
SunOS Reference Manual

Sun Microsystems, Inc.
2550 Garcia Avenue
Mountain View, CA 94043
U.S.A.

Copyright 1997 Sun Microsystems, Inc. 2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and
decompilation. No part of this product or document may be reproduced in any form by any means without prior written authorization of
Sun and its licensors, if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark
in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, SunSoft, Solaris, SunOS, OpenWindows, DeskSet, ONC, ONC+, and NFS are trademarks, or
registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are
trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are
based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun
acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the
computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s
licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license agreements.

RESTRICTED RIGHTS : Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87) and
FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a).

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-
INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.
��

Copyright 1997 Sun Microsystems, Inc., 2550 Garcia Avenue, Mountain View, Californie 94043-1100 Etats-Unis. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution,
et la décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit,
sans l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la
technologie relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, SunSoft, Solaris, SunOS, OpenWindows, DeskSet, ONC, ONC+, et NFS sont des marques de fabrique
ou des marques déposées, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous
licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les
produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun
reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou
graphique pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox,
cette licence couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se
conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE "EN L’ETAT" ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y
COMPRIS DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE
UTILISATION PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE
GARANTIE NE S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

Please
Recycle

Preface

OVERVIEW
A man page is provided for both the naive user, and sophisticated user who is
familiar with the SunOS operating system and is in need of on-line information.
A man page is intended to answer concisely the question “What does it do?”
The man pages in general comprise a reference manual. They are not intended
to be a tutorial.

The following contains a brief description of each section in the man pages and
the information it references:

· Section 1 describes, in alphabetical order, commands available with the
operating system.

· Section 1M describes, in alphabetical order, commands that are used chiefly
for system maintenance and administration purposes.

· Section 2 describes all of the system calls. Most of these calls have one or
more error returns. An error condition is indicated by an otherwise
impossible returned value.

· Section 3 describes functions found in various libraries, other than those
functions that directly invoke UNIX system primitives, which are described in
Section 2 of this volume.

i

· Section 4 outlines the formats of various files. The C structure declarations
for the file formats are given where applicable.

· Section 5 contains miscellaneous documentation such as character set tables,
etc.

· Section 6 contains available games and demos.

· Section 7 describes various special files that refer to specific hardware
peripherals, and device drivers. STREAMS software drivers, modules and the
STREAMS-generic set of system calls are also described.

· Section 9 provides reference information needed to write device drivers in
the kernel operating systems environment. It describes two device driver
interface specifications: the Device Driver Interface (DDI) and the
Driver–Kernel Interface (DKI).

· Section 9E describes the DDI/DKI, DDI-only, and DKI-only entry-point
routines a developer may include in a device driver.

· Section 9F describes the kernel functions available for use by device drivers.

· Section 9S describes the data structures used by drivers to share
information between the driver and the kernel.

Below is a generic format for man pages. The man pages of each manual
section generally follow this order, but include only needed headings. For
example, if there are no bugs to report, there is no BUGS section. See the intro
pages for more information and detail about each section, and man(1) for more
information about man pages in general.

NAME
This section gives the names of the commands or functions documented,
followed by a brief description of what they do.

SYNOPSIS
This section shows the syntax of commands or functions. When a command or
file does not exist in the standard path, its full pathname is shown. Literal
characters (commands and options) are in bold font and variables (arguments,
parameters and substitution characters) are in italic font. Options and

ii

arguments are alphabetized, with single letter arguments first, and options with
arguments next, unless a different argument order is required.

The following special characters are used in this section:

[] The option or argument enclosed in these brackets is optional. If the
brackets are omitted, the argument must be specified.

. . . Ellipses. Several values may be provided for the previous argument, or
the previous argument can be specified multiple times, for example,
‘filename . . .’.

| Separator. Only one of the arguments separated by this character can
be specified at time.

{ } Braces. The options and/or arguments enclosed within braces are
interdependent, such that everything enclosed must be treated as a
unit.

PROTOCOL
This section occurs only in subsection 3R to indicate the protocol description
file. The protocol specification pathname is always listed in bold font.

DESCRIPTION
This section defines the functionality and behavior of the service. Thus it
describes concisely what the command does. It does not discuss OPTIONS or
cite EXAMPLES. Interactive commands, subcommands, requests, macros,
functions and such, are described under USAGE.

IOCTL
This section appears on pages in Section 7 only. Only the device class which
supplies appropriate parameters to the ioctl(2) system call is called ioctl and
generates its own heading. ioctl calls for a specific device are listed
alphabetically (on the man page for that specific device). ioctl calls are used for
a particular class of devices all of which have an io ending, such as mtio(7).

Preface iii

OPTIONS
This lists the command options with a concise summary of what each option
does. The options are listed literally and in the order they appear in the
SYNOPSIS section. Possible arguments to options are discussed under the
option, and where appropriate, default values are supplied.

OPERANDS
This section lists the command operands and describes how they affect the
actions of the command.

OUTPUT
This section describes the output - standard output, standard error, or output
files - generated by the command.

RETURN VALUES
If the man page documents functions that return values, this section lists these
values and describes the conditions under which they are returned. If a
function can return only constant values, such as 0 or −1, these values are listed
in tagged paragraphs. Otherwise, a single paragraph describes the return
values of each function. Functions declared as void do not return values, so
they are not discussed in RETURN VALUES.

ERRORS
On failure, most functions place an error code in the global variable errno
indicating why they failed. This section lists alphabetically all error codes a
function can generate and describes the conditions that cause each error. When
more than one condition can cause the same error, each condition is described
in a separate paragraph under the error code.

iv

USAGE
This section is provided as a guidance on use. This section lists special rules,
features and commands that require in-depth explanations. The subsections
listed below are used to explain built-in functionality:

Commands
Modifiers
Variables
Expressions
Input Grammar

EXAMPLES
This section provides examples of usage or of how to use a command or
function. Wherever possible a complete example including command line entry
and machine response is shown. Whenever an example is given, the prompt is
shown as

example%

or if the user must be super-user,

example#

Examples are followed by explanations, variable substitution rules, or returned
values. Most examples illustrate concepts from the SYNOPSIS, DESCRIPTION,
OPTIONS and USAGE sections.

ENVIRONMENