered file name is not changed unless file is the
very first file name mentioned since ed was invoked. Address 0 is legal for r
and causes the file to be read in at the beginning of the buffer. If the read is

1-256 SunOS 5.6 modified 18 Mar 1997

User Commands ed (1)

successful and the −s option was not specified, the number of characters read
is written to standard output in the following format:

%d\ n, <number of bytes read>

The current line (.) is set to the last line read. If file is replaced by !, the rest of
the line is taken to be a shell command (see sh(1)) whose output is to be read.
For example, $r !ls appends the current directory to the end of the file being
edited. Such a shell command is not remembered as the current file name.

(. , .)s/RE/replacement/
(. , .)s/RE/replacement/count, count=[1-512]
(. , .)s/RE/replacement/g
(. , .)s/RE/replacement/l
(. , .)s/RE/replacement/n
(. , .)s/RE/replacement/p

The substitute command searches each addressed line for an occurrence of the
specified RE. Zero or more substitution commands can be specified. In each
line in which a match is found, all (non-overlapped) matched strings are
replaced by the replacement if the global replacement indicator g appears after
the command. If the global indicator does not appear, only the first
occurrence of the matched string is replaced. If a number count appears after
the command, only the count-th occurrence of the matched string on each
addressed line is replaced. It is an error if the substitution fails on all
addressed lines. Any character other than space or new-line may be used
instead of the slash (/) to delimit the RE and the replacement; the current line (.)
is left at the last line on which a substitution occurred. Within the RE, the RE
delimiter itself can be used as a literal character if it is preceded by a
backslash. See also the last paragraph before FILES below.

An ampersand (&) appearing in the replacement is replaced by the string
matching the RE on the current line. The special meaning of & in this context
may be suppressed by preceding it by \ . As a more general feature, the char-
acters \n, where n is a digit, are replaced by the text matched by the n-th reg-
ular subexpression of the specified RE enclosed between \ (and \). When
nested parenthesized subexpressions are present, n is determined by counting
occurrences of \ (starting from the left. When the character % is the only
character in the replacement, the replacement used in the most recent substitute
command is used as the replacement in the current substitute command; if
there was no previous substitute command, the use of % in this manner is an
error. The % loses its special meaning when it is in a replacement string of
more than one character or is preceded by a \ . For each backslash (\)
encountered in scanning replacement from beginning to end, the following
character loses its special meaning (if any). It is unspecified what special
meaning is given to any character other than &, \, %, or digits.

A line may be split by substituting a new-line character into it. The new-line
in the replacement must be escaped by preceding it by \ . Such substitution

modified 18 Mar 1997 SunOS 5.6 1-257

ed (1) User Commands

cannot be done as part of a g or v command list. The current line number will
be set to the address of the last line on which a substitution is performed. If
no substitution is performed, the current line number is unchanged. If a line
is split, a substitution is considered to have been performed on each of the
new lines for the purpose of determining the new current line number. A
substitution is considered to have been performed even if the replacement
string is identical to the string that it replaces.

The substitute command supports the following indicators:

count Substitute for the countth occurrence only of the RE found on each
addressed line. count must be between 1-512.

g Globally substitute for all non-overlapping instances of the RE rather
than just the first one. If both g and count are specified, the results
are unspecified.

l Write to standard output the final line in which a substitution was
made. The line will be written in the format specified for the l com-
mand.

n Write to standard output the final line in which a substitution was
made. The line will be written in the format specified for the n com-
mand.

p Write to standard output the final line in which a substitution was
made. The line will be written in the format specified for the p com-
mand.

(. , .)ta This command acts just like the m command, except that a copy of the
addressed lines is placed after address a (which may be 0); the current line (.)
is left at the last line copied.

u The undo command nullifies the effect of the most recent command that
modified anything in the buffer, namely the most recent a, c, d, g, i, j, m, r, s, t,
u, v, G, or V command. All changes made to the buffer by a g, G, v, or V glo-
bal command will be undone as a single change; if no changes were made by
the global command (such as with g/ RE /p), the u command will have no
effect. The current line number will be set to the value it had immediately
before the command being undone started.

(1 , $)v/RE/command list
This command is the same as the global command g, except that the lines
marked during the first step are those that do not match the RE.

(1 , $)V/RE/
This command is the same as the interactive global command G, except that
the lines that are marked during the first step are those that do not match the
RE.

(1 , $)w file
The write command writes the addressed lines into file. If file does not exist, it
is created with mode 666 (readable and writable by everyone), unless your file
creation mask dictates otherwise; see the description of the umask special

1-258 SunOS 5.6 modified 18 Mar 1997

User Commands ed (1)

command on sh(1). The currently remembered file name is not changed
unless file is the very first file name mentioned since ed was invoked. If no file
name is given, the currently remembered file name, if any, is used (see the e
and f commands); the current line (.) is unchanged. If the command is suc-
cessful, the number of characters written is printed, unless the −s option is
specified in the following format:

"%d\ n", <number of bytes written>

If file is replaced by !, the rest of the line is taken to be a shell (see sh(1)) com-
mand whose standard input is the addressed lines. Such a shell command is
not remembered as the current path name. This usage of the write command
with ! is to be considered as a ‘‘last w command that wrote the entire buffer’’.

(1 , $)W file
This command is the same as the write command above, except that it
appends the addressed lines to the end of file if it exists. If file does not exist, it
is created as described above for the w command.

X An educated guess is made to determine whether text read for the e and r
commands is encrypted. A null key turns off encryption. Subsequent e, r,
and w commands will use this key to encrypt or decrypt the text. An expli-
citly empty key turns off encryption. Also, see the −x option of ed.

($)= The line number of the addressed line will be written to standard output in
the following format:

"%d\ n" <line number>

The current line number is unchanged by this command.

!shell command
The remainder of the line after the ! is sent to the UNIX system shell (see
sh(1)) to be interpreted as a command. Within the text of that command, the
unescaped character % is replaced with the remembered file name; if a !
appears as the first character of the shell command, it is replaced with the text
of the previous shell command. Thus, !! will repeat the last shell command.
If any replacements of % or ! are performed, the modified line will be written
to the standard output before command is executed. The ! command will
write:

"!\ n"

to standard output upon completion, unless the −s option is specified. The
current line number is unchanged.

(.+1)<new-line>
An address alone on a line causes the addressed line to be written. A new-line
alone is equivalent to .+1p; it is useful for stepping forward through the
buffer. The current line number will be set to the address of the written line.

modified 18 Mar 1997 SunOS 5.6 1-259

ed (1) User Commands

If an interrupt signal (ASCII DEL or BREAK) is sent, ed writes a "?\ n" and returns to its
command level.

The ed utility will take the standard action for all signals with the following exceptions:

SIGINT The ed utility will interrupt its current activity, write the string "?\ n" to stan-
dard output, and return to command mode.

SIGHUP If the buffer is not empty and has changed since the last write, the ed utility
will attempt to write a copy of the buffer in a file. First, the file named ed.hup
in the current directory will be used; if that fails, the file named ed.hup in the
directory named by the HOME environment variable will be used. In any
case, the ed utility will exit without returning to command mode.

Some size limitations are in effect: 512 characters in a line, 256 characters in a global com-
mand list, and 255 characters in the path name of a file (counting slashes). The limit on
the number of lines depends on the amount of user memory; each line takes 1 word.

When reading a file, ed discards ASCII and NUL characters.

If a file is not terminated by a new-line character, ed adds one and puts out a message
explaining what it did.

If the closing delimiter of an RE or of a replacement string (for example, /) would be the
last character before a new-line, that delimiter may be omitted, in which case the
addressed line is written. The foll owing pairs of commands are equivalent:

s/s1/s2 s/s1/s2/p
g/s1 g/s1/p
?s1 ?s1?

If an invalid command is entered, ed will write the string:

"?\ n"
(followed by an explanatory message if help mode has been enabled by the H command)
to standard output and will continue in command mode with the current line number
unchanged.

OPTIONS −C Encryption option; the same as the −x option, except that ed simulates a C
command. The C command is like the X command, except that all text read in
is assumed to have been encrypted.

−p string Allows the user to specify a prompt string. By default, there is no prompt
string.

−s | − Suppresses the writing of character counts by e, r, and w commands, of diag-
nostics from e and q commands, and of the ! prompt after a !shell command.

−x Encryption option; when used, ed simulates an X command and prompts the
user for a key. The X command makes an educated guess to determine
whether text read in is encrypted or not. The temporary buffer file is
encrypted also, using a transformed version of the key typed in for the −x
option. See NOTES.

1-260 SunOS 5.6 modified 18 Mar 1997

User Commands ed (1)

OPERANDS The following operand is supported:

file If file is specified, ed simulates an e command on the file named by the path
name file before accepting commands from the standard input.

USAGE See largefile(5) for the description of the behavior of ed and red when encountering files
greater than or equal to 2 Gbyte (231 bytes).

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of ed: HOME, LC_CTYPE, LC_COLLATE, LC_MESSAGES, and NLSPATH.

EXIT STATUS The following exit values are returned:

0 Successful completion without any file or command errors.

>0 An error occurred.

FILES $TMPDIR If this environment variable is not NULL, its value is used in place
of /var/tmp as the directory name for the temporary work file.

/var/tmp If /var/tmp exists, it is used as the directory name for the tem-
porary work file.

/tmp If the environment variable TMPDIR does not exist or is NULL, and
if /var/tmp does not exist, then /tmp is used as the directory name
for the temporary work file.

ed.hup Work is saved here if the terminal is hung up.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

/usr/bin/ed/usr/bin/red ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu
CSI Enabled

/usr/xpg4/bin/ed ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxcu4
CSI Enabled

SEE ALSO bfs(1), edit(1), ex(1), grep(1), ksh(1), sed(1), sh(1), stty(1), umask(1), vi(1), fspec(4), attri-
butes(5), environ(5), largefile(5), regex(5), xpg4(5)

DIAGNOSTICS ? for command errors.

?file for an inaccessible file.
(use the help and Help commands for detailed explanations).

If changes have been made in the buffer since the last w command that wrote the entire
buffer, ed warns the user if an attempt is made to destroy ed’s buffer via the e or q com-
mands. It writes ? and allows one to continue editing. A second e or q command at this
point will take effect. The −s command-line option inhibits this feature.

modified 18 Mar 1997 SunOS 5.6 1-261

ed (1) User Commands

NOTES The − option, although it continues to be supported, has been replaced in the documenta-
tion by the −s option that follows the Command Syntax Standard (see intro(1)).

A ! command cannot be subject to a g or a v command.

The ! command and the ! escape from the e, r, and w commands cannot be used if the
editor is invoked from a restricted shell (see sh(1)).

The sequence \ n in an RE does not match a new-line character.

If the editor input is coming from a command file (for example, ed file < ed_cmd_file), the
editor exits at the first failure.

1-262 SunOS 5.6 modified 18 Mar 1997

User Commands edit (1)

NAME edit − text editor (variant of ex for casual users)

SYNOPSIS /usr/bin/edit [− | −s] [−l] [−L] [−R] [−r [filename]] [−t tag] [−v] [−V] [−x] [−wn]
[−C] [+command | −c command] filename. . .

/usr/xpg4/bin/edit [− | −s] [−l] [−L] [−R] [−r [filename]] [−t tag] [−v] [−V] [−x]
[−wn] [−C] [+command | −c command] filename. . .

DESCRIPTION The edit utility is a variant of the text editor ex recommended for new or casual users
who wish to use a command-oriented editor. It operates precisely as ex with the follow-
ing options automatically set:

novice ON

report ON

showmode ON

magic OFF

The following brief introduction should help you get started with edit. If you are using a
CRT terminal you may want to learn about the display editor vi.

To edit the contents of an existing file you begin with the command edit name to the shell.
edit makes a copy of the file that you can then edit, and tells you how many lines and
characters are in the file. To create a new file, you also begin with the command edit with
a filename: edit name; the editor will tell you it is a [New File].

The edit command prompt is the colon (:), which you should see after starting the editor.
If you are editing an existing file, then you will have some lines in edit’s buffer (its name
for the copy of the file you are editing). When you start editing, edit makes the last line
of the file the current line. Most commands to edit use the current line if you do not tell
them which line to use. Thus if you say print (which can be abbreviated p) and type car-
riage return (as you should after all edit commands), the current line will be printed. If
you delete (d) the current line, edit will print the new current line, which is usually the
next line in the file. If you delete the last line, then the new last line becomes the current
one.

If you start with an empty file or wish to add some new lines, then the append (a) com-
mand can be used. After you execute this command (typing a carriage return after the
word append), edit will read lines from your terminal until you type a line consisting of
just a dot (.); it places these lines after the current line. The last line you type then
becomes the current line. The insert (i) command is like append, but places the lines you
type before, rather than after, the current line.

The edit utility numbers the lines in the buffer, with the first line having number 1. If you
execute the command 1, then edit will type the first line of the buffer. If you then execute
the command d, edit will delete the first line, line 2 will become line 1, and edit will print
the current line (the new line 1) so you can see where you are. In general, the current line
will always be the last line affected by a command.

modified 18 Mar 1997 SunOS 5.6 1-263

edit (1) User Commands

You can make a change to some text within the current line by using the substitute (s)
command: s/old /new/ where old is the string of characters you want to replace and new
is the string of characters you want to replace old with.

The filename (f) command will tell you how many lines there are in the buffer you are
editing and will say [Modified] if you have changed the buffer. After modifying a file,
you can save the contents of the file by executing a write (w) command. You can leave
the editor by issuing a quit (q) command. If you run edit on a file, but do not change it, it
is not necessary (but does no harm) to write the file back. If you try to quit from edit
after modifying the buffer without writing it out, you will receive the message No write
since last change (:quit! overrides), and edit will wait for another command. If you do
not want to write the buffer out, issue the quit command followed by an exclamation
point (q!). The buffer is then irretrievably discarded and you return to the shell.

By using the d and a commands and giving line numbers to see lines in the file, you can
make any changes you want. You should learn at least a few more things, however, if
you will use edit more than a few times.

The change (c) command changes the current line to a sequence of lines you supply (as in
append, you type lines up to a line consisting of only a dot (.). You can tell change to
change more than one line by giving the line numbers of the lines you want to change,
that is, 3,5c. You can print lines this way too: 1,23p prints the first 23 lines of the file.

The undo (u) command reverses the effect of the last command you executed that
changed the buffer. Thus if you execute a substitute command that does not do what
you want, type u and the old contents of the line will be restored. You can also undo an
undo command. edit will give you a warning message when a command affects more
than one line of the buffer. Note that commands such as write and quit cannot be
undone.

To look at the next line in the buffer, type carriage return. To look at a number of lines,
type ˆD (while holding down the control key, press d) rather than carriage return. This
will show you a half-screen of lines on a CRT or 12 lines on a hardcopy terminal. You can
look at nearby text by executing the z command. The current line will appear in the mid-
dle of the text displayed, and the last line displayed will become the current line; you can
get back to the line where you were before you executed the z command by typing ´´.
The z command has other options: z− prints a screen of text (or 24 lines) ending where
you are; z+ prints the next screenful. If you want less than a screenful of lines, type z.11
to display five lines before and five lines after the current line. (Typing z.n, when n is an
odd number, displays a total of n lines, centered about the current line; when n is an even
number, it displays n−1 lines, so that the lines displayed are centered around the current
line.) You can give counts after other commands; for example, you can delete 5 lines
starting with the current line with the command d5.

To find things in the file, you can use line numbers if you happen to know them; since the
line numbers change when you insert and delete lines this is somewhat unreliable. You
can search backwards and forwards in the file for strings by giving commands of the
form /text/ to search forward for text or ?text? to search backward for text . If a search
reaches the end of the file without finding text, it wraps around and continues to search

1-264 SunOS 5.6 modified 18 Mar 1997

User Commands edit (1)

back to the line where you are. A useful feature here is a search of the form /ˆtext/ which
searches for text at the beginning of a line. Similarly /text$/ searches for text at the end of
a line. You can leave off the trailing / or ? in these commands.

The current line has the symbolic name dot (.); this is most useful in a range of lines as in
.,$p which prints the current line plus the rest of the lines in the file. To move to the last
line in the file, you can refer to it by its symbolic name $. Thus the command $d deletes
the last line in the file, no matter what the current line is. Arithmetic with line references
is also possible. Thus the line $−5 is the fifth before the last and .+20 is 20 lines after the
current line.

You can find out the current line by typing ‘.=’ . This is useful if you wish to move or
copy a section of text within a file or between files. Find the first and last line numbers
you wish to copy or move. To move lines 10 through 20, type 10,20d a to delete these
lines from the file and place them in a buffer named a. edit has 26 such buffers named a
through z. To put the contents of buffer a after the current line, type put a. If you want
to move or copy these lines to another file, execute an edit (e) command after copying the
lines; following the e command with the name of the other file you wish to edit, that is,
edit chapter2. To copy lines without deleting them, use yank (y) in place of d. If the text
you wish to move or copy is all within one file, it is not necessary to use named buffers.
For example, to move lines 10 through 20 to the end of the file, type 10,20m $.

OPTIONS These options can be turned on or off using the set command in ex(1).

− | −s Suppress all interactive user feedback. This is useful when processing
editor scripts.

−l Set up for editing LISP programs.

−L List the name of all files saved as the result of an editor or system crash.

−R Readonly mode; the readonly flag is set, preventing accidental overwrit-
ing of the file.

−r filename Edit filename after an editor or system crash. (Recovers the version of
filename that was in the buffer when the crash occurred.)

−t tag Edit the file containing the tag and position the editor at its definition.

−v Start up in display editing state using vi. You can achieve the same effect
by simply typing the vi command itself.

−V Verbose. When ex commands are read by means of standard input, the
input will be echoed to standard error. This may be useful when process-
ing ex commands within shell scripts.

−x Encryption option; when used, edit simulates the X command of ex and
prompts the user for a key. This key is used to encrypt and decrypt text
using the algorithm of the crypt command. The X command makes an
educated guess to determine whether text read in is encrypted or not.
The temporary buffer file is encrypted also, using a transformed version
of the key typed in for the −x option.

−wn Set the default window size to n. This is useful when using the editor

modified 18 Mar 1997 SunOS 5.6 1-265

edit (1) User Commands

over a slow speed line.

−C Encryption option; same as the −x option, except that vi simulates the C
command of ex. The C command is like the X command of ex, except
that all text read in is assumed to have been encrypted.

+command | −c command
Begin editing by executing the specified editor command (usually a search
or positioning command).

The filename argument indicates one or more files to be edited.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

/usr/bin/edit ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu
CSI Enabled

/usr/xpg4/bin/edit ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxcu4
CSI Enabled

SEE ALSO ed(1), ex(1), vi(1), attributes(5), xpg4(5)

NOTES The encryption options are provided with the Security Administration Utilities package,
which is available only in the United States.

The /usr/xpg4/bin/edit utility is identical to /usr/bin/edit.

1-266 SunOS 5.6 modified 18 Mar 1997

User Commands egrep (1)

NAME egrep − search a file for a pattern using full regular expressions

SYNOPSIS /usr/bin/egrep [−bchilnsv] [−e pattern_list] [−f file] [strings] [file. . .]

/usr/xpg4/bin/egrep [−bchilnsvx] [−e pattern_list] [−f file] [strings] [file. . .]

DESCRIPTION The egrep (expression grep) utility searches files for a pattern of characters and prints all
lines that contain that pattern. egrep uses full regular expressions (expressions that have
string values that use the full set of alphanumeric and special characters) to match the
patterns. It uses a fast deterministic algorithm that sometimes needs exponential space.

If no files are specified, egrep assumes standard input. Normally, each line found is
copied to the standard output. The file name is printed before each line found if there is
more than one input file.

/usr/bin/egrep The /usr/bin/egrep utility accepts full regular expressions as described on the regexp(5)
manual page, except for \(and \), and with the addition of:

1. A full regular expression followed by + that matches one or more occurrences of
the full regular expression.

2. A full regular expression followed by ? that matches 0 or 1 occurrences of the full
regular expression.

3. Full regular expressions separated by � or by a NEWLINE that match strings that
are matched by any of the expressions.

4. A full regular expression that may be enclosed in parentheses () for grouping.

Be careful using the characters $, ∗, [, ˆ, �, (,), and \ in full regular expression, because they
are also meaningful to the shell. It is safest to enclose the entire full regular expression in
single quotes ′ . . . ′.
The order of precedence of operators is [], then ∗ ? +, then concatenation, then � and
NEWLINE.

/usr/xpg4/bin/egrep The /usr/xpg4/bin/egrep utility uses the regular expressions described in the
EXTENDED REGULAR EXPRESSIONS section of the regex(5) manual page.

OPTIONS The following options are supported for both /usr/bin/egrep and /usr/xpg4/bin/egrep:

−b Precede each line by the block number on which it was found. This can
be useful in locating block numbers by context (first block is 0).

−c Print only a count of the lines that contain the pattern.

−e pattern_list Search for a pattern_list (full regular expression that begins with a −).

−f file Take the list of full regular expressions from file.

−h Suppress printing of filenames when searching multiple files.

−i Ignore upper/lower case distinction during comparisons.

−l Print the names of files with matching lines once, separated by NEW-
LINEs. Does not repeat the names of files when the pattern is found

modified 12 May 1997 SunOS 5.6 1-267

egrep (1) User Commands

more than once.

−n Precede each line by its line number in the file (first line is 1).

−s Work silently, that is, display nothing except error messages. This is
useful for checking the error status.

−v Print all lines except those that contain the pattern.

/usr/xpg4/bin/egrep The following option is supported for /usr/xpg4/bin/egrep only:

−x Consider only input lines that use all characters in the line to match an
entire fixed string or regular expression to be matching lines.

OPERANDS The following operands are supported:

file A path name of a file to be searched for the patterns. If no file operands are
specified, the standard input will be used.

/usr/bin/egrep pattern Specify a pattern to be used during the search for input.

/usr/xpg4/bin/egrep pattern Specify one or more patterns to be used during the search for input. This
operand is treated as if it were specified as −e pattern_list.

USAGE See largefile(5) for the description of the behavior of egrep when encountering files
greater than or equal to 2 Gbyte (231 bytes).

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of egrep: LC_COLLATE, LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS The following exit values are returned:

0 If any matches are found.
1 If no matches are found.
2 For syntax errors or inaccessible files (even if matches were found).

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

/usr/bin/egrep ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu
CSI enabled

/usr/xpg4/bin/egrep ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxcu4
CSI enabled

SEE ALSO fgrep(1), grep(1), sed(1), sh(1), attributes(5), environ(5), largefile(5), regex(5), regexp(5),
xpg4(5)

1-268 SunOS 5.6 modified 12 May 1997

User Commands egrep (1)

NOTES Ideally there should be only one grep command, but there is not a single algorithm that
spans a wide enough range of space-time tradeoffs.

Lines are limited only by the size of the available virtual memory.

/usr/xpg4/bin/egrep The /usr/xpg4/bin/egrep utility is identical to /usr/xpg4/bin/grep −E (see grep(1)). Port-
able applications should use /usr/xpg4/bin/grep −E.

modified 12 May 1997 SunOS 5.6 1-269

eject (1) User Commands

NAME eject − eject media such as CD-ROM and floppy from drive

SYNOPSIS eject [−dfnpq] [device | nickname]

DESCRIPTION eject is used for those removable media devices that do not have a manual eject button,
or for those that do, but are managed by Volume Management (see vold(1M)). The dev-
ice may be specified by its name or by a nickname; if Volume Management is running
and no device is specified, the default device is used.

Only devices that support eject under program control respond to this command. eject
responds differently, depending on whether or not Volume Management is running.

With Volume
Management

When eject is used on media that can only be ejected manually, it will do everything
except remove the media, including unmounting the file system if it is mounted. In this
case, eject displays a message that the media can now be manually ejected. If a window
system is running, the message is displayed as a pop-up window, unless the −p option is
supplied. If no window system is running or the −p option is supplied, a message is
displayed both to stderr and to the system console that the media can now be physically
removed.

Volume Management has the concept of a default device, which eject uses if no path-
name or nickname is specified. Use the −d option to check what default device will be
used.

Without Volume
Management

When Volume Management is not running and a pathname is specified, eject sends the
eject command to that pathname. If a nickname is supplied instead of a pathname, eject
will recognize the following list:

Nickname Path
fd /dev/rdiskette
fd0 /dev/rdiskette
fd1 /dev/rdiskette1
diskette /dev/rdiskette
diskette0 /dev/rdiskette0
diskette1 /dev/rdiskette1
rdiskette /dev/rdiskette
rdiskette0 /dev/rdiskette0
rdiskette1 /dev/rdiskette1
floppy /dev/rdiskette
floppy0 /dev/rdiskette0
floppy1 /dev/rdiskette1

The list above can be reproduced with the −n option.

Do not physically eject media from a device which contains mounted file systems. eject
automatically searches for any mounted file systems which reside on the device and
attempts to umount them prior to ejecting the media (see mount(1M)). If the unmount
operation fails, eject prints a warning message and exits. The −f option may be used to

1-270 SunOS 5.6 modified 20 Sep 1996

User Commands eject (1)

specify an eject even if the device contains mounted partitions; this option works only if
Volume Management is not running.

eject can also display its default device and a list of nicknames.

If you have inserted a floppy diskette, you must use volcheck(1) before ejecting the
media to inform Volume Management of the floppy’s presence.

OPTIONS The following options are supported:

−d Display the name of the default device to be ejected.

−f Force the device to eject even if it is busy, if Volume Management is not run-
ning.

−n Display the nickname to device name translation table.

−p Do not try to call the eject_popup program.

−q Query to see if the media is present.

OPERANDS The following operands are supported:

device Specify which device to eject, by the name it appears in the directory /dev.

nickname Specify which device to eject, by its nickname as known to this command.

EXAMPLES To eject a CD from its drive, while Volume Management is running (assuming only one
CD-ROM drive):

example> eject cdrom0

To eject a floppy disk (whether or not Volume Management is running):

example> eject floppy0

To eject a CD-ROM drive with pathname /dev/dsk/c0t3d0s2, without Volume Manage-
ment running:

example> eject /dev/dsk/c0t3d0s2

EXIT STATUS The following exit codes are returned:

0 The operation was successful or, with the −q option, the media is in the drive.

1 The operation was unsuccessful or, with the −q option, the media is not in the
drive.

2 Invalid options were specified.

3 An ioctl() request failed.

4 Manually ejectable media is now okay to remove.

FILES /dev/diskette0 default diskette file
/dev/sr0 default CD-ROM file (deprecated)
/dev/dsk/c0t6d0s2 default CD-ROM file
/usr/lib/vold/eject_popup popup used for manually ejected media

modified 20 Sep 1996 SunOS 5.6 1-271

eject (1) User Commands

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO volcancel(1), volcheck(1), volmissing(1), mount(1M), rmmount(1M), vold(1M), ioctl(2),
rmmount.conf(4), vold.conf(4), attributes(5), volfs(7FS)

DIAGNOSTICS A short help message is printed if an unknown option is specified. A diagnostic is
printed if the device name cannot be opened or does not support eject.

Device Busy An attempt was made to eject a device that has a mounted file system.
A warning message is printed when doing a forced eject of a mounted
device.

BUGS There should be a way to change the default on a per-user basis.

If Volume Management is not running, it is possible to eject a volume that is currently
mounted (see mount(1M)). For example, if you have a CD-ROM drive at
/dev/dsk/c0t3d0s2 mounted on /mnt, the following command (without Volume Manage-
ment running) will work:

example> eject /dev/dsk/c0t3d0s0

since both slices s0 and s2 reference the whole CD-ROM drive.

1-272 SunOS 5.6 modified 20 Sep 1996

User Commands enable (1)

NAME enable, disable − enable/disable LP printers

SYNOPSIS /usr/bin/enable printer . . .
/usr/bin/disable [−c | −W] [−r [reason]] printer . . .

DESCRIPTION The enable command activates printers, enabling them to print requests submitted by the
lp command. enable must be run on the printer server.

The disable command deactivates printers, disabling them from printing requests sub-
mitted by the lp command. By default, any requests that are currently printing on printer
will be reprinted in their entirety either on printer or another member of the same class of
printers. The disable command must be run on the print server.

Use lpstat −p to check the status of printers.

enable and disable only effect queueing on the print server’s spooling system. Executing
these commands from a client system will have no effect on the server.

OPTIONS The following options are supported for use with disable:

−c Cancel any requests that are currently printing on printer. This option cannot
be used with the −W option. If the printer is remote, the −c option will be
silently ignored.

−W Wait until the request currently being printed is finished before disabling
printer. This option cannot be used with the −c option. If the printer is
remote, the −W option will be silently ignored.

−r [reason] Assign a reason for the disabling of the printer(s). This reason applies to all
printers specified. This reason is reported by lpstat −p. Enclose reason in
quotes if it contains blanks. The default reason is unknown reason for the
existing printer, and new printer for a printer added to the system but not yet
enabled.

OPERANDS The following operands are supported for both enable and disable:

printer The name of the printer to be enabled or disabled. Specify printer using
atomic name. See printers.conf(4) for information regarding the naming con-
ventions for atomic names.

EXIT STATUS The following exit values are returned:
0 Successful completion.
non-zero An error occurred.

FILES /var/spool/lp/∗ LP print queue.

modified 9 Sep 1996 SunOS 5.6 1-273

enable (1) User Commands

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWpcu
CSI enabled

SEE ALSO lp(1), lpstat(1), printers.conf(4), attributes(5)

1-274 SunOS 5.6 modified 9 Sep 1996

User Commands env (1)

NAME env − set environment for command invocation

SYNOPSIS /usr/bin/env [−i | −] [name=value] . . . [utility [arg . . .]]

/usr/xpg4/bin/env [−i | −] [name=value] . . . [utility [arg . . .]]

DESCRIPTION The env utility obtains the current environment, modifies it according to its arguments,
then invokes the utility named by the utility operand with the modified environment.

Optional arguments are passed to utility. If no utility operand is specified, the resulting
environment is written to the standard output, with one name=value pair per line.

/usr/bin/env If env executes commands with arguments, it uses the default shell /usr/bin/sh (see
sh(1)).

/usr/xpg4/bin/env If env executes commands with arguments, it uses /usr/xpg4/bin/sh, which is equivalent
to /usr/bin/ksh (see ksh(1)).

OPTIONS The following options are supported:

−i | − Ignore the environment that would otherwise be inherited from the
current shell. Restricts the environment for utility to that specified by
the arguments.

OPERANDS The following operands are supported:

name=value Arguments of the form name=value modify the execution environment,
and are placed into the inherited environment before utility is invoked.

utility The name of the utility to be invoked. If utility names any of the special
shell built-in utilities, the results are undefined.

arg A string to pass as an argument for the invoked utility.

EXAMPLES The following utility:

example% env -i PATH=/mybin mygrep xyz myfile

invokes the utility mygrep with a new PATH value as the only entry in its environment.
In this case, PATH is used to locate mygrep, which then must reside in /mybin.

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of env: LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS If utility is invoked, the exit status of env is the exit status of utility; otherwise, the env
utility is with one of the following values:

0 Successful completion.

1-125 An error occurred.

126 utility was found but could not be invoked.

127 utility could not be found.

modified 18 Mar 1997 SunOS 5.6 1-275

env (1) User Commands

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

/usr/bin/env ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu
CSI enabled

/usr/xpg4/bin/env ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxcu4
CSI enabled

SEE ALSO ksh(1), sh(1), exec(2), profile(4), attributes(5), environ(5), xpg4(5)

1-276 SunOS 5.6 modified 18 Mar 1997

User Commands eqn (1)

NAME eqn, neqn, checkeq − typeset mathematics test

SYNOPSIS eqn [−dxy] [−fn] [−pn] [−sn] [file] . . .

neqn [file] . . .

checkeq [file] . . .

DESCRIPTION eqn and neqn are language processors to assist in describing equations. eqn is a prepro-
cessor for troff(1) and is intended for devices that can print troff’s output. neqn is a
preprocessor for nroff(1) and is intended for use with terminals. Usage is almost always:

example% eqn file . . . | troff
example% neqn file . . . | nroff

If no files are specified, eqn and neqn read from the standard input. A line beginning
with .EQ marks the start of an equation; the end of an equation is marked by a line begin-
ning with .EN. Neither of these lines is altered, so they may be defined in macro packages
to get centering, numbering, etc. It is also possible to set two characters as ‘‘delimiters’’;
subsequent text between delimiters is also treated as eqn input.

checkeq reports missing or unbalanced delimiters and .EQ/.EN pairs.

OPTIONS The following options are supported:

−dxy Set equation delimiters set to characters x and y with the command-line argu-
ment. The more common way to do this is with delim xy between .EQ and .EN.
The left and right delimiters may be identical. Delimiters are turned off by delim
off appearing in the text. All text that is neither between delimiters nor between
.EQ and .EN is passed through untouched.

−fn Change font to n globally in the document. The font can also be changed globally
in the body of the document by using the gfont n directive, where n is the font
specification.

−pn Reduce subscripts and superscripts by n point sizes from the previous size. In
the absence of the −p option, subscripts and superscripts are reduced by 3 point
sizes from the previous size.

−sn Change point size to n globally in the document. The point size can also be
changed globally in the body of the document by using the gsize n directive,
where n is the point size.

OPERANDS The following operands are supported:

file The nroff or troff file processed by eqn or neqn.

EQN LANGUAGE The nroff version of this description depicts the output of neqn to the terminal screen
exactly as neqn is able to display it. To see an accurate depiction of the output the printed
version of this page should be viewed.

modified 1 Feb 1996 SunOS 5.6 1-277

eqn (1) User Commands

Tokens within eqn are separated by braces, double quotes, tildes, circumflexes, SPACE,
TAB, or NEWLINE characters. Braces { } are used for grouping; generally speaking, any-
where a single character like x could appear, a complicated construction enclosed in
braces may be used instead. Tilde (˜) represents a full SPACE in the output, circumflex (ˆ)
half as much.

Subscripts and superscripts:
These are produced with the keywords sub and sup.

x sub i makes xi

a sub i sup 2 produces ai
2

e sup {x sup 2 + y sup 2} gives e x 2+y 2

Fractions:
Fractions are made with over.

a over b yields
b
a��

Square Roots:
These are made with sqrt

1 over sqrt {ax sup 2 +bx+c} results in

√`̀ ``````ax 2+bx +c

1�����������

Limits: The keywords from and to introduce lower and upper limits on arbitrary things:

lim from {n→ inf } sum from 0 to n x sub i makes

n →∞
lim

0
Σ
n

xi

Brackets and Braces:
Left and right brackets, braces, etc., of the right height are made with left and
right.

left [x sup 2 + y sup 2 over alpha right] ˜=˜1 produces

�
�
�
x 2+

α
y 2
���

�
�
�

= 1.

The right clause is optional. Legal characters after left and right are braces,
brackets, bars, c and f for ceiling and floor, and "" for nothing at all (useful for a
right-side-only bracket).

Vertical piles:
Vertical piles of things are made with pile, lpile, cpile, and rpile.

pile {a above b above c} produces

c
b
a

1-278 SunOS 5.6 modified 1 Feb 1996

User Commands eqn (1)

There can be an arbitrary number of elements in a pile. lpile left-justifies, pile
and cpile center, with different vertical spacing, and rpile right justifies.

Matrices:
Matrices are made with matrix.

matrix { lcol { x sub i above y sub 2 } ccol { 1 above 2 } }
produces

y 2

xi

2

1

In addition, there is rcol for a right-justified column.

Diacritical marks:
Diacritical marks are made with dot, dotdot, hat, tilde, bar, vec, dyad, and
under.

x dot = f(t) bar is

x
.
=f (t)
����

y dotdot bar ˜=˜ n under is

y
..�

= n__ ,

x vec ˜=˜ y dyad is

x→ = y←→.

Sizes and Fonts:
Sizes and font can be changed with size n or size ±n, roman, italic, bold, and
font n. Size and fonts can be changed globally in a document by gsize n and
gfont n, or by the command-line arguments −sn and −fn.

Successive display arguments:
Successive display arguments can be lined up. Place mark before the desired
lineup point in the first equation; place lineup at the place that is to line up verti-
cally in subsequent equations.

Shorthands:
Shorthands may be defined or existing keywords redefined with define:

define thing % replacement %
Defines a new token called thing which will be replaced by replacement
whenever it appears thereafter. The % may be any character that does
not occur in replacement.

Keywords and Shorthands:
Keywords like sum (Σ), int (∫), inf (∞), and shorthands like >= (≥), → (→), and !=
(≠) are recognized.

modified 1 Feb 1996 SunOS 5.6 1-279

eqn (1) User Commands

Greek letters:
Greek letters are spelled out in the desired case, as in alpha or GAMMA.

Mathematical words:
Mathematical words like sin, cos, and log are made Roman automatically.

troff(1) four-character escapes like \(bu (·) can be used anywhere. Strings enclosed in
double quotes ". . ." are passed through untouched; this permits keywords to be entered
as text, and can be used to communicate with troff when all else fails.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWdoc

SEE ALSO nroff(1), tbl(1), troff(1), attributes(5), ms(5)

BUGS To embolden characters such as digits and parentheses, it is necessary to quote them, as
in ‘bold "12.3"’.

1-280 SunOS 5.6 modified 1 Feb 1996

User Commands error (1)

NAME error − insert compiler error messages at right source lines

SYNOPSIS error [−n] [−q] [−s] [−v] [−t suffixlist] [−I ignorefile] [filename]

DESCRIPTION error analyzes error messages produced by a number of compilers and language proces-
sors. It replaces the painful, traditional methods of scribbling abbreviations of errors on
paper, and permits error messages and source code to be viewed simultaneously.

error looks at error messages, either from the specified file filename or from the standard
input, and:

· Determines which language processor produced each error message.

· Determines the file name and line number of the erroneous line.

· Inserts the error message into the source file immediately preceding the
erroneous line.

Error messages that can’t be categorized by language processor or content are not
inserted into any file, but are sent to the standard output. error touches source files only
after all input has been read.

error is intended to be run with its standard input connected with a pipe to the error mes-
sage source. Some language processors put error messages on their standard error file;
others put their messages on the standard output. Hence, both error sources should be
piped together into error. For example, when using the csh syntax, the following com-
mand analyzes all the error messages produced by whatever programs make(1S) runs
when making lint:

example% make −s lint | & error −q −v

error knows about the error messages produced by: as(1), cpp(1), ld(1), cc(1B), make(1S)
and other compilers. For all languages except Pascal, error messages are restricted to one
line. Some error messages refer to more than one line in more than one file, in which case
error duplicates the error message and inserts it in all the appropriate places.

OPTIONS −n Do not touch any files; all error messages are sent to the standard output.

−q error asks whether the file should be touched. A ‘y’ or ‘n’ to the question is neces-
sary to continue. Absence of the −q option implies that all referenced files (except
those referring to discarded error messages) are to be touched.

−s Print out statistics regarding the error categorization.

−v After all files have been touched, overlay the visual editor vi with it set up to edit all
files touched, and positioned in the first touched file at the first error. If vi(1) can’t
be found, try ex(1) or ed(1) from standard places.

modified 5 Mar 1992 SunOS 5.6 1-281

error (1) User Commands

−t suffixlist
Take the following argument as a suffix list. Files whose suffices do not appear in
the suffix list are not touched. The suffix list is dot separated, and ‘∗’ wildcards
work. Thus the suffix list:

.c.y.f∗.h

allows error to touch files ending with ‘.c’, ‘.y’, ‘.f∗’ and ‘.h’.

error catches interrupt and terminate signals, and terminates in an orderly fashion.

EXAMPLES In the following C shell (/usr/bin/csh) example, error takes its input from the FORTRAN
compiler:

example% f77 −c any.f |& error options

Here is the same example using the Korn shell (/usr/bin/ksh):

example% f77 −c any.f 2>&1 | error options

USAGE error does one of six things with error messages.

synchronize
Some language processors produce short errors describing which file they are
processing. error uses these to determine the file name for languages that do
not include the file name in each error message. These synchronization mes-
sages are consumed entirely by error.

discard Error messages from lint that refer to one of the two lint libraries,
/usr/lib/lint/llib-lc and /usr/lib/lint/llib-port are discarded, to prevent
accidentally touching these libraries. Again, these error messages are con-
sumed entirely by error.

nullify Error messages from lint can be nullified if they refer to a specific function,
which is known to generate diagnostics which are not interesting. Nullified
error messages are not inserted into the source file, but are written to the stan-
dard output. The names of functions to ignore are taken from either the file
named .errorrc in the user’s home directory, or from the file named by the −I
option. If the file does not exist, no error messages are nullified. If the file
does exist, there must be one function name per line.

not file specific
Error messages that can’t be intuited are grouped together, and written to the
standard output before any files are touched. They are not inserted into any
source file.

file specific
Error messages that refer to a specific file but to no specific line are written to
the standard output when that file is touched.

true errors
Error messages that can be intuited are candidates for insertion into the file to
which they refer.

1-282 SunOS 5.6 modified 5 Mar 1992

User Commands error (1)

Only true error messages are inserted into source files. Other error messages are con-
sumed entirely by error or are written to the standard output. error inserts the error mes-
sages into the source file on the line preceding the line number in the error message.
Each error message is turned into a one line comment for the language, and is internally
flagged with the string ### at the beginning of the error, and %%% at the end of the error.
This makes pattern searching for errors easier with an editor, and allows the messages to
be easily removed. In addition, each error message contains the source line number for
the line the message refers to. A reasonably formatted source program can be recom-
piled with the error messages still in it, without having the error messages themselves
cause future errors. For poorly formatted source programs in free format languages,
such as C or Pascal, it is possible to insert a comment into another comment, which can
wreak havoc with a future compilation. To avoid this, format the source program so
there are no language statements on the same line as the end of a comment.

FILES ˜/.errorrc function names to ignore for lint error messages
/dev/tty user’s teletype

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWbtool

SEE ALSO as(1), cc(1B), cpp(1), csh(1), ed(1), ex(1), make(1S), ld(1), vi(1), attributes(5)

BUGS Opens the tty-device directly for user input.

Source files with links make a new copy of the file with only one link to it.

Changing a language processor’s error message format may cause error to not under-
stand the error message.

error, since it is purely mechanical, will not filter out subsequent errors caused by
“floodgating” initiated by one syntactically trivial error. Humans are still much better at
discarding these related errors.

Pascal error messages belong after the lines affected, error puts them before. The align-
ment of the ‘|’ marking the point of error is also disturbed by error.

error was designed for work on CRT ’s at reasonably high speed. It is less pleasant on
slow speed terminals, and was not designed for use on hardcopy terminals.

modified 5 Mar 1992 SunOS 5.6 1-283

ex (1) User Commands

NAME ex − text editor

SYNOPSIS /usr/bin/ex [− | −s] [−l] [−L] [−R] [−r [file]] [−t tag] [−v] [−V] [−x] [−wn]
[−C] [+command | −c command] file. . .

/usr/xpg4/bin/ex [− | −s] [−l] [−L] [−R] [−r [file]] [−t tag] [−v] [−V] [−x]
[−wn] [−C] [+command | −c command] file. . .

DESCRIPTION The ex utility is the root of a family of editors: ex and vi. ex is a superset of ed(1), with
the most notable extension being a display editing facility. Display based editing is the
focus of vi.

If you have a CRT terminal, you may wish to use a display based editor; in this case see
vi(1), which is a command which focuses on the display-editing portion of ex.

If you have used ed you will find that, in addition to having all of the ed commands
available, ex has a number of additional features useful on CRT terminals. Intelligent ter-
minals and high speed terminals are very pleasant to use with vi. Generally, the ex edi-
tor uses far more of the capabilities of terminals than ed does, and uses the terminal capa-
bility data base (see terminfo(4)) and the type of the terminal you are using from the
environment variable TERM to determine how to drive your terminal efficiently. The edi-
tor makes use of features such as insert and delete character and line in its visual com-
mand (which can be abbreviated vi) and which is the central mode of editing when using
the vi command.

The ex utility contains a number of features for easily viewing the text of the file. The z
command gives easy access to windows of text. Typing ˆD (CTRL-D) causes the editor to
scroll a half-window of text and is more useful for quickly stepping through a file than
just typing return. Of course, the screen-oriented visual mode gives constant access to
editing context.

The ex utility gives you help when you make mistakes. The undo (u) command allows
you to reverse any single change which goes astray. ex gives you a lot of feedback, nor-
mally printing changed lines, and indicates when more than a few lines are affected by a
command so that it is easy to detect when a command has affected more lines than it
should have.

The editor also normally prevents overwriting existing files, unless you edited them, so
that you do not accidentally overwrite a file other than the one you are editing. If the sys-
tem (or editor) crashes, or you accidentally hang up the telephone, you can use the editor
recover command (or −r file option) to retrieve your work. This will get you back to
within a few lines of where you left off.

The ex utility has several features for dealing with more than one file at a time. You can
give it a list of files on the command line and use the next (n) command to deal with each
in turn. The next command can also be given a list of file names, or a pattern as used by
the shell to specify a new set of files to be dealt with. In general, file names in the editor
may be formed with full shell metasyntax. The metacharacter ‘%’ is also available in
forming file names and is replaced by the name of the current file.

1-284 SunOS 5.6 modified 18 Mar 1997

User Commands ex (1)

The editor has a group of buffers whose names are the ASCII lower-case letters (a-z). You
can place text in these named buffers where it is available to be inserted elsewhere in the
file. The contents of these buffers remain available when you begin editing a new file
using the edit (e) command.

There is a command & in ex which repeats the last substitute command. In addition,
there is a confirmed substitute command. You give a range of substitutions to be done
and the editor interactively asks whether each substitution is desired.

It is possible to ignore the case of letters in searches and substitutions. ex also allows reg-
ular expressions which match words to be constructed. This is convenient, for example,
in searching for the word ‘‘edit’’ if your document also contains the word ‘‘editor.’’

ex has a set of options which you can set to tailor it to your liking. One option which is
very useful is the autoindent option that allows the editor to supply leading white space
to align text automatically. You can then use ˆD as a backtab and space or tab to move
forward to align new code easily.

Miscellaneous useful features include an intelligent join (j) command that supplies white
space between joined lines automatically, commands < and > which shift groups of lines,
and the ability to filter portions of the buffer through commands such as sort.

OPTIONS The following options are supported:

− | −s Suppress all interactive user feedback. This is useful when processing
editor scripts.

−l Set up for editing LISP programs.

−L List the name of all files saved as the result of an editor or system crash.

−R Readonly mode; the readonly flag is set, preventing accidental overwrit-
ing of the file.

−r file Edit file after an editor or system crash. (Recovers the version of file that
was in the buffer when the crash occurred.)

−t tag Edit the file containing the tag and position the editor at its definition.

−v Start up in display editing state using vi. You can achieve the same effect
by simply typing the vi command itself.

−V Verbose. When ex commands are read by means of standard input, the
input will be echoed to standard error. This may be useful when process-
ing ex commands within shell scripts.

−x Encryption option. Simulates the X command and prompts the user for a
key. This key is used to encrypt and decrypt text using the algorithm of
the crypt command. The X command makes an educated guess to deter-
mine whether text read in is encrypted or not. The temporary buffer file
is encrypted also, using a transformed version of the key typed in for the
−x option.

−wn Set the default window size to n. This is useful when using the editor
over a slow speed line.

modified 18 Mar 1997 SunOS 5.6 1-285

ex (1) User Commands

−C Encryption option. Same as the −x option, except simulates the C com-
mand. The C command is like the X command, except that all text read
in is assumed to have been encrypted.

+command | −c command
Begin editing by executing the specified editor command (usually a search
or positioning command).

/usr/xpg4/bin/ex If both the −t tag and the −c command options are given, the −t tag will be processed first.
That is, the file containing the tag is selected by −t and then the command is executed.

OPERANDS The following operand is supported:

file A path name of a file to be edited.

USAGE
ex States Command Normal and initial state. Input prompted for by “:”. Your line kill char-

acter cancels a partial command.

Insert Entered by a, i, or c. Arbitrary text may be entered. Insert state normally
is terminated by a line having only "." on it, or, abnormally, with an
interrupt.

Visual Entered by typing vi; terminated by typing Q or ˆ\ (CTRL-\).

ex Command Names
and Abbreviations

abbrev ab map set se
append a mark ma shell sh
args ar move m source so
change c next n substitute s
copy co number nu unabbrev unab
delete d preserve pre undo u
edit e print p unmap unm
file f put pu version ve
global g quit q visual vi
insert i read r write w
join j recover rec xit x
list l rewind rew yank ya

/usr/xpg4/bin/ex
ex Command

Arguments
For all of ex commands listed below, If both a count and a range are specified for a com-
mand that uses them, the number of lines affected will be taken from the count value
rather than the range. The starting line for the command is taken to be the first line
addressed by the range.

Abbreviate ab[brev] word rhs
Append [line] a[ppend][!]
Arguments ar[gs]
Change [range] c[hange][!] [count]
Change Directory chd[ir][!] [directory]; cd[!] [directory]
Copy [range] co[py] line [flags]; [range] t line [flags]

1-286 SunOS 5.6 modified 18 Mar 1997

User Commands ex (1)

Delete [range] d[elete] [buffer] [count] [flags]
Edit e[dit][!] [+line][file]; ex[!] [+line] [file]
File f[ile] [file]
Global [range] g[lobal] /pattern/ [commands]; [range] v /pattern/ [com-

mands]
Insert [line] i[nsert][!]
Join [range] j[oin][!] [count] [flags]
List [range] l[ist] [count] [flags]
Map map[!] [x rhs]
Mark [line] ma[rk] x; [line] k x
Move [range] m[ove] line
Next n[ext][!] [file ...]
Number [range] nu[mber] [count] [flags]; [range] # [count] [flags]
Open [line] o[pen] /pattern/ [flags]
Preserve pre[serve]
Print [range] p[rint] [count] [flags]
Put [line] pu[t] [buffer]
Quit q[uit][!]
Read [line] r[ead][!] [file]
Recover rec[over] file
Rewind rew[ind][!] Set se[t] [option[=[value]]...] [nooption...] [option?...]

[all]
Shell sh[ell]
Source so[urce] file
Substitute [range] s[ubstitute] [/pattern/repl/[options] [count] [flags]]
Suspend su[spend][!]; st[op][!]
Tag ta[g][!] tagstring
Unabbreviate una[bbrev] word
Undo u[ndo]
Unmap unm[ap][!] x
Visual [line] vi[sual] [type] [count] [flags]
Write [range} w[rite][!] [>>] [file]; [range} w[rite] [!] [file]; [range} wq[!]

[>>] [file]
Write and Exit [range] x[it][!] [file]
Yank [range] ya[nk] [buffer] [count]
Adjust Window [line] z [type] [count] [flags]
Escape ! command [range]! command
Shift Left [range] < [count] [flags]
Shift Right [range] > [count] [flags]
Resubstitute [range] & [options] [count] [flags]; [range] s[ubstitute] [options]

[count] [flags]; [range] ˜ [options] [count] [flags]
Scroll EOF
Write Line Number [line] = [flags]
Execute @ buffer; ∗ buffer

modified 18 Mar 1997 SunOS 5.6 1-287

ex (1) User Commands

ex Commands forced encryption C heuristic encryption X
resubst & print next CR
rshift > lshift <
scroll ˆD window z
shell escape !

ex Command
Addresses

n line n /pat next with pat
. current ?pat previous with pat
$ last x-n n before x
+ next x,y x through y
− previous ´x marked with x
+n n forward ´´ previous context
% 1,$

Initializing options EXINIT place set’s here in environment variable
$HOME/.exrc editor initialization file
./.exrc editor initialization file
set x enable option x
set nox disable option x
set x=val give value val to option x
set show changed options
set all show all options
set x? show value of option x

Most useful options
and their

abbreviations

autoindent ai supply indent
autowrite aw write before changing files
directory pathname of directory for temporary

work files
exrc ex allow vi/ex to read the .exrc in the

current directory. This option is set
in the EXINIT shell variable or in
the .exrc file in the $HOME directory.

ignorecase ic ignore case of letters in scanning
list print ˆI for tab, $ at end
magic treat . [∗ special in patterns
modelines first five lines and last five

lines executed as vi/ex commands if
they are of the form ex:command:
or vi:command:

number nu number lines
paragraphs para macro names that start paragraphs
redraw simulate smart terminal
report informs you if the number of lines

modified by the last command is greater
than the value of the report variable

scroll command mode lines

1-288 SunOS 5.6 modified 18 Mar 1997

User Commands ex (1)

sections sect macro names that start sections
shiftwidth sw for < >, and input ˆD
showmatch sm to) and } as typed
showmode smd show insert mode in vi
slowopen slow stop updates during insert
term specifies to vi the type of terminal

being used (the default is the value
of the environment variable TERM)

window visual mode lines
wrapmargin wm automatic line splitting
wrapscan ws search around end (or beginning) of buffer

Scanning pattern
formation

ˆ beginning of line
$ end of line
. any character
\< beginning of word
\> end of word
[str] any character in str
[ˆstr] any character not in str
[x−y] any character between x and y
∗ any number of preceding characters

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of ex: HOME, PATH, SHELL, TERM, LC_COLLATE, LC_CTYPE, LC_MESSAGES, and
NLSPATH.

COLUMNS Override the system-selected horizontal screen size.

EXINIT Determine a list of ex commands that are executed on editor start-up,
before reading the first file. The list can contain multiple commands by
separating them using a vertical-line (|) character.

LINES Override the system-selected vertical screen size, used as the number of
lines in a screenful and the vertical screen size in visual mode.

EXIT STATUS The following exit values are returned:
0 Successful completion.
>0 An error occurred.

FILES /var/tmp/Exnnnnn editor temporary
/var/tmp/Rxnnnnn named buffer temporary
/usr/lib/expreserve preserve command
/usr/lib/exrecover recover command
/usr/lib/exstrings error messages
/usr/share/lib/terminfo/∗ describes capabilities of terminals
/var/preserve/login preservation directory (where login is the user’s login)
$HOME/.exrc editor startup file
./.exrc editor startup file

modified 18 Mar 1997 SunOS 5.6 1-289

ex (1) User Commands

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

/usr/bin/ex ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu
CSI enabled

/usr/xpg4/bin/ex ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxcu4
CSI enabled

SEE ALSO ed(1), edit(1), grep(1), sed(1), sort(1), vi(1), curses(3X), term(4), terminfo(4), attri-
butes(5), environ(5), standards(5)

Solaris Advanced User’s Guide

AUTHOR The vi and ex utilities are based on software developed by The University of California,
Berkeley California, Computer Science Division, Department of Electrical Engineering
and Computer Science.

NOTES Several options, although they continue to be supported, have been replaced in the docu-
mentation by options that follow the Command Syntax Standard (see intro(1)). The −
option has been replaced by −s, a −r option that is not followed with an option-argument
has been replaced by −L, and +command has been replaced by −c command.

The message file too large to recover with −r option, which is seen when a file is loaded,
indicates that the file can be edited and saved successfully, but if the editing session is
lost, recovery of the file with the −r option will not be possible.

The z command prints the number of logical rather than physical lines. More than a
screen full of output may result if long lines are present.

File input/output errors do not print a name if the command line −s option is used.

The editing environment defaults to certain configuration options. When an editing ses-
sion is initiated, ex attempts to read the EXINIT environment variable. If it exists, the edi-
tor uses the values defined in EXINIT, otherwise the values set in $HOME/.exrc are used.
If $HOME/.exrc does not exist, the default values are used.

To use a copy of .exrc located in the current directory other than $HOME, set the exrc
option in EXINIT or $HOME/.exrc. Options set in EXINIT can be turned off in a local .exrc
only if exrc is set in EXINIT or $HOME/.exrc.

There is no easy way to do a single scan ignoring case.

The editor does not warn if text is placed in named buffers and not used before exiting
the editor.

Null characters are discarded in input files and cannot appear in resultant files.

The standard Solaris version of ex will be replaced by the POSIX.2-conforming version
(see standards(5)) in the future. Scripts which use the ex family of addressing and
features should use the /usr/xpg4/bin version of these utilities.

1-290 SunOS 5.6 modified 18 Mar 1997

User Commands exec (1)

NAME exec, eval, source − shell built-in functions to execute other commands

SYNOPSIS
sh exec [argument. . .]

eval [argument. . .]

csh exec command
eval argument . . .
source [−h] name

ksh † exec [arg . . .]
† eval [arg . . .]

DESCRIPTION
sh The exec command specified by the arguments is executed in place of this shell without

creating a new process. Input/output arguments may appear and, if no other arguments
are given, cause the shell input/output to be modified.

The arguments to the eval built-in are read as input to the shell and the resulting
command(s) executed.

csh exec executes command in place of the current shell, which terminates.

eval reads its arguments as input to the shell and executes the resulting command(s). This
is usually used to execute commands generated as the result of command or variable
substitution.

source reads commands from name. source commands may be nested, but if they are
nested too deeply the shell may run out of file descriptors. An error in a sourced file at
any level terminates all nested source commands.

−h Place commands from the file name on the history list without executing them.

ksh With the exec built-in, if arg is given, the command specified by the arguments is exe-
cuted in place of this shell without creating a new process. Input/output arguments may
appear and affect the current process. If no arguments are given the effect of this com-
mand is to modify file descriptors as prescribed by the input/output redirection list. In
this case, any file descriptor numbers greater than 2 that are opened with this mechanism
are closed when invoking another program.

The arguments to eval are read as input to the shell and the resulting command(s) exe-
cuted.

On this man page, ksh(1) commands that are preceded by one or two † (daggers) are
treated specially in the following ways:

1. Variable assignment lists preceding the command remain in effect when the
command completes.

2. I/O redirections are processed after variable assignments.
3. Errors cause a script that contains them to abort.

modified 15 Apr 1994 SunOS 5.6 1-291

exec (1) User Commands

4. Words, following a command preceded by †† that are in the format of a vari-
able assignment, are expanded with the same rules as a variable assignment.
This means that tilde substitution is performed after the = sign and word
splitting and file name generation are not performed.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO csh(1), ksh(1), sh(1), attributes(5)

1-292 SunOS 5.6 modified 15 Apr 1994

User Commands exit (1)

NAME exit, return, goto − shell built-in functions to enable the execution of the shell to advance
beyond its sequence of steps

SYNOPSIS
sh exit [n]

return [n]

csh exit [(expr)]
goto label

ksh † exit [n]

† return [n]

DESCRIPTION
sh exit will cause the calling shell or shell script to exit with the exit status specified by n. If

n is omitted the exit status is that of the last command executed (an EOF will also cause
the shell to exit.)

return causes a function to exit with the return value specified by n. If n is omitted, the
return status is that of the last command executed.

csh exit will cause the calling shell or shell script to exit, either with the value of the status
variable or with the value specified by the expression expr .

The goto built-in uses a specified label as a search string amongst commands. The shell
rewinds its input as much as possible and searches for a line of the form label: possibly
preceded by space or tab characters. Execution continues after the indicated line. It is an
error to jump to a label that occurs between a while or for built-in command and its
corresponding end.

ksh exit will cause the calling shell or shell script to exit with the exit status specified by n.
The value will be the least significant 8 bits of the specified status. If n is omitted then the
exit status is that of the last command executed.When exit occurs when executing a trap,
the last command refers to the command that executed before the trap was invoked. An
end-of-file will also cause the shell to exit except for a shell which has the ignoreeof
option (See set below) turned on.

return causes a shell function or ’.’ script to return to the invoking script with the return
status specified by n. The value will be the least significant 8 bits of the specified status.
If n is omitted then the return status is that of the last command executed. If return is
invoked while not in a function or a ’.’ script, then it is the same as an exit.

On this man page, ksh(1) commands that are preceded by one or two † (daggers) are
treated specially in the following ways:

1. Variable assignment lists preceding the command remain in effect when the
command completes.

2. I/O redirections are processed after variable assignments.
3. Errors cause a script that contains them to abort.

modified 15 Apr 1994 SunOS 5.6 1-293

exit (1) User Commands

4. Words, following a command preceded by †† that are in the format of a vari-
able assignment, are expanded with the same rules as a variable assignment.
This means that tilde substitution is performed after the = sign and word
splitting and file name generation are not performed.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO break(1), csh(1), ksh(1), sh(1), attributes(5)

1-294 SunOS 5.6 modified 15 Apr 1994

User Commands expand (1)

NAME expand, unexpand − expand TAB characters to SPACE characters, and vice versa

SYNOPSIS expand [−t tablist] [file. . .]
expand [−tabstop] [−tab1, tab2,. . ., tabn] [file. . .]

unexpand [−a] [−t tablist] [file. . .]

DESCRIPTION expand copies files (or the standard input) to the standard output, with TAB characters
expanded to SPACE characters. BACKSPACE characters are preserved into the output and
decrement the column count for TAB calculations. expand is useful for pre-processing
character files (before sorting, looking at specific columns, and so forth) that contain TAB
characters.

unexpand copies files (or the standard input) to the standard output, putting TAB charac-
ters back into the data. By default, only leading SPACE and TAB characters are converted
to strings of tabs, but this can be overridden by the −a option (see the OPTIONS section
below).

OPTIONS expand options are:

−t tablist Specify the tab stops. The argument tablist must consist of a single positive
decimal integer or multiple positive decimal integers, separated by blank
characters or commas, in ascending order. If a single number is given, tabs
will be set tablist column positions apart instead of the default 8. If multiple
numbers are given, the tabs will be set at those specific column positions.

Each tab-stop position N must be an integer value greater than zero, and the
list must be in strictly ascending order. This is taken to mean that, from the
start of a line of output, tabbing to position N causes the next character output
to be in the (N+1)th column position on that line.

In the event of expand having to process a tab character at a position beyond
the last of those specified in a multiple tab-stop list, the tab character is
replaced by a single space character in the output.

−tabstop Specify as a single argument, sets TAB characters tabstop SPACE characters
apart instead of the default 8.

−tab1, tab2,. . ., tabn
Set TAB characters at the columns specified by −tab1, tab2,. . ., tabn

unexpand options are:

−a Insert TAB characters when replacing a run of two or more SPACE characters
would produce a smaller output file.

−t tablist Specify the tab stops. The option-argument tablist must be a single argument
consisting of a single positive decimal integer or multiple positive decimal
integers, separated by blank characters or commas, in ascending order. If a
single number is given, tabs will be set tablist column positions apart instead
of the default 8. If multiple numbers are given, the tabs will be set at those
specific column positions.

modified 1 Feb 1995 SunOS 5.6 1-295

expand (1) User Commands

Each tab-stop position N must be an integer value greater than zero, and the
list must be in strictly ascending order. This is taken to mean that, from the
start of a line of output, tabbing to position N will cause the next character
output to be in the (N+1)th column position on that line. When the −t option
is not specified, the default is the equivalent of specifying −t 8 (except for the
interaction with −a, described below).

No space-to-tab character conversions occur for characters at positions
beyond the last of those specified in a multiple tab-stop list.

When −t is specified, the presence or absence of the −a option is ignored;
conversion will not be limited to the processing of leading blank characters.

OPERANDS expand and unexpand support the following operand:

file The path name of a text file to be used as input.

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of expand and unexpand: LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS The following exit values are returned:

0 Successful completion

>0 An error occurred.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu
CSI enabled

SEE ALSO tabs(1), attributes(5), environ(5)

1-296 SunOS 5.6 modified 1 Feb 1995

SunOS/BSD Compatibility Package Commands exportfs (1B)

NAME exportfs − translates exportfs options to share/unshare commands

SYNOPSIS /usr/sbin/exportfs [−aiuv] [−o options] [pathname]

DESCRIPTION exportfs translates SunOS 4.x exportfs options to the corresponding share/unshare
options and invokes share/unshare with the translated options.

With no options or arguments, exportfs invokes share to print out the list of all currently
shared NFS filesystems.

exportfs is the BSD/Compatibility Package command of share(1M) and unshare(1M).
Use share(1M)/ unshare(1M) whenever possible.

OPTIONS −a Invokes shareall(1M), or if −u is specified, invokes unshareall(1M).

−i Ignore options in /etc/dfs/dfstab.

−u Invokes unshare(1M) on pathname .

−v Verbose.

−o options Specify a comma-separated list of optional characteristics for the filesys-
tems being exported. exportfs translates options to share-equivalent
options. (see share(1M) for information about individual options).

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO share(1M), shareall(1M), unshare(1M), unshareall(1M), attributes(5)

modified 28 Mar 1994 SunOS 5.6 1B-297

expr (1) User Commands

NAME expr − evaluate arguments as an expression

SYNOPSIS /usr/bin/expr argument. . .

/usr/xpg4/bin/expr argument. . .

DESCRIPTION The expr utility evaluates the expression and writes the result to standard output. The
character 0 is written to indicate a zero value and nothing is written to indicate a null
string.

OPERANDS The argument operand is evaluated as an expression. Terms of the expression must be
separated by blanks. Characters special to the shell must be escaped (see sh(1)). Strings
containing blanks or other special characters should be quoted. The length of the expres-
sion is limited to LINE_MAX (2048 characters).

The operators and keywords are listed below. The list is in order of increasing pre-
cedence, with equal precedence operators grouped within { } symbols. All of the opera-
tors are left-associative.

expr \| expr Returns the first expr if it is neither NULL or 0, otherwise returns the
second expr.

expr \& expr Returns the first expr if neither expr is NULL or 0, otherwise returns 0.

expr { =, \>, \>=, \<, \<=, != } expr
Returns the result of an integer comparison if both arguments are
integers, otherwise returns the result of a string comparison using the
locale-specific coalition sequence. The result of each comparison will be
1 if the specified relationship is TRUE, 0 if the relationship is FALSE.

expr { +, − } expr Addition or subtraction of integer-valued arguments.

expr { \∗, /, % } expr
Multiplication, division, or remainder of the integer-valued arguments.

expr : expr The matching operator : (colon) compares the first argument with the
second argument, which must be an internationalized basic regular
expression (BRE); see regex(5) and NOTES. Normally, the
/usr/bin/expr matching operator returns the number of bytes matched
and the /usr/xpg4/bin/expr matching operator returns the number of
characters matched (0 on failure). If the second argument contains at
least one BRE sub-expression [\ (. . . \)], the matching operator returns
the string corresponding to \1.

integer An argument consisting only of an (optional) unary minus followed by
digits.

string A string argument that cannot be identified as an integer argument or as
one of the expression operator symbols.

1-298 SunOS 5.6 modified 17 Mar 1997

User Commands expr (1)

Compatibility
Operators (x86 only)

The following operators are included for compatibility with INTERACTIVE UNIX System
only and are not intended to be used by non-INTERACTIVE UNIX System scripts:

index string character-list
Report the first position in which any one of the bytes in character-list
matches a byte in string.

length string Return the length (that is, the number of bytes) of string.

substr string integer-1 integer-2
Extract the substring of string starting at position integer-1 and of length
integer-2 bytes. If integer-1 has a value greater than the number of bytes
in string, expr returns a null string. If you try to extract more bytes than
there are in string, expr returns all the remaining bytes from string.
Results are unspecified if either integer-1 or integer-2 is a negative value.

EXAMPLES Add 1 to the shell variable a:

example$ a=`expr $a + 1`

The following example emulates basename(1) — it returns the last segment of the path
name $a. For $a equal to either /usr/abc/file or just file, the example returns file. (Watch
out for / alone as an argument: expr takes it as the division operator; see NOTES below.)

example$ expr $a : ´.∗/\(.∗\)´ \| $a

Here is a better version of the previous example. The addition of the // characters elim-
inates any ambiguity about the division operator and simplifies the whole expression.

example$ expr //$a : ´.∗/\(.∗\)´

/usr/bin/expr Return the number of bytes in $VAR:

example$ expr "$VAR" : ´.∗´

/usr/xpg4/bin/expr Return the number of characters in $VAR:

example$ expr "$VAR" : ´.∗´

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of expr: LC_COLLATE, LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS As a side effect of expression evaluation, expr returns the following exit values:

0 if the expression is neither NULL nor 0

1 if the expression is either NULL or 0

2 for invalid expressions.

>2 an error occurred.

modified 17 Mar 1997 SunOS 5.6 1-299

expr (1) User Commands

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu
CSI enabled

SEE ALSO basename(1), ed(1), sh(1), Intro(3), attributes(5), environ(5), regex(5), xpg4(5)

DIAGNOSTICS syntax error Operator and operand errors.

non-numeric argument Arithmetic is attempted on such a string.

NOTES After argument processing by the shell, expr cannot tell the difference between an opera-
tor and an operand except by the value. If $a is an =, the command:

example$ expr $a = ´=´

looks like:

example$ expr = = =

as the arguments are passed to expr (and they are all taken as the = operator). The fol-
lowing works:

example$ expr X$a = X=

Regular Expressions Unlike some previous versions, expr uses Internationalized Basic Regular Expressions for
all system-provided locales. Internationalized Regular Expressions are explained on the
regex(5) manual page.

1-300 SunOS 5.6 modified 17 Mar 1997

SunOS/BSD Compatibility Package Commands expr (1B)

NAME expr − evaluate arguments as a logical, arithmetic, or string expression

SYNOPSIS /usr/ucb/expr argument. . .

DESCRIPTION expr evaluates expressions as specified by its arguments. After evaluation, the result is
written on the standard output. Each token of the expression is a separate argument, so
terms of the expression must be separated by blanks. Characters special to the shell must
be escaped. Note: 0 is returned to indicate a zero value, rather than the null string.
Strings containing blanks or other special characters should be quoted. Integer-valued
arguments may be preceded by a unary minus sign. Internally, integers are treated as
32-bit, two’s-complement numbers.

The operators and keywords are listed below. Characters that need to be escaped are
preceded by ‘\’. The list is in order of increasing precedence, with equal precedence
operators grouped within { } symbols.

expr \� expr
Return the first expr if it is neither NULL nor 0, otherwise returns the second expr.

expr \& expr
Return the first expr if neither expr is NULL or 0, otherwise returns 0.

expr { =, \>, \>= , \<, \<=, != } expr
Return the result of an integer comparison if both arguments are integers, other-
wise returns the result of a lexical comparison.

expr { +, − } expr
Addition or subtraction of integer-valued arguments.

expr { \∗, /, % } expr
Multiplication, division, or remainder of the integer-valued arguments.

string : regular-expression
match string regular-expression

The two forms of the matching operator above are synonymous. The matching
operators : and match compare the first argument with the second argument
which must be a regular expression. Regular expression syntax is the same as
that of regexp(5), except that all patterns are “anchored” (treated as if they begin
with ˆ) and, therefore, ˆ is not a special character, in that context. Normally, the
matching operator returns the number of characters matched (0 on failure).
Alternatively, the \(. . . \) pattern symbols can be used to return a portion of the
first argument.

modified 28 Mar 1995 SunOS 5.6 1B-301

expr (1B) SunOS/BSD Compatibility Package Commands

substr string integer-1 integer-2
Extract the substring of string starting at position integer-1 and of length integer-2
characters. If integer-1 has a value greater than the length of string, expr returns a
null string. If you try to extract more characters than there are in string, expr
returns all the remaining characters from string. Beware of using negative values
for either integer-1 or integer-2 as expr tends to run forever in these cases.

index string character-list
Report the first position in string at which any one of the characters in character-
list matches a character in string.

length string
Return the length (that is, the number of characters) of string.

(expr) Parentheses may be used for grouping.

EXAMPLES 1. a=‘expr $a + 1‘

Adds 1 to the shell variable a.

2. # ’For $a equal to either "/usr/abc/file" or just "file"’
expr $a : ’.∗/\(.∗\)’ \� $a

Returns the last segment of a path name (that is, the filename part).
Watch out for / alone as an argument: expr will take it as the division
operator (see BUGS below).

3. # A better representation of example 2.
expr //$a : ’.∗/\(.∗\)’

The addition of the // characters eliminates any ambiguity about the divi-
sion operator and simplifies the whole expression.

4. expr $VAR : ’.∗’

Returns the number of characters in $VAR.

EXIT STATUS expr returns the following exit codes:

0 if the expression is neither NULL nor 0

1 if the expression is NULL or 0

2 for invalid expressions.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscpu

SEE ALSO sh(1), test(1), attributes(5), regexp(5)

DIAGNOSTICS syntax error for operator/operand errors

non-numeric argument

1B-302 SunOS 5.6 modified 28 Mar 1995

SunOS/BSD Compatibility Package Commands expr (1B)

if arithmetic is attempted on such a string

division by zero
if an attempt to divide by zero is made

BUGS After argument processing by the shell, expr cannot tell the difference between an opera-
tor and an operand except by the value. If $a is an =, the command:

expr $a = ’=’

looks like:

expr = = =

as the arguments are passed to expr (and they will all be taken as the = operator). The
following works:

expr X$a = X=

Note: the match, substr, length, and index operators cannot themselves be used as ordi-
nary strings. That is, the expression:

example% expr index expurgatorious length
syntax error
example%

generates the ‘syntax error’ message as shown instead of the value 1 as you might expect.

modified 28 Mar 1995 SunOS 5.6 1B-303

exstr (1) User Commands

NAME exstr − extract strings from source files

SYNOPSIS exstr filename . . .
exstr −e filename . . .
exstr −r [−d] filename . . .

DESCRIPTION The exstr utility is used to extract strings from C-language source files and replace them
by calls to the message retrieval function (see gettxt(3C)). This utility will extract all char-
acter strings surrounded by double quotes, not just strings used as arguments to the
printf command or the printf routine. In the first form, exstr finds all strings in the
source files and writes them on the standard output. Each string is preceded by the
source file name and a colon.

The first step is to use exstr −e to extract a list of strings and save it in a file. Next, exam-
ine this list and determine which strings can be translated and subsequently retrieved by
the message retrieval function. Then, modify this file by deleting lines that can’t be
translated and, for lines that can be translated, by adding the message file names and the
message numbers as the fourth (msgfile) and fifth (msgnum) entries on a line. The mes-
sage files named must have been created by mkmsgs(1) and exist in
/usr/lib/locale/locale/LC_MESSAGES. (The directory locale corresponds to the language in
which the text strings are written; see setlocale(3C)). The message numbers used must
correspond to the sequence numbers of strings in the message files.

Now use this modified file as input to exstr −r to produce a new version of the original
C-language source file in which the strings have been replaced by calls to the message
retrieval function gettxt(). The msgfile and msgnum fields are used to construct the first
argument to gettxt(). The second argument to gettxt() is printed if the message retrieval
fails at run-time. This argument is the null string, unless the −d option is used.

This utility cannot replace strings in all instances. For example, a static initialized charac-
ter string cannot be replaced by a function call. A second example is that a string could
be in a form of an escape sequence which could not be translated. In order not to break
existing code, the files created by invoking exstr −e must be examined and lines contain-
ing strings not replaceable by function calls must be deleted. In some cases the code may
require modifications so that strings can be extracted and replaced by calls to the message
retrieval function.

OPTIONS −e Extract a list of strings from the named C-language source files, with positional
information. This list is produced on standard output in the following format:

file:line:position:msgfile:msgnum:string

file the name of a C-language source file
line line number in the file
position character position in the line
msgfile null
msgnum null
string the extracted text string

1-304 SunOS 5.6 modified 5 Jul 1990

User Commands exstr (1)

Normally you would redirect this output into a file. Then you would edit this
file to add the values you want to use for msgfile and msgnum:

msgfile the file that contains the text strings that will replace string. A file
with this name must be created and installed in the appropriate
place by the mkmsgs(1) utility.

msgnum the sequence number of the string in msgfile.

The next step is to use exstr −r to replace strings in file.

−r Replace strings in a C-language source file with function calls to the message
retrieval function gettxt().

−d This option is used together with the −r option. If the message retrieval fails
when gettxt() is invoked at run-time, then the extracted string is printed. You
would use the capability provided by exstr on an application program that
needs to run in an international environment and have messages print in more
than one language. exstr replaces text strings with function calls that point at
strings in a message data base. The data base used depends on the run-time
value of the LC_MESSAGES environment variable (see environ(5)).

EXAMPLES The following examples show uses of exstr.

Assume that the file example.c contains two strings:

main()
{

printf("This is an example\n");
printf("Hello world!\n");

}

The exstr utility, invoked with the argument example.c extracts strings from the named
file and prints them on the standard output.

example% exstr example.c

produces the following output:

example.c:This is an example\n
example.c:Hello world!\n

example% exstr −e example.c > example.stringsout

produces the following output in the file example.stringsout:

example.c:3:8:::This is an example\n
example.c:4:8:::Hello world!\n

modified 5 Jul 1990 SunOS 5.6 1-305

exstr (1) User Commands

You must edit example.stringsout to add the values you want to use for the msgfile and
msgnum fields before these strings can be replaced by calls to the retrieval function. If UX
is the name of the message file, and the numbers 1 and 2 represent the sequence number
of the strings in the file, here is what example.stringsout looks like after you add this
information:

example.c:3:8:UX:1:This is an example\n
example.c:4:8:UX:2:Hello world!\n

The exstr utility can now be invoked with the −r option to replace the strings in the
source file by calls to the message retrieval function gettxt().

example% exstr −r example.c <example.stringsout >intlexample.c

produces the following output:

extern char ∗gettxt();
main()
{

printf(gettxt("UX:1", ""));
printf(gettxt("UX:2", ""));

}

example% exstr −rd example.c <example.stringsout >intlexample.c

uses the extracted strings as a second argument to gettxt().

extern char ∗gettxt();
main()
{

printf(gettxt("UX:1", "This is an example\n"));
printf(gettxt("UX:2", "Hello world!\n"));

}

FILES /usr/lib/locale/locale/LC_MESSAGES/∗
files created by mkmsgs(1)

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtoo

SEE ALSO gettxt(1), mkmsgs(1), printf(1), srchtxt(1), gettxt(3C), printf(3S), setlocale(3C), attri-
butes(5), environ(5)

DIAGNOSTICS The error messages produced by exstr are intended to be self-explanatory. They indicate
errors in the command line or format errors encountered within the input file.

1-306 SunOS 5.6 modified 5 Jul 1990

User Commands face (1)

NAME face − executable for the Framed Access Command Environment Interface

SYNOPSIS face [−i init_file] [−c command_file] [−a alias_file] [filename. .|.|]

DESCRIPTION filename is the full pathname of the file describing the object to be opened initially, and
must follow the naming convention Menu.xxx for a menu, Form.xxx for a form, and
Text.xxx for a text file, where xxx is any string that conforms to the UNIX system file nam-
ing conventions. The Form and Menu Language Interpreter (FMLI) descriptor lifetime
will be ignored for all frames opened by argument to face. These frames have a lifetime
of immortal by default. If filename is not specified on the command line, the AT&T FACE
Menu will be opened along with those objects specified by the LOGINWIN environment
variables. These variables are found in the user’s .environ file.

OPTIONS −a alias_file Alias file.

−c command_file Command file.

−i init_file Initial file.

FILES $HOME/pref/.environ

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWfac

SEE ALSO env(1), attributes(5)

DIAGNOSTICS The face command will exit with a non-zero exit code if the user is not properly set up as
a FACE user.

modified 5 Jul 1990 SunOS 5.6 1-307

factor (1) User Commands

NAME factor − obtain the prime factors of a number

SYNOPSIS factor [integer]

DESCRIPTION factor writes to standard input all prime factors for any positive integer less than or equal
to 1014. The prime factors are written the proper number of times.

If factor is used without an argument, it waits for an integer to be entered. After entry of
the integer, it factors it, writes its prime factors the proper number of times, and then
waits for another integer. factor exits if a 0 or any non-numeric character is entered.

If factor is invoked with an argument (integer), it writes the integer, factors it and writes
all the prime factors as described above, and then exits. If the argument is 0 or non-
numeric, factor writes a 0 and then exits.

The maximum time to factor an integer is proportional to √ǹ, where n is the integer which
is entered. factor will take this time when n is prime or the square of a prime.

OPERANDS integer Any positive integer less than or equal to 1014.

EXIT STATUS 0 Successful completion.

1 An error occurred.

DIAGNOSTICS factor prints the error message Ouch! for input out of range or for garbage input.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu

SEE ALSO attributes(5)

1-308 SunOS 5.6 modified 31 Jan 1996

SunOS/BSD Compatibility Package Commands fastboot (1B)

NAME fastboot, fasthalt − reboot/halt the system without checking the disks

SYNOPSIS /usr/ucb/fastboot [boot-options]

/usr/ucb/fasthalt [halt-options]

DESCRIPTION fastboot and fasthalt are shell scripts that invoke reboot and halt with the proper argu-
ments.

These commands are provided for compatibility only.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscpu

SEE ALSO fsck(1M), halt(1M), init(1M), reboot(1M), init.d(4), attributes(5)

modified 28 Feb 1994 SunOS 5.6 1B-309

fdformat (1) User Commands

NAME fdformat − format floppy diskette or PCMCIA memory card

SYNOPSIS fdformat [−dDeEfHlLmMUqvx] [−b label] [−B filename] [−t dostype] [devname]

DESCRIPTION fdformat is a utility for formatting both diskettes and PCMCIA memory cards. All new,
blank diskettes or PCMCIA memory cards must be formatted before they can be used.
fdformat formats and verifies the media, and indicates whether any bad sectors were
encountered. All existing data on the diskette or PCMCIA memory card, if any, is des-
troyed by formatting. If no device name is given, fdformat uses the diskette as a default.

By default, fdformat uses the configured capacity of the drive to format the diskette. A
3.5 inch high-density drive uses diskettes with a formatted capacity of 1.44 megabytes. A
5.25 inch high-density drive uses diskettes with a formatted capacity of 1.2 megabytes. In
either case, a density option does not have to be specified to fdformat. However, a den-
sity option must be specified when using a diskette with a lower capacity than the drive’s
default. Use the −H option to format high-density diskettes (1.44-megabyte capacity) in
an extra-high-density (ED) drive. Use the −D option, the −l option, or the −L option to
format double-density (or "low-density") diskettes (720KB capacity) in an HD or ED
drive. To format medium-density diskettes (1.2-megabyte capacity), use the −M option
with −t nec (this is the same as using the −m option with −t nec).

Extended density uses double-sided, extended-density (or extra-high-density) (DS/ED)
diskettes. Medium and high densities use the same media: double-sided, high-density
(DS/HD) diskettes. Double ("low") density uses double-sided, double-density (DS/DD)
diskettes. Substituting diskettes of one density for diskettes of either a higher or lower
density generally will not work. Data integrity cannot be assured whenever a diskette is
formatted to a capacity not matching its density.

A PCMCIA memory card with densities from 512 KBytes to 64 MBytes may be format-
ted.

fdformat writes new identification and data fields for each sector on all tracks unless the
−x option is specified. For diskettes, if the −v option is specified, each sector is verified.

After formatting and verifying, fdformat writes an operating-system label on block 0.
Use the −t dos option (same as the −d option) to put an MS-DOS file system on the
diskette or PCMCIA memory card after the format is done. Use the −t nec option with
the −M option (same as the −m option) to put an NEC-DOS file system on a diskette. Oth-
erwise, fdformat writes a SunOS label in block 0.

OPTIONS −D Format a 720KB (3.5 inch) or 360KB (5.25 inch) double-density diskette
(same as the −l or −L options). This is the default for double-density type
drives. It is needed if the drive is a high- or extended-density type.

−e Eject the diskette when done. (This feature is not available on all systems).

−E Format a 2.88-megabyte (3.5 inch) extended-density diskette. This is the
default for extended-density type drives.

−f Force. Do not ask for confirmation before starting format.

1-310 SunOS 5.6 modified 11 Feb 1997

User Commands fdformat (1)

−H Format a 1.44-megabyte (3.5 inch) or 1.2-megabyte (5.25 inch) high-density
diskette. This is the default for high-density type drives; it is needed if the
drive is the extended-density type.

−M Write a 1.2-megabyte (3.5 inch) medium-density format on a high-density
diskette (use only with the −t nec option). This is the same as using −m.
(This feature is not available on all systems.)

−U umount any file systems and then format.

−q Quiet; do not print status messages.

−v Verify each block of the diskette after the format.

−x Skip the format, and only write a SunOS label or an MS-DOS file system.

−b label Label the media with volume label. A SunOS volume label is restricted to 8
characters. A DOS volume label is restricted to 11 upper-case characters.

−B filename Install special boot loader in filename on an MS-DOS diskette. This option is
only meaningful when the −d option (or −t dos) is also specified.

−t dos Install an MS-DOS file system and boot sector formatting. This is equivalent
to the DOS format command or the −d option.

−t nec Install an NEC-DOS file system and boot sector on the disk after formatting.
This should be used only with the −M option. (This feature is not available
on all systems).

devname Replace devname with rdiskette0 (systems without Volume Management) or
floppy0 (systems with Volume Management) to use the first drive or
rdiskette1 (systems without Volume Management) or floppy1 (systems
with Volume Management) to use the second drive. If devname is omitted,
the first drive, if one exists, will be used.

For PCMCIA memory cards, replace devname with the device name for the
PCMCIA memory card which resides in /dev/rdsk/cNtNdNsN or
/dev/dsk/cNtNdNsN.

If devname is omitted, the default diskette drive, if one exists, will be used.

N represents a decimal number and can be specified as follows:

cN Controller N

tN Technology type N:
0x1 ROM
0x2 OTPROM
0x3 EPROM
0x4 EEPROM
0x5 FLASH
0x6 SRAM
0x7 DRAM

dN Technology region in type N

sN Slice N

modified 11 Feb 1997 SunOS 5.6 1-311

fdformat (1) User Commands

The following options are provided for compatibility with previous versions of fdformat;
their use is discouraged.

−d Format an MS-DOS floppy diskette or PCMCIA memory card. (same as −t
dos). This is equivalent to the MS-DOS FORMAT command.

−l Format a 720KB (3.5 inch) or 360KB (5.25 inch) double-density diskette
(same as −D or −L). This is the default for double-density type drives; it is
needed if the drive is the high- or extended-density type.

−L Format a 720KB (3.5 inch) or 360KB (5.25 inch) double-density diskette
(same as −l or −D). This is the default for double-density type drives; it is
needed if the drive is the high- or extended-density type.

−m Write a 1.2-megabyte (3.5 inch) medium-density format on a high-density
diskette (use only with the −t nec option). This is the same as using −M.
(This feature is not available on all systems.)

FILES /vol/dev/diskette0 Directory providing block device access for the media in
floppy drive 0.

/vol/dev/rdiskette0 Directory providing character device access for the media in
floppy drive 0.

/vol/dev/aliases/floppy0 Symbolic link to the character device for the media in floppy
drive 0.

/dev/rdiskette Directory providing character device access for the media in
the primary floppy drive, usually drive 0.

/vol/dev/dsk/cNtNdNsN Directory providing block device access for the PCMCIA
memory card.

/vol/dev/rdsk/cNtNdNsN Directory providing character device access for the
PCMCIA memory card.

/vol/dev/aliases/pcmemS Symbolic link to the character device for the PCMCIA
memory card in socket S where S represents a PCMCIA
socket number.

/dev/rdsk/cNtNdNsN Directory providing character device access for the PCMCIA
memory card.

/dev/dsk/cNtNdNsN Directory providing block device access for the PCMCIA
memory card.

Note: See devname section above for a description of the values for N.
ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu
SEE ALSO cpio(1), eject(1), tar(1), volcancel(1), volcheck(1), volmissing(1), mount(1M), newfs(1M),

rmmount(1M), vold(1M), rmmount.conf(4), vold.conf(4), attributes(5), pcfs(7FS),
volfs(7FS)

x86 Only fd(7D)

1-312 SunOS 5.6 modified 11 Feb 1997

User Commands fdformat (1)

NOTES A diskette or PCMCIA memory card containing a ufs file system created on a SPARC
based system (by using fdformat and newfs(1M)) is not identical to a diskette or
PCMCIA memory card containing a ufs file system created on an x86 based system. Do
not interchange ufs diskettes or memory cards between these platforms; use cpio(1) or
tar(1) to transfer files on diskettes or memory cards between them.

A diskette or PCMCIA memory card formatted using the −t dos option (or −d) for MS-
DOS will not have the necessary system files, and is therefore not bootable. Trying to
boot from it on a PC will result in the following message:

Non-System disk or disk error
Replace and strike any key when ready

BUGS Currently, bad sector mapping is not supported on floppy diskettes or PCMCIA memory
cards. Therefore, a diskette or memory cards is unusable if fdformat finds an error (bad
sector).

modified 11 Feb 1997 SunOS 5.6 1-313

fgrep (1) User Commands

NAME fgrep − search a file for a fixed-character string

SYNOPSIS /usr/bin/fgrep [−bchilnsvx] [−e pattern_list] [−f pattern-file] [pattern] [file . . .]

/usr/xpg4/bin/fgrep [−bchilnsvx] [−e pattern_list] [−f pattern-file]
[pattern] [file . . .]

DESCRIPTION The fgrep (fast grep) utility searches files for a character string and prints all lines that
contain that string. fgrep is different from grep(1) and egrep(1) because it searches for a
string, instead of searching for a pattern that matches an expression. It uses a fast and
compact algorithm.

The characters $, ∗, [, ˆ, �, (,), and \ are interpreted literally by fgrep, that is, fgrep does
not recognize full regular expressions as does egrep. Since these characters have special
meaning to the shell, it is safest to enclose the entire string in single quotes ′ . . . ′.
If no files are specified, fgrep assumes standard input. Normally, each line found is
copied to the standard output. The file name is printed before each line found if there is
more than one input file.

OPTIONS The following options are supported:

−b Precede each line by the block number on which it was found. This can
be useful in locating block numbers by context (first block is 0).

−c Print only a count of the lines that contain the pattern.

−e pattern_list Search for a string in pattern-list (useful when the string begins
with a −).

−f pattern-file Take the list of patterns from pattern-file .

−h Suppress printing of files when searching multiple files.

−i Ignore upper/lower case distinction during comparisons.

−l Print the names of files with matching lines once, separated by new-
lines. Does not repeat the names of files when the pattern is found more
than once.

−n Precede each line by its line number in the file (first line is 1).

−s Work silently, that is, display nothing except error messages. This is
useful for checking the error status.

−v Print all lines except those that contain the pattern.

−x Print only lines matched entirely.

OPERANDS The following operands are supported:

file A path name of a file to be searched for the patterns. If no file operands are
specified, the standard input will be used.

1-314 SunOS 5.6 modified 12 May 1997

User Commands fgrep (1)

/usr/bin/fgrep pattern Specify a pattern to be used during the search for input.

/usr/xpg4/bin/fgrep pattern Specify one or more patterns to be used during the search for input. This
operand is treated as if it were specified as −e pattern_list.

USAGE See largefile(5) for the description of the behavior of fgrep when encountering files
greater than or equal to 2 Gbyte (231 bytes).

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of fgrep: LC_COLLATE, LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS The following exit values are returned:

0 if any matches are found
1 if no matches are found
2 for syntax errors or inaccessible files (even if matches were found).

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

/usr/bin/fgrep ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu
CSI Enabled

/usr/xpg4/bin/fgrep ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxcu4
CSI Enabled

SEE ALSO ed(1), egrep(1), grep(1), sed(1), sh(1), attributes(5), environ(5), largefile(5), xpg4(5)

NOTES Ideally there should be only one grep command, but there is not a single algorithm that
spans a wide enough range of space-time tradeoffs.

Lines are limited only by the size of the available virtual memory.

/usr/xpg4/bin/fgrep The /usr/xpg4/bin/fgrep utility is identical to /usr/xpg4/bin/grep −F (see grep(1)). Port-
able applications should use /usr/xpg4/bin/grep −F.

modified 12 May 1997 SunOS 5.6 1-315

file (1) User Commands

NAME file − determine file type

SYNOPSIS file [−h] [−m mfile] [−f ffile] file . . .
file [−h] [−m mfile] −f ffile
file −c [−m mfile]

DESCRIPTION The file utility performs a series of tests on each file supplied by file and, optionally, on
each file listed in ffile in an attempt to classify it. If the file is not a regular file, its file type
is identified. The file types directory, FIFO, block special, and character special are
identified as such. If the file is a regular file and the file is zero-length, it is identified as
an empty file.

If file appears to be a text file, file examines the first 512 bytes and tries to determine its
programming language. If file is an executable a.out, file prints the version stamp, pro-
vided it is greater than 0. If file is a symbolic link, by default the link is followed and file
tests the file to which the symbolic link refers.

By default, file will try to use the localized magic file
/usr/lib/locale/locale/LC_MESSAGES/magic, if it exists, to identify files that have a magic
number. If a localized magic file does not exist, file will utilize /etc/magic. A magic
number is a numeric or string constant that indicates the file type. See magic(4) for an
explanation of the format of /etc/magic.

If file does not exist, cannot be read, or its file status could not be determined, it is not
considered an error that affects the exit status. The output will indicate that the file was
processed, but that its type could not be determined.

OPTIONS The following options are supported:

−c Check the magic file for format errors. For reasons of efficiency, this
validation is normally not carried out.

−h Do not follow symbolic links.

−f ffile ffile contains a list of the files to be examined.

−m mfile Use mfile as an alternate magic file, instead of /etc/magic.

OPERANDS The following operands are supported:

file A path name of a file to be tested.

USAGE See largefile(5) for the description of the behavior of file when encountering files greater
than or equal to 2 Gbyte (231 bytes).

EXAMPLES Determine if an argument is a binary executable file:

file "$1" | grep -Fq executable &&
printf "%s is executable.\n" "$1"

1-316 SunOS 5.6 modified 1 Apr 1996

User Commands file (1)

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of file: LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS The following exit values are returned:

0 Successful completion.

>0 An error occurred.

FILES /etc/magic file’s magic number file

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu
CSI enabled

SEE ALSO ls(1), filehdr(4), magic(4), attributes(5), environ(5), largefile(5)

DIAGNOSTICS If the −h option is specified and file is a symbolic link, file prints the error message:
symbolic link to file

modified 1 Apr 1996 SunOS 5.6 1-317

file (1B) SunOS/BSD Compatibility Package Commands

NAME file − determine the type of a file by examining its contents

SYNOPSIS /usr/ucb/file [−f ffile] [−cL] [−m mfile] filename. . .

DESCRIPTION file performs a series of tests on each filename in an attempt to determine what it contains.
If the contents of a file appear to be ASCII text, file examines the first 512 bytes and tries to
guess its language.

file uses the file /etc/magic to identify files that have some sort of magic number, that is,
any file containing a numeric or string constant that indicates its type.

OPTIONS −c Check for format errors in the magic number file. For reasons of efficiency,
this validation is not normally carried out. No file type-checking is done
under −c.

−f ffile Get a list of filenames to identify from ffile.

−L If a file is a symbolic link, test the file the link references rather than the link
itself.

−m mfile Use mfile as the name of an alternate magic number file.

EXAMPLES This example illustrates the use of file on all the files in a specific user’s directory:

example% pwd
/usr/blort/misc
example% /usr/ucb/file ∗
code: mc68020 demand paged executable

code.c: c program text

counts: ascii text

doc: roff, nroff , or eqn input text

empty.file: empty

libz: archive random library

memos: directory

project: symbolic link to /usr/project

script: executable shell script

titles: ascii text

s5.stuff: cpio archive

example%

ENVIRONMENT The environment variables LC_CTYPE, LANG, and LC_default control the character
classification throughout file. On entry to file, these environment variables are checked
in the following order: LC_CTYPE, LANG, and LC_default. When a valid value is found,
remaining environment variables for character classification are ignored. For example, a
new setting for LANG does not override the current valid character classification rules of

1B-318 SunOS 5.6 modified 14 Sep 1992

SunOS/BSD Compatibility Package Commands file (1B)

LC_CTYPE. When none of the values is valid, the shell character classification defaults to
the POSIX.1 “C” locale.

FILES /etc/magic

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscpu

SEE ALSO magic(4), attributes(5)

BUGS file often makes mistakes. In particular, it often suggests that command files are C pro-
grams.

file does not recognize Pascal or LISP.

modified 14 Sep 1992 SunOS 5.6 1B-319

filesync (1) User Commands

NAME filesync − synchronize ordinary, directory or special files

SYNOPSIS filesync [−aehmnqvy] [−o src | dst] [−f src | dst] [−r directory . . .]

filesync [−aehmnqvy] −s source-dir −d dest-dir filename . . .

DESCRIPTION filesync synchronizes files between multiple computer systems, typically a server and a
portable computer. filesync synchronizes ordinary, directory or special files. Although
intended for use on nomadic systems, filesync is useful for backup and file replication on
more permanently connected systems.

If files are synchronized between systems, the corresponding files on each of the systems
are identical. Changing a file on one or both of the systems causes the files to become dif-
ferent (not synchronized). In order to make the files identical again, the differences
between the files must be reconciled. See Reconciling and Synchronizing Files for
specific details about how filesync reconciles and synchronizes files.

There are two forms of the filesync command. The first form of filesync is invoked
without file arguments. This form of filesync reconciles differences between the files and
systems specified in the $HOME/.packingrules file. $HOME/.packingrules is a packing
rules list for filesync and cachefspack, and contains a list of files to be kept synchronized.
See packingrules(4) and cachefspack(1M).

The second form of filesync copies specific files from a directory on the source system to
a directory on the destination system. In addition, this form of filesync adds the file or
files specified as arguments (filename) to $HOME/.packingrules. See −s and −d for infor-
mation about specifying directories on source and destination systems. See OPERANDS
for details about specifying file (filename) arguments.

Multiple filesync commands are cumulative (that is, the specified files are added to the
already existing packing rules file list). See Multiple filesync Commands.

Reconciling and
Synchronizing Files

filesync synchronizes files between computer systems by performing the following two
tasks:

1. filesync examines the directories and files specified in the packing rules file
on both systems, and determines whether or not they are identical. Any file
that differs requires reconciliation.

filesync also maintains a baseline summary in the $HOME/.filesync-base file
for all of the files that are being monitored. This file lists the names, types,
and sizes of all files as of the last reconciliation.

2. Based on the information contained in the baseline file and the specified
options (see Resolving filesync Conflicts), filesync determines which of the
various copies is the correct one, and makes the corresponding changes to the
other system. Once this has been done, the two copies are, again, identical
(synchronized).

If a source file has changed and the destination file has not, the changes on the
source system are propagated to the destination system. If a destination file

1-320 SunOS 5.6 modified 9 May 1997

User Commands filesync (1)

has changed and the corresponding source file has not, the changes on the
destination file are propagated to the source system. If both systems have
changed (and the files are not still identical) a warning message will be
printed out, asking the user to resolve the conflict manually. See Resolving
filesync Conflicts.

Resolving filesync
Conflicts

In cases where files on both sides have changed, filesync attempts to determine which
version should be chosen. If filesync cannot automatically determine which version
should be selected, it prints out a warning message and leaves the two incompatible ver-
sions of the file unreconciled.

In these cases, you must either resolve the differences manually, or tell filesync how to
choose which file should win. Use the −o and −f options to tell filesync how to resolve
conflicts (see OPTIONS).

Alternatively, for each conflicting file, you can examine the two versions, determine
which one should be kept, and manually bring the two versions into agreement (by copy-
ing, deleting, or changing the ownership or protection to be correct). You can then re-run
filesync to see whether or not any other conflicts remain.

Packing Rules File The packing rules file $HOME/.packingrules contains a list of files to be kept synchron-
ized. The syntax of this file is described in packingrules(4).

The $HOME/.packingrules file is automatically created if users invoke filesync with
filename arguments. By using filesync options, users can augment the packing rules in
$HOME/.packingrules.

Many users choose to create the packing rules file manually and edit it by hand. Users
can edit $HOME/.packingrules (using any editor) to permanently change the
$HOME/.packingrules file, or to gain access to more powerful options that are not avail-
able from the command line (such as IGNORE commands). It is much easier to enter
complex wildcard expressions by editing the $HOME/.packingrules file.

Baseline File $HOME/.filesync-base is the filesync baseline summary file. filesync uses the informa-
tion in $HOME/.filesync-base to identify the differences between files during the reconcil-
iation and synchronization process. Users do not create or edit the baseline file. It is
created automatically by filesync and records the last known state of agreement between
all of the files being maintained.

Multiple filesync
Commands

Over a period of time, the set of files you want to keep synchronized can change. It is
common, for instance, to want to keep files pertaining to only a few active projects on
your notebook. If you continue to keep files associated with every project you have ever
worked on synchronized, your notebook’s disk will fill up with old files. Each filesync
command will waste a lot of time updating files you no longer care about.

If you delete the files from your notebook, filesync will want to perform the correspond-
ing deletes on the server, which would not be what you wanted. Rather, you would like
a way to tell filesync to stop synchronizing some of the files. There are two ways to do

modified 9 May 1997 SunOS 5.6 1-321

filesync (1) User Commands

this:

1. Edit $HOME/.packingrules. Delete the rules for the files that you want to
delete.

2. Delete $HOME/.packingrules. Use the filesync command to specify the files
that you want synchronized.

Either way works, and you can choose the one that seems easiest to you. For minor
changes, it is probably easier to just edit $HOME/.packingrules. For major changes it is
probably easier to start from scratch.

Once filesync is no longer synchronizing a set of files, you can delete them from your
notebook without having any effect on the server.

Nomadic Machines When using filesync to keep files synchronized between nomadic machines and a server,
store the packing rules and baseline files on the nomadic machines, not the server. If,
when logged into your notebook, the HOME environment variable does not normally
point to a directory on your notebook, you can use the FILESYNC environment variable to
specify an alternate location for the packing rules and baseline files.

Each nomadic machine should carry its own packing rules and baseline file. Incorrect file
synchronization can result if a server carries a baseline file and multiple nomadic
machines attempt to reconcile against the server’s baseline file. In this case, a nomadic
machine could be using a baseline file that does not accurately describe the state of its
files. This might result in incorrect reconciliations.

To safeguard against of the dangers associated with a single baseline file being shared by
more than two machines, filesync adds a default rule to each new packing rules file. This
default rule prevents the packing rules and baseline files from being copied.

OPTIONS The following options are supported:

−a Force the checking of Access Control Lists (ACLs) and attempt to make
them agree for all new and changed files. If it is not possible to set the
ACL for a particular file, filesync stops ACL synchronization for that file.

Some file systems do not support ACLs. It is not possible to synchronize
ACLs between file systems that support ACLs and those that do not;
attempting to do so will result in numerous error messages.

−d dest-dir Specify the directory on the destination system into which filename is to
be copied. Use with the −s source-dir option and the filename operand.
See −s and OPERANDS.

−e Flag all differences. It may not be possible to resolve all conflicts involv-
ing modes and ownership (unless filesync is being run with root
privileges). If you cannot change the ownership or protections on a file,
filesync will normally ignore conflicts in ownership and protection. If
you specify the −e (everything must agree) flag, however, filesync will
flag these differences.

−f src | dst The −f option favors either the source-system file (src) or destination-

1-322 SunOS 5.6 modified 9 May 1997

User Commands filesync (1)

system file (dst) in resolving conflicts between files. If a file has been
changed on both systems, the changes made on the unfavored system
will be discarded.

Specify −f src to favor the source-system file. Specify −f dst to favor the
destination-system file.

It is possible to specify the −f and −o options in combination if they both
specify the same preference (src and dst). If −f and −o conflict, the −f
option is ignored. See the −o option description.

−h Halt on error. Normally, if filesync encounters a read or write error
while copying files, it notes the error and the program continues, in an
attempt to reconcile other files. If the −h option is specified, filesync will
immediately halt when one of these errors occurs and will not try to
process any more files.

−m Ensure that both copies of the file have the same modification time. The
modification time for newly copied files is set to the time of reconcilia-
tion by default. File changes are ordered by increasing modification
times so that the propagated files have the same relative modification
time ordering as the original changes. Users should be warned that
there is usually some time skew between any two systems, and transfer-
ring modification times from one system to another can occasionally
produce strange results.

There are instances in which using filesync to update some (but not all)
files in a directory will confuse the make program. If, for instance,
filesync is keeping .c files synchronized, but ignoring .o files, a changed
.c file may show up with a modification time prior to a .o file that was
built from a prior version of the .c file.

−n Do not really make the changes. If the −n option is specified, filesync
determines what changes have been made to files, and what reconcilia-
tions are required and displays this information on the standard output.
No changes are made to files, including the packing rules file.

Specifying both the −n and −o options causes filesync to analyze the
prevailing system and report the changes that have been made on that
system. Using −n and −o in combination is useful if your machine is
disconnected (and you cannot access the server) but you want to know
what changes have been made on the local machine. See the −o option
description.

−o src | dst The −o option forces a one-way reconciliation, favoring either the source
system (src) or destination system (dst).

Specify −o src to propagate changes only from the source system to the
destination system. Changes made on the destination system are
ignored. filesync aborts if it cannot access a source or destination direc-
tory.

modified 9 May 1997 SunOS 5.6 1-323

filesync (1) User Commands

Specify −o dst to propagate changes only from the destination system to
the source system. Changes made on the source system are ignored.
filesync aborts if it cannot access a source or destination directory.

Specifying −n with the −o option causes filesync to analyze the prevail-
ing system and reports on what changes have been made on that sys-
tem. Using −n and −o in combination is useful if a machine is discon-
nected (and there is no access to the server), but you want to know what
changes have been made on the local machine. See the −n option
description.

It is possible to specify the −o and −f options in combination if they both
specify the same preference (src or dst). If −o and −f options conflict, the
−f option will be ignored. See the −f option description.

−q Suppress the standard filesync messages that describe each reconcilia-
tion action as it is performed.

The standard filesync message describes each reconciliation action in
the form of a UNIX shell command (for example, mv, ln, cp, rm, chmod,
chown, chgrp, setfacl, and so forth).

−r directory Limit the reconciliation to directory. Specify multiple directories with
multiple −r specifications.

−s source-dir Specify the directory on the source system from which the filename to be
copied is located. Use with the −d dest-dir option and the filename
operand. See the −d option description and OPERANDS.

−v Display additional information about each file comparison as it is made
on the standard output.

−y Bypass safety check prompts. Nomadic machines occasionally move
between domains, and many of the files on which filesync operates are
expected to be accessed by NFS. There is a danger that someday filesync
will be asked to reconcile local changes against the wrong file system or
server. This could result in a large number of inappropriate copies and
deletions. To prevent such a mishap, filesync performs a few safety
checks prior to reconciliation. If large numbers of files are likely to be
deleted, or if high level directories have changed their I-node numbers,
filesync prompts for a confirmation before reconciliation. If you know
that this is likely, and do not want to be prompted, use the −y (yes)
option to automatically confirm these prompts.

OPERANDS The following operands are supported:

filename The name of the ordinary file, directory, symbolic link, or special file in
the specified source directory (source-dir) to be synchronized. Specify
multiple files by separating each filename by spaces. Use the filename
operand with the −s and −d options. See OPTIONS.

If filename is an ordinary file, that ordinary file will be replicated (with

1-324 SunOS 5.6 modified 9 May 1997

User Commands filesync (1)

the same filename) in the specified destination directory (dest-dir).

If filename is a directory, that directory and all of the files and subdirec-
tories under it will be replicated (recursively) in the specified destination
directory (dest-dir).

If filename is a symbolic link, a copy of that symbolic link will be repli-
cated in the specified destination directory (dest-dir).

If filename is a special file, a special file with the same major or minor
device numbers will be replicated in the specified destination directory.
(dest-dir). Only superusers can use filesync to create special files.

Files created in the destination directory (dest-dir) will have the same
owner, group and other permissions as the files in the source directory.

If filename contains escaped shell wildcard characters, the wildcard char-
acters are stored in $HOME/.packingrules and evaluated each time
filesync is run.

For example, the following would make sure that the two specified files,
currently in $RHOME, were replicated in $HOME:

filesync −s $RHOME −d $HOME a.c b.c

The following example would ensure that all of the ∗.c files in $RHOME
were replicated in $HOME, even if those files were not created until
later.

filesync −s $RHOME −d $HOME ’∗.c’

If any of the destination files already exist, filesync ensures that they are
identical and issues warnings if they are not.

Once files have been copied, the distinction between the source and des-
tination is a relatively arbitrary one (except for its use in the −o and −f
switches).

ENVIRONMENT FILESYNC Specifies the default location of the filesync packing rules and baseline
files. The default value for this variable is $HOME. The suffixes .pack-
ingrules and .filesync-base will be appended to form the names of the
packing rules and baseline files.

modified 9 May 1997 SunOS 5.6 1-325

filesync (1) User Commands

LC_MESSAGES Determines how diagnostic and informative messages are presented. In
the "C" locale, the messages are presented in the default form found in
the program itself (in most cases, U.S. English).

EXIT STATUS Normally, if all files are already up-to-date, or if all files were successfully reconciled,
filesync will exit with a status of 0. However, if either the −n option was specified or any
errors occurred, the exit status will be the logical OR of the following:

0 No conflicts, all files up to date.
1 Some resolvable conflicts.
2 Some conflicts requiring manual resolution.
4 Some specified files did not exist.
8 Insufficient permission for some files.
16 Errors accessing packing rules or baseline file.
32 Invalid arguments.
64 Unable to access either or both of the specified src or dst directories.
128 Miscellaneous other failures.

FILES $HOME/.packingrules list of files to be kept synchronized
$HOME/.filesync-base baseline summary file

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu

SEE ALSO cachefspack(1M), packingrules(4), attributes(5)

1-326 SunOS 5.6 modified 9 May 1997

User Commands find (1)

NAME find − find files

SYNOPSIS find path . . . expression

DESCRIPTION The find utility recursively descends the directory hierarchy for each path seeking files
that match a Boolean expression written in the primaries given below.

find will be able to descend to arbitrary depths in a file hierarchy and will not fail due to
path length limitations (unless a path operand specified by the application exceeds
PATH_MAX requirements).

OPERANDS The following operands are supported:

path A path name of a starting point in the directory hierarchy.

expression The first argument that starts with a −, or is a ! or a (, and all subsequent
arguments will be interpreted as an expression made up of the following
primaries and operators. In the descriptions, wherever n is used as a
primary argument, it will be interpreted as a decimal integer optionally
preceded by a plus (+) or minus (−) sign, as follows:

+n more than n
n exactly n
−n less than n

Expressions Valid expressions are:

−atime n True if the file was accessed n days ago. The access time of directories in
path is changed by find itself.

−cpio device Always true; write the current file on device in cpio format (5120-byte
records).

−ctime n True if the file’s status was changed n days ago.

−depth Always true; causes descent of the directory hierarchy to be done so that
all entries in a directory are acted on before the directory itself. This can
be useful when find is used with cpio(1) to transfer files that are con-
tained in directories without write permission.

−exec command True if the executed command returns a zero value as exit status. The
end of command must be punctuated by an escaped semicolon. A com-
mand argument { } is replaced by the current path name.

−follow Always true; causes symbolic links to be followed. When following
symbolic links, find keeps track of the directories visited so that it can
detect infinite loops; for example, such a loop would occur if a symbolic
link pointed to an ancestor. This expression should not be used with the
−type l expression.

modified 10 Feb 1997 SunOS 5.6 1-327

find (1) User Commands

−fstype type True if the filesystem to which the file belongs is of type type .

−group gname True if the file belongs to the group gname. If gname is numeric and does
not appear in the /etc/group file, it is taken as a group ID.

−inum n True if the file has inode number n.

−links n True if the file has n links.

−local True if the file system type is not a remote file system type as defined in
the /etc/dfs/fstypes file. nfs is used as the default remote filesystem
type if the /etc/dfs/fstypes file is not present.

−ls Always true; prints current path name together with its associated
statistics. These include (respectively):

· inode number
· size in kilobytes (1024 bytes)
· protection mode
· number of hard links
· user
· group
· size in bytes
· modification time.

If the file is a special file the size field will instead contain the major and
minor device numbers.

If the file is a symbolic link the pathname of the linked-to file is printed
preceded by ‘→’. The format is identical to that of ls −gilds (see ls(1)).

Note: Formatting is done internally, without executing the ls program.

−mount Always true; restricts the search to the file system containing the direc-
tory specified. Does not list mount points to other file systems.

−mtime n True if the file’s data was modified n days ago.

−name pattern True if pattern matches the current file name. Normal shell file name
generation characters (see sh(1)) may be used. A backslash (\) is used
as an escape character within the pattern. The pattern should be
escaped or quoted when find is invoked from the shell.

−ncpio device Always true; write the current file on device in cpio −c format (5120 byte
records).

−newer file True if the current file has been modified more recently than the argu-
ment file.

−nogroup True if the file belongs to a group not in the /etc/group file.

−nouser True if the file belongs to a user not in the /etc/passwd file.

−ok command Like −exec except that the generated command line is printed with a
question mark first, and is executed only if the user responds by typing
y.

−perm [−]mode The mode argument is used to represent file mode bits. It will be

1-328 SunOS 5.6 modified 10 Feb 1997

User Commands find (1)

identical in format to the <symbolicmode> operand described in
chmod(1), and will be interpreted as follows. To start, a template will be
assumed with all file mode bits cleared. An op symbol of:

+ will set the appropriate mode bits in the template;

− will clear the appropriate bits;

= will set the appropriate mode bits, without regard to the con-
tents of process’ file mode creation mask.

The op symbol of − cannot be the first character of mode ; this avoids
ambiguity with the optional leading hyphen. Since the initial mode is all
bits off, there are not any symbolic modes that need to use − as the first
character.

If the hyphen is omitted, the primary will evaluate as true when the file
permission bits exactly match the value of the resulting template.

Otherwise, if mode is prefixed by a hyphen, the primary will evaluate as
true if at least all the bits in the resulting template are set in the file per-
mission bits.

−perm [−]onum True if the file permission flags exactly match the octal number onum
(see chmod(1)). If onum is prefixed by a minus sign (−), only the bits that
are set in onum are compared with the file permission flags, and the
expression evaluates true if they match.

−print Always true; causes the current path name to be printed.

−prune Always yields true. Do not examine any directories or files in the direc-
tory structure below the pattern just matched. See the examples, below.

−size n[c] True if the file is n blocks long (512 bytes per block). If n is followed by a
c, the size is in bytes.

−type c True if the type of the file is c, where c is b, c, d, l, p, s, or f for block spe-
cial file, character special file, directory, symbolic link, fifo (named pipe),
socket, or plain file, respectively.

−user uname True if the file belongs to the user uname. If uname is numeric and does
not appear as a login name in the /etc/passwd file, it is taken as a user
ID.

−xdev Same as the −mount primary.

modified 10 Feb 1997 SunOS 5.6 1-329

find (1) User Commands

Complex Expressions The primaries may be combined using the following operators (in order of decreasing
precedence):

1) (expression) True if the parenthesized expression is true
(parentheses are special to the shell and must be
escaped).

2) ! expression The negation of a primary (! is the unary not opera-
tor).

3) expression [−a] expression
Concatenation of primaries (the and operation is
implied by the juxtaposition of two primaries).

4) expression −o expression
Alternation of primaries (−o is the or operator).

Note: When you use find in conjunction with cpio, if you use the −L option with cpio
then you must use the −follow expression with find and vice versa. Otherwise there will
be undesirable results.

If no expression is present, −print will be used as the expression. Otherwise, if the given
expression does not contain any of the primaries −exec, −ok or −print, the given expres-
sion will be effectively replaced by:

(given_expression) −print

The −user, −group, and −newer primaries each will evaluate their respective arguments
only once.

USAGE See largefile(5) for the description of the behavior of find when encountering files greater
than or equal to 2 Gbyte (231 bytes).

EXAMPLES The following commands are equivalent:

example% find .
example% find . -print

They both write out the entire directory hierarchy from the current directory.

Remove all files in your home directory named a.out or ∗.o that have not been accessed
for a week:

example% find $HOME \ (−name a.out −o −name ′∗.o′ \) \
−atime +7 −exec rm {} \ ;

Recursively print all file names in the current directory and below, but skipping SCCS
directories:

example% find . −name SCCS −prune −o −print

Recursively print all file names in the current directory and below, skipping the contents
of SCCS directories, but printing out the SCCS directory name:

1-330 SunOS 5.6 modified 10 Feb 1997

User Commands find (1)

example% find . −print −name SCCS −prune

The following command is basically equivalent to the −nt extension to test(1):

example$ if [-n "$(find file1 -prune -newer file2)"]; then
printf %s\\n "file1 is newer than file2"

The descriptions of −atime, −ctime, and −mtime use the terminology n ‘‘24-hour
periods’’. For example, a file accessed at 23:59 will be selected by:

example% find . -atime -1 -print

at 00:01 the next day (less than 24 hours later, not more than one day ago); the midnight
boundary between days has no effect on the 24-hour calculation.

Recursively print all file names whose permission mode exactly matches read, write, and
execute access for user, and read and execute access for group and other.

example% find . -perm u=rwx,g=rx,o=rx

The above could alternatively be specified as follows:
example% find . -perm a=rwx,g-w,o-w

Recursively print all file names whose permission includes, but is not limited to, write
access for other.

example% find . -perm -o+w

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of find: LC_COLLATE, LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS The following exit values are returned:
0 All path operands were traversed successfully.
>0 An error occurred.

FILES /etc/passwd password file
/etc/group group file
/etc/dfs/fstypes file that registers distributed file system packages

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu
CSI enabled

SEE ALSO chmod(1), cpio(1), ls(1), sh(1), test(1), stat(2), umask(2), attributes(5), environ(5),
largefile(5)

modified 10 Feb 1997 SunOS 5.6 1-331

find (1) User Commands

WARNINGS The following options are obsolete and will not be supported in future releases:

-cpio device Always true; write the current file on device in cpio format (5120-byte
records).

-ncpio device Always true; write the current file on device in cpio -c format (5120 byte
records).

NOTES When using find to determine files modified within a range of time, one must use the
?time argument before the −print argument otherwise find will give all files.

1-332 SunOS 5.6 modified 10 Feb 1997

User Commands finger (1)

NAME finger − display information about local and remote users

SYNOPSIS finger [−bfhilmpqsw] [username. . .]

finger [−l] [username@hostname1[@hostname2 . . .@hostnamen] . . .]

finger [−l] [@hostname1[@hostname2 . . .@hostnamen] . . .]

DESCRIPTION By default, the finger command displays in multi-column format the following informa-
tion about each logged-in user:

· user name
· user’s full name
· terminal name (prepended with a ‘∗ ’ (asterisk) if write-permission is denied)
· idle time
· login time
· host name, if logged in remotely

Idle time is in minutes if it is a single integer, in hours and minutes if a ‘: ’ (colon) is
present, or in days and hours if a ‘d’ is present.

When one or more username arguments are given, more detailed information is given for
each username specified, whether they are logged in or not. username must be that of a
local user, and may be a first or last name, or an account name. Information is presented
in multi-line format as follows:

· the user name and the user’s full name
· the user’s home directory and login shell
· time the user logged in if currently logged in, or the time the user last logged

in; and the terminal or host from which the user logged in
· last time the user received mail, and the last time the user read mail
· the first line of the $HOME/ .project file, if it exists
· the contents of the $HOME/ .plan file, if it exists

If the arguments username@hostname1[@hostname2 . . .@hostnamen] or
@hostname1[@hostname2 . . .@hostnamen] are used, the request is sent first to hostnamen
and forwarded through each hostnamen-1 to hostname1. The program uses the finger user
information protocol (see RFC 1288) to query that remote host for information about the
named user (if username is specified), or about each logged-in user. The information
displayed is server dependent.

As required by RFC 1288, finger passes only printable, 7-bit ASCII data. This behavior
may be modified by a system administrator by using the PASS option in
/etc/default/finger. Specifying PASS=low allows all characters less than decimal 32
ASCII. Specifying PASS=high allows all characters greater than decimal 126 ASCII.
PASS=low,high or PASS=high,low allows both characters less than 32 and greater than
126 to pass through.

OPTIONS The username@hostname form supports only the −l option.

−b Suppress printing the user’s home directory and shell in a long format printout.

modified 5 May 1997 SunOS 5.6 1-333

finger (1) User Commands

−f Suppress printing the header that is normally printed in a non-long format prin-
tout.

−h Suppress printing of the .project file in a long format printout.

−i Force “idle” output format, which is similar to short format except that only the
login name, terminal, login time, and idle time are printed.

−l Force long output format.

−m Match arguments only on user name (not first or last name).

−p Suppress printing of the .plan file in a long format printout.

−q Force quick output format, which is similar to short format except that only the
login name, terminal, and login time are printed.

−s Force short output format.

−w Suppress printing the full name in a short format printout.

FILES $HOME/. plan user’s plan
$HOME/. project user’s projects
/etc/default/finger finger options file
/etc/passwd password file
/var/adm/lastlog time of last login
/var/adm/utmp accounting

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO passwd(1), who(1), whois(1), attributes(5)

Zimmerman, D., The Finger User Information Protocol , RFC 1288, Center for Discrete
Mathematics and Theoretical Computer Science (DIMACS), Rutgers University, December
1991.

NOTES The finger user information protocol limits the options that may be used with the remote
form of this command.

1-334 SunOS 5.6 modified 5 May 1997

FMLI Commands fmlcut (1F)

NAME fmlcut − cut out selected fields of each line of a file

SYNOPSIS fmlcut −clist [filename . . .]
fmlcut −flist [−d char] [−s] [filename . . .]

DESCRIPTION The fmlcut function cuts out columns from a table or fields from each line in filename; in
database parlance, it implements the projection of a relation. fmlcut can be used as a
filter; if filename is not specified or is −, the standard input is read. list specifies the fields
to be selected. Fields can be fixed length (character positions) or variable length
(separated by a field delimiter character), depending on whether −c or −f is specified.

Note: Either the −c or the −f option must be specified.

OPTIONS list A comma-separated list of integer field numbers (in increasing order),
with optional − to indicate ranges. For example: 1,4,7; 1−3,8; −5,10 (short
for 1−5,10); or 3− (short for third through last field).

−clist If −c is specified, list specifies character positions (for instance, −c1−72
would pass the first 72 characters of each line). Note: No space inter-
venes between −c and list.

−flist If −f is specified, list is a list of fields assumed to be separated in the file
by the default delimiter character, TAB, or by char if the −d option is
specified. For example, −f1,7 copies the first and seventh field only.
Lines with no delimiter characters are passed through intact (useful for
table subheadings), unless −s is specified. Note: No space intervenes
between −f and list. The following options can be used if you have
specified −f.

−dchar If −d is specified, char is the field delimiter. Space or other
characters with special meaning to FMLI must be quoted.
Note: No space intervenes between −d and char . The default
field delimiter is TAB.

−s Suppresses lines with no delimiter characters. If −s is not
specified, lines with no delimiters will be passed through
untouched.

EXAMPLES The following example gets the login IDs and names.

example% fmlcut −d: −f1,5 /etc/passwd

The next example gets the current login name.

example% `who am i | fmlcut −f1 −d" "`

modified 5 Jul 1990 SunOS 5.6 1F-335

fmlcut (1F) FMLI Commands

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO fmlgrep(1F), attributes(5)

DIAGNOSTICS fmlcut returns the following exit values:

0 when the selected field is successfully cut out

2 on syntax errors

The following error messages may be displayed on the FMLI message line:

ERROR: line too long
A line has more than 1023 characters or fields, or there is no new-line character.

ERROR: bad list for c / f option
Missing −c or −f option or incorrectly specified list. No error occurs if a line has
fewer fields than the list calls for.

ERROR: no fields
The list is empty.

ERROR: no delimiter
Missing char on −d option.

NOTES fmlcut cannot correctly process lines longer than 1023 characters, or lines with no new-
line character.

1F-336 SunOS 5.6 modified 5 Jul 1990

FMLI Commands fmlexpr (1F)

NAME fmlexpr − evaluate arguments as an expression

SYNOPSIS fmlexpr arguments

DESCRIPTION The fmlexpr function evaluates its arguments as an expression. After evaluation, the
result is written on the standard output. Terms of the expression must be separated by
blanks. Characters special to FMLI must be escaped. Note that 30 is returned to indicate
a zero value, rather than the null string. Strings containing blanks or other special charac-
ters should be quoted. Integer-valued arguments may be preceded by a unary minus
sign. Internally, integers are treated as 32-bit, 2s complement numbers.

The operators and keywords are listed below. Characters that need to be escaped are
preceded by \. The list is in order of increasing precedence, with equal precedence
operators grouped within { } symbols.

USAGE
Expressions expr \� expr Returns the first expr if it is neither NULL nor 0, otherwise returns the

second expr.

expr \& expr Returns the first expr if neither expr is NULL or 0, otherwise returns 0.

expr { =, \>, \>=, \<, \<=, != } expr
Returns the result of an integer comparison if both arguments are
integers, otherwise returns the result of a lexical comparison.

expr { +, − } expr Addition or subtraction of integer-valued arguments.

expr { ∗, /, % } expr
Multiplication, division, or remainder of the integer-valued arguments.

expr : expr The matching operator : compares the first argument with the second
argument which must be a regular expression. Regular expression syn-
tax is the same as that of ed(1), except that all patterns are ‘‘anchored’’
(that is, begin with ˆ) and, therefore, ˆ is not a special character, in that
context. Normally, the matching operator returns the number of bytes
matched (0 on failure). Alternatively, the . . .) pattern symbols can be
used to return a portion of the first argument.

EXAMPLES 1. Add 1 to the variable a:
example% ‘fmlexpr $a + 1 | set -l a‘

2. For $a equal to either "/usr/abc/file" or just "file":
example% fmlexpr $a : .∗/\(.∗\) \� $a

returns the last segment of a path name (that is, file). Watch out for / alone as an argu-
ment: fmlexpr will take it as the division operator (see NOTES below).

modified 5 Jul 1990 SunOS 5.6 1F-337

fmlexpr (1F) FMLI Commands

3. A better representation of example 2.
example% fmlexpr //$a : .∗/\(.∗\)

The addition of the // characters eliminates any ambiguity about the division operator
(because it makes it impossible for the left-hand expression to be interpreted as the
division operator), and simplifies the whole expression.

4. Return the number of characters in $VAR.
example% fmlexpr $VAR : .∗

EXIT CODES As a side effect of expression evaluation, fmlexpr returns the following exit values:

0 if the expression is neither NULL nor 0 (that is, TRUE)

1 if the expression is NULL or 0 (that is, FALSE)

2 for invalid expressions (that is, FALSE).

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO ed(1), expr(1), set(1F), sh(1), attributes(5)

DIAGNOSTICS syntax error for operator/operand errors
non-numeric argument

if arithmetic is attempted on such a string

In the case of syntax errors and non-numeric arguments, an error message will be printed
at the current cursor position. Use refresh to redraw the screen.

NOTES After argument processing by FMLI, fmlexpr cannot tell the difference between an opera-
tor and an operand except by the value. If $a is an =, the command:

example% fmlexpr $a = =

looks like:

example% fmlexpr = = =

as the arguments are passed to fmlexpr (and they will all be taken as the = operator). The
following works, and returns TRUE:

example% fmlexpr X$a = X=

1F-338 SunOS 5.6 modified 5 Jul 1990

FMLI Commands fmlgrep (1F)

NAME fmlgrep − search a file for a pattern

SYNOPSIS fmlgrep [−b] [−c] [−i] [−l] [−n] [−s] [−v] limited_regular_expression
[filename. . .]

DESCRIPTION fmlgrep searches filename for a pattern and prints all lines that contain that pattern.
fmlgrep uses limited regular expressions (expressions that have string values that use a
subset of the possible alphanumeric and special characters) like those described on the
regexp(5) manual page to match the patterns. It uses a compact non-deterministic algo-
rithm.

Be careful when using FMLI special characters (for instance, $, `, ´, ") in
limited_regular_expression. It is safest to enclose the entire limited_regular_expression in sin-
gle quotes ′ ... ′ .

If filename is not specified, fmlgrep assumes standard input. Normally, each line matched
is copied to standard output. The file name is printed before each line matched if there is
more than one input-file.

OPTIONS −b Precede each line by the block number on which it was found. This can be useful
in locating block numbers by context (first block is 0).

−c Print only a count of the lines that contain the pattern.

−i Ignore upper/lower case distinction during comparisons.

−l Print only the names of files with matching lines, separated by new-lines. Does
not repeat the names of files when the pattern is found more than once.

−n Precede each line by its line number in the file (first line is 1).

−s Suppress error messages about nonexistent or unreadable files.

−v Print all lines except those that contain the pattern.

EXIT CODES fmlgrep returns the following exit values:

0 if the pattern is found (that is, TRUE)

1 if the pattern is not found (that is, FALSE)

2 if an invalid expression was used or filename is inaccessible

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO egrep(1), fgrep(1), fmlcut(1F), grep(1), attributes(5), regexp(5)

NOTES Lines are limited to BUFSIZ characters; longer lines are truncated. BUFSIZ is defined in
/usr/include/stdio.h.

modified 28 Mar 1995 SunOS 5.6 1F-339

fmlgrep (1F) FMLI Commands

If there is a line with embedded nulls, fmlgrep will only match up to the first null; if it
matches, it will print the entire line.

1F-340 SunOS 5.6 modified 28 Mar 1995

User Commands fmli (1)

NAME fmli − invoke FMLI

SYNOPSIS fmli [−a alias_file] [−c command_file] [−i initialization_file] filename . . .

DESCRIPTION The fmli command invokes the Form and Menu Language Interpreter and opens the
frame(s) specified by the filename argument. The filename argument is the pathname of
the initial frame definition file(s), and must follow the naming convention Menu.xxx,
Form.xxx or Text.xxx for a menu, form or text frame respectively, where xxx is any string
that conforms to UNIX system file naming conventions. The FMLI descriptor lifetime will
be ignored for all frames opened by argument to fmli. These frames have a lifetime of
immortal by default.

OPTIONS −a alias_file
If −a is specified, alias_file is the name of a file which contains lines of the form
alias=pathname. Thereafter, $alias can be used in definition files to simplify
references to objects or devices with lengthy pathnames, or to define a search
path (similar to $PATH in the UNIX system shell).

−c command_file
If −c is specified, command_file is the name of a file in which default FMLI com-
mands can be disabled, and new application-specific commands can be
defined. The contents of command_file are reflected in the FMLI Command
Menu.

−i initialization_file
If −i is specified, initialization_file is the name of a file in which the following
characteristics of the application as a whole can be specified:

− A transient introductory frame displaying product information

− A banner, its position, and other elements of the banner line

− Color attributes for all elements of the screen

− Screen Labeled Keys (SLKs) and their layout on the screen.

EXAMPLES To invoke fmli:

example% fmli Menu.start

where Menu.start is an example of filename named according to the file name conventions
for menu definition files explained above.

To invoke fmli and name an initialization file:

example% fmli -i init.myapp Menu.start

where init.myapp is an example of initialization_file.

modified 14 Sep 1992 SunOS 5.6 1-341

fmli (1) User Commands

ENVIRONMENT
Variables LOADPFK Leaving this environment variable unset tells FMLI, for certain terminals

like the AT&T 5620 and 630, to download its equivalent character
sequences for using function keys into the terminal’s programmable
function keys, wiping out any settings the user may already have set in
the function keys. Setting LOADPFK=NO in the environment will
prevent this downloading.

COLUMNS Can be used to override the width of the logical screen defined for the
terminal set in TERM. For terminals with a 132-column mode, for exam-
ple, invoking FMLI with the line

COLUMNS=132 fmli frame-file

will allow this wider screen width to be used.

LINES Can be used to override the length of the logical screen defined for the
terminal set in TERM.

FILES /usr/bin/fmli

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO vsig(1F), attributes(5)

DIAGNOSTICS If filename is not supplied to the fmli command, fmli returns the message:

Initial object must be specified.

If filename does not exist or is not readable, fmli returns an error message and exits. The
example command line above returns the following message and exits:

Can’t open object "Menu.start"

If filename exists, but does not start with one of the three correct object names (Menu.,
Form., or Text.) or if it is named correctly but does not contain the proper data, fmli
starts to build the screen by putting out the screen labels for function keys, after which it
flashes the message:

I do not recognize that kind of object

and then exits.

1-342 SunOS 5.6 modified 14 Sep 1992

User Commands fmt (1)

NAME fmt − simple text formatters

SYNOPSIS fmt [−cs] [−w width | −width] [inputfile . . .]

DESCRIPTION fmt is a simple text formatter that fills and joins lines to produce output lines of (up to)
the number of characters specified in the −w width option. The default width is 72. fmt
concatenates the inputfiles listed as arguments. If none are given, fmt formats text from
the standard input.

Blank lines are preserved in the output, as is the spacing between words. fmt does not fill
nor split lines beginning with a ‘.’ (dot), for compatibility with nroff(1). Nor does it fill or
split a set of contiguous non-blank lines which is determined to be a mail header, the first
line of which must begin with “From ”.

Indentation is preserved in the output, and input lines with differing indentation are not
joined (unless −c is used).

fmt can also be used as an in-line text filter for vi(1). The vi command:

!}fmt

reformats the text between the cursor location and the end of the paragraph.

OPTIONS −c Crown margin mode. Preserve the indentation of the first two lines
within a paragraph, and align the left margin of each subsequent line
with that of the second line. This is useful for tagged paragraphs.

−s Split lines only. Do not join short lines to form longer ones. This
prevents sample lines of code, and other such formatted text, from being
unduly combined.

−w width | −width
Fill output lines to up to width columns.

OPERANDS inputfile Input file.

ENVIRONMENT See environ(5) for a description of the LC_CTYPE environment variable that affects the
execution of fmt.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO nroff(1), vi(1), attributes(5), environ(5)

NOTES The −width option is acceptable for BSD compatibility, but it may go away in future
releases.

modified 9 May 1997 SunOS 5.6 1-343

fmtmsg (1) User Commands

NAME fmtmsg − display a message on stderr or system console

SYNOPSIS fmtmsg [−c class] [−u subclass] [−l label] [−s severity] [−t tag] [−a action] text

DESCRIPTION Based on a message’s classification component, fmtmsg either writes a formatted mes-
sage to stderr or writes a formatted message to the console.

A formatted message consists of up to five standard components (see environment vari-
able MSGVERB in the ENVIRONMENT section of this page.) The classification and sub-
class components are not displayed as part of the standard message, but rather define the
source of the message and direct the display of the formatted message.

OPTIONS −c class Describes the source of the message. Valid keywords are:

hard The source of the condition is hardware.
soft The source of the condition is software.
firm The source of the condition is firmware.

−u subclass A list of keywords (separated by commas) that further defines the mes-
sage and directs the display of the message. Valid keywords are:

appl The condition originated in an application. This keyword
should not be used in combination with either util or opsys.

util The condition originated in a utility. This keyword should
not be used in combination with either appl or opsys.

opsys The message originated in the kernel. This keyword should
not be used in combination with either appl or util.

recov The application will recover from the condition. This key-
word should not be used in combination with nrecov.

nrecov The application will not recover from the condition. This
keyword should not be used in combination with recov.

print Print the message to the standard error stream stderr.
console Write the message to the system console. print, console, or

both may be used.

−l label Identifies the source of the message.

−s severity Indicates the seriousness of the error. The keywords and definitions of
the standard levels of severity are:

halt The application has encountered a severe fault and is halt-
ing.

error The application has detected a fault.
warn The application has detected a condition that is out of the

ordinary and might be a problem.
info The application is providing information about a condition

that is not in error.

−t tag The string containing an identifier for the message.

1-344 SunOS 5.6 modified 20 Jul 1994

User Commands fmtmsg (1)

−a action A text string describing the first step in the error recovery process. This
string must be written so that the entire action argument is interpreted as
a single argument. fmtmsg precedes each action string with the TO FIX:
prefix.

text A text string describing the condition. Must be written so that the entire
text argument is interpreted as a single argument.

EXAMPLES Example 1: The following example of fmtmsg produces a complete message in the stan-
dard message format and displays it to the standard error stream:

example% fmtmsg −c soft −u recov,print,appl −l UX:cat −s error -t UX:cat:001 −a
"refer to manual" "invalid syntax"

produces:

UX:cat: ERROR: invalid syntax
TO FIX: refer to manual UX:cat:138

Example 2: When the environment variable MSGVERB is set as follows:

MSGVERB=severity:text:action

and Example 1 is used, fmtmsg produces:

ERROR: invalid syntax
TO FIX: refer to manual

Example 3: When the environment variable SEV_LEVEL is set as follows:

SEV_LEVEL=note,5,NOTE

the following fmtmsg command:

example% fmtmsg −c soft −u print −l UX:cat −s note −a "refer to manual"
"invalid syntax"

produces:

NOTE: invalid syntax
TO FIX: refer to manual

and displays the message on stderr.

ENVIRONMENT The environment variables MSGVERB and SEV_LEVEL control the behavior of fmtmsg.
MSGVERB is set by the administrator in the /etc/profile for the system. Users can over-
ride the value of MSGVERB set by the system by resetting MSGVERB in their own .profile
files or by changing the value in their current shell session. SEV_LEVEL can be used in
shell scripts.

MSGVERB tells fmtmsg which message components to select when writing messages to
stderr. The value of MSGVERB is a colon separated list of optional keywords. MSGVERB
can be set as follows:

MSGVERB=[keyword[:keyword[:...]]]
export MSGVERB

modified 20 Jul 1994 SunOS 5.6 1-345

fmtmsg (1) User Commands

Valid keywords are: label, severity, text, action, and tag. If MSGVERB contains a keyword
for a component and the component’s value is not the component’s null value, fmtmsg
includes that component in the message when writing the message to stderr. If
MSGVERB does not include a keyword for a message component, that component is not
included in the display of the message. The keywords may appear in any order. If
MSGVERB is not defined, if its value is the null string, if its value is not of the correct for-
mat, or if it contains keywords other than the valid ones listed above, fmtmsg selects all
components.

MSGVERB affects only which message components are selected for display. All message
components are included in console messages.

SEV_LEVEL defines severity levels and associates print strings with them for use by
fmtmsg. The standard severity levels shown below cannot be modified. Additional
severity levels can be defined, redefined, and removed.

0 (no severity is used)
1 HALT
2 ERROR
3 WARNING
4 INFO

SEV_LEVEL is set as follows:

SEV_LEVEL=[description[:description[:...]]]
export SEV_LEVEL

description is a comma-separated list containing three fields:

description=severity_keyword,level,printstring

severity_keyword is a character string used as the keyword with the −s severity option to
fmtmsg.

level is a character string that evaluates to a positive integer (other than 0, 1, 2, 3, or 4,
which are reserved for the standard severity levels). If the keyword severity_keyword is
used, level is the severity value passed on to fmtmsg(3C).

printstring is the character string used by fmtmsg in the standard message format when-
ever the severity value level is used.

If SEV_LEVEL is not defined, or if its value is null, no severity levels other than the
defaults are available. If a description in the colon separated list is not a comma separated
list containing three fields, or if the second field of a comma separated list does not evalu-
ate to a positive integer, that description in the colon separated list is ignored.

EXIT STATUS The following exit values are returned:

0 All the requested functions were executed successfully.

1 The command contains a syntax error, an invalid option, or an invalid argument
to an option.

2 The function executed with partial success, however the message was not
displayed on stderr.

1-346 SunOS 5.6 modified 20 Jul 1994

User Commands fmtmsg (1)

4 The function executed with partial success; however, the message was not
displayed on the system console.

32 No requested functions were executed successfully.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO addseverity(3C), fmtmsg(3C), attributes(5)

modified 20 Jul 1994 SunOS 5.6 1-347

fnattr (1) User Commands

NAME fnattr − update and examine attributes associated with an FNS named object

SYNOPSIS fnattr [−AL] composite_name [[−O | −U] identifier] . . .
fnattr [−L] composite_name [{ −a [−s] [−O | −U] identifier [value . . .] } |

{ −d [[−O | −U] identifier [value . . .]] } |
{ −m [−O | −U] identifier old_value new_value }] . . .

DESCRIPTION The fnattr command is for updating and examining attributes associated with an FNS
named object. There are four uses for this command: add an attribute or value, delete an
attribute or value, modify an attribute’s value, and list the contents of an attribute.

OPTIONS The options for adding, modifying, and deleting attributes and their values can be com-
bined in the same command line. The modifications will be executed in the order that
they are specified.

Any unsuccessful modification will abort all subsequent modifications specified in the
command line; any modifications already carried out will remain. The unsuccessful
modifications are displayed as output of fnattr.

−a Add an attribute or add a value to an attribute associated with object named by
composite_name. identifier is the identifier of the attribute to manipulate; its format
is FN_ID_STRING unless the −O or −U option is given. value . . . represents the
attribute values to add. The attribute syntax used for storing value is
fn_attr_syntax_ascii.

−A Consult the authoritative source to get attribute information.

−d Delete attributes associated with object named by composite_name. If identifier is
not specified, all attributes associated with the named object are deleted. If
identifier is specified without accompanying values (value . . .), the entire attribute
identified by identifier is removed. If individual attribute values
(value . . .) are specified, then only these are removed from the attribute. Removal
of the last value of an attribute entails removal of the attribute as well. The for-
mat of identifier is FN_ID_STRING unless the −O or −U option is given.

−L If the composite name is bound to an XFN link, manipulate the attributes associ-
ated with the object pointed to by the link. If −L is not used, the attributes associ-
ated with the XFN link are manipulated.

−m Modify the values of the attribute identified by identifier associated with the
object named by composite_name. old_value is replaced by new_value in the
specified attribute. Other attributes and values associated with composite_name
are not affected. The format of identifier is FN_ID_STRING unless the −O or −U
option is given.

−O The format of identifier is FN_ID_ISO_OID_STRING, an ASN.1 dot-separated
integer list string.

−s Add in supersede mode. If an attribute with the same identifier as identifier
already exists, remove all its values, and replace with value. If this option is

1-348 SunOS 5.6 modified 24 Dec 1996

User Commands fnattr (1)

omitted, the resulting values for the specified attribute is a union of the existing
values and value.

−U The format of identifier is FN_ID_DCE_UUID, a DCE UUID in string form.

OPERANDS The following operand is supported:

composite_name An FNS named object.

EXAMPLES
Adding The −a option is used for adding attributes and values. This following command replaces

the value of the shoesize attribute of user/jane with the value 7.5:

eg% fnattr user/jane −as shoesize 7.5

The following command adds the value Chameleo to the project attribute of user/jane:

eg% fnattr user/jsmith −a project Chameleo

Deleting The −d option is used for deleting attributes and values. The following command deletes
all the attributes associated with user/jane:

eg% fnattr user/jane −d

The following command deletes the attribute shoesize associated with user/jane:

eg% fnattr user/jane −d shoesize

The following command deletes the attribute value old_project from the projects attri-
bute associated with user/jane:

eg% fnattr user/jane −d projects old_project

Modifying The −m option is for modifying an attribute value. The following command replaces the
value Chameleo by Dungeon in the projects attribute associated with user/jsmith:

eg% fnattr user/jsmith −m projects Chameleo Dungeon

The following command is an example of unsuccessful modification attempts. The user
executing this command does not have permission to update user/jane’s attributes but is
allowed to add new attributes. Executing the command will add the attribute hatsize but
will not delete shoesize or modify dresssize because −d shoesize will fail and cause the
command to stop:

eg% fnattr user/jane −a hatsize medium −d shoesize −m dresssize 5 6

Listing No options are required to list attributes and their values. The following command lists
all the attributes associated with user/jane:

eg% fnattr user/jane

The following command lists the values of the project attribute of user/jane:

eg% fnattr user/jane project

The following command lists the values of the project and shoesize attributes of
user/jane:

modified 24 Dec 1996 SunOS 5.6 1-349

fnattr (1) User Commands

eg% fnattr user/jane project shoesize

EXIT STATUS 0 Operation was successful.

1 Operation failed.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWfns

SEE ALSO fnlookup(1), attributes(5), fns(5)

NOTES Built-in attributes, such as onc_unix_passwd for users, cannot be updated using the
fnattr command. Their contents are affected by updates to the underlying naming ser-
vice, such as NIS+ or NIS.

1-350 SunOS 5.6 modified 24 Dec 1996

User Commands fnbind (1)

NAME fnbind − Bind a reference to an FNS name

SYNOPSIS fnbind [−s] [−v] [−L] name new_name

fnbind −r [−s] [−v] new_name [−O | −U] ref_type
{ [−O | −U] addr_type [−c | −x] addr_contents } . . .

DESCRIPTION fnbind binds the reference named by name to the name new_name. The second synopsis
of fnbind (uses the −r option) allows the binding of new_name to the reference con-
structed using arguments supplied in the command line.

OPTIONS −s Bind to new_name even if it is already bound. If this option is omitted, fnbind
fails if new_name is already bound.

−v Display the reference being bound to new_name.

−L Create an XFN link using name and bind it to new_name.

−r Create a reference using ref_type as the reference’s type, and one or more pairs of
addr_type and addr_contents as the reference’s list of addresses, and bind this
reference to new_name. Unless the −O or −U options are used, FN_ID_STRING is
used as the identifier format for ref_type and addr_type. Unless the −c or −x
options are used, addr_contents is stored as an XDR-encoded string.

−c Store addr_contents in the given form; do not use XDR-encoding.

−x addr_contents specifies an hexidecimal string. Convert it to its hexidecimal
representation and store it; do not use XDR-encoding.

−O The identifier format is FN_ID_ISO_OID_STRING, an ASN.1 dot-separated
integer list string.

−U The identifier format is FN_ID_DCE_UUID, a DCE UUID in string form.

EXAMPLES For example, the command
eg% fnbind -s thisorgunit/service/printer thisorgunit/service/pr

binds the name thisorgunit/service/pr to the reference named by
thisorgunit/service/printer. Any reference bound to thisorgunit/service/pr is overwrit-
ten.

For example, the command
eg% fnbind -L thisorgunit/service/printer thisorgunit/service/pr

binds the name thisorgunit/service/pr to the XFN link constructed using the name
thisorgunit/service/printer.

For example, the command
eg% fnbind -r thisorgunit/service/calendar SUNW_cal \
SUNW_cal_deskset_onc staff@exodus

binds the name thisorgunit/service/calendar to the reference with reference type
SUNW_cal and address type SUNW_cal_deskset_onc, and address contents of
staff@exodus.

modified 4 Nov 1994 SunOS 5.6 1-351

fnbind (1) User Commands

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWfns

SEE ALSO fnlookup(1), fnrename(1), fnunbind(1), FN_identifier_t(3N), xdr(3N), attributes(5),
fns(5), xfn_links(3N)

1-352 SunOS 5.6 modified 4 Nov 1994

User Commands fnlist (1)

NAME fnlist − display the names and references bound in an FNS context

SYNOPSIS fnlist [−Alv] [composite_name]

DESCRIPTION fnlist displays the names and references bound in the context of composite_name.

If composite_name is not provided, the default initial context is displayed.

OPTIONS The following options are supported:

−A Consult the authoritative source for information.

−l Display the references as well as the names bound in the context of
composite_name. Without this option, only the names are displayed.

−v Display the references in detail. For onc_fn_∗ references, this option is useful to
derive the name of the NIS+ table that stores the reference for every name bound
in the context of composite_name.

OPERANDS The following operand is supported:

composite_name An FNS named object. Composite names, like UNIX file names,
depend on the subcontexts created. Examples of commands with
valid composite_name operands are:

eg% fnlist thisorgunit
eg% fnlist thisorgunit/service
eg% fnlist thisorgunit/service/printer

When FNS is deployed, the composite name is specific to the
deployed site.

EXAMPLES In the following example, the command with no operand provides the listing with refer-
ence and address types for the initial context:

eg% fnlist −l

In the following examples, where a user context is given (that is, composite_name = user/),
FNS must first be deployed via fncreate(1M), using one of the naming services NIS, NIS+,
or files. If FNS is not deployed, there are no user contexts and the commands will fail
with the "Name not found" error message.

The following command shows the names bound in the context of user/:

eg% fnlist user/

The following command displays the names and references bound in the context of user/:

eg% fnlist −l user/

EXIT STATUS 0 Operation was successful.

1 Operation failed.

modified 7 May 1997 SunOS 5.6 1-353

fnlist (1) User Commands

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWfns

SEE ALSO fnbind(1), fnlookup(1), fnunbind(1), fncreate(1M), fndestroy(1M), attributes(5), fns(5),
fns_references(5)

1-354 SunOS 5.6 modified 7 May 1997

User Commands fnlookup (1)

NAME fnlookup − display the reference bound to an FNS name

SYNOPSIS fnlookup [−ALv] composite_name

DESCRIPTION fnlookup displays the binding of composite_name.

OPTIONS −A Consult the authoritative source for information.

−L If the composite name is bound to an XFN link, display the reference that the link
is bound to. Without the −L option, fnlookup displays the XFN link.

−v Display the binding in detail. For onc_fn_∗ references, this option is useful to
derive the name of the NIS+ table that stores the reference for composite_name and
a string representation of the reference, if applicable.

OPERANDS The following operand is supported:

composite_name An FNS named object.

EXAMPLES In the following example, the command

eg% fnlookup user/jsmith/service/calendar

shows the reference to which the name user/jsmith/service/calendar, that refers to the
calendar of user jsmith, is bound.

In the next example, the command

eg% fnlookup user/jsmith/service

shows the reference to which the name user/jsmith/service, that refers to the service con-
text of user jsmith, is bound. If this is bound to an XFN link, then

eg% fnlookup −L user/jsmith/service

displays the reference to which this link is bound.

EXIT STATUS 0 Operation was successful.

1 Operation failed.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWfns

SEE ALSO fnbind(1), fnlist(1), fnunbind(1), fncreate(1M), fndestroy(1M), xfn_links(3N), attri-
butes(5), fns(5), fns_references(5)

modified 21 Jul 1996 SunOS 5.6 1-355

fnrename (1) User Commands

NAME fnrename − rename the binding of an FNS name

SYNOPSIS fnrename [−s] [−v] context_name old_atomic_name new_atomic_name

DESCRIPTION fnrename renames the binding of old_atomic_name to new_atomic_name in the context of
context_name. Both old_atomic_name and new_atomic_name must be atomic names, to be
resolved in the context named by context_name.

OPTIONS −s Overwrite any reference already bound to new_atomic_name. If this option is
omitted, fnrename fails if new_atomic_name is already bound.

−v Display the binding being renamed.

EXAMPLES For example, the command

eg% fnrename user/jsmith/service/ clendar calendar

binds calendar to the reference bound to clendar in the context named by
user/jsmith/service/ and unbinds clendar.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWfns

SEE ALSO fnbind(1), fnlist(1), fnunbind(1), fncreate(1M), fndestroy(1M), xfn_links(3N), attri-
butes(5), fns(5), fns_references(5)

1-356 SunOS 5.6 modified 6 Mar 1997

User Commands fnsearch (1)

NAME fnsearch − search for FNS objects with specified attributes

SYNOPSIS fnsearch [−AlLv] [−n max] [−s scope] composite_name
[−a ident] . . . [−O | −U] filter_expr [filter_arg] ...

DESCRIPTION The fnsearch command operation displays the names and, optionally, the attributes and
references of objects bound at or below composite_name whose attributes satisfy a given
filter expression. The filter expression is given in terms of logical expressions involving
the identifiers and values of the attributes and references of objects examined during the
search.

For general information about FNS, see fns(5).

OPTIONS −a ident Display the given attribute of each object that satisfies the filter expression. If
the −a option is not used, all attributes are displayed. An empty ident
(" " from the shell) indicates that no attributes are to be displayed. Multiple −a
options may be given.

The syntax of ident is described fully under Displaying Selected Attributes
below.

−A Consult the authoritative source(s) for information.

−l Display the reference of each object that satisfies the filter expression.

−L Follow XFN links during the search.

−n max Restrict the maximum number of objects displayed to the given number (a
positive integer). There is no limit by default.

−s scope Set the scope of the search. scope is one of:

· object Only the object composite_name is searched.
· context Objects bound directly to composite_name are searched.
· subtree Objects bound to composite_name or any of its subcontexts are

searched.
· constrained_subtree

Like subtree, but the search may be restricted to a set of sub-
contexts defined in a context-implementation-defined
manner

scope may be abbreviated to any unambiguous prefix, such as o or cont.

If this option is not given, the default behavior is −s context.

−v Display in detail the reference of each object that satisfies the filter expression.
This option takes precedence over −l.

OPERANDS The following operand is supported:

composite_name An FNS named object.

modified 21 Jul 1996 SunOS 5.6 1-357

fnsearch (1) User Commands

USAGE
Simple Filter

Expressions
The simplest form of filter expression is one that tests for the existence of an attribute.
This expression is formed simply by giving the attribute’s name. To search for objects
having an attribute named for_sale, for example:

% fnsearch composite_name for_sale

Another simple filter expression is one that tests the value of a particular attribute. To
find objects whose ages are less than 17:

% fnsearch composite_name "age < 17"

String values are indicated by enclosing the string in single quotes. To find all red
objects:

% fnsearch composite_name "color == ’red’"

Note that the double quotes (") in this example are not part of the filter expression.
Instead, they prevent the shell from interpreting the white-space and single quotes that
are part of the expression.

Logical Operators Simple filter expressions may be composed using the logical operators and, or, and not.
For example:

% fnsearch composite_name "age >= 35 and us_citizen"

Parentheses may be used to group expressions:

% fnsearch composite_name "not (make == ’olds’ and year == 1973)"

The precedence of operators is, in order of increasing precedence:

or
and
not
relational operators (see Relational Operators below)

The logical operators and and or are left-associative.

Relational Operators The following are the relational operators that may be used to compare an attribute to a
supplied value:

== True if at least one value of the attribute is equal to the supplied value.

!= True if none of the attribute’s values are equal to the supplied value.

< True if at least one value of the attribute is less than the supplied value.

<= True if at least one value of the attribute is less than or equal to the sup-
plied value.

> True if at least one value of the attribute is greater than the supplied
value.

1-358 SunOS 5.6 modified 21 Jul 1996

User Commands fnsearch (1)

>= True if at least one value of the attribute is greater than or equal to the
supplied value.

∼= True if at least one value of the attribute matches the supplied value
according to some context-specific approximate matching criterion. This
criterion must subsume strict equality.

Comparisons and ordering are specific to the syntax or rules of the attribute being tested.

Displaying Selected
Attributes

By default, the fnsearch command displays the names and all of the attributes of each
object matching the search criteria. The list of attributes displayed may be restricted by
using the −a command line option. In the following example, only the color and shape
attributes of small objects are displayed.

% fnsearch composite_name −a color −a shape "size == ’small’"

The format of an attribute identifier is taken to be FN_ID_STRING (an ASCII string) by
default. To name an attribute identifier that is an OSI OID or a DCE UUID , the attribute
name is prefixed by −O or −U, respectively:

−O The identifier format is FN_ID_ISO_OID_STRING, an ASN.1 dot-
separated integer list string.

−U The identifier format is FN_ID_DCE_UUID, a DCE UUID in string form.

For example:

% fnsearch composite_name −a −O 2.5.4.0 "shoe_size < 9"
and

% fnsearch composite_name −a −U 0006a446-5e97-105f-9828-8190285baa77 \
"bowling_avg > 200"

Filter Arguments Some parts of a filter expression may be replaced by a substitution token: a percent sign
(%) followed by a single character. The value of this portion of the expression is then
given in a filter argument that follows the filter expression, in much the same way as is
done in printf(1). The available substitution tokens are:

%a attribute
%s string
%i identifier
%v attribute value (the only syntax currently supported is

fn_attr_syntax_ascii)

For example, the command:

% fnsearch composite_name "color == ’red’"

could equivalently be written:

% fnsearch composite_name "%a == ’red’" color
or:

% fnsearch composite_name "%a == %s" color red

modified 21 Jul 1996 SunOS 5.6 1-359

fnsearch (1) User Commands

The use of substitution tokens is helpful when writing shell scripts in which the values of
the filter arguments are generated at run-time.

By default, the format of the identifier of an attribute such as the color attribute above is
taken to be FN_ID_STRING (an ASCII string). Substitution tokens enable the use of OSI
OIDs and DCE UUIDs instead. The filter argument is prefixed by −O or −U, with the same
meaning as in the −a command line option described above:

−O The identifier format is FN_ID_ISO_OID_STRING, an ASN.1 dot-
separated integer list string.

−U The identifier format is FN_ID_DCE_UUID, a DCE UUID in string form.

For example:

% fnsearch composite_name "%a −O 2.5.4.0
and

% fnsearch composite_name "%a" ==’red’" \
−U 0006a446-5e97-105f-9828-8190285baa77

Wildcarded Strings A wildcarded string consists of a sequence of alternating wildcard specifiers and strings.
The wildcard specifiers is denoted by the asterisk (∗) and means zero or more
occurrences of any character.

Wildcarded strings are used to specify substring matches. The following are some exam-
ples of wildcarded strings and their meanings.

∗ any string
’tom’ the string "tom"
’harv’∗ any string starting with "harv"
∗’ing’ any string ending with "ing"
’a’∗’b’ any string starting with "a" and ending with "b"
’jo’∗’ph’∗’ne’∗’er’

any string starting with "jo" and containing the substring "ph",
and which contains the substring "ne" in the portion of the
string following "ph", and which ends with "er"

%s∗ any string starting with the string supplied as a filter argument
’bix’∗%s any string starting with "bix" and ending with the string sup-

plied as a filter argument

Extended Operations Extended operators are predicates (functions that return TRUE or FALSE) that may be
freely mixed with other operators in a filter expression.

An extended operation is specified by giving the operation name as a quoted string, fol-
lowed by an argument in parentheses. The following three extended operations are
currently defined:

1-360 SunOS 5.6 modified 21 Jul 1996

User Commands fnsearch (1)

’name’(WildcardedString) TRUE if the name of the object matches the supplied
wildcarded string.

’reftype’(Identifier) TRUE if the reference type of the object is equal to the
supplied identifier.

’addrtype’(Identifier) TRUE if any of the address types in the reference of
the object are equal to the supplied identifier.

The following example shows a search for objects whose names start with bill and hav-
ing IQ attributes over 80:

% fnsearch composite_name "’name’(’bill’∗) and IQ > 80"

Grammar of Filter
Expressions

The complete grammar of filter expressions is given below. It is based on the grammar
defined by the XFN specification (see FN_search_filter_t(3N)).

String literals in this grammar are enclosed in double quotes; the quotes are not them-
selves part of the expression. Braces are used for grouping; brackets indicate optional
elements. An unquoted asterisk (∗) signifies zero or more occurrences of the preceding
element; a plus sign (+) signifies one or more occurrences.

FilterExpr : : = [Expr]

Expr : : = Expr "or" Expr
| Expr "and" Expr
| "not" Expr
| "(" Expr ")"
| Attribute [RelOp Value]
| Ext

RelOp : : = "==" | "!=" | "<" | "<=" | ">" | ">=" | "∼="

Attribute : : = Char∗
| "%a"

Value : : = Integer
| WildcardedString
| "%v"

WildcardedString : : =
"∗"

| String
| {String "∗"}+ [String]
| {"∗" String}+ ["∗"]

(that is, an alternating sequence of String and "∗")

String : : = "’" Char∗ "’"
| "%s"

Ext : : = "’name’(" WildcardedString ")"
| "’reftype’(" Identifier ")"
| "’addrtype’(" Identifier ")"

modified 21 Jul 1996 SunOS 5.6 1-361

fnsearch (1) User Commands

Identifier : : = "’" Char∗ "’"
| "%i"

Char : : = an element of the Portable Character Set (ASCII)
| a character in the repertoire of a string representation

EXIT STATUS 0 Operation was successful.

1 Operation failed.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWfns

SEE ALSO printf(1), FN_search_control_t(3N), FN_search_filter_t(3N), fn_attr_ext_search(3N),
fn_attr_search(3N), attributes(5), fns(5)

NOTES If the filter expression is empty, it evaluates to TRUE (all objects satisfy it).

If the identifier in any subexpression of the filter expression does not exist as an attribute
of an object, then the innermost logical expression containing that identifier evaluates to
FALSE.

1-362 SunOS 5.6 modified 21 Jul 1996

User Commands fnunbind (1)

NAME fnunbind − unbind the reference from an FNS name

SYNOPSIS fnunbind composite_name

DESCRIPTION fnunbind unbinds the reference of composite_name.

For example,

eg% fnunbind user/jsmith/fs/

unbinds the reference to which the name user/jsmith/fs/ was bound.

Note that an fnunbind on a name of a context will fail because such a context cannot be
unbound without destroying it first with the command fndestroy.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWfns

SEE ALSO fnbind(1), fnlist(1), fnlookup(1), fnrename(1), fncreate(1M), fndestroy(1M), attri-
butes(5), fns(5)

modified 6 Mar 1996 SunOS 5.6 1-363

fold (1) User Commands

NAME fold − filter for folding lines

SYNOPSIS fold [−bs] [−w width | −width] [file . . .]

DESCRIPTION The fold utility is a filter that will fold lines from its input files, breaking the lines to have
a maximum of width column positions (or bytes, if the −b option is specified). Lines will
be broken by the insertion of a NEWLINE character such that each output line (referred to
later in this section as a segment) is the maximum width possible that does not exceed the
specified number of column positions (or bytes). A line will not be broken in the middle
of a character. The behavior is undefined if width is less than the number of columns any
single character in the input would occupy.

If the CARRIAGE-RETURN, BACKSPACE, or TAB characters are encountered in the input,
and the −b option is not specified, they will be treated specially:

BACKSPACE The current count of line width will be decremented by one, although
the count never will become negative. fold will not insert a NEWLINE
character immediately before or after any BACKSPACE character.

CARRIAGE-RETURN
The current count of line width will be set to 0. fold will not insert a
NEWLINE character immediately before or after any CARRIAGE-RETURN
character.

TAB Each TAB character encountered will advance the column position
pointer to the next tab stop. Tab stops will be at each column position n
such that n modulo 8 equals 1.

OPTIONS The following options are supported:

−b Count width in bytes rather than column positions.

−s If a segment of a line contains a blank character within the first width
column positions (or bytes), break the line after the last such blank char-
acter meeting the width constraints. If there is no blank character meet-
ing the requirements, the −s option will have no effect for that output
segment of the input line.

−w width|−width
Specify the maximum line length, in column positions (or bytes if −b is
specified). If width is not a positive decimal number, an error is
returned. The default value is 80.

OPERANDS The following operand is supported:

file A path name of a text file to be folded. If no file operands are specified, the stan-
dard input will be used.

EXAMPLES An example invocation that submits a file of possibly long lines to the line printer (under
the assumption that the user knows the line width of the printer to be assigned by lp(1)):

example% fold -w 132 bigfile | lp

1-364 SunOS 5.6 modified 1 Feb 1995

User Commands fold (1)

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of fold: LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS The following exit values are returned:

0 All input files were processed successfully.

>0 An error occurred.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu
CSI enabled

SEE ALSO cut(1), pr(1), attributes(5), environ(5)

NOTES fold and cut(1) can be used to create text files out of files with arbitrary line lengths. fold
should be used when the contents of long lines need to be kept contiguous. cut should be
used when the number of lines (or records) needs to remain constant.

fold is frequently used to send text files to line printers that truncate, rather than fold,
lines wider than the printer is able to print (usually 80 or 132 column positions).

fold may not work correctly if underlining is present.

modified 1 Feb 1995 SunOS 5.6 1-365

for (1) User Commands

NAME for, foreach, repeat − shell built-in functions to repeatedly execute action(s) for a selected
number of times

SYNOPSIS
sh for word [in wordlist . . .] ; do actions ; done

csh foreach word (wordlist)
. . .

end

repeat count command

ksh for word [in wordlist . . .] ; do actions ; done

DESCRIPTION
sh Each time a for command is executed, word is set to the next item taken from the in

wordlist . If in wordlist . . . is omitted, then the for command executes the do actions once
for each positional parameter that is set. Execution ends when there are no more words
in the list.

csh The variable word is successively set to each member of wordlist . The sequence of com-
mands between this command and the matching end is executed for each new value of
word . Both foreach and end must appear alone on separate lines.

repeat executes command repeatedly count times. count must be a number. command is
restricted to a one-line statement.

ksh Each time a for command is executed, word is set to the next item taken from the in
wordlist . If in wordlist . . . is omitted, then the for command executes the do actions once
for each positional parameter that is set. Execution ends when there are no more words
in the list.

loop interrupts The built-in command continue may be used to terminate the execution of the current
iteration of a for or foreach loop, and the built-in command break may be used to ter-
minate execution of a for or foreach command.

EXAMPLES In the examples using for/foreach, the code counts the number of lines for each file in the
current directory whose name ends with a ".c" extension. The repeat example prints "I
will not chew gum in class" 500 times.

sh for file in ∗.c ; do wc -l $file ; done

csh foreach file (∗.c)
wc -l $file

end

1-366 SunOS 5.6 modified 15 Apr 1994

User Commands for (1)

ksh for file in ∗.c ; do wc -l $file ; done

csh The repeat command re-executes the single subsequent command for count number of
times.

@ repetition = 500
repeat $repetition echo "I will not chew gum in class."

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO break(1), csh(1), ksh(1), sh(1), attributes(5)

NOTES Both the Bourne shell, sh, and the Korn shell, ksh, can use the semicolon and the carriage
return interchangeably in their syntax of the if, for, and while built-in commands.

modified 15 Apr 1994 SunOS 5.6 1-367

from (1B) SunOS/BSD Compatibility Package Commands

NAME from − display the sender and date of newly-arrived mail messages

SYNOPSIS /usr/ucb/from [−s sender] [username]

DESCRIPTION from prints out the mail header lines in your mailbox file to show you who your mail is
from. If username is specified, then username’s mailbox is examined instead of your own.

OPTIONS −s sender Only display headers for mail sent by sender.

USAGE See largefile(5) for the description of the behavior of from when encountering files
greater than or equal to 2 Gbyte (231 bytes).

FILES /var/spool/mail/∗

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscpu

SEE ALSO biff(1B), mail(1B), attributes(5), largefile(5)

1B-368 SunOS 5.6 modified 14 Sep 1992

User Commands ftp (1)

NAME ftp − file transfer program

SYNOPSIS ftp [−dgintv] [hostname]

DESCRIPTION The ftp command is the user interface to the Internet standard File Transfer Protocol
(FTP). ftp transfers files to and from a remote network site.

The client host with which ftp is to communicate may be specified on the command line.
If this is done, ftp immediately attempts to establish a connection to an FTP server on that
host; otherwise, ftp enters its command interpreter and awaits instructions from the user.
When ftp is awaiting commands from the user, it displays the prompt ftp>.

OPTIONS The following options may be specified at the command line, or to the command inter-
preter:

−d Enable debugging.

−g Disable filename “globbing.”

−i Turn off interactive prompting during multiple file transfers.

−n Do not attempt “auto-login” upon initial connection. If auto-login is not dis-
abled, ftp checks the .netrc file in the user’s home directory for an entry describ-
ing an account on the remote machine. If no entry exists, ftp will prompt for the
login name of the account on the remote machine (the default is the login name
on the local machine), and, if necessary, prompts for a password and an account
with which to login.

−t Enable packet tracing (unimplemented).

−v Show all responses from the remote server, as well as report on data transfer
statistics. This is turned on by default if ftp is running interactively with its input
coming from the user’s terminal.

The following commands can be specified to the command interpreter:

! [command]
Run command as a shell command on the local machine. If no command is given,
invoke an interactive shell.

$ macro-name [args]
Execute the macro macro-name that was defined with the macdef command.
Arguments are passed to the macro unglobbed.

account [passwd]
Supply a supplemental password required by a remote system for access to
resources once a login has been successfully completed. If no argument is
included, the user will be prompted for an account password in a non-echoing
input mode.

modified 6 Jan 1994 SunOS 5.6 1-369

ftp (1) User Commands

append local-file [remote-file]
Append a local file to a file on the remote machine. If remote-file is not specified,
the local file name is used, subject to alteration by any ntrans or nmap settings.
File transfer uses the current settings for “representation type”, “file structure”,
and “transfer mode”.

ascii Set the “representation type” to “network ASCII”. This is the default type.

bell Sound a bell after each file transfer command is completed.

binary Set the “representation type” to “image”.

bye Terminate the FTP session with the remote server and exit ftp. An EOF will also
terminate the session and exit.

case Toggle remote computer file name case mapping during mget commands. When
case is on (default is off), remote computer file names with all letters in upper
case are written in the local directory with the letters mapped to lower case.

cd remote-directory
Change the working directory on the remote machine to remote-directory .

cdup Change the remote machine working directory to the parent of the current
remote machine working directory.

close Terminate the FTP session with the remote server, and return to the command
interpreter. Any defined macros are erased.

cr Toggle RETURN stripping during “network ASCII” type file retrieval. Records are
denoted by a RETURN/LINEFEED sequence during “network ASCII” type file
transfer. When cr is on (the default), RETURN characters are stripped from this
sequence to conform with the UNIX system single LINEFEED record delimiter.
Records on non-UNIX-system remote hosts may contain single LINEFEED charac-
ters; when an “network ASCII” type transfer is made, these LINEFEED characters
may be distinguished from a record delimiter only when cr is off.

delete remote-file
Delete the file remote-file on the remote machine.

debug
Toggle debugging mode. When debugging is on, ftp prints each command sent
to the remote machine, preceded by the string −−>.

dir [remote-directory] [local-file]
Print a listing of the directory contents in the directory, remote-directory , and,
optionally, placing the output in local-file. If no directory is specified, the current
working directory on the remote machine is used. If no local file is specified, or
local-file is −, output is sent to the terminal.

disconnect
A synonym for close.

1-370 SunOS 5.6 modified 6 Jan 1994

User Commands ftp (1)

form [format-name]
Set the carriage control format subtype of the “representation type” to format-
name. The only valid format-name is non-print, which corresponds to the default
“non-print” subtype.

get remote-file [local-file]
Retrieve the remote-file and store it on the local machine. If the local file name is
not specified, it is given the same name it has on the remote machine, subject to
alteration by the current case, ntrans, and nmap settings. The current settings for
“representation type”, “file structure”, and “transfer mode” are used while
transferring the file.

glob Toggle filename expansion, or “globbing”, for mdelete, mget and mput. If glob-
bing is turned off, filenames are taken literally.

Globbing for mput is done as in sh(1). For mdelete and mget, each remote file
name is expanded separately on the remote machine, and the lists are not
merged.

Expansion of a directory name is likely to be radically different from expansion
of the name of an ordinary file: the exact result depends on the remote operating
system and FTP server, and can be previewed by doing mls remote-files −.

mget and mput are not meant to transfer entire directory subtrees of files. You
can do this by transferring a tar(1) archive of the subtree (using a “representation
type” of “image” as set by the binary command).

hash Toggle hash-sign (#) printing for each data block transferred. The size of a data
block is 8192 bytes.

help [command]
Print an informative message about the meaning of command. If no argument is
given, ftp prints a list of the known commands.

lcd [directory]
Change the working directory on the local machine. If no directory is specified,
the user’s home directory is used.

ls [remote-directory | -al] [local-file]
Print an abbreviated listing of the contents of a directory on the remote machine.
If remote-directory is left unspecified, the current working directory is used.

The -a option lists all entries, including those that begin with a dot (.), which are
normally not listed. The -l option lists files in long format, giving mode, number
of links, owner, group, size in bytes, and time of last modification for each file. If
the file is a special file, the size field instead contains the major and minor device
numbers rather than a size. If the file is a symbolic link, the filename is printed
followed by “→” and the pathname of the referenced file.

If no local file is specified, or if local-file is −, the output is sent to the terminal.

modified 6 Jan 1994 SunOS 5.6 1-371

ftp (1) User Commands

macdef macro-name
Define a macro. Subsequent lines are stored as the macro macro-name; a null line
(consecutive NEWLINE characters in a file or RETURN characters from the termi-
nal) terminates macro input mode. There is a limit of 16 macros and 4096 total
characters in all defined macros. Macros remain defined until a close command
is executed.

The macro processor interprets $ and \ as special characters. A $ followed by a
number (or numbers) is replaced by the corresponding argument on the macro
invocation command line. A $ followed by an i signals that macro processor that
the executing macro is to be looped. On the first pass $i is replaced by the first
argument on the macro invocation command line, on the second pass it is
replaced by the second argument, and so on. A \ followed by any character is
replaced by that character. Use the \ to prevent special treatment of the $.

mdelete remote-files
Delete the remote-files on the remote machine.

mdir remote-files local-file
Like dir, except multiple remote files may be specified. If interactive prompting
is on, ftp will prompt the user to verify that the last argument is indeed the target
local file for receiving mdir output.

mget remote-files
Expand the remote-files on the remote machine and do a get for each file name
thus produced. See glob for details on the filename expansion. Resulting file
names will then be processed according to case, ntrans, and nmap settings. Files
are transferred into the local working directory, which can be changed with lcd
directory; new local directories can be created with ! mkdir directory.

mkdir directory-name
Make a directory on the remote machine.

mls remote-files local-file
Like ls(1), except multiple remote files may be specified. If interactive prompting
is on, ftp will prompt the user to verify that the last argument is indeed the target
local file for receiving mls output.

mode [mode-name]
Set the “transfer mode” to mode-name . The only valid mode-name is stream, which
corresponds to the default “stream” mode. This implementation only supports
stream, and requires that it be specified.

mput local-files
Expand wild cards in the list of local files given as arguments and do a put for
each file in the resulting list. See glob for details of filename expansion. Result-
ing file names will then be processed according to ntrans and nmap settings.

1-372 SunOS 5.6 modified 6 Jan 1994

User Commands ftp (1)

nmap [inpattern outpattern]
Set or unset the filename mapping mechanism. If no arguments are specified, the
filename mapping mechanism is unset. If arguments are specified, remote
filenames are mapped during mput commands and put commands issued
without a specified remote target filename. If arguments are specified, local
filenames are mapped during mget commands and get commands issued
without a specified local target filename.

This command is useful when connecting to a non-UNIX-system remote host
with different file naming conventions or practices. The mapping follows the
pattern set by inpattern and outpattern . inpattern is a template for incoming
filenames (which may have already been processed according to the ntrans and
case settings). Variable templating is accomplished by including the sequences
$1, $2, . . . , $9 in inpattern. Use \ to prevent this special treatment of the $ charac-
ter. All other characters are treated literally, and are used to determine the nmap
inpattern variable values.

For example, given inpattern $1.$2 and the remote file name mydata.data, $1
would have the value mydata, and $2 would have the value data.

The outpattern determines the resulting mapped filename. The sequences $1, $2,
. . . , $9 are replaced by any value resulting from the inpattern template. The
sequence $0 is replaced by the original filename. Additionally, the sequence
[seq1 , seq2] is replaced by seq1 if seq1 is not a null string; otherwise it is replaced
by seq2.

For example, the command nmap $1.$2.$3 [$1,$2].[$2,file] would yield the output
filename myfile.data for input filenames myfile.data and myfile.data.old,
myfile.file for the input filename myfile, and myfile.myfile for the input filename
.myfile. SPACE characters may be included in outpattern, as in the example nmap
$1 | sed "s/ ∗$//" > $1. Use the \ character to prevent special treatment of the $,
[,], and ,, characters.

ntrans [inchars [outchars]]
Set or unset the filename character translation mechanism. If no arguments are
specified, the filename character translation mechanism is unset. If arguments
are specified, characters in remote filenames are translated during mput com-
mands and put commands issued without a specified remote target filename,
and characters in local filenames are translated during mget commands and get
commands issued without a specified local target filename.

This command is useful when connecting to a non-UNIX-system remote host
with different file naming conventions or practices. Characters in a filename
matching a character in inchars are replaced with the corresponding character in
outchars . If the character’s position in inchars is longer than the length of outchars,
the character is deleted from the file name.

Only 16 characters can be translated when using the ntrans command under ftp.
Use case (described above) if needing to convert the entire alphabet.

modified 6 Jan 1994 SunOS 5.6 1-373

ftp (1) User Commands

open host [port]
Establish a connection to the specified host FTP server. An optional port number
may be supplied, in which case, ftp will attempt to contact an FTP server at that
port. If the auto-login option is on (default setting), ftp will also attempt to
automatically log the user in to the FTP server.

prompt
Toggle interactive prompting. Interactive prompting occurs during multiple file
transfers to allow the user to selectively retrieve or store files. By default,
prompting is turned on. If prompting is turned off, any mget or mput will
transfer all files, and any mdelete will delete all files.

proxy ftp-command
Execute an FTP command on a secondary control connection. This command
allows simultaneous connection to two remote FTP servers for transferring files
between the two servers. The first proxy command should be an open, to estab-
lish the secondary control connection. Enter the command proxy ? to see other
FTP commands executable on the secondary connection.

The following commands behave differently when prefaced by proxy: open will
not define new macros during the auto-login process, close will not erase existing
macro definitions, get and mget transfer files from the host on the primary con-
trol connection to the host on the secondary control connection, and put, mputd,
and append transfer files from the host on the secondary control connection to
the host on the primary control connection.

Third party file transfers depend upon support of the PASV command by the
server on the secondary control connection.

put local-file [remote-file]
Store a local file on the remote machine. If remote-file is left unspecified, the local
file name is used after processing according to any ntrans or nmap settings in
naming the remote file. File transfer uses the current settings for “representation
type”, “file structure”, and “transfer mode”.

pwd Print the name of the current working directory on the remote machine.

quit A synonym for bye.

quote arg1 arg2 . . .
Send the arguments specified, verbatim, to the remote FTP server. A single FTP
reply code is expected in return. (The remotehelp command displays a list of
valid arguments.)

quote should be used only by experienced users who are familiar with the FTP
protocol.

recv remote-file [local-file]
A synonym for get.

remotehelp [command-name]
Request help from the remote FTP server. If a command-name is specified it is sup-
plied to the server as well.

1-374 SunOS 5.6 modified 6 Jan 1994

User Commands ftp (1)

rename from to
Rename the file from on the remote machine to have the name to .

reset Clear reply queue. This command re-synchronizes command/reply sequencing
with the remote FTP server. Resynchronization may be necessary following a
violation of the FTP protocol by the remote server.

rmdir directory-name
Delete a directory on the remote machine.

runique
Toggle storing of files on the local system with unique filenames. If a file already
exists with a name equal to the target local filename for a get or mget command,
a .1 is appended to the name. If the resulting name matches another existing file,
a .2 is appended to the original name. If this process continues up to .99, an error
message is printed, and the transfer does not take place. The generated unique
filename will be reported. runique will not affect local files generated from a
shell command. The default value is off.

send local-file [remote-file]
A synonym for put.

sendport
Toggle the use of PORT commands. By default, ftp will attempt to use a PORT
command when establishing a connection for each data transfer. The use of
PORT commands can prevent delays when performing multiple file transfers. If
the PORT command fails, ftp will use the default data port. When the use of
PORT commands is disabled, no attempt will be made to use PORT commands
for each data transfer. This is useful when connected to certain FTP implementa-
tions that ignore PORT commands but incorrectly indicate they have been
accepted.

status Show the current status of ftp.

struct [struct-name]
Set the file structure to struct-name. The only valid struct-name is file, which
corresponds to the default “file” structure. The implementation only supports
file, and requires that it be specified.

sunique
Toggle storing of files on remote machine under unique file names. The remote
FTP server must support the STOU command for successful completion. The
remote server will report the unique name. Default value is off.

tenex Set the “representation type” to that needed to talk to TENEX machines.

trace Toggle packet tracing (unimplemented).

type [type-name]
Set the “representation type” to type-name . The valid type-names are ascii for
“network ASCII”, binary or image for “image”, and tenex for “local byte size”
with a byte size of 8 (used to talk to TENEX machines). If no type is specified, the
current type is printed. The default type is “network ASCII”.

modified 6 Jan 1994 SunOS 5.6 1-375

ftp (1) User Commands

user user-name [password] [account]
Identify yourself to the remote FTP server. If the password is not specified and
the server requires it, ftp will prompt the user for it (after disabling local echo).
If an account field is not specified, and the FTP server requires it, the user will be
prompted for it. If an account field is specified, an account command will be
relayed to the remote server after the login sequence is completed if the remote
server did not require it for logging in. Unless ftp is invoked with “auto-login”
disabled, this process is done automatically on initial connection to the FTP
server.

verbose
Toggle verbose mode. In verbose mode, all responses from the FTP server are
displayed to the user. In addition, if verbose mode is on, when a file transfer
completes, statistics regarding the efficiency of the transfer are reported. By
default, verbose mode is on if ftp’s commands are coming from a terminal, and
off otherwise.

? [command]
A synonym for help.

Command arguments which have embedded spaces may be quoted with quote (") marks.

If any command argument which is not indicated as being optional is not specified, ftp
will prompt for that argument.

ABORTING A
FILE TRANSFER

To abort a file transfer, use the terminal interrupt key. Sending transfers will be immedi-
ately halted. Receiving transfers will be halted by sending an FTP protocol ABOR com-
mand to the remote server, and discarding any further data received. The speed at which
this is accomplished depends upon the remote server’s support for ABOR processing. If
the remote server does not support the ABOR command, an ftp> prompt will not appear
until the remote server has completed sending the requested file.

The terminal interrupt key sequence will be ignored when ftp has completed any local
processing and is awaiting a reply from the remote server. A long delay in this mode
may result from the ABOR processing described above, or from unexpected behavior by
the remote server, including violations of the ftp protocol. If the delay results from unex-
pected remote server behavior, the local ftp program must be killed by hand.

FILE NAMING
CONVENTIONS

Local files specified as arguments to ftp commands are processed according to the fol-
lowing rules.

1) If the file name − is specified, the standard input (for reading) or standard output
(for writing) is used.

2) If the first character of the file name is |, the remainder of the argument is inter-
preted as a shell command. ftp then forks a shell, using popen(3S) with the argu-
ment supplied, and reads (writes) from the standard output (standard input) of
that shell. If the shell command includes SPACE characters, the argument must
be quoted; for example "| ls −lt". A particularly useful example of this mechan-
ism is: "dir | more".

1-376 SunOS 5.6 modified 6 Jan 1994

User Commands ftp (1)

3) Failing the above checks, if globbing is enabled, local file names are expanded
according to the rules used in the sh(1); see the glob command. If the ftp com-
mand expects a single local file (for example, put), only the first filename gen-
erated by the globbing operation is used.

4) For mget commands and get commands with unspecified local file names, the
local filename is the remote filename, which may be altered by a case, ntrans, or
nmap setting. The resulting filename may then be altered if runique is on.

5) For mput commands and put commands with unspecified remote file names, the
remote filename is the local filename, which may be altered by a ntrans or nmap
setting. The resulting filename may then be altered by the remote server if
sunique is on.

FILE TRANSFER
PARAMETERS

The FTP specification specifies many parameters which may affect a file transfer.

The “representation type” may be one of “network ASCII”, “EBCDIC”, “image”, or “local
byte size” with a specified byte size (for PDP-10’s and PDP-20’s mostly). The “network
ASCII” and “EBCDIC” types have a further subtype which specifies whether vertical for-
mat control (NEWLINE characters, form feeds, etc.) are to be passed through (“non-
print”), provided in TELNET format (“TELNET format controls”), or provided in ASA
(FORTRAN) (“carriage control (ASA)”) format. ftp supports the “network ASCII” (sub-
type “non-print” only) and “image” types, plus “local byte size” with a byte size of 8 for
communicating with TENEX machines.

The “file structure” may be one of file (no record structure), record, or page. ftp supports
only the default value, which is file.

The “transfer mode” may be one of stream, block, or compressed. ftp supports only the
default value, which is stream.

USAGE See largefile(5) for the description of the behavior of ftp when encountering files greater
than or equal to 2 Gbyte (231 bytes).

FILES ˜/.netrc

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu
CSI enabled

SEE ALSO ls(1), rcp(1), sh(1), tar(1), ftpd(1M), popen(3S), netrc(4), attributes(5), largefile(5)

modified 6 Jan 1994 SunOS 5.6 1-377

ftp (1) User Commands

NOTES Correct execution of many commands depends upon proper behavior by the remote
server.

An error in the treatment of carriage returns in the 4.2 BSD code handling transfers with a
“representation type” of “network ASCII” has been corrected. This correction may result
in incorrect transfers of binary files to and from 4.2 BSD servers using a “representation
type” of “network ASCII”. Avoid this problem by using the “image” type.

1-378 SunOS 5.6 modified 6 Jan 1994

User Commands function (1)

NAME function − shell built-in command to define a function which is usable within this shell

SYNOPSIS
ksh function identifier { list ;}

identifier() { list ;}

DESCRIPTION
ksh function defines a function which is referenced by identifier. The body of the function is

the list of commands between { and }.

Alternatively, omitting the function keyword and appending the identifier with a set of
enclosed parentheses will accomplish the same function definition.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO ksh(1), attributes(5)

modified 15 Apr 1994 SunOS 5.6 1-379

gcore (1) User Commands

NAME gcore − get core images of running processes

SYNOPSIS gcore [−o filename] process-id . . .

DESCRIPTION gcore creates a core image of each specified process. By default, the name of the core
image file for the process whose process ID is process-id will be core.process-id.

OPTIONS −o filename Substitutes filename in place of core as the first part of the name of
the core image files.

OPERANDS process-id process ID

EXIT STATUS 0 On success.

non-zero On failure, such as non-existent process ID.

FILES core.process-id core images

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtoo

SEE ALSO kill(1), core(4), proc(4), attributes(5)

1-380 SunOS 5.6 modified 17 Jul 1996

User Commands gencat (1)

NAME gencat − generate a formatted message catalog

SYNOPSIS gencat catfile msgfile. . .

DESCRIPTION The gencat command merges the message text source file(s) msgfile into a formatted mes-
sage database catfile. The database catfile is created if it does not already exist. If catfile
does exist, its messages are included in the new catfile. If set and message numbers col-
lide, the new message-text defined in msgfile replaces the old message text currently con-
tained in catfile. The message text source file (or set of files) input to gencat can contain
either set and message numbers or simply message numbers, in which case the set
NL_SETD (see nl_types(5)) is assumed.

Message Text Source
File Format

The format of a message text source file is defined as follows. Note that the fields of a
message text source line are separated by a single ASCII space or tab character. Any other
ASCII spaces or tabs are considered as part of the subsequent field.

$set n comment Where n specifies the set identifier of the following messages until
the next $set, $delset, or end-of-file appears. n must be a number
in the range (1−{NL_SETMAX}). Set identifiers within a single
source file need not be contiguous. Any string following the set
identifier is treated as a comment. If no $set directive is specified
in a message text source file, all messages are located in the default
message set NL_SETD.

$delset n comment Deletes message set n from an existing message catalog. Any
string following the set number is treated as a comment. (Note: if
n is not a valid set it is ignored.)

$ comment A line beginning with a dollar symbol $ followed by an ASCII
space or tab character is treated as a comment.

m message-text The m denotes the message identifier, a number in the range (1-
{NL_MSGMAX}). The message-text is stored in the message catalog
with the set identifier specified by the last $set directive, and with
message identifier m. If the message-text is empty, and an ASCII
space or tab field separator is present, an empty string is stored in
the message catalog. If a message source line has a message
number, but neither a field separator nor message-text , the existing
message with that number (if any) is deleted from the catalog.
Message identifiers need not be contiguous. The length of
message-text must be in the range (0−{NL_TEXTMAX}).

modified 1 Feb 1995 SunOS 5.6 1-381

gencat (1) User Commands

$quote c This line specifies an optional quote character c, which can be used
to surround message-text so that trailing spaces or null (empty)
messages are visible in a message source line. By default, or if an
empty $quote directive is supplied, no quoting of message-text will
be recognized.

Empty lines in a message text source file are ignored.

Text strings can contain the special characters and escape sequences defined in the fol-
lowing table:

Description Symbol Sequence
newline NL(LF) \n
horizontal tab HT \t
vertical tab VT \v
backspace BS \b
carriage return CR \r
form feed FF \f
backslash \ \\
bit pattern ddd \ddd

The escape sequence \ddd consists of backslash followed by 1, 2 or 3 octal digits, which
are taken to specify the value of the desired character. If the character following a
backslash is not one of those specified, the backslash is ignored.

Backslash followed by an ASCII newline character is also used to continue a string on the
following line. Thus, the following two lines describe a single message string:

1 This line continues \
to the next line

which is equivalent to:

1 This line continues to the next line

OPERANDS The following operands are supported:

catfile A path name of the formatted message catalogue. If − is specified, standard
output is used.

msgfile A path name of a message text source file. If − is specified for an instance of
msgfile, standard input is used. The format of message text source files is
defined in Message Text Source File Format.

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of gencat: LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS The following exit values are returned:

0 Successful completion.

>0 An error occurred.

1-382 SunOS 5.6 modified 1 Feb 1995

User Commands gencat (1)

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWloc
CSI enabled

SEE ALSO mkmsgs(1), catgets(3C), catopen(3C), gettxt(3C), environ(5), attributes(5), nl_types(5)

modified 1 Feb 1995 SunOS 5.6 1-383

genmsg (1) User Commands

NAME genmsg − generate a message source file by extracting messages from source files

SYNOPSIS genmsg [−abdfrntx] [−c message-tag] [−g project-file] [−l project-file]
[−m prefix] [−M suffix] [−o message-file] [−p preprocessor]
[−s set-tags] file . . .

DESCRIPTION genmsg extracts message strings with calls to catgets(3C) from source files and writes
them in a format suitable for input to gencat(1).

Invocation genmsg reads one or more input files and, by default, generates a message source file
whose name is composed of the first input file name with .msg. If the −o option is
specified, genmsg uses the option argument for its output file.

Command Output File
genmsg prog.c prog.c.msg
gensmg main.c util.c tool.c main.c.msg
genmsg -o prog.msg mail.c util.c prog.msg

genmsg also allows you to invoke a preprocessor to solve the dependencies of macros
and define statements for the catgets(3C) calls.

Auto Message
Numbering

genmsg replaces message numbers with the calculated numbers based upon the project
file if the message numbers are -1, and it generates copies of the input files with the new
message numbers and a copy of the project file with the new maximum message
numbers.

A project file is a database that stores a list of set numbers with their maximum message
numbers. Each line in a project file is composed of a set number and its maximum mes-
sage number:

Set_number Maximum_message_number

In a project file, a line beginning with a number sign (#) or an ASCII space is considered as
a comment and ignored.

genmsg also has the reverse operation to replace all message numbers with -1.

Comment Extraction genmsg allows you to comment about messages and set numbers to inform the translator
how the messages should be translated. It extracts the comment, which is surrounded
with the comment indicators and has the specified tag inside the comment, from the
input file and writes it with a dollar ($) prefix in the output file. genmsg supports the C
and C++ comment indicators, ’/∗’, ’∗/’, and ’//’.

Testing genmsg generates two kinds of messages for testing, prefixed messages and long mes-
sages. Prefixed messages allow you to check that your program is retrieving the mes-
sages from the message catalog. Long messages allow you to check the appearance of
your window program’s initial size and position.

1-384 SunOS 5.6 modified 20 Dec 1996

User Commands genmsg (1)

OPTIONS −a Append the output into the message file message-file that is specified by
the −o option. If two different messages that have the same set and mes-
sage number are found, the message in the specified message file is kept
and the other message in the input file is discarded.

−b Place the extracted comment after the corresponding message in the out-
put file. This option changes the placement behavior of the −s or −c
option.

−c message-tag Extract message comments having message-tag inside them from the
input files and write them with a ’$’ prefix as a comment in the output
file.

−d Include an original text of a message as a comment to be preserved
along with its translations. With this option, the translator can see the
original messages even after they are replaced with their translations.

−f Overwrite the input files and the project file when used with the −l or −r
option. With the −r option, genmsg overwrites only the input files.

−g project-file Generate project-file that has a list of set numbers and their maximum
message numbers in the input files.

−l project-file Replace message numbers with the calculated numbers based upon
project-file if the message numbers are -1 in the input files, and then gen-
erate copies of the input files with the new message numbers and a copy
of project-file with the new maximum message numbers. If project-file is
not found, genmsg uses the maximum message number in the input file
as a base number and generates project-file.

-m prefix Fill in the message with prefix. This option is useful for testing.

−M suffix Fill in the message with suffix. This option is useful for testing.

−n Add comment lines to the output file indicating the file name and line
number in the input files where each extracted string is encountered.

−o message-file Write the output to message-file.

−p preprocessor Invoke preprocessor to preprocess macros and define statements for the
catgets(3C) calls. genmsg first invokes the option argument as a prepro-
cesser and then starts the normal process against the output from the
preprocessor. genmsg initiates this process for all the input files.

−r Replace message numbers with -1. This is the reverse operation of the −l
option.

−s set-tag Extract set number comments having set-tag inside them from the input
files and write them with a ’$’ prefix as a comment in the output file. If
multiple comments are specified for one set number, the first one is
extracted and the rest of them are discarded.

−t Generate a message that is three times as long as the original message.
This option is useful for testing.

−x Suppress warning messages about message and set number range

modified 20 Dec 1996 SunOS 5.6 1-385

genmsg (1) User Commands

checks and conflicts.

OPERANDS file An input source file.

EXAMPLES 1. Suppose that you have the following source and project files:

example% cat test.c
printf(catgets(catfd, 1, -1, "line too long0));

printf(catgets(catfd, 2, -1, "invalid code0));

example% cat proj
1 10
2 20

The command

example% genmsg −l proj test.c

would assign the calculated message numbers based upon proj and generate the fol-
lowing files:

test.c.msg message file
proj.new updated project file
test.c.new new source file

example% cat test.c.msg
$quote "

$set 1
11 "line too long0

$set 2
21 "invalid code0

example% cat proj.new
1 11
2 21

example% cat test.c.new
printf(catgets(catfd, 1, 11, "line too long0));
printf(catgets(catfd, 2, 21, "invalid code0));

2. The command

example% genmsg −s SET −c MSG test.c

example% cat test.c
/∗ SET: tar messages ∗/
/∗ MSG: don’t translate "tar". ∗/
catgets(catfd, 1, 1, "tar: tape write error");
// MSG: don’t translate "tar" and "−I".
catgets(catfd, 1, 2, "tar: missing argument for −I flag");

1-386 SunOS 5.6 modified 20 Dec 1996

User Commands genmsg (1)

would extract the comments and write them in the following output file:

example% cat test.c.msg
$ /∗ SET: tar messages ∗/
$set 1
$ /∗ MSG: don’t translate "tar". ∗/
1 "tar: tape write error"
$ // MSG: don’t translate "tar" and "-I".
2 "tar: missing argument for -I flag"

3. The command

example% genmsg −m PRE: −M :FIX test.c

would generate the following messages for testing:

example% cat test.c.msg
1 "PRE:OK:FIX"
2 "PRE:Cancel:FIX"

4. Given the following input:

example% example.c
#include <nl_types.h>

#define MSG1 "message1"
#define MSG2 "message2"
#define MSG3 "message3"

#define MSG(n) catgets(catd, 1, n, MSG ## n)

void
main(int argc, char ∗∗argv)
{

nl_catd catd = catopen(argv[0], NL_CAT_LOCALE);

(void) printf("%s0, MSG(1));
(void) printf("%s0, MSG(2));
(void) printf("%s0, MSG(3));

(void) catclose(catd);
}

The following command:

example% genmsg −p "cc −E" −o example.msg example.c

would parse the MSG macros and write the extracted messages in example.msg.

5. Suppose that you have the following header, source, and project files:

example% . ./inc/msg.h
#define WARN_SET 1
#define ERR_SET 2

#define WARN_MSG(id, msg) catgets(catd, WARN_SET, (id), (msg))

#define ERR_MSG(id, msg) catgets(catd, ERR_SET, (id), (msg))

modified 20 Dec 1996 SunOS 5.6 1-387

genmsg (1) User Commands

example% example.c
#include "msg.h"
printf("%s0, WARN_MSG(-1, "Warning error"));
printf("%s0, ERR_MSG(-1, "Fatal error"));

example % proj
1 10
2 10

The command

example% genmsg −f -p "cc −E −I../inc" −l proj \
−o example.msg example.c

would assign each of the -1 message numbers a calculated number based upon proj
and would overwrite the results to example.c and proj. Also, this command writes
the extracted messages in example.msg.

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of genmsg: LC_MESSAGES and NLSPATH.

EXIT STATUS The following exit values are returned:

0 Successful completion.

>0 An error occurred.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWloc

SEE ALSO gencat(1), catgets(3C), catopen(3C), attributes(5), environ(5)

NOTES 1. genmsg does not handle pointers or valuables in the catgets(3C) call. For example:

const int set_num = 1;
extern int msg_num(const char ∗);
const char ∗msg = "Hello";

catgets(catd, set_num, msg_num(msg), msg);

2. When the auto message numbering is turned on with a preprocessor, if there are
multiple -1’s in the catgets(3C) line, genmsg replaces all of the -1’s in the line with a
calculated number. For example, given the input:

#define MSG(id, msg) catgets(catd, 1, (id), (msg))

if (ret == -1) printf("%s0, MSG(-1, "Failed"));

the command

genmsg −l proj −p "cc −E"

1-388 SunOS 5.6 modified 20 Dec 1996

User Commands genmsg (1)

would produce:

#define MSG(id, msg) catgets(catd, 1, (id), (msg))

if (ret == 1) printf("%s0, MSG(1, "Failed"));

The workaround would be to split it into two lines as follows:

if (ret == -1)
printf("%s0, MSG(-1, "Failed"));

modified 20 Dec 1996 SunOS 5.6 1-389

getconf (1) User Commands

NAME getconf − get configuration values

SYNOPSIS getconf system_var
getconf path_var pathname

DESCRIPTION In the first synopsis form, the getconf utility will write to the standard output the value
of the variable specified by system_var .

In the second synopsis form, getconf will write to the standard output the value of the
variable specified by path_var for the path specified by pathname .

The value of each configuration variable will be determined as if it were obtained by cal-
ling the function from which it is defined to be available. The value will reflect condi-
tions in the current operating environment.

OPERANDS The following operands are supported:

path_var
A name of a configuration variable whose value is available from the pathconf(2)
function. All of the values in the following table are supported:
LINK_MAX NAME_MAX POSIX_CHOWN_RESTRICTED
MAX_CANON PATH_MAX POSIX_NO_TRUNC
MAX_INPUT PIPE_BUF POSIX_VDISABLE

pathname
A path name for which the variable specified by path_var is to be determined.

system_var
A name of a configuration variable whose value is available from confstr(3C) or
sysconf(3C). All of the values in the following table are supported:

ARG_MAX BC_BASE_MAX BC_DIM_MAX
BC_SCALE_MAX BC_STRING_MAX CHAR_BIT
CHARCLASS_NAME_MAX CHAR_MAX CHAR_MIN
CHILD_MAX CLK_TCK COLL_WEIGHTS_MAX
CS_PATH EXPR_NEST_MAX INT_MAX
INT_MIN LFS64_CFLAGS LFS64_LDFLAGS
LFS64_LIBS LFS64_LINTFLAGS LFS_CFLAGS
LFS_LDFLAGS LFS_LIBS LFS_LINTFLAGS
LINE_MAX LONG_BIT LONG_MAX
LONG_MIN MB_LEN_MAX NGROUPS_MAX
NL_ARGMAX NL_LANGMAX NL_MSGMAX
NL_NMAX NL_SETMAX NL_TEXTMAX
NZERO OPEN_MAX POSIX2_BC_BASE_MAX
POSIX2_BC_DIM_MAX POSIX2_BC_SCALE_MAX POSIX2_BC_STRING_MAX
POSIX2_C_BIND POSIX2_C_DEV POSIX2_CHAR_TERM
POSIX2_COLL_WEIGHTS_MAX POSIX2_C_VERSION POSIX2_EXPR_NEST_MAX
POSIX2_FORT_DEV POSIX2_FORT_RUN POSIX2_LINE_MAX
POSIX2_LOCALEDEF POSIX2_RE_DUP_MAX POSIX2_SW_DEV

1-390 SunOS 5.6 modified 8 May 1996

User Commands getconf (1)

POSIX2_UPE POSIX2_VERSION _POSIX_ARG_MAX
_POSIX_CHILD_MAX _POSIX_JOB_CONTROL _POSIX_LINK_MAX
_POSIX_MAX_CANON _POSIX_MAX_INPUT _POSIX_NAME_MAX
_POSIX_NGROUPS_MAX _POSIX_OPEN_MAX _POSIX_PATH_MAX
_POSIX_PIPE_BUF _POSIX_SAVED_IDS _POSIX_SSIZE_MAX
_POSIX_STREAM_MAX _POSIX_TZNAME_MAX _POSIX_VERSION
RE_DUP_MAX SCHAR_MAX SCHAR_MIN
SHRT_MAX SHRT_MIN SSIZE_MAX
STREAM_MAX TMP_MAX TZNAME_MAX
UCHAR_MAX UINT_MAX ULONG_MAX
USHRT_MAX WORD_BIT _XOPEN_CRYPT
_XOPEN_ENH_I18N _XOPEN_SHM _XOPEN_VERSION
_XOPEN_XCU_VERSION _XOPEN_XPG2 _XOPEN_XPG3
_XOPEN_XPG4

The symbol PATH also is recognized, yielding the same value as the confstr() name value
CS_PATH.

USAGE See largefile(5) for the description of the behavior of getconf when encountering files
greater than or equal to 2 Gbyte (231 bytes).

EXAMPLES This example illustrates the value of {NGROUPS_MAX}:

getconf NGROUPS_MAX

This example illustrates the value of NAME_MAX for a specific directory:

getconf NAME_MAX /usr

This example shows how to deal more carefully with results that might be unspecified:

if value=$(getconf PATH_MAX /usr); then
if ["$value" = "undefined"]; then

echo PATH_MAX in /usr is infinite.
else

echo PATH_MAX in /usr is $value.
fi

else
echo Error in getconf.

fi

Note that:

sysconf(_SC_POSIX_C_BIND);
and:

system("getconf POSIX2_C_BIND");

in a C program could give different answers. The sysconf call supplies a value that
corresponds to the conditions when the program was either compiled or executed,
depending on the implementation; the system call to getconf always supplies a value
corresponding to conditions when the program is executed.

modified 8 May 1996 SunOS 5.6 1-391

getconf (1) User Commands

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of getconf: LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS The following exit values are returned:

0 The specified variable is valid and information about its current state was written
successfully.

>0 An error occurred.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO pathconf(2), confstr(3C), sysconf(3C), attributes(5), environ(5), largefile(5)

1-392 SunOS 5.6 modified 8 May 1996

User Commands getfacl (1)

NAME getfacl − display discretionary file information

SYNOPSIS getfacl [−ad] file . . .

DESCRIPTION For each argument that is a regular file, special file, or named pipe, getfacl displays the
owner, the group, and the Access Control List (ACL). For each directory argument, get-
facl displays the owner, the group, and the ACL and/or the default ACL. Only direc-
tories contain default ACLs.

getfacl may be executed on a file system that does not support ACLs. It reports the ACL
based on the base permission bits.

With no options specified, getfacl displays the filename, the owner, the group, and both
the ACL and the default ACL, if it exists.

OPTIONS The following options are supported:

−a Display the filename, the owner, the group, and the ACL of the file.

−d Display the filename, the owner, the group, and the default ACL of the file, if it
exists.

OPERANDS The following operands are supported:

file The path name of a regular file, special file, or named pipe.

OUTPUT The format for ACL output is as follows:

file: filename
owner: uid
group: gid
user::perm
user:uid:perm
group::perm
group:gid:perm
mask:perm
other:perm
default:user::perm
default:user:uid:perm
default:group::perm
default:group:gid:perm
default:mask:perm
default:other:perm

When multiple files are specified on the command line, a blank line separates the ACLs
for each file.

The ACL entries are displayed in the order in which they are evaluated when an access
check is performed. The default ACL entries that may exist on a directory have no effect
on access checks.

modified 5 Nov 1994 SunOS 5.6 1-393

getfacl (1) User Commands

The first three lines display the filename, the file owner, and the file owning group. Note
that when only the −d option is specified and the file has no default ACL, only these three
lines are displayed.

The user entry without a user ID indicates the permissions that are granted to the owner
of the file. One or more additional user entries indicate the permissions that are granted
to the specified users.

The group entry without a group ID indicates the permissions that are granted to the
owning group of the file. One or more additional group entries indicate the permissions
that are granted to the specified groups.

The mask entry indicates the file group mask permissions. These are the maximum per-
missions allowed to any user entries except the file owner, and to any group entries,
including the owning group. These permissions restrict the permissions specified in
other entries.

The other entry indicates the permissions that are granted to others.

The default entries may exist only for directories, and indicate the default entries that are
added to a file created within the directory.

The uid is a login name or a user ID if there is no entry for the uid in the system pass-
word file, /etc/passwd. The gid is a group name or a group ID if there is no entry for the
gid in the system group file, /etc/group. The perm is a three character string composed of
the letters representing the separate discretionary access rights: r (read), w (write), x
(execute/search), or the place holder character −. The perm is displayed in the following
order: rwx. If a permission is not granted by an ACL entry, the place holder character
appears.

The file owner permission bits represent the access of the owning user ACL entry. The
file group class permission bits represent the most access that any additional user entries,
additional group entries, or the owning group entry may grant. The file other class per-
mission bits represent the access that the other ACL entry has. If a user invokes the
chmod(1) command and changes the file group class permission bits, the access granted
by additional ACL entries may be restricted.

In order to indicate that the file group class permission bits restrict an ACL entry, getfacl
displays an additional tab character, pound sign ("#"), and the actual permissions
granted, following the entry.

EXAMPLES 1. Given file "foo", with an ACL six entries long, the command

host% getfacl foo

would print:

file: foo
owner: shea
group: staff
user::rwx
user:spy: − − −
user:mookie:r − −

1-394 SunOS 5.6 modified 5 Nov 1994

User Commands getfacl (1)

group::r − −
mask::rw −
other:: − − −

2. Continue with the above example, after "chmod 700 foo" was issued:

host% getfacl foo

would print:

file: foo
owner: shea
group: staff
user::rwx
user:spy: − − −
user:mookie:r − − #effective: − − −
group::r − − #effective: − − −
mask:: − − −
other:: − − −

3. Given directory "doo", with an ACL containing default entries, the command

host% getfacl -d doo

would print:

file: doo
owner: shea
group: staff
default:user::rwx
default:user:spy: − − −
default:user:mookie:r − −
default:group::r − −
default:mask:: − − −
default:other:: − − −

FILES /etc/passwd system password file
/etc/group group file

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO chmod(1), ls(1), setfacl(1), acl(2), aclsort(3), group(4), passwd(4), attributes(5)

NOTES The output from getfacl is in the correct format for input to the setfacl command. If the
output from getfacl is redirected to a file, the file may be used as input to setfacl. In this
way, a user may easily assign one file’s ACL to another file.

modified 5 Nov 1994 SunOS 5.6 1-395

getfrm (1F) FMLI Commands

NAME getfrm − returns the current frameID number

SYNOPSIS getfrm

DESCRIPTION getfrm returns the current frameID number. The frameID number is a number assigned
to the frame by FMLI and displayed flush left in the frame’s title bar. If a frame is closed
its frameID number may be reused when a new frame is opened. getfrm takes no argu-
ments.

EXAMPLES If a menu whose frameID is 3 defines an item to have this action descriptor:

action=open text stdtext `getfrm`

the text frame defined in the definition file stdtext would be passed the argument 3 when
it is opened.

NOTES It is not a good idea to use getfrm in a backquoted expression coded on a line by itself.
Stand-alone backquoted expressions are evaluated before any descriptors are parsed,
thus the frame is not yet fully current, and may not have been assigned a frameID
number.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO attributes(5)

1F-396 SunOS 5.6 modified 5 Jul 1990

FMLI Commands getitems (1F)

NAME getitems − returns a list of currently marked menu items

SYNOPSIS getitems [delimiter_string]

DESCRIPTION The getitems function returns the value of lininfo if defined, else it returns the value of
the name descriptor, for all currently marked menu items. Each value in the list is delim-
ited by delimiter_string. The default value of delimiter_string is newline.

EXAMPLES The done descriptor in the following menu definition file executes getitems when the
user presses ENTER (note that the menu is multiselect):

Menu="Example"
multiselect=TRUE
done=`getitems ":" | message`

name="Item 1"
action=`message "You selected item 1"`

name="Item 2"
lininfo="This is item 2"
action=`message "You selected item 2"`

name="Item 3"
action=`message "You selected item 3"`

If a user marked all three items in this menu, pressing ENTER would cause the following
string to be displayed on the message line:

Item 1:This is item 2:Item 3

NOTES Because lininfo is defined for the second menu item, its value is displayed instead of the
value of the name descriptor.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO attributes(5)

modified 5 Jul 1990 SunOS 5.6 1F-397

getopt (1) User Commands

NAME getopt − parse command options

SYNOPSIS set −− `getopt optstring $∗`

DESCRIPTION The getopts command supersedes getopt. For more information, see NOTES below.

getopt is used to break up options in command lines for easy parsing by shell procedures
and to check for legal options. optstring is a string of recognized option letters; see
getopt(3C). If a letter is followed by a colon, the option is expected to have an argument
which may or may not be separated from it by white space. The special option −− is used
to delimit the end of the options. If it is used explicitly, getopt recognizes it; otherwise,
getopt generates it; in either case, getopt places it at the end of the options. The posi-
tional parameters ($1 $2 . . .) of the shell are reset so that each option is preceded by a −
and is in its own positional parameter; each option argument is also parsed into its own
positional parameter.

EXAMPLES The following code fragment shows how one might process the arguments for a com-
mand that can take the options a or b, as well as the option o, which requires an argu-
ment:

set −− `getopt abo: $∗`
if [$? != 0]
then

echo $USAGE
exit 2

fi
for i in $∗
do

case $i in
−a � −b) FLAG=$i; shift;;
−o) OARG=$2; shift 2;;
−−) shift; break;;
esac

done

This code accepts any of the following as equivalent:

cmd −aoarg filename1 filename2
cmd −a −o arg filename1 filename2
cmd −oarg −a filename1 filename2
cmd −a −oarg −− filename1 filename2

1-398 SunOS 5.6 modified 14 Sep 1992

User Commands getopt (1)

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu
CSI enabled

SEE ALSO intro(1), shell_builtins(1), sh(1), getopt(3C), attributes(5)

DIAGNOSTICS getopt prints an error message on the standard error when it encounters an option letter
not included in optstring .

NOTES getopt will not be supported in the next major release. For this release a conversion tool
has been provided, getoptcvt. For more information about getopts and getoptcvt, see
getopts(1).

Reset optind to 1 when rescanning the options.

getopt does not support the part of Rule 8 of the command syntax standard (see intro(1))
that permits groups of option-arguments following an option to be separated by white
space and quoted. For example,

cmd −a −b −o "xxx z yy" filename

is not handled correctly. To correct this deficiency, use the getopts command in place of
getopt.

If an option that takes an option-argument is followed by a value that is the same as one
of the options listed in optstring (referring to the earlier EXAMPLES section, but using the
following command line: cmd -o -a filename, getopt always treats −a as an option-
argument to −o; it never recognizes −a as an option. For this case, the for loop in the
example shifts past the filename argument.

modified 14 Sep 1992 SunOS 5.6 1-399

getoptcvt (1) User Commands

NAME getoptcvt − convert to getopts to parse command options

SYNOPSIS /usr/lib/getoptcvt [−b] filename

/usr/lib/getoptcvt

DESCRIPTION /usr/lib/getoptcvt reads the shell script in filename, converts it to use getopts instead of
getopt, and writes the results on the standard output.

getopts is a built-in Bourne shell command used to parse positional parameters and to
check for valid options. See sh(1). It supports all applicable rules of the command syntax
standard (see Rules 3-10, intro(1)). It should be used in place of the getopt command.
(See the NOTES section below.) The syntax for the shell’s built-in getopts command is:

getopts optstring name [argument . . .]

optstring must contain the option letters the command using getopts will recognize; if a
letter is followed by a colon, the option is expected to have an argument, or group of
arguments, which must be separated from it by white space.

Each time it is invoked, getopts places the next option in the shell variable name and the
index of the next argument to be processed in the shell variable OPTIND. Whenever the
shell or a shell script is invoked, OPTIND is initialized to 1.

When an option requires an option-argument, getopts places it in the shell variable
OPTARG.

If an illegal option is encountered, ? will be placed in name .

When the end of options is encountered, getopts exits with a non-zero exit status. The
special option −− may be used to delimit the end of the options.

By default, getopts parses the positional parameters. If extra arguments (argument . . .)
are given on the getopts command line, getopts parses them instead.

So that all new commands will adhere to the command syntax standard described in
intro(1), they should use getopts or getopt to parse positional parameters and check for
options that are valid for that command (see the NOTES section below).

OPTIONS −b Make the converted script portable to earlier releases of the UNIX system.
/usr/lib/getoptcvt modifies the shell script in filename so that when the resulting
shell script is executed, it determines at run time whether to invoke getopts or
getopt.

EXAMPLES The following fragment of a shell program shows how one might process the arguments
for a command that can take the options a or b, as well as the option o, which requires an
option-argument:

1-400 SunOS 5.6 modified 27 Feb 1994

User Commands getoptcvt (1)

while getopts abo: c
do

case $c in
a � b) FLAG=$c;;
o) OARG=$OPTARG;;
\?) echo $USAGE

exit 2;;
esac

done
shift `expr $OPTIND − 1`

This code accepts any of the following as equivalent:

cmd −a −b −o "xxx z yy" filename
cmd −a −b −o "xxx z yy" −− filename
cmd −ab −o xxx,z,yy filename
cmd −ab −o "xxx z yy" filename
cmd −o xxx,z,yy −b −a filename

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu
CSI enabled

SEE ALSO intro(1), sh(1), shell_builtins(1), getopt(3C), attributes(5)

DIAGNOSTICS getopts prints an error message on the standard error when it encounters an option letter
not included in optstring .

NOTES Although the following command syntax rule (see intro(1)) relaxations are permitted
under the current implementation, they should not be used because they may not be sup-
ported in future releases of the system. As in the EXAMPLES section above, a and b are
options, and the option o requires an option-argument. The following example violates
Rule 5: options with option-arguments must not be grouped with other options:

example% cmd −aboxxx filename

The following example violates Rule 6: there must be white space after an option that
takes an option-argument:

example% cmd −ab −oxxx filename

Changing the value of the shell variable OPTIND or parsing different sets of arguments
may lead to unexpected results.

modified 27 Feb 1994 SunOS 5.6 1-401

getopts (1) User Commands

NAME getopts − parse utility options

SYNOPSIS /usr/bin/getopts optstring name [arg. . .]

sh getopts optstring name [argument . . .]

ksh getopts optstring name [arg . . .]

DESCRIPTION
/usr/bin/getopts The getopts utility can be used to retrieve options and option-arguments from a list of

parameters.

Each time it is invoked, the getopts utility places the value of the next option in the shell
variable specified by the name operand and the index of the next argument to be pro-
cessed in the shell variable OPTIND. Whenever the shell is invoked, OPTIND will be ini-
tialised to 1.

When the option requires an option-argument, the getopts utility will place it in the shell
variable OPTARG. If no option was found, or if the option that was found does not have
an option-argument, OPTARG will be unset.

If an option character not contained in the optstring operand is found where an option
character is expected, the shell variable specified by name will be set to the question-mark
(?) character. In this case, if the first character in optstring is a colon (:), the shell variable
OPTARG will be set to the option character found, but no output will be written to stan-
dard error; otherwise, the shell variable OPTARG will be unset and a diagnostic message
will be written to standard error. This condition is considered to be an error detected in
the way arguments were presented to the invoking application, but is not an error in
getopts processing.

If an option-argument is missing:

· If the first character of optstring is a colon, the shell variable specified by name
will be set to the colon character and the shell variable OPTARG will be set to
the option character found.

· Otherwise, the shell variable specified by name will be set to the question-
mark character, the shell variable OPTARG will be unset, and a diagnostic
message will be written to standard error. This condition is considered to be
an error detected in the way arguments were presented to the invoking appli-
cation, but is not an error in getopts processing; a diagnostic message will be
written as stated, but the exit status will be zero.

When the end of options is encountered, the getopts utility will exit with a return value
greater than zero; the shell variable OPTIND will be set to the index of the first non-
option-argument, where the first − − argument is considered to be an option-argument if
there are no other non-option-arguments appearing before it, or the value $# + 1 if there
are no non-option-arguments; the name variable will be set to the question-mark charac-
ter. Any of the following identifies the end of options: the special option − − , finding an
argument that does not begin with a −, or encountering an error.

1-402 SunOS 5.6 modified 11 Apr 1995

User Commands getopts (1)

The shell variables OPTIND and OPTARG are local to the caller of getopts and are not
exported by default.

The shell variable specified by the name operand, OPTIND and OPTARG affect the current
shell execution environment.

If the application sets OPTIND to the value 1, a new set of parameters can be used: either
the current positional parameters or new arg values. Any other attempt to invoke
getopts multiple times in a single shell execution environment with parameters (posi-
tional parameters or arg operands) that are not the same in all invocations, or with an
OPTIND value modified to be a value other than 1, produces unspecified results.

sh getopts is a built-in Bourne shell command used to parse positional parameters and to
check for valid options. See sh(1). It supports all applicable rules of the command syntax
standard (see Rules 3-10, intro(1)). It should be used in place of the getopt command.

optstring must contain the option letters the command using getopts will recognize; if a
letter is followed by a colon, the option is expected to have an argument, or group of
arguments, which must be separated from it by white space.

Each time it is invoked, getopts places the next option in the shell variable name and the
index of the next argument to be processed in the shell variable OPTIND. Whenever the
shell or a shell script is invoked, OPTIND is initialized to 1.

When an option requires an option-argument, getopts places it in the shell variable
OPTARG.

If an illegal option is encountered, ? will be placed in name .

When the end of options is encountered, getopts exits with a non-zero exit status. The
special option −− may be used to delimit the end of the options.

By default, getopts parses the positional parameters. If extra arguments (argument . . .)
are given on the getopts command line, getopts parses them instead.

/usr/lib/getoptcvt reads the shell script in filename, converts it to use getopts instead of
getopt, and writes the results on the standard output.

So that all new commands will adhere to the command syntax standard described in
intro(1), they should use getopts or getopt to parse positional parameters and check for
options that are valid for that command.

Examples:

The following fragment of a shell program shows how one might process the arguments
for a command that can take the options a or b, as well as the option o, which requires an
option-argument:

while getopts abo: c
do

case $c in
a � b) FLAG=$c;;
o) OARG=$OPTARG;;
\?) echo $USAGE

exit 2;;

modified 11 Apr 1995 SunOS 5.6 1-403

getopts (1) User Commands

esac
done
shift `expr $OPTIND − 1`

This code accepts any of the following as equivalent:

cmd −a −b −o "xxx z yy" filename
cmd −a −b −o "xxx z yy" −− filename
cmd −ab −o xxx,z,yy filename
cmd −ab −o "xxx z yy" filename
cmd −o xxx,z,yy −b −a filename

getopts prints an error message on the standard error when it encounters an option letter
not included in optstring .

Although the following command syntax rule (see intro(1)) relaxations are permitted
under the current implementation, they should not be used because they may not be sup-
ported in future releases of the system. As in the EXAMPLES section above, a and b are
options, and the option o requires an option-argument. The following example violates
Rule 5: options with option-arguments must not be grouped with other options:

example% cmd −aboxxx filename

The following example violates Rule 6: there must be white space after an option that
takes an option-argument:

example% cmd −ab −oxxx filename

Changing the value of the shell variable OPTIND or parsing different sets of arguments
may lead to unexpected results.

ksh Checks arg for legal options. If arg is omitted, the positional parameters are used. An
option argument begins with a + or a −. An option not beginning with + or − or the argu-
ment − − ends the options. optstring contains the letters that getopts recognizes. If a letter
is followed by a :, that option is expected to have an argument. The options can be
separated from the argument by blanks.

getopts places the next option letter it finds inside variable name each time it is invoked
with a + prepended when arg begins with a +. The index of the next arg is stored in
OPTIND. The option argument, if any, gets stored in OPTARG.

A leading : in optstring causes getopts to store the letter of an invalid option in OPTARG,
and to set name to ? for an unknown option and to : when a required option is missing.
Otherwise, getopts prints an error message. The exit status is non-zero when there are no
more options.

For a further discussion of the Korn shell’s getopts built-in command, see the previous
discussion in the Bourne shell, sh, section of this manpage.

OPERANDS The following operands are supported:

optstring A string containing the option characters recognised by the utility invoking
getopts. If a character is followed by a colon, the option will be expected to
have an argument, which should be supplied as a separate argument.

1-404 SunOS 5.6 modified 11 Apr 1995

User Commands getopts (1)

Applications should specify an option character and its option-argument as
separate arguments, but getopts will interpret the characters following an
option character requiring arguments as an argument whether or not this is
done. An explicit null option-argument need not be recognised if it is not sup-
plied as a separate argument when getopts is invoked; see getopt(3C). The
characters question-mark and colon must not be used as option characters by
an application. The use of other option characters that are not alphanumeric
produces unspecified results. If the option-argument is not supplied as a
separate argument from the option character, the value in OPTARG will be
stripped of the option character and the −. The first character in optstring will
determine how getopts will behave if an option character is not known or an
option-argument is missing.

name The name of a shell variable that will be set by the getopts utility to the option
character that was found.

The getopts utility by default will parse positional parameters passed to the invoking
shell procedure. If arg s are given, they will be parsed instead of the positional parame-
ters.

USAGE Since getopts affects the current shell execution environment, it is generally provided as a
shell regular built-in. If it is called in a subshell or separate utility execution environ-
ment, such as one of the following:

(getopts abc value "$@")

nohup getopts ...

find . -exec getopts ... \;

it will not affect the shell variables in the caller’s environment.

Note that shell functions share OPTIND with the calling shell even though the positional
parameters are changed. Functions that want to use getopts to parse their arguments
will usually want to save the value of OPTIND on entry and restore it before returning.
However, there will be cases when a function will want to change OPTIND for the calling
shell.

EXAMPLES The following example script parses and displays its arguments:

aflag=

bflag=

while getopts ab: name

do

case $name in

a) aflag=1;;

b) bflag=1

bval="$OPTARG";;

?) printf "Usage: %s: [-a] [-b value] args\n" $0

modified 11 Apr 1995 SunOS 5.6 1-405

getopts (1) User Commands

exit 2;;

esac

done

if [! -z "$aflag"]; then

printf "Option -a specified\n"

fi

if [! -z "$bflag"]; then

printf ’Option -b "%s" specified\n’ "$bval"

fi

shift $(($OPTIND - 1))

printf "Remaining arguments are: %s\n" "$∗"

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of getopts: LC_CTYPE, LC_MESSAGES, and NLSPATH.

OPTIND This variable is used by getopts as the index of the next argument to be
processed.

EXIT STATUS The following exit values are returned:

0 An option, specified or unspecified by optstring , was found.

>0 The end of options was encountered or an error occurred.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO intro(1), getopt(1), getoptcvt(1), ksh(1), sh(1), getopt(3C), attributes(5), environ(5)

DIAGNOSTICS Whenever an error is detected and the first character in the optstring operand is not a
colon (:), a diagnostic message will be written to standard error with the following infor-
mation in an unspecified format:

· The invoking program name will be identified in the message. The invoking
program name will be the value of the shell special parameter 0 at the time
the getopts utility is invoked. A name equivalent to:

basename "$0"

may be used.

· If an option is found that was not specified in optstring, this error will be
identified and the invalid option character will be identified in the message.

· If an option requiring an option-argument is found, but an option-argument
is not found, this error will be identified and the invalid option character will

1-406 SunOS 5.6 modified 11 Apr 1995

User Commands getopts (1)

be identified in the message.

modified 11 Apr 1995 SunOS 5.6 1-407

gettext (1) User Commands

NAME gettext − retrieve text string from message database

SYNOPSIS gettext [textdomain] msgid

DESCRIPTION gettext retrieves a translated text string corresponding to string msgid from a message
object generated with msgfmt(1). The message object name is derived from the optional
argument textdomain if present, otherwise from the TEXTDOMAIN environment. If no
domain is specified, or if a corresponding string cannot be found, gettext prints msgid.

Ordinarily gettext looks for its message object in /usr/lib/locale/lang/LC_MESSAGES
where lang is the locale name. If present, the TEXTDOMAINDIR environment variable
replaces the pathname component up to lang.

This command interprets C escape sequences such as \t for tab. Use \\ to print a
backslash. To produce a message on a line of its own, either put a \n at the end of msgid,
or use this command in conjunction with printf(1).

ENVIRONMENT LANG Specifies locale name.

LC_MESSAGES
Specifies messaging locale, and if present overrides LANG for messages.

TEXTDOMAIN
Specifies the text domain name, which is identical to the message object filename
without .mo suffix.

TEXTDOMAINDIR
Specifies the pathname to the message database, and if present replaces
/usr/lib/locale.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO msgfmt(1), printf(1), gettext(3C), setlocale(3C), attributes(5)

NOTES This is the shell equivalent of the library routine gettext(3C).

1-408 SunOS 5.6 modified 11 Jul 1996

User Commands gettxt (1)

NAME gettxt − retrieve a text string from a message database

SYNOPSIS gettxt msgfile:msgnum [dflt_msg]

DESCRIPTION gettxt retrieves a text string from a message file in the directory
/usr/lib/locale/locale/LC_MESSAGES. The directory name locale corresponds to the
language in which the text strings are written; see setlocale(3C).

msgfile Name of the file in the directory /usr/lib/locale/locale/LC_MESSAGES to
retrieve msgnum from. The name of msgfile can be up to 14 characters in
length, but may not contain either \0 (null) or the ASCII code for / (slash) or :
(colon).

msgnum Sequence number of the string to retrieve from msgfile. The strings in msgfile
are numbered sequentially from 1 to n , where n is the number of strings in
the file.

dflt_msg Default string to be displayed if gettxt fails to retrieve msgnum from msgfile.
Nongraphic characters must be represented as alphabetic escape sequences.

The text string to be retrieved is in the file msgfile, created by the mkmsgs(1) utility and
installed under the directory /usr/lib/locale/locale/LC_MESSAGES. You control which
directory is searched by setting the environment variable LC_MESSAGES. If
LC_MESSAGES is not set, the environment variable LANG will be used. If LANG is not
set, the files containing the strings are under the directory
/usr/lib/locale/C/LC_MESSAGES.

If gettxt fails to retrieve a message in the requested language, it will try to retrieve the
same message from /usr/lib/locale/C/LC_MESSAGES/msgfile. If this also fails, and if
dflt_msg is present and non-null, then it will display the value of dflt_msg ; if dflt_msg is
not present or is null, then it will display the string Message not found!!.

EXAMPLES If the environment variables LANG or LC_MESSAGES have not been set to other than
their default values, the following example:

example% gettxt UX:10 "hello world\n"

will try to retrieve the 10th message from /usr/lib/locale/C/UX/msgfile. If the retrieval
fails, the message "hello world," followed by a newline, will be displayed.

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of gettxt: LC_CTYPE and LC_MESSAGES.

LC_CTYPE
Determines how gettxt handles characters. When LC_CTYPE is set to a valid
value, gettxt can display and handle text and filenames containing valid charac-
ters for that locale. gettxt can display and handle Extended Unix Code (EUC)
characters where any individual character can be 1, 2, or 3 bytes wide. gettxt can
also handle EUC characters of 1, 2, or more column widths. In the "C" locale, only
characters from ISO 8859-1 are valid.

modified 20 Dec 1996 SunOS 5.6 1-409

gettxt (1) User Commands

LC_MESSAGES
Determines how diagnostic and informative messages are presented. This
includes the language and style of the messages, and the correct form of
affirmative and negative responses. In the "C" locale, the messages are presented
in the default form found in the program itself (in most cases, U.S. English).

FILES /usr/lib/locale/C/LC_MESSAGES/∗ default message files created by mkmsgs(1)
/usr/lib/locale/locale/LC_MESSAGES/∗ message files for different languages created

by mkmsgs(1)

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWloc
CSI Enabled

SEE ALSO exstr(1), mkmsgs(1), srchtxt(1), gettxt(3C), setlocale(3C), attributes(5), environ(5)

1-410 SunOS 5.6 modified 20 Dec 1996

User Commands glob (1)

NAME glob − shell built-in function to expand a word list

SYNOPSIS
csh glob wordlist

DESCRIPTION
csh glob performs filename expansion on wordlist . Like echo(1), but no ‘\’ escapes are recog-

nized. Words are delimited by null characters in the output.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO csh(1), echo(1), attributes(5)

modified 15 Apr 1994 SunOS 5.6 1-411

gprof (1) User Commands

NAME gprof − display call-graph profile data

SYNOPSIS gprof [−abcCDlsz] [−e function-name] [−E function-name] [−f function-name]
[−F function-name] [image-file [profile-file . . .]] [−n number of functions]

DESCRIPTION gprof produces an execution profile of a program. The effect of called routines is incor-
porated in the profile of each caller. The profile data is taken from the call graph profile
file that is created by programs compiled with the −xpg option of cc(1), or by the −pg
option with other compilers, or by setting the LD_PROFILE environment variable for
shared objects. See ld.so.1(1). These compiler options also link in versions of the library
routines which are compiled for profiling. The symbol table in the executable image file
image-file (a.out by default) is read and correlated with the call graph profile file profile-file
(gmon.out by default).

First, execution times for each routine are propagated along the edges of the call graph.
Cycles are discovered, and calls into a cycle are made to share the time of the cycle. The
first listing shows the functions sorted according to the time they represent, including the
time of their call graph descendants. Below each function entry is shown its (direct) call-
graph children and how their times are propagated to this function. A similar display
above the function shows how this function’s time and the time of its descendants are
propagated to its (direct) call-graph parents.

Cycles are also shown, with an entry for the cycle as a whole and a listing of the members
of the cycle and their contributions to the time and call counts of the cycle.

Next, a flat profile is given, similar to that provided by prof(1). This listing gives the total
execution times and call counts for each of the functions in the program, sorted by
decreasing time. Finally, an index is given, which shows the correspondence between
function names and call-graph profile index numbers.

A single function may be split into subfunctions for profiling by means of the MARK
macro. See prof(5).

Beware of quantization errors. The granularity of the sampling is shown, but remains
statistical at best. It is assumed that the time for each execution of a function can be
expressed by the total time for the function divided by the number of times the function
is called. Thus the time propagated along the call-graph arcs to parents of that function is
directly proportional to the number of times that arc is traversed.

The profiled program must call exit(2) or return normally for the profiling information to
be saved in the gmon.out file.

OPTIONS −a Suppress printing statically declared functions. If this option is given, all
relevant information about the static function (for instance, time samples, calls to
other functions, calls from other functions) belongs to the function loaded just
before the static function in the a.out file.

−b Brief. Suppress descriptions of each field in the profile.

−C Demangle C++ symbol names before printing them out.

1-412 SunOS 5.6 modified 16 Oct 1996

User Commands gprof (1)

−c Discover the static call-graph of the program by a heuristic which examines the
text space of the object file. Static-only parents or children are indicated with call
counts of 0.

−D Produce a profile file gmon.sum that represents the difference of the profile
information in all specified profile files. This summary profile file may be given
to subsequent executions of gprof (also with −D) to summarize profile data
across several runs of an a.out file. See also the −s option.

As an example, suppose function A calls function B n times in profile file
gmon.sum, and m times in profile file gmon.out. With −D, a new gmon.sum file
will be created showing the number of calls from A to B as n-m.

−E function-name
Suppress printing the graph profile entry for routine function-name (and its des-
cendants) as −e, below, and also exclude the time spent in function-name (and its
descendants) from the total and percentage time computations. More than one
−E option may be given. For example:

‘−E mcount −E mcleanup’

is the default.

−e function-name
Suppress printing the graph profile entry for routine function-name and all its des-
cendants (unless they have other ancestors that are not suppressed). More than
one −e option may be given. Only one function-name may be given with each −e
option.

−F function-name
Print the graph profile entry only for routine function-name and its descendants
(as −f, below) and also use only the times of the printed routines in total time and
percentage computations. More than one −F option may be given. Only one
function-name may be given with each −F option. The −F option overrides the −E
option.

−f function-name
Print the graph profile entry only for routine function-name and its descendants.
More than one −f option may be given. Only one function-name may be given
with each −f option.

−l Suppress the reporting of graph profile entries for all local symbols. This option
would be the equivalent of placing all of the local symbols for the specified exe-
cutable image on the −E exclusion list.

−n Limits the size of flat and graph profile listings to the top n offending functions.

−s Produce a profile file gmon.sum which represents the sum of the profile informa-
tion in all of the specified profile files. This summary profile file may be given to
subsequent executions of gprof (also with −s) to accumulate profile data across
several runs of an a.out file. See also the −D option.

−z Display routines which have zero usage (as indicated by call counts and accumu-
lated time). This is useful in conjunction with the −c option for discovering

modified 16 Oct 1996 SunOS 5.6 1-413

gprof (1) User Commands

which routines were never called.

ENVIRONMENT PROFDIR If this environment variable contains a value, place profiling output within
that directory, in a file named pid.programname. pid is the process ID, and pro-
gramname is the name of the program being profiled, as determined by remov-
ing any path prefix from the argv[0] with which the program was called. If
the variable contains a null value, no profiling output is produced. Other-
wise, profiling output is placed in the file gmon.out.

FILES a.out executable file containing namelist

gmon.out dynamic call-graph and profile

gmon.sum summarized dynamic call-graph and profile

$PROFDIR/pid.programname

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWbtool

SEE ALSO cc(1), ld.so.1(1), prof(1), exit(2), profil(2), malloc(3C), malloc(3X), monitor(3C), attri-
butes(5), prof(5)

Graham, S.L., Kessler, P.B., McKusick, M.K., ‘gprof: A Call Graph Execution Profiler’,
Proceedings of the SIGPLAN ’82 Symposium on Compiler Construction, SIGPLAN Notices, Vol.
17, No. 6, pp. 120-126, June 1982.

Linker and Libraries Guide

NOTES If the executable image has been stripped and has no symbol table (.symtab), then gprof
will read the dynamic symbol table (.dyntab), if present. If the dynamic symbol table is
used, then only the information for the global symbols will be available, and the behavior
will be identical to the −a option.

LD_LIBRARY_PATH must not contain /usr/lib as a component when compiling a pro-
gram for profiling. If LD_LIBRARY_PATH contains /usr/lib, the program will not be
linked correctly with the profiling versions of the system libraries in /usr/lib/libp.

The times reported in successive identical runs may show variances because of varying
cache-hit ratios that result from sharing the cache with other processes. Even if a pro-
gram seems to be the only one using the machine, hidden background or asynchronous
processes may blur the data. In rare cases, the clock ticks initiating recording of the pro-
gram counter may "beat" with loops in a program, grossly distorting measurements. Call
counts are always recorded precisely, however.

Only programs that call exit or return from main are guaranteed to produce a profile file,
unless a final call to monitor is explicitly coded.

1-414 SunOS 5.6 modified 16 Oct 1996

User Commands gprof (1)

Profiling may be used with dynamically linked executables, but care must be applied.
Currently, shared objects cannot be profiled with gprof. Thus, when a profiled, dynami-
cally linked program is executed, only the "main" portion of the image is sampled. This
means that all time spent outside of the "main" object, that is, time spent in a shared
object, will not be included in the profile summary; the total time reported for the pro-
gram may be less than the total time used by the program.

Because the time spent in a shared object cannot be accounted for, the use of shared
objects should be minimized whenever a program is profiled with gprof. If desired, the
program should be linked to the profiled version of a library (or to the standard archive
version if no profiling version is available), instead of the shared object to get profile
information on the functions of a library. Versions of profiled libraries may be supplied
with the system in the /usr/lib/libp directory. Refer to compiler driver documentation on
profiling.

Consider an extreme case. A profiled program dynamically linked with the shared C
library spends 100 units of time in some libc routine, say, malloc(). Suppose malloc() is
called only from routine B and B consumes only 1 unit of time. Suppose further that
routine A consumes 10 units of time, more than any other routine in the "main" (profiled)
portion of the image. In this case, gprof will conclude that most of the time is being spent
in A and almost no time is being spent in B. From this it will be almost impossible to tell
that the greatest improvement can be made by looking at routine B and not routine A.
The value of the profiler in this case is severely degraded; the solution is to use archives
as much as possible for profiling.

Functions such as mcount(), _mcount(), moncontrol(), _moncontrol(), monitor(), and
_monitor() may appear in the gprof report. These functions are part of the profiling
implementation and thus account for some amount of the runtime overhead. Since these
functions are not present in an unprofiled application, time accumulated and call counts
for these functions may be ignored when evaluating the performance of an application.

BUGS Parents which are not themselves profiled will have the time of their profiled children
propagated to them, but they will appear to be spontaneously invoked in the call-graph
listing, and will not have their time propagated further. Similarly, signal catchers, even
though profiled, will appear to be spontaneous (although for more obscure reasons).
Any profiled children of signal catchers should have their times propagated properly,
unless the signal catcher was invoked during the execution of the profiling routine, in
which case all is lost.

modified 16 Oct 1996 SunOS 5.6 1-415

graph (1) User Commands

NAME graph − draw a graph

SYNOPSIS graph [−a spacing [start]] [−b] [−c string] [−g gridstyle] [−l label]
[−m connectmode] [−s] [−x [l] lower [upper [spacing]]]
[−y [l] lower [upper [spacing]]] [−h fraction] [−w fraction] [−r fraction]
[−u fraction] [−t] . . .

DESCRIPTION graph with no options takes pairs of numbers from the standard input as abscissaes and
ordinates of a graph. Successive points are connected by straight lines. The standard out-
put from graph contains plotting instructions suitable for input to plot(1B) or to the com-
mand lpr −g (see lpr(1B)).

If the coordinates of a point are followed by a nonnumeric string, that string is printed as
a label beginning on the point. Labels may be surrounded with quotes ". . .", in which
case they may be empty or contain blanks and numbers; labels never contain NEWLINE
characters.

A legend indicating grid range is produced with a grid unless the −s option is present.

OPTIONS Each option is recognized as a separate argument. If a specified lower limit exceeds the
upper limit, the axis is reversed.

−a spacing[start] Supply abscissaes automatically (they are missing from the input);
spacing is the spacing (default 1). start is the starting point for
automatic abscissaes (default 0 or lower limit given by −x).

−b Break (disconnect) the graph after each label in the input.

−c string String is the default label for each point.

−g gridstyle Gridstyle is the grid style: 0 no grid, 1 frame with ticks, 2 full grid
(default).

−l label label is label for graph.

−m connectmode Mode (style) of connecting lines: 0 disconnected, 1 connected
(default). Some devices give distinguishable line styles for other
small integers.

−s Save screen, do not erase before plotting.

−x [l] lower [upper [spacing]]
If l is present, x axis is logarithmic. lower and upper are lower (and
upper) x limits. spacing, if present, is grid spacing on x axis. Nor-
mally these quantities are determined automatically.

−y [l] lower [upper [spacing]]
If l is present, y axis is logarithmic. lower and upper are lower (and
upper) y limits. spacing, if present, is grid spacing on y axis. Nor-
mally these quantities are determined automatically.

−h fraction fraction of space for height.

−w fraction fraction of space for width.

1-416 SunOS 5.6 modified 14 Sep 1992

User Commands graph (1)

−r fraction fraction of space to move right before plotting.

−u fraction fraction of space to move up before plotting.

−t Transpose horizontal and vertical axes. Option −x now applies to the
vertical axis.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu

SEE ALSO lpr(1B), plot(1B), spline(1), plot(3), attributes(5)

BUGS graph stores all points internally and drops those for which there is no room.

Segments that run out of bounds are dropped, not windowed.

Logarithmic axes may not be reversed.

modified 14 Sep 1992 SunOS 5.6 1-417

grep (1) User Commands

NAME grep − search a file for a pattern

SYNOPSIS /usr/bin/grep [−bchilnsvw] limited-regular-expression [filename. . .]

/usr/xpg4/bin/grep [−E | −F] [−c | −l | −q] [−bhinsvwx] −e pattern_list . . .
[−f pattern_file] . . . [file . . .]

/usr/xpg4/bin/grep [−E | −F] [−c | −l | −q] [−bhinsvwx] [−e pattern_list . . .]
−f pattern_file . . . [file . . .]

/usr/xpg4/bin/grep [−E | −F] [−c | −l | −q] [−bhinsvwx] pattern [file . . .]

DESCRIPTION The grep utility searches files for a pattern and prints all lines that contain that pattern. It
uses a compact non-deterministic algorithm.

Be careful using the characters $, ∗, [, ˆ, �, (,), and \ in the pattern_list because they are
also meaningful to the shell. It is safest to enclose the entire pattern_list in single quotes
′ . . . ′.
If no files are specified, grep assumes standard input. Normally, each line found is
copied to standard output. The file name is printed before each line found if there is
more than one input file.

/usr/bin/grep The /usr/bin/grep utility uses limited regular expressions like those described on the
regexp(5) manual page to match the patterns.

/usr/xpg4/bin/grep The options −E and −F affect the way /usr/xpg4/bin/grep interprets pattern_list . If −E is
specified, /usr/xpg4/bin/grep interprets pattern_list as a full regular expression (see −E for
description). If −F is specified, grep interprets pattern_list as a fixed string. If neither are
specified, grep interprets pattern_list as a basic regular expression as described on
regex(5) manual page.

OPTIONS The following options are supported for both /usr/bin/grep and /usr/xpg4/bin/grep:

−b Precede each line by the block number on which it was found. This can
be useful in locating block numbers by context (first block is 0).

−c Print only a count of the lines that contain the pattern.

−h Prevents the name of the file containing the matching line from being
appended to that line. Used when searching multiple files.

−i Ignore upper/lower case distinction during comparisons.

−l Print only the names of files with matching lines, separated by NEWLINE
characters. Does not repeat the names of files when the pattern is found
more than once.

−n Precede each line by its line number in the file (first line is 1).

−s Suppress error messages about nonexistent or unreadable files.

−v Print all lines except those that contain the pattern.

−w Search for the expression as a word as if surrounded by \< and \>.

1-418 SunOS 5.6 modified 12 May 1997

User Commands grep (1)

/usr/xpg4/bin/grep The following options are supported for /usr/xpg4/bin/grep only:

−e pattern_list Specify one or more patterns to be used during the search for input.
Patterns in pattern_list must be separated by a NEWLINE character. A
null pattern can be specified by two adjacent newline characters in
pattern_list . Unless the −E or −F option is also specified, each pattern
will be treated as a basic regular expression. Multiple −e and −f options
are accepted by grep. All of the specified patterns are used when match-
ing lines, but the order of evaluation is unspecified.

−E Match using full regular expressions. Treat each pattern specified as a
full regular expression. If any entire full regular expression pattern
matches an input line, the line will be matched. A null full regular
expression matches every line.

Each pattern will be interpreted as a full regular expression as described
on the regex(5) manual page, except for \(and \), and including:

1. A full regular expression followed by + that matches one or more
occurrences of the full regular expression.

2. A full regular expression followed by ? that matches 0 or 1
occurrences of the full regular expression.

3. Full regular expressions separated by � or by a new-line that match
strings that are matched by any of the expressions.

4. A full regular expression that may be enclosed in parentheses () for
grouping.

The order of precedence of operators is [], then ∗ ? +, then concatenation,
then � and new-line.

−f pattern_file Read one or more patterns from the file named by the path name
pattern_file. Patterns in pattern_file are terminated by a NEWLINE charac-
ter. A null pattern can be specified by an empty line in pattern_file.
Unless the −E or −F option is also specified, each pattern will be treated
as a basic regular expression.

−F Match using fixed strings. Treat each pattern specified as a string
instead of a regular expression. If an input line contains any of the pat-
terns as a contiguous sequence of bytes, the line will be matched. A null
string matches every line. See fgrep(1) for more information.

−q Quiet. Do not write anything to the standard output, regardless of
matching lines. Exit with zero status if an input line is selected.

−x Consider only input lines that use all characters in the line to match an
entire fixed string or regular expression to be matching lines.

OPERANDS The following operands are supported:

file A path name of a file to be searched for the patterns. If no file operands are
specified, the standard input will be used.

modified 12 May 1997 SunOS 5.6 1-419

grep (1) User Commands

/usr/bin/grep pattern Specify a pattern to be used during the search for input.

/usr/xpg4/bin/grep pattern Specify one or more patterns to be used during the search for input. This
operand is treated as if it were specified as −e pattern_list.

USAGE The −e pattern_list option has the same effect as the pattern_list operand, but is useful
when pattern_list begins with the hyphen delimiter. It is also useful when it is more con-
venient to provide multiple patterns as separate arguments.

Multiple −e and −f options are accepted and grep will use all of the patterns it is given
while matching input text lines. (Note that the order of evaluation is not specified. If an
implementation finds a null string as a pattern, it is allowed to use that pattern first,
matching every line, and effectively ignore any other patterns.)

The −q option provides a means of easily determining whether or not a pattern (or string)
exists in a group of files. When searching several files, it provides a performance
improvement (because it can quit as soon as it finds the first match) and requires less care
by the user in choosing the set of files to supply as arguments (because it will exit zero if
it finds a match even if grep detected an access or read error on earlier file operands).

Large File Behavior See largefile(5) for the description of the behavior of grep when encountering files greater
than or equal to 2 Gbyte (231 bytes).

EXAMPLES To find all uses of the word “Posix” (in any case) in the file text.mm, and write with line
numbers:

example% /usr/bin/grep -i -n posix text.mm

To find all empty lines in the standard input:

example% /usr/bin/grep ˆ$
or

example% /usr/bin/grep -v .

Both of the following commands print all lines containing strings abc or def or both:

example% /usr/xpg4/bin/grep -E ’abc
def’

example% /usr/xpg4/bin/grep -F ’abc
def’

Both of the following commands print all lines matching exactly abc or def:
example% /usr/xpg4/bin/grep -E ’ˆabc$
ˆdef$’

example% /usr/xpg4/bin/grep -F -x ’abc
def’

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of grep: LC_COLLATE, LC_CTYPE, LC_MESSAGES, and NLSPATH.

1-420 SunOS 5.6 modified 12 May 1997

User Commands grep (1)

EXIT STATUS The following exit values are returned:

0 One or more matches were found.
1 No matches were found.
2 Syntax errors or inaccessible files (even if matches were found).

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

/usr/bin/grep ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu
CSI enabled

/usr/xpg4/bin/grep ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxcu4
CSI enabled

SEE ALSO egrep(1), fgrep(1), sed(1), sh(1), attributes(5), environ(5), largefile(5), regex(5),
regexp(5), xpg4(5)

NOTES
/usr/bin/grep Lines are limited only by the size of the available virtual memory. If there is a line with

embedded nulls, grep will only match up to the first null; if it matches, it will print the
entire line.

/usr/xpg4/bin/grep The results are unspecified if input files contain lines longer than LINE_MAX bytes or con-
tain binary data. LINE_MAX is defined in /usr/include/limits.a.

modified 12 May 1997 SunOS 5.6 1-421

groups (1) User Commands

NAME groups − print group membership of user

SYNOPSIS groups [user . . .]

DESCRIPTION The command groups prints on standard output the groups to which you or the option-
ally specified user belong. Each user belongs to a group specified in /etc/passwd and
possibly to other groups as specified in /etc/group. Note that /etc/passwd specifies the
numerical ID (gid) of the group. The groups command converts gid to the group name
in the output.

EXAMPLE The output takes the following form:

example% groups tester01 tester02
tester01 : staff
tester02 : staff
example%

FILES /etc/passwd
/etc/group

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO group(4), passwd(4), attributes(5)

1-422 SunOS 5.6 modified 14 Sep 1992

SunOS/BSD Compatibility Package Commands groups (1B)

NAME groups − display a user’s group memberships

SYNOPSIS /usr/ucb/groups [user . . .]

DESCRIPTION With no arguments, groups displays the groups to which you belong; else it displays the
groups to which the user belongs. Each user belongs to a group specified in the pass-
word file /etc/passwd and possibly to other groups as specified in the file /etc/group. If
you do not own a file but belong to the group which it is owned by then you are granted
group access to the file.

FILES /etc/passwd
/etc/group

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscpu

SEE ALSO getgroups(2), attributes(5)

NOTES This command is obsolete.

modified 14 Sep 1992 SunOS 5.6 1B-423

grpck (1B) SunOS/BSD Compatibility Package Commands

NAME grpck − check group database entries

SYNOPSIS /usr/etc/grpck [filename]

DESCRIPTION grpck checks that a file in group(4) does not contain any errors; it checks the /etc/group
file by default.

FILES /etc/group

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO groups(1), group(4), passwd(4), attributes(5)

DIAGNOSTICS Too many/few fields
An entry in the group file does not have the proper number of fields.

No group name
The group name field of an entry is empty.

Bad character(s) in group name
The group name in an entry contains characters other than lower-case letters and
digits.

Invalid GID
The group ID field in an entry is not numeric or is greater than 65535.

Null login name
A login name in the list of login names in an entry is null.

Logname not found in password file
A login name in the list of login names in an entry is not in the password file.

Line too long
A line (including the newline character) in the group file exceeds the maximum
length of 512 characters.

Duplicate logname entry
A login name appears more than once in the list of login names for a group file
entry.

Out of memory
The program cannot allocate memory in order to continue.

Maximum groups exceeded for logname
A login name’s group membership exceeds the maximum, NGROUPS_MAX.

1B-424 SunOS 5.6 modified 17 Sep 1990

User Commands hash (1)

NAME hash, rehash, unhash, hashstat − evaluate the internal hash table of the contents of direc-
tories

SYNOPSIS /usr/bin/hash [utility]
/usr/bin/hash [− r]

sh hash [− r] [name . . .]

csh rehash
unhash
hashstat

ksh hash [name . . .]

DESCRIPTION
/usr/bin/hash The /usr/bin/hash utility affects the way the current shell environment remembers the

locations of utilities found. Depending on the arguments specified, it adds utility loca-
tions to its list of remembered locations or it purges the contents of the list. When no
arguments are specified, it reports on the contents of the list.

Utilities provided as built-ins to the shell are not reported by hash.

sh For each name , the location in the search path of the command specified by name is deter-
mined and remembered by the shell. The −r option to the hash built-in causes the shell to
forget all remembered locations. If no arguments are given, hash provides information
about remembered commands. The Hits column of output is the number of times a com-
mand has been invoked by the shell process. The Cost column of output is a measure of
the work required to locate a command in the search path. If a command is found in a
"relative" directory in the search path, after changing to that directory, the stored location
of that command is recalculated. Commands for which this will be done are indicated by
an asterisk (∗) adjacent to the Hits information. Cost will be incremented when the recal-
culation is done.

csh rehash recomputes the internal hash table of the contents of directories listed in the path
environmental variable to account for new commands added.

unhash disables the internal hash table.

hashstat prints a statistics line indicating how effective the internal hash table has been at
locating commands (and avoiding execs). An exec is attempted for each component of
the path where the hash function indicates a possible hit and in each component that does
not begin with a ’ / ’.

ksh For each name, the location in the search path of the command specified by name is deter-
mined and remembered by the shell. If no arguments are given, hash provides informa-
tion about remembered commands.

modified 28 Mar 1995 SunOS 5.6 1-425

hash (1) User Commands

OPERANDS The following operand is supported by hash:

utility The name of a utility to be searched for and added to the list of remembered
locations.

OUTPUT The standard output of hash is used when no arguments are specified. Its format is
unspecified, but includes the pathname of each utility in the list of remembered locations
for the current shell environment. This list consists of those utilities named in previous
hash invocations that have been invoked, and may contain those invoked and found
through the normal command search process.

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of hash: LC_CTYPE, LC_MESSAGES, and NLSPATH.

PATH Determine the location of utility.

EXIT STATUS The following exit values are returned by hash:
0 Successful completion.
>0 An error occurred.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO csh(1), ksh(1), sh(1), attributes(5), environ(5)

1-426 SunOS 5.6 modified 28 Mar 1995

User Commands head (1)

NAME head − display first few lines of files

SYNOPSIS head [−number | −n number] [filename. . .]

DESCRIPTION The head utility copies the first number of lines of each filename to the standard output. If
no filename is given, head copies lines from the standard input. The default value of
number is 10 lines.

When more than one file is specified, the start of each file will look like:

==> filename <==

Thus, a common way to display a set of short files, identifying each one, is:

example% head −9999 filename1 filename2 . . .

OPTIONS The following options are supported:

−n number
The first number lines of each input file will be copied to standard output. The
number option-argument must be a positive decimal integer.

−number The number argument is a positive decimal integer with the same effect as the
-n number option.

If no options are specified, head will act as if −n 10 had been specified.

OPERANDS The following operand is supported:

file A path name of an input file. If no file operands are specified, the standard
input will be used.

USAGE See largefile(5) for the description of the behavior of head when encountering files
greater than or equal to 2 Gbyte (231 bytes).

EXAMPLES To write the first ten lines of all files (except those with a leading period) in the directory:
example% head ∗

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of head: LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS The following exit values are returned:

0 Successful completion.

>0 An error occurred.

modified 1 Feb 1995 SunOS 5.6 1-427

head (1) User Commands

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu
CSI enabled

SEE ALSO cat(1), more(1), pg(1), tail(1), attributes(5), environ(5), largefile(5)

1-428 SunOS 5.6 modified 1 Feb 1995

User Commands history (1)

NAME history, fc − process command history list

SYNOPSIS /usr/bin/fc [first[last]]
/usr/bin/fc −l [−nr] [first[last]]
/usr/bin/fc −s [old=new] [first]

csh history [−hr] [n]

ksh fc −e − [old=new] [command]
fc [−e ename] [−nlr] [first [last]]

DESCRIPTION
/usr/bin/fc The fc utility lists or edits and reexecutes, commands previously entered to an interactive

sh.

The command history list references commands by number. The first number in the list
is selected arbitrarily. The relationship of a number to its command will not change
except when the user logs in and no other process is accessing the list, at which time the
system may reset the numbering to start the oldest retained command at another number
(usually 1). When the number reaches the value in HISTSIZE or 128 (whichever is
greater), the shell may wrap the numbers, starting the next command with a lower
number (usually 1). However, despite this optional wrapping of numbers, fc will main-
tain the time-ordering sequence of the commands. For example, if four commands in
sequence are given the numbers 32 766, 32 767, 1 (wrapped), and 2 as they are executed,
command 32 767 is considered the command previous to 1, even though its number is
higher.

When commands are edited (when the −l option is not specified), the resulting lines will
be entered at the end of the history list and then reexecuted by sh. The fc command that
caused the editing will not be entered into the history list. If the editor returns a non-zero
exit status, this will suppress the entry into the history list and the command reexecution.
Any command-line variable assignments or redirection operators used with fc will affect
both the fc command itself as well as the command that results, for example:

fc −s −− −1 2>/dev/null

reinvokes the previous command, suppressing standard error for both fc and the previ-
ous command.

csh Display the history list; if n is given, display only the n most recent events.

−r Reverse the order of printout to be most recent first rather than oldest first.

−h Display the history list without leading numbers. This is used to produce files
suitable for sourcing using the −h option to the csh built-in command, source(1).

History Substitution:

History substitution allows you to use words from previous command lines in the com-
mand line you are typing. This simplifies spelling corrections and the repetition of com-
plicated commands or arguments. Command lines are saved in the history list, the size

modified 30 Oct 1995 SunOS 5.6 1-429

history (1) User Commands

of which is controlled by the history variable. The history shell variable may be set to the
maximum number of command lines that will be saved in the history file; i.e.:

set history = 200

will allow the history list to keep track of the most recent 200 command lines. If not set,
the C shell saves only the most recent command.

A history substitution begins with a ! (although you can change this with the histchars
variable) and may occur anywhere on the command line; history substitutions do not
nest. The ! can be escaped with \ to suppress its special meaning.

Input lines containing history substitutions are echoed on the terminal after being
expanded, but before any other substitutions take place or the command gets executed.

Event Designators:

An event designator is a reference to a command line entry in the history list.
! Start a history substitution, except when followed by a space character,

tab, newline, = or (.
!! Refer to the previous command. By itself, this substitution repeats the

previous command.
!n Refer to command line n.
!−n Refer to the current command line minus n.
!str Refer to the most recent command starting with str.
!?str? Refer to the most recent command containing str.
!?str? additional

Refer to the most recent command containing str and append additional
to that referenced command.

!{command} additional
Refer to the most recent command beginning with command and append
additional to that referenced command.

ˆprevious_wordˆreplacementˆ
Repeat the previous command line replacing the string previous_word
with the string replacement. This is equivalent to the history substitution:

!:s/previous_word/replacement/.

To re-execute a specific previous command AND make such a substitu-
tion, say, re-executing command #6,

!:6s/previous_word/replacement/.

Word Designators:

A ‘:’ (colon) separates the event specification from the word designator. It can be omitted
if the word designator begins with a ˆ, $, ∗, − or %. If the word is to be selected from the
previous command, the second ! character can be omitted from the event specification.
For instance, !!:1 and !:1 both refer to the first word of the previous command, while !!$
and !$ both refer to the last word in the previous command. Word designators include:

The entire command line typed so far.
0 The first input word (command).
n The n’th argument.

1-430 SunOS 5.6 modified 30 Oct 1995

User Commands history (1)

ˆ The first argument, that is, 1.
$ The last argument.
% The word matched by (the most recent) ?s search.
x−y A range of words; −y abbreviates 0−y.
∗ All the arguments, or a null value if there is just one word in the event.
x∗ Abbreviates x−$.
x− Like x∗ but omitting word $.

Modifiers:

After the optional word designator, you can add a sequence of one or more of the follow-
ing modifiers, each preceded by a :.

h Remove a trailing pathname component, leaving the head.
r Remove a trailing suffix of the form ‘.xxx’, leaving the basename.
e Remove all but the suffix, leaving the extension.
s/oldchars/replacements/Substitute

replacements for oldchars. oldchars is a string that may contain embedded
blank spaces, whereas previous_word in the event designator

ˆoldcharsˆreplacementsˆ
may not.

t Remove all leading pathname components, leaving the tail.
& Repeat the previous substitution.
g Apply the change to the first occurrence of a match in each word, by

prefixing the above (for example, g&).
p Print the new command but do not execute it.
q Quote the substituted words, escaping further substitutions.
x Like q, but break into words at each space character, tab or newline.

Unless preceded by a g, the modification is applied only to the first string that matches
oldchars; an error results if no string matches.

The left-hand side of substitutions are not regular expressions, but character strings. Any
character can be used as the delimiter in place of /. A backslash quotes the delimiter char-
acter. The character &, in the right hand side, is replaced by the text from the left-hand-
side. The & can be quoted with a backslash. A null oldchars uses the previous string
either from a oldchars or from a contextual scan string s from !?s. You can omit the right-
most delimiter if a newline immediately follows replacements; the rightmost ? in a context
scan can similarly be omitted.

Without an event specification, a history reference refers either to the previous command,
or to a previous history reference on the command line (if any).

ksh Using fc, in the form of
fc −e − [old=new] [command],

the command is re-executed after the substitution old=new is performed. If there is not a
command argument, the most recent command typed at this terminal is executed.

modified 30 Oct 1995 SunOS 5.6 1-431

history (1) User Commands

Using fc in the form of
fc [−e ename] [−nlr] [first [last]],

a range of commands from first to last is selected from the last HISTSIZE commands that
were typed at the terminal. The arguments first and last may be specified as a number or
as a string. A string is used to locate the most recent command starting with the given
string. A negative number is used as an offset to the current command number. If the −l
flag is selected, the commands are listed on standard output. Otherwise, the editor pro-
gram −e name is invoked on a file containing these keyboard commands. If ename is not
supplied, then the value of the variable FCEDIT (default /bin/ed) is used as the editor.
When editing is complete, the edited command(s) is executed. If last is not specified then
it will be set to first. If first is not specified the default is the previous command for edit-
ing and −16 for listing. The flag −r reverses the order of the commands and the flag −n
suppresses command numbers when listing. (See ksh(1) for more about command line
editing.)

HISTFILE
If this variable is set when the shell is invoked, then the value is the pathname of
the file that will be used to store the command history.

HISTSIZE
If this variable is set when the shell is invoked, then the number of previously
entered commands that are accessible by this shell will be greater than or equal to
this number. The default is 128.

Command Re-entry:

The text of the last HISTSIZE (default 128) commands entered from a terminal device is
saved in a history file. The file $HOME/.sh_history is used if the HISTFILE variable is not
set or if the file it names is not writable. A shell can access the commands of all interactive
shells which use the same named HISTFILE. The special command fc is used to list or
edit a portion of this file. The portion of the file to be edited or listed can be selected by
number or by giving the first character or characters of the command. A single command
or range of commands can be specified. If you do not specify an editor program as an
argument to fc then the value of the variable FCEDIT is used. If FCEDIT is not defined
then /bin/ed is used. The edited command(s) is printed and re-executed upon leaving the
editor. The editor name − is used to skip the editing phase and to re-execute the com-
mand. In this case a substitution parameter of the form old=new can be used to modify
the command before execution. For example, if r is aliased to ′fc −e −′ then typing ‘r
bad=good c’ will re-execute the most recent command which starts with the letter c,
replacing the first occurrence of the string bad with the string good.

Using the fc built-in command within a compound command will cause the whole com-
mand to disappear from the history file.

OPTIONS The following options are supported:

−e editor Use the editor named by editor to edit the commands. The editor string is a
utility name, subject to search via the PATH variable. The value in the FCEDIT
variable is used as a default when −e is not specified. If FCEDIT is null or
unset, ed will be used as the editor.

1-432 SunOS 5.6 modified 30 Oct 1995

User Commands history (1)

−l (The letter ell.) List the commands rather than invoking an editor on them.
The commands will be written in the sequence indicated by the first and last
operands, as affected by −r, with each command preceded by the command
number.

−n Suppress command numbers when listing with −l.

−r Reverse the order of the commands listed (with −l) or edited (with neither −l
nor −s).

−s Re-execute the command without invoking an editor.

OPERANDS The following operands are supported:
first
last Select the commands to list or edit. The number of previous commands

that can be accessed is determined by the value of the HISTSIZE variable.
The value of first or last or both will be one of the following:

[+]number
A positive number representing a command number; command
numbers can be displayed with the −l option.

−number
A negative decimal number representing the command that was
executed number of commands previously. For example, −1 is the
immediately previous command.

string A string indicating the most recently entered command that begins
with that string. If the old=new operand is not also specified with
−s, the string form of the first operand cannot contain an embedded
equal sign.

When the synopsis form with −s is used:

· If first is omitted, the previous command will be used.

For the synopsis forms without −s :

· If last is omitted, last defaults to the previous command
when −l is specified; otherwise, it defaults to first.

· If first and last are both omitted, the previous 16 com-
mands will be listed or the previous single command will
be edited (based on the −l option).

· If first and last are both present, all of the commands from
first to last will be edited (without −l) or listed (with −l).
Editing multiple commands will be accomplished by
presenting to the editor all of the commands at one time,
each command starting on a new line. If first represents a
newer command than last , the commands will be listed or
edited in reverse sequence, equivalent to using −r . For
example, the following commands on the first line are
equivalent to the corresponding commands on the second:

modified 30 Oct 1995 SunOS 5.6 1-433

history (1) User Commands

fc −r 10 20 fc 30 40

fc 20 10 fc −r 40 30

· When a range of commands is used, it will not be an error
to specify first or last values that are not in the history list;
fc will substitute the value representing the oldest or
newest command in the list, as appropriate. For example,
if there are only ten commands in the history list, num-
bered 1 to 10:

fc −l

fc 1 99

will list and edit, respectively, all ten commands.

old=new Replace the first occurrence of string old in the commands to be reexecuted
by the string new.

OUTPUT When the −l option is used to list commands, the format of each command in the list is as
follows:

"%d\t%s\n", <line number>, <command>

If both the −l and −n options are specified, the format of each command is:

"\t%s\n", <command>

If the command consists of more than one line, the lines after the first are displayed as:

"\t%s\n", <continued-command>

EXAMPLES csh ksh

% history $ fc -l
1 cd /etc 1 cd /etc
2 vi passwd 2 vi passwd
3 date 3 date
4 cd 4 cd
5 du . 5 du .
6 ls -t 6 ls -t
7 history 7 fc -l

% !d $ fc -e - d
du . du .
262 ./SCCS 262 ./SCCS
336 . 336 .

% !da $ fc -e - da
Thu Jul 21 17:29:56 PDT 1994 Thu Jul 21 17:29:56 PDT 1994

% $ alias \!=’fc -e -’

1-434 SunOS 5.6 modified 30 Oct 1995

User Commands history (1)

% !! $!
date alias =’fc -e -’
Thu Jul 21 17:29:56 PDT 1994

% !6 $! 6
du . du .
262 ./SCCS 262 ./SCCS
336 . 336 .

% !ls ma∗ $! ls ma∗
ls -t malloc.c ksh: !l: not found
malloc.o
malloc.c

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of fc: LC_CTYPE, LC_MESSAGES, and NLSPATH.

FCEDIT This variable, when expanded by the shell, determines the default value for
the e editor option’s editor option-argument. If FCEDIT is null or unset, ed
will be used as the editor.

HISTFILE Determine a pathname naming a command history file. If the HISTFILE
variable is not set, the shell may attempt to access or create a file .sh_history
in the user’s home directory. If the shell cannot obtain both read and write
access to, or create, the history file, it will use an unspecified mechanism
that allows the history to operate properly. (References to history ‘‘file’’ in
this section are understood to mean this unspecified mechanism in such
cases.) fc may choose to access this variable only when initializing the his-
tory file; this initialization will occur when fc or sh first attempt to retrieve
entries from, or add entries to, the file, as the result of commands issued by
the user, the file named by the ENV variable, or a system startup file such as
/etc/profile. (The initialization process for the history file can be dependent
on the system startup files, in that they may contain commands that will
effectively preempt the user’s settings of HISTFILE and HISTSIZE. For
example, function definition commands are recorded in the history file,
unless the set −o nolog option is set. If the system administrator includes
function definitions in some system startup file called before the ENV file,
the history file will be initialized before the user gets a chance to influence
its characteristics.) The variable HISTFILE is accessed initially when the
shell is invoked. Any changes to HISTFILE will not take effect until another
shell is invoked.

HISTSIZE Determine a decimal number representing the limit to the number of previ-
ous commands that are accessible. If this variable is unset, an unspecified
default greater than or equal to 128 will be used. The variable HISTSIZE is
accessed initially when the shell is invoked. Any changes to HISTSIZE will

modified 30 Oct 1995 SunOS 5.6 1-435

history (1) User Commands

not take effect until another shell is invoked.

EXIT STATUS The following exit values are returned:

0 Successful completion of the listing.

>0 An error occurred.

Otherwise, the exit status will be that of the commands executed by fc.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO csh(1), ed(1), ksh(1), set(1), set(1F), sh(1), source(1), attributes(5), environ(5)

1-436 SunOS 5.6 modified 30 Oct 1995

User Commands hostid (1)

NAME hostid − print the numeric identifier of the current host

SYNOPSIS /usr/bin/hostid

DESCRIPTION The hostid command prints the identifier of the current host in hexadecimal. This
numeric value is likely to differ when hostid is run on a different machine.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO sysinfo(2), gethostid(3C), attributes(5)

modified 14 Sep 1992 SunOS 5.6 1-437

hostname (1) User Commands

NAME hostname − set or print name of current host system

SYNOPSIS /usr/bin/hostname [name-of-host]

DESCRIPTION The hostname command prints the name of the current host, as given before the login
prompt. The super-user can set the hostname by giving an argument.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO uname(1), attributes(5)

1-438 SunOS 5.6 modified 14 Sep 1992

User Commands iconv (1)

NAME iconv − code set conversion utility

SYNOPSIS iconv −f fromcode −t tocode [file. . .]

DESCRIPTION The iconv utility converts the characters or sequences of characters in file from one code
set to another and writes the results to standard output. Should no conversion exist for a
particular character then it is converted to the underscore ’_’ in the target code set.

The list of supported conversions and the locations of the associated conversion tables are
provided in the iconv(5) manual page.

OPTIONS The following options are supported:

−f fromcode Identifies the input code set.

−t tocode Identifies the output code set.

OPERANDS The following operands are supported:

file A path name of the input file to be translated. If file is omitted, the stan-
dard input is used.

EXAMPLES The following example converts the contents of file mail1 from code set 8859 to 646fr and
stores the results in file mail.local.

example% iconv −f 8859 −t 646fr mail1 > mail.local

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of iconv: LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS The following exit values are returned:

0 Successful completion.

1 An error has occurred.

FILES /usr/lib/iconv/∗.so conversion modules
/usr/lib/iconv/∗.t conversion tables
/usr/lib/iconv/iconv_data list of conversions supported by conversion tables

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO iconv(3), attributes(5), environ(5), iconv(5), iconv_unicode(5)

NOTES The iconv utility can use conversion modules (/usr/lib/iconv/∗.so) or conversion tables
(/usr/lib/iconv/∗.t). If a conversion module and a conversion table both exist for a partic-
ular code set conversion, iconv uses the conversion module.

modified 18 Apr 1997 SunOS 5.6 1-439

iconv (1) User Commands

Refer to the /usr/share/man/man5/iconv_locale.5 manual page in the Asian localized
releases for information on which code set conversions are supported. For example, the
command

% man −s 5 iconv_ja

would display the manual page describing the code set conversions that are supported
for the Japanese locale.

Note that the iconv_locale.5 manual page may not exist in every localized release. Also,
the iconv_locale.5 manual page does not exist in the U. S. (non-localized) release.

1-440 SunOS 5.6 modified 18 Apr 1997

User Commands if (1)

NAME if, test − evaluate condition(s) or make execution of actions dependent upon the evalua-
tion of condition(s)

SYNOPSIS /usr/bin/test [condition]

[condition]

sh if condition ; then action ; fi

if condition ; then action ; else action2 ; fi

if condition ; then action ; elif condition2 ; then action2 ; . . . ; fi

if condition ; then action ; elif condition2 ; then action2 ; . . . ; else action3 ; fi

test condition

[condition]

csh if (condition) then
action
else if (condition2) then
action2
else
action3
endif

if (condition) action

ksh if condition ; then action ; fi

if condition ; then action ; else action2 ; fi

if condition ; then action ; elif condition2 ; then action2 ; . . . ; fi

if condition ; then action ; elif condition2 ; then action2 ; . . . ; else action3 ; fi

test condition

[condition]

DESCRIPTION
/usr/bin/test The test utility evaluates the condition and indicates the result of the evaluation by its exit

status. An exit status of zero indicates that the condition evaluated as true and an exit
status of 1 indicates that the condition evaluated as false.

In the second form of the utility, which uses [] rather than test, the square brackets must
be separate arguments and condition is optional.

See largefile(5) for the description of the behavior of test when encountering files greater
than or equal to 2 Gbyte (231 bytes).

modified 13 Dec 1996 SunOS 5.6 1-441

if (1) User Commands

sh The condition following if is executed and, if it returns a 0 exit status, the action following
the first then is executed. Otherwise, the condition2 following elif is executed and, if its
value is 0, the action2 following the next then is executed. Failing the if and elif condi-
tions, the else action3 is executed. If no else action or then action is executed, the if com-
mand returns a 0 exit status. Any number of elif . . . then . . . branching pairs are allowed,
but only one else.

test evaluates the condition condition and, if its value is true, sets exit status to 0; other-
wise, a non-zero (false) exit status is set; test also sets a non-zero exit status if there are no
arguments. When permissions are tested, the effective user ID of the process is used.

All operators, flags, and brackets (brackets used as shown in the second SYNOPSIS line)
must be separate arguments to the test command; normally these items are separated by
spaces.

Primitives:

The following primitives are used to construct condition:

−r filename True if filename exists and is readable.

−w filename True if filename exists and is writable.

−x filename True if filename exists and is executable.

−f filename True if filename exists and is a regular file. Alternatively, if /usr/bin/sh
users specify /usr/ucb before /usr/bin in their PATH environment
variable, then test will return true if filename exists and is
(not−a−directory). This is also the default for /usr/bin/csh users.

−d filename True if filename exists and is a directory.

−h filename True if filename exists and is a symbolic link. With all other primitives
(except −L filename), the symbolic links are followed by default.

−c filename True if filename exists and is a character special file.

−b filename True if filename exists and is a block special file.

−p filename True if filename exists and is a named pipe (fifo).

−u filename True if filename exists and its set-user-ID bit is set.

−g filename True if filename exists and its set-group-ID bit is set.

−k filename True if filename exists and its sticky bit is set.

−s filename True if filename exists and has a size greater than zero.

−t [fildes] True if the open file whose file descriptor number is fildes (1 by default)
is associated with a terminal device.

−z s1 True if the length of string s1 is zero.

−n s1 True if the length of the string s1 is non-zero.

s1 = s2 True if strings s1 and s2 are identical.

s1 != s2 True if strings s1 and s2 are not identical.

s1 True if s1 is not the null string.

1-442 SunOS 5.6 modified 13 Dec 1996

User Commands if (1)

n1 −eq n2 True if the integers n1 and n2 are algebraically equal.

n1 −ne n2 True if the integers n1 and n2 are not algebraically equal.

n1 −gt n2 True if the integer n1 is algebraically greater than the integer n2.

n1 −ge n2 True if the integer n1 is algebraically greater than or equal to the integer
n2.

n1 −lt n2 True if the integer n1 is algebraically less than the integer n2.

n1 −le n2 True if the integer n1 is algebraically less than or equal to the integer n2.

−L filename True if filename exists and is a symbolic link. With all other primitives
(except −h filename), the symbolic links are followed by default.

Operators:

These primaries may be combined with the following operators:

! Unary negation operator.

−a Binary and operator.

−o Binary or operator (−a has higher precedence than −o).

(condition) Parentheses for grouping. Notice also that parentheses are meaningful
to the shell and, therefore, must be quoted.

The not−a−directory alternative to the −f option is a transition aid for BSD applications
and may not be supported in future releases.

The −L option is a migration aid for users of other shells which have similar options and
may not be supported in future releases.

If you test a file you own (the −r −w or −x tests), but the permission tested does not have
the owner bit set, a non-zero (false) exit status will be returned even though the file may
have the group or other bit set for that permission. The correct exit status will be set if
you are super-user.

The = and != operators have a higher precedence than the −r through −n operators, and =
and != always expect arguments; therefore, = and != cannot be used with the −r through
−n operators.

If more than one argument follows the −r through −n operators, only the first argument is
examined; the others are ignored, unless a −a or a −o is the second argument.

csh With the multi-line form of if:

if condition is true, the action up to the first else or then is executed. Otherwise, if
else if condition2 is true, the action2 between the else if and the following else or
then is executed. Otherwise, the action3 between the else and the endif is exe-
cuted.

The if must appear alone on its input line or after an else. Only one endif is
needed, but it is required. The words else and endif must be the first nonwhite
characters on a line. Any number of else if . . . then . . . branching pairs are
allowed, but only one else.

modified 13 Dec 1996 SunOS 5.6 1-443

if (1) User Commands

With the one-line form of if, there are no else, then, or endif keywords:

if the specified condition evaluates to true, the single action with arguments is exe-
cuted. Variable substitution on action happens early, at the same time it does for
the rest of the if command. action must be a simple command, not a pipeline, a
command list, or a parenthesized command list. Note that I/O redirection
occurs even if condition is false, when action is not executed (this is a bug).

ksh The condition following if is executed and, if it returns an exit status of 0, the action fol-
lowing the first then is executed. Otherwise, the condition2 following elif is executed and,
if its value is 0, the action2 following the next then is executed. Failing that, the else
action3 is executed. If no else action or then action is executed, then the if command
returns an exit status of 0. Any number of elif . . . then . . . branching pairs are allowed,
but only one else.

For a description of the test built-in, see the ksh(1) sections Conditional Expressions and
Arithmetic Evaluation as well as the (sh) Bourne shell’s test built-in above.

[condition] evaluates file attributes, string comparisons, and compound "and" or "or"
conditions.

OPERANDS All operators and elements of primaries must be presented as separate arguments to the
test utility.

The following primaries can be used to construct condition:

−a file True, if file exists.

−b file True if file exists and is a block special file.

−c file True if file exists and is a character special file.

−d file True if file exists and is a directory.

−e file True if file exists.

−f file True if file exists and is a regular file.

−g file True if file exists and its set group ID flag is set.

−k file True, if file exists and is has its sticky bit set.

−n string True if the length of string is non-zero.

−o option True, if option named option is on.

−p file True if file is a named pipe (FIFO).

−r file True if file exists and is readable.

−s file True if file exists and has a size greater than zero.

−t file_descriptor True if the file whose file descriptor number is file_descriptor is open
and is associated with a terminal.

−u file True if file exists and its set-user-ID flag is set.

−w file True if file exists and is writable. True will indicate only that the
write flag is on. The file will not be writable on a read-only file sys-
tem even if this test indicates true.

1-444 SunOS 5.6 modified 13 Dec 1996

User Commands if (1)

−x file True if file exists and is executable. True will indicate only that the
execute flag is on. If file is a directory, true indicates that file can be
searched.

−z string True if the length of string string is zero.

−L file True, if file exists and is a symbolic link.

−O file True, if file exists and is owned by the effective user ID of this pro-
cess.

−G file True, if file exists and its group matches the effective group ID of this
process.

−S file True, if file exists and is a socket.

file1 −nt file2 True, if file1 exists and is newer than file2.

file1 −ot file2 True, if file1 exists and is older than file2.

file1 −ef file2 True, if file1 and file2 exist and refer to the same file.

string True if the string string is not the null string.

string = pattern True, if string matches pattern .

string != pattern True, if string does not match pattern .

string1 = string2 True if the strings string1 and string2 are identical.

string1 ! = string2 True if the strings string1 and string2 are not identical.

string1 < string2 True, if string1 comes before string2 based on ASCII value of their
characters.

string1 > string2 True, if string1 comes after string2 based on ASCII value of their
characters.

n1 −eq n2 True if the integers n1 and n2 are algebraically equal.

n1 −ne n2 True if the integers n1 and n2 are not algebraically equal.

n1 −gt n2 True if the integer n1 is algebraically greater than the integer n2.

n1 −ge n2 True if the integer n1 is algebraically greater than or equal to the
integer n2.

n1 −lt n2 True if the integer n1 is algebraically less than the integer n2.

n1 −le n2 True if the integer n1 is algebraically less than or equal to the integer
n2.

These primaries can be combined with the following operator:

! condition True if condition is false.

The primaries with two elements of the form:

-primary_operator primary_operand

are known as unary primaries. The primaries with three elements in either of the two
forms:

modified 13 Dec 1996 SunOS 5.6 1-445

if (1) User Commands

primary_operand -primary_operator primary_operand
primary_operand primary_operator primary_operand

are known as binary primaries.

The algorithm for determining the precedence of the operators and the return value that
will be generated is based on the number of arguments presented to test. (However,
when using the [. . .] form, the right-bracket final argument will not be counted in this
algorithm.)

In the following list, $1, $2, $3 and $4 represent the arguments presented to test.

0 arguments:
Exit false (1).

1 argument:
Exit true (0) if $1 is not null; otherwise, exit false.

2 arguments:

· If $1 is !, exit true if $2 is null, false if $2 is not null.

· If $1 is a unary primary, exit true if the unary test is true, false if the unary
test is false.

· Otherwise, produce unspecified results.

3 arguments:

· If $2 is a binary primary, perform the binary test of $1 and $3.

· If $1 is !, negate the two-argument test of $2 and $3.

· Otherwise, produce unspecified results.

4 arguments:

· If $1 is !, negate the three-argument test of $2, $3, and $4.

· Otherwise, the results are unspecified.

USAGE Scripts should be careful when dealing with user-supplied input that could be confused
with primaries and operators. Unless the application writer knows all the cases that pro-
duce input to the script, invocations like:

test "$1" -a "$2"

should be written as:

test "$1" && test "$2"

to avoid problems if a user supplied values such as $1 set to ! and $2 set to the null string.
That is, in cases where maximal portability is of concern, replace:

test expr1 -a expr2

with:

test expr1 && test expr2

1-446 SunOS 5.6 modified 13 Dec 1996

User Commands if (1)

and replace:

test expr1 -o expr2

with:

test expr1 | | test expr2

but note that, in test, −a has higher precedence than −o while && and | | have equal pre-
cedence in the shell.

Parentheses or braces can be used in the shell command language to effect grouping.

Parentheses must be escaped when using sh; for example:

test \(expr1 -a expr2 \) -o expr3

This command is not always portable outside XSI-conformant systems. The following
form can be used instead:

(test expr1 && test expr2) | | test expr3

The two commands:

test "$1"

test ! "$1"

could not be used reliably on some historical systems. Unexpected results would occur if
such a string condition were used and $1 expanded to !, (or a known unary primary.
Better constructs are:

test -n "$1"

test -z "$1"

respectively.

Historical systems have also been unreliable given the common construct:

test "$response" = "expected string"

One of the following is a more reliable form:

test "X$response" = "Xexpected string"

test "expected string" = "$response"

Note that the second form assumes that expected string could not be confused with any
unary primary. If expected string starts with −, (, ! or even =, the first form should be
used instead. Using the preceding rules without the marked extensions, any of the three
comparison forms is reliable, given any input. (However, note that the strings are quoted
in all cases.)

Because the string comparison binary primaries, = and !=, have a higher precedence than
any unary primary in the >4 argument case, unexpected results can occur if arguments
are not properly prepared. For example, in

test -d $1 -o -d $2

If $1 evaluates to a possible directory name of =, the first three arguments are considered
a string comparison, which causes a syntax error when the second −d is encountered. is
encountered. One of the following forms prevents this; the second is preferred:

modified 13 Dec 1996 SunOS 5.6 1-447

if (1) User Commands

test \(-d "$1" \) -o \(-d "$2" \)

test -d "$1" | | test -d "$2"

Also in the >4 argument case,

test "$1" = "bat" -a "$2" = "ball"

Syntax errors will occur if $1 evaluates to (or !. One of the following forms prevents this;
the third is preferred:

test "X$1" = "Xbat" -a "X$2" = "Xball"

test "$1" = "bat" && test "$2" = "ball"

test "X$1" = "Xbat" && test "X$2" = "Xball"

EXAMPLES In the if command examples, three conditions are tested, and if all three evaluate as true
or successful, then their validities are written to the screen.

The 3 tests are:
if a variable set to 1 is greater than 0,
if a variable set to 2 is equal to 2, and
if the word "root" is included in the text file /etc/passwd.

/usr/bin/test 1. Perform a mkdir if a directory does not exist:

test ! -d tempdir && mkdir tempdir

2. Wait for a file to become non-readable:

while test -r thefile

do

sleep 30

done

echo ’"thefile" is no longer readable’

3. Perform a command if the argument is one of three strings (two variations):

if ["$1" = "pear"] | | ["$1" = "grape"] | | ["$1" = "apple"]

then

command

fi

case "$1" in

pear|grape|apple) command ; ;

esac

The two forms of the test built-in follow the Bourne shell’s if example.

sh ZERO=0 ONE=1 TWO=2 ROOT=root
if [$ONE -gt $ZERO]
[$TWO -eq 2]
grep $ROOT /etc/passwd >&1 > /dev/null # discard output

1-448 SunOS 5.6 modified 13 Dec 1996

User Commands if (1)

then
echo "$ONE is greater than 0, $TWO equals 2, and $ROOT is a user-name

in the password file"
else

echo "At least one of the three test conditions is false"
fi

Examples of the test built-in:

test `grep $ROOT /etc/passwd >&1 /dev/null` # discard output
echo $? # test for success

[`grep nosuchname /etc/passwd >&1 /dev/null`]
echo $? # test for failure

csh @ ZERO = 0; @ ONE = 1; @ TWO = 2; set ROOT = root
grep $ROOT /etc/passwd >&1 /dev/null # discard output

$status must be tested for immediately following grep
if ("$status" == "0" && $ONE > $ZERO && $TWO == 2) then

echo "$ONE is greater than 0, $TWO equals 2, and $ROOT is a user-name
in the password file"

endif

ksh ZERO=0 ONE=1 TWO=$((ONE+ONE)) ROOT=root
if ((ONE > ZERO)) # arithmetical comparison
[[$TWO = 2]] # string comparison
[`grep $ROOT /etc/passwd >&1 /dev/null`] # discard output
then

echo "$ONE is greater than 0, $TWO equals 2, and $ROOT is a user-name
in the password file"

else
echo "At least one of the three test conditions is false"

fi

The Korn shell will also accept the syntax of both the if command and the test command
of the Bourne shell.

When using the brackets ([]) within if commands, you must separate both inside ends of
the brackets from the inside characters with a space.

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of test: LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS The following exit values are returned:

0 condition evaluated to true.

1 condition evaluated to false or condition was missing.

>1 An error occurred.

modified 13 Dec 1996 SunOS 5.6 1-449

if (1) User Commands

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO csh(1), ksh(1), sh(1), test(1B), attributes(5), environ(5), largefile(5)

NOTES Both the Bourne shell, sh, and the Korn shell, ksh, can use the semicolon and the carriage
return interchangeably in their syntax of the if, for, and while built-in commands.

1-450 SunOS 5.6 modified 13 Dec 1996

FMLI Commands indicator (1F)

NAME indicator − display application specific alarms and/or the "working" indicator

SYNOPSIS indicator [−b [n]] [−c column] [−l length] [−o] [−w] [string . . .]

DESCRIPTION The indicator function displays application specific alarms or the "working" indicator, or
both, on the FMLI banner line. The argument string is a string to be displayed on the
banner line, and should always be the last argument given. Note that string is not
automatically cleared from the banner line.

OPTIONS −bn The −b option rings the terminal bell n times, where n is an integer from
1 to 10. The default value is 1. If the terminal has no bell, the screen is
flashed instead, if possible.

−c column The −c option defines the column of the banner line at which to start the
indicator string. The argument column
must be an integer from 0 to DISPLAYW-1. If the −c option is not used,

column defaults to 0 .

−l length The −l option defines the maximum length of the string displayed. If
string is longer than length characters, it will be truncated. The argument
length must be an integer from 1 to DISPLAYW. If the −l option is not
used, length defaults to DISPLAYW. Note that if string doesn’t fit it will be
truncated.

−o The −o option causes indicator to duplicate its output to stdout .

−w The −w option turns on the "working" indicator.

EXAMPLES When the value entered in a form field is invalid, the following use of indicator will ring
the bell three times and display the word WRONG starting at column 1 of the banner line.

invalidmsg=`indicator −b 3 −c 1 "WRONG"`

To clear the indicator after telling the user the entry is wrong:

invalidmsg=`indicator −b 9 −c 1 "WRONG"; sleep 3;
indicator −c 1 " "`

In this example the value of invalidmsg (in this case the default value Input is not valid),
still appears on the FMLI message line.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO attributes(5)

modified 5 Jul 1990 SunOS 5.6 1F-451

indxbib (1) User Commands

NAME indxbib − create an inverted index to a bibliographic database

SYNOPSIS indxbib database-file . . .

DESCRIPTION indxbib makes an inverted index to the named database-file (which must reside within the
current directory), typically for use by lookbib(1) and refer(1). A database contains
bibliographic references (or other kinds of information) separated by blank lines.

A bibliographic reference is a set of lines, constituting fields of bibliographic information.
Each field starts on a line beginning with a ‘%’, followed by a key-letter, then a blank, and
finally the contents of the field, which may continue until the next line starting with ‘%’.

indxbib is a shell script that calls two programs: /usr/lib/refer/mkey and
/usr/lib/refer/inv. mkey truncates words to 6 characters, and maps upper case to lower
case. It also discards words shorter than 3 characters, words among the 100 most com-
mon English words, and numbers (dates) < 1000 or > 2099. These parameters can be
changed.

indxbib creates an entry file (with a .ia suffix), a posting file (.ib), and a tag file (.ic), in
the working directory.

FILES /usr/lib/refer/mkey
/usr/lib/refer/inv
x.ia entry file
x.ib posting file
x.ic tag file
x.ig reference file

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWdoc

SEE ALSO addbib(1), lookbib(1), refer(1), roffbib(1), sortbib(1), attributes(5)

BUGS All dates should probably be indexed, since many disciplines refer to literature written in
the 1800s or earlier.

indxbib does not recognize pathnames.

1-452 SunOS 5.6 modified 14 Sep 1992

SunOS/BSD Compatibility Package Commands install (1B)

NAME install − install files

SYNOPSIS /usr/ucb/install [−cs] [−g group] [−m mode] [−o owner] filename1 filename2

/usr/ucb/install [−cs] [−g group] [−m mode] [−o owner] filename . . . directory

/usr/ucb/install −d [−g group] [−m mode] [−o owner] directory

DESCRIPTION install is used within makefiles to copy new versions of files into a destination directory
and to create the destination directory itself.

The first two forms are similar to the cp(1) command with the addition that executable
files can be stripped during the copy and the owner, group, and mode of the installed
file(s) can be given.

The third form can be used to create a destination directory with the required owner,
group and permissions.

Note: install uses no special privileges to copy files from one place to another. The impli-
cations of this are:

· You must have permission to read the files to be installed.
· You must have permission to copy into the destination file or directory.
· You must have permission to change the modes on the final copy of the file if

you want to use the −m option to change modes.
· You must be superuser if you want to specify the ownership of the installed

file with −o. If you are not the super-user, or if −o is not in effect, the installed
file will be owned by you, regardless of who owns the original.

OPTIONS −c Copy files. In fact install always copies files, but the −c option is retained for
backwards compatibility with old shell scripts that might otherwise break.

−d Create a directory. Missing parent directories are created as required as in
mkdir −p. If the directory already exists, the owner, group and mode will be
set to the values given on the command line.

−s Strip executable files as they are copied.

−g group Set the group ownership of the installed file or directory. (staff by default.)

−m mode Set the mode for the installed file or directory. (0755 by default.)

−o owner If run as root, set the ownership of the installed file to the user-ID of owner.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscpu

SEE ALSO chgrp(1), chmod(1), chown(1), cp(1), mkdir(1), strip(1), install(1M), attributes(5)

modified 14 Sep 1992 SunOS 5.6 1B-453

ipcrm (1) User Commands

NAME ipcrm − remove a message queue, semaphore set, or shared memory ID

SYNOPSIS ipcrm [−m shmid] [−q msqid] [−s semid] [−M shmkey] [−Q msgkey] [−S semkey]

DESCRIPTION ipcrm removes one or more messages, semaphores, or shared memory identifiers.

OPTIONS The identifiers are specified by the following options:

−m shmid Remove the shared memory identifier shmid from the system. The
shared memory segment and data structure associated with it are des-
troyed after the last detach.

−q msqid Remove the message queue identifier msqid from the system and destroy
the message queue and data structure associated with it.

−s semid Remove the semaphore identifier semid from the system and destroy the
set of semaphores and data structure associated with it.

−M shmkey Removes the shared memory identifier, created with key shmkey , from
the system. The shared memory segment and data structure associated
with it are destroyed after the last detach.

−Q msgkey Remove the message queue identifier, created with key msgkey , from
the system and destroy the message queue and data structure associated
with it.

−S semkey Remove the semaphore identifier, created with key semkey , from the
system and destroy the set of semaphores and data structure associated
with it.

The details of the removes are described in msgctl(2), shmctl(2), and semctl(2). Use the
ipcs command to find the identifiers and keys.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWipc

SEE ALSO ipcs(1), msgctl(2), msgget(2), msgrcv(2), msgsnd(2), semctl(2), semget(2), semop(2),
shmctl(2), shmget(2), shmop(2), attributes(5)

1-454 SunOS 5.6 modified 14 Mar 1996

User Commands ipcs (1)

NAME ipcs − report inter-process communication facilities status

SYNOPSIS ipcs [−abcmopqst] [−C corefile] [−N namelist]

DESCRIPTION The utility ipcs prints information about active inter-process communication facilities.
The information that is displayed is controlled by the options supplied. Without options,
information is printed in short format for message queues, shared memory, and sema-
phores that are currently active in the system.

OPTIONS The following options are supported:

−m Print information about active shared memory segments.

−q Print information about active message queues.

−s Print information about active semaphores.

If −m, −q, or −s are specified, information about only those indicated is printed. If none
of these three is specified, information about all three is printed subject to these options:

−a Use all print options. (This is a shorthand notation for −b, −c, −o, −p,
and −t.)

−b Print information on biggest allowable size: maximum number of bytes
in messages on queue for message queues, size of segments for shared
memory, and number of semaphores in each set for semaphores. See
below for meaning of columns in a listing.

−c Print creator’s login name and group name. See below.

−o Print information on outstanding usage: number of messages on queue
and total number of bytes in messages on queue for message queues and
number of processes attached to shared memory segments.

−p Print process number information: process ID of last process to send a
message, process ID of last process to receive a message on message
queues, process ID of creating process, and process ID of last process to
attach or detach on shared memory segments. See below.

−t Print time information: time of the last control operation that changed
the access permissions for all facilities, time of last msgsnd(2) and last
msgrcv(2) on message queues, time of last shmat(2) and last shmdt(2)
on shared memory (see shmop(2)), time of last semop(2) on sema-
phores. See below.

−C corefile Use the file corefile in place of /dev/mem and /dev/kmem. Use a core
dump obtained from savecore(1M) in place of /dev/mem and
/dev/kmem. Without the −C option (default), the running system image
is used.

−N namelist Use the file namelist in place of /dev/ksyms.

modified 18 Apr 1997 SunOS 5.6 1-455

ipcs (1) User Commands

The column headings and the meaning of the columns in an ipcs listing are given below;
the letters in parentheses indicate the options that cause the corresponding heading to
appear; “all” means that the heading always appears. Note: These options only deter-
mine what information is provided for each facility; they do not determine which facili-
ties are listed.

T (all) Type of the facility:
q message queue
m shared memory segment
s semaphore

ID (all) The identifier for the facility entry.

KEY (all) The key used as an argument to msgget(2), semget(2), or shmget(2) to
create the facility entry. (Note: The key of a shared memory segment
is changed to IPC_PRIVATE when the segment has been removed until
all processes attached to the segment detach it.)

MODE (all) The facility access modes and flags: The mode consists of 11 characters
that are interpreted as follows. The first two characters are:

R A process is waiting on a msgrcv(2).
S A process is waiting on a msgsnd(2).
D The associated shared memory segment has been removed. It

will disappear when the last process attached to the segment
detaches it. (Note: If the shared memory segment identifier
is removed via an IPC_RMID call to shmctl(2) before the pro-
cess has detached from the segment with shmdt(2), the seg-
ment is no longer visible to ipcs and it will not appear in the
ipcs output.)

C The associated shared memory segment is to be cleared when
the first attach is executed.

− The corresponding special flag is not set.

The next nine characters are interpreted as three sets of three bits each.
The first set refers to the owner’s permissions; the next to permissions
of others in the user-group of the facility entry; and the last to all oth-
ers. Within each set, the first character indicates permission to read,
the second character indicates permission to write or alter the facility
entry, and the last character is currently unused.

The permissions are indicated as follows:

r Read permission is granted.
w Write permission is granted.
a Alter permission is granted.
− The indicated permission is not granted.

OWNER (all) The login name of the owner of the facility entry.

GROUP (all) The group name of the group of the owner of the facility entry.

CREATOR (a,c) The login name of the creator of the facility entry.

1-456 SunOS 5.6 modified 18 Apr 1997

User Commands ipcs (1)

CGROUP (a,c) The group name of the group of the creator of the facility entry.

CBYTES (a,o) The number of bytes in messages currently outstanding on the associ-
ated message queue.

QNUM (a,o) The number of messages currently outstanding on the associated mes-
sage queue.

QBYTES (a,b) The maximum number of bytes allowed in messages outstanding on
the associated message queue.

LSPID (a,p) The process ID of the last process to send a message to the associated
queue.

LRPID (a,p) The process ID of the last process to receive a message from the associ-
ated queue.

STIME (a,t) The time the last message was sent to the associated queue.

RTIME (a,t) The time the last message was received from the associated queue.

CTIME (a,t) The time when the associated entry was created or changed.

NATTCH (a,o) The number of processes attached to the associated shared memory
segment.

SEGSZ (a,b) The size of the associated shared memory segment.

CPID (a,p) The process ID of the creator of the shared memory entry.

LPID (a,p) The process ID of the last process to attach or detach the shared
memory segment.

ATIME (a,t) The time the last attach was completed to the associated shared
memory segment.

DTIME (a,t) The time the last detach was completed on the associated shared
memory segment.

NSEMS (a,b) The number of semaphores in the set associated with the semaphore
entry.

OTIME (a,t) The time the last semaphore operation was completed on the set associ-
ated with the semaphore entry.

FILES /etc/group group names
/etc/passwd user names
/dev/mem memory
/dev/ksyms system namelist

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWipc

modified 18 Apr 1997 SunOS 5.6 1-457

ipcs (1) User Commands

SEE ALSO savecore(1M), msgget(2), msgrcv(2), msgsnd(2), semget(2), semop(2), shmctl(2),
shmget(2), shmop(2), attributes(5)

NOTES If the user specifies either the −C or −N flag, the real and effective UID/GID is set to the
real UID/GID of the user invoking ipcs.

Things can change while ipcs is running; the information it gives is guaranteed to be
accurate only when it was retrieved.

1-458 SunOS 5.6 modified 18 Apr 1997

User Commands isalist (1)

NAME isalist − display the native instruction sets executable on this platform

SYNOPSIS isalist

DESCRIPTION isalist prints the names of the native instruction sets executable on this platform on the
standard output, as returned by the SI_ISALIST command of sysinfo(2).

The names are space-separated and are ordered in the sense of best performance. That is,
earlier-named instruction sets may contain more instructions than later-named instruc-
tion sets; a program that is compiled for an earlier-named instruction sets will most likely
run faster on this machine than the same program compiled for a later-named instruction
set.

Programs compiled for instruction sets that do not appear in the list will most likely
experience performance degradation or not run at all on this machine.

The instruction set names known to the system are listed in isalist(5). These names may
or may not match predefined names or compiler options in the C language compilation
system,

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO uname(1), sysinfo(2), attributes(5), isalist(5)

modified 25 Oct 1996 SunOS 5.6 1-459

jobs (1) User Commands

NAME jobs, fg, bg, stop, notify − control process execution

SYNOPSIS
sh jobs [−p | −l] [%job_id ...]

jobs −x command [arguments]
fg [%job_id . . .]
bg [%job_id . . .]
stop %job_id . . .
stop pid . . .

csh jobs[−l]
fg [%job_id]
bg [%job_id] . . .
notify [%job_id] . . .
stop %job_id . . .
stop pid . . .

ksh jobs [−lnp] [%job_id . . .]
fg [%job_id . . .]
bg [%job_id . . .]
stop %job_id . . .
stop pid . . .

DESCRIPTION
sh When Job Control is enabled, the Bourne shell built-in jobs reports all jobs that are

stopped or executing in the background. If %job_id is omitted, all jobs that are stopped or
running in the background will be reported. The following options will modify/enhance
the output of jobs:

−l Report the process group ID and working directory of the jobs.

−p Report only the process group ID of the jobs.

−x Replace any job_id found in command or arguments with the corresponding pro-
cess group ID, and then execute command passing it arguments.

When the shell is invoked as jsh, Job Control is enabled in addition to all of the func-
tionality described previously for sh. Typically Job Control is enabled for the interactive
shell only. Non-interactive shells typically do not benefit from the added functionality of
Job Control.

With Job Control enabled every command or pipeline the user enters at the terminal is
called a job_id. All jobs exist in one of the following states: foreground, background or
stopped. These terms are defined as follows: 1) a job in the foreground has read and
write access to the controlling terminal; 2) a job in the background is denied read access
and has conditional write access to the controlling terminal (see stty(1)); 3) a stopped job
is a job that has been placed in a suspended state, usually as a result of a SIGTSTP signal
(see signal(5)).

1-460 SunOS 5.6 modified 11 Apr 1995

User Commands jobs (1)

Every job that the shell starts is assigned a positive integer, called a job_id number which is
tracked by the shell and will be used as an identifier to indicate a specific job. Addition-
ally the shell keeps track of the current and previous jobs. The current job is the most recent
job to be started or restarted. The previous job is the first non-current job.

The acceptable syntax for a Job Identifier is of the form:

%job_id

where, job_id may be specified in any of the following formats:

% or + for the current job

− for the previous job

?<string> specify the job for which the command line uniquely contains string.

n for job number n, where n is a job number

pref where pref is a unique prefix of the command name (for example, if
the command ls −l name were running in the background, it could be
referred to as %ls); pref cannot contain blanks unless it is quoted.

When Job Control is enabled, fg resumes the execution of a stopped job in the fore-
ground, also moves an executing background job into the foreground. If %job_id is omit-
ted the current job is assumed.

When Job Control is enabled, bg resumes the execution of a stopped job in the back-
ground. If %job_id is omitted the current job is assumed.

stop stops the execution of a background job(s) by using its job_id, or of any process by
using its pid; see ps(1).

csh The C shell built-in, jobs, without an argument, lists the active jobs under job control.

−l List process IDs, in addition to the normal information.

The shell associates a numbered job_id with each command sequence to keep track of
those commands that are running in the background or have been stopped with TSTP sig-
nals (typically CTRL-Z). When a command or command sequence (semicolon separated
list) is started in the background using the & metacharacter, the shell displays a line with
the job number in brackets and a list of associated process numbers:

[1] 1234

To see the current list of jobs, use the jobs built-in command. The job most recently
stopped (or put into the background if none are stopped) is referred to as the current job
and is indicated with a `+´. The previous job is indicated with a `−´; when the current job
is terminated or moved to the foreground, this job takes its place (becomes the new
current job).

To manipulate jobs, refer to the bg, fg, kill, stop, and % built-in commands.

A reference to a job begins with a `%´. By itself, the percent-sign refers to the current job.

% %+ %% The current job.
%− The previous job.
%j Refer to job j as in: `kill −9 %j´. j can be a job number, or a string that

modified 11 Apr 1995 SunOS 5.6 1-461

jobs (1) User Commands

uniquely specifies the command line by which it was started; `fg %vi´
might bring a stopped vi job to the foreground, for instance.

%?string Specify the job for which the command line uniquely contains string.

A job running in the background stops when it attempts to read from the terminal. Back-
ground jobs can normally produce output, but this can be suppressed using the `stty tos-
top´ command.

fg brings the current or specified job_id into the foreground.

bg runs the current or specified jobs in the background.

stop stops the execution of a background job(s) by using its job_id, or of any process by
using its pid; see ps(1).

notify will notify the user asynchronously when the status of the current job or specified
jobs changes.

ksh jobs displays the status of the jobs that were started in the current shell environment.
When jobs reports the termination status of a job, the shell removes its process ID from
the list of those "known in the current shell execution environment."

job_id specifies the jobs for which the status is to be displayed. If no job_id is given, the
status information for all jobs will be displayed.

The following options will modify/enhance the output of jobs:

−l (The letter ell.) Provide more information about each job listed. This information
includes the job number, current job, process group ID, state and the command
that formed the job.

−n Display only jobs that have stopped or exited since last notified.

−p Displays only the process IDs for the process group leaders of the selected jobs.

By default, jobs displays the status of all the stopped jobs, running background jobs, and
all jobs whose status has changed and have not been reported by the shell.

If the monitor option of the set command is turned on, an interactive shell associates a
job with each pipeline. It keeps a table of current jobs, printed by the jobs command,
and assigns them small integer numbers. When a job is started asynchronously with &,
the shell prints a line which looks like:

[1] 1234
indicating that the job, which was started asynchronously, was job number 1 and had
one (top-level) process, whose process id was 1234.

If you are running a job and wish to do something else you may hit the key ˆZ (CTRL-Z)
which sends a STOP signal to the current job. The shell will then normally indicate that
the job has been `Stopped´ (see OUTPUT below), and print another prompt. You can
then manipulate the state of this job, putting it in the background with the bg command,
or run some other commands and then eventually bring the job back into the foreground
with the foreground command fg. A ˆZ takes effect immediately and is like an interrupt
in that pending output and unread input are discarded when it is typed.

1-462 SunOS 5.6 modified 11 Apr 1995

User Commands jobs (1)

There are several ways to refer to jobs in the shell. A job can be referred to by the process
id of any process of the job or by one of the following:

%number The job with the given number.
%string Any job whose command line begins with string; works only in the

interactive mode when the history file is active.
%?string Any job whose command line contains string; works only in the

interactive mode when the history file is active.
%% Current job.
%+ Equivalent to %%.
%− Previous job.

The shell learns immediately whenever a process changes state. It normally informs you
whenever a job becomes blocked so that no further progress is possible, but only just
before it prints a prompt. This is done so that it does not otherwise disturb your work.
When the monitor mode is on, each background job that completes triggers any trap set
for CHLD. When you try to leave the shell while jobs are running or stopped, you will be
warned that `You have stopped (running) jobs.´ You may use the jobs command to see
what they are. If you do this or immediately try to exit again, the shell will not warn you
a second time, and the stopped jobs will be terminated.

fg will move a background job from the current environment into the foreground. Using
fg to place a job in the foreground will remove its process ID from the list of those
"known in the current shell execution environment." The fg command is available only
on systems that support job control. If job_id is not specified, the current job is brought
into the foreground.

bg resumes suspended jobs from the current environment by running them as back-
ground jobs. If the job specified by job_id is already a running background job, bg has no
effect and will exit successfully. Using bg to place a job into the background causes its
process ID to become ‘‘known in the current shell execution environment’’, as if it had
been started as an asynchronous list. The bg command is available only on systems that
support job control. If job_id is not specified, the current job is placed in the background.

stop stops the execution of a background job(s) by using its job_id, or of any process by
using its pid; see ps(1).

OUTPUT If the −p option is specified, the output consists of one line for each process ID:

"%d\n", <"process ID">

Otherwise, if the −l option is not specified, the output is a series of lines of the form:

"[%d] %c %s %s\n", <job-number>, <current>, <state>, <command>

where the fields are as follows:

<current> The character + identifies the job that would be used as a default for the
fg or bg commands; this job can also be specified using the job_id %+ or
%% . The character − identifies the job that would become the default if
the current default job were to exit; this job can also be specified using
the job_id %− . For other jobs, this field is a space character. At most
one job can be identified with + and at most one job can be identified

modified 11 Apr 1995 SunOS 5.6 1-463

jobs (1) User Commands

with −. If there is any suspended job, then the current job will be a
suspended job. If there are at least two suspended jobs, then the previ-
ous job will also be a suspended job.

<job-number> A number that can be used to identify the process group to the wait, fg,
bg, and kill utilities. Using these utilities, the job can be identified by
prefixing the job number with %.

<state> One of the following strings (in the POSIX Locale):

Running Indicates that the job has not been suspended by a signal
and has not exited.

Done Indicates that the job completed and returned exit status
zero.

Done(code)
Indicates that the job completed normally and that it exited
with the specified non-zero exit status, code, expressed as a
decimal number.

Stopped

Stopped (SIGTSTP)
Indicates that the job was suspended by the SIGTSTP signal.

Stopped (SIGSTOP)
Indicates that the job was suspended by the SIGSTOP sig-
nal.

Stopped (SIGTTIN)
Indicates that the job was suspended by the SIGTTIN signal.

Stopped (SIGTTOU)
Indicates that the job was suspended by the SIGTTOU sig-
nal.

The implementation may substitute the string Suspended in place of
Stopped. If the job was terminated by a signal, the format of state is
unspecified, but it will be visibly distinct from all of the other state for-
mats shown here and will indicate the name or description of the signal
causing the termination.

<command> The associated command that was given to the shell.

If the −l option is specified, a field containing the process group ID is inserted before the
state field. Also, more processes in a process group may be output on separate lines,
using only the process ID and command fields.

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of jobs, fg, and bg: LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS The following exit values are returned for jobs, fg, and bg:
0 Successful completion.
>0 An error occurred.

1-464 SunOS 5.6 modified 11 Apr 1995

User Commands jobs (1)

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO csh(1), kill(1), ksh(1), ps(1), sh(1), stop(1), shell_builtins(1), stty(1), wait(1), attri-
butes(5), environ(5), signal(5)

modified 11 Apr 1995 SunOS 5.6 1-465

join (1) User Commands

NAME join − relational database operator

SYNOPSIS join [−a filenumber | −v filenumber] [−1 fieldnumber] [−2 fieldnumber]
[−o list] [−e string] [−t char] file1 file2

join [−a filenumber] [−j fieldnumber] [−j1 fieldnumber] [−j2 fieldnumber]
[−o list] [−e string] [−t char] file1 file2

DESCRIPTION The join command forms, on the standard output, a join of the two relations specified by
the lines of file1 and file2.

There is one line in the output for each pair of lines in file1 and file2 that have identical
join fields. The output line normally consists of the common field, then the rest of the line
from file1, then the rest of the line from file2. This format can be changed by using the −o
option (see below). The −a option can be used to add unmatched lines to the output. The
−v option can be used to output only unmatched lines.

The default input field separators are blank, tab, or new-line. In this case, multiple
separators count as one field separator, and leading separators are ignored. The default
output field separator is a blank.

If the input files are not in the appropriate collating sequence, the results are unspecified.

OPTIONS Some of the options below use the argument filenumber. This argument should be a 1 or a
2 referring to either file1 or file2, respectively.

−a filenumber In addition to the normal output, produce a line for each unpairable line
in file filenumber, where filenumber is 1 or 2. If both −a 1 and −a 2 are
specified, all unpairable lines will be output.

−e string Replace empty output fields with string.

−j fieldnumber Equivalent to −1 fieldnumber −2 fieldnumber.

−j1 fieldnumber Equivalent to −1 fieldnumber.

−j2 fieldnumber Equivalent to −2 fieldnumber Fields are numbered starting with 1.

−o list Each output line includes the fields specified in list. Fields selected by
list that do not appear in the input will be treated as empty output fields.
(See the −e option.) Each element of which has the either the form
filenumber.fieldnumber, or 0, which represents the join field. The com-
mon field is not printed unless specifically requested.

−t char Use character char as a separator. Every appearance of char in a line is
significant. The character char is used as the field separator for both
input and output. With this option specified, the collating term should
be the same as sort without the −b option.

−v filenumber Instead of the default output, produce a line only for each unpairable
line in filenumber, where filenumber is 1 or 2. If both −v 1 and −v 2 are
specified, all unpairable lines will be output.

−1 fieldnumber Join on the fieldnumberth field of file 1 . Fields are decimal integers

1-466 SunOS 5.6 modified 20 Dec 1996

User Commands join (1)

starting with 1.

−2 fieldnumber Join on the fieldnumberth field of file 2. Fields are decimal integers start-
ing with 1.

OPERANDS The following operands are supported:

file1
file2 A path name of a file to be joined. If either of the file1 or file2 operands is −,

the standard input is used in its place.

file1 and file2 must be sorted in increasing collating sequence as determined by
LC_COLLATE on the fields on which they are to be joined, normally the first in each line
(see sort(1)).

USAGE See largefile(5) for the description of the behavior of join when encountering files greater
than or equal to 2 Gbyte (231 bytes).

EXAMPLES The following command line will join the password file and the group file, matching on
the numeric group ID, and outputting the login name, the group name and the login
directory. It is assumed that the files have been sorted in ASCII collating sequence on the
group ID fields.

example% join −j1 4 −j2 3 −o 1.1 2.1 1.6 −t: /etc/passwd /etc/group

The −o 0 field essentially selects the union of the join fields. For example, given file
phone:

!Name Phone Number
Don +1 123-456-7890
Hal +1 234-567-8901
Yasushi +2 345-678-9012

and file fax:

!Name Fax Number
Don +1 123-456-7899
Keith +1 456-789-0122
Yasushi +2 345-678-9011

(where the large expanses of white space are meant to each represent a single tab charac-
ter), the command:

example% join -t "<tab>" -a 1 -a 2 -e ’(unknown)’ -o 0,1.2,2.2 phone fax

would produce:

!Name Phone Number Fax Number
Don +1 123-456-7890 +1 123-456-7899
Hal +1 234-567-8901 (unknown)
Keith (unknown) +1 456-789-0122
Yasushi +2 345-678-9012 +2 345-678-9011

modified 20 Dec 1996 SunOS 5.6 1-467

join (1) User Commands

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of join: LC_CTYPE, LC_MESSAGES, LC_COLLATE, and NLSPATH.

EXIT STATUS The following exit values are returned:

0 All input files were output successfully.

>0 An error occurred.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu
CSI Enabled

SEE ALSO awk(1), comm(1), sort(1), uniq(1), attributes(5), environ(5), largefile(5)

NOTES With default field separation, the collating sequence is that of sort −b; with −t, the
sequence is that of a plain sort.

The conventions of the join, sort, comm, uniq, and awk commands are wildly incongru-
ous.

1-468 SunOS 5.6 modified 20 Dec 1996

User Commands kbd (1)

NAME kbd − manipulate the state of keyboard or display the type of keyboard or change the
default keyboard abort sequence effect

SYNOPSIS kbd [−r] [−t] [−c on | off] [−a enable | disable] [−d keyboard device]
kbd −i [−d keyboard device]

DESCRIPTION kbd manipulates the state of the keyboard, or displays the keyboard type or allows the
default keyboard abort sequence effect to be changed. The default keyboard device being
set is /dev/kbd.

The −i option reads and processes default values for the keyclick and keyboard abort set-
tings from the keyboard default file, /etc/default/kbd, as described below.

Only keyboards that support a clicker respond to the −c option. If you want to turn click-
ing on by default, add or change the current value of the KEYCLICK variable to the value
on in the keyboard default file, /etc/default/kbd, as shown here.

KEYCLICK=on

Then, run the command ’kbd -i’ to change the current setting. Valid settings for this vari-
able are the values on and off. Other values are ignored. If the variable is not specified
in the default file, the setting is unchanged.

The keyboard abort sequence (L1-A or STOP-A on the keyboard and BREAK on the serial
console input device on most systems) effect may only be changed by the superuser,
using the −a option.

On most systems, the default effect of the keyboard abort sequence is to suspend the
operating system and enter the debugger or the monitor. Some systems have key
switches with a ’secure’ position. On these systems, the key switch in the ’secure’ posi-
tion, overrides any software default set with this command.

If you want to permanently change the software default effect of the keyboard abort
sequence, you can add or change the current value of the KEYBOARD_ABORT variable to
the value disable in the keyboard default file, /etc/default/kbd, as shown here.

KEYBOARD_ABORT=disable

Then, run the command ’kbd -i’ to change the current setting. Valid settings for this
value are the values enable and disable. Other values are ignored. If the variable is not
specified in the default file, the setting is unchanged.

OPTIONS −i Set keyboard defaults from the keyboard default file. This option is
mutually exclusive with all other options except for the −d keyboard
device option. This option instructs the keyboard command to read
and process keyclick and keyboard abort default values from the
/etc/default/kbd file. This option can only be used by the superuser.

−r Reset the keyboard as if power-up.

−t Return the type of the keyboard being used.

−c on/off state Turn the clicking of the keyboard on or off.

modified 6 Jan 1997 SunOS 5.6 1-469

kbd (1) User Commands

on Enable clicking.

off Disable clicking.

−a enable/disable state
Enable or disable the keyboard abort sequence effect.
By default, a keyboard abort sequence (typically, Stop-A or L1-A on
the keyboard and BREAK on the serial console device) suspends the
Operating System on most systems. This default behavior can be
changed using this option. This option can only be used by the
superuser.

enable Enable the default effect of the keyboard abort sequence,
which is to suspend the operating system and enter the
debugger or the monitor.

disable Disable the default effect and ignore keyboard abort
sequences.

−d keyboard device Specify the keyboard device being set. The default is /dev/kbd.

EXAMPLES The following example displays the keyboard type.
example% kbd −t
type 4 Sun keyboard
example%

The following example sets keyboard defaults as specified in the keyboard default file.
example# kbd −i
example#

FILES /etc/rcS shell script containing commands necessary to get the system to
single-user mode

/dev/kbd keyboard device file
/etc/default/kbd Keyboard default file containing software defaults for keyboard

configurations.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC
Availability SUNWcsu

SEE ALSO loadkeys(1), kadb(1M), keytables(4), attributes(5), kb(7M)

1-470 SunOS 5.6 modified 6 Jan 1997

User Commands kbd (1)

NOTES Some server systems have key switches with a ’secure’ key position that can be read by
system software. This key position overrides the normal default of the keyboard abort
sequence effect, and changes the default so the effect is ’disabled’. On these systems,
when the key switch is in the secure position, the keyboard abort sequence effect cannot
be overridden by the software default which is settable with this command.

BUGS There is no way to determine the state of the keyboard click setting.

modified 6 Jan 1997 SunOS 5.6 1-471

kdestroy (1) User Commands

NAME kdestroy − destroy Kerberos tickets

SYNOPSIS /usr/bin/kdestroy [−fnq]

DESCRIPTION kdestroy destroys the user’s active Kerberos authorization tickets by writing zeros to the
file that contains them. If the ticket file does not exist, kdestroy displays a message to
that effect.

After overwriting the file, kdestroy removes the file from the system. The utility displays
a message indicating the success or failure of the operation. If kdestroy is unable to des-
troy the ticket file, it will warn you by making your terminal beep.

In addition to removing the ticket file, kdestroy also invalidates all Kerberos credentials
for this user being held in the kernel for use with NFS requests.

If desired, you can place the kdestroy command in your .logout file so that your tickets
are destroyed automatically when you logout. Note, however, that doing this will cause
NFS operations done on your behalf to fail after you logout.

OPTIONS −f Do not display the status message.

−n Do not invalidate NFS credentials in the kernel. The credentials will continue to
be valid until their normal expiration time, although new ones cannot be
obtained until kinit(1) is run again for this user.

−q Do not make your terminal beep if kdestroy fails to destroy the tickets.

FILES The file specified by the KRBTKFILE environment variable if set, otherwise
/tmp/tktuid

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO kerberos(1), kinit(1), klist(1), attributes(5)

BUGS Only the tickets in the user’s current ticket file are destroyed. Separate ticket files are
used to hold root instance and password changing tickets. These files should probably be
destroyed too, or all of a user’s tickets should be kept in a single ticket file.

AUTHORS Steve Miller, MIT Project Athena/Digital Equipment Corporation
Clifford Neuman, MIT Project Athena
Bill Sommerfeld, MIT Project Athena

1-472 SunOS 5.6 modified 14 Sep 1992

User Commands kerberos (1)

NAME kerberos − introduction to the Kerberos system

DESCRIPTION The Kerberos system authenticates individual users in a network environment. After
authenticating yourself to Kerberos, you can use the kerberos authentication option of
network services such as NFS. In addition, in some environments you can use network
utilities such as rlogin(1), rcp(1), and rsh(1) without having to present passwords to
remote hosts and without having to bother with .rhosts files. See your system adminis-
trator for more information about Kerberos support at your site.

Before you can use Kerberos, you must be registered as a user in the Kerberos database.
You can use the kinit(1) command to find out your status. This command tries to log
you into the Kerberos system. kinit will prompt you for a username and password.
Enter your username and password. If the utility lets you login without giving you a
message, you have already been registered.

If you enter your username and kinit responds with this message:

Principal unknown (kerberos)

you haven’t been registered as a Kerberos user. See your system administrator.

A Kerberos name contains three parts. The first is the principal name, which is usually a
user’s or service’s name. The second is the instance, which in the case of a user is usually
NULL. Some users may have privileged instances, however, such as root or admin. In
the case of a service, the instance is the name of the machine on which it runs; that is,
there can be an NFS service running on the machine ABC, which is different from the NFS
service running on the machine XYZ. The third part of a Kerberos name is the realm. The
realm corresponds to the Kerberos service providing authentication for the principal. For
example, at MIT there is a Kerberos running at the Laboratory for Computer Science and
one running at Project Athena.

When writing a Kerberos name, the principal name is separated from the instance (if not
NULL) by a period, and the realm (if not the local realm) follows, preceded by an ‘‘@’’
sign. The following are examples of valid Kerberos names:

billb
jis.admin
srz@lcs.mit.edu
treese.root@athena.mit.edu

When you authenticate yourself with Kerberos, typically through the kinit command,
Kerberos gives you an initial Kerberos ticket . (A Kerberos ticket is an encrypted protocol
message that provides authentication.) Kerberos uses this ticket for network utilities
such as NFS, rlogin and rcp. The ticket transactions are done transparently, so you do not
have to worry about their management.

modified 6 Jan 1992 SunOS 5.6 1-473

kerberos (1) User Commands

Note, however, that tickets expire. Privileged tickets, such as root instance tickets, expire
in a few minutes, while tickets that carry more ordinary privileges may be good for
several hours or a day, depending on the installation’s policy. If your login session
extends beyond the time limit, you will have to re-authenticate yourself to Kerberos to
get new tickets. Use the kinit command to re-authenticate yourself.

If you use the kinit command to get your tickets, you can use the kdestroy(1) command
to destroy your tickets before you end your login session. For more information about
the kinit and kdestroy commands, see the kinit(1) and kdestroy(1) manual pages.

Currently, Kerberos supports NFS and other RPC network services using the AUTH_KERB
authentication type. In some environments, the following network services are also sup-
ported: rlogin, rsh, and rcp. Other services are being worked on, such as the pop mail
system, but are not yet available.

SEE ALSO kdestroy(1), kinit(1), klist(1), kerbd(1M), kerberos(3N), krb.conf(4)

BUGS Kerberos will not do authentication forwarding. In other words, if you use rlogin to
login to a remote host, you cannot use Kerberos services from that host until you authen-
ticate yourself explicitly on that host. Although you may need to authenticate yourself on
the remote host, be aware that when you do so, rlogin sends your password across the
network in clear text.

AUTHORS Steve Miller, MIT Project Athena/Digital Equipment Corporation
Clifford Neuman, MIT Project Athena

The following people helped out on various aspects of the system:

Jeff Schiller designed and wrote the administration server and its user interface, kadmin.
He also wrote the dbm version of the database management system.

Mark Colan developed the Kerberos versions of rlogin, rsh, and rcp, as well as contribut-
ing work on the servers.

John Ostlund developed the Kerberos versions of passwd and userreg.

Stan Zanarotti pioneered Kerberos in a foreign realm (LCS), and made many contribu-
tions based on that experience.

Many people contributed code and/or useful ideas. These include, Jim Aspnes, Bob
Baldwin, John Barba, Richard Basch, Jim Bloom, Bill Bryant, Rob French, Dan Geer,
David Jedlinsky, John Kohl, John Kubiatowicz, Bob McKie, Brian Murphy, Ken Raeburn,
Chris Reed, Jon Rochlis, Mike Shanzer, Bill Sommerfeld, Jennifer Steiner, Ted Ts’o, and
Win Treese.

RESTRICTIONS COPYRIGHT 1985,1986 Massachusetts Institute of Technology

1-474 SunOS 5.6 modified 6 Jan 1992

User Commands keylogin (1)

NAME keylogin − decrypt and store secret key with keyserv

SYNOPSIS /usr/bin/keylogin [−r]

DESCRIPTION The keylogin command prompts for a password, and uses it to decrypt the user’s secret
key. The key may be found in the /etc/publickey file (see publickey(4)) or the NIS map
‘‘publickey.byname’’ or the NIS+ table ‘‘cred.org_dir’’ in the user’s home domain. The
sources and their lookup order are specified in the /etc/nsswitch.conf file (see
nsswitch.conf(4)). Once decrypted, the user’s secret key is stored by the local key server
process, keyserv(1M). This stored key is used when issuing requests to any secure RPC
services, such as NFS or NIS+. The program keylogout(1) can be used to delete the key
stored by keyserv.

keylogin will fail if it cannot get the caller’s key, or the password given is incorrect. For a
new user or host, a new key can be added using newkey(1M), nisaddcred(1M), or
nisclient(1M).

OPTIONS −r Update the /etc/.rootkey file. This file holds the unencrypted secret key of the
super-user. Only the super-user may use this option. It is used so that processes
running as super-user can issue authenticated requests without requiring that the
administrator explicitly run keylogin as super-user at system startup time (see
keyserv(1M)). The −r option should be used by the administrator when the
host’s entry in the publickey database has changed, and the /etc/.rootkey file has
become out-of-date with respect to the actual key pair stored in the publickey
database. The permissions on the /etc/.rootkey file are such that it may be read
and written by the super-user but by no other user on the system.

FILES /etc/.rootkey super-user’s secret key

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO chkey(1), keylogout(1), login(1), keyserv(1M), newkey(1M), nisaddcred(1M),
nisclient(1M), publickey(4), nsswitch.conf(4), attributes(5)

modified 25 Jan 1993 SunOS 5.6 1-475

keylogout (1) User Commands

NAME keylogout − delete stored secret key with keyserv

SYNOPSIS /usr/bin/keylogout [−f]

DESCRIPTION keylogout deletes the key stored by the key server process keyserv(1M). Further access
to the key is revoked; however, current session keys may remain valid until they expire
or are refreshed.

Deleting the keys stored by keyserv will cause any background jobs or scheduled at(1)
jobs that need secure RPC services to fail. Since only one copy of the key is kept on a
machine, it is a bad idea to place a call to this command in your .logout file since it will
affect other sessions on the same machine.

OPTIONS −f Force keylogout to delete the secret key for the super-user. By default, keylo-
gout by the super-user is disallowed because it would break all RPC services,
such as NFS, that are started by the super-user.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO at(1), chkey(1), login(1), keylogin(1), keyserv(1M), newkey(1M), publickey(4), attri-
butes(5)

1-476 SunOS 5.6 modified 14 Sep 1992

User Commands kill (1)

NAME kill − terminate or signal processes

SYNOPSIS /usr/bin/kill −s signal pid. . .
/usr/bin/kill −l [exit_status]
/usr/bin/kill [−signal] pid. . .

DESCRIPTION The kill utility sends a signal to the process or processes specified by each pid operand.

For each pid operand, the kill utility will perform actions equivalent to the kill(2) func-
tion called with the following arguments:

1. The value of the pid operand will be used as the pid argument.

2. The sig argument is the value specified by the −s option, or by SIGTERM,
if none of these options is specified.

The signaled process must belong to the current user unless the user is the super-user.

See NOTES for descriptions of the shell built-in versions of kill.

OPTIONS The following options are supported:

−l (The letter ell.) Write all values of signal supported by the implementa-
tion, if no operand is given. If an exit_status operand is given and it is a
value of the ? shell special parameter and wait corresponding to a pro-
cess that was terminated by a signal, the signal corresponding to the sig-
nal that terminated the process will be written. If an exit_status operand
is given and it is the unsigned decimal integer value of a signal number,
the signal corresponding to that signal will be written. Otherwise, the
results are unspecified.

−s signal Specify the signal to send, using one of the symbolic names defined in
the <signal.h> description. Values of signal will be recognized in a
case-independent fashion, without the SIG prefix. In addition, the sym-
bolic name 0 will be recognized, representing the signal value zero. The
corresponding signal will be sent instead of SIGTERM.

OPERANDS The following operands are supported:

pid One of the following:

1. A decimal integer specifying a process or process group to be signaled.
The process or processes selected by positive, negative and zero values
of the pid operand will be as described for the kill function. If process
number 0 is specified, all processes in the process group are signaled. If
the first pid operand is negative, it should be preceded by − − to keep it
from being interpreted as an option.

2. A job control job ID that identifies a background process group to be sig-
naled. The job control job ID notation is applicable only for invocations
of kill in the current shell execution environment.

modified 18 Sep 1995 SunOS 5.6 1-477

kill (1) User Commands

Note the job control job ID type of pid is available only on systems support-
ing the job control option.

exit_status A decimal integer specifying a signal number or the exit status of a process
terminated by a signal.

USAGE Process numbers can be found by using ps(1).

The job control job ID notation is not required to work as expected when kill is operating
in its own utility execution environment. In either of the following examples:

nohup kill %1 &
system("kill %1");

kill operates in a different environment and will not share the shell’s understanding of
job numbers.

OUTPUT When the −l option is not specified, the standard output will not be used.

When the −l option is specified, the symbolic name of each signal will be written in the
following format:

"%s%c", <signal>, <separator>

where the <signal> is in upper-case, without the SIG prefix, and the <separator> will be
either a newline character or a space character. For the last signal written, <separator>
will be a newline character.

When both the −l option and exit_status operand are specified, the symbolic name of the
corresponding signal will be written in the following format:

"%s\n", <signal>

EXAMPLES Any of the commands:

kill −9 100 −165

kill −s kill 100 −165

kill −s KILL 100 −165

sends the SIGKILL signal to the process whose process ID is 100 and to all processes
whose process group ID is 165, assuming the sending process has permission to send that
signal to the specified processes, and that they exist.

To avoid an ambiguity of an initial negative number argument specifying either a signal
number or a process group, the former will always be the case. Therefore, to send the
default signal to a process group (for example, 123), an application should use a com-
mand similar to one of the following:

kill −TERM −123

kill −− −123

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of kill: LC_CTYPE, LC_MESSAGES, and NLSPATH.

1-478 SunOS 5.6 modified 18 Sep 1995

User Commands kill (1)

EXIT STATUS The following exit values are returned:
0 At least one matching process was found for each pid operand, and the

specified signal was successfully processed for at least one matching process.
>0 An error occurred.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu
CSI enabled

SEE ALSO csh(1), jobs(1), ksh(1), ps(1), sh(1), shell_builtins(1), wait(1), kill(2), signal(3C), attri-
butes(5), environ(5), signal(5)

NOTES
sh The Bourne shell, sh, has a built-in version of kill to provide the functionality of the kill

command for processes identified with a jobid. The sh syntax is:

kill [−sig] [pid] [%job] . . .
kill −l

csh The C-shell, csh, also has a built-in kill command, whose syntax is:

kill [−sig] [pid] [%job] . . .
kill −l

The csh kill built-in sends the TERM (terminate) signal, by default, or the signal specified,
to the specified process ID, the job indicated, or the current job . Signals are either given by
number or by name. There is no default. Typing kill does not send a signal to the
current job. If the signal being sent is TERM (terminate) or HUP (hangup), then the job or
process is sent a CONT (continue) signal as well.

−l List the signal names that can be sent.

ksh The ksh kill’s syntax is:

kill [−sig] [pid] [%job] . . .
kill −l

The ksh kill sends either the TERM (terminate) signal or the specified signal to the
specified jobs or processes. Signals are either given by number or by names (as given in
signal(5) stripped of the prefix “SIG”). If the signal being sent is TERM (terminate) or
HUP (hangup), then the job or process will be sent a CONT (continue) signal if it is
stopped. The argument job can be the process id of a process that is not a member of one
of the active jobs. In the second form, kill −l, the signal numbers and names are listed.

modified 18 Sep 1995 SunOS 5.6 1-479

kinit (1) User Commands

NAME kinit − Kerberos login utility

SYNOPSIS kinit [−ilrv] [username]

DESCRIPTION The kinit command is used to login to the Kerberos authentication and authorization sys-
tem. Note that only registered Kerberos users can use the Kerberos system. For informa-
tion about registering as a Kerberos user, see the kerberos(1) manual page.

When you use kinit without options, the utility prompts for your username and Kerberos
password, and tries to authenticate your login with the local Kerberos server. The user-
name can be specified on the command line if desired.

If Kerberos authenticates the login attempt, kinit retrieves your initial ticket (i.e., ticket-
granting ticket) and puts it in the ticket file specified by your KRBTKFILE environment
variable. If this variable is undefined, your ticket will be stored in the file /tmp/tktuid,
where uid specifies your user identification number. Tickets expire after a specified life-
time, after which kinit must be run again to refresh the tickets. The default ticket lifetime
is 8 hours.

The kdestroy(1) command may be used to destroy any active tickets before you end your
login session.

OPTIONS −i kinit prompts you for a Kerberos instance.

−l kinit prompts you for a ticket lifetime in minutes. Due to protocol restrictions in
Kerberos Version 4, this value must be between 5 and 1275 minutes; values less
than 5 will be set to 5; values greater than 1275 will be set to 1275; values between
the limits will be rounded down to a multiple of 5 (e.g., a value of 7 will be set to
5, 9 will be set to 5, 10 will remain unchanged).

−r kinit prompts you for a Kerberos realm. This option lets you authenticate your-
self with a remote Kerberos server.

−v Verbose mode. kinit prints a status message indicating the success or failure of
your login attempt.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO kdestroy(1), kerberos(1), klist(1), attributes(5)

BUGS The −r option has not been fully implemented.

AUTHORS Steve Miller, MIT Project Athena/Digital Equipment Corporation
Clifford Neuman, MIT Project Athena

1-480 SunOS 5.6 modified 27 Sep 1994

User Commands klist (1)

NAME klist − list currently held Kerberos tickets

SYNOPSIS klist [−st] [−file name] [−srvtab]

DESCRIPTION klist prints the name of the ticket file, the identity of the principal that the tickets are for
(as listed in the ticket file), and the principal names of all Kerberos tickets currently held
by the user, along with the issue and expire time for each authenticator. Principal names
are listed in the form name.instance@realm, with the ’.’ omitted if the instance is null, and
the ’@’ omitted if the realm is null.

The value of the KRBTKFILE environment variable is used as the name of the ticket file. If
this environment variable is not set, then the file /tmp/tktuid is used, where uid is the
current user-id of the user.

OPTIONS −s Silent. Do not print the issue and expire times, the name of the ticket
file, or the identity of the principal.

−t klist checks for the existence of a non-expired ticket-granting-ticket in
the ticket file. If one is present, it exits with status 0, else it exits with
status 1. No output is generated when this option is specified.

−file name File name is used as the ticket file.

−srvtab The file is treated as a service key file, and the names of the keys con-
tained therein are printed. If no file is specified with a −file option, the
default is /etc/srvtab.

FILES /etc/krb.conf to get the name of the local realm
/tmp/tktuid as the default ticket file
/etc/srvtab as the default service key file

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO kdestroy(1), kerberos(1), kinit(1), ksrvtgt(1), attributes(5)

BUGS When reading a file as a service key file, very little sanity or error checking is performed.

modified 1 Aug 1994 SunOS 5.6 1-481

ksh (1) User Commands

NAME ksh, rksh − KornShell, a standard/restricted command and programming language

SYNOPSIS /usr/bin/ksh [±abCefhikmnoprstuvx] [±o option] . . . [−c string] [arg . . .]

/usr/xpg4/bin/sh [±abCefhikmnoprstuvx] [±o option] . . . [−c string] [arg . . .]

/usr/bin/rksh [±abCefhikmnoprstuvx] [±o option] . . . [−c string] [arg . . .]

DESCRIPTION /usr/xpg4/bin/sh is identical to /usr/bin/ksh, a command and programming language
that executes commands read from a terminal or a file. rksh is a restricted version of the
command interpreter ksh; it is used to set up login names and execution environments
whose capabilities are more controlled than those of the standard shell. See Invocation
below for the meaning of arguments to the shell.

Definitions A metacharacter is one of the following characters:

; & () � < > NEWLINE SPACE TAB

A blank is a TAB or a SPACE. An identifier is a sequence of letters, digits, or underscores
starting with a letter or underscore. Identifiers are used as names for functions and vari-
ables. A word is a sequence of characters separated by one or more non-quoted metacharac-
ters.

A command is a sequence of characters in the syntax of the shell language. The shell reads
each command and carries out the desired action either directly or by invoking separate
utilities. A special-command is a command that is carried out by the shell without creating
a separate process. Except for documented side effects, most special commands can be
implemented as separate utilities.

Commands A simple-command is a sequence of blank-separated words which may be preceded by a
variable assignment list. (See Environment below.) The first word specifies the name of
the command to be executed. Except as specified below, the remaining words are passed
as arguments to the invoked command. The command name is passed as argument 0
(see exec(2)). The value of a simple-command is its exit status if it terminates normally, or
(octal) 200+status if it terminates abnormally (see signal(3C) for a list of status values).

A pipeline is a sequence of one or more commands separated by �. The standard output of
each command but the last is connected by a pipe(2) to the standard input of the next
command. Each command is run as a separate process; the shell waits for the last com-
mand to terminate. The exit status of a pipeline is the exit status of the last command.

A list is a sequence of one or more pipelines separated by ;, &, &&, or � �, and optionally
terminated by ;, &, or �&. Of these five symbols, ;, &, and �& have equal precedence,
which is lower than that of && and � �. The symbols && and � � also have equal pre-
cedence. A semicolon (;) causes sequential execution of the preceding pipeline; an
ampersand (&) causes asynchronous execution of the preceding pipeline (that is, the shell
does not wait for that pipeline to finish). The symbol �& causes asynchronous execution
of the preceding command or pipeline with a two-way pipe established to the parent
shell.

1-482 SunOS 5.6 modified 18 Mar 1997

User Commands ksh (1)

The standard input and output of the spawned command can be written to and read
from by the parent shell using the −p option of the special commands read and print
described in Special Commands. The symbol && (� �) causes the list following it to be
executed only if the preceding pipeline returns 0 (or a non-zero) value. An arbitrary
number of new-lines may appear in a list, instead of a semicolon, to delimit a command.

A command is either a simple-command or one of the following. Unless otherwise stated,
the value returned by a command is that of the last simple-command executed in the
command.

for identifier [in word . . .] ; do list ; done
Each time a for command is executed, identifier is set to the next word taken from
the in word list. If in word . . . is omitted, then the for command executes the do
list once for each positional parameter that is set (see Parameter Substitution
below). Execution ends when there are no more words in the list.

select identifier [in word . . .] ; do list ; done
A select command prints to standard error (file descriptor 2), the set of words,
each preceded by a number. If in word . . . is omitted, then the positional param-
eters are used instead (see Parameter Substitution below). The PS3 prompt is
printed and a line is read from the standard input. If this line consists of the
number of one of the listed words, then the value of the variable identifier is set to
the word corresponding to this number. If this line is empty the selection list is
printed again. Otherwise the value of the variable identifier is set to NULL. (See
Blank Interpretation about NULL). The contents of the line read from standard
input is saved in the shell variable REPLY. The list is executed for each selection
until a break or EOF is encountered. If the REPLY variable is set to NULL by the
execution of list, then the selection list is printed before displaying the PS3
prompt for the next selection.

case word in [pattern [� pattern]) list ;;] . . . esac
A case command executes the list associated with the first pattern that matches
word . The form of the patterns is the same as that used for file-name generation
(see File Name Generation below).

if list ; then list ; [elif list ; then list ; . . .] [else list ;] fi
The list following if is executed and, if it returns an exit status of 0, the list follow-
ing the first then is executed. Otherwise, the list following elif is executed and, if
its value is 0, the list following the next then is executed. Failing that, the else list
is executed. If no else list or then list is executed, then the if command returns 0
exit status.

while list ; do list ; done
until list ; do list ; done

A while command repeatedly executes the while list and, if the exit status of the
last command in the list is 0, executes the do list; otherwise the loop terminates.
If no commands in the do list are executed, then the while command returns 0
exit status; until may be used in place of while to negate the loop termination
test.

modified 18 Mar 1997 SunOS 5.6 1-483

ksh (1) User Commands

(list) Execute list in a separate environment. Note, that if two adjacent open
parentheses are needed for nesting, a space must be inserted to avoid arithmetic
evaluation as described below.

{list} list is simply executed. Note that unlike the metacharacters (and), { and } are
reserved words and must occur at the beginning of a line or after a ; in order to be
recognized.

[[expression]]
Evaluates expression and returns 0 exit status when expression is true. See Condi-
tional Expressions below, for a description of expression.

function identifier { list ;}
identifier() { list ;}

Define a function which is referenced by identifier. The body of the function is the
list of commands between { and }. (See Functions below).

time pipeline
The pipeline is executed and the elapsed time as well as the user and system time
are printed to standard error.

The following reserved words are only recognized as the first word of a command and
when not quoted:

! if then else elif fi case esac for while until do done { } function
select time [[]]

Comments A word beginning with # causes that word and all the following characters up to a new-
line to be ignored.

Aliasing The first word of each command is replaced by the text of an alias if an alias for this word
has been defined. An alias name consists of any number of characters excluding meta-
characters, quoting characters, file expansion characters, parameter and command substi-
tution characters, and =. The replacement string can contain any valid shell script includ-
ing the metacharacters listed above. The first word of each command in the replaced
text, other than any that are in the process of being replaced, will be tested for aliases. If
the last character of the alias value is a blank then the word following the alias will also be
checked for alias substitution. Aliases can be used to redefine special builtin commands
but cannot be used to redefine the reserved words listed above. Aliases can be created,
listed, and exported with the alias command and can be removed with the unalias com-
mand. Exported aliases remain in effect for scripts invoked by name, but must be reini-
tialized for separate invocations of the shell (see Invocation below). To prevent infinite
loops in recursive aliasing, if the shell is not currently processing an alias of the same
name, the word will be replaced by the value of the alias; otherwise, it will not be
replaced.

Aliasing is performed when scripts are read, not while they are executed. Therefore, for
an alias to take effect the alias definition command has to be executed before the com-
mand which references the alias is read.

1-484 SunOS 5.6 modified 18 Mar 1997

User Commands ksh (1)

Aliases are frequently used as a short hand for full path names. An option to the aliasing
facility allows the value of the alias to be automatically set to the full pathname of the
corresponding command. These aliases are called tracked aliases. The value of a tracked
alias is defined the first time the corresponding command is looked up and becomes
undefined each time the PATH variable is reset. These aliases remain tracked so that the
next subsequent reference will redefine the value. Several tracked aliases are compiled
into the shell. The −h option of the set command makes each referenced command name
into a tracked alias.

The following exported aliases are compiled into (and built-in to) the shell but can be unset
or redefined:

autoload=′typeset −fu′
false=′let 0′
functions=′typeset −f′
hash=′alias −t′
history=′fc −l′
integer=′typeset −i′
nohup=′nohup ′
r=′fc −e −′
true=′:′
type=′whence −v′

An example concerning trailing blank characters and reserved words follows. If the user
types:

$ alias foo="/bin/ls "
$ alias while="/"

The effect of executing:

$ while true
> do
> echo "Hello, World"
> done

is a never-ending sequence of Hello, World strings to the screen. However, if the user
types:

$ foo while

the result will be an ls listing of /. Since the alias substitution for foo ends in a space char-
acter, the next word is checked for alias substitution. The next word, while, has also been
aliased, so it is substituted as well. Since it is not in the proper position as a command
word, it is not recognized as a reserved word.

If the user types:

$ foo; while

while retains its normal reserved-word properties.

modified 18 Mar 1997 SunOS 5.6 1-485

ksh (1) User Commands

Tilde Substitution After alias substitution is performed, each word is checked to see if it begins with an
unquoted ∼. If it does, then the word up to a / is checked to see if it matches a user name.
If a match is found, the ∼ and the matched login name are replaced by the login directory
of the matched user. This is called a tilde substitution. If no match is found, the original
text is left unchanged. A ∼ by itself, or in front of a /, is replaced by $HOME. A ∼ fol-
lowed by a + or − is replaced by $PWD and $OLDPWD respectively.

In addition, tilde substitution is attempted when the value of a variable assignment begins
with a ∼.

Tilde Expansion A tilde-prefix consists of an unquoted tilde character at the beginning of a word, followed
by all of the characters preceding the first unquoted slash in the word, or all the charac-
ters in the word if there is no slash. In an assignment, multiple tilde-prefixes can be used:
at the beginning of the word (that is, following the equal sign of the assignment), follow-
ing any unquoted colon or both. A tilde-prefix in an assignment is terminated by the first
unquoted colon or slash. If none of the characters in the tilde-prefix are quoted, the char-
acters in the tilde-prefix following the tilde are treated as a possible login name from the
user database.

A portable login name cannot contain characters outside the set given in the description
of the LOGNAME environment variable. If the login name is null (that is, the tilde-prefix
contains only the tilde), the tilde-prefix will be replaced by the value of the variable
HOME. If HOME is unset, the results are unspecified. Otherwise, the tilde-prefix will be
replaced by a pathname of the home directory associated with the login name obtained
using the getpwnam function. If the system does not recognize the login name, the
results are undefined.

Tilde expansion generally occurs only at the beginning of words, but an exception based
on historical practice has been included:

PATH=/posix/bin:˜dgk/bin

is eligible for tilde expansion because tilde follows a colon and none of the relevant char-
acters is quoted. Consideration was given to prohibiting this behavior because any of the
following are reasonable substitutes:

PATH=$(printf %s ˜karels/bin : ˜bostic/bin)
for Dir in ˜maart/bin ˜srb/bin . . .
do

PATH=${PATH:+$PATH:}$Dir
done

With the first command, explicit colons are used for each directory. In all cases, the shell
performs tilde expansion on each directory because all are separate words to the shell.

Note that expressions in operands such as:

make -k mumble LIBDIR=˜chet/lib

do not qualify as shell variable assignments and tilde expansion is not performed (unless
the command does so itself, which make does not).

1-486 SunOS 5.6 modified 18 Mar 1997

User Commands ksh (1)

The special sequence $˜ has been designated for future implementations to evaluate as a
means of forcing tilde expansion in any word.

Because of the requirement that the word not be quoted, the following are not equivalent;
only the last will cause tilde expansion:

\˜hlj/ ˜h\ lj / ˜"hlj"/ ˜hlj \ / ˜hlj/

The results of giving tilde with an unknown login name are undefined because the Korn-
Shell ˜+ and ˜− constructs make use of this condition, but, in general it is an error to give
an incorrect login name with tilde. The results of having HOME unset are unspecified
because some historical shells treat this as an error.

Command
Substitution

The standard output from a command enclosed in parenthesis preceded by a dollar sign (
$(command)) or a pair of grave accents (``) may be used as part or all of a word; trailing
new-lines are removed. In the second (archaic) form, the string between the quotes is
processed for special quoting characters before the command is executed. (See Quoting
below.) The command substitution $(cat file) can be replaced by the equivalent but faster
(<file). Command substitution of most special commands that do not perform
input/output redirection are carried out without creating a separate process.

Command substitution allows the output of a command to be substituted in place of the
command name itself. Command substitution occurs when the command is enclosed as
follows:

$(command)

or (backquoted version):

`command`

The shell will expand the command substitution by executing command in a subshell
environment and replacing the command substitution (the text of command plus the
enclosing $() or backquotes) with the standard output of the command, removing
sequences of one or more newline characters at the end of the substitution. Embedded
newline characters before the end of the output will not be removed; however, they may
be treated as field delimiters and eliminated during field splitting, depending on the
value of IFS and quoting that is in effect.

Within the backquoted style of command substitution, backslash shall retain its literal
meaning, except when followed by:

$ ` \

(dollar-sign, backquote, backslash). The search for the matching backquote is satisfied by
the first backquote found without a preceding backslash; during this search, if a non-
escaped backquote is encountered within a shell comment, a here-document, an embed-
ded command substitution of the $(command) form, or a quoted string, undefined results
occur. A single- or double-quoted string that begins, but does not end, within the ‘. . .‘
sequence produces undefined results.

With the $(command) form, all characters following the open parenthesis to the matching
closing parenthesis constitute the command. Any valid shell script can be used for com-
mand, except:

modified 18 Mar 1997 SunOS 5.6 1-487

ksh (1) User Commands

· A script consisting solely of redirections produces unspecified results.

· See the restriction on single subshells described below.

The results of command substitution will not be field splitting and pathname expansion
processed for further tilde expansion, parameter expansion, command substitution or
arithmetic expansion. If a command substitution occurs inside double-quotes, it will not
be performed on the results of the substitution.

Command substitution can be nested. To specify nesting within the backquoted version,
the application must precede the inner backquotes with backslashes; for example:

` \`command \``

The $() form of command substitution solves a problem of inconsistent behavior when
using backquotes. For example:

Command Output
echo ’ \$x’ \$x
echo `echo ’ \$x’` $x
echo $(echo ’ \$x’) \$x

Additionally, the backquoted syntax has historical restrictions on the contents of the
embedded command. While the new $() form can process any kind of valid embedded
script, the backquoted form cannot handle some valid scripts that include backquotes.
For example, these otherwise valid embedded scripts do not work in the left column, but
do work on the right:

echo ` echo $(
cat << eeof cat << eeof
a here-doc with ` a here-doc with)
eof eof
`)

echo ` echo $(
echo abc # a comment with ` echo abc # a comment with)
`)

echo ` echo $(
echo ’`’ echo ’)’
`)

Because of these inconsistent behaviors, the backquoted variety of command substitution
is not recommended for new applications that nest command substitutions or attempt to
embed complex scripts.

If the command substitution consists of a single subshell, such as:

$((command))

a portable application must separate the $(and (into two tokens (that is, separate them
with white space). This is required to avoid any ambiguities with arithmetic expansion.

1-488 SunOS 5.6 modified 18 Mar 1997

User Commands ksh (1)

Arithmetic Expansion An arithmetic expression enclosed in double parentheses preceded by a dollar sign
($((arithmetic-expression))) is replaced by the value of the arithmetic expression within
the double parenthesis. Arithmetic expansion provides a mechanism for evaluating an
arithmetic expression and substituting its value. The format for arithmetic expansion is
as follows:

$((expression))

The expression is treated as if it were in double-quotes, except that a double-quote inside
the expression is not treated specially. The shell will expand all tokens in the expression
for parameter expansion, command substitution and quote removal.

Next, the shell will treat this as an arithmetic expression and substitute the value of the
expression. The arithmetic expression will be processed according to the rules of the ISO
C with the following exceptions:

· Only integer arithmetic is required.

· The sizeof() operator and the prefix and postfix ++ and − − operators are not
required.

· Selection, iteration and jump statements are not supported.

As an extension, the shell may recognize arithmetic expressions beyond those listed. If
the expression is invalid, the expansion will fail and the shell will write a message to stan-
dard error indicating the failure.

A simple example using arithmetic expansion:

repeat a command 100 times
x=100
while [$x −gt 0]
do

command
x=$(($x−1))

done

Process Substitution This feature is available in SunOS and only on versions of the UNIX operating system
that support the /dev/fd directory for naming open files. Each command argument of the
form <(list) or >(list) will run process list asynchronously connected to some file in
/dev/fd. The name of this file will become the argument to the command. If the form
with > is selected then writing on this file will provide input for list. If < is used, then the
file passed as an argument will contain the output of the list process. For example,

paste <(cut −f1 file1) <(cut −f3 file2) | tee >(process1) >(process2)

cuts fields 1 and 3 from the files file1 and file2 respectively, pastes the results together,
and sends it to the processes process1 and process2, as well as putting it onto the standard
output. Note that the file, which is passed as an argument to the command, is a UNIX
pipe(2) so programs that expect to lseek(2) on the file will not work.

modified 18 Mar 1997 SunOS 5.6 1-489

ksh (1) User Commands

Parameter
Substitution

A parameter is an identifier, one or more digits, or any of the characters ∗, @, #, ?, −, $, and
!. A variable (a parameter denoted by an identifier) has a value and zero or more attributes .
variables can be assigned values and attributes by using the typeset special command. The
attributes supported by the shell are described later with the typeset special command.
Exported variables pass values and attributes to the environment.

The shell supports a one-dimensional array facility. An element of an array variable is
referenced by a subscript. A subscript is denoted by a [, followed by an arithmetic expres-
sion (see Arithmetic Evaluation below) followed by a]. To assign values to an array, use
set −A name value The value of all subscripts must be in the range of 0 through 1023.
Arrays need not be declared. Any reference to a variable with a valid subscript is legal
and an array will be created if necessary. Referencing an array without a subscript is
equivalent to referencing the element 0. If an array identifier with subscript ∗ or @ is used,
then the value for each of the elements is substituted (separated by a field separator char-
acter).

The value of a variable may be assigned by writing:

name=value [name=value] . . .

If the integer attribute, −i, is set for name, the value is subject to arithmetic evaluation as
described below.

Positional parameters, parameters denoted by a number, may be assigned values with
the set special command. Parameter $0 is set from argument zero when the shell is
invoked. If parameter is one or more digits then it is a positional parameter. A positional
parameter of more than one digit must be enclosed in braces.

Parameter Expansion The format for parameter expansion is as follows:

${expression}

where expression consists of all characters until the matching }. Any } escaped by a
backslash or within a quoted string, and characters in embedded arithmetic expansions,
command substitutions and variable expansions, are not examined in determining the
matching }.

The simplest form for parameter expansion is:

${parameter}

The value, if any, of parameter will be substituted.

The parameter name or symbol can be enclosed in braces, which are optional except for
positional parameters with more than one digit or when parameter is followed by a char-
acter that could be interpreted as part of the name. The matching closing brace will be
determined by counting brace levels, skipping over enclosed quoted strings and com-
mand substitutions.

If the parameter name or symbol is not enclosed in braces, the expansion will use the
longest valid name whether or not the symbol represented by that name exists. When the
shell is scanning its input to determine the boundaries of a name, it is not bound by its
knowledge of what names are already defined. For example, if F is a defined shell vari-
able, the command:

1-490 SunOS 5.6 modified 18 Mar 1997

User Commands ksh (1)

echo $Fred

does not echo the value of $F followed by red; it selects the longest possible valid name,
Fred, which in this case might be unset.

If a parameter expansion occurs inside double-quotes:

· Pathname expansion will not be performed on the results of the expansion.

· Field splitting will not be performed on the results of the expansion, with the
exception of @.

In addition, a parameter expansion can be modified by using one of the following for-
mats. In each case that a value of word is needed (based on the state of parameter , as
described below), word will be subjected to tilde expansion, parameter expansion, com-
mand substitution and arithmetic expansion. If word is not needed, it will not be
expanded. The } character that delimits the following parameter expansion modifications
is determined as described previously in this section and in dquote. (For example,
${foo-bar}xyz} would result in the expansion of foo followed by the string xyz} if foo is
set, else the string barxyz}).

${parameter :−word} Use Default Values. If parameter is unset or null, the expansion of
word will be substituted; otherwise, the value of parameter will be
substituted.

${parameter :=word} Assign Default Values. If parameter is unset or null, the expansion
of word will be assigned to parameter . In all cases, the final value of
parameter will be substituted. Only variables, not positional
parameters or special parameters, can be assigned in this way.

${parameter :?[word]} Indicate Error if Null or Unset. If parameter is unset or null, the
expansion of word (or a message indicating it is unset if word is
omitted) will be written to standard error and the shell will exit
with a non-zero exit status. Otherwise, the value of parameter will
be substituted. An interactive shell need not exit.

${parameter :+[word]} Use Alternative Value. If parameter is unset or null, null will be
substituted; otherwise, the expansion of word will be substituted.

In the parameter expansions shown previously, use of the colon in the format results in a
test for a parameter that is unset or null; omission of the colon results in a test for a
parameter that is only unset. The following table summarizes the effect of the colon:

parameter parameter parameter
set and not null set but null unset

substitute substitute substitute
${parameter:-word}

parameter word word

substitute substitute substitute
${parameter−word}

parameter null word

substitute assign assign
${parameter:=word}

parameter word word

modified 18 Mar 1997 SunOS 5.6 1-491

ksh (1) User Commands

substitute substitute assign
${parameter=word}

parameter parameter null

substitute error, error,
${parameter:?word}

parameter exit exit

substitute substitute error,
${parameter?word}

parameter null exit

substitute substitute substitute
${parameter:+word}

word null null

substitute substitute substitute
${parameter+word}

word word null

In all cases shown with “substitute”, the expression is replaced with the value shown. In
all cases shown with “assign” parameter is assigned that value, which also replaces the
expression.

${#parameter} String Length. The length in characters of the value of parameter . If
parameter is ∗ or @, then all the positional parameters, starting with
$1, are substituted (separated by a field separator character).

The following four varieties of parameter expansion provide for substring processing. In
each case, pattern matching notation (see patmat), rather than regular expression nota-
tion, will be used to evaluate the patterns. If parameter is ∗ or @, then all the positional
parameters, starting with $1, are substituted (separated by a field separator character).
Enclosing the full parameter expansion string in double-quotes will not cause the follow-
ing four varieties of pattern characters to be quoted, whereas quoting characters within
the braces will have this effect.

${parameter%word} Remove Smallest Suffix Pattern. The word will be expanded to
produce a pattern. The parameter expansion then will result in
parameter , with the smallest portion of the suffix matched by the
pattern deleted.

${parameter%%word} Remove Largest Suffix Pattern. The word will be expanded to
produce a pattern. The parameter expansion then will result in
parameter , with the largest portion of the suffix matched by the pat-
tern deleted.

${parameter#word} Remove Smallest Prefix Pattern. The word will be expanded to
produce a pattern. The parameter expansion then will result in
parameter , with the smallest portion of the prefix matched by the
pattern deleted.

${parameter##word} Remove Largest Prefix Pattern. The word will be expanded to pro-
duce a pattern. The parameter expansion then will result in param-
eter, with the largest portion of the prefix matched by the pattern
deleted.

1-492 SunOS 5.6 modified 18 Mar 1997

User Commands ksh (1)

Examples:

${parameter :−word}

In this example, ls is executed only if x is null or unset. (The $(ls) command substitu-
tion notation is explained in Command Substitution above.)

${x:-$(ls)}

${parameter :=word}

unset X
echo ${X:=abc}
abc

${parameter :?word}

unset posix
echo ${posix:?}
sh: posix: parameter null or not set

${parameter :+word}

set a b c
echo ${3:+posix}
posix

${#parameter}

HOME=/usr/posix
echo ${#HOME}
10

${parameter%word}

x=file.c
echo ${x%.c}.o
file.o

${parameter%%word}
x=posix/src/std
echo ${x%%/∗}
posix

${parameter#word}

x=$HOME/src/cmd
echo ${x#$HOME}
/src/cmd

${parameter##word}

x=/one/two/three
echo ${x##∗/}
three

modified 18 Mar 1997 SunOS 5.6 1-493

ksh (1) User Commands

Parameters Set by
Shell

The following parameters are automatically set by the shell:

The number of positional parameters in decimal.

− Flags supplied to the shell on invocation or by the set command.

? The decimal value returned by the last executed command.

$ The process number of this shell.

_ Initially, the value of _ is an absolute pathname of the shell or script
being executed as passed in the environment. Subsequently it is
assigned the last argument of the previous command. This parameter
is not set for commands which are asynchronous. This parameter is
also used to hold the name of the matching MAIL file when checking
for mail.

! The process number of the last background command invoked.

ERRNO The value of errno as set by the most recently failed system call. This
value is system dependent and is intended for debugging purposes.

LINENO The line number of the current line within the script or function being
executed.

OLDPWD The previous working directory set by the cd command.

OPTARG The value of the last option argument processed by the getopts spe-
cial command.

OPTIND The index of the last option argument processed by the getopts spe-
cial command.

PPID The process number of the parent of the shell.

PWD The present working directory set by the cd command.

RANDOM Each time this variable is referenced, a random integer, uniformly dis-
tributed between 0 and 32767, is generated. The sequence of random
numbers can be initialized by assigning a numeric value to RANDOM.

REPLY This variable is set by the select statement and by the read special
command when no arguments are supplied.

SECONDS Each time this variable is referenced, the number of seconds since
shell invocation is returned. If this variable is assigned a value, then
the value returned upon reference will be the value that was assigned
plus the number of seconds since the assignment.

Variables Used by
Shell

The following variables are used by the shell:

CDPATH The search path for the cd command.

COLUMNS
If this variable is set, the value is used to define the width of the edit
window for the shell edit modes and for printing select lists.

EDITOR If the value of this variable ends in emacs, gmacs, or vi and the
VISUAL variable is not set, then the corresponding option (see the set

1-494 SunOS 5.6 modified 18 Mar 1997

User Commands ksh (1)

special command below) will be turned on.

ENV This variable, when the shell is invoked, is subjected to parameter
expansion by the shell and the resulting value is used as a pathname
of a file containing shell commands to execute in the current environ-
ment. The file need not be executable. If the expanded value of ENV
is not an absolute pathname, the results are unspecified. ENV will be
ignored if the user’s real and effective user IDs or real and effective
group IDs are different.

This variable can be used to set aliases and other items local to the
invocation of a shell. The file referred to by ENV differs from
$HOME/.profile in that .profile is typically executed at session
startup, whereas the ENV file is executed at the beginning of each
shell invocation. The ENV value is interpreted in a manner similar to
a dot script, in that the commands are executed in the current
environment and the file needs to be readable, but not executable.
However, unlike dot scripts, no PATH searching is performed. This is
used as a guard against Trojan Horse security breaches.

FCEDIT The default editor name for the fc command.

FPATH The search path for function definitions. By default the FPATH direc-
tories are searched after the PATH variable. If an executable file is
found, then it is read and executed in the current environment.
FPATH is searched before PATH when a function with the −u attribute
is referenced. The preset alias autoload preset alias causes a function
with the −u attribute to be created.

IFS Internal field separators, normally space, tab, and new-line that are
used to separate command words which result from command or
parameter substitution and for separating words with the special
command read. The first character of the IFS variable is used to
separate arguments for the $∗ substitution (See Quoting below).

HISTFILE If this variable is set when the shell is invoked, then the value is the
pathname of the file that will be used to store the command history.
(See Command re-entry below.)

HISTSIZE If this variable is set when the shell is invoked, then the number of
previously entered commands that are accessible by this shell will be
greater than or equal to this number. The default is 128.

HOME The default argument (home directory) for the cd command.

LC_ALL This variable provides a default value for the LC_∗ variables.

LC_COLLATE
This variable determines the behavior of range expressions,
equivalence classes and multi-byte character collating elements within
pattern matching.

LC_CTYPE Determines how the shell handles characters. When LC_CTYPE is set

modified 18 Mar 1997 SunOS 5.6 1-495

ksh (1) User Commands

to a valid value, the shell can display and handle text and filenames
containing valid characters for that locale. If LC_CTYPE (see
environ(5)) is not set in the environment, the operational behavior of
the shell is determined by the value of the LANG environment vari-
able. If LC_ALL is set, its contents are used to override both the LANG
and the other LC_∗ variables.

LC_MESSAGES
This variable determines the language in which messages should be
written.

LANG Provide a default value for the internationalization variables that are
unset or null. If any of the internationalization variables contains an
invalid setting, the utility will behave as if none of the variables had
been defined.

LINENO This variable is set by the shell to a decimal number representing the
current sequential line number (numbered starting with 1) within a
script or function before it executes each command. If the user unsets
or resets LINENO, the variable may lose its special meaning for the life
of the shell. If the shell is not currently executing a script or function,
the value of LINENO is unspecified.

LINES If this variable is set, the value is used to determine the column length
for printing select lists. Select lists will print vertically until about
two-thirds of LINES lines are filled.

MAIL If this variable is set to the name of a mail file and the MAILPATH vari-
able is not set, then the shell informs the user of arrival of mail in the
specified file.

MAILCHECK
This variable specifies how often (in seconds) the shell will check for
changes in the modification time of any of the files specified by the
MAILPATH or MAIL variables. The default value is 600 seconds.
When the time has elapsed the shell will check before issuing the next
prompt.

MAILPATH
A colon (:) separated list of file names. If this variable is set, then the
shell informs the user of any modifications to the specified files that
have occurred within the last MAILCHECK seconds. Each file name
can be followed by a ? and a message that will be printed. The mes-
sage will undergo parameter substitution with the variable $_ defined
as the name of the file that has changed. The default message is you
have mail in $_.

NLSPATH Determine the location of message catalogues for the processing of
LC_MESSAGES.

PATH The search path for commands (see Execution below). The user may
not change PATH if executing under rksh (except in .profile).

1-496 SunOS 5.6 modified 18 Mar 1997

User Commands ksh (1)

PPID This variable is set by the shell to the decimal process ID of the pro-
cess that invoked the shell. In a subshell, PPID will be set to the same
value as that of the parent of the current shell. For example, echo
$PPID and (echo $PPID) would produce the same value.

PS1 The value of this variable is expanded for parameter substitution to
define the primary prompt string which by default is ‘‘$ ’’. The char-
acter ! in the primary prompt string is replaced by the command
number (see Command Re-entry below). Two successive occurrences
of ! will produce a single ! when the prompt string is printed.

PS2 Secondary prompt string, by default ‘‘> ’’.

PS3 Selection prompt string used within a select loop, by default ‘‘#? ’’.

PS4 The value of this variable is expanded for parameter substitution and
precedes each line of an execution trace. If omitted, the execution
trace prompt is ‘‘+ ’’.

SHELL The pathname of the shell is kept in the environment. At invocation, if
the basename of this variable is rsh, rksh, or krsh, then the shell
becomes restricted.

TMOUT If set to a value greater than zero, the shell will terminate if a com-
mand is not entered within the prescribed number of seconds after
issuing the PS1 prompt. (Note that the shell can be compiled with a
maximum bound for this value which cannot be exceeded.)

VISUAL If the value of this variable ends in emacs, gmacs, or vi then the
corresponding option (see Special Command set below) will be
turned on.

The shell gives default values to PATH, PS1, PS2, PS3, PS4, MAILCHECK, FCEDIT, TMOUT
and IFS, while HOME, SHELL ENV and MAIL are not set at all by the shell (although
HOME is set by login(1)). On some systems MAIL and SHELL are also set by login.

Blank Interpretation After parameter and command substitution, the results of substitutions are scanned for
the field separator characters (those found in IFS) and split into distinct arguments where
such characters are found. Explicit null arguments ("") or (’’) are retained. Implicit null
arguments (those resulting from parameters that have no values) are removed.

File Name
Generation

Following substitution, each command word is scanned for the characters ∗, ?, and [
unless the −f option has been set. If one of these characters appears then the word is
regarded as a pattern . The word is replaced with lexicographically sorted file names that
match the pattern. If no file name is found that matches the pattern, then the word is left
unchanged. When a pattern is used for file name generation, the character period (.) at
the start of a file name or immediately following a /, as well as the character / itself, must
be matched explicitly. A file name beginning with a period will not be matched with a
pattern with the period inside parentheses; that is

modified 18 Mar 1997 SunOS 5.6 1-497

ksh (1) User Commands

ls .@(r∗)

would locate a file named .restore, but ls @(.r∗) would not. In other instances of pattern
matching the / and . are not treated specially.

∗ Matches any string, including the null string.
? Matches any single character.
[. . .] Matches any one of the enclosed characters. A pair of characters

separated by − matches any character lexically between the pair,
inclusive. If the first character following the opening "[" is a "! ", then
any character not enclosed is matched. A − can be included in the char-
acter set by putting it as the first or last character.

A pattern-list is a list of one or more patterns separated from each other with a �. Compo-
site patterns can be formed with one or more of the following:

?(pattern-list) Optionally matches any one of the given patterns.
∗(pattern-list) Matches zero or more occurrences of the given patterns.
+(pattern-list) Matches one or more occurrences of the given patterns.
@(pattern-list) Matches exactly one of the given patterns.
!(pattern-list) Matches anything, except one of the given patterns.

Quoting Each of the metacharacters listed above (See Definitions) has a special meaning to the shell
and causes termination of a word unless quoted. A character may be quoted (that is,
made to stand for itself) by preceding it with a \ . The pair \ NEWLINE is removed. All
characters enclosed between a pair of single quote marks (′′) are quoted. A single quote
cannot appear within single quotes. Inside double quote marks (""), parameter and com-
mand substitution occur and \ quotes the characters \ , `, ", and $. The meaning of $∗
and $@ is identical when not quoted or when used as a parameter assignment value or as
a file name. However, when used as a command argument, $∗ is equivalent to
‘‘$1d $2d . . .’’, where d is the first character of the IFS variable, whereas $@ is equivalent to
$1 $2 Inside grave quote marks (``), \ quotes the characters \ , ‘, and $. If the grave
quotes occur within double quotes, then \ also quotes the character ".

The special meaning of reserved words or aliases can be removed by quoting any charac-
ter of the reserved word. The recognition of function names or special command names
listed below cannot be altered by quoting them.

Arithmetic
Evaluation

An ability to perform integer arithmetic is provided with the special command let.
Evaluations are performed using long arithmetic. Constants are of the form [base#] n
where base is a decimal number between two and thirty-six representing the arithmetic
base and n is a number in that base. If base is omitted then base 10 is used.

An arithmetic expression uses the same syntax, precedence, and associativity of expres-
sion as the C language. All the integral operators, other than ++, − −, ?:, and , are sup-
ported. Variables can be referenced by name within an arithmetic expression without
using the parameter substitution syntax. When a variable is referenced, its value is
evaluated as an arithmetic expression.

1-498 SunOS 5.6 modified 18 Mar 1997

User Commands ksh (1)

An internal integer representation of a variable can be specified with the −i option of the
typeset special command. Arithmetic evaluation is performed on the value of each
assignment to a variable with the −i attribute. If you do not specify an arithmetic base,
the first assignment to the variable determines the arithmetic base. This base is used
when parameter substitution occurs.

Since many of the arithmetic operators require quoting, an alternative form of the let
command is provided. For any command which begins with a ((, all the characters until
a matching)) are treated as a quoted expression. More precisely, ((. . .)) is equivalent to
let " . . .".

Prompting When used interactively, the shell prompts with the parameter expanded value of PS1
before reading a command. If at any time a new-line is typed and further input is needed
to complete a command, then the secondary prompt (that is, the value of PS2) is issued.

Conditional
Expressions

A conditional expression is used with the [[compound command to test attributes of files
and to compare strings. Word splitting and file name generation are not performed on
the words between [[and]]. Each expression can be constructed from one or more of the
following unary or binary expressions:

−a file True, if file exists.
−b file True, if file exists and is a block special file.
−c file True, if file exists and is a character special file.
−d file True, if file exists and is a directory.
−e file True, if file exists.
−f file True, if file exists and is an ordinary file.
−g file True, if file exists and is has its setgid bit set.
−k file True, if file exists and is has its sticky bit set.
−n string True, if length of string is non-zero.
−o option True, if option named option is on.
−p file True, if file exists and is a fifo special file or a pipe.
−r file True, if file exists and is readable by current process.
−s file True, if file exists and has size greater than zero.
−t fildes True, if file descriptor number fildes is open and associated with a

terminal device.
−u file True, if file exists and has its setuid bit set.
−w file True, if file exists and is writable by current process.
−x file True, if file exists and is executable by current process. If file exists

and is a directory, then the current process has permission to
search in the directory.

−z string True, if length of string is zero.
−L file True, if file exists and is a symbolic link.
−O file True, if file exists and is owned by the effective user id of this pro-

cess.
−G file True, if file exists and its group matches the effective group id of

this process.
−S file True, if file exists and is a socket.

modified 18 Mar 1997 SunOS 5.6 1-499

ksh (1) User Commands

file1 −nt file2 True, if file1 exists and is newer than file2.
file1 −ot file2 True, if file1 exists and is older than file2.
file1 −ef file2 True, if file1 and file2 exist and refer to the same file.
string True if the string string is not the null string.
string = pattern True, if string matches pattern .
string != pattern True, if string does not match pattern .
string1 = string2 True if the strings string1 and string2 are identical.
string1 ! = string2 True if the strings string1 and string2 are not identical.
string1 < string2 True, if string1 comes before string2 based on strings interpreted as

appropriate to the locale setting for category LC_COLLATE.
string1 > string2 True, if string1 comes after string2 based on strings interpreted as

appropriate to the locale setting for category LC_COLLATE.
exp1 −eq exp2 True, if exp1 is equal to exp2.
exp1 −ne exp2 True, if exp1 is not equal to exp2.
exp1 −lt exp2 True, if exp1 is less than exp2.
exp1 −gt exp2 True, if exp1 is greater than exp2.
exp1 −le exp2 True, if exp1 is less than or equal to exp2.
exp1 −ge exp2 True, if exp1 is greater than or equal to exp2.

In each of the above expressions, if file is of the form /dev/fd/n, where n is an integer, then
the test is applied to the open file whose descriptor number is n.

A compound expression can be constructed from these primitives by using any of the fol-
lowing, listed in decreasing order of precedence.

(expression) True, if expression is true. Used to group expressions.
! expression True if expression is false.
expression1 && expression2 True, if expression1 and expression2 are both true.
expression1 �� expression2 True, if either expression1 or expression2 is true.

Input/Output Before a command is executed, its input and output may be redirected using a special
notation interpreted by the shell. The following may appear anywhere in a simple-
command or may precede or follow a command and are not passed on to the invoked
command. Command and parameter substitution occur before word or digit is used
except as noted below. File name generation occurs only if the pattern matches a single
file, and blank interpretation is not performed.

<word Use file word as standard input (file descriptor 0).

>word Use file word as standard output (file descriptor 1). If the file does not
exist then it is created. If the file exists, and the noclobber option is on,
this causes an error; otherwise, it is truncated to zero length.

>|word Sames as >, except that it overrides the noclobber option.

>>word Use file word as standard output. If the file exists then output is
appended to it (by first seeking to the EOF); otherwise, the file is created.

<>word Open file word for reading and writing as standard input.

<< [−]word The shell input is read up to a line that is the same as word , or to an EOF.
No parameter substitution, command substitution or file name

1-500 SunOS 5.6 modified 18 Mar 1997

User Commands ksh (1)

generation is performed on word . The resulting document, called a
here-document, becomes the standard input. If any character of word is
quoted, then no interpretation is placed upon the characters of the docu-
ment; otherwise, parameter and command substitution occur, \ NEW-
LINE is ignored, and \ must be used to quote the characters \ , $, `, and
the first character of word . If − is appended to <<, then all leading tabs
are stripped from word and from the document.

<&digit The standard input is duplicated from file descriptor digit (see dup(2)).
Similarly for the standard output using >&digit.

<&− The standard input is closed. Similarly for the standard output using
>&−.

<&p The input from the co-process is moved to standard input.

>&p The output to the co-process is moved to standard output.

If one of the above is preceded by a digit, then the file descriptor number referred to is
that specified by the digit (instead of the default 0 or 1). For example:

. . . 2>&1

means file descriptor 2 is to be opened for writing as a duplicate of file descriptor 1.

The order in which redirections are specified is significant. The shell evaluates each
redirection in terms of the (file descriptor, file) association at the time of evaluation. For
example:

. . . 1>fname 2>&1

first associates file descriptor 1 with file fname. It then associates file descriptor 2 with the
file associated with file descriptor 1 (that is fname). If the order of redirections were
reversed, file descriptor 2 would be associated with the terminal (assuming file descriptor
1 had been) and then file descriptor 1 would be associated with file fname.

If a command is followed by & and job control is not active, then the default standard
input for the command is the empty file /dev/null. Otherwise, the environment for the
execution of a command contains the file descriptors of the invoking shell as modified by
input/output specifications.

Environment The environment (see environ(5)) is a list of name-value pairs that is passed to an executed
program in the same way as a normal argument list. The names must be identifiers and
the values are character strings. The shell interacts with the environment in several ways.
On invocation, the shell scans the environment and creates a variable for each name
found, giving it the corresponding value and marking it export . Executed commands
inherit the environment. If the user modifies the values of these variables or creates new
ones, using the export or typeset −x commands they become part of the environment.
The environment seen by any executed command is thus composed of any name-value
pairs originally inherited by the shell, whose values may be modified by the current shell,
plus any additions which must be noted in export or typeset −x commands.

modified 18 Mar 1997 SunOS 5.6 1-501

ksh (1) User Commands

The environment for any simple-command or function may be augmented by prefixing it
with one or more variable assignments. A variable assignment argument is a word of the
form identifier=value. Thus:

TERM=450 cmd args
and
(export TERM; TERM=450; cmd args)

are equivalent (as far as the above execution of cmd is concerned except for special com-
mands listed below that are preceded with a dagger).

If the −k flag is set, all variable assignment arguments are placed in the environment,
even if they occur after the command name. The following first prints a=b c and then c:

echo a=b c
set −k
echo a=b c

This feature is intended for use with scripts written for early versions of the shell and its
use in new scripts is strongly discouraged. It is likely to disappear someday.

Functions The function reserved word, described in the Commands section above, is used to define
shell functions. Shell functions are read in and stored internally. Alias names are
resolved when the function is read. Functions are executed like commands with the
arguments passed as positional parameters. (See Execution below.)

Functions execute in the same process as the caller and share all files and present working
directory with the caller. Traps caught by the caller are reset to their default action inside
the function. A trap condition that is not caught or ignored by the function causes the
function to terminate and the condition to be passed on to the caller. A trap on EXIT set
inside a function is executed after the function completes in the environment of the caller.
Ordinarily, variables are shared between the calling program and the function. However,
the typeset special command used within a function defines local variables whose scope
includes the current function and all functions it calls.

The special command return is used to return from function calls. Errors within func-
tions return control to the caller.

The names of all functions can be listed with typeset +f. typeset −f lists all function
names as well as the text of all functions. typeset −f function-names lists the text of the
named functions only. Functions can be undefined with the −f option of the unset special
command.

Ordinarily, functions are unset when the shell executes a shell script. The −xf option of
the typeset command allows a function to be exported to scripts that are executed
without a separate invocation of the shell. Functions that need to be defined across
separate invocations of the shell should be specified in the ENV file with the −xf option of
typeset.

Function Definition
Command

A function is a user-defined name that is used as a simple command to call a compound
command with new positional parameters. A function is defined with a function definition
command.

1-502 SunOS 5.6 modified 18 Mar 1997

User Commands ksh (1)

The format of a function definition command is as follows:

fname() compound-command[io-redirect . . .]

The function is named fname; it must be a name. An implementation may allow other
characters in a function name as an extension. The implementation will maintain
separate name spaces for functions and variables.

The () in the function definition command consists of two operators. Therefore, intermix-
ing blank characters with the fname, (, and) is allowed, but unnecessary.

The argument compound-command represents a compound command.

When the function is declared, none of the expansions in wordexp will be performed on
the text in compound-command or io-redirect; all expansions will be performed as normal
each time the function is called. Similarly, the optional io-redirect redirections and any
variable assignments within compound-command will be performed during the execution
of the function itself, not the function definition.

When a function is executed, it will have the syntax-error and variable-assignment pro-
perties described for the special built-in utilities.

The compound-command will be executed whenever the function name is specified as the
name of a simple command The operands to the command temporarily will become the
positional parameters during the execution of the compound-command; the special param-
eter # will also be changed to reflect the number of operands. The special parameter 0
will be unchanged. When the function completes, the values of the positional parameters
and the special parameter # will be restored to the values they had before the function
was executed. If the special built-in return is executed in the compound-command, the
function will complete and execution will resume with the next command after the func-
tion call.

An example of how a function definition can be used wherever a simple command is
allowed:

If variable i is equal to "yes",
define function foo to be ls −l
#
["$i" = yes] && foo() {

ls -l
}

The exit status of a function definition will be 0 if the function was declared successfully;
otherwise, it will be greater than zero. The exit status of a function invocation will be the
exit status of the last command executed by the function.

Jobs If the monitor option of the set command is turned on, an interactive shell associates a
job with each pipeline. It keeps a table of current jobs, printed by the jobs command,
and assigns them small integer numbers. When a job is started asynchronously with &,
the shell prints a line which looks like:

modified 18 Mar 1997 SunOS 5.6 1-503

ksh (1) User Commands

[1] 1234

indicating that the job, which was started asynchronously, was job number 1 and had
one (top-level) process, whose process id was 1234.

If you are running a job and wish to do something else you may hit the key ˆZ (CTRL-Z)
which sends a STOP signal to the current job. The shell will then normally indicate that
the job has been ‘Stopped’, and print another prompt. You can then manipulate the state
of this job, putting it in the background with the bg command, or run some other com-
mands and then eventually bring the job back into the foreground with the foreground
command fg. A ˆZ takes effect immediately and is like an interrupt in that pending out-
put and unread input are discarded when it is typed.

A job being run in the background will stop if it tries to read from the terminal. Back-
ground jobs are normally allowed to produce output, but this can be disabled by giving
the command “stty tostop”. If you set this tty option, then background jobs will stop
when they try to produce output like they do when they try to read input.

There are several ways to refer to jobs in the shell. A job can be referred to by the pro-
cess id of any process of the job or by one of the following:

%number The job with the given number.
%string Any job whose command line begins with string.
%?string Any job whose command line contains string.
%% Current job.
%+ Equivalent to %%.
%− Previous job.

The shell learns immediately whenever a process changes state. It normally informs you
whenever a job becomes blocked so that no further progress is possible, but only just
before it prints a prompt. This is done so that it does not otherwise disturb your work.

When the monitor mode is on, each background job that completes triggers any trap set
for CHLD.

When you try to leave the shell while jobs are running or stopped, you will be warned
that ‘You have stopped(running) jobs.’ You may use the jobs command to see what they
are. If you do this or immediately try to exit again, the shell will not warn you a second
time, and the stopped jobs will be terminated. If you have nohup’ed jobs running when
you attempt to logout, you will be warned with the message

You have jobs running.

You will then need to logout a second time to actually logout; however, your background
jobs will continue to run.

Signals The INT and QUIT signals for an invoked command are ignored if the command is fol-
lowed by & and the monitor option is not active. Otherwise, signals have the values
inherited by the shell from its parent (but see also the trap special command below).

Execution Each time a command is executed, the above substitutions are carried out. If the com-
mand name matches one of the Special Commands listed below, it is executed within the
current shell process. Next, the command name is checked to see if it matches one of the

1-504 SunOS 5.6 modified 18 Mar 1997

User Commands ksh (1)

user defined functions. If it does, the positional parameters are saved and then reset to
the arguments of the function call. When the function completes or issues a return, the
positional parameter list is restored and any trap set on EXIT within the function is exe-
cuted. The value of a function is the value of the last command executed. A function is
also executed in the current shell process. If a command name is not a special command
or a user defined function, a process is created and an attempt is made to execute the
command via exec(2).

The shell variable PATH defines the search path for the directory containing the com-
mand. Alternative directory names are separated by a colon (:). The default path is
/bin:/usr/bin: (specifying /bin, /usr/bin, and the current directory in that order). The
current directory can be specified by two or more adjacent colons, or by a colon at the
beginning or end of the path list. If the command name contains a / then the search path
is not used. Otherwise, each directory in the path is searched for an executable file. If the
file has execute permission but is not a directory or an a.out file, it is assumed to be a file
containing shell commands. A sub-shell is spawned to read it. All non-exported aliases,
functions, and variables are removed in this case. A parenthesized command is executed
in a sub-shell without removing non-exported quantities.

Command Re-entry The text of the last HISTSIZE (default 128) commands entered from a terminal device is
saved in a history file. The file $HOME/.sh_history is used if the HISTFILE variable is not
set or if the file it names is not writable. A shell can access the commands of all interactive
shells which use the same named HISTFILE. The special command fc is used to list or
edit a portion of this file. The portion of the file to be edited or listed can be selected by
number or by giving the first character or characters of the command. A single command
or range of commands can be specified. If you do not specify an editor program as an
argument to fc then the value of the variable FCEDIT is used. If FCEDIT is not defined
then /bin/ed is used. The edited command(s) is printed and re-executed upon leaving the
editor. The editor name − is used to skip the editing phase and to re-execute the com-
mand. In this case a substitution parameter of the form old=new can be used to modify
the command before execution. For example, if r is aliased to ′fc −e −′ then typing ‘r
bad=good c’ will re-execute the most recent command which starts with the letter c,
replacing the first occurrence of the string bad with the string good.

In-line Editing
Option

Normally, each command line entered from a terminal device is simply typed followed
by a new-line (RETURN or LINEFEED). If either the emacs, gmacs, or vi option is active,
the user can edit the command line. To be in either of these edit modes set the
corresponding option. An editing option is automatically selected each time the VISUAL
or EDITOR variable is assigned a value ending in either of these option names.

The editing features require that the user’s terminal accept RETURN as carriage return
without line feed and that a space must overwrite the current character on the screen.

The editing modes implement a concept where the user is looking through a window at
the current line. The window width is the value of COLUMNS if it is defined, otherwise
80. If the window width is too small to display the prompt and leave at least 8 columns
to enter input, the prompt is truncated from the left. If the line is longer than the window
width minus two, a mark is displayed at the end of the window to notify the user. As the

modified 18 Mar 1997 SunOS 5.6 1-505

ksh (1) User Commands

cursor moves and reaches the window boundaries the window will be centered about the
cursor. The mark is a > if the line extends on the right side of the window, < if the line
extends on the left, and ∗ if the line extends on both sides of the window.

The search commands in each edit mode provide access to the history file. Only strings
are matched, not patterns, although a leading ˆ in the string restricts the match to begin at
the first character in the line.

emacs Editing Mode This mode is entered by enabling either the emacs or gmacs option. The only difference
between these two modes is the way they handle ˆT. To edit, the user moves the cursor
to the point needing correction and then inserts or deletes characters or words as needed.
All the editing commands are control characters or escape sequences. The notation for
control characters is caret (ˆ) followed by the character. For example, ˆF is the notation
for control F. This is entered by depressing ‘f’ while holding down the CTRL (control)
key. The SHIFT key is not depressed. (The notation ˆ? indicates the DEL (delete) key.)

The notation for escape sequences is M- followed by a character. For example, M-f (pro-
nounced Meta f) is entered by depressing ESC (ascii 033) followed by ‘f’. (M-F would be
the notation for ESC followed by SHIFT (capital) ‘F’.)

All edit commands operate from any place on the line (not just at the beginning). Neither
the RETURN nor the LINEFEED key is entered after edit commands except when noted.

ˆF Move cursor forward (right) one character.
M-f Move cursor forward one word. (The emacs editor’s idea of a word is a

string of characters consisting of only letters, digits and underscores.)
ˆB Move cursor backward (left) one character.
M-b Move cursor backward one word.
ˆA Move cursor to start of line.
ˆE Move cursor to end of line.
ˆ]char Move cursor forward to character char on current line.
M-ˆ]char Move cursor backward to character char on current line.
ˆXˆX Interchange the cursor and mark.
erase (User defined erase character as defined by the stty(1) command, usu-

ally ˆH or #.) Delete previous character.
ˆD Delete current character.
M-d Delete current word.
M-ˆH (Meta-backspace) Delete previous word.
M-h Delete previous word.
M-ˆ? (Meta-DEL) Delete previous word (if your interrupt character is ˆ? (DEL,

the default) then this command will not work).
ˆT Transpose current character with next character in emacs mode. Tran-

spose two previous characters in gmacs mode.
ˆC Capitalize current character.
M-c Capitalize current word.
M-l Change the current word to lower case.
ˆK Delete from the cursor to the end of the line. If preceded by a numerical

parameter whose value is less than the current cursor position, then

1-506 SunOS 5.6 modified 18 Mar 1997

User Commands ksh (1)

delete from given position up to the cursor. If preceded by a numerical
parameter whose value is greater than the current cursor position, then
delete from cursor up to given cursor position.

ˆW Kill from the cursor to the mark.
M-p Push the region from the cursor to the mark on the stack.
kill (User defined kill character as defined by the stty(1) command, usually

ˆG or @.) Kill the entire current line. If two kill characters are entered in
succession, all kill characters from then on cause a line feed (useful
when using paper terminals).

ˆY Restore last item removed from line. (Yank item back to the line.)
ˆL Line feed and print current line.
ˆ@ (null character) Set mark.
M-space (Meta space) Set mark.
J (New line) Execute the current line.
M (Return) Execute the current line.
eof End-of-file character, normally ˆD, is processed as an End-of-file only if

the current line is null.
ˆP Fetch previous command. Each time ˆP is entered the previous com-

mand back in time is accessed. Moves back one line when not on the
first line of a multi-line command.

M-< Fetch the least recent (oldest) history line.
M-> Fetch the most recent (youngest) history line.
ˆN Fetch next command line. Each time ˆN is entered the next command

line forward in time is accessed.
ˆRstring Reverse search history for a previous command line containing string. If

a parameter of zero is given, the search is forward. string is terminated
by a RETURN or NEW LINE. If string is preceded by a ˆ, the matched line
must begin with string. If string is omitted, then the next command line
containing the most recent string is accessed. In this case a parameter of
zero reverses the direction of the search.

ˆO Operate. Execute the current line and fetch the next line relative to
current line from the history file.

M-digits (Escape) Define numeric parameter, the digits are taken as a parameter
to the next command. The commands that accept a parameter are ˆF, ˆB,
erase, ˆC, ˆD, ˆK, ˆR, ˆP, ˆN, ˆ], M-., M-ˆ], M-_, M-b, M-c, M-d, M-f, M-h,
M-l and M-ˆH.

M-letter Soft-key. Your alias list is searched for an alias by the name _letter and if
an alias of this name is defined, its value will be inserted on the input
queue. The letter must not be one of the above meta-functions.

M-[letter Soft-key. Your alias list is searched for an alias by the name __letter and
if an alias of this name is defined, its value will be inserted on the input
queue. The can be used to program functions keys on many terminals.

M−. The last word of the previous command is inserted on the line. If pre-
ceded by a numeric parameter, the value of this parameter determines
which word to insert rather than the last word.

modified 18 Mar 1997 SunOS 5.6 1-507

ksh (1) User Commands

M−_ Same as M−..
M−∗ An asterisk is appended to the end of the word and a file name expan-

sion is attempted.
M−ESC File name completion. Replaces the current word with the longest com-

mon prefix of all filenames matching the current word with an asterisk
appended. If the match is unique, a / is appended if the file is a direc-
tory and a space is appended if the file is not a directory.

M−= List files matching current word pattern if an asterisk were appended.
ˆU Multiply parameter of next command by 4.
\ Escape next character. Editing characters, the user’s erase, kill and inter-

rupt (normally ˆ?) characters may be entered in a command line or in a
search string if preceded by a \ . The \ removes the next character’s
editing features (if any).

ˆV Display version of the shell.
M-# Insert a # at the beginning of the line and execute it. This causes a com-

ment to be inserted in the history file.

vi Editing Mode There are two typing modes. Initially, when you enter a command you are in the input
mode. To edit, the user enters control mode by typing ESC (033) and moves the cursor to
the point needing correction and then inserts or deletes characters or words as needed.
Most control commands accept an optional repeat count prior to the command.

When in vi mode on most systems, canonical processing is initially enabled and the com-
mand will be echoed again if the speed is 1200 baud or greater and it contains any control
characters or less than one second has elapsed since the prompt was printed. The ESC
character terminates canonical processing for the remainder of the command and the
user can then modify the command line. This scheme has the advantages of canonical
processing with the type-ahead echoing of raw mode.

If the option viraw is also set, the terminal will always have canonical processing dis-
abled. This mode is implicit for systems that do not support two alternate end of line del-
imiters, and may be helpful for certain terminals.

Input Edit
Commands

By default the editor is in input mode.

erase (User defined erase character as defined by the stty(1) command, usu-
ally ˆH or #.) Delete previous character.

ˆW Delete the previous blank separated word.

ˆD Terminate the shell.

ˆV Escape next character. Editing characters and the user’s erase or kill
characters may be entered in a command line or in a search string if
preceded by a ˆV. The ˆV removes the next character’s editing
features (if any).

\ Escape the next erase or kill character.

1-508 SunOS 5.6 modified 18 Mar 1997

User Commands ksh (1)

Motion Edit
Commands

These commands will move the cursor.

[count]l Cursor forward (right) one character.

[count]w Cursor forward one alpha-numeric word.

[count]W Cursor to the beginning of the next word that follows a blank.

[count]e Cursor to end of word.

[count]E Cursor to end of the current blank delimited word.

[count]h Cursor backward (left) one character.

[count]b Cursor backward one word.

[count]B Cursor to preceding blank separated word.

[count]� Cursor to column count.

[count]fc Find the next character c in the current line.

[count]Fc Find the previous character c in the current line.

[count]tc Equivalent to f followed by h.

[count]Tc Equivalent to F followed by l.

[count]; Repeats count times, the last single character find command, f, F, t, or
T.

[count], Reverses the last single character find command count times.

0 Cursor to start of line.

ˆ Cursor to first non-blank character in line.

$ Cursor to end of line.

% Moves to balancing (,), {, }, [, or]. If cursor is not on one of the above
characters, the remainder of the line is searched for the first
occurrence of one of the above characters first.

Search Edit
Commands

These commands access your command history.

[count]k Fetch previous command. Each time k is entered the previous com-
mand back in time is accessed.

[count]− Equivalent to k.

[count]j Fetch next command. Each time j is entered the next command for-
ward in time is accessed.

[count]+ Equivalent to j.

[count]G The command number count is fetched. The default is the least recent
history command.

/string Search backward through history for a previous command containing
string. string is terminated by a RETURN or NEWLINE. If string is pre-
ceded by a ˆ, the matched line must begin with string. If string is
NULL, the previous string will be used.

modified 18 Mar 1997 SunOS 5.6 1-509

ksh (1) User Commands

?string Same as / except that search will be in the forward direction.

n Search for next match of the last pattern to / or ? commands.

N Search for next match of the last pattern to / or ?, but in reverse direc-
tion. Search history for the string entered by the previous / command.

Text Modification
Edit Commands

These commands will modify the line.

a Enter input mode and enter text after the current character.

A Append text to the end of the line. Equivalent to $a.

[count]cmotion
c[count]motion

Delete current character through the character that motion would
move the cursor to and enter input mode. If motion is c, the entire line
will be deleted and input mode entered.

C Delete the current character through the end of line and enter input
mode. Equivalent to c$.

[count]s Delete count characters and enter input mode.

S Equivalent to cc.

D Delete the current character through the end of line. Equivalent to d$.

[count]dmotion
d[count]motion

Delete current character through the character that motion would
move to. If motion is d, the entire line will be deleted.

i Enter input mode and insert text before the current character.

I Insert text before the beginning of the line. Equivalent to 0i.

[count]P Place the previous text modification before the cursor.

[count]p Place the previous text modification after the cursor.

R Enter input mode and replace characters on the screen with characters
you type overlay fashion.

[count]rc Replace the count character(s) starting at the current cursor position
with c, and advance the cursor.

[count]x Delete current character.

[count]X Delete preceding character.

[count]. Repeat the previous text modification command.

[count]∼ Invert the case of the count character(s) starting at the current cursor
position and advance the cursor.

[count]_ Causes the count word of the previous command to be appended and
input mode entered. The last word is used if count is omitted.

∗ Causes an ∗ to be appended to the current word and file name genera-
tion attempted. If no match is found, it rings the bell. Otherwise, the

1-510 SunOS 5.6 modified 18 Mar 1997

User Commands ksh (1)

word is replaced by the matching pattern and input mode is entered.

\ Filename completion. Replaces the current word with the longest
common prefix of all filenames matching the current word with an
asterisk appended. If the match is unique, a / is appended if the file is
a directory and a space is appended if the file is not a directory.

Other Edit
Commands

Miscellaneous commands.
[count]ymotion
y[count]motion

Yank current character through character that motion would move the
cursor to and puts them into the delete buffer. The text and cursor are
unchanged.

Y Yanks from current position to end of line. Equivalent to y$.

u Undo the last text modifying command.

U Undo all the text modifying commands performed on the line.

[count]v
Returns the command fc −e ${VISUAL:−${EDITOR:−vi}} count in the input
buffer. If count is omitted, then the current line is used.

ˆL Line feed and print current line. Has effect only in control mode.

J (New line) Execute the current line, regardless of mode.

M (Return) Execute the current line, regardless of mode.

If the first character of the command is a #, then this command deletes
this # and each # that follows a newline. Otherwise, sends the line after
inserting a # in front of each line in the command. Useful for causing the
current line to be inserted in the history as a comment and removing
comments from previous comment commands in the history file.

= List the file names that match the current word if an asterisk were
appended it.

@letter Your alias list is searched for an alias by the name _letter and if an alias of
this name is defined, its value will be inserted on the input queue for pro-
cessing.

Special Commands The following simple-commands are executed in the shell process. Input/Output redirec-
tion is permitted. Unless otherwise indicated, the output is written on file descriptor 1
and the exit status, when there is no syntax error, is 0. Commands that are preceded by
one or two † (daggers) are treated specially in the following ways:

1. Variable assignment lists preceding the command remain in effect when the
command completes.

2. I/O redirections are processed after variable assignments.
3. Errors cause a script that contains them to abort.
4. Words, following a command preceded by †† that are in the format of a vari-

able assignment, are expanded with the same rules as a variable assignment.

modified 18 Mar 1997 SunOS 5.6 1-511

ksh (1) User Commands

This means that tilde substitution is performed after the = sign and word
splitting and file name generation are not performed.

† : [arg . . .]
The command only expands parameters.

† . file [arg . . .]
Read the complete file then execute the commands. The commands are executed
in the current shell environment. The search path specified by PATH is used to
find the directory containing file. If any arguments arg are given, they become
the positional parameters. Otherwise the positional parameters are unchanged.
The exit status is the exit status of the last command executed.

†† alias [−tx] [name[=value]] . . .
alias with no arguments prints the list of aliases in the form name=value on stan-
dard output. An alias is defined for each name whose value is given. A trailing
space in value causes the next word to be checked for alias substitution. The −t
flag is used to set and list tracked aliases. The value of a tracked alias is the full
pathname corresponding to the given name. The value becomes undefined when
the value of PATH is reset but the aliases remained tracked. Without the −t flag,
for each name in the argument list for which no value is given, the name and value
of the alias is printed. The −x flag is used to set or print exported aliases. An
exported alias is defined for scripts invoked by name. The exit status is non-zero if
a name is given, but no value, and no alias has been defined for the name.

bg [%job. . .]
This command is only on systems that support job control. Puts each specified
job into the background. The current job is put in the background if job is not
specified. See "Jobs" section above for a description of the format of job .

† break [n]
Exit from the enclosed for, while, until, or select loop, if any. If n is specified
then break n levels.

† continue [n]
Resume the next iteration of the enclosed for, while, until, or select loop. If n is
specified then resume at the n-th enclosed loop.

cd [arg]
cd old new

This command can be in either of two forms. In the first form it changes the
current directory to arg . If arg is − the directory is changed to the previous direc-
tory. The shell variable HOME is the default arg . The variable PWD is set to the
current directory. The shell variable CDPATH defines the search path for the
directory containing arg . Alternative directory names are separated by a colon
(:). The default path is null (specifying the current directory). Note that the
current directory is specified by a null path name, which can appear immediately
after the equal sign or between the colon delimiters anywhere else in the path list.
If arg begins with a / then the search path is not used. Otherwise, each directory
in the path is searched for arg .

1-512 SunOS 5.6 modified 18 Mar 1997

User Commands ksh (1)

The second form of cd substitutes the string new for the string old in the current
directory name, PWD and tries to change to this new directory.

The cd command may not be executed by rksh.
command [−p] [command_name] [argument . . .]
command [−v −V] command_name

The command utility causes the shell to treat the arguments as a simple com-
mand, suppressing the shell function lookup. The −p flag performs the com-
mand search using a default value for PATH that is guaranteed to find all of the
standard utilities. The −v flag writes a string to standard output that indicates
the pathname or command that will be used by the shell, in the current shell exe-
cution environment, to invoke command_name. The −V flag writes a string to
standard output that indicates how the name given in the command_name
operand will be interpreted by the shell, in the current shell execution environ-
ment.

echo [arg . . .]
See echo(1) for usage and description.

† eval [arg . . .]
The arguments are read as input to the shell and the resulting command(s) exe-
cuted.

† exec [arg . . .]
If arg is given, the command specified by the arguments is executed in place of
this shell without creating a new process. Input/output arguments may appear
and affect the current process. If no arguments are given the effect of this com-
mand is to modify file descriptors as prescribed by the input/output redirection
list. In this case, any file descriptor numbers greater than 2 that are opened with
this mechanism are closed when invoking another program.

† exit [n]
Causes the calling shell or shell script to exit with the exit status specified by n.
The value will be the least significant 8 bits of the specified status. If n is omitted
then the exit status is that of the last command executed. When exit occurs when
executing a trap, the last command refers to the command that executed before
the trap was invoked. An EOF will also cause the shell to exit except for a shell
which has the ignoreeof option (See set below) turned on.

†† export [name[=value]] . . .
The given names are marked for automatic export to the environment of
subsequently-executed commands.

fc [−e ename] [−nlr] [first [last]]
fc −e − [old=new] [command]

In the first form, a range of commands from first to last is selected from the last
HISTSIZE commands that were typed at the terminal. The arguments first and
last may be specified as a number or as a string. A string is used to locate the
most recent command starting with the given string. A negative number is used
as an offset to the current command number. If the −l flag is selected, the

modified 18 Mar 1997 SunOS 5.6 1-513

ksh (1) User Commands

commands are listed on standard output. Otherwise, the editor program ename
is invoked on a file containing these keyboard commands. If ename is not sup-
plied, then the value of the variable FCEDIT (default /bin/ed) is used as the edi-
tor. When editing is complete, the edited command(s) is executed. If last is not
specified then it will be set to first. If first is not specified the default is the previ-
ous command for editing and −16 for listing. The flag −r reverses the order of the
commands and the flag −n suppresses command numbers when listing. In the
second form the command is re-executed after the substitution old=new is per-
formed. If there is not a command argument, the most recent command typed at
this terminal is executed.

fg [%job. . .]
This command is only on systems that support job control. Each job specified is
brought to the foreground. Otherwise, the current job is brought into the fore-
ground. See "Jobs" section above for a description of the format of job .

getopts optstring name [arg . . .]
Checks arg for legal options. If arg is omitted, the positional parameters are used.
An option argument begins with a + or a −. An option not beginning with + or −
or the argument − − ends the options. optstring contains the letters that getopts
recognizes. If a letter is followed by a :, that option is expected to have an argu-
ment. The options can be separated from the argument by blanks.

getopts places the next option letter it finds inside variable name each time it is
invoked with a + prepended when arg begins with a +. The index of the next arg
is stored in OPTIND. The option argument, if any, gets stored in OPTARG.

A leading : in optstring causes getopts to store the letter of an invalid option in
OPTARG, and to set name to ? for an unknown option and to : when a required
option is missing. Otherwise, getopts prints an error message. The exit status is
non-zero when there are no more options. See getoptcvt(1) for usage and
description.

hash [name . . .]
For each name, the location in the search path of the command specified by name
is determined and remembered by the shell. The −r option causes the shell to for-
get all remembered locations. If no arguments are given, information about
remembered commands is presented. Hits is the number of times a command
has been invoked by the shell process. Cost is a measure of the work required to
locate a command in the search path. If a command is found in a "relative" direc-
tory in the search path, after changing to that directory, the stored location of that
command is recalculated. Commands for which this will be done are indicated
by an asterisk (∗) adjacent to the hits information. Cost will be incremented when
the recalculation is done.

jobs [−lnp] [%job . . .]
Lists information about each given job; or all active jobs if job is omitted. The −l
flag lists process ids in addition to the normal information. The −n flag displays
only jobs that have stopped or exited since last notified. The −p flag causes only

1-514 SunOS 5.6 modified 18 Mar 1997

User Commands ksh (1)

the process group to be listed. See "Jobs" section above and jobs(1) for a descrip-
tion of the format of job .

kill [−sig] %job . . .
kill [−sig] pid . . .
kill −l

Sends either the TERM (terminate) signal or the specified signal to the specified
jobs or processes. Signals are either given by number or by names (as given in
signal(5) stripped of the prefix ‘‘SIG’’ with the exception that SIGCHD is named
CHLD). If the signal being sent is TERM (terminate) or HUP (hangup), then the
job or process will be sent a CONT (continue) signal if it is stopped. The argu-
ment job can be the process id of a process that is not a member of one of the
active jobs. See Jobs for a description of the format of job . In the second form,
kill −l, the signal numbers and names are listed.

let arg . . .
Each arg is a separate arithmetic expression to be evaluated. See the Arithmetic
Evaluation section above, for a description of arithmetic expression evaluation.

The exit status is 0 if the value of the last expression is non-zero, and 1 otherwise.

login argument . . .
Equivalent to ‘exec login argument. . . .’ See login(1) for usage and description.

† newgrp [arg . . .]
Equivalent to exec /bin/newgrp arg

print [−Rnprsu[n]] [arg . . .]
The shell output mechanism. With no flags or with flag − or − −, the arguments
are printed on standard output as described by echo(1). The exit status is 0,
unless the output file is not open for writing.

−n Suppress NEWLINE from being added to the output.

−R | −r Raw mode. Ignore the escape conventions of echo. The −R option
will print all subsequent arguments and options other than −n.

−p Write the arguments to the pipe of the process spawned with �&
instead of standard output.

−s Write the arguments to the history file instead of standard output.

−u [n] Specify a one digit file descriptor unit number n on which the output
will be placed. The default is 1.

pwd Equivalent to print −r − $PWD.

read [−prsu[n]] [name?prompt] [name . . .] The shell input mechanism. One line is read and
is broken up into fields using the characters in IFS as separators. The escape
character, (\), is used to remove any special meaning for the next character and
for line continuation. In raw mode, −r, the \ character is not treated specially.
The first field is assigned to the first name, the second field to the second name,
etc., with leftover fields assigned to the last name. The −p option causes the input
line to be taken from the input pipe of a process spawned by the shell using �&.

modified 18 Mar 1997 SunOS 5.6 1-515

ksh (1) User Commands

If the −s flag is present, the input will be saved as a command in the history file.
The flag −u can be used to specify a one digit file descriptor unit n to read from.
The file descriptor can be opened with the exec special command. The default
value of n is 0. If name is omitted then REPLY is used as the default name. The
exit status is 0 unless the input file is not open for reading or an EOF is encoun-
tered. An EOF with the −p option causes cleanup for this process so that another
can be spawned. If the first argument contains a ?, the remainder of this word is
used as a prompt on standard error when the shell is interactive. The exit status is
0 unless an EOF is encountered.

†† readonly [name[=value]] . . .
The given names are marked readonly and these names cannot be changed by
subsequent assignment.

† return [n]
Causes a shell function or ’.’ script to return to the invoking script with the return
status specified by n. The value will be the least significant 8 bits of the specified
status. If n is omitted then the return status is that of the last command executed.
If return is invoked while not in a function or a ’.’ script, then it is the same as an
exit.

set [±abCefhkmnopstuvx] [±o option]. . . [±A name] [arg . . .]
The flags for this command have meaning as follows:

−A Array assignment. Unset the variable name and assign values sequen-
tially from the list arg . If +A is used, the variable name is not unset first.

−a All subsequent variables that are defined are automatically exported.

−b Causes the shell to notify the user asynchronously of background job
completions. The following message will be written to standard error:

"[%d]%c %s%s\n", <job-number>, <current>, <status>, <job-name>

where the fields are as follows:

<current> The character + identifies the job that would be used as
a default for the fg or bg utilities; this job can also be
specified using the job_id %+ or %%. The character −
identifies the job that would become the default if the
current default job were to exit; this job can also be
specified using the job_id %−. For other jobs, this field
is a space character. At most one job can be identified
with + and at most one job can be identified with −. If
there is any suspended job, then the current job will be
a suspended job. If there are at least two suspended
jobs, then the previous job will also be a suspended
job.

<job-number> A number that can be used to identify the process
group to the wait, fg, bg, and kill utilities. Using these
utilities, the job can be identified by prefixing the job

1-516 SunOS 5.6 modified 18 Mar 1997

User Commands ksh (1)

number with %.

<status> Unspecified.

<job-name> Unspecified.

When the shell notifies the user a job has been completed, it may remove
the job’s process ID from the list of those known in the current shell exe-
cution environment. Asynchronous notification will not be enabled by
default.

−C Prevent existing files from being overwritten by the shell’s > redirection
operator; the >| redirection operator will override this noclobber option
for an individual file.

−e If a command has a non-zero exit status, execute the ERR trap, if set, and
exit. This mode is disabled while reading profiles.

−f Disables file name generation.

−h Each command becomes a tracked alias when first encountered.

−k All variable assignment arguments are placed in the environment for a
command, not just those that precede the command name.

−m Background jobs will run in a separate process group and a line will
print upon completion. The exit status of background jobs is reported in
a completion message. On systems with job control, this flag is turned
on automatically for interactive shells.

−n Read commands and check them for syntax errors, but do not execute
them. Ignored for interactive shells.

−o The following argument can be one of the following option names:
allexport Same as −a.
errexit Same as −e.
bgnice All background jobs are run at a lower priority. This is the

default mode.
emacs Puts you in an emacs style in-line editor for command

entry.
gmacs Puts you in a gmacs style in-line editor for command entry.
ignoreeof The shell will not exit on EOF. The command exit must be

used.
keyword Same as −k.
markdirs All directory names resulting from file name generation

have a trailing / appended.
monitor Same as −m.
noclobber Prevents redirection > from truncating existing files.

Require >| to truncate a file when turned on. Equivalent to
−C.

noexec Same as −n.
noglob Same as −f.
nolog Do not save function definitions in history file.

modified 18 Mar 1997 SunOS 5.6 1-517

ksh (1) User Commands

notify Equivalent to −b.
nounset Same as −u.
privileged Same as −p.
verbose Same as −v.
trackall Same as −h.
vi Puts you in insert mode of a vi style in-line editor until you

hit escape character 033. This puts you in control mode. A
return sends the line.

viraw Each character is processed as it is typed in vi mode.
xtrace Same as −x.

If no option name is supplied then the current option settings are
printed.

−p Disables processing of the $HOME/.profile file and uses the file
/etc/suid_profile instead of the ENV file. This mode is on whenever the
effective uid is not equal to the real uid, or when the effective gid is not
equal to the real gid. Turning this off causes the effective uid and gid to
be set to the real uid and gid.

−s Sort the positional parameters lexicographically.

−t Exit after reading and executing one command.

−u Treat unset parameters as an error when substituting.

−v Print shell input lines as they are read.

−x Print commands and their arguments as they are executed.

− Turns off −x and −v flags and stops examining arguments for flags.

− − Do not change any of the flags; useful in setting $1 to a value beginning
with −. If no arguments follow this flag then the positional parameters
are unset.

Using + rather than − causes these flags to be turned off. These flags can also be
used upon invocation of the shell. The current set of flags may be found in $−.
Unless −A is specified, the remaining arguments are positional parameters and
are assigned, in order, to $1 $2 If no arguments are given then the names and
values of all variables are printed on the standard output.

† shift [n]
The positional parameters from $n+1 $n+1 . . . are renamed $1 . . ., default n is 1.
The parameter n can be any arithmetic expression that evaluates to a non-
negative number less than or equal to $#.

stop %jobid . . .
stop pid . . .

stop stops the execution of a background job(s) by using its jobid, or of any pro-
cess by using its pid. (see ps(1)).

suspend
Stops the execution of the current shell (but not if it is the login shell).

1-518 SunOS 5.6 modified 18 Mar 1997

User Commands ksh (1)

test expression
Evaluate conditional expressions. See Conditional Expressions section above
and test(1) for usage and description.

† times Print the accumulated user and system times for the shell and for processes run
from the shell.

† trap [arg sig . . .]
arg is a command to be read and executed when the shell receives signal(s) sig.
arg is scanned once when the trap is set and once when the trap is taken. sig can
be specified as a signal number or signal name. trap commands are executed in
order of signal number. Any attempt to set a trap on a signal number that was
ignored on entry to the current shell is ineffective.

If arg is −, the shell will reset each sig to the default value. If arg is null (’’), the
shell will ignore each specified sig if it arises. Otherwise, arg will be read and exe-
cuted by the shell when one of the corresponding sigs arises. The action of the
trap will override a previous action (either default action or one explicitly set).
The value of $? after the trap action completes will be the value it had before the
trap was invoked.

sig can be EXIT, 0 (equivalent to EXIT) or a signal specified using a symbolic name,
without the SIG prefix, for example, HUP, INT, QUIT, TERM. If sig is 0 or EXIT and
the trap statement is executed inside the body of a function, then the command
arg is executed after the function completes. If sig is 0 or EXIT for a trap set out-
side any function then the command arg is executed on exit from the shell. If sig is
ERR then arg will be executed whenever a command has a non-zero exit status. If
sig is DEBUG then arg will be executed after each command.

The environment in which the shell executes a trap on EXIT will be identical to
the environment immediately after the last command executed before the trap on
EXIT was taken.

Each time the trap is invoked, arg will be processed in a manner equivalent to:

eval "$arg"

Signals that were ignored on entry to a non-interactive shell cannot be trapped or
reset, although no error need be reported when attempting to do so. An interac-
tive shell may reset or catch signals ignored on entry. Traps will remain in place
for a given shell until explicitly changed with another trap command.

When a subshell is entered, traps are set to the default args. This does not imply
that the trap command cannot be used within the subshell to set new traps.

The trap command with no arguments will write to standard output a list of
commands associated with each sig. The format is:

trap −− %s %s . . . <arg>, <sig> ...

The shell will format the output, including the proper use of quoting, so that it is
suitable for reinput to the shell as commands that achieve the same trapping
results. For example:

modified 18 Mar 1997 SunOS 5.6 1-519

ksh (1) User Commands

save_traps=$(trap)
. . .
eval "$save_traps"

If the trap name or number is invalid, a non-zero exit status will be returned; oth-
erwise, 0 will be returned. For both interactive and non-interactive shells, invalid
signal names or numbers will not be considered a syntax error and will not cause
the shell to abort.

Traps are not processed while a job is waiting for a foreground process. Thus, a
trap on CHLD won’t be executed until the foreground job terminates.

type name . . .
For each name, indicate how it would be interpreted if used as a command name.

†† typeset [±HLRZfilrtux[n]] [name[=value]] . . .
Sets attributes and values for shell variables and functions. When typeset is
invoked inside a function, a new instance of the variables name is created. The
variables value and type are restored when the function completes. The following
list of attributes may be specified:
−H This flag provides UNIX to host-name file mapping on non-UNIX

machines.
−L Left justify and remove leading blanks from value. If n is non-zero it

defines the width of the field; otherwise, it is determined by the width of
the value of first assignment. When the variable is assigned to, it is filled
on the right with blanks or truncated, if necessary, to fit into the field.
Leading zeros are removed if the −Z flag is also set. The −R flag is
turned off.

−R Right justify and fill with leading blanks. If n is non-zero it defines the
width of the field, otherwise it is determined by the width of the value of
first assignment. The field is left filled with blanks or truncated from the
end if the variable is reassigned. The −L flag is turned off.

−Z Right justify and fill with leading zeros if the first non-blank character is
a digit and the −L flag has not been set. If n is non-zero it defines the
width of the field; otherwise, it is determined by the width of the value of
first assignment.

−f The names refer to function names rather than variable names. No
assignments can be made and the only other valid flags are −t, −u and −x.
The flag −t turns on execution tracing for this function. The flag −u
causes this function to be marked undefined. The FPATH variable will be
searched to find the function definition when the function is referenced.
The flag −x allows the function definition to remain in effect across shell
procedures invoked by name.

−i Parameter is an integer. This makes arithmetic faster. If n is non-zero it
defines the output arithmetic base; otherwise, the first assignment deter-
mines the output base.

−l All upper-case characters are converted to lower-case. The upper-case
flag, −u is turned off.

1-520 SunOS 5.6 modified 18 Mar 1997

User Commands ksh (1)

−r The given names are marked readonly and these names cannot be
changed by subsequent assignment.

−t Tags the variables. Tags are user definable and have no special meaning
to the shell.

−u All lower-case characters are converted to upper-case characters. The
lower-case flag, −l is turned off.

−x The given names are marked for automatic export to the environment of
subsequently-executed commands.

The −i attribute can not be specified along with −R, −L, −Z, or −f.

Using + rather than − causes these flags to be turned off. If no name arguments
are given but flags are specified, a list of names (and optionally the values) of the
variables which have these flags set is printed. (Using + rather than − keeps the
values from being printed.) If no names and flags are given, the names and attri-
butes of all variables are printed.

ulimit [−HSacdfnstv] [limit]
Set or display a resource limit. The available resources limits are listed below.
Many systems do not contain one or more of these limits. The limit for a
specified resource is set when limit is specified. The value of limit can be a
number in the unit specified below with each resource, or the value unlimited.
The H and S flags specify whether the hard limit or the soft limit for the given
resource is set. A hard limit cannot be increased once it is set. A soft limit can be
increased up to the value of the hard limit. If neither the H or S options is
specified, the limit applies to both. The current resource limit is printed when
limit is omitted. In this case the soft limit is printed unless H is specified. When
more that one resource is specified, then the limit name and unit is printed before
the value.
−a Lists all of the current resource limits.
−c The number of 512-byte blocks on the size of core dumps.
−d The number of K-bytes on the size of the data area.
−f The number of 512-byte blocks on files written by child processes (files of

any size may be read).
−n The number of file descriptors plus 1.
−s The number of K-bytes on the size of the stack area.
−t The number of seconds to be used by each process.
−v The number of K-bytes for virtual memory.

If no option is given, −f is assumed.

umask [−S] [mask]
The user file-creation mask is set to mask (see umask(2)). mask can either be an
octal number or a symbolic value as described in chmod(1). If a symbolic value
is given, the new umask value is the complement of the result of applying mask
to the complement of the previous umask value. If mask is omitted, the current
value of the mask is printed. The −S flag produces symbolic output.

unalias name. . .

modified 18 Mar 1997 SunOS 5.6 1-521

ksh (1) User Commands

The aliases given by the list of names are removed from the alias list.

unset [−f] name . . .
The variables given by the list of names are unassigned, that is, their values and
attributes are erased. readonly variables cannot be unset. If the −f, flag is set,
then the names refer to function names. Unsetting ERRNO, LINENO, MAIL-
CHECK, OPTARG, OPTIND, RANDOM, SECONDS, TMOUT, and _ removes their
special meaning even if they are subsequently assigned to.

† wait [job]
Wait for the specified job and report its termination status. If job is not given then
all currently active child processes are waited for. The exit status from this com-
mand is that of the process waited for. See Jobs for a description of the format of
job .

whence [−pv] name . . .
For each name, indicate how it would be interpreted if used as a command name.

The −v flag produces a more verbose report.

The −p flag does a path search for name even if name is an alias, a function, or a
reserved word.

Invocation If the shell is invoked by exec(2), and the first character of argument zero ($0) is −, then
the shell is assumed to be a login shell and commands are read from /etc/profile and then
from either .profile in the current directory or $HOME/.profile, if either file exists. Next,
commands are read from the file named by performing parameter substitution on the
value of the environment variable ENV if the file exists. If the −s flag is not present and
arg is, then a path search is performed on the first arg to determine the name of the script
to execute. The script arg must have read permission and any setuid and setgid settings
will be ignored. If the script is not found on the path, arg is processed as if it named a
builtin command or function. Commands are then read as described below; the follow-
ing flags are interpreted by the shell when it is invoked:

−c string If the −c flag is present then commands are read from string.
−s If the −s flag is present or if no arguments remain then commands are read

from the standard input. Shell output, except for the output of the Special
Commands listed above, is written to file descriptor 2.

−i If the −i flag is present or if the shell input and output are attached to a termi-
nal (as told by ioctl(2)) then this shell is interactive. In this case TERM is
ignored (so that kill 0 does not kill an interactive shell) and INTR is caught
and ignored (so that wait is interruptible). In all cases, QUIT is ignored by the
shell.

−r If the −r flag is present the shell is a restricted shell.

The remaining flags and arguments are described under the set command above.

rksh Only rksh is used to set up login names and execution environments whose capabilities are
more controlled than those of the standard shell. The actions of rksh are identical to
those of ksh, except that the following are disallowed:

1-522 SunOS 5.6 modified 18 Mar 1997

User Commands ksh (1)

· changing directory (see cd(1))
· setting the value of SHELL, ENV, or PATH
· specifying path or command names containing /
· redirecting output (>, >|, <>, and >>)
· changing group (see newgrp(1)).

The restrictions above are enforced after .profile and the ENV files are interpreted.

When a command to be executed is found to be a shell procedure, rksh invokes ksh to
execute it. Thus, it is possible to provide to the end-user shell procedures that have
access to the full power of the standard shell, while imposing a limited menu of com-
mands; this scheme assumes that the end-user does not have write and execute permis-
sions in the same directory.

The net effect of these rules is that the writer of the .profile has complete control over
user actions, by performing guaranteed setup actions and leaving the user in an
appropriate directory (probably not the login directory).

The system administrator often sets up a directory of commands (that is, /usr/rbin) that
can be safely invoked by rksh.

ERRORS Errors detected by the shell, such as syntax errors, cause the shell to return a non-zero
exit status. Otherwise, the shell returns the exit status of the last command executed (see
also the exit command above). If the shell is being used non-interactively then execution
of the shell file is abandoned. Run time errors detected by the shell are reported by print-
ing the command or function name and the error condition. If the line number that the
error occurred on is greater than one, then the line number is also printed in square
brackets ([]) after the command or function name.

For a non-interactive shell, an error condition encountered by a special built-in or other
type of utility will cause the shell to write a diagnostic message to standard error and exit
as shown in the following table:

Error Special Built-in Other Utilities
Shell language syntax error will exit will exit
Utility syntax error (option or operand error) will exit will not exit
Redirection error will exit will not exit
Variable assignment error will exit will not exit
Expansion error will exit will exit
Command not found n/a may exit
Dot script not found will exit n/a

An expansion error is one that occurs when the shell expansions are carried out (for
example, ${x!y}, because ! is not a valid operator); an implementation may treat these as
syntax errors if it is able to detect them during tokenization, rather than during expan-
sion.

If any of the errors shown as “will (may) exit” occur in a subshell, the subshell will (may)
exit with a non-zero status, but the script containing the subshell will not exit because of
the error.

modified 18 Mar 1997 SunOS 5.6 1-523

ksh (1) User Commands

In all of the cases shown in the table, an interactive shell will write a diagnostic message
to standard error without exiting.

USAGE See largefile(5) for the description of the behavior of ksh and rksh when encountering
files greater than or equal to 2 Gbyte (231 bytes).

EXIT STATUS Each command has an exit status that can influence the behavior of other shell com-
mands. The exit status of commands that are not utilities is documented in this section.
The exit status of the standard utilities is documented in their respective sections.

If a command is not found, the exit status will be 127. If the command name is found, but
it is not an executable utility, the exit status will be 126. Applications that invoke utilities
without using the shell should use these exit status values to report similar errors.

If a command fails during word expansion or redirection, its exit status will be greater
than zero.

When reporting the exit status with the special parameter ?, the shell will report the full
eight bits of exit status available. The exit status of a command that terminated because it
received a signal will be reported as greater than 128.

FILES /etc/profile
/etc/suid_profile
$HOME/.profile
/tmp/sh∗
/dev/null

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

/usr/bin/ksh
/usr/bin/rksh ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu
CSI Enabled

/usr/xpg4/bin/ksh ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxcu4
CSI Enabled

SEE ALSO cat(1), cd(1), chmod(1), cut(1), echo(1), env(1), getoptcvt(1), jobs(1), login(1), newgrp(1),
paste(1), ps(1), shell_builtins(1), stty(1), test(1), vi(1), dup(2), exec(2), fork(2), ioctl(2),
lseek(2), pipe(2), ulimit(2), umask(2), wait(2), rand(3C), signal(3C), a.out(4), profile(4),
attributes(5), environ(5), largefile(5), signal(5), xpg4(5)

Morris I. Bolsky and David G. Korn, The KornShell Command and Programming Language,
Prentice Hall, 1989.

1-524 SunOS 5.6 modified 18 Mar 1997

User Commands ksh (1)

WARNINGS The use of setuid shell scripts is strongly discouraged.

NOTES If a command which is a tracked alias is executed, and then a command with the same
name is installed in a directory in the search path before the directory where the original
command was found, the shell will continue to exec the original command. Use the −t
option of the alias command to correct this situation.

Some very old shell scripts contain a ˆ as a synonym for the pipe character �.

Using the fc built-in command within a compound command will cause the whole com-
mand to disappear from the history file.

The built-in command . file reads the whole file before any commands are executed.
Therefore, alias and unalias commands in the file will not apply to any functions defined
in the file.

When the shell executes a shell script that attempts to execute a non-existent command
interpreter, the shell returns an erroneous diagnostic message that the shell script file
does not exist.

modified 18 Mar 1997 SunOS 5.6 1-525

ksrvtgt (1) User Commands

NAME ksrvtgt − fetch and store Kerberos ticket-granting ticket using a service key

SYNOPSIS /usr/bin/ksrvtgt name instance [[realm] srvtab]

DESCRIPTION ksrvtgt retrieves a ticket-granting ticket with a lifetime of five minutes for the principal
name.instance@realm (or name.instance@localrealm if realm is not supplied on the command
line), decrypts the response using the service key found in the file srvtab (or in /etc/srvtab
if srvtab is not specified on the command line), and stores the ticket in the standard ticket
cache.

This command is intended primarily for use in shell scripts and other batch-type facili-
ties.

DIAGNOSTICS Generic kerberos failure (kfailure) can indicate a whole range of problems, the most
common of which is the inability to read the service key file.

FILES /etc/krb.conf to get the name of the local realm.
/tmp/tktuid The default ticket file.
/etc/srvtab The default service key file.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO kdestroy(1), kerberos(1), kinit(1), klist(1), attributes(5)

1-526 SunOS 5.6 modified 14 Sep 1992

User Commands last (1)

NAME last − display login and logout information about users and terminals

SYNOPSIS last [−n number | −number] [−f filename] [name | tty] . . .

DESCRIPTION The last command looks in the /var/adm/wtmpx file, which records all logins and
logouts, for information about a user, a terminal, or any group of users and terminals.
Arguments specify names of users or terminals of interest. If multiple arguments are
given, the information applicable to any of the arguments is printed. For example, last
root console lists all of root’s sessions, as well as all sessions on the console terminal. last
displays the sessions of the specified users and terminals, most recent first, indicating the
times at which the session began, the duration of the session, and the terminal on which
the session took place. last also indicates whether the session is continuing or was cut
short by a reboot.

The pseudo-user reboot logs in when the system reboots. Thus,

last reboot

will give an indication of mean time between reboots.

last with no arguments displays a record of all logins and logouts, in reverse order.

If last is interrupted, it indicates how far the search has progressed in /var/adm/wtmpx.
If interrupted with a quit signal (generated by a CTRL−\), last indicates how far the
search has progressed, and then continues the search.

OPTIONS −n number | −number Limit the number of entries displayed to that specified by number.
These options are identical; the −number option is provided as a
transition tool only and will be removed in future releases.

−f filename Use filename as the name of the accounting file instead of
/var/adm/wtmpx.

ENVIRONMENT Date and time format is based on locale specified by the LC_ALL, LC_TIME, or LANG
environments, in that order of priority.

FILES /var/adm/wtmpx accounting file

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu

SEE ALSO utmp(4), attributes(5)

modified 14 Jul 1994 SunOS 5.6 1-527

lastcomm (1) User Commands

NAME lastcomm − display the last commands executed, in reverse order

SYNOPSIS lastcomm [command-name] . . . [user-name] . . . [terminal-name] . . .

DESCRIPTION The lastcomm command gives information on previously executed commands.
lastcomm with no arguments displays information about all the commands recorded
during the current accounting file’s lifetime. If called with arguments, lastcomm only
displays accounting entries with a matching command-name, user-name, or terminal-name.

If terminal-name is `- -´ there was no controlling TTY for the process. The process was
probably executed during boot time. If terminal-name is `??´, the controlling TTY could
not be decoded into a printable name.

EXAMPLES The command:
example% lastcomm a.out root term/01

produces a listing of all the executions of commands named a.out, by user root while
using the terminal term/01.

The command:
example% lastcomm root

produces a listing of all the commands executed by user root.

For each process entry, lastcomm displays the following items of information:

· The command name under which the process was called.

· One or more flags indicating special information about the process. The flags
have the following meanings:

F The process performed a fork but not an exec.

S The process ran as a set-user-id program.

· The name of the user who ran the process.

· The terminal which the user was logged in on at the time (if applicable).

· The amount of CPU time used by the process (in seconds).

· The date and time the process exited.

FILES /var/adm/pacct accounting file

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu

SEE ALSO last(1), sigvec(3B), acct(4), core(4), attributes(5)

1-528 SunOS 5.6 modified 18 Mar 1994

User Commands ld (1)

NAME ld − link-editor for object files

SYNOPSIS /usr/ccs/bin/ld [−a | −r] [−b] [−G] [−i] [−m] [−s] [−t] [−V]
[−B dynamic | static] [−B group] [−B local] [−B eliminate] [−B reduce]
[−B symbolic] [−d y | n] [−D token] [−e epsym] [−F name | −f name]
[−h name] [−I name] [−L path] [−l x] [−M mapfile] [−N string] [−o outfile]
[−Q y | n] [−R path] [−u symname] [−Y P,dirlist]
[−z allextract | defaultextract | weakextract] [−z defs | nodefs]
[−z ignore | record] [−z initfirst] [−z loadfltr] [−z muldefs] [−z nodelete]
[−z nodlopen] [−z noversion] [−z now] [−z redlocsym] [−z text]
filename . . .

DESCRIPTION The ld command combines relocatable object files, performs relocation, and resolves
external symbols. ld operates in two modes, static or dynamic, as governed by the −d
option. In static mode, −dn, relocatable object files given as arguments are combined to
produce an executable object file. If the −r option is specified, relocatable object files are
combined to produce one relocatable object file. In dynamic mode, −dy, the default, relo-
catable object files given as arguments are combined to produce an executable object file
that will be linked at execution with any shared object files given as arguments. If the −G
option is specified, relocatable object files are combined to produce a shared object. In all
cases, the output of ld is left in a.out by default.

If any argument is a library, ld searches exactly once at the point it encounters the library
in the argument list. The library may be either a relocatable archive or a shared object.
For an archive library, ld loads only those routines that define an unresolved external
reference. ld searches the archive library symbol table sequentially with as many passes
as are necessary to resolve external references that can be satisfied by library members.
See ar(4). Thus, the order of members in the library is functionally unimportant, unless
multiple library members exist that define the same external symbol.

A shared object consists of an indivisible, whole unit, that has been generated by a previ-
ous link-edit of one or more input files. When the link-editor processes a shared object,
the entire contents of the shared object become a logical part of the resulting output file
image. The shared object is not physically copied during the link-edit as its actual inclu-
sion is deferred until process execution. This logical inclusion means that all symbol
entries defined in the shared object are made available to the link-editing process.

OPTIONS −a In static mode only, produce an executable object file; give errors for
undefined references. This is the default behavior for static mode. −a may
not be used with the −r option.

−r Combine relocatable object files to produce one relocatable object file. ld
will not complain about unresolved references. This option cannot be used
in dynamic mode or with −a.

−b In dynamic mode only, when creating an executable, do not do special pro-
cessing for relocations that reference symbols in shared objects. Without
the −b option, the link-editor creates special position-independent

modified 28 Apr 1997 SunOS 5.6 1-529

ld (1) User Commands

relocations for references to functions defined in shared objects and
arranges for data objects defined in shared objects to be copied into the
memory image of the executable by the runtime linker. With the −b option,
the output code may be more efficient, but it will be less sharable.

−G In dynamic mode only, produce a shared object. Undefined symbols are
allowed.

−i Ignore LD_LIBRARY_PATH setting. This option is useful when an
LD_LIBRARY_PATH setting is in effect to influence the runtime library
search, which would interfere with the link-editing being performed.

−m Produce a memory map or listing of the input/output sections, together
with any non-fatal multiply defined symbols, on the standard output.

−s Strip symbolic information from the output file. Any debugging informa-
tion, that is .debug, .line, and .stab sections, and their associated relocation
entries will be removed. Except for relocatable files or shared objects, the
symbol table and string table sections will also be removed from the output
object file.

−t Turn off the warning about multiply defined symbols that are not the same
size.

−V Output a message giving information about the version of ld being used.

−B dynamic | static
Options governing library inclusion. −B dynamic is valid in dynamic mode
only. These options may be specified any number of times on the command
line as toggles: if the −B static option is given, no shared objects will be
accepted until −B dynamic is seen. See also the −l option.

−B group Establishes a shared object and its dependencies as a group. Objects within
the group will be bound to other members of the group at runtime. The
runtime processing of an object containing this flag mimics that which
occurs if the object is added to a process using dlopen(3X) with the
RTLD_GROUP mode. As the group must be self contained, use of the −B
group option also asserts the −z defs option.

−B local Cause any global symbols, not assigned to a version definition, to be
reduced to local. Version definitions can be supplied via a mapfile and indi-
cate the global symbols that should remain visible in the generated object.
This option achieves the same symbol reduction as the auto-reduction direc-
tive available as part of a mapfile version definition and may be useful when
combining versioned and non-versioned relocatable objects.

−B reduce When generating a relocatable object, cause the reduction of symbolic infor-
mation defined by any version definitions. Version definitions can be sup-
plied via a mapfile to indicate the global symbols that should remain visible
in the generated object. When a relocatable object is generated, by default
version definitions are only recorded in the output image. The actual
reduction of symbolic information will be carried out when the object itself

1-530 SunOS 5.6 modified 28 Apr 1997

User Commands ld (1)

is used in the construction of a dynamic executable or shared object. This
option is applied automatically when dynamic executable or shared object
is created.

−B eliminate
Cause any global symbols not assigned to a version definition to be elim-
inated from the symbol table. This option achieves the same symbol elimi-
nation as the auto-elimination directive available as part of a mapfile version
definition.

−B symbolic In dynamic mode only. When building a shared object, binds references to
global symbols to their definitions, if available, within the object. Normally,
references to global symbols within shared objects are not bound until run-
time, even if definitions are available, so that definitions of the same symbol
in an executable or other shared object can override the object’s own
definition. ld will issue warnings for undefined symbols unless −z defs
overrides.

−dy | n When −dy, the default, is specified, ld uses dynamic linking; when −dn is
specified, ld uses static linking. See also −B dynamic | static.

−D token,token, . .
Print debugging information, as specified by each token , to the standard
error. The special token help indicates the full list of tokens available.

−e epsym Set the entry point address for the output file to be that of the symbol epsym.

−F name Useful only when building a shared object. Specifies that the symbol table
of the shared object is used as a filter on the symbol table of the shared
object specified by name. Multiple instances of this option are allowed. This
option may not be combined with the −f option.

−f name Useful only when building a shared object. Specifies that the symbol table
of the shared object is used as an auxiliary filter on the symbol table of the
shared object specified by name. Multiple instances of this option are
allowed. This option may not be combined with the −F option.

−h name In dynamic mode only, when building a shared object, record name in the
object’s dynamic section. name will be recorded in executables that are
linked with this object rather than the object’s UNIX System file name.
Accordingly, name will be used by the runtime linker as the name of the
shared object to search for at runtime.

modified 28 Apr 1997 SunOS 5.6 1-531

ld (1) User Commands

−I name When building an executable, use name as the path name of the interpreter
to be written into the program header. The default in static mode is no
interpreter; in dynamic mode, the default is the name of the runtime linker,
ld.so.1(1). Either case may be overridden by −I name. exec(2) will load this
interpreter when it loads a.out and will pass control to the interpreter rather
than to a.out directly.

−L path Add path to the library search directories. ld searches for libraries first in
any directories specified by the −L options and then in the standard direc-
tories. This option is useful only if it precedes the −l options to which it
applies on the command line. The environment variable
LD_LIBRARY_PATH may be used to supplement the library search path (see
LD_LIBRARY_PATH below).

−l x Search a library libx.so or libx.a, the conventional names for shared object
and archive libraries, respectively. In dynamic mode, unless the -B static
option is in effect, ld searches each directory specified in the library search
path for a libx.so or libx.a file. The directory search stops at the first direc-
tory containing either. ld chooses the file ending in .so if −lx expands to
two files with names of the form libx.so and libx.a. If no libx.so is found,
then ld accepts libx.a. In static mode, or when the −B static option is in
effect, ld selects only the file ending in .a. ld searches a library when it
encounters its name, so the placement of −l is significant.

−M mapfile Read mapfile as a text file of directives to ld. This option may be specified
multiple times. If mapfile is a directory then all regular files, as defined by
stat(2), within the directory will be processed. See Linker and Libraries Guide
for description of mapfiles.

−N string This option causes a DT_NEEDED entry to be added to the .dynamic section
of the object being built. The value of the DT_NEEDED string will be the
string specified on the command line. This option is position dependent,
and the DT_NEEDED .dynamic entry will be relative to the other dynamic
dependencies discovered on the link-edit line.

−o outfile Produce an output object file named outfile. The name of the default object
file is a.out.

−Q y | n Under −Qy, an ident string is added to the .comment section of the output
file to identify the version of the link-editor used to create the file. This
results in multiple ld idents when there have been multiple linking steps,
such as when using ld −r. This is identical with the default action of the cc
command. −Qn suppresses version identification.

−R path A colon-separated list of directories used to specify library search direc-
tories to the runtime linker. If present and not NULL, it is recorded in the
output object file and passed to the runtime linker. Multiple instances of
this option are concatenated together with each path separated by a colon.

1-532 SunOS 5.6 modified 28 Apr 1997

User Commands ld (1)

−u symname Enter symname as an undefined symbol in the symbol table. This is useful
for loading entirely from an archive library, since initially the symbol table
is empty, and an unresolved reference is needed to force the loading of the
first routine. The placement of this option on the command line is
significant; it must be placed before the library that will define the symbol.

−Y P,dirlist Change the default directories used for finding libraries. dirlist is a colon-
separated path list.

−z allextract | defaultextract | weakextract
Alter the extraction criteria of objects from any archives that follow. By
default archive members are extracted to satisfy undefined references and
to promote tentative definitions with data definitions. Weak symbol refer-
ences do not trigger extraction. Under −z allextract, all archive members are
extracted from the archive. Under −z weakextract, weak references trigger
archive extraction. −z defaultextract provides a means of returning to the
default following use of the former extract options.

−z defs Force a fatal error if any undefined symbols remain at the end of the link.
This is the default when an executable is built. It is also useful when build-
ing a shared object to assure that the object is self-contained, that is, that all
its symbolic references are resolved internally.

−z ignore | record
Ignore, or record, dynamic dependencies that are not referenced as part of
the link-edit. By default, −z record is in effect.

−z initfirst Marks the object so that its runtime initialization occurs before the runtime
initialization of any other objects brought into the process at the same time.
In addition, the object runtime finalization will occur after the runtime final-
ization of any other objects removed from the process at the same time.
This option is only meaningful when building a shared object.

−z loadfltr Marks the object to require that when building a filter, its filtees be pro-
cessed immediately at runtime. Normally, filter processing is delayed until
a symbol reference is bound to the filter. The runtime processing of an
object that contains this flag mimics that which occurs if the LD_LOADFLTR
environment variable is in effect. See ld.so.1(1).

−z muldefs Allows multiple symbol definitions. By default, multiple symbol definitions
that occur between relocatable objects will result in a fatal error condition.
This option suppresses the error condition and allows the first symbol
definition to be taken.

−z nodefs Allow undefined symbols. This is the default when a shared object is built.
When used with executables, the behavior of references to such undefined
symbols is unspecified.

modified 28 Apr 1997 SunOS 5.6 1-533

ld (1) User Commands

−z nodelete Marks the object as non-deletable at runtime. The runtime processing of an
object that contains this flag mimics that which occurs if the object is added
to a process using dlopen(3X) with the RTLD_NODELETE mode.

−z nodlopen Marks the object as not available to dlopen(3X), either as the object
specified by the dlopen(), or as any form of dependency required by the
object specified by the dlopen(). This option is only meaningful when
building a shared object.

−z noversion
Do not record any versioning sections. Any version sections or associated
.dynamic section entries will not be generated in the output image.

−z now Marks the object to override the runtime linker’s default mode and require
non-lazy runtime binding. This is similar to adding the object to the process
by using dlopen(3X) with the RTLD_NOW mode, or setting the
LD_BIND_NOW environment variable in effect. See ld.so.1(1).

−z redlocsym
Eliminates all local symbols except for the SECT symbols from the symbol
table SHT_SYMTAB. All relocations that refer to local symbols will be
updated to refer to the corresponding SECT symbol.

−z text In dynamic mode only, force a fatal error if any relocations against non-
writable, allocatable sections remain.

ENVIRONMENT LD_LIBRARY_PATH
A list of directories in which to search for libraries specified with the −l option.
Multiple directories are separated by a colon. In the most general case, it will
contain two directory lists separated by a semicolon:

dirlist1;dirlist2

If ld is called with any number of occurrences of −L, as in:

ld . . . −Lpath1 . . . −Lpathn . . .

then the search path ordering is:

dirlist1 path1 . . . pathn dirlist2 LIBPATH

When the list of directories does not contain a semicolon, it is interpreted as dir-
list2.

The LD_LIBRARY_PATH environment variable also effects the runtime linkers
searching for dynamic dependencies.

LD_OPTIONS
A default set of options to ld. LD_OPTIONS is interpreted by ld just as though its
value had been placed on the command line, immediately following the name
used to invoke ld, as in:

ld $LD_OPTIONS . . . other-arguments . . .

LD_RUN_PATH

1-534 SunOS 5.6 modified 28 Apr 1997

User Commands ld (1)

An alternative mechanism for specifying a runpath to the link-editor (see −R
option). If both LD_RUN_PATH and the −R option are specified, −R supersedes.

Note that environment variable-names beginning with the characters ´ LD_ ´ are reserved
for possible future enhancements to ld and ld.so.1(1).

FILES libx.so libraries
libx.a libraries
a.out output file
LIBPATH usually /usr/ccs/lib:/usr/lib

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtoo

SEE ALSO as(1), gprof(1), ld.so.1(1), pvs(1), exec(2), stat(2), dlopen(3X), elf(3E), a.out(4), ar(4), attri-
butes(5)

Linker and Libraries Guide
Binary Compatibility Guide

NOTES
Options No Longer

Supported
The following SunOS 4.x.y options do not have any replacement in this release: −B
nosymbolic (this is now the default if −B symbolic is not used), −d, −dc, and −dp, (these
are now the default; see −b above to override the default), −M, −S, −t, −x, −X, and −ysym.

The following SunOS 4.x.y options are not supported: −align datum, −A name, −D , −p,
−T[text] hex, −T datahex. Much of the functionality of these options can be achieved
using the −M mapfile option.

Obsolete Options The following SunOS 4.x.y options are obsolete in this release: −n, −N, and −z.

modified 28 Apr 1997 SunOS 5.6 1-535

ld (1B) SunOS/BSD Compatibility Package Commands

NAME ld − link editor, dynamic link editor

SYNOPSIS /usr/ucb/ld [options]

DESCRIPTION /usr/ucb/ld is the link editor for the BSD Compatibility Package. /usr/ucb/ld is identical
to /usr/bin/ld (see ld(1)) except that BSD libraries and routines are included before the base
libraries and routines.

OPTIONS /usr/ucb/ld accepts the same options as /usr/bin/ld, with the following exceptions:

−Ldir Add dir to the list of directories searched for libraries by /usr/bin/ld.
Directories specified with this option are searched before /usr/ucblib
and /usr/lib.

−Y LU,dir Change the default directory used for finding libraries. Warning: This
option may have unexpected results, and should not be used.

FILES /usr/lib
/usr/lib/libx.a
/usr/ucblib
/usr/ucblib/libx.a

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscpu

SEE ALSO ar(1), as(1), cc(1B), ld(1), lorder(1), strip(1), tsort(1), attributes(5)

1B-536 SunOS 5.6 modified 14 Sep 1992

User Commands ldd (1)

NAME ldd − list dynamic dependencies of executable files or shared objects

SYNOPSIS ldd [−d | −r] [−f] [−i] [−l] [−s] [−v] filename. . .

DESCRIPTION ldd lists the dynamic dependencies of executable files or shared objects. If filename is an
executable file, ldd lists the path names of all shared objects that would be loaded when
filename is loaded.

If filename is a shared object, ldd lists the path names of all shared objects that would be
loaded when filename is loaded. ldd expects shared objects to have execute permission,
and if this is not the case, ldd will issue a warning before attempting to process the file.

ldd processes its input one file at a time. For each input file ldd performs one of the fol-
lowing:

· Lists the object dependencies if they exist

· Succeeds quietly if dependencies do not exit

· Prints an error message if processing fails

OPTIONS ldd can also check the compatibility of filename with the shared objects it uses. With each
of the following options, ldd prints warnings for any unresolved symbol references that
would occur if filename were executed.

−d Check references to data objects.

−r Check references to both data objects and functions.

Only one of the above options may be given during any single invocation of ldd.

−f Force ldd to check for an executable file that is not secure. When ldd is invoked
by a super user, by default, it will not process any executable that it finds not
secure. An executable is not considered secure if the interpretor it specifies does
not reside under /usr/lib or /etc/lib, or if the interpretor cannot be determined.

−i Displays the order of execution of initialization sections.

−l Forces the immediate processing of any filters so that all filtees, and their depen-
dencies, are listed.

−s Displays the search path used to locate shared object dependencies.

−v Displays all dependency relationships incurred when processing filename. This
options also displays any dependency version requirements. See pvs(1).

A super user should use the −f option only if the executable to be examined is known to
be trustworthy, as use of −f on an untrustworthy executable while super user may
compromise system security. If it is unknown whether or not the executable to be exam-
ined is trustworthy, it is suggested that a super user temporarily become a regular user
and invoke ldd as that regular user. Untrustworthy objects can be safely examined with
dump(1) and with adb(1), as long as the :r subcommand is not used. In addition, a non-
super user can use either the :r subcommand of adb, or truss(1) to examine an
untrustworthy executable without too much risk of compromise. To minimize risk when
using ldd, adb :r, or truss on an untrustworthy executable, use the user id "nobody."

modified 14 Jan 1997 SunOS 5.6 1-537

ldd (1) User Commands

FILES /usr/lib/lddstub Fake executable loaded to check the dependencies of shared
objects.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtoo

SEE ALSO adb(1), dump(1), ld(1), ld.so.1(1), pvs(1), truss(1), dlopen(3X), attributes(5)

Linker and Libraries Guide

DIAGNOSTICS ldd prints the record of shared object path names to stdout. The optional list of symbol
resolution problems is printed to stderr. If filename is not an executable file or a shared
object, or if it cannot be opened for reading, a non-zero exit status is returned.

NOTES ldd does not list shared objects explicitly attached using dlopen(3X).

Using the −d or −r option with shared objects can give misleading results. ldd does a
"worst case" analysis of the shared objects. However, in practice some or all of the sym-
bols reported as unresolved can be resolved by the executable file referencing the shared
object.

ldd uses the same algorithm as the runtime linker to locate shared objects.

1-538 SunOS 5.6 modified 14 Jan 1997

User Commands ld.so.1 (1)

NAME ld.so.1 − runtime linker for dynamic objects

SYNOPSIS /usr/lib/ld.so.1

/etc/lib/ld.so.1

DESCRIPTION Dynamic applications consist of one or more dynamic objects. They are typically a
dynamic executable and its shared object dependencies. As part of the initialization and
execution of a dynamic application, an interpreter is called to complete the binding of the
application to its shared object dependencies. In Solaris this interpreter is referred to as
the runtime linker.

During the link-editing of a dynamic executable, a special .interp section, together with an
associated program header, is created. This section contains a pathname specifying the
program’s interpreter. The pathname to the interpreter can be specified when the execut-
able is being constructed by the -I option to ld(1), the link-editor. The default name sup-
plied by the link-editor is that of the runtime linker, /usr/lib/ld.so.1.

During the process of executing a dynamic executable the kernel maps the file and locates
the required interpreter. See exec(2) and mmap(2). The kernel maps this interpreter and
transfers control to it, passing sufficient information to allow the interpreter to continue
binding the application and then run it.

In addition to initializing an application, the runtime linker provides services that allow
the application to extend its address space by mapping additional shared objects and
binding to symbols within them.

The runtime linker performs the following functions:

· It analyzes the application’s dynamic information section (.dynamic) and determines
which shared object dependencies are required.

· It locates and maps in these dependencies, and then it analyzes their dynamic infor-
mation sections to determine if any additional shared object dependencies are
required.

· Once all shared object dependencies are located and mapped, the runtime linker
performs any necessary relocations to bind these shared objects in preparation for
process execution.

· It calls any initialization functions provided by the shared object dependencies. By
default these are called in the reverse order of the topologically sorted dependen-
cies. Should cyclic dependencies exist, the initialization functions are called using
the sorted order with the cycle removed. ldd(1) can be used to display the initiali-
zation order of shared object dependencies. See also LD_BREADTH.

· It passes control to the application.

· During the application’s execution, the runtime linker can be called upon to per-
form any delayed function binding.

· It calls any finalization functions on deletion of shared objects from the process. By
default these are called in the order of the topologically sorted dependencies.

modified 24 Jan 1997 SunOS 5.6 1-539

ld.so.1 (1) User Commands

· The application can also call upon the runtime linker’s services to acquire addi-
tional shared objects by dlopen(3X) and bind to symbols within these objects with
dlsym(3X).

Further details on each of the above topics may be found in the Linker and Libraries Guide.

The runtime linker uses a prescribed search path for locating the dynamic dependencies
of an object. The default search paths are the runpath recorded in the object, followed by
/usr/lib. The runpath is specified when the dynamic object is constructed using the -R
option to ld(1). LD_LIBRARY_PATH can be used to indicate directories to be searched
before the default directories.

ENVIRONMENT LD_AUDIT A colon separated list of objects that will be loaded by the runtime
linker. As each object is loaded it will be examined for Link-Auditing
interfaces, the routines that are present will be called as specified in the
Link-Auditing interface described in the Linker and Libraries Guide.

LD_BIND_NOW The runtime linker’s default mode of performing lazy binding can be
overridden by setting the environment variable LD_BIND_NOW to any
non-null value. This setting causes the runtime linker to perform both
data reference and function reference relocations during process initiali-
zation, before transferring control to the application. Also see the -z
now option of ld(1).

LD_BREADTH Any initialization functions are called reverse breadth-first order. Any
finalization functions are called in breadth-first order.

LD_DEBUG Provides a comma separated list of tokens to cause the runtime linker to
print debugging information to the standard error. The special token
help indicates the full list of tokens available. The environment variable
LD_DEBUG_OUTPUT may also be supplied to specify a file to which the
debugging information is sent. The filename will be suffixed with the
process id of the application generating the debugging information.

LD_LIBRARY_PATH
The LD_LIBRARY_PATH environment variable, if set, is used to enhance
the search path that the runtime linker uses to find dynamic dependen-
cies. LD_LIBRARY_PATH specifies a colon separated list of directories
that are to be searched before the default directories. Also note that
LD_LIBRARY_PATH adds additional semantics to ld(1).

LD_LOADFLTR Filters are a form of shared object. They allow an alternative shared
object to be selected at runtime and provide the implementation for any
symbols defined within the filter. See the -f and -F options of ld(1). By
default the alternative shared object processing is deferred until symbol
resolution occurs against the filter. When LD_LOADFLTR is set to any
non-null value, the runtime linker will process filters immediately when
they are loaded. Also see the -z loadfltr option of ld(1).

LD_NOAUXFLTR
Auxiliary filters are a form of shared object. They allow an alternative

1-540 SunOS 5.6 modified 24 Jan 1997

User Commands ld.so.1 (1)

shared object to be selected at runtime which provides the implementa-
tion for any symbols defined within the filter. See the -f option of ld(1).
When LD_NOAUXFLTR is set to any non-null value, the runtime linker
will disable this alternative shared object lookup.

LD_NOVERSION
By default the runtime linker verifies version dependencies for the pri-
mary executable and all of its dependencies. When LD_NOVERSION is
set to any non-null value the runtime linker will disable this version
checking.

LD_PRELOAD Provides a whitespace-separated list of shared objects that are to be
interpreted by the runtime linker. The specified shared objects are
linked after the program is executed but before any other shared objects
that the program references.

LD_PROFILE Defines a shared object that will be profiled by the runtime linker. When
profiling is enabled, a profiling buffer file is created and mapped. The
name of the buffer file is the name of the shared object being profiled
with a .profile extension. By default this buffer is placed under
/var/tmp. The environment variable LD_PROFILE_OUTPUT may also be
supplied to indicate an alternative directory in which to place the
profiling buffer. This buffer contains profil(2) and call count informa-
tion similar to the gmon.out information generated by programs that
have been linked with the -xpg option of cc(1). Any applications that
use the named shared object and run while this environment variable is
set will accumulate data in the profile buffer. The profile buffer infor-
mation may be examined using gprof(1). Note that this profiling tech-
nique is an alternative to any that may be provided by the compilation
system. The shared object being profiled does not have to be instru-
mented in any way, and LD_PROFILE should not be combined with a
profile-instrumented application.

Note that environment variable names beginning with the characters `LD_´ are reserved
for possible future enhancements to ld(1) and ld.so.1(1).

SECURITY To prevent malicious dependency substitution or symbol interposition, some restrictions
may apply to the evaluation of the dependencies of secure processes.

The runtime linker categorizes a process as secure if the user is not a super user, and
either the real user and effective user identifiers are not equal, or the real group and effec-
tive group identifiers are not equal. See getuid(2), geteuid(2), getgid(2), and getegid(2).

If an LD_LIBRARY_PATH environment variable is in effect for a secure process, then only
the trusted directories specified by this variable will be used to augment the runtime
linker’s search rules. Presently, the only trusted directory known to the runtime linker is
/usr/lib.

modified 24 Jan 1997 SunOS 5.6 1-541

ld.so.1 (1) User Commands

In a secure process, any runpath specifications provided by the application or any of its
dependencies will be used, provided they are full pathnames, that is, the pathname starts
with a ’/’.

Additional objects may be loaded with a secure process using the LD_PRELOAD environ-
ment variable, provided the objects are specified as simple file names, with no ’/’ in the
name. These objects will be located subject to the search path restrictions previously
described.

FILES /usr/lib/ld.so.1 Default runtime linker
/etc/lib/ld.so.1 Alternate runtime linker
/usr/lib/libc.so.1 Alternate interpreter for SVID ABI compatibility
/usr/lib/ld.so AOUT(BCP) runtime linker
/usr/lib/0@0.so.1 Null character pointer compatibility library. See NOTES.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO gprof(1), ld(1), ldd(1), exec(2), getegid(2), geteuid(2), getuid(2), mmap(2), profil(2),
dladdr(3X), dlclose(3X), dldump(3X), dlerror(3X), dlopen(3X), dlsym(3X), attributes(5)

Linker and Libraries Guide

NOTES The user compatibility library /usr/lib/0@0.so.1 provides a mechanism that establishes a
value of 0 at location 0. Some applications exist that erroneously assume a null character
pointer should be treated the same as a pointer to a null string. A segmentation violation
will occur in these applications when a null character pointer is accessed. If this library is
added to such an application at runtime using LD_PRELOAD, it provides an environment
that is sympathetic to this errant behavior. However, the user compatibility library is
intended neither to enable the generation of such applications, nor to endorse this partic-
ular programming practice.

1-542 SunOS 5.6 modified 24 Jan 1997

User Commands let (1)

NAME let − shell built-in function to evaluate one or more arithmetic expressions

SYNOPSIS
ksh let arg . . .

DESCRIPTION
ksh Each arg is a separate "arithmetic expression" to be evaluated.

The exit status is 0 if the value of the last expression is non-zero, and 1 otherwise.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO ksh(1), set(1), typeset(1), attributes(5)

modified 15 Apr 1994 SunOS 5.6 1-543

lex (1) User Commands

NAME lex − generate programs for lexical tasks

SYNOPSIS lex [−cntv] [−e | −w] [−V −Q [y | n]] [file] . . .

DESCRIPTION The lex utility generates C programs to be used in lexical processing of character input,
and that can be used as an interface to yacc. The C programs are generated from lex
source code and conform to the ISO C standard. Usually, the lex utility writes the pro-
gram it generates to the file lex.yy.c; the state of this file is unspecified if lex exits with a
non-zero exit status. See EXTENDED DESCRIPTION for a complete description of the
lex input language.

OPTIONS The following options are supported:

−c Indicate C-language action (default option).

−e Generate a program that can handle EUC characters (cannot be used with the
−w option).
yytext[] is of type unsigned char[].

−n Suppress the summary of statistics usually written with the −v option. If no
table sizes are specified in the lex source code and the −v option is not
specified, then −n is implied.

−t Write the resulting program to standard output instead of lex.yy.c.

−v Write a summary of lex statistics to the standard error. (See the discussion of
lex table sizes under the heading Definitions in lex.) If table sizes are
specified in the lex source code, and if the −n option is not specified, the −v
option may be enabled.

−w Generate a program that can handle EUC characters (cannot be used with the
−e option).
Unlike the −e option, yytext[] is of type wchar_t[].

−V Print out version information on standard error.

−Q[y|n] Print out version information to output file lex.yy.c by using −Qy. The −Qn
option does not print out version information and is the default.

OPERANDS The following operand is supported:

file A pathname of an input file. If more than one such file is specified, all files will
be concatenated to produce a single lex program. If no file operands are
specified, or if a file operand is −, the standard input will be used.

OUTPUT
Stdout If the −t option is specified, the text file of C source code output of lex will be written to

standard output.

1-544 SunOS 5.6 modified 20 Dec 1996

User Commands lex (1)

Stderr If the −t option is specified informational, error and warning messages concerning the
contents of lex source code input will be written to the standard error.

If the −t option is not specified:

1. Informational error and warning messages concerning the contents of lex source
code input will be written to either the standard output or standard error.

2. If the −v option is specified and the −n option is not specified, lex statistics will
also be written to standard error. These statistics may also be generated if table
sizes are specified with a % operator in the Definitions in lex section (see
EXTENDED DESCRIPTION), as long as the −n option is not specified.

Output Files A text file containing C source code will be written to lex.yy.c, or to the standard output
if the −t option is present.

EXTENDED
DESCRIPTION

Each input file contains lex source code, which is a table of regular expressions with
corresponding actions in the form of C program fragments.

When lex.yy.c is compiled and linked with the lex library (using the −l l operand with
c89 or cc), the resulting program reads character input from the standard input and parti-
tions it into strings that match the given expressions.

When an expression is matched, these actions will occur:

· The input string that was matched is left in yytext as a null-terminated string; yytext
is either an external character array or a pointer to a character string. As explained
in Definitions in lex, the type can be explicitly selected using the %array or
%pointer declarations, but the default is %array.

· The external int yyleng is set to the length of the matching string.

· The expression’s corresponding program fragment, or action, is executed.

During pattern matching, lex searches the set of patterns for the single longest possible
match. Among rules that match the same number of characters, the rule given first will
be chosen.

The general format of lex source is:
Definitions
%%
Rules
%%
User Subroutines

The first %% is required to mark the beginning of the rules (regular expressions and
actions); the second %% is required only if user subroutines follow.

Any line in the Definitions in lex section beginning with a blank character will be
assumed to be a C program fragment and will be copied to the external definition area of
the lex.yy.c file. Similarly, anything in the Definitions in lex section included between
delimiter lines containing only %{ and %} will also be copied unchanged to the external
definition area of the lex.yy.c file.

modified 20 Dec 1996 SunOS 5.6 1-545

lex (1) User Commands

Any such input (beginning with a blank character or within %{ and %} delimiter lines)
appearing at the beginning of the Rules section before any rules are specified will be writ-
ten to lex.yy.c after the declarations of variables for the yylex function and before the first
line of code in yylex. Thus, user variables local to yylex can be declared here, as well as
application code to execute upon entry to yylex.

The action taken by lex when encountering any input beginning with a blank character or
within %{ and %} delimiter lines appearing in the Rules section but coming after one or
more rules is undefined. The presence of such input may result in an erroneous
definition of the yylex function.

Definitions in lex Definitions in lex appear before the first %% delimiter. Any line in this section not con-
tained between %{ and %} lines and not beginning with a blank character is assumed to
define a lex substitution string. The format of these lines is:

name substitute

If a name does not meet the requirements for identifiers in the ISO C standard, the result
is undefined. The string substitute will replace the string { name } when it is used in a rule.
The name string is recognized in this context only when the braces are provided and
when it does not appear within a bracket expression or within double-quotes.

In the Definitions in lex section, any line beginning with a % (percent sign) character and
followed by an alphanumeric word beginning with either s or S defines a set of start con-
ditions. Any line beginning with a % followed by a word beginning with either x or X
defines a set of exclusive start conditions. When the generated scanner is in a %s state,
patterns with no state specified will be also active; in a %x state, such patterns will not be
active. The rest of the line, after the first word, is considered to be one or more blank-
character-separated names of start conditions. Start condition names are constructed in
the same way as definition names. Start conditions can be used to restrict the matching
of regular expressions to one or more states as described in Regular expressions in lex.

Implementations accept either of the following two mutually exclusive declarations in the
Definitions in lex section:

%array Declare the type of yytext to be a null-terminated character array.

%pointer Declare the type of yytext to be a pointer to a null-terminated character string.

The default type of yytext is char[]. If an application refers to yytext outside of the
scanner source file (that is, via an extern), the application will include the appropriate
%array or %pointer declaration in the scanner source file.

lex will accept declarations in the Definitions in lex section for setting certain internal
table sizes. The declarations are shown in the following table.

1-546 SunOS 5.6 modified 20 Dec 1996

User Commands lex (1)

Table Size Declaration in lex

Declaration Description Default

%p n 2500Number of positions
%n n 500Number of states
%a n 2000Number of transitions
%e n 1000Number of parse tree nodes
%k n 10000Number of packed character classes
%o n 3000Size of the output array

Programs generated by lex need either the −e or −w option to handle input that contains
EUC characters from supplementary codesets. If neither of these options is specified,
yytext is of the type char[], and the generated program can handle only ASCII characters.

When the −e option is used, yytext is of the type unsigned char[] and yyleng gives the
total number of bytes in the matched string. With this option, the macros input(),
unput(c), and output(c) should do a byte-based I/O in the same way as with the regular
ASCII lex. Two more variables are available with the −e option, yywtext and yywleng,
which behave the same as yytext and yyleng would under the −w option.

When the −w option is used, yytext is of the type wchar_t[] and yyleng gives the total
number of characters in the matched string. If you supply your own input(), unput(c), or
output(c) macros with this option, they must return or accept EUC characters in the form
of wide character (wchar_t). This allows a different interface between your program and
the lex internals, to expedite some programs.

Rules in lex The Rules in lex source files are a table in which the left column contains regular expres-
sions and the right column contains actions (C program fragments) to be executed when
the expressions are recognized.

ERE action
ERE action
. . .

The extended regular expression (ERE) portion of a row will be separated from action by
one or more blank characters. A regular expression containing blank characters is recog-
nized under one of the following conditions:

· The entire expression appears within double-quotes.

· The blank characters appear within double-quotes or square brackets.

· Each blank character is preceded by a backslash character.

modified 20 Dec 1996 SunOS 5.6 1-547

lex (1) User Commands

User Subroutines
in lex

Anything in the user subroutines section will be copied to lex.yy.c following yylex.

Regular Expressions
in lex

The lex utility supports the set of Extended Regular Expressions (ERE’s) described on
regex(5) with the following additions and exceptions to the syntax:

. . . Any string enclosed in double-quotes will represent the characters within the
double-quotes as themselves, except that backslash escapes (which appear in the
following table) are recognized. Any backslash-escape sequence is terminated by
the closing quote. For example, " \ 01""1" represents a single string: the octal
value 1 followed by the character 1.

<state>r

<state1, state2, . . . >r
The regular expression r will be matched only when the program is in one of the
start conditions indicated by state , state1 , and so forth; for more information see
Actions in lex (As an exception to the typographical conventions of the rest of
this document, in this case <state> does not represent a metavariable, but the
literal angle-bracket characters surrounding a symbol.) The start condition is
recognized as such only at the beginning of a regular expression.

r/x The regular expression r will be matched only if it is followed by an occurrence
of regular expression x. The token returned in yytext will only match r. If the
trailing portion of r matches the beginning of x, the result is unspecified. The r
expression cannot include further trailing context or the $ (match-end-of-line)
operator; x cannot include the ˆ (match-beginning-of-line) operator, nor trailing
context, nor the $ operator. That is, only one occurrence of trailing context is
allowed in a lex regular expression, and the ˆ operator only can be used at the
beginning of such an expression.

{name} When name is one of the substitution symbols from the Definitions section, the
string, including the enclosing braces, will be replaced by the substitute value.
The substitute value will be treated in the extended regular expression as if it
were enclosed in parentheses. No substitution will occur if {name} occurs within
a bracket expression or within double-quotes.

Within an ERE, a backslash character (\\, \ a, \ b, \ f, \ n, \ r, \ t, \ v) is considered to
begin an escape sequence. In addition, the escape sequences in the following table will be
recognized.

A literal newline character cannot occur within an ERE; the escape sequence \ n can be
used to represent a newline character. A newline character cannot be matched by a
period operator.

1-548 SunOS 5.6 modified 20 Dec 1996

User Commands lex (1)

Escape Sequences in lex

Escape Description Meaning
Sequence
\ digits A backslash character fol-

lowed by the longest
sequence of one, two or
three octal-digit characters
(01234567). If all of the
digits are 0, (that is,
representation of the NUL
character), the behavior is
undefined.

The character whose encod-
ing is represented by the
one-, two- or three-digit
octal integer. Multi-byte
characters require multiple,
concatenated escape
sequences of this type,
including the leading \ for
each byte.

\ xdigits A backslash character fol-
lowed by the longest
sequence of hexadecimal-
digit characters
(01234567abcdefABCDEF).
If all of the digits are 0, (that
is, representation of the
NUL character), the
behavior is undefined.

The character whose encod-
ing is represented by the
hexadecimal integer.

\ c A backslash character fol-
lowed by any character not
described in this table. (\\,
\ a, \ b, \ f, \ n, \ r, \ t,
\ v).

The character c, unchanged.

The order of precedence given to extended regular expressions for lex is as shown in the
following table, from high to low.

Note: The escaped characters entry is not meant to imply that these are operators,
but they are included in the table to show their relationships to the true opera-
tors. The start condition, trailing context and anchoring notations have been
omitted from the table because of the placement restrictions described in this
section; they can only appear at the beginning or ending of an ERE.

modified 20 Dec 1996 SunOS 5.6 1-549

lex (1) User Commands

ERE Precedence in lex

collation-related bracket symbols [= =] [: :] [. .]
escaped characters \<special character>
bracket expression []
quoting ". . ."
grouping ()
definition {name}
single-character RE duplication ∗ + ?
concatenation
interval expression {m,n}
alternation |

The ERE anchoring operators (ˆ and $) do not appear in the table. With lex regular
expressions, these operators are restricted in their use: the ˆ operator can only be used at
the beginning of an entire regular expression, and the $ operator only at the end. The
operators apply to the entire regular expression. Thus, for example, the pattern
(ˆabc)|(def$) is undefined; it can instead be written as two separate rules, one with the
regular expression ˆabc and one with def$, which share a common action via the special
| action (see below). If the pattern were written ˆabc|def$, it would match either of abc
or def on a line by itself.

Unlike the general ERE rules, embedded anchoring is not allowed by most historical lex
implementations. An example of embedded anchoring would be for patterns such as
(ˆ)foo($) to match foo when it exists as a complete word. This functionality can be
obtained using existing lex features:

ˆfoo/[\ n] |
" foo"/[\ n] /∗ found foo as a separate word ∗/

Note also that $ is a form of trailing context (it is equivalent to /\n) and as such cannot be
used with regular expressions containing another instance of the operator (see the
preceding discussion of trailing context).

The additional regular expressions trailing-context operator / can be used as an ordinary
character if presented within double-quotes, " / "; preceded by a backslash, \ /; or within a
bracket expression, [/]. The start-condition < and > operators are special only in a start
condition at the beginning of a regular expression; elsewhere in the regular expression
they are treated as ordinary characters.

The following examples clarify the differences between lex regular expressions and regu-
lar expressions appearing elsewhere in this document. For regular expressions of the
form r/x, the string matching r is always returned; confusion may arise when the begin-
ning of x matches the trailing portion of r. For example, given the regular expression
a∗b/cc and the input aaabcc, yytext would contain the string aaab on this match. But
given the regular expression x∗/xy and the input xxxy, the token xxx, not xx, is returned
by some implementations because xxx matches x∗.

1-550 SunOS 5.6 modified 20 Dec 1996

User Commands lex (1)

In the rule ab∗/bc, the b∗ at the end of r will extend r’s match into the beginning of the
trailing context, so the result is unspecified. If this rule were ab/bc, however, the rule
matches the text ab when it is followed by the text bc. In this latter case, the matching of
r cannot extend into the beginning of x, so the result is specified.

Actions in lex The action to be taken when an ERE is matched can be a C program fragment or the spe-
cial actions described below; the program fragment can contain one or more C state-
ments, and can also include special actions. The empty C statement ; is a valid action;
any string in the lex.yy.c input that matches the pattern portion of such a rule is effec-
tively ignored or skipped. However, the absence of an action is not valid, and the action
lex takes in such a condition is undefined.

The specification for an action, including C statements and special actions, can extend
across several lines if enclosed in braces:

ERE <one or more blanks> { program statement
program statement }

The default action when a string in the input to a lex.yy.c program is not matched by any
expression is to copy the string to the output. Because the default behavior of a program
generated by lex is to read the input and copy it to the output, a minimal lex source pro-
gram that has just %% generates a C program that simply copies the input to the output
unchanged.

Four special actions are available:
| ECHO; REJECT; BEGIN

| The action | means that the action for the next rule is the action for this rule.
Unlike the other three actions, | cannot be enclosed in braces or be
semicolon-terminated; it must be specified alone, with no other actions.

ECHO; Write the contents of the string yytext on the output.

REJECT; Usually only a single expression is matched by a given string in the input.
REJECT means "continue to the next expression that matches the current
input," and causes whatever rule was the second choice after the current
rule to be executed for the same input. Thus, multiple rules can be matched
and executed for one input string or overlapping input strings. For exam-
ple, given the regular expressions xyz and xy and the input xyz, usually
only the regular expression xyz would match. The next attempted match
would start after z. If the last action in the xyz rule is REJECT , both this
rule and the xy rule would be executed. The REJECT action may be imple-
mented in such a fashion that flow of control does not continue after it, as if
it were equivalent to a goto to another part of yylex. The use of REJECT
may result in somewhat larger and slower scanners.

BEGIN The action:

BEGIN newstate ;

switches the state (start condition) to newstate . If the string newstate has not been
declared previously as a start condition in the Definitions in lex section, the

modified 20 Dec 1996 SunOS 5.6 1-551

lex (1) User Commands

results are unspecified. The initial state is indicated by the digit 0 or the token
INITIAL.

The functions or macros described below are accessible to user code included in the lex
input. It is unspecified whether they appear in the C code output of lex, or are accessible
only through the −l l operand to c89 or cc (the lex library).

int yylex(void)
Performs lexical analysis on the input; this is the primary function generated by
the lex utility. The function returns zero when the end of input is reached; oth-
erwise it returns non-zero values (tokens) determined by the actions that are
selected.

int yymore(void)
When called, indicates that when the next input string is recognized, it is to be
appended to the current value of yytext rather than replacing it; the value in
yyleng is adjusted accordingly.

int yyless(int n)
Retains n initial characters in yytext , NUL-terminated, and treats the remaining
characters as if they had not been read; the value in yyleng is adjusted accord-
ingly.

int input(void)
Returns the next character from the input, or zero on end-of-file. It obtains input
from the stream pointer yyin, although possibly via an intermediate buffer.
Thus, once scanning has begun, the effect of altering the value of yyin is
undefined. The character read is removed from the input stream of the scanner
without any processing by the scanner.

int unput(int c)
Returns the character c to the input; yytext and yyleng are undefined until the
next expression is matched. The result of using unput for more characters than
have been input is unspecified.

The following functions appear only in the lex library accessible through the −l l operand;
they can therefore be redefined by a portable application:

int yywrap(void)
Called by yylex at end-of-file; the default yywrap always will return 1. If the
application requires yylex to continue processing with another source of input,
then the application can include a function yywrap, which associates another file
with the external variable FILE ∗yyin and will return a value of zero.

int main(int argc, char ∗argv[])
Calls yylex to perform lexical analysis, then exits. The user code can contain
main to perform application-specific operations, calling yylex as applicable.

The reason for breaking these functions into two lists is that only those functions in libl.a
can be reliably redefined by a portable application.

1-552 SunOS 5.6 modified 20 Dec 1996

User Commands lex (1)

Except for input, unput and main, all external and static names generated by lex begin
with the prefix yy or YY.

USAGE Portable applications are warned that in the Rules in lex section, an ERE without an
action is not acceptable, but need not be detected as erroneous by lex. This may result in
compilation or run-time errors.

The purpose of input is to take characters off the input stream and discard them as far as
the lexical analysis is concerned. A common use is to discard the body of a comment
once the beginning of a comment is recognized.

The lex utility is not fully internationalized in its treatment of regular expressions in the
lex source code or generated lexical analyzer. It would seem desirable to have the lexical
analyzer interpret the regular expressions given in the lex source according to the
environment specified when the lexical analyzer is executed, but this is not possible with
the current lex technology. Furthermore, the very nature of the lexical analyzers pro-
duced by lex must be closely tied to the lexical requirements of the input language being
described, which will frequently be locale-specific anyway. (For example, writing an
analyzer that is used for French text will not automatically be useful for processing other
languages.)

modified 20 Dec 1996 SunOS 5.6 1-553

lex (1) User Commands

EXAMPLES The following is an example of a lex program that implements a rudimentary scanner for
a Pascal-like syntax:
%{
/∗ need this for the call to atof() below ∗/
#include <math.h>
/∗ need this for printf(), fopen() and stdin below ∗/
#include <stdio.h>
%}

DIGIT [0-9]
ID [a-z][a-z0-9]∗

%%

{DIGIT}+ {
printf("An integer: %s (%d)\n", yytext,
atoi(yytext));
}

{DIGIT}+"."{DIGIT}∗ {
printf("A float: %s (%g)\n", yytext,
atof(yytext));
}

if|then|begin|end|procedure|function {
printf("A keyword: %s\n", yytext);
}

{ID} printf("An identifier: %s\n", yytext);

"+"|"-"|"∗"|"/" printf("An operator: %s\n", yytext);

"{"[ˆ}\n]∗"}" /∗ eat up one-line comments ∗/

[\t\n]+ /∗ eat up white space ∗/

. printf("Unrecognized character: %s\n", yytext);

%%

int main(int argc, char ∗argv[])
{

++argv, --argc; /∗ skip over program name ∗/
if (argc > 0)
yyin = fopen(argv[0], "r");
else
yyin = stdin;

yylex();
}

1-554 SunOS 5.6 modified 20 Dec 1996

User Commands lex (1)

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of lex: LC_COLLATE, LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS The following exit values are returned:

0 Successful completion.

>0 An error occurred.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWbtool

SEE ALSO yacc(1), attributes(5), environ(5), regex(5)

NOTES If routines such as yyback(), yywrap(), and yylock() in .l (ell) files are to be extern C
functions, the command line to compile a C++ program must define the __EXTERN_C__
macro, for example:

example% CC −D__EXTERN_C__ . . . file

modified 20 Dec 1996 SunOS 5.6 1-555

limit (1) User Commands

NAME limit, ulimit, unlimit − set or get limitations on the system resources available to the
current shell and its descendents

SYNOPSIS /usr/bin/ulimit [−f] [blocks]

sh ulimit [−[HS] [a � cdfnstv]]
ulimit [−[HS]] c � d � f � n � s � t � v]] limit

csh limit [−h] [resource [limit]]
unlimit [−h] [resource]

ksh ulimit [−HSacdfnstv] [limit]

DESCRIPTION
/usr/bin/ulimit The ulimit utility sets or reports the file-size writing limit imposed on files written by the

shell and its child processes (files of any size may be read). Only a process with
appropriate privileges can increase the limit.

sh The Bourne shell built-in function, ulimit, prints or sets hard or soft resource limits.
These limits are described in getrlimit(2).

If limit is not present, ulimit prints the specified limits. Any number of limits may be
printed at one time. The −a option prints all limits.

If limit is present, ulimit sets the specified limit to limit. The string unlimited requests
the largest valid limit. Limits may be set for only one resource at a time. Any user may
set a soft limit to any value below the hard limit. Any user may lower a hard limit. Only
a super-user may raise a hard limit; see su(1M).

The −H option specifies a hard limit. The −S option specifies a soft limit. If neither
option is specified, ulimit will set both limits and print the soft limit.

The following options specify the resource whose limits are to be printed or set. If no
option is specified, the file size limit is printed or set.

−c maximum core file size (in 512-byte blocks)

−d maximum size of data segment or heap (in kbytes)

−f maximum file size (in 512-byte blocks)

−n maximum file descriptor plus 1

−s maximum size of stack segment (in kbytes)

−t maximum CPU time (in seconds)

−v maximum size of virtual memory (in kbytes)

csh The C-shell built-in function, limit, limits the consumption by the current process or any
process it spawns, each not to exceed limit on the specified resource. If limit is omitted,
print the current limit; if resource is omitted, display all limits. (Run the sysdef(1M) com-
mand to obtain the maximum possible limits for your system. The values reported are in

1-556 SunOS 5.6 modified 5 Feb 1997

User Commands limit (1)

hexidecimal, but can be translated into decimal numbers using the bc(1) command).

−h Use hard limits instead of the current limits. Hard limits impose a ceiling on the
values of the current limits. Only the privileged user may raise the hard limits.

resource is one of:

cputime Maximum CPU seconds per process.
filesize Largest single file allowed; limited to the size of the filesystem.

(see df(1M)).
datasize The maximum size of a process’s heap in bytes.
stacksize Maximum stack size for the process. (see swap(1M)).
coredumpsize Maximum size of a core dump (file). This limited to the size of

the filesystem.
descriptors Maximum number of file descriptors. (run sysdef()).
memorysize Maximum size of virtual memory.

limit is a number, with an optional scaling factor, as follows:

nh Hours (for cputime).
nk n kilobytes. This is the default for all but cputime.
nm n megabytes or minutes (for cputime).
mm:ss Minutes and seconds (for cputime).

unlimit removes a limitation on resource. If no resource is specified, then all resource limi-
tations are removed. See the description of the limit command for the list of resource
names.

−h Remove corresponding hard limits. Only the privileged user may do this.

ksh The Korn shell built-in function, ulimit, sets or displays a resource limit. The available
resources limits are listed below. Many systems do not contain one or more of these lim-
its. The limit for a specified resource is set when limit is specified. The value of limit can
be a number in the unit specified below with each resource, or the value unlimited. The
H and S flags specify whether the hard limit or the soft limit for the given resource is set.
A hard limit cannot be increased once it is set. A soft limit can be increased up to the
value of the hard limit. If neither the H or S options is specified, the limit applies to both.
The current resource limit is printed when limit is omitted. In this case the soft limit is
printed unless H is specified. When more that one resource is specified, then the limit
name and unit is printed before the value.
−a Lists all of the current resource limits.
−c The number of 512-byte blocks on the size of core dumps.
−d The number of K-bytes on the size of the data area.
−f The number of 512-byte blocks on files written by child processes (files of any

size may be read).
−n The number of file descriptors plus 1.
−s The number of K-bytes on the size of the stack area.
−t The number of seconds (CPU time) to be used by each process.
−v The number of K-bytes for virtual memory.

modified 5 Feb 1997 SunOS 5.6 1-557

limit (1) User Commands

If no option is given, −f is assumed.

OPTIONS The following option is supported by ulimit:

−f Set (or report, if no blocks operand is present), the file size limit in blocks. The −f
option is also the default case.

OPERANDS The following operand is supported by ulimit:

blocks The number of 512-byte blocks to use as the new file size limit.

EXAMPLES
/usr/bin/ulimit To limit the stack size to 512 kilobytes:

% ulimit -s 512
% ulimit -a
% time(seconds) unlimited
file(blocks) 100
data(kbytes) 523256
stack(kbytes) 512
coredump(blocks) 200
nofiles(descriptors) 64
memory(kbytes) unlimited

sh/ksh To limit the number of file descriptors to 12:
$ ulimit -n 12

$ ulimit -a
time(seconds) unlimited
file(blocks) 41943
data(kbytes) 523256
stack(kbytes) 8192
coredump(blocks) 200
nofiles(descriptors) 12
vmemory(kbytes) unlimited

csh To limit the size of a core dump file size to 0 kilobytes:
% limit coredumpsize 0
% limit
cputime unlimited
filesize unlimited
datasize 523256 kbytes
stacksize 8192 kbytes
coredumpsize 0 kbytes
descriptors 64
memorysize unlimited

To remove the above limitation for the core file size:
% unlimit coredumpsize

1-558 SunOS 5.6 modified 5 Feb 1997

User Commands limit (1)

% limit
cputime unlimited
filesize unlimited
datasize 523256 kbytes
stacksize 8192 kbytes
coredumpsize unlimited
descriptors 64
memorysize unlimited

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of ulimit: LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS The following exit values are returned by ulimit:
0 Successful completion.
>0 A request for a higher limit was rejected or an error occurred.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO bc(1), csh(1), ksh(1), sh(1), df(1M), su(1M), swap(1M), sysdef(1M), getrlimit(2), attri-
butes(5), environ(5)

modified 5 Feb 1997 SunOS 5.6 1-559

line (1) User Commands

NAME line − read one line

SYNOPSIS line

DESCRIPTION The line utility copies one line (up to and including a new-line) from the standard input
and writes it on the standard output. It returns an exit status of 1 on EOF and always
prints at least a new-line. It is often used within shell files to read from the user’s termi-
nal.

EXIT STATUS Exit status is:

0 Successful completion

>0 End-of-file on input.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO sh(1), read(2), attributes(5)

1-560 SunOS 5.6 modified 1 Feb 1995

SunOS/BSD Compatibility Package Commands lint (1B)

NAME lint − C program verifier

SYNOPSIS /usr/ucb/lint [options]

DESCRIPTION /usr/ucb/lint is the interface to the BSD Compatibility Package C program verifier. It is a
script that looks for the link /usr/ccs/bin/ucblint to the C program verifier.
/usr/ccs/bin/ucblint is available only with the SPROcc package, whose default location is
/opt/SUNWspro. /usr/ucb/lint is identical to /usr/ccs/bin/ucblint, except that BSD
headers are used and BSD libraries are linked before base libraries. The
/opt/SUNWspro/man/man1/lint.1 man page is available only with the SPROcc package.

OPTIONS /usr/ucb/lint accepts the same options as /usr/ccs/bin/ucblint, with the following excep-
tions:

−Idir Search dir for included files whose names do not begin with a slash (/)
prior to searching the usual directories. The directories for multiple −I
options are searched in the order specified. The preprocessor first
searches for #include files in the directory containing sourcefile, and then
in directories named with −I options (if any), then /usr/ucbinclude, and
finally, in /usr/include.

−Ldir Add dir to the list of directories searched for libraries by
/usr/ccs/bin/ucblint. This option is passed to /usr/ccs/bin/ld. Direc-
tories specified with this option are searched before /usr/ucblib and
/usr/lib.

−Y P, dir Change the default directory used for finding libraries.

EXIT STATUS The following exit values are returned:

0 Successful completion.

>0 An error occurred.

FILES /usr/lint/bin/ld link editor
/usr/lib/libc C library
/usr/ucbinclude BSD Compatibility directory for header files
/usr/ucblib BSD Compatibility directory for libraries
/usr/ucblib/libucb BSD Compatibility C library
/usr/lib/libsocket library containing socket routines
/usr/lib/libnsl library containing network functions
/usr/lib/libelf library containing routines to process ELF object files
/usr/lib/libaio library containing asynchronous I/O routines

modified 1 Feb 1995 SunOS 5.6 1B-561

lint (1B) SunOS/BSD Compatibility Package Commands

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscpu

SEE ALSO ld(1), a.out(4), attributes(5)

1B-562 SunOS 5.6 modified 1 Feb 1995

User Commands listusers (1)

NAME listusers − list user login information

SYNOPSIS listusers [−g groups] [−l logins]

DESCRIPTION Executed without any options, this command lists all user logins sorted by login. The
output shows the login ID and the account field value from the system’s password data-
base as specified by /etc/nsswitch.conf.

OPTIONS −g groups Lists all user logins belonging to group, sorted by login. Multiple groups can
be specified as a comma-separated list.

−l logins Lists the user login or logins specified by logins, sorted by login. Multiple
logins can be specified as a comma-separated list.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO nsswitch.conf(4), attributes(5)

NOTES A user login is one that has a UID of 100 or greater.

The −l and −g options can be combined. User logins will only be listed once, even if they
belong to more than one of the selected groups.

modified 18 Mar 1994 SunOS 5.6 1-563

ln (1) User Commands

NAME ln − make hard or symbolic links to files

SYNOPSIS /usr/bin/ln [−fns] source_file [target]
/usr/bin/ln [−fns] source_file . . . target

/usr/xpg4/bin/ln [−fs] source_file [target]
/usr/xpg/bin/ln [−fs] source_file . . . target

DESCRIPTION In the first synopsis form, the ln utility creates a new directory entry (link) for the file
specified by source_file, at the destination path specified by target . If target is not
specified, the link is made in the current directory. This first synopsis form is assumed
when the final operand does not name an existing directory; if more than two operands
are specified and the final is not an existing directory, an error will result.

In the second synopsis form, the ln utility creates a new directory entry for each file
specified by a source_file operand, at a destination path in the existing directory named by
target .

The ln utility may be used to create both hard links and symbolic links. A hard link is a
pointer to a file and is indistinguishable from the original directory entry. Any changes
to a file are effective independent of the name used to reference the file. Hard links may
not span file systems and may not refer to directories.

ln by default creates hard links. source_file is linked to target . If target is a directory,
another file named source_file is created in target and linked to the original source_file.

/usr/bin/ln If target is a file, its contents are overwritten. If /usr/bin/ln determines that the mode of
target forbids writing, it will print the mode (see chmod(1)), ask for a response, and read
the standard input for one line. If the response is affirmative, the link occurs, if permissi-
ble; otherwise, the command exits.

/usr/xpg4/bin/ln If target is a file and the −f option is not specified, /usr/xpg4/bin/ln will write a diagnostic
message to standard error, do nothing more with the current source_file, and go on to any
remaining source_files.

A symbolic link is an indirect pointer to a file; its directory entry contains the name of the
file to which it is linked. Symbolic links may span file systems and may refer to direc-
tories.

File permissions for target may be different from those displayed with a −l listing of the
ls(1) command. To display the permissions of target use ls −lL. See stat(2) for more
information.

OPTIONS The following options are supported for both /usr/bin/ln and /usr/xpg4/bin/ln:

−f Link files without questioning the user, even if the mode of target forbids writ-
ing. This is the default if the standard input is not a terminal.

1-564 SunOS 5.6 modified 18 Mar 1997

User Commands ln (1)

−s Create a symbolic link.

If the −s option is used with two arguments, target may be an existing direc-
tory or a non-existent file. If target already exists and is not a directory, an
error is returned. source_file may be any path name and need not exist. If it
exists, it may be a file or directory and may reside on a different file system
from target . If target is an existing directory, a file is created in directory target
whose name is source_file or the last component of source_file. This file is a
symbolic link that references source_file. If target
does not exist, a file with name target is created and it is a symbolic link that
references source_file.

If the −s option is used with more than two arguments, target must be an
existing directory or an error will be returned. For each source_file, a link is
created in target whose name is the last component of source_file; each new
source_file is a symbolic link to the original source_file. The files and target may
reside on different file systems.

/usr/bin/ln The following options are supported for /usr/bin/ln only:

−n If the link is an existing file, do not overwrite the contents of the file. The −f
option overrides this option. This is the default behavior for /usr/xpg4/bin/ln,
and is silently ignored.

OPERANDS The following operands are supported:

source_file A path name of a file to be linked. This can be either a regular or special
file. If the −s option is specified, source_file can also be a directory.

target The path name of the new directory entry to be created, or of an existing
directory in which the new directory entries are to be created.

USAGE See largefile(5) for the description of the behavior of ln when encountering files greater
than or equal to 2 Gbyte (231 bytes).

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of ln: LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS The following exit values are returned:

0 All the specified files were linked successfully

>0 An error occurred.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

/usr/bin/ln ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu
CSI Enabled

modified 18 Mar 1997 SunOS 5.6 1-565

ln (1) User Commands

/usr/xpg4/bin/ln ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxcu4
CSI Enabled

SEE ALSO chmod(1), ls(1), stat(2), attributes(5), environ(5), largefile(5), xpg4(5)

NOTES A symbolic link to a directory behaves differently than you might expect in certain cases.
While an ls(1) on such a link displays the files in the pointed-to directory,
an ‘ls −l’ displays information about the link itself:

example% ln −s dir link
example% ls link
file1 file2 file3 file4
example% ls −l link
lrwxrwxrwx 1 user 7 Jan 11 23:27 link -> dir

When you cd(1) to a directory through a symbolic link, you wind up in the pointed-to
location within the file system. This means that the parent of the new working directory
is not the parent of the symbolic link, but rather, the parent of the pointed-to directory.
For instance, in the following case the final working directory is /usr and not
/home/user/linktest.

example% pwd
/home/user/linktest
example% ln −s /usr/tmp symlink
example% cd symlink
example% cd . .
example% pwd
/usr

C shell user’s can avoid any resulting navigation problems by using the pushd and popd
built-in commands instead of cd.

1-566 SunOS 5.6 modified 18 Mar 1997

SunOS/BSD Compatibility Package Commands ln (1B)

NAME ln − make hard or symbolic links to files

SYNOPSIS /usr/ucb/ln [−fs] filename [linkname]
/usr/ucb/ln [−fs] pathname . . . directory

DESCRIPTION /usr/ucb/ln creates an additional directory entry, called a link, to a file or directory. Any
number of links can be assigned to a file. The number of links does not affect other file
attributes such as size, protections, data, etc.

filename is the name of the original file or directory. linkname is the new name to associate
with the file or filename. If linkname is omitted, the last component of filename is used as
the name of the link.

If the last argument is the name of a directory, symbolic links are made in that directory
for each pathname argument; /usr/ucb/ln uses the last component of each pathname as the
name of each link in the named directory.

A hard link (the default) is a standard directory entry just like the one made when the file
was created. Hard links can only be made to existing files. Hard links cannot be made
across file systems (disk partitions, mounted file systems). To remove a file, all hard links
to it must be removed, including the name by which it was first created; removing the
last hard link releases the inode associated with the file.

A symbolic link, made with the −s option, is a special directory entry that points to
another named file. Symbolic links can span file systems and point to directories. In fact,
you can create a symbolic link that points to a file that is currently absent from the file
system; removing the file that it points to does not affect or alter the symbolic link itself.

A symbolic link to a directory behaves differently than you might expect in certain cases.
While an ls(1) on such a link displays the files in the pointed-to directory, an ‘ls −l’
displays information about the link itself:

example% /usr/ucb/ln −s dir link
example% ls link
file1 file2 file3 file4
example% ls −l link
lrwxrwxrwx 1 user 7 Jan 11 23:27 link → dir

When you cd(1) to a directory through a symbolic link, you wind up in the pointed-to
location within the file system. This means that the parent of the new working directory
is not the parent of the symbolic link, but rather, the parent of the pointed-to directory.
For instance, in the following case the final working directory is /usr and not
/home/user/linktest.

example% pwd
/home/user/linktest
example% /usr/ucb/ln −s /var/tmp symlink
example% cd symlink
example% cd . .
example% pwd

modified 11 Mar 1994 SunOS 5.6 1B-567

ln (1B) SunOS/BSD Compatibility Package Commands

/usr

C shell user’s can avoid any resulting navigation problems by using the pushd and popd
built-in commands instead of cd.

OPTIONS −f Force a hard link to a directory. This option is only available to the super-user,
and should be used with extreme caution.

−s Create a symbolic link or links.

USAGE See largefile(5) for the description of the behavior of ln when encountering files greater
than or equal to 2 Gbyte (231 bytes).

EXAMPLES The commands below illustrate the effects of the different forms of the /usr/ucb/ln com-
mand:

example% /usr/ucb/ln file link
example% ls −F file link
file link
example% /usr/ucb/ln −s file symlink
example% ls −F file symlink
file symlink@
example% ls −li file link symlink
10606 -rw-r--r-- 2 user 0 Jan 12 00:06 file
10606 -rw-r--r-- 2 user 0 Jan 12 00:06 link
10607 lrwxrwxrwx 1 user 4 Jan 12 00:06 symlink → file
example% /usr/ucb/ln −s nonesuch devoid
example% ls −F devoid
devoid@
example% cat devoid
devoid: No such file or directory
example% /usr/ucb/ln −s /proto/bin/∗ /tmp/bin
example% ls −F /proto/bin /tmp/bin
/proto/bin:
x∗ y∗ z∗

/tmp/bin:
x@ y@ z@

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscpu

SEE ALSO cp(1), ls(1), mv(1), rm(1), link(2), readlink(2), stat(2), symlink(2), attributes(5),
largefile(5)

1B-568 SunOS 5.6 modified 11 Mar 1994

SunOS/BSD Compatibility Package Commands ln (1B)

NOTES When the last argument is a directory, simple basenames should not be used for pathname
arguments. If a basename is used, the resulting symbolic link points to itself:

example% /usr/ucb/ln −s file /tmp
example% ls −l /tmp/file
lrwxrwxrwx 1 user 4 Jan 12 00:16 /tmp/file → file
example% cat /tmp/file
/tmp/file: Too many levels of symbolic links

To avoid this problem, use full pathnames, or prepend a reference to the PWD variable to
files in the working directory:

example% rm /tmp/file
example% /usr/ucb/ln −s $PWD/file /tmp
lrwxrwxrwx 1 user 4 Jan 12 00:16 /tmp/file → /home/user/subdir/file

modified 11 Mar 1994 SunOS 5.6 1B-569

loadfont (1) User Commands

NAME loadfont − display or change font information in the RAM of the video card on an x86
system in text mode

SYNOPSIS loadfont [−f BDF_file | −c codeset] [−m mode] [−d]

DESCRIPTION The loadfont utility allows a user to load and activate a different font into the RAM of the
video card used by the console of the Solaris for x86 operating system in text mode. It
can also be used to display information about the fonts currently in use. In addition, the
−m option can be used to change the size of the characters on the screen; it can also be
used to change the number of lines per screen. loadfont will always read from standard
output; this will allow a system administrator to use it from a remote terminal.

When used without arguments, loadfont displays the different ways the command can
be used, as shown in the synopsis.

Options −f BDF_file
This command reads the contents of BDF_file and subsequently loads the font
specified in the file into the RAM of the video card. The file must be in the Binary
Distribution Format version 2.1 as developed by Adobe Systems, Inc.
(See loadfont(4).)

−c codeset
codeset is the name of a codeset available for the current font size. This font will
be loaded into the RAM of the video card and activated. Use ? to find out the
valid codesets available. This option is a shorthand form of −f.

−m mode
This option will attempt to change the mode of the console as specified. This will
result in having a different font size and/or different number of lines and
columns on the screen. Use ? to find out the valid modes available.

−d
This reads the font information from the video RAM and writes it to standard
output in a format compatible with the Binary Distribution Format version 2.1 as
developed by Adobe Systems, Inc. (See loadfont(4).)

Fonts A font is the representation of characters by images. The need to use different fonts can
be imposed by:

1. The codeset used to represent the characters internally.

2. The resolution used to display the characters.

Each font contains exactly 256 images. All supported fonts are fixed size (constant width
and constant height), i.e., each character takes the same amount of space on the screen.
When the monitor is not being used in graphics mode, the loadfont utility allows a user
to modify the font used by the video card, so different images are displayed on the screen
of the console for the various characters. The same video card may support different text
modes. Video cards typically differ by the number of pixels they use to represent a single
character. On any given video card, the same number of pixels is used for each character.

1-570 SunOS 5.6 modified 31 May 1993

User Commands loadfont (1)

For the standard VGA video cards, 8 by 16 (8 horizontally and 16 vertically) resolution is
supported:

When loadfont is invoked to modify the existing font, it will attempt to do so for the font
size currently in use. Use the −m option to switch to another font size.

loadfont and
pcmapkeys

There is an almost one-to-one relationship between the use of the loadfont utility and the
pcmapkeys utility. Whereas loadfont is used to list or modify the images that
correspond with the various characters, the pcmapkeys utility is used to determine how
characters are generated from the keyboard and which code (a single byte code) will be
used to represent the character internally. The default representation is the ISO 8859-1
codeset.

When a different codeset is used, both a different pcmapkeys input file and a different
font set are required. If the default font does not satisfy your needs (because a different
font size or a customized font is required, e.g., a Greek font), a loadfont description file to
be used with the −f option is needed. A sample file that describes the IBM extended
ASCII font for an 8 by 16 resolution is supplied (437.bdf). A second sample file,
646g.bdf, contains a font file for German ASCII. See pcmapkeys(1) and
loadfont(4) for additional details.

FILES /usr/share/lib/fonts/8859-1.bdf the Binary Distribution Format (BDF) file for the
default fonts

/usr/share/lib/fonts/437.bdf sample Binary Distribution Format (BDF) file for
IBM 437 font on a VGA

/usr/share/lib/fonts/646g.bdf sample BDF file for German ASCII

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture x86, PowerPC Edition
Availability SUNWcsu

SEE ALSO pcmapkeys(1), loadfont(4), attributes(5)

WARNINGS When an attempt is made to switch to a mode that the video card does not support, you
will get a blank screen. There is nothing wrong with the system; as super-user, simply
type in the command to set the mode back, e.g.:

loadfont −m V80x25

NOTES The default fonts on the system are those of the ISO 8859-1 codeset. The optional IBM
DOS 437 codeset is supported only at internationalization level 1. That is, if you choose to
download fonts of the optional IBM DOS 437 codeset, there will be no support for non-
standard U.S. date, time, currency, numbers, unit, and collation. There will be no sup-
port for non-English message and text presentation, and no multi-byte character support.
Therefore, non-Windows users should only use IBM DOS 437 codeset in the default C
locale.

modified 31 May 1993 SunOS 5.6 1-571

loadkeys (1) User Commands

NAME loadkeys, dumpkeys − load and dump keyboard translation tables

SYNOPSIS loadkeys [filename]

dumpkeys

DESCRIPTION loadkeys reads the file specified by filename, and modifies the keyboard streams module’s
translation tables. If no file is specified, and the keyboard is a Type-4 keyboard, a default
file for the layout indicated by the DIP switches on the keyboard. The file is in the format
specified by keytables(4).

By default, loadkeys loads the file: /usr/share/lib/keytables/type_tt/layout_dd, where tt
is the value returned by the KIOCTYPE ioctl, and dd is the value returned by the KIOCLAY-
OUT ioctl (see kb(7M)). On self-identifying keyboards, the value returned by the
KIOCLAYOUT ioctl is set from the DIP switches. These files specify only the entries that
change between the different Type-4 keyboard layouts.

dumpkeys writes, to the standard output, the current contents of the keyboard streams
module’s translation tables, in the format specified by keytables(4).

FILES /usr/share/lib/keytables/layout_dd default keytable files

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC, x86
Availability SUNWcsu

SEE ALSO kbd(1), keytables(4), attributes(5), kb(7M)

1-572 SunOS 5.6 modified 7 Nov 1995

User Commands locale (1)

NAME locale − get locale-specific information

SYNOPSIS locale [−a | −m]
locale [−ck] name . . .

DESCRIPTION The locale utility writes information about the current locale environment, or all public
locales, to the standard output. For the purposes of this section, a public locale is one pro-
vided by the implementation that is accessible to the application.

When locale is invoked without any arguments, it summarizes the current locale
environment for each locale category as determined by the settings of the environment
variables.

When invoked with operands, it writes values that have been assigned to the keywords
in the locale categories, as follows:

· Specifying a keyword name selects the named keyword and the category containing
that keyword.

· Specifying a category name selects the named category and all keywords in that
category.

OPTIONS The following options are supported:

−a Write information about all available public locales. The available locales
include POSIX, representing the POSIX locale.

−c Write the names of selected locale categories. The −c option increases readabil-
ity when more than one category is selected (for example, via more than one
keyword name or via a category name). It is valid both with and without the −k
option.

−k Write the names and values of selected keywords. The implementation may
omit values for some keywords; see OPERANDS.

−m Write names of available charmaps; see localedef(1).

OPERANDS The following operand is supported:

name The name of a locale category, the name of a keyword in a locale category, or the
reserved name charmap. The named category or keyword will be selected for
output. If a single name represents both a locale category name and a keyword
name in the current locale, the results are unspecified; otherwise, both category
and keyword names can be specified as name operands, in any sequence.

EXAMPLES In the following examples, the assumption is that locale environment variables are set as
follows:

LANG=locale_x LC_COLLATE=locale_y

The command locale would result in the following output:

LANG=locale_x
LC_CTYPE="locale_x"

modified 20 Dec 1996 SunOS 5.6 1-573

locale (1) User Commands

LC_NUMERIC="locale_x"
LC_TIME="locale_x"
LC_COLLATE=locale_y
LC_MONETARY="locale_x"
LC_MESSAGES="locale_x"
LC_ALL=

The command LC_ALL=POSIX locale −ck decimal_point would produce:

LC_NUMERIC
decimal_point="."

The following command shows an application of locale to determine whether a user-
supplied response is affirmative:

if printf "%s\n" "$response" | /usr/xpg4/bin/grep −Eq "$(locale yesexpr)"
then

affirmative processing goes here
else

non-affirmative processing goes here
fi

ENVIRONMENT See environ(5) for the descriptions of LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, and
NLSPATH.

The LANG, LC_∗, and NLSPATH environment variables must specify the current locale
environment to be written out; they will be used if the −a option is not specified.

EXIT STATUS The following exit values are returned:

0 All the requested information was found and output successfully.

>0 An error occurred.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWloc
CSI Enabled

SEE ALSO localedef(1), attributes(5), charmap(5), environ(5), locale(5)

NOTES If LC_CTYPE or keywords in the category LC_CTYPE are specified, only the values in the
range 0x00-0x7f are written out.

If LC_COLLATE or keywords in the category LC_COLLATE are specified, no actual values
are written out.

1-574 SunOS 5.6 modified 20 Dec 1996

User Commands localedef (1)

NAME localedef − define locale environment

SYNOPSIS localedef [−c] [−C compiler-options [−f charmap] [−i sourcefile] [−L linker_options]
[−x extensions_file] localename

DESCRIPTION The localedef utility converts source definitions for locale categories into a format usable
by the functions and utilities whose operational behavior is determined by the setting of
the locale environment variables; see environ(5).

The utility reads source definitions for one or more locale categories belonging to the
same locale from the file named in the −i option (if specified) or from standard input.

Each category source definition is identified by the corresponding environment variable
name and terminated by an END category-name statement. The following categories are
supported.

LC_CTYPE Defines character classification and case conversion.

LC_COLLATE Defines collation rules.

LC_MONETARY Defines the format and symbols used in formatting of monetary
information.

LC_NUMERIC Defines the decimal delimiter, grouping and grouping symbol for
non-monetary numeric editing.

LC_TIME Defines the format and content of date and time information.

LC_MESSAGES Defines the format and values of affirmative and negative
responses.

OPTIONS The following options are supported:

−c Create permanent output even if warning messages have been issued.

−C compiler_options
Pass the compiler_options to the C compiler (cc). If more than one option
is specified, then the options must be enclosed in quotes (" ").

−f charmap Specify the pathname of a file containing a mapping of character sym-
bols and collating element symbols to actual character encodings. This
option must be specified if symbolic names (other than collating sym-
bols defined in a collating-symbol keyword) are used. If the −f option
is not present, the default character mapping will be used.

−i sourcefile The path name of a file containing the source definitions. If this option
is not present, source definitions will be read from standard input.

−L linker_options Pass the linker_options to the C compiler (cc) that follows the C source
filename. If more than one option is specified, then the options must be
enclosed in quotes (" ").

−x extensions_file
Specifies the name of an extension file where various localedef options
are listed. See locale(5).

modified 17 Jun 1997 SunOS 5.6 1-575

localedef (1) User Commands

OPERANDS The following operand is supported:

localename Identifies the locale. If the name contains one or more slash characters,
localename will be interpreted as a path name where the created locale
definitions will be stored. This capability may be restricted to users with
appropriate privileges. (As a consequence of specifying one localename,
although several categories can be processed in one execution, only
categories belonging to the same locale can be processed.)

OUTPUT localedef creates a temporary C source file that represents the locale’s data. localedef
then calls the C compiler to compile this C source file into a shared object. This object is
named localename.so.1. localedef also creates a text file named localename that is for infor-
mation only. The share object must be moved to:

/usr/lib/locale/localename/localename.so.1

The localename text file is not needed.

ENVIRONMENT See environ(5) for definitions of the following environment variables that affect the exe-
cution of localedef: LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS The following exit values are returned:

0 No errors occurred and the locales were successfully created.

1 Warnings occurred and the locales were successfully created.

2 The locale specification exceeded implementation limits or the coded character
set or sets used were not supported by the implementation, and no locale was
created.

3 The capability to create new locales is not supported by the implementation.

>3 Warnings or errors occurred and no output was created.

If an error is detected, no permanent output will be created.

FILES /usr/lib/localedef/generic_eucbc.x
Describes what a generic EUC locale uses in the system. This file is used by
default.

/usr/lib/localedef/single_byte.x
Describes a generic single-byte file used in the system.

/usr/lib/locale/localename/localename.so.1

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

1-576 SunOS 5.6 modified 17 Jun 1997

User Commands localedef (1)

SEE ALSO locale(1), nl_langinfo(3C), strftime(3C), attributes(5), charmap(5), environ(5),
extensions(5), locale(5)

WARNINGS If warnings occur, permanent output will be created if the −c option was specified. The
following conditions will cause warning messages to be issued:

· If a symbolic name not found in the charmap file is used for the descriptions of the
LC_CTYPE or LC_COLLATE categories (for other categories, this will be an error condi-
tions).

· If optional keywords not supported by the implementation are present in the source.

modified 17 Jun 1997 SunOS 5.6 1-577

logger (1) User Commands

NAME logger − add entries to the system log

SYNOPSIS logger [−i] [−f file] [−p priority] [−t tag] [message] . . .

DESCRIPTION The logger command provides a method for adding one-line entries to the system log file
from the command line. One or more message arguments can be given on the command
line, in which case each is logged immediately. If this is unspecified, either the file indi-
cated with −f or the standard input is added to the log. Otherwise, a file can be specified,
in which case each line in the file is logged. If neither is specified, logger reads and logs
messages on a line-by-line basis from the standard input.

OPTIONS The following options are supported:

−f file Use the contents of file as the message to log.

−i Log the process ID of the logger process with each line.

−p priority Enter the message with the specified priority . The message priority can
be specified numerically, or as a facility.level pair. For example, ‘−p
local3.info’ assigns the message priority to the info level in the local3
facility. The default priority is user.notice.

−t tag Mark each line added to the log with the specified tag .

OPERANDS The following operand is supported:

message One of the string arguments whose contents are concatenated together,
in the order specified, separated by single space characters.

EXAMPLES The following example:
example% logger System rebooted

logs the message ‘System rebooted’ to the default priority level notice to be treated by
syslogd as are other messages to the facility user.

The next example:
example% logger −p local0.notice −t HOSTIDM −f /dev/idmc

reads from the file /dev/idmc and logs each line in that file as a message with the tag
‘HOSTIDM’ at priority level notice to be treated by syslogd as are other messages to the
facility local0.

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of logger: LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS The following exit values are returned:
0 Successful completion.
>0 An error occurred.

1-578 SunOS 5.6 modified 1 Feb 1995

User Commands logger (1)

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO mailx(1), write(1), syslogd(1M), syslog(3), attributes(5), environ(5)

modified 1 Feb 1995 SunOS 5.6 1-579

logger (1B) SunOS/BSD Compatibility Package Commands

NAME logger − add entries to the system log

SYNOPSIS /usr/ucb/logger [−f filename] [−i] [−p priority] [−t tag] [message] . . .

DESCRIPTION logger provides a method for adding one-line entries to the system log file from the com-
mand line. One or more message arguments can be given on the command line, in which
case each is logged immediately. If message is unspecified, either the file indicated with −f
or the standard input is added to the log. Otherwise, a filename can be specified, in which
case each line in the file is logged. If neither is specified, logger reads and logs messages
on a line-by-line basis from the standard input.

OPTIONS −i Log the process ID of the logger process with each line.

−f filename Use the contents of filename as the message to log.

−p priority Enter the message with the specified priority . The message priority can
be specified numerically, or as a facility.level pair. For example, `−p
local3.info´ assigns the message priority to the info level in the local3
facility. The default priority is user.notice.

−t tag Mark each line added to the log with the specified tag .

EXAMPLES The command:

example% logger System rebooted

will log the message `System rebooted´ to the facility at priority notice to be treated by
syslogd as other messages to the facility notice are.

The next command:

example% logger −p local0.notice −t HOSTIDM −f /dev/idmc

will read from the file /dev/idmc and will log each line in that file as a message with the
tag `HOSTIDM´ at priority notice to be treated by syslogd as other messages to the facil-
ity local0 are.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscpu

SEE ALSO syslogd(1M), syslog(3), attributes(5)

1B-580 SunOS 5.6 modified 14 Sep 1992

User Commands login (1)

NAME login − sign on to the system

SYNOPSIS login [−p] [−d device] [−h hostname [terminal] | −r hostname] [name [environ . . .]]

DESCRIPTION You use the login command at the beginning of each terminal session to identify yourself
to the system. login is invoked by the system when a connection is first established, after
the previous user has terminated the login shell by issuing the exit command.

If login is invoked as a command, it must replace the initial command interpreter. To
invoke login in this fashion, type:

exec login

from the initial shell.

login asks for your user name, if it is not supplied as an argument, and your password, if
appropriate. Where possible, echoing is turned off while you type your password, so it
will not appear on the written record of the session.

If you make any mistake in the login procedure, the message:

Login incorrect

is printed and a new login prompt will appear. If you make five incorrect login attempts,
all five may be logged in /var/adm/loginlog, if it exists. The TTY line will be dropped.

If password aging is turned on and the password has "aged" (see passwd(1) for more
information), the user is forced to changed the password. In this case the
/etc/nsswitch.conf file is consulted to determine password repositories (see
nsswitch.conf(4)). The password update configurations supported are limited to the fol-
lowing five cases.

· passwd: files
· passwd: files nis
· passwd: files nisplus
· passwd: compat (==> files nis)
· passwd: compat (==> files nisplus)

passwd_compat: nisplus

Failure to comply with the configurations will prevent the user from logging onto the
system because passwd(1) will fail. If you do not complete the login successfully within
a certain period of time, it is likely that you will be silently disconnected.

After a successful login, accounting files are updated. Device owner, group, and permis-
sions are set according to the contents of the /etc/logindevperm file, and the time you last
logged in is printed (see logindevperm(4)).

The user-ID, group-ID, supplementary group list, and working directory are initialized,
and the command interpreter (usually ksh) is started.

modified 18 Apr 1997 SunOS 5.6 1-581

login (1) User Commands

The basic environment is initialized to:

HOME=your-login-directory
LOGNAME=your-login-name
PATH=/usr/bin:
SHELL=last-field-of-passwd-entry
MAIL=/var/mail/your-login-name
TZ=timezone-specification

For Bourne shell and Korn shell logins, the shell executes /etc/profile and
$HOME/.profile, if it exists. For C shell logins, the shell executes /etc/.login,
$HOME/.cshrc, and $HOME/.login. The default /etc/profile and /etc/.login files check
quotas (see quota(1M)), print /etc/motd, and check for mail. None of the messages are
printed if the file $HOME/.hushlogin exists. The name of the command interpreter is set
to − (dash), followed by the last component of the interpreter’s path name, for example,
−sh.

If the login-shell field in the password file (see passwd(4)) is empty, then the default com-
mand interpreter, /usr/bin/sh, is used. If this field is ∗ (asterisk), then the named direc-
tory becomes the root directory. At that point, login is re-executed at the new level,
which must have its own root structure.

The environment may be expanded or modified by supplying additional arguments to
login, either at execution time or when login requests your login name. The arguments
may take either the form xxx or xxx=yyy. Arguments without an = (equal sign) are
placed in the environment as:

Ln=xxx

where n is a number starting at 0 and is incremented each time a new variable name is
required. Variables containing an = (equal sign) are placed in the environment without
modification. If they already appear in the environment, then they replace the older
values.

There are two exceptions: The variables PATH and SHELL cannot be changed. This
prevents people logged into restricted shell environments from spawning secondary
shells that are not restricted. login understands simple single-character quoting conven-
tions. Typing a \ (backslash) in front of a character quotes it and allows the inclusion of
such characters as spaces and tabs.

Alternatively, you can pass the current environment by supplying the −p flag to login.
This flag indicates that all currently defined environment variables should be passed, if
possible, to the new environment. This option does not bypass any environment variable
restrictions mentioned above. Environment variables specified on the login line take pre-
cedence, if a variable is passed by both methods.

To enable remote logins by root, edit the /etc/default/login file by inserting a # (pound
sign) before the CONSOLE=/dev/console entry. See FILES.

1-582 SunOS 5.6 modified 18 Apr 1997

User Commands login (1)

SECURITY login uses pam(3) for authentication, account management, session management, and
password management. The PAM configuration policy, listed through /etc/pam.conf,
specifies the modules to be used for login. Here is a partial pam.conf file with entries for
the login command using the UNIX authentication, account management, session
management, and password management module.

login auth required /usr/lib/security/pam_unix.so.1
login account required /usr/lib/security/pam_unix.so.1
login session required /usr/lib/security/pam_unix.so.1
login password required /usr/lib/security/pam_unix.so.1

If there are no entries for the login service, then the entries for the "other" service will be
used. If multiple authentication modules are listed, then the user may be prompted for
multiple passwords.

When login is invoked through rlogind or telnetd, the service name used by PAM is rlo-
gin or telnet respectively.

OPTIONS −d device login accepts a device option, device. device is taken to be the path name of the
TTY port login is to operate on. The use of the device option can be expected
to improve login performance, since login will not need to call ttyname(3C).
The −d option is available only to users whose UID and effective UID are root.
Any other attempt to use −d will cause login to quietly exit.

−h hostname [terminal]
used by in.telnetd(1M) to pass information about the remote host and termi-
nal type.

−p used to pass environment variables to the login shell.

−r hostname
used by in.rlogind(1M) to pass information about the remote host.

EXIT STATUS 0 Successful operation.

non-zero Error.

FILES $HOME/.cshrc initial commands for each csh
$HOME/.hushlogin suppresses login messages
$HOME/.login user’s login commands for csh
$HOME/.profile user’s login commands for sh and ksh
$HOME/.rhosts private list of trusted hostname/username combinations
/etc/.login system-wide csh login commands
/etc/logindevperm login-based device permissions
/etc/motd message-of-the-day
/etc/nologin message displayed to users attempting to login during machine

shutdown
/etc/passwd password file
/etc/profile system-wide sh and ksh login commands
/etc/shadow list of users’ encrypted passwords
/usr/bin/sh user’s default command interpreter

modified 18 Apr 1997 SunOS 5.6 1-583

login (1) User Commands

/var/adm/lastlog time of last login
/var/adm/loginlog record of failed login attempts
/var/adm/utmp accounting
/var/adm/wtmp accounting
/var/mail/your-name mailbox for user your-name
/etc/default/login Default value can be set for the following flags in

/etc/default/login. For example: TIMEZONE=EST5EDT

TIMEZONE Sets the TZ environment variable of the shell (see
environ(5)).

HZ Sets the HZ environment variable of the shell.
ULIMIT Sets the file size limit for the login. Units are disk

blocks. Default is zero (no limit).
CONSOLE If set, root can login on that device only. This will

not prevent execution of remote commands with
rsh(1). Comment out this line to allow login by
root.

PASSREQ Determines if login requires a password.
ALTSHELL Determines if login should set the SHELL environ-

ment variable.
PATH Sets the initial shell PATH variable.
SUPATH Sets the initial shell PATH variable for root.
TIMEOUT Sets the number of seconds (between 0 and 900)

to wait before abandoning a login session.
UMASK Sets the initial shell file creation mode mask. See

umask(1).
SYSLOG Determines whether the syslog(3) LOG_AUTH

facility should be used to log all root logins at
level LOG_NOTICE and multiple failed login
attempts at LOG_CRIT.

SLEEPTIME If present, sets the number of seconds to wait
before login failure is printed to the screen and
another login attempt is allowed. Default is 4
seconds. Minimum is 0 seconds. Maximum is 5
seconds.

RETRIES: Sets the number of retries for logging in (see
pam(3)). The default is 5.

SYNC_AGED_PASSWORD:
If YES, then if any one of the user passwords has
aged, then all passwords should be updated. If
NO, only those passwords that have aged should
be updated (see pam(3)). The default is YES.

1-584 SunOS 5.6 modified 18 Apr 1997

User Commands login (1)

ALLOW_AGED_PASSWORD:
If YES, then if any password ages, but the pass-
word can not be updated, then the user is still
allowed in. If NO, then the user would not be
able to login if the password is not updated (see
pam(3)). The default is NO.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO csh(1), exit(1), ksh(1), mail(1), mailx(1), newgrp(1), passwd(1), rlogin(1), rsh(1), sh(1),
shell_builtins(1), telnet(1), umask(1), admintool(1M), in.rlogind(1M), in.telnetd(1M),
logins(1M), quota(1M), su(1M), syslogd(1M), useradd(1M), userdel(1M), pam(3),
rcmd(3N), syslog(3), ttyname(3C), hosts.equiv(4), logindevperm(4), loginlog(4), nolo-
gin(4), nsswitch.conf(4), pam.conf(4), passwd(4), profile(4), shadow(4), utmp(4),
wtmp(4), attributes(5), environ(5), pam_unix(5), termio(7I)

DIAGNOSTICS Login incorrect The user name or the password cannot be matched.

Not on system console
Root login denied. Check the CONSOLE setting in
/etc/default/login.

No directory! Logging in with home=/
The user’s home directory named in the passwd(4) database can-
not be found or has the wrong permissions. Contact your system
administrator.

No shell Cannot execute the shell named in the passwd(4) database. Con-
tact your system administrator.

NO LOGINS: System going down in N minutes
The machine is in the process of being shut down and logins have
been disabled.

WARNINGS Users with a UID greater than 76695844 are not subject to password aging, and the system
does not record their last login time.

If you use the CONSOLE setting to disable root logins, you should arrange that remote
command execution by root is also disabled. See rsh(1), rcmd(3N), and hosts.equiv(4)
for further details.

modified 18 Apr 1997 SunOS 5.6 1-585

logname (1) User Commands

NAME logname − return user’s login name

SYNOPSIS logname

DESCRIPTION The logname utility will write the user’s login name to standard output. The login name
is the string that would be returned by the getlogin(3C) function. Under the conditions
where getlogin() would fail, logname will write a diagnostic message to standard error
and exit with a non-zero exit status.

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of logname: LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS The following error values are returned:

0 Successful completion.

>0 An error occurred.

FILES /etc/profile environment for user at login time
/var/adm/utmp user and accounting information

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu

SEE ALSO env(1), login(1), getlogin(3C), utmp(4), attributes(5), environ(5)

1-586 SunOS 5.6 modified 1 Feb 1995

User Commands logout (1)

NAME logout − shell built-in function to exit from a login session

SYNOPSIS
csh logout

DESCRIPTION
csh Terminate a login shell.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO csh(1), login(1), attributes(5)

modified 15 Apr 1994 SunOS 5.6 1-587

look (1) User Commands

NAME look − find words in the system dictionary or lines in a sorted list

SYNOPSIS /usr/bin/look [−d] [−f] [−tc] string [filename]

DESCRIPTION The look command consults a sorted filename and prints all lines that begin with string.

If no filename is specified, look uses /usr/share/lib/dict/words with collating sequence
−df.

look limits the length of a word to search for to 256 characters.

OPTIONS −d Dictionary order. Only letters, digits, TAB and SPACE characters are used in
comparisons.

−f Fold case. Upper case letters are not distinguished from lower case in com-
parisons.

−tc Set termination character. All characters to the right of c in string are ignored.

FILES /usr/share/lib/dict/words spelling list

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu

SEE ALSO grep(1), sort(1), attributes(5)

1-588 SunOS 5.6 modified 29 Mar 1994

User Commands lookbib (1)

NAME lookbib − find references in a bibliographic database

SYNOPSIS lookbib database

DESCRIPTION A bibliographic reference is a set of lines, constituting fields of bibliographic information.
Each field starts on a line beginning with a ‘%’, followed by a key-letter, then a blank, and
finally the contents of the field, which may continue until the next line starting with ‘%’.

lookbib uses an inverted index made by indxbib to find sets of bibliographic references.
It reads keywords typed after the ‘>’ prompt on the terminal, and retrieves records con-
taining all these keywords. If nothing matches, nothing is returned except another ‘>’
prompt.

It is possible to search multiple databases, as long as they have a common index made by
indxbib(1). In that case, only the first argument given to indxbib is specified to lookbib.

If lookbib does not find the index files (the .i[abc] files), it looks for a reference file with
the same name as the argument, without the suffixes. It creates a file with a .ig suffix,
suitable for use with fgrep (see grep(1)). lookbib then uses this fgrep file to find refer-
ences. This method is simpler to use, but the .ig file is slower to use than the .i[abc] files,
and does not allow the use of multiple reference files.

FILES x.ia
x.ib
x.ic index files
x.ig reference file

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWdoc

SEE ALSO addbib(1), grep(1), indxbib(1), refer(1), roffbib(1), sortbib(1), attributes(5)

BUGS Probably all dates should be indexed, since many disciplines refer to literature written in
the 1800s or earlier.

modified 14 Sep 1992 SunOS 5.6 1-589

lorder (1) User Commands

NAME lorder − find ordering relation for an object or library archive

SYNOPSIS lorder filename . . .

DESCRIPTION The input is one or more object or library archive filenames (see ar(1)). The standard out-
put is a list of pairs of object file or archive member names; the first file of the pair refers
to external identifiers defined in the second. The output may be processed by tsort(1) to
find an ordering of a library suitable for one-pass access by ld. Note that the link editor
ld is capable of multiple passes over an archive in the portable archive format (see ar(4))
and does not require that lorder be used when building an archive. The usage of the
lorder command may, however, allow for a more efficient access of the archive during
the link edit process.

The following example builds a new library from existing .o files.

ar −cr library ` lorder ∗.o � tsort `

FILES TMPDIR/∗symref temporary files
TMPDIR/∗symdef temporary files
TMPDIR usually /var/tmp but can be redefined by setting the environment

variable TMPDIR (see tempnam() in tmpnam(3S))

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWbtool

SEE ALSO ar(1), ld(1), tsort(1), tmpnam(3S), ar(4), attributes(5)

NOTES lorder will accept as input any object or archive file, regardless of its suffix, provided
there is more than one input file. If there is but a single input file, its suffix must be .o.

The length of the filename for TMPDIR is limited to whatever sed allows.

1-590 SunOS 5.6 modified 29 Oct 1991

User Commands lp (1)

NAME lp − submit print request

SYNOPSIS lp [−c] [−m] [−p] [−s] [−w] [−d destination] [−f form-name] [−H special-handling]
[−n number] [−o option] [−P page-list] [−q priority-level]
[−S character-set|print-wheel] [−t title] [−T content-type [−r]] [−y mode-list]
[file . . .]

lp −i request-ID . . . [−c] [−m] [−p] [−s] [−w] [−d destination] [−f form-name]
[−H special-handling] [−n number] [−o option] [−P page-list]
[−q priority-level] [−S character-set|print-wheel] [−t title]
[−T content-type [−r]] [−y mode-list]

DESCRIPTION lp submits print requests to a destination. There are two formats of the lp command.

The first form of lp prints files (file) and associated information (collectively called a print
request). If file is not specified, lp assumes the standard input. Use a hyphen (‘−’) with file
to specify the standard input. Files are printed in the order in which they appear on the
command line.

The second form of lp changes print request options. This form of lp can only be used on
a Solaris 2.x LP print server. The print request identified by request-ID is changed accord-
ing to the printing options specified. The printing options available are the same as those
with the first form of the lp. If the request has finished printing when the lp command is
executed, the change is rejected. If the request is in the process of printing, it will be
stopped and restarted from the beginning (unless the −P option has been given).

The print client commands locate destination information in a very specific order. See
printers(4) and printers.conf(4) for details.

OPTIONS Printers that have a 4.x or BSD-based print server are not configured to handle BSD proto-
col extensions. lp handles print requests sent to such destinations differently (see
NOTES).

The following options are supported:

−c Copies file before printing.

Unless −c is specified, users should not remove any file before the print
request has completely printed. Changes made to file after the print
request is made but before it is printed will be reflected in the printed
output. file will be linked (as opposed to copied).

−d destination Prints file on a specific destination. Destination can be either a printer of
a class of printers, (see lpadmin(1M)). Specify destination using atomic,
POSIX-style (server:destination), or Federated Naming Service (FNS)
(. . ./service/printer/. . .) names. See printers.conf(4) for information
regarding the naming conventions for atomic and FNS names, and stan-
dards(5) for information regarding POSIX.

−f form-name Prints file on form-name. The LP print service ensures that the form is
mounted on the printer. The print request is rejected if the printer does

modified 13 Mar 1997 SunOS 5.6 1-591

lp (1) User Commands

not support form-name, if form-name is not defined for the system, or if
the user is not allowed to use form-name (see lpforms(1M)).

−H special-handling
Prints the print request according to the value of special-handling. The
following special-handling values are acceptable:

hold Do not print the print request until notified. If printing
has already begun, stop it. Other print requests will go
ahead of a request that has been put on hold (held print
request) until the print request is resumed.

resume Resume a held print request. If the print request had
begun to print when held, it will be the next print
request printed, unless it is superseded by an immediate
print request.

immediate Print the print request next. If more than one print
request is assigned, the most recent print request is
printed next. If a print request is currently printing on
the desired printer, a hold request must be issued to
allow the immediate request to print. The immediate
request is only available to LP administrators.

−m Sends mail after file has printed (see mail(1)). By default, no mail is sent
upon normal completion of a print request.

−n number Prints a specific number of copies of file. Specify number as a digit. The
default for number is 1.

−o option Specify printer-dependent options . Specify several options by specifying
−o option multiple times. (−o option −o option −o option). Printer-
dependent options may also be specified using the −o keyletter once, fol-
lowed by a list of options enclosed in double quotes
(−o " option option option"). The following options are valid:

nobanner Do not print a banner page with the request. This
option can be disallowed by the LP administrator.

nofilebreak
Prints multiple files without inserting a form feed between
them.

length=numberi|numberc|number
Prints the print request with pages of a specific length.
Specify length in inches, centimeters, or number of lines.
Use number to specify the number of inches, centimeters or
lines. Indicate inches or centimeters by appending the letter i
for inches, c for centimeters to number. Indicate the the
number of lines by specifying number alone. length=66 indi-
cates a page length of 66 lines. length=11i indicates a page
length of 11 inches. length=27.94c indicates a page length of

1-592 SunOS 5.6 modified 13 Mar 1997

User Commands lp (1)

27.94 centimeters.

This option may not be used with the −f option.

width=numberi|numberc|number
Prints the print request with with pages of a specific width.
Specify width in inches, centimeters, or number of columns.
Use number to specify the number of inches, centimeters or
lines. Indicate inches or centimeters by appending the letter i
for inches, c for centimeters to number. Indicate the the
number of lines by specifying number alone. width=65 indi-
cates a page width of 65 columns. width=6.5i indicates a
page width of 6.5 inches. width=10c indicates a page width
of 10 centimeters.

This option may not be used with the −f option.

lpi=number
Prints the print request with the line pitch set to number lines
in an inch. Use number to specify the number of lines in an
inch.

This option may not be used with the −f option.

cpi=n|pica|elite|compressed
Prints the print request with the character pitch set to number
characters in an inch. Use number to specify the number of
characters in an inch. Use pica to set character pitch to pica
(10 characters per inch), or elite to set character pitch to elite
(12 characters per inch) Use compressed to set character
pitch to as many characters as the printer can handle. There
is no standard number of characters per inch for all printers;
see the terminfo database (see terminfo(4)) for the default
character pitch for your printer.

This option may not be used with the −f option.

stty=stty-option-list
Prints the request using a list of options valid for the stty
command (see stty(1). Enclose the list in single quotes (`´) if
it contains blanks.

−P page-list Prints the pages specified in page-list in ascending order. Specify page-
list as a of range of numbers, single page number, or a combination of
both.

−P can only be used if there is a filter available to handle it; otherwise,
the print request will be rejected.

−p Enables notification on completion of the print request. Delivery of the
notification is dependent on additional software.

−q priority-level Assigns the print request a priority in the print queue. Specify priority-
level as an integer between from 0 and 39. Use 0 to indicate the highest

modified 13 Mar 1997 SunOS 5.6 1-593

lp (1) User Commands

priority; 39 to indicate the lowest priority. If no priority is specified, the
default priority for a print service is assigned by the LP administrator.
The LP administrator may also assign a default priority to individual
users.

−s Suppresses the display of messages sent from lp.

−S character-set|print-wheel
Prints the request using the character-set or print-wheel. If a form was
requested and requires a character set or print wheel other than the one
specified with the −S option, the request is rejected. Printers using
mountable print wheels or font cartridges use the print wheel or font
cartridge mounted at the time of the print request, unless the −S option
is specified.

Printers Using Print Wheels
If print wheel is not one listed by the LP administrator as acceptable for
the printer the request is rejected unless the print wheel is already
mounted on the printer.

Printers Using Selectable or Programmable Character Sets
If the −S option is not specified, lp uses the standard character set. If
character-set is not defined in the terminfo database for the printer (see
terminfo(4)), or is not an alias defined by the LP administrator, the
request is rejected.

−t title Prints a title on the banner page of the output. Enclose title in quotes if it
contains blanks. If title is not not specified, the name of the file is printed
on the banner page.

−T content-type [−r]
Prints the request on a printer that can support the specified content-type.
If no printer accepts this type directly, a filter will be used to convert the
content into an acceptable type. If the −r option is specified, a filter will
not be used. If −r is specified, and no printer accepts the content-type
directly, the request is rejected. If the content-type is not acceptable to
any printer, either directly or with a filter, the request is rejected.

−w Writes a message on the user’s terminal after the files have been printed.
If the user is not logged in, then mail will be sent instead.

−y mode-list Prints the request according to the printing modes listed in mode-list.
The allowed values for mode-list are locally defined.

This option may be used only if there is a filter available to handle it;
otherwise, the print request will be rejected.

OPERANDS The following operands are supported:

file The name of the file to be printed. Specify file as a pathname or as a
hyphen (‘−’) to indicate the standard input. If file is not specified, lp uses
the standard input.

1-594 SunOS 5.6 modified 13 Mar 1997

User Commands lp (1)

USAGE See largefile(5) for the description of the behavior of lp when encountering files greater
than or equal to 2 Gbyte (231 bytes).

EXIT STATUS The following exit values are returned:
0 Successful completion.
non-zero An error occurred.

FILES /var/spool/lp/∗ LP print queue.
$HOME/.printers User-configurable printer database.
/etc/printers.conf System printer configuration database.
printers.conf.byname NIS version of /etc/printers.conf.
fns.ctx_dir.domain NIS+ version of /etc/printers.conf.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWpcu
CSI Enabled (see NOTES)

SEE ALSO cancel(1), enable(1), lpq(1B), lpr(1B), lprm(1B), lpstat(1), mail(1), postprint(1), pr(1),
stty(1), accept(1M), lpadmin(1M), lpfilter(1M), lpforms(1M), lpsched(1M),
lpsystem(1M), lpusers(1M), printers(4), printers.conf(4), terminfo(4), attributes(5),
environ(5), largefile(5), standards(5)

NOTES CSI-capability assumes that printer names are composed of ASCII characters.

Printers that have a 4.x or BSD-based print server. are not configured to handle BSD proto-
col extensions. lp handles print requests sent to such printers in the following ways:

1. Print requests with more than 52 filenames will be truncated to 52 files. lp displays a
warning message.

2. The −f, −H, −o, −P, −p, −q, −S, −T, and −y options may require a protocol extension to
pass to a print server. If lp cannot handle the print request, it displays a warning mes-
sage.

LP administrators enable protocol extensions by setting a printer’s bsdaddr entry in
/etc/printers.conf. Changing the bsdaddr entry in /etc/printers.conf to:

destination:bsdaddr=server,destination,Solaris

generates a set of BSD print protocol extensions that can be processed by a Solaris
print server. lp supports only Solaris protocol extensions at this time.

modified 13 Mar 1997 SunOS 5.6 1-595

lpc (1B) SunOS/BSD Compatibility Package Commands

NAME lpc − line printer control program

SYNOPSIS /usr/ucb/lpc [command [parameter . . .]]

DESCRIPTION lpc controls the operation of printers.

Use lpc to perform the following functions:

· start or stop a printer,

· disable or enable a printer’s spooling queue,

· rearrange the order of jobs in a print queue, or

· display the status of a printer print queue and printer daemon.

lpc can be run from the command line or interactively. Specifying lpc with the optional
command and parameter arguments causes lpc to interpret the first argument as an lpc
command, and all other arguments as parameters to that command. Specifying lpc
without arguments causes it to run interactively, prompting the user for lpc commands
with lpc>. By redirecting the standard input, lpc can read commands from a file.

USAGE lpc commands may be typed in their entirety or abbreviated to an unambiguous sub-
string. Some lpc commands are available to all users; others are available only to super-
users.

All users may execute the following lpc commands:

? [command . . .] | help [command . . .]
Displays a short description of command. command is an
lpc command. If command is not specified, displays a list
of lpc commands.

exit | quit Exits from lpc.

restart [all | printer . . .] Attempts to start a new printer daemon. restart is useful
when a print daemon dies unexpectedly and leaves jobs
in the print queue. all specifies to perform this command
on all locally attached printers. printer indicates to per-
form this command on specific printers. Specify printer
as an atomic name. See printers.conf(4) for information
regarding naming conventions for atomic names.

status [all | printer . . .] Displays the status of print daemons and print queues.
all specifies perform this command on all locally attached
printers. printer indicates perform this command on
specific printers. Specify printer as an atomic name. See
printers.conf(4) for information regarding naming con-
ventions for atomic names.

Only a super-user may execute the following lpc commands:

abort [all | printer . . .]
Terminates an active spooling daemon. Disables printing (by preventing new

1B-596 SunOS 5.6 modified 9 Sep 1996

SunOS/BSD Compatibility Package Commands lpc (1B)

daemons from being started by lpr(1B)) for printer. all specifies perform this
command on all locally attached printers. printer indicates perform this com-
mand on specific printers. Specify printer as an atomic name. See printers.conf(4)
for information regarding naming conventions for atomic names.

clean [all | printer . . .]
Removes files created in the print spool directory by the print daemon from
printer ’s print queue. all specifies to perform this command on all locally
attached printers printer indicates to perform this command on specific printers.
Specify printer as an atomic name. See printers.conf(4) for information regarding
naming conventions for atomic names.

disable [all | printer . . .]
Turns off the print queue for printer. Prevents new printer jobs from being
entered into the print queue for printerby lpr(1B). all specifies to perform this
command on all locally attached printers printer indicates to perform this com-
mand on specific printers. Specify printer as an atomic name. See printers.conf(4)
for information regarding naming conventions for atomic names.

down [all | printer . . .] [message]
Turns the queue for printer off and disables printing on printer. Inserts message in
the printer status file. message does not need to be quoted; multiple arguments to
message are treated as arguments are to echo(1). Use down to take a printer
down and inform users. all specifies to perform this command on all locally
attached printers printer indicates to perform this command on specific printers.
Specify printer as an atomic name. See printers.conf(4) for information regarding
naming conventions for atomic names.

enable [all | printer . . .]
Enables lpr(1B) to add new jobs in the spool queue. all specifies to perform this
command on all locally attached printers printer indicates to perform this com-
mand on specific printers. Specify printer as an atomic name. See printers.conf(4)
for information regarding naming conventions for atomic names.

start [all | printer . . .]
Enables printing. Starts a spooling daemon for the printer. all specifies to per-
form this command on all locally attached printers printer indicates to perform
this command on specific printers. Specify printer as an atomic name. See
printers.conf(4) for information regarding naming conventions for atomic
names.

stop [all | printer . . .]
Stops a spooling daemon after the current job is complete. Disables printing at
that time. all specifies to perform this command on all locally attached printers
printer indicates to perform this command on specific printers. Specify printer as
an atomic name. See printers.conf(4) for information regarding naming conven-
tions for atomic names.

topq printer [request-ID . . .] [user . . .]
Moves request-ID or print jobs belonging to user on printer to the beginning of the

modified 9 Sep 1996 SunOS 5.6 1B-597

lpc (1B) SunOS/BSD Compatibility Package Commands

print queue. Specify user as a user’s login name. Specify printer as an atomic
name. See printers.conf(4) for information regarding naming conventions for
atomic names.

up [all | printer . . .]
Turns the queue for printer on and enables printing on printer. Deletes the mes-
sage in the printer status file (inserted by down). Use up to undo the effects of
down. all specifies to perform this command on all locally attached printers
printer indicates to perform this command on specific printers. Specify printer as
an atomic name. See printers.conf(4) for information regarding naming conven-
tions for atomic names.

EXIT STATUS The following exit values are returned:
0 Successful completion.
non-zero An error occurred.

FILES /var/spool/lp/∗ LP print queue.
/var/spool/lp/system/pstatus Printer status information file.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscplp

SEE ALSO echo(1), lpq(1B), lpr(1B), lprm(1B), lpstat(1), lpsched(1M), attributes(5)

DIAGNOSTICS Ambiguous command
Indicates that the lpc command or abbreviation matches more than one com-
mand.

?Invalid command
Indicates that the lpc command or abbreviation is not recognized.

?Privileged command
Indicates that the lpc command or abbreviation can be executed only by a super-
user.

lpc: printer : unknown printer to the print service
Indicates that printer does not exist in the LP database. Check that printer was
correctly specified. Use lpstat −p or the status command (see lpstat(1) or
USAGE) to check the status of printers.

lpc: error on opening queue to spooler
Indicates that the connection to lpsched failed. Usually means that the printer
server has died or is hung. Use /usr/lib/lp/lpsched to check if the printer spooler
daemon is running.

lpc: Can’t send message to LP print service

lpc: Can’t receive message from LP print service

1B-598 SunOS 5.6 modified 9 Sep 1996

SunOS/BSD Compatibility Package Commands lpc (1B)

Indicates that the LP print service stopped. Contact the LP administrator.

lpc: Received unexpected message from LP print service
Indicates a problem with the software. Contact the LP administrator.

modified 9 Sep 1996 SunOS 5.6 1B-599

lpq (1B) SunOS/BSD Compatibility Package Commands

NAME lpq − display the content of a print queue

SYNOPSIS /usr/ucb/lpq [−P destination] [−l] [+ [interval]] [request-ID . . .] [user . . .]

DESCRIPTION The lpq utility displays the information about the contents of a print queue. A print
queue is comprised of print requests that are waiting in the process of being printed.

lpq displays the following information to the standard output:

· the username of the person associated with a print request,

· the position of a print request in the print queue,

· the name of file or files comprising a print request,

· the job number of a print request, and

· the size of the file requested by a print request. File size is reported in bytes.

Normally, only as much information as will fit on one line is displayed. If the name of
the input file associated with a print request is not available, the input file field indicates
the standard input.

The print client commands locate destination information in a very specific order. See
printer.conf(4) and printers(4) for details.

OPTIONS The following options are supported:

−P destination Displays information about printer or class of printers (see
lpadmin(1M)) . Specify destination using atomic, POSIX-style
(server:destination), or Federated Naming Service (FNS)
(. . ./service/printer/. . .) names. See printers.conf(4) for information
regarding the naming conventions for atomic and FNS names, and stan-
dards(5) for information regarding POSIX.

-l Displays information in long format. Long format includes the name of
the host from which a print request originated in the display.

+ [interval] Displays information at specific time intervals. Stops displaying infor-
mation when the print queue is empty. Clears the screen before report-
ing displaying the print queue. Specify interval as the number of
seconds between displays. If interval is not specified only executes once.

OPERANDS The following operands are supported:

request-ID The job number associated with a print request.

user The name of the user about whose jobs lpq reports information. Specify
user as a valid username.

EXIT STATUS The following exit values are returned:
0 Successful completion.
non-zero An error occurred.

1B-600 SunOS 5.6 modified 13 Mar 1997

SunOS/BSD Compatibility Package Commands lpq (1B)

FILES /var/spool/print/[cd]f∗ Spooling directory and request files for jobs
awaiting transfer.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscplp

SEE ALSO lp(1), lpc(1B), lpr(1B), lprm(1B), lpstat(1), lpadmin(1M), printers(4), printers.conf(4),
attributes(5), standards(5)

modified 13 Mar 1997 SunOS 5.6 1B-601

lpr (1B) SunOS/BSD Compatibility Package Commands

NAME lpr − submit print requests

SYNOPSIS /usr/ucb/lpr [−P destination] [−# number] [−C class] [−J job] [−T title]
[−i [number]] [−1|−2|−3|−4 font] [−w number] [−m] [−h]
[−s] [−filter_option] [file . . .]

DESCRIPTION The lpr utility submits print requests to a destination. lpr prints files (file) and associated
information, collectively called a print request. If file is not specified, lpr assumes the stan-
dard input.

The print client commands locate destination information in a very specific order. See
printers(4) and printers.conf(4) for details.

Print requests with more than 52 file s specified will be truncated to 52 files. lpr displays
a warning message.

OPTIONS The following options are supported:

−P destination Prints file on a specific printer or class of printers(see lpadmin(1M)).
Specify destination using atomic, POSIX-style (server:destination), or
Federated Naming Service (FNS) (. . ./service/printer/. . .) names. See
printers.conf(4) for information regarding the naming conventions for
atomic and FNS names, and standards(5) for information regarding
POSIX.

−# number Prints a specific number of copies. Specify number as a positive integer.
The default for number is 1.

−C class Prints class as the job classification on the banner page of the output.
Enclose class in double quotes if it contains blanks. If class is not
specified, the name of the system (as returned by hostname) is printed
as the job classification. See hostname(1).

−J job Prints job as the job name on the banner page of the output. Enclose job in
double quotes if it contains blanks. If job is not specified, file (or in the
case of multiple files, the first file specified on the command line) is
printed as the job name on the banner page of the output.

−T title Prints a title on the banner page of the output. Enclose title in double
quotes if it contains blanks. If title is not specified, file is printed on the
banner page.

−i [number] Indents the output a specific number of SPACE characters. Use number
to indicate the number of SPACE characters to be indented. Specify
number as a positive integer. Eight SPACE characters is the default.

−1|−2|−3|−4 font
Mounts the specified font in the font position 1, 2, 3, or 4. Specify font as
a valid font name.

−w number Prints file with pages of a specific width. number indicates the number of
columns of wide.

1B-602 SunOS 5.6 modified 13 Mar 1997

SunOS/BSD Compatibility Package Commands lpr (1B)

−m Sends mail after file has printed (see mail(1)). By default, no mail is sent
upon normal completion of a print request.

−h Suppresses printing of the banner page of the output.

−s Uses full pathnames (as opposed to symbolic links) to file rather than
trying to copy them. This means file should not be modified or removed
until it has completed printing. −s only prevents copies of local files
from being made on the local machine. −s only works with specified
files. If the lpr command is at the end of a pipeline, file is copied to the
spool.

− filter_option Notifies the print spooler that file is not a standard text file. Enables the
spooling daemon to use the appropriate filters to print file.

filter_options offer a standard user interface. All options may not be
available for, or applicable to, all printers.

Specify filter_option as a single character.

If filter_option is not specified and the printer can interpret PostScript,
inserting `%!´ as the first two characters of file causes file to be inter-
preted as PostScript.

The following filter_options are supported:

p Use pr to format the files.

l Print control characters and suppress page breaks.

t file contains troff (cat phototypesetter) binary data.

n file contains ditroff data from device independent troff.

d file contains tex data from in DVI format from Stanford.

g file contains standard plot data produced by plot(1B) routines.

v file contains a raster image. printer must support an appropriate
imaging model such as PostScript in order to print the image.

c file contains data produced by cifplot.

f Interprets the first character of each line as a standard FORTRAN car-
riage control character.

OPERANDS The following operands are supported:

file The name of the file to be printed. Specify file as a pathname. If file is not
specified, lpr uses the standard input.

USAGE See largefile(5) for the description of the behavior of lpr when encountering files greater
than or equal to 2 Gbyte (231 bytes).

EXIT STATUS The following exit values are returned:
0 Successful completion.
non-zero An error occurred.

modified 13 Mar 1997 SunOS 5.6 1B-603

lpr (1B) SunOS/BSD Compatibility Package Commands

FILES /var/spool/print/.seq File containing the sequence numbers for job ID assign-
ment.

/var/spool/print/[cd]f∗ Spooling directories and files.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscplp
CSI Enabled (see NOTES)

SEE ALSO hostname(1), lp(1), lpc(1B), lpq(1B), lprm(1B), lpstat(1), mail(1), plot(1B), pr(1), troff(1),
lpadmin(1M), printers(4), printers.conf(4), attributes(5), largefile(5), standards(5)

DIAGNOSTICS lpr: destination |: unknown destination
destination was not found in the LP configuration database. Usually this is a typ-
ing mistake; however, it may indicate that the destination does not exist on the
system. Use lpstat −p to display information about the status of the print service.

NOTES lpr is CSI-enabled except for the printer name.

1B-604 SunOS 5.6 modified 13 Mar 1997

SunOS/BSD Compatibility Package Commands lprm (1B)

NAME lprm − remove print requests from the print queue

SYNOPSIS /usr/ucb/lprm [−P destination] [−] [request-ID . . .] [user . . .]

DESCRIPTION The lprm utility removes print requests (request-ID) from the print queue.

Without arguments, lprm deletes the current print request. lprm reports the name of the
file associated with print requests that it removes. lprm is silent if there are no applicable
print requests to remove.

Users can only remove print requests associated with their user name. See NOTES. If a
super-user executes lprm and specifies the user operand, lprm removes all print requests
belonging to the specified user.

The print client commands locate destination information in a very specific order. See
printers(4) and printers.conf(4) for details.

OPTIONS The following options are supported.

−P destination The name of the printer or class of printers (see lpadmin(1M)) from
which to remove print requests. Specify destination using atomic,
POSIX-style (server:destination), or Federated Naming Service (FNS)
(. . ./service/printer/. . .) names. See printers.conf(4) for information
regarding the naming conventions for atomic and FNS names, and stan-
dards(5) for information regarding POSIX.

− If a user specifies this option, removes all print requests owned by that
user. If a super-user specifies this option, removes all requests in the
print queue. Job ownership is determined by the user’s login name and
host name on the machine from which lpr was executed. See NOTES.

OPERANDS The following operands are supported.

user Removes print requests associated with a specific user. Specify user as a
valid user name. This option can only be used by a super-user.

request-ID Removes a specific print request. Specify request-ID as the job number
(Job) associated with a print request and reported by lpq. See lpq(1B).

EXAMPLES The following example removes request-ID 385 from destination killtree.

example% lprm −P killtree 385

EXIT STATUS The following exit values are returned:
0 Successful completion.
non-zero An error occurred.

FILES /var/spool/print/[cd]f∗ Spooling directories and files.

modified 13 Mar 1997 SunOS 5.6 1B-605

lprm (1B) SunOS/BSD Compatibility Package Commands

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscplp

SEE ALSO lp(1), lpc(1B), lpq(1B), lpr(1B), lpstat(1), lpadmin(1M), printers(4), printers.conf(4),
attributes(5), standards(5)

NOTES Users can only remove print requests associated with their user name. By default, users
can only remove print requests on the host from which the print request was submitted.
If a super-user has set user-equivalence=true in /etc/printers.conf on the print server,
users can remove print requests associated with their user name on any host. Super-
users can remove print requests on the host from which the print request was submitted.
Super-users can also remove print requests from the print server.

1B-606 SunOS 5.6 modified 13 Mar 1997

User Commands lpstat (1)

NAME lpstat − print information about the status of the print service

SYNOPSIS lpstat [−d] [−r] [−R] [−s] [−t] [−a [list]] [−c [list]] [−f [list] [−l]]
[−o [list]] [−p [list] [−D] [−l]] [−P] [−S [list] [−l]] [−u [login-ID-list]]
[−v [list]]

DESCRIPTION lpstat displays information about the current status of the LP print service to standard
output.

If no options are given, lpstat prints the status of all the user’s print requests made by lp.
(see lp(1)). Any arguments that are not options are assumed to be request-IDs as returned
by lp. The lpstat command prints the status of such requests. options may appear in any
order and may be repeated and intermixed with other arguments. Some key letters may
be followed by an optional list that can be in one of two forms: a list of items separated
from one another by a comma, or a list of items separated from one another by spaces
enclosed in quotes. For example:

example% lpstat −u "user1 user2 user3"

Specifying all after any key letter that takes list as an argument causes all information
relevant to the key letter to be printed. For example, the command:

example% lpstat −o all

prints the status of all output requests.

The omission of a list following such key letters causes all information relevant to the key
letter to be printed. For example, the command:

example% lpstat −o

prints the status of all output requests.

The print client commands locate printer information in a very specific order. See
printer.conf(4) and printers(4) for details.

OPTIONS The following options are supported on all platforms.

−d Print the default destination for output requests.

−o [list] Print the status of output requests. list is a list of intermixed printer names,
class names, and request-IDs. The key letter −o may be omitted. Specify
printer and class names using atomic, POSIX-style (server:destination), or
Federated Naming Service (FNS) (. . ./service/printer/. . .) names. See
printers.conf(4) for information regarding the naming conventions for atomic
and FNS names, and standards(5) for information regarding POSIX.

−r Print the status of the LP request scheduler.

−R Print a number showing the position of each request in the print queue.

−s Print a status summary, including the status of the LP scheduler, the default
destination, a list of printers and their associated devices, a list of the
machines sharing print services, a list of all forms currently mounted, and a

modified 13 Mar 1997 SunOS 5.6 1-607

lpstat (1) User Commands

list of all recognized character sets and print wheels.

−t Print all status information. This includes all the information obtained with
the −s option, plus the acceptance and idle/busy status of all printers.

−u [login-ID-list]
Print the status of output requests for users. The login-ID-list argument may
include any or all of the following constructs:

login-ID a user on any system

system_name!login-ID a user on system system_name

system_name!all all users on system system_name

all!login-ID a user on all systems

all all users on all systems

−v [list] Print the names of printers and the path names of the devices associated with
them or remote system names for network printers. list is a list of printer
names.

The following options return accurate results only if they are issued from a Solaris 2.x LP
print server.

−a [list] Reports whether print destinations are accepting requests. list is a list of inter-
mixed printer names and class names.

−c [list] Print name of all classes and their members. list is a list of class names.

−f [list] [−l]
Print a verification that the forms in list are recognized by the LP print service.
list is a list of forms; the default is all. The −l option will list the form descrip-
tions.

−p [list] [−D] [−l]
Print the status of printers. list is a list of printer names. If the −D option is
given, a brief description is printed for each printer in list. If the −l option is
given and the printer is on the local machine, a full description of each
printer’s configuration is returned, including the form mounted, the accept-
able content and printer types, a printer description, and the interface used.

−P Print the paper types.

−S [list] [−l]
Print a verification that the character sets or the print wheels specified in list
are recognized by the LP print service. Items in list can be character sets or
print wheels; the default for the list is all. If the −l option is given, each line is
appended by a list of printers that can handle the print wheel or character set.
The list also shows whether the print wheel or character set is mounted, or
specifies the built-in character set into which it maps.

−d Print the default destination for output requests.

−o [list] Print the status of output requests. list is a list of intermixed printer names,
class names, and request-IDs. The key letter −o may be omitted.

1-608 SunOS 5.6 modified 13 Mar 1997

User Commands lpstat (1)

−r Print the status of the LP request scheduler.

−R Print a number showing the position of each request in the print queue.

−s Print a status summary, including the status of the LP scheduler, the default
destination, a list of printers and their associated devices, a list of the
machines sharing print services, a list of all forms currently mounted, and a
list of all recognized character sets and print wheels.

−t Print all status information. This includes all the information obtained with
the −s option, plus the acceptance and idle/busy status of all printers.

−u [login-ID-list]
Print the status of output requests for users. The login-ID-list argument may
include any or all of the following constructs:

login-ID a user on any system

system_name!login-ID a user on system system_name

system_name!all all users on system system_name

all!login-ID a user on all systems

all all users on all systems

−v [list] Print the names of printers and the path names of the devices associated with
them or remote system names for network printers. list is a list of printer
names.

EXIT STATUS The following exit values are returned:
0 Successful completion.
non-zero An error occurred.

FILES /var/spool/print/∗ LP print queue.
$HOME/.printers User-configurable printer database.
/etc/printers.conf System configuration database.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWpcu

SEE ALSO cancel(1), lp(1), lpq(1B), lpr(1B), lprm(1B), printers(4), printers.conf(4), attributes(5),
standards(5)

modified 13 Mar 1997 SunOS 5.6 1-609

lptest (1B) SunOS/BSD Compatibility Package Commands

NAME lptest − generate line printer ripple pattern

SYNOPSIS /usr/ucb/lptest [length [count]]

DESCRIPTION lptest writes the traditional ripple test pattern to the standard output. In 96 lines, the rip-
ple test pattern prints all 96 printable ASCII characters in each position. The ripple test
pattern was originally created to test printers. It is also useful for testing terminals, driv-
ing terminal ports, debugging, and performing tasks that require a quick supply of ran-
dom data.

This command is obsolete.

OPTIONS length Specifies the length of the output line in characters. 79 characters is the default.

count Specifies the number of output lines. 200 lines is the default. If count is specified,
length must also be specified.

EXIT STATUS The following exit values are returned:
0 Successful completion.
non-zero An error occurred.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscplp

SEE ALSO attributes(5)

1B-610 SunOS 5.6 modified 9 Sep 1996

User Commands ls (1)

NAME ls − list contents of directory

SYNOPSIS /usr/bin/ls [−aAbcCdfFgilLmnopqrRstux1] [file . . .]
/usr/xpg4/bin/ls [−aAbcCdfFgilLmnopqrRstux1] [file . . .]

DESCRIPTION For each file that is a directory, ls lists the contents of the directory; for each file that is an
ordinary file, ls repeats its name and any other information requested. The output is
sorted alphabetically by default. When no argument is given, the current directory is
listed. When several arguments are given, the arguments are first sorted appropriately,
but file arguments appear before directories and their contents.

There are three major listing formats. The default format for output directed to a termi-
nal is multi−column with entries sorted down the columns. The −1 option allows single
column output and −m enables stream output format. In order to determine output for-
mats for the −C, −x, and −m options, ls uses an environment variable, COLUMNS, to
determine the number of character positions available on one output line. If this variable
is not set, the terminfo(4) database is used to determine the number of columns, based on
the environment variable TERM. If this information cannot be obtained, 80 columns are
assumed.

The mode printed under the −l option consists of ten characters. The first character may
be one of the following:

d the entry is a directory;
D the entry is a door;
l the entry is a symbolic link;
b the entry is a block special file;
c the entry is a character special file;
p the entry is a fifo (or “named pipe”) special file;
s the entry is an AF_UNIX address family socket;
− the entry is an ordinary file;

The next 9 characters are interpreted as three sets of three bits each. The first set refers to
the owner’s permissions; the next to permissions of others in the user-group of the file;
and the last to all others. Within each set, the three characters indicate permission to
read, to write, and to execute the file as a program, respectively. For a directory, ‘‘exe-
cute’’ permission is interpreted to mean permission to search the directory for a specified
file. The character after permissions is ACL indication. A plus sign is displayed if there
is an ACL associated with the file. Nothing is displayed if there are just permissions.

ls −l (the long list) prints its output as follows for the POSIX locale:

−rwxrwxrwx+ 1 smith dev 10876 May 16 9:42 part2

Reading from right to left, you see that the current directory holds one file, named part2.
Next, the last time that file’s contents were modified was 9:42 A.M. on May 16. The file
contains 10,876 characters, or bytes. The owner of the file, or the user, belongs to the
group dev (perhaps indicating ‘‘development’’), and his or her login name is smith. The
number, in this case 1, indicates the number of links to file part2; see cp(1). The plus sign
indicates that there is an ACL associated with the file. Finally, the dash and letters tell

modified 5 May 1997 SunOS 5.6 1-611

ls (1) User Commands

you that user, group, and others have permissions to read, write, and execute part2.

The execute (x) symbol here occupies the third position of the three-character sequence.
A − in the third position would have indicated a denial of execution permissions.

The permissions are indicated as follows:

r the file is readable
w the file is writable
x the file is executable
− the indicated permission is not granted
s the set-user-ID or set-group-ID bit is on, and the corresponding user or

group execution bit is also on
S undefined bit-state (the set-user-ID bit is on and the user execution bit is off)
t the 1000 (octal) bit, or sticky bit, is on (see chmod(1)), and execution is on
T the 1000 bit is turned on, and execution is off (undefined bit-state)

/usr/bin/ls l mandatory locking occurs during access (the set-group-ID bit is on and the
group execution bit is off)

/usr/xpg4/bin/ls L mandatory locking occurs during access (the set-group-ID bit is on and the
group execution bit is off)

For user and group permissions, the third position is sometimes occupied by a character
other than x or −. s also may occupy this position, referring to the state of the set-ID bit,
whether it be the user’s or the group’s. The ability to assume the same ID as the user dur-
ing execution is, for example, used during login when you begin as root but need to
assume the identity of the user you login as.

In the case of the sequence of group permissions, l may occupy the third position. l
refers to mandatory file and record locking. This permission describes a file’s ability to
allow other files to lock its reading or writing permissions during access.

For others permissions, the third position may be occupied by t or T. These refer to the
state of the sticky bit and execution permissions.

OPTIONS The following options are supported:

−a List all entries, including those that begin with a dot (.), which are normally not
listed.

−A List all entries, including those that begin with a dot (.), with the exception of the
working directory (.) and the parent directory (..).

−b Force printing of non-printable characters to be in the octal \ddd notation.

−c Use time of last modification of the i-node (file created, mode changed, and so
forth) for sorting (−t) or printing (−l or −n).

−C Multi-column output with entries sorted down the columns. This is the default
output format.

−d If an argument is a directory, list only its name (not its contents); often used with
−l to get the status of a directory.

−f Force each argument to be interpreted as a directory and list the name found in
each slot. This option turns off −l, −t, −s, and −r, and turns on −a; the order is the

1-612 SunOS 5.6 modified 5 May 1997

User Commands ls (1)

order in which entries appear in the directory.

−F Mark directories with a trailing slash (/), doors with a trailing greater-than sign
(>), executable files with a trailing asterisk (∗), FIFOs with a trailing vertical bar
(|), symbolic links with a trailing at-sign (@), and AF_UNIX address family sock-
ets with a trailing equals sign (=).

−g The same as −l, except that the owner is not printed.

−i For each file, print the i-node number in the first column of the report.

−l List in long format, giving mode, ACL indication, number of links, owner, group,
size in bytes, and time of last modification for each file (see above). If the file is a
special file, the size field instead contains the major and minor device numbers.
If the time of last modification is greater than six months ago, it is shown in the
format ‘month date year’ for the POSIX locale. When the LC_TIME locale category
is not set to the POSIX locale, a different format of the time field may be used.
Files modified within six months show ‘month date time’. If the file is a symbolic
link, the filename is printed followed by “→” and the path name of the refer-
enced file.

−L If an argument is a symbolic link, list the file or directory the link references
rather than the link itself.

−m Stream output format; files are listed across the page, separated by commas.

−n The same as −l, except that the owner’s UID and group’s GID numbers are
printed, rather than the associated character strings.

−o The same as −l, except that the group is not printed.

−p Put a slash (/) after each filename if the file is a directory.

−q Force printing of non-printable characters in file names as the character question
mark (?).

−r Reverse the order of sort to get reverse alphabetic or oldest first as appropriate.

−R Recursively list subdirectories encountered.

−s Give size in blocks, including indirect blocks, for each entry.

−t Sort by time stamp (latest first) instead of by name. The default is the last
modification time. (See −u and −c.)

−u Use time of last access instead of last modification for sorting (with the −t option)
or printing (with the −l option).

−x Multi-column output with entries sorted across rather than down the page.

−1 Print one entry per line of output.

Specifying more than one of the options in the following mutually exclusive pairs is not
considered an error: −C and −1 (one), −c and −u. The last option specified in each pair
determines the output format.

modified 5 May 1997 SunOS 5.6 1-613

ls (1) User Commands

/usr/bin/ls Specifying more than one of the options in the following mutually exclusive pairs is not
considered an error: −C and −l (ell), −m and −l (ell), −x and −l (ell). The −l option over-
rides the other option specified in each pair.

/usr/xpg4/bin/ls Specifying more than one of the options in the following mutually exclusive pairs is not
considered an error: −C and −l (ell), −m and −l (ell), −x and −l (ell). The last option
specified in each pair determines the output format.

OPERANDS The following operand is supported:

file A path name of a file to be written. If the file specified is not found, a
diagnostic message will be output on standard error.

USAGE See largefile(5) for the description of the behavior of ls when encountering files greater
than or equal to 2 Gbyte (231 bytes).

EXAMPLES An example of a file’s permissions is:

−rwxr− −r− −
This describes a file that is readable, writable, and executable by the user and readable by
the group and others.

Another example of a file’s permissions is:

−rwsr−xr−x

This describes a file that is readable, writable, and executable by the user, readable and
executable by the group and others, and allows its user-ID to be assumed, during execu-
tion, by the user presently executing it.

Another example of a file’s permissions is:

−rw−rwl− − −
This describes a file that is readable and writable only by the user and the group and can
be locked during access.

An example of a command line:

example% ls −a

This command prints the names of all files in the current directory, including those that
begin with a dot (.), which normally do not print.

Another example of a command line:

example% ls −aisn

This command provides information on all files, including those that begin with a dot (a),
the i-number—the memory address of the i-node associated with the file—printed in the
left-hand column (i); the size (in blocks) of the files, printed in the column to the right of
the i-numbers (s); finally, the report is displayed in the numeric version of the long list,
printing the UID (instead of user name) and GID (instead of group name) numbers asso-
ciated with the files.

1-614 SunOS 5.6 modified 5 May 1997

User Commands ls (1)

When the sizes of the files in a directory are listed, a total count of blocks, including
indirect blocks, is printed.

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of ls: LC_COLLATE, LC_CTYPE, LC_TIME, LC_MESSAGES, NLSPATH, and TZ.

COLUMNS Determine the user’s preferred column position width for writing multi-
ple text-column output. If this variable contains a string representing a
decimal integer, the ls utility calculates how many path name text
columns to write (see −C) based on the width provided. If COLUMNS is
not set or invalid, 80 is used. The column width chosen to write the
names of files in any given directory will be constant. File names will
not be truncated to fit into the multiple text-column output.

EXIT STATUS 0 All information was written successfully.

>0 An error occurred.

FILES /etc/group group IDs for ls −l and ls −g
/etc/passwd user IDs for ls −l and ls −o
/usr/share/lib/terminfo/?/∗ terminal information database

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

/usr/bin/ls ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu
CSI Enabled

/usr/xpg4/bin/ls ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxcu4
CSI Enabled

SEE ALSO chmod(1), cp(1), setfacl(1), terminfo(4), attributes(5), environ(5), largefile(5), xpg4(5)

NOTES Unprintable characters in file names may confuse the columnar output options.

The total block count will be incorrect if if there are hard links among the files.

modified 5 May 1997 SunOS 5.6 1-615

ls (1B) SunOS/BSD Compatibility Package Commands

NAME ls − list the contents of a directory

SYNOPSIS /usr/ucb/ls [−aAcCdfFgilLqrRstu1] filename . . .

DESCRIPTION For each filename which is a directory, ls lists the contents of the directory; for each
filename which is a file, ls repeats its name and any other information requested. By
default, the output is sorted alphabetically. When no argument is given, the current
directory is listed. When several arguments are given, the arguments are first sorted
appropriately, but file arguments are processed before directories and their contents.

Permissions Field The mode printed under the −l option contains 10 characters interpreted as follows. If
the first character is:

d entry is a directory;
b entry is a block-type special file;
c entry is a character-type special file;
l entry is a symbolic link;
p entry is a FIFO (also known as “named pipe”) special file;
s entry is an AF_UNIX address family socket, or
− entry is a plain file.

The next 9 characters are interpreted as three sets of three bits each. The first set refers to
owner permissions; the next refers to permissions to others in the same user-group; and
the last refers to all others. Within each set the three characters indicate permission
respectively to read, to write, or to execute the file as a program. For a directory, “exe-
cute” permission is interpreted to mean permission to search the directory. The permis-
sions are indicated as follows:

r the file is readable;
w the file is writable;
x the file is executable;
− the indicated permission is not granted.

The group-execute permission character is given as s if the file has the set-group-id bit
set; likewise the owner-execute permission character is given as s if the file has the set-
user-id bit set.

The last character of the mode (normally x or `−´) is true if the 1000 bit of the mode is on.
See chmod(1) for the meaning of this mode. The indications of set-ID and 1000 bits of the
mode are capitalized (S and T respectively) if the corresponding execute permission is
not set.

When the sizes of the files in a directory are listed, a total count of blocks, including
indirect blocks is printed.

OPTIONS −a List all entries; in the absence of this option, entries whose names begin with a
`.´ are not listed (except for the privileged user, for whom ls normally prints
even files that begin with a `.´).

−A Same as −a, except that `.´ and `. .´ are not listed.

1B-616 SunOS 5.6 modified 14 Sep 1992

SunOS/BSD Compatibility Package Commands ls (1B)

−c Use time of last edit (or last mode change) for sorting or printing.

−C Force multi-column output, with entries sorted down the columns; for ls, this
is the default when output is to a terminal.

−d If argument is a directory, list only its name (not its contents); often used with
−l to get the status of a directory.

−f Force each argument to be interpreted as a directory and list the name found
in each slot. This option turns off −l, −t, −s, and −r, and turns on −a; the order
is the order in which entries appear in the directory.

−F Mark directories with a trailing slash (`/´), executable files with a trailing aster-
isk (`∗´), symbolic links with a trailing at-sign (`@´), and AF_UNIX address
family sockets with a trailing equals sign (`=´).

−g For ls, show the group ownership of the file in a long output.

−i For each file, print the i-node number in the first column of the report.

−l List in long format, giving mode, number of links, owner, size in bytes, and
time of last modification for each file. If the file is a special file the size field
will instead contain the major and minor device numbers. If the time of last
modification is greater than six months ago, it is shown in the format `month
date year´; files modified within six months show `month date time´. If the file
is a symbolic link the pathname of the linked-to file is printed preceded by
`—>´.

−L If argument is a symbolic link, list the file or directory the link references
rather than the link itself.

−q Display non-graphic characters in filenames as the character ?; for ls, this is
the default when output is to a terminal.

−r Reverse the order of sort to get reverse alphabetic or oldest first as appropri-
ate.

−R Recursively list subdirectories encountered.

−s Give size of each file, including any indirect blocks used to map the file, in
kilobytes.

−t Sort by time modified (latest first) instead of by name.

−u Use time of last access instead of last modification for sorting (with the −t
option) and/or printing (with the −l option).

−1 Force one entry per line output format; this is the default when output is not
to a terminal.

USAGE See largefile(5) for the description of the behavior of ls when encountering files greater
than or equal to 2 Gbyte (231 bytes).

modified 14 Sep 1992 SunOS 5.6 1B-617

ls (1B) SunOS/BSD Compatibility Package Commands

FILES /etc/group to get group ID for `ls −g´
/etc/passwd to get user ID’s for `ls −l´ and `ls −o´

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscpu

SEE ALSO ls(1), attributes(5), largefile(5)

NOTES NEWLINE and TAB are considered printing characters in filenames.

The output device is assumed to be 80 columns wide.

The option setting based on whether the output is a teletype is undesirable as `ls −s´ is
much different than `ls −s | lpr´. On the other hand, not doing this setting would make
old shell scripts which used ls almost certain losers.

Unprintable characters in file names may confuse the columnar output options.

1B-618 SunOS 5.6 modified 14 Sep 1992

User Commands m4 (1)

NAME m4 − macro processor

SYNOPSIS /usr/ccs/bin/m4 [−e] [−s] [−B int] [−H int] [−S int] [−T int]
[−Dname [=val]] . . . [−U name] . . . [file . . .]

/usr/xpg4/bin/m4 [−e] [−s] [−B int] [−H int] [−S int] [−T int]
[−Dname [=val]] . . . [−U name] . . . [file . . .]

DESCRIPTION The m4 utility is a macro processor intended as a front end for C, assembler, and other
languages. Each of the argument files is processed in order; if there are no files, or if a file
is −, the standard input is read. The processed text is written on the standard output.

Macro Syntax Macro calls have the form:

name(arg1,arg2, . . ., argn)

The (must immediately follow the name of the macro. If the name of a defined macro is
not followed by a (, it is deemed to be a call of that macro with no arguments. Potential
macro names consist of alphanumeric characters and underscore (_), where the first
character is not a digit.

Leading unquoted blanks, TABs, and NEWLINEs are ignored while collecting arguments.
Left and right single quotes are used to quote strings. The value of a quoted string is the
string stripped of the quotes.

Macro Processing When a macro name is recognized, its arguments are collected by searching for a match-
ing right parenthesis. If fewer arguments are supplied than are in the macro definition,
the trailing arguments are taken to be NULL. Macro evaluation proceeds normally during
the collection of the arguments, and any commas or right parentheses that happen to turn
up within the value of a nested call are as effective as those in the original input text.
After argument collection, the value of the macro is pushed back onto the input stream
and rescanned.

OPTIONS The options and their effects are as follows:

−e Operate interactively. Interrupts are ignored and the output is unbuf-
fered.

−s Enable line sync output for the C preprocessor (#line . . .)

−B int Change the size of the push-back and argument collection buffers from
the default of 4,096.

−H int Change the size of the symbol table hash array from the default of 199.
The size should be prime.

−S int Change the size of the call stack from the default of 100 slots. Macros
take three slots, and non-macro arguments take one.

−T int Change the size of the token buffer from the default of 512 bytes.

modified 18 Mar 1997 SunOS 5.6 1-619

m4 (1) User Commands

To be effective, the above flags must appear before any file names and before any −D or
−U flags:

−D name[=val] Defines name to val or to NULL in val’s absence.

−U name Undefines name.

OPERANDS The following operand is supported:

file A path name of a text file to be processed. If no file is given, or if it is −,
the standard input is read.

USAGE The m4 utility makes available the following built-in macros. These macros may be
redefined, but once this is done the original meaning is lost. Their values are NULL
unless otherwise stated.

changequote Change quote symbols to the first and second arguments. The symbols
may be up to five characters long. changequote without arguments
restores the original values (that is, ` ´).

changecom Change left and right comment markers from the default # and NEW-
LINE. With no arguments, the comment mechanism is effectively dis-
abled. With one argument, the left marker becomes the argument and
the right marker becomes NEWLINE. With two arguments, both mark-
ers are affected. Comment markers may be up to five characters long.

decr Returns the value of its argument decremented by 1.

define The second argument is installed as the value of the macro whose name
is the first argument. Each occurrence of $n in the replacement text,
where n is a digit, is replaced by the n-th argument. Argument 0 is the
name of the macro; missing arguments are replaced by the null string;
$# is replaced by the number of arguments; $∗ is replaced by a list of all
the arguments separated by commas; $@ is like $∗, but each argument is
quoted (with the current quotes).

defn Returns the quoted definition of its argument(s). It is useful for renam-
ing macros, especially built-ins.

divert m4 maintains 10 output streams, numbered 0-9. The final output is the
concatenation of the streams in numerical order; initially stream 0 is the
current stream. The divert macro changes the current output stream to
its (digit-string) argument. Output diverted to a stream other than 0
through 9 is discarded.

divnum Returns the value of the current output stream.

dnl Reads and discards characters up to and including the next NEWLINE.

dumpdef Prints current names and definitions, for the named items, or for all if no
arguments are given.

errprint Prints its argument on the diagnostic output file.

1-620 SunOS 5.6 modified 18 Mar 1997

User Commands m4 (1)

/usr/ccs/bin/m4 eval Evaluates its argument as an arithmetic expression, using 32-bit signed-
integer arithmetic. The following operators are supported: parentheses,
unary −, unary +, !, ˜, ∗, /, %, +, −, relationals, bitwise &, |, &&, and ||.
Octal and hex numbers may be specified as in C. The second argument
specifies the radix for the result; the default is 10. The third argument
may be used to specify the minimum number of digits in the result.

/usr/xpg4/bin/m4 eval Evaluates its argument as an arithmetic expression, using 32-bit signed-
integer arithmetic. The following operators are supported: parentheses,
unary −, unary +, !, ˜, ∗, /, %, +, −, <<, >>, relationals, bitwise &, |, &&,
and ||. Precedence and associativity are as in C. Octal and hex
numbers may also be specified as in C. The second argument specifies
the radix for the result; the default is 10. The third argument may be
used to specify the minimum number of digits in the result.

ifdef If the first argument is defined, the value is the second argument, other-
wise the third. If there is no third argument, the value is NULL. The
word unix is predefined.

ifelse This macro has three or more arguments. If the first argument is the
same string as the second, then the value is the third argument. If not,
and if there are more than four arguments, the process is repeated with
arguments 4, 5, 6 and 7. Otherwise, the value is either the fourth string,
or, if it is not present, NULL.

include Returns the contents of the file named in the argument.

incr Returns the value of its argument incremented by 1. The value of the
argument is calculated by interpreting an initial digit-string as a decimal
number.

index Returns the position in its first argument where the second argument
begins (zero origin), or −1 if the second argument does not occur.

len Returns the number of characters in its argument.

m4exit This macro causes immediate exit from m4. Argument 1, if given, is the
exit code; the default is 0.

m4wrap Argument 1 will be pushed back at final EOF; example:
m4wrap(`cleanup()´)

maketemp Fills in a string of “X” characters in its argument with the current pro-
cess ID.

popdef Removes current definition of its argument(s), exposing the previous
one, if any.

pushdef Like define, but saves any previous definition.

shift Returns all but its first argument. The other arguments are quoted and
pushed back with commas in between. The quoting nullifies the effect
of the extra scan that will subsequently be performed.

sinclude This macro is identical to include, except that it says nothing if the file is

modified 18 Mar 1997 SunOS 5.6 1-621

m4 (1) User Commands

inaccessible.

substr Returns a substring of its first argument. The second argument is a zero
origin number selecting the first character; the third argument indicates
the length of the substring. A missing third argument is taken to be
large enough to extend to the end of the first string.

syscmd This macro executes the command given in the first argument. No value
is returned.

sysval This macro is the return code from the last call to syscmd.

translit Transliterates the characters in its first argument from the set given by
the second argument to the set given by the third. No abbreviations are
permitted.

traceon This macro with no arguments, turns on tracing for all macros (includ-
ing built-ins). Otherwise, turns on tracing for named macros.

traceoff Turns off trace globally and for any macros specified. Macros
specifically traced by traceon can be untraced only by specific calls to
traceoff.

undefine Removes the definition of the macro named in its argument.

undivert This macro causes immediate output of text from diversions named as
arguments, or all diversions if no argument. Text may be undiverted
into another diversion. Undiverting discards the diverted text.

EXAMPLES An example of a single m4 input file capable of generating two output files follows. The
file file1.m4 could contain lines such as:

if(VER, 1, do_something)
if(VER, 2, do_something)

The makefile for the program might include:

file1.1.c : file1.m4
m4 -D VER=1 file1.m4 > file1.1.c
...

file1.2.c : file1.m4
m4 -D VER=2 file1.m4 > file1.2.c
...

The −U option can be used to undefine VER. If file1.m4 contains:

if(VER, 1, do_something)
if(VER, 2, do_something)
ifndef(VER, do_something)

then the makefile would contain:

file1.0.c : file1.m4
m4 -U VER file1.m4 > file1.0.c
...

file1.1.c : file1.m4

1-622 SunOS 5.6 modified 18 Mar 1997

User Commands m4 (1)

m4 -D VER=1 file1.m4 > file1.1.c
...

file1.2.c : file1.m4
m4 -D VER=2 file1.m4 > file1.2.c
...

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of m4: LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS The following exit values are returned:

0 Successful completion.

>0 An error occurred

If the m4exit macro is used, the exit value can be specified by the input file.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

/usr/ccs/bin/m4 ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

/usr/xpg4/bin/m4 ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxcu4

SEE ALSO as(1), attributes(5), environ(5), xpg4(5)

modified 18 Mar 1997 SunOS 5.6 1-623

mach (1) User Commands

NAME mach − display the processor type of the current host

SYNOPSIS mach

DESCRIPTION The mach command displays the processor-type of the current host.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO arch(1), uname(1), attributes(5)

NOTES mach and uname −p return equivalent values; therefore, Independent Software Vendors
(ISV) and others who need to ascertain processor type are encouraged to use uname with
the −p option instead of the mach command. The mach command is provided for com-
patibility with previous releases, but generally its use is discouraged.

1-624 SunOS 5.6 modified 18 Jan 1996

User Commands machid (1)

NAME machid, sun, iAPX286, i286, i386, i486, i860, pdp11, sparc, u3b, u3b2, u3b5, u3b15, vax,
u370 − get processor type truth value

SYNOPSIS sun
iAPX286
i386
pdp11
sparc
u3b
u3b2
u3b5
u3b15
vax
u370

DESCRIPTION The following commands will return a true value (exit code of 0) if you are using an
instruction set that the command name indicates.

sun True if you are on a Sun system.

iAPX286 True if you are on a computer using an iAPX286 processor.

i386 True if you are on a computer using an iAPX386 processor.

pdp11 True if you are on a PDP-11/45 or PDP-11/70.

sparc True if you are on a computer using a SPARC-family processor.

u3b True if you are on a 3B20 computer.

u3b2 True if you are on a 3B2 computer.

u3b5 True if you are on a 3B5 computer.

u3b15 True if you are on a 3B15 computer.

vax True if you are on a VAX-11/750 or VAX-11/780.

u370 True if you are on an IBM System/370 computer.

The commands that do not apply will return a false (non-zero) value. These commands
are often used within makefiles (see make(1S)) and shell scripts (see sh(1)) to increase
portability.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

modified 5 Jul 1990 SunOS 5.6 1-625

machid (1) User Commands

SEE ALSO make(1S), sh(1), test(1), true(1), uname(1), attributes(5)

NOTES The machid family of commands is obsolete. Use uname −p and uname −m instead.

1-626 SunOS 5.6 modified 5 Jul 1990

User Commands mail (1)

NAME mail, rmail − read mail or send mail to users

SYNOPSIS
Sending mail mail [−tw] [−m message_type] recipient. . .

rmail [−tw] [−m message_type] recipient. . .

Reading mail mail [−ehpPqr] [−f file]

Debugging mail [−x debug_level] [other_mail_options] recipient. . .

DESCRIPTION A recipient is usually a user name recognized by login(1). When recipients are named,
mail assumes a message is being sent. It reads from the standard input up to an end-of-
file (CTRL-D) or, if reading from a terminal device, until it reads a line consisting of just a
period. When either of those indicators is received, mail adds the letter to the mailfile for
each recipient.

A letter is composed of some header lines followed by a blank line followed by the message
content. The header lines section of the letter consists of one or more UNIX postmarks:

From sender date_and_time [remote from remote_system_name]

followed by one or more standardized message header lines of the form:

keyword-name: [printable text]

where keyword-name is comprised of any printable, non-whitespace characters other than
colon (`:´). A Content-Length: header line, indicating the number of bytes in the message
content will always be present unless the letter consists of only header lines with no mes-
sage content. A Content-Type: header line that describes the type of the message content
(such as text, binary, multipart, etc.) will also be present unless the letter consists of only
header lines with no message content. Header lines may be continued on the following
line if that line starts with white space.

OPTIONS
Sending mail The following command-line arguments affect sending mail:

−m message_type
A Message-Type: line is added to the message header with the value of
message_type.

−t A To: line is added to the message header for each of the intended recipients.

−w A letter is sent to a remote recipient without waiting for the completion of the
remote transfer program.

If a letter is found to be undeliverable, it is returned to the sender with diagnostics that
indicate the location and nature of the failure. If mail is interrupted during input, the
message is saved in the file dead.letter to allow editing and resending. dead.letter is
always appended to, thus preserving any previous contents. The initial attempt to
append to (or create) dead.letter will be in the current directory. If this fails, dead.letter

modified 21 Feb 1995 SunOS 5.6 1-627

mail (1) User Commands

will be appended to (or created in) the user’s login directory. If the second attempt also
fails, no dead.letter processing will be done.

rmail only permits the sending of mail; uucp(1C) uses rmail as a security precaution.
Any application programs that generate mail messages should be sure to invoke rmail
rather than mail for message transport and/or delivery.

If the local system has the Basic Networking Utilities installed, mail may be sent to a reci-
pient on a remote system. There are numerous ways to address mail to recipients on
remote systems depending on the transport mechanisms available to the local system.
The two most prevalent addressing schemes are UUCP-style and Domain-style.

UUCP-style addressing
Remote recipients are specified by prefixing the recipient name with the
remote system name and an exclamation point, such as sysa!user. If
csh(1) is the default shell, sysa\!user should be used. A series of system
names separated by exclamation points can be used to direct a letter
through an extended network (such as sysa!sysb!sysc!user or
sysa\!sysb\!sysc\!user).

Domain-style addressing
Remote recipients are specified by appending an `@´ and domain (and
possibly sub-domain) information to the recipient name (such as
user@sf.att.com). (The local system administrator should be consulted
for details on which addressing conventions are available on the local
system.)

Reading Mail The following command-line arguments affect reading mail:

−e Mail is not printed. An exit status of 0 is returned if the user has mail;
otherwise, an exit status of 1 is returned.

−h A window of headers are initially displayed rather than the latest mes-
sage. The display is followed by the ? prompt.

−p All messages are printed without prompting for disposition.

−P All messages are printed with all header lines displayed, rather than the
default selective header line display.

−q mail terminates after interrupts. Normally an interrupt causes only the
termination of the message being printed.

−r Messages are printed in first-in, first-out order.

−f file mail uses file (such as mbox) instead of the default mailfile.

mail, unless otherwise influenced by command-line arguments, prints a user’s mail mes-
sages in last-in, first-out order. The default mode for printing messages is to display only
those header lines of immediate interest. These include, but are not limited to, the UNIX
From and >From postmarks, From:, Date:, Subject:, and Content-Length: header lines,
and any recipient header lines such as To:, Cc:, Bcc:, and so forth. After the header lines
have been displayed, mail will display the contents (body) of the message only if it con-
tains no unprintable characters. Otherwise, mail will issue a warning statement about

1-628 SunOS 5.6 modified 21 Feb 1995

User Commands mail (1)

the message having binary content and not display the content. (This may be overridden
via the p command. See below.)

For each message, the user is prompted with a ? and a line is read from the standard
input. The following commands are available to determine the disposition of the mes-
sage:

Print the number of the current message.

− Print previous message.

<new-line>,+, or n Print the next message.

!command Escape to the shell to do command.

a Print message that arrived during the mail session.

d, or dp Delete the current message and print the next message.

d n Delete message number n. Do not go on to next message.

dq Delete message and quit mail.

h Display a window of headers around current message.

h n Display a window of headers around message number n.

h a Display headers of all messages in the user’s mailfile.

h d Display headers of messages scheduled for deletion.

m [persons] Mail (and delete) the current message to the named persons.

n Print message number n.

p Print current message again, overriding any indications of binary
(that is, unprintable) content.

P Override default brief mode and print current message again,
displaying all header lines.

q, or CTRL-D Put undeleted mail back in the mailfile and quit mail.

r [users] Reply to the sender, and other users, then delete the message.

s [files] Save message in the named files (mbox is default) and delete the
message.

u [n] Undelete message number n (default is last read).

w [files] Save message contents, without any header lines, in the named files
(mbox is default) and delete the message.

x Put all mail back in the mailfile unchanged and exit mail.

y [files] Same as −w option.

? Print a command summary.

When a user logs in, the presence of mail, if any, is usually indicated. Also, notification is
made if new mail arrives while using mail.

modified 21 Feb 1995 SunOS 5.6 1-629

mail (1) User Commands

The permissions of mailfile may be manipulated using chmod(1) in two ways to alter the
function of mail. The other permissions of the file may be read-write (0666), read-only
(0664), or neither read nor write (0660) to allow different levels of privacy. If changed to
other than the default (mode 0660), the file will be preserved even when empty to per-
petuate the desired permissions. (The administrator may override this file preservation
using the DEL_EMPTY_MAILFILE option of mailcnfg.)

The group ID of the mailfile must be mail to allow new messages to be delivered, and the
mailfile must be writable by group mail.

Debugging The following command-line arguments cause mail to provide debugging information:

−x debug_level mail creates a trace file containing debugging information.

The −x option causes mail to create a file named /tmp/MLDBGprocess_id that contains
debugging information relating to how mail processed the current message. The abso-
lute value of debug_level controls the verboseness of the debug information. 0 implies no
debugging. If debug_level is greater than 0, the debug file will be retained only if mail
encountered some problem while processing the message. If debug_level is less than 0 the
debug file will always be retained. The debug_level specified via −x overrides any
specification of DEBUG in /etc/mail/mailcnfg. The information provided by the −x
option is esoteric and is probably only useful to system administrators.

Delivery Notification Several forms of notification are available for mail by including one of the following lines
in the message header.

Transport-Options: [/options]

Default-Options: [/options]

>To: recipient [/options]

Where the “/options” may be one or more of the following:

/delivery Inform the sender that the message was successfully delivered to the
recipient’s mailbox.

/nodelivery Do not inform the sender of successful deliveries.

/ignore Do not inform the sender of failed deliveries.

/return Inform the sender if mail delivery fails. Return the failed message to the
sender.

/report Same as /return except that the original message is not returned.

The default is /nodelivery/return. If contradictory options are used, the first will be
recognized and later, conflicting, terms will be ignored.

OPERANDS The following operand is supported for sending mail:

recipient A user login name.

1-630 SunOS 5.6 modified 21 Feb 1995

User Commands mail (1)

USAGE See largefile(5) for the description of the behavior of mail and rmail when encountering
files greater than or equal to 2 Gbyte (231 bytes).

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of mail: LC_CTYPE, LC_MESSAGES, and NLSPATH.

TZ Determine the timezone used with date and time strings.

EXIT STATUS The following exit values are returned:

0 Successful completion when the user had mail.

1 The user had no mail or an initialization error occurred.

>1 An error occurred after initialization.

FILES dead.letter unmailable text
/etc/passwd to identify sender and locate recipients
$HOME/mbox saved mail
$MAIL variable containing path name of mailfile
/tmp/ma∗ temporary file
/tmp/MLDBG∗ debug trace file
/var/mail/∗.lock lock for mail directory
/var/mail/:saved directory for holding temp files to prevent loss of data in the event

of a system crash
/var/mail/user incoming mail for user; that is, the mailfile

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO chmod(1), csh(1), login(1), mailx(1), uucp(1C), uuencode(1C), vacation(1), write(1),
attributes(5), environ(5), largefile(5)

Solaris Advanced User’s Guide

NOTES The interpretation and resulting action taken because of the header lines described in the
Delivery Notifications section above will only occur if this version of mail is installed on
the system where the delivery (or failure) happens. Earlier versions of mail may not sup-
port any types of delivery notification.

Conditions sometimes result in a failure to remove a lock file.

After an interrupt, the next message may not be printed; printing may be forced by typ-
ing a p.

modified 21 Feb 1995 SunOS 5.6 1-631

mailcompat (1) User Commands

NAME mailcompat − provide SunOS compatibility for Solaris mailbox format

DESCRIPTION mailcompat is a program to provide SunOS 4.x compatability for the Solaris mailbox for-
mat. You would typically run mailcompat to be able to read mail on a workstation run-
ning SunOS 4.x when your mail server is running Solaris.

Enabling mailcompat creates an entry in your .forward file, if it exists. If this file does
not exist, mailcompat will create it. Disabling mailcompat will remove the entry from
the .forward file, and if this was the only entry, will remove the entire file.

To execute mailcompat, log onto the Solaris mail server and enter mailcompat on the
command line. Answer the queries provided by the program.

USAGE See largefile(5) for the description of the behavior of mailcompat when encountering files
greater than or equal to 2 Gbyte (231 bytes).

EXAMPLES The following example enables the mailcompat feature for the user "john".
example% mailcompat
This program can be used to store your mail in a format
that you can read with SunOS 4.X based mail readers
To enable the mailcompat feature a ".forward" file is created.
Would you like to enable the mailcompat feature? Y
Mailcompat feature ENABLED.Run mailcompat with no arguments to remove it
example%

The following example disables the mailcompat feature for the user "john".
example% mailcompat
This program can be used to store your mail in a format
that you can read with SunOS 4.X based mail readers
You have a .forward file in your home directory containing:

"|/usr/bin/mailcompat johns"
Would you like to remove it and disable the mailcompat feature? y
Back to normal reception of mail.
example%

FILES ˜/.forward list of recipients for forwarding messages

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO mailx(1), attributes(5), largefile(5)

1-632 SunOS 5.6 modified 4 Aug 1994

User Commands mailstats (1)

NAME mailstats − print statistics collected by sendmail

SYNOPSIS mailstats [−c configfile] [−f statisticsfile] file

DESCRIPTION The mailstats utility prints out the statistics collected by the sendmail(1M) program on
mailer usage. These statistics are collected if the file indicated by the S configuration
option of sendmail (defined in /etc/mail/sendmail.cf) exists. The default statistics file is
/etc/mail/sendmail.st. mailstats first prints the time that the statistics file was created
and the last time it was modified. It will then print a table with one row for each mailer
specified in the configuration file. The first column is the mailer number, followed by the
total number of messages sent from this mailer. The next two columns refer to the
number of messages received by sendmail, and the last two columns refer to messages
sent by sendmail. The number of messages and their total size (in 1024 byte units) is
given. No numbers are printed if no messages were sent (or received) for any mailer.

You might want to add an entry to /var/spool/cron/crontabs/root to reinitialize the statis-
tics file once a night. Copy /dev/null into the statistics file or otherwise truncate it to reset
the counters.

OPTIONS The following options are supported:

−c configfile Specify a sendmail configuration file.

−f statisticsfile Specify a sendmail statistics file.

USAGE See largefile(5) for the description of the behavior of mailstats when encountering files
greater than or equal to 2 Gbyte (231 bytes).

FILES /dev/null zero-lined file
/var/spool/cron/crontabs/root default scheduler file used by the cron(1M) daemon
/etc/mail/sendmail.st default sendmail statistics file
/etc/mail/sendmail.cf default sendmail configuration file

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO cron(1M), sendmail(1M), attributes(5), largefile(5)

DIAGNOSTICS mailstats: file size changed
the statistics file is 0-length and has not yet been filled with data

NOTES The mailstats utility should read the configuration file instead of having a hard-wired
table mapping mailer numbers to names.

modified 28 Feb 1997 SunOS 5.6 1-633

mailx (1) User Commands

NAME mailx, mail, Mail − interactive message processing system

SYNOPSIS mailx [−BdeHiInNURvV˜] [−f [file | +folder]] [−T file] [−u user]
mailx [−BdFintUv˜] [−b bcc] [−c cc] [−h number] [−r address] [−s subject]

recipient . . .

/usr/ucb/mail . . .

/usr/ucb/Mail . . .

DESCRIPTION The mail utilities listed above provide a comfortable, flexible environment for sending
and receiving mail messages electronically.

When reading mail, the mail utilities provide commands to facilitate saving, deleting, and
responding to messages. When sending mail, the mail utilities allow editing, reviewing
and other modification of the message as it is entered.

Incoming mail is stored in a standard file for each user, called the mailbox for that user.
When the mail utilities are called to read messages, the mailbox is the default place to
find them. As messages are read, they are marked to be moved to a secondary file for
storage, unless specific action is taken, so that the messages need not be seen again. This
secondary file is called the mbox and is normally located in the user’s HOME directory
(see MBOX in ENVIRONMENT for a description of this file). Messages can be saved in
other secondary files named by the user. Messages remain in a secondary file until forci-
bly removed.

The user can access a secondary file by using the −f option. Messages in the secondary
file can then be read or otherwise processed using the same Commands as in the primary
mailbox. This gives rise within these pages to the notion of a current mailbox.

OPTIONS On the command line options start with a dash (−). Any other arguments are taken to be
destinations (recipients). If no recipients are specified, mailx attempts to read messages
from the mailbox.

−B Do not buffer standard input or standard output.

−b bcc Set the blind carbon copy list to bcc. bcc should be enclosed in quotes if
it contains more than one name.

−c cc Set the carbon copy list to cc. cc should be enclosed in quotes if it con-
tains more than one name.

−d Turn on debugging output. (Neither particularly interesting nor recom-
mended.)

−e Test for the presence of mail. mailx prints nothing and exits with a suc-
cessful return code if there is mail to read.

−F Record the message in a file named after the first recipient. Overrides
the record variable, if set (see Internal Variables).

−f [file] Read messages from file instead of mailbox. If no file is specified, the
mbox is used.

1-634 SunOS 5.6 modified 4 Mar 1997

User Commands mailx (1)

−f [+folder] Use the file folder in the folder directory (same as the folder command).
The name of this directory is listed in the folder variable.

−H Print header summary only.

−h number The number of network “hops” made so far. This is provided for net-
work software to avoid infinite delivery loops. This option and its argu-
ment are passed to the delivery program.

−I Include the newsgroup and article-id header lines when printing mail
messages. This option requires the −f option to be specified.

−i Ignore interrupts. See also ignore in Internal Variables.

−N Do not print initial header summary.

−n Do not initialize from the system default mailx.rc or Mail.rc file. See
USAGE.

−r address Use address as the return address when invoking the delivery program.
All tilde commands are disabled. This option and its argument is
passed to the delivery program.

−s subject Set the Subject header field to subject. subject should be enclosed in
quotes if it contains embedded white space.

−T file Message-id and article-id header lines are recorded in file after the mes-
sage is read. This option also sets the −I option.

−t Scan the input for To:, Cc:, and Bcc: fields. Any recipients on the com-
mand line will be ignored.

−U Convert UUCP-style addresses to internet standards. Overrides the conv
environment variable.

−u user Read user’s mailbox. This is only effective if user’s mailbox is not read
protected.

−V Print the mailx version number and exit.

−v Pass the −v flag to sendmail(1M).

−˜ Interpret tilde escapes in the input even if not reading from a tty.

OPERANDS The following operands are supported:

recipient Addressee of message.

USAGE
Starting Mail At startup time, mailx executes the system startup file /etc/mail/mailx.rc. If invoked as

mail or Mail, the system startup file /etc/mail/Mail.rc is used instead.

The system startup file sets up initial display options and alias lists and assigns values to
some internal variables. These variables are flags and valued parameters which are set
and cleared using the set and unset commands. See Internal Variables.

modified 4 Mar 1997 SunOS 5.6 1-635

mailx (1) User Commands

With the following exceptions, regular commands are legal inside startup files: !, Copy,
edit, followup, Followup, hold, mail, preserve, reply, Reply, shell, and visual. An error
in the startup file causes the remaining lines in the file to be ignored.

After executing the system startup file, the mail utilities execute the optional personal
startup file $HOME/.mailrc, wherein the user can override the values of the internal vari-
ables as set by the system startup file.

If the −n option is specified, however, the mail utilities do not execute the system startup
file.

Many system administrators include the commands

set appenddeadletter
unset replyall
unset pipeignore

in the system startup files (to be compatible with past Solaris behavior), but this does not
meet standards requirements for mailx. To get standard behavior for mailx, users
should use the −n option or include the following commands in a personal startup file:

unset appenddeadletter
set replyall
set pipeignore

When reading mail, the mail utilities are in command mode. A header summary of the first
several messages is displayed, followed by a prompt indicating the mail utilities can
accept regular commands (see Commands below). When sending mail, the mail utilities
are in input mode. If no subject is specified on the command line, and the asksub variable
is set, a prompt for the subject is printed.

As the message is typed, the mail utilities read the message and store it in a temporary
file. Commands may be entered by beginning a line with the tilde (˜) escape character
followed by a single command letter and optional arguments. See Tilde Escapes for a
summary of these commands.

Reading Mail Each message is assigned a sequential number, and there is at any time the notion of a
current message, marked by a right angle bracket (>) in the header summary. Many
commands take an optional list of messages (message-list) to operate on. In most cases,
the current message is set to the highest-numbered message in the list after the command
is finished executing.

The default for message-list is the current message. A message-list is a list of message
identifiers separated by spaces, which may include:

n Message number n.
. The current message.
ˆ The first undeleted message.
$ The last message.
∗ All messages.
+ The next undeleted message.
− The previous undeleted message.

1-636 SunOS 5.6 modified 4 Mar 1997

User Commands mailx (1)

n−m An inclusive range of message numbers.
user All messages from user.
/string All messages with string in the Subject line (case ignored).
:c All messages of type c, where c is one of:

d deleted messages
n new messages
o old messages
r read messages
u unread messages
Note that the context of the command determines whether this type of message
specification makes sense.

Other arguments are usually arbitrary strings whose usage depends on the command
involved. Filenames, where expected, are expanded using the normal shell conventions
(see sh(1)). Special characters are recognized by certain commands and are documented
with the commands below.

Sending Mail Recipients listed on the command line may be of three types: login names, shell com-
mands, or alias groups. Login names may be any network address, including mixed net-
work addressing. If mail is found to be undeliverable, an attempt is made to return it to
the sender’s mailbox. If the recipient name begins with a pipe symbol (|), the rest of the
name is taken to be a shell command to pipe the message through. This provides an
automatic interface with any program that reads the standard input, such as lp(1) for
recording outgoing mail on paper. Alias groups are set by the alias command (see Com-
mands below) or in a system startup file (for example, $HOME/.mailrc). Aliases are lists
of recipients of any type.

Forwarding Mail To forward a specific message, include it in a message to the desired recipients with the ˜f
or ˜m tilde escapes. See Tilde Escapes below. To forward mail automatically, add a
comma-separated list of addresses for additional recipients to the .forward file in your
home directory. This is different from the format of the alias command, which takes a
space-separated list instead. Note: forwarding addresses must be valid, or the messages
will “bounce.” You cannot, for instance, reroute your mail to a new host by forwarding it
to your new address if it is not yet listed in the NIS aliases domain.

Commands Regular commands are of the form
[command] [message-list] [arguments]

In input mode, commands are recognized by the escape character, tilde(˜), and lines not
treated as commands are taken as input for the message.

If no command is specified in command mode, next is assumed.

The following is a complete list of mailx commands:

!shell-command Escape to the shell. See SHELL in ENVIRONMENT.

comment NULL command (comment). Useful in mailrc files.

= Print the current message number.

modified 4 Mar 1997 SunOS 5.6 1-637

mailx (1) User Commands

? Prints a summary of commands.

alias alias name . . .
group alias name . . . Declare an alias for the given names. The names are substituted

when alias is used as a recipient. Useful in the mailrc file. With no
arguments, the command displays the list of defined aliases.

alternates name . . . Declare a list of alternate names for your login. When responding
to a message, these names are removed from the list of recipients
for the response. With no arguments, print the current list of alter-
nate names. See also allnet in Internal Variables.

cd [directory]
chdir [directory] Change directory. If directory is not specified, $HOME is used.

copy [file]
copy [message-list] file Copy messages to the file without marking the messages as saved.

Otherwise equivalent to the save command.

Copy [message-list] Save the specified messages in a file whose name is derived from
the author of the message to be saved, without marking the mes-
sages as saved. Otherwise equivalent to the Save command.

delete [message-list] Delete messages from the mailbox. If autoprint is set, the next
message after the last one deleted is printed (see Internal Vari-
ables).

discard [header-field. . .]
ignore [header-field. . .] Suppress printing of the specified header fields when displaying

messages on the screen. Examples of header fields to ignore are
Status and Received. The fields are included when the message is
saved, unless the alwaysignore variable is set. The More, Page,
Print, and Type commands override this command. If no header
is specified, the current list of header fields being ignored is
printed. See also the undiscard and unignore commands.

dp [message-list]
dt [message-list] Delete the specified messages from the mailbox and print the next

message after the last one deleted. Roughly equivalent to a delete
command followed by a print command.

echo string . . . Echo the given strings (like echo(1)).

edit [message-list] Edit the given messages. Each message is placed in a temporary
file and the program named by the EDITOR variable is invoked to
edit it. (see ENVIRONMENT). Default editor is ed(1).

exit
xit Exit from mailx, without changing the mailbox. No messages are

saved in the mbox (see also quit).

field [message-list] header-file
Display the value of the header field in the specified message.

1-638 SunOS 5.6 modified 4 Mar 1997

User Commands mailx (1)

file [file]
folder [file] Quit from the current file of messages and read in the specified

file. Several special characters are recognized when used as file
names:

% the current mailbox.
%user the mailbox for user.
the previous mail file.
& the current mbox.
+file The named file in the folder directory (listed in the

folder variable).

With no arguments, print the name of the current mail file, and the
number of messages and characters it contains.

folders Print the names of the files in the directory set by the folder vari-
able (see Internal Variables).

Followup [message] Respond to a message, recording the response in a file whose
name is derived from the author of the message. Overrides the
record variable, if set. If the replyall variable is set, the actions of
Followup and followup are reversed. See also the followup, Save,
and Copy commands and outfolder in Internal Variables, and the
Starting Mail section in USAGE above.

followup [message-list]
Respond to the first message in the message-list, sending the mes-
sage to the author of each message in the message-list. The subject
line is taken from the first message and the response is recorded in
a file whose name is derived from the author of the first message.
If the replyall variable is set, the actions of followup and Followup
are reversed. See also the Followup, Save, and Copy commands
and outfolder in Internal Variables, and the Starting Mail section
in USAGE above.

from [message-list] Print the header summary for the specified messages. If no mes-
sages are specified, print the header summary for the current mes-
sage.

group alias name . . .
alias alias name . . . Declare an alias for the given names. The names are substituted

when alias is used as a recipient. Useful in the mailrc file.

headers [message] Print the page of headers which includes the message specified.
The screen variable sets the number of headers per page (see
Internal Variables). See also the z command.

help Print a summary of commands.

hold [message-list]
preserve [message-list] Hold the specified messages in the mailbox.

modified 4 Mar 1997 SunOS 5.6 1-639

mailx (1) User Commands

if s | r | t
mail-commands
else
mail-commands
endif Conditional execution, where s executes following mail-commands,

up to an else or endif, if the program is in send mode, r causes the
mail-commands to be executed only in receive mode, and t causes the
mail-commands to be executed only if mailx is being run from a ter-
minal. Useful in the mailrc file.

inc Incorporate messages that arrive while you are reading the system
mailbox. The new messages are added to the message list in the
current mail session. This command does not commit changes
made during the session, and prior messages are not renumbered.

ignore [header-field . . .]
discard [header-field . . .]

Suppress printing of the specified header fields when displaying
messages on the screen. Examples of header fields to ignore are
Status and Cc. All fields are included when the message is saved.
The More, Page, Print and Type commands override this com-
mand. If no header is specified, the current list of header fields
being ignored is printed. See also the undiscard and unignore
commands.

list Print all commands available. No explanation is given.

load [message] file
The specified message is replaced by the message in the named
file. file should contain a single mail message including mail
headers (as saved by the save command).

mail recipient . . . Mail a message to the specified recipients.

Mail recipient Mail a message to the specified recipients, and record it in a file
whose name is derived from the author of the message. Overrides
the record variable, if set. See also the Save and Copy commands
and outfolder in Internal Variables.

mbox [message-list] Arrange for the given messages to end up in the standard mbox
save file when mailx terminates normally. See MBOX in
ENVIRONMENT for a description of this file. See also the exit
and quit commands.

more [message-list]
page [message-list] Print the specified messages. If crt is set, the messages longer than

the number of lines specified by the crt variable are paged through
the command specified by the PAGER variable. The default com-
mand is pg(1) or if the bsdcompat variable is set, the default is
more(1). See ENVIRONMENT. Same as the print and type com-
mands.

1-640 SunOS 5.6 modified 4 Mar 1997

User Commands mailx (1)

More [message-list]
Page [message-list] Print the specified messages on the screen, including all header

fields. Overrides suppression of fields by the ignore command.
Same as the Print and Type commands.

new [message-list]
New [message-list]
unread [message-list]
Unread [message-list]

Take a message list and mark each message as not having been
read.

next [message] Go to the next message matching message. If message is not sup-
plied, this command finds the next message that was not deleted
or saved. A message-list may be specified, but in this case the first
valid message in the list is the only one used. This is useful for
jumping to the next message from a specific user, since the name
would be taken as a command in the absence of a real command.
See the discussion of message-list above for a description of possi-
ble message specifications.

pipe [message-list] [shell-command]
| [message-list] [shell-command]

Pipe the message through the given shell-command. The message is
treated as if it were read. If no arguments are given, the current
message is piped through the command specified by the value of
the cmd variable. If the page variable is set, a form feed character
is inserted after each message (see Internal Variables).

preserve [message-list]
hold [message-list] Preserve the specified messages in the mailbox.

print [message-list]
type [message-list] Print the specified messages. If crt is set, the messages longer than

the number of lines specified by the crt variable are paged through
the command specified by the PAGER variable. The default com-
mand is pg(1) or if the bsdcompat variable is set, the default is
more(1). See ENVIRONMENT. Same as the more and page com-
mands.

Print [message-list]
Type [message-list] Print the specified messages on the screen, including all header

fields. Overrides suppression of fields by the ignore command.
Same as the More and Page commands.

put [file]
put [message-list] file Save the specified message in the given file. Use the same conven-

tions as the print command for which header fields are ignored.

Put [file]
Put [message-list] file Save the specified message in the given file. Overrides

modified 4 Mar 1997 SunOS 5.6 1-641

mailx (1) User Commands

suppression of fields by the ignore command.

quit Exit from mailx, storing messages that were read in mbox and
unread messages in the mailbox. Messages that have been expli-
citly saved in a file are deleted unless the keepsave variable is set.

reply [message-list]
respond [message-list]
replysender [message-list]

Send a response to the author of each message in the message-list.
The subject line is taken from the first message. If record is set to a
file, a copy of the reply is added to that file. If the replyall variable
is set, the actions of Reply/Respond and reply/respond are
reversed. The replysender command is not affected by the
replyall variable, but sends each reply only to the sender of each
message. See the Starting Mail section in USAGE above.

Reply [message]
Respond [message]
replyall [message] Reply to the specified message, including all other recipients of

that message. If the variable record is set to a file, a copy of the
reply added to that file. If the replyall variable is set, the actions of
Reply/Respond and reply/respond are reversed. The replyall
command is not affected by the replyall variable, but always sends
the reply to all recipients of the message. See the Starting Mail
section in USAGE above.

retain Add the list of header fields named to the retained list. Only the
header fields in the retain list are shown on your terminal when
you print a message. All other header fields are suppressed. The
set of retained fields specified by the retain command overrides
any list of ignored fields specified by the ignore command. The
Type and Print commands can be used to print a message in its
entirety. If retain is executed with no arguments, it lists the
current set of retained fields.

Save [message-list] Save the specified messages in a file whose name is derived from
the author of the first message. The name of the file is taken to be
the author’s name with all network addressing stripped off. See
also the Copy, followup, and Followup commands and outfolder
in Internal Variables.

save [file]
save [message-list] file Save the specified messages in the given file. The file is created if it

does not exist. The file defaults to mbox. The message is deleted
from the mailbox when mailx terminates unless keepsave is set
(see also Internal Variables and the exit and quit commands).

set
set variable

1-642 SunOS 5.6 modified 4 Mar 1997

User Commands mailx (1)

set variable=string
set variable=number Define a variable . To assign a value to variable , separate the variable

name from the value by an `=´ (there must be no space before or
after the `=´). A variable may be given a null, string, or numeric
value. To embed SPACE characters within a value enclose it in
quotes.

With no arguments, set displays all defined variables and any
values they might have. See Internal Variables for a description
of all predefined mail variables.

shell Invoke an interactive shell. See also SHELL in ENVIRONMENT.

size [message-list] Print the size in characters of the specified messages.

source file Read commands from the given file and return to command mode.

top [message-list] Print the top few lines of the specified messages. If the toplines
variable is set, it is taken as the number of lines to print (see Inter-
nal Variables). The default is 5.

touch [message-list] Touch the specified messages. If any message in message-list is not
specifically saved in a file, it is placed in the mbox, or the file
specified in the MBOX environment variable, upon normal termi-
nation. See exit and quit.

Type [message-list]
Print [message-list] Print the specified messages on the screen, including all header

fields. Overrides suppression of fields by the ignore command.

type [message-list]
print [message-list] Print the specified messages. If crt is set, the messages longer than

the number of lines specified by the crt variable are paged through
the command specified by the PAGER variable. The default com-
mand is pg(1). See ENVIRONMENT.

unalias [alias] . . .
ungroup [alias] . . . Remove the definitions of the specified aliases.

undelete [message-list] Restore the specified deleted messages. Will only restore messages
deleted in the current mail session. If autoprint is set, the last mes-
sage of those restored is printed (see Internal Variables).

undiscard [header-field . . .]
unignore [header-field . . .]

Remove the specified header fields from the list being ignored. If
no header fields are specified, all header fields are removed from
the list being ignored.

unretain [header-field . . .]
Remove the specified header fields from the list being retained. If
no header fields are specified, all header fields are removed from
the list being retained.

modified 4 Mar 1997 SunOS 5.6 1-643

mailx (1) User Commands

unread [message-list]
Unread [message-list]

Same as the new command.

unset variable . . . Erase the specified variables. If the variable was imported from
the environment (that is, an environment variable or exported
shell variable), it cannot be unset from within mailx.

version Print the current version and release date of the mailx utility.

visual [message-list] Edit the given messages with a screen editor. Each messages is
placed in a temporary file and the program named by the VISUAL
variable is invoked to edit it (see ENVIRONMENT). Note that the
default visual editor is vi.

write [message-list] file Write the given messages on the specified file, minus the header
and trailing blank line. Otherwise equivalent to the save com-
mand.

xit
exit Exit from mailx, without changing the mailbox. No messages are

saved in the mbox (see also quit).

z[+ | −] Scroll the header display forward or backward one screen−full.
The number of headers displayed is set by the screen variable (see
Internal Variables).

Tilde Escapes The following tilde escape commands can be used when composing mail to send. These
may be entered only from input mode, by beginning a line with the tilde escape character
(˜). See escape in Internal Variables for changing this special character. The escape char-
acter can be entered as text by typing it twice.

˜ !shell-command Escape to the shell. If present, run shell-command.

˜. Simulate end of file (terminate message input).

˜ :mail-command
˜_ mail-command Perform the command-level request. Valid only when sending a mes-

sage while reading mail.

˜? Print a summary of tilde escapes.

˜A Insert the autograph string Sign into the message (see Internal Vari-
ables).

˜a Insert the autograph string sign into the message (see Internal Vari-
ables).

˜b name . . . Add the names to the blind carbon copy (Bcc) list. This is like the carbon
copy (Cc) list, except that the names in the Bcc list are not shown in the
header of the mail message.

1-644 SunOS 5.6 modified 4 Mar 1997

User Commands mailx (1)

˜c name . . . Add the names to the carbon copy (Cc) list.

˜d Read in the dead-letter file. See DEAD in ENVIRONMENT for a
description of this file.

˜e Invoke the editor on the partial message. See also EDITOR in
ENVIRONMENT.

˜f [message-list] Forward the specified message, or the current message being read.
Valid only when sending a message while reading mail. The messages
are inserted into the message without alteration (as opposed to the ˜m
escape).

˜F [message-list] Forward the specified message, or the current message being read,
including all header fields. Overrides the suppression of fields by the
ignore command.

˜h Prompt for Subject line and To, Cc, and Bcc lists. If the field is
displayed with an initial value, it may be edited as if you had just typed
it.

˜i variable Insert the value of the named variable into the text of the message. For
example, ˜A is equivalent to `˜i Sign.´ Environment variables set and
exported in the shell are also accessible by ˜i.

˜m [message-list] Insert the listed messages, or the current message being read into the
letter. Valid only when sending a message while reading mail. The text
of the message is shifted to the right, and the string contained in the
indentprefix variable is inserted as the leftmost characters of each line.
If indentprefix is not set, a TAB character is inserted into each line.

˜M [message-list] Insert the listed messages, or the current message being read, including
the header fields, into the letter. Valid only when sending a message
while reading mail. The text of the message is shifted to the right, and
the string contained in the indentprefix variable is inserted as the left-
most characters of each line. If indentprefix is not set, a TAB character is
inserted into each line. Overrides the suppression of fields by the ignore
command.

˜p Print the message being entered.

˜q Quit from input mode by simulating an interrupt. If the body of the
message is not null, the partial message is saved in dead-letter. See
DEAD in ENVIRONMENT for a description of this file.

˜R Mark message for return receipt.

˜r file
˜< file
˜< ! shell-command

Read in the specified file. If the argument begins with an exclamation
point (!), the rest of the string is taken as an arbitrary shell command
and is executed, with the standard output inserted into the message.

modified 4 Mar 1997 SunOS 5.6 1-645

mailx (1) User Commands

˜s string . . . Set the subject line to string.

˜t name . . . Add the given names to the To list.

˜v Invoke a preferred screen editor on the partial message. The default
visual editor is vi(1). See also VISUAL in ENVIRONMENT.

˜w file Write the message into the given file, without the header.

˜x Exit as with ˜q except the message is not saved in dead-letter.

˜| shell-command
Pipe the body of the message through the given shell-command. If the
shell-command returns a successful exit status, the output of the com-
mand replaces the message.

Internal Variables The following variables are internal variables. They may be imported from the execution
environment or set using the set command at any time. The unset command may be
used to erase variables.

allnet All network names whose last component (login name) match are
treated as identical. This causes the message-list message specifications
to behave similarly. Disabled by default. See also the alternates com-
mand and the metoo variable.

alwaysignore Ignore header fields with ignore everywhere, not just during print or
type. Affects the save, Save, copy, Copy, top, pipe, and write com-
mands, and the ˜m and ˜f tilde escapes. Enabled by default.

append Upon termination, append messages to the end of the mbox file instead
of prepending them. Although disabled by default, append is set in the
system startup file (which can be suppressed with the −n command line
option).

appenddeadletter
Append to the deadletter file rather than overwrite it. Although disabled
by default, appenddeadletter is frequently set in the system startup file.
See Starting Mail in USAGE above.

askbcc Prompt for the Bcc list after the Subject is entered if it is not specified on
the command line with the −b option. Disabled by default.

askcc Prompt for the Cc list after the Subject is entered if it is not specified on
the command line with the −c option. Disabled by default.

asksub Prompt for subject if it is not specified on the command line with the −s
option. Enabled by default.

autoinc Automatically incorporate new messages into the current session as they
arrive. This has an affect similar to issuing the inc command every time
the command prompt is displayed. Disabled by default, but autoinc is
set in the default system startup file for mailx; it is not set for
/usr/ucb/mail or /usr/ucb/Mail.

autoprint Enable automatic printing of messages after delete and undelete

1-646 SunOS 5.6 modified 4 Mar 1997

User Commands mailx (1)

commands. Disabled by default.

bang Enable the special-casing of exclamation points (!) in shell escape com-
mand lines as in vi(1). Disabled by default.

bsdcompat Set automatically if mailx is invoked as mail or Mail. Causes mailx to
use /etc/mail/Mail.rc as the system startup file. Changes the default
pager to more(1).

cmd=shell-command
Set the default command for the pipe command. No default value.

conv=conversion Convert uucp addresses to the specified address style, which can be
either:

internet This requires a mail delivery program conforming to the
RFC822 standard for electronic mail addressing.

optimize Remove loops in uucp(1C) address paths (typically gen-
erated by the reply command). No rerouting is performed;
mail has no knowledge of UUCP routes or connections.

Conversion is disabled by default. See also sendmail(1M) and the −U
command-line option.

crt[=number] Pipe messages having more than number lines through the command
specified by the value of the PAGER variable (pg(1) or more(1) by
default). If number is not specified, the current window size is used.
Disabled by default.

debug Enable verbose diagnostics for debugging. Messages are not delivered.
Disabled by default.

dot Take a period on a line by itself, or EOF during input from a terminal as
end-of-file. Disabled by default, but dot is set in the system startup file
(which can be suppressed with the −n command line option).

flipr Reverse the effect of the followup/Followup and reply/Reply com-
mand pairs. If both flipr and replyall are set, the effect is as if neither
was set.

escape=c Substitute c for the ˜ escape character. Takes effect with next message
sent.

folder=directory The directory for saving standard mail files. User-specified file names
beginning with a plus (+) are expanded by preceding the file name with
this directory name to obtain the real file name. If directory does not
start with a slash (/), $HOME is prepended to it. There is no default for
the folder variable. See also outfolder below.

header Enable printing of the header summary when entering mailx. Enabled
by default.

hold Preserve all messages that are read in the mailbox instead of putting
them in the standard mbox save file. Disabled by default.

ignore Ignore interrupts while entering messages. Handy for noisy dial-up

modified 4 Mar 1997 SunOS 5.6 1-647

mailx (1) User Commands

lines. Disabled by default.

ignoreeof Ignore end-of-file during message input. Input must be terminated by a
period (.) on a line by itself or by the ˜. command. See also dot above.
Disabled by default.

indentprefix=string
When indentprefix is set, string is used to mark indented lines from
messages included with ˜m. The default is a TAB character.

keep When the mailbox is empty, truncate it to zero length instead of remov-
ing it. Disabled by default.

iprompt=string The specified prompt string is displayed before each line on input is
requested when sending a message.

keepsave Keep messages that have been saved in other files in the mailbox instead
of deleting them. Disabled by default.

makeremote When replying to all recipients of a message, if an address does not
include a machine name, it is assumed to be relative to the sender of the
message. Normally not needed when dealing with hosts that support
RFC822.

metoo If your login appears as a recipient, do not delete it from the list. Dis-
abled by default.

mustbang Force all mail addresses to be in bang format.

onehop When responding to a message that was originally sent to several reci-
pients, the other recipient addresses are normally forced to be relative to
the originating author’s machine for the response. This flag disables
alteration of the recipients’ addresses, improving efficiency in a network
where all machines can send directly to all other machines (that is, one
hop away). Disabled by default.

outfolder Locate the files used to record outgoing messages in the directory
specified by the folder variable unless the path name is absolute. Dis-
abled by default. See folder above and the Save, Copy, followup, and
Followup commands.

page Used with the pipe command to insert a form feed after each message
sent through the pipe. Disabled by default.

pipeignore Omit ignored header when outputting to the pipe command. Although
disabled by default, pipeignore is frequently set in the system startup
file. See Starting Mail in USAGE above.

postmark Your "real name" to be included in the From line of messages you send.
By default this is derived from the comment field in your passwd(4) file
entry.

prompt=string Set the command mode prompt to string. Default is “? ”, unless the
bsdcompat variable is set, then the default is “&”.

quiet Refrain from printing the opening message and version when entering

1-648 SunOS 5.6 modified 4 Mar 1997

User Commands mailx (1)

mailx. Disabled by default.

record=file Record all outgoing mail in file. Disabled by default. See also outfolder
above.

replyall Reverse the effect of the reply and Reply and followup and Followup
commands. Although set by default, replayall is frequently unset in the
system startup file. See flipr and Starting Mail in USAGE above.

save Enable saving of messages in dead-letter on interrupt or delivery error.
See DEAD for a description of this file. Enabled by default.

screen=number Sets the number of lines in a screen-full of headers for the headers com-
mand. number must be a positive number.

The default is set according to baud rate or window size. With a baud
rate less than 1200, number defaults to 5, if baud rate is exactly 1200, it
defaults to 10. If you are in a window, number defaults to the default
window size minus 4. Otherwise, the default is 20.

sendmail=shell-command
Alternate command for delivering messages. Note: in addition to the
expected list of recipients, mail also passes the −i and −m, flags to the
command. Since these flags are not appropriate to other commands,
you may have to use a shell script that strips them from the arguments
list before invoking the desired command. Default is /usr/bin/rmail.

sendwait Wait for background mailer to finish before returning. Disabled by
default.

showname Causes the message header display to show the sender’s real name (if
known) rather than their mail address. Disabled by default, but
showname is set in the /etc/mail/mailx.rc system startup file for mailx.

showto When displaying the header summary and the message is from you,
print the recipient’s name instead of the author’s name.

sign=string The variable inserted into the text of a message when the ˜a (autograph)
command is given. No default (see also ˜i in Tilde Escapes).

Sign=string The variable inserted into the text of a message when the ˜A command is
given. No default (see also ˜i in Tilde Escapes).

toplines=number
The number of lines of header to print with the top command. Default
is 5.

verbose Invoke sendmail(1M) with the −v flag.

modified 4 Mar 1997 SunOS 5.6 1-649

mailx (1) User Commands

translate The name of a program to translate mail addresses. The program
receives mail addresses as arguments. The program produces, on the
standard output, lines containing the following data, in this order:

· the postmark for the sender (see the postmark variable)

· translated mail addresses, one per line, corresponding to the
program’s arguments. Each translated address will replace the
corresponding address in the mail message being sent.

· a line containing only "y" or "n". if the line contains "y" the user will
be asked to confirm that the message should be sent.

The translate program will be invoked for each mail message to be sent.
If the program exits with a non-zero exit status, or fails to produce
enough output, the message is not sent.

Large File Behavior See largefile(5) for the description of the behavior of mailx when encountering files
greater than or equal to 2 Gbyte (231 bytes).

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of mailx: HOME, LANG, LC_CTYPE, LC_TIME, LC_MESSAGES, NLSPATH, and
TERM.

DEAD The name of the file in which to save partial letters in case of untimely
interrupt. Default is $HOME/dead.letter.

EDITOR The command to run when the edit or ˜e command is used. Default is
ed(1).

LISTER The command (and options) to use when listing the contents of the
folder directory. The default is ls(1).

MAIL The name of the initial mailbox file to read (in lieu of the standard sys-
tem mailbox). The default is /var/mail/username .

MAILRC The name of the startup file. Default is $HOME/.mailrc.

MAILX_HEAD The specified string is included at the beginning of the body of each
message that is sent.

MAILX_TAIL The specified string is included at the end of the body of each message
that is sent.

MBOX The name of the file to save messages which have been read. The exit
command overrides this function, as does saving the message explicitly
in another file. Default is $HOME/mbox.

PAGER The command to use as a filter for paginating output. This can also be
used to specify the options to be used. Default is pg(1), or if the
bsdcompat variable is set, the default is more(1). See Internal Vari-
ables.

SHELL The name of a preferred command interpreter. Default is sh(1).

VISUAL The name of a preferred screen editor. Default is vi(1).

1-650 SunOS 5.6 modified 4 Mar 1997

User Commands mailx (1)

EXIT STATUS When the −e option is specified, the following exit values are returned:

0 Mail was found.

>0 Mail was not found or an error occurred.

Otherwise, the following exit values are returned:

0 Successful completion. Note that this status implies that all messages were sent,
but it gives no assurances that any of them were actually delivered.

>0 An error occurred

FILES $HOME/.mailrc personal startup file
$HOME/mbox secondary storage file
$HOME/.Maillock lock file to prevent multiple writers of system mailbox
/etc/mail/mailx.rc optional system startup file for mailx only
/etc/mail/Mail.rc BSD compatibility system-wide startup file for

/usr/ucb/mail and /usr/ucb/Mail
/tmp/R[emqsx]∗ temporary files
/usr/share/lib/mailx/mailx.help∗ help message files
/var/mail/∗ post office directory

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO biff(1B), echo(1), ed(1), ex(1), fmt(1), lp(1), ls(1), mail(1), mailcompat(1), more(1),
newaliases(1), pg(1), sh(1), uucp(1C), vacation(1), vi(1), sendmail(1M), aliases(4),
passwd(4), attributes(5), environ(5), largefile(5), standards(5)

NOTES Where shell-command is shown as valid, arguments are not always allowed. Experimenta-
tion is recommended.

Internal variables imported from the execution environment cannot be unset.

The full internet addressing is not fully supported by mailx. The new standards need
some time to settle down.

Replies do not always generate correct return addresses. Try resending the errant reply
with onehop set.

mailx does not lock your record file. So, if you use a record file and send two or more
messages simultaneously, lines from the messages may be interleaved in the record file.

The format for the alias command is a space-separated list of recipients, while the format
for an alias in either the .forward or /etc/aliases is a comma-separated list.

To read mail on a workstation running Solaris 1.x when your mail server is running
Solaris 2.x, first execute the mailcompat(1) program.

modified 4 Mar 1997 SunOS 5.6 1-651

make (1S) SunOS Specific Commands

NAME make − maintain, update, and regenerate related programs and files

SYNOPSIS /usr/ccs/bin/make [−d] [−dd] [−D] [−DD] [−e] [−i] [−k] [−n] [−p]
[−P] [−q] [−r] [−s] [−S] [−t] [−V] [−f makefile] . . . [−K statefile] . . .
[target . . .] [macro=value . . .]

/usr/xpg4/bin/make [−d] [−dd] [−D] [−DD] [−e] [−i] [−k] [−n] [−p]
[−P] [−q] [−r] [−s] [−S] [−t] [−V] [−f makefile] . . . [target . . .]
[macro=value . . .]

DESCRIPTION The make utility executes a list of shell commands associated with each target , typically
to create or update a file of the same name. makefile contains entries that describe how to
bring a target up to date with respect to those on which it depends, which are called
dependencies. Since each dependency is a target, it may have dependencies of its own.
Targets, dependencies, and sub-dependencies comprise a tree structure that make traces
when deciding whether or not to rebuild a target .

The make utility recursively checks each target against its dependencies, beginning with
the first target entry in makefile if no target argument is supplied on the command line. If,
after processing all of its dependencies, a target file is found either to be missing, or to be
older than any of its dependencies, make rebuilds it. Optionally with this version of
make, a target can be treated as out-of-date when the commands used to generate it have
changed since the last time the target was built.

To build a given target, make executes the list of commands, called a rule. This rule may
be listed explicitly in the target’s makefile entry, or it may be supplied implicitly by
make.

If no target is specified on the command line, make uses the first target defined in makefile.

If a target has no makefile entry, or if its entry has no rule, make attempts to derive a rule
by each of the following methods, in turn, until a suitable rule is found. Each method is
described under USAGE below.

· Pattern matching rules.

· Implicit rules, read in from a user-supplied makefile.

· Standard implicit rules (also known as suffix rules), typically read in from the
file /usr/share/lib/make/make.rules.

· SCCS retrieval. make retrieves the most recent version from the SCCS history
file (if any). See the description of the .SCCS_GET: special-function target for
details.

· The rule from the .DEFAULT: target entry, if there is such an entry in the
makefile.

If there is no makefile entry for a target , if no rule can be derived for building it, and if no
file by that name is present, make issues an error message and halts.

1S-652 SunOS 5.6 modified 18 Mar 1997

SunOS Specific Commands make (1S)

OPTIONS The following options are supported:

−d Display the reasons why make chooses to rebuild a target; make
displays any and all dependencies that are newer. In addition, make
displays options read in from the MAKEFLAGS environment variable.

−dd Display the dependency check and processing in vast detail.

−D Display the text of the makefiles read in.

−DD Display the text of the makefiles, make.rules file, the state file, and all
hidden-dependency reports.

−e Environment variables override assignments within makefiles.

−f makefile Use the description file makefile. A ‘−’ as the makefile argument denotes
the standard input. The contents of makefile, when present, override the
standard set of implicit rules and predefined macros. When more than
one ‘−f makefile’ argument pair appears, make uses the concatenation of
those files, in order of appearance.

When no makefile is specified, /usr/ccs/bin/make tries the following in
sequence, except when in POSIX mode (see the .POSIX Special-Function
Target in the USAGE section below):

· If there is a file named makefile in the working directory, make
uses that file. If, however, there is an SCCS history file
(SCCS/s.makefile) which is newer, make attempts to retrieve and
use the most recent version.

· In the absence of the above file(s), if a file named Makefile is
present in the working directory, make attempts to use it. If there
is an SCCS history file (SCCS/s.Makefile) that is newer, make
attempts to retrieve and use the most recent version.

When no makefile is specified, /usr/ccs/bin/make in POSIX mode and
/usr/xpg4/bin/make try the following files in sequence:

· ./makefile, ./Makefile
· s.makefile, SCCS/s.makefile
· s.Makefile, SCCS/s.Makefile

−i Ignore error codes returned by commands. Equivalent to the special-
function target ‘.IGNORE:’.

−k When a nonzero error status is returned by a rule, or when make cannot
find a rule, abandon work on the current target, but continue with other
dependency branches that do not depend on it.

−K statefile Use the state file statefile . A ‘−’ as the statefile argument denotes the stan-
dard input. The contents of statefile , when present, override the stan-
dard set of implicit rules and predefined macros. When more than one
‘−K statefile’ argument pair appears, make uses the concatenation of
those files, in order of appearance. (See also .KEEP_STATE
and .KEEP_STATE_FILE in the Special-Functions Targets section).

−n No execution mode. Print commands, but do not execute them. Even

modified 18 Mar 1997 SunOS 5.6 1S-653

make (1S) SunOS Specific Commands

lines beginning with an @ are printed. However, if a command line con-
tains a reference to the $(MAKE) macro, that line is always executed (see
the discussion of MAKEFLAGS in Reading Makefiles and the Environ-
ment). When in POSIX mode, lines beginning with a “+” are executed.

−p Print out the complete set of macro definitions and target descriptions.

−P Merely report dependencies, rather than building them.

−q Question mode. make returns a zero or nonzero status code depending
on whether or not the target file is up to date. When in POSIX mode,
lines beginning with a “+” are executed.

−r Do not read in the default makefile /usr/share/lib/make/make.rules.

−s Silent mode. Do not print command lines before executing them.
Equivalent to the special-function target .SILENT:.

−S Undo the effect of the −k option. Stop processing when a non-zero exit
status is returned by a command.

−t Touch the target files (bringing them up to date) rather than performing
their rules. This can be dangerous when files are maintained by more than one
person. When the .KEEP_STATE: target appears in the makefile, this
option updates the state file just as if the rules had been performed.
When in POSIX mode, lines beginning with a “+” are executed.

−V Puts make into SysV mode. Refer to sysV-make(1) for respective details.

OPERANDS The following operands are supported:

target Target names, as defined in USAGE.

macro=value
Macro definition. This definition overrides any regular definition for the
specified macro within the makefile itself, or in the environment. However,
this definition can still be overridden by conditional macro assignments.

USAGE Refer to make in Programming Utilities Guide for tutorial information.

Reading Makefiles
and the Environment

When make first starts, it reads the MAKEFLAGS environment variable to obtain any of
the following options specified present in its value: −d, −D, −e, −i, −k, −n, −p, −q, −r, −s,
−S, or −t. Due to the implementation of POSIX.2 (see POSIX.2(5), the MAKEFLAGS
values will contain a leading ‘−’ character. The make utility then reads the command line
for additional options, which also take effect.

Next, make reads in a default makefile that typically contains predefined macro
definitions, target entries for implicit rules, and additional rules, such as the rule for
retrieving SCCS files. If present, make uses the file make.rules in the current directory;
otherwise it reads the file /usr/share/lib/make/make.rules, which contains the standard
definitions and rules.

1S-654 SunOS 5.6 modified 18 Mar 1997

SunOS Specific Commands make (1S)

Use the directive:

include /usr/share/lib/make/make.rules

in your local make.rules file to include them.

Next, make imports variables from the environment (unless the −e option is in effect),
and treats them as defined macros. Because make uses the most recent definition it
encounters, a macro definition in the makefile normally overrides an environment vari-
able of the same name. When −e is in effect, however, environment variables are read in
after all makefiles have been read. In that case, the environment variables take pre-
cedence over definitions in the makefile.

Next, make reads any makefiles you specify with −f, or one of makefile or Makefile as
described above and then the state file, in the local directory if it exists. If the makefile
contains a .KEEP_STATE_FILE target, then it reads the state file that follows the target.
Refer to special target .KEEP_STATE_FILE for details.

Next, (after reading the environment if −e is in effect), make reads in any macro
definitions supplied as command line arguments. These override macro definitions in
the makefile and the environment both, but only for the make command itself.

make exports environment variables, using the most recently defined value. Macro
definitions supplied on the command line are not normally exported, unless the macro is
also an environment variable.

make does not export macros defined in the makefile. If an environment variable is set,
and a macro with the same name is defined on the command line, make exports its value
as defined on the command line. Unless −e is in effect, macro definitions within the
makefile take precedence over those imported from the environment.

The macros MAKEFLAGS, MAKE, SHELL, HOST_ARCH, HOST_MACH, and
TARGET_MACH are special cases. See Special-Purpose Macros, below for details.

Makefile Target
Entries

A target entry has the following format:

target . . . [: | ::] [dependency] . . . [; command] . . .
[command]
. . .

The first line contains the name of a target, or a space-separated list of target names, ter-
minated with a colon or double colon. If a list of targets is given, this is equivalent to
having a separate entry of the same form for each target. The colon(s) may be followed
by a dependency, or a dependency list. make checks this list before building the target.
The dependency list may be terminated with a semicolon (;), which in turn can be fol-
lowed by a single Bourne shell command. Subsequent lines in the target entry begin with
a TAB, and contain Bourne shell commands. These commands comprise the rule for
building the target.

Shell commands may be continued across input lines by escaping the NEWLINE with a
backslash (\). The continuing line must also start with a TAB.

modified 18 Mar 1997 SunOS 5.6 1S-655

make (1S) SunOS Specific Commands

To rebuild a target, make expands macros, strips off initial TAB characters and either exe-
cutes the command directly (if it contains no shell metacharacters), or passes each com-
mand line to a Bourne shell for execution.

The first line that does not begin with a TAB or ’#’ begins another target or macro
definition.

Special Characters
Global # Start a comment. The comment ends at the next NEWLINE. If the ‘#’ fol-

lows the TAB in a command line, that line is passed to the shell (which
also treats ‘#’ as the start of a comment).

include filename If the word include appears as the first seven letters of a line and is fol-
lowed by a SPACE or TAB, the string that follows is taken as a filename
to interpolate at that line. include files can be nested to a depth of no
more than about 16. If filename is a macro reference, it is expanded.

Targets and
Dependencies

: Target list terminator. Words following the colon are added to the
dependency list for the target or targets. If a target is named in more
than one colon-terminated target entry, the dependencies for all its
entries are added to form that target’s complete dependency list.

:: Target terminator for alternate dependencies. When used in place of a
‘:’ the double-colon allows a target to be checked and updated with
respect to alternate dependency lists. When the target is out-of-date
with respect to dependencies listed in the first alternate, it is built
according to the rule for that entry. When out-of-date with respect to
dependencies in another alternate, it is built according the rule in that
other entry. Implicit rules do not apply to double-colon targets; you
must supply a rule for each entry. If no dependencies are specified, the
rule is always performed.

target [+ target . . .] :
Target group. The rule in the target entry builds all the indicated targets
as a group. It is normally performed only once per make run, but is
checked for command dependencies every time a target in the group is
encountered in the dependency scan.

% Pattern matching wild card metacharacter. Like the ‘∗’ shell wild card,
‘%’ matches any string of zero or more characters in a target name or
dependency, in the target portion of a conditional macro definition, or
within a pattern replacement macro reference. Note that only one ‘%’
can appear in a target, dependency-name, or pattern-replacement macro
reference.

./pathname make ignores the leading ‘./’ characters from targets with names given
as pathnames relative to “dot,” the working directory.

1S-656 SunOS 5.6 modified 18 Mar 1997

SunOS Specific Commands make (1S)

Macros = Macro definition. The word to the left of this character is the macro
name; words to the right comprise its value. Leading and trailing white
space characters are stripped from the value. A word break following
the = is implied.

$ Macro reference. The following character, or the parenthesized or
bracketed string, is interpreted as a macro reference: make expands the
reference (including the $) by replacing it with the macro’s value.

()
{ } Macro-reference name delimiters. A parenthesized or bracketed word

appended to a $ is taken as the name of the macro being referred to.
Without the delimiters, make recognizes only the first character as the
macro name.

$$ A reference to the dollar-sign macro, the value of which is the character
‘$’. Used to pass variable expressions beginning with $ to the shell, to
refer to environment variables which are expanded by the shell, or to
delay processing of dynamic macros within the dependency list of a tar-
get, until that target is actually processed.

\$ Escaped dollar-sign character. Interpreted as a literal dollar sign within
a rule.

+= When used in place of ‘=’, appends a string to a macro definition (must
be surrounded by white space, unlike ‘=’).

:= Conditional macro assignment. When preceded by a list of targets with
explicit target entries, the macro definition that follows takes effect when
processing only those targets, and their dependencies.

:sh = Define the value of a macro to be the output of a command (see Com-
mand Substitutions, below).

:sh In a macro reference, execute the command stored in the macro, and
replace the reference with the output of that command (see Command
Substitutions).

Rules + make will always execute the commands preceded by a “+”, even when
−n is specified.

− make ignores any nonzero error code returned by a command line for
which the first non-TAB character is a ‘−’. This character is not passed to
the shell as part of the command line. make normally terminates when
a command returns nonzero status, unless the −i or −k options, or the
.IGNORE: special-function target is in effect.

@ If the first non-TAB character is a @, make does not print the command
line before executing it. This character is not passed to the shell.

modified 18 Mar 1997 SunOS 5.6 1S-657

make (1S) SunOS Specific Commands

? Escape command-dependency checking. Command lines starting with
this character are not subject to command dependency checking.

! Force command-dependency checking. Command-dependency check-
ing is applied to command lines for which it would otherwise be
suppressed. This checking is normally suppressed for lines that contain
references to the ‘?’ dynamic macro (for example, ‘$?’).

When any combination of ‘+’, ‘−’, ‘@’, ‘?’, or ‘!’ appear as the first charac-
ters after the TAB, all that are present apply. None are passed to the
shell.

Special-Function
Targets

When incorporated in a makefile, the following target names perform special-functions:

.DEFAULT: If it has an entry in the makefile, the rule for this target is used to process
a target when there is no other entry for it, no rule for building it, and no
SCCS history file from which to retrieve a current version. make ignores
any dependencies for this target.

.DONE: If defined in the makefile, make processes this target and its dependen-
cies after all other targets are built. This target is also performed when
make halts with an error, unless the .FAILED target is defined.

.FAILED: This target, along with its dependencies, is performed instead of .DONE
when defined in the makefile and make halts with an error.

.GET_POSIX: This target contains the rule for retrieving the current version of an SCCS
file from its history file in the current working directory. make uses this
rule when it is running in POSIX mode.

.IGNORE: Ignore errors. When this target appears in the makefile, make ignores
non-zero error codes returned from commands. When used in POSIX
mode, .IGNORE could be followed by target names only, for which the
errors will be ignored.

.INIT: If defined in the makefile, this target and its dependencies are built
before any other targets are processed.

.KEEP_STATE: If this target is in effect, make updates the state file, .make.state, in the
current directory. This target also activates command dependencies,
and hidden dependency checks. If either the .KEEP_STATE: target
appears in the makefile, or the environment variable KEEP_STATE is set
("setenv KEEP_STATE"), make will rebuild everything in order to col-
lect dependency information, even if all the targets were up to date due
to previous make runs. See also the ENVIRONMENT section. This tar-
get has no effect if used in POSIX mode.

.KEEP_STATE_FILE:
This target has no effect if used in POSIX mode. This target implies
.KEEP_STATE. If the target is followed by a filename, make uses it as the
state file. If the target is followed by a directory name, make looks for a
.make.state file in that directory. If the target is not followed by any

1S-658 SunOS 5.6 modified 18 Mar 1997

SunOS Specific Commands make (1S)

name, make looks for .make.state file in the current working directory.

.MAKE_VERSION:
A target-entry of the form:

.MAKE_VERSION: VERSION−number

enables version checking. If the version of make differs from the ver-
sion indicated, make issues a warning message.

.NO_PARALLEL:
Currently, this target has no effect, it is, however, reserved for future
use.

.PARALLEL: Currently of no effect, but reserved for future use.

.POSIX: This target enables POSIX mode.

.PRECIOUS: List of files not to delete. make does not remove any of the files listed as
dependencies for this target when interrupted. make normally removes
the current target when it receives an interrupt. When used in POSIX
mode, if the target is not followed by a list of files, all the file are
assumed precious.

.SCCS_GET: This target contains the rule for retrieving the current version of an SCCS
file from its history file. To suppress automatic retrieval, add an entry
for this target with an empty rule to your makefile.

.SCCS_GET_POSIX:
This target contains the rule for retrieving the current version of an SCCS
file from its history file. make uses this rule when it is running in POSIX
mode.

.SILENT: Run silently. When this target appears in the makefile, make does not
echo commands before executing them. When used in POSIX mode, it
could be followed by target names, and only those will be executed
silently.

.SUFFIXES: The suffixes list for selecting implicit rules (see The Suffixes List).

.WAIT: Currently of no effect, but reserved for future use.

Clearing Special Targets In this version of make, you can clear the definition of the following special targets by
supplying entries for them with no dependencies and no rule:

.DEFAULT, .SCCS_GET, and .SUFFIXES

Command
Dependencies

When the .KEEP_STATE: target is effective, make checks the command for building a tar-
get against the state file. If the command has changed since the last make run, make
rebuilds the target.

Hidden
Dependencies

When the .KEEP_STATE: target is effective, make reads reports from cpp(1) and other
compilation processors for any “hidden” files, such as #include files. If the target is out
of date with respect to any of these files, make rebuilds it.

modified 18 Mar 1997 SunOS 5.6 1S-659

make (1S) SunOS Specific Commands

Macros Entries of the form

macro=value

define macros. macro is the name of the macro, and value, which consists of all characters
up to a comment character or unescaped NEWLINE, is the value. make strips both lead-
ing and trailing white space in accepting the value.

Subsequent references to the macro, of the forms: $(name) or ${name} are replaced by
value. The parentheses or brackets can be omitted in a reference to a macro with a
single-character name.

Macro references can contain references to other macros, in which case nested references
are expanded first.

Suffix Replacement
Macro References

Substitutions within macros can be made as follows:

$(name:string1=string2)

where string1 is either a suffix, or a word to be replaced in the macro definition, and
string2 is the replacement suffix or word. Words in a macro value are separated by
SPACE, TAB, and escaped NEWLINE characters.

Pattern Replacement
Macro References

Pattern matching replacements can also be applied to macros, with a reference of the
form:

$(name: op%os= np%ns)

where op is the existing (old) prefix and os is the existing (old) suffix, np and ns are the
new prefix and new suffix, respectively, and the pattern matched by % (a string of zero or
more characters), is carried forward from the value being replaced. For example:

PROGRAM=fabricate
DEBUG= $(PROGRAM:%=tmp/%−g)

sets the value of DEBUG to tmp/fabricate−g.

Note that pattern replacement macro references cannot be used in the dependency list of
a pattern matching rule; the % characters are not evaluated independently. Also, any
number of % metacharacters can appear after the equal-sign.

Appending to a Macro Words can be appended to macro values as follows:

macro += word . . .

Special-Purpose
Macros

When the MAKEFLAGS variable is present in the environment, make takes options from
it, in combination with options entered on the command line. make retains this com-
bined value as the MAKEFLAGS macro, and exports it automatically to each command or
shell it invokes.

Note that flags passed by way of MAKEFLAGS are only displayed when the −d, or −dd
options are in effect.

The MAKE macro is another special case. It has the value make by default, and tem-
porarily overrides the −n option for any line in which it is referred to. This allows nested
invocations of make written as:

1S-660 SunOS 5.6 modified 18 Mar 1997

SunOS Specific Commands make (1S)

$(MAKE) . . .

to run recursively, with the −n flag in effect for all commands but make. This lets you
use ‘make −n’ to test an entire hierarchy of makefiles.

For compatibility with the 4.2 BSD make, the MFLAGS macro is set from the MAKEFLAGS
variable by prepending a ‘−’. MFLAGS is not exported automatically.

The SHELL macro, when set to a single-word value such as /usr/bin/csh, indicates the
name of an alternate shell to use. The default is /bin/sh. Note that make executes com-
mands that contain no shell metacharacters itself. Built-in commands, such as dirs in the
C shell, are not recognized unless the command line includes a metacharacter (for
instance, a semicolon). This macro is neither imported from, nor exported to the environ-
ment, regardless of −e. To be sure it is set properly, you must define this macro within
every makefile that requires it.

The following macros are provided for use with cross-compilation:

HOST_ARCH The machine architecture of the host system. By default, this is the out-
put of the arch(1) command prepended with ‘−’. Under normal cir-
cumstances, this value should never be altered by the user.

HOST_MACH The machine architecture of the host system. By default, this is the out-
put of the mach(1), prepended with ‘−’. Under normal circumstances,
this value should never be altered by the user.

TARGET_ARCH The machine architecture of the target system. By default, the output of
mach, prepended with ‘−’.

Dynamic Macros There are several dynamically maintained macros that are useful as abbreviations within
rules. They are shown here as references; if you were to define them, make would sim-
ply override the definition.

$∗ The basename of the current target, derived as if selected for use with an
implicit rule.

$< The name of a dependency file, derived as if selected for use with an
implicit rule.

$@ The name of the current target. This is the only dynamic macro whose
value is strictly determined when used in a dependency list. (In which
case it takes the form ‘$$@’.)

$? The list of dependencies that are newer than the target. Command-
dependency checking is automatically suppressed for lines that contain
this macro, just as if the command had been prefixed with a ‘?’. See the
description of ‘?’, under Makefile Special Tokens, above. You can force
this check with the ! command-line prefix.

$% The name of the library member being processed. (See Library Mainte-
nance, below.)

modified 18 Mar 1997 SunOS 5.6 1S-661

make (1S) SunOS Specific Commands

To refer to the $@ dynamic macro within a dependency list, precede the reference with an
additional ‘$’ character (as in, ‘$$@’). Because make assigns $< and $∗ as it would for
implicit rules (according to the suffixes list and the directory contents), they may be
unreliable when used within explicit target entries.

These macros can be modified to apply either to the filename part, or the directory part of
the strings they stand for, by adding an upper case F or D, respectively (and enclosing the
resulting name in parentheses or braces). Thus, ‘$(@D)’ refers to the directory part of the
string ‘$@’; if there is no directory part, ‘.’ is assigned. $(@F) refers to the filename part.

Conditional Macro
Definitions

A macro definition of the form:

target-list := macro = value

indicates that when processing any of the targets listed and their dependencies, macro is to
be set to the value supplied. Note that if a conditional macro is referred to in a depen-
dency list, the $ must be delayed (use $$ instead). Also, target-list may contain a % pat-
tern, in which case the macro will be conditionally defined for all targets encountered
that match the pattern. A pattern replacement reference can be used within the value.

You can temporarily append to a macro’s value with a conditional definition of the form:

target-list := macro += value

Predefined Macros make supplies the macros shown in the table that follows for compilers and their options,
host architectures, and other commands. Unless these macros are read in as environment
variables, their values are not exported by make. If you run make with any of these set
in the environment, it is a good idea to add commentary to the makefile to indicate what
value each is expected to take. If −r is in effect, make does not read the default makefile
(./make.rules or /usr/share/lib/make/make.rules) in which these macro definitions are
supplied.

1S-662 SunOS 5.6 modified 18 Mar 1997

SunOS Specific Commands make (1S)

Table of Predefined Macros
Use Macro Default Value

Library AR ar
Archives ARFLAGS rv
Assembler AS as
Commands ASFLAGS

COMPILE.s $(AS) $(ASFLAGS)
COMPILE.S $(CC) $(ASFLAGS) $(CPPFLAGS) −c

C Compiler CC cc
Commands CFLAGS

CPPFLAGS
COMPILE.c $(CC) $(CFLAGS) $(CPPFLAGS) −c
LINK.c $(CC) $(CFLAGS) $(CPPFLAGS) $(LDFLAGS)

C++ CCC CC
Compiler CCFLAGS CFLAGS
Commands CPPFLAGS

COMPILE.cc $(CCC) $(CCFLAGS) $(CPPFLAGS) −c
LINK.cc $(CCC) $(CCFLAGS) $(CPPFLAGS) $(LDFLAGS)
COMPILE.C $(CCC) $(CCFLAGS) $(CPPFLAGS) −c
LINK.C $(CCC) $(CCFLAGS) $(CPPFLAGS) $(LDFLAGS)

FORTRAN 77 FC f77
Compiler FFLAGS
Commands COMPILE.f $(FC) $(FFLAGS) −c

LINK.f $(FC) $(FFLAGS) $(LDFLAGS)
COMPILE.F $(FC) $(FFLAGS) $(CPPFLAGS) −c
LINK.F $(FC) $(FFLAGS) $(CPPFLAGS) $(LDFLAGS)

FORTRAN 90 FC f90
Compiler F90FLAGS
Commands COMPILE.f90 $(F90C) $(F90FLAGS) −c

LINK.f90 $(F90C)
COMPILE.ftn $(F90C) $(F90FLAGS) $(CPPFLAGS) −c
LINK.ftn $(F90C) $(F90FLAGS) $(CPPFLAGS) $(LDFLAGS)

Link Editor LD ld
Command LDFLAGS

lex LEX lex
Command LFLAGS

LEX.l $(LEX) $(LFLAGS) −t
lint LINT lint
Command LINTFLAGS

LINT.c $(LINT) $(LINTFLAGS) $(CPPFLAGS)
Modula 2 M2C m2c
Commands M2FLAGS

MODFLAGS
DEFFLAGS
COMPILE.def $(M2C) $(M2FLAGS) $(DEFFLAGS)
COMPILE.mod $(M2C) $(M2FLAGS) $(MODFLAGS)

modified 18 Mar 1997 SunOS 5.6 1S-663

make (1S) SunOS Specific Commands

Table of Predefined Macros
Use Macro Default Value

Pascal PC pc
Compiler PFLAGS
Commands COMPILE.p $(PC) $(PFLAGS) $(CPPFLAGS) −c

LINK.p $(PC) $(PFLAGS) $(CPPFLAGS) $(LDFLAGS)
Ratfor RFLAGS
Compilation COMPILE.r $(FC) $(FFLAGS) $(RFLAGS) −c
Commands LINK.r $(FC) $(FFLAGS) $(RFLAGS) $(LDFLAGS)
rm Command RM rm −f
sccs Command SCCSFLAGS

SCCSGETFLAGS −s
yacc Command YACC yacc

YFLAGS
YACC.y $(YACC) $(YFLAGS)

Suffixes List SUFFIXES .o .c .c˜ .cc .cc˜ .y .y˜ .l .l˜ .s .s˜ .sh .sh˜
.S .S˜ .ln .h .h˜ .f .f˜ .F .F˜ .mod .mod˜
.sym .def .def˜ .p .p˜ .r .r˜ .cps .cps˜ .C .C˜
.Y .Y˜ .L .L .f90 .f90˜ .ftn .ftn˜

Implicit Rules When a target has no entry in the makefile, make attempts to determine its class (if any)
and apply the rule for that class. An implicit rule describes how to build any target of a
given class, from an associated dependency file. The class of a target can be determined
either by a pattern, or by a suffix; the corresponding dependency file (with the same
basename) from which such a target might be built. In addition to a predefined set of
implicit rules, make allows you to define your own, either by pattern, or by suffix.

Pattern Matching Rules A target entry of the form:

tp%ts : dp%ds
rule

is a pattern matching rule, in which tp is a target prefix, ts is a target suffix, dp is a depen-
dency prefix, and ds is a dependency suffix (any of which may be null). The ‘%’ stands
for a basename of zero or more characters that is matched in the target, and is used to
construct the name of a dependency. When make encounters a match in its search for an
implicit rule, it uses the rule in that target entry to build the target from the dependency
file. Pattern-matching implicit rules typically make use of the $@ and $< dynamic macros
as placeholders for the target and dependency names. Other, regular dependencies may
occur in the dependency list; however, none of the regular dependencies may contain
‘%’. An entry of the form:

tp %ts : [dependency . . .] dp %ds [dependency . . .]
rule

is a valid pattern matching rule.

1S-664 SunOS 5.6 modified 18 Mar 1997

SunOS Specific Commands make (1S)

Suffix Rules When no pattern matching rule applies, make checks the target name to see if it ends
with a suffix in the known suffixes list. If so, make checks for any suffix rules, as well as
a dependency file with same root and another recognized suffix, from which to build it.

The target entry for a suffix rule takes the form:

DsTs: rule

where Ts is the suffix of the target, Ds is the suffix of the dependency file, and rule is the
rule for building a target in the class. Both Ds and Ts must appear in the suffixes list. (A
suffix need not begin with a ‘.’ to be recognized.)

A suffix rule with only one suffix describes how to build a target having a null (or no)
suffix from a dependency file with the indicated suffix. For instance, the .c rule could be
used to build an executable program named file from a C source file named ‘file.c’. If a
target with a null suffix has an explicit dependency, make omits the search for a suffix
rule.

Table of Standard Implicit (Suffix) Rules
Use Implicit Rule Name Command Line

Assembly .s.o $(COMPILE.s) −o $@ $<
Files .s.a $(COMPILE.s) −o $% $<

$(AR) $(ARFLAGS) $@ $%
$(RM) $%

.s˜.o $(−s1GET) $(−s1GFLAGS) −p $< > $∗.s
$(−s1COMPILE.s) −o $@ $∗.s

.S.o $(COMPILE.S) −o $@ $<

.S.a $(COMPILE.S) −o $% $<
$(AR) $(ARFLAGS) $@ $%
$(RM) $%

.S˜.o $(GET) $(GFLAGS) −p $< > $∗.S
$(COMPILE.S) −o $@ $∗.S

.S˜.a $(GET) $(GFLAGS) −p $< > $∗.S
$(COMPILE.S) −o $% $∗.S
$(AR) $(ARFLAGS) $@ $%
$(RM) $%

modified 18 Mar 1997 SunOS 5.6 1S-665

make (1S) SunOS Specific Commands

Table of Standard Implicit (Suffix) Rules
Use Implicit Rule Name Command Line
C .c $(LINK.c) −o $@ $< $(LDLIBS)
Files .c.ln $(LINT.c) $(OUTPUT_OPTION) −i $<

.c.o $(COMPILE.c) $(OUTPUT_OPTION) $<

.c.a $(COMPILE.c) −o $% $<
$(AR) $(ARFLAGS) $@ $%
$(RM) $%

.c˜ $(GET) $(GFLAGS) −p $< > $∗.c
$(CC) $(CFLAGS) $(LDFLAGS) −o $@ $∗.c

.c˜.o $(GET) $(GFLAGS) −p $< > $∗.c
$(CC) $(CFLAGS) −c $∗.c

.c˜.ln $(GET) $(GFLAGS) −p $< > $∗.c
$(LINT.c) $(OUTPUT_OPTION) −c $∗.c

.c˜.a $(GET) $(GFLAGS) −p $< > $∗.c
$(COMPILE.c) −o $% $∗.c
$(AR) $(ARFLAGS) $@ $%
$(RM) $%

1S-666 SunOS 5.6 modified 18 Mar 1997

SunOS Specific Commands make (1S)

Table of Standard Implicit (Suffix) Rules
Use Implicit Rule Name Command Line
C++ .cc $(LINK.cc) −o $@ $< $(LDLIBS)
Files .cc.o $(COMPILE.cc) $(OUTPUT_OPTION) $<

.cc.a $(COMPILE.cc) −o $% $<
$(AR) $(ARFLAGS) $@ $%
$(RM) $%

.cc˜ $(GET) $(GFLAGS) −p $< > $∗.cc
$(LINK.cc) −o $@ $∗.cc $(LDLIBS)

.cc.o $(COMPILE.cc) $(OUTPUT_OPTION) $<

.cc˜.o $(GET) $(GFLAGS) −p $< > $∗.cc
$(COMPILE.cc) $(OUTPUT_OPTION) $∗.cc

.cc.a $(COMPILE.cc) −o $% $<
$(AR) $(ARFLAGS) $@ $%
$(RM) $%

.cc˜.a $(GET) $(GFLAGS) −p $< > $∗.cc
$(COMPILE.cc) −o $% $∗.cc
$(AR) $(ARFLAGS) $@ $%
$(RM) $%

.C $(LINK.C) −o $@ $< $(LDLIBS)

.C˜ $(GET) $(GFLAGS) −p $< > $∗.C
$(LINK.C) −o $@ $∗.C $(LDLIBS)

.C.o $(COMPILE.C) $(OUTPUT_OPTION) $<

.C˜.o $(GET) $(GFLAGS) −p $< > $∗.C
$(COMPILE.C) $(OUTPUT_OPTION) $∗.C

.C.a $(COMPILE.C) −o $% $<
$(AR) $(ARFLAGS) $@ $%
$(RM) $%

.C˜.a $(GET) $(GFLAGS) −p $< > $∗.C
$(COMPILE.C) −o $% $∗.C
$(AR) $(ARFLAGS) $@ $%
$(RM) $%

modified 18 Mar 1997 SunOS 5.6 1S-667

make (1S) SunOS Specific Commands

Table of Standard Implicit (Suffix) Rules
Use Implicit Rule Name Command Line

FORTRAN 77 .f $(LINK.f) −o $@ $< $(LDLIBS)
Files .f.o $(COMPILE.f) $(OUTPUT_OPTION) $<

.f.a $(COMPILE.f) −o $% $<
$(AR) $(ARFLAGS) $@ $%
$(RM) $%

.f $(LINK.f) −o $@ $< $(LDLIBS)

.f˜ $(GET) $(GFLAGS) −p $< > $∗.f
$(FC) $(FFLAGS) $(LDFLAGS) −o $@ $∗.f

.f˜.o $(GET) $(GFLAGS) −p $< > $∗.f
$(FC) $(FFLAGS) −c $∗.f

.f˜.a $(GET) $(GFLAGS) −p $< > $∗.f
$(COMPILE.f) −o $% $∗.f
$(AR) $(ARFLAGS) $@ $%
$(RM) $%

.F $(LINK.F) −o $@ $< $(LDLIBS)

.F.o $(COMPILE.F) $(OUTPUT_OPTION) $<

.F.a $(COMPILE.F) −o $% $<
$(AR) $(ARFLAGS) $@ $%
$(RM) $%

.F˜ $(GET) $(GFLAGS) −p $< > $∗.F
$(FC) $(FFLAGS) $(LDFLAGS) −o $@ $∗.F

.F˜.o $(GET) $(GFLAGS) −p $< > $∗.F
$(FC) $(FFLAGS) −c $∗.F

.F˜.a $(GET) $(GFLAGS) −p $< > $∗.F
$(COMPILE.F) −o $% $∗.F
$(AR) $(ARFLAGS) $@ $%
$(RM) $%

1S-668 SunOS 5.6 modified 18 Mar 1997

SunOS Specific Commands make (1S)

Table of Standard Implicit (Suffix) Rules
Use Implicit Rule Name Command Line

FORTRAN 90 .f90 $(LINK.f90) −o $@ $< $(LDLIBS)
Files .f90˜ $(GET) $(GFLAGS) −p $< > $∗.f90

$(LINK.f90) −o $@ $∗.f90 $(LDLIBS)
.f90.o $(COMPILE.f90) $(OUTPUT_OPTION) $<
.f90˜.o $(GET) $(GFLAGS) −p $< > $∗.f90

$(COMPILE.f90) $(OUTPUT_OPTION) $∗.f90
.f90.a $(COMPILE.f90) −o $% $<

$(AR) $(ARFLAGS) $@ $%
$(RM) $%

.f90˜.a $(GET) $(GFLAGS) −p $< > $∗.f90
$(COMPILE.f90) −o $% $∗.f90
$(AR) $(ARFLAGS) $@ $%
$(RM) $%

.ftn $(LINK.ftn) −o $@ $< $(LDLIBS)

.ftn˜ $(GET) $(GFLAGS) −p $< > $∗.ftn
$(LINK.ftn) −o $@ $∗.ftn $(LDLIBS)

.ftn.o $(COMPILE.ftn) $(OUTPUT_OPTION) $<

.ftn˜.o $(GET) $(GFLAGS) −p $< > $∗.ftn
$(COMPILE.ftn) $(OUTPUT_OPTION) $∗.ftn

.ftn.a $(COMPILE.ftn) −o $% $<
$(AR) $(ARFLAGS) $@ $%
$(RM) $%

.ftn˜.a $(GET) $(GFLAGS) −p $< > $∗.ftn
$(COMPILE.ftn) −o $% $∗.ftn
$(AR) $(ARFLAGS) $@ $%
$(RM) $%

modified 18 Mar 1997 SunOS 5.6 1S-669

make (1S) SunOS Specific Commands

Table of Standard Implicit (Suffix) Rules
Use Implicit Rule Name Command Line
lex .l $(RM) $∗.c
Files $(LEX.l) $< > $∗.c

$(LINK.c) −o $@ $∗.c $(LDLIBS)
$(RM) $∗.c

.l.c $(RM) $@
$(LEX.l) $< > $@

.l.ln $(RM) $∗.c
$(LEX.l) $< > $∗.c
$(LINT.c) −o $@ −i $∗.c
$(RM) $∗.c

.l.o $(RM) $∗.c
$(LEX.l) $< > $∗.c
$(COMPILE.c) −o $@ $∗.c
$(RM) $∗.c

.l˜ $(GET) $(GFLAGS) −p $< > $∗.l
$(LEX) $(LFLAGS) $∗.l
$(CC) $(CFLAGS) −c lex.yy.c
rm −f lex.yy.c
mv lex.yy.c $@

.l˜.c $(GET) $(GFLAGS) −p $< > $∗.l
$(LEX) $(LFLAGS) $∗.l
mv lex.yy.c $@

.l˜.ln $(GET) $(GFLAGS) −p $< > $∗.l
$(RM) $∗.c
$(LEX.l) $∗.l > $∗.c
$(LINT.c) −o $@ −i $∗.c
$(RM) $∗.c

.l˜.o $(GET) $(GFLAGS) −p $< > $∗.l
$(LEX) $(LFLAGS) $∗.l
$(CC) $(CFLAGS) −c lex.yy.c
rm −f lex.yy.c
mv lex.yy.c $@

1S-670 SunOS 5.6 modified 18 Mar 1997

SunOS Specific Commands make (1S)

Table of Standard Implicit (Suffix) Rules
Use Implicit Rule Name Command Line

Modula 2 .mod $(COMPILE.mod) −o $@ −e $@ $<
Files .mod.o $(COMPILE.mod) −o $@ $<

.def.sym $(COMPILE.def) −o $@ $<

.def˜.sym $(GET) $(GFLAGS) −p $< > $∗.def
$(COMPILE.def) −o $@ $∗.def

.mod˜ $(GET) $(GFLAGS) −p $< > $∗.mod
$(COMPILE.mod) −o $@ −e $@ $∗.mod

.mod˜.o $(GET) $(GFLAGS) −p $< > $∗.mod
$(COMPILE.mod) −o $@ $∗.mod

.mod˜.a $(GET) $(GFLAGS) −p $< > $∗.mod
$(COMPILE.mod) −o $% $∗.mod
$(AR) $(ARFLAGS) $@ $%
$(RM) $%

NeWS .cps.h cps $∗.cps
Files .cps˜.h $(GET) $(GFLAGS) −p $< > $∗.cps

$(CPS) $(CPSFLAGS) $∗.cps
Pascal .p $(LINK.p) −o $@ $< $(LDLIBS)
Files .p.o $(COMPILE.p) $(OUTPUT_OPTION) $<

.p˜ $(GET) $(GFLAGS) −p $< > $∗.p
$(LINK.p) −o $@ $∗.p $(LDLIBS)

.p˜.o $(GET) $(GFLAGS) −p $< > $∗.p
$(COMPILE.p) $(OUTPUT_OPTION) $∗.p

.p˜.a $(GET) $(GFLAGS) −p $< > $∗.p
$(COMPILE.p) −o $% $∗.p
$(AR) $(ARFLAGS) $@ $%
$(RM) $%

Ratfor .r $(LINK.r) −o $@ $< $(LDLIBS)
Files .r.o $(COMPILE.r) $(OUTPUT_OPTION) $<

.r.a $(COMPILE.r) −o $% $<
$(AR) $(ARFLAGS) $@ $%
$(RM) $%

.r˜ $(GET) $(GFLAGS) −p $< > $∗.r
$(LINK.r) −o $@ $∗.r $(LDLIBS)

.r˜.o $(GET) $(GFLAGS) −p $< > $∗.r
$(COMPILE.r) $(OUTPUT_OPTION) $∗.r

.r˜.a $(GET) $(GFLAGS) −p $< > $∗.r
$(COMPILE.r) −o $% $∗.r
$(AR) $(ARFLAGS) $@ $%
$(RM) $%

modified 18 Mar 1997 SunOS 5.6 1S-671

make (1S) SunOS Specific Commands

Table of Standard Implicit (Suffix) Rules
Use Implicit Rule Name Command Line

SCCS .SCCS_GET sccs $(SCCSFLAGS) get $(SCCSGETFLAGS) $@ −G$@
Files

.SCCS_GET_POSIX sccs $(SCCSFLAGS) get $(SCCSGETFLAGS) $@

.GET_POSIX $(GET) $(GFLAGS) s.$@
Shell .sh cat $< >$@
Scripts chmod +x $@

.sh˜ $(GET) $(GFLAGS) −p $< > $∗.sh
cp $∗.sh $@
chmod a+x $@

yacc .y $(YACC.y) $<
Files $(LINK.c) −o $@ y.tab.c $(LDLIBS)

$(RM) y.tab.c
.y.c $(YACC.y) $<

mv y.tab.c $@
.y.ln $(YACC.y) $<

$(LINT.c) −o $@ −i y.tab.c
$(RM) y.tab.c

.y.o $(YACC.y) $<
$(COMPILE.c) −o $@ y.tab.c
$(RM) y.tab.c

.y˜ $(GET) $(GFLAGS) −p $< > $∗.y
$(YACC) $(YFLAGS) $∗.y
$(COMPILE.c) −o $@ y.tab.c
$(RM) y.tab.c

.y˜.c $(GET) $(GFLAGS) −p $< > $∗.y
$(YACC) $(YFLAGS) $∗.y
mv y.tab.c $@

.y˜.ln $(GET) $(GFLAGS) −p $< > $∗.y
$(YACC.y) $∗.y
$(LINT.c) −o $@ −i y.tab.c
$(RM) y.tab.c

.y˜.o $(GET) $(GFLAGS) −p $< > $∗.y
$(YACC) $(YFLAGS) $∗.y
$(CC) $(CFLAGS) −c y.tab.c
rm −f y.tab.c
mv y.tab.o $@

make reads in the standard set of implicit rules from the file
/usr/share/lib/make/make.rules, unless −r is in effect, or there is a make.rules file in the
local directory that does not include that file.

The Suffixes List The suffixes list is given as the list of dependencies for the ‘.SUFFIXES:’ special-function
target. The default list is contained in the SUFFIXES macro (See Table of Predefined Macros
for the standard list of suffixes). You can define additional .SUFFIXES: targets; a .SUF-
FIXES target with no dependencies clears the list of suffixes. Order is significant within

1S-672 SunOS 5.6 modified 18 Mar 1997

SunOS Specific Commands make (1S)

the list; make selects a rule that corresponds to the target’s suffix and the first
dependency-file suffix found in the list. To place suffixes at the head of the list, clear the
list and replace it with the new suffixes, followed by the default list:

.SUFFIXES:

.SUFFIXES: suffixes $(SUFFIXES)

A tilde (˜) indicates that if a dependency file with the indicated suffix (minus the ˜) is
under SCCS its most recent version should be retrieved, if necessary, before the target is
processed.

Library Maintenance A target name of the form:

lib(member . . .)

refers to a member, or a space-separated list of members, in an ar(1) library.

The dependency of the library member on the corresponding file must be given as an
explicit entry in the makefile. This can be handled by a pattern matching rule of the form:

lib(%.s): %.s

where .s is the suffix of the member; this suffix is typically .o for object libraries.

A target name of the form

lib((symbol))

refers to the member of a randomized object library that defines the entry point named
symbol.

Command Execution Command lines are executed one at a time, each by its own process or shell. Shell com-
mands, notably cd, are ineffectual across an unescaped NEWLINE in the makefile. A line
is printed (after macro expansion) just before being executed. This is suppressed if it
starts with a ‘@’, if there is a ‘.SILENT:’ entry in the makefile, or if make is run with the −s
option. Although the −n option specifies printing without execution, lines containing the
macro $(MAKE) are executed regardless, and lines containing the @ special character are
printed. The −t (touch) option updates the modification date of a file without executing
any rules. This can be dangerous when sources are maintained by more than one person.

make invokes the shell with the −e (exit-on-errors) argument. Thus, with semicolon-
separated command sequences, execution of the later commands depends on the success
of the former. This behavior can be overridden by starting the command line with a ‘ -’,
or by writing a shell script that returns a non-zero status only as it finds appropriate.

Bourne Shell
Constructs

To use the Bourne shell if control structure for branching, use a command line of the
form:

if expression ; \
then command ; \

. . . ; \
else command ; \

. . . ; \
fi

modified 18 Mar 1997 SunOS 5.6 1S-673

make (1S) SunOS Specific Commands

Although composed of several input lines, the escaped NEWLINE characters insure that
make treats them all as one (shell) command line.

To use the Bourne shell for control structure for loops, use a command line of the form:

for var in list ; \
do command; \
. . . ; \

done

To refer to a shell variable, use a double-dollar-sign ($$). This prevents expansion of the
dollar-sign by make.

Command
Substitutions

To incorporate the standard output of a shell command in a macro, use a definition of the
form:

MACRO :sh =command

The command is executed only once, standard error output is discarded, and NEWLINE
characters are replaced with SPACEs. If the command has a non-zero exit status, make
halts with an error.

To capture the output of a shell command in a macro reference, use a reference of the
form:

$(MACRO :sh)

where MACRO is the name of a macro containing a valid Bourne shell command line. In
this case, the command is executed whenever the reference is evaluated. As with shell
command substitutions, the reference is replaced with the standard output of the com-
mand. If the command has a non-zero exit status, make halts with an error.

In contrast to commands in rules, the command is not subject for macro substitution;
therefore, a dollar sign ($) need not be replaced with a double dollar sign ($$).

Signals INT, SIGTERM, and QUIT signals received from the keyboard halt make and remove the
target file being processed unless that target is in the dependency list for .PRECIOUS:.

EXAMPLES This makefile says that pgm depends on two files a.o and b.o, and that they in turn
depend on their corresponding source files (a.c and b.c) along with a common file incl.h:

pgm: a.o b.o
$(LINK.c) −o $@ a.o b.o

a.o: incl.h a.c
cc −c a.c

b.o: incl.h b.c
cc −c b.c

1S-674 SunOS 5.6 modified 18 Mar 1997

SunOS Specific Commands make (1S)

The following makefile uses implicit rules to express the same dependencies:

pgm: a.o b.o
cc a.o b.o −o pgm

a.o b.o: incl.h

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of make: LC_CTYPE, LC_MESSAGES, and NLSPATH.

KEEP_STATE
This environment variable has the same effect as the .KEEP_STATE: special-
function target. It enables command dependencies, hidden dependencies and
writing of the state file.

USE_SVR4_MAKE
This environment variable causes make to invoke the generic System V ver-
sion of make (/usr/ccs/lib/svr4.make). See sysV-make(1).

MAKEFLAGS
This variable is interpreted as a character string representing a series of option
characters to be used as the default options. The implementation will accept
both of the following formats (but need not accept them when intermixed):

1. The characters are option letters without the leading hyphens or blank
character separation used on a command line.

2. The characters are formatted in a manner similar to a portion of the
make command line: options are preceded by hyphens and blank-
character-separated. The macro=name macro definition operands can
also be included. The difference between the contents of
MAKEFLAGS and the command line is that the contents of the vari-
able will not be subjected to the word expansions (see wordexp(3C))
associated with parsing the command line values.

When the command-line options −f or −p are used, they will take effect
regardless of whether they also appear in MAKEFLAGS. If they otherwise
appear in MAKEFLAGS, the result is undefined.

The MAKEFLAGS variable will be accessed from the environment before the makefile is
read. At that time, all of the options (except −f and −p) and command-line macros not
already included in MAKEFLAGS are added to the MAKEFLAGS macro. The
MAKEFLAGS macro will be passed into the environment as an environment variable for
all child processes. If the MAKEFLAGS macro is subsequently set by the makefile, it
replaces the MAKEFLAGS variable currently found in the environment.

EXIT STATUS When the −q option is specified, the make utility will exit with one of the following
values:

0 Successful completion.

1 The target was not up-to-date.

>1 An error occurred.

modified 18 Mar 1997 SunOS 5.6 1S-675

make (1S) SunOS Specific Commands

When the −q option is not specified, the make utility will exit with one of the following
values:

0 successful completion

>0 an error occurred

FILES makefile
Makefile current version(s) of make description file
s.makefile
s.Makefile SCCS history files for the above makefile(s) in the current directory
SCCS/s.makefile
SCCS/s.Makefile SCCS history files for the above makefile(s)
make.rules default file for user-defined targets, macros, and implicit rules
/usr/share/lib/make/make.rules

makefile for standard implicit rules and macros (not read if
make.rules is)

.make.state state file in the local directory

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

/usr/ccs/bin/make ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWsprot

/usr/xpg4/bin/make ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxcu4t

SEE ALSO ar(1), cd(1), lex(1), sh(1), sccs-get(1), sysV-make(1) yacc(1), passwd(4), attributes(5),
POSIX.2(5)

Solaris Advanced User’s Guide
Programming Utilities Guide

DIAGNOSTICS Don’t know how to make target ’target’
There is no makefile entry for target , and none of make’s implicit rules apply
(there is no dependency file with a suffix in the suffixes list, or the target’s suffix
is not in the list).

∗∗∗ target removed.
make was interrupted while building target . Rather than leaving a partially-
completed version that is newer than its dependencies, make removes the file
named target .

∗∗∗ target not removed.
make was interrupted while building target and target was not present in the
directory.

1S-676 SunOS 5.6 modified 18 Mar 1997

SunOS Specific Commands make (1S)

∗∗∗ target could not be removed, reason
make was interrupted while building target , which was not removed for the indi-
cated reason.

Read of include file ‘file’ failed
The makefile indicated in an include directive was not found, or was inaccessi-
ble.

Loop detected when expanding macro value ‘macro’
A reference to the macro being defined was found in the definition.

Could not write state file ‘file’
You used the .KEEP_STATE: target, but do not have write permission on the state
file.

∗∗∗ Error code n
The previous shell command returned a nonzero error code.

∗∗∗ signal message
The previous shell command was aborted due to a signal. If ‘− core dumped’
appears after the message, a core file was created.

Conditional macro conflict encountered
Displayed only when −d is in effect, this message indicates that two or more
parallel targets currently being processed depend on a target which is built dif-
ferently for each by virtue of conditional macros. Since the target cannot simul-
taneously satisfy both dependency relationships, it is conflicted.

BUGS Some commands return nonzero status inappropriately; to overcome this difficulty,
prefix the offending command line in the rule with a ‘−’.

Filenames with the characters ‘=’, ‘:’, or ‘@’, do not work.

You cannot build file.o from lib(file.o).

Options supplied by MAKEFLAGS should be reported for nested make commands. Use
the −d option to find out what options the nested command picks up from MAKEFLAGS.

This version of make is incompatible in certain respects with previous versions:

· The −d option output is much briefer in this version. −dd now produces the
equivalent voluminous output.

· make attempts to derive values for the dynamic macros ‘$∗’, ‘$<’, and ‘$?’,
while processing explicit targets. It uses the same method as for implicit
rules; in some cases this can lead either to unexpected values, or to an empty
value being assigned. (Actually, this was true for earlier versions as well,
even though the documentation stated otherwise.)

· make no longer searches for SCCS history "(s.)" files.

· Suffix replacement in macro references are now applied after the macro is
expanded.

modified 18 Mar 1997 SunOS 5.6 1S-677

make (1S) SunOS Specific Commands

There is no guarantee that makefiles created for this version of make will work with ear-
lier versions.

If there is no make.rules file in the current directory, and the file
/usr/share/lib/make/make.rules is missing, make stops before processing any targets. To
force make to run anyway, create an empty make.rules file in the current directory.

Once a dependency is made, make assumes the dependency file is present for the
remainder of the run. If a rule subsequently removes that file and future targets depend
on its existence, unexpected errors may result.

When hidden dependency checking is in effect, the $? macro’s value includes the names
of hidden dependencies. This can lead to improper filename arguments to commands
when $? is used in a rule.

Pattern replacement macro references cannot be used in the dependency list of a pattern
matching rule.

Unlike previous versions, this version of make strips a leading ‘./’ from the value of the
‘$@’ dynamic macro.

With automatic SCCS retrieval, this version of make does not support tilde suffix rules.

The only dynamic macro whose value is strictly determined when used in a dependency
list is $@ (takes the form ‘$$@’).

make invokes the shell with the −e argument. This cannot be inferred from the syntax of
the rule alone.

1S-678 SunOS 5.6 modified 18 Mar 1997

User Commands man (1)

NAME man − find and display reference manual pages

SYNOPSIS man [−] [−adFlrt] [−M path] [−T macro-package] [−s section] name . . .
man [−M path] −k keyword . . .
man [−M path] −f file . . .

DESCRIPTION The man command displays information from the reference manuals. It displays com-
plete manual pages that you select by name, or one-line summaries selected either by key-
word (−k), or by the name of an associated file (−f). If no manual page is located, man
prints an error message.

Source Format Reference Manual pages are marked up with nroff(1).

Location of Manual
Pages

The online Reference Manual page directories are conventionally located in
/usr/share/man. The nroff sources are located in the /usr/share/man/man∗ directories.
Each directory corresponds to a section of the manual. Since these directories are option-
ally installed, they may not reside on your host; you may have to mount /usr/share/man
from a host on which they do reside. If there are preformatted, up-to-date versions in the
corresponding cat∗ or fmt∗ directories, man simply displays or prints those versions. If
the preformatted version of interest is out of date or missing, man reformats it prior to
display and will store the preformatted version if cat∗ or fmt∗ is writable. The windex
database is not updated. See catman(1M). If directories for the preformatted versions
are not provided, man reformats a page whenever it is requested; it uses a temporary file
to store the formatted text during display.

If the standard output is not a terminal, or if the ‘−’ flag is given, man pipes its output
through cat(1); otherwise, man pipes its output through more(1) to handle paging and
underlining on the screen.

OPTIONS The following options are supported:

−a Show all manual pages matching name within the MANPATH search path.
Manual pages are displayed in the order found.

−d Debug. Displays what a section-specifier evaluates to, method used for
searching, and paths searched by man.

−f file. . . man attempts to locate manual pages related to any of the given files. It strips
the leading path name components from each file, and then prints one-line
summaries containing the resulting basename or names. This option also uses
the windex database.

−F Force man to search all directories specified by MANPATH or the man.cf file,
rather than using the windex lookup database. This is useful if the database is
not up to date. If the windex database does not exist, this option is assumed.

−k keyword . . .
Print out one-line summaries from the windex database (table of contents)
that contain any of the given keywords. The windex database is created using

modified 7 Jan 1997 SunOS 5.6 1-679

man (1) User Commands

catman(1M).

−l List all manual pages found matching name within the search path.

−M path Specify an alternate search path for manual pages. path is a colon-separated
list of directories that contain manual page directory subtrees. For example, if
path is /usr/share/man:/usr/local/man, man searches for name in the standard
location, and then /usr/local/man. When used with the −k or −f options, the
−M option must appear first. Each directory in the path is assumed to contain
subdirectories of the form man∗, one for each section. This option overrides
the MANPATH environment variable.

−r Reformat the manual page, but do not display it. This replaces the man − −t
name combination.

−s section . . .
Specify sections of the manual for man to search. The directories searched for
name is limited to those specified by section. section can be a digit (perhaps fol-
lowed by one or more letters), a word (for example: local, new, old, public), or
a letter. To specify multiple sections, separate each section with a comma.
This option overrides the MANPATH environment variable and the man.cf
file. See Search Path below for an explanation of how man conducts its
search.

−t man arranges for the specified manual pages to be troffed to a suitable raster
output device (see troff(1). If both the − and −t flags are given, man updates
the troffed versions of each named name (if necessary), but does not display
them.

−T macro-package
Format manual pages using macro-package rather than the standard −man
macros defined in /usr/share/lib/tmac/an. See Search Path under USAGE for a
complete explanation of the default search path order.

OPERANDS The following operand is supported:

name A keyword or the name of a standard utility.

USAGE
Manual Page

Sections
Entries in the reference manuals are organized into sections. A section name consists of a
major section name, typically a single digit, optionally followed by a subsection name,
typically one or more letters. An unadorned major section name acts as an abbreviation
for the section of the same name along with all of its subsections. Each section contains
descriptions apropos to a particular reference category, with subsections refining these
distinctions. See the intro manual pages for an explanation of the classification used in
this release.

Search Path Before searching for a given name, man constructs a list of candidate directories and sec-
tions. man searches for name in the directories specified by the MANPATH environment
variable. If this variable is not set, /usr/share/man is searched by default.

1-680 SunOS 5.6 modified 7 Jan 1997

User Commands man (1)

Within the manual page directories, man confines its search to the sections specified in
the following order:

· sections specified on the command line with the −s option

· sections embedded in the MANPATH environment variable

· sections specified in the man.cf file for each directory specified in the MAN-
PATH environment variable

If none of the above exist, man searches each directory in the manual page path, and
displays the first matching manual page found.

The man.cf file has the following format:

MANSECTS=section[,section] . . .

Lines beginning with ‘#’ and blank lines are considered comments, and are ignored. Each
directory specified in MANPATH can contain a manual page configuration file, specifying
the default search order for that directory.

Formatting Manual
Pages

Manual pages are marked up in nroff(1). Nroff manual pages are processed by nroff(1)
or troff(1) with the −man macro package. Please refer to man(5) for information on
macro usage.

Preprocessing Nroff
Manual Pages

When formatting an nroff manual page, man examines the first line to determine whether
it requires special processing. If the first line is a string of the form:

´ \" X

where X is separated from the ‘"’ by a single SPACE and consists of any combination of
characters in the following list, man pipes its input to troff(1) or nroff(1) through the
corresponding preprocessors.

e eqn(1), or neqn for nroff
r refer(1)
t tbl(1)
v vgrind(1)

If eqn or neqn is invoked, it will automatically read the file /usr/pub/eqnchar (see
eqnchar(5)). If nroff(1) is invoked, col(1) is automatically used.

Referring to Other
Nroff Manual Pages

If the first line of the nroff manual page is a reference to another manual page entry
fitting the pattern:

.so man∗/ sourcefile

man processes the indicated file in place of the current one. The reference must be
expressed as a path name relative to the root of the manual page directory subtree.

When the second or any subsequent line starts with .so, man ignores it; troff(1) or
nroff(1) processes the request in the usual manner.

modified 7 Jan 1997 SunOS 5.6 1-681

man (1) User Commands

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of man: LC_CTYPE, LC_MESSAGES, and NLSPATH.

MANPATH A colon-separated list of directories; each directory can be followed by a
comma-separated list of sections. If set, its value overrides
/usr/share/man as the default directory search path, and the man.cf file
as the default section search path. The −M and −s flags, in turn, over-
ride these values.)

PAGER A program to use for interactively delivering man’s output to the screen.
If not set, ‘more −s’ is used. See more(1).

TCAT The name of the program to use to display troffed manual pages.

TROFF The name of the formatter to use when the −t flag is given. If not set,
troff(1) is used.

EXIT STATUS The following exit values are returned:

0 Successful completion.

>0 An error occurred.

FILES /usr/share/man root of the standard manual page directory subtree
/usr/share/man/man?/∗ unformatted nroff manual entries
/usr/share/man/cat?/∗ nroffed manual entries
/usr/share/man/fmt?/∗ troffed manual entries
/usr/share/man/windex table of contents and keyword database
/usr/share/lib/tmac/an standard −man macro package
/usr/share/lib/pub/eqnchar standard definitions for eqn and neqn
man.cf default search order by section

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWdoc
CSI Enabled (see NOTES)

SEE ALSO apropos(1), cat(1), col(1), eqn(1), more(1), nroff(1), refer(1), tbl(1), troff(1), vgrind(1),
whatis(1), catman(1M), attributes(5), environ(5), eqnchar(5), man(5),

NOTES The −f and −k options use the windex database, which is created by catman(1M).

The man command is CSI-capable. However, some utilities invoked by the man com-
mand, namely, troff, eqn, neqn, refer, tbl, and vgrind, are not verified to be CSI-capable.
Because of this, the man command with the −t option may not handle non-EUC data.

Also, using the man command to display man pages that require special processing
through eqn, neqn, refer, tbl, or vgrind may not be CSI-capable.

1-682 SunOS 5.6 modified 7 Jan 1997

User Commands man (1)

BUGS The manual is supposed to be reproducible either on a phototypesetter or on an ASCII ter-
minal. However, on a terminal some information (indicated by font changes, for
instance) is lost.

Some dumb terminals cannot process the vertical motions produced by the e (see eqn(1))
preprocessing flag. To prevent garbled output on these terminals, when you use e also
use t, to invoke col(1) implicitly. This workaround has the disadvantage of eliminating
superscripts and subscripts — even on those terminals that can display them. Control-q
will clear a terminal that gets confused by eqn(1) output.

modified 7 Jan 1997 SunOS 5.6 1-683

mconnect (1) User Commands

NAME mconnect − connect to SMTP mail server socket

SYNOPSIS mconnect [−p port] [−r] [hostname]

DESCRIPTION mconnect opens a connection to the mail server on a given host, so that it can be tested
independently of all other mail software. If no host is given, the connection is made to
the local host. Servers expect to speak the Simple Mail Transfer Protocol (SMTP) on this
connection. Exit by typing the quit command. Typing EOF sends an end of file to the
server. An interrupt closes the connection immediately and exits.

OPTIONS −p port Specify the port number instead of the default SMTP port (number 25) as the
next argument.

−r ‘‘Raw’’ mode: disable the default line buffering and input handling. This pro-
duces an effect similar to telnet to port number 25.

FILES /etc/mail/sendmail.hf
help file for SMTP commands

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO sendmail(1M), attributes(5)

Postel, Jonathan B., Simple Mail Transfer Protocol , RFC 821, Information Sciences Institute,
University of Southern California, August 1982.

1-684 SunOS 5.6 modified 14 Sep 1992

User Commands mcs (1)

NAME mcs − manipulate the comment section of an object file

SYNOPSIS mcs { −c | −d | −p | −V | −a string | −n name }. . . file. . .

DESCRIPTION The mcs command is used to manipulate a section, by default the .comment section, in an
ELF object file. It is used to add to, delete, print, and compress the contents of a section in
an ELF object file, and print only the contents of a section in a COFF object file. mcs can-
not add, delete or compress the contents of a section that is contained within a segment.

If the input file is an archive (see ar(4)), the archive is treated as a set of individual files.
For example, if the −a option is specified, the string is appended to the comment section
of each ELF object file in the archive; if the archive member is not an ELF object file, then
it is left unchanged.

mcs must be given one or more of the options described below. It applies, in order, each
of the specified options to each file.

OPTIONS −a string Append string to the comment section of the ELF object files. If string contains
embedded blanks, it must be enclosed in quotation marks.

−c Compress the contents of the comment section of the ELF object files. All
duplicate entries are removed. The ordering of the remaining entries is not
disturbed.

−d Delete the contents of the comment section from the ELF object files. The sec-
tion header for the comment section is also removed.

−n name Specify the name of the comment section to access if other than .comment. By
default, mcs deals with the section named .comment. This option can be used
to specify another section. mcs can take multiple −n options to allow for
specification of multiple section comments.

−p Print the contents of the comment section on the standard output. Each sec-
tion printed is tagged by the name of the file from which it was extracted,
using the format file[member_name]: for archive files and file: for other files.

−V Print on standard error the version number of mcs.

EXAMPLES The following example:
example% mcs −p elf.file

prints elf.file’s comment section.

The next example:
example% mcs −a xyz elf.file

appends string xyz to elf.file’s comment section.

FILES /tmp/mcs∗ temporary files

modified 11 Jan 1996 SunOS 5.6 1-685

mcs (1) User Commands

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWbtool

SEE ALSO ar(1), as(1), ld(1), elf(3E), tmpnam(3S), a.out(4), ar(4), attributes(5)

NOTES When mcs deletes a section using the −d option, it tries to bind together sections of type
SHT_REL and target sections pointed to by the sh_info section header field. If one is to be
deleted, mcs attempts to delete the other of the pair.

1-686 SunOS 5.6 modified 11 Jan 1996

User Commands mesg (1)

NAME mesg − permit or deny messages

SYNOPSIS mesg [−n | −y | n | y]

DESCRIPTION The mesg utility will control whether other users are allowed to send messages via write,
talk(1) or other utilities to a terminal device. The terminal device affected is determined
by searching for the first terminal in the sequence of devices associated with standard
input, standard output and standard error, respectively. With no arguments, mesg
reports the current state without changing it. Processes with appropriate privileges may
be able to send messages to the terminal independent of the current state.

OPTIONS The following options are supported:

−n | n Deny permission to other users to send message to the terminal. See write(1).

−y | y Grant permission to other users to send messages to the terminal.

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of mesg: LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS 0 if messages are receivable

1 if messages are not receivable

2 on error.

FILES /dev/tty∗ terminal devices

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO talk(1), write(1), attributes(5), environ(5)

modified 1 Feb 1995 SunOS 5.6 1-687

message (1F) FMLI Commands

NAME message − puts its arguments on FMLI message line

SYNOPSIS message [−t] [−b [num]] [−o] [−w] [string]
message [−f] [−b [num]] [−o] [−w] [string]
message [−p] [−b [num]] [−o] [−w] [string]

DESCRIPTION The message command puts string out on the FMLI message line. If there is no string, the
stdin input to message will be used. The output of message has a duration (length of
time it remains on the message line). The default duration is "transient": it or one of two
other durations can be requested with the mutually-exclusive options below.

Messages displayed with message −p will replace (change the value of) any message
currently displayed or stored via use of the permanentmsg descriptor. Likewise, mes-
sage −f will replace any message currently displayed or stored via use of the framemsg
descriptor. If more than one message in a frame definition file is specified with the -p
option, the last one specified will be the permanent duration message.

The string argument should always be the last argument.

OPTIONS −t Explicitly defines a message to have transient duration. Transient messages
remain on the message line only until the user presses another key or a
CHECKWORLD occurs. The descriptors itemmsg , fieldmsg , invalidmsg ,
choicemsg , the default-if-not-defined value of oninterrupt , and FMLI gen-
erated error messages (that is, from syntax errors) also output transient dura-
tion messages. Transient messages take precedence over both frame messages
and permanent messages.

−f Defines a message to have "frame" duration. Frame messages remain on the
message line as long as the frame in which they are defined is current. The
descriptor framemsg also outputs a frame duration message. Frame mes-
sages take precedence over permanent messages.

−p Defines a message to have "permanent" duration. Permanent messages
remain on the message line for the length of the FMLI session, unless expli-
citly replaced by another permanent message or temporarily superseded by a
transient message or frame message. A permanent message is not affected by
navigating away from, or by closing, the frame which generated the per-
manent message. The descriptor permanentmsg also outputs a permanent
duration message.

−b[num] Rings the terminal bell num times, where num is an integer from 1 to 10. The
default value is 1. If the terminal has no bell, the screen will flash num times
instead, if possible.

−o Forces message to duplicate its message to stdout .

-w Turns on the working indicator.

1F-688 SunOS 5.6 modified 5 Jul 1990

FMLI Commands message (1F)

EXAMPLES When a value entered in a field is invalid, ring the bell 3 times and then display Invalid
Entry: Try again! on the message line:

invalidmsg=`message −b 3 "Invalid Entry: Try again!"`

Display a message that tells the user what is being done:

done=`message EDITOR has been set in your environment` close

Display a message on the message line and stdout for each field in a form (a pseudo-"field
duration" message).

fieldmsg="`message -o -f "Enter a filename."`"

Display a blank transient message (effect is to "remove" a permanent or frame duration
message).

done=`message ""` nop

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO sleep(1), attributes(5)

NOTES If message is coded more than once on a single line, it may appear that only the right-
most instance is interpreted and displayed. Use sleep(1) between uses of message in this
case, to display multiple messages.

message -f should not be used in a stand-alone backquoted expression or with the init
descriptor because the frame is not yet current when these are evaluated.

In cases where `message -f "string"` is part of a stand-alone backquoted expression, the
context for evaluation of the expression is the previously current frame. The previously
current frame can be the frame that issued the open command for the frame containing
the backquoted expression, or it can be a frame given as an argument when fmli was
invoked. That is, the previously current frame is the one whose frame message will be
modified.

Permanent duration messages are displayed when the user navigates to the command
line.

modified 5 Jul 1990 SunOS 5.6 1F-689

mkdir (1) User Commands

NAME mkdir − make directories

SYNOPSIS mkdir [−m mode] [−p] dir. . .

DESCRIPTION The mkdir command creates the named directories in mode 777 (possibly altered by the
file mode creation mask umask(1)).

Standard entries in a directory (for instance, the files “.”, for the directory itself, and “. .”,
for its parent) are made automatically. mkdir cannot create these entries by name. Crea-
tion of a directory requires write permission in the parent directory.

The owner-ID and group-ID of the new directories are set to the process’s effective user-
ID and group-ID, respectively. mkdir calls the mkdir(2) system call.

setgid and mkdir To change the setgid bit on a newly created directory, you must use chmod g+s or
chmod g-s after executing mkdir.

The setgid bit setting is inherited from the parent directory.

OPTIONS The following options are supported:

−m mode This option allows users to specify the mode to be used for new directories.
Choices for modes can be found in chmod(1).

−p With this option, mkdir creates dir by creating all the non-existing parent
directories first. The mode given to intermediate directories will be the differ-
ence between 777 and the bits set in the file mode creation mask. The differ-
ence, however, must be at least 300 (write and execute permission for the
user).

OPERANDS The following operand is supported:

dir A path name of a directory to be created.

USAGE See largefile(5) for the description of the behavior of mkdir when encountering files
greater than or equal to 2 Gbyte (231 bytes).

EXAMPLES The following example:
example% mkdir -p ltr/jd/jan

creates the subdirectory structure ltr/jd/jan.

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of mkdir: LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS The following exit values are returned:
0 All the specified directories were created successfully or the −p option was

specified and all the specified directories now exist.
>0 An error occurred.

1-690 SunOS 5.6 modified 1 Feb 1995

User Commands mkdir (1)

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu
CSI enabled

SEE ALSO rm(1), sh(1), umask(1), intro(2), mkdir(2), attributes(5), environ(5), largefile(5)

modified 1 Feb 1995 SunOS 5.6 1-691

mkmsgs (1) User Commands

NAME mkmsgs − create message files for use by gettxt

SYNOPSIS mkmsgs [−o] [−i locale] inputstrings msgfile

DESCRIPTION The mkmsgs utility is used to create a file of text strings that can be accessed using the
text retrieval tools (see gettxt(1), srchtxt(1), exstr(1), and gettxt(3C)). It will take as input
a file of text strings for a particular geographic locale (see setlocale(3C)) and create a file
of text strings in a format that can be retrieved by both gettxt(1) and gettxt(3C). By using
the −i option, you can install the created file under the
/usr/lib/locale/locale/LC_MESSAGES directory (locale corresponds to the language in
which the text strings are written).

inputstrings is the name of the file that contains the original text strings. msgfile is the
name of the output file where mkmsgs writes the strings in a format that is readable by
gettxt(1) and gettxt(3C). The name of msgfile can be up to 14 characters in length, but
may not contain either \ 0 (null) or the ASCII code for / (slash) or : (colon).

The input file contains a set of text strings for the particular geographic locale. Text
strings are separated by a newline character. Nongraphic characters must be represented
as alphabetic escape sequences. Messages are transformed and copied sequentially from
inputstrings to msgfile. To generate an empty message in msgfile, leave an empty line at
the correct place in inputstrings.

Strings can be changed simply by editing the file inputstrings. New strings must be
added only at the end of the file; then a new msgfile file must be created and installed in
the correct place. If this procedure is not followed, the retrieval function will retrieve the
wrong string and software compatibility will be broken.

OPTIONS −o Overwrite msgfile, if it exists.

−i locale Install msgfile in the /usr/lib/locale/locale/LC_MESSAGES directory. Only
someone who is super-user or a member of group bin can create or overwrite
files in this directory. Directories under /usr/lib/locale will be created if they
do not exist.

EXAMPLES The following example shows an input message source file C.str:

File %s:\t cannot be opened\n
%s: Bad directory\n

.

.

.
write error\n

.

.

1-692 SunOS 5.6 modified 26 Jul 1994

User Commands mkmsgs (1)

The following command uses the input strings from C.str to create text strings in the
appropriate format in the file UX in the current directory:

example% mkmsgs C.str UX

The following command uses the input strings from FR.str to create text strings in the
appropriate format in the file UX in the directory /usr/lib/locale/fr/LC_MESSAGES.

example% mkmsgs −i fr FR.str UX

These text strings would be accessed if you had set the environment variable
LC_MESSAGES=fr and then invoked one of the text retrieval tools listed at the beginning
of the DESCRIPTION section.

FILES /usr/lib/locale/locale/LC_MESSAGES/∗ message files created by mkmsgs

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWloc

SEE ALSO exstr(1), gettxt(1), srchtxt(1), gettxt(3C), setlocale(3C), attributes(5)

modified 26 Jul 1994 SunOS 5.6 1-693

mkstr (1B) SunOS/BSD Compatibility Package Commands

NAME mkstr − create an error message file by massaging C source files

SYNOPSIS /usr/ucb/mkstr [−] messagefile prefix filename. . .

DESCRIPTION mkstr creates files of error messages. You can use mkstr to make programs with large
numbers of error diagnostics much smaller, and to reduce system overhead in running
the program — as the error messages do not have to be constantly swapped in and out.

mkstr processes each of the specified filenames, placing a massaged version of the input
file in a file with a name consisting of the specified prefix and the original source file
name. A typical example of using mkstr would be:

mkstr pistrings processed ∗.c

This command would cause all the error messages from the C source files in the current
directory to be placed in the file pistrings and processed copies of the source for these
files to be placed in files whose names are prefixed with processed.

To process the error messages in the source to the message file, mkstr keys on the string
‘error("’ in the input stream. Each time it occurs, the C string starting at the ‘"’ is placed
in the message file followed by a null character and a NEWLINE character; the null char-
acter terminates the message so it can be easily used when retrieved, the NEWLINE char-
acter makes it possible to sensibly cat the error message file to see its contents. The mas-
saged copy of the input file then contains a lseek pointer into the file which can be used
to retrieve the message, that is:

char efilname[] = "/usr/lib/pi_strings";
int efil = −1;

error(a1, a2, a3, a4)
{

char
buf[256];
if (efil < 0) {

efil = open(efilname, 0);
if (efil < 0) {

oops:

perror (efilname);
exit (1);

}
}
if (lseek(efil, (long) a1, 0) | | read(efil, buf, 256) <= 0)

goto oops;
printf(buf, a2, a3, a4);

}

1B-694 SunOS 5.6 modified 14 Sep 1992

SunOS/BSD Compatibility Package Commands mkstr (1B)

OPTIONS − Place error messages at the end of the specified message file for recom-
piling part of a large mkstred program.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscpu

SEE ALSO xstr(1), attributes(5)

modified 14 Sep 1992 SunOS 5.6 1B-695

more (1) User Commands

NAME more, page − browse or page through a text file

SYNOPSIS /usr/bin/more [−cdflrsuw] [−lines] [+linenumber] [+/pattern] [file . . .]

/usr/bin/page [−cdflrsuw] [−lines] [+linenumber] [+/pattern] [file . . .]

/usr/xpg4/bin/more [−cdeisu] [−nnumber] [−pcommand] [−ttagstring] [file . . .]

/usr/xpg4/bin/more [−cdeisu] [−nnumber] [+command] [−ttagstring] [file . . .]

DESCRIPTION The more utility is a filter that displays the contents of a text file on the terminal, one
screenful at a time. It normally pauses after each screenful. /usr/bin/more then prints --
More-- and /usr/xpg4/bin/more then prints file at the bottom of the screen. If more is
reading from a file rather than a pipe, the percentage of characters displayed so far is also
shown.

The more utility scrolls up to display one more line in response to a RETURN character; it
displays another screenful in response to a SPACE character. Other commands are listed
below.

The page utility clears the screen before displaying the next screenful of text; it only pro-
vides a one-line overlap between screens.

The more utility sets the terminal to NOECHO mode, so that the output can be continu-
ous. Commands that you type do not normally show up on your terminal, except for the
/ and ! commands.

The /usr/bin/more utility exits after displaying the last specified file; /usr/xpg4/bin/more
prompts for a command at the last line of the last specified file.

If the standard output is not a terminal, more acts just like cat(1), except that a header is
printed before each file in a series.

OPTIONS The following options are supported for both /usr/bin/more and /usr/xpg4/bin/more:

−c Clear before displaying. Redraws the screen instead of scrolling for fas-
ter displays. This option is ignored if the terminal does not have the
ability to clear to the end of a line.

−d Display error messages rather than ringing the terminal bell if an
unrecognized command is used. This is helpful for inexperienced users.

−s Squeeze. Replace multiple blank lines with a single blank line. This is
helpful when viewing nroff(1) output on the screen.

/usr/bin/more The following options are supported for /usr/bin/more only:

−f Do not fold long lines. This is useful when lines contain nonprinting
characters or escape sequences, such as those generated when nroff(1)
output is piped through ul(1).

−l Do not treat FORMFEED characters (CTRL-L) as page breaks. If −l is not
used, more pauses to accept commands after any line containing a ˆL
character (CTRL-L). Also, if a file begins with a FORMFEED, the screen is

1-696 SunOS 5.6 modified 18 Mar 1997

User Commands more (1)

cleared before the file is printed.

−r Normally, more ignores control characters that it does not interpret in
some way. The −r option causes these to be displayed as ˆC where C
stands for any such control character.

−u Suppress generation of underlining escape sequences. Normally, more
handles underlining, such as that produced by nroff(1), in a manner
appropriate to the terminal. If the terminal can perform underlining or
has a stand-out mode, more supplies appropriate escape sequences as
called for in the text file.

−w Normally, more exits when it comes to the end of its input. With −w,
however, more prompts and waits for any key to be struck before exit-
ing.

−lines Display the indicated number of lines in each screenful, rather than the
default (the number of lines in the terminal screen less two).

+linenumber Start up at linenumber.

+/pattern Start up two lines above the line containing the regular expression pat-
tern. Note: Unlike editors, this construct should not end with a ‘/.’ If it
does, then the trailing slash is taken as a character in the search pattern.

/usr/xpg4/bin/more The following options are supported for /usr/xpg4/bin/more only:

−e Exit immediately after writing the last line of the last file in the argu-
ment list.

−i Perform pattern matching in searches without regard to case.

−n number Specify the number of lines per screenful. The number argument is a
positive decimal integer. The −n option overrides any values obtained
from the environment.

−p command
+command For each file examined, initially execute the more command in the com-

mand argument. If the command is a positioning command, such as a
line number or a regular expression search, set the current position to
represent the final results of the command, without writing any inter-
mediate lines of the file. For example, the two commands:

more −p 1000j file
more −p 1000G file

are equivalent and start the display with the current position at line
1000, bypassing the lines that j would write and scroll off the screen if it
had been issued during the file examination. If the positioning com-
mand is unsuccessful, the first line in the file will be the current position.

−t tagstring Write the screenful of the file containing the tag named by the tagstring
argument. See the ctags(1) utility.

−u Treat a backspace character as a printable control character, displayed as
a ˆH (CTRL-H), suppressing backspacing and the special handling that

modified 18 Mar 1997 SunOS 5.6 1-697

more (1) User Commands

produces underlined or standout-mode text on some terminal types.
Also, do not ignore a carriage-return character at the end of a line.

If both the −t tagstring and −p command (or the obsolescent +command) options are given,
the −t tagstring is processed first.

USAGE
Environment more uses the terminal’s terminfo(4) entry to determine its display characteristics.

more looks in the environment variable MORE for any preset options. For instance, to
page through files using the −c mode by default, set the value of this variable to −c. (Nor-
mally, the command sequence to set up this environment variable is placed in the .login
or .profile file).

Commands The commands take effect immediately. It is not necessary to type a carriage return
unless the command requires a file, command, tagstring , or pattern . Up to the time when
the command character itself is given, the user may type the line kill character to cancel
the numerical argument being formed. In addition, the user may type the erase character
to redisplay the ‘--More--(xx%)’ or file message.

In the following commands, i is a numerical argument (1 by default).

iSPACE Display another screenful, or i more lines if i is specified.

iRETURN Display another line, or i more lines, if specified.

ib
iˆB (CTRL-B) Skip back i screenfuls and then print a screenful.

id
iˆD (CTRL-D) Scroll forward one half screenful or i more lines. If i is specified, the

count becomes the default for subsequent d and u commands.

if Skip i screens full and then print a screenful.

h Help. Give a description of all the more commands.

ˆL (CTRL-L) Refresh.

in Search for the i th occurrence of the last pattern entered.

q
Q Exit from more.

is Skip i lines and then print a screenful.

v Drop into the vi editor at the current line of the current file.

iz Same as SPACE, except that i, if present, becomes the new default number of
lines per screenful.

= Display the current line number.

i/pattern Search forward for the i th occurrence of the regular expression pattern .
Display the screenful starting two lines before the line that contains the i th
match for the regular expression pattern , or the end of a pipe, whichever
comes first. If more is displaying a file and there is no match, its position in
the file remains unchanged. Regular expressions can be edited using erase

1-698 SunOS 5.6 modified 18 Mar 1997

User Commands more (1)

and kill characters. Erasing back past the first column cancels the search com-
mand.

!command Invoke a shell to execute command . The characters % and !, when used within
command are replaced with the current filename and the previous shell com-
mand, respectively. If there is no current filename, % is not expanded.
Prepend a backslash to these characters to escape expansion.

:f Display the current filename and line number.

i:n Skip to the i th next filename given in the command line, or to the last
filename in the list if i is out of range.

i:p Skip to the i th previous filename given in the command line, or to the first
filename if i is out of range. If given while more is positioned within a file, go
to the beginning of the file. If more is reading from a pipe, more simply rings
the terminal bell.

:q
:Q Exit from more (same as q or Q).

/usr/bin/more The following commands are available only in /usr/bin/more:

´ Single quote. Go to the point from which the last search started. If no search
has been performed in the current file, go to the beginning of the file.

. Dot. Repeat the previous command.

ˆ \ Halt a partial display of text. more stops sending output, and displays the
usual --More-- prompt. Some output is lost as a result.

/usr/xpg4/bin/more The following commands are available only in /usr/xpg4/bin/more:

iˆF (CTRL-F) Skip i screens full and print a screenful. (Same as if.)

ˆG (CTRL-G) Display the current line number (same as =).

ig Go to line number i with the default of the first line in the file.

iG Go to line number i with the default of the Last line in the file.

ij Display another line, or i more lines, if specified. (Same as iRETURN.)

ik Scroll backwards one or i lines, if specified.

mletter Mark the current position with the name letter .

N Reverse direction of search.

r Refresh the screen.

R Refresh the screen, discarding any buffered input.

iu
iˆU (CTRL-U) Scroll backwards one half a screen of i lines, if specified. If i is

specified, the count becomes the new default for subsequent d and u com-
mands.

ZZ Exit from more (same as q).

modified 18 Mar 1997 SunOS 5.6 1-699

more (1) User Commands

:e file Examine (display) a new file. If no file is specified, the current file is
redisplayed.

:t tagstring Go to the tag named by the tagstring argument and scroll/rewrite the screen
with the tagged line in the current position. See the ctags utility.

’letter Return to the position that was previously marked with the name letter .

’’ Return to the position from which the last move of more than a screenful was
made. Defaults to the beginning of the file.

i?[!]pattern Search backward in the file for the ith line containing the pattern . The !
specifies to search backward for the ith line that does not contain the pattern .

i/!pattern Search forward in the file for the ith line that does not contain the pattern.

![command]
Invoke a shell or the specified command.

Large File Behavior See largefile(5) for the description of the behavior of more and page when encountering
files greater than or equal to 2 Gbyte (231 bytes).

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of more: LC_COLLATE (/usr/xpg4/bin/more only), LC_CTYPE, LC_MESSAGES,
NLSPATH, and TERM.

/usr/xpg4/bin/more The following environment variables also affect the execution of /usr/xpg4/bin/more:

COLUMNS Override the system selected horizontal screen size.

EDITOR Used by the v command to select an editor.

LINES Override the system selected vertical screen size. The −n option has pre-
cedence over LINES in determining the number of lines in a screen.

MORE A string specifying options as described in the OPTIONS section, above. As
in a command line, The options must be separated by blank characters and
each option specification must start with a −. Any command line options
are processed after those specified in MORE as though the command line
were:

more $MORE options operands

EXIT STATUS The following exit values are returned:

0 Successful completion.

>0 An error occurred.

FILES /usr/lib/more.help help file for /usr/bin/more and /usr/bin/page only.

1-700 SunOS 5.6 modified 18 Mar 1997

User Commands more (1)

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

/usr/bin/more
/usr/bin/page

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu
CSI Not enabled

/usr/xpg4/bin/more ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxcu4
CSI Enabled

SEE ALSO cat(1), csh(1), ctags(1), man(1), nroff(1), script(1), sh(1), ul(1), environ(4), terminfo(4),
attributes(5), environ(5), largefile(5)

/usr/bin/more
/usr/bin/page

regcomp(3C)

/usr/xpg4/bin/more regex(5), xpg4(5)

NOTES
/usr/bin/more Skipping backwards is too slow on large files.

/usr/xpg4/bin/more This utility will not behave correctly if the terminal is not set up properly.

modified 18 Mar 1997 SunOS 5.6 1-701

msgfmt (1) User Commands

NAME msgfmt − create a message object from a message file

SYNOPSIS msgfmt [−v] [−o output-file] filename.po . . .

DESCRIPTION msgfmt creates message object files from portable object files (filename.po), without
changing the portable object files.

The .po file contains messages displayed to users by system commands or by application
programs. .po files can be edited, and the messages in them can be rewritten in any
language supported by the system.

The xgettext(1) command can be used to create .po files from script or programs.

msgfmt interprets data as characters according to the current setting of the LC_CTYPE
locale category.

Portable Object Files Formats for all .po files are the same. Each .po file contains one or more lines, with each
line containing either a comment or a statement. Comments start the line with a hash
mark (#) and end with the newline character. All comments are ignored. The format of a
statement is:

directive value

Each directive starts at the beginning of the line and is separated from value by white
space (such as one or more space or tab characters). value consists of one or more quoted
strings separated by white space. Use any of the following types of directives:

domain domainname
msgid message_identifier
msgstr message_string

The behavior of the domain directive is affected by the options used. See OPTIONS for
the behavior when the −o option is specified. If the −o option is not specified, the
behavior of the domain directive is as follows:

· All msgids from the beginning of each .po file to the first domain directive are
put into a default message object file, messages.mo.

· When msgfmt encounters a domain domainname directive in the .po file, all
following msgids until the next domain directive are put into the message
object file domainname.mo.

· Duplicate msgids are defined in the scope of each domain. That is, a msgid is
considered a duplicate only if the identical msgid exists in the same domain.

· All duplicate msgids are ignored.

The msgid directive specifies the value of a message identifier associated with the direc-
tive that follows it. The message_identifier string identifies a target string to be used at
retrieval time. Each statement containing a msgid directive must be followed by a state-
ment containing a msgstr directive.

1-702 SunOS 5.6 modified 20 Dec 1996

User Commands msgfmt (1)

The msgstr directive specifies the target string associated with the message_identifier string
declared in the immediately preceding msgid directive.

Message strings can contain the escape sequences \n for newline, \t for tab, \v for verti-
cal tab, \b for backspace, \r for carriage return, \f for formfeed, \\ for backslash, \" for
double quote, \ddd for octal bit pattern, and \xDD for hexadecimal bit pattern.

OPTIONS −v Verbose. List duplicate message identifiers. Message strings are not
redefined.

−o output-file Specify output file name as output-file . All domain directives and dupli-
cate msgids in the .po file are ignored.

EXAMPLES In this example module1.po and module2.po are portable message objects files.

example% cat module1.po
default domain "messages.mo"
msgid "msg 1"
msgstr "msg 1 translation"
#
domain "help_domain"
msgid "help 2"
msgstr "help 2 translation"
#
domain "error_domain"
msgid "error 3"
msgstr "error 3 translation"

example% cat module2.po
default domain "messages.mo"
msgid "mesg 4"
msgstr "mesg 4 translation"
#
domain "error_domain"
msgid "error 5"
msgstr "error 5 translation"
#
domain "window_domain"
msgid "window 6"
msgstr "window 6 translation"

The following command will produce the output files, messages.mo, help_domain.mo,
and error_domain.mo.

example% msgfmt module1.po

The following command will produce the output files, messages.mo, help_domain.mo,
error_domain.mo, and window_domain.mo.

example% msgfmt module1.po module2.po

modified 20 Dec 1996 SunOS 5.6 1-703

msgfmt (1) User Commands

The following example will produce the output file hello.mo.

example% msgfmt −o hello.mo module1.po module2.po

Install message object files in /usr/lib/locale/locale/LC_MESSAGES/domain.mo where locale
is the message locale as set by setlocale(3C), and domain is text domain as set by
textdomain(). The /usr/lib/locale portion can optionally be changed by calling
bindtextdomain(). See gettext(3C).

ENVIRONMENT See environ(5) for descriptions of the following environmental variables that affect the
execution of msgfmt: LC_CTYPE, LC_MESSAGES, NLSPATH.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWloc
CSI Enabled

SEE ALSO xgettext(1), gettext(3C), setlocale(3C), attributes(5), environ(5)

NOTES Neither msgfmt nor any gettext() routine imposes a limit on the total length of a mes-
sage. However, each line in the ∗.po file is limited to MAX_INPUT (512) bytes.

Installing message catalogs under the C locale is pointless, since they are ignored for the
sake of efficiency.

1-704 SunOS 5.6 modified 20 Dec 1996

User Commands mt (1)

NAME mt − magnetic tape control

SYNOPSIS mt [−f tapename] command. . . [count]

DESCRIPTION mt sends commands to a magnetic tape drive. If −f tapename is not specified, the environ-
ment variable TAPE is used. If TAPE does not exist, mt uses the device /dev/rmt/0n.

OPTIONS −f tapename Specify the raw tape device.

OPERANDS count The number of times that the requested operation is to be performed. By
default, mt performs command once; multiple operations of command
may be performed by specifying count.

command Available commands that can be sent to a magnetic tape drive. Only as
many characters as are required to uniquely identify a command need be
specified.

eof, weof Write count EOF marks at the current position on the
tape.

fsf Forward space over count EOF marks. The tape is posi-
tioned on the first block of the file.

fsr Forward space count records.

bsf Back space over count EOF marks. The tape is posi-
tioned on the beginning-of-tape side of the EOF mark.

bsr Back space count records.

nbsf Back space count files. The tape is positioned on the
first block of the file. This is equivalent to count+1 bsf’s
followed by one fsf.

asf Absolute space to count file number. This is equivalent
to a rewind followed by a fsf count.

If count is specified with any of the following commands, the count is
ignored and the command is performed only once.

eom Space to the end of recorded media on the tape. This is
useful for appending files onto previously written
tapes.

rewind Rewind the tape.

offline, rewoffl Rewind the tape and, if appropriate, take the drive unit
off-line by unloading the tape. It cycles through all four
tapes.

status Print status information about the tape unit.

retension Rewind the cartridge tape completely, then wind it for-
ward to the end of the reel and back to beginning-of-
tape to smooth out tape tension.

modified 13 Nov 1996 SunOS 5.6 1-705

mt (1) User Commands

reserve Allow the tape drive to remain reserved after closing
the device. The drive must then be explicitly released.

release Re-establish the default behavior of releasing at close.

forcereserve Break the reservation of the tape drive held by another
host and then reserve the tape drive. This command
can be executed only with super-user privileges.

erase Erase the entire tape. Erasing a tape may take a long
time depending on the device and/or tape. Refer to the
device specific manual for time details.

EXIT STATUS 0 All operations were successful.

1 Command was unrecognized or mt was unable to open the specified tape drive.

2 An operation failed.

FILES /dev/rmt/∗ magnetic tape interface

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO tar(1), tcopy(1), ar(4), environ(4), attributes(5), mtio(7I), st(7D)

BUGS Not all devices support all options. Some options are hardware-dependent. Refer to the
corresponding device manual page.

mt is architecture sensitive. Heterogeneous operation (that is, Sun3 to Sun4 or the
reverse) is not supported.

1-706 SunOS 5.6 modified 13 Nov 1996

User Commands mv (1)

NAME mv − move files

SYNOPSIS /usr/bin/mv [−fi] source target_file
/usr/bin/mv [−fi] source. . . target_dir

/usr/xpg4/bin/mv [−fi] source target_file
/usr/xpg4/bin/mv [−fi] source. . . target_dir

DESCRIPTION In the first synopsis form, the mv utility moves the file named by the source operand to
the destination specified by the target_file . source and target_file may not have the same
name. If target_file does not exist, mv creates a file named target_file . If target_file exists,
its contents are overwritten. This first synopsis form is assumed when the final operand
does not name an existing directory.

In the second synopsis form, mv moves each file named by a source operand to a destina-
tion file in the existing directory named by the target_dir operand. The destination path
for each source is the concatenation of the target directory, a single slash character (/), and
the last path name component of the source. This second form is assumed when the final
operand names an existing directory.

If mv determines that the mode of target_file forbids writing, it will print the mode (see
chmod(2)), ask for a response, and read the standard input for one line. If the response is
affirmative, the mv occurs, if permissible; otherwise, the command exits. Note that the
mode displayed may not fully represent the access permission if target is associated with
an ACL. When the parent directory of source is writable and has the sticky bit set, one or
more of the following conditions must be true:

· the user must own the file
· the user must own the directory
· the file must be writable by the user
· the user must be a privileged user

If source is a file and target_file is a link to another file with links, the other links remain
and target_file becomes a new file.

OPTIONS −f mv will move the file(s) without prompting even if it is writing over an exist-
ing target. Note that this is the default if the standard input is not a terminal.

−i mv will prompt for confirmation whenever the move would overwrite an
existing target . An affirmative answer means that the move should proceed.
Any other answer prevents mv from overwriting the target.

/usr/bin/mv Specifying both the −f and the −i options is not considered an error. The −f option will
override the −i option.

/usr/xpg4/bin/mv Specifying both the −f and the −i options is not considered an error. The last option
specified will determine the behavior of mv.

modified 21 Mar 1997 SunOS 5.6 1-707

mv (1) User Commands

OPERANDS The following operands are supported:

source A path name of a file or directory to be moved.

target_file A new path name for the file or directory being moved.

target_dir A path name of an existing directory into which to move the input files.

USAGE See largefile(5) for the description of the behavior of mv when encountering files greater
than or equal to 2 Gbyte (231 bytes).

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of mv: LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS The following exit values are returned:
0 All input files were moved successfully.
>0 An error occurred.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

/usr/bin/mv ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu
CSI Enabled

/usr/xpg4/bin/mv ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxcu4
CSI Enabled

SEE ALSO cp(1), cpio(1), ln(1), rm(1), setfacl(1), chmod(2), attributes(5), environ(5), largefile(5),
xpg4(5)

NOTES If source and target_dir are on different file systems, mv copies the file and deletes the ori-
ginal; any links to other files are lost.

A ‘−−’ permits the user to mark explicitly the end of any command line options, allowing
mv to recognize filename arguments that begin with a ‘−’. As an aid to BSD migration,
mv will accept ‘−’ as a synonym for ‘−−’. This migration aid may disappear in a future
release. If a ‘−−’ and a ‘−’ both appear on the same command line, the second will be
interpreted as a filename.

1-708 SunOS 5.6 modified 21 Mar 1997

User Commands nawk (1)

NAME nawk − pattern scanning and processing language

SYNOPSIS /usr/bin/nawk [−F ERE] [−v assignment] ’program’ | −f progfile . . . [argument . . .]

/usr/xpg4/bin/awk [−F ERE] [−v assignment . . .] ’program’ | −f progfile . . .
[argument . . .]

DESCRIPTION The /usr/bin/nawk and /usr/xpg4/bin/awk utilities execute programs written in the nawk
programming language, which is specialized for textual data manipulation. A nawk pro-
gram is a sequence of patterns and corresponding actions. The string specifying program
must be enclosed in single quotes (’) to protect it from interpretation by the shell. The
sequence of pattern - action statements can be specified in the command line as program
or in one, or more, file(s) specified by the -f progfile option. When input is read that
matches a pattern, the action associated with the pattern is performed.

Input is interpreted as a sequence of records. By default, a record is a line, but this can be
changed by using the RS built-in variable. Each record of input is matched to each pat-
tern in the program . For each pattern matched, the associated action is executed.

The nawk utility interprets each input record as a sequence of fields where, by default, a
field is a string of non-blank characters. This default white-space field delimiter (blanks
and/or tabs) can be changed by using the FS built-in variable or the −F ERE option. The
nawk utility denotes the first field in a record $1, the second $2, and so forth. The symbol
$0 refers to the entire record; setting any other field causes the reevaluation of $0.
Assigning to $0 resets the values of all fields and the NF built-in variable.

OPTIONS The following options are supported:

−F ERE Define the input field separator to be the extended regular expression
ERE, before any input is read (can be a character).

−f progfile Specifies the pathname of the file progfile containing a nawk program. If
multiple instances of this option are specified, the concatenation of the
files specified as progfile in the order specified is the nawk program. The
nawk program can alternatively be specified in the command line as a
single argument.

−v assignment The assignment argument must be in the same form as an assignment
operand. The assignment is of the form var=value, where var is the name
of one of the variables described below. The specified assignment occurs
before executing the nawk program, including the actions associated
with BEGIN patterns (if any). Multiple occurrences of this option can be
specified.

OPERANDS The following operands are supported:

program If no −f option is specified, the first operand to nawk is the text of the
nawk program. The application supplies the program operand as a single
argument to nawk. If the text does not end in a newline character, nawk
interprets the text as if it did.

modified 18 Mar 1997 SunOS 5.6 1-709

nawk (1) User Commands

argument Either of the following two types of argument can be intermixed:

file A pathname of a file that contains the input to be read,
which is matched against the set of patterns in the program.
If no file operands are specified, or if a file operand is −, the
standard input is used.

assignment An operand that begins with an underscore or alphabetic
character from the portable character set, followed by a
sequence of underscores, digits and alphabetics from the
portable character set, followed by the = character specifies
a variable assignment rather than a pathname. The charac-
ters before the = represent the name of a nawk variable; if
that name is a nawk reserved word the behavior is
undefined. The characters following the equal sign is inter-
preted as if they appeared in the nawk program preceded
and followed by a double-quote (") character, as a STRING
token , except that if the last character is an unescaped
backslash, it is interpreted as a literal backslash rather than
as the first character of the sequence "\". The variable is
assigned the value of that STRING token. If the value is
considered a numericstring, the variable is assigned its
numeric value. Each such variable assignment is performed
just before the processing of the following file, if any. Thus,
an assignment before the first file argument is executed after
the BEGIN actions (if any), while an assignment after the
last file argument is executed before the END actions (if
any). If there are no file arguments, assignments are exe-
cuted before processing the standard input.

INPUT FILES Input files to the nawk program from any of the following sources:

· any file operands or their equivalents, achieved by modifying the nawk variables
ARGV and ARGC

· standard input in the absence of any file operands

· arguments to the getline function

must be text files. Whether the variable RS is set to a value other than a newline character
or not, for these files, implementations support records terminated with the specified
separator up to {LINE_MAX} bytes and may support longer records.

If −f progfile is specified, the files named by each of the progfile option-arguments must be
text files containing an nawk program.

The standard input are used only if no file operands are specified, or if a file operand is −.

EXTENDED
DESCRIPTION

A nawk program is composed of pairs of the form:

1-710 SunOS 5.6 modified 18 Mar 1997

User Commands nawk (1)

pattern { action }

Either the pattern or the action (including the enclosing brace characters) can be omitted.
Pattern-action statements are separated by a semicolon or by a newline.

A missing pattern matches any record of input, and a missing action is equivalent to an
action that writes the matched record of input to standard output.

Execution of the nawk program starts by first executing the actions associated with all
BEGIN patterns in the order they occur in the program. Then each file operand (or stan-
dard input if no files were specified) is processed by reading data from the file until a
record separator is seen (a newline character by default), splitting the current record into
fields using the current value of FS, evaluating each pattern in the program in the order of
occurrence, and executing the action associated with each pattern that matches the
current record. The action for a matching pattern is executed before evaluating subse-
quent patterns. Last, the actions associated with all END patterns is executed in the order
they occur in the program.

Expressions in nawk Expressions describe computations used in patterns and actions. In the following table,
valid expression operations are given in groups from highest precedence first to lowest
precedence last, with equal-precedence operators grouped between horizontal lines. In
expression evaluation, where the grammar is formally ambiguous, higher precedence
operators are evaluated before lower precedence operators. In this table expr, expr1,
expr2, and expr3 represent any expression, while lvalue represents any entity that can be
assigned to (that is, on the left side of an assignment operator).

Syntax Name Type of Result Associativity
(expr) Grouping type of expr n/a
$expr Field reference string n/a
++ lvalue Pre-increment numeric n/a
− − lvalue Pre-decrement numeric n/a
lvalue ++ Post-increment numeric n/a
lvalue − − Post-decrement numeric n/a
expr ˆ expr Exponentiation numeric right
! expr Logical not numeric n/a
+ expr Unary plus numeric n/a
− expr Unary minus numeric n/a
expr ∗ expr Multiplication numeric left
expr / expr Division numeric left
expr % expr Modulus numeric left
expr + expr Addition numeric left
expr − expr Subtraction numeric left
expr expr String concatenation string left
expr < expr Less than numeric none
expr <= expr Less than or equal to numeric none
expr != expr Not equal to numeric none
expr == expr Equal to numeric none

modified 18 Mar 1997 SunOS 5.6 1-711

nawk (1) User Commands

Syntax Name Type of Result Associativity
expr > expr Greater than numeric none
expr >= expr Greater than or equal to numeric none
expr ˜ expr ERE match numeric none
expr !˜ expr ERE non-match numeric none
expr in array Array membership numeric left
(index) in Multi-dimension array numeric left

array membership
expr && expr Logical AND numeric left
expr | | expr Logical OR numeric left
expr1 ? expr2 Conditional expression type of selected right

: expr3 expr2 or expr3
lvalue ˆ= expr Exponentiation numeric right

assignment
lvalue %= expr Modulus assignment numeric right
lvalue ∗= expr Multiplication numeric right

assignment
lvalue /= expr Division assignment numeric right
lvalue += expr Addition assignment numeric right
lvalue −= expr Subtraction assignment numeric right
lvalue = expr Assignment type of expr right

Each expression has either a string value, a numeric value or both. Except as stated for
specific contexts, the value of an expression is implicitly converted to the type needed for
the context in which it is used. A string value is converted to a numeric value by the
equivalent of the following calls:

setlocale(LC_NUMERIC, "");
numeric_value = atof(string_value);

A numeric value that is exactly equal to the value of an integer is converted to a string by
the equivalent of a call to the sprintf function with the string %d as the fmt argument and
the numeric value being converted as the first and only expr argument. Any other
numeric value is converted to a string by the equivalent of a call to the sprintf function
with the value of the variable CONVFMT as the fmt argument and the numeric value
being converted as the first and only expr argument.

A string value is considered to be a numeric string in the following case:

1. Any leading and trailing blank characters is ignored.

2. If the first unignored character is a + or −, it is ignored.

3. If the remaining unignored characters would be lexically recognized as a NUMBER
token, the string is considered a numeric string.

If a − character is ignored in the above steps, the numeric value of the numeric string is the
negation of the numeric value of the recognized NUMBER token. Otherwise the numeric
value of the numeric string is the numeric value of the recognized NUMBER token.

1-712 SunOS 5.6 modified 18 Mar 1997

User Commands nawk (1)

Whether or not a string is a numeric string is relevant only in contexts where that term is
used in this section.

When an expression is used in a Boolean context, if it has a numeric value, a value of zero
is treated as false and any other value is treated as true. Otherwise, a string value of the
null string is treated as false and any other value is treated as true. A Boolean context is
one of the following:

· the first subexpression of a conditional expression.

· an expression operated on by logical NOT, logical AND, or logical OR.

· the second expression of a for statement.

· the expression of an if statement.

· the expression of the while clause in either a while or do . . . while statement.

· an expression used as a pattern (as in Overall Program Structure).

The nawk language supplies arrays that are used for storing numbers or strings. Arrays
need not be declared. They are initially empty, and their sizes changes dynamically. The
subscripts, or element identifiers, are strings, providing a type of associative array capa-
bility. An array name followed by a subscript within square brackets can be used as an
lvalue and as an expression, as described in the grammar. Unsubscripted array names are
used in only the following contexts:

· a parameter in a function definition or function call.

· the NAME token following any use of the keyword in.

A valid array index consists of one or more comma-separated expressions, similar to the
way in which multi-dimensional arrays are indexed in some programming languages.
Because nawk arrays are really one dimensional, such a comma-separated list is con-
verted to a single string by concatenating the string values of the separate expressions,
each separated from the other by the value of the SUBSEP variable.
Thus, the following two index operations are equivalent:

var[expr1, expr2, ... exprn]
var[expr1 SUBSEP expr2 SUBSEP ... SUBSEP exprn]

A multi-dimensioned index used with the in operator must be put in parentheses. The in
operator, which tests for the existence of a particular array element, does not create the
element if it does not exist. Any other reference to a non-existent array element automati-
cally creates it.

Variables and Special
Variables

Variables can be used in an nawk program by referencing them. With the exception of
function parameters, they are not explicitly declared. Uninitialized scalar variables and
array elements have both a numeric value of zero and a string value of the empty string.

Field variables are designated by a $ followed by a number or numerical expression. The
effect of the field number expression evaluating to anything other than a non-negative
integer is unspecified; uninitialized variables or string values need not be converted to
numeric values in this context. New field variables are created by assigning a value to
them. References to non-existent fields (that is, fields after $NF) produce the null string.

modified 18 Mar 1997 SunOS 5.6 1-713

nawk (1) User Commands

However, assigning to a non-existent field (for example, $(NF+2) = 5) increases the value
of NF, create any intervening fields with the null string as their values and cause the
value of $0 to be recomputed, with the fields being separated by the value of OFS. Each
field variable has a string value when created. If the string, with any occurrence of the
decimal-point character from the current locale changed to a period character, is con-
sidered a numeric string (see Expressions in nawk above), the field variable also has the
numeric value of the numeric string.

nawk sets the following special variables:

ARGC The number of elements in the ARGV array.

ARGV An array of command line arguments, excluding options and the program
argument, numbered from zero to ARGC−1.

The arguments in ARGV can be modified or added to; ARGC can be altered.
As each input file ends, nawk treats the next non-null element of ARGV, up
to the current value of ARGC−1, inclusive, as the name of the next input file.
Setting an element of ARGV to null means that it is not treated as an input
file. The name − indicates the standard input. If an argument matches the
format of an assignment operand, this argument is treated as an assignment
rather than a file argument.

/usr/xpg4/bin/awk CONVFMT The printf format for converting numbers to strings (except for output
statements, where OFMT is used); %.6g by default.

ENVIRON The variable ENVIRON is an array representing the value of the environ-
ment. The indices of the array are strings consisting of the names of the
environment variables, and the value of each array element is a string con-
sisting of the value of that variable. If the value of an environment variable
is considered a numeric string, the array element also has its numeric value.

In all cases where nawk behavior is affected by environment variables
(including the environment of any commands that nawk executes via the
system function or via pipeline redirections with the print statement, the
printf statement, or the getline function), the environment used is the
environment at the time nawk began executing.

FILENAME A pathname of the current input file. Inside a BEGIN action the value is
undefined. Inside an END action the value is the name of the last input file
processed.

FNR The ordinal number of the current record in the current file. Inside a BEGIN
action the value is zero. Inside an END action the value is the number of the
last record processed in the last file processed.

FS Input field separator regular expression; a space character by default.

NF The number of fields in the current record. Inside a BEGIN action, the use
of NF is undefined unless a getline function without a var argument is exe-
cuted previously. Inside an END action, NF retains the value it had for the
last record read, unless a subsequent, redirected, getline function without a

1-714 SunOS 5.6 modified 18 Mar 1997

User Commands nawk (1)

var argument is performed prior to entering the END action.

NR The ordinal number of the current record from the start of input. Inside a
BEGIN action the value is zero. Inside an END action the value is the
number of the last record processed.

OFMT The printf format for converting numbers to strings in output statements
"%.6g" by default. The result of the conversion is unspecified if the value of
OFMT is not a floating-point format specification.

OFS The print statement output field separator; a space character by default.

ORS The print output record separator; a newline character by default.

LENGTH The length of the string matched by the match function.

RS The first character of the string value of RS is the input record separator; a
newline character by default. If RS contains more than one character, the
results are unspecified. If RS is null, then records are separated by
sequences of one or more blank lines: leading or trailing blank lines do not
produce empty records at the beginning or end of input, and the field
separator is always newline, no matter what the value of FS.

RSTART The starting position of the string matched by the match function, number-
ing from 1. This is always equivalent to the return value of the match func-
tion.

SUBSEP The subscript separator string for multi-dimensional arrays; the default
value is 1

Regular Expressions The nawk utility makes use of the extended regular expression notation (see regex(5))
except that it allows the use of C-language conventions to escape special characters
within the EREs, namely \\, \a, \b, \f, \n, \r, \t, \v, and those specified in the follow-
ing table. These escape sequences are recognized both inside and outside bracket expres-
sions. Note that records need not be separated by newline characters and string con-
stants can contain newline characters, so even the \n sequence is valid in nawk EREs.
Using a slash character within the regular expression requires escaping as shown in the
table below:

modified 18 Mar 1997 SunOS 5.6 1-715

nawk (1) User Commands

Escape
Sequence

Description Meaning

\" Backslash quotation-mark Quotation-mark character
\/ Backslash slash Slash character

\ddd A backslash character followed by
the longest sequence of one, two, or
three octal-digit characters
(01234567). If all of the digits are 0,
(that is, representation of the NULL
character), the behavior is
undefined.

The character encoded by the one-,
two- or three-digit octal integer.
Multi-byte characters require multi-
ple, concatenated escape sequences,
including the leading \ for each
byte.

\c UndefinedA backslash character followed by
any character not described in this
table or special characters (\\, \a,
\b, \f, \n, \r, \t, \v).

A regular expression can be matched against a specific field or string by using one of the
two regular expression matching operators, ˜ and ! ˜. These operators interpret their
right-hand operand as a regular expression and their left-hand operand as a string. If the
regular expression matches the string, the ˜ expression evaluates to the value 1, and the ! ˜
expression evaluates to the value 0. If the regular expression does not match the string,
the ˜ expression evaluates to the value 0, and the ! ˜ expression evaluates to the value 1. If
the right-hand operand is any expression other than the lexical token ERE, the string
value of the expression is interpreted as an extended regular expression, including the
escape conventions described above. Note that these same escape conventions also are
applied in the determining the value of a string literal (the lexical token STRING), and is
applied a second time when a string literal is used in this context.

When an ERE token appears as an expression in any context other than as the right-hand
of the ˜ or ! ˜ operator or as one of the built-in function arguments described below, the
value of the resulting expression is the equivalent of:

$0 ˜ /ere/

The ere argument to the gsub, match, sub functions, and the fs argument to the split
function (see String Functions) is interpreted as extended regular expressions. These can
be either ERE tokens or arbitrary expressions, and are interpreted in the same manner as
the right-hand side of the ˜ or ! ˜ operator.

An extended regular expression can be used to separate fields by using the −F ERE option
or by assigning a string containing the expression to the built-in variable FS. The default
value of the FS variable is a single space character. The following describes FS behavior:

1. If FS is a single character:

a. If FS is the space character, skip leading and trailing blank characters; fields are
delimited by sets of one or more blank characters.

b. Otherwise, if FS is any other character c, fields are delimited by each single

1-716 SunOS 5.6 modified 18 Mar 1997

User Commands nawk (1)

occurrence of c.

2. Otherwise, the string value of FS is considered to be an extended regular expres-
sion. Each occurrence of a sequence matching the extended regular expression del-
imits fields.

Except in the gsub, match, split, and sub built-in functions, regular expression matching
is based on input records; that is, record separator characters (the first character of the
value of the variable RS, a newline character by default) cannot be embedded in the
expression, and no expression matches the record separator character. If the record
separator is not a newline character, newline characters embedded in the expression can
be matched. In those four built-in functions, regular expression matching are based on
text strings. So, any character (including the newline character and the record separator)
can be embedded in the pattern and an appropriate pattern will match any character.
However, in all nawk regular expression matching, the use of one or more NUL charac-
ters in the pattern, input record or text string produces undefined results.

Patterns A pattern is any valid expression, a range specified by two expressions separated by
comma, or one of the two special patterns BEGIN or END.

Special Patterns The nawk utility recognizes two special patterns, BEGIN and END. Each BEGIN pattern
is matched once and its associated action executed before the first record of input is read
(except possibly by use of the getline function in a prior BEGIN action) and before com-
mand line assignment is done. Each END pattern is matched once and its associated
action executed after the last record of input has been read. These two patterns have
associated actions.

BEGIN and END do not combine with other patterns. Multiple BEGIN and END patterns
are allowed. The actions associated with the BEGIN patterns are executed in the order
specified in the program, as are the END actions. An END pattern can precede a BEGIN
pattern in a program.

If an nawk program consists of only actions with the pattern BEGIN, and the BEGIN
action contains no getline function, nawk exits without reading its input when the last
statement in the last BEGIN action is executed. If an nawk program consists of only
actions with the pattern END or only actions with the patterns BEGIN and END, the input
is read before the statements in the END actions are executed.

Expression Patterns An expression pattern is evaluated as if it were an expression in a Boolean context. If the
result is true, the pattern is considered to match, and the associated action (if any) is exe-
cuted. If the result is false, the action is not executed.

Pattern Ranges A pattern range consists of two expressions separated by a comma. In this case, the
action is performed for all records between a match of the first expression and the follow-
ing match of the second expression, inclusive. At this point, the pattern range can be
repeated starting at input records subsequent to the end of the matched range.

modified 18 Mar 1997 SunOS 5.6 1-717

nawk (1) User Commands

Actions An action is a sequence of statements. A statement may be one of the following:

if (expression) statement [else statement]
while (expression) statement
do statement while (expression)
for (expression ; expression ; expression) statement
for (var in array) statement
delete array[subscript] #delete an array element
break
continue
{ [statement] . . . }
expression # commonly variable = expression
print [expression-list] [>expression]
printf format [, expression-list] [>expression]
next # skip remaining patterns on this input line
exit [expr] # skip the rest of the input; exit status is expr
return [expr]

Any single statement can be replaced by a statement list enclosed in braces. The state-
ments are terminated by newline characters or semicolons, and are executed sequentially
in the order that they appear.

The next statement causes all further processing of the current input record to be aban-
doned. The behavior is undefined if a next statement appears or is invoked in a BEGIN or
END action.

The exit statement invokes all END actions in the order in which they occur in the pro-
gram source and then terminate the program without reading further input. An exit
statement inside an END action terminates the program without further execution of END
actions. If an expression is specified in an exit statement, its numeric value is the exit
status of nawk, unless subsequent errors are encountered or a subsequent exit statement
with an expression is executed.

Output Statements Both print and printf statements write to standard output by default. The output is writ-
ten to the location specified by output_redirection if one is supplied, as follows:

> expression
>> expression
| expression

In all cases, the expression is evaluated to produce a string that is used as a full pathname
to write into (for > or >>) or as a command to be executed (for |). Using the first two
forms, if the file of that name is not currently open, it is opened, creating it if necessary
and using the first form, truncating the file. The output then is appended to the file. As
long as the file remains open, subsequent calls in which expression evaluates to the same
string value simply appends output to the file. The file remains open until the close func-
tion, which is called with an expression that evaluates to the same string value.

1-718 SunOS 5.6 modified 18 Mar 1997

User Commands nawk (1)

The third form writes output onto a stream piped to the input of a command. The stream
is created if no stream is currently open with the value of expression as its command
name. The stream created is equivalent to one created by a call to the popen(3S) function
with the value of expression as the command argument and a value of w as the mode argu-
ment. As long as the stream remains open, subsequent calls in which expression evaluates
to the same string value writes output to the existing stream. The stream will remain
open until the close function is called with an expression that evaluates to the same string
value. At that time, the stream is closed as if by a call to the pclose function.

These output statements take a comma-separated list of expression s referred in the gram-
mar by the non-terminal symbols expr_list, print_expr_list or print_expr_list_opt. This
list is referred to here as the expression list, and each member is referred to as an expression
argument.

The print statement writes the value of each expression argument onto the indicated out-
put stream separated by the current output field separator (see variable OFS above), and
terminated by the output record separator (see variable ORS above). All expression argu-
ments is taken as strings, being converted if necessary; with the exception that the printf
format in OFMT is used instead of the value in CONVFMT. An empty expression list
stands for the whole input record ($0).

The printf statement produces output based on a notation similar to the File Format
Notation used to describe file formats in this document Output is produced as specified
with the first expression argument as the string format and subsequent expression argu-
ments as the strings arg1 to argn, inclusive, with the following exceptions:

1. The format is an actual character string rather than a graphical representation.
Therefore, it cannot contain empty character positions. The space character in the for-
mat string, in any context other than a flag of a conversion specification, is treated as an
ordinary character that is copied to the output.

2. If the character set contains a ∆ character and that character appears in the format
string, it is treated as an ordinary character that is copied to the output.

3. The escape sequences beginning with a backslash character is treated as sequences of
ordinary characters that are copied to the output. Note that these same sequences is
interpreted lexically by nawk when they appear in literal strings, but they is not treated
specially by the printf statement.

4. A field width or precision can be specified as the ∗ character instead of a digit string.
In this case the next argument from the expression list is fetched and its numeric value
taken as the field width or precision.

5. The implementation does not precede or follow output from the d or u conversion
specifications with blank characters not specified by the format string.

6. The implementation does not precede output from the o conversion specification
with leading zeros not specified by the format string.

7. For the c conversion specification: if the argument has a numeric value, the charac-
ter whose encoding is that value is output. If the value is zero or is not the encoding of
any character in the character set, the behavior is undefined. If the argument does not

modified 18 Mar 1997 SunOS 5.6 1-719

nawk (1) User Commands

have a numeric value, the first character of the string value will be output; if the string
does not contain any characters the behavior is undefined.

8. For each conversion specification that consumes an argument, the next expression
argument will be evaluated. With the exception of the c conversion, the value will be
converted to the appropriate type for the conversion specification.

9. If there are insufficient expression arguments to satisfy all the conversion
specifications in the format string, the behavior is undefined.

10. If any character sequence in the format string begins with a % character, but does
not form a valid conversion specification, the behavior is unspecified.

Both print and printf can output at least {LINE_MAX} bytes.

Functions The nawk language has a variety of built-in functions: arithmetic, string, input/output
and general.

Arithmetic Functions The arithmetic functions, except for int, are based on the ISO C standard. The behavior is
undefined in cases where the ISO C standard specifies that an error be returned or that
the behavior is undefined. Although the grammar permits built-in functions to appear
with no arguments or parentheses, unless the argument or parentheses are indicated as
optional in the following list (by displaying them within the [] brackets), such use is
undefined.

atan2(y,x) Return arctangent of y/x.

cos(x) Return cosine of x, where x is in radians.

sin(x) Return sine of x, where x is in radians.

exp(x) Return the exponential function of x.

log(x) Return the natural logarithm of x.

sqrt(x) Return the square root of x.

int(x) Truncate its argument to an integer. It will be truncated toward 0
when x > 0.

rand() Return a random number n, such that 0 ≤ n < 1.

srand([expr]) Set the seed value for rand to expr or use the time of day if expr is omit-
ted. The previous seed value will be returned.

String Functions The string functions in the following list shall be supported. Although the grammar per-
mits built-in functions to appear with no arguments or parentheses, unless the argument
or parentheses are indicated as optional in the following list (by displaying them within
the [] brackets), such use is undefined.

gsub(ere, repl[, in])
Behave like sub (see below), except that it will replace all occurrences
of the regular expression (like the ed utility global substitute) in $0 or
in the in argument, when specified.

index(s, t) Return the position, in characters, numbering from 1, in string s where

1-720 SunOS 5.6 modified 18 Mar 1997

User Commands nawk (1)

string t first occurs, or zero if it does not occur at all.

length[([s])] Return the length, in characters, of its argument taken as a string, or of
the whole record, $0, if there is no argument.

match(s, ere) Return the position, in characters, numbering from 1, in string s where
the extended regular expression ere occurs, or zero if it does not occur
at all. RSTART will be set to the starting position (which is the same as
the returned value), zero if no match is found; RLENGTH will be set to
the length of the matched string, −1 if no match is found.

split(s, a[, fs]) Split the string s into array elements a[1], a[2], ..., a[n], and return n.
The separation will be done with the extended regular expression fs or
with the field separator FS if fs is not given. Each array element will
have a string value when created. If the string assigned to any array
element, with any occurrence of the decimal-point character from the
current locale changed to a period character, would be considered a
numeric string; the array element will also have the numeric value of
the numeric string. The effect of a null string as the value of fs is
unspecified.

sprintf(fmt, expr, expr,...)
Format the expressions according to the printf format given by fmt and
return the resulting string.

sub(ere, repl[, in])
Substitute the string repl in place of the first instance of the extended
regular expression ERE in string in and return the number of substitu-
tions. An ampersand (&) appearing in the string repl will be replaced
by the string from in that matches the regular expression. For each
occurrence of backslash (\) encountered when scanning the string repl
from beginning to end, the next character is taken literally and loses its
special meaning (for example, \& will be interpreted as a literal amper-
sand character). Except for & and \, it is unspecified what the special
meaning of any such character is. If in is specified and it is not an lvalue
the behavior is undefined. If in is omitted, nawk will substitute in the
current record ($0).

substr(s, m[, n]) Return the at most n-character substring of s that begins at position m,
numbering from 1. If n is missing, the length of the substring will be
limited by the length of the string s.

tolower(s) Return a string based on the string s. Each character in s that is an
upper-case letter specified to have a tolower mapping by the
LC_CTYPE category of the current locale will be replaced in the
returned string by the lower-case letter specified by the mapping.
Other characters in s will be unchanged in the returned string.

toupper(s) Return a string based on the string s. Each character in s that is a
lower-case letter specified to have a toupper mapping by the LC_CTYPE
category of the current locale will be replaced in the returned string by

modified 18 Mar 1997 SunOS 5.6 1-721

nawk (1) User Commands

the upper-case letter specified by the mapping. Other characters in s
will be unchanged in the returned string.

All of the preceding functions that take ERE as a parameter expect a pattern or a string
valued expression that is a regular expression as defined below.

Input/Output and
General Functions

The input/output and general functions are:

close(expression) Close the file or pipe opened by a print or printf statement or a call to
getline with the same string-valued expression. If the close was success-
ful, the function will return 0; otherwise, it will return non-zero.

expression | getline [var]
Read a record of input from a stream piped from the output of a com-
mand. The stream will be created if no stream is currently open with
the value of expression as its command name. The stream created will
be equivalent to one created by a call to the popen function with the
value of expression as the command argument and a value of r as the
mode argument. As long as the stream remains open, subsequent calls
in which expression evaluates to the same string value will read subse-
quent records from the file. The stream will remain open until the
close function is called with an expression that evaluates to the same
string value. At that time, the stream will be closed as if by a call to the
pclose function. If var is missing, $0 and NF will be set; otherwise, var
will be set.

The getline operator can form ambiguous constructs when there are
operators that are not in parentheses (including concatenate) to the left
of the | (to the beginning of the expression containing getline). In the
context of the $ operator, | behaves as if it had a lower precedence than
$. The result of evaluating other operators is unspecified, and all such
uses of portable applications must be put in parentheses properly.

getline Set $0 to the next input record from the current input file. This form of
getline will set the NF, NR, and FNR variables.

getline var Set variable var to the next input record from the current input file.
This form of getline will set the FNR and NR variables.

getline [var] < expression
Read the next record of input from a named file. The expression will be
evaluated to produce a string that is used as a full pathname. If the file
of that name is not currently open, it will be opened. As long as the
stream remains open, subsequent calls in which expression evaluates to
the same string value will read subsequent records from the file. The
file will remain open until the close function is called with an expres-
sion that evaluates to the same string value. If var is missing, $0 and NF
will be set; otherwise, var will be set.

The getline operator can form ambiguous constructs when there are
binary operators that are not in parentheses (including concatenate) to

1-722 SunOS 5.6 modified 18 Mar 1997

User Commands nawk (1)

the right of the < (up to the end of the expression containing the get-
line). The result of evaluating such a construct is unspecified, and all
such uses of portable applications must be put in parentheses properly.

system(expression)
Execute the command given by expression in a manner equivalent to the
system(3S) function and return the exit status of the command.

All forms of getline will return 1 for successful input, zero for end of file, and −1 for an
error.

Where strings are used as the name of a file or pipeline, the strings must be textually
identical. The terminology ‘‘same string value’’ implies that ‘‘equivalent strings’’, even
those that differ only by space characters, represent different files.

User-defined
Functions

The nawk language also provides user-defined functions. Such functions can be defined
as:

function name(args, . . .) { statements }

A function can be referred to anywhere in an nawk program; in particular, its use can
precede its definition. The scope of a function will be global.

Function arguments can be either scalars or arrays; the behavior is undefined if an array
name is passed as an argument that the function uses as a scalar, or if a scalar expression
is passed as an argument that the function uses as an array. Function arguments will be
passed by value if scalar and by reference if array name. Argument names will be local
to the function; all other variable names will be global. The same name will not be used
as both an argument name and as the name of a function or a special nawk variable. The
same name must not be used both as a variable name with global scope and as the name
of a function. The same name must not be used within the same scope both as a scalar
variable and as an array.

The number of parameters in the function definition need not match the number of
parameters in the function call. Excess formal parameters can be used as local variables.
If fewer arguments are supplied in a function call than are in the function definition, the
extra parameters that are used in the function body as scalars will be initialized with a
string value of the null string and a numeric value of zero, and the extra parameters that
are used in the function body as arrays will be initialized as empty arrays. If more argu-
ments are supplied in a function call than are in the function definition, the behavior is
undefined.

When invoking a function, no white space can be placed between the function name and
the opening parenthesis. Function calls can be nested and recursive calls can be made
upon functions. Upon return from any nested or recursive function call, the values of all
of the calling function’s parameters will be unchanged, except for array parameters
passed by reference. The return statement can be used to return a value. If a return
statement appears outside of a function definition, the behavior is undefined.

In the function definition, newline characters are optional before the opening brace and
after the closing brace. Function definitions can appear anywhere in the program where
a pattern-action pair is allowed.

modified 18 Mar 1997 SunOS 5.6 1-723

nawk (1) User Commands

USAGE The index, length, match, and substr functions should not be confused with similar func-
tions in the ISO C standard; the nawk versions deal with characters, while the ISO C stan-
dard deals with bytes.

Because the concatenation operation is represented by adjacent expressions rather than
an explicit operator, it is often necessary to use parentheses to enforce the proper evalua-
tion precedence.

See largefile(5) for the description of the behavior of nawk when encountering files
greater than or equal to 2 Gbyte (231 bytes).

EXAMPLES The nawk program specified in the command line is most easily specified within single-
quotes (for example, ’program’) for applications using sh, because nawk programs com-
monly contain characters that are special to the shell, including double-quotes. In the
cases where a nawk program contains single-quote characters, it is usually easiest to
specify most of the program as strings within single-quotes concatenated by the shell
with quoted single-quote characters. For example:

awk ’/’\’’/ { print "quote:", $0 }’

prints all lines from the standard input containing a single-quote character, prefixed with
quote:.

The following are examples of simple nawk programs:

1. Write to the standard output all input lines for which field 3 is greater than 5:

$3 > 5

2. Write every tenth line:

(NR % 10) == 0

3. Write any line with a substring matching the regular expression:

/(G|D)(2[0-9][[:alpha:]]∗)/

4. Print any line with a substring containing a G or D, followed by a sequence of
digits and characters. This example uses character classes digit and alpha to
match language-independent digit and alphabetic characters respectively:

/(G|D)([[:digit:][:alpha:]]∗)/

5. Write any line in which the second field matches the regular expression and the
fourth field does not:

$2 ˜ /xyz/ && $4 !˜ /xyz/

6. Write any line in which the second field contains a backslash:

$2 ˜ /\\/

7. Write any line in which the second field contains a backslash. Note that
backslash escapes are interpreted twice, once in lexical processing of the string
and once in processing the regular expression:

$2 ˜ "\\\\"

8. Write the second to the last and the last field in each line. Separate the fields by a
colon:

1-724 SunOS 5.6 modified 18 Mar 1997

User Commands nawk (1)

{OFS=":";print $(NF-1), $NF}

9. Write the line number and number of fields in each line. The three strings
representing the line number, the colon and the number of fields are con-
catenated and that string is written to standard output:

{print NR ":" NF}

10. Write lines longer than 72 characters:

{length($0) > 72}

11. Write first two fields in opposite order separated by the OFS:

{ print $2, $1 }

12. Same, with input fields separated by comma or space and tab characters, or both:
BEGIN { FS = ",[\t]∗|[\t]+" }

{ print $2, $1 }

13. Add up first column, print sum and average:

{s += $1 }
END {print "sum is ", s, " average is", s/NR}

14. Write fields in reverse order, one per line (many lines out for each line in):

{ for (i = NF; i > 0; --i) print $i }

15. Write all lines between occurrences of the strings start and stop:

/start/, /stop/

16. Write all lines whose first field is different from the previous one:

$1 != prev { print; prev = $1 }

17. Simulate echo:

BEGIN {
for (i = 1; i < ARGC; ++i)

printf "%s%s", ARGV[i], i==ARGC-1?"\n":""
}

18. Write the path prefixes contained in the PATH environment variable, one per line:

BEGIN {
n = split (ENVIRON["PATH"], path, ":")
for (i = 1; i <= n; ++i)

print path[i]
}

19. If there is a file named input containing page headers of the form:

Page#

and a file named program that contains:

/Page/{ $2 = n++; }
{ print }

then the command line:

modified 18 Mar 1997 SunOS 5.6 1-725

nawk (1) User Commands

nawk −f program n=5 input

will print the file input, filling in page numbers starting at 5.

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect execu-
tion: LC_COLLATE, LC_CTYPE, LC_MESSAGES, LC_NUMERIC, and NLSPATH.

EXIT STATUS The following exit values are returned:

0 All input files were processed successfully.

>0 An error occurred.

The exit status can be altered within the program by using an exit expression.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

/usr/bin/nawk ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

/usr/xpg4/bin/awk ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxcu4

SEE ALSO awk(1), ed(1), egrep(1), grep(1), lex(1), sed(1), popen(3S), printf(3S), system(3S), attri-
butes(5), environ(5), largefile(5), regex(5), xpg4(5)

Aho, A. V., B. W. Kernighan, and P. J. Weinberger, The AWK Programming Language,
Addison-Wesley, 1988.

DIAGNOSTICS If any file operand is specified and the named file cannot be accessed, nawk will write a
diagnostic message to standard error and terminate without any further action.

If the program specified by either the program operand or a progfile operand is not a valid
nawk program (as specified in EXTENDED DESCRIPTION), the behavior is undefined.

NOTES nawk is a new version of awk that provides capabilities unavailable in previous versions.
This version will become the default version of awk in the next major release.

Input white space is not preserved on output if fields are involved.

There are no explicit conversions between numbers and strings. To force an expression
to be treated as a number add 0 to it; to force it to be treated as a string concatenate the
null string ("") to it.

1-726 SunOS 5.6 modified 18 Mar 1997

User Commands newaliases (1)

NAME newaliases − rebuild the data base for the mail aliases file

SYNOPSIS newaliases

DESCRIPTION newaliases rebuilds the random access data base for the mail aliases file /etc/aliases. It is
run automatically by sendmail(1M) (in the default configuration) whenever
/etc/mail/aliases is newer than /etc/mail/aliases.pag

FILES /etc/aliases symbolic link to /etc/mail/aliases.
/etc/mail/aliases.pag
/etc/mail/aliases.dir ndbm files maintained by newaliases.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWnisu

SEE ALSO sendmail(1M), aliases(4), attributes(5)

modified 22 Sep 1994 SunOS 5.6 1-727

newform (1) User Commands

NAME newform − change the format of a text file

SYNOPSIS newform [−s] [−itabspec] [−otabspec] [−bn] [−en] [−pn] [−an] [−f] [−cchar] [−ln]
[filename. . .]

DESCRIPTION newform reads lines from the named filenames, or the standard input if no input file is
named, and reproduces the lines on the standard output. Lines are reformatted in accor-
dance with command line options in effect.

Except for −s, command line options may appear in any order, may be repeated, and may
be intermingled with the optional filenames. Command line options are processed in the
order specified. This means that option sequences like ‘‘−e15 −l60’’ will yield results dif-
ferent from ‘‘−l60 −e15’’. Options are applied to all filenames on the command line.

OPTIONS −s Shears off leading characters on each line up to the first tab and places up to 8
of the sheared characters at the end of the line. If more than 8 characters (not
counting the first tab) are sheared, the eighth character is replaced by a ∗ and
any characters to the right of it are discarded. The first tab is always dis-
carded.

An error message and program exit will occur if this option is used on a file
without a tab on each line. The characters sheared off are saved internally
until all other options specified are applied to that line. The characters are
then added at the end of the processed line.

For example, to convert a file with leading digits, one or more tabs, and text
on each line, to a file beginning with the text, all tabs after the first expanded
to spaces, padded with spaces out to column 72 (or truncated to column 72),
and the leading digits placed starting at column 73, the command would be:

newform −s −i −l −a −e file-name

−itabspec Input tab specification: expands tabs to spaces, according to the tab
specifications given. Tabspec recognizes all tab specification forms described
in tabs(1). In addition, tabspec may be −−, in which newform assumes that the
tab specification is to be found in the first line read from the standard input
(see fspec(4)). If no tabspec is given, tabspec defaults to −8. A tabspec of −0
expects no tabs; if any are found, they are treated as −1.

−otabspec Output tab specification: replaces spaces by tabs, according to the tab
specifications given. The tab specifications are the same as for −itabspec. If no
tabspec is given, tabspec defaults to −8. A tabspec of −0 means that no spaces
will be converted to tabs on output.

−bn Truncate n characters from the beginning of the line when the line length is
greater than the effective line length (see −ln). Default is to truncate the
number of characters necessary to obtain the effective line length. The default
value is used when −b with no n is used. This option can be used to delete the
sequence numbers from a COBOL program as follows:

newform −l1 −b7 file-name

1-728 SunOS 5.6 modified 14 Sep 1992

User Commands newform (1)

−en Same as −bn except that characters are truncated from the end of the line.

−pn Prefix n characters (see −cchar) to the beginning of a line when the line length
is less than the effective line length. Default is to prefix the number of charac-
ters necessary to obtain the effective line length.

−an Same as −pn except characters are appended to the end of a line.

−f Write the tab specification format line on the standard output before any other
lines are output. The tab specification format line which is printed will
correspond to the format specified in the last −o option. If no −o option is
specified, the line which is printed will contain the default specification of −8.

−cchar Change the prefix/append character to char. Default character for char is a
space.

−ln Set the effective line length to n characters. If n is not entered, −l defaults to
72. The default line length without the −l option is 80 characters. Note: Tabs
and backspaces are considered to be one character (use −i to expand tabs to
spaces).

The −l1 must be used to set the effective line length shorter than any existing
line in the file so that the −b option is activated.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu

SEE ALSO csplit(1), tabs(1), fspec(4), attributes(5)

DIAGNOSTICS All diagnostics are fatal.
usage: . . .

newform was called with a bad option.
"not −s format"

There was no tab on one line.
"can’t open file"

Self-explanatory.
"internal line too long"

A line exceeds 512 characters after being expanded in the internal work buffer.
"tabspec in error"

A tab specification is incorrectly formatted, or specified tab stops are not ascend-
ing.

"tabspec indirection illegal"
A tabspec read from a file (or standard input) may not contain a tabspec referenc-
ing another file (or standard input).

0 − normal execution
1 − for any error

modified 14 Sep 1992 SunOS 5.6 1-729

newform (1) User Commands

NOTES newform normally only keeps track of physical characters; however, for the −i and −o
options, newform will keep track of backspaces in order to line up tabs in the appropriate
logical columns.

newform will not prompt the user if a tabspec is to be read from the standard input (by
use of −i−− or −o−−).

If the −f option is used, and the last −o option specified was −o−−, and was preceded by
either a −o−− or a −i−−, the tab specification format line will be incorrect.

1-730 SunOS 5.6 modified 14 Sep 1992

User Commands newgrp (1)

NAME newgrp − log in to a new group

SYNOPSIS
Command /usr/bin/newgrp [− | −l] [group]

sh Built-in newgrp [argument]

ksh Built-in † newgrp [argument]

DESCRIPTION
Command The newgrp command logs a user into a new group by changing a user’s real and effec-

tive group ID. The user remains logged in and the current directory is unchanged. The
execution of newgrp always replaces the current shell with a new shell, even if the com-
mand terminates with an error (unknown group).

Any variable that is not exported is reset to null or its default value. Exported variables
retain their values. System variables (such as PS1, PS2, PATH, MAIL, and HOME), are
reset to default values unless they have been exported by the system or the user. For
example, when a user has a primary prompt string (PS1) other than $ (default) and has
not exported PS1, the user’s PS1 will be set to the default prompt string $, even if newgrp
terminates with an error. Note that the shell command export (see sh(1) and set(1)) is the
method to export variables so that they retain their assigned value when invoking new
shells.

With no operands and options, newgrp changes the user’s group IDs (real and effective)
back to the group specified in the user’s password file entry. This is a way to exit the
effect of an earlier newgrp command.

A password is demanded if the group has a password and the user is not listed in
/etc/group as being a member of that group. The only way to create a password for a
group is to use passwd(1), then cut and paste the password from /etc/shadow to
/etc/group. Group passwords are antiquated and not often used.

sh Built-in Equivalent to exec newgrp argument where argument represents the options and/or
operand of the newgrp command.

ksh Built-in Equivalent to exec /bin/newgrp argument where argument represents the options and/or
operand of the newgrp command.

On this man page, ksh(1) commands that are preceded by one or two † (daggers) are
treated specially in the following ways:
1. Variable assignment lists preceding the command remain in effect when the com-

mand completes.
2. I/O redirections are processed after variable assignments.
3. Errors cause a script that contains them to abort.
4. Words, following a command preceded by †† that are in the format of a variable

assignment, are expanded with the same rules as a variable assignment. This
means that tilde substitution is performed after the = sign and word splitting and

modified 1 Feb 1995 SunOS 5.6 1-731

newgrp (1) User Commands

file name generation are not performed.

OPTIONS The following option is supported:

−l

− change the environment to what would be expected if the user actually
logged in again as a member of the new group.

OPERANDS The following operand is supported:

group A group name from the group database or a non-negative numeric
group ID. Specifies the group ID to which the real and effective group
IDs will be set. If group is a non-negative numeric string and exists in
the group database as a group name (see getgrnam(3C)), the numeric
group ID associated with that group name will be used as the group ID.

argument sh and ksh only. Options and/or operand of the newgrp command.

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of newgrp: LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS If newgrp succeeds in creating a new shell execution environment, whether or not the
group identification was changed successfully, the exit status will be the exit status of the
shell. Otherwise, the following exit value is returned:

>0 An error occurred.

FILES /etc/group system’s group file

/etc/passwd system’s password file

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO login(1), ksh(1), set(1), sh(1), intro(2), getgrnam(3C), group(4), passwd(4), attributes(5),
environ(5)

1-732 SunOS 5.6 modified 1 Feb 1995

User Commands news (1)

NAME news − print news items

SYNOPSIS news [−a] [−n] [−s] [items]

DESCRIPTION news is used to keep the user informed of current events. By convention, these events
are described by files in the directory /var/news.

When invoked without arguments, news prints the contents of all current files in
/var/news, most recent first, with each preceded by an appropriate header. news stores
the ‘‘currency’’ time as the modification date of a file named .news_time in the user’s
home directory (the identity of this directory is determined by the environment variable
$HOME); only files more recent than this currency time are considered ‘‘current.’’

OPTIONS −a news prints all items, regardless of currency. In this case, the stored time is
not changed.

−n news reports the names of the current items without printing their contents,
and without changing the stored time.

−s news reports how many current items exist, without printing their names or
contents, and without changing the stored time. It is useful to include such an
invocation of news in one’s .profile file, or in the system’s /etc/profile.

All other arguments are assumed to be specific news items that are to be printed.

If a delete is typed during the printing of a news item, printing stops and the next item is
started. Another delete within one second of the first causes the program to terminate.

ENVIRONMENT See environ(5) for a description of the LC_CTYPE environment variable that affects the
execution of news.

FILES /etc/profile
/var/news/∗
$HOME/.news_time

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu
CSI Enabled

SEE ALSO profile(4), attributes(5), environ(5)

modified 20 Dec 1996 SunOS 5.6 1-733

nice (1) User Commands

NAME nice − invoke a command with an altered scheduling priority

SYNOPSIS /usr/bin/nice [−increment | −n increment] command [argument . . .]

/usr/xpg4/bin/nice [−increment | −n increment] command [argument . . .]

csh Builtin nice [−increment | +increment] [command]

DESCRIPTION The nice utility invokes command, requesting that it be run with a different system
scheduling priority. The priocntl(1) command is a more general interface to scheduler
functions.

The invoking process (generally the user’s shell) must be in a scheduling class that sup-
ports nice.

If the C shell (see csh(1)) is used, the full path of the command must be specified; other-
wise, the csh built-in version of nice will be invoked. See csh Builtin below.

/usr/bin/nice If nice executes commands with arguments, it uses the default shell /usr/bin/sh (see
sh(1)).

/usr/xpg4/bin/nice If nice executes commands with arguments, it uses /usr/xpg4/bin/sh, which is equivalent
to /usr/bin/ksh (see ksh(1)).

csh Builtin nice is also a csh built-in command with behavior different from the utility versions. See
csh(1) for description.

OPTIONS The following options are supported:

−increment | −n increment
increment must be in the range 1-19; if not specified, an increment of 10 is
assumed. An increment greater than 19 is equivalent to 19.

The super-user may run commands with priority higher than normal by
using a negative increment such as −−10. A negative increment assigned by
an unprivileged user is ignored.

OPERANDS The following operands are supported:

command The name of a command that is to be invoked. If command names any of the
special built-in utilities (see shell_builtins(1)), the results are undefined.

argument Any string to be supplied as an argument when invoking command.

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of nice: LC_CTYPE, LC_MESSAGES, PATH, and NLSPATH.

EXIT STATUS If command is invoked, the exit status of nice will be the exit status of command; otherwise,
nice will exit with one of the following values:

1-125 An error occurred. nice utility.

1-734 SunOS 5.6 modified 18 Mar 1997

User Commands nice (1)

126 command was found but could not be invoked.

127 command could not be found.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

/usr/bin/nice ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu
CSI enabled

/usr/xpg4/bin/nice ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxcu4
CSI enabled

SEE ALSO csh(1), ksh(1), nohup(1), priocntl(1), sh(1), shell_builtins(1), nice(2), attributes(5),
environ(5), xpg4(5)

modified 18 Mar 1997 SunOS 5.6 1-735

SunOS 5.5 User Commands nis+ (1)

NAME nis+, NIS+, nis − a new version of the network information name service

DESCRIPTION NIS+ is a new version of the network information nameservice. This version differs in
several significant ways from version 2, which is referred to as NIS or YP in earlier
releases. Specific areas of enhancement include the ability to scale to larger networks,
security, and the administration of the service.

The man pages for NIS+ are broken up into three basic categories. Those in section 1 are
the user commands that are most often executed from a shell script or directly from the
command line. Section 1M man pages describe utility commands that can be used by the
network administrator to administer the service itself. The NIS+ programming API is
described by man pages in section 3N.

All commands and functions that use NIS version 2 are prefixed by the letters yp as in
ypmatch(1), ypcat(1), yp_match(3N), and yp_first(3N). Commands and functions that
use the new replacement software NIS+ are prefixed by the letters nis as in nismatch(1),
nischown(1), nis_list(3N), and nis_add_entry(3N). A complete list of NIS+ commands is
in the LIST OF COMMANDS section.

This man page introduces the NIS+ terminology. It also describes the NIS+ namespace,
authentication, and authorization policies.

NIS+
NAMESPACE

The naming model of NIS+ is based upon a tree structure. Each node in the tree
corresponds to an NIS+ object. There are six types of NIS+ objects: directory, table , group,
link, entry, and private .

NIS+ Directory
Object

Each NIS+ namespace will have at least one NIS+ directory object. An NIS+ directory is
like a UNIX file system directory which contains other NIS+ objects including NIS+ direc-
tories. The NIS+ directory that forms the root of the NIS+ namespace is called the root
directory. There are two special NIS+ directories: org_dir and groups_dir. The org_dir
directory consists of all the system-wide administration tables, such as passwd, hosts,
and mail_aliases. The groups_dir directory consists of NIS+ group objects which are
used for access control. The collection of org_dir, groups_dir and their parent directory
is referred to as an NIS+ domain. NIS+ directories can be arranged in a tree-like struc-
ture so that the NIS+ namespace can match the organizational or administrative hierar-
chy.

NIS+ Table Object NIS+ tables (not files), contained within NIS+ directories, store the actual information
about some particular type. For example, the hosts system table stores information about
the IP address of the hosts in that domain. NIS+ tables are multicolumn and the tables
can be searched through any of the searchable columns. Each table object defines the
schema for its table. The NIS+ tables consist of NIS+ entry objects. For each entry in the
NIS+ table, there is an NIS+ entry object. NIS+ entry objects conform to the schema
defined by the NIS+ table object.

modified 4 May 1997 1-677

nis+ (1) User Commands SunOS 5.5

NIS+ Group Object NIS+ group objects are used for access control at group granularity. NIS+ group objects,
contained within the groups_dir directory of a domain, contain a list of all the NIS+ prin-
cipals within a certain NIS+ group. An NIS+ principal is a user or a machine making
NIS+ requests.

NIS+ Link Object NIS+ link objects are like UNIX symbolic file-system links—they are typically used for
shortcuts in the NIS+ namespace.

Refer to nis_objects(3N) for more information about the NIS+ objects.

NIS+ NAMES The NIS+ service defines two forms of names, simple names and indexed names. Simple
names are used by the service to identify NIS+ objects contained within the NIS+
namespace. Indexed names are used to identify NIS+ entries contained within NIS+
tables. Furthermore, entries within NIS+ tables are returned to the caller as NIS+ objects
of type entry. NIS+ objects are implemented as a union structure which is described in
the file <rpcsvc/nis_object.x>. The differences between the various types and the mean-
ings of the components of these objects are described in nis_objects(3N).

Simple Names Simple names consist of a series of labels that are separated by the ‘.’(dot) character. Each
label is composed of printable characters from the ISO Latin 1 set. Each label can be of
any nonzero length, provided that the fully qualified name is fewer than
NIS_MAXNAMELEN octets including the separating dots. (See <rpcsvc/nis.h> for the
actual value of NIS_MAXNAMELEN in the current release.) Labels that contain special
characters (see Grammar) must be quoted.

The NIS+ namespace is organized as a singly rooted tree. Simple names identify nodes
within this tree. These names are constructed such that the leftmost label in a name
identifies the leaf node and all of the labels to the right of the leaf identify that object’s
parent node. The parent node is referred to as the leaf’s directory. This is a naming direc-
tory and should not be confused with a file system directory.

For example, the name example.simple.name. is a simple name with three labels, where
example is the leaf node in this name, the directory of this leaf is simple.name. which by
itself is a simple name. The leaf of which is simple and its directory is simply name.

The function nis_leaf_of(3N) returns the first label of a simple name. The function
nis_domain_of(3N) returns the name of the directory that contains the leaf. Iterative use
of these two functions can break a simple name into each of its label components.

The name ‘.’ (dot) is reserved to name the global root of the namespace. For systems that
are connected to the Internet, this global root will be served by a Domain Name Service.
When an NIS+ server is serving a root directory whose name is not ‘.’(dot) this directory
is referred to as a local root.

NIS+ names are said to be fully qualified when the name includes all of the labels identify-
ing all of the directories, up to the global root. Names without the trailing dot are called
partially qualified.

1-678 modified 4 May 1997

SunOS 5.5 User Commands nis+ (1)

Indexed Names Indexed names are compound names that are composed of a search criterion and a sim-
ple name. The search criterion component is used to select entries from a table; the sim-
ple name component is used to identify the NIS+ table that is to be searched. The search
criterion is a series of column names and their desired values enclosed in bracket ‘[]’
characters. These criteria take the following form:

[column_name=value, column_name=value, ...]

A search criterion is combined with a simple name to form an indexed name by con-
catenating the two parts, separated by a ‘,’(comma) character as follows.

[search-criterion],table.directory.

When multiple column name/value pairs are present in the search criterion, only those
entries in the table that have the appropriate value in all columns specified are returned.
When no column name/value pairs are specified in the search criterion, [], all entries in
the table are returned.

Grammar The following text represents a context-free grammar that defines the set of legal NIS+
names. The terminals in this grammar are the characters ‘.’ (dot), ‘[’ (open bracket), ‘]’
(close bracket), ‘,’ (comma), ‘=’ (equals) and whitespace. Angle brackets (‘<’ and ‘>’),
which delineate non-terminals, are not part of the grammar. The character ‘|’ (vertical
bar) is used to separate alternate productions and should be read as ‘‘this production OR
this production’’.

name ::= . | <simple name> | <indexed name>
simple name ::= <string>. | <string>.<simple name>
indexed name ::= <search criterion>,<simple name>
search criterion ::= [<attribute list>]
attribute list ::= <attribute> | <attribute>,<attribute list>
attribute ::= <string> = <string>
string ::= ISO Latin 1 character set except the

character ’/’ (slash). The initial character
may not be a terminal character or the
characters ’@’ (at), ’+’ (plus), or (‘−’)
hyphen.

Terminals that appear in strings must be quoted with ‘"’ (double quote). The ‘"’ character
may be quoted by quoting it with itself ‘""’.

Name Expansion The NIS+ service only accepts fully qualified names. However, since such names may be
unwieldy, the NIS+ commands in section 1 employ a set of standard expansion rules that
will attempt to fully qualify a partially qualified name. This expansion is actually done
by the NIS+ library function nis_getnames(3N) which generates a list of names using the
default NIS+ directory search path or the NIS_PATH environment variable. The default
NIS+ directory search path includes all the names in its path. nis_getnames() is invoked
by the functions nis_lookup(3N) and nis_list(3N) when the EXPAND_NAME flag is used.

modified 4 May 1997 1-679

nis+ (1) User Commands SunOS 5.5

The NIS_PATH environment variable contains an ordered list of simple names. The
names are separated by the ‘:’ (colon) character. If any name in the list contains colons,
the colon should be quoted as described in the Grammar section. When the list is
exhausted, the resolution function returns the error NIS_NOTFOUND. This may mask the
fact that the name existed but a server for it was unreachable. If the name presented to
the list or lookup interface is fully qualified, the EXPAND_NAME flag is ignored.

In the list of names from the NIS_PATH environment variable, the ’$’ (dollar sign) charac-
ter is treated specially. Simple names that end with the label ’$’ have this character
replaced by the default directory (see nis_local_directory(3N)). Using "$" as a name in
this list results in this name being replaced by the list of directories between the default
directory and the global root that contain at least two labels.

Below is an example of this expansion. Given the default directory of
some.long.domain.name., and the NIS_PATH variable set to fred.bar.:org_dir.$:$. This path
is initially broken up into the list:

1 fred.bar.

2 org_dir.$

3 $

The dollar sign in the second component is replaced by the default directory. The dollar
sign in the third component is replaced with the names of the directories between the
default directory and the global root that have at least two labels in them. The effective
path value becomes:

1 fred.bar.

2a org_dir.some.long.domain.name.

3a some.long.domain.name.

3b long.domain.name.

3c domain.name.

Each of these simple names is appended to the partially qualified name that was passed
to the nis_lookup(3N) or nis_list(3N) interface. Each is tried in turn until NIS_SUCCESS
is returned or the list is exhausted.

If the NIS_PATH variable is not set, the path ‘‘$’’ is used.

The library function nis_getnames(3N) can be called from user programs to generate the
list of names that would be attempted. The program nisdefaults(1) with the −s option
can also be used to show the fully expanded path.

Concatenation Path Normally all the entries for a certain type of information are stored within the table itself.
However, there are times when it is desirable for the table to point to other tables where
entries can be found. For example, you may want to store all the IP addresses in the host
table for their own domain, and yet want to be able to resolve hosts in some other
domain without explicitly specifying the new domain name. NIS+ provides a mechan-
ism for concatenating different but related tables with a "NIS+ Concatenation Path".
With a concatenation path, you can create a sort of flat namespace from a hierarchical

1-680 modified 4 May 1997

SunOS 5.5 User Commands nis+ (1)

structure. You can also create a table with no entries and just point the hosts or any other
table to its parent domain. Note that with such a setup, you are moving the administra-
tive burden of managing the tables to the parent domain. The concatenation path will
slow down the request response time because more tables and more servers are searched.
It will also decrease the availability if all the servers are incapacitated for a particular
directory in the table path.

The NIS+ Concatenation Path is also referred to as the "table path". This path is set up at
table creation time through nistbladm(1). You can specify more than one table to be con-
catenated and they will be searched in the given order. Note that the NIS+ client
libraries, by default, will not follow the concatenation path set in site-specific tables.
Refer to nis_list(3N) for more details.

Namespaces The NIS+ service defines two additional disjoint namespaces for its own use. These
namespaces are the NIS+ Principal namespace, and the NIS+ Group namespace. The names
associated with the group and principal namespaces are syntactically identical to simple
names. However, the information they represent cannot be obtained by directly present-
ing these names to the NIS+ interfaces. Instead, special interfaces are defined to map
these names into NIS+ names so that they may then be resolved.

Principal Names NIS+ principal names are used to uniquely identify users and machines that are making
NIS+ requests. These names have the form:

principal.domain

Here domain is the fully qualified name of an NIS+ directory where the named principal’s
credentials can be found. See Directories and Domains for more information on
domains. Note that in this name, principal, is not a leaf in the NIS+ namespace.

Credentials are used to map the identity of a host or user from one context such as a pro-
cess UID into the NIS+ context. They are stored as records in an NIS+ table named cred,
which always appears in the org_dir subdirectory of the directory named in the principal
name.

This mapping can be expressed as a replacement function:

principal.domain −>[cname=principal.domain],cred.org_dir.domain

This latter name is an NIS+ name that can be presented to the nis_list(3N) interface for
resolution. NIS+ principal names are administered using the nisaddcred(1M) command.

The cred table contains five columns named cname, auth_name, auth_type , public_data, and
private_data . There is one record in this table for each identity mapping for an NIS+ prin-
cipal. The current service supports two such mappings:

LOCAL This mapping is used to map from the UID of a given process to the NIS+ prin-
cipal name associated with that UID. If no mapping exists, the name nobody is
returned. When the effective UID of the process is 0 (for example, the super-
user), the NIS+ name associated with the host is returned. Note that UIDs are
sensitive to the context of the machine on which the process is executing.

DES This mapping is used to map to and from a Secure RPC ‘‘netname’’ into an
NIS+ principal name. See secure_rpc(3N) for more information on netnames.

modified 4 May 1997 1-681

nis+ (1) User Commands SunOS 5.5

Note that since netnames contain the notion of a domain, they span NIS+ direc-
tories.

The NIS+ client library function nis_local_principal(3N) uses the cred.org_dir table to map
the UNIX notion of an identity, a process’ UID, into an NIS+ principal name. Shell pro-
grams can use the program nisdefaults(1) with the -p switch to return this information.

Mapping from UIDs to an NIS+ principal name is accomplished by constructing a query
of the form:

[auth_type=LOCAL, auth_name=uid],cred.org_dir.default-domain .

This query will return a record containing the NIS+ principal name associated with this
UID, in the machine’s default domain.

The NIS+ service uses the DES mapping to map the names associated with Secure RPC
requests into NIS+ principal names. RPC requests that use Secure RPC include the net-
name of the client making the request in the RPC header. This netname has the form:

unix.UID@domain

The service constructs a query using this name of the form:

[auth_type=DES, auth_name=netname],cred.org_dir.domain.

where the domain part is extracted from the netname rather than using the default
domain. This query is used to look up the mapping of this netname into an NIS+ principal
name in the domain where it was created.

This mechanism of mapping UID and netnames into an NIS+ principal name guarantees
that a client of the NIS+ service has only one principal name. This principal name is used
as the basis for authorization which is described below. All objects in the NIS+
namespace and all entries in NIS+ tables must have an owner specified for them. This
owner field always contains an NIS+ principal name.

Group Names Like NIS+ principal names, NIS+ group names take the form:
group_name.domain

All objects in the NIS+ namespace and all entries in NIS+ tables may optionally have a
group owner specified for them. This group owner field, when filled in, always contains
the fully qualified NIS+ group name.

The NIS+ client library defines several interfaces (nis_groups(3N)) for dealing with NIS+
groups. These interfaces internally map NIS+ group names into an NIS+ simple name
which identifies the NIS+ group object associated with that group name. This mapping
can be shown as follows:

group.domain −> group.groups_dir.domain

This mapping eliminates collisions between NIS+ group names and NIS+ directory names.
For example, without this mapping, a directory with the name engineering.foo.com., would
make it impossible to have a group named engineering.foo.com.. This is due to the restric-
tion that within the NIS+ namespace, a name unambiguously identifies a single object.
With this mapping, the NIS+ group name engineering.foo.com. maps to the NIS+ object name
engineering.groups_dir.foo.com.

1-682 modified 4 May 1997

SunOS 5.5 User Commands nis+ (1)

The contents of a group object is a list of NIS+ principal names, and the names of other
NIS+ groups. See nis_groups(3N) for a more complete description of their use.

NIS+ SECURITY NIS+ defines a security model to control access to information managed by the service.
The service defines access rights that are selectively granted to individual clients or
groups of clients. Principal names and group names are used to define clients and
groups of clients that may be granted or denied access to NIS+ information. These princi-
pals and groups are associated with NIS+ domains as defined below.

The security model also uses the notion of a class of principals called nobody , which con-
tains all clients, whether or not they have authenticated themselves to the service. The
class world includes any client who has been authenticated.

Directories and
Domains

Some directories within the NIS+ namespace are referred to as NIS+ Domains. Domains
are those NIS+ directories that contain the subdirectories groups_dir and org_dir. Further,
the subdirectory org_dir should contain the table named cred. NIS+ Group names and
NIS+ Principal names always include the NIS+ domain name after their first label.

Authentication The NIS+ name service uses Secure RPC for the integrity of the NIS+ service. This
requires that users of the service and their machines must have a Secure RPC key pair
associated with them. This key is initially generated with either the nisaddcred(1M) or
nisclient(1M) commands and modified with the chkey(1) or nispasswd(1) commands.

The use of Secure RPC allows private information to be stored in the name service that
will not be available to untrusted machines or users on the network.

In addition to the Secure RPC key, users need a mapping of their UID into an NIS+ princi-
pal name. This mapping is created by the system administrator using the nisclient(1M)
or nisaddcred(1M) command.

Users that will be using machines in several NIS+ domains must insure that they have a
local credential entry in each of those domains. This credential should be created with the
NIS+ principal name of the user in their ‘‘home’’ domain. For the purposes of NIS+ and
Secure RPC, the home domain is defined to be the one where your Secure RPC key pair is
located.

Authorization The NIS+ service defines four access rights that can be granted or denied to clients of the
service. These rights are read, modify, create, and destroy. These rights are specified in the
object structure at creation time and may be modified later with the nischmod(1) com-
mand. In general, the rights granted for an object apply only to that object. However, for
purposes of authorization, rights granted to clients reading directory and table objects are
granted to those clients for all of the objects ‘‘contained’’ by the parent object. This notion
of containment is abstract. The objects do not actually contain other objects within them.
Note that group objects do contain the list of principals within their definition.

Access rights are interpreted as follows:

read This right grants read access to an object. For directory and table objects, hav-
ing read access on the parent object conveys read access to all of the objects
that are direct children of a directory, or entries within a table.

modified 4 May 1997 1-683

nis+ (1) User Commands SunOS 5.5

modify This right grants modification access to an existing object. Read access is not
required for modification. However, in many applications, one will need to
read an object before modifying it. Such modify operations will fail unless
read access is also granted.

create This right gives a client permission to create new objects where one had not
previously existed. It is only used in conjunction with directory and table
objects. Having create access for a table allows a client to add additional
entries to the table. Having create access for a directory allows a client to add
new objects to an NIS+ directory.

destroy This right gives a client permission to destroy or remove an existing object or
entry. When a client attempts to destroy an entry or object by removing it, the
service first checks to see if the table or directory containing that object grants
the client destroy access. If it does, the operation proceeds, if the containing
object does not grant this right then the object itself is checked to see if it
grants this right to the client. If the object grants the right, then the operation
proceeds; otherwise the request is rejected.

Each of these rights may be granted to any one of four different categories.

owner A right may be granted to the owner of an object. The owner is the NIS+ princi-
pal identified in the owner field. The owner can be changed with the
nischown(1) command. Note that if the owner does not have modification
access rights to the object, the owner cannot change any access rights to the
object, unless the owner has modification access rights to its parent object.

group owner
A right may be granted to the group owner of an object. This grants the right to
any principal that is identified as a member of the group associated with the
object. The group owner may be changed with the nischgrp(1) command.
The object owner need not be a member of this group.

world A right may be granted to everyone in the world . This grants the right to all
clients who have authenticated themselves with the service.

nobody A right may be granted to the nobody principal. This has the effect of granting
the right to any client that makes a request of the service, regardless of
whether they are authenticated or not.

Note that for bootstrapping reasons, directory objects that are NIS+ domains, the org_dir
subdirectory and the cred table within that subdirectory must have read access to the
nobody principal. This makes navigation of the namespace possible when a client is in the
process of locating its credentials. Granting this access does not allow the contents of
other tables within org_dir to be read (such as the entries in the password table) unless the
table itself gives "real" access rights to the nobody principal.

Directory
Authorization

Additional capabilities are provided for granting access rights to clients for directories.
These rights are contained within the object access rights (OAR) structure of the directory.
This structure allows the NIS+ service to grant rights that are not granted by the directory
object to be granted for objects contained by the directory of a specific type.

1-684 modified 4 May 1997

SunOS 5.5 User Commands nis+ (1)

An example of this capability is a directory object which does not grant create access to
all clients, but does grant create access in the OAR structure for group type objects to
clients who are members of the NIS+ group associated with the directory. In this example
the only objects that could be created as children of the directory would have to be of the
type group.

Another example is a directory object that grants create access only to the owner of the
directory, and then additionally grants create access through the OAR structure for
objects of type table , link, group, and private to any member of the directory’s group. This
has the effect of giving nearly complete create access to the group with the exception of
creating subdirectories. This restricts the creation of new NIS+ domains because creating
a domain requires creating both a groups_dir and org_dir subdirectory.

Note that there is currently no command line interface to set or change the OAR of the
directory object.

Table Authorization As with directories, additional capabilities are provided for granting access to entries
within tables. Rights granted to a client by the access rights field in a table object apply to
the table object and all of the entry objects ‘‘contained’’ by that table. If an access right is
not granted by the table object, it may be granted by an entry within the table. This holds
for all rights except create.

For example, a table may not grant read access to a client performing a nis_list(3N)
operation on the table. However, the access rights field of entries within that table may
grant read access to the client. Note that access rights in an entry are granted to the owner
and group owner of the entry and not the owner or group of the table. When the list
operation is performed, all entries that the client has read access to are returned. Those
entries that do not grant read access are not returned. If none of the entries that match
the search criterion grant read access to the client making the request, no entries are
returned and the result status contains the NIS_NOTFOUND error code.

Access rights that are granted by the rights field in an entry are granted for the entire
entry. However, in the table object an additional set of access rights is maintained for
each column in the table. These rights apply to the equivalent column in the entry. The
rights are used to grant access when neither the table nor the entry itself grant access.
The access rights in a column specification apply to the owner and group owner of the
entry rather than the owner and group owner of the table object.

When a read operation is performed, if read access is not granted by the table and is not
granted by the entry but is granted by the access rights in a column, that entry is returned
with the correct values in all columns that are readable and the string ∗NP∗ (No Permis-
sion) in columns where read access is not granted.

As an example, consider a client that has performed a list operation on a table that does
not grant read access to that client. Each entry object that satisfied the search criterion
specified by the client is examined to see if it grants read access to the client. If it does, it
is included in the returned result. If it does not, then each column is checked to see if it
grants read access to the client. If any columns grant read access to the client, data in
those columns is returned. Columns that do not grant read access have their contents
replaced by the string ∗NP∗. If none of the columns grant read access, then the entry is

modified 4 May 1997 1-685

nis+ (1) User Commands SunOS 5.5

not returned.

LIST OF
COMMANDS

The following lists all commands and programming functions related to NIS+:

NIS+ User
Commands

nisaddent(1M) add /etc files and NIS maps into their corresponding
NIS+ tables

niscat(1) display NIS+ tables and objects
nischgrp(1) change the group owner of a NIS+ object
nischmod(1) change access rights on a NIS+ object
nischown(1) change the owner of a NIS+ object
nischttl(1) change the time to live value of a NIS+ object
nisdefaults(1) display NIS+ default values
niserror(1) display NIS+ error messages
nisgrep(1) utilities for searching NIS+ tables
nisgrpadm(1) NIS+ group administration command
nisln(1) symbolically link NIS+ objects
nisls(1) list the contents of a NIS+ directory
nismatch(1) utilities for searching NIS+ tables
nismkdir(1) create NIS+ directories
nispasswd(1) change NIS+ password information
nisrm(1) remove NIS+ objects from the namespace
nisrmdir(1) remove NIS+ directories
nisshowcache(1M) NIS+ utility to print out the contents of the shared

cache file
nistbladm(1) NIS+ table administration command
nistest(1) return the state of the NIS+ namespace using a condi-

tional expression

NIS+ Administrative
Commands

aliasadm(1M) manipulate the NIS+ aliases map
nis_cachemgr(1M) NIS+ utility to cache location information about NIS+

servers
nisaddcred(1M) create NIS+ credentials
nisaddent(1M) create NIS+ tables from corresponding /etc files or NIS

maps
nisclient(1M) initialize NIS+ credentials for NIS+ principals
nisd(1M) NIS+ service daemon
nisd_resolv(1M) NIS+ service daemon
nisinit(1M) NIS+ client and server initialization utility
nislog(1M) display the contents of the NIS+ transaction log
nisping(1M) send ping to NIS+ servers
nispopulate(1M) populate the NIS+ tables in a NIS+ domain
nisserver(1M) set up NIS+ servers
nissetup(1M) initialize a NIS+ domain
nisshowcache(1M) NIS+ utility to print out the contents of the shared

cache file

1-686 modified 4 May 1997

SunOS 5.5 User Commands nis+ (1)

nisstat(1M) report NIS+ server statistics
nisupdkeys(1M) update the public keys in a NIS+ directory object
rpc.nisd(1M) NIS+ service daemon
rpc.nisd_resolv(1M) NIS+ service daemon
sysidnis(1M) system configuration

NIS+ Programming
API

__nis_map_group(3N) NIS+ group manipulation functions
db_add_entry(3N) NIS+ Database access functions
db_checkpoint(3N) NIS+ Database access functions
db_create_table(3N) NIS+ Database access functions
db_destroy_table(3N) NIS+ Database access functions
db_first_entry(3N) NIS+ Database access functions
db_free_result(3N) NIS+ Database access functions
db_initialize(3N) NIS+ Database access functions
db_list_entries(3N) NIS+ Database access functions
db_next_entry(3N) NIS+ Database access functions
db_remove_entry(3N) NIS+ Database access functions
db_reset_next_entry(3N) NIS+ Database access functions
db_standby(3N) NIS+ Database access functions
db_table_exists(3N) NIS+ Database access functions
db_unload_table(3N) NIS+ Database access functions
nis_add(3N) NIS+ namespace functions
nis_add_entry(3N) NIS+ table functions
nis_addmember(3N) NIS+ group manipulation functions
nis_checkpoint(3N) misc NIS+ log administration functions
nis_clone_object(3N) NIS+ subroutines
nis_creategroup(3N) NIS+ group manipulation functions
nis_db(3N) NIS+ Database access functions
nis_destroy_object(3N) NIS+ subroutines
nis_destroygroup(3N) NIS+ group manipulation functions
nis_dir_cmp(3N) NIS+ subroutines
nis_domain_of(3N) NIS+ subroutines
nis_error(3N) display NIS+ error messages
nis_first_entry(3N) NIS+ table functions
nis_freenames(3N) NIS+ subroutines
nis_freeresult(3N) NIS+ namespace functions
nis_freeservlist(3N) miscellaneous NIS+ functions
nis_freetags(3N) miscellaneous NIS+ functions
nis_getnames(3N) NIS+ subroutines
nis_getservlist(3N) miscellaneous NIS+ functions
nis_groups(3N) NIS+ group manipulation functions
nis_ismember(3N) NIS+ group manipulation functions
nis_leaf_of(3N) NIS+ subroutines
nis_lerror(3N) display some NIS+ error messages
nis_list(3N) NIS+ table functions

modified 4 May 1997 1-687

nis+ (1) User Commands SunOS 5.5

nis_local_directory(3N) NIS+ local names
nis_local_group(3N) NIS+ local names
nis_local_host(3N) NIS+ local names
nis_local_names(3N) NIS+ local names
nis_local_principal(3N) NIS+ local names
nis_lookup(3N) NIS+ namespace functions
nis_map_group(3N) NIS+ group manipulation functions
nis_mkdir(3N) miscellaneous NIS+ functions
nis_modify(3N) NIS+ namespace functions
nis_modify_entry(3N) NIS+ table functions
nis_name_of(3N) NIS+ subroutines
nis_names(3N) NIS+ namespace functions
nis_next_entry(3N) NIS+ table functions
nis_objects(3N) NIS+ object formats
nis_perror(3N) display NIS+ error messages
nis_ping(3N) misc NIS+ log administration functions
nis_print_group_entry(3N) NIS+ group manipulation functions
nis_print_object(3N) NIS+ subroutines
nis_remove(3N) NIS+ namespace functions
nis_remove_entry(3N) NIS+ table functions
nis_removemember(3N) NIS+ group manipulation functions
nis_rmdir(3N) miscellaneous NIS+ functions
nis_server(3N) miscellaneous NIS+ functions
nis_servstate(3N) miscellaneous NIS+ functions
nis_sperrno(3N) display NIS+ error messages
nis_sperror(3N) display NIS+ error messages
nis_sperror_r(3N) display NIS+ error messages
nis_stats(3N) miscellaneous NIS+ functions
nis_subr(3N) NIS+ subroutines
nis_tables(3N) NIS+ table functions
nis_verifygroup(3N) NIS+ group manipulation functions

NIS+ Files and
Directories

nisfiles(4) NIS+ database files and directory structure

FILES <rpcsvc/nis_object.x> protocol description of an NIS+ object
<rpcsvc/nis.x> defines the NIS+ protocol using the RPC language as

described in the ONC+ Developers Guide.
<rpcsvc/nis.h> should be included by all clients of the NIS+ service

SEE ALSO nischown(1), nisdefaults(1), nismatch(1), nispasswd(1), admintool(1M), newkey(1M),
nisaddcred(1M), nisclient(1M), nispopulate(1M), nisserver(1M), nis_add_entry(3N),
nis_domain_of(3N), nis_getnames(3N), nis_groups(3N), nis_leaf_of(3N), nis_list(3N),
nis_local_directory(3N), nis_lookup(3N), nis_objects(3N)

1-688 modified 4 May 1997

SunOS 5.5 User Commands nis+ (1)

ONC+ Developers Guide

Describes the application programming interfaces for networks including NIS+

NIS+ and DNS Setup and Configuration Guide

Describes how to plan for and configure an NIS+ namespace

NIS+ and FNS Administration Guide

Describes how to administer a running NIS+ namespace and modify its security

NIS+ Transition Guide

Describes how to make the transition from NIS to NIS+

Solaris Advanced User’s Guide

Describes the admintool(1M) window interface for modifying the data in NIS+
tables

modified 4 May 1997 1-689

User Commands niscat (1)

NAME niscat − display NIS+ tables and objects

SYNOPSIS niscat [−AhLMv] [−s sep] tablename . . .

niscat [−ALMP] −o name . . .

DESCRIPTION In the first synopsis, niscat displays the contents of the NIS+ tables named by tablename .
In the second synopsis, it displays the internal representation of the NIS+ objects named
by name.

OPTIONS −A Display the data within the table and all of the data in tables in the initial
table’s concatenation path.

−h Display the header line prior to displaying the table. The header consists of
the ‘#’ (hash) character followed by the name of each column. The column
names are separated by the table separator character.

−L Follow links. When this option is specified, if tablename or name names a LINK
type object, the link is followed and the object or table named by the link is
displayed.

−M Master server only. This option specifies that the request should be sent to the
master server of the named data. This guarantees that the most up-to-date
information is seen at the possible expense of increasing the load on the mas-
ter server and increasing the possibility of the NIS+ server being unavailable
or busy for updates.

−P Follow concatenation path. This option specifies that the request should fol-
low the concatenation path of a table if the initial search is unsuccessful. This
option is only useful when using an indexed name for name and the −o option.

−v Display binary data directly. This option displays columns containing binary
data on the standard output. Without this option binary data is displayed as
the string ∗BINARY∗.

−o name Display the internal representation of the named NIS+ object(s). If name is an
indexed name (see nismatch(1)), then each of the matching entry objects is
displayed. This option is used to display access rights and other attributes of
individual columns.

−s sep This option specifies the character to use to separate the table columns. If no
character is specified, the default separator for the table is used.

EXAMPLES This example displays the contents of the hosts table.

example% niscat −h hosts.org_dir
cname name addr comment
client1 client1 129.144.201.100 Joe Smith
crunchy crunchy 129.144.201.44 Jane Smith
crunchy softy 129.144.201.44

modified 13 Sep 1996 SunOS 5.6 1-749

niscat (1) User Commands

The string ∗NP∗ is returned in those fields where the user has insufficient access rights.

Display the passwd.org_dir on the standard output.

example% niscat passwd.org_dir

Display the contents of table frodo and the contents of all tables in its concatenation path.

example% niscat −A frodo

Display the entries in the table groups.org_dir as NIS+ objects. Note that the brackets are
protected from the shell by single quotes.

example% niscat −o ’[]groups.org_dir’

Display the table object of the passwd.org_dir table.

example% niscat −o passwd.org_dir

The previous example displays the passwd table object and not the passwd table. The
table object include information such as the number of columns, column type, searchable
or not searchable separator, access rights, and other defaults.

Display the directory object for org_dir, which includes information such as the access
rights and replica information.

example% niscat −o org_dir

ENVIRONMENT NIS_PATH If this variable is set, and the NIS+ table name is not fully qualified,
each directory specified will be searched until the table is found (see
nisdefaults(1)).

EXIT STATUS niscat returns the following values:

0 Successful completion

1 An error occurred.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWnisu

SEE ALSO nis+(1), nisdefaults(1), nismatch(1), nistbladm(1), nis_objects(3N), nis_tables(3N),
attributes(5)

NOTES Columns without values in the table are displayed by two adjacent separator characters.

1-750 SunOS 5.6 modified 13 Sep 1996

User Commands nischgrp (1)

NAME nischgrp − change the group owner of a NIS+ object

SYNOPSIS nischgrp [−AfLP] group name . . .

DESCRIPTION nischgrp changes the group owner of the NIS+ objects or entries specified by name to the
specified NIS+ group. Entries are specified using indexed names (see nismatch(1)). If
group is not a fully qualified NIS+ group name, it will be resolved using the directory
search path (see nisdefaults(1)).

The only restriction on changing an object’s group owner is that you must have modify
permissions for the object.

This command will fail if the master NIS+ server is not running.

OPTIONS −A Modify all entries in all tables in the concatenation path that match the search cri-
terion specified in name. This option implies the −P switch.

−f Force the operation and fail silently if it does not succeed.

−L Follow links and change the group owner of the linked object or entries rather
than the group owner of the link itself.

−P Follow the concatenation path within a named table. This option only makes
sense when either name is an indexed name or the −L switch is also specified and
the named object is a link pointing to entries.

EXAMPLES The following two examples show how to change the group owner of an object to a
group in a different domain, and how to change it to a group in the local domain, respec-
tively.

example% nischgrp newgroup.remote.domain. object
example% nischgrp my-buds object

This example shows how to change the group owner for a password entry.

example% nischgrp admins ’[uid=99],passwd.org_dir’

In the previous example, admins is a NIS+ group in the same domain.

The next two examples change the group owner of the object or entries pointed to by a
link, and the group owner of all entries in the hobbies table.

example% nischgrp −L my-buds linkname
example% nischgrp my-buds ’[],hobbies’

ENVIRONMENT NIS_PATH If this variable is set, and the NIS+ name is not fully qualified, each
directory specified will be searched until the object is found (see nis-
defaults(1)).

modified 25 Sep 1992 SunOS 5.6 1-751

nischgrp (1) User Commands

EXIT CODES nischgrp returns 0 on success and 1 on failure.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWnisu

SEE ALSO nis+(1), nischmod(1), nischown(1), nisdefaults(1), nisgrpadm(1), nis_objects(3N), attri-
butes(5)

NOTES The NIS+ server will check the validity of the group name prior to effecting the
modification.

1-752 SunOS 5.6 modified 25 Sep 1992

User Commands nischmod (1)

NAME nischmod − change access rights on a NIS+ object

SYNOPSIS nischmod [−AfLP] mode name . . .

DESCRIPTION nischmod changes the access rights (mode) of the NIS+ objects or entries specified by
name to mode . Entries are specified using indexed names (see nismatch(1)). Only princi-
pals with modify access to an object may change its mode.

mode has the following form:

rights [, rights] . . .

rights has the form:

[who] op permission [op permission] . . .

who is a combination of:

n Nobody’s permissions.
o Owner’s permissions.
g Group’s permissions.
w World’s permissions.
a All, or owg.

If who is omitted, the default is a.

op is one of:

+ To grant the permission.
− To revoke the permission.
= To set the permissions explicitly.

permission is any combination of:
r Read.
m Modify.
c Create.
d Destroy.

OPTIONS −A Modify all entries in all tables in the concatenation path that match the search cri-
teria specified in name. This option implies the −P switch.

−f Force the operation and fail silently if it does not succeed.

−L Follow links and change the permission of the linked object or entries rather than
the permission of the link itself.

−P Follow the concatenation path within a named table. This option is only applica-
ble when either name is an indexed name or the −L switch is also specified and
the named object is a link pointing to an entry.

modified 25 Sep 1992 SunOS 5.6 1-753

nischmod (1) User Commands

EXAMPLES This example gives everyone read access to an object. (i.e., access for owner, group, and
all).

example% nischmod a+r object

This example denies create and modify privileges to group and unauthenticated clients
(nobody).

example% nischmod gn−cm object

In this example, a complex set of permissions are set for an object.
example% nischmod o=rmcd,g=rm,w=rc,n=r object

This example sets the permissions of an entry in the password table so that the group
owner can modify them.

example% nischmod g+m ’[uid=55],passwd.org_dir’

The next example changes the permissions of a linked object.
example% nischmod −L w+mr linkname

ENVIRONMENT NIS_PATH If this variable is set, and the NIS+ name is not fully qualified, each
directory specified will be searched until the object is found (see nis-
defaults(1)).

EXIT CODES nischmod returns 0 on success and 1 on failure.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWnisu

SEE ALSO chmod(1), nis+(1), nischgrp(1), nischown(1), nisdefaults(1), nis_objects(3N), attri-
butes(5)

NOTES Unlike the system chmod(1) command, this command does not accept an octal notation.

1-754 SunOS 5.6 modified 25 Sep 1992

User Commands nischown (1)

NAME nischown − change the owner of a NIS+ object

SYNOPSIS nischown [−AfLP] owner name . . .

DESCRIPTION nischown changes the owner of the NIS+ objects or entries specified by name to owner.
Entries are specified using indexed names (see nismatch(1)). If owner is not a fully
qualified NIS+ principal name (see nisaddcred(1M)), the default domain (see nisde-
faults(1)) will be appended to it.

The only restriction on changing an object’s owner is that you must have modify permis-
sions for the object. Note: If you are the current owner of an object and you change own-
ership, you may not be able to regain ownership unless you have modify access to the
new object.

The command will fail if the master NIS+ server is not running.

OPTIONS −A Modify all entries in all tables in the concatenation path that match the search cri-
teria specified in name. It implies the −P option.

−f Force the operation and fail silently if it does not succeed.

−L Follow links and change the owner of the linked object or entries rather than the
owner of the link itself.

−P Follow the concatenation path within a named table. This option is only mean-
ingful when either name is an indexed name or the −L option is also specified and
the named object is a link pointing to entries.

EXAMPLES The following two examples show how to change the owner of an object to a principal in
a different domain, and to change it to a principal in the local domain, respectively.

example% nischown bob.remote.domain. object
example% nischown skippy object

The next example shows how to change the owner of an entry in the passwd table.

example% nischown bob.remote.domain. ’[uid=99],passwd.org_dir’

This example shows how to change the object or entries pointed to by a link.

example% nischown −L skippy linkname

ENVIRONMENT NIS_PATH If this variable is set, and the NIS+ name is not fully qualified, each
directory specified will be searched until the object is found (see nis-
defaults(1)).

EXIT CODES nischown returns 0 on success and 1 on failure.

modified 25 Jan 1993 SunOS 5.6 1-755

nischown (1) User Commands

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWnisu

SEE ALSO nis+(1), nischgrp(1), nischmod(1), nischttl(1), nisdefaults(1), nisaddcred(1M),
nis_objects(3N), attributes(5)

NOTES The NIS+ server will check the validity of the name before making the modification.

1-756 SunOS 5.6 modified 25 Jan 1993

User Commands nischttl (1)

NAME nischttl − change the time to live value of a NIS+ object

SYNOPSIS nischttl [−AfLP] time name . . .

DESCRIPTION nischttl changes the time to live value (ttl) of the NIS+ objects or entries specified by
name to time. Entries are specified using indexed names (see nismatch(1)).

The time to live value is used by object caches to expire objects within their cache. When
an object is read into the cache, this value is added to the current time in seconds yielding
the time when the cached object would expire. The object may be returned from the
cache until the current time is earlier than the calculated expiration time. When the
expiration time has been reached, the object will be flushed from the cache.

The time to live time may be specified in seconds or in days, hours, minutes, seconds for-
mat. The latter format uses a suffix letter of d, h, m, or s to identify the units of time. See
the examples below for usage.

The command will fail if the master NIS+ server is not running.

OPTIONS −A Modify all tables in the concatenation path that match the search criterion
specified in name. This option implies the −P switch.

−f Force the operation and fail silently if it does not succeed.

−L Follow links and change the time to live of the linked object or entries rather than
the time to live of the link itself.

−P Follow the concatenation path within a named table. This option only makes
sense when either name is an indexed name or the −L switch is also specified and
the named object is a link pointing to entries.

EXAMPLES The following example shows how to change the ttl of an object using the seconds format
and the days, hours, minutes, seconds format. The ttl of the second object is set to 1 day
and 12 hours.

example% nischttl 184000 object
example% nischttl 1d12h object

This example shows how to change the ttl for a password entry.

example% nischttl 1h30m ’[uid=99],passwd.org_dir’

The next two examples change the ttl of the object or entries pointed to by a link, and the
ttl of all entries in the hobbies table.

example% nischttl −L 12h linkname
example% nischttl 3600 ’[],hobbies

ENVIRONMENT NIS_PATH If this variable is set, and the NIS+ name is not fully qualified, each
directory specified will be searched until the object is found (see nis-
defaults(1)).

modified 25 Sep 1992 SunOS 5.6 1-757

nischttl (1) User Commands

EXIT CODES nischttl returns 0 on success and 1 on failure.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWnisu

SEE ALSO nis+(1), nischgrp(1), nischmod(1), nischown(1), nisdefaults(1), nis_objects(3N), attri-
butes(5)

NOTES Setting a high ttl value allows objects to stay persistent in caches for a longer period of
time and can improve performance. However, when an object changes, in the worst case,
the number of seconds in this attribute must pass before that change is visible to all
clients. Setting a ttl value of 0 means that the object should not be cached at all.

A high ttl value is a week, a low value is less than a minute. Password entries should
have ttl values of about 12 hours (easily allows one password change per day), entries in
the RPC table can have ttl values of several weeks (this information is effectively
unchanging).

Only directory and group objects are cached in this implementation.

1-758 SunOS 5.6 modified 25 Sep 1992

User Commands nisdefaults (1)

NAME nisdefaults − display NIS+ default values

SYNOPSIS nisdefaults [−adghprstv]

DESCRIPTION nisdefaults prints the default values that are returned by calls to the NIS+ local name
functions (see nis_local_names(3N)). With no options specified, all defaults will be
printed in a verbose format. With options, only that option is displayed in a terse form
suitable for shell scripts. See the example below.

OPTIONS −a Print all defaults in a terse format.

−d Print the default domain name.

−g Print the default group name.

−h Print the default host name.

−p Print the default principal name.

−r Print the default access rights with which new objects will be created.

−s Print the default directory search path.

−t Print the default time to live value.

−v Print the defaults in a verbose format. This prepends an identifying string to the
output.

EXAMPLES The following prints the NIS+ defaults for a root process on machine example in the
foo.bar. domain.

example# nisdefaults
Principal Name : example.foo.bar.
Domain Name : foo.bar.
Host Name : example.foo.bar.
Group Name :
Access Rights : − − − −rmcdr− − −r − − −
Time to live : 12:00:00
Search Path : foo.bar.

This example sets a variable in a shell script to the default domain.

DOMAIN=‘nisdefaults −d‘

This example prints out the default time to live in a verbose format.

example% nisdefaults −tv
Time to live : 12:00:00

This example prints out the time to live in the terse format:

example% nisdefaults −t
43200

modified 25 Sep 1992 SunOS 5.6 1-759

nisdefaults (1) User Commands

ENVIRONMENT Several environment variables affect the defaults associated with a process.

NIS_DEFAULTS This variable contains a defaults string that will override the NIS+ stan-
dard defaults. The defaults string is a series of tokens separated by
colons. These tokens represent the default values to be used for the gen-
eric object properties. All of the legal tokens are described below.

ttl=time
This token sets the default time to live for objects that are
created. The value time is specified in the format as defined by
the nischttl(1) command. The default value is 12 hours.

owner=ownername
This token specifies that the NIS+ principal ownername should
own created objects. The default for this value is the principal
who is executing the command.

group=groupname
This token specifies that the group groupname should be the
group owner for created objects. The default is NULL.

access=rights
This token specifies the set of access rights that are to be granted
for created objects. The value rights is specified in the format as
defined by the nischmod(1) command. The default value is
− − − −rmcdr− − −r− − −.

NIS_GROUP This variable contains the name of the local NIS+ group. If the name is
not fully qualified, the default domain will be appended to it.

NIS_PATH This variable overrides the default NIS+ directory search path. It con-
tains an ordered list of directories separated by ’:’ (colon) characters. The
’$’ (dollar sign) character is treated specially. Directory names that end
in ’$’ have the default domain appended to them, and a ’$’ by itself is
replaced by the list of directories between the default domain and the
global root that are at least two levels deep. The default NIS+ directory
search path is ’$’.

Refer to the Name Expansion subsection in nis+(1) for more details.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWnisu

SEE ALSO nis+(1), nis_local_names(3N), attributes(5)

1-760 SunOS 5.6 modified 25 Sep 1992

User Commands niserror (1)

NAME niserror − display NIS+ error messages

SYNOPSIS niserror error-num

DESCRIPTION niserror prints the NIS+ error associated with status value error-num on the standard out-
put. It is used by shell scripts to translate NIS+ error numbers that are returned into text
messages.

EXAMPLES The following example prints the error associated with the error number 20:
example% niserror 20
Not Found, no such name

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWnisu

SEE ALSO nis+(1), nis_error(3N), attributes(5)

modified 25 Sep 1992 SunOS 5.6 1-761

nisgrpadm (1) User Commands

NAME nisgrpadm − NIS+ group administration command

SYNOPSIS nisgrpadm −a | −r | −t] [−s] group principal. . .

nisgrpadm −c | −d | −l [−M] [−s] group

DESCRIPTION nisgrpadm is used to administer NIS+ groups. This command administers both groups
and the groups’ membership lists. nisgrpadm can create, destroy, or list NIS+ groups.
nisgrpadm can be used to administer a group’s membership list. It can add or delete
principals to the group, or test principals for membership in the group.

The names of NIS+ groups are syntactically similar to names of NIS+ objects but they
occupy a separate namespace. A group named "a.b.c.d." is represented by a NIS+ group
object named "a.groups_dir.b.c.d."; the functions described here all expect the name of
the group, not the name of the corresponding group object.

There are three types of group members:

· An explicit member is just a NIS+ principal-name, for example "wickedwitch.west.oz."

· An implicit ("domain") member, written "∗.west.oz.", means that all principals in the
given domain belong to this member. No other forms of wildcarding are allowed:
"wickedwitch.∗.oz." is invalid, as is "wickedwitch.west.∗.". Note that principals in
subdomains of the given domain are not included.

· A recursive ("group") member, written "@cowards.oz.", refers to another group; all
principals that belong to that group are considered to belong here.

Any member may be made negative by prefixing it with a minus sign (’−’). A group may
thus contain explicit, implicit, recursive, negative explicit, negative implicit, and negative
recursive members.

A principal is considered to belong to a group if it belongs to at least one non-negative
group member of the group and belongs to no negative group members.

OPTIONS −a Add the list of NIS+ principals specified to group. The principal name should be
fully qualified.

−c Create group in the NIS+ namespace. The NIS+ group name should be fully
qualified.

−d Destroy (remove) group from the namespace.

−l List the membership list of the specified group. (See −M.)

−M Master server only. Send the lookup to the master server of the named data.
This guarantees that the most up to date information is seen at the possible
expense that the master server may be busy. Note that the −M flag is applicable
only with the −l flag.

−r Remove the list of principals specified from group. The principal name should be
fully qualified.

−s Work silently. Results are returned using the exit status of the command. This
status can be translated into a text string using the niserror(1) command.

1-762 SunOS 5.6 modified 25 Feb 1993

User Commands nisgrpadm (1)

−t Display whether the principals specified are members in group.

EXAMPLES
Administering

Groups
This example shows how to create a group in the foo.com. domain.

example% nisgrpadm −c my_buds.foo.com.

This example shows how to remove the group from the current domain.

example% nisgrpadm −d freds_group

Administering
Members

This example shows how one would add two principals, bob and betty to the group
my_buds.foo.com.

example% nisgrpadm −a my_buds.foo.com. bob.bar.com. betty.foo.com.

This example shows how to remove betty from freds_group.

example% nisgrpadm −r freds_group betty.foo.com.

ENVIRONMENT NIS_PATH If this variable is set, and the NIS+ group name is not fully qualified,
each directory specified will be searched until the group is found
(see nisdefaults(1)).

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWnisu

SEE ALSO nis+(1), nischgrp(1), nisdefaults(1), niserror(1), nis_groups(3N), attributes(5)

DIAGNOSTICS NIS_SUCCESS On success, this command returns an exit status of 0.

NIS_PERMISSION When you do not have the needed access right to change the group,
the command returns this error.

NIS_NOTFOUND This is returned when the group does not exist.

NIS_TRYAGAIN This error is returned when the server for the group’s domain is
currently checkpointing or otherwise in a read-only state. The com-
mand should be retried at a later date.

NIS_MODERROR This error is returned when the group was modified by someone else
during the execution of the command. Reissue the command and
optionally recheck the group’s membership list.

NOTES Principal names must be fully qualified, whereas groups can be abbreviated on all opera-
tions except create.

modified 25 Feb 1993 SunOS 5.6 1-763

nisln (1) User Commands

NAME nisln − symbolically link NIS+ objects

SYNOPSIS nisln [−L] [−D defaults] name linkname

DESCRIPTION The nisln command links a NIS+ object named name to a NIS+ name linkname. If name is
an indexed name (see nismatch(1)), the link points to entries within a NIS+ table. Clients
wishing to look up information in the name service can use the FOLLOW_LINKS flag to
force the client library to follow links to the name they point to. Further, all of the NIS+
administration commands accept the −L switch indicating they should follow links (see
nis_names(3N) for a description of the FOLLOW_LINKS flag).

OPTIONS −L When present, this option specifies that this command should follow
links. If name is itself a link, then this command will follow it to the
linked object that it points to. The new link will point to that linked
object rather than to name.

−D defaults Specify a different set of defaults to be used for the creation of the link
object. The defaults string is a series of tokens separated by colons.
These tokens represent the default values to be used for the generic
object properties. All of the legal tokens are described below.

ttl=time This token sets the default time to live for objects
that are created by this command. The value time is
specified in the format as defined by the nischttl(1)
command. The default is 12 hours.

owner=ownername This token specifies that the NIS+ principal owner-
name should own the created object. The default for
this value is the the principal who is executing the
command.

group=groupname This token specifies that the group groupname
should be the group owner for the object that is
created. The default is NULL.

access=rights This token specifies the set of access rights that are
to be granted for the given object. The value rights
is specified in the format as defined by the nisch-
mod(1) command. The default value is
− − − −rmcdr− − −r− − −.

1-764 SunOS 5.6 modified 25 Sep 1992

User Commands nisln (1)

EXAMPLES In this example we create a link in the domain foo.com. named hosts that points to the
object hosts.bar.com.

example% nisln hosts.bar.com. hosts.foo.com.

In this example we make a link example.sun.com. that points to an entry in the hosts table
in eng.sun.com.

example% nisln ’[name=example],hosts.eng.sun.com.’ example.sun.com.

ENVIRONMENT NIS_PATH If this variable is set, and the NIS+ name is not fully qualified, each
directory specified will be searched until the object is found (see nis-
defaults(1)).

EXIT CODES nisln returns 0 on success and 1 on failure.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWnisu

SEE ALSO nisdefaults(1), nismatch(1), nisrm(1), nistbladm(1), nis_names(3N), nis_tables(3N),
attributes(5)

NOTES When creating the link, nisln verifies that the linked object exists. Once created, the
linked object may be deleted or replaced and the link will not be affected. At that time
the link will become invalid and attempts to follow it will return NIS_LINKNAMEERROR
to the client. When the path attribute in tables specifies a link rather than another table,
the link will be followed if the flag FOLLOW_LINKS was present in the call to nis_list()
(see nis_tables(3N)) and ignored if the flag is not present. If the flag is present and the
link is no longer valid, a warning is sent to the system logger and the link is ignored.

modified 25 Sep 1992 SunOS 5.6 1-765

nisls (1) User Commands

NAME nisls − list the contents of a NIS+ directory

SYNOPSIS nisls [−dglLmMR] [name . . .]

DESCRIPTION For each name that is a NIS+ directory, nisls lists the contents of the directory. For each
name that is a NIS+ object other than a directory, nisls simply echos the name. If no name
is specified, the first directory in the search path (see nisdefaults(1)) is listed.

OPTIONS −d Treat NIS+ directories like other NIS+ objects, rather than listing their contents.

−g Display group owner instead of owner when listing in long format.

−l List in long format. This option displays additional information about the objects
such as their type, creation time, owner, and access rights.

The access rights are listed in the following order in long mode: nobody, owner,
group owner, and world.

−L This option specifies that links are to be followed. If name actually points to a
link, it is followed to the linked object.

−m Display modification time instead of creation time when listing in long format.

−M Master only. This specifies that information is to be returned from the master
server of the named object. This guarantees that the most up to date information
is seen at the possible expense that the master server may be busy.

−R List directories recursively. This option will reiterate the list for each subdirec-
tory found in the process of listing each name .

ENVIRONMENT NIS_PATH If this variable is set, and the NIS+ name is not fully qualified, each
directory specified will be searched until the object is found (see nis-
defaults(1)).

EXIT CODES nisls returns 0 on success and 1 on failure.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWnisu

SEE ALSO nisdefaults(1), nisgrpadm(1), nismatch(1), nistbladm(1), nis_objects(3N), attributes(5)

1-766 SunOS 5.6 modified 25 Sep 1992

User Commands nismatch (1)

NAME nismatch, nisgrep − utilities for searching NIS+ tables

SYNOPSIS nismatch [−AchMoPv] [−s sep] key tablename
nismatch [−AchMoPv] [−s sep] colname=key . . . tablename
nismatch [−AchMoPv] [−s sep] indexedname

nisgrep [−AchMov] [−s sep] keypat tablename
nisgrep [−AchMov] [−s sep] colname=keypat . . . tablename

DESCRIPTION nismatch and nisgrep can be used to search NIS+ tables. The command nisgrep differs
from the nismatch command in its ability to accept regular expressions keypat for the
search criteria rather than simple text matches.

Because nisgrep uses a callback function, it is not constrained to searching only those
columns that are specifically made searchable at the time of table creation. This makes it
more flexible, but slower, than nismatch.

In nismatch, the server does the searching; whereas in nisgrep, the server returns all the
readable entries and then the client does the pattern-matching.

In both commands, the parameter tablename is the NIS+ name of the table to be searched.
If only one key or key pattern is specified without the column name, then it is applied
searching the first column. Specific named columns can be searched by using the
colname=key syntax. When multiple columns are searched, only entries that match in all
columns are returned. This is the equivalent of a logical join operation.

nismatch accepts an additional form of search criteria, indexedname, which is a NIS+
indexed name of the form:

[colname=value, . . .],tablename

OPTIONS −A All data. Return the data within the table and all of the data in tables in the initial
table’s concatenation path.

−c Print only a count of the number of entries that matched the search criteria.

−h Display a header line before the matching entries that contains the names of the
table’s columns

−M Master server only. Send the lookup to the master server of the named data.
This guarantees that the most up to date information is seen at the possible
expense that the master server may be busy.

−o Display the internal representation of the matching NIS+ object(s).

−P Follow concatenation path. Specify that the lookup should follow the concatena-
tion path of a table if the initial search is unsuccessful.

−s sep This option specifies the character to use to separate the table columns. If no
character is specified, the default separator for the table is used.

−v Verbose. Do not suppress the output of binary data when displaying matching
entries. Without this option binary data is displayed as the string ∗BINARY∗.

modified 13 Sep 1996 SunOS 5.6 1-767

nismatch (1) User Commands

RETURN VALUES 0 Successfully matches some entries.

1 Successfully searches the table and no matches are found.

2 An error condition occurs. An error message is also printed.

EXAMPLES This example searches a table named passwd in the org_dir subdirectory of the zotz.com.
domain. It returns the entry that has the username of skippy. In this example, all the
work is done on the server.

example% nismatch name=skippy passwd.org_dir.zotz.com.

This example is similar to the one above except that it uses nisgrep to find all users in the
table named passwd that are using either ksh(1) or csh(1).

example% nisgrep ’shell=[ck]sh’ passwd.org_dir.zotz.com.

ENVIRONMENT NIS_PATH If this variable is set, and the NIS+ table name is not fully qualified,
each directory specified will be searched until the table is found (see
nisdefaults(1)).

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWnisu

SEE ALSO niscat(1), nisdefaults(1), nisls(1), nistbladm(1), nis_objects(3N), attributes(5)

DIAGNOSTICS No memory An attempt to allocate some memory for the search
failed.

tablename is not a table The object with the name tablename was not a table
object.

Can’t compile regular expression The regular expression in keypat was malformed.

column not found: colname The column named colname does not exist in the table
named tablename.

1-768 SunOS 5.6 modified 13 Sep 1996

User Commands nismkdir (1)

NAME nismkdir − create NIS+ directories

SYNOPSIS nismkdir [−D defaults] [−m hostname] [−s hostname] dirname

DESCRIPTION The nismkdir command creates new NIS+ subdirectories within an existing domain. It
can also be used to create replicated directories. Without options, this command will
create a subdirectory with the same master and the replicas as its parent directory.

It is advisable to use nisserver(1M) to create an NIS+ domain which consists of the
specified directory along with the org_dir and groups_dir subdirectories.

The two primary aspects that are controlled when making a directory are its access
rights, and its degree of replication.

dirname is the fully qualified NIS+ name of the directory that has to be created.

OPTIONS −D defaults Specify a different set of defaults to be used when creating new direc-
tories. The defaults string is a series of tokens separated by colons.
These tokens represent the default values to be used for the generic
object properties. All of the legal tokens are described below.

ttl=time
This token sets the default time to live for objects that are
created by this command. The value time is specified in the for-
mat as defined by the nischttl(1) command. The default value is
12h (12 hours).

owner=ownername
This token specifies that the NIS+ principal ownername should
own the created object. The default for this value is the principal
who is executing the command.

group=groupname
This token specifies that the group groupname should be the
group owner for the object that is created. The default value is
NULL.

access=rights
This token specifies the set of access rights that are to be granted
for the given object. The value rights is specified in the format as
defined by the nischmod(1) command. The default value is
− − − −rmcdr− − −r− − −.

−m hostname If the directory named by dirname does not exist, then a new directory
that is not replicated is created with host hostname as its master server.

If the directory name by dirname does exist, then the host named by host-
name is made its master server.

−s hostname Specify that the host hostname will be a replica for an existing directory
named dirname.

modified 17 Jan 1995 SunOS 5.6 1-769

nismkdir (1) User Commands

RETURN VALUES This command returns 0 if successful and 1 otherwise.

EXAMPLES To create a new directory bar under the foo.com. domain that shares the same master
and replicas as the foo.com. directory one would use the command:

example% nismkdir bar.foo.com.

To create a new directory bar.foo.com. that is not replicated under the foo.com. domain
one would use the command:

example% nismkdir −m myhost.foo.com. bar.foo.com.

To add a replica server of the bar.foo.com. directory, one would use the command:

example% nismkdir −s replica.foo.com. bar.foo.com.

ENVIRONMENT NIS_DEFAULTS This variable contains a defaults string that will override the NIS+
standard defaults. If the −D switch is used those values will then
override both the NIS_DEFAULTS variable and the standard defaults.

NIS_PATH If this variable is set, and the NIS+ directory name is not fully
qualified, each directory specified will be searched until the directory
is found (see nisdefaults(1)).

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWnisu

SEE ALSO nis+(1), nischmod(1), nisdefaults(1), nisls(1), nisrmdir(1), nisserver(1M), attributes(5)

NOTES A host that serves a NIS+ directory must be a NIS+ client in a directory above the one it is
serving. The exceptions to this rule are the root NIS+ servers which are both clients and
servers of the same NIS+ directory.

When the host’s default domain is different from the default domain on the client where
the command is executed, the hostname supplied as an argument to the −s or −m options
must be fully qualified.

1-770 SunOS 5.6 modified 17 Jan 1995

User Commands nispasswd (1)

NAME nispasswd − change NIS+ password information

SYNOPSIS nispasswd [−ghs] [−D domainname] [username]

nispasswd −a

nispasswd −D domainname [−d [username]]

nispasswd [−l] [−f] [−n min] [−x max] [−w warn] [−D domainname] username

DESCRIPTION nispasswd changes a password, gecos (finger) field (−g option), home directory (−h
option), or login shell (−s option) associated with the username (invoker by default) in the
NIS+ passwd table.

Additionally, the command can be used to view or modify aging information associated
with the user specified if the invoker has the right NIS+ privileges.

nispasswd uses secure RPC to communicate with the NIS+ server, and therefore, never
sends unencrypted passwords over the communication medium.

nispasswd does not read or modify the local password information stored in the
/etc/passwd and /etc/shadow files.

When used to change a password, nispasswd prompts non-privileged users for their old
password. It then prompts for the new password twice to forestall typing mistakes.
When the old password is entered, nispasswd checks to see if it has “aged” sufficiently.
If “aging” is insufficient, nispasswd terminates; see getspnam(3C).

The old password is used to decrypt the username’s secret key. If the password does not
decrypt the secret key, nispasswd prompts for the old secure-RPC password. It uses this
password to decrypt the secret key. If this fails, it gives the user one more chance. The
old password is also used to ensure that the new password differs from the old by at
least three characters. Assuming aging is sufficient, a check is made to ensure that the
new password meets construction requirements described below. When the new pass-
word is entered a second time, the two copies of the new password are compared. If the
two copies are not identical, the cycle of prompting for the new password is repeated
twice. The new password is used to re-encrypt the user’s secret key. Hence, it also
becomes their secure-RPC password. Therefore, the secure-RPC is no longer a different
password from the user’s password.

Passwords must be constructed to meet the following requirements:

· Each password must have at least six characters. Only the first eight characters
are significant.

· Each password must contain at least two alphabetic characters and at least
one numeric or special character. In this case, "alphabetic" refers to all upper
or lower case letters.

· Each password must differ from the user’s login username and any reverse or
circular shift of that login username. For comparison purposes, an upper case
letter and its corresponding lower case letter are equivalent.

· New passwords must differ from the old by at least three characters. For

modified 24 Oct 1994 SunOS 5.6 1-771

nispasswd (1) User Commands

comparison purposes, an upper case letter and its corresponding lower case
letter are equivalent.

Network administrators, who own the NIS+ password table, may change any password
attributes if they establish their credentials (see keylogin(1)) before invoking nispasswd.
Hence, nispasswd does not prompt these privileged-users for the old password and they
are not forced to comply with password aging and password construction requirements.

Any user may use the −d option to display password attributes for his or her own login
name. The format of the display will be:

username status mm/dd/yy min max warn

or, if password aging information is not present,

username status

where

username The login ID of the user.

status The password status of username: "PS" stands for password exists or locked,
"LK" stands for locked, and "NP" stands for no password.

mm/dd/yy The date password was last changed for username. (Note that all password
aging dates are determined using Greenwich Mean Time (Universal Time)
and, therefore, may differ by as much as a day in other time zones.)

min The minimum number of days required between password changes for
username.

max The maximum number of days the password is valid for username.

warn The number of days relative to max before the password expires that the
username will be warned.

OPTIONS −g Change the gecos (finger) information.

−h Change the home directory.

−s Change the login shell. By default, only the NIS+ administrator can
change the login shell. User will be prompted for the new login shell.

−a Show the password attributes for all entries. This will show only the
entries in the NIS+ passwd table in the local domain that the invoker is
authorized to "read".

−d [username] Display password attributes for the caller or the user specified if the
invoker has the right privileges.

−l Locks the password entry for username. Subsequently, login(1) would
disallow logins with this NIS+ password entry.

−f Force the user to change password at the next login by expiring the pass-
word for username.

1-772 SunOS 5.6 modified 24 Oct 1994

User Commands nispasswd (1)

−n min Set minimum field for username. The min field contains the minimum
number of days between password changes for username. If min is
greater than max, the user may not change the password. Always use
this option with the −x option, unless max is set to -1 (aging turned off).
In that case, min need not be set.

−x max Set maximum field for username. The max field contains the number of
days that the password is valid for username. The aging for username will
be turned off immediately if max is set to -1. If it is set to 0, then the user
is forced to change the password at the next login session and aging is
turned off.

−w warn Set warn field for username. The warn field contains the number of days
before the password expires that the user will be warned whenever he
or she attempts to login.

−D domainname Consult the passwd.org_dir table in domainname. If this option is not
specified, the default domainname returned by nis_local_directory() will
be used. This domainname is the same as that returned by
domainname(1M).

EXIT STATUS The nispasswd command exits with one of the following values:
0 success.
1 Permission denied.
2 Invalid combination of options.
3 Unexpected failure. NIS+ passwd table unchanged.
4 NIS+ passwd table missing.
5 NIS+ is busy. Try again later.
6 Invalid argument to option.
7 Aging is disabled.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWnisu

SEE ALSO keylogin(1), login(1), nis+(1), nistbladm(1), passwd(1), domainname(1M),
getspnam(3C), getpwnam(3C), nsswitch.conf(4), passwd(4), shadow(4), attributes(5)

NOTES The use of nispasswd is discouraged, as it is now only a link to the passwd(1) command,
which should be used instead. Using passwd(1) with the −r nisplus option will achieve
the same result, and be consistent across all the different name services available.

The login program, file access display programs (for example, ’ls −l’) and network pro-
grams that require user passwords (for example, rlogin(1), ftp(1), etc.) use the standard
getpwnam(3C) and getspnam(3C) interfaces to get password information. These pro-
grams will get the NIS+ password information, that is modified by nispasswd, only if the
passwd: entry in the /etc/nsswitch.conf file includes nisplus. See nsswitch.conf(4) for

modified 24 Oct 1994 SunOS 5.6 1-773

nispasswd (1) User Commands

more details.

1-774 SunOS 5.6 modified 24 Oct 1994

User Commands nisrm (1)

NAME nisrm − remove NIS+ objects from the namespace

SYNOPSIS nisrm [−if] name . . .

DESCRIPTION The nisrm command removes NIS+ objects named name from the NIS+ namespace.

This command will fail if the NIS+ master server is not running.

OPTIONS −i Interactive mode. Like the system rm(1) command the nisrm command will ask
for confirmation prior to removing an object. If the name specified by name is a
non-fully qualified name this option is forced on. This prevents the removal of
unexpected objects.

−f Force. The removal is attempted, and if it fails for permission reasons, a nisch-
mod(1) is attempted and the removal retried. If the command fails, it fails
silently.

EXAMPLES Remove the objects foo , bar , and baz from the namespace.

example% nisrm foo bar baz

ENVIRONMENT NIS_PATH If this variable is set, and the NIS+ name is not fully qualified, each
directory specified will be searched until the object is found (see nis-
defaults(1)).

EXIT CODES nisrm returns 0 on success and 1 on failure.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWnisu

SEE ALSO nis+(1), nischmod(1), nisdefaults(1), nisrmdir(1), nistbladm(1), rm(1), attributes(5)

NOTES This command will not remove directories (see nisrmdir(1)) nor will it remove non-
empty tables (see nistbladm(1)).

modified 25 Feb 1993 SunOS 5.6 1-775

nisrmdir (1) User Commands

NAME nisrmdir − remove NIS+ directories

SYNOPSIS nisrmdir [−if] [−s hostname] dirname

DESCRIPTION nisrmdir deletes existing NIS+ subdirectories. It can remove a directory outright, or sim-
ply remove replicas from serving a directory.

This command modifies the object that describes the directory dirname, and then notifies
each replica to remove the directory named dirname. If the notification of any of the
affected replicas fails, the directory object is returned to its original state unless the −f
option is present.

This command will fail if the NIS+ master server is not running.

OPTIONS −i Interactive mode. Like the system rm(1) command the nisrmdir command
will ask for confirmation prior to removing a directory. If the name
specified by dirname is a non-fully qualified name this option is forced on.
This prevents the removal of unexpected directories.

−f Force the command to succeed even though it may not be able to contact
the affected replicas. This option should be used when a replica is known
to be down and will not be able to respond to the removal notification.
When the replica is finally rebooted it will read the updated directory
object, note that it is no longer a replica for that directory, and stop
responding to lookups on that directory. Cleanup of the files that held the
now removed directory can be accomplished manually by removing the
appropriate files in the /var/nis directory (see nisfiles(4) for more informa-
tion).

−s hostname Specify that the host hostname should be removed as a replica for the direc-
tory named dirname. If this option is not present all replicas and the master
server for a directory are removed and the directory is removed from the
namespace.

RETURN VALUES This command returns 0 if it is successful, and 1 otherwise.

EXAMPLES To remove a directory bar under the foo.com. domain, one would use the command:

example% nisrmdir bar.foo.com.

To remove a replica that is serving directory bar.foo.com. one would use the command:

example% nisrmdir −s replica.foo.com. bar.foo.com.

To force the removal of directory bar.foo.com. from the namespace, one would use the
command:

example% nisrmdir −f bar.foo.com.

1-776 SunOS 5.6 modified 25 Sep 1992

User Commands nisrmdir (1)

ENVIRONMENT NIS_PATH If this variable is set, and the NIS+ directory name is not fully
qualified, each directory specified will be searched until the directory
is found (see nisdefaults(1)).

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWnisu

SEE ALSO nis+(1), nisdefaults(1), nisrm(1), nisfiles(4), attributes(5)

modified 25 Sep 1992 SunOS 5.6 1-777

nistbladm (1) User Commands

NAME nistbladm − NIS+ table administration command

SYNOPSIS nistbladm −a | −A [−D defaults] colname=value . . . tablename

nistbladm −a | −A [−D defaults] indexedname

nistbladm −c [−D defaults] [−p path] [−s sep] type colname=[flags][,access] . . .
tablename

nistbladm −d tablename

nistbladm −e | −E colname=value . . . indexedname

nistbladm −m colname=value . . . indexedname

nistbladm −r | −R [colname=value . . .] tablename

nistbladm −r | −R indexedname

nistbladm −u [−p path] [−s sep] [−t type] [colname=access . . .] tablename

DESCRIPTION The nistbladm command is used to administer NIS+ tables. There are five primary
operations that it performs: creating and deleting tables, adding entries to, modifying
entries within, and removing entries from tables.

Though NIS+ does not place restrictions on the size of tables or entries, the size of data
has an impact on the performance and the disk space requirements of the NIS+ server.
NIS+ is not designed to store huge pieces of data, such as files; instead pointer to files
should be stored in NIS+.

NIS+ design is optimized to support 10,000 objects with a total size of 10M bytes. If the
requirements exceed the above, it is suggested that the domain hierarchy be created, or
the data stored in the tables be pointers to the actual data, instead of the data itself.

When creating tables, a table type, type , and a list of column definitions must be pro-
vided.

type is a string that is stored in the table and later used by the service to verify that entries
being added to it are of the correct type.

Syntax for column definitions is:

colname=[flags][,access]

flags is a combination of:

S Searchable. Specifies that searches can be done on the column’s values
(see nismatch(1)).

I Case-insensitive (only makes sense in combination with S). Specifies
that searches should ignore case.

C Crypt. Specifies that the column’s values should be encrypted.
B Binary data (does not make sense in combination with S). If not set, the

column’s values are expected to be null terminated ASCII strings.

1-778 SunOS 5.6 modified 11 May 1995

User Commands nistbladm (1)

X XDR encoded data (only makes sense in combination with B).

access is specified in the format as defined by the nischmod(1) command.

When manipulating entries, this command takes two forms of entry name. The first uses
a series of space separated colname=value pairs that specify column values in the entry.
The second is a NIS+ indexed name, indexedname, of the form:

[colname=value, . . .],tablename

OPTIONS −a | A Add entries to a NIS+ table. The difference between the lowercase ‘a’ and the
uppercase ‘A’ is in the treatment of preexisting entries. The entry’s contents are
specified by the column=value pairs on the command line. Note: Values for all
columns must be specified when adding entries to a table.

Normally, NIS+ reports an error if an attempt is made to add an entry to a table
that would overwrite an entry that already exists. This prevents multiple parties
from adding duplicate entries and having one of them get overwritten. If you
wish to force the add, the uppercase ‘A’ specifies that the entry is to be added,
even if it already exists. This is analogous to a modify operation on the entry.

−c Create a table named tablename in the namespace. The table that is created must
have at least one column and at least one column must be searchable.

−d tablename
Destroy the table named tablename . The table that is being destroyed must be
empty. The table’s contents can be deleted with the −R option below.

−e |E Edit the entry in the table that is specified by indexdname. indexdname must
uniquely identify a single entry. It is possible to edit the value in a column that
would change the indexed name of an entry.

The change (colname=value) may affect other entries in the table if the change
results in an entry whose indexed name is different from indexedname and which
matches that of another existing entry. In this case, the −e option will fail and an
error will be reported. The −E option will force the replacement of the existing
entry by the new entry (effectively removing two old entries and adding a new
one).

−m A synonym for −E. This option has been superseded by the −E option.

−r |R Remove entries from a table. The entry is specified by either a series of
column=value pairs on the command line, or an indexed name that is specified as
entryname. The difference between the interpretation of the lowercase ‘r’ versus
the uppercase ‘R’ is in the treatment of non-unique entry specifications. Nor-
mally the NIS+ server will disallow an attempt to remove an entry when the
search criterion specified for that entry resolves to more than one entry in the
table. However, it is sometimes desirable to remove more than one entry, as
when you are attempting to remove all of the entries from a table. In this case,
using the uppercase ‘R’ will force the NIS+ server to remove all entries matching
the passed search criterion. If that criterion is null and no column values
specified, then all entries in the table will be removed.

modified 11 May 1995 SunOS 5.6 1-779

nistbladm (1) User Commands

−u Update attributes of a table. This allows the concatenation path (−p), separation
character (specified with the (−s)), column access rights, and table type string (−t)
of a table to be changed. Neither the number of columns, nor the columns that
are searchable may be changed.

−D defaults
When creating objects, this option specifies a different set of defaults to be used
during this operation. The defaults string is a series of tokens separated by
colons. These tokens represent the default values to be used for the generic
object properties. All of the legal tokens are described below.

ttl=time This token sets the default time to live for objects that are created by
this command. The value time is specified in the format as defined by
the nischttl(1) command. The default value is 12 hours.

owner=ownername
This token specifies that the NIS+ principal ownername should own the
created object. Normally this value is the same as the principal who is
executing the command.

group=groupname
This token specifies that the group groupname should be the group
owner for the object that is created. The default value is NULL.

access=rights
This token specifies the set of access rights that are to be granted for
the given object. The value rights is specified in the format as defined
by the nischmod(1) command. The default value is
− − − −rmcdr− − −r− − −.

−p path When creating or updating a table, this option specifies the table’s search path.
When a nis_list() function is invoked, the user can specify the flag
FOLLOW_PATH to tell the client library to continue searching tables in the table’s
path if the search criteria used does not yield any entries. The path consists of an
ordered list of table names, separated by colons. The names in the path must be
fully qualified.

−s sep When creating or updating a table, this option specifies the table’s separator char-
acter. The separator character is used by niscat(1) when displaying tables on the
standard output. Its purpose is to separate column data when the table is in
ASCII form. The default value is a space.

−t type When updating a table, this option specifies the table’s type string.

RETURN VALUES This command returns 0 on success and 1 on failure.

EXAMPLES This example creates a table named hobbies in the directory foo.com. of the type
hobby_tbl with two searchable columns, name and hobby.

example% nistbladm −c hobby_tbl name=S,a+r,o+m hobby=S,a+r hobbies.foo.com.

1-780 SunOS 5.6 modified 11 May 1995

User Commands nistbladm (1)

The column name has read access for all (that is, owner, group, and world) and modify
access for only the owner. The column hobby is readable by all, but not modifiable by
anyone.

In this example, if the access rights had not been specified, the tables access rights would
have come from either the standard defaults or the NIS_DEFAULTS variable (see below).

To add entries to this table:

example% nistbladm −a name=bob hobby=skiing hobbies.foo.com.
example% nistbladm −a name=sue hobby=skiing hobbies.foo.com.
example% nistbladm −a name=ted hobby=swimming hobbies.foo.com.

To add the concatenation path:

example% nistbladm −u −p hobbies.bar.com.:hobbies.baz.com. hobbies

To delete the skiers from our list:

example% nistbladm −R hobby=skiing hobbies.foo.com.

Note: The use of the −r option would fail because there are two entries with the value of
skiing.

To create a table with a column that is named with no flags set, you supply only the name
and the equals (=) sign as follows.

example% nistbladm −c notes_tbl name=S,a+r,o+m note= notes.foo.com.

This example created a table, named notes.foo.com., of type notes_tbl with two columns
name and note. The note column is not searchable.

When entering data for columns in the form of a value string, it is essential that terminal
characters be protected by single or double quotes. These are the characters equals (=),
comma (,), left bracket ([), right bracket (]), and space (). These characters are parsed by
NIS+ within an indexed name. These characters are protected by enclosing the entire
value in double quote (") characters as follows.

example% nistbladm −a fullname="Joe User" nickname=Joe nicknames

If there is any doubt about how the string will be parsed, it is better to enclose it in
quotes.

ENVIRONMENT NIS_DEFAULTS This variable contains a defaults string that will be override the NIS+
standard defaults. If the −D switch is used those values will then
override both the NIS_DEFAULTS variable and the standard defaults.

NIS_PATH If this variable is set, and the NIS+ table name is not fully qualified,
each directory specified will be searched until the table is found (see
nisdefaults(1)).

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWnisu

modified 11 May 1995 SunOS 5.6 1-781

nistbladm (1) User Commands

SEE ALSO nis+(1), niscat(1), nischmod(1), nischown(1), nisdefaults(1), nismatch(1), nissetup(1M),
attributes(5)

WARNINGS To modify one of the entries, say, for example, from “bob” to “robert”:

example% nistbladm -m name=robert [name=bob],hobbies

Note that “[name=bob],hobbies” is an indexed name, and that the characters ‘[’ (open
bracket) and ‘]’ (close bracket) are interpreted by the shell. When typing entry names in
the form of NIS+ indexed names, the name must be protected by using single quotes.

It is possible to specify a set of defaults such that you cannot read or modify the table
object later.

1-782 SunOS 5.6 modified 11 May 1995

User Commands nistest (1)

NAME nistest − return the state of the NIS+ namespace using a conditional expression

SYNOPSIS nistest [−ALMP] [−a rights | −t type] object

nistest [−ALMP] [−a rights] indexedname

DESCRIPTION nistest provides a way for shell scripts and other programs to test for the existence, type,
and access rights of objects and entries. Entries are named using indexed names (see
nismatch(1)).

OPTIONS −A All data. This option specifies that the data within the table and all of the data
in tables in the initial table’s concatenation path be returned. This option is
only valid when using indexed names or following links.

−L Follow links. If the object named by object or the tablename component of
indexedname names a LINK type object, the link is followed when this switch is
present.

−M Master server only. This option specifies that the lookup should be sent to the
master server of the named data. This guarantees that the most up to date
information is seen at the possible expense that the master server may be
busy.

−P Follow concatenation path. This option specifies that the lookup should fol-
low the concatenation path of a table if the initial search is unsuccessful. This
option is only valid when using indexed names or following links.

−a rights This option is used to verify that the current process has the desired or
required access rights on the named object or entries. The access rights are
specified in the same way as the nischmod(1) command.

−t type This option tests the type of object. The value of type can be one of the follow-
ing:

G Return true if the object is a group object.

D Return true if the object is a directory object.

T Return true if the object is a table object.

L Return true if the object is a link object.

P Return true if the object is a private object.

RETURN VALUES 0 Success.

1 Failure due to object not present, not of specified type and/or no such
access.

2 Failure due to illegal usage.

EXAMPLES When testing for access rights, nistest returns success (0) if the specified rights are
granted to the current user. Thus testing for access rights

example% nistest −a w=mr skippy.domain

modified 25 Sep 1992 SunOS 5.6 1-783

nistest (1) User Commands

Tests that all authenticated NIS+ clients have read and modify access to the object named
skippy.domain .

Testing for access on a particular entry in a table can be accomplished using the indexed
name syntax. The following example tests to see if an entry in the password table can be
modified.

example% nistest −a o=m ’[uid=99],passwd.org_dir’

ENVIRONMENT NIS_PATH If this variable is set, and the NIS+ name is not fully qualified, each
directory specified will be searched until the object is found (see nis-
defaults(1)).

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWnisu

SEE ALSO nis+(1), nischmod(1), nisdefaults(1), attributes(5)

1-784 SunOS 5.6 modified 25 Sep 1992

User Commands nl (1)

NAME nl − line numbering filter

SYNOPSIS /usr/bin/nl [−p] [−b[type]] [−d[delim]] [−f[type]] [−h[type]] [−i[incr]]
[−l[num]] [−n[format]] [−s[sep]] [−w[width]] [−v[startnum]] [file]

/usr/xpg4/bin/nl [−p] [−b type] [−d delim] [−f type] [−h type] [−i incr]
[−l num] [−n format] [−s sep] [−w width] [−v startnum] [file]

DESCRIPTION The nl command reads lines from the named file, or the standard input if no file is named,
and reproduces the lines on the standard output. Lines are numbered on the left in accor-
dance with the command options in effect.

nl views the text it reads in terms of logical pages. Line numbering is reset at the start of
each logical page. A logical page consists of a header, a body, and a footer section.
Empty sections are valid. Different line numbering options are independently available
for header, body, and footer. For example, −bt (the default) numbers non-blank lines in
the body section and does not number any lines in the header and footer sections.

The start of logical page sections are signaled by input lines containing nothing but the
following delimiter character(s):

Line contents Start of

\ : \ : \ : header
\ : \ : body
\ : footer

Unless optioned otherwise, nl assumes the text being read is in a single logical page
body.

OPTIONS Command options may appear in any order and may be intermingled with an optional
file name. Only one file may be named. The specified default is used when the option is
not entered on the command line. /usr/xpg4/bin/nl options require option arguments. A
SPACE character may separate options from option arguments. /usr/bin/nl options may
have option arguments. If option-arguments of /usr/bin/nl options are not specified,
these options result in the default. The supported options are:

−btype Specifies which logical page body lines are to be numbered. Recognized
types and their meanings are:

a number all lines
t number all non-empty lines.
n no line numbering
pexp number only lines that contain the regular expression

specified in exp; see NOTES below.

Default type for logical page body is t (text lines numbered).

−ftype Same as −btype except for footer. Default type for logical page footer is n
(no lines numbered).

−ddelim The two delimiter characters specifying the start of a logical page section

modified 28 Mar 1995 SunOS 5.6 1-785

nl (1) User Commands

may be changed from the default characters (\ :) to two user-specified
characters. If only one character is entered, the second character
remains the default character (:). No space should appear between the
−d and the delimiter characters. To enter a backslash, use two
backslashes.

−htype Same as −btype except for header. Default type for logical page header is
n (no lines numbered).

−iincr incr is the increment value used to number logical page lines. Default
incr is 1.

−lnum num is the number of blank lines to be considered as one. For example,
−l2 results in only the second adjacent blank being numbered (if the
appropriate −ha, −ba, and/or −fa option is set). Default num is 1.

−nformat format is the line numbering format. Recognized values are:

ln left justified, leading zeroes suppressed
rn right justified, leading zeroes suppressed
rz right justified, leading zeroes kept

Default format is rn (right justified).

−p Do not restart numbering at logical page delimiters.

−ssep sep is the character(s) used in separating the line number and the
corresponding text line. Default sep is a TAB.

−vstartnum startnum is the initial value used to number logical page lines. Default
startnum is 1.

−wwidth width is the number of characters to be used for the line number.
Default width is 6.

OPERANDS The following operand is supported:

file A path name of a text file to be line-numbered.

EXAMPLES The command:

example% nl −v10 −i10 −d!+ filename1

will cause the first line of the page body to be numbered 10, the second line of the page
body to be numbered 20, the third 30, and so forth. The logical page delimiters are !+.

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of nl: LC_COLLATE, LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS The following exit values are returned:
0 Successful completion.
>0 An error occurred.

1-786 SunOS 5.6 modified 28 Mar 1995

User Commands nl (1)

FILES /usr/lib/locale/locale/LC_COLLATE/CollTable
collation table generated by localedef

/usr/lib/locale/locale/LC_COLLATE/coll.so
shared object containing string transformation library routines

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

/usr/bin/nl ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu

/usr/xpg4/bin/nl ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxcu4

SEE ALSO pr(1), attributes(5), environ(5), regex(5), regexp(5)

NOTES Internationalized Regular Expressions are used in the POSIX and "C" locales. In other
locales, Internationalized Regular Expressions are used if the following two conditions
are met:

· /usr/lib/locale/locale/LC_COLLATE/CollTable is present

· /usr/lib/locale/locale/LC_COLLATE/coll.so is not present;

otherwise, Simple Regular Expressions are used.

Internationalized Regular Expressions are explained on regex(5).
Simple Regular Expressions are explained on regexp(5).

modified 28 Mar 1995 SunOS 5.6 1-787

nm (1) User Commands

NAME nm − print name list of an object file

SYNOPSIS /usr/ccs/bin/nm [−ACDhlnPprRsTuVv] [−efox] [−g | −u] [−t format] file. . .

/usr/xpg4/bin/nm [−ACDhlnPprRsTuVv] [−efox] [−g | −u] [−t format] file. . .

DESCRIPTION The nm utility displays the symbol table of each ELF object file that is specified by file.

If no symbolic information is available for a valid input file, the nm utility will report that
fact, but not consider it an error condition.

OPTIONS The output of nm may be controlled using the following options:

−A Write the full path name or library name of an object on each line.

−C Demangle C++ symbol names before printing them out.

−D Display the SHT_DYNSYM symbol information. This is the symbol table used
by ld.so.1 and is present even in stripped dynamic executables. By default the
SHT_SYMTAB symbol table is displayed.

−e See NOTES below.

−f See NOTES below.

−g Write only external (global) symbol information.

−h Do not display the output heading data.

−l Distinguish between WEAK and GLOBAL symbols by appending a ∗ to the key
letter for WEAK symbols.

−n Sort external symbols by name before they are printed.

−o Print the value and size of a symbol in octal instead of decimal. (equivalent to
−t o).

−p Produce easy to parse, terse output. Each symbol name is preceded by its
value (blanks if undefined) and one of the letters:

A absolute symbol
B bss (uninitialized data space) symbol
D data object symbol
F file symbol.
N symbol has no type
S section symbol
T text symbol
U undefined

If the symbol’s binding attribute is:

LOCAL the key letter is lower case

WEAK the key letter is upper case; if the −l modifier is specified, the
upper case key letter is followed by a ∗

GLOBAL the key letter is upper case.

1-788 SunOS 5.6 modified 18 Mar 1997

User Commands nm (1)

−P Write information in a portable output format, as specified in Standard Out-
put.

−r Prepend the name of the object file or archive to each output line.

−R Print the archive name (if present), followed by the object file and symbol
name. If the −r option is also specified, this option is ignored.

−s Print section name instead of section index.

−t format Write each numeric value in the specified format. The format is dependent on
the single character used as the format option-argument:

d The offset is written in decimal (default).
o The offset is written in octal.
x The offset is written in hexadecimal.

−T See NOTES below.

/usr/ccs/bin/nm −u Print undefined symbols only.
/usr/xpg4/bin/nm −u Print long listing for each undefined symbol. See OUTPUT below.

−v Sort external symbols by value before they are printed.

−V Print the version of the nm command executing on the standard error output.

−x Print the value and size of a symbol in hexadecimal instead of decimal
(equivalent to −t x).

Options may be used in any order, either singly or in combination, and may appear any-
where in the command line. When conflicting options are specified (such as −v and −n;
and −o and −x) the first is taken and the second ignored with a warning message to the
user. (See −R for exception.)

OPERANDS The following operand is supported:

file A path name of an object file, executable file or object-file library.

OUTPUT
Standard Output For each symbol, the following information will be printed:

Index The index of the symbol. (The index appears in brackets.)

Value The value of the symbol is one of the following:

· a section offset for defined symbols in a relocatable file
· alignment constraints for symbols whose section index is SHN_COMMON
· a virtual address in executable and dynamic library files.

Size The size in bytes of the associated object.

Type A symbol is of one of the following types:

NOTYPE no type was specified
OBJECT a data object such as an array or variable
FUNC a function or other executable code
SECTION a section symbol
FILE name of the source file.

modified 18 Mar 1997 SunOS 5.6 1-789

nm (1) User Commands

Bind The symbol’s binding attributes.

LOCAL symbols have a scope limited to the object file containing their
definition

GLOBAL symbols are visible to all object files being combined
WEAK symbols are essentially global symbols with a lower precedence

than GLOBAL.

Other A field reserved for future use, currently containing 0.

Shndx Except for three special values, this is the section header table index in relation
to which the symbol is defined. The following special values exist:

ABS indicates the symbol’s value will not change through
relocation

COMMON indicates an unallocated block and the value provides
alignment constraints

UNDEF indicates an undefined symbol.

Name The name of the symbol

Object Name
The name of the object or library if −A is specified.

If the −P option is specified, the previous information is displayed using the following
portable format. The three versions differ depending on whether −t d, −t o or −t x was
specified, respectively:

"%s%s %s %d %d\n", <library/object name>, name, type , value, size

"%s%s %s %o %o\n", <library/object name>, name, type , value, size

"%s%s %s %x %x\n", <library/object name>, name, type , value, size

where <library/object name> is formatted as follows:

· If −A is not specified, <library/object name> is an empty string.

· If −A is specified and the corresponding file operand does not name a library:

"%s: ", file

· If −A is specified and the corresponding file operand names a library. In this
case, <object file> names the object file in the library containing the symbol
being described:

"%s[%s]: ", file, <object file>

If −A is not specified, then if more than one file operand is specified or if only one file
operand is specified and it names a library, nm will write a line identifying the object
containing the following symbols before the lines containing those symbols, in the form:

· If the corresponding file operand does not name a library:

"%s:\n", file

· If the corresponding file operand names a library; in this case, <object file> is the
name of the file in the library containing the following symbols:

1-790 SunOS 5.6 modified 18 Mar 1997

User Commands nm (1)

"%s[%s]:\n", file, <object file>

If −P is specified, but −t is not, the format is as if −t x had been specified.

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of nm: LC_COLLATE, LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS The following exit values are returned:
0 Successful completion.
>0 An error occurred.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

/usr/ccs/bin/nm ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWbtool

/usr/xpg4/bin/nm ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxcu4

SEE ALSO ar(1), as(1), dump(1), ld(1), ld.so.1(1), a.out(4), ar(4), attributes(5), environ(5), xpg4(5)

NOTES The following options are obsolete because of changes to the object file format and will be
deleted in a future release.

−e Print only external and static symbols. The symbol table now contains only static
and external symbols. Automatic symbols no longer appear in the symbol table.
They do appear in the debugging information produced by cc −g, which may be
examined using dump(1).

−f Produce full output. Redundant symbols (such as .text, .data, and so forth).
which existed previously do not exist and producing full output will be identical
to the default output.

−T By default, nm prints the entire name of the symbols listed. Since symbol names
have been moved to the last column, the problem of overflow is removed and it
is no longer necessary to truncate the symbol name.

modified 18 Mar 1997 SunOS 5.6 1-791

nohup (1) User Commands

NAME nohup − run a command immune to hangups

SYNOPSIS /usr/bin/nohup command [argument . . .]
/usr/xpg4/bin/nohup command [argument . . .]

DESCRIPTION The nohup utility invokes the named command with the arguments supplied. When the
command is invoked, nohup arranges for the SIGHUP signal to be ignored by the process.

The nohup utility can be used when it is known that command will take a long time to run
and the user wants to logout of the terminal; when a shell exits, the system sends its chil-
dren SIGHUP signals, which by default cause them to be killed. All stopped, running,
and background jobs will ignore SIGHUP and continue running, if their invocation is pre-
ceded by the nohup command or if the process programmatically has chosen to ignore
SIGHUP.

/usr/bin/nohup Processes run by /usr/bin/nohup are immune to SIGHUP (hangup) and SIGQUIT (quit)
signals.

/usr/xpg4/bin/nohup Processes run by /usr/xpg4/bin/nohup are immune to SIGHUP.

The nohup utility does not arrange to make processes immune to a SIGTERM (terminate)
signal, so unless they arrange to be immune to SIGTERM or the shell makes them
immune to SIGTERM, they will receive it.

If nohup.out is not writable in the current directory, output is redirected to
$HOME/nohup.out. If a file is created, the file will have read and write permission (600,
see chmod(1)). If the standard error is a terminal, it is redirected to the standard output,
otherwise it is not redirected. The priority of the process run by nohup is not altered.

OPERANDS The following operands are supported:

command The name of a command that is to be invoked. If the command operand
names any of the special shell_builtins(1) utilities, the results are
undefined.

argument Any string to be supplied as an argument when invoking the command
operand.

EXAMPLES It is frequently desirable to apply nohup to pipelines or lists of commands. This can be
done only by placing pipelines and command lists in a single file, called a shell script.
One can then issue:

example$ nohup sh file

and the nohup applies to everything in file. If the shell script file is to be executed often,
then the need to type sh can be eliminated by giving file execute permission.

Add an ampersand and the contents of file are run in the background with interrupts also
ignored (see sh(1)):

example$ nohup file &

1-792 SunOS 5.6 modified 18 Mar 1997

User Commands nohup (1)

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of nohup: LC_CTYPE, LC_MESSAGES, PATH, and NLSPATH.

HOME Determine the path name of the user’s home directory: if the output file
nohup.out cannot be created in the current directory, the nohup com-
mand will use the directory named by HOME to create the file.

EXIT STATUS The following exit values are returned:
126 command was found but could not be invoked.
127 An error occurred in nohup, or command could not be found

Otherwise, the exit values of nohup will be that of the command operand.

FILES nohup.out the output file of the nohup execution if standard output is a ter-
minal and if the current directory is writable.

$HOME/nohup.out the output file of the nohup execution if standard output is a ter-
minal and if the current directory is not writable.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

/usr/bin/nohup ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu
CSI enabled

/usr/xpg4/bin/nohup ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxcu4
CSI enabled

SEE ALSO batch(1), chmod(1), csh(1), ksh(1), nice(1), sh(1), shell_builtins(1), signal(3C), attri-
butes(5), environ(5), xpg4(5)

WARNINGS If you are running the Korn shell (ksh(1)) as your login shell, and have nohup’ed jobs
running when you attempt to logout, you will be warned with the message

You have jobs running.

You will then need to logout a second time to actually logout; however, your background
jobs will continue to run.

NOTES The C-shell (csh(1)) has a built-in command nohup that provides immunity from
SIGHUP, but does not redirect output to nohup.out. Commands executed with ‘&’ are
automatically immune to HUP signals while in the background.

nohup does not recognize command sequences. In the case of the following command

example$ nohup command1; command2

modified 18 Mar 1997 SunOS 5.6 1-793

nohup (1) User Commands

The nohup utility applies only to command1. The command

example$ nohup (command1; command2)

is syntactically incorrect.

1-794 SunOS 5.6 modified 18 Mar 1997

User Commands nroff (1)

NAME nroff − format documents for display or line-printer

SYNOPSIS nroff [−ehiq] [−mname] [−nN] [−opagelist] [−raN] [−sN] [−Tname]

DESCRIPTION nroff formats text in the named files for typewriter-like devices. See also troff(1).

If no file argument is present, nroff reads the standard input. An argument consisting of
a ‘−’ is taken to be a file name corresponding to the standard input.

OPTIONS Options may appear in any order so long as they appear before the files.

−e Produce equally-spaced words in adjusted lines, using full terminal resolution.

−h Use output TAB characters during horizontal spacing to speed output and reduce
output character count. TAB settings are assumed to be every 8 nominal charac-
ter widths.

−i Read the standard input after the input files are exhausted.

−q Invoke the simultaneous input-output mode of the rd(9F) request.

−mname
Prepend the macro file /usr/share/lib/tmac/tmac.name to the input files.

−nN Number first generated page N.

−opagelist
Print only pages whose page numbers appear in the comma-separated list of
numbers and ranges. A range N−M means pages N through M ; an initial −N
means from the beginning to page N; and a final N− means from N to the end.

−raN Set register a (one-character) to N.

−sN Stop every N pages. nroff will halt prior to every N pages (default N=1) to allow
paper loading or changing, and will resume upon receipt of a NEWLINE.

−Tname
Prepare output for a device of the specified name. Known names are:

37 Teletype Corporation Model 37 terminal — this is the
default.

lp | tn300 GE Any line printer or terminal without half-line capabil-
ity.

300 DASI-300.
300-12 DASI-300 — 12-pitch.
300S DASI-300S.
300S-12 DASI-300S.
382 DASI-382 (fancy DTC 382).
450 DASI-450 (Diablo Hyterm).
450-12 DASI-450 (Diablo Hyterm) — 12-pitch.
832 AJ 832.

modified 20 Dec 1996 SunOS 5.6 1-795

nroff (1) User Commands

EXAMPLES The following command:

example% nroff −s4 −me users.guide

formats users.guide using the −me macro package, and stopping every 4 pages.

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of nroff: LC_CTYPE, LC_MESSAGES, and NLSPATH.

FILES /var/tmp/trtmp∗ temporary file
/usr/share/lib/tmac/tmac.∗ standard macro files
/usr/share/lib/nterm/∗ terminal driving tables for nroff
/usr/share/lib/nterm/README index to terminal description files

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWdoc
CSI Enabled

SEE ALSO checknr(1), col(1), eqn(1), man(1), tbl(1), troff(1), attributes(5), environ(5), me(5), ms(5),
term(5), rd(9F)

1-796 SunOS 5.6 modified 20 Dec 1996

User Commands od (1)

NAME od − octal dump

SYNOPSIS /usr/bin/od [−bcCDdFfOoSsvXx] [−] [file] [offset_string]
/usr/bin/od [−bcCDdFfOoSsvXx] [−A address_base] [−j skip]

[−N count] [−t type_string] . . . [−] [file . . .]

/usr/xpg4/bin/od [−bcCDdFfOoSsvXx] [−] [file] [offset_string]
/usr/xpg4/bin/od [−bcCDdFfOoSsvXx] [−A address_base] [−j skip]

[−N count] [−t type_string . . .] [−] [file . . .]

DESCRIPTION The od command copies sequentially each input file to standard output and transforming
the input data according to the output types specified by the -t or −bcCDdFfOoSsvXx
options. If no output type is specified, the default output is as if −t o2 had been specified.
Multiple types can be specified by using multiple −bcCDdFfOoSstvXx options. Output
lines are written for each type specified in the order in which the types are specified. If
no file is specified, the standard input is used. The [offset_string] operand is mutually
exclusive from the −A, −j, −N, and −t options. For the purposes of this description, the
following terms are used:

word refers to a 16-bit unit, independent of the word size of the machine
long word refers to a 32-bit unit
double long word refers to a 64-bit unit.

OPTIONS The following options are supported:

−A address_base
Specify the input offset base. The address_base option-argument must be a char-
acter. The characters d, o and x specify that the offset base will be written in
decimal, octal or hexadecimal, respectively. The character n specifies that the
offset will not be written. Unless −A n is specified, the output line will be pre-
ceded by the input offset, cumulative across input files, of the next byte to be
written. In addition, the offset of the byte following the last byte written will be
displayed after all the input data has been processed. Without the
−A address_base option and the [offset_string] operand, the input offset base is
displayed in octal.

−b Interpret bytes in octal. This is equivalent to −t o1.

/usr/bin/od −c Display single-byte characters. Certain non-graphic characters appear as C-
language escapes:
null \0
backspace \b
form-feed \f
new-line \n
return \r
tab \t

others appear as 3-digit octal numbers. For example:

modified 18 Mar 1997 SunOS 5.6 1-797

od (1) User Commands

echo "hello world" | od -c
0000000 h e l l o w o r l d \n
0000014

/usr/xpg4/bin/od −c Interpret bytes as single-byte or multibyte characters according to the current
setting of the LC_CTYPE locale category. Printable multibyte characters are writ-
ten in the area corresponding to the first byte of the character; the two character
sequence ∗∗ is written in the area corresponding to each remaining byte in the
character, as an indication that the character is continued. Non-graphic charac-
ters appear the same as they would using the −C option.

−C Interpret bytes as single-byte or multibyte characters according to the current
setting of the LC_CTYPE locale category. Printable multibyte characters are writ-
ten in the area corresponding to the first byte of the character; two character
sequence ∗∗ are written in the area corresponding to each remaining byte in the
character, as an indication that the character is continued. Certain non-graphic
characters appear as C escapes:

null \0
backspace \b
formfeed \f
newline \n
return \r
tab \t

Other non-printable characters appear as one three-digit octal number for each
byte in the character.

−d Interpret words in unsigned decimal. This is equivalent to −t u2.

−D Interpret long words in unsigned decimal. This is equivalent to −t u4.

−f Interpret long words in floating point. This is equivalent to −t f4.

−F Interpret double long words in extended precision. This is equivalent to −t f8.

−j skip Jump over skip bytes from the beginning of the input. The od command will
read or seek past the first skip bytes in the concatenated input files. If the com-
bined input is not at least skip bytes long, the od command will write a diagnos-
tic message to standard error and exit with a non-zero exit status.

By default, the skip option-argument is interpreted as a decimal number. With a
leading 0x or 0X, the offset is interpreted as a hexadecimal number; otherwise,
with a leading 0, the offset will be interpreted as an octal number. Appending
the character b, k or m to offset will cause it to be interpreted as a multiple of
512, 1024 or 1 048 576 bytes, respectively. If the skip number is hexadecimal, any
appended b is considered to be the final hexadecimal digit. The address is
displayed starting at 0000000, and its base is not implied by the base of the skip
option-argument.

−N count
Format no more than count bytes of input. By default, count is interpreted as a

1-798 SunOS 5.6 modified 18 Mar 1997

User Commands od (1)

decimal number. With a leading 0x or 0X, count is interpreted as a hexadecimal
number; otherwise, with a leading 0, it is interpreted as an octal number. If
count bytes of input (after successfully skipping, if −j skip is specified) are not
available, it will not be considered an error; the od command will format the
input that is available. The base of the address displayed is not implied by the
base of the count option-argument.

−o Interpret words in octal. This is equivalent to −t o2.

−O Interpret long words in unsigned octal. This is equivalent to −t o4.

−s Interpret words in signed decimal. This is equivalent to −t d2.

−S Interpret long words in signed decimal. This is equivalent to −t d4.

−t type_string
Specify one or more output types. The type_string option-argument must be a
string specifying the types to be used when writing the input data. The string
must consist of the type specification characters:

a Named character. Interpret bytes as named characters. Only the least
significant seven bits of each byte will be used for this type specification.
Bytes with the values listed in the following table will be written using the
corresponding names for those characters.

Named Characters in od

Value Name Value Name Value Name Value Name
\000 nul \001 soh \002 stx \003 etx
\004 eot \005 enq \006 ack \007 bel
\010 bs \011 ht \012 lf \013 vt
\014 ff \015 cr \016 so \017 si
\020 dle \021 dc1 \022 dc2 \023 dc3
\024 dc4 \025 nak \026 syn \027 etb
\030 can \031 em \032 sub \033 esc
\034 fs \035 gs \036 rs \037 us
\040 sp \177 del

c Character . Interpret bytes as single-byte or multibyte characters specified
by the current setting of the LC_CTYPE locale category. Printable multi-
byte characters are written in the area corresponding to the first byte of the
character; the two character sequence ∗∗ is written in the area correspond-
ing to each remaining byte in the character, as an indication that the char-
acter is continued. Certain non-graphic characters appear as C escapes:
\0, \a, \b, \f, \n, \r, \t, \v. Other non-printable characters appear as one
three-digit octal number for each byte in the character.

The type specification characters d, f, o, u and x can be followed by an optional
unsigned decimal integer that specifies the number of bytes to be transformed
by each instance of the output type.

f Floating point . Can be followed by an optional F, D or L indicating that the

modified 18 Mar 1997 SunOS 5.6 1-799

od (1) User Commands

conversion should be applied to an item of type float, double or long dou-
ble, respectively.

d, o, u and x
Signed decimal, octal , unsigned decimal, and hexadecimal, respectively. Can
be followed by an optional C, S, I or L indicating that the conversion
should be applied to an item of type char, short, int or long, respectively.

Multiple types can be concatenated within the same type_string and multiple −t
options can be specified. Output lines are written for each type specified in the
order in which the type specification characters are specified.

−v Show all input data (verbose). Without the −v option, all groups of output lines
that would be identical to the immediately preceding output line (except for
byte offsets), will be replaced with a line containing only an asterisk (∗).

−x Interpret words in hex. This is equivalent to −t x2.

−X Interpret long words in hex. This is equivalent to −t x4.

OPERANDS The following operands are supported for both /usr/bin/od and /usr/xpg4/bin/od:

− Use the standard input in addition to any files specified.
When this operand is not given, the standard input is used
only if no file operands are specified.

/usr/bin/od The following operands are supported for /usr/bin/od only:

file A path name of a file to be read. If no file operands are
specified, the standard input will be used. If there are no
more than two operands, none of the −A, −j, −N or −t options
is specified, and any of the following are true:

1. the first character of the last operand is a plus sign (+)

2. the first character of the second operand is numeric

3. the first character of the second operand is x and the
second character of the second operand is a lower-case
hexadecimal character or digit

4. the second operand is named "x"

5. the second operand is named "."
then the corresponding operand is assumed to be an offset
operand rather than a file operand.

Without the −N count option, the display continues until an
end-of-file is reached.

1-800 SunOS 5.6 modified 18 Mar 1997

User Commands od (1)

[+] [0] offset [.] [b|B]
[+] [0] [offset] [.]
[+][0x|x][offset]
[+][0x|x] offset [B] The offset_string operand specifies the byte offset in the file

where dumping is to commence. The offset is interpreted in
octal bytes by default. If offset begins with "0", it is interpreted
in octal. If offset begins with "x" or "0x", it is interpreted in
hexadecimal and any appended "b" is considered to be the
final hexadecimal digit. If "." is appended, the offset is inter-
preted in decimal. If "b" or "B" is appended, the offset is inter-
preted in units of 512 bytes. If the file argument is omitted, the
offset argument must be preceded by a plus sign (+). The
address is displayed starting at the given offset. The radix of
the address will be the same as the radix of the offset, if
specified, otherwise it will be octal. Decimal overrides octal,
and it is an error to specify both hexadecimal and decimal
conversions in the same offset operand.

/usr/xpg4/bin/od The following operands are supported for /usr/xpg4/bin/od only:

file Same as /usr/bin/od, except only one of the first two condi-
tions must be true.

[+] [0] offset [.] [b|B]
+ [offset] [.]
[+][0x][offset]
[+][0x] offset [B]
+x [offset]
+xoffset [B] Description of offset_string is the same as for /usr/bin/od.

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of od: LC_CTYPE, LC_MESSAGES, LC_NUMERIC, and NLSPATH.

EXIT STATUS The following exit values are returned:
0 Successful completion.
>0 An error occurred.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

/usr/bin/od ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtoo
CSI enabled

modified 18 Mar 1997 SunOS 5.6 1-801

od (1) User Commands

/usr/xpg4/bin/od ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxcu4
CSI enabled

SEE ALSO sed(1), attributes(5), environ(5), xpg4(5)

1-802 SunOS 5.6 modified 18 Mar 1997

User Commands on (1)

NAME on − execute a command on a remote system, but with the local environment

SYNOPSIS on [−i] [−d] [−n] host command [argument] . . .

DESCRIPTION The on program is used to execute commands on another system, in an environment
similar to that invoking the program. All environment variables are passed, and the
current working directory is preserved. To preserve the working directory, the working
file system must be either already mounted on the host or be exported to it. Relative path
names will only work if they are within the current file system; absolute path names may
cause problems.

The standard input is connected to the standard input of the remote command, and the
standard output and the standard error from the remote command are sent to the
corresponding files for the on command.

OPTIONS −i Interactive mode. Use remote echoing and special character processing. This
option is needed for programs that expect to be talking to a terminal. All termi-
nal modes and window size changes are propagated.

−d Debug mode. Print out some messages as work is being done.

−n No Input. This option causes the remote program to get EOF when it reads from
the standard input, instead of passing the standard input from the standard
input of the on program. For example, −n is necessary when running commands
in the background with job control.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO chkey(1), rlogin(1), rsh(1), telnet(1), attributes(5)

DIAGNOSTICS unknown host Host name not found.

cannot connect to server
Host down or not running the server.

can’t find Problem finding the working directory.

can’t locate mount point
Problem finding current file system.

RPC: Authentication error
The server requires DES authentication and you do not have a
secret key registered with keyserv. Perhaps you logged in without
a password. Try to keylogin. If that fails try to set your publickey
with chkey.

modified 14 Jul 1994 SunOS 5.6 1-803

on (1) User Commands

Other diagnostic messages may be passed back from the server.

BUGS When the working directory is remote mounted over NFS, a CTRL-Z hangs the window.

Root cannot use on.

1-804 SunOS 5.6 modified 14 Jul 1994

User Commands optisa (1)

NAME optisa − determine which variant instruction set is optimal to use

SYNOPSIS optisa instruction_set...

DESCRIPTION optisa prints which instruction_set out of the ones specified in the command will perform
best on this machine. In this case, ‘‘best’’ is defined by the order in which instruction set
names are returned by isalist(1). Possible values for instruction_set are given in isalist(5).

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO isalist(1), isalist(2), isalist(5), attributes(5)

DIAGNOSTICS Exit status is 0 if one of the instruction_set values you specified is printed by this com-
mand. Exit status is 1 if there is no output; that is, this machine cannot use any
instruction_set that you specified with the optisa command.

NOTES optisa is preferable to uname -p or uname -m in determining which of several binary
versions of a given program should be used on the given machine.

modified 25 Oct 1996 SunOS 5.6 1-805

pack (1) User Commands

NAME pack, pcat, unpack − compress and expand files

SYNOPSIS pack [−f] [−] file . . .

pcat file . . .

unpack file . . .

DESCRIPTION
pack The pack command attempts to store the specified files in a compressed form. Wherever

possible (and useful), each input file file is replaced by a packed file file.z with the same
access modes, access and modified dates, and owner as those of file. If pack is successful,
file will be removed.

The amount of compression obtained depends on the size of the input file and the charac-
ter frequency distribution. Because a decoding tree forms the first part of each .z file, it is
usually not worthwhile to pack files smaller than three blocks, unless the character fre-
quency distribution is very skewed, which may occur with printer plots or pictures.

Typically, text files are reduced to 60-75% of their original size. Load modules, which use
a larger character set and have a more uniform distribution of characters, show little
compression, the packed versions being about 90% of the original size.

pack returns a value that is the number of files that it failed to compress.

No packing will occur if:

· the file appears to be already packed
· the file name has more than 14 − 2 bytes
· the file has links
· the file is a directory
· the file cannot be opened
· the file is empty
· no disk storage blocks will be saved by packing
· a file called file.z already exists
· the .z file cannot be created
· an I/O error occurred during processing.

The last segment of the file name must contain no more than 14 − 2 bytes to allow space
for the appended .z extension. Directories cannot be compressed.

pcat The pcat command does for packed files what cat(1) does for ordinary files, except that
pcat cannot be used as a filter. The specified files are unpacked and written to the stan-
dard output.

pcat returns the number of files it was unable to unpack. Failure may occur if:

· the file cannot be opened;
· the file does not appear to be the output of pack.

1-806 SunOS 5.6 modified 20 Dec 1996

User Commands pack (1)

unpack The unpack command expands files created by pack. For each file specified in the com-
mand, a search is made for a file called file.z (or just file, if file ends in .z). If this file
appears to be a packed file, it is replaced by its expanded version. The new file has the .z
suffix stripped from its name, and has the same access modes, access and modification
dates, and owner as those of the packed file.

unpack returns a value that is the number of files it was unable to unpack. Failure may
occur for the same reasons that it may in pcat, as well as for the following:

· a file with the ‘‘unpacked’’ name already exists;
· the unpacked file cannot be created.
· the filename (excluding the .z extension) has more than 14 bytes.

OPTIONS The following options are supported by pack:

−f Forces packing of file. This is useful for causing an entire directory to be
packed even if some of the files will not benefit. Packed files can be restored
to their original form using unpack or pcat.

OPERANDS The following operands are supported:

file A path name of a file to be packed, unpacked, or pcated; file can include or
omit the .z suffix.

− pack uses Huffman (minimum redundancy) codes on a byte-by-byte basis. If
the − argument is used, an internal flag is set that causes the number of times
each byte is used, its relative frequency, and the code for the byte to be
printed on the standard output. Additional occurrences of − in place of file
will cause the internal flag to be set and reset.

USAGE See largefile(5) for the description of the behavior of pack, pcat, and unpack when
encountering files greater than or equal to 2 Gbyte (231 bytes).

EXAMPLES To view a packed file named file.z use:

example% pcat file.z

or just:

example% pcat file

To make an unpacked copy, say nnn, of a packed file named file.z (without destroying
file.z) use the command:

example% pcat file >nnn

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of pack, pcat, and unpack: LC_CTYPE, LC_MESSAGES, and NLSPATH.

modified 20 Dec 1996 SunOS 5.6 1-807

pack (1) User Commands

EXIT STATUS The following exit values are returned:
0 Successful completion.
>0 An error occurred. The number of files the command failed to pack/unpack is

returned.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu
CSI Enabled

SEE ALSO cat(1), compress(1), zcat(1), attributes(5), environ(5), largefile(5)

1-808 SunOS 5.6 modified 20 Dec 1996

User Commands pagesize (1)

NAME pagesize − display the size of a page of memory

SYNOPSIS /usr/bin/pagesize

DESCRIPTION pagesize prints the size of a page of memory in bytes, as returned by getpagesize(3C).
This program is useful in constructing portable shell scripts.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO getpagesize(3C), attributes(5)

modified 14 Sep 1992 SunOS 5.6 1-809

passwd (1) User Commands

NAME passwd − change login password and password attributes

SYNOPSIS passwd [−r files | −r nis| −r nisplus] [name]

passwd [−r files] [−egh] [name]

passwd [−r files] −s [−a]

passwd [−r files] −s [name]

passwd [−r files] [−d | −l] [−f] [−n min] [−w warn] [−x max] name

passwd −r nis [−egh] [name]

passwd −r nisplus [−egh] [−D domainname] [name]

passwd −r nisplus −s [−a]

passwd −r nisplus [−D domainname] −s [name]

passwd −r nisplus [−l] [−f] [−n min] [−w warn] [−x max]
[−D domainname] name

DESCRIPTION The passwd command changes the password or lists password attributes associated with
the user’s login name. Additionally, privileged users may use passwd to install or change
passwords and attributes associated with any login name.

When used to change a password, passwd prompts everyone for their old password, if
any. It then prompts for the new password twice. When the old password is entered,
passwd checks to see if it has "aged" sufficiently. If "aging" is insufficient, passwd ter-
minates; see pwconv(1M), nistbladm(1), and shadow(4) for additional information.

When NIS or NIS+ is in effect on a system, passwd changes the NIS or NIS+ database. The
NIS or NIS+ password may be different from the password on the local machine. If NIS or
NIS+ is running, use passwd −r to change password information on the local machine.

The pwconv command creates and updates /etc/shadow with information from
/etc/passwd. pwconv relies on a special value of ’x’ in the password field of /etc/passwd.
This value of ’x’ indicates that the password for the user is already in /etc/shadow and
should not be modified.

If aging is sufficient, a check is made to ensure that the new password meets construction
requirements. When the new password is entered a second time, the two copies of the
new password are compared. If the two copies are not identical, the cycle of prompting
for the new password is repeated for, at most, two more times.

Passwords must be constructed to meet the following requirements:

· Each password must have PASSLENGTH characters, where PASSLENGTH is
defined in /etc/default/passwd and is set to 6. Only the first eight characters
are significant.

· Each password must contain at least two alphabetic characters and at least one
numeric or special character. In this case, "alphabetic" refers to all upper or
lower case letters.

1-810 SunOS 5.6 modified 2 Jan 1997

User Commands passwd (1)

· Each password must differ from the user’s login name and any reverse or circu-
lar shift of that login name. For comparison purposes, an upper case letter and
its corresponding lower case letter are equivalent.

· New passwords must differ from the old by at least three characters. For com-
parison purposes, an upper case letter and its corresponding lower case letter
are equivalent.

If all requirements are met, by default, the passwd command will consult
/etc/nsswitch.conf to determine in which repositories to perform password update. It
searches the passwd and passwd_compat entries. The sources (repositories) associated
with these entries will be updated. However, the password update configurations sup-
ported are limited to the following 5 cases. Failure to comply with the configurations will
prevent users from logging onto the system.

· passwd: files
· passwd: files nis
· passwd: files nisplus
· passwd: compat (==> files nis)
· passwd: compat (==> files nisplus)

passwd_compat: nisplus

Network administrators, who own the NIS+ password table, may change any password
attributes.

In files case, superusers (for instance, real and effective uid equal to 0, see id(1M) and
su(1M)) may change any password; hence, passwd does not prompt privileged users for
the old password. Privileged users are not forced to comply with password aging and
password construction requirements. A privileged user can create a null password by
entering a carriage return in response to the prompt for a new password. (This differs
from passwd −d because the "password" prompt will still be displayed.) If NIS is in
effect, superuser on the root master can change any password without being prompted
for the old NIS passwd, and is not forced to comply with password construction require-
ments.

Any user may use the −s option to show password attributes for his or her own login
name, provided they are using the −r nisplus argument. Otherwise, the −s argument is
restricted to the superuser.

The format of the display will be:

name status mm/dd/yy min max warn

or, if password aging information is not present,

name status

where

name The login ID of the user.

status The password status of name: PS stands for passworded or locked, LK
stands for locked, and NP stands for no password.

mm/dd/yy

modified 2 Jan 1997 SunOS 5.6 1-811

passwd (1) User Commands

The date password was last changed for name. (Note that all password
aging dates are determined using Greenwich Mean Time
(Universal Time) and therefore may differ by as much as a day in other
time zones.)

min The minimum number of days required between password changes for
name. MINWEEKS is found in /etc/default/passwd and is set to NULL.

max The maximum number of days the password is valid for name.
MAXWEEKS is found in /etc/default/passwd and is set to NULL.

warn The number of days relative to max before the password expires and the
name will be warned.

SECURITY passwd uses pam(3) for password management. The PAM configuration policy, listed
through /etc/pam.conf, specifies the password modules to be used for passwd. Here is a
partial pam.conf file with entries for the passwd command using the UNIX password
module.

passwd password required /usr/lib/security/pam_unix.so.1

If there are no entries for the passwd service, then the entries for the "other" service will
be used. If multiple password modules are listed, then the user may be prompted for
multiple passwords.

OPTIONS −r Specifies the repository to which an operation is applied. The supported
repositories are files, nis, or nisplus.

−e Change the login shell. For the files repository, this only works for the
superuser. Normal users may change the nis or nisplus repositories.

−g Change the gecos (finger) information. For the files repository, this only
works for the superuser. Normal users may change the nis or nisplus
repositories.

−h Change the home directory.

−D domainname Consult the passwd.org_dir table in domainname. If this option is not
specified, the default domainname returned by nis_local_directory(3N)
will be used. This domain name is the same as that returned by
domainname(1M).

−s name Show password attributes for the login name. For the nisplus reposi-
tory, this works for everyone. However for the files repository, this
only works for the superuser. It does not work at all for the nis reposi-
tory which does not support password aging.

−a Show password attributes for all entries. Use only with the −s option;
name must not be provided. For the nisplus repository, this will show
only the entries in the NIS+ password table in the local domain that the
invoker is authorized to "read". For the files repository, this is restricted
to the superuser.

1-812 SunOS 5.6 modified 2 Jan 1997

User Commands passwd (1)

Privileged User
Options

Only a privileged user can use the following options:

−f Force the user to change password at the next login by expiring the pass-
word for name.

−l Locks password entry for name.

−n min Set minimum field for name. The min field contains the minimum
number of days between password changes for name. If min is greater
than max , the user may not change the password. Always use this
option with the −x option, unless max is set to −1 (aging turned off). In
that case, min need not be set.

−w warn Set warn field for name. The warn field contains the number of days
before the password expires and the user is warned. This option is not
valid if password aging is disabled.

−x max Set maximum field for name. The max field contains the number of days
that the password is valid for name. The aging for name will be turned
off immediately if max is set to −1. If it is set to 0, then the user is forced
to change the password at the next login session and aging is turned off.

−d Deletes password for name. The login name will not be prompted for
password. It is only applicable to the files repository.

OPERANDS name User login name.

ENVIRONMENT If any of the LC_∗ variables (LC_CTYPE, LC_MESSAGES, LC_TIME, LC_COLLATE,
LC_NUMERIC, and LC_MONETARY) (see environ(5)) are not set in the environment, the
operational behavior of passwd for each corresponding locale category is determined by
the value of the LANG environment variable. If LC_ALL is set, its contents are used to
override both the LANG and the other LC_∗ variables. If none of the above variables is set
in the environment, the "C" (U.S. style) locale determines how passwd behaves.

LC_CTYPE Determines how passwd handles characters. When LC_CTYPE is set to a
valid value, passwd can display and handle text and filenames contain-
ing valid characters for that locale. passwd can display and handle
Extended Unix Code (EUC) characters where any individual character
can be 1, 2, or 3 bytes wide. passwd can also handle EUC characters of 1,
2, or more column widths. In the "C" locale, only characters from ISO
8859-1 are valid.

LC_MESSAGES Determines how diagnostic and informative messages are presented.
This includes the language and style of the messages, and the correct
form of affirmative and negative responses. In the "C" locale, the mes-
sages are presented in the default form found in the program itself (in
most cases, U.S. English).

EXIT STATUS The passwd command exits with one of the following values:

0 Success.
1 Permission denied.

modified 2 Jan 1997 SunOS 5.6 1-813

passwd (1) User Commands

2 Invalid combination of options.
3 Unexpected failure. Password file unchanged.
4 Unexpected failure. Password file(s) missing.
5 Password file(s) busy. Try again later.
6 Invalid argument to option.
7 Aging option is disabled.

FILES /etc/oshadow
/etc/passwd Password file.
/etc/shadow Shadow password file.
/etc/default/passwd Default values can be set for the following flags in

/etc/default/passwd. For example: MAXWEEKS=26

MAXWEEKS Maximum time period that password is valid.

MINWEEKS Minimum time period before the password can
be changed.

PASSLENGTH Minimum length of password, in characters.

WARNWEEKS Time period until warning of date of password’s
ensuing expiration.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu
CSI Enabled

SEE ALSO finger(1), login(1), nispasswd(1), nistbladm(1), yppasswd(1), domainname(1M),
eeprom(1M), id(1M), passmgmt(1M), pwconv(1M), su(1M), useradd(1M), userdel(1M),
usermod(1M), crypt(3C), getpwnam(3C), getspnam(3C), nis_local_directory(3N),
pam(3), loginlog(4), nsswitch.conf(4), pam.conf(4), passwd(4), shadow(4), attributes(5),
environ(5), pam_unix(5)

NOTES The passwd command replaces the nispasswd and yppasswd commands and should be
used in their place.

1-814 SunOS 5.6 modified 2 Jan 1997

User Commands paste (1)

NAME paste − merge corresponding or subsequent lines of files

SYNOPSIS paste [−s] [−d list] file . . .

DESCRIPTION The paste utility will concatenate the corresponding lines of the given input files, and
write the resulting lines to standard output.

The default operation of paste will concatenate the corresponding lines of the input files.
The NEWLINE character of every line except the line from the last input file will be
replaced with a TAB character.

If an EOF (end-of-file) condition is detected on one or more input files, but not all input
files, paste will behave as though empty lines were read from the files on which EOF was
detected, unless the −s option is specified.

OPTIONS The following options are supported:

−d list Unless a backslash character (\) appears in list, each character in list is an ele-
ment specifying a delimiter character. If a backslash character appears in list,
the backslash character and one or more characters following it are an element
specifying a delimiter character as described below. These elements specify
one or more delimiters to use, instead of the default TAB character, to replace
the NEWLINE character of the input lines. The elements in list are used circu-
larly; that is, when the list is exhausted the first element from the list is reused.

When the −s option is specified:

· The last newline character in a file will not be modified.

· The delimiter will be reset to the first element of list after each file operand
is processed.

When the option is not specified:

· The NEWLINE characters in the file specified by the last file will not be
modified.

· The delimiter will be reset to the first element of list each time a line is pro-
cessed from each file.

If a backslash character appears in list, it and the character following it will be
used to represent the following delimiter characters:

\n Newline character.
\t Tab character.
\\ Backslash character.
\0 Empty string (not a null character). If \0 is immediately followed by

the character x, the character X, or any character defined by the
LC_CTYPE digit keyword, the results are unspecified.

If any other characters follow the backslash, the results are unspecified.

−s Concatenate all of the lines of each separate input file in command line order.
The NEWLINE character of every line except the last line in each input file will

modified 20 Dec 1996 SunOS 5.6 1-815

paste (1) User Commands

be replaced with the TAB character, unless otherwise specified by the −d
option.

OPERANDS The following operand is supported:

file A path name of an input file. If − is specified for one or more of the files, the
standard input will be used; the standard input will be read one line at a time,
circularly, for each instance of −. Implementations support pasting of at least 12
file operands.

USAGE See largefile(5) for the description of the behavior of paste when encountering files
greater than or equal to 2 Gbyte (231 bytes).

EXAMPLES 1. List a directory in one column.

ls � paste −d" " −
2. List a directory in four columns.

ls � paste − − − −
3. Combine pairs of lines from a file into single lines.

paste −s −d"\ t\ n" file

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of paste: LC_CTYPE and LC_MESSAGES.

EXIT STATUS The following exit values are returned:

0 Successful completion.

>0 An error occurred.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu
CSI Enabled

SEE ALSO cut(1), grep(1), pr(1), attributes(5), environ(5), largefile(5)

DIAGNOSTICS "line too long" Output lines are restricted to 511 characters.

"too many files" Except for −s option, no more than 12 input files may be specified.

"no delimiters" The −d option was specified with an empty list.

"cannot open file" The specified file cannot be opened.

1-816 SunOS 5.6 modified 20 Dec 1996

User Commands patch (1)

NAME patch − apply changes to files

SYNOPSIS patch [−blNR] [−c | −e | −n] [−d dir] [−D define] [−i patchfile]
[−o outfile] [−p num] [−r rejectfile] [file]

DESCRIPTION The patch command reads a source (patch) file containing any of the three forms of
difference (diff) listings produced by the diff(1) command (normal, context or in the style
of ed(1)) and apply those differences to a file. By default, patch reads from the standard
input.

patch attempts to determine the type of the diff listing, unless overruled by a −c, −e or −n
option.

If the patch file contains more than one patch, patch will attempt to apply each of them as
if they came from separate patch files. (In this case the name of the patch file must be
determinable for each diff listing.)

OPTIONS The following options are supported:

−b Save a copy of the original contents of each modified file, before the
differences are applied, in a file of the same name with the suffix .orig
appended to it. If the file already exists, it will be overwritten; if multi-
ple patches are applied to the same file, the .orig file will be written only
for the first patch. When the −o outfile option is also specified, file.orig
will not be created but, if outfile already exists, outfile.orig will be
created.

−c Interpret the patch file as a context difference (the output of the com-
mand diff when the −c or −C options are specified).

−d dir Change the current directory to dir before processing as described in
EXTENDED DESCRIPTION.

−D define Mark changes with the C preprocessor construct:
#ifdef define
. . .
#endif

The option-argument define will be used as the differentiating symbol.

−e Interpret the patch file as an ed script, rather than a diff script.

−i patchfile Read the patch information from the file named by the path name
patchfile, rather than the standard input.

−l (The letter ell.) Cause any sequence of blank characters in the difference
script to match any sequence of blank characters in the input file. Other
characters will be matched exactly.

−n Interpret the script as a normal difference.

−N Ignore patches where the differences have already been applied to the
file; by default, already-applied patches are rejected.

modified 28 Mar 1995 SunOS 5.6 1-817

patch (1) User Commands

−o outfile Instead of modifying the files (specified by the file operand or the differ-
ence listings) directly, write a copy of the file referenced by each patch,
with the appropriate differences applied, to outfile. Multiple patches for
a single file will be applied to the intermediate versions of the file
created by any previous patches, and will result in multiple, con-
catenated versions of the file being written to outfile.

−p num For all path names in the patch file that indicate the names of files to be
patched, delete num path name components from the beginning of each
path name. If the path name in the patch file is absolute, any leading
slashes are considered the first component (that is, −p 1 removes the
leading slashes). Specifying −p 0 causes the full path name to be used.
If −p is not specified, only the basename (the final path name com-
ponent) is used.

−R Reverse the sense of the patch script; that is, assume that the difference
script was created from the new version to the old version. The −R
option cannot be used with ed scripts. patch attempts to reverse each
portion of the script before applying it. Rejected differences will be
saved in swapped format. If this option is not specified, and until a por-
tion of the patch file is successfully applied, patch attempts to apply
each portion in its reversed sense as well as in its normal sense. If the
attempt is successful, the user will be prompted to determine if the −R
option should be set.

−r rejectfile Override the default reject filename. In the default case, the reject file
will have the same name as the output file, with the suffix .rej appended
to it. See Patch Application.

OPERANDS The following operand is supported:

file A path name of a file to patch.

USAGE The −R option will not work with ed scripts because there is too little information to
reconstruct the reverse operation.

The −p option makes it possible to customise a patchfile to local user directory structures
without manually editing the patchfile. For example, if the filename in the patch file was:

/curds/whey/src/blurfl/blurfl.c

Setting −p 0 gives the entire path name unmodified; −p 1 gives:

curds/whey/src/blurfl/blurfl.c

without the leading slash, −p 4 gives:

blurfl/blurfl.c

and not specifying −p at all gives:

blurfl.c.

1-818 SunOS 5.6 modified 28 Mar 1995

User Commands patch (1)

When using −b in some file system implementations, the saving of a .orig file may pro-
duce unwanted results. In the case of 12, 13 or 14-character filenames, on file systems
supporting 14-character maximum filenames, the .orig file will overwrite the new file.

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of patch: LC_CTYPE, LC_MESSAGES, LC_TIME, and NLSPATH.

OUTPUT FILES The output of patch the save files (.orig suffixes) and the reject files (.rej suffixes) will be
text files.

EXTENDED
DESCRIPTION

A patchfile may contain patching instructions for more than one file; filenames are deter-
mined as specified in Patch Determination. When the −b option is specified, for each
patched file, the original will be saved in a file of the same name with the suffix .orig
appended to it.

For each patched file, a reject file may also be created as noted in Patch Application. In
the absence of a −r option, the name of this file will be formed by appending the suffix
.rej to the original filename.

Patchfile Format The patch file must contain zero or more lines of header information followed by one or
more patches. Each patch must contain zero or more lines of filename identification in
the format produced by diff −c, and one or more sets of diff output, which are cus-
tomarily called hunks.

patch recognizes the following expression in the header information:

Index: pathname The file to be patched is named pathname .

If all lines (including headers) within a patch begin with the same leading sequence of
blank characters, patch will remove this sequence before proceeding. Within each patch,
if the type of difference is context, patch recognizes the following expressions:

∗ ∗ ∗ filename timestamp The patches arose from filename.

− − − filename timestamp The patches should be applied to filename.

Each hunk within a patch must be the diff output to change a line range within the origi-
nal file. The line numbers for successive hunks within a patch must occur in ascending
order.

Filename
Determination

If no file operand is specified, patch performs the following steps to obtain a path name:

1. If the patch contains the strings ∗∗∗ and − − −, patch strips components from the
beginning of each path name (depending on the presence or value of the −p
option), then tests for the existence of both files in the current directory (or direc-
tory specified with the −d option).

2. If both files exist, patch assumes that no path name can be obtained from this
step. If the header information contains a line with the string Index:, patch strips
components from the beginning of the path name (depending on −p), then tests
for the existence of this file in the current directory (or directory specified with
the −d option).

modified 28 Mar 1995 SunOS 5.6 1-819

patch (1) User Commands

3. If an SCCS directory exists in the current directory, patch will attempt to per-
form a get −e SCCS/s.filename command to retrieve an editable version of the file.

4. If no path name can be obtained by applying the previous steps, or if the path
names obtained do not exist, patch will write a prompt to standard output and
request a filename interactively from standard input.

Patch Application If the −c, −e or −n option is present, patch will interpret information within each hunk as
a context difference, an ed difference or a normal difference, respectively. In the absence
of any of these options, patch determines the type of difference based on the format of
information within the hunk.

For each hunk, patch begins to search for the place to apply the patch at the line number
at the beginning of the hunk, plus or minus any offset used in applying the previous
hunk. If lines matching the hunk context are not found, patch scans both forwards and
backwards at least 1000 bytes for a set of lines that match the hunk context.

If no such place is found and it is a context difference, then another scan will take place,
ignoring the first and last line of context. If that fails, the first two and last two lines of
context will be ignored and another scan will be made. Implementations may search
more extensively for installation locations.

If no location can be found, patch will append the hunk to the reject file. The rejected
hunk will be written in context-difference format regardless of the format of the patch
file. If the input was a normal or ed -style difference, the reject file may contain differ-
ences with zero lines of context. The line numbers on the hunks in the reject file may be
different from the line numbers in the patch file since they will reflect the approximate
locations for the failed hunks in the new file rather than the old one.

If the type of patch is an ed diff, the implementation may accomplish the patching by
invoking the ed command.

EXIT STATUS The following exit values are returned:
0 Successful completion.
1 One or more lines were written to a reject file.
>1 An error occurred.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO ed(1), diff(1), attributes(5), environ(5)

1-820 SunOS 5.6 modified 28 Mar 1995

User Commands pathchk (1)

NAME pathchk − check path names

SYNOPSIS pathchk [−p] path . . .

DESCRIPTION The pathchk command will check that one or more path names are valid (that is, they
could be used to access or create a file without causing syntax errors) and portable (that
is, no filename truncation will result). More extensive portability checks are provided by
the −p option.

By default, pathchk will check each component of each path operand based on the under-
lying file system. A diagnostic will be written for each path operand that:

· is longer than PATH_MAX bytes.

· contains any component longer than NAME_MAX bytes in its containing
directory

· contains any component in a directory that is not searchable

· contains any character in any component that is not valid in its containing
directory.

The format of the diagnostic message is not specified, but will indicate the error detected
and the corresponding path operand.

It will not be considered an error if one or more components of a path operand do not
exist as long as a file matching the path name specified by the missing components could
be created that does not violate any of the checks specified above.

OPTIONS The following option is supported:

−p Instead of performing checks based on the underlying file system, write a
diagnostic for each path operand that:

· is longer than _POSIX_PATH_MAX bytes

· contains any component longer than _POSIX_NAME_MAX bytes

· contains any character in any component that is not in the portable filename
character set.

OPERANDS The following operand is supported:

path A path to be checked.

USAGE See largefile(5) for the description of the behavior of pathchk when encountering files
greater than or equal to 2 Gbyte (231 bytes).

modified 1 Feb 1995 SunOS 5.6 1-821

pathchk (1) User Commands

EXAMPLES To verify that all paths in an imported data interchange archive are legitimate and unam-
biguous on the current system:

pax −f archive | sed −e ’/ == .∗/s///’ | xargs pathchk
if [$? -eq 0]
then

pax −r −f archive
else

echo Investigate problems before importing files.
exit 1

fi

To verify that all files in the current directory hierarchy could be moved to any system
conforming to the X/Open specification that also supports the pax(1) command:

find . −print | xargs pathchk −p
if [$? −eq 0]
then

pax −w −f archive .
else

echo Portable archive cannot be created.
exit 1

fi

To verify that a user-supplied path names a readable file and that the application can
create a file extending the given path without truncation and without overwriting any
existing file:

case $- in
∗C∗) reset="";;
∗) reset="set +C"

set -C;;
esac
test -r "$path" && pathchk "$path.out" &&

rm "$path.out" > "$path.out"
if [$? -ne 0]; then

printf "%s: %s not found or %s.out fails \
creation checks.\n" $0 "$path" "$path"

$reset # reset the noclobber option in case a trap
on EXIT depends on it

exit 1
fi
$reset
PROCESSING < "$path" > "$path.out"

The following assumptions are made in this example:

1. PROCESSING represents the code that will be used by the application to use
$path once it is verified that $path.out will work as intended.

1-822 SunOS 5.6 modified 1 Feb 1995

User Commands pathchk (1)

2. The state of the noclobber option is unknown when this code is invoked and
should be set on exit to the state it was in when this code was invoked. (The
reset variable is used in this example to restore the initial state.)

3. Note the usage of:
rm "$path.out" > "$path.out"

a. The pathchk command has already verified, at this point, that $path.out
will not be truncated.

b. With the noclobber option set, the shell will verify that $path.out does
not already exist before invoking rm.

c. If the shell succeeded in creating $path.out, rm will remove it so that the
application can create the file again in the PROCESSING step.

d. If the PROCESSING step wants the file to exist already when it is
invoked, the:

rm "$path.out" > "$path.out"

should be replaced with:
> "$path.out"

which will verify that the file did not already exist, but leave $path.out in
place for use by PROCESSING.

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of pathchk: LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS The following exit values are returned:

0 All path operands passed all of the checks.

>0 An error occurred.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO pax(1), test(1), attributes(5), environ(5), largefile(5)

modified 1 Feb 1995 SunOS 5.6 1-823

pathconv (1F) FMLI Commands

NAME pathconv − search FMLI criteria for filename

SYNOPSIS pathconv [−f] [−v alias]
pathconv [−t] [−l] [−nnum] [−v string]

DESCRIPTION The pathconv function converts an alias to its pathname. By default, it takes the alias as a
string from the standard input.

OPTIONS −f If −f is specified, the full path will be returned (this is the default).

−t If −t is specified, pathconv will truncate a pathname specified in string in a for-
mat suitable for display as a frame title. This format is a shortened version of the
full pathname, created by deleting components of the path from the middle of
the string until it is under DISPLAYW — 6 characters in length, and then inserting
ellipses (. . .) between the remaining pieces. Ellipses are also used to show trun-
cation at the ends of the strings if necessary, unless the −l option is given.

−l If −l is specified, < and > will be used instead of ellipses (. . .) to indicate trunca-
tion at the ends of the string generated by the −t option. Using −l allows display
of the longest possible string while still notifying users it has been truncated.

−nnum If −n is specified, num is the maximum length of the string (in characters) gen-
erated by the −t option. The argument num can be any integer from 1 to 255.

−valias | string
If the −v option is used, then alias or string can be specified when pathconv is
called. The argument alias must be an alias defined in the alias_file named when
fmli was invoked. The argument string can only be used with the −t option and
must be a pathname.

EXAMPLES Here is a menu descriptor that uses pathconv to construct the menu title. It searches for
MYPATH in the alias_file named when fmli was invoked:

menu=`pathconv −v MYPATH/ls`
.
.
.

where there is a line in alias_file that defines MYPATH. For example,
MYPATH=$HOME/bin:/usr/bin.

Here is a menu descriptor that takes alias from the standard input.

menu=`echo MYPATH/ls | pathconv`
.
.
.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

1F-824 SunOS 5.6 modified 5 Jul 1990

FMLI Commands pathconv (1F)

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO fmli(1), attributes(5)

modified 5 Jul 1990 SunOS 5.6 1F-825

pax (1) User Commands

NAME pax − portable archive interchange

SYNOPSIS pax [−cdnv] [−f archive] [−s replstr] . . . [pattern . . .]
pax −r [−cdiknuv] [−f archive] [−o options] . . . [−p string] . . . [−s replstr] . . .

[pattern . . .]
pax −w [−dituvX] [−b blocksize] [−a] [−f archive] [−o options] . . .

[−s replstr] . . . [−x format] [file . . .]
pax −r −w [−diklntuvX] [−p string] . . . [−s replstr] . . . [file . . .] directory

DESCRIPTION The pax command reads, writes and writes lists of the members of archive files and copy
directory hierarchies. A variety of archive formats are supported; see the −x format
option.

Modes of Operations The action to be taken depends on the presence of the −r and −w options. The four com-
binations of −r and −w are referred to as the four modes of operation: list, read, write,
and copy modes, corresponding respectively to the four forms shown in the SYNOPSIS.

list In list mode (when neither −r nor −w are specified), pax writes the names of
the members of the archive file read from the standard input, with path
names matching the specified patterns, to standard output. If a named file is
of type directory, the file hierarchy rooted at that file will be written out as
well.

read In read mode (when −r is specified, but −w is not), pax extracts the members
of the archive file read from the standard input, with path names matching
the specified patterns. If an extracted file is of type directory, the file hierar-
chy rooted at that file will be extracted as well. The extracted files is created
relative to the current file hierarchy.

The ownership, access and modification times, and file mode of the restored
files are discussed under the −p option.

write In write mode (when −w is specified, but −r is not), pax writes the contents of
the file operands to the standard output in an archive format. If no file
operands are specified, a list of files to copy, one per line, will be read from
the standard input. A file of type directory will include all of the files in the
file hierarchy rooted at the file.

copy In copy mode (when both −r and −w are specified), pax copies the file
operands to the destination directory.

If no file operands are specified, a list of files to copy, one per line, will be read
from the standard input. A file of type directory will include all of the files in
the file hierarchy rooted at the file.

The effect of the copy is as if the copied files were written to an archive file
and then subsequently extracted, except that there may be hard links between
the original and the copied files. If the destination directory is a subdirectory
of one of the files to be copied, the results are unspecified. It is an error if
directory doesn’t to exist, is not writable by the user, or is not a directory.

1-826 SunOS 5.6 modified 21 Nov 1995

User Commands pax (1)

In read or copy modes, if intermediate directories are necessary to extract an archive
member, pax will perform actions equivalent to the mkdir(2) function, called with the
following arguments:

· the intermediate directory used as the path argument

· the octal value of 777 or rwx (read, write, and execute permissions) as the mode
argument (see chmod(1)).

If any specified pattern or file operands are not matched by at least one file or archive
member, pax will write a diagnostic message to standard error for each one that did not
match and exit with a non-zero exit status.

The supported archive formats are automatically detected on input. The default output
archive format is tar(1).

If the selected archive format supports the specification of linked files, it is an error if
these files cannot be linked when the archive is extracted. Any of the various names in
the archive that represent a file can be used to select the file for extraction.

OPTIONS The following options are supported:

−r Read an archive file from standard input.

−w Write files to the standard output in the specified archive format.

−a Append files to the end of the archive. This option will not work for
some archive devices, such as 1/4-inch streaming tapes and 8mm tapes.

−b blocksize Block the output at a positive decimal integer number of bytes per write
to the archive file. Devices and archive formats may impose restrictions
on blocking. Blocking is automatically determined on input. Portable
applications must not specify a blocksize value larger than 32256. Default
blocking when creating archives depends on the archive format. (See
the −x option below.)

−c Match all file or archive members except those specified by the pattern or
file operands.

−d Cause files of type directory being copied or archived or archive
members of type directory being extracted to match only the file or
archive member itself and not the file hierarchy rooted at the file.

−f archive Specify the path name of the input or output archive, overriding the
default standard input (in list or read modes) or standard output (write
mode).

−i Interactively rename files or archive members. For each archive
member matching a pattern operand or file matching a file operand, a
prompt will be written to the file /dev/tty. The prompt will contain the
name of the file or archive member. A line will then be read from
/dev/tty. If this line is blank, the file or archive member will be skipped.
If this line consists of a single period, the file or archive member will be
processed with no modification to its name. Otherwise, its name will be
replaced with the contents of the line. The pax command will

modified 21 Nov 1995 SunOS 5.6 1-827

pax (1) User Commands

immediately exit with a non-zero exit status if end-of-file is encountered
when reading a response or if /dev/tty cannot be opened for reading and
writing.

−k Prevent the overwriting of existing files.

−l Link files. In copy mode, hard links will be made between the source
and destination file hierarchies whenever possible.

−n Select the first archive member that matches each pattern operand. No
more than one archive member will be matched for each pattern
(although members of type directory will still match the file hierarchy
rooted at that file).

−o options Reserved for special format-specific options.

−p string Specify one or more file characteristic options (privileges). The string
option-argument must be a string specifying file characteristics to be
retained or discarded on extraction. The string consists of the
specification characters a, e, m, o and p. Multiple characteristics can be
concatenated within the same string and multiple −p options can be
specified. The meaning of the specification characters are as follows:

a Do not preserve file access times.

e Preserve the user ID, group ID, file mode bits, access time, and
modification time.

m Do not preserve file modification times.

o Preserve the user ID and group ID.

p Preserve the file mode bits. Other, implementation-dependent
file-mode attributes may be preserved.

In the preceding list, ‘‘preserve’’ indicates that an attribute stored in the
archive will be given to the extracted file, subject to the permissions of
the invoking process; otherwise, the attribute will be determined as part
of the normal file creation action.

If neither the e nor the o specification character is specified, or the user
ID and group ID are not preserved for any reason, pax will not set the
setuid and setgid bits of the file mode.

If the preservation of any of these items fails for any reason, pax will
write a diagnostic message to standard error. Failure to preserve these
items will affect the final exit status, but will not cause the extracted file
to be deleted.

If file-characteristic letters in any of the string option-arguments are
duplicated or conflict with each other, the ones given last will take pre-
cedence. For example, if −p eme is specified, file modification times will
be preserved.

1-828 SunOS 5.6 modified 21 Nov 1995

User Commands pax (1)

−s replstr Modify file or archive member names named by pattern or file operands
according to the substitution expression replstr, which is based on the
ed(1) s (substitution) command, using the regular expression syntax on
the regex(5) manual page. The concepts of ‘‘address’’ and ‘‘line’’ are
meaningless in the context of the pax command, and must not be sup-
plied. The format is:

−s / old/new/ [gp]

where, as in ed, old is a basic regular expression and new can contain an
ampersand (&) or a \n backreference, where n is a digit. The old string
also is permitted to contain newline characters.

Any non-null character can be used as a delimiter (/ shown here). Mul-
tiple −s expressions can be specified; the expressions will be applied in
the order specified, terminating with the first successful substitution.
The optional trailing g is as defined in the ed command. The optional
trailing p causes successful substitutions to be written to standard error.
File or archive member names that substitute to the empty string are
ignored when reading and writing archives.

−t Cause the access times of the archived files to be the same as they were
before being read by pax.

−u Ignore files that are older (having a less recent file modification time)
than a pre-existing file or archive member with the same name.

read mode an archive member with the same name as a file in the
file system will be extracted if the archive member is
newer than the file.

write mode an archive file member with the same name as a file in
the file system will be superseded if the file is newer
than the archive member.

copy mode the file in the destination hierarchy will be replaced by
the file in the source hierarchy or by a link to the file in
the source hierarchy if the file in the source hierarchy is
newer.

−v In list mode, produce a verbose table of contents (see Standard Output).
Otherwise, write archive member path names to standard error (see
Standard Error).

−x format Specify the output archive format. The pax command recognizes the
following formats:

cpio The extended cpio interchange format; see the IEEE
1003.1(1990) specifications. The default blocksize for this for-
mat for character special archive files is 5120. Implementa-
tions support all blocksize values less than or equal to 32256
that are multiples of 512.

This archive format allows files with UIDs and GIDs up to

modified 21 Nov 1995 SunOS 5.6 1-829

pax (1) User Commands

262143 to be stored in the archive. Files with UIDs and GIDs
greater than this value will be archived with the UID and GID
of 60001.

ustar The extended tar interchange format; see the IEEE
1003.1(1990) specifications. The default blocksize for this for-
mat for character special archive files is 10240. Implementa-
tions support all blocksize values less than or equal to 32256
that are multiples of 512.

Any attempt to append to an archive file in a format different
from the existing archive format will cause pax to exit
immediately with a non-zero exit status.

This archive format allows files with UIDs and GIDs up to
2097151 to be stored in the archive. Files with UIDs and GIDs
greater than this value will be archived with the UID and GID
of 60001.

−X When traversing the file hierarchy specified by a path name, pax will not
descend into directories that have a different device ID (st_dev, see
stat(2)).

The options that operate on the names of files or archive members (−c, −i, −n, −s, −u and
−v) interact as follows. In read mode, the archive members are selected based on the
user-specified pattern operands as modified by the −c, −n and −u options. Then, any −s
and −i options will modify, in that order, the names of the selected files. The −v option
will write names resulting from these modifications.

In write mode, the files are selected based on the user-specified path names as modified
by the −n and −u options. Then, any −s and −i options will, in that order, modify the
names of these selected files. The −v option will write names resulting from these
modifications.

If both the −u and −n options are specified, pax does not consider a file selected unless it
is newer than the file to which it is compared.

OPERANDS The following operands are supported:

directory The destination directory path name for copy mode.

file A path name of a file to be copied or archived.

pattern A pattern matching one or more path names of archive members. A
pattern must conform to the pattern matching notation found on the
fnmatch(5) manual page. The default, if no pattern is specified, is to
select all members in the archive.

OUTPUT
Standard Output In write mode, if −f is not specified, the standard output will be the archive formatted

according to cpio or ustar. (See −x format .)

1-830 SunOS 5.6 modified 21 Nov 1995

User Commands pax (1)

In list mode, the table of contents of the selected archive members will be written to stan-
dard output using the following format:

"%s\n" <pathname>

If the −v option is specified in list mode, the table of contents of the selected archive
members will be written to standard output using the following formats:

For path names representing hard links to previous members of the archive:

"%s∆==∆%s\n" <ls −l listing>, linkname

For all other path names:

<pathname> "%s\n" <ls −l listing>

where <ls −l listing> is the format specified by the ls command with the −l option. When
writing path names in this format, it is unspecified what is written for fields for which the
underlying archive format does not have the correct information, although the correct
number of blank-character-separated fields will be written.

In list mode, standard output will not be buffered more than a line at a time.

Standard Error If −v is specified in read, write or copy modes, pax will write the path names it processes
to the standard error output using the following format:

"%s\n" <pathname>

These path names will be written as soon as processing is begun on the file or archive
member, and will be flushed to standard error. The trailing newline character, which will
not be buffered, will be written when the file has been read or written.

If the −s option is specified, and the replacement string has a trailing p, substitutions will
be written to standard error in the following format:

"%s∆>>∆%s\n" <original pathname>, <new pathname>

In all operating modes of pax, optional messages of unspecified format concerning the
input archive format and volume number, the number of files, blocks, volumes and
media parts as well as other diagnostic messages may be written to standard error.

In all formats, for both standard output and standard error, it is unspecified how non-
printable characters in path names or linknames are written.

ERRORS If pax cannot create a file or a link when reading an archive or cannot find a file when
writing an archive, or cannot preserve the user ID, group ID or file mode when the −p
option is specified, a diagnostic message will be written to standard error and a non-zero
exit status will be returned, but processing will continue. In the case where pax cannot
create a link to a file, pax will not, by default, create a second copy of the file.

If the extraction of a file from an archive is prematurely terminated by a signal or error,
pax may have only partially extracted the file or (if the −n option was not specified) may
have extracted a file of the same name as that specified by the user, but which is not the
file the user wanted. Additionally, the file modes of extracted directories may have addi-
tional bits from the read, write, execute mask set as well as incorrect modification and
access times.

modified 21 Nov 1995 SunOS 5.6 1-831

pax (1) User Commands

USAGE The −p (privileges) option was invented to reconcile differences between historical tar(1)
and cpio(1) implementations. In particular, the two utilities use −m in diametrically
opposed ways. The −p option also provides a consistent means of extending the ways in
which future file attributes can be addressed, such as for enhanced security systems or
high-performance files. Although it may seem complex, there are really two modes that
will be most commonly used:

−p e ‘‘Preserve everything’’. This would be used by the historical superuser,
someone with all the appropriate privileges, to preserve all aspects of
the files as they are recorded in the archive. The e flag is the sum of o
and p, and other implementation-dependent attributes.

−p p ‘‘Preserve’’ the file mode bits. This would be used by the user with reg-
ular privileges who wished to preserve aspects of the file other than the
ownership. The file times are preserved by default, but two other flags
are offered to disable these and use the time of extraction.

See largefile(5) for the description of the behavior of pax when encountering files greater
than or equal to 2 Gbyte (231 bytes).

EXAMPLES The following command:

example pax −w −f /dev/rmt/1m .

copies the contents of the current directory to tape drive 1, medium density (assuming
historical System V device naming procedures. The historical BSD device name would be
/dev/rmt9).

The following commands:

example% mkdir newdir example% pax −rw olddir newdir

copy the olddir directory hierarchy to newdir.

example pax −r −s ’,ˆ//∗usr//∗,,’ −f a.pax
reads the archive a.pax, with all files rooted in /usr in the archive extracted relative to the
current directory.

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of pax: LC_CTYPE, LC_MESSAGES, LC_TIME, and NLSPATH.

LC_COLLATE Determine the locale for the behaviour of ranges, equivalence classes,
and multi-character collating elements used in the pattern matching
expressions for the pattern operand, the basic regular expression for the
−s option, and the extended regular expression defined for the yesexpr
locale keyword in the LC_MESSAGES category.

EXIT STATUS The following exit values are returned:

0 All files were processed successfully.

>0 An error occurred.

1-832 SunOS 5.6 modified 21 Nov 1995

User Commands pax (1)

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO chmod(1), cpio(1), ed(1), tar(1), mkdir(2), stat(2), attributes(5), environ(5), fnmatch(5),
largefile(5), regex(5)

modified 21 Nov 1995 SunOS 5.6 1-833

pcmapkeys (1) User Commands

NAME pcmapkeys − set keyboard extended map and scancode translation for the PC console in
text mode

SYNOPSIS pcmapkeys [−f mapfile | −n | −g | −d | −e]

DESCRIPTION pcmapkeys is a utility that permits a user to activate character mapping on input and
output and keyboard extended mapping on the PC console in text mode. The keyboard
extended mapping consists of the support for the deadkey and compose key sequences.

Consistent
Keyboard-Display

Mapping

The original UNIX operating system was written to support the ASCII codeset. ASCII is
one of many standards to represent a number of characters internally as certain numbers.
Typical for ASCII is that it supports 128 different characters, each represented by a single
byte of which the 8th bit is not used. Many UNIX system applications, including the shell,
took advantage of this. Starting with UNIX System V Release 3.1, most of these applica-
tions have been modified to properly support characters represented as a byte with the
8th bit set as well. This means that now 256 characters can be supported at the same time.
However, a consistent coding convention needs to be applied. In the IBM PC world, an
8-bit coding referred to as IBM extended ASCII has been used for several years; MS-DOS
users are quite familiar with that. In heterogeneous UNIX system environments, a dif-
ferent codeset, called ISO 8859, has been promoted. In both codesets, characters found in
the ASCII codeset are represented in the same way. The other 128 characters are encoded
differently, however, and some characters found in one codeset will be missing in the
other. The Solaris for x86 system supports both codesets; actually, it supports any 8-bit
one byte codeset.

To be able to use characters from the French, German, Finnish, and other alphabets, there
are systems available on the market that generate 7-bit codes but display the above-
mentioned characters on the screen instead of the ones found on a U.S. console. On the
keyboard there are an equal number of keys, but there are different characters on the key
caps. Others may support 256 different characters at a time but use their own
proprietary codesets.

For example, if you are using the Solaris for x86 system with a console and a French key-
board and you do not use pcmapkeys to map the French keyboard tables, then if you edit
a file and use the French character é in text, the actual code generated is ASCII 123, which
is the code normally used for the left curly brace. If you look at the edited file on the con-
sole, the letter will actually appear to be a curly brace. Using pcmapkeys to map in the
French keyboard allows consistent input and output mappings.

Input mapping
On input, any byte can be mapped to any byte. Using the example above, you
could map 123 to 130, the code used for é in the IBM extended ASCII codeset.

Output mapping
On output, any byte can be mapped to either a byte or a string. In the above
example, 130 would be mapped back to 123 to properly display the character on
the screen. If the connected device is a printer that does not support the é charac-
ter, it could be mapped to the string ‘e BACKSPACE’.

1-834 SunOS 5.6 modified 11 Jul 1994

User Commands pcmapkeys (1)

Deadkeys
On typewriters, keys can be found that behave slightly differently than all the
others, because when you press them, the printing wheel of the typewriter does
not move. Ctrl (ˆ) and the grave accent (`) are such characters. When ` is fol-
lowed by an e, the letter è is generated. This is called a deadkey or a non-spacing
character. Solaris for x86 supports the use of deadkeys. Typically, the ˆ charac-
ter, the ` character, and the umlaut character are used as deadkeys.

Compose sequences
Characters can also be generated using a compose sequence. A dedicated charac-
ter called the ‘‘compose character’’ followed by two other keystrokes will gen-
erate a single character. As an example, COMPOSE followed by the plus and the
minus sign could generate the plus/minus sign (±). Compose sequences can also
be used as an alternative for deadkeys, e.g., ‘‘COMPOSE ˆ e’’ instead of ‘‘ˆ e.’’

Numeric compose sequences
Compose sequence characters that are not present on the keyboard and cannot be
intuitively composed by some key sequence, for example, graphics characters,
can be generated by pressing the compose key followed by three digits.

Toggle key
An optional toggle key can be defined to temporarily disable the current map-
ping from within an application. This can be useful when, for example, a Ger-
man programmer wants easy access to the curly braces and the brackets. Use of
the toggle key is analogous to the use of the −d and −e command line options.

Scancode Mapping The keyboards of the console and some other peripherals such as SunRiver workstations
behave differently than those of regular terminals. They generate what are called scan-
codes and you will also find a number of keys on these keyboards, such as the Alt key,
that are not found on regular terminals. Scancodes generated by PC keyboards typically
represent the location of the key on the keyboard. The keyboard driver has to properly
translate these scancodes. The different national variants of a PC keyboard not only have
non-English characters printed on some of the keycaps, but the order of some of the keys
is different as well. Without changing the scancode translation, a French user would type
A and see Q on his screen. Several status keys can influence the translated code as well.
The keyboard driver, and thus the pcmapkeys program, makes a distinction between two
sets of key combinations that can be translated.

Function keys
Up to 60 key combinations are recognized as function keys. The first 12 are the 12 func-
tion keys of a 101-key PC-keyboard (the first 10 on an 84-key keyboard).

If you do not know whether you have an 84- or 101-key keyboard, you can use the fol-
lowing scheme to determine which type you have:

If your keyboard has arrow keys that are separate from the ones on the numeric
keypad, then you have a 101-key keyboard.

If the arrow keys on your keyboard are located on the numeric keypad only, then
you have an 84-key keyboard.

modified 11 Jul 1994 SunOS 5.6 1-835

pcmapkeys (1) User Commands

F13 to F24 are the same keys used in combination with Shift, F25 to F36 when used with
Ctrl, and F37 to F48 when used with Ctrl and Shift together. F49 to F60 are the keys on
the numeric keypad, in the following order:

7
8
9
−
4
5
6
+
1
2
3
INS

Each of these function keys can be given a string as a value. The total length of all strings
should not exceed 512 characters.

Regular keys
Scancodes generated by all keys on the PC keyboard can be translated in a different way
as well. For each key, a different translation can be specified for each of the following
four cases:

1. The key is pressed.
2. The key and the Shift key are pressed simultaneously.
3. The key and the Alt key are pressed simultaneously.
4. The key, the Shift, and the Alt keys are pressed simultaneously.

For each of these cases, the scancode can be translated into one of the following:

a single byte
a single byte preceded by ESC N
a single byte preceded by ESC O
a single byte preceded by ESC [

Internally, special bits are set to indicate that an escape sequence needs to be generated.
Other bits are used to indicate whether the translated code should be influenced by some
special keys.

Num Lock
If the Num Lock bit is set, the regular and Shift values are swapped, as are the
Alt and Shift Alt values, whenever the Num Lock LED is on. By default, only the
keys on the numeric keypad have this bit set. That is why these keys generate 7,
8, 9, etc. when the Num Lock LED is on, which is the same value that would be
produced if Shift were used with these keys.

Caps Lock
This has the same effect as the Num Lock key. By default, this bit is set for all
letters and not set for punctuation signs.

1-836 SunOS 5.6 modified 11 Jul 1994

User Commands pcmapkeys (1)

Ctrl When a key is translated into a single byte (no escape sequence) and this bit is set,
the corresponding control character will be generated when the Ctrl key is
pressed simultaneously. This is equally valid for the Shift, Alt, and Shift Alt
combination. When this bit is not used, the Ctrl key combination will not gen-
erate anything.

mapfile This section describes the layout of a mapfile that is read by the pcmapkeys program.

A mapfile is a text file that consists of several sections. A sharp sign (#) can be used to
include comments. Everything following the # until the end of the line will be ignored by
the pcmapkeys program. Inside a line, C-style comments can be used as well. The
beginning of each section is indicated by a keyword . Spaces and tabs are silently ignored
and can be used at all times to improve readability. All but one section, the one that
defines the compose character, can be left out. The order in which the different sections
should appear is predefined. Here is the list of keywords in the order they should
appear:

input:
toggle:
dead:
compose:
output:
scancodes:

Characters can be described in several different ways. ASCII characters can be described
by putting them between single quotes. For example:

’a’ ’{’

Between single quotes, control characters can be listed by using a circumflex sign before
the character that needs to be quoted. For example:

’ˆx’

When a backslash (\) is used, what follows will be interpreted as a decimal, octal (leading
zero), or hexadecimal (leading x or X) representation of the character, although in this
case the use of single quotes is not mandatory. For example:

’\x88’

is the same as:

0x88 (zero needed when not quoted)

and:

’\007’

is the same as:

007

When strings are needed, a list of character representations should be used. Quoted
strings will be supported in the future.

modified 11 Jul 1994 SunOS 5.6 1-837

pcmapkeys (1) User Commands

The following paragraphs describe what goes in each section.

Input section
The input section describes which input characters should be mapped into a single byte.
A very small sample input section could be:

input:
’A’ ’B’ # map A into B on input
’#’ 0x9c # map sharp sign into pound sign

Toggle section
The toggle section is a one-line section that defines which key is to toggle between map-
ping and no mapping. For example:

toggle:
’ˆy’ # ctrl y is the toggle key

Deadkey section
The deadkey section defines which keys should be treated as deadkeys. A dead: key-
word followed by the specification of the character appears in this section for each dead-
key. The subsequent lines describe what key should be generated for each key following
the deadkey. A deadkey followed by a key not described in this part of the mapfile will
not generate any key and a beep tone will be produced on the terminal. For example:

dead: ’ˆ’ # circumflex is a deadkey
’ ’ ’ˆ’ # circumflex followed by space generates circumflex
’e’ 0x88 # circumflex followed by e generates e circumflex
dead: ’"’ # double quote used as a deadkey
’ ’ ’"’ # double quote space generates double quote
’a’ 0x84 # double quote a generates an umlaut

Compose section
The first line of this section describes what the compose character is. That line should
always be present in the mapfile. Subsequent lines consist of three character representa-
tions indicating each time that the third character needs to be generated on input when
the compose character is followed by the first two. Compose sequences with the same
first character should be grouped together. For example:

compose: ’ˆx’
’"’ ’e’ 0x89 # e with umlaut is generated when typing ˆx " e
’"’ ’a’ 0x84 # a with umlaut
’e’ ’"’ 0x89 # e with umlaut is generated when typing ˆx e "
’a’ ’"’ 0x84 # a with umlaut

The following example would give the wrong result. All lines starting with the same
character specification should be grouped together.

compose: ’ˆx’
’"’ ’e’ 0x89 # e with umlaut is generated when typing ˆx " e
’e’ ’"’ 0x89 # e with umlaut is generated when typing ˆx e "
’"’ ’a’ 0x84 # a with umlaut
’a’ ’"’ 0x84 # a with umlaut

1-838 SunOS 5.6 modified 11 Jul 1994

User Commands pcmapkeys (1)

Output section
This section describes the mapping on output, either single byte to single byte, or single
byte to string. A string is specified as a series of character specifications. For example:

output:
0x82 ’{’ # map e with accent to { to display e with accent
’ˆu’ ’(’’K’’I’’L’’L’’)’ # print (KILL) when kill character is used

Scancodes section
This section will only have an effect when your terminal is a scancode device. No error
message will be produced if this section is in your mapfile when not needed, because the
pcmapkeys program will find out whether the terminal is a scancode device or not. The
lines in this section can have two different formats. One format will be used to describe
what the values of the function keys must be. The other format describes the translation
of scancodes into a byte or an escape sequence. No specific order is required.

Function keys
Here is an example of a line defining a string for a function key:

F13 ’d’’a’’t’’e’’0 # Shift F1 is the date command

The numbering convention of the function keys is described in a previous section.
Currently, the use of quoted strings such as "date\n" is not supported.

Scancodes
Specifying how to translate a scancode is a more complex task. The general format of
such a line is:

scancode normal shift alt shiftalt flags

scancode should list the hexadecimal representation of a scancode generated by a key
(unquoted). How keys correspond with scancodes can be found in keyboard(7D).

normal, shift, alt and shiftalt are character representations in one of the formats
described throughout this document, optionally followed by one of the following special
keywords:

|C This indicates that the key is influenced by the Ctrl key.

|N This indicates that Esc N should preceed the specified character.

|O This indicates that Esc O should preceed the specified character.

|[This indicates that Esc [should preceed the specified character.

The normal field defines how the scancode is translated when no other key is pressed, the
shift field defines the translation for when the Shift key is used simultaneously, the alt
field specifies what to do when the Alt key is pressed together with this and the shiftalt
field contains the information on what to generate when both the Shift and Alt keys are
pressed.

All five fields must be filled in. When no translation is requested (that is, the current
active translation does not need to be changed) a dash (−) can be used. The sixth field is
optional. This field can contain the special keyword CAPS or NUM or both, to indicate
whether or not the Caps Lock key or Num Lock key status have any effect. Here is a

modified 11 Jul 1994 SunOS 5.6 1-839

pcmapkeys (1) User Commands

sample line that describes the default translation for the ’Q’ key:

0x10 ’q’|C ’Q’|C ’q’|N ’Q’|N CAPS

If the normal or shift field is filled out for a scancode that represents a function key, a
self-explanatory message will be produced and that translation information will be
ignored.

A more detailed example of a scancodes section is:

scancodes:
the w key
0x11 ’w’|C ’W’|C ’w’|N ’W’|N CAPS
left square bracket and curly brace key
control shift [does not generate anything (no C flag)
0x1a ’[’|C ’{’ ’[’|N ’{’|N
9 on numeric keypad
0x49 ’V’|[’9’ ’9’|N ’9’|N NUM
F13 ’d’’a’’t’’e’’0 # SHIFT F1

More complete examples of mapfiles can be found in the /usr/share/lib/keyboards direc-
tory.

OPTIONS −f mapfile Installs the contents of the file mapfile and sets the corresponding map-
ping as supported by the console driver. The layout of the mapfile and
the supported functionality are described below.

−n Disables and dismantles the current keyboard extended mapping. The
−f option must be used to re-install the keyboard extended mapping.

−g Displays the current mappings and keyboard extended mapping (if one
is installed) in hex values (see /usr/include/sys/emap.h). This option is
mainly used for debugging purposes.

−d and −e −d temporarily disables the compose key and deadkey sequences if the
keyboard extended mapping is installed. The keyboard extended map-
ping can be enabled again by using the −e option (or it can be re-
installed by using the −f option).

FILES /usr/share/lib/keyboards/8859/∗
sample mapfiles to be used in conjunction with ISO-8859-1 fonts
(see loadfont(1))

/usr/share/lib/keyboards/437/∗
sample mapfiles to be used in conjunction with IBM 437 fonts (see
loadfont(1))

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

1-840 SunOS 5.6 modified 11 Jul 1994

User Commands pcmapkeys (1)

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture x86
Availability SUNWcsu

SEE ALSO loadfont(1), attributes(5)

NOTES The default keyboard mappings on the system are those of the ISO 8859-1 codeset. The
optional IBM DOS 437 codeset is supported only at internationalization level 1. That is, if
you choose to download keyboard mappings of the optional IBM DOS 437 codeset, there
will be no support for non-standard U.S. date, time, currency, numbers, unit, and colla-
tion. There will be no support for non-English message and text presentation, and no
multi-byte character support. Therefore, non-Windows users should only use IBM DOS
437 codeset in the default C locale.

modified 11 Jul 1994 SunOS 5.6 1-841

pg (1) User Commands

NAME pg − files perusal filter for CRTs

SYNOPSIS pg [−number] [−p string] [−cefnrs] [+linenumber] [+/pattern/] [filename . . .]

DESCRIPTION The pg command is a filter that allows the examination of filenames one screenful at a time
on a CRT. If the user types a RETURN, another page is displayed; other possibilities are
listed below.

This command is different from previous paginators in that it allows you to back up and
review something that has already passed. The method for doing this is explained below.

To determine terminal attributes, pg scans the terminfo(4) data base for the terminal type
specified by the environment variable TERM. If TERM is not defined, the terminal type
dumb is assumed.

OPTIONS −number An integer specifying the size (in lines) of the window that pg is to use
instead of the default. (On a terminal containing 24 lines, the default
window size is 23).

−p string pg uses string as the prompt. If the prompt string contains a %d, the
first occurrence of %d in the prompt will be replaced by the current
page number when the prompt is issued. The default prompt string is
‘‘:’’.

−c Home the cursor and clear the screen before displaying each page. This
option is ignored if clear_screen is not defined for this terminal type in
the terminfo(4) data base.

−e pg does not pause at the end of each file.

−f Normally, pg splits lines longer than the screen width, but some
sequences of characters in the text being displayed (for instance, escape
sequences for underlining) generate undesirable results. The −f option
inhibits pg from splitting lines.

−n Normally, commands must be terminated by a <newline> character.
This option causes an automatic end of command as soon as a command
letter is entered.

−r Restricted mode. The shell escape is disallowed. pg prints an error
message but does not exit.

−s pg prints all messages and prompts in the standard output mode (usu-
ally inverse video).

+linenumber Start up at linenumber.

+/pattern/ Start up at the first line containing the regular expression pattern.

OPERANDS The following operands are supported:

filename A path name of a text file to be displayed. If no filename is given, or if it
is −, the standard input is read.

1-842 SunOS 5.6 modified 25 Feb 1996

User Commands pg (1)

USAGE
Commands The responses that may be typed when pg pauses can be divided into three categories:

those causing further perusal, those that search, and those that modify the perusal
environment.

Commands that cause further perusal normally take a preceding address, an optionally
signed number indicating the point from which further text should be displayed. This
address is interpreted in either pages or lines depending on the command. A signed
address specifies a point relative to the current page or line, and an unsigned address
specifies an address relative to the beginning of the file. Each command has a default
address that is used if none is provided.

The perusal commands and their defaults are as follows:

(+1)<newline> or <blank>
This causes one page to be displayed. The address is specified in pages.

(+1) l With a relative address this causes pg to simulate scrolling the screen,
forward or backward, the number of lines specified. With an absolute
address this command prints a screenful beginning at the specified line.

(+1) d or ˆD Simulates scrolling half a screen forward or backward.

if Skip i screens of text.

iz Same as <newline> except that i, if present, becomes the new default
number of lines per screenful.

The following perusal commands take no address.

. or ˆL Typing a single period causes the current page of text to be redisplayed.

$ Displays the last windowful in the file. Use with caution when the input
is a pipe.

The following commands are available for searching for text patterns in the text. The reg-
ular expressions are described on the regex(5) manual page. They must always be ter-
minated by a <newline>, even if the −n option is specified.

i/pattern/ Search forward for the ith (default i=1) occurrence of pattern . Searching
begins immediately after the current page and continues to the end of
the current file, without wrap-around.

iˆpatternˆ
i?pattern? Search backwards for the ith (default i=1) occurrence of pattern . Search-

ing begins immediately before the current page and continues to the
beginning of the current file, without wrap-around. The ˆ notation is
useful for Adds 100 terminals which will not properly handle the ?.

After searching, pg will normally display the line found at the top of the screen. This can
be modified by appending m or b to the search command to leave the line found in the
middle or at the bottom of the window from now on. The suffix t can be used to restore
the original situation.

modified 25 Feb 1996 SunOS 5.6 1-843

pg (1) User Commands

The user of pg can modify the environment of perusal with the following commands:

in Begin perusing the ith next file in the command line. The i is an
unsigned number, default value is 1.

ip Begin perusing the ith previous file in the command line. i is an
unsigned number, default is 1.

iw Display another window of text. If i is present, set the window size to i.

s filename Save the input in the named file. Only the current file being perused is
saved. The white space between the s and filename is optional. This
command must always be terminated by a <newline>, even if the −n
option is specified.

h Help by displaying an abbreviated summary of available commands.

q or Q Quit pg.

!command Command is passed to the shell, whose name is taken from the SHELL
environment variable. If this is not available, the default shell is used.
This command must always be terminated by a <newline>, even if the −n
option is specified.

At any time when output is being sent to the terminal, the user can hit the quit key (nor-
mally CTRL-\) or the interrupt (break) key. This causes pg to stop sending output, and
display the prompt. The user may then enter one of the above commands in the normal
manner. Unfortunately, some output is lost when this is done, because any characters
waiting in the terminal’s output queue are flushed when the quit signal occurs.

If the standard output is not a terminal, then pg acts just like cat(1), except that a header
is printed before each file (if there is more than one).

Large File Behavior See largefile(5) for the description of the behavior of pg when encountering files greater
than or equal to 2 Gbyte (231 bytes).

EXAMPLES The following command line uses pg to read the system news:

example% news | pg −p "(Page %d):"

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of pg: LC_CTYPE, LC_MESSAGES, and NLSPATH.

The following environment variables affect the execution of pg:

COLUMNS Determine the horizontal screen size. If unset or NULL, use the value of
TERM, the window size, baud rate, or some combination of these, to
indicate the terminal type for the screen size calculation.

LINES Determine the number of lines to be displayed on the screen. If unset or
NULL, use the value of TERM, the window size, baud rate, or some com-
bination of these, to indicate the terminal type for the screen size calcula-
tion.

SHELL Determine the name of the command interpreter executed for a !com-
mand.

1-844 SunOS 5.6 modified 25 Feb 1996

User Commands pg (1)

TERM Determine terminal attributes. Optionally attempt to search a system-
dependent database, keyed on the value of the TERM environment vari-
able. If no information is available, a terminal incapable of cursor-
addressable movement is assumed.

EXIT STATUS The following exit values are returned:

0 Successful completion.

>0 An error occurred.

FILES /tmp/pg∗ temporary file when input is from a pipe
/usr/share/lib/terminfo/?/∗ terminal information database

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu
CSI enabled

SEE ALSO cat(1), grep(1), more(1), terminfo(4), attributes(5), environ(5), largefile(5), regex(5)

NOTES While waiting for terminal input, pg responds to BREAK, CTRL-C, and CTRL−\ by ter-
minating execution. Between prompts, however, these signals interrupt pg’s current task
and place the user in prompt mode. These should be used with caution when input is
being read from a pipe, since an interrupt is likely to terminate the other commands in
the pipeline.

The terminal /, ˆ, or ? may be omitted from the searching commands.

If terminal tabs are not set every eight positions, undesirable results may occur.

When using pg as a filter with another command that changes the terminal I/O options,
terminal settings may not be restored correctly.

modified 25 Feb 1996 SunOS 5.6 1-845

pkginfo (1) User Commands

NAME pkginfo − display software package information

SYNOPSIS pkginfo [−q | −x | −l] [−p | −i] [−r] [−a arch] [−v version]
[−c category . . .] [pkginst . . .]

pkginfo [−d device] [−R root_path] [−q | −x | −l] [−a arch] [−v version]
[−c category. . .] [pkginst . . .]

DESCRIPTION pkginfo displays information about software packages that are installed on the system
(with the first synopsis) or that reside on a particular device or directory (with the second
synopsis).

Without options, pkginfo lists the primary category, package instance, and the names of
all completely installed and partially installed packages. It displays one line for each
package selected.

OPTIONS The −p and −i options are meaningless if used in conjunction with the −d option.

The options −q, −x, and −l are mutually exclusive.

−a arch Specify the architecture of the package as arch.

−c category Display packages that match category . Categories are defined with the
CATEGORY parameter in the pkginfo(4) file. If more than one category
is supplied, the package needs to match only one category in the list.
The match is not case specific.

−d device Defines a device, device, on which the software resides. device can be an
absolute directory pathname or the identifiers for tape, floppy disk,
removable disk, and so forth. The special token spool may be used to
indicate the default installation spool directory (/var/spool/pkg).

−i Display information for fully installed packages only.

−l Specify long format, which includes all available information about the
designated package(s).

−p Display information for partially installed packages only.

−q Do not list any information. Used from a program to check whether or
not a package has been installed.

−r List the installation base for relocatable packages.

−R root_path Defines the full path name of a directory to use as the root_path. All files,
including package system information files, are relocated to a directory
tree starting in the specified root_path.

1-846 SunOS 5.6 modified 4 Oct 1996

User Commands pkginfo (1)

−v version Specify the version of the package as version. The version is defined
with the VERSION parameter in the pkginfo(4) file. All compatible ver-
sions can be requested by preceding the version name with a tilde (∼).
Multiple white spaces are replaced with a single white space during ver-
sion comparison.

−x Designate an extracted listing of package information. The listing con-
tains the package abbreviation, package name, package architecture (if
available) and package version (if available).

OPERANDS pkginst A package designation by its instance. An instance can be the package
abbreviation or a specific instance (for example, inst.1 or inst.2). All
instances of a package can be requested by inst.∗.

The asterisk character (∗) is a special character to some shells and may
need to be escaped. In the C-Shell, "∗" must be surrounded by single
quotes (’) or preceded by a backslash (\).

EXIT STATUS 0 Successful completion.

>0 An error occurred.

FILES /var/spool/pkg default installation spool directory

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO pkgtrans(1), pkgadd(1M), pkgask(1M), pkgchk(1M), pkgrm(1M), pkginfo(4),
attributes(5)

Application Packaging Developer’s Guide

modified 4 Oct 1996 SunOS 5.6 1-847

pkgmk (1) User Commands

NAME pkgmk − produce an installable package

SYNOPSIS pkgmk [−o] [−a arch] [−b base_src_dir] [−d device] [−f prototype] [−l limit]
[−p pstamp] [−r root_path] [−v version] [variable=value . . .] [pkginst]

DESCRIPTION pkgmk produces an installable package to be used as input to the pkgadd(1M) com-
mand. The package contents will be in directory structure format.

The command uses the package prototype(4) file as input and creates a pkgmap(4) file.
The contents for each entry in the prototype file is copied to the appropriate output loca-
tion. Information concerning the contents (checksum, file size, modification date) is com-
puted and stored in the pkgmap file, along with attribute information specified in the
prototype file.

OPTIONS −o Overwrite the same instance; package instance will be overwritten if it
already exists.

−a arch Override the architecture information provided in the pkginfo(4) file
with arch.

−b base_src_dir Prepend the indicated base_src_dir to locate relocatable objects on the
source machine.

−d device Create the package on device. device can be an absolute directory path-
name or the identifiers for a floppy disk or removable disk (for exam-
ple, /dev/diskette). The default device is the installation spool direc-
tory (/var/spool/pkg).

−f prototype Use the file prototype as input to the command. The default prototype
filename is [Pp]rototype.

−l limit Specify the maximum size in 512 byte blocks of the output device as
limit. By default, if the output file is a directory or a mountable dev-
ice, pkgmk will employ the df(1M) command to dynamically calcu-
late the amount of available space on the output device. This option is
useful in conjunction with pkgtrans(1) to create a package with a
datastream format.

−p pstamp Override the production stamp definition in the pkginfo(4) file with
pstamp .

−r root_path Ignore destination paths in the prototype(4) file. Instead, use the indi-
cated root_path with the source pathname appended to locate objects
on the source machine.

−v version Override the version information provided in the pkginfo(4) file with
version.

variable=value Place the indicated variable in the packaging environment. (See pro-
totype(4) for definitions of variable specifications.)

1-848 SunOS 5.6 modified 4 Oct 1996

User Commands pkgmk (1)

OPERANDS pkginst A package designation by its instance. An instance can be the package
abbreviation or a specific instance (for example, inst.1 or inst.2). All
instances of a package can be requested by inst.∗.

The asterisk character (∗) is a special character to some shells and may
need to be escaped. In the C-Shell, "∗" must be surrounded by single
quotes (’) or preceded by a backslash (\).

EXIT STATUS 0 Successful completion.

>0 An error occurred.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO pkgparam(1), pkgproto(1), pkgtrans(1), df(1M), pkgadd(1M), pkginfo(4), pkgmap(4),
prototype(4), attributes(5)

Application Packaging Developer’s Guide

NOTES Architecture information is provided on the command line with the −a option or in the
prototype(4) file. If no architecture information is supplied, pkgmk uses the output of
uname −m.

Version information is provided on the command line with the −v option or in the
pkginfo(4) file. If no version information is supplied, a default based on the current date
will be provided.

Command line definitions for both architecture and version override the prototype(4)
definitions.

modified 4 Oct 1996 SunOS 5.6 1-849

pkgparam (1) User Commands

NAME pkgparam − display package parameter values

SYNOPSIS pkgparam [−v] [−d device] [−R root_path] pkginst [param . . .]

pkgparam −f filename [−v] [param . . .]

DESCRIPTION pkgparam displays the value associated with the parameter or parameters requested on
the command line. The values are located in either the pkginfo(4) file for pkginst or from
the specific file named with the −f option.

One parameter value is shown per line. Only the value of a parameter is given unless the
−v option is used. With this option, the output of the command is in this format:

parameter1=’value1’
parameter2=’value2’
parameter3=’value3’

If no parameters are specified on the command line, values for all parameters associated
with the package are shown.

OPTIONS Options and arguments for this command are:

−d device Specify the device on which a pkginst is stored. It can be a directory path-
name or the identifiers for tape, floppy disk, or removable disk (for
example, /var/tmp, /dev/diskette, and /dev/dsk/c1d0s0). The special
token spool may be used to represent the default installation spool
directory (/var/spool/pkg).

−f filename Read filename for parameter values.

−R root_path Defines the full path name of a subdirectory to use as the root_path . All
files, including package system information files, are relocated to a
directory tree starting in the specified root_path .

−v Verbose mode. Display name of parameter and its value.

OPERANDS pkginst Defines a specific package instance for which parameter values should
be displayed.

param Defines a specific parameter whose value should be displayed.

ERRORS If parameter information is not available for the indicated package, the command exits
with a non-zero status.

EXIT STATUS 0 Successful completion.

>0 An error occurred.

1-850 SunOS 5.6 modified 4 Oct 1996

User Commands pkgparam (1)

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO pkgmk(1), pkgproto(1), pkgtrans(1), pkginfo(4), attributes(5)

Application Packaging Developer’s Guide

NOTES With the −f option, you can specify the file from which parameter values should be
extracted. This file should be in the same format as a pkginfo(4) file. For example, such a
file might be created during package development and used while testing software dur-
ing this stage.

modified 4 Oct 1996 SunOS 5.6 1-851

pkgproto (1) User Commands

NAME pkgproto − generate prototype file entries for input to pkgmk command

SYNOPSIS pkgproto [−i] [−c class] [path1]

pkgproto [−i] [−c class] [path1=path2 . . .]

DESCRIPTION pkgproto scans the indicated paths and generates prototype(4) file entries that may be
used as input to the pkgmk(1) command.

If no paths are specified on the command line, standard input is assumed to be a list of
paths. If the pathname listed on the command line is a directory, the contents of the
directory is searched. However, if input is read from stdin, a directory specified as a
pathname will not be searched.

OPTIONS −i Ignores symbolic links and records the paths as ftype=f (a file) versus
ftype=s (symbolic link).

−c class Maps the class of all paths to class.

OPERANDS path1 Pathname where objects are located.

path2 Pathname which should be substituted on output for path1 .

EXAMPLES The following two examples show uses of pkgproto and a partial listing of the output
produced.

Example 1: example% pkgproto /bin=bin /usr/bin=usrbin /etc=etc
f none bin/sed=/bin/sed 0775 bin bin
f none bin/sh=/bin/sh 0755 bin daemon
f none bin/sort=/bin/sort 0755 bin bin
f none usrbin/sdb=/usr/bin/sdb 0775 bin bin
f none usrbin/shl=/usr/bin/shl 4755 bin bin
d none etc/master.d 0755 root daemon
f none etc/master.d/kernel=/etc/master.d/kernel 0644 root daemon
f none etc/rc=/etc/rc 0744 root daemon

Example 2: example% find / −type d −print | pkgproto
d none / 755 root root
d none /bin 755 bin bin
d none /usr 755 root root
d none /usr/bin 775 bin bin
d none /etc 755 root root
d none /tmp 777 root root

EXIT STATUS 0 Successful completion.

>0 An error occurred.

1-852 SunOS 5.6 modified 4 Oct 1996

User Commands pkgproto (1)

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO pkgmk(1), pkgparam(1), pkgtrans(1), prototype(4), attributes(5)

Application Packaging Developer’s Guide

NOTES By default, pkgproto creates symbolic link entries for any symbolic link encountered
(ftype=s). When you use the −i option, pkgproto creates a file entry for symbolic links
(ftype=f). The prototype(4) file would have to be edited to assign such file types as v
(volatile), e (editable), or x (exclusive directory). pkgproto detects linked files. If multi-
ple files are linked together, the first path encountered is considered the source of the
link.

By default, pkgproto prints prototype entries on the standard output. However, the out-
put should be saved in a file (named Prototype or prototype, for convenience) to be used
as input to the pkgmk(1) command.

modified 4 Oct 1996 SunOS 5.6 1-853

pkgtrans (1) User Commands

NAME pkgtrans − translate package format

SYNOPSIS pkgtrans [−inos] device1 device2 [pkginst . . .]

DESCRIPTION pkgtrans translates an installable package from one format to another. It translates:

· a file system format to a datastream

· a datastream to a file system format

· one file system format to another file system format

OPTIONS The options and arguments for this command are:

−i Copy only the pkginfo(4) and pkgmap(4) files.

−n Create a new instance of the package on the destination device if any instance
of this package already exists, up to the number specified by the MAXINST
variable in the pkginfo(4) file.

−o Overwrite the same instance on the destination device; package instance will
be overwritten if it already exists.

−s Indicates that the package should be written to device2 as a datastream rather
than as a file system. The default behavior is to write a file system format on
devices that support both formats.

OPERANDS device1 Indicates the source device. The package or packages on this device will be
translated and placed on device2.

device2 Indicates the destination device. Translated packages will be placed on this
device.

pkginst Specifies which package instance or instances on device1 should be translated.
The token all may be used to indicate all packages. pkginst.∗ can be used to
indicate all instances of a package. If no packages are defined, a prompt
shows all packages on the device and asks which to translate.

The asterisk character (∗) is a special character to some shells and may need to
be escaped. In the C-Shell, "∗" must be surrounded by single quotes (’) or pre-
ceded by a backslash (\).

EXAMPLES The following example translates all packages on the floppy drive /dev/diskette and
places the translations on /tmp:

example% pkgtrans /dev/diskette /tmp all

The next example translates packages pkg1 and pkg2 on /tmp and places their transla-
tions (that is, a datastream) on the 9track1 output device:

example% pkgtrans /tmp 9track1 pkg1 pkg2

1-854 SunOS 5.6 modified 4 Oct 1996

User Commands pkgtrans (1)

The next example translates pkg1 and pkg2 on /tmp and places them on the diskette in a
datastream format:

example% pkgtrans −s /tmp /dev/diskette pkg1 pkg2

ENVIRONMENT The MAXINST variable is set in the pkginfo(4) file and declares the maximum number of
package instances.

EXIT STATUS 0 Successful completion.

>0 An error occurred.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO pkginfo(1), pkgmk(1), pkgparam(1), pkgproto(1), installf(1M), pkgadd(1M),
pkgask(1M), pkgrm(1M), removef(1M), pkginfo(4), pkgmap(4), attributes(5)

Application Packaging Developer’s Guide

NOTES Device specifications can be either the special node name (for example, /dev/diskette) or
a device alias (for example, diskette1). The device spool indicates the default spool
directory. Source and destination devices cannot be the same.

By default, pkgtrans will not translate any instance of a package if any instance of that
package already exists on the destination device. Using the −n option creates a new
instance if an instance of this package already exists. Using the −o option overwrites an
instance of this package if it already exists. Neither of these options are useful if the des-
tination device is a datastream.

modified 4 Oct 1996 SunOS 5.6 1-855

plot (1B) SunOS/BSD Compatibility Package Commands

NAME plot, aedplot, atoplot, bgplot, crtplot, dumbplot, gigiplot, hpplot, implot, plottoa, t300,
t300s, t4013, t450, tek, vplot, hp7221plot − graphics filters for various plotters

SYNOPSIS /usr/ucb/plot [−Tterminal]

DESCRIPTION plot reads plotting instructions (see plot(4B)) from the standard input and produces plot-
ting instructions suitable for a particular terminal on the standard output.

If no terminal is specified, the environment variable TERM is used. The default terminal is
tek.

ENVIRONMENT Except for ver, the following terminal-types can be used with ‘lpr −g’ (see lpr) to produce
plotted output:

2648 | 2648a | h8 | hp2648 | hp2648a
Hewlett Packard 2648 graphics terminal.

hp7221 | hp7 | h7 |
Hewlett Packard 7221 plotter.

300 DASI 300 or GSI terminal (Diablo mechanism).

300s | 300S DASI 300s terminal (Diablo mechanism).

450 DASI Hyterm 450 terminal (Diablo mechanism).

4013 Tektronix 4013 storage scope.

4014 | tek Tektronix 4014 and 4015 storage scope with Enhanced Graphics
Module. (Use 4013 for Tektronix 4014 or 4015 without the
Enhanced Graphics Module).

aed AED 512 color graphics terminal.

bgplot | bitgraph
BBN bitgraph graphics terminal.

crt Any crt terminal capable of running vi(1).

dumb | un | unknown
Dumb terminals without cursor addressing or line printers.

gigi | vt125 DEC vt125 terminal.

implot Imagen plotter.

var Benson Varian printer-plotter

ver Versatec D1200A printer-plotter. The output is scan-converted
and suitable input to ‘lpr −v’.

1B-856 SunOS 5.6 modified 3 Aug 1994

SunOS/BSD Compatibility Package Commands plot (1B)

FILES /usr/ucb/aedplot
/usr/ucb/atoplot
/usr/ucb/bgplot
/usr/ucb/crtplot
/usr/ucb/dumbplot
/usr/ucb/gigiplot
/usr/ucb/hp7221plot
/usr/ucb/hpplot
/usr/ucb/implot
/usr/ucb/plot
/usr/ucb/plottoa
/usr/ucb/t300
/usr/ucb/t300s
/usr/ucb/t4013
/usr/ucb/t450
/usr/ucb/tek
/usr/ucb/vplot

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscpu

SEE ALSO graph(1), tplot(1), vi(1), lpr(1B), plot(4B), attributes(5)

modified 3 Aug 1994 SunOS 5.6 1B-857

postdaisy (1) User Commands

NAME postdaisy − PostScript translator for Diablo 630 daisy-wheel files

SYNOPSIS postdaisy [−c num] [−f num] [−h num] [−m num] [−n num] [−o list]
[−p mode] [−r num] [−s num] [−v num] [−x num] [−y num] [file . . .]

/usr/lib/lp/postscript/postdaisy

DESCRIPTION The postdaisy filter translates Diablo 630 daisy-wheel files into PostScript and writes the
results on the standard output. If no files are specified, or if − is one of the input files, the
standard input is read.

OPTIONS −c num Print num copies of each page. By default only one copy is printed.

−f name Print files using font name. Any PostScript font can be used, although the best
results will be obtained only with constant-width fonts. The default font is
Courier.

−h num Set the initial horizontal motion index to num. Determines the character
advance and the default point size, unless the −s option is used. The default is
12.

−m num Magnify each logical page by the factor num. Pages are scaled uniformly
about the origin, which is located near the upper left corner of each page. The
default magnification is 1.0.

−n num Print num logical pages on each piece of paper, where num can be any positive
integer. By default, num is set to 1.

−o list Print pages whose numbers are given in the comma-separated list. The list
contains single numbers N and ranges N1 − N2. A missing N1 means the
lowest numbered page, a missing N2 means the highest. The page range is an
expression of logical pages rather than physical sheets of paper. For example,
if you are printing two logical pages to a sheet, and you specified a range of 4,
then two sheets of paper would print, containing four page layouts. If you
specified a page range of 3-4, when requesting two logical pages to a sheet;
then only page 3 and page 4 layouts would print, and they would appear on
one physical sheet of paper.

−p mode Print files in either portrait or landscape mode . Only the first character of mode
is significant. The default mode is portrait.

−r num Selects carriage return and line feed behavior. If num is 1, a line feed gen-
erates a carriage return. If num is 2, a carriage return generates a line feed.
Setting num to 3 enables both modes.

−s num Use point size num instead of the default value set by the initial horizontal
motion index.

−v num Set the initial vertical motion index to num. The default is 8.

−x num Translate the origin num inches along the positive x axis. The default coordi-
nate system has the origin fixed near the upper left corner of the page, with
positive x to the right and positive y down the page. Positive num moves

1-858 SunOS 5.6 modified 9 Sep 1996

User Commands postdaisy (1)

everything right. The default offset is 0.25 inches.

−y num Translate the origin num inches along the positive y axis. Positive num moves
text up the page. The default offset is −0.25 inches.

EXIT STATUS The following exit values are returned:
0 Successful completion.
non-zero An error occurred.

FILES /usr/lib/lp/postscript/forms.ps
/usr/lib/lp/postscript/ps.requests

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWpsf

SEE ALSO download(1), dpost(1), postdmd(1), postio(1), postmd(1), postprint(1), postreverse(1),
posttek(1), attributes(5)

modified 9 Sep 1996 SunOS 5.6 1-859

postdmd (1) User Commands

NAME postdmd − PostScript translator for DMD bitmap files

SYNOPSIS postdmd [−b num] [−c num] [−f] [−m num] [−n num] [−o list] [−p mode]
[−x num] [−y num] [file . . .]

/usr/lib/lp/postscript/postdmd

DESCRIPTION postdmd translates DMD bitmap files, as produced by dmdps, or files written in the Ninth
Edition bitfile(9.5) format into PostScript and writes the results on the standard output.
If no files are specified, or if − is one of the input files, the standard input is read.

OPTIONS −b num Pack the bitmap in the output file using num byte patterns. A value of 0 turns
off all packing of the output file. By default, num is 6.

−c num Print num copies of each page. By default only one copy is printed.

−f Flip the sense of the bits in files before printing the bitmaps.

−m num Magnify each logical page by the factor num. Pages are scaled uniformly
about the origin, which by default is located at the center of each page. The
default magnification is 1.0.

−n num Print num logical pages on each piece of paper, where num can be any positive
integer. By default num is set to 1.

−o list Print pages whose numbers are given in the comma-separated list. The list
contains single numbers N and ranges N1 − N2. A missing N1 means the
lowest numbered page, a missing N2 means the highest. The page range is an
expression of logical pages rather than physical sheets of paper. For example,
if you are printing two logical pages to a sheet, and you specified a range of 4,
then two sheets of paper would print, containing four page layouts. If you
specified a page range of 3-4, when requesting two logical pages to a sheet;
then only page 3 and page 4 layouts would print, and they would appear on
one physical sheet of paper.

−p mode Print files in either portrait or landscape mode . Only the first character of mode
is significant. The default mode is portrait.

−x num Translate the origin num inches along the positive x axis. The default coordi-
nate system has the origin fixed at the center of the page, with positive x to the
right and positive y up the page. Positive num moves everything right. The
default offset is 0 inches.

−y num Translate the origin num inches along the positive y axis. Positive num moves
everything up the page. The default offset is 0.

Only one bitmap is printed on each logical page, and each of the input files must contain
complete descriptions of at least one bitmap. Decreasing the pattern size using the −b
option may help throughput on printers with fast processors (such as PS-810s), while
increasing the pattern size will often be the right move on older models (such as PS-800s).

1-860 SunOS 5.6 modified 9 Sep 1996

User Commands postdmd (1)

EXIT STATUS The following exit values are returned:
0 Successful completion.
non-zero An error occurred.

FILES /usr/lib/lp/postscript/forms.ps
/usr/lib/lp/postscript/ps.requests

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWpsf

SEE ALSO download(1), dpost(1), postdaisy(1), postio(1), postmd(1), postprint(1), postreverse(1),
posttek(1), attributes(5)

modified 9 Sep 1996 SunOS 5.6 1-861

postio (1) User Commands

NAME postio − serial interface for PostScript printers

SYNOPSIS postio −l line [−D] [−i] [−q] [−t] [−S] [−b speed] [−B num] [−L file]
[−P string] [−R num] [file . . .]

/usr/lib/lp/postscript/postio

DESCRIPTION postio sends files to the PostScript printer attached to line. If no files are specified the stan-
dard input is sent.

OPTIONS The first group of options should be sufficient for most applications:

−D Enable debug mode. Guarantees that everything read on line will be added to
the log file (standard error by default).

−q Prevents status queries while files are being sent to the printer. When status
queries are disabled a dummy message is appended to the log file before each
block is transmitted.

−b speed Transmit data over line at baud rate speed. Recognized baud rates are 1200,
2400, 4800, 9600, and 19200. The default speed is 9600 baud.

−B num Set the internal buffer size for reading and writing files to num bytes. By
default num is 2048 bytes.

−l line Connect to the printer attached to line. In most cases there is no default and
postio must be able to read and write line. If the line does not begin with a / it
may be treated as a Datakit destination.

−L file Data received on line gets put in file. The default log file is standard error.
Printer or status messages that don’t show a change in state are not normally
written to file but can be forced out using the −D option.

−P string Send string to the printer before any of the input files. The default string is
simple PostScript code that disables timeouts.

−R num Run postio as a single process if num is 1 or as separate read and write
processes if num is 2. By default postio runs as a single process.

The next two options are provided for users who expect to run postio on their own. Nei-
ther is suitable for use in spooler interface programs:

−i Run the program in interactive mode. Any files are sent first and followed by
the standard input. Forces separate read and write processes and overrides
many other options. To exit interactive mode use your interrupt or quit char-
acter. To get a friendly interactive connection with the printer type executive
on a line by itself.

−t Data received on line and not recognized as printer or status information is
written to the standard output. Forces separate read and write processes.
Convenient if you have a PostScript program that will be returning useful
data to the host.

1-862 SunOS 5.6 modified 9 Sep 1996

User Commands postio (1)

The last option is not generally recommended and should only be used if all else fails to
provide a reliable connection:

−S Slow the transmission of data to the printer. Severely limits throughput,
runs as a single process, disables the −q option, limits the internal buffer
size to 1024 bytes, can use an excessive amount of CPU time, and does
nothing in interactive mode.

The best performance will usually be obtained by using a large internal buffer (the −B
option) and by running the program as separate read and write processes (the −R 2
option). Inability to fork the additional process causes postio to continue as a single
read/write process. When one process is used, only data sent to the printer is flow con-
trolled.

The options are not all mutually exclusive. The −i option always wins, selecting its own
settings for whatever is needed to run interactive mode, independent of anything else
found on the command line. Interactive mode runs as separate read and write processes
and few of the other options accomplish anything in the presence of the −i option. The −t
option needs a reliable two way connection to the printer and therefore tries to force
separate read and write processes. The −S option relies on the status query mechanism,
so −q is disabled and the program runs as a single process.

In most cases postio starts by making a connection to line and then attempts to force the
printer into the IDLE state by sending an appropriate sequence of ˆT (status query), ˆC
(interrupt), and ˆD (end of job) characters. When the printer goes IDLE, files are transmit-
ted along with an occasional ˆT (unless the −q option was used). After all the files are sent
the program waits until it’s reasonably sure the job is complete. Printer generated error
messages received at any time except while establishing the initial connection (or when
running interactive mode) cause postio to exit with a non-zero status. In addition to
being added to the log file, printer error messages are also echoed to standard error.

EXAMPLES Run as a single process at 9600 baud and send file1 and file2 to the printer attached to
/dev/tty01:

example% postio −l /dev/tty01 file1 file2

Same as above except two processes are used, the internal buffer is set to 4096 bytes, and
data returned by the printer gets put in file log:

example% postio −R 2 −B 4096 −l/dev/tty01 −L log file1 file2

Establish an interactive connection with the printer at Datakit destination my/printer:

example% postio −i −l my/printer

Send file program to the printer connected to /dev/tty22, recover any data in file results,
and put log messages in file log:

example% postio −t −l /dev/tty22 −L log program >results

modified 9 Sep 1996 SunOS 5.6 1-863

postio (1) User Commands

EXIT STATUS The following exit values are returned:
0 Successful completion.
non-zero An error occurred.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWpsf

SEE ALSO download(1), dpost(1), postdaisy(1), postdmd(1), postmd(1), postprint(1), pos-
treverse(1), posttek(1), attributes(5)

NOTES The input files are handled as a single PostScript job. Sending several different jobs, each
with their own internal end of job mark (ˆD) is not guaranteed to work properly. postio
may quit before all the jobs have completed and could be restarted before the last one
finishes.

All the capabilities described above may not be available on every machine or even
across the different versions of the UNIX system that are currently supported by the pro-
gram.

There may be no default line, so using the −l option is strongly recommended. If omitted,
postio may attempt to connect to the printer using the standard output. If Datakit is
involved, the −b option may be ineffective and attempts by postio to impose flow control
over data in both directions may not work. The −q option can help if the printer is con-
nected to RADIAN. The −S option is not generally recommended and should be used
only if all other attempts to establish a reliable connection fail.

1-864 SunOS 5.6 modified 9 Sep 1996

User Commands postmd (1)

NAME postmd − matrix display program for PostScript printers

SYNOPSIS postmd [−b num] [−c num] [−d dimen] [−g list] [−i list] [−m num] [−n num]
[−o list] [−p mode] [−w window] [−x num] [−y num] [file . . .]

/usr/lib/lp/postscript/postmd

DESCRIPTION The postmd filter reads a series of floating point numbers from files, translates them into
a PostScript gray scale image, and writes the results on the standard output. In a typical
application the numbers might be the elements of a large matrix, written in row major
order, while the printed image could help locate patterns in the matrix. If no files are
specified, or if − is one of the input files, the standard input is read.

OPTIONS −b num Pack the bitmap in the output file using num byte patterns. A value of 0 turns
off all packing of the output file. By default, num is 6.

−c num Print num copies of each page. By default, only one copy is printed.

−d dimen Sets the default matrix dimensions for all input files to dimen. The dimen string
can be given as rows or rowsxcolumns. If columns is omitted it will be set to
rows. By default, postmd assumes each matrix is square and sets the number
of rows and columns to the square root of the number of elements in each
input file.

−g list list is a comma or space separated string of integers, each lying between 0 and
255 inclusive, that assigns PostScript gray scales to the regions of the real line
selected by the −i option. 255 corresponds to white, and 0, to black. The
postmd filter assigns a default gray scale that omits white (that is, 255) and
gets darker as the regions move from left to right along the real line.

−i list list is a comma, space or slash(/) separated string of N floating point numbers
that partition the real line into 2N+1 regions. The list must be given in increas-
ing numerical order. The partitions are used to map floating point numbers
read from the input files into gray scale integers that are either assigned
automatically by postmd or arbitrarily selected using the −g option. The
default interval list is −1,0,1, which partions the real line into seven regions.

−m num Magnify each logical page by the factor num. Pages are scaled uniformly
about the origin which, by default, is located at the center of each page. The
default magnification is 1.0.

−n num Print num logical pages on each piece of paper, where num can be any positive
integer. By default, num is set to 1.

−o list Print pages whose numbers are given in the comma separated list. The list
contains single numbers N and ranges N1 − N2. A missing N1 means the
lowest numbered page, a missing N2 means the highest. The page range is an
expression of logical pages rather than physical sheets of paper. For example,
if you are printing two logical pages to a sheet, and you specified a range of 4,
then two sheets of paper would print, containing four page layouts. If you

modified 9 Sep 1996 SunOS 5.6 1-865

postmd (1) User Commands

specified a page range of 3-4, when requesting two logical pages to a sheet;
then only page 3 and page 4 layouts would print, and they would appear on
one physical sheet of paper.

−p mode Print files in either portrait or landscape mode . Only the first character of mode
is significant. The default mode is portrait.

−w window
Window is a comma or space separated list of four positive integers that select
the upper left and lower right corners of a submatrix from each of the input
files. Row and column indices start at 1 in the upper left corner and the
numbers in the input files are assumed to be written in row major order. By
default, the entire matrix is displayed.

−x num Translate the origin num inches along the positive x axis. The default coordi-
nate system has the origin fixed at the center of the page, with positive x to the
right and positive y up the page. Positive num moves everything right. The
default offset is 0 inches.

−y num Translate the origin num inches along the positive y axis. Positive num moves
everything up the page. The default offset is 0.

Only one matrix is displayed on each logical page, and each of the input files must contain
complete descriptions of exactly one matrix. Matrix elements are floating point numbers
arranged in row major order in each input file. White space, including newlines, is not
used to determine matrix dimensions. By default, postmd assumes each matrix is square
and sets the number of rows and columns to the square root of the number of elements in
the input file. Supplying default dimensions on the command line with the −d option
overrides this default behavior, and in that case the dimensions apply to all input files.

An optional header can be supplied with each input file and is used to set the matrix
dimensions, the partition of the real line, the gray scale map, and a window into the
matrix. The header consists of keyword/value pairs, each on a separate line. It begins on
the first line of each input file and ends with the first unrecognized string, which should
be the first matrix element. Values set in the header take precedence, but apply only to
the current input file. Recognized header keywords are dimension, interval, grayscale,
and window. The syntax of the value string that follows each keyword parallels what is
accepted by the −d, −i, −g, and −w options.

EXAMPLES For example, suppose file initially contains the 1000 numbers in a 20x50 matrix. Then
you can produce exactly the same output by completing three steps. First, issue the fol-
lowing command line:

example% postmd −d20x50 −i"−100 100" −g0,128,254,128,0 file

Second, prepend the following header to file:

dimension 20x50
interval −100.0 .100e+3
grayscale 0 128 254 128 0

1-866 SunOS 5.6 modified 9 Sep 1996

User Commands postmd (1)

Third, issue the following command line:

example% postmd file

The interval list partitions the real line into five regions and the gray scale list maps
numbers less than −100 or greater than 100 into 0 (that is, black), numbers equal to −100
or 100 into 128 (that is, 50 percent black), and numbers between −100 and 100 into 254
(that is, almost white).

FILES /usr/lib/lp/postscript/forms.ps
/usr/lib/lp/postscript/ps.requests

EXIT STATUS The following exit values are returned:
0 Successful completion.
non-zero An error occurred.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWpsf

SEE ALSO dpost(1), postdaisy(1), postdmd(1), postio(1), postprint(1), postreverse(1), posttek(1),
attributes(5)

NOTES The largest matrix that can be adequately displayed is a function of the interval and gray
scale lists, the printer resolution, and the paper size. A 600 by 600 matrix is an optimistic
upper bound for a two element interval list (that is, five regions) using 8.5 by 11 inch
paper on a 300 dpi printer.

Using white (that is, 255) in a gray scale list is not recommended and won’t show up in
the legend and bar graph that postmd displays below each image.

modified 9 Sep 1996 SunOS 5.6 1-867

postplot (1) User Commands

NAME postplot − PostScript translator for plot(4) graphics files

SYNOPSIS postplot [−c num] [−f name] [−m num] [−n num] [−o list] [−p mode] [−w num]
[−x num] [−y num] [filename . . .]

/usr/lib/lp/postscript/postplot

DESCRIPTION The postplot filter translates plot(1B) graphics filenames into PostScript and writes the
results on the standard output. If no filenames are specified, or if − is one of the input
filenames, the standard input is read.

OPTIONS −c num Print num copies of each page. By default, only one copy is printed.

−f name Print text using font name. Any PostScript font can be used, although the best
results will be obtained only with constant width fonts. The default font is
Courier.

−m num Magnify each logical page by the factor num. Pages are scaled uniformly
about the origin which, by default, is located at the center of each page. The
default magnification is 1.0.

−n num Print num logical pages on each piece of paper, where num can be any positive
integer. By default, num is set to 1.

−o list Print pages whose numbers are given in the comma-separated list. The list
contains single numbers N and ranges N1 − N2. A missing N1 means the
lowest numbered page, a missing N2 means the highest.

−p mode Print filenames in either portrait or landscape mode. Only the first character of
mode is significant. The default mode is landscape.

−w num Set the line width used for graphics to num points, where a point is approxi-
mately 1/72 of an inch. By default, num is set to 0 points, which forces lines to
be one pixel wide.

−x num Translate the origin num inches along the positive x axis. The default coordi-
nate system has the origin fixed at the center of the page, with positive x to the
right and positive y up the page. Positive num moves everything right. The
default offset is 0.0 inches.

−y num Translate the origin num inches along the positive y axis. Positive num moves
everything up the page. The default offset is 0.0.

FILES /usr/lib/lp/postscript/forms.ps
/usr/lib/lp/postscript/postplot.ps
/usr/lib/lp/postscript/ps.requests

1-868 SunOS 5.6 modified 17 Jun 1992

User Commands postplot (1)

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWlps

SEE ALSO download(1), dpost(1), plot(1B), postdaisy(1), postdmd(1), postio(1), postmd(1), post-
print(1), postreverse(1), attributes(5)

DIAGNOSTICS An exit status of 0 is returned if filenames were successfully processed.

NOTES The default line width is too small for write-white print engines, such as the one used by
the PS-2400.

modified 17 Jun 1992 SunOS 5.6 1-869

postprint (1) User Commands

NAME postprint − PostScript translator for text files

SYNOPSIS postprint [−c num] [−f name] [−l num] [−m num] [−n num] [−o list]
[−p mode] [−r num] [−s num] [−t num] [−x num] [−y num]
[file. . .]

/usr/lib/lp/postscript/postprint

DESCRIPTION The postprint filter translates text files into PostScript and writes the results on the stan-
dard output. If no files are specified, or if − is one of the input files, the standard input is
read.

OPTIONS −c num Print num copies of each page. By default, only one copy is printed.

−f name Print files using font name. Any PostScript font can be used, although the best
results will be obtained only with constant width fonts. The default font is
Courier.

−l num Set the length of a page to num lines. By default, num is 66. Setting num to 0 is
allowed, and will cause postprint to guess a value, based on the point size
that’s being used.

−m num Magnify each logical page by the factor num. Pages are scaled uniformly
about the origin, which is located near the upper left corner of each page. The
default magnification is 1.0.

−n num Print num logical pages on each piece of paper, where num can be any positive
integer. By default, num is set to 1.

−o list Print pages whose numbers are given in the comma-separated list. The list
contains single numbers N and ranges N1 − N2. A missing N1 means the
lowest numbered page, a missing N2 means the highest. The page range is an
expression of logical pages rather than physical sheets of paper. For example,
if you are printing two logical pages to a sheet, and you specified a range of 4,
then two sheets of paper would print, containing four page layouts. If you
specified a page range of 3-4, when requesting two logical pages to a sheet;
then only page 3 and page 4 layouts would print, and they would appear on
one physical sheet of paper.

−p mode Print files in either portrait or landscape mode . Only the first character of mode
is significant. The default mode is portrait.

−r num Selects carriage return behavior. Carriage returns are ignored if num is 0,
cause a return to column 1 if num is 1, and generate a newline if num is 2. The
default num is 0.

−s num Print files using point size num. When printing in landscape mode num is
scaled by a factor that depends on the imaging area of the device. The default
size for portrait mode is 10. Note that increasing point size increases virtual
image size, so you either need to load larger paper, or use the −l0 option to
scale the number of lines per page.

1-870 SunOS 5.6 modified 9 Sep 1996

User Commands postprint (1)

−t num Assume tabs are set every num columns, starting with the first column. By
default, tabs are set every 8 columns.

−x num Translate the origin num inches along the positive x axis. The default coordi-
nate system has the origin fixed near the upper left corner of the page, with
positive x to the right and positive y down the page. Positive num moves
everything to the right. The default offset is 0.25 inches.

−y num Translate the origin num inches along the positive y axis. Positive num moves
text up the page. The default offset is −0.25 inches.

A new logical page is started after 66 lines have been printed on the current page, or
whenever an ASCII form feed character is read. The number of lines per page can be
changed using the −l option. Unprintable ASCII characters are ignored, and lines that are
too long are silently truncated by the printer.

EXAMPLES To print file1 and file2 in landscape mode, issue the following command:

example% postprint −pland file1 file2

To print three logical pages on each physical page in portrait mode:

example% postprint −n3 file

EXIT STATUS The following exit values are returned:
0 Successful completion.
non-zero An error occurred.

FILES /usr/lib/lp/postscript/forms.ps
/usr/lib/lp/postscript/ps.requests

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWpsf

SEE ALSO download(1), dpost(1), postdaisy(1), postdmd(1), postio(1), postmd(1), postreverse(1),
posttek(1), attributes(5)

modified 9 Sep 1996 SunOS 5.6 1-871

postreverse (1) User Commands

NAME postreverse − reverse the page order in a PostScript file

SYNOPSIS postreverse [−o list] [−r] [file]

/usr/lib/lp/postscript/postreverse

DESCRIPTION The postreverse filter reverses the page order in files that conform to Adobe’s Version 1.0
or Version 2.0 file structuring conventions, and writes the results on the standard output.
Only one input file is allowed and if no file is specified, the standard input is read.

The postreverse filter can handle a limited class of files that violate page independence,
provided all global definitions are bracketed by %%BeginGlobal and %%EndGlobal
comments. In addition, files that mark the end of each page with %%EndPage: label
ordinal comments will also reverse properly, provided the prologue and trailer sections
can be located. If postreverse fails to find an %%EndProlog or %%EndSetup comment,
the entire file is copied, unmodified, to the standard output.

Because global definitions are extracted from individual pages and put in the prologue,
the output file can be minimally conforming, even if the input file was not.

OPTIONS −o list Select pages whose numbers are given in the comma-separated list. The list
contains single numbers N and ranges N1 − N2. A missing N1 means the
lowest numbered page, a missing N2 means the highest. The page range is an
expression of logical pages rather than physical sheets of paper. For example,
if you are printing two logical pages to a sheet, and you specified a range of 4,
then two sheets of paper would print, containing four page layouts. If you
specified a page range of 3-4, when requesting two logical pages to a sheet;
then only page 3 and page 4 layouts would print, and they would appear on
one physical sheet of paper.

−r Do not reverse the pages in file.

EXAMPLES To select pages 1 to 100 from file and reverse the pages:

example% postreverse −o1−100 file

To print four logical pages on each physical page and reverse all the pages:

example% postprint −n4 file | postreverse

To produce a minimally conforming file from output generated by dpost without revers-
ing the pages:

example% dpost file | postreverse −r

EXIT STATUS The following exit values are returned:
0 Successful completion.
non-zero An error occurred.

1-872 SunOS 5.6 modified 9 Sep 1996

User Commands postreverse (1)

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWpsf

SEE ALSO download(1), dpost(1), postdaisy(1), postdmd(1), postio(1), postmd(1), postprint(1),
posttek(1), attributes(5)

NOTES No attempt has been made to deal with redefinitions of global variables or procedures. If
standard input is used, the input file will be read three times before being reversed.

modified 9 Sep 1996 SunOS 5.6 1-873

posttek (1) User Commands

NAME posttek − PostScript translator for Tektronix 4014 files

SYNOPSIS posttek [−c num] [−f name] [−m num] [−n num] [−o list] [−p mode] [−w num]
[−x num] [−y num] [file . . .]

/usr/lib/lp/postscript/posttek

DESCRIPTION The posttek filter translates Tektronix 4014 graphics files into PostScript and writes the
results on the standard output. If no files are specified, or if − is one of the input files, the
standard input is read.

OPTIONS −c num Print num copies of each page. By default, only one copy is printed.

−f name Print text using font name. Any PostScript font can be used, although the best
results will be obtained only with constant width fonts. The default font is
Courier.

−m num Magnify each logical page by the factor num. Pages are scaled uniformly
about the origin which, by default, is located at the center of each page. The
default magnification is 1.0.

−n num Print num logical pages on each piece of paper, where num can be any positive
integer. By default, num is set to 1.

−o list Print pages whose numbers are given in the comma-separated list. The list
contains single numbers N and ranges N1 − N2. A missing N1 means the
lowest numbered page, a missing N2 means the highest. The page range is an
expression of logical pages rather than physical sheets of paper. For example,
if you are printing two logical pages to a sheet, and you specified a range of 4,
then two sheets of paper would print, containing four page layouts. If you
specified a page range of 3-4, when requesting two logical pages to a sheet;
then only page 3 and page 4 layouts would print, and they would appear on
one physical sheet of paper.

−p mode Print files in either portrait or landscape mode . Only the first character of mode
is significant. The default mode is landscape.

−w num Set the line width used for graphics to num points, where a point is approxi-
mately 1/72 of an inch. By default, num is set to 0 points, which forces lines to
be one pixel wide.

−x num Translate the origin num inches along the positive x axis. The default coordi-
nate system has the origin fixed at the center of the page, with positive x to the
right and positive y up the page. Positive num moves everything right. The
default offset is 0.0 inches.

−y num Translate the origin num inches along the positive y axis. Positive num moves
everything up the page. The default offset is 0.0.

1-874 SunOS 5.6 modified 9 Sep 1996

User Commands posttek (1)

EXIT STATUS The following exit values are returned:
0 Successful completion.
non-zero An error occurred.

FILES /usr/lib/lp/postscript/forms.ps
/usr/lib/lp/postscript/ps.requests

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWpsf

SEE ALSO download(1), dpost(1), postdaisy(1), postdmd(1), postio(1), postmd(1), postprint(1),
postreverse(1), attributes(5)

NOTES The default line width is too small for write-white print engines, such as the one used by
the PS-2400.

modified 9 Sep 1996 SunOS 5.6 1-875

pr (1) User Commands

NAME pr − print files

SYNOPSIS /usr/bin/pr [+page] [−column] [−adFmrt] [−e [char][gap]] [−h header]
[−i [char][gap]] [−l lines] [−n [char][width]] [−o offset] [−s [char]] [−w width]
[−fp] [file . . .]

/usr/xpg4/bin/pr [+page] [−column | −c column] [−adFmrt] [−e [char][gap]]
[−h header] [−i [char][gap]] [−l lines] [−n [char][width]] [−o offset] [−s [char]]
[−w width] [−fp] [file . . .]

DESCRIPTION The pr utility is a printing and pagination filter. If multiple input files are specified, each
is read, formatted, and written to standard output. By default, the input is separated into
66-line pages, each with:

· a 5-line header that includes the page number, date, time and the path name of the
file

· a 5-line trailer consisting of blank lines

If standard output is associated with a terminal, diagnostic messages will be deferred
until the pr utility has completed processing.

When options specifying multi-column output are specified, output text columns will be
of equal width; input lines that do not fit into a text column will be truncated. By default,
text columns are separated with at least one blank character.

OPTIONS The following options are supported. In the following option descriptions, column, lines,
offset , page , and width are positive decimal integers; gap is a non-negative decimal integer.
Some of the option-arguments are optional, and some of the option-arguments cannot be
specified as separate arguments from the preceding option letter. In particular, the −s
option does not allow the option letter to be separated from its argument, and the options
−e, −i, and −n require that both arguments, if present, not be separated from the option
letter.

The following options are supported for both /usr/bin/pr and /usr/xpg4/bin/pr:

+page Begin output at page number page of the formatted input.

−column Produce multi-column output that is arranged in column columns
(default is 1) and is written down each column in the order in which
the text is received from the input file. This option should not be used
with −m. The −e and −i options will be assumed for multiple text-
column output. Whether or not text columns are produced with identi-
cal vertical lengths is unspecified, but a text column will never exceed
the length of the page (see the −l option). When used with −t, use the
minimum number of lines to write the output.

−a Modify the effect of the −column option so that the columns are filled
across the page in a round-robin order (for example, when column is 2,
the first input line heads column 1, the second heads column 2, the
third is the second line in column 1, and so forth).

1-876 SunOS 5.6 modified 18 Mar 1997

User Commands pr (1)

−d Produce output that is double-spaced; append an extra NEWLINE char-
acter following every NEWLINE character found in the input.

−e [char][gap] Expand each input TAB character to the next greater column position
specified by the formula n ∗gap+1, where n is an integer >0. If gap is 0
or is omitted, it defaults to 8. All TAB characters in the input will be
expanded into the appropriate number of SPACE characters. If any
non-digit character, char, is specified, it will be used as the input tab
character.

−f Use a FORMFEED character for new pages, instead of the default
behavior that uses a sequence of NEWLINE characters. Pause before
beginning the first page if the standard output is associated with a ter-
minal.

−h header Use the string header to replace the contents of the file operand in the
page header.

−l lines Override the 66-line default and reset the page length to lines. If lines is
not greater than the sum of both the header and trailer depths (in lines),
pr will suppress both the header and trailer, as if the −t option were in
effect.

−m Merge files. Standard output will be formatted so pr writes one line
from each file specified by file, side by side into text columns of equal
fixed widths, in terms of the number of column positions. Implementa-
tions support merging of at least nine files.

-n [char][width] Provide width-digit line numbering (default for width is 5). The
number will occupy the first width column positions of each text
column of default output or each line of −m output. If char (any non-
digit character) is given, it will be appended to the line number to
separate it from whatever follows (default for char is a TAB character).

−o offset Each line of output will be preceded by offset <space>s. If the −o
option is not specified, the default offset is 0. The space taken will be in
addition to the output line width (see −w option below).

−p Pause before beginning each page if the standard output is directed to
a terminal (pr will write an ALERT character to standard error and wait
for a carriage-return character to be read on /dev/tty).

−r Write no diagnostic reports on failure to open files.

-s [char] Separate text columns by the single character char instead of by the
appropriate number of SPACE characters (default for char is the TAB
character).

−t Write neither the five-line identifying header nor the five-line trailer
usually supplied for each page. Quit writing after the last line of each
file without spacing to the end of the page.

−w width Set the width of the line to width column positions for multiple text-
column output only. If the −w option is not specified and the −s option

modified 18 Mar 1997 SunOS 5.6 1-877

pr (1) User Commands

is not specified, the default width is 72. If the −w option is not
specified and the −s option is specified, the default width is 512.

For single column output, input lines will not be truncated.

/usr/bin/pr The following options are supported for /usr/bin/pr only:

−F Fold the lines of the input file. When used in multi-column mode (with
the −a or −m options), lines will be folded to fit the current column’s
width; otherwise, they will be folded to fit the current line width (80
columns).

−i [char][gap] In output, replace SPACE characters with TAB characters wherever one
or more adjacent SPACE characters reach column positions gap+1,
2∗gap+1, 3∗gap+1, and so forth. If gap is 0 or is omitted, default TAB
settings at every eighth column position are assumed. If any non-digit
character, char, is specified, it will be used as the output TAB character.

/usr/xpg4/bin/pr The following options are supported for /usr/xpg4/bin/pr only:

−F Use a FORMFEED character for new pages, instead of the default
behavior that uses a sequence of NEWLINE characters.

−i [char][gap] In output, replace multiple SPACE characters with TAB characters
wherever two or more adjacent SPACE characters reach column posi-
tions gap+1, 2∗gap+1, 3∗gap+1, and so forth. If gap is 0 or is omitted,
default TAB settings at every eighth column position are assumed. If
any non-digit character, char, is specified, it will be used as the output
TAB character.

OPERANDS The following operand is supported:

file A path name of a file to be written. If no file operands are specified, or if a
file operand is −, the standard input will be used.

EXAMPLES 1. Print a numbered list of all files in the current directory:

ls -a | pr -n -h "Files in $(pwd)."

2. Print file1 and file2 as a double-spaced, three-column listing headed by “file list”:

pr -3d -h "file list" file1 file2

3. Write file1 on file2, expanding tabs to columns 10, 19, 28, . . . :

pr -e9 -t <file1 >file2

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of pr: LC_CTYPE, LC_MESSAGES, LC_TIME, TZ, and NLSPATH.

EXIT STATUS The following exit values are returned:
0 Successful completion.
>0 An error occurred.

1-878 SunOS 5.6 modified 18 Mar 1997

User Commands pr (1)

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

/usr/bin/pr ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu
CSI enabled

/usr/xpg4/bin/pr ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxcu4
CSI enabled

SEE ALSO expand(1), lp(1), attributes(5), environ(5), xpg4(5)

modified 18 Mar 1997 SunOS 5.6 1-879

prex (1) User Commands

NAME prex − control tracing in a process or the kernel

SYNOPSIS prex [−o trace_file_name] [−l libraries] [−s kbytes_size] cmd [cmd-args . . .]

prex [−o trace_file_name] [−l libraries] [−s kbytes_size] −p pid

prex −k [−s kbytes_size]

DESCRIPTION The prex command is the part of the Solaris tracing architecture that controls probes in a
process or the kernel. See tracing(3X) for an overview of this tracing architecture, includ-
ing example source code using it.

prex is the application used for external control of probes. It locates all the probes in a
target executable or the kernel and provides an interface for the user to manipulate them.
prex allows a probe to be turned on for tracing, debugging, or both. Tracing generates a
TNF trace file that can be converted to ASCII by tnfdump(1) and used for performance
analysis. Debugging generates a line to standard error whenever the probe is hit at run
time.

prex does not work on static executables. It only works on dynamic executables.

Invoking prex There are three ways to invoke prex:

1. Use prex to start the target application cmd. In this case, the target applica-
tion need not be built with a dependency on libtnfprobe. See
TNF_PROBE(3X). prex sets the environment variable LD_PRELOAD to
load libtnfprobe into the target process. See ld(1). prex then uses the
environment variable PATH to find the target application.

2. Attach prex to a running application. In this case, the running target appli-
cation should have libtnfprobe already linked in. Alternatively, the user
may manually set LD_PRELOAD to include libtnfprobe.so.1 prior to invok-
ing the target.

3. Use prex with the −k option to set prex to kernel mode. prex can then be
used to control probes in the Solaris kernel. In kernel mode, additional
commands are defined, and some commands that are valid in other modes
are invalid. See Kernel Mode below.

Control File Format
and Command

Language

In a future release of prex, the command language may be moved to a syntax that is sup-
ported by an existing scripting language like ksh(1). In the mean time, the interface to
prex is uncommitted.

· Commands should be in ASCII.

· Each command is terminated with the NEWLINE character.

· A command can be continued onto the next line by ending the previous line with the
backslash (‘\’) character.

· Tokens in a command must be separated by whitespace (one or more spaces or tabs).

· The "#" character implies that the rest of the line is a comment.

1-880 SunOS 5.6 modified 4 Mar 1997

User Commands prex (1)

Control File Search
Path

There are two different methods of communicating with prex:

· By specifications in a control file. During start-up, prex searches for a file named
.prexrc in the directories specified below. prex does not stop at the first one it finds.
This way a user can override any defaults that are set up. The search order is:

$HOME/
./

· By typing commands at the prex prompt.

The command language for both methods is the same and is specified in USAGE. The
commands that return output will not make sense in a control file. The output will go to
standard output.

When using prex on a target process, the target will be in one of two states, running or
stopped. This can be detected by the presence or absence of the prex> prompt. If the
prompt is absent, it means that the target process is running. Typing CTRL-C will stop the
target process and return the user to the prompt. There is no guarantee that CTRL-C will
return to a prex prompt immediately. For example, if the target process is stopped on a
job control stop (SIGSTOP), then CTRL-C in prex will wait until the target has been contin-
ued (SIGCONT). See Signals to Target Program below for more information on signals
and the target process.

OPTIONS The following options are supported:

−k kernel mode: prex is used to control probes in the Solaris kernel.
In kernel mode, additional commands are defined, and some com-
mands valid in other modes are invalid. See Kernel Mode below.

−l libraries The libraries mentioned are linked in to the target application using
LD_PRELOAD (see ld(1)). This option cannot be used when attach-
ing to a running process. The argument to the −l option should be
a space-separated string enclosed in double quotes. Each token in
the string is a library name. It follows the LD_PRELOAD rules on
how libraries should be specified and where they will be found.

−o trace_file_name File to be used for the trace output. trace_file_name is assumed to
be relative to the current working directory of prex (i.e., the direc-
tory that the user was in when prex was started).

If prex attaches to a process that is already tracing, the new
trace_file_name (if provided) will not be used. If no trace_file_name is
specified, the default is /$TMPDIR/trace-<pid> where <pid> is the
process id of the target program. If TMPDIR is not set, /tmp is
used.

modified 4 Mar 1997 SunOS 5.6 1-881

prex (1) User Commands

−s kbytes_size Maximum size of the output trace file in Kbytes. The default size
of the trace kbytes_size is 4096 or 4 Mbytes for normal usage, and
384 or 384 kbytes in kernel mode. The trace file can be thought of
as a least recently used circular buffer. Once the file has been
filled, newer events will overwrite the older ones.

USAGE
Grammar Probes are specified by a list of space separated selectors. Selectors are of the form:

<attribute>=<value>

(see TNF_PROBE(3X)). The "<attribute>=" is optional. If it is not specified, it defaults to
keys=.

The <attribute> or <value> (generically called spec) can be any of the following:

IDENT any sequence of letters, digits, _ , \ , ., % not beginning with a digit.
IDENT implies an exact match.

QUOTED_STR usually used to escape reserved words (any commands in the command
language). QUOTED_STR implies an exact match and has to be enclosed
in single quotes (’ ’).

REGEXP an ed(1) regular expression pattern match. REGEXP has to be enclosed
in slashes (/ /), A / can be included in a REGEXP by escaping it with a
backslash \ .

The following grammar explains the syntax.

selector_list ::= | /∗ empty ∗/
<selector_list> <selector>

selector ::= <spec>=<spec> | /∗ whitespace around ‘=’ opt ∗/
<spec>

spec ::= IDENT |
QUOTED_STR |
REGEXP

The terminals in the above grammar are:

IDENT = [a-zA-Z_\.%]{[a-zA-Z0-9_\.%]}+
QUOTED_STR = ’[ˆ\n’]∗’ /∗ any string in single quotes ∗/
REGEXP = /[ˆ\n/]∗/ /∗ regexp’s have to be in / / ∗/

This is a list of the remaining grammar that is needed to understand the syntax of the
command language (defined in next subsection):

filename ::= QUOTED_STR /∗ QUOTED_STR defined above ∗/
spec_list ::= /∗ empty ∗/ |

<spec_list> <spec> /∗ <spec> defined above ∗/
fcn_handle ::= &IDENT /∗ IDENT defined above ∗/
set_name ::= $IDENT /∗ IDENT defined above ∗/

1-882 SunOS 5.6 modified 4 Mar 1997

User Commands prex (1)

Command Language 1. Set Creation and Set Listing
create $<set_name> <selector_list>
list sets # list the defined sets

create can be used to define a set which contains probes that match the <selector_list>.
The set $all is pre-defined as /.∗/ — it matches all the probes.

2. Function Listing
list fcns # list the available <fcn_handle>

The user can list the different functions that can be connected to probe points.
Currently, only the debug function called &debug is available.

3. Commands to Connect and Disconnect Probe Functions
connect &<fcn_handle> $<set_name>
connect &<fcn_handle> <selector_list>
clear $<set_name>
clear <selector_list>

The connect command is used to connect probe functions (which must be prefixed by
&) to probes. The probes are specified either as a single set (with a ‘$’), or by explicitly
listing the probe selectors in the command. The probe function has to be one that is
listed by the list fcns command. This command does not enable the probes.

The clear command is used to disconnect all connected probe functions from the
specified probes.

4. Commands to Toggle the Tracing Mode
trace $<set_name>
trace <selector_list>
untrace $<set_name>
untrace <selector_list>

The trace and untrace commands are used to toggle the tracing action of a probe
point (that is, whether a probe will emit a trace record or not if it is hit). This com-
mand does not enable the probes specified. Probes have tracing on by default. The
most efficient way to turn off tracing is by using the disable command. untrace is
useful if you want debug output but no tracing. If so, set the state of the probe to
enabled, untraced, and the debug function connected.

5. Commands to Enable and Disable Probes
enable $<set_name>
enable <selector_list>
disable $<set_name>
disable <selector_list>
list history # lists probe control command history

The enable and disable commands are used to control whether the probes perform
the action that they have been set up for. To trace a probe, it has to be both enabled
and traced (using the trace command). Probes are disabled by default. list history
command is used to list the probe control commands issued: connect, clear, trace,
untrace, enable, and disable. These are the commands that are executed whenever a

modified 4 Mar 1997 SunOS 5.6 1-883

prex (1) User Commands

new shared object is brought in to the target program by dlopen(3X). See the subsec-
tion, dlopen’ed Libraries, below for more information.

6. List History

The list history command displays a list of the probe control commands previously
issued in the tracing session, for example, connect, clear, trace, disable. Commands
in the history list are executed wherever a new shared object is brought into the target
program by dlopen(3X).

7. Commands to List Probes or List Values
list <spec_list> probes $<set_name> # e.g. list probes $all
list <spec_list> probes <selector_list> # e.g. list name probes\

file=test.c
list values <spec_list> # e.g. list values keys

The first two commands list the selected attributes and values of the specified probes.
They can be used to check the state of a probe. The third command lists the various
values associated with the selected attributes.

8. Help Command
help <topic>

To get a list of the help topics that are available, invoke the help command with no
arguments. If a topic argument is specified, help is printed for that topic.

9. Source a File
source <filename>

The source command can be used to source a file of prex commands. source can be
nested (that is, a file can source another file).

10. Process Control
continue # resumes the target process
quit kill # quit prex, kill target
quit resume # quit prex, continue target
quit suspend # quit prex, leave target suspended
quit # quit prex (continue or kill target)

The default quit will continue the target process if prex attached to it. Instead, if prex
had started the target program, quit will kill the target process.

dlopen’ed Libraries Probes in shared objects that are brought in by dlopen(3X) are automatically set up
according to the command history of prex. When a shared object is removed by a
dlclose(3X), prex again needs to refresh its understanding of the probes in the target pro-
gram. This implies that there is more work to do for dlopen(3X) and dlclose(3X) —so
they will take slightly longer. If a user is not interested in this feature and doesn’t want to
interfere with dlopen(3X) and dlclose(3X), detach prex from the target to inhibit this
feature.

Signals to Target
Program

prex does not interfere with signals that are delivered directly to the target program.
However, prex receives all signals normally generated from the terminal, for example,
CTRL-C (SIGINT), and CTRL-Z (SIGSTOP), and does not forward them to the target

1-884 SunOS 5.6 modified 4 Mar 1997

User Commands prex (1)

program. To signal the target program, use the kill(1) command from a shell.

Interactions with
Other Applications

Process managing applications like dbx, truss(1), and prex cannot operate on the same
target program simultaneously. prex will not be able to attach to a target which is being
controlled by another application. A user can trace and debug a program serially by the
following method: first attach prex to target (or start target through prex), set up the
probes using the command language, and then type quit suspend. The user can then
attach dbx to the suspended process and debug it. A user can also suspend the target by
sending it a SIGSTOP signal, and then by typing quit resume to prex— in this case, the
user should also send a SIGCONT signal after invoking dbx on the stopped process (else
dbx will be hung).

Failure of Event
Writing Operations

There are a few failure points that are possible when writing out events to a trace file, for
example, system call failures. These failures result in a failure code being set in the target
process. The target process continues normally, but no trace records are written. When-
ever a user types CTRL-C to prex to get to a prex prompt, prex will check the failure code
in the target and inform the user if there was a tracing failure.

Target Executing a
Fork or exec

If the target program does a fork(2), any probes that the child encounters will cause
events to be logged to the same trace file. Events are annotated with a process id, so it
will be possible to determine which process a particular event came from. In multi-
threaded programs, there is a race condition with a thread doing a fork while the other
threads are still running. For the trace file not to get corrupted, the user should either use
fork1(2), or make sure that all other threads are quiescent when doing a fork(2),

If the target program itself (not any children it may fork(2)) does an exec(2), prex
detaches from the target and exits. The user can reconnect prex with prex −p pid.

A vfork(2) is generally followed quickly by an exec(2) in the child, and in the interim, the
child borrows the parent’s process while the parent waits for the exec(2). Any events
logged by the child from the parent process will appear to have been logged by athe
parent.

Kernel Mode Invoking prex with the −k flag causes prex to run in kernel mode. In kernel mode, prex
controls probes in the Solaris kernel. See tnf_kernel_probes(4) for a list of available
probes in the Solaris kernel. A few prex commands are unavailable in kernel mode;
many other commands are valid in kernel mode only.

The −l, −o, and −p command-line options are not valid in kernel mode (that is, they may
not be combined with the −k flag).

The rest of this section describes the differences in the prex command language when
running prex in kernel mode.

1. prex will not stop the kernel

When prex attaches to a running user program, it stops the user program. Obvi-
ously, it cannot do this when attaching to the kernel. Instead, prex provides a
‘‘tracing master switch’’: no probes will have any effect unless the tracing master
switch is on. This allows the user to iteratively select probes to enable, then

modified 4 Mar 1997 SunOS 5.6 1-885

prex (1) User Commands

enable them all at once by turning on the master switch.

The command
ktrace [on | off]

is used to inspect and set the value of the master switch. Without an argument,
prex reports the current state of the master switch.

Since prex will not stop or kill the kernel, the
quit resume

and
quit kill

commands are not valid in kernel mode.

2. No functions may be attached to probes in the kernel

In particular, the debug function is unavailable in kernel mode.

3. Trace output is written to an in-core buffer

In kernel mode, a trace output file is not generated directly, in order to allow
probes to be placed in time-critical code. Instead, trace output is written to an
in-core buffer, and copied out by a separate program, tnfxtract(1).

The in-core buffer is not automatically created. The following prex command
controls buffer allocation and deallocation:

buffer [alloc [size] | dealloc]

Without an argument, the buffer command reports the size of the currently allo-
cated buffer, if any. With an argument of alloc [size], prex allocates a buffer of
the given size. size is in bytes, with an optional suffix of ’k’ or ’m’ specifying a
multiplier of 1024 or 1048576, respectively. If no size is specified, the size
specified on the command line with the −s option is used as a default. If the −s
command line option was not used, the ‘‘default default’’ is 384 kilobytes.

With an argument of dealloc, prex deallocates the trace buffer in the kernel.

prex will reject attempts to turn the tracing master switch on when no buffer is
allocated, and to deallocate the buffer when the tracing master switch is on. prex
will refuse to allocate a buffer when one is already allocated; use buffer dealloc
first.

prex will not allocate a buffer larger than one-half of a machine’s physical
memory.

4. Prex supports per-process probe enabling in the kernel

In kernel mode, it is possible to select a set of processes for which probes are
enabled. No trace output will be written when other processes traverse these
probe points. This is called "process filter mode." By default, process filter mode
is off, and all processes cause the generation of trace records when they hit an
enabled probe.

Some kernel events such as interrupts cannot be associated with a particular user
process. By convention, these events are considered to be generated by process

1-886 SunOS 5.6 modified 4 Mar 1997

User Commands prex (1)

id 0.

prex provides commands to turn process filter mode on and off, to get the
current status of the process filter mode switch, to add and delete processes (by
process id) from the process filter set, and to list the current process filter set.

The process filter set is maintained even when process filter mode is off, but has
no effect unless process filter mode is on.

When a process in the process filter set exits, its process id is automatically
deleted from the process filter set.

The command:
pfilter [on | off | add <pidlist> | delete <pidlist>]

controls the process filter switch, and process filter set membership.
With no arguments, pfilter prints the current process filter set and the
state of the process filter mode switch.

on or off set the state of the process filter mode switch.
add <pidlist>
delete <pidlist> add or delete processes from the process filter set.

<pidlist> is a comma-separated list of one or more
process ids.

EXAMPLES See tracing(3X) for complete examples showing, among other things, the use of prex to
do simple probe control.

When either the process or kernel is started, all probes are disabled.

Set creation and set listing

create $out name=/out/ # $out = probes with "out" in
value of "name" attribute

create $foo /page/ name=biodone # $foo = union of
probes with "page" in value of keys attribute
probes with "biodone" as value of "name" attribute

list sets # list the defined sets
list fcns # list the defined probe fcns

Commands to trace and connect probe functions

trace foobar=’on’ # exact match on foobar attribute
trace $all # trace all probes (predefined set $all)
connect &debug $foo # connect debug func to probes in $foo

Commands to enable and disable probes

enable $all # enable all probes
enable /vm/ name=alloc # enable the specified probes

modified 4 Mar 1997 SunOS 5.6 1-887

prex (1) User Commands

disable $foo # disable probes in set $foo
list history # list probe control commands issued

Process control

continue # resumes the target process
ˆC # stop target; give control to prex
quit resume # exit prex, leave process running

Kernel mode

buffer alloc 2m # allocate a 2 Megabyte buffer
enable $all # enable all probes
trace $all # trace all probes
ktrace on # turn tracing on
ktrace off # turn tracing back off
pfilter on # turn process filter mode on
pfilter add 1379 # add pid 1379 to process filter
ktrace on # turn tracing on

(only pid 1379 will be traced)

FILES .prexrc local prex initialization file
˜/.prexrc user’s prex initialization file
/proc/nnnnn process files

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtnfc

SEE ALSO ed(1), kill(1), ksh(1), ld(1), tnfdump(1), tnfxtract(1), truss(1), exec(2), fork(2), fork1(2),
vfork(2), TNF_DECLARE_RECORD(3X), TNF_PROBE(3X), dlclose(3X), dlopen(3X),
gethrtime(3C), libtnfctl(3X), tnf_process_disable(3X), tracing(3X),
tnf_kernel_probes(4), attributes(5)

NOTES Currently, the only probe function that is available is the &debug function. When this
function is executed, it prints out the arguments sent in to the probe as well as the value
associated with the sunw%debug attribute in the detail field (if any) to stderr.

For example, for the following probe point:

TNF_PROBE_2(input_values, "testapp main",
"sunw%debug ’have read input values successfully’",
tnf_long, int_input, x,
tnf_string, string_input, input);

1-888 SunOS 5.6 modified 4 Mar 1997

User Commands prex (1)

If x was 100 and input was the string "success", then the output of the debug probe func-
tion would be:

probe input_values; sunw%debug "have read input values successfully";
int_input=100; string_input="success";

Some non-SPARC hardware lacks a true high-resolution timer, causing gethrtime() to
return the same value multiple times in succession. This can lead to problems in how
some tools interpret the trace file. This situation can be improved by interposing a ver-
sion of gethrtime(), which causes these successive values to be artificially incremented by
one nanosecond:

hrtime_t
gethrtime()
{

static mutex_t lock;
static hrtime_t (∗real_gethrtime)(void) = NULL;
static hrtime_t last_time = 0;

hrtime_t this_time;

if (real_gethrtime == NULL) {
real_gethrtime =

(hrtime_t (∗)(void)) dlsym(RTLD_NEXT, "gethrtime");
}
this_time = real_gethrtime();

mutex_lock(&lock);
if (this_time <= last_time)

this_time = ++last_time;
else

last_time = this_time;
mutex_unlock(&lock);

return (this_time);
}

modified 4 Mar 1997 SunOS 5.6 1-889

prex (1) User Commands

Of course, this does not increase the resolution of the timer, so timestamps for individual
events are still relatively inaccurate. But this technique maintains ordering, so that if
event A causes event B, B never appears to happen before or at the same time as A.

dbx is available with the Sun Workshop Products.

BUGS prex should issue a notification when a process id has been automatically deleted from
the filter set.

1-890 SunOS 5.6 modified 4 Mar 1997

User Commands print (1)

NAME print − shell built-in function to output characters to the screen or window

SYNOPSIS
ksh print [−Rnprsu[n]] [arg . . .]

DESCRIPTION
ksh The shell output mechanism. With no flags or with flag − or − −, the arguments are

printed on standard output as described by echo(1). The exit status is 0, unless the out-
put file is not open for writing.

−n suppresses new-line from being added to the output.

−R
−r (raw mode) ignore the escape conventions of echo. The −R option will print

all subsequent arguments and options other than −n.

−p causes the arguments to be written onto the pipe of the process spawned with
�& instead of standard output.

−s causes the arguments to be written onto the history file instead of standard
output.

−u [n] flag can be used to specify a one digit file descriptor unit number n on which
the output will be placed. The default is 1.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO echo(1), ksh(1), attributes(5)

modified 15 Apr 1994 SunOS 5.6 1-891

printenv (1B) SunOS/BSD Compatibility Package Commands

NAME printenv − display environment variables currently set

SYNOPSIS /usr/ucb/printenv [variable]

DESCRIPTION printenv prints out the values of the variables in the environment. If a variable is
specified, only its value is printed.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscpu

SEE ALSO csh(1), echo(1), sh(1), stty(1), tset(1B), attributes(5), environ(5)

DIAGNOSTICS If a variable is specified and it is not defined in the environment, printenv returns an exit
status of 1.

1B-892 SunOS 5.6 modified 14 Sep 1992

User Commands printf (1)

NAME printf − write formatted output

SYNOPSIS printf format [argument . . .]

DESCRIPTION The printf command writes formatted operands to the standard output. The argument
operands are formatted under control of the format operand.

OPERANDS The following operands are supported:

format A string describing the format to use to write the remaining operands.
The format operand is used as the format string described on the for-
mats(5) manual page, with the following exceptions:

· A SPACE character in the format string, in any context other than a
flag of a conversion specification, is treated as an ordinary character
that is copied to the output.

· A ∆ character in the format string is treated as a ∆ character, not as a
SPACE character.

· In addition to the escape sequences described on the formats(5)
manual page (\\, \a, \b, \f, \n, \r, \t, \v), \ddd, where ddd is a one-,
two- or three-digit octal number, is written as a byte with the numeric
value specified by the octal number.

· The program does not precede or follow output from the d or u
conversion specifications with blank characters not specified by the
format operand.

· The program does not precede output from the o conversion
specification with zeros not specified by the format operand.

· An additional conversion character, b, is supported as follows. The
argument is taken to be a string that may contain backslash-escape
sequences. The following backslash-escape sequences are supported:

− the escape sequences listed on the formats(5) manual page (\\, \a,
\b, \f, \n, \r, \t, \v), which are converted to the characters they
represent

− \0ddd, where ddd is a zero-, one-, two- or three-digit octal number
that is converted to a byte with the numeric value specified by the
octal number

− \c, which is written and causes printf to ignore any remaining
characters in the string operand containing it, any remaining string
operands and any additional characters in the format operand.

The interpretation of a backslash followed by any other sequence of
characters is unspecified.

modified 28 Mar 1995 SunOS 5.6 1-893

printf (1) User Commands

Bytes from the converted string are written until the end of the string or
the number of bytes indicated by the precision specification is reached.
If the precision is omitted, it is taken to be infinite, so all bytes up to the
end of the converted string are written. For each specification that con-
sumes an argument, the next argument operand is evaluated and con-
verted to the appropriate type for the conversion as specified below.
The format operand is reused as often as necessary to satisfy the argu-
ment operands. Any extra c or s conversion specifications are evaluated
as if a null string argument were supplied; other extra conversion
specifications are evaluated as if a zero argument were supplied. If the
format operand contains no conversion specifications and argument
operands are present, the results are unspecified. If a character
sequence in the format operand begins with a % character, but does not
form a valid conversion specification, the behavior is unspecified.

argument The strings to be written to standard output, under the control of format .
The argument operands are treated as strings if the corresponding
conversion character is b, c or s; otherwise, it is evaluated as a C con-
stant, as described by the ISO C standard, with the following extensions:

· A leading plus or minus sign is allowed.

· If the leading character is a single- or double-quote, the value is the
numeric value in the underlying codeset of the character following
the single- or double-quote.

If an argument operand cannot be completely converted into an internal
value appropriate to the corresponding conversion specification, a diag-
nostic message is written to standard error and the utility does not exit
with a zero exit status, but continues processing any remaining
operands and writes the value accumulated at the time the error was
detected to standard output.

USAGE Note that this printf utility, like the printf(3S) function on which it is based, makes no
special provision for dealing with multi-byte characters when using the %c conversion
specification or when a precision is specified in a %b or %s conversion specification.
Applications should be extremely cautious using either of these features when there are
multi-byte characters in the character set.

Field widths and precisions cannot be specified as ∗.

For compatibility with previous versions of SunOS 5.x, the $ format specifier is supported
for formats containing only %s specifiers.

The %b conversion specification is not part of the ISO C standard; it has been added here
as a portable way to process backslash escapes expanded in string operands as provided
by the echo utility. See also the USAGE section of the echo(1) manual page for ways to
use printf as a replacement for all of the traditional versions of the echo utility.

1-894 SunOS 5.6 modified 28 Mar 1995

User Commands printf (1)

If an argument cannot be parsed correctly for the corresponding conversion specification,
the printf utility reports an error. Thus, overflow and extraneous characters at the end of
an argument being used for a numeric conversion are to be reported as errors.

It is not considered an error if an argument operand is not completely used for a c or s
conversion or if a string operand’s first or second character is used to get the numeric
value of a character.

EXAMPLES To alert the user and then print and read a series of prompts:
printf "\aPlease fill in the following: \nName: "
read name
printf "Phone number: "
read phone

To read out a list of right and wrong answers from a file, calculate the percentage
correctly, and print them out. The numbers are right-justified and separated by a single
tab character. The percentage is written to one decimal place of accuracy:

while read right wrong ; do
percent=$(echo "scale=1;($right∗100)/($right+$wrong)" | bc)
printf "%2d right\t%2d wrong\t(%s%%)\n" \

$right $wrong $percent
done < database_file

The command:

printf "%5d%4d\n" 1 21 321 4321 54321

produces:

1 21
3214321

54321 0

Note that the format operand is used three times to print all of the given strings and that a
0 was supplied by printf to satisfy the last %4d conversion specification.

The printf utility tells the user when conversion errors are detected while producing
numeric output; thus, the following results would be expected on an implementation
with 32-bit twos-complement integers when %d is specified as the format operand:

Standard
Argument

Output
Diagnostic Output

5a 5 printf: 5a not completely converted
9999999999 2147483647 printf: 9999999999: Results too large
-9999999999 -2147483648 printf: -9999999999: Results too large
ABC 0 printf: ABC expected numeric value

Note that the value shown on standard output is what would be expected as the return
value from the function strtol(3C). A similar correspondence exists between %u and
strtoul(3C), and %e, %f and %g and strtod(3C).

modified 28 Mar 1995 SunOS 5.6 1-895

printf (1) User Commands

In a locale using the ISO/IEC 646:1991 standard as the underlying codeset, the command:

printf "%d\n" 3 +3 -3 \’3 \"+3 "’-3"

produces:

3 Numeric value of constant 3
3 Numeric value of constant 3
−3 Numeric value of constant −3
51 Numeric value of the character ‘3’ in the ISO/IEC 646:1991 standard codeset
43 Numeric value of the character ‘+’ in the ISO/IEC 646:1991 standard codeset
45 Numeric value of the character ‘−’ in the SO/IEC 646:1991 standard codeset

Note that in a locale with multi-byte characters, the value of a character is intended to be
the value of the equivalent of the wchar_t representation of the character.

If an argument operand cannot be completely converted into an internal value appropri-
ate to the corresponding conversion specification, a diagnostic message is written to stan-
dard error and the utility does exit with a zero exit status, but continues processing any
remaining operands and writes the value accumulated at the time the error was detected
to standard output.

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of printf: LC_COLLATE, LC_CTYPE, LC_MESSAGES, LC_TIME, TZ, and NLSPATH.

EXIT STATUS The following exit values are returned:
0 Successful completion.
>0 An error occurred.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWloc
CSI enabled

SEE ALSO awk(1), bc(1), echo(1), printf(3S), strtod(3C), strtol(3C), strtoul(3C), attributes(5),
environ(5), formats(5)

1-896 SunOS 5.6 modified 28 Mar 1995

User Commands priocntl (1)

NAME priocntl − display or set scheduling parameters of specified process(es)

SYNOPSIS priocntl −l
priocntl −d [−i idtype] [idlist]
priocntl −s [−c class] [class-specific options] [−i idtype] [idlist]
priocntl −e [−c class] [class-specific options] command [argument(s)]

DESCRIPTION The priocntl command displays or sets scheduling parameters of the specified
process(es). It can also be used to display the current configuration information for the
system’s process scheduler or execute a command with specified scheduling parameters.

Processes fall into distinct classes with a separate scheduling policy applied to each class.
The process classes currently supported are the real-time class, time-sharing class, and
the interactive class. The characteristics of these classes and the class-specific options
they accept are described below in the USAGE section under the headings Real-Time
Class, Time-Sharing Class, and Inter-Active Class. With appropriate permissions, the
priocntl command can change the class and other scheduling parameters associated with
a running process.

In the default configuration, a runnable real-time process runs before any other process.
Therefore, inappropriate use of real-time processes can have a dramatic negative impact
on system performance.

If an idlist is present it must appear last on the command line and the elements of the list
must be separated by white space. If no idlist is present an idtype argument of pid, ppid,
pgid, sid, class, uid, or gid specifies the process ID, parent process ID, process group ID,
session ID, class, user ID, or group ID, respectively, of the priocntl command itself.

The command

priocntl −d [−i idtype] [idlist]

displays the class and class-specific scheduling parameters of the process(es) specified by
idtype and idlist.

The command

priocntl −s [−c class] [class-specific options] [−i idtype] [idlist]

sets the class and class-specific parameters of the specified processes to the values given
on the command line. The −c class option specifies the class to be set. (The valid class
arguments are RT for real-time TS for time-sharing or IA for inter-active.)

The class-specific parameters to be set are specified by the class-specific options as
explained under the appropriate heading below. If the −c class option is omitted, idtype
and idlist must specify a set of processes which are all in the same class, otherwise an
error results. If no class-specific options are specified the process’s class-specific parame-
ters are set to the default values for the class specified by −c class (or to the default param-
eter values for the process’s current class if the −c class option is also omitted).

modified 20 Dec 1996 SunOS 5.6 1-897

priocntl (1) User Commands

In order to change the scheduling parameters of a process using priocntl the real or effec-
tive user ID (respectively, groupID) of the user invoking priocntl must match the real or
effective user ID (respectively, groupID) of the receiving process or the effective user ID
of the user must be super-user. These are the minimum permission requirements
enforced for all classes. An individual class may impose additional permissions require-
ments when setting processes to that class or when setting class-specific scheduling
parameters.

When idtype and idlist specify a set of processes, priocntl acts on the processes in the set
in an implementation-specific order. If priocntl encounters an error for one or more of
the target processes, it may or may not continue through the set of processes, depending
on the nature of the error.

If the error is related to permissions, priocntl prints an error message and then continue
through the process set, resetting the parameters for all target processes for which the
user has appropriate permissions. If priocntl encounters an error other than permissions,
it does not continue through the process set but prints an error message and exits
immediately.

A special sys scheduling class exists for the purpose of scheduling the execution of cer-
tain special system processes (such as the swapper process). It is not possible to change
the class of any process to sys. In addition, any processes in the sys class that are
included in the set of processes specified by idtype and idlist are disregarded by priocntl.
For example, if idtype were uid, an idlist consisting of a zero would specify all processes
with a UID of 0, except processes in the sys class and (if changing the parameters using
the −s option) the init process.

The init process (process ID 1) is a special case. In order for the priocntl command to
change the class or other scheduling parameters of the init process, idtype must be pid
and idlist must be consist of only a 1. The init process may be assigned to any class
configured on the system, but the time-sharing class is almost always the appropriate
choice. (Other choices may be highly undesirable; see the System Administration Guide for
more information.)

The command

priocntl −e [−c class] [class-specific options] command [argument . . .]

executes the specified command with the class and scheduling parameters specified on
the command line (arguments are the arguments to the command). If the −c class option is
omitted the command is run in the user’s current class.

OPTIONS −l Display a list of the classes currently configured in the system along with
class-specific information about each class. The format of the class-specific
information displayed is described under USAGE.

−d Display the scheduling parameters associated with a set of processes.

−s Set the scheduling parameters associated with a set of processes.

−e Execute a specified command with the class and scheduling parameters asso-
ciated with a set of processes.

1-898 SunOS 5.6 modified 20 Dec 1996

User Commands priocntl (1)

−i idtype This option together with the idlist arguments (if any), specify one or more
processes to which the priocntl command is to apply. The interpretation of
idlist depends on the value of idtype. The valid idtype arguments and
corresponding interpretations of idlist are as follows:

−i pid idlist is a list of process IDs. The priocntl command applies to the
specified processes.

−i ppid idlist is a list of parent process IDs. The priocntl command applies
to all processes whose parent process ID is in the list.

−i pgid idlist is a list of process group IDs. The priocntl command applies
to all processes in the specified process groups.

−i sid idlist is a list of session IDs. The priocntl command applies to all
processes in the specified sessions.

−i class idlist consists of a single class name (RT for real-time or TS for
time-sharing or IA for inter-active). The priocntl command
applies to all processes in the specified class.

−i uid idlist is a list of user IDs. The priocntl command applies to all
processes with an effective user ID equal to an ID from the list.

−i gid idlist is a list of group IDs. The priocntl command applies to all
processes with an effective group ID equal to an ID from the list.

−i all The priocntl command applies to all existing processes. No idlist
should be specified (if one is it is ignored). The permission restric-
tions described below still apply.

If the −i idtype option is omitted when using the −d or −s options the default
idtype of pid is assumed.

−c class Specifies the class to be set. (The valid class arguments are RT for real-time or
TS for time-sharing or IA for inter-active.) If the specified class is not already
configured, it will automatically be configured.

The valid class-specific options for setting real-time parameters are:

−p rtpri Set the real-time priority of the specified process(es) to rtpri.

−t tqntm [−r res]
Set the time quantum of the specified process(es) to tqntm . You may option-
ally specify a resolution as explained below.

The valid class-specific options for setting time-sharing parameters are:

−m tsuprilim
Set the user priority limit of the specified process(es) to tsuprilim.

−p tsupri Set the user priority of the specified process(es) to tsupri.

The valid class-specific options for setting inter-active parameters are:

−m iamode Mark the specified process(es) as currently interactive, or not.

modified 20 Dec 1996 SunOS 5.6 1-899

priocntl (1) User Commands

USAGE
Real-Time Class The real-time class provides a fixed priority preemptive scheduling policy for those

processes requiring fast and deterministic response and absolute user/application con-
trol of scheduling priorities. If the real-time class is configured in the system it should
have exclusive control of the highest range of scheduling priorities on the system. This
ensures that a runnable real-time process is given CPU service before any process belong-
ing to any other class.

The real-time class has a range of real-time priority (rtpri) values that may be assigned to
processes within the class. Real-time priorities range from 0 to x, where the value of x is
configurable and can be displayed for a specific installation that has already configured a
real-time scheduler, by using the command

priocntl −l

The real-time scheduling policy is a fixed priority policy. The scheduling priority of a
real-time process never changes except as the result of an explicit request by the
user/application to change the rtpri value of the process.

For processes in the real-time class, the rtpri value is, for all practical purposes, equivalent
to the scheduling priority of the process. The rtpri value completely determines the
scheduling priority of a real-time process relative to other processes within its class.
Numerically higher rtpri values represent higher priorities. Since the real-time class con-
trols the highest range of scheduling priorities in the system it is guaranteed that the
runnable real-time process with the highest rtpri value is always selected to run before
any other process in the system.

In addition to providing control over priority, priocntl provides for control over the
length of the time quantum allotted to processes in the real-time class. The time quantum
value specifies the maximum amount of time a process may run assuming that it does not
complete or enter a resource or event wait state (sleep). Note that if another process
becomes runnable at a higher priority, the currently running process may be preempted
before receiving its full time quantum.

The command

priocntl −d [−i idtype] [idlist]

displays the real-time priority and time quantum (in millisecond resolution) for each
real-time process in the set specified by idtype and idlist.

Any combination of the −p and −t options may be used with priocntl −s or priocntl −e
for the real-time class. If an option is omitted and the process is currently real-time, the
associated parameter is unaffected. If an option is omitted when changing the class of a
process to real-time from some other class, the associated parameter is set to a default
value. The default value for rtpri is 0 and the default for time quantum is dependent on
the value of rtpri and on the system configuration; see rt_dptbl(4).

1-900 SunOS 5.6 modified 20 Dec 1996

User Commands priocntl (1)

When using the −t tqntm option you may optionally specify a resolution using the −r res
option. (If no resolution is specified, millisecond resolution is assumed.) If res is
specified it must be a positive integer between 1 and 1,000,000,000 inclusive and the reso-
lution used is the reciprocal of res in seconds. For example, specifying −t 10 −r 100 would
set the resolution to hundredths of a second and the resulting time quantum length
would be 10/100 seconds (one tenth of a second). Although very fine (nanosecond) reso-
lution may be specified, the time quantum length is rounded up by the system to the next
integral multiple of the system clock’s resolution. Requests for time quantums of zero or
quantums greater than the (typically very large) implementation-specific maximum
quantum result in an error.

In order to change the class of a process to real-time (from any other class) the user
invoking priocntl must have super-user privilege. In order to change the rtpri value or
time quantum of a real-time process the user invoking priocntl must either be super-user,
or must currently be in the real-time class (shell running as a real-time process) with a
real or effective user ID matching the real or effective user ID of the target process.

The real-time priority and time quantum are inherited across the fork(2) and exec(2) sys-
tem calls.

Time-Sharing Class The time-sharing scheduling policy provides for a fair and effective allocation of the CPU
resource among processes with varying CPU consumption characteristics. The objectives
of the time-sharing policy are to provide good response time to interactive processes and
good throughput to CPU-bound jobs while providing a degree of user/application con-
trol over scheduling.

The time-sharing class has a range of time-sharing user priority (tsupri) values that may
be assigned to processes within the class. User priorities range from −x to +x, where the
value of x is configurable. The range for a specific installation can be displayed by using
the command

priocntl −l

The purpose of the user priority is to provide some degree of user/application control
over the scheduling of processes in the time-sharing class. Raising or lowering the tsupri
value of a process in the time-sharing class raises or lowers the scheduling priority of the
process. It is not guaranteed, however, that a time-sharing process with a higher tsupri
value will run before one with a lower tsupri value. This is because the tsupri value is just
one factor used to determine the scheduling priority of a time-sharing process. The sys-
tem may dynamically adjust the internal scheduling priority of a time-sharing process
based on other factors such as recent CPU usage.

In addition to the system-wide limits on user priority (displayed with priocntl −l), there
is a per process user priority limit (tsuprilim), which specifies the maximum tsupri value
that may be set for a given process.

The command

priocntl −d [−i idtype] [idlist]

modified 20 Dec 1996 SunOS 5.6 1-901

priocntl (1) User Commands

displays the user priority and user priority limit for each time-sharing process in the set
specified by idtype and idlist.

Any time-sharing process may lower its own tsuprilim (or that of another process with
the same user ID). Only a time-sharing process with super-user privilege may raise a
tsuprilim. When changing the class of a process to time-sharing from some other class,
super-user privilege is required in order to set the initial tsuprilim to a value greater than
zero.

Any time-sharing process may set its own tsupri (or that of another process with the same
user ID) to any value less than or equal to the process’s tsuprilim. Attempts to set the
tsupri above the tsuprilim (and/or set the tsuprilim below the tsupri) result in the tsupri
being set equal to the tsuprilim.

Any combination of the −m and −p options may be used with priocntl −s or priocntl −e
for the time-sharing class. If an option is omitted and the process is currently time-
sharing the associated parameter is normally unaffected. The exception is when the −p
option is omitted and −m is used to set a tsuprilim below the current tsupri. In this case
the tsupri is set equal to the tsuprilim which is being set. If an option is omitted when
changing the class of a process to time-sharing from some other class, the associated
parameter is set to a default value. The default value for tsuprilim is 0 and the default for
tsupri is to set it equal to the tsuprilim value which is being set.

The time-sharing user priority and user priority limit are inherited across the fork(2) and
exec(2) system calls.

Inter-Active Class The inter-active scheduling policy provides for a fair and effective allocation of the CPU
resource among processes with varying CPU consumption characteristics while provid-
ing good responsiveness for user interaction. The objectives of the inter-active policy are
to provide good response time to interactive processes and good throughput to CPU-
bound jobs. Only the super user has access to the inter-active class, the user has no con-
trol over scheduling policys.

EXAMPLES Real-Time Class examples follow:

example% priocntl −s −c RT −t 1 −r 10 −i idtype idlist

The above example sets the class of any non-real-time processes selected by idtype and
idlist to real-time and sets their real-time priority to the default value of 0. The real-time
priorities of any processes currently in the real-time class are unaffected. The time quan-
tums of all of the specified processes are set to 1/10 seconds.

example% priocntl −e −c RT −p 15 −t 20 command

This example executes command in the real-time class with a real-time priority of 15 and a
time quantum of 20 milliseconds.

Time-Sharing Class examples follow:
example% priocntl −s −c TS −i idtype idlist

The above example sets the class of any non-time-sharing processes selected by idtype
and idlist to time-sharing and sets both their user priority limit and user priority to 0.
Processes already in the time-sharing class are unaffected.

1-902 SunOS 5.6 modified 20 Dec 1996

User Commands priocntl (1)

This example executes command with the arguments arguments in the time-sharing class
with a user priority limit of 0 and a user priority of −15.

example% priocntl −e −c TS −m 0 −p −15 command [arguments]

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu
CSI Enabled

SEE ALSO nice(1), ps(1), exec(2), fork(2), priocntl(2), rt_dptbl(4), attributes(5)

System Administration Guide

DIAGNOSTICS priocntl prints the following error messages:

Process(es) not found
None of the specified processes exists.

Specified processes from different classes
The −s option is being used to set parameters, the −c class option is not present,
and processes from more than one class are specified.

Invalid option or argument
An unrecognized or invalid option or option argument is used.

modified 20 Dec 1996 SunOS 5.6 1-903

proc (1) User Commands

NAME proc, pflags, pcred, pmap, pldd, psig, pstack, pfiles, pwdx, pstop, prun, pwait, ptree,
ptime − proc tools

SYNOPSIS /usr/proc/bin/pflags pid . . .

/usr/proc/bin/pcred pid . . .

/usr/proc/bin/pmap [−r] pid . . .

/usr/proc/bin/pldd pid . . .

/usr/proc/bin/psig pid . . .

/usr/proc/bin/pstack pid . . .

/usr/proc/bin/pfiles pid . . .

/usr/proc/bin/pwdx pid . . .

/usr/proc/bin/pstop pid . . .

/usr/proc/bin/prun pid . . .

/usr/proc/bin/pwait [−v] pid . . .

/usr/proc/bin/ptree [[pid|user] . . .]

/usr/proc/bin/ptime command [arg . . .]

DESCRIPTION The proc tools are utilities which exercise features of /proc (see proc(4)). Most of them
take a list of process-ids (pid); those that do also accept /proc/nnn as a process-id, so the
shell expansion /proc/∗ can be used to specify all processes in the system.

pflags Print the /proc tracing flags, the pending and held signals, and
other /proc status information for each lwp in each process.

pcred Print the credentials (effective, real and saved UID’s and GID’s) of
each process.

pmap Print the address space map of each process.

pldd List the dynamic libraries linked into each process, including
shared objects explicitly attached using dlopen(3X). See also
ldd(1).

psig List the signal actions of each process. See signal(5).

pstack Print a hex+symbolic stack trace for each lwp in each process.

pfiles Report fstat(2) and fcntl(2) information for all open files in each
process.

pwdx Print the current working directory of each process.

pstop Stop each process (PR_REQUESTED stop).

prun Set each process running (inverse of pstop).

pwait Wait for all of the specified processes to terminate.

ptree Print the process trees containing the specified pid’s or users, with
child processes indented from their respective parent processes.

1-904 SunOS 5.6 modified 19 Aug 1996

User Commands proc (1)

An argument of all digits is taken to be a process-id, otherwise it is
assumed to be a user login name. Default is all processes.

ptime Time a command, such as the time(1) command, but using micro-
state accounting for reproducible precision.

OPTIONS The following options are supported:

−r (pmap only) print the process’s reserved addresses.

−v (pwait only) verbose; report each termination to standard output.

EXIT STATUS The following exit values are returned:

0 success

non-zero an error has occurred.

FILES /proc/∗ process files
/usr/proc/lib/∗ proc tools supporting files

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu

SEE ALSO ldd(1), ps(1), pwd(1), time(1), truss(1), wait(1), fcntl(2), fstat(2), dlopen(3X), proc(4),
attributes(5), signal(5)

modified 19 Aug 1996 SunOS 5.6 1-905

prof (1) User Commands

NAME prof − display profile data

SYNOPSIS prof [−ChsVz] [−a | c | n | t] [−o | x] [−g | l] [−m mdata] [prog]

DESCRIPTION The prof command interprets a profile file produced by the monitor function. The sym-
bol table in the object file prog (a.out by default) is read and correlated with a profile file
(mon.out by default). For each external text symbol the percentage of time spent execut-
ing between the address of that symbol and the address of the next is printed, together
with the number of times that function was called and the average number of mil-
liseconds per call.

OPTIONS The mutually exclusive options −a, −c, −n, and −t determine the type of sorting of the out-
put lines:

−a Sort by increasing symbol address.

−c Sort by decreasing number of calls.

−n Sort lexically by symbol name.

−t Sort by decreasing percentage of total time (default).

The mutually exclusive options −o and −x specify the printing of the address of each sym-
bol monitored:

−o Print each symbol address (in octal) along with the symbol name.

−x Print each symbol address (in hexadecimal) along with the symbol name.

The mutually exclusive options −g and −l control the type of symbols to be reported. The
−l option must be used with care; it applies the time spent in a static function to the
preceding (in memory) global function, instead of giving the static function a separate
entry in the report. If all static functions are properly located, this feature can be very
useful. If not, the resulting report may be misleading.

Assume that A and B are global functions and only A calls static function S. If S is
located immediately after A in the source code (that is, if S is properly located), then,
with the −l option, the amount of time spent in A can easily be determined, including the
time spent in S. If, however, both A and B call S, then, if the −l option is used, the report
will be misleading; the time spent during B’s call to S will be attributed to A, making it
appear as if more time had been spent in A than really had. In this case, function S can-
not be properly located.

−g List the time spent in static (non-global) functions separately. The −g option
function is the opposite of the −l function.

−l Suppress printing statically declared functions. If this option is given, time spent
executing in a static function is allocated to the closest global function loaded
before the static function in the executable. This option is the default. It is the
opposite of the −g function and should be used with care.

1-906 SunOS 5.6 modified 18 Feb 1997

User Commands prof (1)

The following options may be used in any combination:

−C Demangle C++ symbol names before printing them out.

−h Suppress the heading normally printed on the report. This is useful if the report
is to be processed further.

−m mdata
Use file mdata instead of mon.out as the input profile file.

−s Print a summary of several of the monitoring parameters and statistics on the
standard error output.

−V Print prof version information on the standard error output.

−z Include all symbols in the profile range, even if associated with zero number of
calls and zero time.

A program creates a profile file if it has been link edited with the −p option of cc(1B).
This option to the cc(1B) command arranges for calls to monitor at the beginning and end
of execution. It is the call to monitor at the end of execution that causes the system to
write a profile file. The number of calls to a function is tallied if the −p option was used
when the file containing the function was compiled.

A single function may be split into subfunctions for profiling by means of the MARK
macro. See prof(5).

ENVIRONMENT PROFDIR The name of the file created by a profiled program is controlled by the
environment variable PROFDIR. If PROFDIR is not set, mon.out is pro-
duced in the directory current when the program terminates. If
PROFDIR=string, string/pid.progname is produced, where progname con-
sists of argv[0] with any path prefix removed, and pid is the process ID
of the program. If PROFDIR is set, but null, no profiling output is pro-
duced.

FILES mon.out default profile file
a.out default namelist (object) file

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWbtool

SEE ALSO cc(1B), gprof(1), exit(2), profil(2), malloc(3C), malloc(3X), monitor(3C), attributes(5),
prof(5)

Programming Utilities Guide

NOTES The times reported in successive identical runs may show variances because of varying
cache-hit ratios that result from sharing the cache with other processes. Even if a pro-
gram seems to be the only one using the machine, hidden background or asynchronous
processes may blur the data. In rare cases, the clock ticks initiating recording of the

modified 18 Feb 1997 SunOS 5.6 1-907

prof (1) User Commands

program counter may "beat" with loops in a program, grossly distorting measurements.
Call counts are always recorded precisely, however.

Only programs that call exit or return from main are guaranteed to produce a profile file,
unless a final call to monitor is explicitly coded.

The times for static functions are attributed to the preceding external text symbol if the −g
option is not used. However, the call counts for the preceding function are still correct;
that is, the static function call counts are not added to the call counts of the external func-
tion.

If more than one of the options −t, −c, −a, and −n is specified, the last option specified is
used and the user is warned.

Profiling may be used with dynamically linked executables, but care must be applied.
Currently, shared objects cannot be profiled with prof. Thus, when a profiled, dynami-
cally linked program is executed, only the "main" portion of the image is sampled. This
means that all time spent outside of the "main" object, that is, time spent in a shared
object, will not be included in the profile summary; the total time reported for the pro-
gram may be less than the total time used by the program.

Because the time spent in a shared object cannot be accounted for, the use of shared
objects should be minimized whenever a program is profiled with prof. If desired, the
program should be linked to the profiled version of a library (or to the standard archive
version if no profiling version is available), instead of the shared object to get profile
information on the functions of a library. Versions of profiled libraries may be supplied
with the system in the /usr/lib/libp directory. Refer to compiler driver documentation on
profiling.

Consider an extreme case. A profiled program dynamically linked with the shared C
library spends 100 units of time in some libc routine, say, malloc(). Suppose malloc() is
called only from routine B and B consumes only 1 unit of time. Suppose further that rou-
tine A consumes 10 units of time, more than any other routine in the "main" (profiled)
portion of the image. In this case, prof will conclude that most of the time is being spent
in A and almost no time is being spent in B. From this it will be almost impossible to tell
that the greatest improvement can be made by looking at routine B and not routine A.
The value of the profiler in this case is severely degraded; the solution is to use archives
as much as possible for profiling.

LD_LIBRARY_PATH must not contain /usr/lib as a component when compiling a pro-
gram for profiling. If LD_LIBRARY_PATH contains /usr/lib, the program will not be
linked correctly with the profiling versions of the system libraries in /usr/lib/libp. See
gprof(1).

Functions such as mcount(), _mcount(), moncontrol(), _moncontrol(), monitor(), and
_monitor() may appear in the prof report. These functions are part of the profiling
implementation and thus account for some amount of the runtime overhead. Since these
functions are not present in an unprofiled application, time accumulated and call counts
for these functions may be ignored when evaluating the performance of an application.

1-908 SunOS 5.6 modified 18 Feb 1997

User Commands ps (1)

NAME ps − report process status

SYNOPSIS ps [−aAcdefjlLPy] [−g grplist] [−n namelist] [[−o format] . . .] [−p proclist]
[−s sidlist] [−t term] [−u uidlist] [−U uidlist] [−G gidlist]

DESCRIPTION The ps command prints information about active processes. Without options, ps prints
information about processes associated with the controlling terminal. The output con-
tains only the process ID, terminal identifier, cumulative execution time, and the com-
mand name. Otherwise, the information that is displayed is controlled by the options.

Some options accept lists as arguments. Items in a list can be either separated by commas
or else enclosed in quotes and separated by commas or spaces. Values for proclist and
grplist must be numeric.

OPTIONS The following options are supported:

−a List information about all processes most frequently requested: all those
except process group leaders and processes not associated with a termi-
nal.

−A List information for all processes. Identical to −e, below.

−c Print information in a format that reflects scheduler properties as
described in priocntl(1). The −c option affects the output of the −f and
−l options, as described below.

−d List information about all processes except session leaders.

−e List information about every process now running.

−f Generate a full listing. (See below for significance of columns in a full
listing.)

−g grplist List only process data whose group leader’s ID number(s) appears in
grplist. (A group leader is a process whose process ID number is identi-
cal to its process group ID number.)

−G gidlist List information for processes whose real group ID numbers are given in
gidlist. The gidlist must be a single argument in the form of a blank- or
comma-separated list.

−j Print session ID and process group ID.

−l Generate a long listing. (See below.)

−L Print information about each light weight process (lwp) in each selected
process. (See below.)

−n namelist Specify the name of an alternative system namelist file in place of the
default. This option is accepted for compatibility, but is ignored.

−o format Print information according to the format specification given in format .
This is fully described in DISPLAY FORMATS. Multiple −o options
can be specified; the format specification will be interpreted as the
space-character-separated concatenation of all the format option-

modified 26 Feb 1997 SunOS 5.6 1-909

ps (1) User Commands

arguments.

−p proclist List only process data whose process ID numbers are given in proclist.

−P Print the number of the processor to which the process or lwp is bound,
if any, under an additional column header, PSR.

−s sidlist List information on all session leaders whose IDs appear in sidlist.

−t term List only process data associated with term. Terminal identifiers are
specified as a device file name, and an identifier. For example, term/a,
or pts/0.

−u uidlist List only process data whose effective user ID number or login name is
given in uidlist. In the listing, the numerical user ID will be printed
unless you give the −f option, which prints the login name.

−U uidlist List information for processes whose real user ID numbers or login
names are given in uidlist. The uidlist must be a single argument in the
form of a blank- or comma-separated list.

−y Under a long listing (−l), omit the obsolete F and ADDR columns and
include an RSS column to report the resident set size of the process.
Under the −y option, both RSS and SZ (see below) will be reported in
units of kilobytes instead of pages.

Many of the options shown are used to select processes to list. If any are specified, the
default list will be ignored and ps will select the processes represented by the inclusive
OR of all the selection-criteria options.

DISPLAY
FORMATS

Under the −f option, ps tries to determine the command name and arguments given
when the process was created by examining the user block. Failing this, the command
name is printed, as it would have appeared without the −f option, in square brackets.

The column headings and the meaning of the columns in a ps listing are given below; the
letters f and l indicate the option (full or long, respectively) that causes the corresponding
heading to appear; all means that the heading always appears. Note: These two options
determine only what information is provided for a process; they do not determine which
processes will be listed.

F (l) Flags (hexadecimal and additive) associated with the process.
These flags are available for historical purposes; no meaning
should be currently ascribed to them.

S (l) The state of the process:

O Process is running on a processor.
S Sleeping: process is waiting for an event to complete.
R Runnable: process is on run queue.
Z Zombie state: process terminated and parent not waiting.
T Process is stopped, either by a job control signal or because it

is being traced.

UID (f,l) The effective user ID number of the process (the login name is
printed under the −f option).

1-910 SunOS 5.6 modified 26 Feb 1997

User Commands ps (1)

PID (all) The process ID of the process (this datum is necessary in order to
kill a process).

PPID (f,l) The process ID of the parent process.

C (f,l) Processor utilization for scheduling (obsolete). Not printed when
the −c option is used.

CLS (f,l) Scheduling class. Printed only when the −c option is used.

PRI (l) The priority of the process. Without the −c option, higher numbers
mean lower priority. With the −c option, higher numbers mean
higher priority.

NI (l) Nice value, used in priority computation. Not printed when the −c
option is used. Only processes in the certain scheduling classes
have a nice value.

ADDR (l) The memory address of the process.

SZ (l) The total size of the process in virtual memory, including all
mapped files and devices, in pages. See pagesize(1).

WCHAN (l) The address of an event for which the process is sleeping (if blank,
the process is running).

STIME (f) The starting time of the process, given in hours, minutes, and
seconds. (A process begun more than twenty-four hours before
the ps inquiry is executed is given in months and days.)

TTY (all) The controlling terminal for the process (the message, ?, is printed
when there is no controlling terminal).

TIME (all) The cumulative execution time for the process.

CMD (all) The command name (the full command name and its arguments,
up to a limit of 80 characters, are printed under the −f option).

The following two additional columns are printed when the −j option is specified:

PGID The process ID of the process group leader.

SID The process ID of the session leader.

The following two additional columns are printed when the −L option is specified:

LWP The lwp ID of the lwp being reported.

NLWP The number of lwps in the process (if −f is also specified).

Under the −L option, one line is printed for each lwp in the process and the time-
reporting fields STIME and TIME show the values for the lwp, not the process. A tradi-
tional single-threaded process contains only one lwp.

A process that has exited and has a parent, but has not yet been waited for by the parent,
is marked <defunct>.

modified 26 Feb 1997 SunOS 5.6 1-911

ps (1) User Commands

−o format The −o option allows the output format to be specified under user control.

The format specification must be a list of names presented as a single argument, blank- or
comma-separated. Each variable has a default header. The default header can be over-
ridden by appending an equals sign and the new text of the header. The rest of the char-
acters in the argument will be used as the header text. The fields specified will be written
in the order specified on the command line, and should be arranged in columns in the
output. The field widths will be selected by the system to be at least as wide as the
header text (default or overridden value). If the header text is null, such as −o user=, the
field width will be at least as wide as the default header text. If all header text fields are
null, no header line will be written.

The following names are recognized in the POSIX locale:

user The effective user ID of the process. This will be the textual user ID, if it can
be obtained and the field width permits, or a decimal representation other-
wise.

ruser The real user ID of the process. This will be the textual user ID, if it can be
obtained and the field width permits, or a decimal representation other-
wise.

group The effective group ID of the process. This will be the textual group ID, if it
can be obtained and the field width permits, or a decimal representation
otherwise.

rgroup The real group ID of the process. This will be the textual group ID, if it can
be obtained and the field width permits, or a decimal representation other-
wise.

pid The decimal value of the process ID.

ppid The decimal value of the parent process ID.

pgid The decimal value of the process group ID.

pcpu The ratio of CPU time used recently to CPU time available in the same
period, expressed as a percentage. The meaning of ‘‘recently’’ in this con-
text is unspecified. The CPU time available is determined in an unspecified
manner.

vsz The total size of the process in virtual memory, in kilobytes.

nice The decimal value of the system scheduling priority of the process. See
nice(1).

etime In the POSIX locale, the elapsed time since the process was started, in the
form:
[[dd-]hh:]mm:ss

where

dd will represent the number of days,
hh the number of hours,
mm the number of minutes, and
ss the number of seconds.

1-912 SunOS 5.6 modified 26 Feb 1997

User Commands ps (1)

The dd field will be a decimal integer. The hh, mm and ss fields will be two-
digit decimal integers padded on the left with zeros.

time In the POSIX locale, the cumulative CPU time of the process in the form:
[dd-]hh:mm:ss

The dd, hh, mm, and ss fields will be as described in the etime specifier.

tty The name of the controlling terminal of the process (if any) in the same for-
mat used by the who(1) command.

comm The name of the command being executed (argv[0] value) as a string.

args The command with all its arguments as a string. The implementation may
truncate this value to the field width; it is implementation-dependent
whether any further truncation occurs. It is unspecified whether the string
represented is a version of the argument list as it was passed to the com-
mand when it started, or is a version of the arguments as they may have
been modified by the application. Applications cannot depend on being
able to modify their argument list and having that modification be reflected
in the output of ps. The Solaris implementation limits the string to 80 bytes;
the string is the version of the argument list as it was passed to the com-
mand when it started.

The following names are recognized in the Solaris implementation:

f Flags (hexadecimal and additive) associated with the process.

s The state of the process.

c Processor utilization for scheduling (obsolete).

uid The effective user ID number of the process as a decimal integer.

ruid The real user ID number of the process as a decimal integer.

gid The effective group ID number of the process as a decimal integer.

rgid The real group ID number of the process as a decimal integer.

sid The process ID of the session leader.

class The scheduling class of the process.

pri The priority of the process. Higher numbers mean higher priority.

opri The obsolete priority of the process. Lower numbers mean higher priority.

lwp The decimal value of the lwp ID. Requesting this formatting option causes
one line to be printed for each lwp in the process.

nlwp The number of lwps in the process.

psr The number of the processor to which the process or lwp is bound.

addr The memory address of the process.

osz The total size of the process in virtual memory, in pages.

wchan The address of an event for which the process is sleeping (if −, the process is
running).

modified 26 Feb 1997 SunOS 5.6 1-913

ps (1) User Commands

stime The starting time or date of the process, printed with no blanks.

rss The resident set size of the process, in kilobytes.

pmem The ratio of the process’s resident set size to the physical memory on the
machine, expressed as a percentage.

fname The first 8 bytes of the base name of the process’s executable file.

Only comm and args are allowed to contain blank characters; all others, including the
Solaris implementation variables, are not.

The following table specifies the default header to be used in the POSIX locale
corresponding to each format specifier.

Format Specifier Default Header Format Specifier Default Header
args COMMAND ppid PPID
comm COMMAND rgroup RGROUP
etime ELAPSED ruser RUSER
group GROUP time TIME
nice NI tty TT
pcpu %CPU user USER
pgid PGID vsz VSZ
pid PID

The following table lists the Solaris implementation format specifiers and the default
header used with each.

Format Specifier Default Header Format Specifier Default Header
addr ADDR pri PRI
c C psr PSR
class CLS rgid RGID
f F rss RSS
fname COMMAND ruid RUID
gid GID s S
lwp LWP sid SID
nlwp NLWP stime STIME
opri PRI uid UID
osz SZ wchan WCHAN
pmem %MEM

EXAMPLES The command:
example% ps -o user,pid,ppid=MOM -o args

writes the following in the POSIX locale:

USER PID MOM COMMAND
helene 34 12 ps -o uid,pid,ppid=MOM -o args

The contents of the COMMAND field need not be the same due to possible truncation.

1-914 SunOS 5.6 modified 26 Feb 1997

User Commands ps (1)

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of ps: LC_CTYPE, LC_MESSAGES, LC_TIME, and NLSPATH.

COLUMNS Override the system-selected horizontal screen size, used to deter-
mine the number of text columns to display.

EXIT STATUS The following exit values are returned:

0 Successful completion.

>0 An error occurred.

FILES /dev/pts/∗
/dev/term/∗ terminal (‘‘tty’’) names searcher files
/etc/passwd UID information supplier
/proc/∗ process control files
/tmp/ps_data internal data structure

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu
CSI Enabled (see NOTES)

SEE ALSO kill(1), nice(1), pagesize(1), priocntl(1), who(1), getty(1M), proc(4), ttysrch(4), attri-
butes(5), environ(5)

NOTES Things can change while ps is running; the snap-shot it gives is true only for a split-
second, and it may not be accurate by the time you see it. Some data printed for defunct
processes is irrelevant.

If no options to select processes are specified, ps will report all processes associated with
the controlling terminal. If there is no controlling terminal, there will be no report other
than the header.

ps −ef or ps −o stime may not report the actual start of a tty login session, but rather an
earlier time, when a getty was last respawned on the tty line.

ps is CSI-enabled except for login names (usernames).

modified 26 Feb 1997 SunOS 5.6 1-915

ps (1B) SunOS/BSD Compatibility Package Commands

NAME ps − display the status of current processes

SYNOPSIS /usr/ucb/ps [−aceglnrSuUvwx] [−t term] [num]

DESCRIPTION The ps command displays information about processes. Normally, only those processes
that are running with your effective user ID and are attached to a controlling terminal
(see termio(7I)) are shown. Additional categories of processes can be added to the
display using various options. In particular, the −a option allows you to include
processes that are not owned by you (that do not have your user ID), and the −x option
allows you to include processes without controlling terminals. When you specify both −a
and −x, you get processes owned by anyone, with or without a controlling terminal. The
−r option restricts the list of processes printed to running and runnable processes.

ps displays in tabular form the process ID, under PID; the controlling terminal (if any),
under TT; the cpu time used by the process so far, including both user and system time,
under TIME; the state of the process, under S; and finally, an indication of the COM-
MAND that is running.

The state is given by a single letter from the following:

O Process is running on a processor.
S Sleeping. Process is waiting for an event to complete.
R Runnable. Process is on run queue.
Z Zombie state. Process terminated and parent not waiting.
T Traced. Process stopped by a signal because parent is tracing it.

OPTIONS The following options must all be combined to form the first argument:

−a Include information about processes owned by others.

−c Display the command name rather than the command arguments.

−e Display the environment as well as the arguments to the command.

−g Display all processes. Without this option, ps only prints interesting processes.
Processes are deemed to be uninteresting if they are process group leaders. This
normally eliminates top-level command interpreters and processes waiting for
users to login on free terminals.

−l Display a long listing, with fields F, PPID, CP, PRI, NI, SZ, RSS and WCHAN as
described below.

−n Produce numerical output for some fields. In a user listing, the USER field is
replaced by a UID field.

−r Restrict output to running and runnable processes.

−S Display accumulated CPU time used by this process and all of its reaped chil-
dren.

−u Display user-oriented output. This includes fields USER, %CPU, %MEM, SZ, RSS
and START as described below.

−U Update a private database where ps keeps system information.

1B-916 SunOS 5.6 modified 26 Feb 1997

SunOS/BSD Compatibility Package Commands ps (1B)

−v Display a version of the output containing virtual memory. This includes fields
SIZE, %CPU, %MEM, and RSS, described below.

−w Use a wide output format (132 columns rather than 80); if repeated, that is, −ww,
use arbitrarily wide output. This information is used to decide how much of
long commands to print.

−x Include processes with no controlling terminal.

−t term List only process data associated with the terminal, term. Terminal identifiers
may be specified in one of two forms: the device’s file name (for example, tty04
or term/14) or, if the device’s file name starts with tty, just the digit identifier (for
example, 04).

num A process number may be given, in which case the output is restricted to that
process. This option must be supplied last.

DISPLAY
FORMATS

Fields that are not common to all output formats:

USER Name of the owner of the process.

%CPU CPU use of the process; this is a decaying average over up to a minute of
previous (real) time.

NI Process scheduling increment (see getpriority(3C) and nice(3B)).

SIZE The total size of the process in virtual memory, including all mapped files
and devices, in kilobyte units.

SZ Same as SIZE.

RSS Real memory (resident set) size of the process, in kilobyte units.

UID Numerical user-ID of process owner.

PPID Numerical ID of parent of process.

CP Short-term CPU utilization factor (used in scheduling).

PRI The priority of the process (higher numbers mean lower priority).

START The starting time of the process, given in hours, minutes, and seconds. A
process begun more than 24 hours before the ps inquiry is executed is given
in months and days.

WCHAN The address of an event for which the process is sleeping (if blank, the pro-
cess is running).

%MEM The ratio of the process’s resident set size to the physical memory on the
machine, expressed as a percentage.

F Flags (hexadecimal and additive) associated with the process. These flags
are available for historical purposes; no meaning should be currently
ascribed to them.

A process that has exited and has a parent, but has not yet been waited for by the parent
is marked <defunct> ; otherwise, ps tries to determine the command name and argu-
ments given when the process was created by examining the user block.

modified 26 Feb 1997 SunOS 5.6 1B-917

ps (1B) SunOS/BSD Compatibility Package Commands

FILES /dev
/dev/kmem kernel virtual memory
/dev/mem memory
/dev/swap default swap device
/dev/sxt/∗
/dev/tty∗
/dev/xt/∗ terminal (tty) names searcher files
/etc/passwd UID information supplier
/etc/ps_data internal data structure

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscpu

SEE ALSO kill(1), ps(1), whodo(1M), getpriority(3C), nice(3B), proc(4), attributes(5), termio(7I)

NOTES Things can change while ps is running; the picture it gives is only a close approximation
to the current state. Some data printed for defunct processes is irrelevant.

1B-918 SunOS 5.6 modified 26 Feb 1997

User Commands pvs (1)

NAME pvs − display the internal version information of dynamic objects

SYNOPSIS pvs [−dlnorsv] [−N name] file. . .

DESCRIPTION pvs displays any internal version information contained within an ELF file. Commonly
these files are dynamic executables and shared objects, and possibly relocatable objects.
This version information can fall into one of two categories:

· version definitions
· version dependencies

Version definitions describe the interfaces made available by an ELF file. Each version
definition is associated to a set of global symbols provided by the file. Version definitions
may be assigned to a file during its creation by the link-editor using the −M option and
the associated mapfile directives (see the Linker and Libraries Guide for more details).

Version dependencies describe the binding requirements of dynamic objects on the version
definitions of any shared object dependencies. When a dynamic object is built with a
shared object, the link-editor records information within the dynamic object indicating
that the shared object is a dependency. This dependency must be satisfied at runtime. If
the shared object also contains version definitions, then those version definitions that
satisfy the global symbol requirements of the dynamic object will also be recorded in the
dynamic object being created. At process initialization, the runtime linker will use any
version dependencies as a means of validating the interface requirements of the dynamic
objects used to construct the process.

OPTIONS The following options are supported. If neither the −d or −r options are specified, both
will be enabled.

−d Print version definition information.

−l When used with the −s option, print any symbols that have been reduced
from global to local binding due to versioning. By convention, these symbol
entries are located in the .symtab section, and fall between the FILE symbol
representing the output file, and the FILE symbol representing the first input
file used to generate the output file. These reduced symbol entries are
assigned the fabricated version definition _REDUCED_. No reduced symbols
will be printed if the file has been stripped (see strip(1)), or if the symbol entry
convention cannot be determined.

−n Normalize version definition information. By default, all version definitions
within the object are displayed. However, version definitions may inherit
other version definitions, and under normalization only the head of each
inheritance list is displayed.

−o Create one-line version definition output. By default, file, version definitions,
and any symbol output is indented to ease human inspection. This option
prefixes each output line with the file and version definition name and may be
more useful for analysis with automated tools.

modified 16 Feb 1996 SunOS 5.6 1-919

pvs (1) User Commands

−r Print version dependency (requirements) information.

−s Print the symbols associated with each version definition. Any data symbols
are accompanied with the size, in bytes, of the data item.

−v Verbose output. Indicates any weak version definitions, and any version
definition inheritance. When used with the −N and −d options, the inheri-
tance of the base version definition is also shown. When used with the −s
option, the version symbol definition is also shown.

−N name Print only the information for the given version definition name and any of its
inherited version definitions (when used with the −d option), or for the given
dependency file name (when used with the −r option).

OPERANDS The following operands are supported.

file The ELF file about which internal version information is displayed.

EXAMPLES The following example displays the version definitions of libelf.so.1:

% pvs -d /usr/lib/libelf.so.1
libelf.so.1;
SUNW_1.1

A normalized, one-liner display, suitable for creating a mapfile version control directive,
can be created using the −n and −o options:

% pvs -don /usr/lib/libelf.so.1
/usr/lib/libelf.so.1 - SUNW_1.1;

The following example displays the version requirements of ldd and pvs:

% pvs -r /usr/bin/ldd /usr/bin/pvs
/usr/bin/ldd:

libelf.so.1 (SUNW_1.1);
libc.so.1 (SUNW_1.1);

/usr/bin/pvs:
libelf.so.1 (SUNW_1.1);
libc.so.1 (SUNW_1.1);

EXIT STATUS If the requested version information is not found, a non-zero value is returned; otherwise
a 0 value is returned.

Version information is determined not found when any of the following is true:
· the −d option is specified and no version definitions are found;
· the −r option is specified and no version requirements are found;
· neither the −d nor −r option is specified and no version definitions or version

requirements are found.

1-920 SunOS 5.6 modified 16 Feb 1996

User Commands pvs (1)

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtoo

SEE ALSO ld(1), ldd(1), strip(1), elf(3E), attributes(5)

Linker and Libraries Guide

modified 16 Feb 1996 SunOS 5.6 1-921

pwd (1) User Commands

NAME pwd − return working directory name

SYNOPSIS /usr/bin/pwd

DESCRIPTION pwd writes an absolute path name of the current working directory to standard output.

Both the Bourne shell, sh(1), and the Korn shell, ksh(1), also have a built-in pwd com-
mand.

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of pwd: LC_MESSAGES and NLSPATH.

EXIT STATUS The following exit values are returned:
0 Successful completion.
>0 An error occurred.

If an error is detected, output will not be written to standard output, a diagnostic mes-
sage will be written to standard error, and the exit status will not be 0.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu
CSI enabled

SEE ALSO cd(1), ksh(1), sh(1), shell_builtins(1), attributes(5), environ(5)

DIAGNOSTICS ‘‘Cannot open ..’’ and ‘‘Read error in ..’’ indicate possible file system trouble and should
be referred to a UNIX system administrator.

NOTES If you move the current directory or one above it, pwd may not give the correct response.
Use the cd(1) command with a full path name to correct this situation.

1-922 SunOS 5.6 modified 28 Mar 1995

User Commands ranlib (1)

NAME ranlib − convert archives to random libraries

SYNOPSIS /usr/ccs/bin/ranlib archive

DESCRIPTION ranlib was used in SunOS 4.x to add a table of contents to archive libraries, which con-
verted each archive to a form that could be linked more rapidly. This is no longer needed
as the ar(1) command automatically provides all the functionality ranlib used to provide.

This script is provided as a convenience for software developers who need to maintain
Makefiles that are portable across a variety of operating systems.

EXIT STATUS ranlib has exit status 0.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWbtool

SEE ALSO ar(1), ar(4), attributes(5)

modified 13 Apr 1995 SunOS 5.6 1-923

rcp (1) User Commands

NAME rcp − remote file copy

SYNOPSIS rcp [-p] filename1 filename2
rcp [-pr] filename. . .directory

DESCRIPTION The rcp command copies files between machines. Each filename or directory argument is
either a remote file name of the form:

hostname :path

or a local file name (containing no ":" (colon) characters, or "/" (backslash) before any ":"
(colon) characters).

If a filename is not a full path name, it is interpreted relative to your home directory on
hostname . A path on a remote host may be quoted using \ , " , or ’ , so that the metacharac-
ters are interpreted remotely.

rcp does not prompt for passwords; your current local user name must exist on hostname
and allow remote command execution by rsh(1).

rcp handles third party copies, where neither source nor target files are on the current
machine. Hostnames may also take the form

username@hostname :filename

to use username rather than your current local user name as the user name on the remote
host. rcp also supports Internet domain addressing of the remote host, so that:

username@host .domain:filename

specifies the username to be used, the hostname, and the domain in which that host
resides. File names that are not full path names will be interpreted relative to the home
directory of the user named username, on the remote host.

OPTIONS -p Attempt to give each copy the same modification times, access times, modes, and
ACLs if applicable as the original file.

-r Copy each subtree rooted at filename; in this case the destination must be a direc-
tory.

USAGE See largefile(5) for the description of the behavior of rcp when encountering files greater
than or equal to 2 Gbyte (231 bytes).

FILES $HOME/.profile

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu
CSI Enabled

1-924 SunOS 5.6 modified 20 Dec 1996

User Commands rcp (1)

SEE ALSO cpio(1), ftp(1), rlogin(1), rsh(1), setfacl(1), tar(1), hosts.equiv(4), attributes(5),
largefile(5)

NOTES rcp is meant to copy between different hosts; attempting to rcp
a file onto itself, as with:

rcp tmp/file myhost:/tmp/file

results in a severely corrupted file.

rcp may not correctly fail when the target of a copy is a file instead of a directory.

rcp can become confused by output generated by commands in a $HOME/.profile on the
remote host.

rcp requires that the source host have permission to execute commands on the remote
host when doing third-party copies.

rcp does not properly handle symbolic links. Use tar (see tar(1)) or cpio (see cpio(1))
piped to rsh to obtain remote copies of directories containing symbolic links or named
pipes.

If you forget to quote metacharacters intended for the remote host, you will get an
incomprehensible error message.

rcp will fail if you copy ACLs to a file system that does not support ACLs.

rcp is CSI-enabled except for the handling of username, hostname, and domain.

modified 20 Dec 1996 SunOS 5.6 1-925

rdist (1) User Commands

NAME rdist − remote file distribution program

SYNOPSIS rdist [−b] [-D] [−h] [−i] [−n] [−q] [−R] [−v] [−w] [−y]
[−d macro = value] [−f distfile] [−m host] . . .

rdist [−b] [−D] [−h] [−i] [−n] [−q] [−R] [−v] [−w] [−y]
−c pathname . . . [login@] hostname [:destpath]

DESCRIPTION The utility rdist maintains copies of files on multiple hosts. It preserves the owner,
group, mode, and modification time of the master copies, and can update programs that
are executing. (Note: rdist does not propagate ownership or mode changes when the file
contents have not changed.) Normally, a copy on a remote host is updated if its size or
modification time differs from the original on the local host. rdist reads the indicated
distfile for instructions on updating files and/or directories. If distfile is ‘−’, the standard
input is used. If no −f option is present, rdist first looks in its working directory for
distfile, and then for Distfile, for instructions.

In order to be able to use rdist across machines, each host machine must have a
/etc/host.equiv file, or the user must have an entry in the .rhosts file in the home direc-
tory. See hosts.equiv(4) for more information.

OPTIONS −b Binary comparison. Perform a binary comparison and update files if
they differ, rather than merely comparing dates and sizes.

−D Enable debugging.

−h Follow symbolic links. Copy the file that the link points to rather than
the link itself.

−i Ignore unresolved links. rdist will normally try to maintain the link
structure of files being transferred and warn the user if all the links can-
not be found.

−n Print the commands without executing them. This option is useful for
debugging a distfile.

−q Quiet mode. Do not display the files being updated on the standard
output.

−R Remove extraneous files. If a directory is being updated, remove files
on the remote host that do not correspond to those in the master (local)
directory. This is useful for maintaining truly identical copies of direc-
tories.

−v Verify that the files are up to date on all the hosts. Any files that are out
of date are displayed, but no files are updated, nor is any mail sent.

−w Whole mode. The whole file name is appended to the destination direc-
tory name. Normally, only the last component of a name is used when
renaming files. This preserves the directory structure of the files being
copied, instead of flattening the directory structure. For instance,
renaming a list of files such as dir1/dir2 to dir3 would create files

1-926 SunOS 5.6 modified 12 May 1997

User Commands rdist (1)

dir3/dir1 and dir3/dir2 instead of dir3 and dir3. When the −w option is
used with a filename that begins with ˜, everything except the home
directory is appended to the destination name.

−y Younger mode. Do not update remote copies that are younger than the
master copy, but issue a warning message instead.

−d macro=value Define macro to have value. This option is used to define or override
macro definitions in the distfile. value can be the empty string, one
name, or a list of names surrounded by parentheses and separated by
white space.

−c pathname . . . [login @]hostname[:destpath]
Update each pathname on the named host. (Relative filenames are taken
as relative to your home directory.) If the ‘login @’ prefix is given, the
update is performed with the user ID of login. If the ‘:destpath’ is given,
the remote file is installed as that pathname.

−f distfile Use the description file distfile. A ‘−’ as the distfile argument denotes the
standard input.

−m host Limit which machines are to be updated. Multiple −m arguments can be
given to limit updates to a subset of the hosts listed in the distfile.

USAGE
White Space

Characters
NEWLINE, TAB, and SPACE characters are all treated as white space; a mapping continues
across input lines until the start of the next mapping: either a single filename followed by a
‘→’ or the opening parenthesis of a filename list.

Comments Comments begin with # and end with a NEWLINE.

Macros rdist has a limited macro facility. Macros are only expanded in filename or hostname
lists, and in the argument lists of certain primitives. Macros cannot be used to stand for
primitives or their options, or the ‘→’ or ‘::’ symbols.

A macro definition is a line of the form:

macro = value

A macro reference is a string of the form:

${macro}

although (as with make(1S)) the braces can be omitted if the macro name consists of just
one character.

Metacharacters The shell meta-characters: [,], {, }, ∗ and ? are recognized and expanded (on the local host
only) just as they are with csh(1). Metacharacters can be escaped by prepending a
backslash.

The ˜ character is also expanded in the same way as with csh; however, it is expanded
separately on the local and destination hosts.

modified 12 May 1997 SunOS 5.6 1-927

rdist (1) User Commands

Filenames File names that do not begin with ‘ / ’ or ‘ ˜ ’ are taken to be relative to user’s home direc-
tory on each destination host; they are not relative to the current working directory. Mul-
tiple file names must be enclosed within parentheses.

Primitives The following primitives can be used to specify actions rdist is to take when updating
remote copies of each file.

install [−b] [−h] [−i] [−R] [−v] [−w] [−y] [newname]
Copy out-of-date files and directories (recursively). If no newname operand is
given, the name of the local file is given to the remote host’s copy. If absent from
the remote host, parent directories in a filename’s path are created. To help
prevent disasters, a non-empty directory on a target host is not replaced with a
regular file or a symbolic link by rdist. However, when using the −R option, a
non-empty directory is removed if the corresponding filename is completely
absent on the master host.

The options for install have the same semantics as their command line counter-
parts, but are limited in scope to a particular map. The login name used on the
destination host is the same as the local host unless the destination name is of the
format login@host. In that case, the update is performed under the username
login.

notify address . . .
Send mail to the indicated TCP/IP address of the form:

user@host

that lists the files updated and any errors that may have occurred. If an address
does not contain a ‘@host ’ suffix, rdist uses the name of the destination host to
complete the address.

except filename . . .
Omit from updates the files named as arguments.

except_pat pattern . . .
Omit from updates the filenames that match each regular-expression pattern (see
ed(1) for more information on regular expressions). Note that ‘\’ and ‘$’ charac-
ters must be escaped in the distfile. Shell variables can also be used within a pat-
tern, however shell filename expansion is not supported.

special [filename] . . . "command-line "
Specify a Bourne shell, sh(1) command line to execute on the remote host after
each named file is updated. If no filename argument is present, the command-line
is performed for every updated file, with the shell variable FILE set to the file’s
name on the local host. The quotation marks allow command-line to span input
lines in the distfile; multiple shell commands must be separated by semicolons (;).

The default working directory for the shell executing each command-line is the
user’s home directory on the remote host.

1-928 SunOS 5.6 modified 12 May 1997

User Commands rdist (1)

EXAMPLES The following sample distfile instructs rdist to maintain identical copies of a shared
library, a shared-library initialized data file, several include files, and a directory, on
hosts named hermes and magus. On magus, commands are executed as super-user.
rdist notifies merlin@druid whenever it discovers that a local file has changed relative to
a timestamp file.

HOSTS = (hermes root@magus)

FILES = (/usr/local/lib/libcant.so.1.1
/usrlocal/lib/libcant.sa.1.1 /usr/local/include/{∗.h}
/usr/local/bin)

(${FILES}) → (${HOSTS})
install −R ;

${FILES} :: /usr/local/lib/timestamp
notify merlin@druid ;

FILES ˜/.rhosts user’s trusted hosts and users
/etc/host.equiv system trusted hosts and users
/tmp/rdist∗ temporary file for update lists

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO csh(1), ed(1), make(1S), sh(1), stat(2), hosts.equiv(4), attributes(5)

DIAGNOSTICS A complaint about mismatch of rdist version numbers may really stem from some prob-
lem with starting your shell, for example, you are in too many groups.

WARNINGS The super-user does not have its accustomed access privileges on NFS mounted file sys-
tems. Using rdist to copy to such a file system may fail, or the copies may be owned by
user “nobody”.

BUGS Source files must reside or be mounted on the local host.

There is no easy way to have a special command executed only once after all files in a
directory have been updated.

Variable expansion only works for name lists; there should be a general macro facility.

rdist aborts on files that have a negative modification time (before Jan 1, 1970).

There should be a “force” option to allow replacement of non-empty directories by regu-
lar files or symlinks. A means of updating file modes and owners of otherwise identical
files is also needed.

modified 12 May 1997 SunOS 5.6 1-929

read (1) User Commands

NAME read − read a line from standard input

SYNOPSIS /usr/bin/read [-r] var . . .

sh read name . . .

csh set variable = $<

ksh read [−prsu[n]] [name?prompt] [name . . .]

DESCRIPTION
/usr/bin/read The read utility will read a single line from standard input.

By default, unless the −r option is specified, backslash (\) acts as an escape character. If
standard input is a terminal device and the invoking shell is interactive, read will prompt
for a continuation line when:

· The shell reads an input line ending with a backslash, unless the −r option is specified.

· A here-document is not terminated after a newline character is entered.

The line will be split into fields as in the shell; the first field will be assigned to the first
variable var , the second field to the second variable var , and so forth. If there are fewer
var operands specified than there are fields, the leftover fields and their intervening
separators will be assigned to the last var . If there are fewer fields than vars, the remain-
ing vars will be set to empty strings.

The setting of variables specified by the var operands will affect the current shell execu-
tion environment. If it is called in a subshell or separate utility execution environment,
such as one of the following:

(read foo)
nohup read ...
find . -exec read ... \;

it will not affect the shell variables in the caller’s environment.

The standard input must be a text file.

sh One line is read from the standard input and, using the internal field separator, IFS (nor-
mally space or tab), to delimit word boundaries, the first word is assigned to the first
name, the second word to the second name, etc., with leftover words assigned to the last
name. Lines can be continued using \newline. Characters other than newline can be
quoted by preceding them with a backslash. These backslashes are removed before
words are assigned to names, and no interpretation is done on the character that follows
the backslash. The return code is 0, unless an EOF is encountered.

csh The notation
set variable = $<

loads one line of standard input as the value for variable. (See csh(1)).

1-930 SunOS 5.6 modified 28 Mar 1995

User Commands read (1)

ksh The shell input mechanism. One line is read and is broken up into fields using the char-
acters in IFS as separators. The escape character, (\), is used to remove any special mean-
ing for the next character and for line continuation. In raw mode, −r, the \ character is
not treated specially. The first field is assigned to the first name, the second field to the
second name, etc., with leftover fields assigned to the last name. The −p option causes the
input line to be taken from the input pipe of a process spawned by the shell using �&. If
the −s flag is present, the input will be saved as a command in the history file. The flag
−u can be used to specify a one digit file descriptor unit n to read from. The file descrip-
tor can be opened with the exec special command. The default value of n is 0. If name is
omitted then REPLY is used as the default name. The exit status is 0 unless the input file is
not open for reading or an end-of-file is encountered. An end-of-file with the −p option
causes cleanup for this process so that another can be spawned. If the first argument con-
tains a ?, the remainder of this word is used as a prompt on standard error when the shell
is interactive. The exit status is 0 unless an end-of-file is encountered.

OPTIONS The following option is supported:

−r Do not treat a backslash character in any special way. Consider each backslash
to be part of the input line.

OPERANDS The following operand is supported:

var The name of an existing or non-existing shell variable.

EXAMPLES The following example for /usr/bin/read prints a file with the first field of each line
moved to the end of the line.

while read -r xx yy
do

printf "%s %s\n" "$yy" "$xx"
done < input_file

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of read: LC_CTYPE, LC_MESSAGES, and NLSPATH.

IFS Determine the internal field separators used to delimit fields.

PS2 Provide the prompt string that an interactive shell will write to standard error
when a line ending with a backslash is read and the −r option was not specified,
or if a here-document is not terminated after a newline character is entered.

EXIT STATUS The following exit values are returned:
0 Successful completion.
>0 End-of-file was detected or an error occurred.

modified 28 Mar 1995 SunOS 5.6 1-931

read (1) User Commands

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO csh(1), ksh(1), line(1), set(1), sh(1), attributes(5), environ(5)

1-932 SunOS 5.6 modified 28 Mar 1995

FMLI Commands readfile (1F)

NAME readfile, longline − reads file, gets longest line

SYNOPSIS readfile filename

longline [filename]

DESCRIPTION The readfile function reads filename and copies it to stdout. No translation of NEWLINE is
done. It keeps track of the longest line it reads and if there is a subsequent call to long-
line, the length of that line, including the NEWLINE character, is returned.

The longline function returns the length, including the NEWLINE character, of the longest
line in filename. If filename is not specified, it uses the file named in the last call to readfile.

EXAMPLES Here is a typical use of readfile and longline in a text frame definition file:

.

.

.
text="`readfile myfile`"
columns=`longline`

.

.

.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO cat(1), attributes(5)

DIAGNOSTICS If filename does not exist, readfile will return FALSE (that is, the expression will have an
error return).

longline returns 0 if a readfile has not previously been issued.

NOTES More than one descriptor can call readfile in the same frame definition file. In text
frames, if one of those calls is made from the text descriptor, then a subsequent use of
longline will always get the longest line of the file read by the readfile associated with
the text descriptor, even if it was not the most recent use of readfile.

modified 5 Jul 1990 SunOS 5.6 1F-933

readonly (1) User Commands

NAME readonly − shell built-in function to protect the value of the given variable from reassign-
ment

SYNOPSIS
sh readonly [name . . .]

ksh †† readonly [name[=value]] . . .

DESCRIPTION
sh The given names are marked readonly and the values of the these names may not be

changed by subsequent assignment. If no arguments are given, a list of all readonly
names is printed.

ksh The given names are marked readonly and these names cannot be changed by subsequent
assignment.

On this man page, ksh(1) commands that are preceded by one or two † (daggers) are
treated specially in the following ways:

1. Variable assignment lists preceding the command remain in effect when the
command completes.

2. I/O redirections are processed after variable assignments.

3. Errors cause a script that contains them to abort.

4. Words, following a command preceded by †† that are in the format of a vari-
able assignment, are expanded with the same rules as a variable assignment.
This means that tilde substitution is performed after the = sign and word split-
ting and file name generation are not performed.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO ksh(1), sh(1), typeset(1), attributes(5)

1-934 SunOS 5.6 modified 15 Apr 1994

User Commands refer (1)

NAME refer − expand and insert references from a bibliographic database

SYNOPSIS refer [−ben] [−ar] [−cstring] [−kx] [−lm,n] [−p filename] [−skeys] filename. . .

DESCRIPTION refer is a preprocessor for nroff(1), or troff(1), that finds and formats references. The
input files (standard input by default) are copied to the standard output, except for lines
between ‘. [’ and ‘.]’ command lines, Such lines are assumed to contain keywords as for
lookbib(1), and are replaced by information from a bibliographic data base. The user can
avoid the search, override fields from it, or add new fields. The reference data, from
whatever source, is assigned to a set of troff strings. Macro packages such as ms(5) print
the finished reference text from these strings. A flag is placed in the text at the point of
reference. By default, the references are indicated by numbers.

When refer is used with eqn(1), neqn, or tbl(1), refer should be used first in the
sequence, to minimize the volume of data passed through pipes.

OPTIONS −b Bare mode — do not put any flags in text (neither numbers or labels).

−e Accumulate references instead of leaving the references where encountered, until
a sequence of the form:

.[
$LIST$
.]

is encountered, and then write out all references collected so far. Collapse refer-
ences to the same source.

−n Do not search the default file.

−ar Reverse the first r author names (Jones, J. A. instead of J. A. Jones). If r is omit-
ted, all author names are reversed.

−cstring
Capitalize (with SMALL CAPS) the fields whose key-letters are in string.

−kx Instead of numbering references, use labels as specified in a reference data line
beginning with the characters %x; By default, x is L.

−lm,n Instead of numbering references, use labels from the senior author’s last name
and the year of publication. Only the first m letters of the last name and the last n
digits of the date are used. If either of m or n is omitted, the entire name or date,
respectively, is used.

−p filename
Take the next argument as a file of references to be searched. The default file is
searched last.

modified 14 Sep 1992 SunOS 5.6 1-935

refer (1) User Commands

−skeys Sort references by fields whose key-letters are in the keys string, and permute
reference numbers in the text accordingly. Using this option implies the −e
option. The key-letters in keys may be followed by a number indicating how
many such fields are used, with a + sign taken as a very large number. The
default is AD, which sorts on the senior author and date. To sort on all authors
and then the date, for instance, use the options ‘−sA+T’.

FILES /usr/lib/refer directory of programs
/usr/lib/refer/papers directory of default publication lists and indexes

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWdoc

SEE ALSO addbib(1), eqn(1), indxbib(1), lookbib(1), nroff(1), roffbib(1), sortbib(1), tbl(1), troff(1),
attributes(5)

1-936 SunOS 5.6 modified 14 Sep 1992

User Commands regcmp (1)

NAME regcmp − regular expression compile

SYNOPSIS regcmp [−] filename. . .

DESCRIPTION The regcmp command performs a function similar to regcmp and, in most cases, pre-
cludes the need for calling regcmp from C programs. Bypassing regcmp saves on both
execution time and program size. The command regcmp compiles the regular expres-
sions in filename and places the output in filename.i.

OPTIONS − If the − option is used, the output is placed in filename.c. The format of entries
in filename is a name (C variable) followed by one or more blanks followed by
one or more regular expressions enclosed in double quotes. The output of
regcmp is C source code. Compiled regular expressions are represented as
extern char vectors. filename.i files may thus be #included in C programs, or
filename.c files may be compiled and later loaded. In the C program that uses
the regcmp output, regex(abc,line) applies the regular expression named abc
to line. Diagnostics are self-explanatory.

EXAMPLES name "([A−Za−z][A−Za−z0−9_]∗)$0"

telno " \({0,1}([2−9][01][1−9])$0\){0,1} ∗"
"([2−9][0−9]{2})$1[−]{0,1}"
"([0−9]{4})$2"

The three arguments to telno shown above must all be entered on one line.

In the C program that uses the regcmp output,

regex(telno, line, area, exch, rest)

applies the regular expression named telno to line.

ENVIRONMENT A general description of the usage of the LC_∗ environmental variables can be found in
environ(5).

LC_CTYPE
Determines how regcmp handles characters. When LC_CTYPE is set to a valid
value, regcmp can display and handle text and filenames containing valid charac-
ters for that locale.

LC_MESSAGES
Determines how diagnostic and informative messages are presented. This
includes the language and style of the messages, and the correct form of
affirmative and negative responses. In the "C" locale, the messages are presented
in the default form found in the program itself (in most cases, U.S. English).

SunOS 5.6 1-937

regcmp (1) User Commands

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtoo
CSI Enabled

SEE ALSO regcmp(3C), attributes(5), environ(5)

1-938 SunOS 5.6

FMLI Commands regex (1F)

NAME regex − match patterns against a string

SYNOPSIS regex [−e] [−v "string"] [pattern template] ... pattern [template]

DESCRIPTION The regex command takes a string from the standard input, and a list of pattern / template
pairs, and runs regex() to compare the string against each pattern until there is a match.
When a match occurs, regex writes the corresponding template to the standard output and
returns TRUE. The last (or only) pattern does not need a template. If that is the pattern
that matches the string, the function simply returns TRUE. If no match is found, regex
returns FALSE.

The argument pattern is a regular expression of the form described in regex (). In most
cases pattern should be enclosed in single quotes to turn off special meanings of charac-
ters. Note that only the final pattern in the list may lack a template .

The argument template may contain the strings $m0 through $m9 , which will be
expanded to the part of pattern enclosed in (. . .)$0 through (. . .)$9 constructs (see exam-
ples below). Note that if you use this feature, you must be sure to enclose template in sin-
gle quotes so that FMLI does not expand $m0 through $m9 at parse time. This feature
gives regex much of the power of cut(1), paste(1), and grep(1), and some of the capabili-
ties of sed(1). If there is no template, the default is
$m0$m1$m2$m3$m4$m5$m6$m7$m8$m9 .

OPTIONS −e Evaluate the corresponding template and write the result to the standard out-
put.

−v "string" Use string instead of the standard input to match against patterns.

EXAMPLES To cut the 4th through 8th letters out of a string (this example will output strin and
return TRUE):

`regex −v "my string is nice" ’ˆ.{3}(.{5})$0’ ’$m0’`

In a form, to validate input to field 5 as an integer:

valid=`regex −v "$F5" ’ˆ[0-9]+$’`

In a form, to translate an environment variable which contains one of the numbers 1, 2, 3,
4, 5 to the letters a, b, c, d, e:

value=`regex −v "$VAR1" 1 a 2 b 3 c 4 d 5 e ’.∗’ ’Error’`

Note the use of the pattern ’.∗’ to mean "anything else".

In the example below, all three lines constitute a single backquoted expression. This
expression, by itself, could be put in a menu definition file. Since backquoted expressions
are expanded as they are parsed, and output from a backquoted expression (the cat com-
mand, in this example) becomes part of the definition file being parsed, this expression
would read /etc/passwd and make a dynamic menu of all the login ids on the system.

`cat /etc/passwd | regex ’ˆ([ˆ:]∗)$0.∗$’ ’
name=$m0
action=`message "$m0 is a user"`’`

modified 11 Jan 1996 SunOS 5.6 1F-939

regex (1F) FMLI Commands

DIAGNOSTICS If none of the patterns match, regex returns FALSE, otherwise TRUE.

NOTES Patterns and templates must often be enclosed in single quotes to turn off the special
meanings of characters. Especially if you use the $m0 through $m9 variables in the tem-
plate, since FMLI will expand the variables (usually to "") before regex even sees them.

Single characters in character classes (inside []) must be listed before character ranges,
otherwise they will not be recognized. For example, [a-zA-Z_/] will not find underscores
(_) or slashes (/), but [_/a-zA-Z] will.

The regular expressions accepted by regcmp differ slightly from other utilities (that is,
sed, grep, awk, ed, etc.).

regex with the −e option forces subsequent commands to be ignored. In other words if a
backquoted statement appears as follows:

`regex -e ...; command1; command2`

command1 and command2 would never be executed. However, dividing the expression
into two:

`regex -e ...``command1; command2`

would yield the desired result.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO awk(1), cut(1), grep(1), paste(1), sed(1), regcmp(3C), attributes(5)

1F-940 SunOS 5.6 modified 11 Jan 1996

FMLI Commands reinit (1F)

NAME reinit − runs an initialization file

SYNOPSIS reinit filename

DESCRIPTION The reinit command is used to change the values of descriptors defined in the initializa-
tion file that was named when fmli was invoked and/or define additional descriptors.
FMLI will parse and evaluate the descriptors in filename, and then continue running the
current application. The argument filename must be the name of a valid FMLI initializa-
tion file.

The reinit command does not re-display the introductory frame or change the layout of
screen labels for function keys.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO attributes(5)

modified 5 Jul 1990 SunOS 5.6 1F-941

renice (1) User Commands

NAME renice − alter priority of running processes

SYNOPSIS renice [−n increment] [−g | −p | −u] ID . . .
renice priority [−p] pid . . . [−g gid . . .] [−p pid . . .] [−u user . . .]
renice priority −g gid . . . [−g gid . . .] [−p pid . . .] [−u user . . .]
renice priority −u user . . . [−g gid . . .] [−p pid . . .] [−u user . . .]

DESCRIPTION The renice command alters the scheduling priority of one or more running processes. By
default, the processes to be affected are specified by their process IDs.

If the first operand is a number within the valid range of priorities (−20 to 20), renice will
treat it as a priority (as in all but the first synopsis form); otherwise, renice will treat it as
an ID (as in the first synopsis form).

Altering Process
Priority

Users other than the privileged user may only alter the priority of processes they own,
and can only monotonically increase their “nice value” within the range 0 to 19. This
prevents overriding administrative fiats. The privileged user may alter the priority of
any process and set the priority to any value in the range −20 to 19. Useful priorities are:
19 (the affected processes will run only when nothing else in the system wants to), 0 (the
“base” scheduling priority) and any negative value (to make things go very fast). 20 is an
acceptable nice value, but will be rounded down to 19.

OPTIONS renice supports the following option features:
· The first operand, priority , must precede the options and can have the

appearance of a multi-digit option.
· The −g, −p and −u options can each take multiple option-arguments.
· The pid option-argument can be used without its −p option.

The following options are supported:

−g Interpret all operands or just the gid arguments as unsigned decimal
integer process group IDs.

−n increment Specify how the system scheduling priority of the specified process or
processes is to be adjusted. The increment option-argument is a positive
or negative decimal integer that will be used to modify the system
scheduling priority of the specified process or processes.

Positive increment values cause a lower system scheduling priority.
Negative increment values may require appropriate privileges and will
cause a higher system scheduling priority.

−p Interpret all operands or just the pid arguments as unsigned decimal
integer process IDs. The −p option is the default if no options are
specified.

−u Interpret all operands or just the user argument as users. If a user exists
with a user name equal to the operand, then the user ID of that user will
be used in further processing. Otherwise, if the operand represents an
unsigned decimal integer, it will be used as the numeric user ID of the

1-942 SunOS 5.6 modified 3 Jan 1996

User Commands renice (1)

user.

OPERANDS The following operands are supported:

ID A process ID, process group ID or user name/user ID, depending on the
option selected.

priority The value specified is taken as the actual system scheduling priority,
rather than as an increment to the existing system scheduling priority.
Specifying a scheduling priority higher than that of the existing process
may require appropriate privileges.

EXAMPLES Adjust the system scheduling priority so that process IDs 987 and 32 would have a lower
scheduling priority:

example% renice -n 5 -p 987 32

Adjust the system scheduling priority so that group IDs 324 and 76 would have a higher
scheduling priority, if the user has the appropriate privileges to do so:

example% renice -n -4 -g 324 76

Adjust the system scheduling priority so that numeric user ID 8 and user sas would have
a lower scheduling priority:

example% renice -n 4 -u 8 sas

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of renice: LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS The following exit values are returned:
0 Successful completion.
>0 An error occurred.

FILES /etc/passwd map user names to user ID’s

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO nice(1), passwd(1), priocntl(1), attributes(5), environ(5)

NOTES If you make the priority very negative, then the process cannot be interrupted.

To regain control you must make the priority greater than 0.

Users other than the privileged user cannot increase scheduling priorities of their own
processes, even if they were the ones that decreased the priorities in the first place.

The priocntl command subsumes the function of renice.

modified 3 Jan 1996 SunOS 5.6 1-943

reset (1F) FMLI Commands

NAME reset − reset the current form field to its default values

SYNOPSIS reset

DESCRIPTION The reset function changes the entry in a field of a form to its default value; that is, the
value displayed when the form was opened.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO attributes(5)

1F-944 SunOS 5.6 modified 5 Jul 1990

User Commands rlogin (1)

NAME rlogin − remote login

SYNOPSIS rlogin [−L] [−8] [−ec] [−l username] hostname

DESCRIPTION rlogin establishes a remote login session from your terminal to the remote machine
named hostname .

Hostnames are listed in the hosts database, which may be contained in the /etc/hosts file,
the Network Information Service (NIS) hosts map, the Internet domain name server, or a
combination of these. Each host has one official name (the first name in the database
entry), and optionally one or more nicknames. Either official hostnames or nicknames
may be specified in hostname.

Each remote machine may have a file named /etc/hosts.equiv containing a list of trusted
hostnames with which it shares usernames. Users with the same username on both the
local and remote machine may rlogin from the machines listed in the remote machine’s
/etc/hosts.equiv file without supplying a password. Individual users may set up a simi-
lar private equivalence list with the file .rhosts in their home directories. Each line in this
file contains two names: a hostname and a username separated by a space. An entry in a
remote user’s .rhosts file permits the user named username who is logged into hostname to
log in to the remote machine as the remote user without supplying a password. If the
name of the local host is not found in the /etc/hosts.equiv file on the remote machine, and
the local username and hostname are not found in the remote user’s .rhosts file, then the
remote machine will prompt for a password. Hostnames listed in /etc/hosts.equiv and
.rhosts files must be the official hostnames listed in the hosts database; nicknames may
not be used in either of these files.

For security reasons, the .rhosts file must be owned by either the remote user or by root.

The remote terminal type is the same as your local terminal type (as given in your
environment TERM variable). The terminal or window size is also copied to the remote
system if the server supports the option, and changes in size are reflected as well. All
echoing takes place at the remote site, so that (except for delays) the remote login is tran-
sparent. Flow control using CTRL-S and CTRL-Q and flushing of input and output on
interrupts are handled properly.

OPTIONS −L Allow the rlogin session to be run in “litout” mode.

−8 Pass eight-bit data across the net instead of seven-bit data.

−ec Specify a different escape character, c, for the line used to disconnect
from the remote host.

−l username Specify a different username for the remote login. If you do not use this
option, the remote username used is the same as your local username.

modified 13 Dec 1995 SunOS 5.6 1-945

rlogin (1) User Commands

Escape Sequences Lines that you type which start with the tilde character are “escape sequences” (the
escape character can be changed using the −e options):

˜. Disconnect from the remote host — this is not the same as a logout, because the
local host breaks the connection with no warning to the remote end.

˜susp Suspend the login session (only if you are using a shell with Job Control). susp is
your “suspend” character, usually CTRL-Z; see tty(1).

˜dsusp Suspend the input half of the login, but output will still be seen (only if you are
using a shell with Job Control). dsusp is your “deferred suspend” character,
usually CTRL-Y; see tty(1).

FILES /etc/passwd contains information about users’ accounts
/usr/hosts/∗ for hostname version of the command
/etc/hosts.equiv list of trusted hostnames with shared usernames
/etc/nologin message displayed to users attempting to login during machine

shutdown
$HOME/.rhosts private list of trusted hostname/username combinations

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO rsh(1), stty(1), tty(1), in.named(1M), hosts(4), hosts.equiv(4), nologin(4), attributes(5)

DIAGNOSTICS NO LOGINS: System going down in N minutes
The machine is in the process of being shutdown and logins have
been disabled.

NOTES When a system is listed in hosts.equiv, its security must be as good as local security. One
insecure system listed in hosts.equiv can compromise the security of the entire system.

The Network Information Service (NIS) was formerly known as Sun Yellow Pages (YP).
The functionality of the two remains the same; only the name has changed.

This implementation can only use the TCP network service.

1-946 SunOS 5.6 modified 13 Dec 1995

User Commands rm (1)

NAME rm, rmdir − remove directory entries

SYNOPSIS /usr/bin/rm [−f] [−i] file. . .
/usr/bin/rm −rR [−f] [−i] dirname. . . [file. . .]

/usr/xpg4/bin/rm [−fiRr] file . . .

/usr/bin/rmdir [−ps] dirname. . .

DESCRIPTION
/usr/bin/rm

/usr/xpg4/bin/rm
The rm utility removes the directory entry specified by each file argument. If a file has no
write permission and the standard input is a terminal, the full set of permissions (in octal)
for the file are printed followed by a question mark. This is a prompt for confirmation. If
the answer begins with y (for yes), the file is deleted, otherwise the file remains.

If file is a symbolic link, the link will be removed, but the file or directory to which it
refers will not be deleted. Users do not need write permission to remove a symbolic link,
provided they have write permissions in the directory.

If multiple files are specified and removal of a file fails for any reason, rm will write a
diagnostic message to standard error, do nothing more to the current file, and go on to
any remaining files.

If the standard input is not a terminal, the utility will operate as if the −f option is in
effect.

/usr/bin/rmdir The rmdir utility will remove the directory entry specified by each dirname operand,
which must refer to an empty directory.

Directories will be processed in the order specified. If a directory and a subdirectory of
that directory are specified in a single invocation of rmdir, the subdirectory must be
specified before the parent directory so that the parent directory will be empty when
rmdir tries to remove it.

OPTIONS The following options are supported for /usr/bin/rm and /usr/xpg4/bin/rm:

−r Recursively remove directories and subdirectories in the argument list. The
directory will be emptied of files and removed. The user is normally prompted
for removal of any write-protected files which the directory contains. The write-
protected files are removed without prompting, however, if the −f option is used,
or if the standard input is not a terminal and the −i option is not used.

Symbolic links that are encountered with this option will not be traversed.

If the removal of a non-empty, write-protected directory is attempted, the utility
will always fail (even if the −f option is used), resulting in an error message.

−R Same as −r option.

/usr/bin/rm The following options are supported for /usr/bin/rm only:

−f Remove all files (whether write-protected or not) in a directory without prompt-
ing the user. In a write-protected directory, however, files are never removed

modified 18 Mar 1997 SunOS 5.6 1-947

rm (1) User Commands

(whatever their permissions are), but no messages are displayed. If the removal
of a write-protected directory is attempted, this option will not suppress an error
message.

−i Interactive. With this option, rm prompts for confirmation before removing any
files. It overrides the −f option and remains in effect even if the standard input is
not a terminal.

/usr/xpg4/bin/rm The following options are supported for /usr/xpg4/bin/rm only:

−f Do not prompt for confirmation. Do not write diagnostic messages or modify the
exit status in the case of non-existent operands. Any previous occurences of the
−i option will be ignored.

−i Prompt for confirmation. Any occurences of the −f option will be ignored.

/usr/bin/rmdir The following options are supported for /usr/bin/rmdir only:

−p Allow users to remove the directory dirname and its parent directories which
become empty. A message is printed on the standard error about whether the
whole path is removed or part of the path remains for some reason.

−s Suppress the message printed on the standard error when −p is in effect.

OPERANDS The following operands are supported:

file A path name of a directory entry to be removed.

dirname A path name of an empty directory to be removed.

USAGE See largefile(5) for the description of the behavior of rm and rmdir when encountering
files greater than or equal to 2 Gbyte (231 bytes).

EXAMPLES
/usr/bin/rm

/usr/xpg4/bin/rm
The following command:

example% rm a.out core

removes the directory entries: a.out and core.

The following command:

example% rm -rf junk

removes the directory junk and all its contents, without prompting.

/usr/bin/rmdir If a directory a in the current directory is empty except it contains a directory b and a/b is
empty except it contains a directory c,

example% rmdir -p a/b/c

will remove all three directories.

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of rm and rmdir: LC_COLLATE, LC_CTYPE, LC_MESSAGES, and NLSPATH.

1-948 SunOS 5.6 modified 18 Mar 1997

User Commands rm (1)

EXIT STATUS The following exit values are returned:

0 If the −f option was not specified, all the named directory entries were
removed; otherwise, all the existing named directory entries were removed.

>0 An error occurred.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

/usr/bin/rm
/usr/bin/rmdir

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu
CSI enabled

/usr/xpg4/bin/rm ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxcu4
CSI enabled

SEE ALSO rmdir(2), unlink(2), attributes(5), environ(5), largefile(5), xpg4(5)

DIAGNOSTICS All messages are generally self-explanatory.

It is forbidden to remove the files "." and ".." in order to avoid the consequences of inad-
vertently doing something like the following:

rm −r .∗

NOTES A −− permits the user to mark explicitly the end of any command line options, allowing
rm to recognize file arguments that begin with a −. As an aid to BSD migration, rm will
accept − as a synonym for −−. This migration aid may disappear in a future release. If a
−− and a − both appear on the same command line, the second will be interpreted as a
file.

modified 18 Mar 1997 SunOS 5.6 1-949

roffbib (1) User Commands

NAME roffbib − format and print a bibliographic database

SYNOPSIS roffbib [−e] [−h] [−m filename] [−np] [−olist] [−Q] [−raN] [−sN] [−Tterm]
[−V] [−x] [filename] . . .

DESCRIPTION roffbib prints out all records in a bibliographic database, in bibliography format rather
than as footnotes or endnotes. Generally it is used in conjunction with sortbib(1):

example% sortbib database | roffbib

OPTIONS roffbib accepts all options understood by nroff(1) except −i and −q.

−e Produce equally-spaced words in adjusted lines using full terminal resolution.

−h Use output tabs during horizontal spacing to speed output and reduce output
character count. TAB settings are assumed to be every 8 nominal character
widths.

−m filename
Prepend the macro file /usr/share/lib/tmac/tmac.name to the input files. There
should be a space between the −m and the macro filename. This set of macros
will replace the ones defined in /usr/share/lib/tmac/tmac.bib.

−np Number first generated page p.

−olist Print only page numbers that appear in the comma-separated list of numbers and
ranges. A range N−M means pages N through M ; an initial −N means from the
beginning to page N; a final N− means from page N to end.

−Q Queue output for the phototypesetter. Page offset is set to 1 inch.

−raN Set register a (one-character) to N. The command-line argument −rN1 will
number the references starting at 1.

Four command-line registers control formatting style of the bibliography, much
like the number registers of ms(5). The flag −rV2 will double space the bibliogra-
phy, while −rV1 will double space references but single space annotation para-
graphs. The line length can be changed from the default 6.5 inches to 6 inches
with the −rL6i argument, and the page offset can be set from the default of 0 to
one inch by specifying −rO1i (capital O, not zero).

−sN Halt prior to every N pages for paper loading or changing (default N =1). To
resume, enter NEWLINE or RETURN.

−Tterm Specify term as the terminal type.

−V Send output to the Versatec. Page offset is set to 1 inch.

−x If abstracts or comments are entered following the %X field key, roffbib will for-
mat them into paragraphs for an annotated bibliography. Several %X fields may
be given if several annotation paragraphs are desired.

1-950 SunOS 5.6 modified 14 Sep 1992

User Commands roffbib (1)

FILES /usr/share/lib/tmac/tmac.bib file of macros used by nroff/troff

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWdoc

SEE ALSO addbib(1), indxbib(1), lookbib(1), nroff(1) refer(1), sortbib(1), troff(1), attributes(5)

BUGS Users have to rewrite macros to create customized formats.

modified 14 Sep 1992 SunOS 5.6 1-951

rpcgen (1) User Commands

NAME rpcgen − an RPC protocol compiler

SYNOPSIS rpcgen infile

rpcgen [−a] [−A] [−b] [−C] [−D name [= value]] [−i size] [−I [−K seconds]]
[−L] [−M] [−N] [−T] [−Y pathname] infile

rpcgen [−c | −h | −l | −m | −t | −Sc | −Ss | −Sm] [−o outfile] [infile]

rpcgen [−s nettype] [−o outfile] [infile]

rpcgen [−n netid] [−o outfile] [infile]

DESCRIPTION rpcgen is a tool that generates C code to implement an RPC protocol. The input to rpcgen
is a language similar to C known as RPC Language (Remote Procedure Call Language).

rpcgen is normally used as in the first synopsis where it takes an input file and generates
three output files. If the infile is named proto.x, then rpcgen generates a header in
proto.h, XDR routines in proto_xdr.c, server-side stubs in proto_svc.c, and client-side
stubs in proto_clnt.c. With the −T option, it also generates the RPC dispatch table in
proto_tbl.i.

rpcgen can also generate sample client and server files that can be customized to suit a
particular application. The −Sc, −Ss, and −Sm options generate sample client, server and
makefile, respectively. The −a option generates all files, including sample files. If the
infile is proto.x, then the client side sample file is written to proto_client.c, the server side
sample file to proto_server.c and the sample makefile to makefile.proto.

The server created can be started both by the port monitors (for example, inetd or listen)
or by itself. When it is started by a port monitor, it creates servers only for the transport
for which the file descriptor 0 was passed. The name of the transport must be specified
by setting up the environment variable PM_TRANSPORT. When the server generated by
rpcgen is executed, it creates server handles for all the transports specified in the NET-
PATH environment variable, or if it is unset, it creates server handles for all the visible
transports from the /etc/netconfig file. Note: the transports are chosen at run time and
not at compile time. When the server is self-started, it backgrounds itself by default. A
special define symbol RPC_SVC_FG can be used to run the server process in foreground.

The second synopsis provides special features which allow for the creation of more
sophisticated RPC servers. These features include support for user-provided #defines
and RPC dispatch tables. The entries in the RPC dispatch table contain:

· pointers to the service routine corresponding to that procedure
· a pointer to the input and output arguments
· the size of these routines

A server can use the dispatch table to check authorization and then to execute the service
routine; a client library may use it to deal with the details of storage management and
XDR data conversion.

1-952 SunOS 5.6 modified 21 Feb 1997

User Commands rpcgen (1)

The other three synopses shown above are used when one does not want to generate all
the output files, but only a particular one. See the EXAMPLES section below for exam-
ples of rpcgen usage. When rpcgen is executed with the −s option, it creates servers for
that particular class of transports. When executed with the −n option, it creates a server
for the transport specified by netid. If infile is not specified, rpcgen accepts the standard
input.

All the options mentioned in the second synopsis can be used with the other three
synopses, but the changes will be made only to the specified output file.

The C preprocessor cc −E is run on the input file before it is actually interpreted by
rpcgen. For each type of output file, rpcgen defines a special preprocessor symbol for
use by the rpcgen programmer:

RPC_HDR defined when compiling into headers
RPC_XDR defined when compiling into XDR routines
RPC_SVC defined when compiling into server-side stubs
RPC_CLNT defined when compiling into client-side stubs
RPC_TBL defined when compiling into RPC dispatch tables

Any line beginning with ‘‘%’’ is passed directly into the output file, uninterpreted by
rpcgen. To specify the path name of the C preprocessor, use the −Y flag.

For every data type referred to in infile, rpcgen assumes that there exists a routine with
the string xdr_ prepended to the name of the data type. If this routine does not exist in
the RPC/XDR library, it must be provided. Providing an undefined data type allows cus-
tomization of XDR routines.

OPTIONS −a Generate all files, including sample files.

−A Enable the Automatic MT mode in the server main program. In this
mode, the RPC library automatically creates threads to service client
requests. This option generates multithread-safe stubs by implicitly
turning on the −M option. Server multithreading modes and parame-
ters can be set using the rpc_control(3N) call. rpcgen generated code
does not change the default values for the Automatic MT mode.

−b Backward compatibility mode. Generate transport-specific RPC code for
older versions of the operating system.

−c Compile into XDR routines.

−C Generate header and stub files which can be used with ANSI C com-
pilers. Headers generated with this flag can also be used with C++ pro-
grams.

−Dname[=value] Define a symbol name. Equivalent to the #define directive in the source.
If no value is given, value is defined as 1. This option may be specified
more than once.

−h Compile into C data-definitions (a header). The −T option can be used
in conjunction to produce a header which supports RPC dispatch tables.

−i size Size at which to start generating inline code. This option is useful for

modified 21 Feb 1997 SunOS 5.6 1-953

rpcgen (1) User Commands

optimization. The default size is 5.

−I Compile support for inetd(1M) in the server side stubs. Such servers
can be self-started or can be started by inetd. When the server is self-
started, it backgrounds itself by default. A special define symbol
RPC_SVC_FG can be used to run the server process in foreground, or the
user may simply compile without the −I option.

If there are no pending client requests, the inetd servers exit after 120
seconds (default). The default can be changed with the −K option. All
of the error messages for inetd servers are always logged with syslog(3).

Note: This option is supported for backward compatibility only. It
should always be used in conjunction with the −b option which gen-
erates backward compatibility code. By default (that is, when −b is not
specified), rpcgen generates servers that can be invoked through port-
monitors.

−K seconds By default, services created using rpcgen and invoked through port
monitors wait 120 seconds after servicing a request before exiting. That
interval can be changed using the −K flag. To create a server that exits
immediately upon servicing a request, use −K 0. To create a server that
never exits, the appropriate argument is −K −1.

When monitoring for a server, some portmonitors, like listen(1M),
always spawn a new process in response to a service request. If it is
known that a server will be used with such a monitor, the server should
exit immediately on completion. For such servers, rpcgen should be
used with −K 0.

−l Compile into client-side stubs.

−L When the servers are started in foreground, use syslog(3) to log the
server errors instead of printing them on the standard error.

−m Compile into server-side stubs, but do not generate a “main” routine.
This option is useful for doing callback-routines and for users who need
to write their own “main” routine to do initialization.

−M Generate multithread-safe stubs for passing arguments and results
between rpcgen-generated code and user written code. This option is
useful for users who want to use threads in their code.

−N This option allows procedures to have multiple arguments. It also uses
the style of parameter passing that closely resembles C. So, when pass-
ing an argument to a remote procedure, you do not have to pass a
pointer to the argument, but can pass the argument itself. This behavior
is different from the old style of rpcgen-generated code. To maintain
backward compatibility, this option is not the default.

1-954 SunOS 5.6 modified 21 Feb 1997

User Commands rpcgen (1)

−n netid Compile into server-side stubs for the transport specified by netid.
There should be an entry for netid in the netconfig database. This option
may be specified more than once, so as to compile a server that serves
multiple transports.

−o outfile Specify the name of the output file. If none is specified, standard output
is used (−c, −h, −l, −m, −n, −s, −Sc, −Sm, −Ss, and −t modes only).

−s nettype Compile into server-side stubs for all the transports belonging to the
class nettype. The supported classes are netpath, visible, circuit_n,
circuit_v, datagram_n, datagram_v, tcp, and udp (see rpc(3N) for the
meanings associated with these classes). This option may be specified
more than once. Note: the transports are chosen at run time and not at
compile time.

−Sc Generate sample client code that uses remote procedure calls.

−Sm Generate a sample Makefile which can be used for compiling the appli-
cation.

−Ss Generate sample server code that uses remote procedure calls.

−t Compile into RPC dispatch table.

−T Generate the code to support RPC dispatch tables.

The options −c, −h, −l, −m, −s, −Sc, −Sm, −Ss, and −t are used
exclusively to generate a particular type of file, while the options −D and
−T are global and can be used with the other options.

−Y pathname Give the name of the directory where rpcgen will start looking for the C
preprocessor.

OPERANDS infile input file

EXAMPLES The following example,

example% rpcgen −T prot.x

generates all the five files: prot.h, prot_clnt.c, prot_svc.c, prot_xdr.c, and prot_tbl.i.

The following example sends the C data-definitions (header) to the standard output:

example% rpcgen −h prot.x

To send the test version of the −DTEST, server side stubs for all the transport belonging
to the class datagram_n to standard output, use:

example% rpcgen −s datagram_n −DTEST prot.x

To create the server side stubs for the transport indicated by netid tcp, use:

example% rpcgen −n tcp −o prot_svc.c prot.x

EXIT STATUS 0 Successful operation.

>0 An error occurred.

modified 21 Feb 1997 SunOS 5.6 1-955

rpcgen (1) User Commands

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO cc(1B), inetd(1M), listen(1M), rpc(3N), rpc_control(3N), rpc_svc_calls(3N), syslog(3),
netconfig(4), attributes(5)

The rpcgen chapter in the ONC+ Developer’s Guide manual.

1-956 SunOS 5.6 modified 21 Feb 1997

User Commands rsh (1)

NAME rsh, remsh, remote_shell − remote shell

SYNOPSIS rsh [−n] [−l username] hostname command
rsh hostname [−n] [−l username] command
remsh [−n] [-l username] hostname command
remsh hostname [−n] [−l username] command
hostname [−n] [−l username] command

DESCRIPTION rsh connects to the specified hostname and executes the specified command. rsh copies its
standard input to the remote command, the standard output of the remote command to
its standard output, and the standard error of the remote command to its standard error.
Interrupt, quit, and terminate signals are propagated to the remote command; rsh nor-
mally terminates when the remote command does.

If you omit command, instead of executing a single command, rsh logs you in on the
remote host using rlogin(1).

Shell metacharacters which are not quoted are interpreted on the local machine, while
quoted metacharacters are interpreted on the remote machine. See EXAMPLES.

OPTIONS −l username Use username as the remote username instead of your local username. In
the absence of this option, the remote username is the same as your local
username.

−n Redirect the input of rsh to /dev/null. You sometimes need this option
to avoid unfortunate interactions between rsh and the shell which
invokes it. For example, if you are running rsh and invoke a rsh in the
background without redirecting its input away from the terminal, it will
block even if no reads are posted by the remote command. The −n
option will prevent this.

The type of remote shell (sh, rsh, or other) is determined by the user’s entry in the file
/etc/passwd on the remote system.

OPERANDS command The command to be executed on the specified hostname .

USAGE See largefile(5) for the description of the behavior of rsh and remsh when encountering
files greater than or equal to 2 Gbyte (231 bytes).

Hostnames are given in the hosts database, which may be contained in the /etc/hosts file,
the Internet domain name database, or both. Each host has one official name (the first
name in the database entry) and optionally one or more nicknames. Official hostnames
or nicknames may be given as hostname .

If the name of the file from which rsh is executed is anything other than rsh, rsh takes this
name as its hostname argument. This allows you to create a symbolic link to rsh in the
name of a host which, when executed, will invoke a remote shell on that host. By creat-
ing a directory and populating it with symbolic links in the names of commonly used
hosts, then including the directory in your shell’s search path, you can run rsh by typing

modified 14 Jul 1994 SunOS 5.6 1-957

rsh (1) User Commands

hostname to your shell.

If rsh is invoked with the basename remsh, rsh will check for the existence of the file
/usr/bin/remsh. If this file exists, rsh will behave as if remsh is an alias for rsh. If
/usr/bin/remsh does not exist, rsh will behave as if remsh is a host name.

Each remote machine may have a file named /etc/hosts.equiv containing a list of trusted
hostnames with which it shares usernames. Users with the same username on both the
local and remote machine may run rsh from the machines listed in the remote machine’s
/etc/hosts file. Individual users may set up a similar private equivalence list with the file
.rhosts in their home directories. Each line in this file contains two names: a hostname and
a username separated by a space. The entry permits the user named username who is
logged into hostname to use rsh to access the remote machine as the remote user. If the
name of the local host is not found in the /etc/hosts.equiv file on the remote machine, and
the local username and hostname are not found in the remote user’s .rhosts file, then the
access is denied. The hostnames listed in the /etc/hosts.equiv and .rhosts files must be
the official hostnames listed in the hosts database; nicknames may not be used in either of
these files.

rsh will not prompt for a password if access is denied on the remote machine unless the
command argument is omitted.

EXIT CODES The following exit values are returned:

0 Successful completion.
1 An error occurred.

EXAMPLES The following command:

example% rsh lizard cat lizard.file >> example.file

appends the remote file lizard.file from the machine called “lizard” to the file called
example.file on the machine called “example,” while the command:

example% rsh lizard cat lizard.file ">>" lizard.file2

appends the file lizard.file on the machine called “lizard” to the file lizard.file2 which
also resides on the machine called “lizard.”

FILES /etc/hosts Internet host table
/etc/hosts.equiv trusted remote hosts and users
/etc/passwd system password file

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu
CSI enabled

1-958 SunOS 5.6 modified 14 Jul 1994

User Commands rsh (1)

SEE ALSO on(1), rlogin(1), telnet(1), vi(1), in.named(1M), hosts(4), hosts.equiv(4), attributes(5),
largefile(5)

NOTES When a system is listed in hosts.equiv, its security must be as good as local security. One
insecure system listed in hosts.equiv can compromise the security of the entire system.

You cannot run an interactive command (such as vi(1)); use rlogin if you wish to do so.

Stop signals stop the local rsh process only; this is arguably wrong, but currently hard to
fix for reasons too complicated to explain here.

The current local environment is not passed to the remote shell.

Sometimes the −n option is needed for reasons that are less than obvious. For example,
the command:

example% rsh somehost dd if=/dev/nrmt0 bs=20b | tar xvpBf −
will put your shell into a strange state. Evidently, what happens is that the tar terminates
before the rsh. The rsh then tries to write into the ‘‘broken pipe’’ and, instead of ter-
minating neatly, proceeds to compete with your shell for its standard input. Invoking rsh
with the −n option avoids such incidents.

This bug occurs only when rsh is at the beginning of a pipeline and is not reading stan-
dard input. Do not use the −n if rsh actually needs to read standard input. For example,

example% tar cf − . | rsh sundial dd of=/dev/rmt0 obs=20b

does not produce the bug. If you were to use the −n in a case like this, rsh would
incorrectly read from /dev/null instead of from the pipe.

modified 14 Jul 1994 SunOS 5.6 1-959

run (1F) FMLI Commands

NAME run − run an executable

SYNOPSIS run [g−s] [−e] [−n] [−t string] program

DESCRIPTION The grun function runs program, using the PATH variable to find it. By default, when pro-
gram has completed, the user is prompted (Press ENTER to continue:), before being
returned to FMLI. The argument program is a system executable followed by its options
(if any).

OPTIONS g−e If g-e is specified the user will be prompted before returning to FMLI only if
there is an error condition

g−n If g-n is specified the user will never be prompted before returning to FMLI
(useful for programs like gvi , in which the user must do some specific action
to exit in the first place).

g−s The g-s option means "silent", implying that the screen will not have to be
repainted when program has completed. Note that the g-s option should only
be used when program does not write to the terminal. In addition, when g−s
is used, program cannot be interrupted, even if it recognizes interrupts.

g−tstring If g−t is specified, string is the name this process will have in the pop-up
menu generated by the gfrm-list command. This feature requires the execut-
able gfacesuspend , (See face(1)), to suspend the process and return to the
FMLI application.

EXAMPLE Here is a menu that uses grun:

gmenu="Edit special System files"

name="Password file"
action=`run −e vi /etc/passwd`

name="Group file"
action=`run −e vi /etc/group`

name="My .profile"
action=`run −n vi $HOME/.profile`

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO attributes(5)

1F-960 SunOS 5.6 modified 5 Jul 1990

User Commands rup (1)

NAME rup − show host status of remote machines (RPC version)

SYNOPSIS rup [−hlt]
rup [host . . .]

DESCRIPTION rup gives a status similar to uptime for remote machines. It broadcasts on the local net-
work, and displays the responses it receives.

Normally, the listing is in the order that responses are received, but this order can be
changed by specifying one of the options listed below.

When host arguments are given, rather than broadcasting rup will only query the list of
specified hosts.

A remote host will only respond if it is running the rstatd daemon, which is normally
started up from inetd(1M).

OPTIONS −h Sort the display alphabetically by host name.

−l Sort the display by load average.

−t Sort the display by up time.

FILES /etc/servers

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu

SEE ALSO ruptime(1), inetd(1M), attributes(5)

Solaris Advanced Installation Guide

BUGS Broadcasting does not work through gateways.

modified 14 Sep 1992 SunOS 5.6 1-961

rup (1C) Communication Commands

NAME rup − show host status of remote machines (RPC version)

SYNOPSIS rup [−hlt]
rup [host . . .]

DESCRIPTION rup gives a status similar to uptime for remote machines. It broadcasts on the local net-
work, and displays the responses it receives.

Normally, the listing is in the order that responses are received, but this order can be
changed by specifying one of the options listed below.

When host arguments are given, rather than broadcasting rup only queries the list of
specified hosts.

A remote host will only respond if it is running the rstatd daemon, which is normally
started up from inetd(1M).

OPTIONS −h Sort the display alphabetically by host name.

−l Sort the display by load average.

−t Sort the display by up time.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu

SEE ALSO ruptime(1), inetd(1M), attributes(5)

BUGS Broadcasting does not work through gateways.

1C-962 SunOS 5.6 modified 13 Feb 1991

User Commands ruptime (1)

NAME ruptime − show host status of local machines

SYNOPSIS ruptime [−alrtu]

DESCRIPTION ruptime gives a status line like uptime for each machine on the local network; these are
formed from packets broadcast by each host on the network once a minute.

Machines for which no status report has been received for 5 minutes are shown as being
down.

Normally, the listing is sorted by host name, but this order can be changed by specifying
one of the options listed below.

OPTIONS −a Count even those users who have been idle for an hour or more.

−l Sort the display by load average.

−r Reverse the sorting order.

−t Sort the display by up time.

−u Sort the display by number of users.

FILES /var/spool/rwho/whod.∗ data files

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO rwho(1), in.rwhod(1M), attributes(5)

modified 14 Sep 1992 SunOS 5.6 1-963

rusage (1B) SunOS/BSD Compatibility Package Commands

NAME rusage − print resource usage for a command

SYNOPSIS /usr/ucb/rusage command

DESCRIPTION The rusage command is similar to time(1). It runs the given command, which must be
specified; that is, command is not optional as it is in the C shell’s timing facility. When the
command is complete, rusage displays the real (wall clock), the system CPU, and the user
CPU times which elapsed during execution of the command, plus other fields in the
rusage structure, all on one long line. Times are reported in seconds and hundredths of a
second.

EXAMPLES The example below shows the format of rusage output.

example% rusage wc /usr/share/man/man1/csh (1)
3045 13423 78071 /usr/share/man/man1/csh (1)
2.26 real 0.80 user 0.36 sys 11 pf 38 pr 0 sw 11 rb 0 wb 16 vcx 37 icx 24 mx 0 ix 1230 id 9 is
example%

Each of the fields identified corresponds to an element of the rusage structure, as
described in getrusage(3C), as follows:

real elapsed real time
user ru_utime user time used
sys ru_stime system time used
pf ru_majflt page faults requiring physical I/O
pr ru_minflt page faults not requiring physical I/O
sw ru_nswap swaps
rb ru_inblock block input operations
wb ru_oublock block output operations
vcx ru_nvcsw voluntary context switches
icx ru_nivcsw involuntary context switches
mx ru_maxrss maximum resident set size
ix ru_ixrss currently 0
id ru_idrss integral resident set size
is ru_isrss currently 0

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscpu

SEE ALSO csh(1), time(1), getrusage(3C), attributes(5)

BUGS When the command being timed is interrupted, the timing values displayed may be inac-
curate.

1B-964 SunOS 5.6 modified 14 Sep 1992

User Commands rusers (1)

NAME rusers − who is logged in on remote machines

SYNOPSIS rusers [−ahilu] host . . .

DESCRIPTION The rusers command produces output similar to who(1), but for remote machines. The
listing is in the order that responses are received, but this order can be changed by speci-
fying one of the options listed below.

The default is to print out the names of the users logged in. When the −l flag is given,
additional information is printed for each user:

userid hostname:terminal login date login time idle time login host

If hostname and login host are the same value, the login host field is not displayed. Like-
wise, if hostname is not idle, the idle time is not displayed.

A remote host will only respond if it is running the rusersd daemon, which may be
started up from inetd(1M) or listen(1M).

OPTIONS −a Give a report for a machine even if no users are logged on.

−h Sort alphabetically by host name.

−i Sort by idle time.

−l Give a longer listing in the style of who(1).

−u Sort by number of users.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu

SEE ALSO who(1), inetd(1M), listen(1M), pmadm(1M), sacadm(1M), attributes(5)

modified 14 Sep 1992 SunOS 5.6 1-965

rwho (1) User Commands

NAME rwho − who is logged in on local machines

SYNOPSIS rwho [−a]

DESCRIPTION The rwho command produces output similar to who(1), but for all machines on your net-
work. If no report has been received from a machine for 5 minutes, rwho assumes the
machine is down, and does not report users last known to be logged into that machine.

If a user has not typed to the system for a minute or more, rwho reports this idle time. If
a user has not typed to the system for an hour or more, the user is omitted from the out-
put of rwho unless the −a flag is given.

OPTIONS −a Report all users whether or not they have typed to the system in the past hour.

FILES /var/spool/rwho/whod.∗ information about other machines

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO finger(1), ruptime(1), who(1), in.rwhod(1M), attributes(5)

NOTES rwho does not work through gateways.

The directory /var/spool/rwho must exist on the host from which rwho is run.

This service takes up progressively more network bandwith as the number of hosts on
the local net increases. For large networks, the cost becomes prohibitive.

The rwho service daemon, in.rwhod(1M), must be enabled for this command to return
useful results.

1-966 SunOS 5.6 modified 14 Sep 1992

User Commands sag (1)

NAME sag − system activity graph

SYNOPSIS sag [−e time] [−f file] [−i sec] [−s time] [−T term] [−x spec] [−y spec]

DESCRIPTION The sag utility graphically displays the system activity data stored in a binary data file by
a previous sar(1) run. Any of the sar data items may be plotted singly or in combination,
as cross plots or versus time. Simple arithmetic combinations of data may be specified.
sag invokes sar and finds the desired data by string-matching the data column header
(run sar to see what is available). The sag utility requires a graphic terminal to draw the
graph, and uses tplot(1) to produce its output. When running Solaris 2.3 and Openwin-
dows, perform the following steps:

1. Run an "xterm" as a Tektronics terminal:
prompt# xterm −t

2. In the "xterm" window, run sag specifying a tek terminal:
prompt# sag −T tek options

OPTIONS The following options are passed through to sar:

−e time Select data up to time. Default is 18:00.

−f file Use file as the data source for sar. Default is the current daily data file
/usr/adm/sa/sadd.

−i sec Select data at intervals as close as possible to sec seconds.

−s time Select data later than time in the form hh [:mm]. Default is 08:00.

Other options:

−T term Produce output suitable for terminal term. See tplot(1) for known terminals.
Default for term is $TERM.

−x spec x axis specification with spec in the form:
name [op name] . . . [lo hi]

name is either a string that will match a column header in the sar report, with
an optional device name in square brackets, for example, r+w/s[dsk−1], or an
integer value. op is + − ∗ or / surrounded by blank spaces. Up to five names
may be specified. Parentheses are not recognized. Contrary to custom, +
and − have precedence over ∗ and /. Evaluation is left to right. Thus,
A / A + B ∗ 100 is evaluated as (A/(A+B))∗100, and A + B / C + D is
(A+B)/(C+D). lo and hi are optional numeric scale limits. If unspecified, they
are deduced from the data.

Enclose spec in double-quotes (" ") if it includes white space.

A single spec is permitted for the x axis. If unspecified, time is used.

modified 24 Feb 1997 SunOS 5.6 1-967

sag (1) User Commands

−y spec y axis specification with spec in the same form as for −x. Up to 5 spec argu-
ments separated by a semi-colon (;) may be given for −y. The −y default is:

−y "%usr 0 100; %usr + %sys 0 100; %usr + %sys + %wio 0 100"

EXAMPLES To see today’s CPU utilization:
example$ sag

To see activity over 15 minutes of all disk drives:
example$ TS=‘date +%H:%M‘
example$ sar -o /tmp/tempfile 60 15
example$ TE=‘date +%H:%M‘
example$ sag -f /tmp/tempfile -s $TS -e $TE -y "r+w/s[dsk]"

FILES /usr/adm/sa/sadd daily data file for day dd

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWaccu

SEE ALSO sar(1), tplot(1), attributes(5)

1-968 SunOS 5.6 modified 24 Feb 1997

User Commands sar (1)

NAME sar − system activity reporter

SYNOPSIS sar [−aAbcdgkmpqruvwy] [−o filename] t [n]

sar [−aAbcdgkmpqruvwy] [−e time] [−f filename] [−i sec] [−s time]

DESCRIPTION In the first instance, sar samples cumulative activity counters in the operating system at n
intervals of t seconds, where t should be 5 or greater. If t is specified with more than one
option, all headers are printed together and the output may be difficult to read. (If the
sampling interval is less than 5, the activity of sar itself may affect the sample.) If the −o
option is specified, it saves the samples in filename in binary format. The default value of
n is 1.

In the second instance, no sampling interval is specified. sar extracts data from a previ-
ously recorded filename, either the one specified by the −f option or, by default, the stan-
dard system activity daily data file /var/adm/sa/sadd for the current day dd. The starting
and ending times of the report can be bounded using the −e and −s arguments with time
specified in the form hh[:mm[:ss]]. The −i option selects records at sec second intervals.
Otherwise, all intervals found in the data file are reported.

OPTIONS The following options modify the subsets of information reported by sar.

−a Report use of file access system routines: iget/s, namei/s, dirblk/s

−A Report all data. Equivalent to −abcdgkmpqruvwy.

−b Report buffer activity:
bread/s, bwrit/s − transfers per second of data between system buffers

and disk or other block devices.
lread/s, lwrit/s − accesses of system buffers.
%rcache, %wcache − cache hit ratios, that is, (1−bread/lread) as a percen-

tage.
pread/s, pwrit/s − transfers using raw (physical) device mechanism.

−c Report system calls:
scall/s − system calls of all types.
sread/s, swrit/s, fork/s, exec/s − specific system calls.
rchar/s, wchar/s − characters transferred by read and write system calls.

No incoming or outgoing exec(2) and fork(2) calls are reported.

−d Report activity for each block device (for example, disk or tape drive) with the
exception of XDC disks and tape drives. When data is displayed, the device
specification dsk- is generally used to represent a disk drive. The device
specification used to represent a tape drive is machine dependent. The
activity data reported is:

%busy, avque − portion of time device was busy servicing a transfer
request, average number of requests outstanding during that time.

read/s, write/s, blks/s − number of read/write transfers from or to dev-
ice, number of bytes transferred in 512-byte units.

modified 14 May 1997 SunOS 5.6 1-969

sar (1) User Commands

avseek − number of milliseconds per average seek.

For more general system statistics, use iostat(1M), sar(1M), or vmstat(1M).

See System Administration Guide for naming conventions for disks.

−g Report paging activities:
pgout/s − page-out requests per second.
ppgout/s − pages paged-out per second.
pgfree/s − pages per second placed on the free list by the page stealing

daemon.
pgscan/s − pages per second scanned by the page stealing daemon.
%ufs_ipf − the percentage of UFS inodes taken off the freelist by iget

which had reusable pages associated with them. These pages are
flushed and cannot be reclaimed by processes. Thus, this is the per-
centage of igets with page flushes.

−k Report kernel memory allocation (KMA) activities:
sml_mem, alloc, fail − information about the memory pool reserving and

allocating space for small requests: the amount of memory in bytes
KMA has for the small pool, the number of bytes allocated to satisfy
requests for small amounts of memory, and the number of requests
for small amounts of memory that were not satisfied (failed).

lg_mem, alloc, fail − information for the large memory pool (analogous to
the information for the small memory pool).

ovsz_alloc, fail − the amount of memory allocated for oversize requests
and the number of oversize requests which could not be satisfied
(because oversized memory is allocated dynamically, there is not a
pool).

−m Report message and semaphore activities:
msg/s, sema/s − primitives per second.

−p Report paging activities:
atch/s − page faults per second that are satisfied by reclaiming a page

currently in memory (attaches per second).
pgin/s − page-in requests per second.
ppgin/s − pages paged-in per second.
pflt/s − page faults from protection errors per second (illegal access to

page) or "copy-on-writes".
vflt/s − address translation page faults per second (valid page not in

memory).
slock/s − faults per second caused by software lock requests requiring

physical I/O.

1-970 SunOS 5.6 modified 14 May 1997

User Commands sar (1)

−q Report average queue length while occupied, and % of time occupied:
runq-sz, %runocc − run queue of processes in memory and runnable.
swpq-sz, %swpocc − these are no longer reported by sar.

−r Report unused memory pages and disk blocks:
freemem − average pages available to user processes.
freeswap − disk blocks available for page swapping.

−u Report CPU utilization (the default):
%usr, %sys, %wio, %idle − portion of time running in user mode, run-

ning in system mode, idle with some process waiting for block I/O,
and otherwise idle.

−v Report status of process, i-node, file tables:
proc-sz, inod-sz, file-sz, lock-sz − entries/size for each table, evaluated

once at sampling point.
ov − overflows that occur between sampling points for each table.

−w Report system swapping and switching activity:
swpin/s, swpot/s, bswin/s, bswot/s − number of transfers and number

of 512-byte units transferred for swapins and swapouts (including
initial loading of some programs).

pswch/s − process switches.

−y Report TTY device activity:
rawch/s, canch/s, outch/s − input character rate, input character rate

processed by canon, output character rate.
rcvin/s, xmtin/s, mdmin/s − receive, transmit and modem interrupt

rates.

−e time Select data up to time. Default is 18:00.

−f filename Use filename as the data source for sar. Default is the current daily data file
/usr/adm/sa/sadd.

−i sec Select data at intervals as close as possible to sec seconds.

−o filename
Save samples in file, filename, in binary format.

−s time Select data later than time in the form hh[:mm]. Default is 08:00.

EXAMPLES To see today’s CPU activity so far:

example% sar

To watch CPU activity evolve for 10 minutes and save data:

example% sar −o temp 60 10

To later review disk and tape activity from that period:

example% sar −d −f temp

modified 14 May 1997 SunOS 5.6 1-971

sar (1) User Commands

FILES /var/adm/sa/sadd daily data file, where dd are digits representing the day of the
month

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWaccu

SEE ALSO sag(1), iostat(1M), sar(1M), vmstat(1M), exec(2), fork(2), attributes(5)

System Administration Guide

1-972 SunOS 5.6 modified 14 May 1997

User Commands sccs (1)

NAME sccs − front end for the Source Code Control System (SCCS)

SYNOPSIS /usr/ccs/bin/sccs [−r] [−drootprefix] [−psubdir] subcommand [option . . .] [file . . .]

/usr/xpg4/bin/sccs [−r] [−d rootprefix] [−p subdir] subcommand [option . . .]
[file . . .]

DESCRIPTION The sccs command is a comprehensive, straightforward front end to the various utility
programs of the Source Code Control System (SCCS).

sccs applies the indicated subcommand to the history file associated with each of the indi-
cated files.

The name of an SCCS history file is derived by prepending the ‘s.’ prefix to the filename
of a working copy. The sccs command normally expects these ‘s.files’ to reside in an
SCCS subdirectory. Thus, when you supply sccs with a file argument, it normally applies
the subcommand to a file named s.file in the SCCS subdirectory. If file is a path name,
sccs looks for the history file in the SCCS subdirectory of that file’s parent directory. If file
is a directory, however, sccs applies the subcommand to every s.file file it contains. Thus,
the command:

example% sccs get program.c

would apply the get subcommand to a history file named:

SCCS/s.program.c

while the command:

example% sccs get SCCS

would apply it to every s.file in the SCCS subdirectory.

Options for the sccs command itself must appear before the subcommand argument.
Options for a given subcommand must appear after the subcommand argument. These
options are specific to each subcommand, and are described along with the subcom-
mands themselves (see Subcommands, below).

Running Setuid The sccs command also includes the capability to run ‘‘setuid’’ to provide additional pro-
tection. However this does not apply to subcommands such as sccs-admin(1), since this
would allow anyone to change the authorizations of the history file. Commands that
would do so always run as the real user.

OPTIONS The following options are supported:
/usr/ccs/bin/sccs −drootprefix

/usr/xpg4/bin/sccs −d rootprefix Define the root portion of the path name for SCCS history files. The
default root portion is the current directory. rootprefix is prepended to
the entire file argument, even if file is an absolute path name. −d over-
rides any directory specified by the PROJECTDIR environment variable
(see ENVIRONMENT, below).

modified 18 Mar 1997 SunOS 5.6 1-973

sccs (1) User Commands

/usr/ccs/bin/sccs −psubdir
/usr/xpg4/bin/sccs −p subdir Define the (sub)directory within which a history file is expected to

reside. SCCS is the default. (See EXAMPLES, below).

−r Run sccs with the real user ID, rather than set to the effective user ID.

OPERANDS The following operands are supported:

subcommand An SCCS utility name or the name of one of the pseudo-utilities listed in
USAGE.

options An option or option-argument to be passed to subcommand.

operands An operand to be passed to subcommand.

USAGE
Subcommands Many of the following sccs subcommands invoke programs that reside in /usr/ccs/bin.

Many of these subcommands accept additional arguments that are documented in the
reference page for the utility program the subcommand invokes.

admin Modify the flags or checksum of an SCCS history file. Refer to sccs-
admin(1) for more information about the admin utility. While admin
can be used to initialize a history file, you may find that the create sub-
command is simpler to use for this purpose.

/usr/ccs/bin/sccs cdc −rsid [−y[comment]]
/usr/xpg4/bin/sccs cdc −r sid | −rsid [−y[comment]]

Annotate (change) the delta commentary. Refer to sccs-cdc(1). The fix
subcommand can be used to replace the delta, rather than merely anno-
tating the existing commentary.

/usr/ccs/bin/sccs −rsid
/usr/xpg4/bin/sccs −r sid | −rsid Specify the SCCS delta ID (SID) to which the change

notation is to be added. The SID for a given delta is a
number, in Dewey decimal format, composed of two or
four fields: the release and level fields, and for branch
deltas, the branch and sequence fields. For instance, the
SID for the initial delta is normally 1.1.

−y[comment] Specify the comment with which to annotate the delta
commentary. If −y is omitted, sccs prompts for a com-
ment. A null comment results in an empty annotation.

/usr/ccs/bin/sccs check [−b] [−u[username]]
/usr/xpg4/bin/sccs check [−b] [−u [username] | −U]

Check for files currently being edited. Like info and tell, but returns an
exit code, rather than producing a listing of files. check returns a non-
zero exit status if anything is being edited.

−b Ignore branches.
/usr/ccs/bin/sccs −u[username]

/usr/xpg4/bin/sccs −u [username] | −U
Check only files being edited by you. When username is
specified, check only files being edited by that user.

1-974 SunOS 5.6 modified 18 Mar 1997

User Commands sccs (1)

For /usr/xpg4/bin/sccs, the −U option is equivalent to
−u <current_user>.

clean [−b]
Remove everything in the current directory that can be retrieved from
an SCCS history. Does not remove files that are being edited.

−b Do not check branches to see if they are being edited.
‘clean −b’ is dangerous when branch versions are kept
in the same directory.

comb Generate scripts to combine deltas. Refer to sccs-comb(1).

create Create (initialize) history files. create performs the following steps:

· Renames the original source file to ,program.c in the current direc-
tory.

· Create the history file called s.program.c in the SCCS subdirectory.

· Performs an ‘sccs get’ on program.c to retrieve a read-only copy of
the initial version.

deledit [−s] [−y[comment]]
Equivalent to an ‘sccs delta’ and then an ‘sccs edit’. deledit checks in a
delta, and checks the file back out again, but leaves the current working
copy of the file intact.

−s Silent. Do not report delta numbers or statistics.

−y[comment] Supply a comment for the delta commentary. If −y is
omitted, delta prompts for a comment. A null comment
results in an empty comment field for the delta.

delget [−s] [−y[comment]]
Perform an ‘sccs delta’ and then an ‘sccs get’ to check in a delta and
retrieve read-only copies of the resulting new version. See the deledit
subcommand for a description of −s and −y. sccs performs a delta on all
the files specified in the argument list, and then a get on all the files. If
an error occurs during the delta, the get is not performed.

delta [−s] [−y[comment]]
Check in pending changes. Records the line-by-line changes introduced
while the file was checked out. The effective user ID must be the same
as the ID of the person who has the file checked out. Refer to sccs-
delta(1). See the deledit subcommand for a description of −s and −y.

modified 18 Mar 1997 SunOS 5.6 1-975

sccs (1) User Commands

/usr/ccs/bin/sccs diffs [−C] [−cdate-time] [−rsid] diff-options
/usr/xpg4/bin/sccs diffs [−C] [−cdate-time | −c date-time] [−rsid | −r sid] diff-options

Compare (in diff(1) format) the working copy of a file that is checked
out for editing, with a version from the SCCS history. Use the most
recent checked-in version by default. The diffs subcommand accepts
the same options as diff, with the exception that the −c option to diff
must be specified as −C.

−C Pass the −c option to diff.
/usr/ccs/bin/sccs −cdate-time

/usr/xpg4/bin/sccs −c date-time | −cdate-time
Use the most recent version checked in before the indi-
cated date and time for comparison. date-time takes the
form: yy[mm[dd[hh[mm[ss]]]]]. Omitted units default
to their maximum possible values; that is −c7502 is
equivalent to −c750228235959.

/usr/ccs/bin/sccs −rsid
/usr/xpg4/bin/sccs −r sid | −rsid Use the version corresponding to the indicated delta

for comparison.

edit Retrieve a version of the file for editing. ‘sccs edit’ extracts a version of
the file that is writable by you, and creates a p.file in the SCCS subdirec-
tory as lock on the history, so that no one else can check that version in
or out. ID keywords are retrieved in unexpanded form. edit accepts the
same options as get, below.

enter Similar to create, but omits the final ‘sccs get’. This may be used if an
‘sccs edit’ is to be performed immediately after the history file is initial-
ized.

/usr/ccs/bin/sccs fix −rsid
/usr/xpg4/bin/sccs fix −r sid | −rsid

Revise a (leaf) delta. Remove the indicated delta from the SCCS history,
but leave a working copy of the current version in the directory. This is
useful for incorporating trivial updates for which no audit record is
needed, or for revising the delta commentary. fix must be followed by a
−r option, to specify the SID of the delta to remove. The indicated delta
must be the most recent (leaf) delta in its branch. Use fix with caution
since it does not leave an audit trail of differences (although the previ-
ous commentary is retained within the history file).

1-976 SunOS 5.6 modified 18 Mar 1997

User Commands sccs (1)

/usr/ccs/bin/sccs get [−ekmps] [−cdate-time] [−r[sid]]
/usr/xpg4/bin/sccs get [−ekmps] [−c date-time | −cdate-time] [−r sid | −rsid]

Retrieve a version from the SCCS history. By default, this is a read-only
working copy of the most recent version; ID keywords are in expanded
form. Refer to sccs-get(1).

−e Retrieve a version for editing. Same as sccs edit.

−k Retrieve a writable copy but do not check out the file.
ID keywords are unexpanded.

−m Precede each line with the SID of the delta in which it
was added.

−p Produce the retrieved version on the standard output.
Reports that would normally go to the standard output
(delta ID’s and statistics) are directed to the standard
error.

−s Silent. Do not report version numbers or statistics.
/usr/ccs/bin/sccs −cdate-time

/usr/xpg4/bin/sccs −c date-time | −cdate-time
Retrieve the latest version checked in prior to the date
and time indicated by the date-time argument. date-time
takes the form: yy[mm[dd[hh[mm[ss]]]]].

/usr/ccs/bin/sccs −r[sid] Retrieve the version corresponding to the indicated SID.
If no sid is specified, the latest sid for the specified file is
retrieved.

/usr/xpg4/bin/sccs −r sid | −rsid Retrieve the version corresponding to the indicated SID.

help message-code|sccs-command
help stuck Supply more information about SCCS diagnostics. help displays a brief

explanation of the error when you supply the code displayed by an SCCS
diagnostic message. If you supply the name of an SCCS command, it
prints a usage line. help also recognizes the keyword stuck. Refer to
sccs-help(1).

/usr/ccs/bin/sccs info [−b] [−u[username]]
/usr/xpg4/bin/sccs info [−b] [−u [username] | −U]

Display a list of files being edited, including the version number checked
out, the version to be checked in, the name of the user who holds the
lock, and the date and time the file was checked out.
−b Ignore branches.

/usr/ccs/bin/sccs −u[username]
/usr/xpg4/bin/sccs −u [username] | −U

List only files checked out by you. When username is
specified, list only files checked out by that user. For
/usr/xpg4/bin/sccs, the −U option is equivalent to −u
<current_user>.

print Print the entire history of each named file. Equivalent to an ‘sccs prs −e’

modified 18 Mar 1997 SunOS 5.6 1-977

sccs (1) User Commands

followed by an ‘sccs get −p −m’.
/usr/ccs/bin/sccs prs [−el] [−cdate-time] [−rsid]

/usr/xpg4/bin/sccs prs [−el] [−c date-time | −cdate-time] [−r sid | −rsid]
Peruse (display) the delta table, or other portion of an s.file. Refer to
sccs-prs(1).

−e Display delta table information for all deltas earlier
than the one specified with −r (or all deltas if none is
specified).

−l Display information for all deltas later than, and
including, that specified by −c or −r.

/usr/ccs/bin/sccs −cdate-time
/usr/xpg4/bin/sccs −c date-time | −cdate-time

Specify the latest delta checked in before the indicated
date and time. The date-time argument takes the form:
yy[mm[dd[hh[mm[ss]]]]].

/usr/ccs/bin/sccs −rsid
/usr/xpg4/bin/sccs −r sid | −rsid Specify a given delta by SID.

prt [−y]
Display the delta table, but omit the MR field (see sccsfile(4) for more
information on this field). Refer to sccs-prt(1).

−y Display the most recent delta table entry. The format is
a single output line for each file argument, which is
convenient for use in a pipeline with awk(1) or sed(1).

/usr/ccs/bin/sccs rmdel −rsid
/usr/xpg4/bin/sccs rmdel −r sid Remove the indicated delta from the history file. That delta must be the

most recent (leaf) delta in its branch. Refer to sccs-rmdel(1).

sact Show editing activity status of an SCCS file. Refer to sccs-sact(1).

sccsdiff −rold-sid −rnew-sid diff-options
Compare two versions corresponding to the indicated SIDs (deltas)
using diff. Refer to sccs-sccsdiff(1).

/usr/ccs/bin/sccs tell [−b] [−u[username]]
/usr/xpg4/bin/sccs tell [−b] [−u [username] | −U]

Display the list of files that are currently checked out, one file per line.

−b Ignore branches.
/usr/ccs/bin/sccs −u[username]

/usr/xpg4/bin/sccs −u [username] | −U
List only files checked out to you. When username is
specified, list only files check out to that user. For
/usr/xpg4/bin/sccs, the −U option is equivalent to −u
<current_user>.

1-978 SunOS 5.6 modified 18 Mar 1997

User Commands sccs (1)

unedit “Undo” the last edit or ‘get −e’, and return the working copy to its previous con-
dition. unedit backs out all pending changes made since the file was checked
out.

unget Same as unedit. Refer to sccs-unget(1).

val Validate the history file. Refer to sccs-val(1).

what Display any expanded ID keyword strings contained in a binary (object) or text
file. Refer to what(1) for more information.

EXAMPLES To check out a copy of program.c for editing, edit it, and then check it back in:

example% sccs edit program.c
1.1
new delta 1.2
14 lines
example% vi program.c
your editing session
example% sccs delget program.c
comments? clarified cryptic diagnostic
1.2
3 inserted
2 deleted
12 unchanged
1.2
15 lines

sccs converts the command:

example% sccs −d/usr/src/include get stdio.h

to:

/usr/ccs/bin/get /usr/src/include/SCCS/s.stdio.h

The command:

example% sccs −pprivate get include/stdio.h

becomes:

/usr/ccs/bin/get include/private/s.stdio.h

To initialize the history file for a source file named program.c: make the SCCS subdirec-
tory, and then use ‘sccs create’:

example% mkdir SCCS
example% sccs create program.c
program.c:
1.1
14 lines

modified 18 Mar 1997 SunOS 5.6 1-979

sccs (1) User Commands

After verifying the working copy, you can remove the backup file that starts with a
comma:

example% diff program.c ,program.c
example% rm ,program.c

To retrieve a file from another directory into the current directory:

example% sccs get /usr/src/sccs/cc.c

or:

example% sccs −p/usr/src/sccs/ get cc.c

To check out all files under SCCS in the current directory:

example% sccs edit SCCS

To check in all files currently checked out to you:

example% sccs delta `sccs tell −u`

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of sccs: LC_CTYPE, LC_MESSAGES, and NLSPATH.

PROJECTDIR If contains an absolute path name (beginning with a slash), sccs searches
for SCCS history files in the directory given by that variable.

If PROJECTDIR does not begin with a slash, it is taken as the name of a
user, and sccs searches the src or source subdirectory of that user’s
home directory for history files. If such a directory is found, it is used.
Otherwise, the value is used as a relative path name.

EXIT STATUS The following exit values are returned:
0 Successful completion.
>0 An error occurred.

FILES SCCS SCCS subdirectory
SCCS/d.file temporary file of differences
SCCS/p.file lock (permissions) file for checked-out versions
SCCS/q.file temporary file
SCCS/s.file SCCS history file
SCCS/x.file temporary copy of the s.file
SCCS/z.file temporary lock file
/usr/ccs/bin/∗ SCCS utility programs

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

/usr/ccs/bin/sccs ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWsprot

1-980 SunOS 5.6 modified 18 Mar 1997

User Commands sccs (1)

/usr/xpg4/bin/sccs ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxcu4t

SEE ALSO awk(1), diff(1), sccs-admin(1), sccs-cdc(1), sccs-comb(1), sccs-delta(1), sccs-get(1), sccs-
help(1), sccs-prs(1), sccs-rmdel(1), sccs-sact(1), sccs-sccsdiff(1), sccs-unget(1), sccs-
val(1), sed(1), what(1), sccsfile(4), attributes(5), xpg4(5)

Programming Utilities Guide

modified 18 Mar 1997 SunOS 5.6 1-981

sccs-admin (1) User Commands

NAME sccs-admin, admin − create and administer SCCS history files

SYNOPSIS /usr/ccs/bin/admin [−bhnz] [−a username |groupid] . . . [−d flag] . . .
[−e username |groupid] . . . [−f flag [value]] . . . [−i [filename]]
[−m mr-list] [−rrelease] [−t [description-file]] [−y[comment]] s.filename . . .

DESCRIPTION admin creates or modifies the flags and other parameters of SCCS history files. Filenames
of SCCS history files begin with the ‘s.’ prefix, and are referred to as s.files, or ‘‘history’’
files.

The named s.file is created if it does not exist already. Its parameters are initialized or
modified according to the options you specify. Parameters not specified are given
default values when the file is initialized, otherwise they remain unchanged.

If a directory name is used in place of the s.filename argument, the admin command
applies to all s.files in that directory. Unreadable s.files produce an error. The use of ‘−’
as the s.filename argument indicates that the names of files are to be read from the stan-
dard input, one s.file per line.

OPTIONS −b Force encoding of binary data. Files that contain ASCII NUL or
other control characters, or that do not end with a NEWLINE, are
recognized as binary data files. The contents of such files are
stored in the history file in encoded form. See uuencode(1C) for
details about the encoding. This option is normally used in con-
junction with −i to force admin to encode initial versions not
recognized as containing binary data.

−h Check the structure of an existing s.file (see sccsfile(4)), and com-
pare a newly computed check-sum with one stored in the first line
of that file. −h inhibits writing on the file; and so nullifies the effect
of any other options.

−n Create a new SCCS history file.

−z Recompute the file check-sum and store it in the first line of the
s.file. Caution: it is important to verify the contents of the history
file (see sccs-val(1), and the print subcommand in sccs(1)), since
using −z on a truly corrupted file may prevent detection of the
error.

−a username | groupid Add a user name, or a numerical group ID, to the list of users who
may check deltas in or out. If the list is empty, any user is allowed
to do so.

−d flag Delete the indicated flag from the SCCS file. The −d option may be
specified only for existing s.files. See −f for the list of recognized
flags.

1-982 SunOS 5.6 modified 1 Feb 1995

User Commands sccs-admin (1)

−e username | groupid Erase a user name or group ID from the list of users allowed to
make deltas.

−f flag [value] Set the indicated flag to the (optional) value specified. The follow-
ing flags are recognized:

b Enable branch deltas. When b is set, branches can
be created using the −b option of the SCCS get
command (see sccs-get(1)).

cceil Set a ceiling on the releases that can be checked
out. ceil is a number less than or equal to 9999. If
c is not set, the ceiling is 9999.

ffloor Set a floor on the releases that can be checked out.
The floor is a number greater than 0 but less than
9999. If f is not set, the floor is 1.

dsid The default delta number, or SID, to be used by an
SCCS get command.

i Treat the ‘No id keywords (ge6)’ message issued
by an SCCS get or delta command as an error
rather than a warning.

j Allow concurrent updates.

la
lrelease[,release . . .]

Lock the indicated list of releases against deltas.
If a is used, lock out deltas to all releases. An
SCCS ‘get −e’ command fails when applied
against a locked release.

n Create empty releases when releases are skipped.
These null (empty) deltas serve as anchor points
for branch deltas.

qvalue Supply a value to which the %Q% keyword is to
expand when a read-only version is retrieved
with the SCCS get command.

mmodule Supply a value for the module name to which the
%M% keyword is to expand. If the m flag is not
specified, the value assigned is the name of the
SCCS file with the leading s. removed.

ttype Supply a value for the module type to which the
%Y% keyword is to expand.

v [program] Specify a validation program for the MR numbers
associated with a new delta. The optional pro-
gram specifies the name of an MR number validity
checking program . If this flag is set when creating

modified 1 Feb 1995 SunOS 5.6 1-983

sccs-admin (1) User Commands

an SCCS file, the −m option must also be used, in
which case the list of MRs may be empty.

−i [filename] Initialize the history file with text from the indicated file. This text
constitutes the initial delta, or set of checked-in changes. If filename
is omitted, the initial text is obtained from the standard input.
Omitting the −i option altogether creates an empty s.file. You can
only initialize one s.file with text using −i. This option implies the
−n option.

−m [mr-list] Insert the indicated Modification Request (MR) numbers into the
commentary for the initial version. When specifying more than
one MR number on the command line, mr-list takes the form of a
quoted, space-separated list. A warning results if the v flag is not
set or the MR validation fails.

−rrelease Specify the release for the initial delta. −r may be used only in con-
junction with −i. The initial delta is inserted into release 1 if this
option is omitted. The level of the initial delta is always 1; initial
deltas are named 1.1 by default.

−t [description-file] Insert descriptive text from the file description-file. When −t is used
in conjunction with −n, or −i to initialize a new s.file, the
description-file must be supplied. When modifying the description
for an existing file: a −t option without a description-file removes the
descriptive text, if any; a −t option with a description-file replaces
the existing text.

−y [comment] Insert the indicated comment in the ‘‘Comments:’’ field for the ini-
tial delta. Valid only in conjunction with −i or −n. If −y option is
omitted, a default comment line is inserted that notes the date and
time the history file was created.

EXIT STATUS The following exit values are returned:
0 Successful completion.
1 An error occurred.

FILES s.∗ history file
SCCS/s.∗ history file in SCCS subdirectory
z.∗ temporary lock file

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWsprot

SEE ALSO sccs(1), sccs-cdc(1), sccs-delta(1), sccs-get(1), sccs-help(1), sccs-rmdel(1), sccs-val(1),
sccsfile(4), attributes(5)

1-984 SunOS 5.6 modified 1 Feb 1995

User Commands sccs-admin (1)

Programming Utilities Guide

DIAGNOSTICS Use the SCCS help command for explanations (see sccs-help(1)).

WARNINGS The last component of all SCCS filenames must have the ‘s.’ prefix. New SCCS files are
given mode 444 (see chmod(1)). All writing done by admin is to a temporary file with an
x. prefix, created with mode 444 for a new SCCS file, or with the same mode as an existing
SCCS file. After successful execution of admin, the existing s. file is removed and
replaced with the x.file. This ensures that changes are made to the SCCS file only when no
errors have occurred.

It is recommended that directories containing SCCS files have permission mode 755, and
that the s.files themselves have mode 444. The mode for directories allows only the
owner to modify the SCCS files contained in the directories, while the mode of the s.files
prevents all modifications except those performed using SCCS commands.

If it should be necessary to patch an SCCS file for any reason, the mode may be changed
to 644 by the owner to allow use of a text editor. However, extreme care must be taken
when doing this. The edited file should always be processed by an ‘admin −h’ to check
for corruption, followed by an ‘admin −z’ to generate a proper check-sum. Another
‘admin −h’ is recommended to ensure that the resulting s.file is valid.

admin also uses a temporary lock s.file, starting with the ‘z.’ prefix, to prevent simul-
taneous updates to the s.file. See sccs-get(1) for further information about the ‘z.file’.

modified 1 Feb 1995 SunOS 5.6 1-985

sccs-cdc (1) User Commands

NAME sccs-cdc, cdc − change the delta commentary of an SCCS delta

SYNOPSIS /usr/ccs/bin/cdc −rsid [−mmr-list] [−y [comment]] s.filename . . .

DESCRIPTION cdc annotates the delta commentary for the SCCS delta ID (SID) specified by the −r option
in each named s.file.

If the v flag is set in the s.file, you can also use cdc to update the Modification Request
(MR) list.

If you checked in the delta, or, if you own the file and directory and have write permis-
sion, you can use cdc to annotate the commentary.

Rather than replacing the existing commentary, cdc inserts the new comment you supply,
followed by a line of the form:

∗∗∗ CHANGED ∗∗∗ yy/mm/dd hh/mm/ss username

above the existing commentary.

If a directory is named as the s.filename argument, the cdc command applies to all s.files
in that directory. Unreadable s.files produce an error; processing continues with the next
file (if any). If ‘−’ is given as the s.filename argument, each line of the standard input is
taken as the name of an SCCS history file to be processed, and the −m and −y options
must be used.

OPTIONS −rsid Specify the SID of the delta to change.

−mmr-list Specify one or more MR numbers to add or delete. When specifying
more than one MR on the command line, mr-list takes the form of a
quoted, space-separated list. To delete an MR number, precede it with a
! character (an empty MR list has no effect). A list of deleted MRs is
placed in the comment section of the delta commentary. If −m is not
used and the standard input is a terminal, cdc prompts with MRs? for
the list (before issuing the comments? prompt). −m is only useful when
the v flag is set in the s.file. If that flag has a value, it is taken to be the
name of a program to validate the MR numbers. If that validation pro-
gram returns a non-zero exit status, cdc terminates and the delta com-
mentary remains unchanged.

−y[comment]
Use comment as the annotation in the delta commentary. The previous
comments are retained; the comment is added along with a notation that
the commentary was changed. A null comment leaves the commentary
unaffected. If −y is not specified and the standard input is a terminal,
cdc prompts with comments? for the text of the notation to be added.
An unescaped NEWLINE character terminates the annotation text.

1-986 SunOS 5.6 modified 30 Sep 1991

User Commands sccs-cdc (1)

EXAMPLES The following command:
example% cdc −r1.6 −y"corrected commentary" s.program.c

produces the following annotated commentary for delta 1.6 in s.program.c:

D 1.6 88/07/05 23:21:07 username 9 0 00001/00000/00000
MRs:
COMMENTS:
corrected commentary
∗∗∗ CHANGED ∗∗∗ 88/07/07 14:09:41 username
performance enhancements in main()

FILES z.file temporary lock file

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWsprot

SEE ALSO sccs(1), sccs-admin(1), sccs-comb(1), sccs-delta(1), sccs-help(1), sccs-prs(1), sccs-prt(1),
sccs-rmdel(1), what(1), sccsfile(4), attributes(5)

Programming Utilities Guide

DIAGNOSTICS Use the SCCS help command for explanations (see sccs-help(1)).

modified 30 Sep 1991 SunOS 5.6 1-987

sccs-comb (1) User Commands

NAME sccs-comb, comb − combine SCCS deltas

SYNOPSIS /usr/ccs/bin/comb [−os] [−csid-list] [−psid] s.filename . . .

DESCRIPTION comb generates a shell script (see sh(1)) that you can use to reconstruct the indicated
s.files. This script is written to the standard output.

If a directory name is used in place of the s.filename argument, the comb command
applies to all s.files in that directory. Unreadable s.files produce an error; processing con-
tinues with the next file (if any). The use of ‘−’ as the s.filename argument indicates that
the names of files are to be read from the standard input, one s.file per line.

If no options are specified, comb preserves only the most recent (leaf) delta in a branch,
and the minimal number of ancestors needed to preserve the history.

OPTIONS −o For each ‘get −e’ generated, access the reconstructed file at the release of the delta
to be created. Otherwise, the reconstructed file is accessed at the most recent
ancestor. The use of −o may decrease the size of the reconstructed s.file. It may
also alter the shape of the delta tree of the original file.

−s Generate scripts to gather statistics, rather than combining deltas. When run, the
shell scripts report: the file name, size (in blocks) after combining, original size
(also in blocks), and the percentage size change, computed by the formula:

100 ∗ (original − combined) / original

This option can be used to calculate the space that will be saved, before actually
doing the combining.

−csid-list
Include the indicated list of deltas. All other deltas are omitted. sid-list is a
comma-separated list of SCCS delta IDs (SIDs). To specify a range of deltas, use a
‘−’ separator instead of a comma, between two SIDs in the list.

−pSID The SID of the oldest delta to be preserved.

FILES s. COMB reconstructed SCCS file
comb????? temporary file

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWsprot

SEE ALSO sccs(1), sccs-admin(1), sccs-cdc(1), sccs-delta(1), sccs-help(1), sccs-prs(1), sccs-prt(1),
sccs-rmdel(1), sccs-sccsdiff(1), what(1), sccsfile(4), attributes(5)

Programming Utilities Guide

1-988 SunOS 5.6 modified 30 Sep 1991

User Commands sccs-comb (1)

DIAGNOSTICS Use the SCCS help command for explanations (see sccs-help(1)).

BUGS comb may rearrange the shape of the tree of deltas. It may not save any space; in fact, it
is possible for the reconstructed file to actually be larger than the original.

modified 30 Sep 1991 SunOS 5.6 1-989

sccs-delta (1) User Commands

NAME sccs-delta, delta − make a delta to an SCCS file

SYNOPSIS /usr/ccs/bin/delta [−dnps] [−g sid-list | −gsid-list] [−m mr-list | −mmr-list]
[−r sid | −rsid] [−y[comment]] s.filename . . .

/usr/xpg4/bin/delta [−dnps] [−g sid-list | −gsid-list] [−m mr-list | −mmr-list]
[−r sid | −rsid] [−y[comment]] s.filename . . .

DESCRIPTION delta checks in a record of the line-by-line differences made to a checked-out version of a
file under SCCS control. These changes are taken from the writable working copy that
was retrieved using the SCCS get command (see sccs-get(1)). This working copy does not
have the ‘s.’ prefix, and is also referred to as a g-file.

If a directory name is used in place of the s.filename argument, the delta command applies
to all s.files in that directory. Unreadable s.files produce an error; processing continues
with the next file (if any). The use of ‘−’ as the s.filename argument indicates that the
names of files are to be read from the standard input, one s.file per line (requires −y, and
in some cases, −m).

delta may issue prompts on the standard output depending upon the options specified
and the flags that are set in the s.file (see sccs-admin(1), and the −m and −y options
below, for details).

/usr/xpg4/bin/delta The SID of the delta is not echoed to stdout.

OPTIONS −d Use command diff(1) instead of bdiff(1). Returns exit status 2 if s.filename argu-
ment is not specified.

−n Retain the edited g-file, which is normally removed at the completion of process-
ing.

−p Display line-by-line differences (in diff(1) format) on the standard output.

−s Silent. Do not display warning or confirmation messages. Do not suppress error
messages (which are written to standard error).

−g sid-list | −gsid-list
Specify a list of deltas to omit when the file is accessed at the SCCS version ID
(SID) created by this delta. sid-list is a comma-separated list of SIDs. To specify a
range of deltas, use a ‘−’ separator instead of a comma, between two SIDs in the
list.

−m mr-list | −mmr-list
If the SCCS file has the v flag set (see sccs-admin(1)), you must supply one or
more Modification Request (MR) numbers for the new delta. When specifying
more than one MR number on the command line, mr-list takes the form of a
quoted, space-separated list. If −m is not used and the standard input is a termi-
nal, delta prompts with MRs? for the list (before issuing the comments? prompt).
If the v flag in the s.file has a value, it is taken to be the name of a program to
validate the MR numbers. If that validation program returns a non-zero exit
status, delta terminates without checking in the changes.

1-990 SunOS 5.6 modified 28 Apr 1997

User Commands sccs-delta (1)

−r sid | −rsid
When two or more versions are checked out, specify the version to check in. This
SID value can be either the SID specified on the get command line, or the SID of
the new version to be checked in as reported by get. A diagnostic results if the
specified SID is ambiguous, or if one is required but not supplied.

−y[comment]
Supply a comment for the delta table (version log). A null comment is accepted,
and produces an empty commentary in the log. If −y is not specified and the
standard input is a terminal, delta prompts with ‘comments?’. An unescaped
NEWLINE terminates the comment.

EXIT STATUS The following exit values are returned:

0 Successful completion.
1 An error occurred and the −d option had not been specified.
2 An error occurred, the −d option had been specified, and the s.filename argu-

ment was not specified.

FILES d.file temporary file of differences
p.file lock file for a checked-out version
q.file temporary file
s.file SCCS history file
x.file temporary copy of the s.file
z.file temporary file

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

/usr/ccs/bin/delta ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWsprot

/usr/xpg4/bin/delta ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxcu4t

SEE ALSO bdiff(1), diff(1), sccs-admin(1), sccs-cdc(1), sccs-get(1), sccs-help(1), sccs-prs(1), sccs-
prt(1), sccs-rmdel(1), sccs-sccsdiff(1), sccs-unget(1), sccs(1), what(1), sccsfile(4),
attributes(5), xpg4(5)

Programming Utilities Guide

DIAGNOSTICS Use the SCCS help command for explanations (see sccs-help(1)).

WARNINGS Lines beginning with an ASCII SOH character (binary 001) cannot be placed in the SCCS
file unless the SOH is escaped. This character has special meaning to SCCS (see sccsfile(4))
and produces an error.

modified 28 Apr 1997 SunOS 5.6 1-991

sccs-get (1) User Commands

NAME sccs-get, get − retrieve a version of an SCCS file

SYNOPSIS /usr/ccs/bin/get [−begkmnpst] [−l [p]] [−asequence] [−c date-time | −cdate-time]
[−Gg-file] [−i sid-list | −isid-list] [−r[sid]] [−x sid-list | −xsid-list]
s.filename . . .

/usr/xpg4/bin/get [−begkmnpst] [−l [p]] [−asequence] [−c date-time | −cdate-time]
[−Gg-file] [−i sid-list | −isid-list] [−r sid | −rsid] [−x sid-list | −xsid-list]
s.filename . . .

DESCRIPTION The get utility retrieves a working copy from the SCCS history file, according to the
specified options.

For each s.filename argument, get displays the SCCS delta ID (SID) and number of lines
retrieved.

If a directory name is used in place of the s.filename argument, the get command applies
to all s.files in that directory. Unreadable s.files produce an error; processing continues
with the next file (if any). The use of ‘−’ as the s.filename argument indicates that the
names of files are to be read from the standard input, one s.file per line.

The retrieved file normally has the same filename base as the s.file, less the prefix, and is
referred to as the g-file.

For each file processed, get responds (on the standard output) with the SID being
accessed, and with the number of lines retrieved from the s.file.

OPTIONS −b Create a new branch. Used with the −e option to indicate that the new
delta should have an SID in a new branch. Instead of incrementing the
level for version to be checked in, get indicates in the p.file that the delta
to be checked in should either initialize a new branch and sequence (if
there is no existing branch at the current level), or increment the branch
component of the SID. If the b flag is not set in the s.file, this option is
ignored.

−e Retrieve a version for editing. With this option, get places a lock on the
s.file, so that no one else can check in changes to the version you have
checked out. If the j flag is set in the s.file, the lock is advisory: get
issues a warning message. Concurrent use of ‘get −e’ for different SIDs
is allowed, however, get will not check out a version of the file if a writ-
able version is present in the directory. All SCCS file protections stored
in the s.file, including the release ceiling, floor, and authorized user list,
are honored by ‘get −e’.

−g Get the SCCS version ID, without retrieving the version itself. Used to
verify the existence of a particular SID.

−k Suppress expansion of ID keywords. −k is implied by the −e.

−m Precede each retrieved line with the SID of the delta in which it was
added to the file. The SID is separated from the line with a TAB.

1-992 SunOS 5.6 modified 18 Mar 1997

User Commands sccs-get (1)

−n Precede each line with the %M% ID keyword and a TAB. When both the
−m and −n options are used, the ID keyword precedes the SID, and the
line of text.

−p Write the text of the retrieved version to the standard output. All mes-
sages that normally go to the standard output are written to the stan-
dard error instead.

−s Suppress all output normally written on the standard output. However,
fatal error messages (which always go to the standard error) remain
unaffected.

−t Retrieve the most recently created (top) delta in a given release (for
example: −r1).

−l [p] Retrieve a summary of the delta table (version log) and write it to a list-
ing file, with the ‘l.’ prefix (called ‘l.file’). When −lp is used, write the
summary onto the standard output.

−a sequence Retrieve the version corresponding to the indicated delta sequence
number. This option is used primarily by the SCCS comb command (see
sccs-comb(1)); for users, −r is an easier way to specify a version. −a
supersedes −r when both are used.

−c date-time | −cdate-time
Retrieve the latest version checked in prior to the date and time indi-
cated by the date-time argument. date-time takes the form:
yy[mm[dd[hh[mm[ss]]]]]. Units omitted from the indicated date and
time default to their maximum possible values; that is −c7502 is
equivalent to −c750228235959. Any number of non-numeric characters
may separate the various 2 digit components. If white-space characters
occur, the date-time specification must be quoted.

−Gnewname Use newname as the name of the retrieved version.

−i sid-list | −isid-list
Specify a list of deltas to include in the retrieved version. The included
deltas are noted in the standard output message. sid-list is a comma-
separated list of SIDs. To specify a range of deltas, use a ‘−’ separator
instead of a comma, between two SIDs in the list.

/usr/ccs/bin/get −r[sid]
Retrieve the version corresponding to the indicated SID (delta).

The SID for a given delta is a number, in Dewey decimal format, com-
posed of two or four fields: the release and level fields, and for branch
deltas, the branch and sequence fields. For instance, if 1.2 is the SID, 1 is
the release, and 2 is the level number. If 1.2.3.4 is the SID, 3 is the branch
and 4 is the sequence number.

You need not specify the entire SID to retrieve a version with get. When
you omit −r altogether, or when you omit both release and level, get

modified 18 Mar 1997 SunOS 5.6 1-993

sccs-get (1) User Commands

normally retrieves the highest release and level. If the d flag is set to an
SID in the s.file and you omit the SID, get retrieves the default version
indicated by that flag.

When you specify a release but omit the level, get retrieves the highest
level in that release. If that release does not exist, get retrieves highest
level from the next-highest existing release.

Similarly with branches, if you specify a release, level and branch, get
retrieves the highest sequence in that branch.

/usr/xpg4/bin/get −r sid | −rsid
Same as for /usr/ccs/bin/get except that SID is mandatory.

−x sid-list | −xsid-list
Exclude the indicated deltas from the retrieved version. The excluded
deltas are noted in the standard output message. sid-list is a comma-
separated list of SIDs. To specify a range of deltas, use a ‘-’ separator
instead of a comma, between two SIDs in the list.

OUTPUT
/usr/ccs/bin/get The output format for /usr/ccs/bin/get is as follows:

"%s\n%d lines\n", <SID>, <number of lines>

/usr/xpg4/bin/get The output format for /usr/xpg4/bin/get is as follows:

"%s\n%d\n", <SID>, <number of lines>

USAGE
ID Keywords In the absence of −e or −k, get expands the following ID keywords by replacing them

with the indicated values in the text of the retrieved source.
Keyword Value

%A% Shorthand notation for an ID line with data for what(1):
%Z%%Y% %M% %I%%Z%

%B% SID branch component
%C% Current line number. Intended for identifying messages output by the pro-

gram such as ‘‘this shouldn’t have happened’’ type errors. It is not intended to
be used on every line to provide sequence numbers.

%D% Current date: yy/mm/dd
%E% Date newest applied delta was created: yy/mm/dd
%F% SCCS s.file name
%G% Date newest applied delta was created: mm/dd/yy
%H% Current date: mm/dd/yy
%I% SID of the retrieved version: %R%.%L%.%B%.%S%
%L% SID level component
%M% Module name: either the value of the m flag in the s.file (see sccs-admin(1)),

or the name of the s.file less the prefix
%P% Fully qualified s.file name

1-994 SunOS 5.6 modified 18 Mar 1997

User Commands sccs-get (1)

%Q% Value of the q flag in the s.file
%R% SID Release component
%S% SID Sequence component
%T% Current time: hh:mm:ss
%U% Time the newest applied delta was created: hh:mm:ss
%W% Shorthand notation for an ID line with data for what: %Z%%M% %I%
%Y% Module type: value of the t flag in the s.file
%Z% 4-character string: ‘@(#)’, recognized by what.

ID String The table below explains how the SCCS identification string is determined for retrieving
and creating deltas.

Determination of SCCS Identification String
SID∗ −b Option Other SID SID of Delta

Specified Used† Conditions Retrieved to be Created
none‡ no R defaults to mR mR.mL mR.(mL+1)

none‡ yes R defaults to mR mR.mL mR.mL.(mB+1).1
R no R > mR mR.mL R.1∗∗∗

R no R = mR mR.mL mR.(mL+1)

R yes R > mR mR.mL mR.mL.(mB+1).1

R yes R = mR mR.mL mR.mL.(mB+1).1

R < mR andR − R does not exist hR.mL∗∗ hR.mL.(mB+1).1

Trunk succ.#
in release > RR −
and R exists

R.mL R.mL.(mB+1).1

R.L no No trunk succ. R.L R.(L+1)

R.L yes No trunk succ. R.L R.L.(mB+1).1

Trunk succ.R.L − in release ≥ R R.L R.L.(mB+1).1

R.L.B no No branch succ. R.L.B.mS R.L.B.(mS+1)

R.L.B yes No branch succ. R.L.B.mS R.L.(mB+1).1
R.L.B.S no No branch succ. R.L.B.S R.L.B.(S+1)

R.L.B.S yes No branch succ. R.L.B.S R.L.(mB+1).1

R.L.B.S − Branch succ. R.L.B.S R.L.(mB+1).1

∗ ‘R’, ‘L’, ‘B’, and ‘S’ are the ‘release’, ‘level’, ‘branch’, and ‘sequence’ components
of the SID, respectively; ‘m’ means ‘maximum’. Thus, for example, ‘R.mL’ means
‘the maximum level number within release R’; ‘R.L.(mB+1).1’ means ‘the first
sequence number on the new branch (that is, maximum branch number plus one)
of level L within release R’. Note: if the SID specified is of the form ‘R.L’, ‘R.L.B’,

modified 18 Mar 1997 SunOS 5.6 1-995

sccs-get (1) User Commands

or ‘R.L.B.S’, each of the specified components must exist.
∗∗ ‘hR’ is the highest existing release that is lower than the specified, nonexistent,

release R.
∗∗∗ Forces creation of the first delta in a new release.
Successor.
† The −b option is effective only if the b flag is present in the file. An entry of ‘−’

means ‘irrelevant’.
‡ This case applies if the d (default SID) flag is not present in the file. If the d flag is

present in the file, the SID obtained from the d flag is interpreted as if it had been
specified on the command line. Thus, one of the other cases in this table applies.

FILES ‘‘g-file’’ version retrieved by get
l.file file containing extracted delta table info
p.file permissions (lock) file
z.file temporary copy of s.file

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

/usr/ccs/bin/get ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWsprot

/usr/xpg4/bin/get ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxcu4t

SEE ALSO sccs(1), sccs-admin(1), sccs-delta(1), sccs-help(1), sccs-prs(1), sccs-prt(1), sccs-sact(1),
sccs-unget(1), what(1), sccsfile(4), attributes(5), xpg4(5)

Programming Utilities Guide

DIAGNOSTICS Use the SCCS help command for explanations (see sccs-help(1)).

BUGS If the effective user has write permission (either explicitly or implicitly) in the directory
containing the SCCS files, but the real user does not, only one file may be named when
using −e.

1-996 SunOS 5.6 modified 18 Mar 1997

User Commands sccs-help (1)

NAME sccs-help, help − ask for help regarding SCCS error or warning messages

SYNOPSIS /usr/ccs/bin/help [argument] . . .

DESCRIPTION help retrieves information to further explain errors messages and warnings from SCCS
commands. It also provides some information about SCCS command usage. If no argu-
ments are given, help prompts for one.

An argument may be a message number (which normally appears in parentheses follow-
ing each SCCS error or warning message), or an SCCS command name. help responds
with an explanation of the message or a usage line for the command.

When all else fails, try ‘/usr/ccs/bin/help stuck’.

FILES /usr/ccs/lib/help directory containing files of message text

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWsprot

SEE ALSO sccs(1), sccs-admin(1), sccs-cdc(1), sccs-comb(1), sccs-delta(1), sccs-get(1), sccs-prs(1),
sccs-prt(1), sccs-rmdel(1), sccs-sact(1), sccs-sccsdiff(1), sccs-unget(1), sccs-val(1),
what(1), sccsfile(4), attributes(5)

modified 17 May 1994 SunOS 5.6 1-997

sccs-prs (1) User Commands

NAME sccs-prs, prs − display selected portions of an SCCS history

SYNOPSIS /usr/ccs/bin/prs [−ael] [−cdate-time] [−ddataspec] [−rsid] s.filename . . .

DESCRIPTION prs displays part or all of the SCCS file (see sccsfile(4)) in a user supplied format.

If a directory name is used in place of the s.filename argument, the prs command applies
to all s.files in that directory. Unreadable s.files produce an error; processing continues
with the next file (if any). The use of ‘−’ as the s.filename argument indicates that the
names of files are to be read from the standard input, one s.file per line.

OPTIONS In the absence of options, prs displays the delta table (version log). In the absence of −d,
or −l, prs displays the entry for each delta indicated by the other options.

−a Include all deltas, including those marked as removed (see sccs-rmdel(1)).

−e Request information for all deltas created earlier than, and including, the delta
indicated with −r or −c.

−l Request information for all deltas created later than, and including, the delta indi-
cated with −r or −c.

−cdate-time
Display information on the latest delta checked in prior to the date and time indi-
cated by the date-time argument. date-time takes the form:

yy[mm[dd[hh[mm[ss]]]]].

Units omitted from the indicated date and time default to their maximum possi-
ble values; that is −c7502 is equivalent to −c750228235959. Any number of non-
numeric characters may separate the various 2 digit components. If white-space
characters occur, the date-time specification must be quoted.

−ddataspec
Produce a report according to the indicated data specification. dataspec consists
of a (quoted) text string that includes embedded data keywords of the form:
‘:key:’ (see Data Keywords, below). prs expands these keywords in the output it
produces. To specify a TAB character in the output, use \t; to specify a NEWLINE
in the output, use \n.

−rsid Specify the SCCS delta ID (SID) of the delta for which information is desired. If no
SID is specified, the most recently created delta is used.

1-998 SunOS 5.6 modified 30 Sep 1991

User Commands sccs-prs (1)

USAGE
Data Keywords Data keywords specify which parts of an SCCS file are to be retrieved. All parts of an

SCCS file (see sccsfile(4)) have an associated data keyword. A data keyword may appear
any number of times in a data specification argument to −d. These data keywords are
listed in the table below:

File
Keyword Data Item

Section∗ Value Format∗∗

:A: a format for the what string: N/A :Z::Y: :M: :I::Z: S
:B: branch number D nnnn S
:BD: body B text M
:BF: branch flag F yes or no S
:CB: ceiling boundary F :R: S
:C: comments for delta D text M
:D: date delta created D :Dy:/:Dm:/:Dd: S
:Dd: day delta created D nn S
:Dg: deltas ignored (seq #) D :DS: :DS: . . . S
:DI: seq-no. of deltas included,

excluded, ignored
D :Dn:/:Dx:/:Dg: S

:DL: delta line statistics D :Li:/:Ld:/:Lu: S
:Dm: month delta created D nn S
:Dn: deltas included (seq #) D :DS: :DS: . . . S
:DP: predecessor delta seq-no. D nnnn S
:Ds: default SID F :I: S
:DS: delta sequence number D nnnn S
:Dt: delta information D :DT: :I: :D: :T: :P: :DS: :DP: S
:DT: delta type D D or R S
:Dx: deltas excluded (seq #) D :DS: . . . S
:Dy: year delta created D nn S
:F: s.file name N/A text S
:FB: floor boundary F :R: S
:FD: file descriptive text C text M
:FL: flag list F text M
:GB: gotten body B text M
:I: SCCS delta ID (SID) D :R:.:L:.:B:.:S: S
:J: joint edit flag F yes or no S
:KF: keyword error/warning flag F yes or no S
:L: level number D nnnn S
:Ld: lines deleted by delta D nnnnn S
:Li: lines inserted by delta D nnnnn S
:LK: locked releases F :R: . . . S
:Lu: lines unchanged by delta D nnnnn S
:M: module name F text S
:MF: MR validation flag F yes or no S
:MP: MR validation program F text S
:MR: MR numbers for delta D text M
:ND: null delta flag F yes or no S
:Q: user defined keyword F text S

modified 30 Sep 1991 SunOS 5.6 1-999

sccs-prs (1) User Commands

:P: user who created delta D username S
:PN: s.file’s pathname N/A text S
:R: release number D nnnn S
:S: sequence number D nnnn S
:T: time delta created D :Th:::Tm:::Ts: S
:Th: hour delta created D nn S
:Tm: minutes delta created D nn S
:Ts: seconds delta created D nn S
:UN: user names U text M
:W: a form of what string N/A :Z::M:\t:I: S
:Y: module type flag F text S
:Z: what string delimiter N/A @(#) S

∗B = body, D = delta table, F = flags, U = user names
∗∗S = simple format, M = multi-line format

EXAMPLES The following command:

example% /usr/ccs/bin/prs −e −d":I:\t:P:" program.c

produces:
1.6 username
1.5 username
. . .

FILES /tmp/pr????? temporary file

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWsprot

SEE ALSO sccs(1), sccs-cdc(1), sccs-delta(1), sccs-get(1), sccs-help(1), sccs-prt(1), sccs-sact(1), sccs-
sccsdiff(1), what(1), sccsfile(4), attributes(5)

Programming Utilities Guide

DIAGNOSTICS Use the SCCS help command for explanations (see sccs-help(1)).

1-1000 SunOS 5.6 modified 30 Sep 1991

User Commands sccs-prt (1)

NAME sccs-prt, prt − display delta table information from an SCCS file

SYNOPSIS /usr/ccs/bin/prt [−abdefistu] [−cdate-time] [−rdate-time] [−ysid] s.filename . . .

DESCRIPTION prt prints selected portions of an SCCS file. By default, it prints the delta table (version
log).

If a directory name is used in place of the s.filename argument, the prt command applies
to all s.files in that directory. Unreadable s.files produce an error; processing continues
with the next file (if any). The use of ‘−’ as the s.filename argument indicates that the
names of files are to be read from the standard input, one s.file per line.

OPTIONS If any option other than −y, −c, or −r is supplied, the name of each file being processed
(preceded by one NEWLINE and followed by two NEWLINE characters) appears above its
contents.

If none of the −u, −f, −t, or −b options are used, −d is assumed. −s, −i are mutually
exclusive, as are −c and −r.

−a Display log entries for all deltas, including those marked as removed.

−b Print the body of the s.file.

−d Print delta table entries. This is the default.

−e Everything. This option implies −d, −i, −u, −f, and −t.

−f Print the flags of each named s.file.

−i Print the serial numbers of included, excluded, and ignored deltas.

−s Print only the first line of the delta table entries; that is, only up to the statistics.

−t Print the descriptive text contained in the s.file.

−u Print the user-names and/or numerical group IDs of users allowed to make del-
tas.

−cdate-time
Exclude delta table entries that are specified cutoff date and time. Each entry is
printed as a single line, preceded by the name of the SCCS file. This format (also
produced by −r , and −y) makes it easy to sort multiple delta tables in chronologi-
cal order. When both −y and −c, or −y and −r are supplied, prt stops printing
when the first of the two conditions is met.

−rdate-time
Exclude delta table entries that are newer than the specified cutoff date and time.

−ysid Exclude delta table entries made prior to the SID specified. If no delta in the table
has the specified SID, the entire table is printed. If no SID is specified, the most
recent delta is printed.

modified 5 Oct 1990 SunOS 5.6 1-1001

sccs-prt (1) User Commands

USAGE
Output Format The following format is used to print those portions of the s.file that are specified by the

various options.
· NEWLINE
· Type of delta (D or R)
· SPACE
· SCCS delta ID (SID)
· TAB
· Date and time of creation in the form: yy/mm/dd hh/mm/ss
· SPACE
· Username the delta’s creator
· TAB
· Serial number of the delta
· SPACE
· Predecessor delta’s serial number
· TAB
· Line-by-line change statistics in the form: inserted/deleted/unchanged
· NEWLINE
· List of included deltas, followed by a NEWLINE (only if there were any such

deltas and the −i options was used)
· List of excluded deltas, followed by a NEWLINE (only if there were any such

deltas and the −i options was used)
· List of ignored deltas, followed by a NEWLINE (only if there were any such

deltas and the −i options was used)
· List of modification requests (MR s), followed by a NEWLINE (only if any MR

numbers were supplied).
· Lines of the delta commentary (if any), followed by a NEWLINE.

EXAMPLES The following command:

example% /usr/ccs/bin/prt −y program.c

produces a one-line display of the delta table entry for the most recent version:

s.program.c: D 1.6 88/07/06 21:39:39 username 5 4 00159/00080/00636. . .

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWsprot

SEE ALSO sccs(1), sccs-cdc(1), sccs-delta(1), sccs-get(1), sccs-help(1), sccs-prs(1), sccs-sact(1),
sccs-sccsdiff(1), what(1), sccsfile(4), attributes(5)

DIAGNOSTICS Use the SCCS help command for explanations (see sccs-help(1)).

1-1002 SunOS 5.6 modified 5 Oct 1990

User Commands sccs-rmdel (1)

NAME sccs-rmdel, rmdel − remove a delta from an SCCS file

SYNOPSIS /usr/ccs/bin/rmdel −rsid s.filename . . .

DESCRIPTION rmdel removes the delta specified by the SCCS delta ID (SID) supplied with −r. The delta
to be removed must be the most recent (leaf) delta in its branch. In addition, the SID must
not be that of a version checked out for editing: it must not appear in any entry of the ver-
sion lock file (p.file).

If you created the delta, or, if you own the file and directory and have write permission,
you can remove it with rmdel.

If a directory name is used in place of the s.filename argument, the rmdel command
applies to all s.files in that directory. Unreadable s.files produce an error; processing con-
tinues with the next file (if any). The use of ‘−’ as the s.filename argument indicates that
the names of files are to be read from the standard input, one s.file per line.

OPTIONS −rsid Remove the version corresponding to the indicated SID (delta).

FILES p.file permissions file
s.file history file
z.file temporary copy of the s.file

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWsprot

SEE ALSO sccs(1), sccs-admin(1), sccs-cdc(1), sccs-comb(1), sccs-delta(1), sccs-help(1), sccs-prs(1),
sccs-prt(1), sccs-sccsdiff(1), sccs-unget(1), what(1), sccsfile(4), attributes(5)

Programming Utilities Guide

DIAGNOSTICS Use the SCCS help command for explanations (see sccs-help(1)).

modified 30 Sep 1991 SunOS 5.6 1-1003

sccs-sact (1) User Commands

NAME sccs-sact, sact − show editing activity status of an SCCS file

SYNOPSIS /usr/ccs/bin/sact s.filename . . .

DESCRIPTION sact informs the user of any SCCS files that are checked out for editing.

The output for each named file consists of five fields separated by SPACE characters.
· SID of a delta that currently exists in the SCCS file, to which changes will be

made to make the new delta
· SID for the new delta to be created
· Username of the person who has the file checked out for editing.
· Date that the version was checked out.
· Time that the version was checked out.

If a directory name is used in place of the s.filename argument, the sact command applies
to all s.files in that directory. Unreadable s.files produce an error; processing continues
with the next file (if any). The use of ‘−’ as the s.filename argument indicates that the
names of files are to be read from the standard input, one s.file per line.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWsprot

SEE ALSO sccs(1), sccs-delta(1), sccs-get(1), sccs-help(1), sccs-prs(1), sccs-prt(1), what(1),
sccsfile(4), attributes(5)

Programming Utilities Guide

DIAGNOSTICS Use the SCCS help command for explanations (see sccs-help(1)).

BUGS sact is not recognized as a subcommand of sccs(1).

1-1004 SunOS 5.6 modified 30 Sep 1991

User Commands sccs-sccsdiff (1)

NAME sccs-sccsdiff, sccsdiff − compare two versions of an SCCS file

SYNOPSIS /usr/ccs/bin/sccsdiff [−p] −rsid −rsid [diff-options] s.filename

DESCRIPTION sccsdiff compares two versions of an SCCS file and displays the differences between the
two versions. Any number of SCCS files may be specified; the options specified apply to
all named s.files.

OPTIONS −p Pipe output for each file through pr(1).

−rsid Specify a version corresponding to the indicated SCCS delta ID (SID) for com-
parison. Versions are passed to diff(1) in the order given.

diff-options
Pass options to diff(1), including: −c, −e, −f, −h, −b and −D.

FILES /tmp/get????? temporary files

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWsprot

SEE ALSO diff(1), sccs(1), sccs-delta(1), sccs-get(1), sccs-help(1), sccs-prs(1), sccs-prt(1), what(1),
sccsfile(4), attributes(5)

Programming Utilities Guide

DIAGNOSTICS filename: No differences
If the two versions are the same.

Use the SCCS help command for explanations of other messages (see sccs-help(1)).

modified 30 Sep 1991 SunOS 5.6 1-1005

sccs-unget (1) User Commands

NAME sccs-unget, unget − undo a previous get of an SCCS file

SYNOPSIS /usr/ccs/bin/unget [−ns] [−rsid] s.filename . . .

DESCRIPTION unget undoes the effect of a ‘get −e’ done prior to the creation of the pending delta.

If a directory name is used in place of the s.filename argument, the unget command
applies to all s.files in that directory. Unreadable s.files produce an error; processing con-
tinues with the next file (if any). The use of ‘−’ as the s.filename argument indicates that
the names of files are to be read from the standard input, one s.file per line.

OPTIONS −n Retain the retrieved version, which is otherwise removed.

−s Suppress display of the SCCS delta ID (SID).

−rsid When multiple versions are checked out, specify which pending delta to abort. A
diagnostic results if the specified SID is ambiguous, or if it is necessary but omit-
ted from the command line.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWsprot

SEE ALSO sccs(1), sccs-delta(1), sccs-get(1), sccs-help(1), sccs-prs(1), sccs-prt(1), sccs-rmdel(1),
sccs-sact(1), sccs-sccsdiff(1), what(1), sccsfile(4), attributes(5)

DIAGNOSTICS Use the SCCS help command for explanations (see sccs-help(1)).

1-1006 SunOS 5.6 modified 11 Oct 1990

User Commands sccs-val (1)

NAME sccs-val, val − validate an SCCS file

SYNOPSIS /usr/ccs/bin/val −
/usr/ccs/bin/val [−s] [−m name] [−rsid] [−y type] s.filename . . .

DESCRIPTION val determines if the specified s.files files meet the characteristics specified by the indi-
cated arguments. val can process up to 50 files on a single command line.

val has a special argument, ‘−’, which reads the standard input until the end-of-file condi-
tion is detected. Each line read is independently processed as if it were a command line
argument list.

val generates diagnostic messages on the standard output for each command line and file
processed and also returns a single 8−bit code upon exit as described below.

The 8-bit code returned by val is a disjunction of the possible errors, that is, it can be
interpreted as a bit string where (moving from left to right) the bits set are interpreted as
follows:

bit 0 = missing file argument
bit 1 = unknown or duplicate option
bit 2 = corrupted s.file
bit 3 = can not open file or file not in s.file format
bit 4 = the SCCS delta ID (SID) is invalid or ambiguous
bit 5 = the SID does not exist
bit 6 = mismatch between %Y% and −y argument
bit 7 = mismatch between %M% −m argument

val can process two or more files on a given command line, and in turn can process mul-
tiple command lines (when reading the standard input). In these cases, an aggregate
code is returned which is the logical OR of the codes generated for each command line
and file processed.

OPTIONS −s Silent. Suppress the normal error or warning messages.

−m name Compare name with the %M% ID keyword in the s.file.

−rsid Check to see if the indicated SID is ambiguous, invalid, or absent from the
s.file.

−y type Compare type with the %Y% ID keyword.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWsprot

modified 30 Sep 1991 SunOS 5.6 1-1007

sccs-val (1) User Commands

SEE ALSO sccs(1), sccs-admin(1), sccs-delta(1), sccs-get(1), sccs-help(1), what(1), sccsfile(4), attri-
butes(5)

Programming Utilities Guide

DIAGNOSTICS Use the SCCS help command for explanations (see sccs-help(1)).

1-1008 SunOS 5.6 modified 30 Sep 1991

User Commands script (1)

NAME script − make record of a terminal session

SYNOPSIS script [−a] [filename]

DESCRIPTION script makes a record of everything printed on your screen. The record is written to
filename. If no file name is given, the record is saved in the file typescript.

The script command forks and creates a sub-shell, according to the value of $SHELL, and
records the text from this session. The script ends when the forked shell exits or when
CTRL-D is typed.

OPTIONS −a Append the session record to filename, rather than overwrite it.

NOTES script places everything that appears on the screen in filename, including prompts.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu
CSI enabled

SEE ALSO attributes(5)

modified 8 Feb 1994 SunOS 5.6 1-1009

sdiff (1) User Commands

NAME sdiff − print differences between two files side-by-side

SYNOPSIS sdiff [−l] [−s] [−o output] [−w n] filename1 filename2

DESCRIPTION sdiff uses the output of the diff command to produce a side-by-side listing of two files
indicating lines that are different. Lines of the two files are printed with a blank gutter
between them if the lines are identical, a < in the gutter if the line appears only in
filename1, a > in the gutter if the line appears only in filename2, and a | for lines that are
different. (See the EXAMPLES section below.)

OPTIONS −l Print only the left side of any lines that are identical.

−s Do not print identical lines.

−o output Use the argument output as the name of a third file that is created as a
user-controlled merge of filename1 and filename2. Identical lines of
filename1 and filename2 are copied to output . Sets of differences, as pro-
duced by diff, are printed; where a set of differences share a common
gutter character. After printing each set of differences, sdiff prompts
the user with a % and waits for one of the following user-typed com-
mands:

l Append the left column to the output file.
r Append the right column to the output file.
s Turn on silent mode; do not print identical lines.
v Turn off silent mode.
e l Call the editor with the left column.
e r Call the editor with the right column.
e b Call the editor with the concatenation of left and right.
e Call the editor with a zero length file.
q Exit from the program.

On exit from the editor, the resulting file is concatenated to the end of
the output file.

−w n Use the argument n as the width of the output line. The default line
length is 130 characters.

USAGE See largefile(5) for the description of the behavior of sdiff when encountering files
greater than or equal to 2 Gbyte (231 bytes).

EXAMPLES A sample output of sdiff follows.

x | y
a a
b <
c <
d d

> c

1-1010 SunOS 5.6 modified 20 Dec 1996

User Commands sdiff (1)

ENVIRONMENT If any of the LC_∗ variables (LC_CTYPE, LC_MESSAGES, LC_TIME, LC_COLLATE,
LC_NUMERIC, and LC_MONETARY) (see environ(5)) are not set in the environment, the
operational behavior of sdiff for each corresponding locale category is determined by the
value of the LANG environment variable. If LC_ALL is set, its contents are used to over-
ride both the LANG and the other LC_∗ variables. If none of the above variables is set in
the environment, the "C" locale determines how sdiff behaves.

LC_CTYPE
Determines how sdiff handles characters. When LC_CTYPE is set to a valid
value, sdiff can display and handle text and filenames containing valid charac-
ters for that locale.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu
CSI Enabled

SEE ALSO diff(1), ed(1), attributes(5), environ(5), largefile(5)

modified 20 Dec 1996 SunOS 5.6 1-1011

sed (1) User Commands

NAME sed − stream editor

SYNOPSIS /usr/bin/sed [−n] script [file . . .]
/usr/bin/sed [−n] [−e script] . . . [−f script_file] . . . [file . . .]

/usr/xpg4/bin/sed [−n] script [file . . .]
/usr/xpg4/bin/sed [−n] [−e script] . . . [−f script_file] . . . [file . . .]

DESCRIPTION The sed utility is a stream editor that reads one or more text files, makes editing changes
according to a script of editing commands, and writes the results to standard output.
The script is obtained from either the script operand string, or a combination of the
option-arguments from the −e script and −f script_file options.

The sed utility is a text editor. It cannot edit binary files or files containing ASCII NUL
(\0) characters or very long lines.

OPTIONS The following options are supported;

−e script script is an edit command for sed. See USAGE below for more informa-
tion on the format of script. If there is just one −e option and no −f
options, the flag −e may be omitted.

−f script_file Take the script from script_file. script_file consists of editing commands,
one per line.

−n Suppress the default output.

Multiple −e and −f options may be specified. All commands are added to the script in the
order specified, regardless of their origin.

OPERANDS The following operands are supported:

file A path name of a file whose contents will be read and edited. If multi-
ple file operands are specified, the named files will be read in the order
specified and the concatenation will be edited. If no file operands are
specified, the standard input will be used.

script A string to be used as the script of editing commands. The application
must not present a script that violates the restrictions of a text file except
that the final character need not be a NEWLINE character.

USAGE A script consists of editing commands, one per line, of the following form:

[address [, address]] command [arguments]

Zero or more blank characters are accepted before the first address and before command.
Any number of semicolons are accepted before the first address.

In normal operation, sed cyclically copies a line of input (less its terminating NEWLINE
character) into a pattern space (unless there is something left after a D command), applies
in sequence all commands whose addresses select that pattern space, and copies the result-
ing pattern space to the standard output (except under −n) and deletes the pattern space.
Whenever the pattern space is written to standard output or a named file, sed will

1-1012 SunOS 5.6 modified 18 Mar 1997

User Commands sed (1)

immediately follow it with a NEWLINE character.

Some of the commands use a hold space to save all or part of the pattern space for subse-
quent retrieval. The pattern and hold spaces will each be able to hold at least 8192 bytes.

sed Addresses An address is either empty, a decimal number that counts input lines cumulatively across
files, a $ that addresses the last line of input, or a context address, which consists of a /reg-
ular expression/ as described on the regexp(5) manual page.

A command line with no addresses selects every pattern space.

A command line with one address selects each pattern space that matches the address.

A command line with two addresses selects the inclusive range from the first pattern
space that matches the first address through the next pattern space that matches the
second address. Thereafter the process is repeated, looking again for the first address. (If
the second address is a number less than or equal to the line number selected by the first
address, only the line corresponding to the first address is selected.)

Typically, address are separated from each other by a comma (,). They may also be
separated by a semicolon (;).

sed Regular
Expressions

sed supports the basic regular expressions described on the regexp(5) manual page, with
the following additions:

\cREc In a context address, the construction \cREc, where c is any character
other than a backslash or NEWLINE character, is identical to /RE/. If
the character designated by c appears following a backslash, then it is
considered to be that literal character, which does not terminate the RE.
For example, in the context address \xabc\xdefx, the second x stands
for itself, so that the regular expression is abcxdef.

\n The escape sequence \n matches a NEWLINE character embedded in the
pattern space. A literal NEWLINE character must not be used in the reg-
ular expression of a context address or in the substitute command.

Editing commands can be applied only to non-selected pattern spaces by use of the nega-
tion command ! (described below).

sed Editing
Commands

In the following list of functions the maximum number of permissible addresses for each
function is indicated.

The r and w commands take an optional rfile (or wfile) parameter, separated from the
command letter by one or more blank characters.

Multiple commands can be specified by separating them with a semicolon (;) on the same
command line.

The text argument consists of one or more lines, all but the last of which end with \ to
hide the NEWLINE. Each embedded NEWLINE character in the text must be preceded by a
backslash. Other backslashes in text are removed and the following character is treated
literally. Backslashes in text are treated like backslashes in the replacement string of an s
command, and may be used to protect initial blanks and tabs against the stripping that is

modified 18 Mar 1997 SunOS 5.6 1-1013

sed (1) User Commands

done on every script line. The rfile or wfile argument must terminate the command line
and must be preceded by exactly one blank. The use of the wfile parameter causes that
file to be initially created, if it does not exist, or will replace the contents of an existing file.
There can be at most 10 distinct wfile arguments.

Regular expressions match entire strings, not just individual lines, but a NEWLINE char-
acter is matched by \n in a sed RE; a NEWLINE character is not allowed in an RE. Also
note that \n cannot be used to match a NEWLINE character at the end of an input line;
NEWLINE characters appear in the pattern space as a result of the N editing command.

Two of the commands take a command-list, which is a list of sed commands separated by
NEWLINE characters, as follows:

{ command
command
}

The { can be preceded with blank characters and can be followed with white space. The
commands can be preceded by white space. The terminating } must be preceded by a
NEWLINE character and can be preceded or followed by <blank>s. The braces may be
preceded or followed by <blank>s. The command may be preceeded by <blank>s, but
may not be followed by <blank>s.

The following table lists the functions.

1-1014 SunOS 5.6 modified 18 Mar 1997

User Commands sed (1)

Maximum Command Description
Number of
Addresses

2 {command-list
} Execute command-list only when the pattern space is selected.

1 a\
text Append by executing N command or beginning a new cycle.

Place text on the output before reading the next input line.
2 b label Branch to the : command bearing the label. If label is empty,

branch to the end of the script. Labels are recognized unique
up to eight characters.

2 c\
text Change. Delete the pattern space. Place text on the output.

Start the next cycle.
2 d Delete the pattern space. Start the next cycle.
2 D Delete the initial segment of the pattern space through

the first new-line. Start the next cycle.
(See the N command below.)

2 g Replace the contents of the pattern space by the contents
of the hold space.

2 G Append the contents of the hold space to the pattern space.
2 h Replace the contents of the hold space by the contents of

the pattern space.
2 H Append the contents of the pattern space to the hold space.
1 i\

text Insert. Place text on the standard output.
2 l /usr/bin/sed: List the pattern space on the standard

output in an unambiguous form. Non-printable characters
are displayed in octal notation and long lines are folded.

/usr/xpg4/bin/sed: List the pattern space on the standard
output in an unambiguous form. Non-printable characters are
displayed in octal notation and long lines are folded.
The characters (\\, \a, \b, \f, \r, \t, and \v) are written as the
corresponding escape sequences. Non-printable characters not in
that table will be written as one three-digit octal number (with
a preceding backslash character) for each byte in the character
(most significant byte first). If the size of a byte on the
system is greater than nine bits, the format used for
non-printable characters is implementation dependent.

Long lines are folded, with the point of folding indicated by
writing a backslash followed by a NEWLINE; the length at which
folding occurs is unspecified, but should be appropriate for
the output device. The end of each line is marked with a $.

modified 18 Mar 1997 SunOS 5.6 1-1015

sed (1) User Commands

Maximum Command Description
Number of
Addresses

2 n Copy the pattern space to the standard output if default
output is not suppressed. Replace the pattern space with the
next line of input.

2 N Append the next line of input to the pattern space with an
embedded new-line. (The current line number changes.) If no
next line of input is available, the N command verb
shall branch to the end of the script and quit without
starting a new cycle and without writing the pattern space.

2 p Print. Copy the pattern space to the standard output.
2 P Copy the initial segment of the pattern space through

the first new-line to the standard output.
1 q Quit. Branch to the end of the script. Do not start a new cycle.
2 r rfile Read the contents of rfile. Place them on the output before reading

the next input line. If rfile does not exist or cannot be read, it is
treated as if it were an empty file, causing no error condition.

2 t label Test. Branch to the : command bearing the label if any
substitutions have been made since the most recent
reading of an input line or execution of a t.
If label is empty, branch to the end of the script.

2 w wfile Write. Append the pattern space to wfile. The first occurrence
of w will cause wfile to be cleared. Subsequent invocations
of w will append. Each time the sed command is used,
wfile is overwritten.

2 x Exchange the contents of the pattern and hold spaces.
2 ! command Don’t. Apply the command (or group, if command is {)

only to lines not selected by the address(es).
0 : label This command does nothing; it bears a label for

b and t commands to branch to.
1 = Place the current line number on the standard output as a line.
2 { Execute the following commands through a matching } only

when the pattern space is selected.
0 An empty command is ignored.
0 # If a # appears as the first character on a line of a script file,

then that entire line is treated as a comment, with one exception:
if a # appears on the first line and the character after the # is an n,
then the default output will be suppressed. The rest of the line
after #n is also ignored. A script file must contain
at least one non-comment line.

1-1016 SunOS 5.6 modified 18 Mar 1997

User Commands sed (1)

Maximum Command (Using strings) and Description
Number of
Addresses

2 s/regular expression/replacement/flags
Substitute the replacement string for instances of the regular expression in
the pattern space. Any character other than backslash or newline can be
used instead of a slash to delimit the RE and the replacement. Within
the RE and the replacement, the RE delimiter itself can be used as a
literal character if it is preceded by a backslash.

An ampersand (&) appearing in the replacement will be replaced by
the string matching the RE. The special meaning of & in this context can
be suppressed by preceding it by backslash. The characters \n, where n
is a digit, will be replaced by the text matched by the corresponding
backreference expression. For each backslash (\) encountered in scanning
replacement from beginning to end, the following character loses its
special meaning (if any). It is unspecified what special meaning is given
to any character other than &, \ or digits.

A line can be split by substituting a newline character into it. The application
must escape the newline character in the replacement by preceding it by
backslash. A substitution is considered to have been performed even if the
replacement string is identical to the string that it replaces.

flags is zero or more of:

n n= 1 - 512. Substitute for just the nth occurrence of the regular expression.

g Global. Substitute for all nonoverlapping instances of the regular expression
rather than just the first one. If both g and n are specified, the results are
unspecified.

p Print the pattern space if a replacement was made.

P Copy the initial segment of the pattern space through the first
new-line to the standard output.

w wfile Write. Append the pattern space to wfile if a replacement was made.
The first occurrence of w will cause wfile to be cleared. Subsequent invocations
of w will append. Each time the sed command is used, wfile is overwritten.

2 y/ string1 / string2 /
Transform. Replace all occurrences of characters in string1 with the
corresponding characters in string2. string1 and string2 must have
the same number of characters, or if any of the characters in string1 appear
more than once, the results are undefined. Any character other than backslash
or newline can be used instead of slash to delimit the strings. Within
string1 and string2, the delimiter itself can be used as a literal character
if it is preceded by a backslash. For example, y/abc/ABC/ replaces a with
A, b with B, and c with C.

modified 18 Mar 1997 SunOS 5.6 1-1017

sed (1) User Commands

See largefile(5) for the description of the behavior of sed when encountering files greater
than or equal to 2 Gbyte (231 bytes).

EXAMPLES This sed script simulates the BSD cat −s command, squeezing excess blank lines from
standard input.

sed -n ’
Write non-empty lines.
/./ {

p
d
}

Write a single empty line, then look for more empty lines.
/ˆ$/ p
Get next line, discard the held <newline> (empty line),
and look for more empty lines.
:Empty
/ˆ$/ {

N
s/.//
b Empty
}

Write the non-empty line before going back to search
for the first in a set of empty lines.

p
’

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of sed: LC_COLLATE, LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS The following exit values are returned:

0 Successful completion.

>0 An error occurred.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

/usr/bin/sed ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu
CSI Not enabled

/usr/xpg4/bin/sed ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxcu4
CSI Enabled

SEE ALSO awk(1), ed(1), grep(1), attributes(5), environ(5), largefile(5), regexp(5), xpg4(5)

1-1018 SunOS 5.6 modified 18 Mar 1997

SunOS/BSD Compatibility Package Commands sed (1B)

NAME sed − stream editor

SYNOPSIS sed [−n] [−e script] [−f sfilename] [filename] . . .

DESCRIPTION sed copies the filenames (standard input default) to the standard output, edited according
to a script of commands.

OPTIONS −n Suppress the default output.

−e script script is an edit command for sed. If there is just one −e option and no −f
options, the −e flag may be omitted.

−f sfilename Take the script from sfilename.

USAGE
sed Scripts sed scripts consist of editing commands, one per line, of the following form:

[address [, address]] function [arguments]

In normal operation sed cyclically copies a line of input into a pattern space (unless there
is something left after a D command), sequentially applies all commands with addresses
matching that pattern space until reaching the end of the script, copies the pattern space
to the standard output (except under −n), and finally, deletes the pattern space.

Some commands use a hold space to save all or part of the pattern space for subsequent
retrieval.

An address is either:

a decimal number linecount, which is cumulative across input files;

a $, which addresses the last input line;

or a context address, which is a /regular expression/ as described on the regexp(5)
manual page, with the following exceptions:

\?RE? In a context address, the construction \ ?regular expression?, where ? is
any character, is identical to /regular expression/. Note: in the context
address \xabc\xdefx, the second x stands for itself, so that the regular
expression is abcxdef.

\n Matches a NEWLINE embedded in the pattern space.

. Matches any character except the NEWLINE ending the pattern space.

null A command line with no address selects every pattern space.

address Selects each pattern space that matches.

address1 , address2
Selects the inclusive range from the first pattern space matching
addrress1 to the first pattern space matching address2. Selects only one
line if address1 is greater than or equal to address2.

modified 28 Mar 1995 SunOS 5.6 1B-1019

sed (1B) SunOS/BSD Compatibility Package Commands

Comments If the first nonwhite character in a line is a ‘#’ (pound sign), sed treats that line as a com-
ment, and ignores it. If, however, the first such line is of the form:

#n

sed runs as if the −n flag were specified.

Functions The maximum number of permissible addresses for each function is indicated in
parentheses in the list below.

An argument denoted text consists of one or more lines, all but the last of which end with
\ to hide the NEWLINE. Backslashes in text are treated like backslashes in the replacement
string of an s command, and may be used to protect initial SPACE and TAB characters
against the stripping that is done on every script line.

An argument denoted rfilename or wfilename must terminate the command line and must
be preceded by exactly one SPACE. Each wfilename is created before processing begins.
There can be at most 10 distinct wfilename arguments.

(1) a\
text Append: place text on the output before reading the next input line.

(2) b label Branch to the ‘:’ command bearing the label. Branch to the end of the script
if label is empty.

(2) c\
text Change: delete the pattern space. With 0 or 1 address or at the end of a 2

address range, place text on the output. Start the next cycle.

(2) d Delete the pattern space. Start the next cycle.

(2) D Delete the initial segment of the pattern space through the first NEWLINE.
Start the next cycle.

(2) g Replace the contents of the pattern space by the contents of the hold space.

(2) G Append the contents of the hold space to the pattern space.

(2) h Replace the contents of the hold space by the contents of the pattern space.

(2) H Append the contents of the pattern space to the hold space.

(1) i\
text Insert: place text on the standard output.

(2) l List the pattern space on the standard output in an unambiguous form.
Non-printing characters are spelled in two digit ASCII and long lines are
folded.

(2) n Copy the pattern space to the standard output. Replace the pattern space
with the next line of input.

(2) N Append the next line of input to the pattern space with an embedded new-
line. (The current line number changes.)

(2) p Print: copy the pattern space to the standard output.

(2) P Copy the initial segment of the pattern space through the first NEWLINE to

1B-1020 SunOS 5.6 modified 28 Mar 1995

SunOS/BSD Compatibility Package Commands sed (1B)

the standard output.

(1) q Quit: branch to the end of the script. Do not start a new cycle.

(2) r rfilename
Read the contents of rfilename. Place them on the output before reading the
next input line.

(2) s/regular expression/replacement/flags
Substitute the replacement string for instances of the regular expression in the
pattern space. Any character may be used instead of ‘/’. For a fuller
description see regexp(5). flags is zero or more of:

n n= 1 − 512. Substitute for just the nth occurrence of the
regularexpression.

g Global: substitute for all nonoverlapping instances of the regu-
lar expression rather than just the first one.

p Print the pattern space if a replacement was made.

w wfilename Write: append the pattern space to wfilename if a replacement
was made.

(2) t label Test: branch to the ‘:’ command bearing the label if any substitutions have
been made since the most recent reading of an input line or execution of a t.
If label is empty, branch to the end of the script.

(2) w wfilename
Write: append the pattern space to wfilename.

(2) x Exchange the contents of the pattern and hold spaces.

(2) y/string1/string2/
Transform: replace all occurrences of characters in string1 with the
corresponding character in string2. The lengths of string1 and string2 must
be equal.

(2)! function Do not: apply the function (or group, if function is ‘{’) only to lines not
selected by the address(es).

(0) : label This command does nothing; it bears a label for b and t commands to
branch to. Note: the maximum length of label is seven characters.

(1) = Place the current line number on the standard output as a line.

(2) { Execute the following commands through a matching ‘}’ only when the pat-
tern space is selected. Commands are separated by ‘;’.

(0) An empty command is ignored.

USAGE See largefile(5) for the description of the behavior of sed when encountering files greater
than or equal to 2 Gbyte (231 bytes).

DIAGNOSTICS Too many commands
The command list contained more than 200 commands.

Too much command text

modified 28 Mar 1995 SunOS 5.6 1B-1021

sed (1B) SunOS/BSD Compatibility Package Commands

The command list was too big for sed to handle. Text in the a, c, and i com-
mands, text read in by r commands, addresses, regular expressions and replace-
ment strings in s commands, and translation tables in y commands all require
sed to store data internally.

Command line too long
A command line was longer than 4000 characters.

Too many line numbers
More than 256 decimal number linecounts were specified as addresses in the
command list.

Too many files in w commands
More than 10 different files were specified in w commands or w options for s
commands in the command list.

Too many labels
More than 50 labels were specified in the command list.

Unrecognized command
A command was not one of the ones recognized by sed.

Extra text at end of command
A command had extra text after the end.

Illegal line number
An address was neither a decimal number linecount, a $, nor a context address.

Space missing before filename
There was no space between a r or w command, or the w option for a s com-
mand, and the filename specified for that command.

Too many {’s
There were more { than } in the list of commands to be executed.

Too many }’s
There were more } than { in the list of commands to be executed.

No addresses allowed
A command that takes no addresses had an address specified.

Only one address allowed
A command that takes one address had two addresses specified.

“\digit” out of range
The number in a \n item in a regular expression or a replacement string in a s
command was greater than 9.

Bad number
One of the endpoints in a range item in a regular expression (that is, an item of
the form {n} or {n,m}) was not a number.

Range endpoint too large
One of the endpoints in a range item in a regular expression was greater than
255.

More than 2 numbers given in \{ \}

1B-1022 SunOS 5.6 modified 28 Mar 1995

SunOS/BSD Compatibility Package Commands sed (1B)

More than two endpoints were given in a range expression.

} expected after \
A \ appeared in a range expression and was not followed by a }.

First number exceeds second in \{ \}
The first endpoint in a range expression was greater than the second.

Illegal or missing delimiter
The delimiter at the end of a regular expression was absent.

\(\) imbalance
There were more \(than \), or more \) than \(, in a regular expression.

[] imbalance
There were more [than], or more] than [, in a regular expression.

First RE may not be null
The first regular expression in an address or in a s command was null (empty).

Ending delimiter missing on substitution
The ending delimiter in a s command was absent.

Ending delimiter missing on string
The ending delimiter in a y command was absent.

Transform strings not the same size
The two strings in a y command were not the same size.

Suffix too large - 512 max
The suffix in a s command, specifying which occurrence of the regular expression
should be replaced, was greater than 512.

Label too long
A label in a command was longer than 8 characters.

Duplicate labels
The same label was specified by more than one : command.

File name too long
The filename specified in a r or w command, or in the w option for a s command,
was longer than 1024 characters.

Output line too long.
An output line was longer than 4000 characters long.

Too many appends or reads after line n
More than 20 a or r commands were to be executed for line n.

Hold space overflowed.
More than 4000 characters were to be stored in the hold space.

FILES usr/ucb/sed BSD sed

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

modified 28 Mar 1995 SunOS 5.6 1B-1023

sed (1B) SunOS/BSD Compatibility Package Commands

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscpu

SEE ALSO awk(1), grep(1), lex(1), attributes(5), largefile(5), regexp(5)

BUGS There is a combined limit of 200 −e and −f arguments. In addition, there are various
internal size limits which, in rare cases, may overflow. To overcome these limitations,
either combine or break out scripts, or use a pipeline of sed commands.

1B-1024 SunOS 5.6 modified 28 Mar 1995

User Commands set (1)

NAME set, unset, setenv, unsetenv, export − shell built-in functions to determine the characteris-
tics for environmental variables of the current shell and its descendents

SYNOPSIS
sh set [−−aefhkntuvx [argument . . .]]

unset [name . . .]

export [name . . .]

csh set [var [= value]]
set var[n] = word

unset pattern

setenv [VAR [word]]

unsetenv variable

ksh set [±aefhkmnopstuvx] [±o option]. . . [±A name] [arg . . .]

unset [−f] name . . .

†† export [name[=value]] . . .

DESCRIPTION
sh The set built-in command has the following options:

−a Mark variables which are modified or created for export.

−e Exit immediately if a command exits with a non-zero exit status.

−f Disable file name generation.

−h Locate and remember function commands as functions are defined (function
commands are normally located when the function is executed).

−k All keyword arguments are placed in the environment for a command, not just
those that precede the command name.

−n Read commands but do not execute them.

−t Exit after reading and executing one command.

−u Treat unset variables as an error when substituting.

−v Print shell input lines as they are read.

−x Print commands and their arguments as they are executed.

− − Do not change any of the flags; useful in setting $1 to −.

Using + rather than − causes these flags to be turned off. These flags can also be used
upon invocation of the shell. The current set of flags may be found in $−.
The remaining arguments are positional parameters and are assigned, in order, to $1, $2,
. . . . If no arguments are given the values of all names are printed.

modified 28 Apr 1997 SunOS 5.6 1-1025

set (1) User Commands

For each name, unset removes the corresponding variable or function value. The vari-
ables PATH, PS1, PS2, MAILCHECK, and IF cannot be unset.

With the export built-in, the given names are marked for automatic export to the environ-
ment of subsequently executed commands. If no arguments are given, variable names
that have been marked for export during the current shell’s execution are listed. Function
names are not exported.

csh With no arguments, set displays the values of all shell variables. Multiword values are
displayed as a parenthesized list. With the var argument alone, set assigns an empty
(null) value to the variable var . With arguments of the form var = value set assigns value
to var , where value is one of:

word A single word (or quoted string).
(wordlist) A space-separated list of words enclosed in parentheses.

Values are command and filename expanded before being assigned. The form set var[n]
= word replaces the n’th word in a multiword value with word .

unset removes variables whose names match (filename substitution) pattern . All vari-
ables are removed by ‘unset ∗’; this has noticeably distasteful side effects.

With no arguments, setenv displays all environment variables. With the VAR argument,
setenv sets the environment variable VAR to an empty (null) value. (By convention,
environment variables are normally given upper-case names.) With both VAR and word
arguments specified, setenv sets VAR to word , which must be either a single word or a
quoted string. The PATH variable can take multiple word arguments, separated by colons
(see EXAMPLES). The most commonly used environment variables, USER, TERM, and
PATH, are automatically imported to and exported from the csh variables user, term, and
path. Use setenv if you need to change these variables. In addition, the shell sets the
PWD environment variable from the csh variable cwd whenever the latter changes.

The environment variables LC_CTYPE, LC_MESSAGES, LC_TIME, LC_COLLATE,
LC_NUMERIC, and LC_MONETARY take immediate effect when changed within the C
shell. See environ(5) for descriptions of these environment variables.

unsetenv removes variable from the environment. As with unset, pattern matching is not
performed.

ksh The flags for the set built-in have meaning as follows:

−A Array assignment. Unset the variable name and assign values sequentially from
the list arg . If +A is used, the variable name is not unset first.

−a All subsequent variables that are defined are automatically exported.

−e If a command has a non-zero exit status, execute the ERR trap, if set, and exit.
This mode is disabled while reading profiles.

−f Disables file name generation.

−h Each command becomes a tracked alias when first encountered.

1-1026 SunOS 5.6 modified 28 Apr 1997

User Commands set (1)

−k All variable assignment arguments are placed in the environment for a com-
mand, not just those that precede the command name.

−m Background jobs will run in a separate process group and a line will print upon
completion. The exit status of background jobs is reported in a completion mes-
sage. On systems with job control, this flag is turned on automatically for
interactive shells.

−n Read commands and check them for syntax errors, but do not execute them.
Ignored for interactive shells.

−o The following argument can be one of the following option names:

allexport Same as −a.

errexit Same as −e.

bgnice All background jobs are run at a lower priority. This is the
default mode. emacs Puts you in an emacs style in-line editor
for command entry.

gmacs Puts you in a gmacs style in-line editor for command entry.

ignoreeof The shell will not exit on end-of-file. The command exit must
be used.

keyword Same as −k.

markdirs All directory names resulting from file name generation have a
trailing / appended.

monitor Same as −m.

noclobber Prevents redirection > from truncating existing files. Require
>� to truncate a file when turned on.

noexec Same as −n.

noglob Same as −f.

nolog Do not save function definitions in history file.

nounset Same as −u.

privileged Same as −p.

verbose Same as −v.

trackall Same as −h.

vi Puts you in insert mode of a vi style in-line editor until you hit
escape character 033. This puts you in control mode. A return
sends the line.

viraw Each character is processed as it is typed in vi mode.

xtrace Same as −x.

If no option name is supplied then the current option settings are printed.

−p Disables processing of the $HOME/.profile file and uses the file /etc/suid_profile
instead of the ENV file. This mode is on whenever the effective uid is not equal

modified 28 Apr 1997 SunOS 5.6 1-1027

set (1) User Commands

to the real uid, or when the effective gid is not equal to the real gid. Turning this
off causes the effective uid and gid to be set to the real uid and gid.

−s Sort the positional parameters lexicographically.

−t Exit after reading and executing one command.

−u Treat unset parameters as an error when substituting.

−v Print shell input lines as they are read.

−x Print commands and their arguments as they are executed.

− Turns off −x and −v flags and stops examining arguments for flags.

− − Do not change any of the flags; useful in setting $1 to a value beginning with −.
If no arguments follow this flag then the positional parameters are unset.

Using + rather than − causes these flags to be turned off. These flags can also be used
upon invocation of the shell. The current set of flags may be found in $−. Unless −A is
specified, the remaining arguments are positional parameters and are assigned, in order,
to $1 $2 If no arguments are given then the names and values of all variables are
printed on the standard output.

The variables given by the list of names are unassigned, i.e., their values and attributes are
erased. readonly variables cannot be unset. If the −f, flag is set, then the names refer to
function names. Unsetting ERRNO, LINENO, MAILCHECK, OPTARG, OPTIND, RANDOM,
SECONDS, TMOUT, and _ removes their special meaning even if they are subsequently
assigned.

When using unset, the variables given by the list of names are unassigned, i.e., their
values and attributes are erased. readonly variables cannot be unset. If the −f, flag is set,
then the names refer to function names. Unsetting ERRNO, LINENO, MAILCHECK,
OPTARG, OPTIND, RANDOM, SECONDS, TMOUT, and _ removes their special meaning
even if they are subsequently assigned.

With the export built-in, the given names are marked for automatic export to the environ-
ment of subsequently-executed commands.

On this man page, ksh(1) commands that are preceded by one or two † (daggers) are
treated specially in the following ways:

1. Variable assignment lists preceding the command remain in effect when the com-
mand completes.

2. I/O redirections are processed after variable assignments.
3. Errors cause a script that contains them to abort.
4. Words, following a command preceded by †† that are in the format of a variable

assignment, are expanded with the same rules as a variable assignment. This
means that tilde substitution is performed after the = sign and word splitting and
file name generation are not performed.

EXAMPLES
csh The following example sets the PATH variable to search for files in the /bin, /usr/bin,

/usr/sbin, and /usr/ucb/bin directories, in that order.

1-1028 SunOS 5.6 modified 28 Apr 1997

User Commands set (1)

setenv PATH "/bin:/usr/bin:/usr/sbin:usr/ucb/bin"

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO csh(1), ksh(1), read(1), sh(1), typeset(1), attributes(5), environ(5)

modified 28 Apr 1997 SunOS 5.6 1-1029

set (1F) FMLI Commands

NAME set, unset − set and unset local or global environment variables

SYNOPSIS set [−l variable[=value]] ...
set [−e variable[=value]] ...
set [−ffile variable[=value]] ...

unset −l variable ...
unset −ffile variable ...

DESCRIPTION The set command sets variable in the environment, or adds variable=value to file. If variable
is not equated it to a value, set expects the value to be on stdin. The unset command
removes variable. Note that the FMLI predefined, read-only variables (such as ARG1),
may not be set or unset.

Note that at least one of the above options must be used for each variable being set or
unset. If you set a variable with the −ffilename option, you must thereafter include
filename in references to that variable. For example, ${(file)VARIABLE}.

FMLI inherits the UNIX environment when invoked.

OPTIONS −l Sets or unsets the specified variable in the local environment. Variables set with
-l will not be inherited by processes invoked from FMLI.

−e Sets the specified variable in the UNIX environment. Variables set with -e will be
inherited by any processes started from FMLI. Note that these variables cannot
be unset.

-ffile Sets or unsets the specified variable in the global environment. The argument file
is the name, or pathname, of a file containing lines of the form variable=value. file
will be created if it does not already exist. Note that no space intervenes between
−f and file.

EXAMPLE Storing a selection made in a menu:

name=Selection 2
action=`set −l SELECTION=2`close

NOTES Variables set to be available to the UNIX environment (those set using the −e option) can
only be set for the current fmli process and the processes it calls.

When using the −f option, unless file is unique to the process, other users of FMLI on the
same machine will be able to expand these variables, depending on the read/write per-
missions on file.

A variable set in one frame may be referenced or unset in any other frame. This includes
local variables.

1F-1030 SunOS 5.6 modified 5 Jul 1990

FMLI Commands set (1F)

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO env(1), sh(1), attributes(5)

modified 5 Jul 1990 SunOS 5.6 1F-1031

setcolor (1F) FMLI Commands

NAME setcolor − redefine or create a color

SYNOPSIS setcolor color red_level green_level blue_level

DESCRIPTION The setcolor command takes four arguments: color, which must be a string naming the
color; and the arguments red_level, green_level, and blue_level, which must be integer
values defining, respectively, the intensity of the red, green, and blue components of
color. Intensities must be in the range of 0 to 1000. If you are redefining an existing color,
you must use its current name (default color names are: black, blue, green, cyan, red,
magenta, yellow, and white). setcolor returns the color’s name string.

EXAMPLES The following is an example of the arguments that setcolor takes:

`setcolor blue 100 24 300`

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO attributes(5)

1F-1032 SunOS 5.6 modified 5 Jul 1990

User Commands setfacl (1)

NAME setfacl − modify the Access Control List (ACL) for a file or files

SYNOPSIS setfacl [−r] −s acl_entries file . . .

setfacl [−r] −md acl_entries file . . .

setfacl [−r] −f acl_file file . . .

DESCRIPTION For each file specified, setfacl will either replace its entire ACL, including the default ACL
on a directory, or it will add, modify, or delete one or more ACL entries, including default
entries on directories.

The −s option will set the ACL to the entries specified on the command line. The −f
option will set the ACL to the entries contained within the file acl_file. The −d option will
delete one or more specified entries from the file’s ACL. The −m option will add or
modify one or more specified ACL entries. The −r option will cause the permissions
specified in the mask entry to be ignored and replaced by the maximum permissions
needed for the file group class.

One of the options −s, −m, −d, or −f must be specified. If −s or −f are specified, other
options are invalid. The −m and −d options may be combined.

When the setfacl command is used, it may result in changes to the file permission bits.
When the user ACL entry for the file owner is changed, the file owner class permission
bits will be modified. When the group ACL entry for the file group class is changed, the
file group class permission bits will be modified. When the other ACL entry is changed,
the file other class permission bits will be modified.

A directory may contain default ACL entries. If a file is created in a directory that con-
tains default ACL entries, the newly created file will have permissions generated accord-
ing to the intersection of umask(1), the default ACL entries, and the permissions
requested at creation time. If a default ACL is specified for a specific user (or users), the
file will have a regular ACL created; otherwise, only the mode bits will be initialized
according to the intersection described above. The default ACL should be thought of as
the maximum discretionary access permissions that may be granted.

acl_entries Syntax For the −m and −s options, acl_entries are one or more comma-separated ACL entries
selected from the following list. For the −f option, acl_file must contain ACL entries, one
to a line, selected from the following list. Default entries may only be specified for direc-
tories. Bold face indicates that characters must be typed as specified, brackets denote
optional characters, and italicized characters are to be specified by the user.

u[ser]::operm | perm
u[ser]:uid:operm | perm
g[roup]::operm | perm
g[roup]:gid:operm | perm
m[ask]:operm | perm
o[ther]:operm | perm
d[efault]:u[ser]::operm | perm
d[efault]:u[ser]:uid:operm | perm

modified 24 Feb 1997 SunOS 5.6 1-1033

setfacl (1) User Commands

d[efault]:g[roup]::operm | perm
d[efault]:g[roup]:gid:operm | perm
d[efault]:m[ask]:operm | perm
d[efault]:o[ther]:operm | perm

For the −d option, acl_entries are one or more comma-separated ACL entries without per-
missions, selected from the following list. Note that the entries for file owner, owning
group, file group class, and others may not be deleted.

u[ser]:uid
g[roup]:gid
d[fault]:u[ser]:uid
d[fault]:g[roup]:gid
d[fault]:m[ask]:
d[fault]:o[ther]:

where:

perm is a permissions string composed of the character r(read), w(write), and
x(execute), each of which may appear at most one time. The character − may
be specified as a place holder.

operm is the octal representation of the above permissions, with 7 representing all
permissions, or rwx, and 0 representing no permissions, or - - -.

uid is a login name or user ID.

gid is a group name or group ID.

OPTIONS The options have the following meaning:

−s acl_entries Set a file’s ACL. All old ACL entries are removed and replaced with
the newly specified ACL.

Required entries:

· Exactly one user entry specified for the owner of the file.
· Exactly one group entry for the owning group of the file.
· Exactly one other entry specified.

If there are additional user and group entries:

· Exactly one mask entry specified for the file group class of the
file.

· Must not be duplicate user entries with the same uid.
· Must not be duplicate group entries with the same gid.

If file is a directory:

· Default ACL entries may be specified.
· Exactly one default user entry for the owner of the file.
· Exactly one default group entry for for the owning group of

the file.
· Exactly one default mask entry for the file group class of the

file.

1-1034 SunOS 5.6 modified 24 Feb 1997

User Commands setfacl (1)

· Exactly one default other entry.

There may be additional default user entries and additional default
group entries specified, but there may not be duplicate additional
default user entries with the same uid, or duplicate default group
entries with the same gid. The entries need not be in any specific
order. They will be sorted by the command before being applied to
the file.

−m acl_entries Add one or more new ACL entries to the file, and/or modify one or
more existing ACL entries on the file. If an entry already exists for a
specified uid or gid, the specified permissions will replace the current
permissions. If an entry does not exist for the specified uid or gid, an
entry will be created.

−d acl_entries Delete one or more entries from the file. The entries for the file
owner, the owning group, and others may not be deleted from the
ACL. Note that deleting an entry does not necessarily have the same
effect as removing all permissions from the entry.

−f acl_file Set a file’s ACL with the ACL entries contained in the file named
acl_file. The same constraints on specified entries hold as with the −s
option. The entries are not required to be in any specific order in the
file.

The character "#" in acl_file may be used to indicate a comment. All
characters, starting with the "#" until the end of the line, will be
ignored. Note that if the acl_file has been created as the output of the
getfacl(1) command, any effective permissions, which will follow a
"#", will be ignored.

−r Recalculate the permissions for the file group class entry, that is, the
mask entry. The permissions specified in the file group class entry
are ignored and replaced by the maximum permissions necessary to
grant the access in any additional user, owning group, and addi-
tional group entries in the ACL. The permissions in the additional
user, owning group, and additional group entries are left unchanged.

EXAMPLES 1. To add one ACL entry to file "foo", giving user "shea" read permission only, type:

setfacl −m user:shea:r−− foo

2. To replace the entire ACL for the file "foo", adding an entry for user "shea", allowing
read/write access, an entry for the file owner allowing all access, an entry for the file
group allowing read access only, an entry for file group class allowing read/write,
and an entry for others disallowing all access, type:

setfacl −s user:shea:rw−,user::rwx,group::r−−,mask:rw−,other:−−− foo

modified 24 Feb 1997 SunOS 5.6 1-1035

setfacl (1) User Commands

Note that following this command, the file permission bits will be set to
rwxr−−−−−. Even though the file owning group has only read permission, the max-
imum permissions available to all additional user ACL entries, and all group ACL
entries, are read and write. This is because the mask entry specifies these permis-
sions.

3. To set the same ACL on file "foo" as the file "bar", type:

getfacl bar | setfacl −f − foo

FILES /etc/passwd password file
/etc/group group file

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO getfacl(1), aclcheck(3), aclsort(3), group(4), passwd(4), attributes(5)

1-1036 SunOS 5.6 modified 24 Feb 1997

User Commands sh (1)

NAME sh, jsh − standard and job control shell and command interpreter

SYNOPSIS /usr/bin/sh [−acefhiknprstuvx] [argument. . .]
/usr/xpg4/bin/sh [±abCefhikmnoprstuvx] [±o option] . . . [−c string] [arg . . .]

/usr/bin/jsh [−acefhiknprstuvx] [argument. . .]

DESCRIPTION The /usr/bin/sh utility is a command programming language that executes commands
read from a terminal or a file.

The /usr/xpg4/bin/sh utility is identical to /usr/bin/ksh. See ksh(1).

The jsh utility is an interface to the shell that provides all of the functionality of sh and
enables job control (see Job Control section below).

Arguments to the shell are listed in the Invocation section below.

Definitions A blank is a tab or a space. A name is a sequence of ASCII letters, digits, or underscores,
beginning with a letter or an underscore. A parameter is a name, a digit, or any of the
characters ∗, @, #, ?, −, $, and !.

USAGE
Commands A simple-command is a sequence of non-blank words separated by blanks. The first word

specifies the name of the command to be executed. Except as specified below, the
remaining words are passed as arguments to the invoked command. The command name
is passed as argument 0 (see exec(2)). The value of a simple-command is its exit status if it
terminates normally, or (octal) 200+status if it terminates abnormally; see signal(5) for a
list of status values.

A pipeline is a sequence of one or more commands separated by �. The standard output of
each command but the last is connected by a pipe(2) to the standard input of the next com-
mand. Each command is run as a separate process; the shell waits for the last command to
terminate. The exit status of a pipeline is the exit status of the last command in the pipeline.

A list is a sequence of one or more pipelines separated by ;, &, &&, or � �, and optionally
terminated by ; or &. Of these four symbols, ; and & have equal precedence, which is
lower than that of && and � �. The symbols && and � � also have equal precedence. A
semicolon (;) causes sequential execution of the preceding pipeline (that is, the shell waits
for the pipeline to finish before executing any commands following the semicolon); an
ampersand (&) causes asynchronous execution of the preceding pipeline (that is, the shell
does not wait for that pipeline to finish). The symbol && (� �) causes the list following it
to be executed only if the preceding pipeline returns a zero (non-zero) exit status. An
arbitrary number of newlines may appear in a list, instead of semicolons, to delimit com-
mands.

A command is either a simple-command or one of the following. Unless otherwise stated,
the value returned by a command is that of the last simple-command executed in the com-
mand.

for name [in word . . .] do list done
Each time a for command is executed, name is set to the next word taken from the

modified 9 May 1997 SunOS 5.6 1-1037

sh (1) User Commands

in word list. If in word . . . is omitted, then the for command executes the do list
once for each positional parameter that is set (see Parameter Substitution section
below). Execution ends when there are no more words in the list.

case word in [pattern [� pattern]) list ; ;] . . . esac
A case command executes the list associated with the first pattern that matches
word . The form of the patterns is the same as that used for file-name generation
(see File Name Generation section) except that a slash, a leading dot, or a dot
immediately following a slash need not be matched explicitly.

if list ; then list ; [elif list ; then list ;] . . . [else list ;] fi
The list following if is executed and, if it returns a zero exit status, the list follow-
ing the first then is executed. Otherwise, the list following elif is executed and, if
its value is zero, the list following the next then is executed. Failing that, the else
list is executed. If no else list or then list is executed, then the if command
returns a zero exit status.

while list do list done
A while command repeatedly executes the while list and, if the exit status of the
last command in the list is zero, executes the do list; otherwise the loop ter-
minates. If no commands in the do list are executed, then the while command
returns a zero exit status; until may be used in place of while to negate the loop
termination test.

(list)
Execute list in a sub-shell.

{ list;}
list is executed in the current (that is, parent) shell. The { must be followed by a
space.

name () { list;}
Define a function which is referenced by name. The body of the function is the
list of commands between { and }. The { must be followed by a space. Execution
of functions is described below (see Execution section). The { and } are unneces-
sary if the body of the function is a command as defined above, under Com-
mands.

The following words are only recognized as the first word of a command and when not
quoted:

if then else elif fi case esac for while until do done { }

Comments Lines A word beginning with # causes that word and all the following characters up to a new-
line to be ignored.

Command
Substitution

The shell reads commands from the string between two grave accents (‘ ‘) and the stan-
dard output from these commands may be used as all or part of a word. Trailing new-
lines from the standard output are removed.

1-1038 SunOS 5.6 modified 9 May 1997

User Commands sh (1)

No interpretation is done on the string before the string is read, except to remove
backslashes (\) used to escape other characters. Backslashes may be used to escape a
grave accent (‘) or another backslash (\) and are removed before the command string is
read. Escaping grave accents allows nested command substitution. If the command sub-
stitution lies within a pair of double quotes (" . . . ‘ . . . ‘ . . . "), a backslash used to escape a
double quote (\") will be removed; otherwise, it will be left intact.

If a backslash is used to escape a newline character (\newline), both the backslash and
the newline are removed (see the later section on Quoting). In addition, backslashes
used to escape dollar signs (\$) are removed. Since no parameter substitution is done on
the command string before it is read, inserting a backslash to escape a dollar sign has no
effect. Backslashes that precede characters other than \, ‘, ", newline, and $ are left intact
when the command string is read.

Parameter
Substitution

The character $ is used to introduce substitutable parameters . There are two types of
parameters, positional and keyword. If parameter is a digit, it is a positional parameter.
Positional parameters may be assigned values by set. Keyword parameters (also known
as variables) may be assigned values by writing:

name=value [name=value] . . .

Pattern-matching is not performed on value. There cannot be a function and a variable
with the same name.

${parameter}
The value, if any, of the parameter is substituted. The braces are required only
when parameter is followed by a letter, digit, or underscore that is not to be inter-
preted as part of its name. If parameter is ∗ or @, all the positional parameters,
starting with $1, are substituted (separated by spaces). Parameter $0 is set from
argument zero when the shell is invoked.

${parameter:−word}
If parameter is set and is non-null, substitute its value; otherwise substitute word .

${parameter:=word}
If parameter is not set or is null set it to word ; the value of the parameter is substi-
tuted. Positional parameters may not be assigned in this way.

${parameter:?word}
If parameter is set and is non-null, substitute its value; otherwise, print word and
exit from the shell. If word is omitted, the message “parameter null or not set” is
printed.

${parameter:+word}
If parameter is set and is non-null, substitute word ; otherwise substitute nothing.

modified 9 May 1997 SunOS 5.6 1-1039

sh (1) User Commands

In the above, word is not evaluated unless it is to be used as the substituted string, so that,
in the following example, pwd is executed only if d is not set or is null:

echo ${d:−‘pwd‘}

If the colon (:) is omitted from the above expressions, the shell only checks whether
parameter is set or not.

The following parameters are automatically set by the shell.

The number of positional parameters in decimal.

− Flags supplied to the shell on invocation or by the set command.

? The decimal value returned by the last synchronously executed com-
mand.

$ The process number of this shell.

! The process number of the last background command invoked.

The following parameters are used by the shell. The parameters in this section are also
referred to as environment variables.

HOME The default argument (home directory) for the cd command, set to the
user’s login directory by login(1) from the password file (see passwd(4)).

PATH The search path for commands (see Execution section below).

CDPATH
The search path for the cd command.

MAIL If this parameter is set to the name of a mail file and the MAILPATH
parameter is not set, the shell informs the user of the arrival of mail in the
specified file.

MAILCHECK
This parameter specifies how often (in seconds) the shell will check for
the arrival of mail in the files specified by the MAILPATH or MAIL
parameters. The default value is 600 seconds (10 minutes). If set to 0, the
shell will check before each prompt.

MAILPATH
A colon (:) separated list of file names. If this parameter is set, the shell
informs the user of the arrival of mail in any of the specified files. Each
file name can be followed by % and a message that will be printed when
the modification time changes. The default message is, you have mail.

PS1 Primary prompt string, by default “ $ ”.

PS2 Secondary prompt string, by default “ > ”.

IFS Internal field separators, normally space, tab, and newline (see Blank
Interpretation section).

1-1040 SunOS 5.6 modified 9 May 1997

User Commands sh (1)

SHACCT
If this parameter is set to the name of a file writable by the user, the shell
will write an accounting record in the file for each shell procedure exe-
cuted.

SHELL When the shell is invoked, it scans the environment (see Environment
section below) for this name.

See environ(5) for descriptions of the following environment variables that affect the exe-
cution of sh: LC_CTYPE and LC_MESSAGES.

The shell gives default values to PATH, PS1, PS2, MAILCHECK, and IFS. HOME and MAIL
are set by login(1).

Blank Interpretation After parameter and command substitution, the results of substitution are scanned for
internal field separator characters (those found in IFS) and split into distinct arguments
where such characters are found. Explicit null arguments ("" or ’’) are retained. Implicit
null arguments (those resulting from parameters that have no values) are removed.

Input/Output
Redirection

A command’s input and output may be redirected using a special notation interpreted by
the shell. The following may appear anywhere in a simple-command or may precede or
follow a command and are not passed on as arguments to the invoked command. Note:
Parameter and command substitution occurs before word or digit is used.

<word Use file word as standard input (file descriptor 0).

>word Use file word as standard output (file descriptor 1). If the file does not
exist, it is created; otherwise, it is truncated to zero length.

>>word Use file word as standard output. If the file exists, output is appended to
it (by first seeking to the EOF); otherwise, the file is created.

< >word Open file word for reading and writing as standard input.

<<[−]word After parameter and command substitution is done on word , the shell
input is read up to the first line that literally matches the resulting word ,
or to an EOF. If, however, − is appended to <<:

1) leading tabs are stripped from word before the shell input is read (but
after parameter and command substitution is done on word),

2) leading tabs are stripped from the shell input as it is read and before
each line is compared with word , and

3) shell input is read up to the first line that literally matches the result-
ing word , or to an EOF.

If any character of word is quoted (see Quoting section later), no addi-
tional processing is done to the shell input. If no characters of word are
quoted:

1) parameter and command substitution occurs,

2) (escaped) \newlines are removed, and

3) \ must be used to quote the characters \, $, and ‘.

modified 9 May 1997 SunOS 5.6 1-1041

sh (1) User Commands

The resulting document becomes the standard input.

<&digit Use the file associated with file descriptor digit as standard input. Simi-
larly for the standard output using >&digit.

<&− The standard input is closed. Similarly for the standard output using
>&−.

If any of the above is preceded by a digit, the file descriptor which will be associated with
the file is that specified by the digit (instead of the default 0 or 1). For example:

. . . 2>&1

associates file descriptor 2 with the file currently associated with file descriptor 1.

The order in which redirections are specified is significant. The shell evaluates redirec-
tions left-to-right. For example:

. . . 1>xxx 2>&1

first associates file descriptor 1 with file xxx. It associates file descriptor 2 with the file
associated with file descriptor 1 (that is, xxx). If the order of redirections were reversed,
file descriptor 2 would be associated with the terminal (assuming file descriptor 1 had
been) and file descriptor 1 would be associated with file xxx.

Using the terminology introduced on the first page, under Commands, if a command is
composed of several simple commands, redirection will be evaluated for the entire com-
mand before it is evaluated for each simple command. That is, the shell evaluates redirec-
tion for the entire list, then each pipeline within the list, then each command within each
pipeline, then each list within each command.

If a command is followed by & the default standard input for the command is the empty
file /dev/null. Otherwise, the environment for the execution of a command contains the
file descriptors of the invoking shell as modified by input/output specifications.

File Name
Generation

Before a command is executed, each command word is scanned for the characters ∗, ?, and
[. If one of these characters appears the word is regarded as a pattern . The word is
replaced with alphabetically sorted file names that match the pattern. If no file name is
found that matches the pattern, the word is left unchanged. The character . at the start of
a file name or immediately following a /, as well as the character / itself, must be matched
explicitly.

∗ Matches any string, including the null string.

? Matches any single character.

[. . .] Matches any one of the enclosed characters. A pair of characters
separated by − matches any character lexically between the pair,
inclusive. If the first character following the opening [is a !, any charac-
ter not enclosed is matched.

Note that all quoted characters (see below) must be matched explicitly in a
filename.

1-1042 SunOS 5.6 modified 9 May 1997

User Commands sh (1)

Quoting The following characters have a special meaning to the shell and cause termination of a
word unless quoted:

; & () � ˆ < > newline space tab

A character may be quoted (that is, made to stand for itself) by preceding it with a
backslash (\) or inserting it between a pair of quote marks (’ ’ or ""). During processing,
the shell may quote certain characters to prevent them from taking on a special meaning.
Backslashes used to quote a single character are removed from the word before the com-
mand is executed. The pair \newline is removed from a word before command and
parameter substitution.

All characters enclosed between a pair of single quote marks (’ ’), except a single quote,
are quoted by the shell. Backslash has no special meaning inside a pair of single quotes.
A single quote may be quoted inside a pair of double quote marks (for example, " ’"), but
a single quote can not be quoted inside a pair of single quotes.

Inside a pair of double quote marks (""), parameter and command substitution occurs
and the shell quotes the results to avoid blank interpretation and file name generation. If
$∗ is within a pair of double quotes, the positional parameters are substituted and
quoted, separated by quoted spaces ("$1 $2 . . ."); however, if $@ is within a pair of dou-
ble quotes, the positional parameters are substituted and quoted, separated by unquoted
spaces ("$1" "$2" . . .). \ quotes the characters \, ‘, , and $. The pair \newline is
removed before parameter and command substitution. If a backslash precedes characters
other than \, ‘, , $, and newline, then the backslash itself is quoted by the shell.

Prompting When used interactively, the shell prompts with the value of PS1 before reading a com-
mand. If at any time a newline is typed and further input is needed to complete a com-
mand, the secondary prompt (that is, the value of PS2) is issued.

Environment The environment (see environ(5)) is a list of name-value pairs that is passed to an executed
program in the same way as a normal argument list. The shell interacts with the environ-
ment in several ways. On invocation, the shell scans the environment and creates a
parameter for each name found, giving it the corresponding value. If the user modifies
the value of any of these parameters or creates new parameters, none of these affects the
environment unless the export command is used to bind the shell’s parameter to the
environment (see also set −a). A parameter may be removed from the environment with
the unset command. The environment seen by any executed command is thus composed
of any unmodified name-value pairs originally inherited by the shell, minus any pairs
removed by unset, plus any modifications or additions, all of which must be noted in
export commands.

The environment for any simple-command may be augmented by prefixing it with one or
more assignments to parameters. Thus:

TERM=450 command

and

modified 9 May 1997 SunOS 5.6 1-1043

sh (1) User Commands

(export TERM; TERM=450; command)

are equivalent as far as the execution of command is concerned if command is not a Special
Command. If command is a Special Command, then

TERM=450 command

will modify the TERM variable in the current shell.

If the −k flag is set, all keyword arguments are placed in the environment, even if they
occur after the command name. The following example first prints a=b c and c:

echo a=b c
a=b c
set −k
echo a=b c
c

Signals The INTERRUPT and QUIT signals for an invoked command are ignored if the command
is followed by &; otherwise signals have the values inherited by the shell from its parent,
with the exception of signal 11 (but see also the trap command below).

Execution Each time a command is executed, the command substitution, parameter substitution,
blank interpretation, input/output redirection, and filename generation listed above are
carried out. If the command name matches the name of a defined function, the function
is executed in the shell process (note how this differs from the execution of shell script
files, which require a sub-shell for invocation). If the command name does not match the
name of a defined function, but matches one of the Special Commands listed below, it is
executed in the shell process.

The positional parameters $1, $2, . . . are set to the arguments of the function. If the com-
mand name matches neither a Special Command nor the name of a defined function, a new
process is created and an attempt is made to execute the command via exec(2).

The shell parameter PATH defines the search path for the directory containing the com-
mand. Alternative directory names are separated by a colon (:). The default path is
/usr/bin. The current directory is specified by a null path name, which can appear
immediately after the equal sign, between two colon delimiters anywhere in the path list,
or at the end of the path list. If the command name contains a / the search path is not
used. Otherwise, each directory in the path is searched for an executable file. If the file
has execute permission but is not an a.out file, it is assumed to be a file containing shell
commands. A sub-shell is spawned to read it. A parenthesized command is also exe-
cuted in a sub-shell.

The location in the search path where a command was found is remembered by the shell
(to help avoid unnecessary execs later). If the command was found in a relative directory,
its location must be re-determined whenever the current directory changes. The shell for-
gets all remembered locations whenever the PATH variable is changed or the hash −r
command is executed (see below).

1-1044 SunOS 5.6 modified 9 May 1997

User Commands sh (1)

Special Commands Input/output redirection is now permitted for these commands. File descriptor 1 is the
default output location. When Job Control is enabled, additional Special Commands are
added to the shell’s environment (see Job Control section below).

: No effect; the command does nothing. A zero exit code is returned.

. filename
Read and execute commands from filename and return. The search path specified
by PATH is used to find the directory containing filename.

bg [%jobid . . .]
When Job Control is enabled, the bg command is added to the user’s environ-
ment to manipulate jobs. Resumes the execution of a stopped job in the back-
ground. If %jobid is omitted the current job is assumed. (See Job Control section
below for more detail.)

break [n]
Exit from the enclosing for or while loop, if any. If n is specified, break n levels.

cd [argument]
Change the current directory to argument. The shell parameter HOME is the
default argument. The shell parameter CDPATH defines the search path for the
directory containing argument. Alternative directory names are separated by a
colon (:). The default path is <null> (specifying the current directory). Note:
The current directory is specified by a null path name, which can appear immedi-
ately after the equal sign or between the colon delimiters anywhere else in the
path list. If argument begins with a / the search path is not used. Otherwise, each
directory in the path is searched for argument.

chdir [dir]
chdir changes the shell’s working directory to directory dir. If no argument is
given, change to the home directory of the user. If dir is a relative pathname not
found in the current directory, check for it in those directories listed in the
CDPATH variable. If dir is the name of a shell variable whose value starts with a
/, change to the directory named by that value.

continue [n]
Resume the next iteration of the enclosing for or while loop. If n is specified,
resume at the n-th enclosing loop.

echo [arguments . . .]
The words in arguments are written to the shell’s standard output, separated by
space characters. See echo(1) for fuller usage and description.

eval [argument . . .]
The arguments are read as input to the shell and the resulting command(s) exe-
cuted.

exec [argument . . .]
The command specified by the arguments is executed in place of this shell
without creating a new process. Input/output arguments may appear and, if no
other arguments are given, cause the shell input/output to be modified.

modified 9 May 1997 SunOS 5.6 1-1045

sh (1) User Commands

exit [n]
Causes the calling shell or shell script to exit with the exit status specified by n. If
n is omitted the exit status is that of the last command executed (an EOF will also
cause the shell to exit.)

export [name . . .]
The given names are marked for automatic export to the environment of subse-
quently executed commands. If no arguments are given, variable names that
have been marked for export during the current shell’s execution are listed.
(Variable names exported from a parent shell are listed only if they have been
exported again during the current shell’s execution.) Function names are not
exported.

fg [%jobid . . .]
When Job Control is enabled, the fg command is added to the user’s environment
to manipulate jobs. Resumes the execution of a stopped job in the foreground,
also moves an executing background job into the foreground. If %jobid is omit-
ted the current job is assumed. (See Job Control section below for more detail.)

getopts
Use in shell scripts to support command syntax standards (see intro(1)); it parses
positional parameters and checks for legal options. See getoptcvt(1) for usage
and description.

hash [−r] [name . . .]
For each name, the location in the search path of the command specified by name
is determined and remembered by the shell. The −r option causes the shell to for-
get all remembered locations. If no arguments are given, information about
remembered commands is presented. Hits is the number of times a command
has been invoked by the shell process. Cost is a measure of the work required to
locate a command in the search path. If a command is found in a "relative" direc-
tory in the search path, after changing to that directory, the stored location of that
command is recalculated. Commands for which this will be done are indicated
by an asterisk (∗) adjacent to the hits information. Cost will be incremented when
the recalculation is done.

jobs [−p|−l] [%jobid ...]
jobs −x command [arguments]

Reports all jobs that are stopped or executing in the background. If %jobid is
omitted, all jobs that are stopped or running in the background will be reported.
(See Job Control section below for more detail.)

kill [−sig] %job . . .
kill −l Sends either the TERM (terminate) signal or the specified signal to the specified

jobs or processes. Signals are either given by number or by names (as given in
signal(5) stripped of the prefix “SIG” with the exception that SIGCHD is named
CHLD). If the signal being sent is TERM (terminate) or HUP (hangup), then the
job or process will be sent a CONT (continue) signal if it is stopped. The argu-
ment job can be the process id of a process that is not a member of one of the

1-1046 SunOS 5.6 modified 9 May 1997

User Commands sh (1)

active jobs. See Job Control section below for a description of the format of job .
In the second form, kill −l, the signal numbers and names are listed. (See
kill(1)).

login [argument . . .]
Equivalent to ‘exec login argument. . . .’ See login(1) for usage and description.

newgrp [argument]
Equivalent to exec newgrp argument. See newgrp(1) for usage and description.

pwd Print the current working directory. See pwd(1) for usage and description.

read name . . .
One line is read from the standard input and, using the internal field separator,
IFS (normally space or tab), to delimit word boundaries, the first word is
assigned to the first name, the second word to the second name, and so forth, with
leftover words assigned to the last name. Lines can be continued using \new-
line. Characters other than newline can be quoted by preceding them with a
backslash. These backslashes are removed before words are assigned to names,
and no interpretation is done on the character that follows the backslash. The
return code is 0, unless an EOF is encountered.

readonly [name . . .]
The given names are marked readonly and the values of the these names may not
be changed by subsequent assignment. If no arguments are given, a list of all
readonly names is printed.

return [n]
Causes a function to exit with the return value specified by n. If n is omitted, the
return status is that of the last command executed.

set [−−aefhkntuvx [argument . . .]]

−a Mark variables which are modified or created for export.

−e Exit immediately if a command exits with a non-zero exit status.

−f Disable file name generation.

−h Locate and remember function commands as functions are defined (func-
tion commands are normally located when the function is executed).

−k All keyword arguments are placed in the environment for a command,
not just those that precede the command name.

−n Read commands but do not execute them.

−t Exit after reading and executing one command.

−u Treat unset variables as an error when substituting.

−v Print shell input lines as they are read.

−x Print commands and their arguments as they are executed.

− − Do not change any of the flags; useful in setting $1 to −.

modified 9 May 1997 SunOS 5.6 1-1047

sh (1) User Commands

Using + rather than − causes these flags to be turned off. These flags can also be
used upon invocation of the shell. The current set of flags may be found in $−.
The remaining arguments are positional parameters and are assigned, in order,
to $1, $2, . . . If no arguments are given the values of all names are printed.

shift [n]
The positional parameters from $n+1 . . . are renamed $1 If n is not given, it
is assumed to be 1.

stop pid . . .
Halt execution of the process number pid. (see ps(1)).

suspend
Stops the execution of the current shell (but not if it is the login shell).

test
Evaluate conditional expressions. See test(1) for usage and description.

times
Print the accumulated user and system times for processes run from the shell.

trap [argument n [n2 . . .]]
The command argument is to be read and executed when the shell receives
numeric or symbolic signal(s) (n). (Note: argument is scanned once when the trap
is set and once when the trap is taken.) Trap commands are executed in order of
signal number or corresponding symbolic names. Any attempt to set a trap on a
signal that was ignored on entry to the current shell is ineffective. An attempt to
trap on signal 11 (memory fault) produces an error. If argument is absent all
trap(s) n are reset to their original values. If argument is the null string this signal
is ignored by the shell and by the commands it invokes. If n is 0 the command
argument is executed on exit from the shell. The trap command with no argu-
ments prints a list of commands associated with each signal number.

type [name . . .]
For each name, indicate how it would be interpreted if used as a command name.

ulimit [−[HS] [a � cdfnstv]]
ulimit [−[HS] [c � d � f � n � s � t � v]] limit

ulimit prints or sets hard or soft resource limits. These limits are described in
getrlimit(2).

If limit is not present, ulimit prints the specified limits. Any number of limits
may be printed at one time. The −a option prints all limits.

If limit is present, ulimit sets the specified limit to limit. The string unlimited
requests the largest valid limit. Limits may be set for only one resource at a time.
Any user may set a soft limit to any value below the hard limit. Any user may
lower a hard limit. Only a super-user may raise a hard limit; see su(1M).

The −H option specifies a hard limit. The −S option specifies a soft limit. If nei-
ther option is specified, ulimit will set both limits and print the soft limit.

1-1048 SunOS 5.6 modified 9 May 1997

User Commands sh (1)

The following options specify the resource whose limits are to be printed or set.
If no option is specified, the file size limit is printed or set.

−c maximum core file size (in 512-byte blocks)

−d maximum size of data segment or heap (in kbytes)

−f maximum file size (in 512-byte blocks)

−n maximum file descriptor plus 1

−s maximum size of stack segment (in kbytes)

−t maximum CPU time (in seconds)

−v maximum size of virtual memory (in kbytes)

Run the sysdef(1M) command to obtain the maximum possible limits for your
system. The values reported are in hexadecimal, but can be translated into
decimal numbers using the bc(1) utility. See swap(1M).)

Example of ulimit: to limit the size of a core file dump to 0 Megabytes, type
the following:

ulimit -c 0

umask [nnn]
The user file-creation mask is set to nnn (see umask(1)). If nnn is omitted, the
current value of the mask is printed.

unset [name . . .]
For each name, remove the corresponding variable or function value. The vari-
ables PATH, PS1, PS2, MAILCHECK, and IFS cannot be unset.

wait [n]
Wait for your background process whose process id is n and report its termina-
tion status. If n is omitted, all your shell’s currently active background processes
are waited for and the return code will be zero.

Invocation If the shell is invoked through exec(2) and the first character of argument zero is −, com-
mands are initially read from /etc/profile and from $HOME/.profile, if such files exist.
Thereafter, commands are read as described below, which is also the case when the shell
is invoked as /usr/bin/sh. The flags below are interpreted by the shell on invocation only.
Note: Unless the −c or −s flag is specified, the first argument is assumed to be the name
of a file containing commands, and the remaining arguments are passed as positional
parameters to that command file:

−c string If the −c flag is present commands are read from string.

−i If the −i flag is present or if the shell input and output are attached to a termi-
nal, this shell is interactive. In this case TERMINATE is ignored (so that kill 0
does not kill an interactive shell) and INTERRUPT is caught and ignored (so
that wait is interruptible). In all cases, QUIT is ignored by the shell.

modified 9 May 1997 SunOS 5.6 1-1049

sh (1) User Commands

−p If the −p flag is present, the shell will not set the effective user and group IDs
to the real user and group IDs.

−r If the −r flag is present the shell is a restricted shell (see rsh(1M)).

−s If the −s flag is present or if no arguments remain, commands are read from
the standard input. Any remaining arguments specify the positional parame-
ters. Shell output (except for Special Commands) is written to file descriptor 2.

The remaining flags and arguments are described under the set command above.

Job Control (jsh) When the shell is invoked as jsh, Job Control is enabled in addition to all of the func-
tionality described previously for sh. Typically Job Control is enabled for the interactive
shell only. Non-interactive shells typically do not benefit from the added functionality of
Job Control.

With Job Control enabled every command or pipeline the user enters at the terminal is
called a job. All jobs exist in one of the following states: foreground, background or
stopped. These terms are defined as follows: 1) a job in the foreground has read and
write access to the controlling terminal; 2) a job in the background is denied read access
and has conditional write access to the controlling terminal (see stty(1)); 3) a stopped job
is a job that has been placed in a suspended state, usually as a result of a SIGTSTP signal
(see signal(5)).

Every job that the shell starts is assigned a positive integer, called a job number which is
tracked by the shell and will be used as an identifier to indicate a specific job. Addition-
ally the shell keeps track of the current and previous jobs. The current job is the most recent
job to be started or restarted. The previous job is the first non-current job.

The acceptable syntax for a Job Identifier is of the form:

%jobid

where, jobid may be specified in any of the following formats:

% or + for the current job

− for the previous job

?<string> specify the job for which the command line uniquely contains string.

n for job number n, where n is a job number

pref where pref is a unique prefix of the command name (for example, if
the command ls −l name were running in the background, it could be
referred to as %ls); pref cannot contain blanks unless it is quoted.

When Job Control is enabled, the following commands are added to the user’s environ-
ment to manipulate jobs:

bg [%jobid . . .]
Resumes the execution of a stopped job in the background. If %jobid is omitted
the current job is assumed.

1-1050 SunOS 5.6 modified 9 May 1997

User Commands sh (1)

fg [%jobid . . .]
Resumes the execution of a stopped job in the foreground, also moves an execut-
ing background job into the foreground. If %jobid is omitted the current job is
assumed.

jobs [−p|−l] [%jobid . . .]
jobs −x command [arguments]

Reports all jobs that are stopped or executing in the background. If %jobid is
omitted, all jobs that are stopped or running in the background will be reported.
The following options will modify/enhance the output of jobs:

−l Report the process group ID and working directory of the jobs.

−p Report only the process group ID of the jobs.

−x Replace any jobid found in command or arguments with the corresponding
process group ID, and then execute command passing it arguments.

kill [−signal] %jobid
Builtin version of kill to provide the functionality of the kill command for
processes identified with a jobid.

stop %jobid . . .
Stops the execution of a background job(s).

suspend
Stops the execution of the current shell (but not if it is the login shell).

wait [%jobid . . .]
wait builtin accepts a job identifier. If %jobid is omitted wait behaves as
described above under Special Commands.

Large File Behavior See largefile(5) for the description of the behavior of sh and jsh when encountering files
greater than or equal to 2 Gbyte (231 bytes).

EXIT STATUS Errors detected by the shell, such as syntax errors, cause the shell to return a non-zero
exit status. If the shell is being used non-interactively execution of the shell file is aban-
doned. Otherwise, the shell returns the exit status of the last command executed (see also
the exit command above).

jsh Only If the shell is invoked as jsh and an attempt is made to exit the shell while there are
stopped jobs, the shell issues one warning:

There are stopped jobs.

This is the only message. If another exit attempt is made, and there are still stopped jobs
they will be sent a SIGHUP signal from the kernel and the shell is exited.

FILES $HOME/.profile
/dev/null
/etc/profile
/tmp/sh∗

modified 9 May 1997 SunOS 5.6 1-1051

sh (1) User Commands

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

/usr/bin/sh
/usr/bin/jsh ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu
CSI Enabled

/usr/xpg4/bin/sh ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxcu4
CSI Enabled

SEE ALSO intro(1), bc(1), echo(1), getoptcvt(1), kill(1), ksh(1), login(1), newgrp(1), ps(1), pwd(1),
shell_builtins(1), stty(1), test(1), umask(1), wait(1), rsh(1M), su(1M), swap(1M),
sysdef(1M), dup(2), exec(2), fork(2), getrlimit(2), pipe(2), ulimit(2), setlocale(3C),
passwd(4), profile(4), attributes(5), environ(5), largefile(5), signal(5), xpg4(5)

WARNINGS The use of setuid shell scripts is strongly discouraged.

NOTES Words used for filenames in input/output redirection are not interpreted for filename
generation (see File Name Generation section above). For example, cat file1 >a∗ will
create a file named a∗.

Because commands in pipelines are run as separate processes, variables set in a pipeline
have no effect on the parent shell.

If you get the error message cannot fork,too many processes, try using the wait(1) com-
mand to clean up your background processes. If this doesn’t help, the system process
table is probably full or you have too many active foreground processes. (There is a limit
to the number of process ids associated with your login, and to the number the system
can keep track of.)

Only the last process in a pipeline can be waited for.

If a command is executed, and a command with the same name is installed in a directory
in the search path before the directory where the original command was found, the shell
will continue to exec the original command. Use the hash command to correct this situa-
tion.

The Bourne shell has a limitation on the effective UID for a process. If this UID is less than
100 (and not equal to the process’ real UID), then the UID is reset to the process’ real UID.

Because the shell implements both foreground and background jobs in the same process
group, they all receive the same signals, which can lead to unexpected behavior. It is,
therefore, recommended that other job contrl shells be used, especially in an interactive
environment.

When the shell executes a shell script that attempts to execute a non-existent command
interpreter, the shell returns an erroneous diagnostic message that the shell script file
does not exist.

1-1052 SunOS 5.6 modified 9 May 1997

FMLI Commands shell (1F)

NAME shell − run a command using shell

SYNOPSIS shell command [command] . . .

DESCRIPTION The shell function concatenate its arguments, separating each by a space, and passes this
string to the shell ($SHELL if set, otherwise /usr/bin/sh).

EXAMPLES Since the Form and Menu Language does not directly support background processing,
the shell function can be used instead.

`shell "build prog > /dev/null &"`

If you want the user to continue to be able to interact with the application while the back-
ground job is running, the output of an executable run by shell in the background must
be redirected: to a file if you want to save the output, or to /dev/null if you don’t want to
save it (or if there is no output), otherwise your application may appear to be hung until
the background job finishes processing.

shell can also be used to execute a command that has the same name as an FMLI built-in
function.

NOTES The arguments to shell will be concatenate using spaces, which may or may not do what
is expected. The variables set in local environments will not be expanded by the shell
because "local" means "local to the current process."

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO sh(1), attributes(5)

modified 5 Jul 1990 SunOS 5.6 1F-1053

shell_builtins (1) User Commands

NAME shell_builtins − shell command interpreter built-in functions

DESCRIPTION The shell command interpreters (sh(1), csh(1), and ksh(1)), have special built-in functions
which are interpreted by the shell as commands. Many of these built-in commands are
implemented by more than one of the shells, and some are unique to a particular shell.
These are:

command built into
------- -----
alias csh, ksh
bg csh, ksh, sh
break csh, ksh, sh
case csh, ksh, sh
cd csh, ksh, sh
chdir csh, sh
continue csh, ksh, sh
dirs csh
echo csh, ksh, sh
eval csh, ksh, sh
exec csh, ksh, sh
exit csh, ksh, sh
export ksh, sh
fc ksh
fg csh, ksh, sh
for ksh, sh
foreach csh
function ksh
getopts ksh, sh
glob csh
goto csh
hash ksh, sh
hashstat csh
history csh
if csh, ksh, sh
jobs csh, ksh, sh
kill csh, ksh, sh
let ksh
limit csh
login csh, ksh, sh
logout csh, ksh, sh
nice csh
newgrp ksh, sh
notify csh
onintr csh

1-1054 SunOS 5.6 modified 1 Feb 1995

User Commands shell_builtins (1)

popd csh
print ksh
pushd csh
pwd ksh, sh
read ksh, sh
readonly ksh, sh
rehash csh
repeat csh
return ksh, sh
select ksh
set csh, ksh, sh
setenv csh
shift csh, ksh, sh
source csh
stop csh, ksh, sh
suspend csh, ksh, sh
switch csh
test ksh, sh
time csh
times ksh, sh
trap ksh, sh
type ksh, sh
typeset ksh
ulimit ksh, sh
umask csh, ksh, sh
unalias csh, ksh
unhash csh
unlimit csh
unset csh, ksh, sh
unsetenv csh
until ksh, sh
wait csh, ksh, sh
whence ksh
while csh, ksh, sh

Bourne Shell, sh,
Special Commands

Input/output redirection is now permitted for these commands. File descriptor 1 is the
default output location. When Job Control is enabled, additional Special Commands are
added to the shell’s environment.

Additional to these built-in reserved command words, sh also uses:

: No effect; the command does nothing. A zero exit code is returned.
. filename

Read and execute commands from filename and return. The search path specified
by PATH is used to find the directory containing filename.

modified 1 Feb 1995 SunOS 5.6 1-1055

shell_builtins (1) User Commands

C shell, csh Built-in commands are executed within the C shell. If a built-in command occurs as any
component of a pipeline except the last, it is executed in a subshell. Additional to these
built-in reserved command words, csh also uses:
: Null command. This command is interpreted, but performs no action.

Korn Shell, ksh,
Special Commands

Input/Output redirection is permitted. Unless otherwise indicated, the output is written
on file descriptor 1 and the exit status, when there is no syntax error, is zero.
Commands that are preceded by one or two † (daggers) are treated specially in the fol-
lowing ways:
1. Variable assignment lists preceding the command remain in effect when the com-

mand completes.
2. I/O redirections are processed after variable assignments.
3. Errors cause a script that contains them to abort.
4. Words, following a command preceded by †† that are in the format of a variable

assignment, are expanded with the same rules as a variable assignment. This
means that tilde substitution is performed after the = sign and word splitting and
file name generation are not performed.

Additional to these built-in reserved command words, ksh also uses:

† : [arg . . .]
The command only expands parameters.

† . file [arg . . .]
Read the complete file then execute the commands. The commands are executed
in the current shell environment. The search path specified by PATH is used to
find the directory containing file. If any arguments arg are given, they become
the positional parameters. Otherwise the positional parameters are unchanged.
The exit status is the exit status of the last command executed. the loop termina-
tion test.

SEE ALSO alias(1), break(1), case(1), cd(1), chmod(1), csh(1), echo(1), exec(1), exit(1), for(1), find(1),
function(1), getoptcvt(1) getopts(1), glob(1), hash(1), history(1), if(1), intro(1), jobs(1),
kill(1), ksh(1), let(1), limit(1), login(1), logout(1), newgrp(1), nice(1), nohup(1), print(1),
pwd(1), read(1), readonly(1), repeat(1), set(1), sh(1), shift(1), suspend(1), test(1B),
time(1), times(1), trap(1), typeset(1), umask(1), wait(1), while(1), chdir(2), chmod(2),
creat(2), umask(2), getopt(3C), profile(4), environ(5)

1-1056 SunOS 5.6 modified 1 Feb 1995

User Commands shift (1)

NAME shift − shell built-in function to traverse either a shell’s argument list or a list of field-
separated words

SYNOPSIS
sh shift [n]

csh shift [variable]

ksh † shift [n]

DESCRIPTION
sh The positional parameters from $n+1 . . . are renamed $1 If n is not given, it is

assumed to be 1.

csh The components of argv, or variable , if supplied, are shifted to the left, discarding the first
component. It is an error for the variable not to be set or to have a null value.

ksh The positional parameters from $n+1 $n+1 . . . are renamed $1 . . ., default n is 1. The
parameter n can be any arithmetic expression that evaluates to a non-negative number
less than or equal to $#.

On this man page, ksh(1) commands that are preceded by one or two † (daggers) are
treated specially in the following ways:
1. Variable assignment lists preceding the command remain in effect when the com-

mand completes.
2. I/O redirections are processed after variable assignments.
3. Errors cause a script that contains them to abort.
4. Words, following a command preceded by †† that are in the format of a variable

assignment, are expanded with the same rules as a variable assignment. This
means that tilde substitution is performed after the = sign and word splitting and
file name generation are not performed.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO csh(1), ksh(1), sh(1), attributes(5)

modified 15 Apr 1994 SunOS 5.6 1-1057

shutdown (1B) SunOS/BSD Compatibility Package Commands

NAME shutdown − close down the system at a given time

SYNOPSIS /usr/ucb/shutdown [−fhknr] time [warning-message . . .]

DESCRIPTION shutdown provides an automated procedure to notify users when the system is to be
shut down. time specifies when shutdown will bring the system down; it may be the
word now (indicating an immediate shutdown), or it may specify a future time in one of
two formats: +number and hour:min. The first form brings the system down in number
minutes, and the second brings the system down at the time of day indicated in 24-hour
notation.

At intervals that get closer as the apocalypse approaches, warning messages are
displayed at terminals of all logged-in users, and of users who have remote mounts on
that machine.

At shutdown time a message is written to the system log daemon, syslogd(1M), contain-
ing the time of shutdown, the instigator of the shutdown, and the reason. Then a ter-
minate signal is sent to init, which brings the system down to single-user mode.

OPTIONS As an alternative to the above procedure, these options can be specified:

−f Arrange, in the manner of fastboot(1B), that when the system is rebooted, the file
systems will not be checked.

−h Execute halt(1M).

−k Simulate shutdown of the system. Do not actually shut down the system.

−n Prevent the normal sync(2) before stopping.

−r Execute reboot(1M).

FILES /etc/rmtab remote mounted file system table

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscpu

SEE ALSO fastboot(1B), login(1), halt(1M), reboot(1M), syslogd(1M), sync(2), rmtab(4), attri-
butes(5)

NOTES Only allows you to bring the system down between now and 23:59 if you use the abso-
lute time for shutdown.

1B-1058 SunOS 5.6 modified 11 Oct 1994

User Commands size (1)

NAME size − print section sizes in bytes of object files

SYNOPSIS size [−f] [−F] [−n] [−o] [−V] [−x] filename . . .

DESCRIPTION The size command produces segment or section size information in bytes for each loaded
section in ELF object files. size prints out the size of the text, data, and bss (uninitialized
data) segments (or sections) and their total.

size processes ELF object files entered on the command line. If an archive file is input to
the size command, the information for each object file in the archive is displayed.

When calculating segment information, the size command prints out the total file size of
the non-writable segments, the total file size of the writable segments, and the total
memory size of the writable segments minus the total file size of the writable segments.

If it cannot calculate segment information, size calculates section information. When cal-
culating section information, it prints out the total size of sections that are allocatable,
non-writable, and not NOBITS, the total size of the sections that are allocatable, writable,
and not NOBITS, and the total size of the writable sections of type NOBITS. NOBITS sec-
tions do not actually take up space in the filename.

If size cannot calculate either segment or section information, it prints an error message
and stops processing the file.

OPTIONS −f Print out the size of each allocatable section, the name of the section, and the
total of the section sizes. If there is no section data, size prints out an error
message and stops processing the file.

−F Print out the size of each loadable segment, the permission flags of the seg-
ment, then the total of the loadable segment sizes. If there is no segment data,
size prints an error message and stops processing the file.

−n Print out non-loadable segment or non-allocatable section sizes. If segment
data exists, size prints out the memory size of each loadable segment or file
size of each non-loadable segment, the permission flags, and the total size of
the segments. If there is no segment data, size prints out, for each allocatable
and non-allocatable section, the memory size, the section name, and the total
size of the sections. If there is no segment or section data, size prints an error
message and stops processing.

−o Print numbers in octal, not decimal.

−V Print the version information for the size command on the standard error out-
put.

−x Print numbers in hexadecimal; not decimal.

modified 16 Oct 1996 SunOS 5.6 1-1059

size (1) User Commands

EXAMPLES The examples below are typical size output.

example% size filename
2724 + 88 + 0 = 2812

example% size −f filename
26(.text) + 5(.init) + 5(.fini) = 36

example% size −F filename
2724(r-x) + 88(rwx) + 0(rwx) = 2812 (If statically linked)

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWbtool

SEE ALSO as(1), cc(1B), ld(1), a.out(4), ar(4), attributes(5)

NOTES Since the size of bss sections is not known until link-edit time, the size command will not
give the true total size of pre-linked objects.

1-1060 SunOS 5.6 modified 16 Oct 1996

User Commands sleep (1)

NAME sleep − suspend execution for an interval

SYNOPSIS sleep time

DESCRIPTION The sleep utility will suspend execution for at least the integral number of seconds
specified by the time operand.

OPERANDS The following operands are supported:

time A non-negative decimal integer specifying the number of seconds for which to
suspend execution.

EXAMPLES To execute a command after a certain amount of time:

(sleep 105; command)&

or to execute a command every so often:

while true
do

command
sleep 37

done

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of sleep: LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS The following exit values are returned:

0 The execution was successfully suspended for at least time seconds, or a
SIGALRM signal was received (see NOTES).

>0 An error has occurred.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO wait(1), alarm(2), sleep(3C), wait(3B), attributes(5), environ(5)

NOTES If the sleep utility receives a SIGALRM signal, one of the following actions will be taken:

· Terminate normally with a zero exit status.

· Effectively ignore the signal.

The sleep utility will take the standard action for all other signals.

modified 1 Feb 1995 SunOS 5.6 1-1061

soelim (1) User Commands

NAME soelim − resolve and eliminate .so requests from nroff or troff input

SYNOPSIS soelim [filename . . .]

DESCRIPTION soelim reads the specified files or the standard input and performs the textual inclusion
implied by the nroff(1) directives of the form

.so somefile

when they appear at the beginning of input lines. This is useful since programs such as
tbl(1) do not normally do this; it allows the placement of individual tables in separate
files to be run as a part of a large document.

An argument consisting of ‘−’ is taken to be a file name corresponding to the standard
input.

Note: Inclusion can be suppressed by using ‘ ´ ’ instead of ‘ . ’, that is,

´ so /usr/share/lib/tmac/tmac.s

EXAMPLES A sample usage of soelim would be

example% soelim exum?.n | tbl | nroff −ms | col | lpr

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWdoc

SEE ALSO more(1), nroff(1), tbl(1), attributes(5)

1-1062 SunOS 5.6 modified 14 Sep 1992

User Commands solregis (1)

NAME solregis − Solaris user registration

SYNOPSIS /usr/dt/bin/solregis [−dc]

DESCRIPTION The solregis command initiates the Solaris user registration procedure. This allows users
to register with Sun Microsystems and receive information about Solaris. Normally, sol-
regis is executed in conditional mode as a part of desktop login so that users are
prompted at desktop start up time to register, unless they have already done so.

OPTIONS The following options are supported:

−d Delay display of the initial screen until a window manager has asserted
control of the X display.

−c Conditional mode. If specified, solregis will exit without any dialog
displayed if: (1) $HOME/.solregis/disable exists, (2) DISABLE=1 is
specified in /etc/default/solregis, or (3) the user has already registered.

EXIT CODES The following exit codes are returned:

0 Successful completion.

>0 An error occurred.

USAGE The following resources can control the behavior and appearance of solregis:

Name Class Value Type Default
disable Disable Boolean False
localeChoices LocaleChoices Int 1
action0 Action String /usr/dt/bin/hotjava
initialURL0 URL String file:///usr/dt/app-config

/solregis/EReg.html
localeChoice<n> LocaleChoice String null
action<n> Action String null for n>0
initialURL<n> URL String null for n>0
printContext PrintContext String thisorgunit

disable If TRUE, when executed in conditional mode solregis simply exits
without displaying anything.

localeChoices Specifies the number of localeChoicen, actionn and initialURLn sets.
The first set is 0, so if localeChoices is 1, localeChoice0, action0,and ini-
tialURL0 are the only active resources. If localeChoices is 1, none of the
localeChoicen strings are displayed, and action0, and so forth. are used.
If localeChoices is greater than 1, each localeChoicen string is made an
element in an exclusive choice list and the index of the selected item con-
trols which actionn and initialURLn resources are applied.

localeChoicen Specifies the string presented to the user for this choice.

modified 23 Dec 1996 SunOS 5.6 1-1063

solregis (1) User Commands

actionn Specifies the file name of the command to be executed (normally
expected to be a World Wide Web browser) when the user selects
"Register Now", or the special string "print". If "print" is specified, the
initialURLn string must be a file name on the local system, naming a file
which is to be printed after prompting the user for a print destination.

initialURLn Specifies the argument to be passed to actionn for initial registration.
This will normally be the Universal Resource Locator for the initial page
to be displayed by the World Wide Web browser.

printContext XFN naming context under which the printers to display to the user if
the special "print" action are named, in the service/printer context. For
example, if the default printContext "thisorgunit" is used, the printers in
thisorgunit/service/printer are displayed.

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of solregis: HOME, LANG, LC_MESSAGES, and NLSPATH.

FILES /etc/default/solregis Default values.
/$HOME/.solregis/uprops User registration information.
/$HOME/.solregis/disable Users disabled from registration.
/usr/dt/app-defaults/C/Solregis Default locale resources.
/usr/dt/app-defaults/$LANG/Solregis Default localized resources.
/etc/dt/app-defaults/C/Solregis Default installation resources.
/usr/dt/app-defaults/$LANG/Solregis Localized installation resources.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWsregu

SEE ALSO attributes(5), environ(5)

1-1064 SunOS 5.6 modified 23 Dec 1996

User Commands sort (1)

NAME sort − sort, merge, or sequence check text files

SYNOPSIS /usr/bin/sort [−cmu] [−o output] [−T directory] [−y [kmem]] [−z recsz]
[−dfiMnr] [−b] [−t char] [−k keydef] [+pos1 [−pos2]] [file . . .]

/usr/xpg4/bin/sort [−cmu] [−o output] [−T directory] [−y [kmem]] [−z recsz]
[−dfiMnr] [−b] [−t char] [−k keydef] [+pos1 [−pos2]] [file . . .]

DESCRIPTION The sort command sorts lines of all the named files together and writes the result on the
standard output.

Comparisons are based on one or more sort keys extracted from each line of input. By
default, there is one sort key, the entire input line. Lines are ordered according to the col-
lating sequence of the current locale.

OPTIONS The following options alter the default behavior:

/usr/bin/sort −c Check that the single input file is ordered as specified by the arguments and
the collating sequence of the current locale. The exit code is set and no output
is produced unless the file is out of sort.

/usr/xpg4/bin/sort −c Same as /usr/bin/sort except no output is produced under any circumstances.

−m Merge only. The input files are assumed to be already sorted.

−u Unique: suppress all but one in each set of lines having equal keys. If used
with the −c option, check that there are no lines with duplicate keys in addi-
tion to checking that the input file is sorted.

−o output Specify the name of an output file to be used instead of the standard output.
This file can be the same as one of the input files.

−T directory
The directory argument is the name of a directory in which to place temporary
files.

−y kmem The amount of main memory initially used by sort. If this option is omitted,
sort begins using a system default memory size, and continues to use more
space as needed. If kmem is present, sort will start using that number of
Kbytes of memory, unless the administrative minimum or maximum is
exceeded, in which case the corresponding extremum will be used. Thus, −y 0
is guaranteed to start with minimum memory. −y with no kmem argument
starts with maximum memory.

−z recsz (obsolete). This option was used to prevent abnormal termination when lines
longer than the system-dependent default buffer size are encountered.
Because sort automatically allocates buffers large enough to hold the longest
line, this option has no effect.

modified 18 Mar 1997 SunOS 5.6 1-1065

sort (1) User Commands

Ordering Options The following options override the default ordering rules. When ordering options
appear independent of any key field specifications, the requested field ordering rules are
applied globally to all sort keys. When attached to a specific key (see Sort Key Options),
the specified ordering options override all global ordering options for that key. In the
obsolescent forms, if one or more of these options follows a +pos1 option, it will affect
only the key field specified by that preceding option.

−d ‘‘Dictionary’’ order: only letters, digits, and blanks (spaces and tabs) are
significant in comparisons.

−f Fold lower-case letters into upper case.

−i Ignore non-printable characters.

−M Compare as months. The first three non-blank characters of the field are
folded to upper case and compared. For example, in English the sorting order
is "JAN" < "FEB" < . . . < "DEC". Invalid fields compare low to "JAN". The −M
option implies the −b option (see below).

−n Restrict the sort key to an initial numeric string, consisting of optional blank
characters, optional minus sign, and zero or more digits with an optional
radix character and thousands separators (as defined in the current locale),
which will be sorted by arithmetic value. An empty digit string is treated as
zero. Leading zeros and signs on zeros do not affect ordering.

−r Reverse the sense of comparisons.

Field Separator
Options

The treatment of field separators can be altered using the following options:

−b Ignore leading blank characters when determining the starting and ending
positions of a restricted sort key. If the −b option is specified before the first
sort key option, it is applied to all sort key options. Otherwise, the −b option
can be attached independently to each −k field_start, field_end, or +pos1 or
−pos2 option-argument (see below).

−t char Use char as the field separator character. char is not considered to be part of a
field (although it can be included in a sort key). Each occurrence of char is
significant (for example, <char><char> delimits an empty field). If −t is not
specified, blank characters are used as default field separators; each maximal
non-empty sequence of blank characters that follows a non-blank character is
a field separator.

Sort Key Options Sort keys can be specified using the options:

−k keydef The keydef argument is a restricted sort key field definition. The format of this
definition is:

−k field_start [type] [,field_end [type]]
where:

field_start and field_end
define a key field restricted to a portion of the line.

type is a modifier from the list of characters bdfiMnr. The b modifier

1-1066 SunOS 5.6 modified 18 Mar 1997

User Commands sort (1)

behaves like the −b option, but applies only to the field_start or
field_end to which it is attached and characters within a field are
counted from the first non-blank character in the field. (This
applies separately to first_character and last_character .) The other
modifiers behave like the corresponding options, but apply only to
the key field to which they are attached. They have this effect if
specified with field_start , field_end or both. If any modifier is
attached to a field_start or to a field_end, no option applies to either.

When there are multiple key fields, later keys are compared only after all ear-
lier keys compare equal. Except when the −u option is specified, lines that
otherwise compare equal are ordered as if none of the options −d, −f, −i, −n or
−k were present (but with −r still in effect, if it was specified) and with all
bytes in the lines significant to the comparison.

The notation:

−k field_start[type][,field_end[type]]

defines a key field that begins at field_start and ends at field_end inclusive,
unless field_start falls beyond the end of the line or after field_end, in which
case the key field is empty. A missing field_end means the last character of the
line.

A field comprises a maximal sequence of non-separating characters and, in
the absence of option −t, any preceding field separator.

The field_start portion of the keydef option-argument has the form:

field_number[.first_character]

Fields and characters within fields are numbered starting with 1. field_number
and first_character, interpreted as positive decimal integers, specify the first
character to be used as part of a sort key. If .first_character is omitted, it refers
to the first character of the field.

The field_end portion of the keydef option-argument has the form:

field_number[.last_character]

The field_number is as described above for field_start . last_character , inter-
preted as a non-negative decimal integer, specifies the last character to be
used as part of the sort key. If last_character evaluates to zero or .last_character
is omitted, it refers to the last character of the field specified by field_number.

If the −b option or b type modifier is in effect, characters within a field are
counted from the first non-blank character in the field. (This applies
separately to first_character and last_character .)

[+pos1[-pos2]]
(obsolete). Provide functionality equivalent to the −k keydef option.

pos1 and pos2 each have the form m.n optionally followed by one or more of
the flags bdfiMnr. A starting position specified by +m.n is interpreted to
mean the n+1st character in the m+1st field. A missing .n means .0, indicating

modified 18 Mar 1997 SunOS 5.6 1-1067

sort (1) User Commands

the first character of the m+1st field. If the b flag is in effect n is counted from
the first non-blank in the m+1st field; +m.0b refers to the first non-blank char-
acter in the m+1st field.

A last position specified by −m.n is interpreted to mean the nth character
(including separators) after the last character of the mth field. A missing .n
means .0, indicating the last character of the mth field. If the b flag is in effect
n is counted from the last leading blank in the m+1st field; −m.1b refers to the
first non-blank in the m+1st field.

The fully specified +pos1 −pos2 form with type modifiers T and U:
+w.xT -y.zU

is equivalent to:

undefined (z==0 & U contains b & −t is present)
−k w+1.x+1T,y.0U (z==0 otherwise)
−k w+1.x+1T,y+1.zU (z > 0)

Implementations support at least nine occurrences of the sort keys (the −k
option and obsolescent +pos1 and −pos2) which are significant in command
line order. If no sort key is specified, a default sort key of the entire line is
used.

OPERANDS The following operand is supported:

file A path name of a file to be sorted, merged or checked. If no file operands are
specified, or if a file operand is −, the standard input will be used.

USAGE See largefile(5) for the description of the behavior of sort when encountering files greater
than or equal to 2 Gbyte (231 bytes).

EXAMPLES In the following examples, non-obsolescent and obsolescent ways of specifying sort keys
are given as an aid to understanding the relationship between the two forms.

Either of the following commands sorts the contents of infile with the second field as the
sort key:

example% sort −k 2,2 infile
example% sort +1 −2 infile

Either of the following commands sorts, in reverse order, the contents of infile1 and
infile2, placing the output in outfile and using the second character of the second field as
the sort key (assuming that the first character of the second field is the field separator):

example% sort −r −o outfile −k 2.2,2.2 infile1 infile2
example% sort −r −o outfile +1.1 −1.2 infile1 infile2

Either of the following commands sorts the contents of infile1 and infile2 using the
second non-blank character of the second field as the sort key:

example% sort −k 2.2b,2.2b infile1 infile2
example% sort +1.1b −1.2b infile1 infile2

1-1068 SunOS 5.6 modified 18 Mar 1997

User Commands sort (1)

Either of the following commands prints the passwd(4) file (user database) sorted by the
numeric user ID (the third colon-separated field):

example% sort −t : −k 3,3n /etc/passwd
example% sort −t : +2 −3n /etc/passwd

Either of the following commands prints the lines of the already sorted file infile,
suppressing all but one occurrence of lines having the same third field:

example% sort −um −k 3.1,3.0 infile
example% sort −um +2.0 −3.0 infile

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of sort: LC_COLLATE, LC_MESSAGES, and NLSPATH.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text
data as characters (for example, single- versus multi-byte characters in
arguments and input files) and the behavior of character classification
for the −b, −d, −f, −i and −n options.

LC_NUMERIC Determine the locale for the definition of the radix character and
thousands separator for the −n option.

EXIT STATUS The following exit values are returned:

0 All input files were output successfully, or −c was specified and the input file
was correctly sorted.

1 Under the −c option, the file was not ordered as specified, or if the −c and −u
options were both specified, two input lines were found with equal keys.

>1 An error occurred.

FILES /var/tmp/stm??? temporary files

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

/usr/bin/sort ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu
CSI Enabled

/usr/xpg4/bin/sort ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxcu4
CSI Enabled

SEE ALSO comm(1), join(1), uniq(1), passwd(4), attributes(5), environ(5), largefile(5), xpg4(5)

DIAGNOSTICS Comments and exits with non-zero status for various trouble conditions (for example,
when input lines are too long), and for disorders discovered under the −c option.

modified 18 Mar 1997 SunOS 5.6 1-1069

sort (1) User Commands

NOTES When the last line of an input file is missing a new-line character, sort appends one,
prints a warning message, and continues.

sort does not guarantee preservation of relative line ordering on equal keys.

1-1070 SunOS 5.6 modified 18 Mar 1997

User Commands sortbib (1)

NAME sortbib − sort a bibliographic database

SYNOPSIS sortbib [−sKEYS] database . . .

DESCRIPTION sortbib sorts files of records containing refer key-letters by user-specified keys. Records
may be separated by blank lines, or by ‘.[’ and ‘.]’ delimiters, but the two styles may not
be mixed together. This program reads through each database and pulls out key fields,
which are sorted separately. The sorted key fields contain the file pointer, byte offset, and
length of corresponding records. These records are delivered using disk seeks and reads,
so sortbib may not be used in a pipeline to read standard input.

The most common key-letters and their meanings are given below.

%A Author’s name

%B Book containing article referenced

%C City (place of publication)

%D Date of publication

%E Editor of book containing article referenced

%F Footnote number or label (supplied by refer)

%G Government order number

%H Header commentary, printed before reference

%I Issuer (publisher)

%J Journal containing article

%K Keywords to use in locating reference

%L Label field used by −k option of refer

%M Bell Labs Memorandum (undefined)

%N Number within volume

%O Other commentary, printed at end of reference

%P Page number(s)

%Q Corporate or Foreign Author (unreversed)

%R Report, paper, or thesis (unpublished)

%S Series title

%T Title of article or book

%V Volume number

%X Abstract — used by roffbib, not by refer

%Y,Z Ignored by refer

By default, sortbib alphabetizes by the first %A and the %D fields, which contain the
senior author and date.

modified 14 Sep 1992 SunOS 5.6 1-1071

sortbib (1) User Commands

sortbib sorts on the last word on the %A line, which is assumed to be the author’s last
name. A word in the final position, such as ‘jr.’ or ‘ed.’, will be ignored if the name
beforehand ends with a comma. Authors with two-word last names or unusual con-
structions can be sorted correctly by using the nroff convention ‘\0’ in place of a blank.
A %Q field is considered to be the same as %A, except sorting begins with the first, not
the last, word. sortbib sorts on the last word of the %D line, usually the year. It also
ignores leading articles (like ‘A’ or ‘The’) when sorting by titles in the %T or %J fields; it
will ignore articles of any modern European language. If a sort-significant field is absent
from a record, sortbib places that record before other records containing that field.

No more than 16 databases may be sorted together at one time. Records longer than 4096
characters will be truncated.

OPTIONS −sKEYS Specify new KEYS. For instance, −sATD will sort by author, title, and date,
while −sA+D will sort by all authors, and date. Sort keys past the fourth are
not meaningful.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWdoc

SEE ALSO addbib(1), indxbib(1), lookbib(1), refer(1), roffbib(1), attributes(5)

BUGS Records with missing author fields should probably be sorted by title.

1-1072 SunOS 5.6 modified 14 Sep 1992

User Commands sotruss (1)

NAME sotruss − trace shared library procedure calls

SYNOPSIS /usr/bin/sotruss [−f] [−F bindfromlist] [−T bindtolist] [−o outputfile]
executable [executable arguments . . .]

DESCRIPTION sotruss executes the specified command and produces a trace of the library calls that it
performs. Each line of the trace output reports what bindings are occurring between
dynamic objects as each procedure call is executed. sotruss traces all of the procedure
calls that occur between dynamic objects via the Procedure Linkage Table , so only those
procedure calls which are bound via the Procedure Linkage Table will be traced. See Linker
and Libraries Guide.

OPTIONS −F bindfromlist A colon-separated list of libraries that are to be traced. Only calls from
these libraries will be traced. The default is to trace calls from the main
executable only.

−T bindtolist A colon-separated list of libraries that are to be traced. Only calls to
these libraries will be traced. The default is to trace all calls.

−o outputfile sotruss output will be directed to the outputfile. If this option is com-
bined with the −f option then the pid of the executing program will be
placed at the end of the filename. By default sotruss output is placed on
stderr.

−f Follow all children created by fork() and print truss output on each
child process. This option will also cause a pid to be output on each
truss output line.

EXAMPLES A simple example shows the tracing of a simple ls command:

% sotruss ls | more
ls -> libc.so.1:∗atexit(0xef7d7d1c, 0x23c00, 0x0)
ls -> libc.so.1:∗atexit(0x1392c, 0xef7d7d1c, 0xef621bb0)
ls -> libc.so.1:∗setlocale(0x6, 0x1396c, 0xef621ba8)
ls -> libc.so.1:∗textdomain(0x13970, 0x1396c, 0xef621ba8)
ls -> libc.so.1:∗time(0x0, 0xef61f6fc, 0xef621ba8)
ls -> libc.so.1:∗isatty(0x1, 0xef61f6fc, 0x0)
ls -> libc.so.1:∗getopt(0x1, 0xeffff8fc, 0x13980)
ls -> libc.so.1:∗malloc(0x100, 0x0, 0x0)
ls -> libc.so.1:∗malloc(0x9000, 0x0, 0x0)
ls -> libc.so.1:∗lstat64(0x23ee8, 0xeffff7a0, 0x0)
. . .
ls -> libc.so.1:∗printf(0x13a64, 0x26208, 0x23ef0)
ls -> libc.so.1:∗printf(0x13a64, 0x26448, 0x23ef0)
ls -> libc.so.1:∗exit(0x0, 0x24220, 0x2421c)

modified 12 May 1997 SunOS 5.6 1-1073

sotruss (1) User Commands

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtoo

SEE ALSO ld.so.1(1), truss(1), whocalls(1), fork(2), attributes(5)

Linker and Libraries Guide

1-1074 SunOS 5.6 modified 12 May 1997

User Commands spell (1)

NAME spell, hashmake, spellin, hashcheck − report spelling errors

SYNOPSIS spell [−bilvx] [+local_file] [file] . . .

/usr/lib/spell/hashmake

/usr/lib/spell/spellin n

/usr/lib/spell/hashcheck spelling_list

DESCRIPTION The spell command collects words from the named files and looks them up in a spelling
list. Words that neither occur among nor are derivable (by applying certain inflections,
prefixes, or suffixes) from words in the spelling list are written to the standard output.

If there are no file arguments, words to check are collected from the standard input. spell
ignores most troff(1), tbl(1), and eqn(1) constructs. Copies of all output words are accu-
mulated in the history file (spellhist), and a stop list filters out misspellings (for example,
their=thy−y+ier) that would otherwise pass.

By default, spell (like deroff(1)) follows chains of included files (.so and .nx troff(1)
requests), unless the names of such included files begin with /usr/lib.

The standard spelling list is based on many sources, and while more haphazard than an
ordinary dictionary, is also more effective in respect to proper names and popular techni-
cal words. Coverage of the specialized vocabularies of biology, medicine and chemistry
is light.

Three programs help maintain and check the hash lists used by spell:

hashmake Reads a list of words from the standard input and writes the corresponding
nine-digit hash code on the standard output.

spellin Reads n hash codes from the standard input and writes a compressed spel-
ling list on the standard output.

hashcheck Reads a compressed spelling_list and recreates the nine-digit hash codes for
all the words in it. It writes these codes on the standard output.

OPTIONS The following options are supported:

−b Check British spelling. Besides preferring "centre," "colour," "programme,"
"speciality," "travelled," and so forth, this option insists upon −ise in words
like "standardise."

−i Cause deroff(1) to ignore .so and .nx commands. If deroff(1) is not present
on the system, then this option is ignored.

−l Follow the chains of all included files.

−v Print all words not literally in the spelling list, as well as plausible deriva-
tions from the words in the spelling list.

−x Print every plausible stem, one per line, with = preceding each word.

+local_file Specify a set of words that are correct spellings (in addition to spell’s own
spelling list) for each job. local_file is the name of a user-provided file that

modified 14 Dec 1995 SunOS 5.6 1-1075

spell (1) User Commands

contains a sorted list of words, one per line. Words found in local_file are
removed from spell’s output. Use sort(1) to order local_file in ASCII collat-
ing sequence. If this ordering is not followed, some entries in local_file may
be ignored.

OPERANDS The following operands are supported:

file A path name of a text file to check for spelling errors. If no files are named,
words are collected from the standard input.

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of spell: LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS The following exit values are returned:
0 Successful completion.
>0 An error occurred.

FILES D_SPELL=/usr/lib/spell/hlist[ab] hashed spelling lists, American & British
S_SPELL=/usr/lib/spell/hstop hashed stop list
H_SPELL=/var/adm/spellhist history file
/usr/share/lib/dict/words master dictionary

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu

SEE ALSO deroff(1), eqn(1), sort(1), tbl(1), troff(1), attributes(5), environ(5)

NOTES Misspelled words can be monitored by default by setting the H_SPELL variable in
/usr/bin/spell to the name of a file that has permission mode 666.

spell works only on English words defined in the U.S. ASCII codeset.

Because copies of all output are accumulated in the spellhist file, spellhist may grow
quite large and require purging.

BUGS The spelling list’s coverage is uneven; new installations may wish to monitor the output
for several months to gather local additions.

British spelling was done by an American.

1-1076 SunOS 5.6 modified 14 Dec 1995

User Commands spline (1)

NAME spline − interpolate smooth curve

SYNOPSIS spline [−aknpx] . . .

DESCRIPTION spline takes pairs of numbers from the standard input as abcissas and ordinates of a
function. It produces a similar set, which is approximately equally spaced and includes
the input set, on the standard output. The cubic spline output (R. W. Hamming, Numeri-
cal Methods for Scientists and Engineers, 2nd ed., 349ff) has two continuous derivatives, and
sufficiently many points to look smooth when plotted, for example by graph(1).

OPTIONS −a Supply abscissas automatically (they are missing from the input); spacing is given
by the next argument, or is assumed to be 1 if next argument is not a number.

−k The constant k used in the boundary value computation

y′′0 = ky′′1 , y′′n = ky′′n − 1 101

is set by the next argument. By default k = 0.

−n Space output points so that approximately n intervals occur between the lower and
upper x limits. (Default n = 100.)

−p Make output periodic, that is, match derivatives at ends. First and last input values
should normally agree.

−x Next 1 (or 2) arguments are lower (and upper) x limits. Normally these limits are
calculated from the data. Automatic abcissas start at lower limit (default 0).

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu

SEE ALSO graph(1), attributes(5)

R. W. Hamming, Numerical Methods for Scientists and Engineers, 2nd ed.

DIAGNOSTICS When data is not strictly monotonic in x, spline reproduces the input without interpolat-
ing extra points.

BUGS A limit of 1000 input points is enforced silently.

modified 14 Sep 1992 SunOS 5.6 1-1077

split (1) User Commands

NAME split − split a file into pieces

SYNOPSIS split [−linecount | −l linecount] [−a suffixlength] [file [name]]

split −b n[k|m] [−a suffixlength] [file [name]]

DESCRIPTION The split utility reads file and writes it in linecount-line pieces into a set of output-files.
The name of the first output-file is name with aa appended, and so on lexicographically,
up to zz (a maximum of 676 files). The maximum length of name is 2 characters less than
the maximum filename length allowed by the filesystem. See statvfs(2). If no output
name is given, x is used as the default (output-files will be called xaa, xab, and so forth).

OPTIONS The following options are supported:

−linecount | −l linecount
Number of lines in each piece. Defaults to 1000 lines.

−a suffixlength Use suffixlength letters to form the suffix portion of the filenames of the
split file. If −a is not specified, the default suffix length is 2. If the sum
of the name operand and the suffixlength option-argument would create a
filename exceeding NAME_MAX bytes, an error will result; split will exit
with a diagnostic message and no files will be created.

−b n Split a file into pieces n bytes in size.

−b nk Split a file into pieces n∗1024 bytes in size.

−b nm Split a file into pieces n∗1 048 576 bytes in size.

OPERANDS The following operands are supported:

file The path name of the ordinary file to be split. If no input file is given or
file is −, the standard input will be used.

name The prefix to be used for each of the files resulting from the split opera-
tion. If no name argument is given, x will be used as the prefix of the
output files. The combined length of the basename of prefix and
suffixlength cannot exceed NAME_MAX bytes; see OPTIONS.

USAGE See largefile(5) for the description of the behavior of split when encountering files
greater than or equal to 2 Gbyte (231 bytes).

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of split: LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS The following exit values are returned:

0 Successful completion.

>0 An error occurred.

1-1078 SunOS 5.6 modified 1 Feb 1995

User Commands split (1)

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu
CSI enabled

SEE ALSO csplit(1), statvfs(2), attributes(5), environ(5), largefile(5)

modified 1 Feb 1995 SunOS 5.6 1-1079

srchtxt (1) User Commands

NAME srchtxt − display contents of, or search for a text string in, message data bases

SYNOPSIS srchtxt [−s] [−l locale] [−m msgfile, . . .] [text]

DESCRIPTION The srchtxt utility is used to display all the text strings in message data bases, or to search
for a text string in message data bases (see mkmsgs(1)). These data bases are files in the
directory /usr/lib/locale/locale/LC_MESSAGES (see setlocale(3C)), unless a file name
given with the −m option contains a /. The directory locale can be viewed as the name of
the language in which the text strings are written. If the −l option is not specified, the
files accessed will be determined by the value of the environment variable
LC_MESSAGES. If LC_MESSAGES is not set, the files accessed will be determined by the
value of the environment variable LANG. If LANG is not set, the files accessed will be in
the directory /usr/lib/locale//C/LC_MESSAGES, which contains default strings.

If no text argument is present, then all the text strings in the files accessed will be
displayed.

If the −s option is not specified, the displayed text is prefixed by message sequence
numbers. The message sequence numbers are enclosed in angle brackets:
<msgfile:msgnum>.

msgfile name of the file where the displayed text occurred

msgnum sequence number in msgfile where the displayed text occurred

This display is in the format used by gettxt(1) and gettxt(3C).

OPTIONS −s Suppress printing of the message sequence numbers of the messages being
displayed.

−l locale Access files in the directory /usr/lib/locale/locale/LC_MESSAGES. If −m
msgfile is also supplied, locale is ignored for msgfiles containing a /.

−m msgfile Access files specified by one or more msgfiles. If msgfile contains a / charac-
ter, then msgfile is interpreted as a pathname; otherwise, it will be assumed
to be in the directory determined as described above. To specify more than
one msgfile, separate the file names using commas.

text Search for the text string specified by text and display each one that
matches. text can take the form of a regular expression; see regexp(5).

1-1080 SunOS 5.6 modified 20 Dec 1996

User Commands srchtxt (1)

EXAMPLES The following examples show uses of srchtxt.

Example 1:

If message files have been installed in a locale named french by using
mkmsgs(1), then you could display the entire set of text strings in the french
locale (/usr/lib/locale/french/LC_MESSAGES/∗) by typing:

example% srchtxt −l french

Example 2:

If a set of error messages associated with the operating system have been
installed in the file UX in the french locale
(/usr/lib/locale/french/LC_MESSAGES/UX), then, using the value of the LANG
environment variable to determine the locale to be searched, you could search
that file in that locale for all error messages dealing with files by typing:

example% setenv LANG=french; export LANG
example% srchtxt −m UX "[Ff]ichier"

If /usr/lib/locale/french/LC_MESSAGES/UX contained the following strings:

Erreur E/S\n
Liste d’arguments trop longue\n
Fichier inexistant\n
Argument invalide\n
Trop de fichiers ouverts\n
Fichier trop long\n
Trop de liens\n
Argument hors du domaine\n
Identificateur supprim\n
Etreinte fatale\n
.
.
.

then the following strings would be displayed:
<UX:3>Fichier inexistant\n
<UX:5>Trop de fichiers ouverts\n
<UX:6>Fichier trop long\n

Example 3:

If a set of error messages associated with the operating system have been
installed in the file UX and a set of error messages associated with the INGRESS
data base product have been installed in the file ingress, both in the german
locale, then you could search for the pattern [Dd]atei in both the files UX and
ingress in the german locale by typing:

example% srchtxt −l german −m UX,ingress "[Dd]atei"

modified 20 Dec 1996 SunOS 5.6 1-1081

srchtxt (1) User Commands

ENVIRONMENT See environ(5) for a description of the LC_CTYPE environment variable that affects the
execution of srchtxt.

FILES /usr/lib/locale/C/LC_MESSAGES/∗ default files created by mkmsgs(1)
/usr/lib/locale/locale/LC_MESSAGES/∗ message files created by mkmsgs(1)

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWloc

SEE ALSO exstr(1), gettxt(1), locale(1), mkmsgs(1), gettxt(3C), setlocale(3C), attributes(5),
environ(5), locale(5), regexp(5)

DIAGNOSTICS The error messages produced by srchtxt are intended to be self-explanatory. They indi-
cate an error in the command line or errors encountered while searching for a particular
locale and/or message file.

1-1082 SunOS 5.6 modified 20 Dec 1996

User Commands strchg (1)

NAME strchg, strconf − change or query stream configuration

SYNOPSIS strchg −h module1[,module2. . .]
strchg −p [−a | −u module]
strchg −f filename

strconf [−m | −t module]

DESCRIPTION These commands are used to alter or query the configuration of the stream associated
with the user’s standard input. The strchg command pushes modules on and/or pops
modules off the stream. The strconf command queries the configuration of the stream.
Only the super-user or owner of a STREAMS device may alter the configuration of that
stream.

Invoked without any arguments, strconf prints a list of all the modules in the stream as
well as the topmost driver. The list is printed with one name per line where the first
name printed is the topmost module on the stream (if one exists) and the last item printed
is the name of the driver.

OPTIONS The following options apply to strchg and, −h, −f, and −p are mutually exclusive.

−h module1 [, module2. . .]
Mnemonic for push, pushes modules onto a stream. It takes as arguments
the names of one or more pushable streams modules. These modules are
pushed in order; that is, module1 is pushed first, module2 is pushed second,
etc.

−p Mnemonic for pop, pops modules off the stream. With the −p option alone,
strchg pops the topmost module from the stream.

−a module Pop all the modules above the topmost driver off the stream. This option
requires the −p option.

−u module All modules above, but not including module are popped off the stream.
This option requires the −p option.

−f filename Specify a filename that contains a list of modules representing the desired
configuration of the stream. Each module name must appear on a separate
line where the first name represents the topmost module and the last name
represents the module that should be closest to the driver. strchg will
determine the current configuration of the stream and pop and push the
necessary modules in order to end up with the desired configuration.

The following options apply to strconf and, −m and −t are mutually exclusive.

−m module
Determine if the named module is present on a stream. If it is, strconf prints the
message yes and returns zero. If not, strconf prints the message no and returns a
non-zero value. The −t and −m options are mutually exclusive.

modified 20 Dec 1996 SunOS 5.6 1-1083

strchg (1) User Commands

−t module
Print only the topmost module (if one exists). The −t and −m options are mutu-
ally exclusive.

EXAMPLES The following command pushes the module ldterm on the stream associated with the
user’s standard input:

example% strchg −h ldterm

The following command pops the topmost module from the stream associated with
/dev/term/24. The user must be the owner of this device or the super-user.

example% strchg −p < /dev/term/24

If the file fileconf contains the following:

ttcompat
ldterm
ptem

then the command

example% strchg −f fileconf

will configure the user’s standard input stream so that the module ptem is pushed over
the driver, followed by ldterm and ttcompat closest to the stream head.

The strconf command with no arguments lists the modules and topmost driver on the
stream; for a stream that has only the module ldterm pushed above the zs driver, it
would produce the following output:

ldterm
zs

The following command asks if ldterm is on the stream

example% strconf −m ldterm

and produces the following output while returning an exit status of 0:

yes

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO attributes(5), streamio(7I)

DIAGNOSTICS strchg returns zero on success. It prints an error message and returns non-zero status for
various error conditions, including usage error, bad module name, too many modules to
push, failure of an ioctl on the stream, or failure to open filename from the −f option.

strconf returns zero on success (for the −m or −t option, "success" means the named or
topmost module is present). It returns a non-zero status if invoked with the −m or −t
option and the module is not present. It prints an error message and returns non-zero

1-1084 SunOS 5.6 modified 20 Dec 1996

User Commands strchg (1)

status for various error conditions, including usage error or failure of an ioctl on the
stream.

NOTES If the user is neither the owner of the stream nor the super-user, the strchg command will
fail. If the user does not have read permissions on the stream and is not the super-user,
the strconf command will fail.

If modules are pushed in the wrong order, one could end up with a stream that does not
function as expected. For ttys, if the line discipline module is not pushed in the correct
place, one could have a terminal that does not respond to any commands.

modified 20 Dec 1996 SunOS 5.6 1-1085

strings (1) User Commands

NAME strings − find printable strings in an object or binary file

SYNOPSIS strings [−a | −] [−t format | −o] [−n number | −number] [file. . .]

DESCRIPTION The strings utility looks for ASCII strings in a binary file. A string is any sequence of 4 or
more printing characters ending with a newline or a null character.

strings is useful for identifying random object files and many other things.

OPTIONS The following options are supported:

−a | − Look everywhere in the file for strings. If this flag is omitted, strings only
looks in the initialized data space of object files.

−n number | −number
Use a number as the minimum string length rather than the default, which is
4.

−o Equivalent to −t d option.

−t format Write each string preceded by its byte offset from the start of the file. The
format is dependent on the single character used as the format option-
argument:

d The offset will be written in decimal.
o The offset will be written in octal.
x The offset will be written in hexadecimal.

OPERANDS The following operand is supported:

file A path name of a regular file to be used as input. If no file operand is
specified, the strings utility will read from the standard input.

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of strings: LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS The following exit values are returned:

0 Successful completion.

>0 An error occurred.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtoo
CSI Enabled

SEE ALSO od(1), attributes(5), environ(5)

1-1086 SunOS 5.6 modified 20 Dec 1996

User Commands strings (1)

NOTES The algorithm for identifying strings is extremely primitive.

For backwards compatibility, the options −a and − are interchangeable.

modified 20 Dec 1996 SunOS 5.6 1-1087

strip (1) User Commands

NAME strip − strip symbol table, debugging and line number information from an object file

SYNOPSIS /usr/ccs/bin/strip [−blrVx] file. . .

DESCRIPTION The strip command removes the symbol table, debugging information, and line number
information from ELF object files. Once this stripping process has been done, no symbolic
debugging access will be available for that file; therefore, this command is normally run
only on production modules that have been debugged and tested.

If strip is executed on a common archive file (see ar(4)) in addition to processing the
members, strip will remove the archive symbol table. The archive symbol table must be
restored by executing the ar(1) command with the −s option before the archive can be
linked by the ld(1) command. strip will produce appropriate warning messages when
this situation arises.

strip is used to reduce the file storage overhead taken by the object file.

OPTIONS The amount of information stripped from the ELF object file can be controlled by using
any of the following options:

−b Same effect as the default behavior. This option is obsolete and will be
removed in the next release.

−l Strip line number information only; do not strip the symbol table or debug-
ging information.

−r Same effect as the default behavior. This option is obsolete and will be
removed in the next release.

−V Print, on standard error, the version number of strip.

−x Do not strip the symbol table; debugging and line number information may
be stripped.

OPERANDS The following operand is supported:

file A path name referring to an executable file.

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of strip: LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS The following exit values are returned:

0 Successful completion.

>0 An error occurred.

FILES /tmp/strp∗ temporary files

1-1088 SunOS 5.6 modified 1 Feb 1995

User Commands strip (1)

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWbtool

SEE ALSO ar(1), as(1), ld(1), elf(3E), tmpnam(3S), a.out(4), ar(4), attributes(5), environ(5)

NOTES The symbol table section will not be removed if it is contained within a segment, or the
file is either a relocatable or dynamic shared object.

The line number and debugging sections will not be removed if they are contained within
a segment, or their associated relocation section is contained within a segment.

modified 1 Feb 1995 SunOS 5.6 1-1089

stty (1) User Commands

NAME stty − set the options for a terminal

SYNOPSIS /usr/bin/stty [−a] [−g]
/usr/bin/stty [modes]

/usr/xpg4/bin/stty [−a | −g]
/usr/xpg4/bin/stty [modes]

DESCRIPTION The stty command sets certain terminal I/O options for the device that is the current stan-
dard input; without arguments, it reports the settings of certain options.

In this report, if a character is preceded by a caret (ˆ), then the value of that option is the
corresponding control character (for example, “ˆh” is CTRL-H; in this case, recall that
CTRL-H is the same as the ‘‘back-space’’ key.) The sequence “ˆ´” means that an option has
a null value.

See termio(7I) for detailed information about the modes listed from Control Modes
through Local Modes. For detailed information about the modes listed under Hardware
Flow Control Modes and Clock Modes, below, see termiox(7I).

Operands described in the Combination Modes section are implemented using options
in the earlier sections. Note that many combinations of options make no sense, but no
sanity checking is performed. Hardware flow control and clock modes options may not
be supported by all hardware interfaces.

OPTIONS The following options are supported:

−a Write to standard output all of the option settings for the terminal.

−g Report current settings in a form that can be used as an argument to another
stty command. Emits termios-type output if the underlying driver supports it;
otherwise, it emits termio-type output.

OPERANDS The following mode operands are supported:

Control Modes parenb (−parenb) Enable (disable) parity generation and detection.

parext (−parext) Enable (disable) extended parity generation and detection for
mark and space parity.

parodd (−parodd) Select odd (even) parity, or mark (space) parity if parext is
enabled.

cs5 cs6 cs7 cs8 Select character size (see termio(7I)).

0 Hang up line immediately.
110 300 600 1200 1800 2400 4800 9600 19200 38400 357600 76800 115200 153600
230400 307200 460800 Set terminal baud rate to the number given, if possible. (All

speeds are not supported by all hardware interfaces.)
ispeed 0 110 300 600 1200 1800 2400 4800 9600 19200 38400 57600 76800 115200
153600 230400 307200 460800

Set terminal input baud rate to the number given, if possible. (Not

1-1090 SunOS 5.6 modified 20 Dec 1996

User Commands stty (1)

all hardware supports split baud rates.) If the input baud rate is set
to 0, the input baud rate will be specified by the value of the out-
put baud rate.

ospeed 0 110 300 600 1200 1800 2400 4800 9600 19200 38400 57600 76800 115200
153600 230400 307200 460800

Set terminal output baud rate to the number given, if possible.
(Not all hardware supports split baud rates.) If the output baud
rate is set to 0, the line will be hung up immediately.

hupcl (−hupcl) Hang up (do not hang up) connection on last close.
hup (−hup) Same as hupcl (−hupcl).
cstopb (−cstopb) Use two (one) stop bits per character.
cread (−cread) Enable (disable) the receiver.
crtscts (-crtscts) Enable output hardware flow control. Raise the RTS (Request to

Send) modem control line. Suspends output until the CTS (Clear
to Send) line is raised.

crtsxoff (−crtsxoff) Enable input hardware flow control. Raise the RTS (Request to
Send) modem control line to receive data. Suspends input when
RTS is low.

clocal (−clocal) Assume a line without (with) modem control.
loblk (−loblk) Block (do not block) output from a non-current layer.
defeucw Set the widths of multibyte Extended Unix Code (EUC) characters

in struct eucioc to default values for the current locale specified by
LC_CTYPE; width is expressed in terms of bytes per character, and
screen or display columns per character (see getwidth(3C) and
ldterm(7M)).

Input Modes ignbrk (−ignbrk) Ignore (do not ignore) break on input.
brkint (−brkint) Signal (do not signal) INTR on break.
ignpar (−ignpar) Ignore (do not ignore) parity errors.
parmrk (−parmrk) Mark (do not mark) parity errors (see termio(7I)).
inpck (−inpck) Enable (disable) input parity checking.
istrip (−istrip) Strip (do not strip) input characters to seven bits.
inlcr (−inlcr) Map (do not map) NL to CR on input.
igncr (−igncr) Ignore (do not ignore) CR on input.
icrnl (−icrnl) Map (do not map) CR to NL on input.
iuclc (−iuclc) Map (do not map) upper-case alphabetics to lower case on input.
ixon (−ixon) Enable (disable) START/STOP output control. Output is stopped

by sending STOP control character and started by sending the
START control character.

ixany (−ixany) Allow any character (only DC1) to restart output.
ixoff (−ixoff) Request that the system send (not send) START/STOP characters

when the input queue is nearly empty/full.
imaxbel (−imaxbel) Echo (do not echo) BEL when the input line is too long.

modified 20 Dec 1996 SunOS 5.6 1-1091

stty (1) User Commands

Output Modes opost (−opost) Post-process output (do not post-process output; ignore all other
output modes).

olcuc (−olcuc) Map (do not map) lower-case alphabetics to upper case on output.
onlcr (−onlcr) Map (do not map) NL to CR-NL on output.
ocrnl (−ocrnl) Map (do not map) CR to NL on output.
onocr (−onocr) Do not (do) output CRs at column zero.
onlret (−onlret) On the terminal NL performs (does not perform) the CR function.
ofill (−ofill) Use fill characters (use timing) for delays.
ofdel (−ofdel) Fill characters are DELs (NULs).
cr0 cr1 cr2 cr3 Select style of delay for carriage returns (see termio(7I)).
nl0 nl1 Select style of delay for line-feeds (see termio(7I)).
tab0 tab1 tab2 tab3 Select style of delay for horizontal tabs (see termio(7I)).
bs0 bs1 Select style of delay for backspaces (see termio(7I)).
ff0 ff1 Select style of delay for form-feeds (see termio(7I)).
vt0 vt1 Select style of delay for vertical tabs (see termio(7I)).

Local Modes isig (−isig) Enable (disable) the checking of characters against the special con-
trol characters INTR, QUIT, SWTCH, and SUSP.

icanon (−icanon) Enable (disable) canonical input (ERASE and KILL processing).
Does not set MIN or TIME.

xcase (−xcase) Canonical (unprocessed) upper/lower-case presentation.
echo (−echo) Echo back (do not echo back) every character typed.
echoe (−echoe) Echo (do not echo) ERASE character as a backspace-space-

backspace string. Note: This mode will erase the ERASEed charac-
ter on many CRT terminals; however, it does not keep track of
column position and, as a result, it may be confusing for escaped
characters, tabs, and backspaces.

echok (−echok) Echo (do not echo) NL after KILL character.
lfkc (−lfkc) The same as echok (−echok); obsolete.
echonl (−echonl) Echo (do not echo) NL.
noflsh (−noflsh) Disable (enable) flush after INTR, QUIT, or SUSP.
stwrap (−stwrap) Disable (enable) truncation of lines longer than 79 characters on a

synchronous line.
tostop (−tostop) Send (do not send) SIGTTOU when background processes write to

the terminal.
echoctl (−echoctl) Echo (do not echo) control characters as ˆchar, delete as ˆ?.
echoprt (−echoprt) Echo (do not echo) erase character as character is ‘‘erased’’.
echoke (−echoke) BS-SP-BS erase (do not BS-SP-BS erase) entire line on line kill.
flusho (−flusho) Output is (is not) being flushed.
pendin (−pendin) Retype (do not retype) pending input at next read or input charac-

ter.
iexten (−iexten) Enable (disable) special control characters not currently controlled

by icanon, isig, ixon, or ixoff: VEOLZ, VSWTCH, VREPRINT,
VDISCARD, VDSUSP, VWERASE, and VLNEXT.

stflush (−stflush) Enable (disable) flush on a synchronous line after every write(2).
stappl (−stappl) Use application mode (use line mode) on a synchronous line.

1-1092 SunOS 5.6 modified 20 Dec 1996

User Commands stty (1)

Hardware Flow
Control Modes

rtsxoff (−rtsxoff) Enable (disable) RTS hardware flow control on input.
ctsxon (−ctsxon) Enable (disable) CTS hardware flow control on output.
dtrxoff (−dtrxoff) Enable (disable) DTR hardware flow control on input.
cdxon (−cdxon) Enable (disable) CD hardware flow control on output.
isxoff (−isxoff) Enable (disable) isochronous hardware flow control on input.

Clock Modes xcibrg Get transmit clock from internal baud rate generator.
xctset Get the transmit clock from transmitter signal element timing (DCE

source) lead, CCITT V.24 circuit 114, EIA-232-D pin 15.
xcrset Get transmit clock from receiver signal element timing (DCE

source) lead, CCITT V.24 circuit 115, EIA-232-D pin 17.
rcibrg Get receive clock from internal baud rate generator.
rctset Get receive clock from transmitter signal element timing (DCE

source) lead, CCITT V.24 circuit 114, EIA-232-D pin 15.
rcrset Get receive clock from receiver signal element timing (DCE source)

lead, CCITT V.24 circuit 115, EIA-232-D pin 17.
tsetcoff Transmitter signal element timing clock not provided.
tsetcrbrg Output receive baud rate generator on transmitter signal element

timing (DTE source) lead, CCITT V.24 circuit 113, EIA-232-D pin 24.
tsetctbrg Output transmit baud rate generator on transmitter signal element

timing (DTE source) lead, CCITT V.24 circuit 113, EIA-232-D pin 24.
tsetctset Output transmitter signal element timing (DCE source) on

transmitter signal element timing (DTE source) lead, CCITT V.24
circuit 113, EIA-232-D pin 24.

tsetcrset Output receiver signal element timing (DCE source) on transmitter
signal element timing (DTE source) lead, CCITT V.24 circuit 113,
EIA-232-D pin 24.

rsetcoff Receiver signal element timing clock not provided.
rsetcrbrg Output receive baud rate generator on receiver signal element tim-

ing (DTE source) lead, CCITT V.24 circuit 128, no EIA-232-D pin.
rsetctbrg Output transmit baud rate generator on receiver signal element

timing (DTE source) lead, CCITT V.24 circuit 128, no EIA-232-D pin.
rsetctset Output transmitter signal element timing (DCE source) on receiver

signal element timing (DTE source) lead, CCITT V.24 circuit 128, no
EIA-232-D pin.

rsetcrset Output receiver signal element timing (DCE source) on receiver
signal element timing (DTE source) lead, CCITT V.24 circuit 128, no
EIA-232-D pin.

Control Assignments control-character c Set control-character to c, where:
control-character

is ctab, discard, dsusp, eof, eol, eol2, erase, intr, kill,
lnext, quit, reprint, start, stop, susp, swtch, or werase
(ctab is used with −stappl, see termio(7I)).

c If c is a single character, the control character will be set to
that character.

In the POSIX locale, if c is preceded by a caret (ˆ) indicating

modified 20 Dec 1996 SunOS 5.6 1-1093

stty (1) User Commands

an escape from the shell and is one of those listed in the ˆc
column of the following table, then its value used (in the
Value column) is the corresponding control character (for
example, ‘‘ˆd’’ is a CTRL-D). ‘‘ˆ?’’ is interpreted as DEL
and ‘‘ˆ−’’ is interpreted as undefined.

ˆc Value ˆc Value ˆc Value
a, A <SOH> l, L <FF> w, W <ETB>
b, B <STX> m, M <CR> x, X <CAN>
c, C <ETX> n, N <SO> y, Y
d, D <EOT> o, O <SI> z, Z <SUB>
e, E <ENQ> p, P <DLE> [<ESC>
f, F <ACK> q, Q <DC1> \ <FS>
g, G <BEL> r, R <DC2>] <GS>
h, H <BS> s, S <DC3> ˆ <RS>
i, I <HT> t, T <DC4> _ <US>
j, J <LF> u, U <NAK> ?
k, K <VT> v, V <SYN>

min number
time number Set the value of min or time to number. MIN and TIME are used in

Non-Canonical mode input processing (−icanon).
linei Set line discipline to i (0< i <127).

Combination Modes saved settings Set the current terminal characteristics to the saved settings pro-
duced by the −g option.

evenp or parity Enable parenb and cs7, or disable parodd.
oddp Enable parenb, cs7, and parodd.
spacep Enable parenb, cs7, and parext.
markp Enable parenb, cs7, parodd, and parext.
−parity, or −evenp Disable parenb, and set cs8.
−oddp Disable parenb and parodd, and set cs8.
−spacep Disable parenb and parext, and set cs8.
−markp Disable parenb, parodd, and parext, and set cs8.
raw (−raw or cooked) Enable (disable) raw input and output. Raw mode is equivalent to

setting:

stty cs8 −icanon min 1 time 0 −isig −xcase −inpck −opost
/usr/bin/stty nl (−nl) Unset (set) icrnl, onlcr. In addition −nl unsets inlcr, igncr, ocrnl,

and onlret.
/usr/xpg4/bin/stty nl (−nl) Set (unset) icrnl. In addition, −nl unsets inlcr, igncr, ocrnl, and

onlret; −nl sets onlcr, and nl unsets onlcr.
lcase (−lcase) Set (unset) xcase, iuclc, and olcuc.
LCASE (−LCASE) Same as lcase (−lcase).
tabs (−tabs or tab3) Preserve (expand to spaces) tabs when printing.
ek Reset ERASE and KILL characters back to normal # and @.
sane Resets all modes to some reasonable values.
term Set all modes suitable for the terminal type term, where term is one

1-1094 SunOS 5.6 modified 20 Dec 1996

User Commands stty (1)

of tty33, tty37, vt05, tn300, ti700, or tek.
async Set normal asynchronous communications where clock settings

are xcibrg, rcibrg, tsetcoff and rsetcoff.
Window Size rows n Set window size to n rows.

columns n Set window size to n columns.
cols n Set window size to n columns. Note that cols is a shorthand alias

for columns.
ypixels n Set vertical window size to n pixels.
xpixels n Set horizontal window size to n pixels.

USAGE The −g flag is designed to facilitate the saving and restoring of terminal state from the
shell level. For example, a program may:

saveterm="$(stty -g)" # save terminal state
stty (new settings) # set new state
. . . # . . .
stty $saveterm # restore terminal state

Since the −a format is so loosely specified, scripts that save and restore terminal settings
should use the −g option.

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of stty: LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS The following exit values are returned:
0 Successful completion.
>0 An error occurred.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

/usr/bin/stty ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

/usr/xpg4/bin/stty ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxcu4

SEE ALSO tabs(1), ioctl(2), write(2), getwidth(3C), attributes(5), environ(5), ldterm(7M),
termio(7I), termiox(7I)

modified 20 Dec 1996 SunOS 5.6 1-1095

stty (1B) SunOS/BSD Compatibility Package Commands

NAME stty − set the options for a terminal

SYNOPSIS /usr/ucb/stty [−a] [−g] [−h] [modes]

DESCRIPTION stty sets certain terminal I/O options for the device that is the current standard output;
without arguments, it reports the settings of certain options.

OPTIONS In this report, if a character is preceded by a caret (ˆ), then the value of that option is the
corresponding CTRL character (for example, ‘‘ˆh’’ is CTRL-H; in this case, recall that
CTRL-H is the same as the ‘‘back-space’’ key.) The sequence ‘‘ˆ´’’ means that an option
has a null value.

−a Report all of the option settings.

−g Report current settings in a form that can be used as an argument to another
stty command.

−h Report all the option settings with the control characters in an easy to read
column format.

Options in the last group are implemented using options in the previous groups. Note:
Many combinations of options make no sense, but no sanity checking is performed.
Hardware flow control and clock modes options may not be supported by all hardware
interfaces. The options are selected from the following:

Special Requests all Reports the same option settings as stty without arguments, but
with the control characters in column format.

everything Everything stty knows about is printed. Same as −h option.
speed The terminal speed alone is reported on the standard output.
size The terminal (window) sizes are printed on the standard output,

first rows and then columns. This option is only appropriate if
currently running a window system.
size and speed always report on the settings of /dev/tty, and
always report the settings to the standard output.

Control Modes parenb (−parenb) Enable (disable) parity generation and detection.
parext (−parext) Enable (disable) extended parity generation and detection for

mark and space parity.
parodd (−parodd) Select odd (even) parity, or mark (space) parity if parext is

enabled.
cs5 cs6 cs7 cs8 Select character size (see termio(7I)).
0 Hang up line immediately.
110 300 600 1200 1800 2400 4800 9600 19200 exta 38400 extb

Set terminal baud rate to the number given, if possible. (All
speeds are not supported by all hardware interfaces.)

ispeed 0 110 300 600 1200 1800 2400 4800 9600 19200 exta 38400 extb
Set terminal input baud rate to the number given, if possible. (Not
all hardware supports split baud rates.) If the input baud rate is
set to zero, the input baud rate will be specified by the value of the

1B-1096 SunOS 5.6 modified 6 Jan 1993

SunOS/BSD Compatibility Package Commands stty (1B)

output baud rate.
ospeed 0 110 300 600 1200 1800 2400 4800 9600 19200 exta 38400 extb

Set terminal output baud rate to the number given, if possible.
(Not all hardware supports split baud rates.) If the baud rate is set
to zero, the line will be hung up immediately.

hupcl (−hupcl) Hang up (do not hang up) connection on last close.
hup (−hup) Same as hupcl (−hupcl).
cstopb (−cstopb) Use two (one) stop bits per character.
cread (−cread) Enable (disable) the receiver.
clocal (−clocal) Assume a line without (with) modem control.
crtscts (-crtscts) Enable hardware flow control. Raise the RTS (Request to Send)

modem control line. Suspends output until the CTS (Clear to
Send) line is raised.

loblk (−loblk) Block (do not block) output from a non-current layer.

Input Modes ignbrk (−ignbrk) Ignore (do not ignore) break on input.
brkint (−brkint) Signal (do not signal) INTR on break.
ignpar (−ignpar) Ignore (do not ignore) parity errors.
parmrk (−parmrk) Mark (do not mark) parity errors (see termio(7I)).
inpck (−inpck) Enable (disable) input parity checking.
istrip (−istrip) Strip (do not strip) input characters to seven bits.
inlcr (−inlcr) Map (do not map) NL to CR on input.
igncr (−igncr) Ignore (do not ignore) CR on input.
icrnl (−icrnl) Map (do not map) CR to NL on input.
iuclc (−iuclc) Map (do not map) upper-case alphabetics to lower case on input.
ixon (−ixon) Enable (disable) START/STOP output control. Output is stopped

by sending an STOP and started by sending an START.
ixany (−ixany) Allow any character (only START) to restart output.
decctlq (−decctlq) Same as −ixany.
ixoff (−ixoff) Request that the system send (not send) START/STOP characters

when the input queue is nearly empty/full.
tandem (−tandem) Same as ixoff.
imaxbel (−imaxbel) Echo (do not echo) BEL when the input line is too long.
iexten (−iexten) Enable (disable) extended (implementation-defined) functions for

input data.

Output Modes opost (−opost) Post-process output (do not post-process output; ignore all other
output modes).

olcuc (−olcuc) Map (do not map) lower-case alphabetics to upper case on output.
onlcr (−onlcr) Map (do not map) NL to CR-NL on output.
ocrnl (−ocrnl) Map (do not map) CR to NL on output.
onocr (−onocr) Do not (do) output CRs at column zero.
onlret (−onlret) On the terminal NL performs (does not perform) the CR function.
ofill (−ofill) Use fill characters (use timing) for delays.
ofdel (−ofdel) Fill characters are DELs (NULs).

modified 6 Jan 1993 SunOS 5.6 1B-1097

stty (1B) SunOS/BSD Compatibility Package Commands

cr0 cr1 cr2 cr3 Select style of delay for carriage returns (see termio(7I)).
nl0 nl1 Select style of delay for line-feeds (see termio(7I)).
tab0 tab1 tab2 tab3 Select style of delay for horizontal tabs (see termio(7I)).
bs0 bs1 Select style of delay for backspaces (see termio(7I)).
ff0 ff1 Select style of delay for form-feeds (see termio(7I)).
vt0 vt1 Select style of delay for vertical tabs (see termio(7I)).

Local Modes isig (−isig) Enable (disable) the checking of characters against the special con-
trol characters INTR, QUIT, and SWTCH.

icanon (−icanon) Enable (disable) canonical input (ERASE and KILL processing).
Does not set MIN or TIME.

cbreak (−cbreak) Equivalent to -icanon min 1 time 0.
xcase (−xcase) Canonical (unprocessed) upper/lower-case presentation.
echo (−echo) Echo back (do not echo back) every character typed.
echoe (−echoe) Echo (do not echo) ERASE character as a backspace-space-

backspace string. Note: This mode will erase the ERASEed charac-
ter on many CRT terminals; however, it does not keep track of
column position and, as a result, may be confusing on escaped
characters, tabs, and backspaces.

crterase (−crterase) Same as echoe.
echok (−echok) Echo (do not echo) NL after KILL character.
lfkc (−lfkc) The same as echok (−echok); obsolete.
echonl (−echonl) Echo (do not echo) NL.
noflsh (−noflsh) Disable (enable) flush after INTR, QUIT, or SWTCH.
stwrap (−stwrap) Disable (enable) truncation of lines longer than 79 characters on a

synchronous line. (Does not apply to the 3B2.)
tostop (−tostop) Send (do not send) SIGTTOU for background processes.
echoctl (−echoctl) Echo (do not echo) control characters as ˆchar, delete as ˆ?
ctlecho (−ctlecho) Same as echoctl.
echoprt (−echoprt) Echo (do not echo) erase character as character is ‘‘erased’’.
prterase (−prterase) Same as echoprt.
echoke (−echoke) BS-SP-BS erase (do not BS-SP-BS erase) entire line on line kill.
crtkill (−crtkill) Same as echoke.
flusho (−flusho) Output is (is not) being flushed.
pendin (−pendin) Retype (do not retype) pending input at next read or input charac-

ter.
stflush (−stflush) Enable (disable) flush on a synchronous line after every write(2).

(Does not apply to the 3B2.)
stappl (−stappl) Use application mode (use line mode) on a synchronous line.

(Does not apply to the 3B2.)

Hardware Flow
Control Modes

rtsxoff (−rtsxoff) Enable (disable) RTS hardware flow control on input.
ctsxon (−ctsxon) Enable (disable) CTS hardware flow control on output.
dterxoff (−dterxoff) Enable (disable) DTER hardware flow control on input.
rlsdxon (−rlsdxon) Enable (disable) RLSD hardware flow control on output.

1B-1098 SunOS 5.6 modified 6 Jan 1993

SunOS/BSD Compatibility Package Commands stty (1B)

isxoff (−isxoff) Enable (disable) isochronous hardware flow control on input.

Clock Modes xcibrg Get transmit clock from internal baud rate generator.
xctset Get the transmit clock from transmitter signal element timing (DCE

source) lead, CCITT V.24 circuit 114, EIA-232-D pin 15.
xcrset Get transmit clock from receiver signal element timing (DCE

source) lead, CCITT V.24 circuit 115, EIA-232-D pin 17.
rcibrg Get receive clock from internal baud rate generator.
rctset Get receive clock from transmitter signal element timing (DCE

source) lead, CCITT V.24 circuit 114, EIA-232-D pin 15.
rcrset Get receive clock from receiver signal element timing (DCE source)

lead, CCITT V.24 circuit 115, EIA-232-D pin 17.
tsetcoff Transmitter signal element timing clock not provided.
tsetcrc Output receive clock on transmitter signal element timing (DTE

source) lead, CCITT V.24 circuit 113, EIA-232-D pin 24, clock
source.

tsetcxc Output transmit clock on transmitter signal element timing (DTE
source) lead, CCITT V.24 circuit 113, EIA-232-D pin 24, clock
source.

rsetcoff Receiver signal element timing clock not provided.
rsetcrc Output receive clock on receiver signal element timing (DTE

source) lead, CCITT V.24 circuit 128, no EIA-232-D pin, clock
source.

rsetcxc Output transmit clock on receiver signal element timing (DTE
source) lead, CCITT V.24 circuit 128, no EIA-232-D pin, clock
source.

Control Assignments control-character c Set control-character to c, where control-character is intr, quit, erase,
kill, eof, eol, eol2, swtch, start, stop, susp, dsusp, rprnt, flush,
werase, lnext min, ctab, time, or brk) (ctab is used with −stappl;
min and time are used with −icanon; see termio(7I)). If c is pre-
ceded by an (escaped from the shell) caret (ˆ), then the value used
is the corresponding CTRL character (for example, ‘‘ˆd’’ is a CTRL-
d); ‘‘ˆ?’’ is interpreted as DEL and ‘‘ˆ−’’ is interpreted as undefined.

line i Set line discipline to i (0 < i < 127).

Combination Modes evenp or parity Enable parenb and cs7.
−evenp, or −parity Disable parenb, and set cs8.
even (−even) Same as evenp (−evenp).
oddp Enable parenb, cs7, and parodd.
−oddp Disable parenb and parodd, and set cs8.
odd (−odd) Same as oddp (−oddp).
spacep Enable parenb, cs7, and parext.
−spacep Disable parenb and parext, and set cs8.
markp Enable parenb, cs7, parodd, and parext.

modified 6 Jan 1993 SunOS 5.6 1B-1099

stty (1B) SunOS/BSD Compatibility Package Commands

−markp Disable parenb, parodd, and parext, and set cs8.
raw (−raw or cooked) Enable (disable) raw input and output (no ERASE, KILL, INTR,

QUIT, SWTCH, EOT, or output post processing).
nl (−nl) Unset (set) icrnl, onlcr. In addition −nl unsets inlcr, igncr, ocrnl,

and onlret.
lcase (−lcase) Set (unset) xcase, iuclc, and olcuc.
LCASE (−LCASE) Same as lcase (−lcase).
tabs (−tabs or tab3) Preserve (expand to spaces) tabs when printing.
ek Reset ERASE and KILL characters back to normal # and @.
sane Resets all modes to some reasonable values.
term Set all modes suitable for the terminal type term, where term is one

of tty33, tty37, vt05, tn300, ti700, or tek.
async Set normal asynchronous communications where clock settings

are xcibrg, rcibrg, tsetcoff and rsetcoff.
litout (−litout) Disable (enable) parenb, istrip, and opost, and set cs8 (cs7).
pass8 (−pass8) Disable (enable) parenb and istrip, and set cs8 (cs7).
crt Set options for a CRT (echoe, echoctl, and, if >= 1200 baud,

echoke.)
dec Set all modes suitable for Digital Equipment Corp. operating sys-

tems users ERASE, KILL, and INTR characters to ˆ?, ˆU, and ˆC,
decctlq, and crt.)

Window Size rowsn Set window size to n rows.
columnsn Set window size to n columns.
colsn An alias for columns n.
ypixelsn Set vertical window size to n pixels.
xpixelsn Set horizontal window size to n pixels.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscpu

SEE ALSO tabs(1), ioctl(2), attributes(5), termio(7I), termiox(7I)

1B-1100 SunOS 5.6 modified 6 Jan 1993

User Commands sum (1)

NAME sum − print checksum and block count for a file

SYNOPSIS sum [−r] [file . . .]

DESCRIPTION The sum utility calculates and prints a 16-bit checksum for the named file and the
number of 512-byte blocks in the file. It is typically used to look for bad spots, or to vali-
date a file communicated over some transmission line.

OPTIONS The following options are supported:

−r Use an alternate (machine-dependent) algorithm in computing the checksum.

OPERANDS The following operands are supported:

file A path name of a file. If no files are named, the standard input is used.

USAGE See largefile(5) for the description of the behavior of sum when encountering files greater
than or equal to 2 Gbyte (231 bytes).

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of sum: LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS The following exit values are returned.

0 Successful completion.

>0 An error occurred.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu
CSI enabled

SEE ALSO cksum(1), sum(1B), wc(1), attributes(5), environ(5), largefile(5)

DIAGNOSTICS “Read error” is indistinguishable from end of file on most devices; check the block count.

NOTES Portable applications should use cksum(1).

sum and usr/ucb/sum (see sum(1B)) return different checksums.

modified 7 Nov 1995 SunOS 5.6 1-1101

sum (1B) SunOS/BSD Compatibility Package Commands

NAME sum − calculate a checksum for a file

SYNOPSIS /usr/ucb/sum file. . .

DESCRIPTION sum calculates and displays a 16-bit checksum for the named file and displays the size of
the file in kilobytes. It is typically used to look for bad spots, or to validate a file com-
municated over some transmission line. The checksum is calculated by an algorithm
which may yield different results on machines with 16-bit ints and machines with 32-bit
ints, so it cannot always be used to validate that a file has been transferred between
machines with different-sized ints.

USAGE See largefile(5) for the description of the behavior of sum when encountering files greater
than or equal to 2 Gbyte (231 bytes).

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscpu

SEE ALSO sum(1), wc(1), attributes(5), largefile(5)

DIAGNOSTICS Read error is indistinguishable from EOF on most devices; check the block count.

NOTES sum and /usr/bin/sum (see sum(1)) return different checksums.

This utility is obsolete.

1B-1102 SunOS 5.6 modified 8 Nov 1995

User Commands suspend (1)

NAME suspend − shell built-in function to halt the current shell

SYNOPSIS
sh suspend

csh suspend

ksh suspend

DESCRIPTION
sh Stops the execution of the current shell (but not if it is the login shell).

csh Stop the shell in its tracks, much as if it had been sent a stop signal with ˆZ. This is most
often used to stop shells started by su.

ksh Stops the execution of the current shell (but not if it is the login shell).

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO csh(1), ksh(1), kill(1), sh(1), su(1M), attributes(5)

modified 15 Apr 1994 SunOS 5.6 1-1103

symorder (1) User Commands

NAME symorder − rearrange a list of symbols

SYNOPSIS symorder [−s] objectfile symbolfile

DESCRIPTION symorder was used in SunOS 4.x specifically to cut down on the overhead of getting
symbols from vmunix. This is no longer applicable as kernel symbol entries are dynami-
cally obtained through /dev/ksyms.

This script is provided as a convenience for software developers who need to maintain
scripts that are portable across a variety of operating systems.

EXIT STATUS symorder has exit status 0.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWbtool

SEE ALSO nlist(3E), attributes(5), ksyms(7D).

1-1104 SunOS 5.6 modified 16 Oct 1996

User Commands sysV-make (1)

NAME sysV-make − maintain, update, and regenerate groups of programs

SYNOPSIS /usr/ccs/lib/svr4.make [−f makefile] [−eiknpqrst] [names]

DESCRIPTION This is the “vanilla” System V version of make. If the environment variable
USE_SVR4_MAKE is set, then the command make will invoke this version of make. (See
also the ENVIRONMENT section.)

make allows the programmer to maintain, update, and regenerate groups of computer
programs. make executes commands in makefile to update one or more target names
(names are typically programs). If the −f option is not present, then makefile, Makefile,
and the Source Code Control System (SCCS) files s.makefile, and s.Makefile are tried in
order. If makefile is ‘−’ the standard input is taken. More than one −f makefile argument
pair may appear.

make updates a target only if its dependents are newer than the target. All prerequisite
files of a target are added recursively to the list of targets. Missing files are deemed to be
outdated.

The following list of four directives can be included in makefile to extend the options pro-
vided by make. They are used in makefile as if they were targets:

.DEFAULT: If a file must be made but there are no explicit commands or relevant
built-in rules, the commands associated with the name .DEFAULT are
used if it exists.

.IGNORE: Same effect as the −i option.

.PRECIOUS: Dependents of the .PRECIOUS entry will not be removed when quit or
interrupt are hit.

.SILENT: Same effect as the −s option.

The options for make are listed below:

−e Environment variables override assignments within makefiles.

−f makefile Description filename (makefile is assumed to be the name of a descrip-
tion file).

−i Ignore error codes returned by invoked commands.

−k Abandon work on the current entry if it fails, but continue on other
branches that do not depend on that entry.

−n No execute mode. Print commands, but do not execute them. Even
command lines beginning with an ‘@’ are printed.

−p Print out the complete set of macro definitions and target descriptions.

−q Question. make returns a zero or non-zero status code depending on
whether or not the target file has been updated.

−r Do not use the built-in rules.

−s Silent mode. Do not print command lines before executing.

modified 18 Jul 1994 SunOS 5.6 1-1105

sysV-make (1) User Commands

−t Touch the target files (causing them to be updated) rather than issue
the usual commands.

Creating the makefile The makefile invoked with the −f option is a carefully structured file of explicit instruc-
tions for updating and regenerating programs, and contains a sequence of entries that
specify dependencies. The first line of an entry is a blank-separated, non-null list of tar-
gets, then a ‘:’, then a (possibly null) list of prerequisite files or dependencies. Text fol-
lowing a ‘;’ and all following lines that begin with a tab are shell commands to be exe-
cuted to update the target. The first non-empty line that does not begin with a tab or ‘#’
begins a new dependency or macro definition. Shell commands may be continued across
lines with a backslash-new-line (\-NEWLINE) sequence. Everything printed by make
(except the initial TAB) is passed directly to the shell as is. Thus,

echo a\
b

will produce

ab

exactly the same as the shell would.

Number-sign (#) and NEWLINE surround comments including contained ‘\−NEWLINE’
sequences.

The following makefile says that pgm depends on two files a.o and b.o, and that they in
turn depend on their corresponding source files (a.c and b.c) and a common file incl.h:

pgm: a.o b.o
cc a.o b.o −o pgm

a.o: incl.h a.c
cc −c a.c

b.o: incl.h b.c
cc −c b.c

Command lines are executed one at a time, each by its own shell. The SHELL environ-
ment variable can be used to specify which shell make should use to execute commands.
The default is /usr/bin/sh. The first one or two characters in a command can be the fol-
lowing: ‘@’, ‘−’, ‘@−’, or ‘−@’. If ‘@’ is present, printing of the command is suppressed. If
‘−’ is present, make ignores an error. A line is printed when it is executed unless the −s
option is present, or the entry .SILENT: is included in makefile, or unless the initial charac-
ter sequence contains a @. The −n option specifies printing without execution; however,
if the command line has the string $(MAKE) in it, the line is always executed (see the dis-
cussion of the MAKEFLAGS macro in the make Environment sub-section below). The −t
(touch) option updates the modified date of a file without executing any commands.

Commands returning non-zero status normally terminate make. If the −i option is
present, if the entry .IGNORE: is included in makefile, or if the initial character sequence of
the command contains ‘−’, the error is ignored. If the −k option is present, work is aban-
doned on the current entry, but continues on other branches that do not depend on that
entry.

1-1106 SunOS 5.6 modified 18 Jul 1994

User Commands sysV-make (1)

Interrupt and quit cause the target to be deleted unless the target is a dependent of the
directive .PRECIOUS.

make Environment The environment is read by make. All variables are assumed to be macro definitions and
are processed as such. The environment variables are processed before any makefile and
after the internal rules; thus, macro assignments in a makefile override environment vari-
ables. The −e option causes the environment to override the macro assignments in a
makefile. Suffixes and their associated rules in the makefile will override any identical
suffixes in the built-in rules.

The MAKEFLAGS environment variable is processed by make as containing any legal
input option (except −f and −p) defined for the command line. Further, upon invocation,
make “invents” the variable if it is not in the environment, puts the current options into
it, and passes it on to invocations of commands. Thus, MAKEFLAGS always contains the
current input options. This feature proves very useful for “super-makes”. In fact, as
noted above, when the −n option is used, the command $(MAKE) is executed anyway;
hence, one can perform a make −n recursively on a whole software system to see what
would have been executed. This result is possible because the −n is put in MAKEFLAGS
and passed to further invocations of $(MAKE). This usage is one way of debugging all of
the makefiles for a software project without actually doing anything.

Include Files If the string include appears as the first seven letters of a line in a makefile, and is followed
by a blank or a tab, the rest of the line is assumed to be a filename and will be read by the
current invocation, after substituting for any macros.

Macros Entries of the form string1 = string2 are macro definitions. string2 is defined as all charac-
ters up to a comment character or an unescaped NEWLINE. Subsequent appearances of
$(string1[:subst1=[subst2]]) are replaced by string2. The parentheses are optional if a
single-character macro name is used and there is no substitute sequence. The optional
:subst1=subst2 is a substitute sequence. If it is specified, all non-overlapping occurrences
of subst1 in the named macro are replaced by subst2. Strings (for the purposes of this
type of substitution) are delimited by BLANKs, TABs, NEWLINE characters, and begin-
nings of lines. An example of the use of the substitute sequence is shown in the Libraries
sub-section below.

Internal Macros There are five internally maintained macros that are useful for writing rules for building
targets.

$∗ The macro $∗ stands for the filename part of the current dependent with the suffix
deleted. It is evaluated only for inference rules.

$@ The $@ macro stands for the full target name of the current target. It is evaluated
only for explicitly named dependencies.

modified 18 Jul 1994 SunOS 5.6 1-1107

sysV-make (1) User Commands

$< The $< macro is only evaluated for inference rules or the .DEFAULT rule. It is the
module that is outdated with respect to the target (the “manufactured” dependent
file name). Thus, in the .c.o rule, the $< macro would evaluate to the .c file. An
example for making optimized .o files from .c files is:

.c.o:
cc −c −O $∗.c

or:
.c.o:

cc −c −O $<

$? The $? macro is evaluated when explicit rules from the makefile are evaluated. It is
the list of prerequisites that are outdated with respect to the target, and essentially
those modules that must be rebuilt.

$% The $% macro is only evaluated when the target is an archive library member of the
form lib(file.o). In this case, $@ evaluates to lib and $% evaluates to the library
member, file.o.

Four of the five macros can have alternative forms. When an upper case D or F is
appended to any of the four macros, the meaning is changed to “directory part” for D
and “file part” for F. Thus, $(@D) refers to the directory part of the string $@. If there is
no directory part, ./ is generated. The only macro excluded from this alternative form is
$?.

Suffixes Certain names (for instance, those ending with .o) have inferable prerequisites such as .c,
.s, etc. If no update commands for such a file appear in makefile, and if an inferable prere-
quisite exists, that prerequisite is compiled to make the target. In this case, make has
inference rules that allow building files from other files by examining the suffixes and
determining an appropriate inference rule to use. The current default inference rules are:

.c .c˜ .f .f˜ .s .s˜ .sh .sh˜ .C .C˜

.c.a .c.o .c˜.a .c˜.c .c˜.o .f.a .f.o .f˜.a .f˜.f .f˜.o

.h˜.h .l.c .l.o .l˜.c .l˜.l .l˜.o .s.a .s.o .s˜.a .s˜.o

.s˜.s .sh˜.sh .y.c .y.o .y˜.c .y˜.o .y˜.y .C.a .C.o .C˜.a

.C˜.C .C˜.o .L.C .L.o .L˜.C .L˜.L .L˜.o .Y.C .Y.o .Y˜.C

.Y˜.o .Y˜.Y

The internal rules for make are contained in the source file make.rules for the make pro-
gram. These rules can be locally modified. To print out the rules compiled into the make
on any machine in a form suitable for recompilation, the following command is used:

make −pf − 2>/dev/null </dev/null

A tilde in the above rules refers to an SCCS file (see sccsfile(4)). Thus, the rule .c˜.o would
transform an SCCS C source file into an object file (.o). Because the s. of the SCCS files is a
prefix, it is incompatible with the make suffix point of view. Hence, the tilde is a way of
changing any file reference into an SCCS file reference.

A rule with only one suffix (for example, .c:) is the definition of how to build x from x.c.
In effect, the other suffix is null. This feature is useful for building targets from only one
source file, for example, shell procedures and simple C programs.

1-1108 SunOS 5.6 modified 18 Jul 1994

User Commands sysV-make (1)

Additional suffixes are given as the dependency list for .SUFFIXES. Order is significant:
the first possible name for which both a file and a rule exist is inferred as a prerequisite.
The default list is:

.SUFFIXES: .o .c .c˜ .y .y˜ .l .l˜ .s .s˜ .sh .sh˜ .h .h˜ .f .f˜ .C .C˜ .Y .Y˜ .L .L˜

Here again, the above command for printing the internal rules will display the list of
suffixes implemented on the current machine. Multiple suffix lists accumulate; .SUF-
FIXES: with no dependencies clears the list of suffixes.

Inference Rules The first example can be done more briefly.

pgm: a.o b.o
cc a.o b.o −o pgm

a.o b.o: incl.h

This abbreviation is possible because make has a set of internal rules for building files.
The user may add rules to this list by simply putting them in the makefile.

Certain macros are used by the default inference rules to permit the inclusion of optional
matter in any resulting commands. For example, CFLAGS, LFLAGS, and YFLAGS are
used for compiler options to cc(1B). Again, the previous method for examining the
current rules is recommended.

The inference of prerequisites can be controlled. The rule to create a file with suffix .o
from a file with suffix .c is specified as an entry with .c.o: as the target and no dependents.
Shell commands associated with the target define the rule for making a .o file from a .c
file. Any target that has no slashes in it and starts with a dot is identified as a rule and
not a true target.

Libraries If a target or dependency name contains parentheses, it is assumed to be an archive
library, the string within parentheses referring to a member within the library. Thus,
lib(file.o) and $(LIB)(file.o) both refer to an archive library that contains file.o. (This
example assumes the LIB macro has been previously defined.) The expression
$(LIB)(file1.o file2.o) is not legal. Rules pertaining to archive libraries have the form
.XX.a where the XX is the suffix from which the archive member is to be made. An unfor-
tunate by-product of the current implementation requires the XX to be different from the
suffix of the archive member. Thus, one cannot have lib(file.o) depend upon file.o expli-
citly. The most common use of the archive interface follows. Here, we assume the source
files are all C type source:

lib: lib(file1.o) lib(file2.o) lib(file3.o)
@echo lib is now up-to-date

.c.a:
$(CC) −c $(CFLAGS) $<
$(AR) $(ARFLAGS) $@ $∗.o
rm −f $∗.o

modified 18 Jul 1994 SunOS 5.6 1-1109

sysV-make (1) User Commands

In fact, the .c.a rule listed above is built into make and is unnecessary in this example. A
more interesting, but more limited example of an archive library maintenance construc-
tion follows:

lib: lib(file1.o) lib(file2.o) lib(file3.o)
$(CC) −c $(CFLAGS) $(?:.o=.c)
$(AR) $(ARFLAGS) lib $?
rm $?
@echo lib is now up-to-date

.c.a:;

Here the substitution mode of the macro expansions is used. The $? list is defined to be
the set of object filenames (inside lib) whose C source files are outdated. The substitution
mode translates the .o to .c. (Unfortunately, one cannot as yet transform to .c˜; however,
this transformation may become possible in the future.) Also note the disabling of the
.c.a: rule, which would have created each object file, one by one. This particular construct
speeds up archive library maintenance considerably. This type of construct becomes
very cumbersome if the archive library contains a mix of assembly programs and C pro-
grams.

ENVIRONMENT USE_SVR4_MAKE
If this environment variable is set, then the make command will invoke this Sys-
tem V version of make. If this variable is not set, then the default version of
make(1S) is invoked.

USE_SVR4_MAKE can be set as follows (Bourne shell):

$ USE_SVR4_MAKE=‘‘’’; export USE_SVR4_MAKE

or (C shell):

% setenv USE_SVR4_MAKE

FILES [Mm]akefile and s.[Mm]akefile default makefiles
/usr/bin/sh default shell for make
/usr/share/lib/make/make.rules default rules for make

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWsprot

SEE ALSO cc(1B), cd(1), make(1S), sh(1), printf(3S), sccsfile(4), attributes(5)

Programming Utilities Guide

NOTES Some commands return non-zero status inappropriately; use −i or the ‘-’ command line
prefix to overcome the difficulty.

1-1110 SunOS 5.6 modified 18 Jul 1994

User Commands sysV-make (1)

Filenames containing the characters ‘=’, ‘:’, and ‘@’ will not work. Commands that are
directly executed by the shell, notably cd(1), are ineffectual across NEWLINEs in make.
The syntax lib(file1.o file2.o file3.o) is illegal. You cannot build lib(file.o) from file.o.

modified 18 Jul 1994 SunOS 5.6 1-1111

tabs (1) User Commands

NAME tabs − set tabs on a terminal

SYNOPSIS tabs [−n | −−file | [[−code] −a | −a2 | −c | −c2 | −c3 | −f | −p | −s | −u]]
[+m[n]] [−T type]

tabs [−T type] [+m[n]] n1[,n2, . . .]

DESCRIPTION tabs sets the tab stops on the user’s terminal according to a tab specification, after clear-
ing any previous settings. The user’s terminal must have remotely settable hardware
tabs.

OPTIONS The following options are supported. If a given flag occurs more than once, the last value
given takes effect:

−T type tabs needs to know the type of terminal in order to set tabs and margins. type
is a name listed in term(5). If no −T flag is supplied, tabs uses the value of the
environment variable TERM. If the value of TERM is NULL or TERM is not
defined in the environment (see environ(5)), tabs uses ansi+tabs as the termi-
nal type to provide a sequence that will work for many terminals.

+m[n] The margin argument may be used for some terminals. It causes all tabs to be
moved over n columns by making column n+1 the left margin. If +m is given
without a value of n, the value assumed is 10. For a TermiNet, the first value
in the tab list should be 1, or the margin will move even further to the right.
The normal (leftmost) margin on most terminals is obtained by +m0. The
margin for most terminals is reset only when the +m flag is given explicitly.

Tab Specification Four types of tab specification are accepted. They are described below: canned, repetitive
(−n), arbitrary (n1,n2,...), and file (−−file).

If no tab specification is given, the default value is −8, that is, UNIX system ‘‘standard’’
tabs. The lowest column number is 1. Note: For tabs, column 1 always refers to the left-
most column on a terminal, even one whose column markers begin at 0, for example, the
DASI 300, DASI 300s, and DASI 450.

Canned −code Use one of the codes listed below to select a canned set of tabs. If more than one code is
specified, the last code option will be used. The legal codes and their meanings are as fol-
lows:

−a 1,10,16,36,72
Assembler, IBM S/370, first format

−a2 1,10,16,40,72
Assembler, IBM S/370, second format

−c 1,8,12,16,20,55
COBOL, normal format

−c2 1,6,10,14,49
COBOL compact format (columns 1-6 omitted). Using this code, the first
typed character corresponds to card column 7, one space gets you to column
8, and a tab reaches column 12. Files using this tab setup should include a

1-1112 SunOS 5.6 modified 1 Feb 1995

User Commands tabs (1)

format specification as follows (see fspec(4)):

<:t−c2 m6 s66 d:>

−c3 1,6,10,14,18,22,26,30,34,38,42,46,50,54,58,62,67
COBOL compact format (columns 1-6 omitted), with more tabs than −c2. This
is the recommended format for COBOL. The appropriate format specification
is (see fspec(4)):

<:t−c3 m6 s66 d:>

−f 1,7,11,15,19,23
FORTRAN

−p 1,5,9,13,17,21,25,29,33,37,41,45,49,53,57,61
PL/I

−s 1,10,55
SNOBOL

−u 1,12,20,44
UNIVAC 1100 Assembler

Repetitive −n A repetitive specification requests tabs at columns 1+n, 1+2∗n, etc., where n is
a single-digit decimal number. Of particular importance is the value 8: this
represents the UNIX system ‘‘standard’’ tab setting, and is the most likely tab
setting to be found at a terminal. When −0 is used, the tab stops are cleared
and no new ones are set.

Arbitrary See OPERANDS.

File −−file If the name of a file is given, tabs reads the first line of the file, searching for a
format specification (see fspec(4)). If it finds one there, it sets the tab stops
according to it, otherwise it sets them as −8. This type of specification may be
used to make sure that a tabbed file is printed with correct tab settings, and
would be used with the pr command:

example% tabs −− file; pr file

Tab and margin setting is performed via the standard output.

OPERANDS The following operand is supported:

n1[,n2, . . .] The arbitrary format consists of tab-stop values separated by commas or
spaces. The tab-stop values must be positive decimal integers in ascending
order. Up to 40 numbers are allowed. If any number (except the first one) is
preceded by a plus sign, it is taken as an increment to be added to the previ-
ous value. Thus, the formats 1,10,20,30, and 1,10,+10,+10 are considered
identical.

EXAMPLES The command:

modified 1 Feb 1995 SunOS 5.6 1-1113

tabs (1) User Commands

example% tabs −a

is an example using −code (canned specification) to set tabs to the settings required by the
IBM assembler: columns 1, 10, 16, 36, 72.

The next command:

example% tabs −8

is an example of using −n (repetitive specification), where n is 8, causes tabs to be set every
eighth position:
1+(1∗8), 1+(2∗8), . . . which evaluate to columns 9, 17, . . .

The command:

example% tabs 1,8,36

is an example of using n1,n2,. . . (arbitrary specification) to set tabs at columns 1, 8, and
36.

The last command:

example% tabs −−$HOME/fspec.list/att4425

is an example of using −−file (file specification) to indicate that tabs should be set accord-
ing to the first line of $HOME/fspec.list/att4425 (see fspec(4)).

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of tabs: LC_CTYPE, LC_MESSAGES, and NLSPATH.

TERM Determine the terminal type. If this variable is unset or null, and if the −T
option is not specified, terminal type ansi+tabs will be used.

EXIT STATUS The following exit values are returned:
0 Successful completion.
>0 An error occurred.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu
CSI enabled

SEE ALSO expand(1), newform(1), pr(1), stty(1), tput(1), fspec(4), terminfo(4), attributes(5),
environ(5), term(5)

NOTES There is no consistency among different terminals regarding ways of clearing tabs and
setting the left margin.

tabs clears only 20 tabs (on terminals requiring a long sequence), but is willing to set 64.

The tabspec used with the tabs command is different from the one used with the newform
command. For example, tabs −8 sets every eighth position; whereas newform −i−8 indi-
cates that tabs are set every eighth position.

1-1114 SunOS 5.6 modified 1 Feb 1995

User Commands tail (1)

NAME tail − deliver the last part of a file

SYNOPSIS /usr/bin/tail [± number [lbcr]] [file]
/usr/bin/tail [−lbcr] [file]
/usr/bin/tail [± number [lbcf]] [file]
/usr/bin/tail [−lbcf] [file]

/usr/xpg4/bin/tail [−f | −r] [−c number | −n number] [file]
/usr/xpg4/bin/tail [± number [l | b | c] [f]] [file]
/usr/xpg4/bin/tail [± number [l] [f | r]] [file]

DESCRIPTION The tail utility copies the named file to the standard output beginning at a designated
place. If no file is named, the standard input is used.

Copying begins at a point in the file indicated by the −c number, −n number, or ±number
options (if +number is specified, begins at distance number from the beginning; if −number
is specified, from the end of the input; if number is NULL, the value 10 is assumed).
number is counted in units of lines or byte according to the −c or −n options, or lines,
blocks, or bytes, according to the appended option l, b, or c. When no units are specified,
counting is by lines.

OPTIONS The following options are supported for both /usr/bin/tail and /usr/xpg4/bin/tail. The −r
and −f options are mutually exclusive. If both are specified on the command line, the −f
option will be ignored.

−b Units of blocks.

−c Units of bytes.

−f Follow. If the input-file is not a pipe, the program will not terminate
after the line of the input-file has been copied, but will enter an endless
loop, wherein it sleeps for a second and then attempts to read and copy
further records from the input-file. Thus it may be used to monitor the
growth of a file that is being written by some other process.

−l Units of lines.

−r Reverse. Copies lines from the specified starting point in the file in
reverse order. The default for r is to print the entire file in reverse order.

/usr/xpg4/bin/tail The following options are supported for /usr/xpg4/bin/tail only:

−c number The number option-argument must be a decimal integer whose sign
affects the location in the file, measured in bytes, to begin the copying:

+ Copying starts relative to the beginning of the file.
− Copying starts relative to the end of the file.
none Copying starts relative to the end of the file.
The origin for counting is 1; that is, −c +1 represents the first byte of the
file, −c −1 the last.

−n number Equivalent to −c number, except the starting location in the file is

modified 18 Mar 1997 SunOS 5.6 1-1115

tail (1) User Commands

measured in lines instead of bytes. The origin for counting is 1; that is,
−n +1 represents the first line of the file, −n −1 the last.

OPERANDS The following operand is supported:

file A path name of an input file. If no file operands are specified, the stan-
dard input will be used.

USAGE See largefile(5) for the description of the behavior of tail when encountering files greater
than or equal to 2 Gbyte (231 bytes).

EXAMPLES For example, the command:

example% tail −f fred

will print the last ten lines of the file fred, followed by any lines that are appended to fred
between the time tail is initiated and killed. As another example, the command:

example% tail −15cf fred

will print the last 15 bytes of the file fred, followed by any lines that are appended to fred
between the time tail is initiated and killed.

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of tail: LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS The following exit values are returned:

0 Successful completion.

>0 An error occurred.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

/usr/bin/tail ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu
CSI Enabled

/usr/xpg4/bin/tail ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxcu4
CSI Enabled

SEE ALSO cat(1), head(1), more(1), pg(1), dd(1M), attributes(5), environ(5), largefile(5), xpg4(5)

NOTES Piped tails relative to the end of the file are stored in a buffer, and thus are limited in
length. Various kinds of anomalous behavior may happen with character special files.

1-1116 SunOS 5.6 modified 18 Mar 1997

User Commands talk (1)

NAME talk − talk to another user

SYNOPSIS talk address [terminal]

DESCRIPTION The talk utility is a two-way, screen-oriented communication program.

When first invoked, talk sends a message similar to:

Message from TalkDaemon@ her_machine at time . . .
talk: connection requested by your_address
talk: respond with: talk your_address

to the specified address. At this point, the recipient of the message can reply by typing:

talk your_address

Once communication is established, the two parties can type simultaneously, with their
output displayed in separate regions of the screen. Characters are processed as follows:

· Typing the alert character will alert the recipient’s terminal.
· Typing CTRL-L will cause the sender’s screen regions to be refreshed.
· Typing the erase and kill characters will affect the sender’s terminal in the manner

described by the termios(3) interface.
· Typing the interrupt or end-of-file (EOF) characters will terminate the local talk util-

ity. Once the talk session has been terminated on one side, the other side of the talk
session will be notified that the talk session has been terminated and will be able to
do nothing except exit.

· Typing characters from LC_CTYPE classifications print or space will cause those
characters to be sent to the recipient’s terminal.

· When and only when the stty iexten local mode is enabled, additional special con-
trol characters and multi-byte or single-byte characters are processed as printable
characters if their wide character equivalents are printable.

· Typing other non-printable characters will cause them to be written to the
recipient’s terminal as follows: control characters will appear as a ‘ˆ’ followed by
the appropriate ASCII character, and characters with the high-order bit set will
appear in “meta” notation. For example, ‘\003’ is displayed as ‘ˆC’ and ‘\372’ as
‘M−z’.

Permission to be a recipient of a talk message can be denied or granted by use of the
mesg(1) utility. However, a user’s privilege may further constrain the domain of accessi-
bility of other users’ terminals. Certain commands, such as pr(1), disallow messages in
order to prevent interference with their output. talk will fail when the user lacks the
appropriate privileges to perform the requested action.

Certain block-mode terminals do not have all the capabilities necessary to support the
simultaneous exchange of messages required for talk. When this type of exchange can-
not be supported on such terminals, the implementation may support an exchange with
reduced levels of simultaneous interaction or it may report an error describing the
terminal-related deficiency.

modified 1 Feb 1995 SunOS 5.6 1-1117

talk (1) User Commands

OPERANDS The following operands are supported:

address The recipient of the talk session. One form of address is the username, as
returned by the who(1) utility. Other address formats and how they are
handled are unspecified.

terminal If the recipient is logged in more than once, terminal can be used to indicate
the appropriate terminal name. If terminal is not specified, the talk message
will be displayed on one or more accessible terminals in use by the reci-
pient. The format of terminal will be the same as that returned by who.

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of talk: LC_CTYPE, LC_MESSAGES, and NLSPATH.

TERM Determine the name of the invoker’s terminal type. If this variable is unset or
null, an unspecified terminal type will be used.

EXIT STATUS The following exit values are returned:

0 Successful completion.

>0 An error occurred or talk was invoked on a terminal incapable of supporting it.

FILES /etc/hosts host name database
/var/adm/utmp user and accounting information for talk

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO mail(1), mesg(1), pr(1), stty(1), who(1), write(1), termios(3), attributes(5), environ(5)

NOTES Because the handling of non-printable, non-space characters is tied to the stty(1) descrip-
tion of iexten, implementation extensions within the terminal driver can be accessed. For
example, some implementations provide line editing functions with certain control char-
acter sequences.

1-1118 SunOS 5.6 modified 1 Feb 1995

User Commands tar (1)

NAME tar − create tape archives and add or extract files

SYNOPSIS tar c [bBefFhiklnopPqvwX [0-7]] [block] [tarfile] [exclude-file]
{ −I include-file | −C directory file | file } . . .

tar r [bBefFhiklnqvw [0-7]] [block]
{ −I include-file | −C directory file | file } . . .

tar t [BefFhiklnqvX [0-7]] [tarfile] [exclude-file] { −I include-file | file } . . .

tar u [bBefFhiklnqvw [0-7]] [block] [tarfile] file . . .

tar x [BefFhiklmnopqvwX [0-7]] [tarfile] [exclude-file] [file . . .]

DESCRIPTION The tar command archives and extracts files to and from a single file called a tarfile . A
tarfile is usually a magnetic tape, but it can be any file. tar’s actions are controlled by the
key argument. The key is a string of characters containing exactly one function letter (c, r,
t , u, or x) and zero or more function modifiers (letters or digits), depending on the func-
tion letter used. The key string contains no SPACE characters. Function modifier argu-
ments are listed on the command line in the same order as their corresponding function
modifiers appear in the key string.

The −I include-file, −C directory file, and file arguments specify which files or directories are
to be archived or extracted. In all cases, appearance of a directory name refers to the files
and (recursively) subdirectories of that directory. Arguments appearing within braces
({ }) indicate that one of the arguments must be specified.

OPTIONS The following options are supported:

−I include-file
Open include-file containing a list of files, one per line, and treat as if each file
appeared separately on the command line. Be careful of trailing white spaces. In
the case where excluded files (see X function modifier) are also specified, they
take precedence over all included files. If a file is specified in both the exclude-file
and the include-file (or on the command line), it will be excluded.

−C directory file
Perform a chdir (see cd(1)) operation on directory and perform the c (create) or r
(replace) operation on file. Use short relative path names for file. If file is ‘.’,
archive all files in directory. This option enables archiving files from multiple
directories not related by a close common parent.

OPERANDS The following operands are supported:

file A path name of a regular file or directory to be archived (when the c, r or u func-
tions are specified), extracted (x) or listed (t). When file is the path name of a
directory, the action applies to all of the files and (recursively) subdirectories of
that directory. The directory portion of file (see dirname(1)) cannot exceed 155
characters. The file name portion (see basename(1)) cannot exceed 100 charac-
ters.

modified 21 Feb 1997 SunOS 5.6 1-1119

tar (1) User Commands

Function Letters The function portion of the key is specified by one of the following letters:

c Create. Writing begins at the beginning of the tarfile, instead of at the end.

r Replace. The named files are written at the end of the tarfile.

t Table of Contents. The names of the specified files are listed each time they occur
in the tarfile. If no file argument is given, the names of all files in the tarfile are
listed. With the v function modifier, additional information for the specified files
is displayed.

u Update. The named files are written at the end of the tarfile if they are not
already in the tarfile, or if they have been modified since last written to that
tarfile. An update can be rather slow. A tarfile created on a 5.x system cannot be
updated on a 4.x system.

x Extract or restore. The named files are extracted from the tarfile and written to
the directory specified in the tarfile, relative to the current directory. Use the
relative path names of files and directories to be extracted. If a named file
matches a directory whose contents has been written to the tarfile, this directory
is recursively extracted. The owner, modification time, and mode are restored (if
possible); otherwise, to restore owner, you must be the super-user. Character-
special and block-special devices (created by mknod(1M)) can only be extracted
by the super-user. If no file argument is given, the entire content of the tarfile is
extracted. If the tarfile contains several files with the same name, each file is writ-
ten to the appropriate directory, overwriting the previous one. Filename substitu-
tion wildcards cannot be used for extracting files from the archive; rather, use a
command of the form:

tar xvf... /dev/rmt/0 `tar tf... /dev/rmt/0 | grep ’pattern’ `

When extracting tapes created with the r or u functions, directory modification times may
not be set correctly. These same functions cannot be used with many tape drives due to
tape drive limitations such as the absence of backspace or append capabilities.

When using the r, u, or x functions or the X function modifier, the named files must
match exactly the corresponding files in the tarfile . For example, to extract ./thisfile, you
must specify ./thisfile, and not thisfile. The t function displays how each file was archived.

Function Modifiers The characters below may be used in conjunction with the letter that selects the desired
function.

b Blocking Factor. Use when reading or writing to raw magnetic archives (see f
below). The block argument specifies the number of 512-byte tape blocks to be
included in each read or write operation performed on the tarfile. The minimum
is 1, the default is 20. The maximum value is a function of the amount of
memory available and the blocking requirements of the specific tape device
involved (see mtio(7I) for details.)

When a tape archive is being read, its actual blocking factor will be automatically
detected, provided that it is less than or equal to the nominal blocking factor (the
value of the block argument, or the default value if the b modifier is not

1-1120 SunOS 5.6 modified 21 Feb 1997

User Commands tar (1)

specified). If the actual blocking factor is greater than the nominal blocking fac-
tor, a read error will result. See Example 5 in

B Block. Force tar to perform multiple reads (if necessary) to read exactly enough
bytes to fill a block. This function modifier enables tar to work across the Ether-
net, since pipes and sockets return partial blocks even when more data is coming.
When reading from standard input, ’−’, this function modifier is selected by
default to ensure that tar can recover from short reads.

e Error. Exit immediately with a positive exit status if any unexpected errors occur.
The SYSV3 environment variable overrides the default behavior. (See
ENVIRONMENT section below.)

f File. Use the tarfile argument as the name of the tarfile. If f is specified,
/etc/default/tar is not searched. If f is omitted, tar will use the device indicated
by the TAPE environment variable, if set; otherwise, it will use the default values
defined in /etc/default/tar. If the name of the tarfile is ’−’, tar writes to the stan-
dard output or reads from the standard input, whichever is appropriate. tar can
be used as the head or tail of a pipeline. tar can also be used to move hierarchies
with the command:

example% cd fromdir; tar cf − . | (cd todir; tar xfBp −)

F With one F argument, tar excludes all directories named SCCS and RCS from the
tarfile. With two arguments, FF, tar excludes all directories named SCCS and
RCS, all files with .o as their suffix, and all files named errs, core, and a.out. The
SYSV3 environment variable overrides the default behavior. (See ENVIRON-
MENT section below.)

h Follow symbolic links as if they were normal files or directories. Normally, tar
does not follow symbolic links.

i Ignore directory checksum errors.

k size Requires tar to use the size argument as the size of an archive in kilobytes. This
is useful when the archive is intended for a fixed size device such as floppy disks.
Large files are then split across volumes if they do not fit in the specified size.

l Link. Output error message if unable to resolve all links to the files being
archived. If l is not specified, no error messages are printed.

m Modify. The modification time of the file is the time of extraction. This function
modifier is valid only with the x function.

n The file being read is a non-tape device. Reading of the archive is faster since tar
can randomly seek around the archive.

o Ownership. Assign to extracted files the user and group identifiers of the user
running the program, rather than those on tarfile. This is the default behavior for
users other than root. If the o function modifier is not set and the user is root, the
extracted files will take on the group and user identifiers of the files on tarfile (see
chown(1) for more information). The o function modifier is only valid with the x
function.

modified 21 Feb 1997 SunOS 5.6 1-1121

tar (1) User Commands

p Restore the named files to their original modes, and ACLs if applicable, ignoring
the present umask(1). This is the default behavior if invoked as super-user with
the x function letter specified. If super-user, SETUID and sticky information are
also extracted, and files are restored with their original owners and permissions,
rather than owned by root. When this function modifier is used with the c func-
tion, ACLs are created in the tarfile along with other information. Errors will
occur when a tarfile with ACLs is extracted by previous versions of tar.

P Suppress the addition of a trailing "/" on directory entries in the archive.

q Stop after extracting the first occurrence of the named file. tar will normally con-
tinue reading the archive after finding an occurrence of a file.

v Verbose. Output the name of each file preceded by the function letter. With the t
function, v provides additional information about the tarfile entries. The listing
is similar to the format produced by the −l option of the ls(1) command.

w What. Output the action to be taken and the name of the file, then await the
user’s confirmation. If the response is affirmative, the action is performed; other-
wise, the action is not performed. This function modifier cannot be used with the
t function.

X Exclude. Use the exclude-file argument as a file containing a list of relative path
names for files (or directories) to be excluded from the tarfile when using the
functions c, x, or t. Be careful of trailing white spaces. Multiple X arguments
may be used, with one exclude-file per argument. In the case where included files
(see −I include-file option) are also specified, the excluded files take precedence
over all included files. If a file is specified in both the exclude-file and the include-
file (or on the command line), it will be excluded.

[0-7] Select an alternative drive on which the tape is mounted. The default entries are
specified in /etc/default/tar. If no digit or f function modifier is specified, the
entry in /etc/default/tar with digit "0" is the default.

USAGE See largefile(5) for the description of the behavior of tar when encountering files greater
than or equal to 2 Gbyte (231 bytes). in the EXAMPLES below.

The automatic determination of the actual blocking factor may be fooled when reading
from a pipe or a socket (see the B function modifier below).

1/4" streaming tape has an inherent blocking factor of one 512-byte block. It can be read
or written using any blocking factor.

This function modifier works for archives on disk files and block special devices, among
others, but is intended principally for tape devices.

EXAMPLES 1. The following is an example using tar to create an archive of your home directory on a
tape mounted on drive /dev/rmt/0:

example% cd
example% tar cvf /dev/rmt/0 .
messages from tar

1-1122 SunOS 5.6 modified 21 Feb 1997

User Commands tar (1)

The c function letter means create the archive; the v function modifier outputs mes-
sages explaining what tar is doing; the f function modifier indicates that the tarfile is
being specified (/dev/rmt/0 in this example). The dot (.) at the end of the command
line indicates the current directory and is the argument of the f function modifier.

Display the table of contents of the tarfile with the following command:

example% tar tvf /dev/rmt/0

The output will be similar to the following for the POSIX locale:

rw-r--r-- 1677/40 2123 Nov 7 18:15 1985 ./test.c
. . .
example%

The columns have the following meanings:

· column 1 is the access permissions to ./test.c
· column 2 is the user-id/group-id of ./test.c
· column 3 is the size of ./test.c in bytes
· column 4 is the modification date of ./test.c. When the LC_TIME category is

not set to the POSIX locale, a different format and date order field may be
used.

· column 5 is the name of ./test.c

To extract files from the archive:

example% tar xvf /dev/rmt/0
messages from tar
example%

If there are multiple archive files on a tape, each is separated from the following one
by an EOF marker. To have tar read the first and second archives from a tape with
multiple archives on it, the non-rewinding version of the tape device name must be
used with the f function modifier, as follows:

example% tar xvfp /dev/rmt/0n read first archive from tape
messages from tar
example% tar xvfp /dev/rmt/0n read second archive from tape
messages from tar
example%

Note that in some earlier releases, the above scenario did not work correctly, and
intervention with mt(1) between tar invocations was necessary. To emulate the old
behavior, use the non-rewind device name containing the letter b for BSD behavior.
See the Close Operations section of the mtio(7I) manual page.

2. To archive files from /usr/include and from /etc to default tape drive 0:

example% tar c −C /usr include −C /etc .

The table of contents from the resulting tarfile would produce output like the follow-
ing:

include/

modified 21 Feb 1997 SunOS 5.6 1-1123

tar (1) User Commands

include/a.out.h
and all the other files in /usr/include . . .
./chown
and all the other files in /etc

To extract all files in the include directory:

example% tar xv include
x include/, 0 bytes, 0 tape blocks
and all files under include. . .

3. The following is an example using tar to transfer files across the Ethernet. First, here
is how to archive files from the local machine (example) to a tape on a remote system
(host):

example% tar cvfb − 20 files | rsh host dd of=/dev/rmt/0 obs=20b
messages from tar
example%

In the example above, we are creating a tarfile with the c key letter, asking for verbose
output from tar with the v function modifier, specifying the name of the output tarfile
using the f function modifier (the standard output is where the tarfile appears, as indi-
cated by the ‘−’ sign), and specifying the blocksize (20) with the b function modifier.
If you want to change the blocksize, you must change the blocksize arguments both
on the tar command and on the dd command.

4. The following is an example that uses tar to retrieve files from a tape on the remote
system back to the local system:

example% rsh −n host dd if=/dev/rmt/0 bs=20b | tar xvBfb − 20 files
messages from tar
example%

In the example above, we are extracting from the tarfile with the x key letter, asking for
verbose output from tar with the v function modifier, telling tar it is reading from a pipe
with the B function modifier, specifying the name of the input tarfile using the f func-
tion modifier (the standard input is where the tarfile appears, as indicated by the ‘−’
sign), and specifying the blocksize (20) with the b function modifier.

5. The following example creates an archive of the home directory on /dev/rmt/0 with an
actual blocking factor of 19.

example% tar cvfb /dev/rmt/0 19 $HOME

To recognize this archive’s actual blocking factor without using the b function
modifier:

example% tar tvf /dev/rmt/0
tar: blocksize = 19
. . .

To recognize this archive’s actual blocking factor using a larger nominal blocking fac-
tor:

example% tar tvf /dev/rmt/0 30

1-1124 SunOS 5.6 modified 21 Feb 1997

User Commands tar (1)

tar: blocksize = 19
. . .

Attempt to recognize this archive’s actual blocking factor using a nominal blocking
factor that is too small:

example% tar tvf /dev/rmt/0 10
tar: tape read error

ENVIRONMENT SYSV3 This variable is used to override the default behavior of tar, provide compatibil-
ity with INTERACTIVE UNIX Systems and SCO UNIX installation scripts, and
should not be used in new scripts. (It is intended for compatibility purposes
only.) When set, the following options behave differently:

−F filename
Uses filename to obtain a list of command line switches and files on which
to operate.

−e Prevents files from being split across volumes. If there is insufficient
room on one volume, tar prompts for a new volume. If the file will not
fix on the new volume, tar exits with an error.

See environ(5) for descriptions of the following environment variables that affect the exe-
cution of tar: LC_CTYPE, LC_MESSAGES, LC_TIME, TZ, and NLSPATH.

EXIT STATUS The following exit values are returned:
0 Successful completion.
>0 An error occurred.

FILES /dev/rmt/[0-7][b][n]
/dev/rmt/[0-7]l[b][n]
/dev/rmt/[0-7]m[b][n]
/dev/rmt/[0-7]h[b][n]
/dev/rmt/[0-7]u[b][n]
/dev/rmt/[0-7]c[b][n]
/etc/default/tar Settings may look like this:

archive0=/dev/rmt/0
archive1=/dev/rmt/0n
archive2=/dev/rmt/1
archive3=/dev/rmt/1n
archive4=/dev/rmt/0
archive5=/dev/rmt/0n
archive6=/dev/rmt/1
archive7=/dev/rmt/1n

/tmp/tar∗

modified 21 Feb 1997 SunOS 5.6 1-1125

tar (1) User Commands

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu
CSI Enabled

SEE ALSO ar(1), basename(1), cd(1), chown(1), cpio(1), csh(1), dirname(1), ls(1), mt(1), pax(1), set-
facl(1), umask(1), mknod(1M), vold(1M), attributes(5), environ(5), largefile(5), mtio(7I)

DIAGNOSTICS Diagnostic messages are output for bad key characters and tape read/write errors, and
for insufficient memory to hold the link tables.

NOTES There is no way to access for the n-th occurrence of a file.

Tape errors are handled ungracefully.

When the Volume Management daemon is running, accesses to floppy devices through
the conventional device names (for example, /dev/rdiskette) may not succeed. See
vold(1M) for further details.

The tar archive format allows UIDs and GIDs up to 2097151 to be stored in the archive
header. Files with UIDs and GIDs greater than this value will be archived with the UID
and GID of 60001.

1-1126 SunOS 5.6 modified 21 Feb 1997

User Commands tbl (1)

NAME tbl − format tables for nroff or troff

SYNOPSIS tbl [−me] [−mm] [−ms] [filename] . . .

DESCRIPTION tbl is a preprocessor for formatting tables for nroff(1) or troff(1). The input filenames are
copied to the standard output, except that lines between .TS and .TE command lines are
assumed to describe tables and are reformatted.

If no arguments are given, tbl reads the standard input, so tbl may be used as a filter.
When tbl is used with eqn(1) or neqn, the tbl command should be first, to minimize the
volume of data passed through pipes.

OPTIONS −me Copy the −me macro package to the front of the output file.

−mm Copy the −mm macro package to the front of the output file.

−ms Copy the −ms macro package to the front of the output file.

EXAMPLES As an example, letting ‘@’ (at-sign) represent a TAB, which should be typed as an actual
TAB character in the input file

.TS
c s s
c c s
c c c
l n n.
Household Population
Town@Households
@Number@Size
Bedminster@789@3.26
Bernards Twp.@3087@3.74
Bernardsville@2018@3.30
Bound Brook@3425@3.04
Branchburg@1644@3.49
.TE

yields

Household Population
Town Households

Number Size
Bedminster 789 3.26
Bernards Twp. 3087 3.74
Bernardsville 2018 3.30
Bound Brook 3425 3.04
Branchburg 1644 3.49

modified 2 Aug 1994 SunOS 5.6 1-1127

tbl (1) User Commands

FILES /usr/share/lib/tmac/e −me macros
/usr/share/lib/tmac/m −mm macros
/usr/share/lib/tmac/s −ms macros

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWdoc

SEE ALSO eqn(1), nroff(1), troff(1), attributes(5)

1-1128 SunOS 5.6 modified 2 Aug 1994

User Commands tcopy (1)

NAME tcopy − copy a magnetic tape

SYNOPSIS tcopy source [destination]

DESCRIPTION tcopy copies the magnetic tape mounted on the tape drive specified by the source argu-
ment. The only assumption made about the contents of a tape is that there are two tape
marks at the end.

When only a source drive is specified, tcopy scans the tape, and displays information
about the sizes of records and tape files. If a destination is specified, tcopy makes a copies
the source tape onto the destination tape, with blocking preserved. As it copies, tcopy
produces the same output as it does when only scanning a tape.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu

SEE ALSO mt(1), ioctl(2), attributes(5)

NOTES tcopy will only run on systems supporting an associated set of ioctl(2) requests.

modified 14 Sep 1992 SunOS 5.6 1-1129

tee (1) User Commands

NAME tee − replicate the standard output

SYNOPSIS tee [−ai] [file . . .]

DESCRIPTION The tee utility will copy standard input to standard output, making a copy in zero or
more files. tee will not buffer its output. The options determine if the specified files are
overwritten or appended to.

OPTIONS The following options are supported.

−a Append the output to the files rather than overwriting them.

−i Ignore interrupts.

OPERANDS The following operands are supported:

file A path name of an output file. Processing of at least 13 file operands will be
supported.

USAGE See largefile(5) for the description of the behavior of tee when encountering files greater
than or equal to 2 Gbyte (231 bytes).

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of tee: LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS The following exit values are returned:

0 The standard input was successfully copied to all output files.

>0 The number of files that could not be opened or whose status could not be obtained.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu
CSI Enabled

SEE ALSO cat(1), attributes(5), environ(5), largefile(5),

1-1130 SunOS 5.6 modified 20 Dec 1996

User Commands telnet (1)

NAME telnet − user interface to a remote system using the TELNET protocol

SYNOPSIS telnet [−8ELcdr] [-e escape_char] [-l user] [-n file] [host [port]]

DESCRIPTION telnet communicates with another host using the TELNET protocol. If telnet is invoked
without arguments, it enters command mode, indicated by its prompt telnet>. In this
mode, it accepts and executes its associated commands. (See “TELNET Commands“
below.) If it is invoked with arguments, it performs an open command with those argu-
ments.

Once a connection has been opened, telnet enters input mode. In this mode, text typed is
sent to the remote host. The input mode entered will be either “line mode,“ “character at
a time,“ or “old line by line,“ depending on what the remote system supports.

In line mode, character processing is done on the local system, under the control of the
remote system. When input editing or character echoing is to be disabled, the remote
system will relay that information. The remote system will also relay changes to any spe-
cial characters that happen on the remote system, so that they can take effect on the local
system.

In character at a time mode, most text typed is immediately sent to the remote host for
processing.

In old line by line mode, all text is echoed locally, and (normally) only completed lines
are sent to the remote host. The “local echo character“ (initially ˆE) may be used to turn
off and on the local echo. (Use this mostly to enter passwords without the password
being echoed.).

If the “line mode“ option is enabled, or if the localchars toggle is TRUE (the default in “old
line by line“ mode), the user’s quit, intr, and flush characters are trapped locally, and
sent as TELNET protocol sequences to the remote side. If “line mode“ has ever been
enabled, then the user’s susp and eof are also sent as TELNET protocol sequences. quit is
then sent as a TELNET ABORT instead of BREAK. The options toggle autoflush, and toggle
autosynch cause this action to flush subsequent output to the terminal (until the remote
host acknowledges the TELNET sequence) and flush previous terminal input, in the case
of quit and intr.

While connected to a remote host, the user can enter telnet command mode by typing the
telnet escape character (initially ˆ]). When in command mode, the normal terminal edit-
ing conventions are available. Pressing RETURN at the telnet command prompt causes
telnet to exit command mode.

OPTIONS −8 Specifies an 8-bit data path. Negotiating the TELNET BINARY option is attempted
for both input and output.

−E Stops any character from being recognized as an escape character.

−L Specifies an 8-bit data path on output. This causes the BINARY option to be
negotiated on output.

−c Disables the reading of the user’s telnetrc file. (See the toggle skiprc command

modified 23 May 1997 SunOS 5.6 1-1131

telnet (1) User Commands

on this man page.)

−d Sets the initial value of the debug toggle to true.

−e escape_char
Sets the initial escape character to escape_char. Escape_char may also be a two
character sequence consisting of ’ˆ’ followed by one character. If the second char-
acter is ’?’, the DEL character is selected. Otherwise the second character is con-
verted to a control character and used as the escape character. If the escape char-
acter is the null string, (i.e. -e ’’), it is disabled.

−l user When connecting to a remote system that understands the ENVIRON option,
then user will be sent to the remote system as the value for the variable USER.

−n tracefile
Opens tracefile for recording trace information. See the set tracefile command
below.

−r Specifies a user interface similar to rlogin. In this mode, the escape character is
set to the tilde (˜) character, unless modified by the -e option. The rlogin escape
character is only recognized when it is preceded by a carriage return. In this
mode, the telnet escape character, normally ’ˆ]’, must still precede a telnet com-
mand. The rlogin escape character can also be followed by ’.\r’ or ’ˆZ’, and, like
rlogin(1), closes or suspends the connection, respectively. This option is an
uncommitted interface and may change in the future.

USAGE
telnet Commands The commands described in this section are available with telnet. It is necessary to type

only enough of each command to uniquely identify it. (This is also true for arguments to
the mode, set, toggle, unset, environ, and display commands.)

open [-l user] host [port]
Open a connection to the named host. If no port number is specified, telnet will
attempt to contact a TELNET server at the default port. The host specification
may be either a host name (see hosts(4)) or an Internet address specified in the
“dot notation“ (see inet(7P)). The -l option passes the user as the value of the
ENVIRON variable USER to the remote system.

close Close any open TELNET session and exit telnet. An EOF (in command mode) will
also close a session and exit.

quit Same as close, above.

z Suspend telnet. This command only works when the user is using a shell that
supports job control, such as sh(1).

1-1132 SunOS 5.6 modified 23 May 1997

User Commands telnet (1)

mode type
The remote host is asked for permission to go into the requested mode. If the
remote host is capable of entering that mode, the requested mode will be entered.
Type is one of:

character
Disable the TELNET LINEMODE option, or, if the remote side does not
understand the LINEMODE option, then enter “character at a time“ mode.

line Enable the TELNET LINEMODE option, or, if the remote side does not
understand the LINEMODE option, then attempt to enter “old-line-by-
line“ mode.

isig (-isig)
Attempt to enable (disable) the TRAPSIG mode of the LINEMODE option.
This requires that the LINEMODE option be enabled.

edit (-edit)
Attempt to enable (disable) the EDIT mode of the LINEMODE option.
This requires that the LINEMODE option be enabled.

softtabs (-softtabs)
Attempt to enable (disable) the SOFT_TAB mode of the LINEMODE
option. This requires that the LINEMODE option be enabled.

litecho (-litecho)
Attempt to enable (disable) the LIT_ECHO mode of the LINEMODE
option. This requires that the LINEMODE option be enabled.

? Prints out help information for the mode command.

status Show the current status of telnet. This includes the peer one is connected to, as
well as the current mode.

display [argument. . .]
Display all, or some, of the set and toggle values (see toggle, arguments).

? [command]
Get help. With no arguments, telnet prints a help summary. If a command is
specified, telnet will print the help information for just that command.

send arguments
Send one or more special character sequences to the remote host. The following
are the arguments that can be specified: (More than one argument may be
specified at a time.)

escape Send the current telnet escape character (initially ˆ]).

synch Send the TELNET SYNCH sequence. This sequence discards all previ-
ously typed, but not yet read, input on the remote system. This sequence
is sent as TCP urgent data and may not work if the remote system is a 4.2
BSD system. If it does not work, a lower case ’r’ may be echoed on the
terminal.

brk or break

modified 23 May 1997 SunOS 5.6 1-1133

telnet (1) User Commands

Send the TELNET BRK (Break) sequence, which may have significance to
the remote system.

ip Send the TELNET IP (Interrupt Process) sequence, which aborts the
currently running process on the remote system.

abort Send the TELNET ABORT (abort process) sequence.

ao Send the TELNET AO (Abort Output) sequence, which flushes all output
from the remote system to the user’s terminal.

ayt Send the TELNET AYT (Are You There) sequence, to which the remote
system may or may not respond.

ec Send the TELNET EC (Erase Character) sequence, which erases the last
character entered.

el Send the TELNET EL (Erase Line) sequence, which should cause the
remote system to erase the line currently being entered.

eof Send the TELNET EOF (end of file) sequence.

eor Send the TELNET EOR (end of record) sequence.

ga Send the TELNET GA (Go Ahead) sequence, which probably has no
significance for the remote system.

getstatus
If the remote side supports the TELNET STATUS command, getstatus will
send the subnegotiation to request that the server send its current option
status.

nop Send the TELNET NOP (No Operation) sequence.

susp Send the TELNET SUSP (suspend process) sequence.

do option

dont option

will option

wont option
Send the TELNET protocol option negotiation indicated. Option may be
the text name of the protocol option, or the number corresponding to the
option. The command will be silently ignored if the option negotiation
indicated is not valid in the current state. If the option is given as ’help’
or ’?’, the list of option names known is listed. This command is mostly
useful for unusual debugging situations.

? Print out help information for the send command.

set argument [value]

unset argument
Set any one of a number of telnet variables to a specific value. The special value
“off“ turns off the function associated with the variable. The values of variables
may be interrogated with the display command. If value is omitted, the value is
taken to be true, or “on.“ If the unset form is used, the value is taken to be false,

1-1134 SunOS 5.6 modified 23 May 1997

User Commands telnet (1)

or “off.“ The variables that may be specified are:

echo This is the value (initially ˆE) that, when in “line by line“ mode, toggles
between local echoing of entered characters for normal processing, and
suppressing echoing of entered characters, for example, entering a pass-
word.

escape This is the telnet escape character (initially ˆ]), which enters telnet com-
mand mode when connected to a remote system.

interrupt
If telnet is in localchars mode (see toggle localchars) and the interrupt
character is typed, a TELNET IP sequence (see send and ip) is sent to the
remote host. The initial value for the interrupt character is taken to be
the terminal’s intr character.

quit If telnet is in localchars mode and the quit character is typed, a TELNET
BRK sequence (see send, brk) is sent to the remote host. The initial value
for the quit character is taken to be the terminal’s quit character.

flushoutput
If telnet is in localchars mode and the flushoutput character is typed, a
TELNET AO sequence (see send, ao) is sent to the remote host. The initial
value for the flush character is taken to be the terminal’s flush character.

erase If telnet is in localchars mode and operating in “character at a time“
mode, then when the erase character is typed, a TELNET EC sequence (see
send, ec) is sent to the remote system. The initial value for the erase
character is taken to be the terminal’s erase character.

kill If telnet is in localchars mode and operating in “character at a time“
mode, then when the kill character is typed, a TELNET EL sequence (see
send, el) is sent to the remote system. The initial value for the kill char-
acter is taken to be the terminal’s kill character.

eof If telnet is operating in “line by line“ mode, entering the eof character as
the first character on a line sends this character to the remote system.
The initial value of eof is taken to be the terminal’s eof character.

ayt If telnet is in localchars mode, or LINEMODE is enabled, and the status
character is typed, a TELNET AYT (“Are You There“) sequence is sent to
the remote host. (See send ayt above.) The initial value for ayt is the
terminal’s status character.

forw1
forw2 If telnet is operating in LINEMODE, and the forw1 or forw2 characters

are typed, this causes the forwarding of partial lines to the remote sys-
tem. The initial values for the forwarding characters comes from the
terminal’s eol and eol2 characters.

lnext If telnet is operating in LINEMODE or “old line by line“ mode, then the
lnext character is assumed to be the terminal’s lnext character. The ini-
tial value for the lnext character is taken to be the terminal’s lnext

modified 23 May 1997 SunOS 5.6 1-1135

telnet (1) User Commands

character.

reprint If telnet is operating in LINEMODE or “old line by line“ mode, then the
reprint character is assumed to be the terminal’s reprint character. The
initial value for reprint is taken to be the terminal’s reprint character.

rlogin This is the rlogin escape character. If set, the normal telnet escape char-
acter is ignored, unless it is preceded by this character at the beginning of
a line. The rlogin character, at the beginning of a line followed by a ’.’
closes the connection. When followed by a ˆZ, the rlogin command
suspends the telnet command. The initial state is to disable the rlogin
escape character.

start If the TELNET TOGGLE-FLOW-CONTROL option has been enabled, then
the start character is taken to be the terminal’s start character. The initial
value for the kill character is taken to be the terminal’s start character.

stop If the TELNET TOGGLE-FLOW-CONTROL option has been enabled, then
the stop character is taken to be the terminal’s stop character. The initial
value for the kill character is taken to be the terminal’s stop character.

susp If telnet is in localchars mode, or LINEMODE is enabled, and the
suspend character is typed, a TELNET SUSP sequence (see send susp
above) is sent to the remote host. The initial value for the suspend char-
acter is taken to be the terminal’s suspend character.

tracefile
This is the file to which the output, caused by the netdata or the debug
option being TRUE, will be written. If it is set to ’-’, then tracing informa-
tion will be written to standard output (the default).

worderase
If telnet is operating in LINEMODE or “old line by line“ mode, then this
character is taken to be the terminal’s worderase character. The initial
value for the worderase character is taken to be the terminal’s worderase
character.

? Displays the legal set and unset commands.

1-1136 SunOS 5.6 modified 23 May 1997

User Commands telnet (1)

slc state The slc (Set Local Characters) command is used to set or change the state of spe-
cial characters when the TELNET LINEMODE option has been enabled. Special
characters are characters that get mapped to TELNET commands sequences (like
ip or quit) or line editing characters (like erase and kill). By default, the local
special characters are exported.

check Verifies the settings for the current special characters. The remote side is
requested to send all the current special character settings. If there are
any discrepancies with the local side, the local settings will switch to the
remote values.

export Switches to the local defaults for the special characters. The local default
characters are those of the local terminal at the time when telnet was
started.

import Switches to the remote defaults for the special characters. The remote
default characters are those of the remote system at the time when the
TELNET connection was established.

? Prints out help information for the slc command.

toggle arguments. . .
Toggle between TRUE and FALSE the various flags that control how telnet
responds to events. More than one argument may be specified. The state of
these flags may be interrogated with the display command. Valid arguments
are:

autoflush
If autoflush and localchars are both TRUE, then when the ao, intr, or quit
characters are recognized (and transformed into TELNET sequences; see
set for details), telnet refuses to display any data on the user’s terminal
until the remote system acknowledges (using a TELNET Timing Mark
option) that it has processed those TELNET sequences. The initial value
for this toggle is TRUE if the terminal user has not done an “stty noflsh.“
Otherwise, the value is FALSE (see stty(1)).

autosynch
If autosynch and localchars are both TRUE, then when either the inter-
rupt or quit characters are typed (see set for descriptions of interrupt
and quit), the resulting TELNET sequence sent is followed by the TELNET
SYNCH sequence. This procedure should cause the remote system to
begin throwing away all previously typed input until both of the TELNET
sequences have been read and acted upon. The initial value of this toggle
is FALSE.

binary Enable or disable the TELNET BINARY option on both input and output.

inbinary
Enable or disable the TELNET BINARY option on input.

modified 23 May 1997 SunOS 5.6 1-1137

telnet (1) User Commands

outbinary
Enable or disable the TELNET BINARY option on output.

crlf Determines how carriage returns are sent. If the value is TRUE, then car-
riage returns will be sent as <CR><LF>. If this is FALSE, then carriage
returns will be send as <CR><NUL>. The initial value for this toggle is
FALSE.

crmod Toggle RETURN mode. When this mode is enabled, most RETURN char-
acters received from the remote host will be mapped into a RETURN fol-
lowed by a line feed. This mode does not affect those characters typed
by the user, only those received from the remote host. This mode is use-
ful only for remote hosts that send RETURN, but never send LINEFEED.
The initial value for this toggle is FALSE.

debug Toggle socket level debugging (only available to the superuser). The ini-
tial value for this toggle is FALSE.

localchars
If this toggle is TRUE, then the flush, interrupt, quit, erase, and kill char-
acters (see set) are recognized locally, and transformed into appropriate
TELNET control sequences, respectively ao, ip, brk, ec, and el (see send).
The initial value for this toggle is TRUE in “line by line“ mode, and FALSE
in “character at a time“ mode. When the LINEMODE option is enabled,
the value of localchars is ignored, and assumed to always be TRUE. If
LINEMODE has ever been enabled, then quit is sent as abort, and eof and
suspend are sent as eof and susp (see send above).

netdata
Toggle the display of all network data (in hexadecimal format). The ini-
tial value for this toggle is FALSE.

options
Toggle the display of some internal TELNET protocol processing (having
to do with telnet options). The initial value for this toggle is FALSE.

prettydump
When the netdata toggle is enabled, if prettydump is enabled, the output
from the netdata command will be formatted in a more user readable
format. Spaces are put between each character in the output. The begin-
ning of any TELNET escape sequence is preceded by an asterisk (∗) to aid
in locating them.

skiprc When the skiprc toggle is TRUE, TELNET skips the reading of the .tel-
netrc file in the user’s home directory when connections are opened. The
initial value for this toggle is FALSE.

1-1138 SunOS 5.6 modified 23 May 1997

User Commands telnet (1)

termdata
Toggles the display of all terminal data (in hexadecimal format). The ini-
tial value for this toggle is FALSE.

? Display the legal toggle commands.

environ arguments...
The environ command is used to manipulate variables that may be sent through
the TELNET ENVIRON option. The initial set of variables is taken from the users
environment. Only the DISPLAY and PRINTER variables are exported by
default.
Valid arguments for the environ command are:

define variable value
Define variable to have a value of value. Any variables defined by this
command are automatically exported. The value may be enclosed in sin-
gle or double quotes, so that tabs and spaces may be included.

undefine variable
Remove variable from the list of environment variables. export variable

export variable Mark the variable to be exported to the remote side.

unexport variable
Mark the variable to not be exported unless explicitly requested by the
remote side.

list List the current set of environment variables. Those marked with an
asterisk (∗) will be sent automatically. Other variables will be sent only if
explicitly requested.

? Prints out help information for the environ command.

logout Sends the telnet logout option to the remote side. This command is similar to a
close command. However, if the remote side does not support the logout option,
nothing happens. If, however, the remote side does support the logout option,
this command should cause the remote side to close the TELNET connection. If
the remote side also supports the concept of suspending a user’s session for later
reattachment, the logout argument indicates that the remote side should ter-
minate the session immediately.

FILES $HOME/.telnetrc file that contains commands to be executed before initiating a tel-
net session

/etc/nologin file that contains a message displayed to users attempting to login
during machine shutdown

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

modified 23 May 1997 SunOS 5.6 1-1139

telnet (1) User Commands

SEE ALSO rlogin(1), sh(1), stty(1), hosts(4), nologin(4), attributes(5), inet(7P)

DIAGNOSTICS NO LOGINS: System going down in N minutes
The machine is in the process of being shutdown and logins have
been disabled.

NOTES On some remote systems, echo has to be turned off manually when in “line by line“
mode.

In “old line by line“ mode, or LINEMODE the terminal’s EOF character is only recognized
(and sent to the remote system) when it is the first character on a line.

1-1140 SunOS 5.6 modified 23 May 1997

SunOS/BSD Compatibility Package Commands test (1B)

NAME test − condition evaluation command

SYNOPSIS /usr/ucb/test expression

[expression]

DESCRIPTION test evaluates the expression expression and, if its value is true, sets 0 (true) exit status;
otherwise, a non-zero (false) exit status is set. test also sets a non-zero exit status if there
are no arguments. When permissions are tested, the effective user ID of the process is
used.

All operators, flags, and brackets (brackets used as shown in the second SYNOPSIS line)
must be separate arguments to the test command; normally these items are separated by
spaces.

USAGE
Primitives The following primitives are used to construct expression:

−r filename True if filename exists and is readable.

−w filename True if filename exists and is writable.

−x filename True if filename exists and is executable.

−f filename True if filename exists and is a regular file. Alternatively, if /usr/bin/sh
users specify /usr/ucb before /usr/bin in their PATH environment vari-
able, then test will return true if filename exists and is (not−a−directory).
This is also the default for /usr/bin/csh users.

−d filename True if filename exists and is a directory.

−c filename True if filename exists and is a character special file.

−b filename True if filename exists and is a block special file.

−p filename True if filename exists and is a named pipe (fifo).

−u filename True if filename exists and its set-user-ID bit is set.

−g filename True if filename exists and its set-group-ID bit is set.

−k filename True if filename exists and its sticky bit is set.

−s filename True if filename exists and has a size greater than zero.

−t [fildes] True if the open file whose file descriptor number is fildes (1 by default)
is associated with a terminal device.

−z s1 True if the length of string s1 is zero.

−n s1 True if the length of the string s1 is non-zero.

s1 = s2 True if strings s1 and s2 are identical.

s1 != s2 True if strings s1 and s2 are not identical.

s1 True if s1 is not the null string.

modified 1 Apr 1996 SunOS 5.6 1B-1141

test (1B) SunOS/BSD Compatibility Package Commands

n1 −eq n2 True if the integers n1 and n2 are algebraically equal. Any of the com-
parisons −ne, −gt, −ge, −lt, and −le may be used in place of −eq.

Operators These primaries may be combined with the following operators:

! Unary negation operator.

−a Binary and operator.

−o Binary or operator (−a has higher precedence than −o).

(expression) Parentheses for grouping. Notice also that parentheses are meaningful
to the shell and, therefore, must be quoted.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscpu

SEE ALSO find(1), sh(1), attributes(5)

NOTES The not−a−directory alternative to the −f option is a transition aid for BSD applications
and may not be supported in future releases.

If you test a file you own (the -r , -w , or -x tests), but the permission tested does not have
the owner bit set, a non-zero (false) exit status will be returned even though the file may
have the group or other bit set for that permission. The correct exit status will be set if you
are super-user.

The = and != operators have a higher precedence than the −r through −n operators, and =
and != always expect arguments; therefore, = and != cannot be used with the −r through
−n operators.

If more than one argument follows the −r through −n operators, only the first argument is
examined; the others are ignored, unless a −a or a −o is the second argument.

1B-1142 SunOS 5.6 modified 1 Apr 1996

FMLI Commands test (1F)

NAME test − condition evaluation command

SYNOPSIS test expression

[expression]

DESCRIPTION test evaluates the expression expression and if its value is true, sets a 0 (TRUE) exit status;
otherwise, a non-zero (FALSE) exit status is set; test also sets a non-zero exit status if there
are no arguments. When permissions are tested, the effective user ID of the process is
used.

All operators, flags, and brackets (brackets used as shown in the second SYNOPSIS line)
must be separate arguments to test. Normally these items are separated by spaces.

USAGE
Primitives The following primitives are used to construct expression:

−r filename True if filename exists and is readable.

−w filename True if filename exists and is writable.

−x filename True if filename exists and is executable.

−f filename True if filename exists and is a regular file.

−d filename True if filename exists and is a directory.

−c filename True if filename exists and is a character special file.

−b filename True if filename exists and is a block special file.

−p filename True if filename exists and is a named pipe (FIFO).

−u filename True if filename exists and its set-user-ID bit is set.

−g filename True if filename exists and its set-group-ID bit is set.

−k filename True if filename exists and its sticky bit is set.

−s filename True if filename exists and has a size greater than 0.

−t [fildes] True if the open file whose file descriptor number is fildes (1 by default)
is associated with a terminal device.

−z s1 True if the length of string s1 is 0.

−n s1 True if the length of the string s1 is non-zero.

s1 = s2 True if strings s1 and s2 are identical.

s1 != s2 True if strings s1 and s2 are not identical.

s1 True if s1 is not the null string.

modified 5 Jul 1990 SunOS 5.6 1F-1143

test (1F) FMLI Commands

n1 −eq n2 True if the integers n1 and n2 are algebraically equal. Any of the com-
parisons −ne, −gt, −ge, −lt, and −le may be used in place of −eq.

Operators These primaries may be combined with the following operators:

! Unary negation operator.

−a Binary and operator.

−o Binary or operator (−a has higher precedence than −o).

`(expression)` Parentheses for grouping. Notice also that parentheses are meaningful
to the shell and, therefore, must be quoted.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO find(1), sh(1), attributes(5)

NOTES If you test a file you own (the -r , -w , or -x tests), but the permission tested does not have
the owner bit set, a non-zero (false) exit status will be returned even though the file may
have the group or other bit set for that permission. The correct exit status will be set if you
are super-user.

The = and != operators have a higher precedence than the −r through −n operators, and =
and != always expect arguments; therefore, = and != cannot be used with the −r through
−n operators.

If more than one argument follows the −r through −n operators, only the first argument is
examined; the others are ignored, unless a −a or a −o is the second argument.

1F-1144 SunOS 5.6 modified 5 Jul 1990

User Commands tftp (1)

NAME tftp − trivial file transfer program

SYNOPSIS tftp [host]

DESCRIPTION tftp is the user interface to the Internet TFTP (Trivial File Transfer Protocol), which allows
users to transfer files to and from a remote machine. The remote host may be specified on
the command line, in which case tftp uses host as the default host for future transfers (see
the connect command below).

USAGE Once tftp is running, it issues the prompt tftp> and recognizes the following commands:

Commands connect host-name [port]
Set the host (and optionally port) for transfers. The TFTP protocol, unlike the FTP
protocol, does not maintain connections between transfers; thus, the connect
command does not actually create a connection, but merely remembers what
host is to be used for transfers. You do not have to use the connect command;
the remote host can be specified as part of the get or put commands.

mode transfer-mode
Set the mode for transfers; transfer-mode may be one of ascii or binary. The
default is ascii.

put filename
put localfile remotefile
put filename1 filename2 . . . filenameN remote-directory

Transfer a file, or a set of files, to the specified remote file or directory. The desti-
nation can be in one of two forms: a filename on the remote host if the host has
already been specified, or a string of the form:

host:filename

to specify both a host and filename at the same time. If the latter form is used,
the specified host becomes the default for future transfers. If the remote-
directory form is used, the remote host is assumed to be running the UNIX sys-
tem. Files may be written only if they already exist and are publicly writable (see
in.tftpd(1M)).

get filename
get remotename localname
get filename1 filename2 filename3 . . . filenameN

Get a file or set of files (three or more) from the specified remote sources. source
can be in one of two forms: a filename on the remote host if the host has already
been specified, or a string of the form:

host:filename

to specify both a host and filename at the same time. If the latter form is used,
the last host specified becomes the default for future transfers.

quit Exit tftp. An EOF also exits.

modified 19 May 1994 SunOS 5.6 1-1145

tftp (1) User Commands

verbose
Toggle verbose mode.

trace Toggle packet tracing.

status Show current status.

rexmt retransmission-timeout
Set the per-packet retransmission timeout, in seconds.

timeout total-transmission-timeout
Set the total transmission timeout, in seconds.

ascii Shorthand for mode ascii.

binary Shorthand for mode binary.

? [command-name . . .]
Print help information.

NOTES The default transfer-mode is ascii. This differs from pre-SunOS 4.0 and pre-4.3BSD sys-
tems, so explicit action must be taken when transferring non-ASCII binary files such as
executable commands.

Because there is no user-login or validation within the TFTP protocol, many remote sites
restrict file access in various ways. Approved methods for file access are specific to each
site, and therefore cannot be documented here.

When using the get command to transfer multiple files from a remote host, three or more
files must be specified. If two files are specified, the second file is used as a local file.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO attributes(5)

1-1146 SunOS 5.6 modified 19 May 1994

User Commands time (1)

NAME time − time a simple command

SYNOPSIS time [−p] utility [argument. . .]

DESCRIPTION The time utility invokes utility operand with argument, and writes a message to standard
error that lists timing statistics for utility. The message includes the following informa-
tion:

· The elapsed (real) time between invocation of utility and its termination.

· The User CPU time, equivalent to the sum of the tms_utime and tms_cutime fields
returned by the times(2) function for the process in which utility is executed.

· The System CPU time, equivalent to the sum of the tms_stime and tms_cstime fields
returned by the times() function for the process in which utility is executed.

When time is used as part of a pipeline, the times reported are unspecified, except when
it is the sole command within a grouping command in that pipeline. For example, the
commands on the left are unspecified; those on the right report on utilities a and c,
respectively.

time a | b | c { time a } | b | c
a | b | time c a | b | (time c)

OPTIONS The following option is supported:

−p Write the timing output to standard error in the following format:
real %f\nuser %f\nsys %f\n <real seconds>, <user seconds>,
<system seconds>

OPERANDS The following operands are supported:

utility The name of the utility that is to be invoked.

argument Any string to be supplied as an argument when invoking utility.

USAGE The time utility returns exit status 127 if an error occurs so that applications can distin-
guish “failure to find a utility” from “invoked utility exited with an error indication.” The
value 127 was chosen because it is not commonly used for other meanings; most utilities
use small values for “normal error conditions” and the values above 128 can be confused
with termination due to receipt of a signal. The value 126 was chosen in a similar manner
to indicate that the utility could be found, but not invoked.

EXAMPLES It is frequently desirable to apply time to pipelines or lists of commands. This can be
done by placing pipelines and command lists in a single file; this file can then be invoked
as a utility, and the time applies to everything in the file.

Alternatively, the following command can be used to apply time to a complex command:
time sh -c ’complex-command-line’

modified 1 Feb 1995 SunOS 5.6 1-1147

time (1) User Commands

The following two examples show the differences between the csh version of time and
the version in /usr/bin/time. These examples assume that csh is the shell in use.

example% time find / -name csh.1 -print
/usr/share/man/man1/csh.1
95.0u 692.0s 1:17:52 16% 0+0k 0+0io 0pf+0w

See csh(1) for an explanation of the format of time output.

example% /usr/bin/time find / -name csh.1 -print
/usr/share/man/man1/csh.1
real 1:23:31.5
user 1:33.2
sys 11:28.2

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of time: LC_CTYPE, LC_MESSAGES, LC_NUMERIC, NLSPATH, and PATH.

EXIT STATUS If utility is invoked, the exit status of time will be the exit status of utility; otherwise, the
time utility will exit with one of the following values:

1−125 An error occurred in the time utility.

126 utility was found but could not be invoked.

127 utility could not be found.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO csh(1), shell_builtins(1), timex(1), times(2), attributes(5), environ(5)

NOTES When the time command is run on a multiprocessor machine, the total of the values
printed for user and sys can exceed real. This is because on a multiprocessor machine it
is possible to divide the task between the various processors.

When the command being timed is interrupted, the timing values displayed may not
always be accurate.

BUGS Elapsed time is accurate to the second, while the CPU times are measured to the 100th
second. Thus the sum of the CPU times can be up to a second larger than the elapsed
time.

1-1148 SunOS 5.6 modified 1 Feb 1995

User Commands times (1)

NAME times − shell built-in function to report time usages of the current shell

SYNOPSIS
sh times

ksh † times

DESCRIPTION
sh Print the accumulated user and system times for processes run from the shell.

ksh Print the accumulated user and system times for the shell and for processes run from the
shell.

On this man page, ksh(1) commands that are preceded by one or two † (daggers) are
treated specially in the following ways:

1. Variable assignment lists preceding the command remain in effect when the
command completes.

2. I/O redirections are processed after variable assignments.

3. Errors cause a script that contains them to abort.

4. Words, following a command preceded by †† that are in the format of a vari-
able assignment, are expanded with the same rules as a variable assignment.
This means that tilde substitution is performed after the = sign and word
splitting and file name generation are not performed.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO ksh(1), sh(1), time(1), attributes(5)

modified 15 Apr 1994 SunOS 5.6 1-1149

timex (1) User Commands

NAME timex − time a command; report process data and system activity

SYNOPSIS timex [−o] [−p [−fhkmrt]] [−s] command

DESCRIPTION The given command is executed; the elapsed time, user time and system time spent in exe-
cution are reported in seconds. Optionally, process accounting data for the command and
all its children can be listed or summarized, and total system activity during the execu-
tion interval can be reported.

The output of timex is written on standard error.

OPTIONS −o Report the total number of blocks read or written and total characters
transferred by command and all its children. This option works only if the pro-
cess accounting software is installed.

−p List process accounting records for command and all its children. This option
works only if the process accounting software is installed. Suboptions f, h, k,
m, r, and t modify the data items reported. The options are as follows:

−f Print the fork(2)/ exec(2) flag and system exit status columns in the
output.

−h Instead of mean memory size, show the fraction of total available CPU
time consumed by the process during its execution. This ‘‘hog factor’’
is computed as (total CPU time)/(elapsed time).

−k Instead of memory size, show total kcore-minutes.

−m Show mean core size (the default).

−r Show CPU factor (user time/(system-time + user-time).

−t Show separate system and user CPU times. The number of blocks read
or written and the number of characters transferred are always
reported.

−s Report total system activity (not just that due to command) that occurred dur-
ing the execution interval of command. All the data items listed in sar(1) are
reported.

EXAMPLES A simple example:

example% timex −ops sleep 60

A terminal session of arbitrary complexity can be measured by timing a sub-shell:

example% timex −opskmt sh

session commands
EOT

1-1150 SunOS 5.6 modified 14 Sep 1992

User Commands timex (1)

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWaccu

SEE ALSO sar(1), time(1), times(2), attributes(5)

NOTES Process records associated with command are selected from the accounting file
/var/adm/pacct by inference, since process genealogy is not available. Background
processes having the same user ID, terminal ID, and execution time window will be spuri-
ously included.

modified 14 Sep 1992 SunOS 5.6 1-1151

tip (1) User Commands

NAME tip − connect to remote system

SYNOPSIS tip [−v] [−speed-entry] { hostname | phone-number | device }

DESCRIPTION The tip utility establishes a full-duplex terminal connection to a remote host. Once the
connection is established, a remote session using tip behaves like an interactive session
on a local terminal.

The remote file contains entries describing remote systems and line speeds used by tip.

Each host has a default baud rate for the connection, or you can specify a speed with the
−speed-entry command line argument.

When phone-number is specified, tip looks for an entry in the remote file of the form:

tip −speed-entry

When it finds such an entry, it sets the connection speed accordingly. If it finds no such
entry, tip interprets −speed-entry as if it were a system name, resulting in an error mes-
sage.

If you omit −speed-entry, tip uses the tip0 entry to set a speed for the connection.

When device is specified, tip attempts to open that device, but will do so using the access
privileges of the user, rather than tip’s usual access privileges (setuid uucp). The user
must have read/write access to the device. The tip utility interprets any character string
beginning with the slash character (/) as a device name.

When establishing the connection tip sends a connection message to the remote system.
The default value for this message can be found in the remote file.

When tip attempts to connect to a remote system, it opens the associated device with an
exclusive-open ioctl(2) call. Thus only one user at a time may access a device. This is to
prevent multiple processes from sampling the terminal line. In addition, tip honors the
locking protocol used by uucp(1C).

When tip starts up it reads commands from the file .tiprc in your home directory.

OPTIONS −v Display commands from the .tiprc file as they are executed.

USAGE Typed characters are normally transmitted directly to the remote machine (which does
the echoing as well).

At any time that tip prompts for an argument (for example, during setup of a file
transfer) the line typed may be edited with the standard erase and kill characters. A null
line in response to a prompt, or an interrupt, aborts the dialogue and returns you to the
remote machine.

Commands A tilde (˜) appearing as the first character of a line is an escape signal which directs tip to
perform some special action. tip recognizes the following escape sequences:

˜ˆD
˜. Drop the connection and exit (you may still be logged in on the remote machine).

1-1152 SunOS 5.6 modified 11 Feb 1997

User Commands tip (1)

˜c [name]
Change directory to name (no argument implies change to your home directory).

˜! Escape to an interactive shell on the local machine (exiting the shell returns you
to tip).

˜> Copy file from local to remote.

˜< Copy file from remote to local.

˜p from [to]
Send a file to a remote host running the UNIX system. When you use the put
command, the remote system runs the command string

cat > to

while tip sends it the from file. If the to file is not specified, the from file name is
used. This command is actually a UNIX-system-specific version of the ‘˜>’ com-
mand.

˜t from [to]
Take a file from a remote host running the UNIX system. As in the put command
the to file defaults to the from file name if it is not specified. The remote host exe-
cutes the command string

cat from ; echo ˆA

to send the file to tip.

˜| Pipe the output from a remote command to a local process. The command string
sent to the local system is processed by the shell.

˜C Connect a program to the remote machine. The command string sent to the pro-
gram is processed by the shell. The program inherits file descriptors 0 as remote
line input, 1 as remote line output, and 2 as tty standard error.

˜$ Pipe the output from a local process to the remote host. The command string
sent to the local system is processed by the shell.

˜# Send a BREAK to the remote system.

˜s Set a variable (see the discussion below).

˜ˆZ Stop tip (only available when run under a shell that supports job control, such as
the C shell).

˜ˆY Stop only the “local side” of tip (only available when run under a shell that sup-
ports job control, such as the C shell); the “remote side” of tip, the side that
displays output from the remote host, is left running.

˜? Get a summary of the tilde escapes.

Copying files requires some cooperation on the part of the remote host. When a ˜> or ˜<
escape is used to send a file, tip prompts for a file name (to be transmitted or received)
and a command to be sent to the remote system, in case the file is being transferred from
the remote system. While tip is transferring a file the number of lines transferred will be
continuously displayed on the screen. A file transfer may be aborted with an interrupt.

modified 11 Feb 1997 SunOS 5.6 1-1153

tip (1) User Commands

Auto-call Units tip may be used to dial up remote systems using a number of auto-call unit’s (ACU’s).
When the remote system description contains the du capability, tip uses the call-unit (cu),
ACU type (at), and phone numbers (pn) supplied. Normally tip displays verbose mes-
sages as it dials.

Depending on the type of auto-dialer being used to establish a connection the remote host
may have garbage characters sent to it upon connection. The user should never assume
that the first characters typed to the foreign host are the first ones presented to it. The
recommended practice is to immediately type a kill character upon establishing a con-
nection (most UNIX systems either support @ or CTRL-U as the initial kill character).

tip currently supports the Ventel MD-212+ modem and DC Hayes-compatible modems.

When tip initializes a Hayes-compatible modem for dialing, it sets up the modem to
auto-answer. Normally, after the conversation is complete, tip drops DTR, which causes
the modem to "hang up."

Most modems can be configured such that when DTR drops, they re-initialize themselves
to a preprogrammed state. This can be used to reset the modem and disable auto-answer,
if desired.

Additionally, it is possible to start the phone number with a Hayes S command so that
you can configure the modem before dialing. For example, to disable auto-answer, set up
all the phone numbers in /etc/remote using something like pn=S0=0DT5551212. The
S0=0 disables auto-answer.

Remote Host
Description

Descriptions of remote hosts are normally located in the system-wide file /etc/remote.
However, a user may maintain personal description files (and phone numbers) by
defining and exporting the REMOTE shell variable. The remote file must be readable by
tip, but a secondary file describing phone numbers may be maintained readable only by
the user. This secondary phone number file is /etc/phones, unless the shell variable
PHONES is defined and exported. The phone number file contains lines of the form:

system-name phone-number

Each phone number found for a system is tried until either a connection is established, or
an end of file is reached. Phone numbers are constructed from ‘0123456789−=∗’, where
the ‘=’ and ‘∗’ are used to indicate a second dial tone should be waited for (ACU depen-
dent).

tip Internal Variables tip maintains a set of variables which are used in normal operation. Some of these vari-
ables are read-only to normal users (root is allowed to change anything of interest). Vari-
ables may be displayed and set through the ˜s escape. The syntax for variables is pat-
terned after vi(1) and mail(1). Supplying all as an argument to the ˜s escape displays all
variables that the user can read. Alternatively, the user may request display of a particu-
lar variable by attaching a ? to the end. For example ‘˜s escape?’ displays the current
escape character.

Variables are numeric (num), string (str), character (char), or Boolean (bool) values.
Boolean variables are set merely by specifying their name. They may be reset by
prepending a ! to the name. Other variable types are set by appending an = and the

1-1154 SunOS 5.6 modified 11 Feb 1997

User Commands tip (1)

value. The entire assignment must not have any blanks in it. A single set command may
be used to interrogate as well as set a number of variables.

Variables may be initialized at run time by placing set commands (without the ˜s prefix)
in a .tiprc file in one’s home directory. The −v option makes tip display the sets as they
are made. Comments preceded by a # sign can appear in the .tiprc file.

Finally, the variable names must either be completely specified or an abbreviation may be
given. The following list details those variables known to tip.

beautify
(bool) Discard unprintable characters when a session is being scripted; abbrevi-
ated be. If the nb capability is present, beautify is initially set to off; otherwise,
beautify is initially set to on.

baudrate
(num) The baud rate at which the connection was established; abbreviated ba. If
a baud rate was specified on the command line, baudrate is initially set to the
specified value; otherwise, if the br capability is present, baudrate is initially set
to the value of that capability; otherwise, baudrate is set to 300 baud. Once tip
has been started, baudrate can only changed by the super-user.

dialtimeout
(num) When dialing a phone number, the time (in seconds) to wait for a connec-
tion to be established; abbreviated dial. dialtimeout is initially set to 60 seconds,
and can only changed by the super-user.

disconnect
(str) The string to send to the remote host to disconnect from it; abbreviated di. If
the di capability is present, disconnect is initially set to the value of that capabil-
ity; otherwise, disconnect is set to a null string ("").

echocheck
(bool) Synchronize with the remote host during file transfer by waiting for the
echo of the last character transmitted; abbreviated ec. If the ec capability is
present, echocheck is initially set to on; otherwise, echocheck is initially set to
off.

eofread
(str) The set of characters which signify an end-of-transmission during a ˜< file
transfer command; abbreviated eofr. If the ie capability is present, eofread is ini-
tially set to the value of that capability; otherwise, eofread is set to a null string
("").

eofwrite
(str) The string sent to indicate end-of-transmission during a ˜> file transfer com-
mand; abbreviated eofw. If the oe capability is present, eofread is initially set to
the value of that capability; otherwise, eofread is set to a null string ("").

modified 11 Feb 1997 SunOS 5.6 1-1155

tip (1) User Commands

eol (str) The set of characters which indicate an end-of-line. tip will recognize escape
characters only after an end-of-line. If the el capability is present, eol is initially
set to the value of that capability; otherwise, eol is set to a null string ("").

escape (char) The command prefix (escape) character; abbreviated es. If the es capabil-
ity is present, escape is initially set to the value of that capability; otherwise,
escape is set to ‘ ˜ ’.

etimeout
(num) The amount of time, in seconds, that tip should wait for the echo-check
response when echocheck is set; abbreviated et. If the et capability is present,
etimeout is initially set to the value of that capability; otherwise, etimeout is set
to 10 seconds.

exceptions
(str) The set of characters which should not be discarded due to the beautification
switch; abbreviated ex. If the ex capability is present, exceptions is initially set to
the value of that capability; otherwise, exceptions is set to ‘\t\n\f\b’.

force (char) The character used to force literal data transmission; abbreviated fo. If the
fo capability is present, force is initially set to the value of that capability; other-
wise, force is set to \377 (which disables it).

framesize
(num) The amount of data (in bytes) to buffer between file system writes when
receiving files; abbreviated fr. If the fs capability is present, framesize is initially
set to the value of that capability; otherwise, framesize is set to 1024.

halfduplex
(bool) Do local echoing because the host is half-duplex; abbreviated hdx. If the
hd capability is present, halfduplex is initially set to on; otherwise, halfduplex is
initially set to off.

hardwareflow
(bool) Do hardware flow control; abbreviated hf. If the hf capability is present,
hardwareflow is initially set to on; otherwise, hardwareflowcontrol is initially set
to off.

host (str) The name of the host to which you are connected; abbreviated ho. host is
permanently set to the name given on the command line or in the HOST environ-
ment variable.

localecho
(bool) A synonym for halfduplex; abbreviated le.

log (str) The name of the file to which to log information about outgoing phone calls.
log is initially set to /var/adm/aculog, and can only be inspected or changed by
the super-user.

1-1156 SunOS 5.6 modified 11 Feb 1997

User Commands tip (1)

parity (str) The parity to be generated and checked when talking to the remote host;
abbreviated par. The possible values are:

none
zero Parity is not checked on input, and the parity bit is set to zero on

output.

one Parity is not checked on input, and the parity bit is set to one on
output.

even Even parity is checked for on input and generated on output.

odd Odd parity is checked for on input and generated on output.

If the pa capability is present, parity is initially set to the value of that capability;
otherwise, parity is set to none.

phones
The file in which to find hidden phone numbers. If the environment variable
PHONES is set, phones is set to the value of PHONES; otherwise, phones is set to
/etc/phones. The value of phones cannot be changed from within tip.

prompt
(char) The character which indicates an end-of-line on the remote host; abbrevi-
ated pr. This value is used to synchronize during data transfers. The count of
lines transferred during a file transfer command is based on receipt of this char-
acter. If the pr capability is present, prompt is initially set to the value of that
capability; otherwise, prompt is set to \n.

raise (bool) Upper case mapping mode; abbreviated ra. When this mode is enabled, all
lower case letters will be mapped to upper case by tip for transmission to the
remote machine. If the ra capability is present, raise is initially set to on; other-
wise, raise is initially set to off.

raisechar
(char) The input character used to toggle upper case mapping mode; abbreviated
rc. If the rc capability is present, raisechar is initially set to the value of that capa-
bility; otherwise, raisechar is set to \377 (which disables it).

rawftp (bool) Send all characters during file transfers; do not filter non-printable charac-
ters, and do not do translations like \n to \r. Abbreviated raw. If the rw capabil-
ity is present, rawftp is initially set to on; otherwise, rawftp is initially set to off.

record (str) The name of the file in which a session script is recorded; abbreviated rec. If
the re capability is present, record is initially set to the value of that capability;
otherwise, record is set to tip.record.

remote The file in which to find descriptions of remote systems. If the environment vari-
able REMOTE is set, remote is set to the value of REMOTE; otherwise, remote is set
to /etc/remote. The value of remote cannot be changed from within tip.

script (bool) Session scripting mode; abbreviated sc. When script is on, tip will record
everything transmitted by the remote machine in the script record file specified
in record. If the beautify switch is on, only printable ASCII characters will be

modified 11 Feb 1997 SunOS 5.6 1-1157

tip (1) User Commands

included in the script file (those characters between 040 and 0177). The variable
exceptions is used to indicate characters which are an exception to the normal
beautification rules. If the sc capability is present, script is initially set to on; oth-
erwise, script is initially set to off.

tabexpand
(bool) Expand TAB characters to SPACE characters during file transfers; abbrevi-
ated tab. When tabexpand is on, each tab is expanded to 8 SPACE characters. If
the tb capability is present, tabexpand is initially set to on; otherwise, tabexpand
is initially set to off.

tandem
(bool) Use XON/XOFF flow control to limit the rate that data is sent by the remote
host; abbreviated ta. If the nt capability is present, tandem is initially set to off;
otherwise, tandem is initially set to on.

verbose
(bool) Verbose mode; abbreviated verb; When verbose mode is enabled, tip
prints messages while dialing, shows the current number of lines transferred
during a file transfer operations, and more. If the nv capability is present, ver-
bose is initially set to off; otherwise, verbose is initially set to on.

SHELL (str) The name of the shell to use for the ˜! command; default value is /bin/sh, or
taken from the environment.

HOME (str) The home directory to use for the ˜c command; default value is taken from
the environment.

EXAMPLES An example of the dialogue used to transfer files is given below.
arpa% tip monet
[connected]
. . .(assume we are talking to a UNIX system) . . .
ucbmonet login: sam
Password:
monet% cat > sylvester.c
˜> Filename: sylvester.c
32 lines transferred in 1 minute 3 seconds
monet%
monet% ˜< Filename: reply.c
List command for remote host: cat reply.c
65 lines transferred in 2 minutes
monet%
. . .(or, equivalently). . .
monet% ˜p sylvester.c
. . .(actually echoes as ˜[put] sylvester.c). . .
32 lines transferred in 1 minute 3 seconds
monet%
monet% ˜t reply.c
. . .(actually echoes as ˜[take] reply.c). . .

1-1158 SunOS 5.6 modified 11 Feb 1997

User Commands tip (1)

65 lines transferred in 2 minutes
monet%
. . .(to print a file locally). . .
monet% ˜|Local command: pr −h sylvester.c | lpr
List command for remote host: cat sylvester.c
monet% ˜ˆD
[EOT]
. . .(back on the local system) . . .

ENVIRONMENT The following environment variables are read by tip.

REMOTE The location of the remote file.

PHONES The location of the file containing private phone numbers.

HOST A default host to connect to.

HOME One’s log-in directory (for chdirs).

SHELL The shell to fork on a ‘˜!’ escape.

FILES /etc/phones
/etc/remote
/var/spool/locks/LCK . .∗ lock file to avoid conflicts with UUCP
/var/adm/aculog file in which outgoing calls are logged
˜/.tiprc initialization file

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO cu(1C), mail(1), uucp(1C), vi(1), ioctl(2), attributes(5)

BUGS There are two additional variables chardelay and linedelay that are currently not imple-
mented.

modified 11 Feb 1997 SunOS 5.6 1-1159

tnfdump (1) User Commands

NAME tnfdump − converts binary TNF file to ASCII

SYNOPSIS tnfdump [−r] tnf_file . . .

DESCRIPTION tnfdump converts the specified binary TNF trace files to ASCII. The ASCII output can be
used to do performance analysis. The default mode (without the -r option) prints all the
event records (that were generated by TNF_PROBE(3X)) and the event descriptor
records only. It also orders the events by time.

OPTIONS −r Does a raw conversion of TNF to ASCII. The output is a literal
transalation of the binary TNF file and includes all the records in
the file. This output is useful only if you have a good understand-
ing of TNF. A sample output is listed in EXAMPLES below.

RETURN VALUES tnfdump returns 0 on succcessful exit.

EXAMPLES To convert the file /tmp/trace-2130 into ASCII use:

example% tnfdump /tmp/trace-2130

probe tnf_name: "inloop" tnf_string: "keys cookie main loop;file cookie2.c;line 50;sunw%debug in the loop"

probe tnf_name: "end" tnf_string: "keys cookie main end;file cookie2.c;line 41;sunw%debug exiting program"

---------------- ---------------- ----- ----- ---------- --- ------------------------- ------------------------

Elapsed (ms) Delta (ms) PID LWPID TID CPU Probe Name Data / Description . . .

---------------- ---------------- ----- ----- ---------- --- ------------------------- ------------------------

0.000000 0.000000 8792 1 0 - inloop loop_count: 0 total_iterations: 0

0.339000 0.339000 8792 1 0 - inloop loop_count: 1 total_iterations: 1

0.350500 0.011500 8792 1 0 - inloop loop_count: 2 total_iterations: 2

0.359500 0.009000 8792 1 0 - inloop loop_count: 3 total_iterations: 3

0.369500 0.010000 8792 1 0 - inloop loop_count: 4 total_iterations: 4

7775.969500 7775.600000 8792 1 0 - inloop loop_count: 0 total_iterations: 5

7776.016000 0.046500 8792 1 0 - inloop loop_count: 1 total_iterations: 6

7776.025000 0.009000 8792 1 0 - inloop loop_count: 2 total_iterations: 7

7776.034000 0.009000 8792 1 0 - inloop loop_count: 3 total_iterations: 8

7776.043000 0.009000 8792 1 0 - inloop loop_count: 4 total_iterations: 9

7776.052000 0.009000 8792 1 0 - inloop loop_count: 5 total_iterations: 10

7776.061000 0.009000 8792 1 0 - inloop loop_count: 6 total_iterations: 11

9475.979500 1699.918500 8792 1 0 - end node_struct: { type: node_tnf

cur_sum: 9 max_cnt: 12 }

All probes that are encountered during execution have a description of it printed out.
The description is one per line prefixed by the keyword ‘probe’. The name of the probe is
in double quotes after the keyword ‘tnf_name’. The description of this probe is in double
quotes after the keyword ‘tnf_string’.

1-1160 SunOS 5.6 modified 14 Oct 1994

User Commands tnfdump (1)

A heading is printed after all the description of the probes are printed. The first column
gives the elapsed time in milli-seconds since the first event. The second column gives the
elapsed time in milli-seconds since the previous event. The next four columns are the
process id, lwp id, thread id, and cpu number. The next column is the name of the probe
that generated this event. This can be matched to the probe description explained above.
The last column is the data that the event contains formatted as arg_name_n (see
TNF_PROBE(3X)) followed by a colon and the value of that argument. The format of the
value depends on its type — tnf_opaque arguments are printed in hex, all other integers
are printed in decimal, strings are printed in double quotes, and user defined records are
enclosed in braces ‘{ }’. The first field of a user defined record indicates its TNF type (see
TNF_DECLARE_RECORD(3X)) and the rest of the fields are the members of the record.

A ‘-’ in any column indicates that there is no data for that particular column.

To do a raw conversion of the file /tmp/trace-4000 into ASCII use:

example% tnfdump -r /tmp/trace-4000

The output will look like the following:

0x10e00 : {
tnf_tag 0x109c0 tnf_block_header

generation 1
bytes_valid 320

A_lock 0
B_lock 0

next_block 0x0
}

0x10e10 : {
tnf_tag 0x10010 probe1

tnf_tag_arg 0x10e24 <tnf_sched_rec>
time_delta 128
test_ulong 4294967295
test_long -1

}
0x10e24 : {

tnf_tag 0x10cf4 tnf_sched_rec
tid 0

lwpid 1
pid 13568

time_base 277077875828500
}

0x10e3c : {
tnf_tag 0x11010 probe2

tnf_tag_arg 0x10e24 <tnf_sched_rec>
time_delta 735500
test_str 0x10e48 "string1"

}
0x10e48 : {

modified 14 Oct 1994 SunOS 5.6 1-1161

tnfdump (1) User Commands

tnf_tag 0x1072c tnf_string
tnf_self_size 16

chars "string1"
}

0x10e58 : {
tnf_tag 0x110ec probe3

tnf_tag_arg 0x10e24 <tnf_sched_rec>
time_delta 868000

test_ulonglong 18446744073709551615
test_longlong -1

test_float 3.142857
}

. . .

. . .

. . .
0x110ec : {

tnf_tag 0x10030 tnf_probe_type
tnf_tag_code 42

tnf_name 0x1110c "probe3"
tnf_properties 0x1111c <tnf_properties>
tnf_slot_types 0x11130 <tnf_slot_types>
tnf_type_size 32
tnf_slot_names 0x111c4 <tnf_slot_names>

tnf_string 0x11268 "keys targdebug main;file targdebug.c;line 61;"
}

0x1110c : {
tnf_tag 0x10068 tnf_name

tnf_self_size 16
chars "probe3"

}
0x1111c : {

tnf_tag 0x100b4 tnf_properties
tnf_self_size 20

0 0x101a0 tnf_tagged
1 0x101c4 tnf_struct
2 0x10b84 tnf_tag_arg

}
0x11130 : {

tnf_tag 0x10210 tnf_slot_types
tnf_self_size 28

0 0x10bd0 tnf_probe_event
1 0x10c20 tnf_time_delta
2 0x1114c tnf_uint64
3 0x10d54 tnf_int64
4 0x11188 tnf_float32

1-1162 SunOS 5.6 modified 14 Oct 1994

User Commands tnfdump (1)

}

The first number is the file offset of the record. The record is enclosed in braces ‘{ }’. The
first column in a record is the slot name (for records whose fields do not have names, it is
the type name). The second column in the record is the value of that slot if it is a scalar
(only scalars that are of type tnf_opaque are printed in hex), or the offset of the record if
it is a reference to another record.

The third column in a record is optional. It does not exist for scalar slots of records. If it
exists, the third column is a type name with or without angle brackets, or a string in dou-
ble quotes. Unadorned names indicate a reference to the named metatag record (i.e. a
reference to a record with that name in the tnf_name field). Type names in angled brack-
ets indicate a reference to a record that is an instance of that type (i.e., a reference to a
record with that name in the tnf_tag field). The content of strings are printed out in dou-
ble quotes at the reference site.

Records that are arrays have their array elements follow the header slots, and are num-
bered 0, 1, 2, etc., except strings where the string is written as the ’chars’ (pseudo-name)
slot.

Records that are events (generated by TNF_PROBE(3X)) will have a slot name of
tnf_tag_arg as their second field which is a reference to the schedule record. Schedule
records describe more information about the event like the thread-id, process-id, and the
time_base. The time_delta of an event can be added to the time_base of the schedule
record that the event references, to give an absolute time. This time is expressed as
nanoseconds since some arbitrary time in the past (see gethrtime(3C)).

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtnfd

SEE ALSO prex(1), gethrtime(3C), TNF_DECLARE_RECORD(3X), TNF_PROBE(3X),
tnf_process_disable(3X), attributes(5)

modified 14 Oct 1994 SunOS 5.6 1-1163

tnfxtract (1) User Commands

NAME tnfxtract − extract kernel probes output into a trace file

SYNOPSIS tnfxtract [−d dumpfile −n namelist] tnf_file

DESCRIPTION tnfxtract collects kernel trace output from an in-core buffer in the Solaris kernel, or from
the memory image of a crashed system, and generates a binary TNF trace file like those
produced directly by user programs being traced.

Either both or neither of the −d and −n options must be specified. If neither is specified,
trace output is extracted from the running kernel. If both are specified, the −d argument
names the file containing the (crashed) system memory image, and the −n argument
names the file containing the symbol table for the system memory image.

The TNF trace file tnf_file produced is exactly the same size as the in-core buffer; it is
essentially a snapshot of that buffer. It is legal to run tnfxtract while kernel tracing is
active, i.e., while the in-core buffer is being written. tnfxtract insures that the output file
it generates is low-level consistent, i.e., that only whole probes are written out, and that
internal data structures in the buffer are not corrupted because the buffer is being con-
currently written.

The TNF trace file generated is suitable as input to tnfdump(1), which will generate an
ASCII file.

OPTIONS The following options are supported:

−d dumpfile Use dumpfile as the system memory image, instead of the running kernel.
The dumpfile is normally the path name of a file generated by the
savecore utility.

−n namelist Use namelist as the file containing the symbol table information for the
given dumpfile.

OPERANDS The following operand is supported:

tnf_file output file generated by tnfxtract based on kernel trace output from an
in-core buffer in the Solaris kernel.

EXAMPLES # Extract probes from the running kernel into ktrace.out.
example% tnfxtract ktrace.out

Extract probes from a kernel crash dump into ktrace.out.
example% tnfxtract −d /var/crash/‘uname −n‘/vmcore.0 \

−n /var/crash/‘uname −n‘/unix.0 ktrace.out

EXIT STATUS The following exit values are returned:

0 Successful completion.
>0 An error occurred.

1-1164 SunOS 5.6 modified 4 Aug 1995

User Commands tnfxtract (1)

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtnfc

SEE ALSO prex(1), tnfdump(1), savecore(1M), tnf_kernel_probes(4), attributes(5)

modified 4 Aug 1995 SunOS 5.6 1-1165

touch (1) User Commands

NAME touch − change file access and modification times

SYNOPSIS touch [−acm] [−r ref_file] file. . .
touch [−acm] [−t time] file. . .
touch [−acm] [date_time] file. . .

DESCRIPTION touch sets the access and modification times of each file. file is created if it does not
already exist.

The time used can be specified by −t time, by the corresponding time fields of the file
referenced by −r ref_file, or by the date_time operand. If none of these are specified, touch
uses the current time (the value returned by the time(2) system call).

If neither the −a nor −m options are specified, touch updates both the modification and
access times.

OPTIONS The following options are supported:

−a Change the access time of file. Do not change the modification time unless
−m is also specified.

−c Do not create a specified file if it does not exist. Do not write any diagnostic
messages concerning this condition.

−m Change the modification time of file. Do not change the access time unless
−a is also specified.

−r ref_file Use the corresponding times of the file named by ref_file instead of the
current time.

−t time Use the specified time instead of the current time. time will be a decimal
number of the form:

[[CC]YY]MMDDhhmm[.SS]

where each two digits represents the following:

MM The month of the year [01-12].
DD The day of the month [01-31].
hh The hour of the day [00-23].
mm The minute of the hour [00-59].
CC The first two digits of the year.
YY The second two digits of the year.
SS The second of the minute [00-61].

Both CC and YY are optional. If neither is given, the current year will be
assumed. If YY is specified, but CC is not, CC will be derived as follows:

If YY is: CC becomes:
69-99 19
00-38 20
39-68 ERROR

1-1166 SunOS 5.6 modified 10 Nov 1995

User Commands touch (1)

The resulting time will be affected by the value of the TZ environment vari-
able. If the resulting time value precedes the Epoch, touch will exit
immediately with an error status. The range of valid times is the Epoch to
January 18, 2038.

The range for SS is [00-61] rather than [00-59] because of leap seconds. If SS
is 60 or 61, and the resulting time, as affected by the TZ environment vari-
able, does not refer to a leap second, the resulting time will be one or two
seconds after a time where SS is 59. If SS is not given, it is assumed to be 0.

OPERANDS The following operands are supported:

file A path name of a file whose times are to be modified.

date_time Use the specified date_time instead of the current time. date_time is a
decimal number of the form:

MMDDhhmm[YY]

where each two digits represent the following:

MM The month of the year [01-12].
DD The day of the month [01-31].
hh The hour of the day [00-23].
mm The minute of the hour [00-59].
YY The second two digits of the year.

YY is optional. If it is omitted, the current year will be assumed. If YY is
specified, the year will be derived as follows:

YY Corresponding Year
69-99 1969-1999
00-38 2000-2038
39-68 ERROR

If no −f option is specified, no −t option is specified, at least two operands
are specified, and the first operand is an eight- or ten-digit decimal integer,
the first operand will be assumed to be a date_time operand; otherwise, the
first operand will be assumed to be a file operand.

USAGE See largefile(5) for the description of the behavior of touch when encountering files
greater than or equal to 2 Gbyte (231 bytes).

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of touch: LC_MESSAGES, NLSPATH, and TZ.

EXIT STATUS The following exit values are returned:

0 touch executed successfully and all requested changes were made.

>0 An error occurred. touch returns the number of files for which the times could not
be successfully modified.

modified 10 Nov 1995 SunOS 5.6 1-1167

touch (1) User Commands

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu
CSI enabled

SEE ALSO time(2), attributes(5), environ(5), largefile(5)

NOTES Users familiar with the BSD environment will find that the −f option is accepted, but
ignored. The −f option is unnecessary because touch will succeed for all files owned by
the user regardless of the permissions on the files.

1-1168 SunOS 5.6 modified 10 Nov 1995

SunOS/BSD Compatibility Package Commands touch (1B)

NAME touch − change file access and modification times

SYNOPSIS /usr/ucb/touch [−acfm] file. . .

DESCRIPTION touch sets the access and modification times of each file to the current time. file is created
if it does not already exist.

OPTIONS −a Change the access time of file. Do not change the modification time unless −m is
also specified.

−c Do not create file if it does not exist.

−f Attempt to force the touch in spite of read and write permissions on file.

−m Change the modification time of file. Do not change the access time unless −a is
also specified.

USAGE See largefile(5) for the description of the behavior of touch when encountering files
greater than or equal to 2 Gbyte (231 bytes).

EXIT STATUS The following exit values are returned:

0 touch executed successfully and all requested changes were made.

>0 An error occurred. touch returns the number of files for which the times could not
be successfully modified.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscpu

SEE ALSO touch(1), attributes(5), largefile(5)

modified 26 Oct 1995 SunOS 5.6 1B-1169

tplot (1) User Commands

NAME tplot, t300, t300s, t4014, t450, tek, ver − graphics filters for various plotters

SYNOPSIS /usr/bin/tplot [−Tterminal]

DESCRIPTION tplot reads plotting instructions from the standard input and produces plotting instruc-
tions suitable for a particular terminal on the standard output.

If no terminal is specified, the environment variable TERM is used. The default terminal is
tek.

ENVIRONMENT Except for ver, the following terminal-types can be used with ‘lpr −g’ (see lpr) to produce
plotted output:

300 DASI 300 or GSI terminal (Diablo mechanism).

300s | 300S DASI 300s terminal (Diablo mechanism).

450 DASI Hyterm 450 terminal (Diablo mechanism).

4014 | tek Tektronix 4014 and 4015 storage scope with Enhanced Graphics Module.
(Use 4013 for Tektronix 4014 or 4015 without the Enhanced Graphics
Module).

ver Versatec D1200A printer-plotter. The output is scan-converted and
suitable input to ‘lpr −v’.

FILES /usr/lib/t300
/usr/lib/t300s
/usr/lib/t4014
/usr/lib/t450
/usr/lib/tek
/usr/lib/vplot

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO lp(1), vi(1), attributes(5)

1-1170 SunOS 5.6 modified 14 Jul 1994

User Commands tput (1)

NAME tput − initialize a terminal or query terminfo database

SYNOPSIS tput [−Ttype] capname [parm . . .]
tput −S <<

DESCRIPTION tput uses the terminfo database to make the values of terminal-dependent capabilities
and information available to the shell (see sh(1)); to clear, initialize or reset the terminal;
or to return the long name of the requested terminal type. tput outputs a string if the
capability attribute (capname) is of type string, or an integer if the attribute is of type
integer. If the attribute is of type boolean, tput simply sets the exit status (0 for TRUE if
the terminal has the capability, 1 for FALSE if it does not), and produces no output.
Before using a value returned on standard output, the user should test the exit status ($?,
see sh(1)) to be sure it is 0. See the EXIT STATUS section.

OPTIONS −Ttype Indicates the type of terminal. Normally this option is unnecessary, because
the default is taken from the environment variable TERM. If −T is specified,
then the shell variables LINES and COLUMNS and the layer size will not be
referenced.

−S Allows more than one capability per invocation of tput. The capabilities must
be passed to tput from the standard input instead of from the command line
(see the example in the EXAMPLES section). Only one capname is allowed per
line. The −S option changes the meaning of the 0 and 1 boolean and string
exit statuses (see the EXIT STATUS section).

OPERANDS The following operands are supported:

capname Indicates the capability attribute from the terminfo database. See ter-
minfo(4) for a complete list of capabilities and the capname associated with
each.
The following strings will be supported as operands by the implementation
in the "C" locale:

clear Display the clear-screen sequence.

init If the terminfo database is present and an entry for the user’s
terminal exists (see −Ttype, above), the following will occur:

(1) if present, the terminal’s initialization strings will be out-
put (is1, is2, is3, if, iprog),

(2) any delays (for instance, newline) specified in the entry
will be set in the tty driver,

(3) tabs expansion will be turned on or off according to the
specification in the entry, and

(4) if tabs are not expanded, standard tabs will be set (every
8 spaces). If an entry does not contain the information
needed for any of the four above activities, that activity
will silently be skipped.

modified 1 Feb 1995 SunOS 5.6 1-1171

tput (1) User Commands

reset Instead of putting out initialization strings, the terminal’s reset
strings will be output if present (rs1, rs2, rs3, rf). If the reset
strings are not present, but initialization strings are, the initial-
ization strings will be output. Otherwise, reset acts identically
to init.

longname If the terminfo database is present and an entry for the user’s
terminal exists (see −Ttype above), then the long name of the
terminal will be put out. The long name is the last name in the
first line of the terminal’s description in the terminfo database
(see term(5)).

parm If the attribute is a string that takes parameters, the argument parm will be
instantiated into the string. An all numeric argument will be passed to the
attribute as a number.

EXAMPLES This example initializes the terminal according to the type of terminal in the environment
variable TERM. This command should be included in everyone’s .profile after the
environment variable TERM has been exported, as illustrated on the profile(4) manual
page.

example% tput init

The next example resets an AT&T 5620 terminal, overriding the type of terminal in the
environment variable TERM.

example% tput −T5620 reset

The following example sends the sequence to move the cursor to row 0, column 0 (the
upper left corner of the screen, usually known as the "home" cursor position).

example% tput cup 0 0

The next example echos the clear-screen sequence for the current terminal.

example% tput clear

The next command prints the number of columns for the current terminal.

example% tput cols

The following command prints the number of columns for the 450 terminal.

example% tput −T450 cols

The next example sets the shell variables bold, to begin stand-out mode sequence, and
offbold, to end standout mode sequence, for the current terminal. This might be fol-
lowed by a prompt:

echo "${bold}Please type in your name: ${offbold}\c"

example% bold=‘tput smso‘
example% offbold=‘tput rmso‘

This example sets the exit status to indicate if the current terminal is a hardcopy terminal.

1-1172 SunOS 5.6 modified 1 Feb 1995

User Commands tput (1)

example% tput hc

This next example sends the sequence to move the cursor to row 23, column 4.

example% tput cup 23 4

The next command prints the long name from the terminfo database for the type of ter-
minal specified in the environment variable TERM.

example% tput longname

This last example shows tput processing several capabilities in one invocation. This
example clears the screen, moves the cursor to position 10, 10 and turns on bold (extra
bright) mode. The list is terminated by an exclamation mark (!) on a line by itself.

example% tput −S <<!
> clear
> cup 10 10
> bold
> !

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of tput: LC_CTYPE, LC_MESSAGES, and NLSPATH.

TERM Determine the terminal type. If this variable is unset or null, and if the −T option
is not specified, an unspecified default terminal type will be used.

EXIT STATUS The following exit values are returned:

0 · If capname is of type boolean and −S is not specified, indicates TRUE.
· If capname is of type string and −S is not specified, indicates capname is defined

for this terminal type.
· If capname is of type boolean or string and −S is specified, indicates that all lines

were successful.
· capname is of type integer.
· The requested string was written successfully.

1 · If capname is of type boolean and −S is not specified, indicates FALSE.
· If capname is fo type string and −S is not specified, indicates that capname is not

defined for this terminal type.

2 Usage error.

3 No information is available about the specified terminal type.

4 The specified operand is invalid.

>4 An error occurred.

−1 capname is a numeric variable that is not specified in the terminfo database; for
instance, tput -T450 lines and tput -T2621 xmc.

FILES /usr/include/curses.h curses(3X) header
/usr/include/term.h terminfo header
/usr/lib/tabset/∗ tab settings for some terminals, in a format appropriate to be

output to the terminal (escape sequences that set margins

modified 1 Feb 1995 SunOS 5.6 1-1173

tput (1) User Commands

and tabs); for more information, see the "Tabs and Initializa-
tion" section of terminfo(4)

/usr/share/lib/terminfo/?/∗ compiled terminal description database

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO clear(1), stty(1), tabs(1), profile(4), terminfo(4), attributes(5), environ(5)

1-1174 SunOS 5.6 modified 1 Feb 1995

User Commands tr (1)

NAME tr − translate characters

SYNOPSIS /usr/bin/tr [−cs] string1 string2
/usr/bin/tr −s | −d [−c] string1
/usr/bin/tr −ds [−c] string1 string2

/usr/bin/xpg4/tr [−cs] string1 string2
/usr/bin/xpg4/tr −s | −d [−c] string1
/usr/bin/xpg4/tr −ds [−c] string1 string2

DESCRIPTION The tr utility copies the standard input to the standard output with substitution or dele-
tion of selected characters. The options specified and the string1 and string2 operands
control translations that occur while copying characters and single-character collating ele-
ments.

OPTIONS The following options are supported:

−c Complement the set of characters specified by string1.

−d Delete all occurrences of input characters that are specified by string1.

−s Replace instances of repeated characters with a single character.

When the −d option is not specified:

· Each input character found in the array specified by string1 is replaced by the charac-
ter in the same relative position in the array specified by string2. When the array
specified by string2 is shorter that the one specified by string1, the results are
unspecified.

· If the −c option is specified, the complements of the characters specified by string1 (the
set of all characters in the current character set, as defined by the current setting of
LC_CTYPE, except for those actually specified in the string1 operand) are placed in the
array in ascending collation sequence, as defined by the current setting of
LC_COLLATE.

· Because the order in which characters specified by character class expressions or
equivalence class expressions is undefined, such expressions should only be used if
the intent is to map several characters into one. An exception is case conversion, as
described previously.

When the −d option is specified:

· Input characters found in the array specified by string1 will be deleted.

· When the −c option is specified with −d, all characters except those specified by
string1 will be deleted. The contents of string2 will be ignored, unless the −s option is
also specified.

· The same string cannot be used for both the −d and the −s option; when both options
are specified, both string1 (used for deletion) and string2 (used for squeezing) are
required.

modified 18 Mar 1997 SunOS 5.6 1-1175

tr (1) User Commands

When the −s option is specified, after any deletions or translations have taken place,
repeated sequences of the same character will be replaced by one occurrence of the same
character, if the character is found in the array specified by the last operand. If the last
operand contains a character class, such as the following example:

tr −s ’[:space:]’
the last operand’s array will contain all of the characters in that character class. However,
in a case conversion, as described previously, such as

tr −s ’[:upper:]’ ’[:lower:]’
the last operand’s array will contain only those characters defined as the second charac-
ters in each of the toupper or tolower character pairs, as appropriate. (See touopper(3C)
and tolower(3C)).

An empty string used for string1 or string2 produces undefined results.

OPERANDS The following operands are supported:

string1

string2 Translation control strings. Each string represents a set of characters to be
converted into an array of characters used for the translation.

The operands string1 and string2 (if specified) define two arrays of charac-
ters. The constructs in the following list can be used to specify characters or
single-character collating elements. If any of the constructs result in multi-
character collating elements, tr will exclude, without a diagnostic, those
multi-character elements from the resulting array.

character Any character not described by one of the conventions below
represents itself.

\ octal Octal sequences can be used to represent characters with
specific coded values. An octal sequence consists of a
backslash followed by the longest sequence of one-, two- or
three-octal-digit characters (01234567). The sequence causes
the character whose encoding is represented by the one-, two-
or three-digit octal integer to be placed into the array. Multi-
byte characters require multiple, concatenated escape
sequences of this type, including the leading \ for each byte.

\ character The backslash-escape sequences \a, \b, \f, \n, \r, \t, and \v
are supported. The results of using any other character, other
than an octal digit, following the backslash are unspecified.

/usr/xpg4/bin/tr c-c
/usr/bin/tr [c-c] Represents the range of collating elements between the range endpoints,

inclusive, as defined by the current setting of the LC_COLLATE locale
category. The starting endpoint must precede the second endpoint in the
current collation order. The characters or collating elements in the range
are placed in the array in ascending collation sequence.

1-1176 SunOS 5.6 modified 18 Mar 1997

User Commands tr (1)

[:class:] Represents all characters belonging to the defined character class, as
defined by the current setting of the LC_CTYPE locale category. The follow-
ing character class names will be accepted when specified in string1:

alnum blank digit lower punct upper
alpha cntrl graph print space xdigit

In addition, character class expressions of the form [:name:] are recognized
in those locales where the name keyword has been given a charclass
definition in the LC_CTYPE category.

When both the −d and −s options are specified, any of the character class
names will be accepted in string2. Otherwise, only character class names
lower or upper are valid in string2 and then only if the corresponding char-
acter class upper and lower, respectively, is specified in the same relative
position in string1. Such a specification is interpreted as a request for case
conversion. When [:lower:] appears in string1 and [:upper:] appears in
string2, the arrays will contain the characters from the toupper mapping in
the LC_CTYPE category of the current locale. When [:upper:] appears in
string1 and [:lower:] appears in string2, the arrays will contain the charac-
ters from the tolower mapping in the LC_CTYPE category of the current
locale. The first character from each mapping pair will be in the array for
string1 and the second character from each mapping pair will be in the
array for string2 in the same relative position.

Except for case conversion, the characters specified by a character class
expression are placed in the array in an unspecified order.

If the name specified for class does not define a valid character class in the
current locale, the behavior is undefined.

[=equiv=] Represents all characters or collating elements belonging to the same
equivalence class as equiv, as defined by the current setting of the
LC_COLLATE locale category. An equivalence class expression is allowed
only in string1, or in string2 when it is being used by the combined −d and
−s options. The characters belonging to the equivalence class are placed in
the array in an unspecified order.

[x∗n] Represents n repeated occurrences of the character x. Because this expres-
sion is used to map multiple characters to one, it is only valid when it
occurs in string2. If n is omitted or is 0, it is interpreted as large enough to
extend the string2-based sequence to the length of the string1-based
sequence. If n has a leading 0, it is interpreted as an octal value. Otherwise,
it is interpreted as a decimal value.

USAGE See largefile(5) for the description of the behavior of tr when encountering files greater
than or equal to 2 Gbyte (231 bytes).

modified 18 Mar 1997 SunOS 5.6 1-1177

tr (1) User Commands

EXAMPLES 1. The following example creates a list of all words in file1 one per line in file2, where a
word is taken to be a maximal string of letters.

tr −cs "[:alpha:]" "[\n∗]" <file1 >file2

2. The next example translates all lower-case characters in file1 to upper-case and writes
the results to standard output.

tr "[:lower:]" "[:upper:]" <file1

Note that the caveat expressed in the corresponding example in XPG3 is no longer in
effect. This case conversion is now a special case that employs the tolower and
toupper classifications, ensuring that proper mapping is accomplished (when the
locale is correctly defined).

3. This example uses an equivalence class to identify accented variants of the base char-
acter e in file1, which are stripped of diacritical marks and written to file2.

tr "[=e=]" e <file1 >file2

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of tr: LC_COLLATE, LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS The following exit values are returned:

0 All input was processed successfully.

>0 An error occurred.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

/usr/bin/tr ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu
CSI Enabled

/usr/xpg4/bin/tr ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxcu4
CSI Enabled

SEE ALSO ed(1), sed(1), sh(1), tolower(3C), toupper(3C), ascii(5), attributes(5), environ(5),
largefile(5), xpg4(5)

NOTES Unlike some previous versions, the tr correctly processes NUL characters in its input
stream. NUL characters can be stripped by using tr −d ’\000’.

1-1178 SunOS 5.6 modified 18 Mar 1997

SunOS/BSD Compatibility Package Commands tr (1B)

NAME tr − translate characters

SYNOPSIS /usr/ucb/tr [−cds] [string1 [string2]]

DESCRIPTION tr copies the standard input to the standard output with substitution or deletion of
selected characters. The arguments string1 and string2 are considered sets of characters.
Any input character found in string1 is mapped into the character in the corresponding
position within string2. When string2 is short, it is padded to the length of string1 by
duplicating its last character.

In either string the notation:
a−b

denotes a range of characters from a to b in increasing ASCII order. The character \ , fol-
lowed by 1, 2 or 3 octal digits stands for the character whose ASCII code is given by those
digits. As with the shell, the escape character \ , followed by any other character, escapes
any special meaning for that character.

OPTIONS Any combination of the options −c, −d, or −s may be used:

−c Complement the set of characters in string1 with respect to the universe of char-
acters whose ASCII codes are 01 through 0377 octal.

−d Delete all input characters in string1.

−s Squeeze all strings of repeated output characters that are in string2 to single char-
acters.

EXAMPLES The following example creates a list of all the words in filename1 one per line in filename2,
where a word is taken to be a maximal string of alphabetics. The second string is quoted
to protect ‘ \ ’ from the shell. 012 is the ASCII code for NEWLINE.

example% tr −cs A−Za−z ´\012´ < filename1> filename2

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscpu

SEE ALSO ed(1), ascii(5), attributes(5)

NOTES Will not handle ASCII NUL in string1 or string2. tr always deletes NUL from input.

modified 26 Sep 1992 SunOS 5.6 1B-1179

trap (1) User Commands

NAME trap, onintr − shell built-in functions to respond to (hardware) signals

SYNOPSIS
sh trap [argument n [n2 . . .]]

csh onintr [−| label]

ksh † trap [arg sig [sig2 . . .]]

DESCRIPTION
sh The trap command argument is to be read and executed when the shell receives numeric

or symbolic signal(s) (n). (Note: argument is scanned once when the trap is set and once
when the trap is taken.) Trap commands are executed in order of signal number or
corresponding symbolic names. Any attempt to set a trap on a signal that was ignored
on entry to the current shell is ineffective. An attempt to trap on signal 11 (memory fault)
produces an error. If argument is absent all trap(s) n are reset to their original values. If
argument is the null string this signal is ignored by the shell and by the commands it
invokes. If n is 0 the command argument is executed on exit from the shell. The trap
command with no arguments prints a list of commands associated with each signal
number.

csh onintr controls the action of the shell on interrupts. With no arguments, onintr restores
the default action of the shell on interrupts. (The shell terminates shell scripts and
returns to the terminal command input level). With the − argument, the shell ignores all
interrupts. With a label argument, the shell executes a goto label when an interrupt is
received or a child process terminates because it was interrupted.

ksh trap uses arg as a command to be read and executed when the shell receives signal(s) sig.
(Note that arg is scanned once when the trap is set and once when the trap is taken.) Each
sig can be given as a number or as the name of the signal. trap commands are executed in
order of signal number. Any attempt to set a trap on a signal that was ignored on entry
to the current shell is ineffective. If arg is omitted or is −, then the trap(s) for each sig are
reset to their original values. If arg is the null (the empty string, e.g., "") string then this
signal is ignored by the shell and by the commands it invokes. If sig is ERR then arg will
be executed whenever a command has a non-zero exit status. If sig is DEBUG then arg
will be executed after each command. If sig is 0 or EXIT for a trap set outside any func-
tion then the command arg is executed on exit from the shell. The trap command with no
arguments prints a list of commands associated with each signal number.

1-1180 SunOS 5.6 modified 23 Oct 1994

User Commands trap (1)

On this man page, ksh(1) commands that are preceded by one or two † (daggers) are
treated specially in the following ways:

1. Variable assignment lists preceding the command remain in effect when the
command completes.

2. I/O redirections are processed after variable assignments.

3. Errors cause a script that contains them to abort.

4. Words, following a command preceded by †† that are in the format of a vari-
able assignment, are expanded with the same rules as a variable assignment.
This means that tilde substitution is performed after the = sign and word
splitting and file name generation are not performed.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO csh(1), exit(1), ksh(1), sh(1), attributes(5)

modified 23 Oct 1994 SunOS 5.6 1-1181

troff (1) User Commands

NAME troff − typeset or format documents

SYNOPSIS troff [−a] [−f] [−Fdir] [−i] [−mname] [−nN] [−olist] [−raN] [−sN] [−Tdest]
[−uN] [−z] [filename] . . .

DESCRIPTION troff formats text in the filenames for typesetting or laser printing. Input to troff is
expected to consist of text interspersed with formatting requests and macros. If no
filename argument is present, troff reads standard input. A minus sign (−) as a filename
indicates that standard input should be read at that point in the list of input files.

The output of troff is usually piped through dpost(1) to create a printable postscript file
(see EXAMPLES).

OPTIONS The following options may appear in any order, but all must appear before the first
filename.

−a Send an ASCII approximation of formatted output to standard output.

−f Do not print a trailer after the final page of output or cause the postprocessor to
relinquish control of the device.

−Fdir Search directory dir for font width or terminal tables instead of the system
default directory.

−i Read standard input after all input files are exhausted.

−mname
Prepend the macro file /usr/share/lib/tmac/name to the input filenames. Note:
most references to macro packages include the leading m as part of the name; for
example, the man(5) macros reside in /usr/share/lib/tmac/an. The macro direc-
tory can be changed by setting the TROFFMACS environment variable to a
specific path. Be certain to include the trailing ’ / ’ (slash) at the end of the path.

−nN Number the first generated page N.

−olist Print only pages whose page numbers appear in the comma-separated list of
numbers and ranges. A range N−M means pages N through M ; an initial −N
means from the beginning to page N; and a final N− means from N to the end.

−q Quiet mode in nroff; ignored in troff.

−raN Set register a (one-character names only) to N.

−sN Stop the phototypesetter every N pages. On some devices, troff produces a
trailer so you can change cassettes; resume by pressing the typesetter’s start but-
ton.

−Tdest Prepare output for typesetter dest . The following values can be supplied for dest :
post A PostScript printer; this is the default value.
aps Autologic APS-5.

1-1182 SunOS 5.6 modified 21 Mar 1997

User Commands troff (1)

−uN Set the emboldening factor for the font mounted in position 3 to N. If N is miss-
ing, then set the emboldening factor to 0.

−z Suppress formatted output. Only diagnostic messages and messages output
using the .tm request are output.

OPERANDS filename The file containing text to be processed by troff.

EXAMPLES The following example shows how to print an input text file mytext, coded with format-
ting requests and macros. The input file contains equations and tables and must go
through the tbl(1) and eqn(1) preprocessors before it is formatted by troff with ms mac-
ros, processed by dpost(1), and printed by lp(1):

tbl mytext | eqn | troff −ms | dpost | lp

FILES /tmp/trtmp temporary file
/usr/share/lib/tmac/∗ standard macro files
/usr/lib/font/∗ font width tables for alternate mounted troff fonts
/usr/share/lib/nterm/∗ terminal driving tables for nroff

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWdoc

SEE ALSO checknr(1), col(1), dpost(1), eqn(1), lp(1), man(1), nroff(1), tbl(1), attributes(5), man(5),
me(5), ms(5)

NOTES troff is not 8-bit clean because it is by design based on 7-bit ASCII.

modified 21 Mar 1997 SunOS 5.6 1-1183

true (1) User Commands

NAME true, false − provide truth values

SYNOPSIS true

false

DESCRIPTION true does nothing, successfully. false does nothing, unsuccessfully. They are typically
used in a shell script sh as:

while true
do

command
done

which executes command forever.

EXIT STATUS true has exit status 0.

false always will exit with a non-zero value.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO sh(1), attributes(5)

1-1184 SunOS 5.6 modified 1 Feb 1995

User Commands truss (1)

NAME truss − trace system calls and signals

SYNOPSIS truss [−fcaeil] [−[tvx] [!]syscall...] [−s [!]signal...] [−m [!]fault...] [−[rw] [!]fd...]
[−o outfile] command | −p pid

DESCRIPTION truss executes the specified command and produces a trace of the system calls it per-
forms, the signals it receives, and the machine faults it incurs. Each line of the trace out-
put reports either the fault or signal name or the system call name with its arguments and
return value(s). System call arguments are displayed symbolically when possible using
defines from relevant system headers; for any pathname pointer argument, the pointed-
to string is displayed. Error returns are reported using the error code names described in
intro(2).

OPTIONS The following options are recognized. For those options that take a list argument, the
name all can be used as a shorthand to specify all possible members of the list. If the list
begins with a !, the meaning of the option is negated (for example, exclude rather than
trace). Multiple occurrences of the same option may be specified. For the same name in a
list, subsequent options (those to the right) override previous ones (those to the left).

−p Interpret the command arguments to truss as a list of process-ids for
existing processes (see ps(1)) rather than as a command to be executed.
truss takes control of each process and begins tracing it provided that
the userid and groupid of the process match those of the user or that the
user is a privileged user. Processes may also be specified by their names
in the /proc directory, for example, /proc/12345.

−f Follow all children created by fork() or vfork() and include their signals,
faults, and system calls in the trace output. Normally, only the first-
level command or process is traced. When −f is specified, the process-id
is included with each line of trace output to indicate which process exe-
cuted the system call or received the signal.

−c Count traced system calls, faults, and signals rather than displaying the
trace line-by-line. A summary report is produced after the traced com-
mand terminates or when truss is interrupted. If −f is also specified, the
counts include all traced system calls, faults, and signals for child
processes.

−a Show the argument strings that are passed in each exec() system call.

−e Show the environment strings that are passed in each exec() system call.

−i Do not display interruptible sleeping system calls. Certain system calls,
such as open() and read() on terminal devices or pipes can sleep for
indefinite periods and are interruptible. Normally, truss reports such
sleeping system calls if they remain asleep for more than one second.
The system call is reported again a second time when it completes. The
−i option causes such system calls to be reported only once, when they
complete.

modified 29 Jul 1991 SunOS 5.6 1-1185

truss (1) User Commands

−l Include the id of the responsible lightweight process with each line of
trace output. If −f is also specified, both the process-id and the light-
weight process id are included.

−t [!]syscall,... System calls to trace or exclude. Those system calls specified in the
comma-separated list are traced. If the list begins with a !, the specified
system calls are excluded from the trace output. Default is −tall.

−v [!]syscall,... Verbose. Display the contents of any structures passed by address to
the specified system calls (if traced). Input values as well as values
returned by the operating system are shown. For any field used as both
input and output, only the output value is shown. Default is −v!all.

−x [!]syscall,... Display the arguments to the specified system calls (if traced) in raw
form, usually hexadecimal, rather than symbolically. This is for
unredeemed hackers who must see the raw bits to be happy. Default is
−x!all.

−s [!]signal,... Signals to trace or exclude. Those signals specified in the comma-
separated list are traced. The trace output reports the receipt of each
specified signal, even if the signal is being ignored (not blocked).
(Blocked signals are not received until they are unblocked.) Signals may
be specified by name or number (see <sys/signal.h>). If the list begins
with a !, the specified signals are excluded from the trace output.
Default is −sall.

−m [!]fault,... Machine faults to trace or exclude. Those machine faults specified in the
comma-separated list are traced. Faults may be specified by name or
number (see <sys/fault.h>). If the list begins with a !, the specified faults
are excluded from the trace output. Default is −mall −m!fltpage.

−r [!]fd,... Show the full contents of the I/O buffer for each read() on any of the
specified file descriptors. The output is formatted 32 bytes per line and
shows each byte as an ascii character (preceded by one blank) or as a 2-
character C language escape sequence for control characters such as hor-
izontal tab (\ t) and newline (\ n). If ascii interpretation is not possible,
the byte is shown in 2-character hexadecimal representation. (The first
12 bytes of the I/O buffer for each traced read() are shown even in the
absence of −r.) Default is −r!all.

−w [!]fd,... Show the contents of the I/O buffer for each write() on any of the
specified file descriptors (see −r). Default is −w!all.

−o outfile File to be used for the trace output. By default, the output goes to stan-
dard error.

See Section 2 of the man Pages(2): System Calls for system call names accepted by the −t,
−v, and −x options. System call numbers are also accepted.

1-1186 SunOS 5.6 modified 29 Jul 1991

User Commands truss (1)

If truss is used to initiate and trace a specified command and if the −o option is used or if
standard error is redirected to a non-terminal file, then truss runs with hangup, interrupt,
and quit signals ignored. This facilitates tracing of interactive programs that catch inter-
rupt and quit signals from the terminal.

If the trace output remains directed to the terminal, or if existing processes are traced (the
−p option), then truss responds to hangup, interrupt, and quit signals by releasing all
traced processes and exiting. This enables the user to terminate excessive trace output
and to release previously-existing processes. Released processes continue normally, as
though they had never been touched.

USAGE See largefile(5) for the description of the behavior of truss when encountering files
greater than or equal to 2 Gbyte (231 bytes).

EXAMPLES This example produces a trace of the find(1) command on the terminal:

example% truss find . −print >find.out

Or, to see only a trace of the open, close, read, and write system calls:

example% truss −t open,close,read,write find . −print >find.out

This produces a trace of the spell(1) command on the file truss.out:

example% truss −f −o truss.out spell document

spell is a shell script, so the −f flag is needed to trace not only the shell but also the
processes created by the shell. (The spell script runs a pipeline of eight concurrent
processes.)

A particularly boring example is:

example% truss nroff −mm document >nroff.out

because 97% of the output reports lseek(), read(), and write() system calls. To abbreviate
it:

example% truss −t !lseek,read,write nroff −mm document >nroff.out

This example verbosely traces the activity of process #1, init(1M) (if you are a privileged
user):

example% truss −p −v all 1

Interrupting truss returns init to normal operation.

FILES /proc/nnnnn process files
/proc/process-id

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtoo

modified 29 Jul 1991 SunOS 5.6 1-1187

truss (1) User Commands

SEE ALSO intro(2), proc(4), attributes(5), largefile(5)

NOTES Some of the system calls described in Section 2 differ from the actual operating system
interfaces. Do not be surprised by minor deviations of the trace output from the descrip-
tions in Section 2.

Every machine fault (except a page fault) results in the posting of a signal to the light-
weight process that incurred the fault. A report of a received signal will immediately fol-
low each report of a machine fault (except a page fault) unless that signal is being
blocked.

The operating system enforces certain security restrictions on the tracing of processes. In
particular, any command whose object file (a.out) cannot be read by a user cannot be
traced by that user; set-uid and set-gid commands can be traced only by a privileged
user. Unless it is run by a privileged user, truss loses control of any process that per-
forms an exec() of a set-id or unreadable object file; such processes continue normally,
though independently of truss, from the point of the exec().

To avoid collisions with other controlling processes, truss will not trace a process that it
detects is being controlled by another process via the /proc interface. This allows truss to
be applied to proc(4)-BASED debuggers as well as to another instance of itself.

The trace output contains tab characters under the assumption that standard tab stops are
set (every eight positions).

The trace output for multiple processes or for a multithreaded process (one that contains
more than one lightweight process) is not produced in strict time order. For example, a
read() on a pipe may be reported before the corresponding write(). For any one light-
weight process (a traditional process contains only one), the output is strictly time-
ordered.

The system may run out of per-user process slots when tracing of children is requested.
When tracing more than one process, truss runs as one controlling process for each pro-
cess being traced. For the example of the spell command shown above, spell itself uses 9
process slots, one for the shell and 8 for the 8-member pipeline, while truss adds another
9 processes, for a total of 18. This is perilously close to the usual system-imposed limit of
25 processes per user.

Not all possible structures passed in all possible system calls are displayed under the −v
option.

1-1188 SunOS 5.6 modified 29 Jul 1991

SunOS/BSD Compatibility Package Commands tset (1B)

NAME tset, reset − establish or restore terminal characteristics

SYNOPSIS tset [−InQrs] [−ec] [−kc] [−m [port −ID [baudrate] : type] . . .] [type]

reset [−] [−ec] [−I] [−kc] [−n] [−Q] [−r] [−s]
[−m [indent] [test baudrate]: type] . . . [type]

DESCRIPTION tset sets up your terminal, typically when you first log in. It does terminal dependent
processing such as setting erase and kill characters, setting or resetting delays, sending
any sequences needed to properly initialized the terminal, and the like. tset first deter-
mines the type of terminal involved, and then does necessary initializations and mode set-
tings. If a port is not wired permanently to a specific terminal (not hardwired) it is given
an appropriate generic identifier such as dialup.

reset clears the terminal settings by turning off CBREAK and RAW modes, output delays
and parity checking, turns on NEWLINE translation, echo and TAB expansion, and
restores undefined special characters to their default state. It then sets the modes as
usual, based on the terminal type (which will probably override some of the above). See
stty(1) for more information. All arguments to tset may be used with reset. reset also
uses rs= and rf= to reset the initialization string and file. This is useful after a program
dies and leaves the terminal in a funny state. Often in this situation, characters will not
echo as you type them. You may have to type LINEFEED reset LINEFEED since RETURN
may not work.

When no arguments are specified, tset reads the terminal type from the TERM environ-
ment variable and re-initializes the terminal, and performs initialization of mode,
environment and other options at login time to determine the terminal type and set up
terminal modes.

When used in a startup script (.profile for sh(1) users or .login for csh(1) users) it is desir-
able to give information about the type of terminal you will usually use on ports that are
not hardwired. Any of the alternate generic names given in the file /etc/termcap are pos-
sible identifiers. Refer to the −m option below for more information. If no mapping
applies and a final type option, not preceded by a −m, is given on the command line then
that type is used.

It is usually desirable to return the terminal type, as finally determined by tset, and infor-
mation about the terminal’s capabilities, to a shell’s environment. This can be done using
the −, −s, or −S options.

modified 15 Feb 1995 SunOS 5.6 1B-1189

tset (1B) SunOS/BSD Compatibility Package Commands

For the Bourne shell, put this command in your .profile file:

eval `tset −s options...`

or using the C shell, put these commands in your .login file:

set noglob
eval `tset −s options...`
unset noglob

With the C shell, it is also convenient to make an alias in your .cshrc file:

alias ts ´eval `tset −s \!∗`´

This also allows the command:

ts 2621

to be invoked at any time to set the terminal and environment. It is not possible to get
this aliasing effect with a Bourne shell script, because shell scripts cannot set the environ-
ment of their parent. If a process could set its parent’s environment, none of this non-
sense would be necessary in the first place.

Once the terminal type is known, tset sets the terminal driver mode. This normally
involves sending an initialization sequence to the terminal, setting the single character
erase (and optionally the line-kill (full line erase)) characters, and setting special character
delays. TAB and NEWLINE expansion are turned off during transmission of the terminal
initialization sequence.

On terminals that can backspace but not overstrike (such as a CRT), and when the erase
character is ‘#’, the erase character is changed as if −e had been used.

OPTIONS − The name of the terminal finally decided upon is output on the standard
output. This is intended to be captured by the shell and placed in the
TERM environment variable.

−ec Set the erase character to be the named character c on all terminals.
Default is the BACKSPACE key on the keyboard, usually ˆH (CTRL-H).
The character c can either be typed directly, or entered using the
circumflex-character notation used here.

−ic Set the interrupt character to be the named character c on all terminals.
Default is ˆC (CTRL-C). The character c can either be typed directly, or
entered using the circumflex-character notation used here.

−I Suppress transmitting terminal-initialization strings.

−kc Set the line kill character to be the named character c on all terminals.
Default is ˆU (CTRL-U). The kill character is left alone if −k is not
specified. Control characters can be specified by prefixing the alphabeti-
cal character with a circumflex (as in CTRL-U) instead of entering the
actual control key itself. This allows you to specify control keys that are
currently assigned.

−n Specify that the new tty driver modes should be initialized for this ter-
minal. Probably useless since stty new is the default.

1B-1190 SunOS 5.6 modified 15 Feb 1995

SunOS/BSD Compatibility Package Commands tset (1B)

−Q Suppress printing the ‘Erase set to’ and ‘Kill set to’ messages.

−r In addition to other actions, reports the terminal type.

−s Output commands to set and export TERM. This can be used with
set noglob
eval `tset −s . . .`
unset noglob

to bring the terminal information into the environment. Doing so makes
programs such as vi(1) start up faster. If the SHELL environment vari-
able ends with csh, C shell commands are output, otherwise Bourne
shell commands are output.

−m [port-ID [baudrate] : type] . . .
Specify (map) a terminal type when connected to a generic port (such as
dialup or plugboard) identified by port-ID . The baudrate argument can be
used to check the baudrate of the port and set the terminal type accord-
ingly. The target rate is prefixed by any combination of the following
operators to specify the conditions under which the mapping is made:

> Greater than
@ Equals or ‘‘at’’
< Less than
! It is not the case that (negates the above operators)
? Prompt for the terminal type. If no response is given,

then type is selected by default.

In the following example, the terminal type is set to adm3a if the port is
a dialup with a speed of greater than 300 or to dw2 if the port is a dialup
at 300 baud or less. In the third case, the question mark preceding the
terminal type indicates that the user is to verify the type desired. A
NULL response indicates that the named type is correct. Otherwise, the
user’s response is taken to be the type desired.

tset −m ’dialup>300:adm3a’ −m ’dialup:dw2’ −m \
’plugboard:?adm3a’

To prevent interpretation as metacharacters, the entire argument to −m
should be enclosed in single quotes. When using the C shell, exclama-
tion points should be preceded by a backslash (\).

EXAMPLES These examples all use the ‘−’ option. A typical use of tset in a .profile or .login will also
use the −e and −k options, and often the −n or −Q options as well. These options have
been omitted here to keep the examples short.

To select a 2621, you might put the following sequence of commands in your .login file
(or .profile for Bourne shell users).

set noglob
eval `tset −s 2621`
unset noglob

modified 15 Feb 1995 SunOS 5.6 1B-1191

tset (1B) SunOS/BSD Compatibility Package Commands

If you have a switch which connects to various ports (making it impractical to identify
which port you may be connected to), and use various terminals from time to time, you
can select from among those terminals according to the speed or baud rate. In the exam-
ple below, tset will prompt you for a terminal type if the baud rate is greater than 1200
(say, 9600 for a terminal connected by an RS-232 line), and use a Wyse 50 by default. If
the baud rate is less than or equal to 1200, it will select a 2621. Note the placement of the
question mark, and the quotes to protect the > and ? from interpretation by the shell.

set noglob
eval `tset −s −m ’switch>1200:?wy’ −m ’switch<=1200:2621’`
unset noglob

The following entry is appropriate if you always dial up, always at the same baud rate,
on many different kinds of terminals, and the terminal you use most often is an adm3a.

set noglob
eval `tset −s ?adm3a`
unset noglob

If you want to make the selection based only on the baud rate, you might use the follow-
ing:

set noglob
eval `tset −s −m ’>1200:wy’ 2621`
unset noglob

The following example quietly sets the erase character to BACKSPACE, and kill to CTRL-U.
If the port is switched, it selects a Concept 100 for speeds less than or equal to 1200, and
asks for the terminal type otherwise (the default in this case is a Wyse 50). If the port is a
direct dialup, it selects Concept 100 as the terminal type. If logging in over the ARPANET,
the terminal type selected is a Datamedia 2500 terminal or emulator. Note the
backslash escaping the NEWLINE at the end of the first line in the example.

set noglob
eval `tset −e −kˆU −Q −s −m ’switch<=1200:concept100’ −m \

’switch:?wy’ −m dialup:concept100 −m arpanet:dm2500`
unset noglob

FILES .login
.profile
/etc/termcap

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscpu

SEE ALSO csh(1), sh(1), stty(1), vi(1), attributes(5), environ(5)

NOTES The tset command is one of the first commands a user must master when getting started
on a UNIX system. Unfortunately, it is one of the most complex, largely because of the
extra effort the user must go through to get the environment of the login shell set.

1B-1192 SunOS 5.6 modified 15 Feb 1995

SunOS/BSD Compatibility Package Commands tset (1B)

Something needs to be done to make all this simpler, either the login program should do
this stuff, or a default shell alias should be made, or a way to set the environment of the
parent should exist.

This program cannot intuit personal choices for erase, interrupt and line kill characters,
so it leaves these set to the local system standards.

It could well be argued that the shell should be responsible for ensuring that the terminal
remains in a sane state; this would eliminate the need for the reset program.

modified 15 Feb 1995 SunOS 5.6 1B-1193

tsort (1) User Commands

NAME tsort − topological sort

SYNOPSIS /usr/ccs/bin/tsort [file]

DESCRIPTION The tsort command produces on the standard output a totally ordered list of items con-
sistent with a partial ordering of items mentioned in the input file.

The input consists of pairs of items (nonempty strings) separated by blanks. Pairs of dif-
ferent items indicate ordering. Pairs of identical items indicate presence, but not order-
ing.

OPERANDS The following operand is supported:

file A path name of a text file to order. If no file operand is given, the standard
input is used.

EXAMPLES The command:
tsort <<EOF
a b c c d e
g g
f g e f
EOF

produces the output:

a
b
c
d
e
f
g

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of tsort: LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS The following exit values are returned:
0 Successful completion.
>0 An error occurred.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWbtool

SEE ALSO lorder(1), attributes(5), environ(5)

1-1194 SunOS 5.6 modified 1 Feb 1995

User Commands tsort (1)

DIAGNOSTICS Odd data: there are an odd number of fields in the input file.

modified 1 Feb 1995 SunOS 5.6 1-1195

tty (1) User Commands

NAME tty − return user’s terminal name

SYNOPSIS tty [−l] [−s]

DESCRIPTION The tty utility writes to the standard output the name of the terminal that is open as stan-
dard input. The name that is used is equivalent to the string that would be returned by
the ttyname(3C) function.

OPTIONS The following options are supported:

−l Prints the synchronous line number to which the user’s terminal is connected,
if it is on an active synchronous line.

−s Inhibits printing of the terminal path name, allowing one to test just the exit
status.

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of tty: LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS The following exit values are returned:

0 Standard input is a terminal.

1 Standard input is not a terminal.

>1 An error occurred.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu
CSI enabled

SEE ALSO isatty(3C), ttyname(3C), attributes(5), environ(5)

DIAGNOSTICS not on an active synchronous line
The standard input is not a synchronous terminal and −l is specified.

not a tty The standard input is not a terminal and −s is not specified.

NOTES The −s option is useful only if the exit status is wanted. It does not rely on the ability to
form a valid path name. Portable applications should use test −t.

1-1196 SunOS 5.6 modified 1 Feb 1995

User Commands type (1)

NAME type − write a description of command type

SYNOPSIS type name . . .

DESCRIPTION The type utility indicates how each name operand would be interpreted if used as a com-
mand. type displays information about each operand identifying the operand as a shell
built-in, function, alias, hashed command, or keyword, and where applicable, may
display the operand’s path name.

There is also a shell built-in version of type that is similar to the type utility.

OPERANDS The following operand is supported:

name A name to be interpreted.

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of type: LC_CTYPE, LC_MESSAGES, and NLSPATH.

PATH Determine the location of name.

EXIT STATUS The following exit values are returned:

0 Successful completion.

>0 An error occurred.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO typeset(1), attributes(5), environ(5)

modified 1 Feb 1995 SunOS 5.6 1-1197

typeset (1) User Commands

NAME typeset, whence − shell built-in functions to set/get attributes and values for shell vari-
ables and functions

SYNOPSIS †† typeset [±HLRZfilrtux[n]] [name[=value]] . . .

whence [−pv] name . . .

DESCRIPTION typeset sets attributes and values for shell variables and functions. When typeset is
invoked inside a function, a new instance of the variables name is created. The variables
value and type are restored when the function completes.
The following list of attributes may be specified:
−H This flag provides UNIX to host-name file mapping on non-UNIX machines.
−L Left justify and remove leading blanks from value. If n is non-zero it defines the

width of the field; otherwise, it is determined by the width of the value of first
assignment. When the variable is assigned to, it is filled on the right with blanks
or truncated, if necessary, to fit into the field. Leading zeros are removed if the
−Z flag is also set. The −R flag is turned off.

−R Right justify and fill with leading blanks. If n is non-zero it defines the width of
the field, otherwise it is determined by the width of the value of first assignment.
The field is left filled with blanks or truncated from the end if the variable is reas-
signed. The −L flag is turned off.

−Z Right justify and fill with leading zeros if the first non-blank character is a digit
and the −L flag has not been set. If n is non-zero it defines the width of the field;
otherwise, it is determined by the width of the value of first assignment.

−f The names refer to function names rather than variable names. No assignments
can be made and the only other valid flags are −t, −u and −x. The flag −t turns on
execution tracing for this function. The flag −u causes this function to be marked
undefined. The FPATH variable will be searched to find the function definition
when the function is referenced. The flag −x allows the function definition to
remain in effect across shell procedures invoked by name.

−i Parameter is an integer. This makes arithmetic faster. If n is non-zero it defines
the output arithmetic base; otherwise, the first assignment determines the output
base.

−l All upper-case characters are converted to lower-case. The upper-case flag, −u is
turned off.

−r The given names are marked readonly and these names cannot be changed by
subsequent assignment.

−t Tags the variables. Tags are user definable and have no special meaning to the
shell.

−u All lower-case characters are converted to upper-case characters. The lower-case
flag, −l is turned off.

−x The given names are marked for automatic export to the environment of
subsequently-executed commands.

1-1198 SunOS 5.6 modified 1 Feb 1995

User Commands typeset (1)

The −i attribute can not be specified along with −R, −L, −Z, or −f.

Using + rather than − causes these flags to be turned off. If no name arguments are given
but flags are specified, a list of names (and optionally the values) of the variables which
have these flags set is printed. (Using + rather than − keeps the values from being
printed.) If no names and flags are given, the names and attributes of all variables are
printed.

For each name, whence indicates how it would be interpreted if used as a command
name.

The −v flag produces a more verbose report.

The −p flag does a path search for name even if name is an alias, a function, or a reserved
word.

On this man page, ksh(1) commands that are preceded by one or two † (daggers) are
treated specially in the following ways:
1. Variable assignment lists preceding the command remain in effect when the com-

mand completes.
2. I/O redirections are processed after variable assignments.
3. Errors cause a script that contains them to abort.
4. Words, following a command preceded by †† that are in the format of a variable

assignment, are expanded with the same rules as a variable assignment. This
means that tilde substitution is performed after the = sign and word splitting and
file name generation are not performed.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO ksh(1), set(1), sh(1), attributes(5)

modified 1 Feb 1995 SunOS 5.6 1-1199

ucblinks (1B) SunOS/BSD Compatibility Package Commands

NAME ucblinks − adds /dev entries to give SunOS 4.x compatible names to SunOS 5.x devices

SYNOPSIS /usr/ucb/ucblinks [−e rulebase] [−r rootdir]

DESCRIPTION ucblinks creates symbolic links under the /dev directory for devices whose SunOS 5.x
names differ from their SunOS 4.x names. Where possible, these symbolic links point to
the device’s SunOS 5.x name rather than to the actual /devices entry.

ucblinks does not remove unneeded compatibility links; these must be removed by
hand.

ucblinks should be called each time the system is reconfiguration-booted, after any new
SunOS 5.x links that are needed have been created, since the reconfiguration may have
resulted in more compatibility names being needed.

In releases prior to SunOS 5.4, ucblinks used a nawk rule-base to construct the SunOS
4.x compatible names. ucblinks no longer uses nawk for the default operation, although
nawk rule-bases can still be specifed with the −e option. The nawk rule-base equivalent
to the SunOS 5.4 default operation can be found in /usr/ucblib/ucblinks.awk.

OPTIONS −e rulebase Specify rulebase as the file containing nawk(1) pattern-action statements.

−r rootdir Specify rootdir as the directory under which dev and devices will be found,
rather than the standard root directory /.

FILES /usr/ucblib/ucblinks.awk sample rule-base for compatibility links

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscpu

SEE ALSO devlinks(1M), disks(1M), ports(1M), tapes(1M), attributes(5)

1B-1200 SunOS 5.6 modified 13 Apr 1994

User Commands ul (1)

NAME ul − do underlining

SYNOPSIS ul [−i] [−t terminal] [filename. . .]

DESCRIPTION ul reads the named filenames (or the standard input if none are given) and translates
occurrences of underscores to the sequence which indicates underlining for the terminal
in use, as specified by the environment variable TERM. ul uses the
/usr/share/lib/terminfo entry to determine the appropriate sequences for underlining. If
the terminal is incapable of underlining, but is capable of a standout mode then that is
used instead. If the terminal can overstrike, or handles underlining automatically, ul
degenerates to cat(1). If the terminal cannot underline, underlining is ignored.

OPTIONS −t terminal
Override the terminal kind specified in the environment. If the terminal cannot
underline, underlining is ignored. If the terminal name is not found, no under-
lining is attempted.

−i Indicate underlining by a separate line containing appropriate dashes ‘−’; this is
useful when you want to look at the underlining which is present in an nroff(1)
output stream on a CRT-terminal.

RETURN VALUES ul returns exit code 1 if the file specified is not found.

FILES /usr/share/lib/terminfo/∗

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWdoc

SEE ALSO cat(1), man(1), nroff(1), attributes(5)

BUGS nroff usually generates a series of backspaces and underlines intermixed with the text to
indicate underlining. ul makes attempt to optimize the backward motion.

modified 17 Mar 1994 SunOS 5.6 1-1201

umask (1) User Commands

NAME umask − get or set the file mode creation mask

SYNOPSIS /usr/bin/umask [−S] [mask]

sh umask [ooo]

csh umask [ooo]

ksh umask [−S] [mask]

DESCRIPTION
/usr/bin/umask The umask utility sets the file mode creation mask of the current shell execution environ-

ment to the value specified by the mask operand. This mask affects the initial value of the
file permission bits of subsequently created files. If umask is called in a subshell or
separate utility execution environment, such as one of the following:

(umask 002)
nohup umask ...
find . -exec umask ...

it does not affect the file mode creation mask of the caller’s environment.

If the mask operand is not specified, the umask utility writes the value of the invoking
process’s file mode creation mask to standard output.

sh The user file-creation mode mask is set to ooo . The three octal digits refer to
read/write/execute permissions for owner, group, and other, respectively (see chmod(1),
chmod(2), and umask(2)). The value of each specified digit is subtracted from the
corresponding ‘‘digit’’ specified by the system for the creation of a file (see creat(2)). For
example, umask 022 removes write permission for group and other (files normally
created with mode 777 become mode 755; files created with mode 666 become mode 644).

If ooo is omitted, the current value of the mask is printed.

umask is recognized and executed by the shell.

umask can be included in the user’s .profile (see profile(4)) and invoked at login
to automatically set the user’s permissions on files or directories created.

csh See the description above for the Bourne shell (sh) umask built-in.

ksh The user file-creation mask is set to mask . mask can either be an octal number or a sym-
bolic value as described in chmod(1). If a symbolic value is given, the new umask value
is the complement of the result of applying mask to the complement of the previous
umask value. If mask is omitted, the current value of the mask is printed.

OPTIONS The following option is supported:

−S Produce symbolic output.

1-1202 SunOS 5.6 modified 28 Mar 1995

User Commands umask (1)

The default output style is unspecified, but will be recognised on a subsequent invocation
of umask on the same system as a mask operand to restore the previous file mode crea-
tion mask.

OPERANDS The following operand is supported:

mask A string specifying the new file mode creation mask. The string is treated in the
same way as the mode operand described in the chmod(1) manual page.

For a symbolic_mode value, the new value of the file mode creation mask is the
logical complement of the file permission bits portion of the file mode specified
by the symbolic_mode string.

In a symbolic_mode value, the permissions op characters + and − are interpreted
relative to the current file mode creation mask; + causes the of for the indicated
permissions to be cleared in the mask; − causes the bits of the indicated permis-
sions to be set in the mask.

The interpretation of mode values that specify file mode bits other than the file
permission bits is unspecified.

The file mode creation mask is set to the resulting numeric value.

The default output of a prior invocation of umask on the same system with no
operand will also be recognized as a mask operand. The use of an operand
obtained in this way is not obsolescent, even if it is an octal number.

OUTPUT When the mask operand is not specified, the umask utility will write a message to stan-
dard output that can later be used as a umask mask operand.

If −S is specified, the message will be in the following format:
"u=%s,g=%s,o=%s\n", <owner permissions>, <group permissions>, <other permissions>

where the three values will be combinations of letters from the set {r, w, x}; the presence
of a letter will indicate that the corresponding bit is clear in the file mode creation mask.

If a mask operand is specified, there will be no output written to standard output.

EXAMPLES Either of the commands:
umask a=rx,ug+w
umask 002

sets the mode mask so that subsequently created files have their S_IWOTH bit cleared.

After setting the mode mask with either of the above commands, the umask command
can be used to write the current value of the mode mask:

$ umask
0002

(The output format is unspecified, but historical implementations use the obsolescent
octal integer mode format.)

$ umask -S
u=rwx,g=rwx,o=rx

1

modified 28 Mar 1995 SunOS 5.6 1-1203

umask (1) User Commands

Either of these outputs can be used as the mask operand to a subsequent invocation of
the umask utility.

Assuming the mode mask is set as above, the command:
umask g-w

sets the mode mask so that subsequently created files have their S_IWGRP, and S_IWOTH
bits cleared.

The command:
umask -- -w

sets the mode mask so that subsequently created files have all their write bits cleared.
Note that mask operands r , w , x or anything beginning with a hyphen, must be preceded
by −− to keep it from being interpreted as an option.

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of umask: LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS The following exit values are returned:

0 The file mode creation mask was successfully changed, or no mask operand was sup-
plied.

>0 An error occurred.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO chmod(1), csh(1), ksh(1), sh(1), chmod(2), creat(2), profile(4), attributes(5), environ(5)

1-1204 SunOS 5.6 modified 28 Mar 1995

User Commands uname (1)

NAME uname − print name of current system

SYNOPSIS uname [−aimnprsvX]
uname [−S system_name]

DESCRIPTION The uname utility prints information about the current system on the standard output.
When options are specified, symbols representing one or more system characteristics will
be written to the standard output. If no options are specified, uname prints the current
operating system’s name. The options print selected information returned by uname(2),
sysinfo(2), or both.

OPTIONS The following options are supported:

−a Print basic information currently available from the system.

−i Print the name of the hardware implementation (platform).

−m Print the machine hardware name (class). Use of this option is
discouraged; use uname −p instead. See NOTES section below.

−n Print the nodename (the nodename is the name by which the system is
known to a communications network).

−p Print the current host’s ISA or processor type.

−r Print the operating system release level.

−s Print the name of the operating system. This is the default.

−v Print the operating system version.

−X Print expanded system information, one information element per line, as
expected by SCO UNIX. The displayed information includes:

· system name, node, release, version, machine, and number of CPUs.
· BusType, Serial, and Users (set to "unknown" in Solaris)
· OEM# and Origin# (set to 0 and 1, respectively)

−S system_name The nodename may be changed by specifying a system name argument.
The system name argument is restricted to SYS_NMLN characters.
SYS_NMLN is an implementation specific value defined in
<sys/utsname.h>. Only the super-user is allowed this capability.

EXAMPLES The following command:

example% uname −sr

prints the operating system name and release level, separated by one SPACE character.

ENVIRONMENT SYSV3 This variable is used to override the default behavior of uname. This is neces-
sary to make it possible for some INTERACTIVE UNIX Systems and SCO
UNIX programs and scripts to work properly. Many scripts use uname to
determine the OS type or the version of the OS to ensure software is compati-
ble with that OS. Setting SYSV3 to an empty string will make uname print the

modified 3 Jan 1997 SunOS 5.6 1-1205

uname (1) User Commands

following default values:

nodename nodename 3.2 2 i386

The individual elements that uname displays can also be modified by setting
SYSV3 in the following format:

os,sysname,node,rel,ver,mach

os Operating system (IUS or SCO).

sysname System name.

node Nodename as displayed by the −n option.

rel Release level as displayed by the −r option.

ver Version number as displayed by the −v option.

mach Machine name as displayed by −m option.

Do not put spaces between the elements. If an element is omitted, the current
system value will be used.

See environ(5) for descriptions of the following environment variables that affect the exe-
cution of uname: LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS The following exit values are returned:

0 Successful completion.

>0 An error occurred.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO sysinfo(2), uname(2), attributes(5), environ(5)

NOTES Independent Software Vendors (ISV) and others who need to determine detailed charac-
teristics of the platform on which their software is either being installed or executed
should use the uname command.

To determine the operating system name and release level, use uname −sr. To determine
only the operating system release level, use uname −r. Note that operating system
release levels are not guaranteed to be in x.y format (such as 5.3, 5.4, 5.5, and so forth);
future releases could be in the x.y.z format (such as 5.3.1, 5.3.2, 5.4.1, and so forth).

In SunOS 4.x releases, the arch command was often used to obtain information similar to
that obtained by using the uname command. The arch command output "sun4" was
often incorrectly interpreted to signify a SunOS SPARC system. If hardware platform
information is desired, use uname −sp.

1-1206 SunOS 5.6 modified 3 Jan 1997

User Commands uname (1)

The arch −k and uname −m commands return equivalent values; however, the use of
either of these commands by third party programs is discouraged, as is the use of the
arch command in general. To determine the machine’s Instruction Set Architecture (ISA
or processor type), use uname with the −p option.

modified 3 Jan 1997 SunOS 5.6 1-1207

unifdef (1) User Commands

NAME unifdef − resolve and remove ifdef’ed lines from C program source

SYNOPSIS unifdef [−clt] [−Dname] [−Uname] [−iDname] [−iUname] . . . [filename]

DESCRIPTION unifdef removes ifdefed lines from a file while otherwise leaving the file alone. It is
smart enough to deal with the nested ifdefs, comments, single and double quotes of C
syntax, but it does not do any including or interpretation of macros. Neither does it strip
out comments, though it recognizes and ignores them. You specify which symbols you
want defined with −D options, and which you want undefined with −U options. Lines
within those ifdefs will be copied to the output, or removed, as appropriate. Any ifdef,
ifndef, else, and endif lines associated with filename will also be removed.

ifdefs involving symbols you do not specify are untouched and copied out along with
their associated ifdef, else, and endif lines.

If an ifdefX occurs nested inside another ifdefX, then the inside ifdef is treated as if it
were an unrecognized symbol. If the same symbol appears in more than one argument,
only the first occurrence is significant.

unifdef copies its output to the standard output and will take its input from the standard
input if no filename argument is given.

OPTIONS −c Complement the normal operation. Lines that would have been removed or
blanked are retained, and vice versa.

−l Replace ‘‘lines removed’’ lines with blank lines.

−t Plain text option. unifdef refrains from attempting to recognize comments
and single and double quotes.

−Dname Lines associated with the defined symbol name.

−Uname Lines associated with the undefined symbol name.

−iDname Ignore, but print out, lines associated with the defined symbol name. If you
use ifdefs to delimit non-C lines, such as comments or code which is under
construction, then you must tell unifdef which symbols are used for that pur-
pose so that it will not try to parse for quotes and comments within them.

−iUname Ignore, but print out, lines associated with the undefined symbol name.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWbtool

SEE ALSO diff(1), attributes(5)

DIAGNOSTICS Premature EOF Inappropriate else or endif.

1-1208 SunOS 5.6 modified 14 Jan 1992

User Commands unifdef (1)

Exit status is 1 if unifdef encounters problems, and 0 otherwise.

modified 14 Jan 1992 SunOS 5.6 1-1209

uniq (1) User Commands

NAME uniq − report or filter out repeated lines in a file

SYNOPSIS uniq [−c|−d|−u] [−f fields] [−s char] [input_file [output_file]]
uniq [−c|−d|−u] [−n] [+m] [input_file [output_file]]

DESCRIPTION The uniq utility will read an input file comparing adjacent lines, and write one copy of
each input line on the output. The second and succeeding copies of repeated adjacent
input lines will not be written.

Repeated lines in the input will not be detected if they are not adjacent.

OPTIONS The following options are supported:

−c Precede each output line with a count of the number of times the line
occurred in the input.

−d Suppress the writing of lines that are not repeated in the input.

−f fields Ignore the first fields fields on each input line when doing comparisons,
where fields is a positive decimal integer. A field is the maximal string
matched by the basic regular expression:

[[:blank:]]∗[ˆ[:blank:]]∗
If fields specifies more fields than appear on an input line, a null string will
be used for comparison.

−s chars Ignore the first chars characters when doing comparisons, where chars is a
positive decimal integer. If specified in conjunction with the −f option, the
first chars characters after the first fields fields will be ignored. If chars
specifies more characters than remain on an input line, a null string will be
used for comparison.

−u Suppress the writing of lines that are repeated in the input.

−n Equivalent to −f fields with fields set to n.

+m Equivalent to −s chars with chars set to m.

OPERANDS The following operands are supported:

input_file A path name of the input file. If input_file is not specified, or if the input_file
is −, the standard input will be used.

output_file A path name of the output file. If output_file is not specified, the standard
output will be used. The results are unspecified if the file named by
output_file is the file named by input_file.

1-1210 SunOS 5.6 modified 20 Dec 1996

User Commands uniq (1)

EXAMPLES The following example lists the contents of the uniq.test file and outputs a copy of the
repeated lines.

example% cat uniq.test
This is a test.
This is a test.
TEST.
Computer.
TEST.
TEST.
Software.

example% uniq −d uniq.test
This is a test.
TEST.
example%

The next example outputs just those lines that are not repeated in the uniq.test file.

example% uniq −u uniq.test
TEST.
Computer.
Software.
example%

The last example outputs a report with each line preceded by a count of the number of
times each line occurred in the file.

example% uniq −c uniq.test
2 This is a test.
1 TEST.
1 Computer.
2 TEST.
1 Software.

example%

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of uniq: LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS The following exit values are returned:

0 Successful completion.

>0 An error occurred.

modified 20 Dec 1996 SunOS 5.6 1-1211

uniq (1) User Commands

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu
CSI Enabled

SEE ALSO comm(1), pack(1), pcat(1), sort(1), uncompress(1), attributes(5), environ(5)

1-1212 SunOS 5.6 modified 20 Dec 1996

User Commands units (1)

NAME units − converts quantities expressed in standard scales to other scales

SYNOPSIS units

DESCRIPTION units converts quantities expressed in various standard scales to their equivalents in
other scales. It works interactively in this fashion:

You have: inch
You want: cm

∗ 2.540000e+00
/ 3.937008e−01

A quantity is specified as a multiplicative combination of units optionally preceded by a
numeric multiplier. Powers are indicated by suffixed positive integers, division by the
usual sign:

You have: 15 lbs force/in2
You want: atm

∗ 1.020689e+00
/ 9.797299e−01

units only does multiplicative scale changes; thus it can convert Kelvin to Rankine, but
not Celsius to Fahrenheit. Most familiar units, abbreviations, and metric prefixes are
recognized, together with a generous leavening of exotica and a few constants of nature
including:

pi ratio of circumference to diameter,
c speed of light,
e charge on an electron,
g acceleration of gravity,
force same as g,
mole Avogadro’s number,
water pressure head per unit height of water,
au astronomical unit.

Pound is not recognized as a unit of mass; lb is. Compound names are run together, (for
example, lightyear). British units that differ from their U.S. counterparts are prefixed
thus: brgallon. For a complete list of units, type:

cat /usr/share/lib/unittab

FILES /usr/share/lib/unittab

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu

modified 14 Sep 1992 SunOS 5.6 1-1213

units (1) User Commands

SEE ALSO attributes(5)

1-1214 SunOS 5.6 modified 14 Sep 1992

User Commands unix2dos (1)

NAME unix2dos − convert text file from ISO format to DOS format

SYNOPSIS unix2dos [−ascii] [−iso] [−7] originalfile convertedfile

DESCRIPTION unix2dos converts ISO standard characters to the corresponding characters in the DOS
extended character set.

This command may be invoked from either DOS or SunOS. However, the filenames must
conform to the conventions of the environment in which the command is invoked.

If the original file and the converted file are the same, unix2dos will rewrite the original
file after converting it.

OPTIONS −ascii Adds carriage returns and converts end of file characters in SunOS format text
files to conform to DOS requirements.

−iso This is the default. Converts ISO standard characters to the corresponding char-
acter in the DOS extended character set.

−7 Convert 8 bit SunOS characters to 7 bit DOS characters.

DIAGNOSTICS File filename not found, or no read permission
The input file you specified does not exist, or you do not have read permission
(check with the SunOS command ls −l).

Bad output filename filename, or no write permission
The output file you specified is either invalid, or you do not have write permis-
sion for that file or the directory that contains it. Check also that the drive or
diskette is not write-protected.

Error while writing to temporary file
An error occurred while converting your file, possibly because there is not
enough space on the current drive. Check the amount of space on the current
drive using the DIR command. Also be certain that the default diskette or drive is
write-enabled (not write-protected). Note that when this error occurs, the origi-
nal file remains intact.

Could not rename tmpfile to filename.
Translated tmpfile name = filename.

The program could not perform the final step in converting your file. Your con-
verted file is stored under the name indicated on the second line of this message.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu

SEE ALSO dos2unix(1), attributes(5)

modified 14 Sep 1992 SunOS 5.6 1-1215

uptime (1) User Commands

NAME uptime − show how long the system has been up

SYNOPSIS uptime

DESCRIPTION The uptime command prints the current time, the length of time the system has been up,
and the average number of jobs in the run queue over the last 1, 5 and 15 minutes. It is,
essentially, the first line of a w(1) command.

EXAMPLE Below is an example of the output uptime provides:
example% uptime
10:47am up 27 day(s), 50 mins, 1 user, load average: 0.18, 0.26, 0.20

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO w(1), who(1), whodo(1M), attributes(5)

NOTES who −b gives the time the system was last booted.

1-1216 SunOS 5.6 modified 18 Mar 1994

SunOS/BSD Compatibility Package Commands users (1B)

NAME users − display a compact list of users logged in

SYNOPSIS /usr/ucb/users [filename]

DESCRIPTION users lists the login names of the users currently on the system in a compact, one-line for-
mat.

Specifying filename, tells users where to find its information; by default it checks
/var/adm/utmp.

Typing users is equivalent to typing who −q.

EXAMPLES example% users
paul george ringo
example%

FILES /var/adm/utmp

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscpu

SEE ALSO who(1), attributes(5)

modified 14 Sep 1992 SunOS 5.6 1B-1217

uucp (1C) Communication Commands

NAME uucp, uulog, uuname − UNIX-to-UNIX system copy

SYNOPSIS uucp [−c | −C] [−d | −f] [−g grade] [−jmr] [−n user]
[−s file] [−x debug_level] source-file destination-file

uulog [−s sys] [−f system] [−x] [−number] system

uuname [−c | −l]

DESCRIPTION
uucp uucp copies files named by the source-file arguments to the destination-file argument.

uulog uulog queries a log file of uucp or uuxqt transactions in file /var/uucp/.Log/uucico/system
or /var/uucp/.Log/uuxqt/system.

uuname uuname lists the names of systems known to uucp.

OPTIONS
uucp The following options are supported by uucp:

−c Do not copy local file to the spool directory for transfer to the remote
machine (default).

−C Force the copy of local files to the spool directory for transfer.

−d Make all necessary directories for the file copy (default).

−f Do not make intermediate directories for the file copy.

−g grade grade can be either a single letter, number, or a string of alphanumeric
characters defining a service grade. The uuglist command can deter-
mine whether it is appropriate to use the single letter, number, or a
string of alphanumeric characters as a service grade. The output from
the uuglist command will be a list of service grades that are available, or
a message that says to use a single letter or number as a grade of service.

−j Print the uucp job identification string on standard output. This job
identification can be used by uustat to obtain the status of a uucp job or
to terminate a uucp job. The uucp job is valid as long as the job remains
queued on the local system.

−m Send mail to the requester when the copy is complete.

−n user Notify user on the remote system that a file was sent.

−r Do not start the file transfer, just queue the job.

−s file Report status of the transfer to file. This option is accepted for compati-
bility, but it is ignored because it is insecure.

−x debug_level Produce debugging output on standard output. debug_level is a number
between 0 and 9; as it increases to 9, more detailed debugging informa-

1C-1218 SunOS 5.6 modified 28 Mar 1995

Communication Commands uucp (1C)

tion is given. This option may not be available on all systems.

uulog The following options cause uulog to print logging information:

−s sys Print information about file transfer work involving system sys.

−f system Do a "tail −f" of the file transfer log for system. (You must hit BREAK to
exit this function.)

Other options used in conjunction with the above options are:

−x Look in the uuxqt log file for the given system.

−number Execute a tail command of number lines.

uuname The following options are supported by uuname:

−c Display the names of systems known to cu. The two lists are the same,
unless your machine is using different Systems files for cu and uucp.
See the Sysfiles file.

−l Display the local system name.

OPERANDS The source file name may be a path name on your machine, or may have the form:

system-name!pathname

where system-name is taken from a list of system names that uucp knows about.
source_file is restricted to no more than one system-name. The destination system-name
may also include a list of system names such as

system-name!system-name! . . . !system-name!pathname

In this case, an attempt is made to send the file, using the specified route, to the destina-
tion. Care should be taken to ensure that intermediate nodes in the route are willing to
forward information (see NOTES below for restrictions).

For C-Shell users, the ‘‘!’’ character must be surrounded by single quotes (’), or preceded
by a backslash (\).

The shell metacharacters ?, ∗ and [. . .] appearing in pathname will be expanded on the
appropriate system.

Pathnames may be one of the following:

(1) An absolute pathname.

(2) A pathname preceded by ˜user where user is a login name on the specified
system and is replaced by that user’s login directory.

(3) A pathname preceded by ˜/destination where destination is appended to
/var/spool/uucppublic. (Note: This destination will be treated as a
filename unless more than one file is being transferred by this request or the
destination is already a directory. To ensure that the destination is a direc-
tory, follow it with a ’/’. For example ˜/dan/ as the destination will make
the directory /var/spool/uucppublic/dan if it does not exist and put the
requested file(s) in that directory).

modified 28 Mar 1995 SunOS 5.6 1C-1219

uucp (1C) Communication Commands

Anything else is prefixed by the current directory.

If the result is an erroneous path name for the remote system, the copy will fail. If the
destination-file is a directory, the last part of the source-file name is used.

Invoking uucp with shell wildcard characters as the remote source-file invokes the
uux(1C) command to execute the uucp command on the remote machine. The remote
uucp command spools the files on the remote machine. After the first session terminates,
if the remote machine is configured to transfer the spooled files to the local machine, the
remote machine will initiate a call and send the files; otherwise, the user must "call" the
remote machine to transfer the files from the spool directory to the local machine. This
call can be done manually using Uutry(1M), or as a side effect of another uux(1C) or
uucp call.

Note that the local machine must have permission to execute the uucp command on the
remote machine in order for the remote machine to send the spooled files.

uucp removes execute permissions across the transmission and gives 0666 read and write
permissions (see chmod(2)).

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of uucp: LC_COLLATE, LC_CTYPE, LC_MESSAGES, LC_TIME, TZ, and NLSPATH.

EXIT STATUS The following exit values are returned:
0 Successful completion.
>0 An error occurred.

FILES /etc/uucp/∗ other data files
/var/spool/uucp spool directories
/usr/lib/uucp/∗ other program files
/var/spool/uucppublic/∗ public directory for receiving and sending

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWbnuu

SEE ALSO mail(1), uuglist(1C), uustat(1C), uux(1C), Uutry(1M), uuxqt(1M), chmod(2), attri-
butes(5)

NOTES For security reasons, the domain of remotely accessible files may be severely restricted.
You will probably not be able to access files by path name; ask a responsible person on
the remote system to send them to you. For the same reasons you will probably not be
able to send files to arbitrary path names. As distributed, the remotely accessible files are
those whose names begin /var/spool/uucppublic (equivalent to ˜/).

All files received by uucp will be owned by uucp.

1C-1220 SunOS 5.6 modified 28 Mar 1995

Communication Commands uucp (1C)

The −m option will only work when sending files or receiving a single file. Receiving
multiple files specified by special shell characters ?, &, and [. . .] will not activate the −m
option.

The forwarding of files through other systems may not be compatible with the previous
version of uucp. If forwarding is used, all systems in the route must have compatible
versions of uucp.

Protected files and files that are in protected directories that are owned by the requester
can be sent by uucp. However, if the requester is root, and the directory is not searchable
by "other" or the file is not readable by "other", the request will fail.

Strings that are passed to remote systems may not be evaluated in the same locale as the
one in use by the process that invoked uucp on the local system.

Configuration files must be treated as C (or POSIX) locale text files.

modified 28 Mar 1995 SunOS 5.6 1C-1221

uuencode (1C) Communication Commands

NAME uuencode, uudecode − encode a binary file, or decode its encoded representation

SYNOPSIS uuencode [source-file] decode_pathname

uudecode [−p] [encoded-file]

DESCRIPTION
uuencode uuencode converts a binary file into an encoded representation that can be sent using

mail(1). It encodes the contents of source-file, or the standard input if no source-file argu-
ment is given. The decode_pathname argument is required. The decode_pathname is
included in the encoded file’s header as the name of the file into which uudecode is to
place the binary (decoded) data. uuencode also includes the permission modes of
source-file, (except setuid, setgid, and sticky-bits), so that decode_pathname is recreated
with those same permission modes.

uudecode uudecode reads an encoded-file, strips off any leading and trailing lines added by mailer
programs, and recreates the original binary data with the filename and the mode
specified in the header.

The encoded file is an ordinary portable character set text file; it can be edited by any text
editor. It is best only to change the mode or decode_pathname in the header to avoid cor-
rupting the decoded binary.

OPTIONS
uudecode −p decode encoded-file and send it to standard output. This allows uudecode to be

used in a pipeline.

OPERANDS
uuencode The following operands are supported by uuencode:

decode_pathname
The pathname of the file into which the uudecode utility will place the decoded
file. If there are characters in decode_pathname that are not in the portable
filename character set the results are unspecified.

source-file
A pathname of the file to be encoded.

uudecode The following operand is supported by uudecode:

encoded-file
The pathname of a file containing the output of uuencode.

USAGE See largefile(5) for the description of the behavior of uuencode and uudecode when
encountering files greater than or equal to 2 Gbyte (231 bytes).

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of uuencode and uudecode: LC_CTYPE, LC_MESSAGES, and NLSPATH.

1C-1222 SunOS 5.6 modified 28 Mar 1995

Communication Commands uuencode (1C)

OUTPUT
stdout The standard output is a text file (encoded in the character set of the current locale) that

begins with the line:
"begin∆%s∆%s\n", < mode >, decode_pathname

and ends with the line:
end\n

In both cases, the lines have no preceding or trailing blank characters.

The algorithm that is used for lines in between begin and end takes three octets as input
and writes four characters of output by splitting the input at six-bit intervals into four
octets, containing data in the lower six bits only. These octets are converted to characters
by adding a value of 0x20 to each octet, so that each octet is in the range 0x20−0x5f, and
then it is assumed to represent a printable character. It then will be translated into the
corresponding character codes for the codeset in use in the current locale. (For example,
the octet 0x41, representing A , would be translated to A in the current codeset, such as
0xc1 if it were EBCDIC.)

Where the bits of two octets are combined, the least significant bits of the first octet are
shifted left and combined with the most significant bits of the second octet shifted right.
Thus the three octets A, B, C are converted into the four octets:

0x20 + ((A >> 2) & 0x3F)
0x20 + (((A << 4) | ((B >> 4) & 0xF)) & 0x3F)
0x20 + (((B << 2) | ((C >> 6) & 0x3)) & 0x3F)
0x20 + ((C) & 0x3F)

These octets are then translated into the local character set.

Each encoded line contains a length character, equal to the number of characters to be
decoded plus 0x20 translated to the local character set as described above, followed by
the encoded characters. The maximum number of octets to be encoded on each line is 45.

EXIT STATUS The following exit values are returned:
0 Successful completion.
>0 An error occurred.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu

SEE ALSO mail(1), mailx(1), uucp(1C), uux(1C), attributes(5), largefile(5)

NOTES The encoded file’s size is expanded by 35% (3 bytes become 4, plus control information),
causing it to take longer to transmit than the equivalent binary.

modified 28 Mar 1995 SunOS 5.6 1C-1223

uuencode (1C) Communication Commands

The user on the remote system who is invoking uudecode (typically uucp) must have
write permission on the file specified in the decode_pathname .

If you uuencode then uudecode a file in the same directory, you will overwrite the origi-
nal file.

1C-1224 SunOS 5.6 modified 28 Mar 1995

Communication Commands uuglist (1C)

NAME uuglist − print the list of service grades that are available on this UNIX system

SYNOPSIS uuglist [−u]

DESCRIPTION uuglist prints the list of service grades that are available on the system to use with the −g
option of uucp(1C) and uux(1C).

OPTIONS −u List the names of the service grades that the user is allowed to use with the −g
option of the uucp and uux commands.

FILES /etc/uucp/Grades contains the list of service grades

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWbnuu

SEE ALSO uucp(1C), uux(1C), attributes(5)

modified 14 Sep 1992 SunOS 5.6 1C-1225

uustat (1C) Communication Commands

NAME uustat − uucp status inquiry and job control

SYNOPSIS uustat [−m] | [−p] | [−q] | [−kjobid [−n]] | [−rjobid [−n]]
uustat [−a] [−ssystem [−j]] [−uuser] [−Sqric]
uustat −tsystem [−c] [−dnumber]

DESCRIPTION uustat functions in the following three areas:

1.) Displays the general status of, or cancels, previously specified uucp commands.

2.) Provides remote system performance information, in terms of average transfer rates
or average queue times.

3.) Provides general remote system-specific and user-specific status of uucp connec-
tions to other systems.

OPTIONS
General Status These options obtain general status of, or cancel, previously specified uucp commands:

−a List all jobs in queue.

−j List the total number of jobs displayed. The −j option can be used in conjunc-
tion with the −a or the −s option.

−kjobid Kill the uucp request whose job identification is jobid. The killed uucp request
must belong to the user issuing the uustat command unless the user is the
super-user or uucp administrator. If the job is killed by the super-user or
uucp administrator, electronic mail is sent to the user.

−m Report the status of accessibility of all machines.

−n Suppress all standard output, but not standard error. The −n option is used in
conjunction with the −k and −r options.

−p Execute the command ps −flp for all the process-ids that are in the lock files.

−q List the jobs queued for each machine. If a status file exists for the machine,
its date, time and status information are reported. In addition, if a number
appears in parentheses next to the number of C or X files, it is the age in days
of the oldest C./X. file for that system. The Retry field represents the number
of hours until the next possible call. The Count is the number of failure
attempts. Note: For systems with a moderate number of outstanding jobs,
this could take 30 seconds or more of real-time to execute. An example of the
output produced by the −q option is:

eagle 3C 04/07-11:07 NO DEVICES AVAILABLE
mh3bs3 2C 07/07-10:42 SUCCESSFUL

This indicates the number of command files that are waiting for each system.
Each command file may have zero or more files to be sent (zero means to call
the system and see if work is to be done). The date and time refer to the pre-
vious interaction with the system followed by the status of the interaction.

1C-1226 SunOS 5.6 modified 28 Mar 1995

Communication Commands uustat (1C)

−rjobid Rejuvenate jobid . The files associated with jobid are touched so that their
modification time is set to the current time. This prevents the cleanup dae-
mon from deleting the job until the jobs’ modification time reaches the limit
imposed by the daemon.

Remote System
Status

These options provide remote system performance information, in terms of average
transfer rates or average queue times; the −c and −d options can only be used in conjunc-
tion with the −t option:

−tsystem Report the average transfer rate or average queue time for the past 60 minutes
for the remote system. The following parameters can only be used with this
option:

−c Average queue time is calculated when the −c parameter is specified and
average transfer rate when −c is not specified. For example, the command:

example% uustat −teagle −d50 −c

produces output in the following format:

average queue time to eagle for last 50 minutes: 5 seconds

The same command without the −c parameter produces output in the follow-
ing format:

average transfer rate with eagle for last 50 minutes: 2000.88 bytes/sec

−dnumber number is specified in minutes. Used to override the 60 minute default used
for calculations. These calculations are based on information contained in the
optional performance log and therefore may not be available. Calculations
can only be made from the time that the performance log was last cleaned up.

User- or System-
Specific Status

These options provide general remote system-specific and user-specific status of uucp
connections to other systems. Either or both of the following options can be specified
with uustat. The −j option can be used in conjunction with the −s option to list the total
number of jobs displayed:

−ssystem Report the status of all uucp requests for remote system system.

−uuser Report the status of all uucp requests issued by user.

Output for both the −s and −u options has the following format:

eagleN1bd7 4/07-11:07 S eagle dan 522 /home/dan/A
eagleC1bd8 4/07-11:07 S eagle dan 59 D.3b2al2ce4924

4/07-11:07 S eagle dan rmail mike

With the above two options, the first field is the jobid of the job. This is followed by the
date/time. The next field is an S if the job is sending a file or an R if the job is requesting
a file. The next field is the machine where the file is to be transferred. This is followed by
the user-id of the user who queued the job. The next field contains the size of the file, or
in the case of a remote execution (rmail is the command used for remote mail), the name
of the command. When the size appears in this field, the file name is also given. This can
either be the name given by the user or an internal name (for example, D.3b2alce4924)
that is created for data files associated with remote executions (rmail in this example).

modified 28 Mar 1995 SunOS 5.6 1C-1227

uustat (1C) Communication Commands

−Sqric Report the job state:
q for queued jobs
r for running jobs
i for interrupted jobs
c for completed jobs

A job is queued if the transfer has not started. A job is running when the
transfer has begun. A job is interrupted if the transfer began but was ter-
minated before the file was completely transferred. A completed job is a job
that successfully transferred. The completed state information is maintained
in the accounting log, which is optional and therefore may be unavailable.
The parameters can be used in any combination, but at least one parameter
must be specified. The −S option can also be used with −s and −u options.
The output for this option is exactly like the output for −s and −u except that
the job states are appended as the last output word. Output for a completed
job has the following format:

eagleC1bd3 completed

When no options are given, uustat writes to standard output the status of all uucp
requests issued by the current user.

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of uustat: LC_CTYPE, LC_MESSAGES, LC_TIME, TZ, and NLSPATH.

EXIT STATUS The following exit values are returned:
0 Successful completion.
>0 An error occurred.

FILES /var/spool/uucp/∗ spool directories
/var/uucp/.Admin/account accounting log
/var/uucp/.Admin/perflog performance log

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWbnuu

SEE ALSO uucp(1C), attributes(5)

DIAGNOSTICS The −t option produces no message when the data needed for the calculations is not
being recorded.

NOTES After the user has issued the uucp request, if the file to be transferred is moved, deleted
or was not copied to the spool directory (−C option) when the uucp request was made,
uustat reports a file size of −99999. This job will eventually fail because the file(s) to be
transferred can not be found.

1C-1228 SunOS 5.6 modified 28 Mar 1995

Communication Commands uuto (1C)

NAME uuto, uupick − public UNIX-to-UNIX system file copy

SYNOPSIS uuto [−mp] source-file . . . destination

uupick [−s system]

DESCRIPTION
uuto uuto sends source-file to destination. uuto uses the uucp(1C) facility to send files, while it

allows the local system to control the file access. A source-file name is a path name on
your machine. Destination has the form:

system[!system] ... !user

where system is taken from a list of system names that uucp knows about. User is the
login name of someone on the specified system.

The files (or sub-trees if directories are specified) are sent to PUBDIR on system, where
PUBDIR is a public directory defined in the uucp source. By default, this directory is
/var/spool/uucppublic. Specifically the files are sent to

PUBDIR/receive/user/mysystem/files.

The recipient is notified by mail(1) of the arrival of files.

uupick uupick accepts or rejects the files transmitted to the user. Specifically, uupick searches
PUBDIR for files destined for the user. For each entry (file or directory) found, the fol-
lowing message is printed on standard output:

from system sysname: [file file-name] [dir dirname] ?

uupick then reads a line from standard input to determine the disposition of the file:

<new-line> Go to next entry.

d Delete the entry.

m [dir] Move the entry to named directory dir. If dir is not specified as a com-
plete path name (in which $HOME is legitimate), a destination relative to
the current directory is assumed. If no destination is given, the default
is the current directory.

a [dir] Same as m above, except it moves all the files sent from system.

p Print the content of the file.

q Stop.

EOT (control-d) Same as q.

!command Escape to the shell to do command.

∗ Print a command summary.

modified 28 Mar 1995 SunOS 5.6 1C-1229

uuto (1C) Communication Commands

OPTIONS
uuto The following options are supported by uuto:

−m Send mail to the sender when the copy is complete.

−p Copy the source file into the spool directory before transmission.

uupick The following option is supported by uupick:

−s system Search only the PUBDIR for files sent from system.

OPERANDS The following operands are supported for uuto:

destination
A string of the form:

system-name ! user

where system-name is taken from a list of system names that uucp knows about;
see uuname. The argument user is the login name of someone on the specified
system. The destination system-name can also be a list of names such as

system-name ! system-name ! . . . ! system-name ! user

in which case, an attempt is made to send the file via the specified route to the
destination. Care should be taken to ensure that intermediate nodes in the route
are willing to forward information.

source-file
A pathname of a file on the local system to be copied to destination.

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of uuto and uupick: LC_TYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS The following exit values are returned:
0 Successful completion.
>0 An error occurred.

FILES PUBDIR /var/spool/uucppublic public directory

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWbnuu

SEE ALSO mail(1), uucp(1C), uustat(1C), uux(1C), uucleanup(1M), attributes(5)

NOTES In order to send files that begin with a dot (for instance, .profile), the files must be
qualified with a dot. For example, the following files are correct:

.profile .prof∗ .profil?

The following files are incorrect:

1C-1230 SunOS 5.6 modified 28 Mar 1995

Communication Commands uuto (1C)

∗prof∗ ?profile

modified 28 Mar 1995 SunOS 5.6 1C-1231

uux (1C) Communication Commands

NAME uux − UNIX-to-UNIX system command execution

SYNOPSIS uux [−] [−bcCjnprz] [−a name] [−g grade] [−s filename]
[−x debug_level] command-string

DESCRIPTION uux will gather zero or more files from various systems, execute a command on a
specified system and then send standard output to a file on a specified system.

Note: For security reasons, most installations limit the list of commands executable on
behalf of an incoming request from uux, permitting only the receipt of mail (see mail(1)).
(Remote execution permissions are defined in /etc/uucp/Permissions.)

The command-string is made up of one or more arguments that look like a shell command
line, except that the command and file names may be prefixed by system-name!. A null
system-name is interpreted as the local system.

File names may be one of the following:

· An absolute path name.

· A path name preceded by ˜xxx, where xxx is a login name on the specified
system and is replaced by that user’s login directory.

Anything else is prefixed by the current directory.

As an example, the command:

example% uux "!diff sys1!/home/dan/filename1 sys2!/a4/dan/filename2 >
!˜/dan/filename.diff"

will get the filename1 and filename2 files from the ‘‘sys1’’ and ‘‘sys2’’ machines, execute a
diff(1) command and put the results in filename.diff in the local PUBDIR/dan/ directory.
PUBDIR is a public directory defined in the uucp source. By default, this directory is
/var/spool/uucppublic.

Any special shell characters such as <, >, ; , | should be quoted either by quoting the
entire command-string, or quoting the special characters as individual arguments. The
redirection operators >>, <<, >| and >& cannot be used.

uux will attempt to get all appropriate files to the specified system where they will be
processed. For files that are output files, the file name must be escaped using
parentheses. For example, the command:

example% uux "a!cut -f1 b!/usr/filename > c!/usr/filename"

gets "/usr/filename" from system "b" and sends it to system "a", performs a cut command
on that file and sends the result of the cut command to system "c".

uux will notify you if the requested command on the remote system was disallowed.
This notification can be turned off by the −n option. The response comes by remote mail
from the remote machine.

1C-1232 SunOS 5.6 modified 28 Mar 1995

Communication Commands uux (1C)

OPTIONS − The standard input to uux is made the standard input to the command-
string.

−aname Use name as the user job identification replacing the initiator user-id.
(Notification will be returned to user-id name.)

−b Return whatever standard input was provided to the uux command if
the exit status is non-zero.

−c Do not copy local file to the spool directory for transfer to the remote
machine (default).

−C Force the copy of local files to the spool directory for transfer.

−g grade grade can be either a single letter, number, or a string of alphanumeric
characters defining a service grade. The uuglist(1C) command deter-
mines whether it is appropriate to use the single letter, number, or a
string of alphanumeric characters as a service grade. The output from
the uuglist command will be a list of service grades that are available or
a message that says to use a single letter or number as a grade of service.

−j Output the jobid string on the standard output which is the job
identification. This job identification can be used by uustat(1C) to obtain
the status or terminate a job.

−n Do not notify the user if the command fails.

−p Same as −: The standard input to uux is made the standard input to the
command-string.

−r Do not start the file transfer, just queue the job.

−s filename Report status of the transfer in filename. This option is accepted for com-
patibility, but it is ignored because it is insecure.

−x debug_level Produce debugging output on the standard output. debug_level is a
number between 0 and 9; as it increases to 9, more detailed debugging
information is given.

−z Send success notification to the user.

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of uux: LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS The following exit values are returned:
0 Successful completion.
>0 An error occurred.

FILES /etc/uucp/∗ other data and programs
/etc/uucp/Permissions remote execution permissions
/usr/lib/uucp/∗ other programs
/var/spool/uucp spool directories

modified 28 Mar 1995 SunOS 5.6 1C-1233

uux (1C) Communication Commands

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWbnuu

SEE ALSO cut(1), mail(1), uucp(1C), uuglist(1C), uustat(1C), attributes(5)

NOTES The execution of commands on remote systems takes place in an execution directory
known to the uucp system.

All files required for the execution will be put into this directory unless they already
reside on that machine. Therefore, the simple file name (without path or machine refer-
ence) must be unique within the uux request. The following command will NOT work:

example% uux "a!diff b!/home/dan/xyz c!/home/dan/xyz > !xyz.diff"

But the command:

example% uux "a!diff a!/home/dan/xyz c!/home/dan/xyz > !xyz.diff"

will work. (If diff is a permitted command.)

Protected files and files that are in protected directories that are owned by the requester
can be sent in commands using uux. However, if the requester is root, and the directory
is not searchable by "other", the request will fail.

The following restrictions apply to the shell pipeline processed by uux:

· In gathering files from different systems, pathname expansion in not per-
formed by uux. Thus, a request such as

uux "c89 remsys!˜/∗.c"
would attempt to copy the file named literally ∗.c to the local system.

· Only the first command of a shell pipeline may have a system-name!. All other
commands are executed on the system of the first command.

· The use of the shell metacharacter ∗ will probably not do what you want it to
do.

· The shell tokens << and >> are not implemented.

· The redirection operators >>, <<, >| and >& cannot be used.

· The reserved word ! cannot be used at the head of the pipeline to modify the
exit status.

· Alias substitution is not performed.

1C-1234 SunOS 5.6 modified 28 Mar 1995

User Commands vacation (1)

NAME vacation − reply to mail automatically

SYNOPSIS vacation [−I]
vacation [−j] [−a alias] [−tN] username

DESCRIPTION vacation automatically replies to incoming mail.

Installation The installation consists of an interactive program which sets up vacation’s basic
configuration.

To install vacation, type it with no arguments on the command line. The program creates
a .vacation.msg file, which contains the message that is automatically sent to all senders
when vacation is enabled, and starts an editor for you to modify the message. (See
USAGE section.) Which editor is invoked is determine by the VISUAL or EDITOR
environment variable, or vi(1) if neither of those environment variables are set.

A .forward file is also created if one does not exist in your home directory. Once created,
the .forward file will contain a line of the form:

\username, "|/usr/bin/vacation username"

One copy of an incoming message is sent to the username and another copy is piped into
vacation.

If a .forward file is present in your home directory, it will ask whether you want to
remove it, which disables vacation and ends the installation.

The program automatically creates .vacation.pag and .vacation.dir, which contain a list
of senders when vacation is enabled.

Activation and
Deactivation

The presence of the .forward file determines whether or not vacation is disabled or
enabled. To disable vacation remove the .forward file, or move it to a new name.

Initialization vacation −I clears the vacation log files, .vacation.pag and .vacation.dir, erasing the list
of senders from a previous vacation session. (See OPTIONS section).

Additional
Configuration

vacation provides configuration options that are not part of the installation, these being
−j, −a, −t. (See OPTIONS section).

OPTIONS −I Initialize the .vacation.pag and .vacation.dir files and enables vacation. If the
−I flag is not specified, and a user argument is given, vacation reads the first
line from the standard input (for a From: line, no colon). If absent, it produces
an error message.

modified 18 Mar 1994 SunOS 5.6 1-1235

vacation (1) User Commands

Options −j, −a, −t are configuration options to be used in conjunction with vacation in the
.forward file, not on the command line. For example,

\username, "|/usr/bin/vacation −t1m username"

repeats replies to the sender every minute.

−j Do not check whether the recipient appears in the To: or the Cc: line.

−a alias Indicate that alias is one of the valid aliases for the user running vacation, so
that mail addressed to that alias generates a reply.

−tN Change the interval between repeat replies to the same sender. The default is
1 week. A trailing s, m, h, d, or w scales N to seconds, minutes, hours, days,
or weeks respectively.

USAGE
Files .vacation.msg should include a header with at least a Subject: line (it should not include

a From: or a To: line). For example:

Subject: I am on vacation
I am on vacation until July 22. If you have something urgent,
please contact Joe Jones (jones@fB0).

--John

If the string $SUBJECT appears in the .vacation.msg file, it is replaced with the subject of
the original message when the reply is sent; thus, a .vacation.msg file such as

Subject: I am on vacation
I am on vacation until July 22.
Your mail regarding "$SUBJECT" will be read when I return.
If you have something urgent, please contact
Joe Jones (jones@fB0).

--John

will include the subject of the message in the reply.

No message is sent if the To: or the Cc: line does not list the user to whom the original
message was sent or one of a number of aliases for them, if the initial From line includes
the string −REQUEST@, or if a Precedence: bulk or Precedence: junk line is included in
the header.

vacation will also not respond to mail from either postmaster or Mailer-Daemon.

FILES ˜/.forward
˜/.vacation.msg

A list of senders is kept in the dbm format files .vacation.pag and .vacation.dir in your
home directory. These files are dbm files and cannot be viewed directly with text editors.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

1-1236 SunOS 5.6 modified 18 Mar 1994

User Commands vacation (1)

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO vi(1), sendmail(1M), dbm(3B), aliases(4), attributes(5)

modified 18 Mar 1994 SunOS 5.6 1-1237

vc (1) User Commands

NAME vc − version control

SYNOPSIS vc [−a] [−t] [−cchar] [−s] [keyword=value ... keyword=value]

DESCRIPTION This command is obsolete and will be removed in the next release.

The vc command copies lines from the standard input to the standard output under con-
trol of its arguments and of ‘‘control statements’’ encountered in the standard input. In
the process of performing the copy operation, user-declared keywords may be replaced by
their string value when they appear in plain text and/or control statements.

The copying of lines from the standard input to the standard output is conditional, based
on tests (in control statements) of keyword values specified in control statements or as vc
command arguments.

A control statement is a single line beginning with a control character, except as modified
by the −t keyletter (see below). The default control character is colon (:), except as
modified by the −c keyletter (see below). Input lines beginning with a backslash (\) fol-
lowed by a control character are not control lines and are copied to the standard output
with the backslash removed. Lines beginning with a backslash followed by a non-control
character are copied in their entirety.

A keyword is composed of 9 or less alphanumerics; the first must be alphabetic. A value
is any ASCII string that can be created with ed; a numeric value is an unsigned string of
digits. Keyword values may not contain blanks or tabs.

Replacement of keywords by values is done whenever a keyword surrounded by control
characters is encountered on a version control statement. The −a keyletter (see below)
forces replacement of keywords in all lines of text. An uninterpreted control character
may be included in a value by preceding it with \. If a literal \ is desired, then it too
must be preceded by \.

OPTIONS −a Forces replacement of keywords surrounded by control characters with
their assigned value in all text lines and not just in vc statements.

−t All characters from the beginning of a line up to and including the first
tab character are ignored for the purpose of detecting a control state-
ment. If a control statement is found, all characters up to and including
the tab are discarded.

−cchar Specifies a control character to be used in place of the ‘‘:’’ default.

−s Silences warning messages (not error) that are normally printed on the
diagnostic output.

vc recognizes the following version control statements:

:dcl keyword[, ..., keyword]
Declare keywords. All keywords must be declared.

1-1238 SunOS 5.6 modified 5 Jul 1990

User Commands vc (1)

:asg keyword=value
Assign values to keywords. An asg statement overrides the assignment for the
corresponding keyword on the vc command line and all previous asg statements
for that keyword. Keywords that are declared but are not assigned values have
null values.

:if condition
. . .

:end
Skip lines of the standard input. If the condition is true, all lines between the if
statement and the matching end statement are copied to the standard output. If
the condition is false, all intervening lines are discarded, including control state-
ments. Note: Intervening if statements and matching end statements are recog-
nized solely for the purpose of maintaining the proper if-end matching.

The syntax of a condition is:

<cond> ::= [‘‘not’’] <or>
<or> ::= <and> | <and> ‘‘|’’ <or>
<and> ::= <exp> | <exp> ‘‘&’’ <and>
<exp> ::= ‘‘(’’ <or> ‘‘)’’ | <value> <op> <value>
<op> ::= ‘‘=’’ | ‘‘!=’’ | ‘‘<’’ | ‘‘>’’
<value> ::= <arbitrary ASCII string> | <numeric string>

The available operators and their meanings are:

= equal
!= not equal
& and
| or
> greater than
< less than
() used for logical groupings
not may only occur immediately after the if , and when present,

inverts the value of the entire condition

The > and < operate only on unsigned integer values (for example, : 012 > 12 is
false). All other operators take strings as arguments (for example, : 012 != 12 is
true).

The precedence of the operators (from highest to lowest) is:

= != > < all of equal precedence
&
|

Parentheses may be used to alter the order of precedence.

Values must be separated from operators or parentheses by at least one blank or
tab.

modified 5 Jul 1990 SunOS 5.6 1-1239

vc (1) User Commands

::text Replace keywords on lines that are copied to the standard output. The two lead-
ing control characters are removed, and keywords surrounded by control charac-
ters in text are replaced by their value before the line is copied to the output file.
This action is independent of the −a keyletter.

:on
:off Turn on or off keyword replacement on all lines.

:ctl char
Change the control character to char.

:msg message
Print message on the diagnostic output.

:err message
Print message followed by:

ERROR: err statement on line ... (915)

on the diagnostic output. vc halts execution, and returns an exit code of 1.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWsprot

SEE ALSO ed(1), attributes(5)

1-1240 SunOS 5.6 modified 5 Jul 1990

User Commands vgrind (1)

NAME vgrind − grind nice program listings

SYNOPSIS vgrind [−2fntwWx] [−d defs-file] [−h header] [−llanguage] [−sn] [−opagelist]
[−Pprinter] [−Toutput-device] filename. . .

DESCRIPTION vgrind formats the program sources named by the filename arguments in a nice style
using troff(1). Comments are placed in italics, keywords in bold face, and as each func-
tion is encountered its name is listed on the page margin.

vgrind runs in two basic modes, filter mode or regular mode. In filter mode vgrind acts
as a filter in a manner similar to tbl(1). The standard input is passed directly to the stan-
dard output except for lines bracketed by the troff-like macros:

.vS starts processing

.vE ends processing

These lines are formatted as described above. The output from this filter can be passed to
troff for output. There need be no particular ordering with eqn(1) or tbl.

In regular mode vgrind accepts input filenames, processes them, and passes them to troff
for output. If no filename is given, or if the ‘−’ argument is given, vgrind reads from the
standard input (default if −f is specified).

In both modes vgrind passes any lines beginning with a decimal point without conver-
sion.

OPTIONS Note: The syntax of options with arguments is important. Some require a SPACE between
the option name and the argument, while those that do not have a SPACE below will not
tolerate one.

−2 Produce two column output. Specifying this option changes the default
point size to 8 (as if the −s8 option were supplied). It also arranges for
output to appear in landscape mode, by supplying the −L flag to the for-
matter and changing the page height and width accordingly.

−f Force filter mode.

−n Do not make keywords boldface.

−w Consider TAB characters to be spaced four columns apart instead of the
usual eight.

−x Output the index file in a “pretty” format. The index file itself is pro-
duced whenever vgrind is run with a file called index present in the
current directory. The index of function definitions can then be run off
by giving vgrind the −x option and the file index as argument.

−d defs-file Specify an alternate language definitions file (default is
/usr/lib/vgrindefs).

modified 14 Sep 1992 SunOS 5.6 1-1241

vgrind (1) User Commands

−h header Specify a header to appear in the center of every output page.

−llanguage Specify the language to use. Among the languages currently known are:
Bourne shell (−lsh), C (−lc, the default), C++ (−lc++), C shell (−lcsh),
emacs MLisp, (−lml), FORTRAN (−lf), Icon (−lI), ISP (−i), LDL (−lLDL),
Model (−lm), Pascal (−lp), and RATFOR (−lr).

−sn Specify a point size to use on output (exactly the same as the argument
of a troff .ps point size request).

vgrind passes the following options to the formatter specified by the TROFF environment
variable, see ENVIRONMENT below.

−t Similar to the same option in troff; that is, formatted text goes to the standard
output.

−W Force output to the (wide) Versatec printer rather than the (narrow) Varian.

−opagelist
Print only those pages whose page numbers appear in the comma-separated
pagelist of numbers and ranges. A range N−M means pages N through M ; an ini-
tial −N means from the beginning to page N; and a final N− means from N to the
end.

−Pprinter
Send output to the named printer.

−Toutput-device
Format output for the specified output-device.

ENVIRONMENT In regular mode vgrind feeds its intermediate output to the text formatter given by the
value of the TROFF environment variable, or to troff if this variable is not defined in the
environment. This mechanism allows for local variations in troff’s name.

FILES index file where source for index is created
/usr/lib/vgrindefs language descriptions
/usr/lib/vfontedpr preprocessor
/usr/share/lib/tmac/tmac.vgrind macro package

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWdoc

SEE ALSO troff(1), attributes(5)

BUGS vgrind assumes that a certain programming style is followed:

C Function names can be preceded on a line only by SPACE, TAB, or an asterisk.
The parenthesized arguments must also be on the same line.

FORTRAN Function names need to appear on the same line as the keywords function or

1-1242 SunOS 5.6 modified 14 Sep 1992

User Commands vgrind (1)

subroutine.

MLisp Function names should not appear on the same line as the preceding defun.

Model Function names need to appear on the same line as the keywords is beginproc.

Pascal Function names need to appear on the same line as the keywords function or
procedure.

If these conventions are not followed, the indexing and marginal function name comment
mechanisms will fail.

More generally, arbitrary formatting styles for programs mostly look bad. The use of
SPACE characters to align source code fails miserably; if you plan to vgrind your pro-
gram you should use TAB characters. This is somewhat inevitable since the fonts vgrind
uses are variable width.

The mechanism of ctags(1) in recognizing functions should be used here.

The −w option is a crock, but there is no other way to achieve the desired effect.

The macros defined in tmac.vgrind do not coexist gracefully with those of other macro
packages, making filter mode difficult to use effectively.

vgrind does not process certain special characters in csh(1) scripts correctly.

The tmac.vgrind formatting macros wire in the page height and width used in two
column mode, effectively making two column output useless for paper sizes other than
the standard American size of 8.5 by 11 inches. For other paper sizes, it is necessary to
edit the size values given in tmac.vgrind. A better solution would be to create a troff out-
put device specification intended specifically for landscape output and record size infor-
mation there.

modified 14 Sep 1992 SunOS 5.6 1-1243

vi (1) User Commands

NAME vi, view, vedit − screen-oriented (visual) display editor based on ex

SYNOPSIS /usr/bin/vi [− | −s] [−l] [−L] [−R] [−r [filename]] [−t tag] [−v] [−V] [−x] [−wn]
[−C] [+command | −c command] filename. . .

/usr/bin/view [− | −s] [−l] [−L] [−R] [−r [filename]] [−t tag] [−v] [−V] [−x] [−wn]
[−C] [+command | −c command] filename. . .

/usr/bin/vedit [− | −s] [−l] [−L] [−R] [−r [filename]] [−t tag] [−v] [−V] [−x] [−wn]
[−C] [+command | −c command] filename. . .

/usr/xpg4/bin/vi [− | −s] [−l] [−L] [−R] [−r [filename]] [−t tag] [−v] [−V] [−x]
[−wn] [−C] [+command | −c command] filename. . .

/usr/xpg4/bin/view [− | −s] [−l] [−L] [−R] [−r [filename]] [−t tag] [−v] [−V] [−x]
[−wn] [−C] [+command | −c command] filename. . .

/usr/xpg4/bin/vedit [− | −s] [−l] [−L] [−R] [−r [filename]] [−t tag] [−v] [−V] [−x]
[−wn] [−C] [+command | −c command] filename. . .

DESCRIPTION vi (visual) is a display-oriented text editor based on an underlying line editor ex. It is
possible to use the command mode of ex from within vi and to use the command mode
of vi from within ex. The visual commands are described on this manual page; how to
set options (like automatically numbering lines and automatically starting a new output
line when you type carriage return) and all ex line editor commands are described on the
ex(1) manual page.

When using vi, changes you make to the file are reflected in what you see on your termi-
nal screen. The position of the cursor on the screen indicates the position within the file.

The view invocation is the same as vi except that the readonly flag is set.

The vedit invocation is intended for beginners. It is the same as vi except that the report
flag is set to 1, the showmode and novice flags are set, and magic is turned off. These
defaults make it easier to learn how to use vi.

OPTIONS
Invocation Options The following invocation options are interpreted by vi (previously documented options

are discussed in the NOTES section of this manual page):

− | −s Suppress all interactive user feedback. This is useful when processing
editor scripts.

−l Set up for editing LISP programs.

−L List the name of all files saved as the result of an editor or system crash.

−R Readonly mode; the readonly flag is set, preventing accidental overwrit-
ing of the file.

−r filename Edit filename after an editor or system crash. (Recovers the version of
filename that was in the buffer when the crash occurred.)

−t tag Edit the file containing the tag and position the editor at its definition.

1-1244 SunOS 5.6 modified 13 Mar 1997

User Commands vi (1)

−v Start up in display editing state using vi. You can achieve the same effect
by simply typing the −vi command itself.

−V Verbose. When ex commands are read by means of standard input, the
input will be echoed to standard error. This may be useful when process-
ing ex commands within shell scripts.

−x Encryption option; when used, vi simulates the X command of ex and
prompts the user for a key. This key is used to encrypt and decrypt text
using the algorithm of the crypt command. The X command makes an
educated guess to determine whether text read in is encrypted or not.
The temporary buffer file is encrypted also, using a transformed version
of the key typed in for the −x option.

−wn Set the default window size to n. This is useful when using the editor
over a slow speed line.

−C Encryption option; same as the −x option, except that vi simulates the C
command of ex. The C command is like the X command of ex, except
that all text read in is assumed to have been encrypted.

+command | −c command
Begin editing by executing the specified editor command (usually a search
or positioning command).

/usr/xpg4/bin/vi If both the −t tag and the −c command options are given, the −t tag will be processed first.
That is, the file containing the tag is selected by −t and then the command is executed.

OPERANDS The following operands are supported:

filename A file to be edited.

COMMAND
SUMMARY

vi Modes Command Normal and initial mode. Other modes return to command mode upon
completion. ESC (escape) is used to cancel a partial command.

Input Entered by setting any of the following options: a A i I o O c C s S R.
Arbitrary text may then be entered. Input mode is normally terminated
with ESC character, or, abnormally, with an interrupt.

Last line Reading input for : / ? or !; terminate by typing a carriage return; an
interrupt cancels termination.

Sample commands In the descriptions, CR stands for carriage return and ESC stands for the escape key.

← ↓ ↑ → arrow keys move the cursor
h j k l same as arrow keys
itextESC insert text
cwnewESC change word to new
easESC pluralize word (end of word; append s;

escape from input state)

modified 13 Mar 1997 SunOS 5.6 1-1245

vi (1) User Commands

x delete a character
dw delete a word
dd delete a line
3dd delete 3 lines
u undo previous change
ZZ exit vi, saving changes
:q!CR quit, discarding changes
/textCR search for text
ˆU ˆD scroll up or down
:cmdCR any ex or ed command

Counts before vi
commands

Numbers may be typed as a prefix to some commands. They are interpreted in one of
these ways.
line/column number z G |
scroll amount ˆD ˆU
repeat effect most of the rest

Interrupting,
canceling

ESC end insert or incomplete cmd
DEL (delete or rubout) interrupts

File manipulation ZZ if file modified, write and exit; otherwise, exit
:wCR write back changes
:w ! CR forced write, if permission originally not valid
:qCR quit
:q ! CR quit, discard changes
:e nameCR edit file name
:e ! CR reedit, discard changes
:e + nameCR edit, starting at end
:e +nCR edit starting at line n
:e #CR edit alternate file
:e ! #CR edit alternate file, discard changes
:w nameCR write file name
:w ! nameCR overwrite file name
:shCR run shell, then return
: ! cmdCR run cmd, then return
:nCR edit next file in arglist
:n argsCR specify new arglist
ˆG show current file and line
:ta tagCR position cursor to tag

In general, any ex or ed command (such as substitute or global) may be typed, preceded
by a colon and followed by a carriage return.

Positioning within
file

ˆF forward screen
ˆB backward screen
ˆD scroll down half screen

1-1246 SunOS 5.6 modified 13 Mar 1997

User Commands vi (1)

ˆU scroll up half screen
nG go to the beginning of the specified line (end default),

where n is a line number
/pat next line matching pat
?pat previous line matching pat
n repeat last / or ? command
N reverse last / or ? command
/pat/+n nth line after pat
?pat?−n nth line before pat
]] next section/function
[[previous section/function
(beginning of sentence
) end of sentence
{ beginning of paragraph
} end of paragraph
% find matching () { or }

Adjusting the screen ˆL clear and redraw window
ˆR clear and redraw window if ˆL is → key
zCR redraw screen with current line at top of window
z−CR redraw screen with current line at bottom of window
z .CR redraw screen with current line at center of window
/pat/z−CR move pat line to bottom of window
zn .CR use n-line window
ˆE scroll window down 1 line
ˆY scroll window up 1 line

Marking and
returning

`` move cursor to previous context
´´ move cursor to first non-white space in line
mx mark current position with the ASCII lower-case letter x
`x move cursor to mark x
´x move cursor to first non-white space in line marked by x

Line positioning H top line on screen
L last line on screen
M middle line on screen
+ next line, at first non-white
− previous line, at first non-white
CR return, same as +
↓ or j next line, same column
↑ or k previous line, same column

Character positioning ˆ first non white-space character
0 beginning of line
$ end of line
l or → forward

modified 13 Mar 1997 SunOS 5.6 1-1247

vi (1) User Commands

h or ← backward
ˆH same as ← (backspace)
space same as → (space bar)
fx find next x
Fx find previous x
tx move to character prior to next x
Tx move to character following previous x
; repeat last f, F, t, or T
, repeat inverse of last f, F, t, or T
n| move to column n
% find matching ({) or }

Words, sentences,
paragraphs

w forward a word
b back a word
e end of word
) to next sentence
} to next paragraph
(back a sentence
{ back a paragraph
W forward a blank-delimited word
B back a blank-delimited word
E end of a blank-delimited word

Corrections during
insert

ˆH erase last character (backspace)
ˆW erase last word
erase your erase character, same as ˆH (backspace)
kill your kill character, erase this line of input
\ quotes your erase and kill characters
ESC ends insertion, back to command mode
CTRL-C interrupt, suspends insert mode
ˆD backtab one character; reset left margin of autoindent
ˆˆD caret (ˆ) followed by control-d (ˆD);

backtab to beginning of line;
do not reset left margin of autoindent

0ˆD backtab to beginning of line; reset left margin of autoindent
ˆV quote non-printable character

Insert and replace a append after cursor
A append at end of line
i insert before cursor
I insert before first non-blank
o open line below
O open above
rx replace single char with x
RtextESC replace characters

1-1248 SunOS 5.6 modified 13 Mar 1997

User Commands vi (1)

Operators Operators are followed by a cursor motion, and affect all text that would have been
moved over. For example, since w moves over a word, dw deletes the word that would
be moved over. Double the operator, for example, dd to affect whole lines.
d delete
c change
y yank lines to buffer
< left shift
> right shift
! filter through command

Miscellaneous
Operations

C change rest of line (c$)
D delete rest of line (d$)
s substitute chars (cl)
S substitute lines (cc)
J join lines
x delete characters (dl)
X delete characters before cursor (dh)
Y yank lines (yy)

Yank and Put Put inserts the text most recently deleted or yanked; however, if a buffer is named (using
the ASCII lower-case letters a - z), the text in that buffer is put instead.
3yy yank 3 lines
3yl yank 3 characters
p put back text after cursor
P put back text before cursor
"xp put from buffer x
"xy yank to buffer x
"xd delete into buffer x

Undo, Redo, Retrieve u undo last change
U restore current line
. repeat last change
"d p retrieve d’th last delete

USAGE See largefile(5) for the description of the behavior of vi and view when encountering files
greater than or equal to 2 Gbyte (231 bytes).

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of vi: LC_CTYPE, LC_TIME, LC_MESSAGES, and NLSPATH.

FILES /var/tmp default directory where temporary work files are placed; it
can be changed using the directory option (see the ex(1) set
command)

/usr/share/lib/terminfo/?/∗ compiled terminal description database
/usr/lib/.COREterm/?/∗ subset of compiled terminal description database

modified 13 Mar 1997 SunOS 5.6 1-1249

vi (1) User Commands

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

/usr/bin/vi
/usr/bin/view
/usr/bin/vedit ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu
CSI Not enabled

/usr/xpg4/bin/vi
/usr/xpg4/bin/view
/usr/xpg4/bin/vedit ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxcu4
CSI Enabled

SEE ALSO intro(1), ed(1), edit(1), ex(1), attributes(5), environ(5), largefile(5), standards(5)

Solaris Advanced User’s Guide

AUTHOR vi and ex were developed by The University of California, Berkeley California, Computer
Science Division, Department of Electrical Engineering and Computer Science.

NOTES Two options, although they continue to be supported, have been replaced in the docu-
mentation by options that follow the Command Syntax Standard (see intro(1)). A −r
option that is not followed with an option-argument has been replaced by −L and +com-
mand has been replaced by −c command.

The message file too large to recover with −r option, which is seen when a file is loaded,
indicates that the file can be edited and saved successfully, but if the editing session is
lost, recovery of the file with the −r option will not be possible.

The editing environment defaults to certain configuration options. When an editing ses-
sion is initiated, vi attempts to read the EXINIT environment variable. If it exists, the edi-
tor uses the values defined in EXINIT, otherwise the values set in $HOME/.exrc are used.
If $HOME/.exrc does not exist, the default values are used.

To use a copy of .exrc located in the current directory other than $HOME, set the exrc
option in EXINIT or $HOME/.exrc. Options set in EXINIT can be turned off in a local .exrc
only if exrc is set in EXINIT or $HOME/.exrc.

Tampering with entries in /usr/share/lib/terminfo/?/∗ or /usr/share/lib/terminfo/?/∗ (for
example, changing or removing an entry) can affect programs such as vi that expect the
entry to be present and correct. In particular, removing the "dumb" terminal may cause
unexpected problems.

Software tabs using ˆT work only immediately after the autoindent.

Left and right shifts on intelligent terminals do not make use of insert and delete charac-
ter operations in the terminal.

1-1250 SunOS 5.6 modified 13 Mar 1997

User Commands vi (1)

The standard Solaris version of vi will be replaced by the POSIX.2-conforming version
(see standards(5)) in the future. Scripts which use the ex family of addressing and
features should use the /usr/xpg4/bin version of these utilities.

modified 13 Mar 1997 SunOS 5.6 1-1251

vipw (1B) SunOS/BSD Compatibility Package Commands

NAME vipw − edit the password file

SYNOPSIS /usr/ucb/vipw

DESCRIPTION vipw edits the password file while setting the appropriate locks, and does any necessary
processing after the password file is unlocked. If the password file is already being
edited, then you will be told to try again later. The vi(1) editor will be used unless the
environment variable VISUAL or EDITOR indicates an alternate editor.

vipw performs a number of consistency checks on the password entry for root, and will
not allow a password file with a “mangled” root entry to be installed. It also checks the
/etc/shells file to verify the login shell for root.

FILES /etc/ptmp
/etc/shells

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscpu

SEE ALSO passwd(1), vi(1), passwd(4), attributes(5)

1B-1252 SunOS 5.6 modified 14 Sep 1992

User Commands volcancel (1)

NAME volcancel − cancel user’s request for removable media that is not currently in drive

SYNOPSIS /usr/lib/vold/volcancel [−n] [volume]

DESCRIPTION volcancel cancels a user’s request to access a particular floppy or CD-ROM file system.
This command is useful when the removable media containing the file system is not
currently in the drive.

Use the path /vol/rdsk/name_of_volume to specify the volume. If called without a volume
name to cancel, volcancel checks for Volume Management running.

OPTIONS −n Display the nickname to the device name translation table.

EXAMPLES To cancel a request to access an unnamed CD-ROM, use

example% /usr/lib/vold/volcancel vol/rdsk/unnamed_cdrom

To check if volume management is running, use:

example% /usr/lib/vold/volcancel || echo volmgmt not running

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWvolu

SEE ALSO rmmount(1M), volcheck(1), vold(1M), volmissing(1), rmmount.conf(4), vold.conf(4),
attributes(5), volfs(7FS)

modified 7 Apr 1994 SunOS 5.6 1-1253

volcheck (1) User Commands

NAME volcheck − checks for media in a drive and by default checks all floppy media

SYNOPSIS volcheck [−v] [−i secs] [−t secs] pathname

DESCRIPTION The volcheck utility tells Volume Management to look at each dev/pathname in sequence
and determine if new media has been inserted in the drive.

The default action is to volcheck all checkable media managed by volume management.

OPTIONS The following options are supported:

−i secs Set the frequency of device checking to secs seconds. The default is 2
seconds. The minimum frequency is 1 second.

−t secs Check the named device(s) for the next secs seconds. The maximum
number of seconds allowed is 28800, which is 8 hours. The frequency of
checking is specified by −i. There is no default total time.

−v Verbose.

OPERANDS The following operands are supported:

pathname The path name of a media device.

EXAMPLES The following example

example% volcheck −v /dev/diskette
/dev/diskette has media

asks Volume Management to examine the floppy drive for new media.

The following example

example% volcheck −i 2 −t 600 /dev/diskette1 &

asks Volume Management if there is a floppy in the floppy drive every 2 seconds for 600
seconds (10 minutes).

FILES /dev/volctl Volume Management control port

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWvolu

SEE ALSO eject(1), volcancel(1), volmissing(1) rmmount(1M), vold(1M), rmmount.conf(4),
vold.conf(4), attributes(5), volfs(7FS)

WARNINGS Due to a hardware limitation in many floppy drives, the act of checking for media causes
mechanical action in the floppy drive. Continuous polling of the floppy drive will cause
the drive to wear out. It is recommended that polling the drive only be performed during
periods of high use.

1-1254 SunOS 5.6 modified 21 Feb 1997

User Commands volmissing (1)

NAME volmissing − notify user that volume requested is not in the CD-ROM or floppy drive

SYNOPSIS /usr/lib/vold/volmissing [−c] [−p] [−s] [−m alias]

DESCRIPTION volmissing informs a user when a requested volume is not available. Depending on the
option selected, users are notified through their console window, syslogd(1M), or a mail
message.

volmissing −p is the default action taken by vold(1M), the Volume Management dae-
mon, when it needs to notify a user that the requested volume is not available. If you
want to change this default event, modify the /etc/vold.conf file. See vold.conf(4).

You can change the notification method for your system by editing the vold.conf
configuration file and providing a new option for volmissing in the notify entry under
the Events category.

OPTIONS −c Send a message to the user’s console requesting the volume be inserted. To
end the notification without inserting the requested volume, use volcancel(1).

−p All volmissing events will be handled through a GUI, provided a window
system is running on the console. If this option is specified, and no window
system is running, all messages go to the system console.

−s Send one message to the syslogd(1M).

−m alias Send a mail message to the specified mail alias about the missing volume.

FILES /etc/vold.conf Volume Management daemon configuration file.
Directs the Volume Management daemon to control
certain devices, and causes action to be taken when
specific criteria is met.

/usr/lib/vold/volmissing_popup Pop-up used when the −p option is supplied and a
window system is running.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWvolu

SEE ALSO volcancel(1), volcheck(1), rmmount(1M), syslogd(1M), vold(1M), rmmount.conf(4),
vold.conf(4), attributes(5), volfs(7FS)

modified 7 Apr 1994 SunOS 5.6 1-1255

volrmmount (1) User Commands

NAME volrmmount − call rmmount to mount or unmount media

SYNOPSIS volrmmount [−i | −e] [name | nickname]
volrmmount [−d]

DESCRIPTION volrmmount calls rmmount(1M) to, in effect, simulate an insertion (−i) or an ejection
(−e). Simulating an insertion often means that rmmount will mount the media. Con-
versely, simulating an ejection often means that rmmount will unmount the media.
However, these actions can vary depending on the rmmount configuration and media
type (see rmmount.conf(4)).

For example, if you use the default /etc/rmmount.conf and insert a music CD, it won’t be
mounted. However, you can configure rmmount so that it calls workman whenever a
music CD is inserted.

This command allows you to override Volume Management’s usual handling of media
(see EXAMPLES below).

OPTIONS −i Simulate an insertion of the specified media by calling rmmount.

−e Simulate an ejection of the specified media by calling rmmount.

−d Display the name of the default device for volrmmount to handle. This device is
used if no name or nickname is supplied.

OPERANDS name The name that Volume Management recognizes as the device’s name, see
volfs(7FS).

nickname A shortened version of the device’s name. Following is the list of recog-
nized nicknames:

Nickname Path
fd /dev/rdiskette
fd0 /dev/rdiskette
fd1 /dev/rdiskette1
diskette /dev/rdiskette
diskette0 /dev/rdiskette0
diskette1 /dev/rdiskette1
rdiskette /dev/rdiskette
rdiskette0 /dev/rdiskette0
rdiskette1 /dev/rdiskette1
floppy /dev/rdiskette
floppy0 /dev/rdiskette0
floppy1 /dev/rdiskette1

1-1256 SunOS 5.6 modified 4 Mar 1996

User Commands volrmmount (1)

EXAMPLES When Volume Management finds a floppy that contains a filesystem, it calls rmmount to
mount it. If you wish to run tar(1) or cpio(1) on that floppy, it must first be unmounted.
To unmount the floppy use:

example% volrmmount −e floppy0

After volrmmount unmounts the floppy, if you wish to re-mount it (rather than ejecting
it and reinserting it) use:

example% volrmmount −i floppy0

Note that if you are using a named floppy you can use its name in place of floppy0.

FILES /dev/volctl Volume Management control port

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWvolu

SEE ALSO cpio(1), eject(1), tar(1), rmmount(1M), vold(1M), rmmount.conf(4), attributes(5),
volfs(7FS)

NOTES Volume Management (vold) must be running to use this command.

modified 4 Mar 1996 SunOS 5.6 1-1257

vsig (1F) FMLI Commands

NAME vsig − synchronize a co-process with the controlling FMLI application

SYNOPSIS vsig

DESCRIPTION The vsig executable sends a SIGUSR2 signal to the controlling FMLI process. This
signal/alarm causes FMLI to execute the FMLI built-in command checkworld which
causes all posted objects with a reread descriptor evaluating to TRUE to be reread. vsig
takes no arguments.

EXAMPLES The following is a segment of a shell program:

echo "Sending this string to an FMLI process"
vsig

The vsig executable will flush the output buffer before it sends the SIGUSR2 signal to
make sure the string is actually in the pipe created by the cocreate function.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu

SEE ALSO coproc(1F), kill(1), kill(2), signal(3C), attributes(5)

NOTES Because vsig synchronize with FMLI, it should be used rather than kill to send a
SIGUSR2 signal to FMLI.

1F-1258 SunOS 5.6 modified 5 Jul 1990

User Commands w (1)

NAME w − display information about currently logged-in users

SYNOPSIS w [−hlsuw] [user]

DESCRIPTION The w command displays a summary of the current activity on the system, including
what each user is doing. The heading line shows the current time, the length of time the
system has been up, the number of users logged into the system, and the average number
of jobs in the run queue over the last 1, 5 and 15 minutes.

The fields displayed are: the user’s login name, the name of the tty the user is on, the time
of day the user logged on (in hours:minutes), the idle time—that is, the number of minutes
since the user last typed anything (in hours:minutes), the CPU time used by all processes
and their children on that terminal (in minutes:seconds), the CPU time used by the
currently active processes (in minutes:seconds), and the name and arguments of the
current process.

OPTIONS −h Suppress the heading.

−l Produce a long form of output, which is the default.

−s Produce a short form of output. In the short form, the tty is abbreviated, the
login time and CPU times are left off, as are the arguments to commands.

−u Produces the heading line which shows the current time, the length of time
the system has been up, the number of users logged into the system, and the
average number of jobs in the run queue over the last 1, 5 and 15 minutes.

−w Produces a long form of output, which is also the same as the default.

OPERANDS user Name of a particular user for whom login information is displayed. If
specified, output is restricted to that user.

EXAMPLES example% w
10:54am up 27 day(s), 57 mins, 1 user, load average: 0.28, 0.26, 0.22
User tty login@ idle JCPU PCPU what
ralph console 7:10am 1 10:05 4:31 w

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of w: LC_CTYPE, LC_MESSAGES and LC_TIME.

FILES /var/adm/utmp user and accounting information

modified 19 Jan 1996 SunOS 5.6 1-1259

w (1) User Commands

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO ps(1), who(1), whodo(1M), utmp(4), attributes(5), environ(5)

NOTES The notion of the ‘‘current process’’ is unclear. The current algorithm is ‘the highest
numbered process on the terminal that is not ignoring interrupts, or, if there is none, the
highest numbered process on the terminal’. This fails, for example, in critical sections of
programs like the shell and editor, or when faulty programs running in the background
fork and fail to ignore interrupts. In cases where no process can be found, w prints −.

The CPU time is only an estimate, in particular, if someone leaves a background process
running after logging out, the person currently on that terminal is ‘‘charged’’ with the
time.

Background processes are not shown, even though they account for much of the load on
the system.

Sometimes processes, typically those in the background, are printed with null or gar-
baged arguments. In these cases, the name of the command is printed in parentheses.

w does not know about the conventions for detecting background jobs. It will sometimes
find a background job instead of the right one.

1-1260 SunOS 5.6 modified 19 Jan 1996

User Commands wait (1)

NAME wait − await process completion

SYNOPSIS
sh wait [n]

wait [%jobid . . .]

csh wait [n]

ksh wait [pid . . .]

DESCRIPTION
sh Wait for your background process whose process id is n and report its termination status.

If n is omitted, all your shell’s currently active background processes are waited for and
the return code will be zero. wait accepts a job identifier, when Job Control is enabled,
and the argument, jobid, is preceded by a percent-sign.

The shell itself executes wait, without creating a new process. If you get the error mes-
sage cannot fork, too many processes, try using the wait command to clean up your
background processes. If this doesn’t help, the system process table is probably full or
you have too many active foreground processes. (There is a limit to the number of pro-
cess ids associated with your login, and to the number the system can keep track of.)

Not all the processes of a 3- or more-stage pipeline are children of the shell, and thus can-
not be waited for.

If n is not an active process id, all your shell’s currently active background processes are
waited for and the return code will be zero.

csh Wait for your background process whose process id is n and report its termination status.
If n is omitted, all your shell’s currently active background processes are waited for and
the return code will be zero.

The shell itself executes wait, without creating a new process. If you get the error mes-
sage cannot fork, too many processes, try using the wait command to clean up your
background processes. If this doesn’t help, the system process table is probably full or
you have too many active foreground processes. (There is a limit to the number of pro-
cess ids associated with your login, and to the number the system can keep track of.)

Not all the processes of a 3- or more-stage pipeline are children of the shell, and thus can-
not be waited for.

If n is not an active process id, all your shell’s currently active background processes are
waited for and the return code will be zero.

ksh When an asynchronous list is started by the shell, the process ID of the last command in
each element of the asynchronous list becomes known in the current shell execution
environment.

modified 18 Sep 1995 SunOS 5.6 1-1261

wait (1) User Commands

If the wait utility is invoked with no operands, it will wait until all process IDs known to
the invoking shell have terminated and exit with a zero exit status.

If one or more pid operands are specified that represent known process IDs, the wait util-
ity will wait until all of them have terminated. If one or more pid operands are specified
that represent unknown process IDs, wait will treat them as if they were known process
IDs that exited with exit status 127. The exit status returned by the wait utility will be the
exit status of the process requested by the last pid operand.

The known process IDs are applicable only for invocations of wait in the current shell
execution environment.

OPERANDS The following operand is supported:

pid One of the following:

1. The unsigned decimal integer process ID of a command, for which the
utility is to wait for the termination. A job control job ID that identifies
a background process group to be waited for.

2. The job control job ID notation is applicable only for invocations of wait
in the current shell execution environment. The exit status of wait is
determined by the last command in the pipeline.

Note that the job control job ID type of pid is available only on systems support-
ing the job control option.

USAGE On most implementations, wait is a shell built-in. If it is called in a subshell or separate
utility execution environment, such as one of the following:

(wait)

nohup wait ...

find . -exec wait ... \;

it will return immediately because there will be no known process IDs to wait for in those
environments.

Historical implementations of interactive shells have discarded the exit status of ter-
minated background processes before each shell prompt. Therefore, the status of back-
ground processes was usually lost unless it terminated while wait was waiting for it.
This could be a serious problem when a job that was expected to run for a long time actu-
ally terminated quickly with a syntax or initialization error because the exit status
returned was usually zero if the requested process ID was not found. This document
requires the implementation to keep the status of terminated jobs available until the
status is requested, so that scripts like:

j1&

p1=$!

j2&

wait $p1

echo Job 1 exited with status $?

1-1262 SunOS 5.6 modified 18 Sep 1995

User Commands wait (1)

wait $!

echo Job 2 exited with status $?

will work without losing status on any of the jobs. The shell is allowed to discard the
status of any process that it determines the application cannot get the process ID from the
shell. It is also required to remember only CHILD_MAX number of processes in this way.
Since the only way to get the process ID from the shell is by using the ! shell parameter,
the shell is allowed to discard the status of an asynchronous list if $! was not referenced
before another asynchronous list was started. (This means that the shell only has to keep
the status of the last asynchronous list started if the application did not reference $!. If
the implementation of the shell is smart enough to determine that a reference to $! was
not saved anywhere that the application can retrieve it later, it can use this information to
trim the list of saved information. Note also that a successful call to wait with no
operands discards the exit status of all asynchronous lists.)

If the exit status of wait is greater than 128, there is no way for the application to know if
the waited-for process exited with that value or was killed by a signal. Since most utili-
ties exit with small values, there is seldom any ambiguity. Even in the ambiguous cases,
most applications just need to know that the asynchronous job failed; it does not matter
whether it detected an error and failed or was killed and did not complete its job nor-
mally.

EXAMPLES Although the exact value used when a process is terminated by a signal is unspecified, if
it is known that a signal terminated a process, a script can still reliably figure out which
signal using kill as shown by the following script:

sleep 1000&

pid=$!

kill -kill $pid

wait $pid

echo $pid was terminated by a SIG$(kill -l $?) signal.

If the following sequence of commands is run in less than 31 seconds:

sleep 257 | sleep 31 &

jobs -l %%

either of the following commands will return the exit status of the second sleep in the
pipeline:

wait <pid of sleep 31>

wait %%

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of wait: LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS If one or more operands were specified, all of them have terminated or were not known
by the invoking shell, and the status of the last operand specified is known, then the exit
status of wait will be the exit status information of the command indicated by the last

modified 18 Sep 1995 SunOS 5.6 1-1263

wait (1) User Commands

operand specified. If the process terminated abnormally due to the receipt of a signal, the
exit status will be greater than 128 and will be distinct from the exit status generated by
other signals, but the exact value is unspecified. (See the kill −l option.) Otherwise, the
wait utility will exit with one of the following values:

0 The wait utility was invoked with no operands and all process IDs known by
the invoking shell have terminated.

1−126 The wait utility detected an error.

127 The command identified by the last pid operand specified is unknown.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO csh(1), jobs(1), ksh(1), sh(1), attributes(5)

1-1264 SunOS 5.6 modified 18 Sep 1995

User Commands wc (1)

NAME wc − display a count of lines, words and characters in a file

SYNOPSIS wc [−c | −m | −C] [−lw] [file . . .]

DESCRIPTION The wc utility reads one or more input files and, by default, writes the number of newline
characters, words and bytes contained in each input file to the standard output.

The utility also writes a total count for all named files, if more than one input file is
specified.

wc considers a word to be a non-zero-length string of characters delimited by white space
(for example, SPACE, TAB). See iswspace(3C) or isspace(3C).

OPTIONS The following options are supported:

−c Count bytes.

−m Count characters.

−C Same as −m.

−l Count lines.

−w Count words delimited by white space characters or new line characters. Delim-
iting characters are Extended Unix Code (EUC) characters from any code set
defined by iswspace().

If no option is specified the default is −lwc (count lines, words, and bytes.)

OPERANDS The following operand is supported:

file A path name of an input file. If no file operands are specified, the standard input
will be used.

USAGE See largefile(5) for the description of the behavior of wc when encountering files greater
than or equal to 2 Gbyte (231 bytes).

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of wc: LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS The following exit values are returned:

0 Successful completion.

>0 An error occurred.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu
CSI Enabled

modified 20 Dec 1996 SunOS 5.6 1-1265

wc (1) User Commands

SEE ALSO cksum(1), isspace(3C), iswalpha(3C), iswspace(3C), setlocale(3C), attributes(5),
environ(5), largefile(5)

1-1266 SunOS 5.6 modified 20 Dec 1996

User Commands what (1)

NAME what − extract SCCS version information from a file

SYNOPSIS what [−s] filename . . .

DESCRIPTION what searches each filename for occurrences of the pattern @(#) that the SCCS get com-
mand (see sccs-get(1)) substitutes for the %Z% ID keyword, and prints what follows up
to a ", >, NEWLINE, \, or null character.

OPTIONS −s Stop after the first occurrence of the pattern.

EXAMPLES For example, if a C program in file program.c contains

char sccsid[] = " @(#)identification information ";

and program.c is compiled to yield program.o and a.out, the command:

example% what program.c program.o a.out

produces:

program.c:
identification information

program.o:
identification information

a.out: identification information

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWsprot

SEE ALSO sccs(1), sccs-admin(1), sccs-cdc(1), sccs-comb(1), sccs-delta(1), sccs-get(1), sccs-help(1),
sccs-prs(1), sccs-prt(1), sccs-rmdel(1), sccs-sact(1), sccs-sccsdiff(1), sccs-unget(1),
sccs-val(1), sccsfile(4), attributes(5)

Programming Utilities Guide

DIAGNOSTICS Use the SCCS help command for explanations (see sccs-help(1)).

BUGS There is a remote possibility that a spurious occurrence of the ‘@(#)’ pattern could be
found by what.

modified 5 Oct 1990 SunOS 5.6 1-1267

whatis (1) User Commands

NAME whatis − display a one-line summary about a keyword

SYNOPSIS whatis command . . .

DESCRIPTION whatis looks up a given command and displays the header line from the manual section.
You can then run the man(1) command to get more information. If the line starts
‘name(section) . . .’ you can do ‘man −s section name’ to get the documentation for it. Try
‘whatis ed’ and then you should do ‘man −s 1 ed’ to get the manual page for ed(1).

whatis is actually just the −f option to the man(1) command.

whatis uses the /usr/share/man/windex database. This database is created by
catman(1M). If this database does not exist, whatis will fail.

FILES /usr/share/man/windex table of contents and keyword database

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWdoc
CSI enabled

SEE ALSO apropos(1), man(1), catman(1M), attributes(5)

1-1268 SunOS 5.6 modified 14 Sep 1992

SunOS/BSD Compatibility Package Commands whereis (1B)

NAME whereis − locate the binary, source, and manual page files for a command

SYNOPSIS /usr/ucb/whereis [−bmsu] [−BMS directory. . . −f] filename . . .

DESCRIPTION whereis locates source/binary and manuals sections for specified files. The supplied
names are first stripped of leading pathname components and any (single) trailing exten-
sion of the form .ext, for example, .c. Prefixes of s. resulting from use of source code con-
trol are also dealt with. whereis then attempts to locate the desired program in a list of
standard places:

/usr/bin
/usr/bin
/usr/5bin
/usr/games
/usr/hosts
/usr/include
/usr/local
/usr/etc
/usr/lib
/usr/share/man
/usr/src
/usr/ucb

OPTIONS −b Search only for binaries.

−m Search only for manual sections.

−s Search only for sources.

−u Search for unusual entries. A file is said to be unusual if it does not have one
entry of each requested type. Thus ‘whereis −m −u ∗’ asks for those files in the
current directory which have no documentation.

−B Change or otherwise limit the places where whereis searches for binaries.

−M Change or otherwise limit the places where whereis searches for manual sec-
tions.

−S Change or otherwise limit the places where whereis searches for sources.

−f Terminate the last directory list and signals the start of file names, and must be
used when any of the −B, −M, or −S options are used.

modified 14 Sep 1992 SunOS 5.6 1B-1269

whereis (1B) SunOS/BSD Compatibility Package Commands

EXAMPLES Find all files in /usr/bin which are not documented in /usr/share/man/man1 with source
in /usr/src/cmd:

example% cd /usr/ucb
example% whereis −u −M /usr/share/man/man1 −S /usr/src/cmd −f ∗

FILES /usr/src/∗
/usr/{doc,man}/∗
/etc, /usr/{lib,bin,ucb,old,new,local}

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscpu

SEE ALSO chdir(2), attributes(5)

BUGS Since whereis uses chdir(2) to run faster, pathnames given with the −M, −S, or −B must
be full; that is, they must begin with a ‘/’.

1B-1270 SunOS 5.6 modified 14 Sep 1992

User Commands which (1)

NAME which − locate a command; display its pathname or alias

SYNOPSIS which [filename] . . .

DESCRIPTION which takes a list of names and looks for the files which would be executed had these
names been given as commands. Each argument is expanded if it is aliased, and
searched for along the user’s path. Both aliases and path are taken from the user’s .cshrc
file.

FILES ˜/.cshrc source of aliases and path values
/usr/bin/which

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO csh(1), attributes(5)

DIAGNOSTICS A diagnostic is given for names which are aliased to more than a single word, or if an
executable file with the argument name was not found in the path.

NOTES which is not a shell built-in command; it is the UNIX command, /usr/bin/which

BUGS Only aliases and paths from ˜/.cshrc are used; importing from the current environment is
not attempted. Must be executed by csh(1), since only csh knows about aliases.

To compensate for ˜/.cshrc files in which aliases depend upon the prompt variable being
set, which sets this variable to NULL. If the ˜/.cshrc produces output or prompts for input
when prompt is set, which may produce some strange results.

modified 26 Sep 1992 SunOS 5.6 1-1271

while (1) User Commands

NAME while, until − shell built-in functions to repetitively execute a set of actions while/until
conditions are evaluated TRUE

SYNOPSIS
sh while [conditions]; do actions ; done

until [conditions]; do actions ; done

csh while (conditions)
. . . # do actions
end

ksh while [conditions]; do actions ; done
until [conditions]; do actions ; done

DESCRIPTION
sh A while command repeatedly executes the while conditions and, if the exit status of the

last command in the conditions list is 0, executes the do actions; otherwise the loop ter-
minates. If no commands in the do actions are executed, then the while command
returns a 0 exit status; until may be used in place of while to negate the loop termination
test.

csh While conditions is TRUE (evaluates to nonzero), repeat commands between the while
and the matching end statement. The while and end must appear alone on their input
lines. If the shell’s input is a terminal, it prompts for commands with a question-mark
until the end command is entered and then performs the commands in the loop.

ksh A while command repeatedly executes the while conditions and, if the exit status of the
last command in the conditions list is zero, executes the do actions; otherwise the loop ter-
minates. If no commands in the do actions are executed, then the while command returns
a 0 exit status; until may be used in place of while to negate the loop termination test.

loop interrupts The built-in command continue may be used to terminate the execution of the current
iteration of a while or until loop, and the built-in command break may be used to ter-
minate execution of a while or until command.

EXAMPLES In these examples, the user is repeated prompted for a name of a file to be located, until
the user chooses to finish the execution by entering an empty line.

sh filename=anything
while [$filename]
do

echo "file?"
read filename # read from terminal
find . -name $filename -print

done

1-1272 SunOS 5.6 modified 15 Apr 1994

User Commands while (1)

The brackets surrounding $filename are necessary for evaluation. (See the test built-in
command in the if(1) man page). Additionally, there must be a blank space separating
each bracket from any characters within.

csh set filename = anything
while ("$filename" != "")

echo "file?"
set filename = $< # read from terminal
find . -name $filename -print

end

ksh Use the same syntax as in the Bourne shell, sh, example above.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO break(1), csh(1), if(1), ksh(1), sh(1), attributes(5)

NOTES Both the Bourne shell, sh, and the Korn shell, ksh, can use the semicolon and the carriage
return interchangeably in their syntax of the if, for, and while built-in commands.

modified 15 Apr 1994 SunOS 5.6 1-1273

who (1) User Commands

NAME who − who is on the system

SYNOPSIS /usr/bin/who [−abdHlmpqrstTu] [file]
/usr/bin/who −q [−n x] [file]
/usr/bin/who am i
/usr/bin/who am I

/usr/xpg4/bin/who [−abdHlmpqrtTu] [file]
/usr/xpg4/bin/who −q [−n x] [file]
/usr/xpg4/bin/who −s [−bdHlmpqrtu] [file]
/usr/xpg4/bin/who am i
/usr/xpg4/bin/who am I

DESCRIPTION The who utility can list the user’s name, terminal line, login time, elapsed time since
activity occurred on the line, and the process-ID of the command interpreter (shell) for
each current UNIX system user. It examines the /var/adm/utmp file to obtain its informa-
tion. If file is given, that file (which must be in utmp(4) format) is examined. Usually, file
will be /var/adm/wtmp, which contains a history of all the logins since the file was last
created.

The general format for output is:

name [state] line time [idle] [pid] [comment] [exit]

where:

name user’s login name.
state capability of writing to the terminal.
line name of the line found in /dev.
time time since user’s login.
idle time elapsed since the user’s last activity.
pid user’s process id.
comment comment line in inittab(4).
exit exit status for dead processes.

OPTIONS The following options are supported:

−a Process /var/adm/utmp or the named file with −b, −d, −l, −p, −r, −t, −T, and −u
options turned on.

−b Indicate the time and date of the last reboot.

−d Display all processes that have expired and not been respawned by init. The
exit field appears for dead processes and contains the termination and exit
values (as returned by wait(3B)), of the dead process. This can be useful in
determining why a process terminated.

−H Output column headings above the regular output.

−l List only those lines on which the system is waiting for someone to login. The
name field is LOGIN in such cases. Other fields are the same as for user entries
except that the state field does not exist.

1-1274 SunOS 5.6 modified 18 Mar 1997

User Commands who (1)

−m Output only information about the current terminal.

−n x Take a numeric argument, x, which specifies the number of users to display
per line. x must be at least 1. The −n option may only be used with −q.

−p List any other process which is currently active and has been previously
spawned by init. The name field is the name of the program executed by init
as found in /sbin/inittab. The state , line, and idle fields have no meaning. The
comment field shows the id field of the line from /sbin/inittab that spawned
this process. See inittab(4).

−q (quick who) display only the names and the number of users currently logged
on. When this option is used, all other options are ignored.

−r Indicate the current run-level of the init process.

−s (default) List only the name, line, and time fields.

/usr/bin/who −T Same as the −s option, except that the state idle, pid, and comment, fields are
also written. state is one of the following characters:

+ The terminal allows write access to other users.
− The terminal denies write access to other users.
? The terminal write-access state cannot be determined.

/usr/xpg4/bin/who −T Same as the −s option, except that the state field is also written. state is one of
the characters listed under the /usr/bin/who version of this option.

If the −u option is used with −T, the idle time is added to the end of the previ-
ous format.

−t Indicate the last change to the system clock (using the date utility) by root.
See su(1M) and date(1).

−u List only those users who are currently logged in. The name is the user’s login
name. The line is the name of the line as found in the directory /dev. The time
is the time that the user logged in. The idle column contains the number of
hours and minutes since activity last occurred on that particular line. A dot
(.) indicates that the terminal has seen activity in the last minute and is there-
fore ‘‘current’’. If more than twenty-four hours have elapsed or the line has
not been used since boot time, the entry is marked old. This field is useful
when trying to determine whether a person is working at the terminal or not.
The pid is the process-ID of the user’s shell. The comment is the comment field
associated with this line as found in /sbin/inittab (see inittab(4)). This can
contain information about where the terminal is located, the telephone
number of the dataset, type of terminal if hard-wired, and so forth.

OPERANDS The following operands are supported:
am i
am I In the "C" locale, limit the output to describing the invoking user, equivalent

to the −m option. The am and i or I must be separate arguments.

modified 18 Mar 1997 SunOS 5.6 1-1275

who (1) User Commands

file Specify a path name of a file to substitute for the database of logged-on users
that who uses by default.

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of who: LC_CTYPE, LC_MESSAGES, LC_TIME, and NLSPATH.

EXIT STATUS The following exit values are returned:

0 Successful completion.

>0 An error occurred.

FILES /sbin/inittab script for init.
/var/adm/utmp current user and accounting information
/var/adm/wtmp historic user and accounting information

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

/usr/bin/who ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

/usr/xpg4/bin/who ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxcu4

SEE ALSO date(1), login(1), mesg(1), init(1M), su(1M), wait(3B), inittab(4), utmp(4), attributes(5),
environ(5), xpg4(5)

NOTES Super-user: After a shutdown to the single-user state, who returns a prompt; since
/var/adm/utmp is updated at login time and there is no login in single-user state, who
cannot report accurately on this state. who am i, however, returns the correct informa-
tion.

1-1276 SunOS 5.6 modified 18 Mar 1997

SunOS/BSD Compatibility Package Commands whoami (1B)

NAME whoami − display the effective current username

SYNOPSIS /usr/ucb/whoami

DESCRIPTION whoami displays the login name corresponding to the current effective user ID. If you
have used su to temporarily adopt another user, whoami will report the login name asso-
ciated with that user ID. whoami gets its information from the geteuid and getpwuid
library routines (see getuid and getpwnam(3C), respectively).

FILES /etc/passwd username data base

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscpu

SEE ALSO su(1M), who(1), getuid(2), getpwnam(3C), attributes(5)

modified 14 Sep 1992 SunOS 5.6 1B-1277

whocalls (1) User Commands

NAME whocalls − report on the calls to a specific procedure.

SYNOPSIS /usr/ccs/bin/whocalls whocalls [-l wholib] funcname
executable [executable arguements . . .]

DESCRIPTION whocalls is a simple example of a utility based on the Link-Auditing library, which per-
mits the tracking of a given function call. See Linker and Libraries Guide. The executable is
run as normal. Each time the procedure funcname is called, both the arguments to that
procedure and a stack trace are displayed on standard output.

OPTIONS −l wholib Specify an alternate who.so Link-Auditing library to use.

EXAMPLES This examples tracks the calls to printf() made by a simple hello_world program

% whocalls printf hello
printf(0x106e4, 0xef625310, 0xef621ba8)

hello:main+0x10
hello:_start+0x5c

hello
%

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtoo

SEE ALSO ld.so.1(1), sotruss(1), attributes(5)

Linker and Libraries Guide

1-1278 SunOS 5.6 modified 24 Jan 1997

User Commands whois (1)

NAME whois − Internet user name directory service

SYNOPSIS whois [−h host] identifier

DESCRIPTION whois searches for an Internet directory entry for an identifier which is either a name (such
as ‘‘Smith’’) or a handle (such as ‘‘SRI-NIC’’). To force a name-only search, precede the
name with a period; to force a handle-only search, precede the handle with an exclama-
tion point.

To search for a group or organization entry, precede the argument with ∗ (an asterisk).
The entire membership list of the group will be displayed with the record.

You may of course use an exclamation point and asterisk, or a period and asterisk
together.

EXAMPLES The command:

example% whois Smith

looks for the name or handle SMITH.

The command:

example% whois !SRI-NIC

looks for the handle SRI-NIC only.

The command:

example% whois .Smith, John

looks for the name JOHN SMITH only.

Adding . . . to the name or handle argument will match anything from that point; that is,
ZU . . . will match ZUL, ZUM, and so on.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO attributes(5)

modified 14 Sep 1992 SunOS 5.6 1-1279

write (1) User Commands

NAME write − write to another user

SYNOPSIS write user [terminal]

DESCRIPTION The write utility reads lines from the user’s standard input and writes them to the termi-
nal of another user. When first invoked, it writes the message:

Message from sender-login-id (sending-terminal) [date]...

to user. When it has successfully completed the connection, the sender’s terminal will be
alerted twice to indicate that what the sender is typing is being written to the recipient’s
terminal.

If the recipient wants to reply, this can be accomplished by typing

write sender-login-id [sending-terminal]

upon receipt of the initial message. Whenever a line of input as delimited by a NL, EOF,
or EOL special character is accumulated while in canonical input mode, the accumulated
data will be written on the other user’s terminal. Characters are processed as follows:

· Typing the alert character will write the alert character to the recipient’s terminal.
· Typing the erase and kill characters will affect the sender’s terminal in the manner

described by the termios(3) interface.
· Typing the interrupt or end-of-file characters will cause write to write an appropri-

ate message (EOT\n in the "C" locale) to the recipient’s terminal and exit.
· Typing characters from LC_CTYPE classifications print or space will cause those

characters to be sent to the recipient’s terminal.
· When and only when the stty iexten local mode is enabled, additional special con-

trol characters and multi-byte or single-byte characters are processed as printable
characters if their wide character equivalents are printable.

· Typing other non-printable characters will cause them to be written to the
recipient’s terminal as follows: control characters will appear as a ‘ˆ’ followed by
the appropriate ASCII character, and characters with the high-order bit set will
appear in “meta” notation. For example, ‘\003’ is displayed as ‘ˆC’ and ‘\372’ as
‘M−z’.

To write to a user who is logged in more than once, the terminal argument can be used to
indicate which terminal to write to; otherwise, the recipient’s terminal is the first writable
instance of the user found in /usr/adm/utmp, and the following informational message
will be written to the sender’s standard output, indicating which terminal was chosen:

user is logged on more than one place.
You are connected to terminal.
Other locations are:
terminal

Permission to be a recipient of a write message can be denied or granted by use of the
mesg utility. However, a user’s privilege may further constrain the domain of accessibil-
ity of other users’ terminals. The write utility will fail when the user lacks the appropri-
ate privileges to perform the requested action.

1-1280 SunOS 5.6 modified 1 Feb 1995

User Commands write (1)

If the character ! is found at the beginning of a line, write calls the shell to execute the rest
of the line as a command.

write runs setgid() (see setuid(2)) to the group ID tty, in order to have write permissions
on other user’s terminals.

The following protocol is suggested for using write: when you first write to another user,
wait for them to write back before starting to send. Each person should end a message
with a distinctive signal (that is, (o) for ‘‘over’’) so that the other person knows when to
reply. The signal (oo) (for ‘‘over and out’’) is suggested when conversation is to be ter-
minated.

OPERANDS The following operands are supported:

user User (login) name of the person to whom the message will be written. This
operand must be of the form returned by the who(1) utility.

terminal Terminal identification in the same format provided by the who utility.

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of write: LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS The following exit values are returned:

0 Successful completion.

>0 The addressed user is not logged on or the addressed user denies permission.

FILES /var/adm/utmp user and accounting information for write
/usr/bin/sh Bourne shell executable file

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu
CSI enabled

SEE ALSO mail(1), mesg(1), pr(1), sh(1), talk(1), who(1), setuid(2), termios(3), attributes(5),
environ(5)

DIAGNOSTICS user is not logged on The person you are trying to write to is not logged on.

Permission denied The person you are trying to write to denies that permission
(with mesg).

Warning: cannot respond, set mesg -y
Your terminal is set to mesg n and the recipient cannot
respond to you.

Can no longer write to user
The recipient has denied permission (mesg n) after you had
started writing.

modified 1 Feb 1995 SunOS 5.6 1-1281

xargs (1) User Commands

NAME xargs − construct argument lists and invoke utility

SYNOPSIS xargs [−t] [−p] [−e[eofstr]] [−E eofstr] [−I replstr] [−i[replstr]] [−L number] [−l[number]]
[−n number [−x]] [−s size] [utility [argument. . .]]

DESCRIPTION The xargs utility constructs a command line consisting of the utility and argument
operands specified followed by as many arguments read in sequence from standard
input as will fit in length and number constraints specified by the options. The xargs util-
ity then invokes the constructed command line and waits for its completion. This
sequence is repeated until an end-of-file condition is detected on standard input or an
invocation of a constructed command line returns an exit status of 255.

Arguments in the standard input must be separated by unquoted blank characters, or
unescaped blank characters or newline characters. A string of zero or more non-double-
quote (") and non-newline characters can be quoted by enclosing them in double-quotes.
A string of zero or more non-apostrophe (’) and non-newline characters can be quoted by
enclosing them in apostrophes. Any unquoted character can be escaped by preceding it
with a backslash (\). The utility will be executed one or more times until the end-of-file is
reached. The results are unspecified if the utility named by utility attempts to read from
its standard input.

The generated command line length will be the sum of the size in bytes of the utility
name and each argument treated as strings, including a null byte terminator for each of
these strings. The xargs utility will limit the command line length such that when the
command line is invoked, the combined argument and environment lists will not exceed
{ARG_MAX}−2048 bytes. Within this constraint, if neither the −n nor the −s option is
specified, the default command line length will be at least {LINE_MAX}.

OPTIONS The following options are supported:

−e[eofstr] Use eofstr as the logical end-of-file string. Underscore (_) is assumed for
the logical EOF string if neither −e nor −E is used. When the −eofstr
option-argument is omitted, the logical EOF string capability is disabled
and underscores are taken literally. The xargs utility reads standard
input until either end-of-file or the logical EOF string is encountered.

−E eofstr Specify a logical end-of-file string to replace the default underscore. The
xargs utility reads standard input until either end-of-file or the logical
EOF string is encountered.

−I replstr Insert mode. utility will be executed for each line from standard input,
taking the entire line as a single argument, inserting it in argument s for
each occurrence of replstr. A maximum of five arguments in arguments
can each contain one or more instances of replstr. Any blank characters
at the beginning of each line are ignored. Constructed arguments can-
not grow larger than 255 bytes. Option −x is forced on. The −I and −i
options are mutually exclusive; the last one specified takes effect.

−i[replstr] This option is equivalent to −I replstr. The string { } is assumed for replstr

1-1282 SunOS 5.6 modified 1 Feb 1995

User Commands xargs (1)

if the option-argument is omitted.

−L number The utility will be executed for each non-empty number lines of argu-
ments from standard input. The last invocation of utility will be with
fewer lines of arguments if fewer than number remain. A line is con-
sidered to end with the first newline character unless the last character
of the line is a blank character; a trailing blank character signals con-
tinuation to the next non-empty line, inclusive. The −L, −l, and −n
options are mutually exclusive; the last one specified takes effect.

-l[number] (The letter ell.) This option is equivalent to −L number. If number is
omitted, 1 is assumed. Option −x is forced on.

−n number Invoke utility using as many standard input arguments as possible, up
to number (a positive decimal integer) arguments maximum. Fewer
arguments will be used if:

· The command line length accumulated exceeds the size specified
by the −s option (or {LINE_MAX} if there is no −s option), or

· The last iteration has fewer than number, but not zero, operands
remaining.

−p Prompt mode. The user is asked whether to execute utility at each invo-
cation. Trace mode (−t) is turned on to write the command instance to
be executed, followed by a prompt to standard error. An affirmative
response (specific to the user’s locale) read from /dev/tty will execute the
command; otherwise, that particular invocation of utility is skipped.

−s size Invoke utility using as many standard input arguments as possible
yielding a command line length less than size (a positive decimal
integer) bytes. Fewer arguments will be used if:

· The total number of arguments exceeds that specified by the −n
option, or

· The total number of lines exceeds that specified by the −L option,
or

· End of file is encountered on standard input before size bytes are
accumulated.

Values of size up to at least {LINE_MAX} bytes are supported, provided
that the constraints specified in DESCRIPTION are met. It is not con-
sidered an error if a value larger than that supported by the implemen-
tation or exceeding the constraints specified in DESCRIPTION is given;
xargs will use the largest value it supports within the constraints.

−t Enable trace mode. Each generated command line will be written to
standard error just prior to invocation.

−x Terminate if a command line containing number arguments (see the −n
option above) or number lines (see the −L option above) will not fit in the
implied or specified size (see the −s option above).

modified 1 Feb 1995 SunOS 5.6 1-1283

xargs (1) User Commands

OPERANDS The following operands are supported:

utility The name of the utility to be invoked, found by search path using the
PATH environment variable; see environ(5). If utility is omitted, the
default is the echo(1) utility. If the utility operand names any of the spe-
cial built-in utilities in shell_builtins(1), the results are undefined.

argument An initial option or operand for the invocation of utility.

USAGE The 255 exit status allows a utility being used by xargs to tell xargs to terminate if it
knows no further invocations using the current data stream will succeed. Thus, utility
should explicitly exit with an appropriate value to avoid accidentally returning with 255.

Note that input is parsed as lines; blank characters separate arguments. If xargs is used
to bundle output of commands like find dir −print or ls into commands to be executed,
unexpected results are likely if any filenames contain any blank characters or newline
characters. This can be fixed by using find to call a script that converts each file found
into a quoted string that is then piped to xargs. Note that the quoting rules used by xargs
are not the same as in the shell. They were not made consistent here because existing
applications depend on the current rules and the shell syntax is not fully compatible with
it. An easy rule that can be used to transform any string into a quoted form that xargs
will interpret correctly is to precede each character in the string with a backslash (\).

On implementations with a large value for {ARG_MAX}, xargs may produce command
lines longer than {LINE_MAX}. For invocation of utilities, this is not a problem. If xargs is
being used to create a text file, users should explicitly set the maximum command line
length with the −s option.

The xargs utility returns exit status 127 if an error occurs so that applications can distin-
guish “failure to find a utility” from “invoked utility exited with an error indication.” The
value 127 was chosen because it is not commonly used for other meanings; most utilities
use small values for “normal error conditions” and the values above 128 can be confused
with termination due to receipt of a signal. The value 126 was chosen in a similar manner
to indicate that the utility could be found, but not invoked.

EXAMPLES 1. The following will move all files from directory $1 to directory $2, and echo each
move command just before doing it:

ls $1 | xargs -I {} -t mv $1/{} $2/{}

2. The following command will combine the output of the parenthesised commands
onto one line, which is then written to the end of file log:

(logname; date; printf "%s\n" "$0 $∗") | xargs >>log

3. The following command will invoke diff with successive pairs of arguments origi-
nally typed as command line arguments (assuming there are no embedded blank
characters in the elements of the original argument list):

printf "%s\n" "$∗" | xargs -n 2 -x diff

4. The user is asked which files in the current directory are to be archived. The files are
archived into arch ; a, one at a time, or b, many at a time.

a. ls | xargs -p -L 1 ar -r arch

1-1284 SunOS 5.6 modified 1 Feb 1995

User Commands xargs (1)

b. ls | xargs -p -L 1 | xargs ar -r arch

5. The following will execute with successive pairs of arguments originally typed as
command line arguments:

echo $∗ | xargs -n 2 diff

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of xargs: LC_COLLATE, LC_CTYPE, LC_MESSAGES, NLSPATH, and PATH.

EXIT STATUS The following exit values are returned:

0 All invocations of utility returned exit status 0.

1−125 A command line meeting the specified requirements could not be assembled,
one or more of the invocations of utility returned a non-zero exit status, or some
other error occurred.

126 The utility specified by utility was found but could not be invoked.

127 The utility specified by utility could not be found.

If a command line meeting the specified requirements cannot be assembled, the utility
cannot be invoked, an invocation of the utility is terminated by a signal, or an invocation
of the utility exits with exit status 255, the xargs utility will write a diagnostic message
and exit without processing any remaining input.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu
CSI enabled

SEE ALSO echo(1), shell_builtins(1), attributes(5), environ(5)

modified 1 Feb 1995 SunOS 5.6 1-1285

xgettext (1) User Commands

NAME xgettext − extract gettext call strings from C programs

SYNOPSIS xgettext [−ns] [−a [−x exclude-file]] [−c comment-tag] [−d default-domain] [−j]
[−m prefix] [−M suffix] [−p pathname] − | filename . . .

xgettext −h

DESCRIPTION xgettext is used to automate the creation of portable message files (.po). A .po file con-
tains copies of “C” strings that are found in ANSI C source code in filename or the stan-
dard input if ‘−’ is specified on the command line. The .po file can be used as input to the
msgfmt(1) utility, which produces a binary form of the message file that can be used by
application during run-time.

xgettext writes msgid strings from gettext(3C) calls in filename to the default output file
messages.po. The default output file name can be changed by −d option. msgid strings in
dgettext() calls are written to the output file domainname.po where domainname is the first
parameter to the dgettext() call.

By default, xgettext creates a .po file in the current working directory, and each entry is in
the same order the strings are extracted from filenames. When the −p option is specified,
the .po file is created in the pathname directory. An existing .po file is overwritten.

Duplicate msgids are written to the .po file as comment lines. When the −s option is
specified, the .po is sorted by the msgid string, and all duplicated msgids are removed. All
msgstr directives in the .po file are empty unless the −m option is used.

OPTIONS −n Add comment lines to the output file indicating file name and line
number in the source file where each extracted string is encountered.
These lines appear before each msgid in the following format:

#
File: filename, line: line-number

−s Generate output sorted by msgids with all duplicate msgids removed.

−a Extract all strings, not just those found in gettext(3C), and dgettext ()
calls. Only one .po file is created.

−c comment-tag The comment block beginning with comment-tag as the first token of
the comment block is added to the output .po file as # delimited
comments. For multiple domains, xgettext directs comments and
messages to the prevailing text domain.

−d default-domain Rename default output file from messages.po to default-domain .po.

−j Join messages with existing message files. If a .po file does not exist,
it is created. If a .po file does exist, new messages are appended.
Any duplicate msgids are commented out in the resulting .po file.
Domain directives in the existing .po file are ignored. Results not
guaranteed if the existing message file has been edited.

−m prefix Fill in the msgstr with prefix. This is useful for debugging purposes.
To make msgstr identical to msgid, use an empty string ("") for prefix.

1-1286 SunOS 5.6 modified 11 Jul 1996

User Commands xgettext (1)

−M suffix Fill in the msgstr with suffix. This is useful for debugging purposes.

−p pathname Specify the directory where the output files will be placed. This
option overrides the current working directory.

−x exclude-file Specify a .po file that contains a list of msgids that are not to be
extracted from the input files. The format of exclude-file is identical to
the .po file. However, only the msgid directive line in exclude-file is
used. All other lines are simply ignored. The −x option can only be
used with the −a option.

−h Print a help message on the standard output.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWloc

SEE ALSO msgfmt(1), gettext(3C), attributes(5)

NOTES xgettext is not able to extract cast strings, for example ANSI C casts of literal strings to
(const char ∗). This is unnecessary anyway, since the prototypes in <libintl.h> already
specify this type.

modified 11 Jul 1996 SunOS 5.6 1-1287

xstr (1) User Commands

NAME xstr − extract strings from C programs to implement shared strings

SYNOPSIS xstr −c filename [−v] [−l array]
xstr [−l array]
xstr filename [−v] [−l array]

DESCRIPTION xstr maintains a file called strings into which strings in component parts of a large pro-
gram are hashed. These strings are replaced with references to this common area. This
serves to implement shared constant strings, which are most useful if they are also read-
only.

The command:

example% xstr −c filename

extracts the strings from the C source in name, replacing string references by expressions
of the form &xstr[number] for some number. An appropriate declaration of xstr is
prepended to the file. The resulting C text is placed in the file x.c, to then be compiled.
The strings from this file are placed in the strings data base if they are not there already.
Repeated strings and strings which are suffixes of existing strings do not cause changes to
the data base.

After all components of a large program have been compiled, a file declaring the com-
mon xstr space called xs.c can be created by a command of the form:

example% xstr

This xs.c file should then be compiled and loaded with the rest of the program. If possi-
ble, the array can be made read-only (shared) saving space and swap overhead.

xstr can also be used on a single file. A command:

example% xstr filename

creates files x.c and xs.c as before, without using or affecting any strings file in the same
directory.

It may be useful to run xstr after the C preprocessor if any macro definitions yield strings
or if there is conditional code which contains strings which may not, in fact, be needed.
xstr reads from the standard input when the argument ‘−’ is given. An appropriate com-
mand sequence for running xstr after the C preprocessor is:

example% cc −E name.c | xstr −c −
example% cc −c x.c
example% mv x.o name.o

xstr does not touch the file strings unless new items are added; thus make(1S) can avoid
remaking xs.o unless truly necessary.

1-1288 SunOS 5.6 modified 14 Sep 1992

User Commands xstr (1)

OPTIONS −c filename Take C source text from filename.

−v Verbose: display a progress report indicating where new or duplicate
strings were found.

−l array Specify the named array in program references to abstracted strings. The
default array name is xstr.

FILES strings data base of strings
x.c massaged C source
xs.c C source for definition of array “xstr∗(rq
/tmp/xs∗ temp file when xstr filename doesn’t touch strings

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO make(1S), attributes(5)

BUGS If a string is a suffix of another string in the data base, but the shorter string is seen first
by xstr both strings will be placed in the data base, when just placing the longer one there
would do.

NOTES Be aware that xstr indiscriminately replaces all strings with expressions of the form
&xstr[number] regardless of the way the original C code might have used the string. For
example, you will encounter a problem with code that uses sizeof() to determine the
length of a literal string because xstr will replace the literal string with a pointer that most
likely will have a different size than the string’s. To circumvent this problem:

· use strlen() instead of sizeof(); note that sizeof() returns the size of the array
(including the null byte at the end), whereas strlen() doesn’t count the null
byte. The equivalent of sizeof("xxx") really is (strlen("xxx"))+1.

· use #define for operands of sizeof() and use the define’d version. xstr ignores
#define statements. Make sure you run xstr on filename before you run it on
the preprocessor.

You will also encounter a problem when declaring an initialized character array of the
form

char x[] = "xxx";

xstr will replace xxx with an expression of the form &xstr[number] which will not com-
pile. To circumvent this problem, use static char ∗x = "xxx" instead of static char x[] =
"xxx".

modified 14 Sep 1992 SunOS 5.6 1-1289

yacc (1) User Commands

NAME yacc − yet another compiler-compiler

SYNOPSIS /usr/ccs/bin/yacc [−dltVv] [−b file_prefix] [−Q [y | n]] [−P parser]
[−p sym_prefix] file

DESCRIPTION The yacc command converts a context-free grammar into a set of tables for a simple auto-
maton that executes an LALR(1) parsing algorithm. The grammar may be ambiguous;
specified precedence rules are used to break ambiguities.

The output file, y.tab.c, must be compiled by the C compiler to produce a function
yyparse(). This program must be loaded with the lexical analyzer program, yylex(), as
well as main() and yyerror(), an error handling routine. These routines must be sup-
plied by the user; the lex(1) command is useful for creating lexical analyzers usable by
yacc.

OPTIONS The following options are supported:

−b file_prefix
Use file_prefix instead of y as the prefix for all output files. The code file
y.tab.c, the header file y.tab.h (created when −d is specified), and the descrip-
tion file y.output (created when −v is specified), will be changed to
file_prefix.tab.c, file_prefix.tab.h, and file_prefix.output, respectively.

−d Generates the file y.tab.h with the #define statements that associate the yacc
user-assigned “token codes” with the user-declared “token names.” This asso-
ciation allows source files other than y.tab.c to access the token codes.

−l Specifies that the code produced in y.tab.c will not contain any #line con-
structs. This option should only be used after the grammar and the associated
actions are fully debugged.

−P parser Allows you to specify the parser of your choice instead of
/usr/ccs/bin/yaccpar. For example, you can specify:

example% yacc −P ˜/myparser parser.y

−p sym_prefix
Use sym_prefix instead of yy as the prefix for all external names produced by
yacc. The names affected include the functions yyparse(), yylex() and yyer-
ror(), and the variables yylval, yychar and yydebug. (In the remainder of this
section, the six symbols cited are referenced using their default names only as
a notational convenience.) Local names may also be affected by the −p option;
however, the −p option does not affect #define symbols generated by yacc.

-Q[y|n] The −Qy option puts the version stamping information in y.tab.c. This allows
you to know what version of yacc built the file. The −Qn option (the default)
writes no version information.

−t Compiles runtime debugging code by default. Runtime debugging code is
always generated in y.tab.c under conditional compilation control. By
default, this code is not included when y.tab.c is compiled. Whether or not

1-1290 SunOS 5.6 modified 20 Dec 1996

User Commands yacc (1)

the −t option is used, the runtime debugging code is under the control of
YYDEBUG , a preprocessor symbol. If YYDEBUG has a non-zero value, then
the debugging code is included. If its value is 0, then the code will not be
included. The size and execution time of a program produced without the
runtime debugging code will be smaller and slightly faster.

−V Prints on the standard error output the version information for yacc.

−v Prepares the file y.output, which contains a description of the parsing tables
and a report on conflicts generated by ambiguities in the grammar.

OPERANDS The following operand is required:

file A path name of a file containing instructions for which a parser is to be
created.

EXAMPLES Access to the yacc library is obtained with library search operands to cc. To use the yacc
library main,

example% cc y.tab.c -ly

Both the lex library and the yacc library contain main. To access the yacc main,

example% cc y.tab.c lex.yy.c -ly -ll

This ensures that the yacc library is searched first, so that its main is used.

The historical yacc libraries have contained two simple functions that are normally coded
by the application programmer. These library functions are similar to the following code:

#include <locale.h>
int main(void)
{

extern int yyparse();

setlocale(LC_ALL, "");

/∗ If the following parser is one created by lex, the
application must be careful to ensure that LC_CTYPE
and LC_COLLATE are set to the POSIX locale. ∗/

(void) yyparse();
return (0);

}

#include <stdio.h>

int yyerror(const char ∗msg)
{

(void) fprintf(stderr, "%s\n", msg);
return (0);

}

modified 20 Dec 1996 SunOS 5.6 1-1291

yacc (1) User Commands

ENVIRONMENT See environ(5) for descriptions of the following environment variables that affect the exe-
cution of yacc: LC_CTYPE, LC_MESSAGES, and NLSPATH.

yacc can handle characters from EUC primary and supplementary codesets as one-token
symbols. EUC codes may only be single character quoted terminal symbols. yacc
expects yylex() to return a wide character (wchar_t) value for these one-token symbols.

EXIT STATUS The following exit values are returned:

0 Successful completion.

>0 An error occurred.

FILES y.output state transitions of the generated parser
y.tab.c source code of the generated parser
y.tab.h header file for the generated parser
yacc.acts temporary file
yacc.debug temporary file
yacc.tmp temporary file
yaccpar parser prototype for C programs

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWbtool

SEE ALSO cc(1B), lex(1), attributes(5), environ(5)

Programming Utilities Guide

DIAGNOSTICS The number of reduce-reduce and shift-reduce conflicts is reported on the standard error
output; a more detailed report is found in the y.output file. Similarly, if some rules are
not reachable from the start symbol, this instance is also reported.

NOTES Because file names are fixed, at most one yacc process can be active in a given directory at
a given time.

1-1292 SunOS 5.6 modified 20 Dec 1996

User Commands ypcat (1)

NAME ypcat − print values in a NIS database

SYNOPSIS ypcat [−kx] [−d ypdomain] mname

DESCRIPTION The ypcat command prints out values in the NIS name service map specified by mname,
which may be either a map name or a map nickname. Since ypcat uses the NIS network
services, no NIS server is specified.

Refer to ypfiles(4) for an overview of the NIS name service.

OPTIONS −k Display the keys for those maps in which the values are null or the key
is not part of the value. None of the maps derived from files that have
an ASCII version in /etc fall into this class.

−d ypdomain Specify a domain other than the default domain.

−x Display map nicknames.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWnisu

SEE ALSO ypmatch(1), ypfiles(4), attributes(5)

modified 23 Jan 1995 SunOS 5.6 1-1293

ypmatch (1) User Commands

NAME ypmatch − print the value of one or more keys from a NIS map

SYNOPSIS ypmatch [−k] [−t] [−d domain] key [key . . .] mname

ypmatch −x

DESCRIPTION ypmatch prints the values associated with one or more keys from the NIS’s name services
map specified by mname, which may be either a mapname or a map nickname (mnames).

Multiple keys can be specified; all keys will be searched for in the same map. The keys
must be the same case and length. No pattern matching is available. If a key is not
matched, a diagnostic message is produced.

OPTIONS −k Before printing the value of a key, print the key itself, followed by a ‘:’
(colon).

−t This option inhibits map nickname translation.

−d domain Specify a domain other than the default domain.

−x Display the map nickname table. This lists the nicknames (mnames) the
command knows of, and indicates the mapname associated with each
nickname.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWnisu

SEE ALSO ypcat(1), ypfiles(4), attributes(5)

1-1294 SunOS 5.6 modified 14 Sep 1992

User Commands yppasswd (1)

NAME yppasswd − change your network password in the NIS database

SYNOPSIS yppasswd [username]

DESCRIPTION yppasswd changes the network password associated with the user username in the Net-
work Information Service (NIS+) database. If the user has done a keylogin(1), and a
publickey/secretkey pair exists for the user in the NIS publickey.byname map,
yppasswd also re-encrypts the secretkey with the new password. The NIS password may
be different from the local one on your own machine. Use passwd(1) to change the pass-
word information on the local machine, and nispasswd(1) to change the password infor-
mation stored in Network Information Service Plus, Version 3 (NIS+).

yppasswd prompts for the old NIS password, and then for the new one. You must type
in the old password correctly for the change to take effect. The new password must be
typed twice, to forestall mistakes.

New passwords must be at least four characters long, if they use a sufficiently rich alpha-
bet, and at least six characters long if monocase. These rules are relaxed if you are
insistent enough. Only the owner of the name or the super-user may change a password;
superuser on the root master will not be prompted for the old password, and does not
need to follow password construction requirements.

The NIS password daemon, rpc.yppasswdd must be running on your NIS server in order
for the new password to take effect.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO keylogin(1), login(1), nispasswd(1), passwd(1), getpwnam(3C), getspnam(3C),
secure_rpc(3N), nsswitch.conf(4), attributes(5)

WARNINGS Even after the user has successfully changed his or her password using this command,
the subsequent login(1) using the new password will be successful only if the user’s pass-
word and shadow information is obtained from NIS, (see getpwnam(3C), getspnam(3C),
and nsswitch.conf(4)).

NOTES The use of yppasswd is discouraged, as it is now only a link to the passwd(1) command,
which should be used instead. Using passwd(1) with the −r nis option will achieve the
same results, and will be consistent across all the different name services available.

BUGS The update protocol passes all the information to the server in one RPC call, without ever
looking at it. Thus if you type your old password incorrectly, you will not be notified
until after you have entered your new password.

modified 11 Mar 1997 SunOS 5.6 1-1295

ypwhich (1) User Commands

NAME ypwhich − return name of NIS server or map master

SYNOPSIS ypwhich [−d domain] [[−t] −m [mname] | [−Vn] hostname]
ypwhich −x

DESCRIPTION ypwhich returns the name of the NIS server that supplies the NIS name services to a NIS
client, or which is the master for a map. If invoked without arguments, it gives the NIS
server for the local machine. If hostname is specified, that machine is queried to find out
which NIS master it is using.

Refer to ypfiles(4) for an overview of the NIS name services.

OPTIONS −d domain Use domain instead of the default domain.

−t This option inhibits map nickname translation.

−m mname Find the master NIS server for a map. No hostname can be specified with
−m. mname can be a mapname, or a nickname for a map. When mname
is omitted, produce a list of available maps.

−x Display the map nickname translation table.

−Vn Version of ypbind, V3 is default.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWnisu

SEE ALSO ypfiles(4), attributes(5)

1-1296 SunOS 5.6 modified 7 Apr 1995

Index

Special Characters
.mo files

message object files — msgfmt, 1-702
.po files

portable object files — msgfmt, 1-702

A
accounting

search and print files — acctcom, 1-27
acctcom — search and print process accounting

files, 1-27
adb — debugger, 1-29

$ Modifier, 1-32
: Modifier, 1-32
? and / Modifiers, 1-32
?, /, and = Modifiers, 1-31
Binary Operators, 1-30
Commands, 1-30
Expressions, 1-30
Unary Operators, 1-30
Variables, 1-30
Verbs, 1-31

addbib — create or extend bibliography, 1-36
adds /dev entries to give SunOS 4.x compatible

names to SunOS 5.x devices — ucblinks,
1B-1200

alias — shell built-in functions to create your own
pseudonym or shorthand for a command or

series of commands, 1-38
apply changes to files — patch, 1-817
apropos — locate commands by keyword, 1-41
ar — maintain portable archive or library, 1-42
arch — display architecture of current host, 1-45
archive

maintain a portable one across all machines —
ar, 1-42

archives
create tape archives, and add or extract files —

tar, 1-1119
as — assembler, 1-46
assembler

— as, 1-46
at — execute commands at a later time, 1-200, 1-51
atq — display the jobs queued to run at specified

times, 1-56
atrm — remove jobs spooled by at or batch,

1-57
audio file formats

convert — audioconvert, 1-58
audio files

play — audioplay, 1-62
record — audiorecord, 1-64

audioconvert — convert audio file formats, 1-58
audioplay — play audio files, 1-62
audiorecord — record an audio file, 1-64

Index−1

authentication and authorization for network
environment
— kerberos, 1-473

awk — pattern scanning and processing language,
1-67

B
banner — make posters, 1-72
basename — display portions of pathnames, 1B-74,

1-73
batch — execute commands at a later time, 1-200,

1-51
bc — arbitrary precision arithmetic language, 1-75
bdiff — display line-by-line differences between

pairs of large text files, 1-78
bfs — big file scanner, 1-79

bfs Commands, 1-79
bg — shell built-in functions to control process exe-

cution, 1-460
bibliography

create an inverted index to a bibliographic data-
base — indexbib, 1-452

create or extend — addbib, 1-36
expand and insert references from a biblio-

graphic database — refer, 1-935
find references in a bibliographic database —

lookbib, 1-589
format and print a bibliographic database —

roffbib, 1-950
sort a bibliographic database — sortbib,

1-1071
biff — mail notifier, 1B-83
big file scanner — bfs, 1-79
binary file transmission

decode binary file — uudecode, 1C-1222
encode binary file — uuencode, 1C-1222

binary files
find printable strings — strings, 1-1086
locate — whereis, 1B-1269

block count
for a file — sum, 1-1101

blocks, count a in file — sum, 1B-1102
Bourne shell

Bourne shell, continued
— sh, 1-1037

Bourne shell commands
login command, 1-1047

Bourne shell variables, 1-1040
— CDPATH, 1-1040
— HOME, 1-1040
— IFS, 1-1040
— MAIL, 1-1040
— MAILCHECK, 1-1040
— MAILPATH, 1-1040
— PATH, 1-1040
— PS1, 1-1040
— PS2, 1-1040
— SHACCT, 1-1041
— SHELL, 1-1041

break — shell built-in functions to escape from or
advance within a controlling while, for, foreach,
or until loop, 1-84

build programs — make, 1S-652

C
C

create a tags file for use with ex and vi —
ctags, 1-204

C compiler, 1B-96
C language

C preprocessor — cpp, 1-167
C language program

resolve and remove ifdef’ed lines from C pro-
gram source — unifdef, 1-1208

C program verifier — lint, 1B-561
C programming language

create C error messages — mkstr, 1B-694
extract strings from C code — xstr, 1-1288
formats program in nice style using troff —

vgrind, 1-1241
C shell

aliases — csh, 1-181
built-in commands — csh, 1-187
command and filename substitution — csh,

1-183
command execution — csh, 1-186
command line parsing — csh, 1-179

Index−2

C shell, continued
command substitution — csh, 1-183
control flow — csh, 1-185
environment variables and shell variables —

csh, 1-195
event designators — csh, 1-179
expressions and operators — csh, 1-184
filename completion — csh, 1-178
filename substitution — csh, 1-184
history substitution — csh, 1-179
I/O redirection — csh, 1-181
initialization and termination — csh, 1-177
interactive operation — csh, 1-177
job control — csh, 1-186
lexical structure — csh, 1-178
modifiers — csh, 1-180
noninteractive operation — csh, 1-177
quick substitution — csh, 1-181
signal handling — csh, 1-186
status reporting — csh, 1-187
variable substitution — csh, 1-182
word designators — csh, 1-180

C shell commands
— %, 1-194
— :, 1-187
— @, 1-194
— alias, 1-187
— bg, 1-187
— break, 1-187
— breaksw, 1-187
— case, 1-187
— cd, 1-187
— chdir, 1-187
— continue, 1-187
— default, 1-187
— dirs, 1-188
— echo, 1-188
— else, 1-189
— end, 1-188
— endif, 1-189
— eval, 1-188
— exec, 1-188
— exit, 1-188
— fg, 1-188
— foreach, 1-188

C shell commands, continued
— glob, 1-188
— goto, 1-188
— hashstat, 1-189
— history, 1-189
— if, 1-189
— jobs, 1-189
— kill, 1-189
— limit, 1-190
— login, 1-190
— logout, 1-190
— nice, 1-190
— nohup, 1-191
— notify, 1-191
— onintr, 1-191
— popd, 1-191
— pushd, 1-191
— rehash, 1-191
— repeat, 1-191
— set, 1-191
— setenv, 1-192
— shift, 1-193
— source, 1-193
— stop, 1-193
— suspend, 1-193
— switch, 1-193
— time, 1-193
— umask, 1-194
— unalias, 1-194
— unhash, 1-194
— unlimit, 1-194
— unset, 1-194
— unsetenv, 1-194
— wait, 1-194
— while, 1-194

cal — display a calendar, 1-86
calculator, desk

— dc, 1-218
calendar — reminder service, 1-87

display — cal, 1-86
call rmmount to mount or unmount media —

volrmmount, 1-1256
call-graph, display profile data — gprof, 1-412
cancel — cancel print requests, 1-89
cancel user’s request for removable media that is

Index−3

not currently in drive — volcancel, 1-1253
case — shell built-in functions to choose from

among a list of actions, 1-91
cat — concatenate and display files, 1-94
cc — C compiler, 1B-96
cd — shell built-in functions to change the current

working directory, 1-98
CDPATH variable — sh, 1-1040
change file access and modification times —

touch, 1-1166, 1-1197
character translation — tr, 1B-1179, 1-1175
chdir — shell built-in functions to change the

current working directory, 1-98
check for media in a drive — volcheck, 1-1254
check path names — pathchk, 1-821
check spelling — spell, 1-1075
checkeq — check eqn constructs, 1-277
checknr — check nroff/troff files, 1-101
chgrp — change the group ownership of a file,

1-102
chmod — change the permissions mode of a file,

1-105
chown — change owner of file, 1-110
chown — change owner of file, 1B-112
cksum — write file checksums and sizes, 1-133
clear — clear terminal screen, 1-141
cmp — compare two files, 1-142
cocheck — (FMLI utility) communicate with a pro-

cess, 1F-154
cocreate — (FMLI utility) communicate with a

process, 1F-154
code formatter

formats program in nice style using troff —
vgrind, 1-1241

code set
conversion utility — iconv, 1-439

codestroy — (FMLI utility) communicate with a
process, 1F-154

col — filters reverse line-feeds from two-column
nroff text, 1-144

comm — select or reject lines common to two files,
1-146

command — execute a simple command, 1-148
describe — whatis, 1-1268

command options
parse — getopt, 1-398, 1-400

commands
display the last commands executed, in reverse

order — lastcomm, 1-528
locate a command; display its pathname or

alias — which, 1-1271
locate by keyword — apropos, 1-41

communications
connect to remote system — cu, 1C-207, 1-1152
decode binary files — uudecode, 1C-1222
encode binary files — uuencode, 1C-1222
system to system command execution — uux,

1C-1232
talk to another user — talk, 1-1117
UNIX-to-UNIX copy — uucp, 1C-1218
user interface to a remote system using the

TELNET protocol — telnet, 1-1131
UUCP list of names — uuname, 1C-1218
UUCP log — uulog, 1C-1218
write to another user — write, 1-1280

compilers
C compiler — cc, 1B-96
C program verifier — lint, 1B-561
regular expression compile — regcmp, 1-937
RPC protocol compiler — rpcgen, 1-952

compress — compress files, 1-151
concatenate

files and display them — cat, 1-94
connect to remote system

— cu, 1C-207
construct argument lists and invoke utility —

xargs, 1-1282
continue — shell built-in functions to escape from

or advance within a controlling while, for,
foreach, or until loop, 1-84

control line printer — lpc, 1B-596
convert units — units, 1-1213
converts binary TNF file to ASCII — tnfdump,

1-1160
coproc — (FMLI utility) communicate with a pro-

cess, 1F-154

Index−4

copy
archives — cpio, 1-161
files — cp, 1-158

core image
of running processes — gcore, 1-380

coreceive — (FMLI utility) communicate with a
process, 1F-154

cosend — (FMLI utility) communicate with a pro-
cess, 1F-154

count blocks in file — sum, 1B-1102
count lines, words, characters in file — wc, 1-1265
cp — copy files, 1-158
cpio — copy archives, 1-161
cpp — C preprocessor, 1-167
create

bibliography — addbib, 1-36
crontab — user crontab file, 1-173
crypt — encrypt, 1-176
csh — shell command interpreter with a C-like syn-

tax, 1-177
csplit — split files based on context, 1-200
ct — spawn login to a remote terminal, 1C-202
ctags — create a tags file for use with ex and vi,

1-204
cu — connect to remote system, 1C-207
curve, smooth

interpolate — spline, 1-1077
cut — cut out selected fields of each line of a file,

1-213

D
date — display date and/or set date, 1-215

prompts for a date — ckdate, 1-113
provides error message for date — errdate,

1-113
provides help message for date — helpdate,

1-113
validates a date — valdate, 1-113

dead.letter
mail interrupted during input — mail, 1-627

debug tools
debugger — adb, 1-29

decode binary file — uudecode, 1C-1222

decode files
— crypt, 1-176

decrypt — crypt, 1-176
define locale environment — localedef, 1-575
dependencies, dynamic

of executable files or shared objects — ldd,
1-537

deroff — remove nroff, troff, tbl and eqn
constructs, 1-221

describe command — whatis, 1-1268
desk calculator

— dc, 1-218
determine which variant instruction set is optimal

to use — optisa, 1-805
devices

eject media device from drive — eject, 1-270
df — display status of disk space on file systems,

1B-222
dhcpinfo — display value of parameters received

through DHCP, 1-223
dictionary, system

find words — look, 1-588
diff — display line-by-line differences between

pairs of text files, 1-225
3-way — diff3, 1-228
big — bdiff, 1-78

diff command
side-by-side — sdiff, 1-1010

diff3 — display line-by-line differences between
three text files, 1-228

diffmk — mark differences between versions of a
troff input file, 1-230

dircmp — compares contents of directories, 1-231
directories

compare contents — dircmp, 1-231
list contents — ls, 1-611
list contents of — ls, 1B-616
make — mkdir, 1-690
make link to — ln, 1B-567
print working directory name — pwd, 1-922
remove — rmdir, 1-947

dirname — delivers all but last level of path name,
1-73

Index−5

dirs — shell built-in functions to change the
current working directory, 1-98

dis — object code disassembler, 1-232
disable — disable LP printers, 1-273
disassembler

object code — dis, 1-232
display

a list of all valid user names — dispuid,
1-235

architecture of current host — arch, 1-45
call-graph profile data — gprof, 1-412
contents of directory — ls, 1-611
current news — news, 1-733
— date, 1-215
disk usage — du, 1B-242
dynamic dependencies of executable files or

shared objects — ldd, 1-537
effective user name — whoami, 1B-1277
file names — ls, 1B-616
first few lines of files — head, 1-427
group membership of user — groups, 1B-423,

1-422
how long the system has been up — uptime,

1-1216
identifier of current host — hostid, 1-437
last commands executed, in reverse order —

lastcomm, 1-528
list of all valid group names — disgid, 1-234
login and logout information about users and

terminals — last, 1-527
name of current host — hostname, 1-438
name of the user running the process — log-

name, 1-586
printer queue — lpq, 1B-600
process status — ps, 1B-916
processor type of current host — mach, 1-624
selected lines from file — sed, 1B-1019
size of page of memory — pagesize, 1-809
status of disk space on file system — df,

1B-222
status of local hosts — ruptime, 1-963
status of network hosts — rup, 1-961
users on system — users, 1B-1217
working directory name — pwd, 1-922

display discretionary file information — getfacl,

1-393
display editor — vi, 1-1244
display information about currently logged-in users

— w, 1-1259
display names and references bound in FNS context

— fnlist, 1-353
display or change font information in the RAM of

the video card on an x86 system in text mode
— loadfont, 1-570

display package parameter values — pkgparam,
1-850

display profile data — prof, 1-906
display reference bound to FNS name —

fnlookup, 1-355
display the internal versioning information of

dynamic objects — pvs, 1-919
display the native instruction sets executable on this

platform — isalist, 1-459
display value of parameters received through

DHCP — dhcpinfo, 1-223
document production

check nroff/troff files — checknr, 1-101
check spelling — spell, 1-1075
create an inverted index to a bibliographic data-

base — indexbib, 1-452
create or extend bibliography — addbib, 1-36
eliminate .so’s from nroff input — soelim,

1-1062
expand and insert references from a biblio-

graphic database — refer, 1-935
filters reverse line-feeds from two-column

nroff text — col, 1-144
find references in a bibliographic database —

lookbib, 1-589
format and print a bibliographic database —

roffbib, 1-950
format documents for display or line-printer —

nroff, 1-795
format tables for nroff or troff — tbl, 1-1127
mark differences between versions of a troff

input file — diffmk, 1-230
remove nroff, troff, tbl and eqn con-

structs — deroff, 1-221

Index−6

document production, continued
simple text formatters — fmt, 1-343
sort a bibliographic database — sortbib,

1-1071
troff postprocessor for PostScript printers —

dpost, 1-239
typeset mathematics — eqn, 1-277
typeset or format documents — troff, 1-1182

DOS
convert text file from DOS format to ISO for-

mat — dos2unix, 1-236
convert text file from ISO format to DOS for-

mat — unix2dos, 1-1215
dos2unix — convert text file from DOS format to

ISO format, 1-236
download — host resident PostScript font down-

loader, 1-237
dpost — troff postprocessor for PostScript printers,

1-239
draw graph — graph, 1-416
du — display disk usage per directory or file,

1B-242
dump — dump selected parts of an object file, 1-244
dumpcs — show codeset table for the current

locale, 1-246
dumpkeys — dump keyboard translation tables,

1-572

E
echo — (FMLI utility) put string on virtual output,

1F-251, 1-247
echo — echo arguments to standard output, 1B-250
ed — text editor, 1-252
edit — text editor, 1-263
editing text

sed — stream editor, 1B-1019
egrep — search a file for a pattern using full regu-

lar expressions, 1-267
eject — eject media device from drive, 1-270
enable — enable LP printers, 1-273
encode binary file — uuencode, 1C-1222
encode files

— crypt, 1-176

encryption key, user
change — chkey, 1-104

env — set environment for command invocation,
1-275

environment
display variables — printenv, 1B-892
set terminal characteristics — tset, 1B-1189

environment variables, global
FMLI, 1F-1030

eqn
remove nroff, troff, tbl and eqn con-

structs — deroff, 1-221
eqn — mathematical typesetting, 1-277
equations

typeset mathematics — eqn, 1-277
error — analyze error messages, 1-281
eval — shell built-in functions to execute other

commands, 1-291
ex — text editor, 1-284
exec — shell built-in functions to execute other

commands, 1-291
execute a simple command — command, 1-148
execute commands at a later time — at, 1-200, 1-51

batch, 1-200, 1-51
exit — shell built-in functions to enable the execu-

tion of the shell to advance beyond its sequence
of steps, 1-293

expand — expand TAB characters to SPACE char-
acters, 1-295

export — shell built-in functions to determine the
characteristics for environmental variables of
the current shell and its descendents, 1-1025

exportfs — translates exportfs options to
share/unshare commands, 1B-297

expr — evaluate arguments as an expression,
1-298, 1B-301

expression evaluation — expr, 1B-301
exstr — extract strings from source files, 1-304
extract kernel probes output into a trace file —

tnfxtract, 1-1164
extract strings from C code — xstr, 1-1288

Index−7

F
face — executable for the Framed Access Com-

mand Environment Interface, 1-307
factor — obtain the prime factors of a number,

1-308
false — provide truth values, 1-1184
fastboot — reboot system without checking disks,

1B-309
fasthalt — halt system without checking disks,

1B-309
fc — shell built-in functions to re-use previous

command-lines from the current shell, 1-429
fdformat — floppy diskette format

format floppy diskette, 1-310
fg — shell built-in functions to control process exe-

cution, 1-460
fgrep — search file for fixed-character string, 1-314
file — determine file type, 1-316

change ownership — chown, 1B-112
determine type of — file, 1B-318
display names — ls, 1B-616
files perusal filter for CRTs — pg, 1-842
make link to — ln, 1B-567
print — lpr, 1B-602
strip affixes — basename, 1B-74
sum — sum and count blocks in file, 1B-1102
update last modified date of — touch,

1B-1169
file — get file type, 1B-318
file system

display status of disk space — df, 1B-222
make hard or symbolic links to files — ln,

1-564
where am I — pwd, 1-922

file transfer program
— ftp, 1-369

files
change owner of file — chown, 1-110
change the permissions mode of a file —

chmod, 1-105
compare two files — cmp, 1-142
compress — compress, 1-151
compress files — pack, 1-806

files, continued
concatenate and display — cat, 1-94
copy — cp, 1-158
copy archives — cpio, 1-161
crypt — encrypt/decrypt, 1-176
cut out selected fields of each line of a file —

cut, 1-213
display a count of lines, words and characters

in a file — wc, 1-1265
display first few lines — head, 1-427
display last part — tail, 1-1115
display line-by-line differences between pairs of

large text files — bdiff, 1-78
display line-by-line differences between pairs of

text files — diff, 1-225
display line-by-line differences between three

text files — diff3, 1-228
display uncompressed files but leaves

compressed files intact — zcat, 1-151
expand compressed files — unpack, 1-806
extract SCCS version information from a file —

what, 1-1267
— find, 1-327
mark differences between versions of a troff

input file — diffmk, 1-230
merge same lines of several files or subsequent

lines of one file — paste, 1-815
move — mv, 1-707
print checksum and block count for a file —

sum, 1-1101
print differences between two files side-by-side

— sdiff, 1-1010
remove — rm, 1-947
search a file for a pattern — grep, 1-418
search file for fixed-character string — fgrep,

1-314
search for a pattern using full regular expres-

sions — egrep, 1-267
sort or merge — sort, 1-1065
split a file into pieces — split, 1-1078
strip affixes from path names — basename,

1-73
transfer to and from a remote machine —

tftp, 1-1145
uncompress — uncompress, 1-151

Index−8

filesync — synchronize files and directories,
1-320
Multiple Nomadic Machines, 1-322
Rules File, 1-321

find — find files, 1-327
floppy diskette format — fdformat, 1-310
fmlcut — (FMLI utility) cut out columns from a

table or fields from each line of a file, 1F-335
fmlexpr — (FMLI utility) evaluate arguments as

an expression, 1F-337
fmlgrep — (FMLI utility) search afile for a pattern,

1F-339
FMLI

cocheck — communicate with a process,
1F-154

cocreate — communicate with a process,
1F-154

codestroy — communicate with a process,
1F-154

coproc — communicate with a process, 1F-154
coreceive — communicate with a process,

1F-154
cosend — communicate with a process, 1F-154
echo — put string on virtual output, 1F-251
fmlcut — cut out columns from a table or

fields from each line of a file, 1F-335
fmlexpr — evaluate arguments as an expres-

sion, 1F-337
fmlgrep — search afile for a pattern, 1F-339
fmli — invoke fmli, 1-341
getfrm — returns the current frameID

number, 1F-396
getitems — returns a list of currently marked

menu items, 1F-397
indicator — displays application specific

alarms or working indicator, or both,
on FMLI banner line, 1F-451

message — puts arguments on FMLI message
line, 1F-688

pathconv — converts an alias to its pathname,
1F-824

readfile, longline — reads file, gets long-
est line, 1F-933

regex — match patterns against a string,

1F-939
FMLI, continued

reinit — changes the descriptors in the ini-
tialization file, 1F-941

reset — (FLMI utility) changes the entry in a
field of a form to its default value,
1F-944

run — runs a program, 1F-960
set, unset — set and unset local or global

environment variables, 1F-1030
setcolor — redefine or create a color, 1F-1032
shell — run a command using shell, 1F-1053
test — evaluates the expression expres-

sion, 1F-1143
vsig — synchronize a co-process with the con-

trolling FMLI application, 1F-1258
fmt — simple text formatters, 1-343
fnattr — update and examine attributes associ-

ated with FNS named object, 1-348
fnlist — display names and references bound in

FNS context, 1-353
fnlookup — display reference bound to FNS

name, 1-355
fnrename — rename the binding of an FNS name,

1-356
FNS

display names and references — fnlist,
1-353

display reference bound to FNS name —
fnlookup, 1-355

search for FNS objects — fnsearch, 1-357
update attributes — fnattr, 1-348

fnsearch — search for FNS objects with specified
attributes, 1-357
Displaying Selected Attributes, 1-359
Extended Operations, 1-360
Filter Arguments, 1-359
Grammar of Filter Expressions, 1-361
Logical Operators, 1-358
Relational Operators, 1-358
Simple Filter Expressions, 1-358
Wildcarded Strings, 1-360

fnunbind — unbind the reference from an FNS
name, 1-363

Index−9

fold — fold long lines, 1-364
fonts

prepends host resident PostScript fonts to files
— download, 1-237

for — shell built-in functions to repeatedly execute
action(s) for a selected number of times, 1-366

foreach — shell built-in functions to repeatedly
execute action(s) for a selected number of
times, 1-366

formatters, text
— fmt, 1-343

Forms and Menu Language Interpreter, See FMLI
FORTRAN

create a tags file for use with ex and vi —
ctags, 1-204

Framed Access Command Environment, see face
frameID number (FMLI utility) — getfrm, 1F-396
from — sender of mail messages, 1B-368
ftp — file transfer program, 1-369
function — shell built-in command to define a

function which is usable within this shell, 1-379

G
gcore — get core images of running processes,

1-380
gencat — generate a formatted message catalog,

1-381
generate message source file from source files —

genmsg, 1-384
generate programs for lexical tasks — lex, 1-544
genmsg — generate message source file from

source files, 1-384
Auto Message Numbering, 1-384
Comment Extraction, 1-384
Invocation, 1-384
Testing, 1-384

get configuration values — getconf, 1-390
get locale-specific information — locale, 1-573
getconf — get configuration values, 1-390
getfacl — display discretionary file information,

1-393
getfrm — (FMLI utility) returns the current

frameID number, 1F-396
getitems — (FMLI utility) returns a list of

currently marked menu items, 1F-397
getopt — parse command options, 1-398, 1-400
getoptcvt — parse command options, 1-400
getoptcvt — parse command options, 1-400,

1-402
gettext — retrieve text string from message data-

base, 1-408, 1-409
glob — shell built-in function to expand a word

list, 1-411
goto — shell built-in functions to enable the execu-

tion of the shell to advance beyond its sequence
of steps, 1-293

gprof — call-graph profile, 1-412
graph — draw graph, 1-416
graphics

interpolate smooth curve — spline, 1-1077
graphics filters for plotters — plot, 1B-856, 1-1170
grep

search a file for a pattern — grep, 1-418
search a file for a pattern using full regular

expressions — egrep, 1-267
search file for fixed-character string — fgrep,

1-314
group IDs

change real and effective — newgrp, 1-731
change the group ownership of a file —

chgrp, 1-102
display a list of all valid group names — dis-

gid, 1-234
prompts for group ID — ckgid, 1-115
provides error message for group ID —

errgid, 1-115
provides help message for group ID — help-

gid, 1-115
validates group ID — valgid, 1-115

groups — display group membership, 1B-423,
1-422

grpck — check group database entries, 1B-424

Index−10

H
halt system without checking disks — fasthalt,

1B-309
hash — shell built-in functions to evaluate the

internal hash table of the contents of direc-
tories, 1-425

hashstat — shell built-in functions to evaluate the
internal hash table of the contents of direc-
tories, 1-425

head — display first few lines of files, 1-427
history — shell built-in functions to re-use previ-

ous command-lines from the current shell,
1-429

HOME variable — sh, 1-1040
host machines, local

show status — ruptime, 1-963
who is logged in — rwho, 1-966

host machines, remote
display status of network hosts (RPC version)

— rup, 1-961
who is logged in — rusers, 1-965

host resident PostScript font downloader — down-
load, 1-237

hostid — display host ID, 1-437
hostname — display host name, 1-438

I
i386 — get processor type truth value, 1-625
iAPX286 — get processor type truth value, 1-625
if — shell built-in functions to evaluate

condition(s) or to make execution of actions
dependent upon the evaluation of condition(s),
1-441

IFS variable — sh, 1-1040
indicator — (FMLI utility) displays application

specific alarms or working indicator, or both,
on FMLI banner line, 1F-451

indxbib — create an inverted index to a biblio-
graphic database, 1-452

install — install files, 1B-453
instruction set, determining which variant is

optimal to use — optisa, 1-805

integer
prompts for an integer — ckint, 1-117
provides error message for integer — errint,

1-117
provides help message for integer — helpint,

1-117
validates an integer — valint, 1-117

integer, range
prompts for an integer within a specified range

— ckrange, 1-127
provides error message for integer within a

specified range — errange, 1-127
provides help message for integer within a

specified range — helprange, 1-127
validate an integer within a specified range —

valrange, 1-127
Internet

transfer files to and from a remote machine —
tftp, 1-1145

transfer of files to and from remote network
sites — ftp, 1-369

user name directory service — whois, 1-1279
interprocess communication

remove a message queue, semaphore set, or
shared memory ID — ipcrm, 1-454

report status — ipcs, 1-455
invoke a command with an altered scheduling

priority — nice, 1-734
ipcrm — remove a message queue, semaphore set,

or shared memory ID, 1-454
ipcs — report inter-process communication facili-

ties status, 1-455
isalist — display the native instruction sets exe-

cutable on this platform, 1-459

J
jobs — shell built-in functions to control process

execution, 1-460
join — relational database operator, 1-466
jsh — the job control shell command interpreter,

1-1037

Index−11

K
kbd — manipulate the state of keyboard or display

the type of keyboard or change the default key-
board abort sequence effect, 1-469

Kerberos login utility
— kinit, 1-480

Kerberos system
introduction — Kerberos, 1-473

Kerberos ticket-granting-ticket
fetch and store using service key — ksrvtgt,

1-526
Kerberos tickets

destroy — kdestroy, 1-472
list currently held — klist, 1-481

keyboard
load and dump keyboard translation tables —

loadkeys, dumpkeys, 1-572
manipulate the state of keyboard or display the

type of keyboard or change the default
keyboard abort sequence effect —
kbd, 1-469

keylogin — decrypt and store secret key with
keyserv, 1-475

keylogout — delete stored secret key with
keyserv, 1-476

keywords
prompts for and validates a keyword —

ckkeywd, 1-122
kill — terminate a process by default, 1-477
Korn shell commands

login command, 1-515
KornShell

aliasing — ksh, 1-484
arithmetic evaluation — ksh, 1-498
blank interpretation — ksh, 1-497
command execution — ksh, 1-504
command re-entry — ksh, 1-505
command substitution — ksh, 1-487
commands — ksh, 1-482
comments — ksh, 1-484
conditional expressions — ksh, 1-499
definitions — ksh, 1-482
emacs editing mode — ksh, 1-506
environment — ksh, 1-501

KornShell, continued
file name generation — ksh, 1-497
functions — ksh, 1-502
I/O — ksh, 1-500
in-line editing options — ksh, 1-505
invocation — ksh, 1-522
jobs — ksh, 1-503, 1-462
parameter substitution — ksh, 1-490
process substitution — ksh, 1-489
prompting — ksh, 1-499
quoting — ksh, 1-498
restricted command and programming

language — rksh, 1-482
signals — ksh, 1-504
special commands — ksh, 1-511
tilde substitution — ksh, 1-486
vi editing mode — ksh, 1-508

ksh — KornShell, a standard command and pro-
gramming language, 1-482

L
languages

C compiler — cc, 1B-96
C preprocessor — cpp, 1-167
C program verifier — lint, 1B-561
create C error messages — mkstr, 1B-694
extract strings from C code — xstr, 1-1288

last — display login and logout information about
users and terminals, 1-527

lastcomm — display the last commands executed,
in reverse order, 1-528

ld — link-editor for object files, 1-529
ld — link editor, 1B-536
ld.so.1 — runtime linker for dynamic objects,

1-539
ldd — list dynamic dependencies of executable files

or shared objects, 1-537
let — shell built-in function to evaluate one or

more arithmetic expressions, 1-543
lex — generate programs for lexical tasks, 1-544

Actions in lex, 1-551
create a tags file for use with ex and vi —

ctags, 1-204
Definitions in lex, 1-546

Index−12

lex — generate programs for lexical tasks, contin-
ued

/, 1-545
Regular Expressions in lex, 1-548
Rules in lex, 1-547
Stderr, 1-545
Stdout, 1-544
User Subroutines in lex, 1-548

library archive
find ordering relation for an object or library

archive — lorder, 1-590
limit — set or get limitations on the system

resources available to the current shell and its
descendents, 1-556
/usr/bin/ulimit, 1-556
csh, 1-556
ksh, 1-556
sh, 1-556
sh/ksh, 1-558

line — read one line from standard input and
write to standard output, 1-560

line numbering filter — nl, 1-785
line printer control — lpc, 1B-596
link

make hard or symbolic links to files — ln,
1-564

link editor — ld, 1B-536
link-editor — ld, 1-529
lint — C program verifier, 1B-561
list

contents of directory — ls, 1-611
file names — ls, 1B-616

list of service grades
print — uuglist, 1C-1225

list, sorted
find lines — look, 1-588

listusers — list user login information, 1-563
ln — make hard or symbolic links to files, 1-564
loadfont — display or change font information in

the RAM of the video card on an x86 system in
text mode, 1-570

loadkeys — load keyboard translation tables,
1-572

locale — get locale-specific information, 1-573
localedef — define locale environment, 1-575
log, system

add entries — logger, 1-578
logger — add entries to the system log, 1-578,

1B-580
login — sign on to the system, 1-581

change login password and password attributes
— passwd, 1-810

display effective user name — whoami,
1B-1277

display login and logout information about
users and terminals — last, 1-527

get the name of the user running the process —
logname, 1-586

list user login information — listusers,
1-563

remote — rlogin, 1-945
spawn login to a remote terminal — ct,

1C-202
who is logged in, and what are they doing —

w, 1-1259
login command, 1-1047, 1-515
login environment

display variables — printenv, 1B-892
set terminal characteristics — tset, 1B-1189

login password
change in NIS — yppasswd, 1-1295

logname — get the name of the user running the
process, 1-586

logout — shell built-in function to exit from a
login session, 1-587
display login and logout information about

users and terminals — last, 1-527
look — find words in the system dictionary or

lines in a sorted list, 1-588
lookbib — find references in a bibliographic data-

base, 1-589
lorder — find ordering relation for an object or

library archive, 1-590
lp — send requests to a print service, 1-591
LP print services

cancel requests — cancel, 1-89
control line printer — lpc, 1B-596

Index−13

LP print services, continued
display printer queue — lpq, 1B-600
generate printer test pattern — lptest, 1B-610
print files — lp, 1-591
print files (BSD) — lpr, 1B-602
remove print jobs — lprm, 1B-605

lpc — line printer control, 1B-596
lpq — display printer queue, 1B-600
lpr — print files, 1B-602
lprm — remove print jobs, 1B-605
lpstat — print information about the status of the

print service, 1-607
lptest — generate printer test pattern, 1B-610
ls — list contents of directory, 1-611, 1B-616

M
m4 — macro processor, 1-619
mach — display processor type of current host,

1-624
machid — get processor type truth value, 1-625
machine IDs

get processor type truth value — machid,
1-625

macro processor — m4, 1-619
magnetic tape

backspace files — mt, 1-705
backspace records — mt, 1-705
copy — tcopy, 1-1129
erase — mt, 1-705
forward space files — mt, 1-705
forward space records — mt, 1-705
get unit status — mt, 1-705
manipulate — mt, 1-705
place unit off-line — mt, 1-705
retension — mt, 1-705
rewind — mt, 1-705
skip backward files — mt, 1-705
skip backward records — mt, 1-705
skip forward files — mt, 1-705
skip forward records — mt, 1-705
write EOF mark on — mt, 1-705

mail — read mail or send mail to users, 1-627
automatic replies — vacation, 1-1235

mail services

mail services, continued
mail notifier — biff, 1B-83
sender of mail messages — from, 1B-368

mail utilities
create aliases database — newaliases, 1-727
statistics — mailstats, 1-633

MAIL variable — sh, 1-1040
mailbox

storage for incoming mail — mailx, 1-634
MAILCHECK variable — sh, 1-1040
mailcompat — provide SunOS compatibility for

Solaris mailbox format, 1-632
MAIL variable — sh, 1-1040
mailstats — mail delivery statistics, 1-633
mailx — interactive message processing system,

1-634, 1-651
mailx commands

— !, 1-637
— #, 1-637
— =, 1-637
— ?, 1-638
— |, 1-641
— alias, 1-638
— alternates, 1-638
— cd, 1-638
— chdir, 1-638
— Copy, 1-638
— delete, 1-638
— discard, 1-638
— dp, 1-638
— dt, 1-638
— echo, 1-638
— edit, 1-638
— else, 1-640
— endif, 1-640
— exit, 1-638
— field, 1-638
— file, 1-638
— folder, 1-638
— Followup, 1-639
— from, 1-639
— group, 1-638
— headers, 1-639
— help, 1-639

Index−14

mailx commands, continued
— hold, 1-639, 1-641
— if, 1-640
— ignore, 1-638
— inc, 1-640
— list, 1-640
— load, 1-640
— mail, 1-640
— mbox, 1-640
— More, 1-640
— New, 1-641
— next, 1-641
— Page, 1-640
— pipe, 1-641
— preserve, 1-639, 1-641
— Print, 1-641, 1-643
— Put, 1-641
— quit, 1-642
— Reply, 1-642
— replyall, 1-642
— replysender, 1-642
— Respond, 1-642
— retain, 1-642
— Save, 1-642
— set, 1-642
— shell, 1-643
— size, 1-643
— source, 1-643
— top, 1-643
— touch, 1-643
— Type, 1-641, 1-643
— unalias, 1-643
— undelete, 1-643
— undiscard, 1-643
— ungroup, 1-643
— unignore, 1-643
— Unread, 1-641, 1-643
— unretain, 1-643
— unset, 1-644
— version, 1-644
— visual, 1-644
— write, 1-644
— xit, 1-644
— z, 1-644

maintain groups of programs — sysV-make,

1-1105
make — maintain, update, and regenerate related

programs and files
Appending to a Macro, 1S-660
Bourne Shell Constructs, 1S-673
Clearing Special Targets, 1S-659
Command Dependencies, 1S-659
Command Execution, 1S-673
Command Substitutions, 1S-674
Conditional Macro Definitions, 1S-662
Dynamic Macros, 1S-661
Global, 1S-656
Hidden Dependencies, 1S-659
Implicit Rules, 1S-664
implicit rules, list of make/make.rules, 1S-672
Library Maintenance, 1S-673
Macros, 1S-657, 1S-660
Makefile Target Entries, 1S-655
Pattern Matching Rules, 1S-664
Pattern Replacement Macro References, 1S-660
Predefined Macros, 1S-662
Reading Makefiles and the Environment, 1S-654
Rules, 1S-657
Signals, 1S-674
Special Characters, 1S-656
Special-Function Targets, 1S-658
Special-Purpose Macros, 1S-660
Suffix Replacement Macro References, 1S-660
Suffix Rules, 1S-665
System V version of make — sysV-make,

1-1105
Targets and Dependencies, 1S-656
The Suffixes List, 1S-672

man — online display of reference pages, 1-679
manual pages

accessing — man, 1-679
describe command — whatis, 1-1268
locate — whereis, 1B-1269

matrix display program for PostScript printers —
postmd, 1-865

mbox
storage file for read mail — mailx, 1-634

mconnect — open connection to remote mail
server, 1-684

mcs — manipulate the comment section of an object

Index−15

file, 1-685
menu item

builds a menu and prompts user to choose one
item from menu — ckitem, 1-119

provides error message for menu item —
erritem, 1-119

provides help message for menu item — hel-
pitem, 1-119

menu items, FMLI
returns a list of — getitems, 1F-397

mesg — permit or deny messages via write, 1-687
message — puts arguments on FMLI message line,

1F-688
messages

create message object file — msgfmt, 1-702
creating portable object files — msgfmt, 1-702
display contents of, or search for a text string

in, message data bases — srchtxt,
1-1080

display on stderr or system console —
fmtmsg, 1-344

editing messages — msgfmt, 1-702
extract gettext call strings — xgettext,

1-1286
generate a formatted message catalog — gen-

cat, 1-381
permit or deny messages via write — mesg,

1-687
retrieve text string from message database —

gettext, 1-408
setting the domain — msgfmt, 1-702
setting the message identifier — msgfmt, 1-702
setting the message string — msgfmt, 1-702

mkdir — make directories, 1-690
mkmsgs — create message files for use by gettxt,

1-692
mkstr — create C error messages, 1B-694
modify the Access Control List (ACL) for a file or

files — setfacl, 1-1033
more — browse through a text file, 1-696
msgfmt — create message object file, 1-702
mt — manipulate magnetic tape, 1-705
mv — move files, 1-707

N
nawk — pattern scanning and processing language,

1-709
/usr/bin/nawk, 1-709
/usr/xcu4/bin/awk, 1-709
/usr/xpg4/bin/awk, 1-709
Actions, 1-709
Arithmetic Functions, 1-709
Expression Patterns, 1-709
Expressions in nawk, 1-709
Functions, 1-709
Input/Output and General Functions, 1-709
Output Statements, 1-709
Pattern Ranges, 1-709
Patterns, 1-709
Regular Expressions, 1-709
Special Patterns, 1-709
String Functions, 1-709
User-defined Functions, 1-709
Variables and Special Variables, 1-709

neqn — mathematical typesetting, 1-277
newaliases — make mail aliases database, 1-727
newform — change the format of a text file, 1-728
newgrp — changes a user’s group ID, 1-731
news — print news items, 1-733
NFS, secure

decrypt and store secret key with keyserv —
keylogin, 1-475

delete stored secret key with keyserv— keylo-
gout, 1-476

nice — invoke a command with an altered
scheduling priority, 1-734
change process nice value — renice, 1-942
csh Builtin, 1-734

NIS, See NIS+
change login password in — yppasswd,

1-1295
print the value of one or more keys from a NIS

map — ypmatch, 1-1294
print values in a NIS database — ypcat,

1-1293
return name of NIS server or map master —

ypwhich, 1-1296
NIS+

Index−16

NIS+, continued
Authentication — nis+, 1-742
Authorization — nis+, 1-742
change access rights on a NIS+ object —

nischmod, 1-753
change password information — nispasswd,

1-771
change the group owner of a NIS+ object —

nischgrp, 1-751
change the owner of a NIS+ object —

nischown, 1-755
change the time to live of a NIS+ object —

nischttl, 1-757
Concatenation Path — nis+, 1-739
create NIS+ directories — nismkdir, 1-769
Directories and Domains — nis+, 1-742
Directory Authorization — nis+, 1-743
display NIS+ defaults — nisdefaults, 1-759
display NIS+ error messages — niserror,

1-761
display tables — niscat, 1-749
Grammar — nis+, 1-738
group administration — nisgrpadm, 1-762
Group Names — nis+, 1-741
Indexed Names — nis+, 1-738
list the contents of a NIS+ directory — nisls,

1-766
Name Expansion — nis+, 1-738
Namespaces — nis+, 1-740
NIS+ Administrative Commands — nis+,

1-745
NIS+ Directory Object — nis+, 1-736
NIS+ Files and Directories — nis+, 1-747
NIS+ Group Object — nis+, 1-737
NIS+ Link Object — nis+, 1-737
NIS+ Programming API — nis+, 1-746
NIS+ Table Object — nis+, 1-736
NIS+ User Commands — nis+, 1-745
Principal Names — nis+, 1-740
remove directories — nisrmdir, 1-776
remove objects — nisrm, 1-775
return the state of the NIS+ namespace using a

conditional expression — nistest,
1-783

Simple Names — nis+, 1-737

NIS+, continued
symbolically link NIS+ objects — nisln, 1-764
table administration tool — nistbladm, 1-778
Table Authorization — nis+, 1-744
utilities for searching NIS+ tables —

nismatch, nisgrep, 1-767
niscat — display NIS+ tables, 1-749
nischgrp — change the group owner of a NIS+

object, 1-751
nischmod — change access rights on a NIS+ object,

1-753
nischown — change the owner of a NIS+ object,

1-755
nischttl — change the time to live of a NIS+

object, 1-757
nisdefaults — display NIS+ defaults, 1-759
niserror — display NIS+ error messages, 1-761
nisgrep — utility for searching NIS+ tables, 1-767
nisgrpadm — NIS+ group administration com-

mand, 1-762
nisln — symbolically link NIS+ objects, 1-764
nisls — list the contents of a NIS+ directory, 1-766
nismatch — utility for searching NIS+ tables,

1-767
nismkdir — create a NIS+ directory, 1-769
nisrm — remove NIS+ objects, 1-775
nisrmdir — remove a NIS+ directory, 1-776
nistbladm — administer NIS+ tables, 1-778
nistest — return the state of the NIS+ namespace

using a conditional expression, 1-783
nl — number lines, 1-785
nm — print name list of an object file, 1-788
nohup — run a command immune to hangups,

1-792
notify — shell built-in functions to control process

execution, 1-460
notify user that volume requested is not in the CD-

ROM or floppy drive — volmissing, 1-1255
nroff — format documents for display or line-

printer, 1-795
nroff utilities

check nroff and troff files — checknr, 1-101

Index−17

nroff utilities, continued
eliminate .so’s from nroff input — soelim,

1-1062
filters reverse line-feeds from two-column

nroff text — col, 1-144
format tables — tbl, 1-1127
remove nroff, troff, tbl and eqn con-

structs — deroff, 1-221

O
object archive

find ordering relation for an object or library
archive — lorder, 1-590

object files
find printable strings — strings, 1-1086
manipulate the comment section — mcs, 1-685
print section sizes in bytes — size, 1-1059
strip symbol table, debugging and line number

information — strip, 1-1088
octal dump

— od, 1-797
od — octal dump, 1-797
on — execute a command on a remote system, but

with the local environment, 1-803
onintr — shell built-in functions to respond to

(hardware) signals, 1-1180
online reference pages — man, 1-679
optisa — determine which variant instruction set

is optimal to use, 1-805

P
pack — compress files, 1-806
page — page through a text file, 1-696
pagesize — display size of a page of memory,

1-809
Pascal

create a tags file for use with ex and vi —
ctags, 1-204

passwd — change login password and password
attributes, 1-810

password
change in NIS — yppasswd, 1-1295

password file

password file, continued
edit — vipw, 1B-1252

passwords
change login password and password attributes

— passwd, 1-810
paste — merge same lines of several files or subse-

quent lines of one file, 1-815
patch — apply changes to files, 1-817

Filename Determination, 1-819
Patch Application, 1-820
Patchfile Format, 1-819

PATH variable — sh, 1-1040
pathchk — check path names, 1-821
pathconv — search FMLI criteria for filename,

1F-824
pathname

prompts for a pathname — ckpath, 1-124
provides error message for pathname —

errpath, 1-124
provides help message for pathname — help-

path, 1-124
validates pathname — valpath, 1-124

pattern scanning and processing language — nawk,
1-709

pax — portable archive interchange, 1-826
Modes of Operations, 1-826
Standard Error, 1-831
Standard Output, 1-830

pcat — compress files, 1-806
pcmapkeys — set keyboard extended map and

scancode translation for the PC console in text
mode, 1-834

pcred — proc tools, 1-904
pdp11 — get processor type truth value, 1-625
performance monitoring

display call-graph profile data — gprof, 1-412
resource usage for a command — rusage,

1B-964
time a command; report process data and sys-

tem activity — timex, 1-1150
pfiles — proc tools, 1-904
pflags — proc tools, 1-904
pg — files perusal filter for CRTs, 1-842

Index−18

pkginfo — display software package information,
1-846

pkgmk — produce an installable package, 1-848
pkgparam — display package parameter values,

1-850
pkgproto — generate prototype file entries for

input to pkgmk command, 1-852
pkgtrans — translate package format, 1-854
pldd — proc tools, 1-904
plot — graphics filters for plotters, 1B-856
plotters

graphics filters — plot, 1B-856, 1-1170
pmap — proc tools, 1-904
popd — shell built-in functions to change the

current working directory, 1-98
portable archive interchange — pax, 1-826
postplot — PostScript translator for plot(4B)

graphics files, 1-868
postdaisy — PostScript translator for Diablo 630

daisy-wheel files, 1-858
postdmd — PostScript translator for DMD bitmap

files, 1-860
postio — serial interface for PostScript printers,

1-862
postmd — matrix display program for PostScript

printers, 1-865
postprint — PostScript translator for text files,

1-870
postprocessors

troff for PostScript printers — dpost, 1-239
postreverse — reverse the page order in a

PostScript file, 1-872
PostScript

matrix display program — postmd, 1-865
prepends host resident PostScript fonts to files

— download, 1-237
reverse the page order in a PostScript file —

postreverse, 1-872
serial interface — postio, 1-862
translator for Diablo 630 daisy-wheel files —

postdaisy, 1-858
translator for DMD bitmap files — postdmd,

1-860

PostScript, continued
translator for plot(4) graphics files — post-

plot, 1-868
translator for Tektronix 4014 files — posttek,

1-874
translator for text files — postprint, 1-870
troff postprocessor for PostScript printers —

dpost, 1-239
PostScript translator for Diablo 630 daisy-wheel files

— postdaisy, 1-858
PostScript translator forMD bitmap files —

postdmd, 1-860
PostScript translator for Tektronix 4014 files —

posttek, 1-874
PostScript translator for text files — postprint,

1-870
posttek — PostScript translator for Tektronix 4014

files, 1-874
pr — print files, 1-876
prex — probe external control, 1-880
prime factors

obtain for a number — factor, 1-308
print — shell built-in function to output characters

to the screen or window, 1-891
formatted output — printf, 1-893
print files — pr, 1-876

print files — lpr, 1B-602
prepends host resident PostScript fonts to files

— download, 1-237
print services

print information about the status — lpstat,
1-607

printenv — display environment variables, 1B-892
printers

cancel requests — cancel, 1-89
control — lpc, 1B-596
display queue — lpq, 1B-600
print information about the status — lpstat,

1-607
remove jobs from queue — lprm, 1B-605
send requests — lp, 1-591
test — lptest, 1B-610

printers, LP
— disable, 1-273

Index−19

printers, LP, continued
— enable, 1-273

printf — print formatted output, 1-893
probe external control — prex, 1-880
proc tools

— pcred, 1-904
— pfiles, 1-904
— pflags, 1-904
— pldd, 1-904
— pmap, 1-904
— prun, 1-904
— psig, 1-904
— pstack, 1-904
— pstop, 1-904
— ptime, 1-904
— ptree, 1-904
— pwait, 1-904
— pwdx, 1-904

process accounting
search and print files — acctcom, 1-27
time a command; report process data and sys-

tem activity — timex, 1-1150
process scheduler

display or set scheduling parameters of
specified process(es) — priocntl,
1-897

process status
report — ps, 1-909

process, running
change priority — renice, 1-942

processes
display status — ps, 1B-916
get core images of running processes —

gcore, 1-380
terminate a process by default — kill, 1-477

processors
display type — mach, 1-624

prof — display profile data, 1-906
profile

display call-graph — gprof, 1-412
programming languages

analyze and disperse compiler error messages
— error, 1-281

C compiler — cc, 1B-96

programming languages, continued
C preprocessor — cpp, 1-167
C program verifier — lint, 1B-561
extract strings from C code — xstr, 1-1288
formats program in nice style using troff —

vgrind, 1-1241
programming tools

arbitrary precision arithmetic language — bc,
1-75

assembler — as, 1-46
create a tags file for use with ex and vi —

ctags, 1-204
create C error messages — mkstr, 1B-694
debugger — adb, 1-29
display call-graph profile data — gprof, 1-412
dump selected parts of an object file — dump,

1-244
find printable strings in an object or binary file

— strings, 1-1086
— install, 1B-453
link editor — ld, 1B-536
link-editor for object files — ld, 1-529
macro processor — m4, 1-619
make — build programs, 1S-652
object code disassembler — dis, 1-232
print name list of an object file — nm, 1-788
print section sizes in bytes of object files —

size, 1-1059
regular expression compile — regcmp, 1-937
resolve and remove ifdef’ed lines from C pro-

gram source — unifdef, 1-1208
resource usage for a command — rusage,

1B-964
RPC protocol compiler — rpcgen, 1-952
Source Code Control System — sccs, 1-973
strip symbol table, debugging and line number

information from an object file —
strip, 1-1088

touch — update last modified date of file,
1B-1169

prun — proc tools, 1-904
ps — display process status, 1B-916
PS1 variable — sh, 1-1040
PS2 variable — sh, 1-1040
psig — proc tools, 1-904

Index−20

pstack — proc tools, 1-904
pstop — proc tools, 1-904
ptime — proc tools, 1-904
ptree — proc tools, 1-904
pushd — shell built-in functions to change the

current working directory, 1-98
pvs — display the internal versioning information

of dynamic objects, 1-919
pwait — proc tools, 1-904
pwd — print working directory name, 1-922
pwdx — proc tools, 1-904

Q
queue, printer

display — lpq, 1B-600
queues

display the jobs queued to run at specified
times — atq, 1-56

remove jobs spooled by at or batch —
atrm, 1-57

R
true — convert archives to random libraries, 1-923
rcp — remote file copy, 1-924
rdist — remote file distribution, 1-926
read — shell built-in function to receive from stan-

dard input (keyboard), 1-930
readfile, longline — (FMLI utility) reads file,

gets longest line, 1F-933
readonly — shell built-in function to protect the

value of the given variable from reassignment,
1-934

reboot system without checking disks — fast-
boot, 1B-309

red — text editor, 1-252
refer — expand and insert references from a

bibliographic database, 1-935
regcmp — regular expression compile, 1-937
regenerate groups of programs — sysV-make,

1-1105
regenerate programs — make, 1S-652
regex — (FMLI utility) match patterns against a

string, 1F-939
registration, 1-1063
rehash — shell built-in functions to evaluate the

internal hash table of the contents of direc-
tories, 1-425

reinit — (FMLI utility) changes the descriptors in
the initialization file, 1F-941

relational database
— join, 1-466

reminder services
— calendar, 1-87
mail notifier — biff, 1B-83

remote shell — rsh, 1-957
remote system

connect — tip, 1-1152
connect to — cu, 1C-207
execute a command on a remote system, but

with the local environment — on,
1-803

file copy — rcp, 1-924
file distribution — rdist, 1-926
remote login — rlogin, 1-945
shell — rsh, 1-957
show status — rup, 1C-962, 1-961
spawn login — ct, 1C-202
system to system command execution — uux,

1C-1232
transfer files to and from — tftp, 1-1145
who is logged in on remote machines —

rusers, 1-965
rename the binding of an FNS name — fnrename,

1-356
renice — alter priority of running processes, 1-942
repeat — shell built-in function to execute a com-

mand more than once, 1-366
report on the calls to a specific procedure. — who-

calls, 1-1278
report or filter out repeated lines in a file — uniq,

1-1210
reset — (FLMI utility) changes the entry in a field

of a form to its default value, 1F-944
reset — reset terminal bits, 1B-1189
reset terminal bits — reset, 1B-1189

Index−21

return — shell built-in functions to enable the exe-
cution of the shell to advance beyond its
sequence of steps, 1-293

reverse page order
PostScript file — postreverse, 1-872

reverse the page order in a PostScript file — pos-
treverse, 1-872

rksh — KornShell, restricted command and pro-
gramming language, 1-482

rlogin — remote login, 1-945
rm — remove files, 1-947
rmail — only permits sending of mail, 1-628
rmdir — remove directories, 1-947
roffbib — format and print bibliographic data-

base, 1-950
RPC

display host status of remote machines — rup,
1C-962

display status of network hosts — rup, 1-961
protocol compiler — rpcgen, 1-952

RPC Language
RPC protocol compiler — rpcgen, 1-952

RPC, secure
decrypt and store secret key with keyserv —

keylogin, 1-475
delete stored secret key with keyserv —

keylogout, 1-476
rpcgen — RPC protocol compiler, 1-952
rsh — remote shell, 1-957
run — (FMLI utility) runs a program, 1F-960
run a command immune to hangups — nohup,

1-792
runtime linker for dynamic objects — ld.so.1,

1-539
rup — display status of network hosts, 1C-962,

1-961
ruptime — display status of local hosts, 1-963
rusage — resource usage for a command, 1B-964
rusers — who is logged in on remote machines,

1-965
rwho — who is logged in on local machines, 1-966

S
sag — system activity graph, 1-967
sar — system activity reporter, 1-969
SCCS

extract SCCS version information from a file —
what, 1-1267

sccs — Source Code Control System, 1-973
SCCS commands

admin — create and administer SCCS history
files, 1-982

cdc — change the delta commentary of an
SCCS delta, 1-986

comb — combine deltas, 1-988
delta — change the delta commentary of an

SCCS delta, 1-990
get — retrieve a version of an SCCS file, 1-992
help — help regarding SCCS error or warning

messages, 1-997
prt — display delta table information from an

SCCS file, 1-1001
rmdel — remove a delta from an SCCS file,

1-1003
sact — show editing activity status of an

SCCS file, 1-1004
sccs-prs — display selected portions of an

SCCS history, 1-998
sccsdiff — compare versions of SCCS file,

1-1005
unget — unget SCCS file, 1-1006
val — validate SCCS file, 1-1007

SCCS delta
change commentary — sccs-cdc, 1-986
combine — sccs-comb, 1-988
create — delta, 1-990
remove — rmdel, 1-1003

SCCS delta table
print form an SCCS file — sccs-prt, 1-1001

SCCS files
compare versions — sccs-sccsdiff, 1-1005
retrieve a version of a file — sccs-get, 1-992
show editing activity status — sccs-sact,

1-1004
undo a previous get of an SCCS file — sccs-

unget, 1-1006
validate — sccs-val, 1-1007

Index−22

SCCS help
regarding SCCS error or warning messages —

sccs-help, 1-997
SCCS history

display selected portions — sccs-prs, 1-998
SCCS history files

create and administer — sccs-admin, 1-982
sccs-admin — create and administer SCCS history

files, 1-982
sccs-cdc — change the delta commentary of an

SCCS delta, 1-986
sccs-comb — combine deltas, 1-988
sccs-delta — change the delta commentary of an

SCCS delta, 1-990
sccs-get — retrieve a version of an SCCS file,

1-992
sccs-help — help regarding SCCS error or warn-

ing messages, 1-997
sccs-prs — display selected portions of an SCCS

history, 1-998
sccs-prt — display delta table information from

an SCCS file, 1-1001
sccs-rmdel — remove delta from SCCS file,

1-1003
sccs-sact — show editing activity status of an

SCCS file, 1-1004
sccs-sccsdiff — compare versions of SCCS file,

1-1005
sccs-unget — unget SCCS file, 1-1006
sccs-val — validate SCCS file, 1-1007
screen-oriented editor — vi, 1-1244
script — make script of terminal session, 1-1009
sdiff — print differences between two files side-

by-side, 1-1010
search for FNS objects with specified attributes —

fnsearch, 1-357
sed — stream editor, 1B-1019, 1-1012

Functions, 1B-1020
sed Addresses, 1-1013
sed Editing Commands, 1-1013
sed Regular Expressions, 1-1013
sed Scripts, 1B-1019

select — shell built-in functions to choose from
among a list of actions, 1-91

select or reject lines common to two files — comm,
1-146

serial interface for PostScript printers — postio,
1-862

set — shell built-in functions to determine the
characteristics for environmental variables of
the current shell and its descendents, 1-1025

set environment for command invocation — env,
1-275

set keyboard extended map and scancode transla-
tion for the PC console in text mode — pcmap-
keys, 1-834

set or get limitations on the system resources avail-
able to the current shell and its descendents
— limit, 1-556
— ulimit, 1-556
— unlimit, 1-556

set, unset — (FLMI utility) set and unset local
or global environment variables, 1F-1030

setcolor — (FMLI utility) redefine or create a
color, 1F-1032

setenv — shell built-in functions to determine the
characteristics for environmental variables of
the current shell and its descendents, 1-1025

setfacl — modify the Access Control List (ACL)
for a file or files, 1-1033
acl_entries Syntax, 1-1033

sh — the standard shell command interpreter,
1-1037

SHACCT variable — sh, 1-1041
shell — (FMLI utility) run a command using shell,

1F-1053
Korn shell — ksh, 1-482
restricted Korn shell — rksh, 1-482

shell command interpreter built-in functions —
shell_builtins, 1-1054

shell command interpreter builtin-functions
— alias, 1-38
— bg, 1-460
— break, 1-84

Index−23

shell command interpreter builtin-functions, contin-
ued

— case, 1-91
— cd, 1-98
— chdir, 1-98
— continue, 1-84
— dirs, 1-98
— eval, 1-291
— exit, 1-293
— fc, 1-429
— fg, 1-460
— for, 1-366
— foreach, 1-366
— function, 1-379
— getopts, 1-402
— glob, 1-411
— hash, 1-425
— hashstat, 1-425
— history, 1-429
— if, 1-441
— jobs, 1-460
— kill, 1-477
— let, 1-543
— logout, 1-587
— newgrp, 1-731
— notify, 1-460
— onintr, 1-1180
— popd, 1-98
— print, 1-891
— pushd, 1-98
— read, 1-930
— readonly, 1-934
— rehash, 1-425
— repeat, 1-366
— return, 1-293
— select, 1-91
— set, 1-1025
— setenv, 1-1025
— shift, 1-1057
— source, 1-291
— stop, 1-460
— suspend, 1-1103
— switch, 1-91
— test, 1-441
— times, 1-1149

shell command interpreter builtin-functions, contin-
ued

— trap, 1-1180
— typeset, 1-1198
— umask, 1-1202
— unalias, 1-38
— unhash, 1-425
— unset, 1-1025
— unsetenv, 1-1025
— until, 1-1272
— wait, 1-1261
— whence, 1-1198
— while, 1-1272

shell programming
echo arguments — echo, 1-247
read one line from standard input and write to

standard output — line, 1-560
shell scripts

display size of page memory — pagesize,
1-809

provide truth values — true, false, 1-1184
SHELL variable — sh, 1-1041
shell variables, in Bourne shell, 1-1040
shell_builtins — shell command interpreter

built-in functions, 1-1054
shells

C shell — csh, 1-177
remote — rsh, 1-957
the job control shell command interpreter —

jsh, 1-1037
the standard shell command interpreter — sh,

1-1037
shift — shell built-in function to traverse either a

shell’s argument list or a list of field-separated
words, 1-1057

show codeset table for the current locale —
dumpcs, 1-246

shutdown — shut down multiuser operation,
1B-1058

sign on to the system — login, 1-581
Simple Mail Transfer Protocol

connection to remote mailserver — mconnect,
1-684

size — print section sizes in bytes of object files,

Index−24

1-1059
sleep — suspend execution for an interval, 1-1061
SMPT, See Simple Mail Transfer Protocol
soelim — eliminate .so’s from nroff input, 1-1062
software package

display information — pkginfo, 1-846
display parameter values — pkgparam, 1-850
generate prototype file entries for input to

pkgmk command — pkgproto, 1-852
produce an installable package — pkgmk,

1-848
translate package format — pkgtrans, 1-854

Solaris user registration — solregis, 1-1063
solregis — Solaris user registration, 1-1063
sort — sort and/or merge files, 1-1065
sort, topological

items mentioned in input — tsort, 1-1194
sortbib — sort bibliographic database, 1-1071
sotruss — trace shared library procedure calls,

1-1073
source — shell built-in functions to execute other

commands, 1-291
Source Code Control System, See SCCS
source files

locate — whereis, 1B-1269
sparc — get processor type truth value, 1-625
spell — check spelling, 1-1075
spline — interpolate smooth curve, 1-1077
split files based on context — csplit, 1-200
split — split a file into pieces, 1-1078
srchtxt — display contents of, or search for a text

string in, message data bases, 1-1080
standard output

replicate — tee, 1-1130
statistics

collected by sendmail — mailstats, 1-633
stop — shell built-in functions to control process

execution, 1-460
strchg — change stream configuration, 1-1083
strconf — query stream configuration, 1-1083
stream editor — sed, 1B-1019, 1-1012
STREAMS

change or query stream configuration —

strchg,
STREAMS, continued

strconf, 1-1083
string

prompt for defined string answer — ckstr, 1-130
provide an error message for defined string answer

— errstr, 1-130
provide an help message for defined string answer

— helpstr, 1-130
validate a defined string answer — valstr, 1-130

strings — find printable strings in object or binary
file, 1-1086

strip — strip symbol table, debugging and line
number information from an object file, 1-1088

stty — set the options for a terminal, 1-1090, 1B-1096
sum — print checksum and block count for a file,

1-1101, 1B-1102
sun — get processor type truth value, 1-625
provide SunOS compatibility for Solaris mailbox format

— mailcompat, 1-632
SunOS/BSD Source Compatibility Package

— stty, 1B-1096
SunOS/BSD Source Compatibility Package commands

— arch, 1-45
— basename, 1B-74
— biff, 1B-83
— cc, 1B-96
— chown, 1B-112
— df, 1B-222
— du, 1B-242
— echo, 1B-250
— expr, 1B-301
— fastboot, 1B-309
— file, 1B-318
— from, 1B-368
— groups, 1B-423
— grpck, 1B-424
— hostid, 1-437
— hostname, 1-438
— install, 1B-453
— ld, 1B-536
— lint, 1B-561
— ln, 1B-567
— logger, 1B-580

Index−25

SunOS/BSD Source Compatibility Package commands,
continued

— lpc, 1B-596
— lpq, 1B-600
— lpr, 1B-602
— lprm, 1B-605
— lptest, 1B-610
— ls, 1B-616
— mach, 1-624
— mkstr, 1B-694
— pagesize, 1-809
— plot, 1B-856
— printenv, 1B-892
— ps, 1B-916
— rusage, 1B-964
— shutdown, 1B-1058
— sum, 1B-1102
— test, 1B-1141
— tr, 1B-1179
— tset, 1B-1189
— users, 1B-1217
— vipw, 1B-1252
— whereis, 1B-1269
— whoami, 1B-1277

suspend — shell built-in function to halt the current
shell, 1-1103

suspend execution of command
— sleep, 1-1061

switch — shell built-in functions to choose from
among a list of actions, 1-91

symorder — update symbol table ordering, 1-1104
synchronize files and directories — filesync, 1-320
system activity

graphical representation — sag, 1-967
reporter — sar, 1-969
time a command; report process data and system

activity — timex, 1-1150
system administration

— install, 1B-453
system call and signals

trace — truss, 1-1185
system log

add entries — logger, 1-578
system name

system name, continued
print — uname, 1-1205

system to system command execution — uux, 1C-1232
system to system copy — uucp, 1C-1218
system uptime

display — uptime, 1-1216
sysV-make — maintain, update, and regenerate

groups of programs, 1-1105

T
TAB characters

expand to SPACE characters, and vice versa —
expand, unexpand, 1-295

tables
format for nroff or troff — tbl, 1-1127

tabs — set tabs on a terminal, 1-1112
tail — display last part of file, 1-1115
talk — talk to another user, 1-1117
tape

backspace files — mt, 1-705
backspace records — mt, 1-705
erase — mt, 1-705
forward space files — mt, 1-705
forward space records — mt, 1-705
get unit status — mt, 1-705
place unit off-line — mt, 1-705
retension — mt, 1-705
rewind — mt, 1-705
skip backward files — mt, 1-705
skip backward records — mt, 1-705
skip forward files — mt, 1-705
skip forward records — mt, 1-705
write EOF mark on — mt, 1-705

tape archives
create — tar, 1-1119

tape, magnetic
copy, blocking preserved — tcopy, 1-1129
manipulate — mt, 1-705
scan — tcopy, 1-1129

tar — create tape archives, and add or extract files,
1-1119

tbl — format tables for nroff or troff, 1-1127
remove nroff, troff, tbl and eqn con-

structs — deroff, 1-221

Index−26

tcopy — copy a magnetic tape, 1-1129
tee — replicate the standard output, 1-1130
telnet — user interface to a remote system using the

TELNET protocol, 1-1131
TELNET protocol

user interface to a remote system using the TEL-
NET protocol — telnet, 1-1131

terminal
set options — stty, 1-1090
set tabs — tabs, 1-1112

terminal screen
— clear, 1-141

terminal session
make script— script, 1-1009

terminals
get name — tty, 1-1196
initialize a terminal or query terminfo database —

tput, 1-1171
reset bits — reset, 1B-1189
set characteristics — stty, 1B-1096, 1B-1189

terminate a process by default — kill, 1-477
terminfo database

initialize a terminal or query terminfo database —
tput, 1-1171

test — (FMLI utility) evaluates the expression
expression, 1F-1143, 1-441

test — condition evaluation, 1B-1141
text editing

screen-oriented (visual) display editor based on ex
— vi, 1-1244

sed — stream editor, 1B-1019
stream editor — sed, 1-1012

text editor
— ed, 1-252
— edit, 1-263
— ex, 1-284

text files
browse or page through a text file — more,

page, 1-696
change format — newform, 1-728

text formatter
format documents for display or line-printer —

nroff, 1-795
text processing utilities

text processing utilities, continued
check spelling — spell, 1-1075
concatenate and display files — cat, 1-94
display last part of file — tail, 1-1115
pattern scanning and processing language —

awk, 1-67
search a file for a pattern — grep, 1-418
search a file for a pattern using full regular

expressions — egrep, 1-267
search file for fixed-character string — fgrep,

1-314
sort and/or merge files — sort, 1-1065
split a file into pieces — split, 1-1078
translate characters — tr, 1B-1179, 1-1175
underline text — ul, 1-1201

text retrieval tools
create message files for use by gettxt —

mkmsgs, 1-692
retrieve text string from message database —

gettxt, 1-409
tftp — trivial file transfer program, 1-1145
tilde escape commands for mail

— mailx, 1-644
time — time a simple command, 1-1147

prompts for time — cktime, 1-135
provides error message for time — errtime,

1-135
provides help message for time — helptime,

1-135
validates time — valtime, 1-135

time a simple command — time, 1-1147
timed event services

display the jobs queued to run at specified
times — atq, 1-56

reminder service — calendar, 1-87
remove jobs spooled by at or batch —

atrm, 1-57
user crontab file — crontab, 1-173

times — shell built-in function to report time
usages of the current shell, 1-1149

timex — time a command; report process data and
system activity, 1-1150

tip — connect to remote system, 1-1152
tnfdump — converts binary TNF file to ASCII,

Index−27

1-1160
tnfxtract — extract kernel probes output into a

trace file, 1-1164
touch — change file access and modification times,

1-1166, 1-1197
touch — update last modified date of file, 1B-1169
tplot — graphics filters for plotters, 1-1170
tput — initialize a terminal or query terminfo data-

base, 1-1171
tr — translate characters, 1B-1179, 1-1175
trace shared library procedure calls — sotruss,

1-1073
translate characters — tr, 1B-1179, 1-1175
translates exportfs options to share/unshare com-

mands — exportfs, 1B-297
trap — shell built-in functions to respond to

(hardware) signals, 1-1180
Trivial File Transfer Protocol, See TFTP
troff — typeset or format documents, 1-1182
troff utilities

check nroff and troff files — checknr, 1-101
eliminate .so’s from nroff input — soelim,

1-1062
filters reverse line-feeds from two-column

nroff text — col, 1-144
format tables — tbl, 1-1127
formats program code — vgrind, 1-1241
postprocessor for PostScript printers — dpost,

1-239
remove nroff, troff, tbl and eqn con-

structs — deroff, 1-221
true — provide truth values, 1-1184
truss — trace system calls and signals, 1-1185
tset — set terminal characteristics, 1B-1189
tsort — topological sort of items mentioned in

input, 1-1194
ttl — time to live value, nischttl, 1-757
tty, set characteristics — stty, 1B-1096, 1B-1189

set options — stty, 1-1090
tty — get the name of the terminal, 1-1196
typeset — shell built-in functions to set/get attri-

butes and values for shell variables and func-
tions, 1-1198

typeset documents — troff, 1-1182

U
u370 — get processor type truth value, 1-625
u3b — get processor type truth value, 1-625
u3b15 — get processor type truth value, 1-625
u3b2 — get processor type truth value, 1-625
u3b5 — get processor type truth value, 1-625
ucblinks — adds /dev entries to give SunOS 4.x

compatible names to SunOS 5.x devices,
1B-1200

ul — underline text, 1-1201
ulimit — set or get limitations on the system

resources available to the current shell and its
descendents, 1-556

umask — shell built-in function to restrict
read/write/execute permissions, 1-1202

unalias — shell built-in functions to create your
own pseudonym or shorthand for a command
or series of commands, 1-38

uname — print name of current system, 1-1205
unbind the reference from an FNS name — fnun-

bind, 1-363
uncompress — uncompress files, 1-151
underline text — ul, 1-1201
unexpand — unexpand SPACE characters to TAB

characters, 1-295
unhash — shell built-in functions to evaluate the

internal hash table of the contents of direc-
tories, 1-425

unifdef — resolve and remove ifdef’ed lines from
C program source, 1-1208

uniq — report or filter out repeated lines in a file,
1-1210

units — converts quantities expressed in standard
scales to other scales, 1-1213

UNIX
convert text file from DOS format to ISO for-

mat — dos2unix, 1-236
UNIX-to-UNIX commands

uucp — uucp, 1C-1218
uulog — uucp, 1C-1218

Index−28

UNIX-to-UNIX commands, continued
uuname — uucp, 1C-1218

unix2dos — convert text file from ISO format to
DOS format, 1-1215

unlimit — set or get limitations on the system
resources available to the current shell and its
descendents, 1-556

unpack — expand compressed files, 1-806
unset — shell built-in functions to determine the

characteristics for environmental variables of
the current shell and its descendents, 1-1025

unsetenv — shell built-in functions to determine
the characteristics for environmental variables
of the current shell and its descendents, 1-1025

until — shell built-in functions to repetitively exe-
cute a set of actions while/until conditions are
evaluated TRUE, 1-1272

update and examine attributes associated with FNS
named object — fnattr, 1-348

update groups of programs — sysV-make, 1-1105
update last modified date of file — touch, 1B-1169
update programs — make, 1S-652
uptime — show how long the system has been up,

1-1216
user ID

change user IDs of files — chown, 1B-112
user IDs

display a list of all valid user names —
dispuid, 1-235

prompts for user ID — ckuid, 1-137
provides error message for user ID — erruid,

1-137
provides help message for user ID — hel-

puid, 1-137
validates user ID — valuid, 1-137

users
display effective name — whoami, 1B-1277
display group membership — groups, 1-422
display information about local and remote

users — finger, 1-333
get the name of the user running the process —

logname, 1-586
list user login information — listusers,

1-563
users, continued

talk to another user — talk, 1-1117
who is logged in on local machines — rwho,

1-966
who is logged in on remote machines —

rusers, 1-965
who is logged in, and what are they doing —

w, 1-1259
who is on the system — who, 1-1274
write to another user — write, 1-1280

users — display users on system, 1B-1217
users, network

Internet user name directory service — whois,
1-1279

uucp
log — uulog, 1C-1218
uucp status inquiry — uustat, 1C-1226

uucp — UNIX-to-UNIX copy, 1C-1218
uudecode — decode binary file, 1C-1222
uuencode — encode binary file, 1C-1222
uuglist — print list of service grades available,

1C-1225
uulog — UUCP log, 1C-1218
uuname — UUCP list of names, 1C-1218
uustat — uucp status inquiry, 1C-1226
uux — system to system command execution,

1C-1232

V
vacation — automatic mail replies, 1-1235
vax — get processor type truth value, 1-625
version control

— vc, 1-1238
vgrind — formats program in nice style using

troff, 1-1241
vi — screen-oriented (visual) display editor based

on ex, 1-1244
vipw — edit password file, 1B-1252
volcancel — cancel user’s request for removable

media that is not currently in drive, 1-1253
volcheck — check for media in a drive, 1-1254
volmissing — notify user that volume requested

Index−29

is not in the CD-ROM or floppy drive, 1-1255
volrmmount — call rmmount to mount or

unmount media, 1-1256
Volume Management

cancel user’s request for removable media that
is not currently in drive — volcan-
cel, 1-1253

check for media in a drive — volcheck,
1-1254

missing volume notification — volmissing,
1-1255

vsig — synchronize a co-process with the control-
ling FMLI application, 1F-1258

W
w — display information about currently logged-in

users, 1-1259
w — who is logged in, and what are they doing,

1-1259
wait — shell built-in function to wait for other jobs

or processes, 1-1261
wc — display a count of lines, words and characters

in a file, 1-1265
what — extract SCCS version information from a

file, 1-1267
whatis — describe command, 1-1268
whence — shell built-in functions to set/get attri-

butes and values for shell variables and func-
tions, 1-1198

whereis — locate the binary, source and manual
page files for a command, 1B-1269

which — locate a command; display its pathname
or alias, 1-1271

while — shell built-in functions to repetitively exe-
cute a set of actions while/until conditions are
evaluated TRUE, 1-1272

who is logged in — w, 1-1259
who — who is on the system, 1-1274
whoami — display effective user name, 1B-1277
whocalls — report on the calls to a specific pro-

cedure., 1-1278
whois — Internet user name directory service,

1-1279
write — write to another user, 1-1280
write file checksums and sizes — cksum, 1-133

X
xargs — construct argument lists and invoke util-

ity, 1-1282
xgettext — extract gettext call strings, 1-1286
xstr — extract strings from C code, 1-1288

Y
yacc — yet another compiler-compiler, 1-1290

create a tags file for use with ex and vi —
ctags, 1-204

yes/no answer
prompts for yes/no answer — ckyorn, 1-139
provides error message for yes/no answer —

erryorn, 1-139
provides help message for yes/no answer —

helpyorn, 1-139
validates yes/no answer — valyorn, 1-139

yet another compiler-compiler — yacc, 1-1290
ypcat — print values in a NIS database, 1-1293
ypmatch — print the value of one or more keys

from a NIS map, 1-1294
yppasswd — change your network password in the

NIS database, 1-1295
ypwhich — return name of NIS server or map mas-

ter, 1-1296

Z
zcat — displays uncompressed files but leaves

compressed files intact, 1-151

Index−30

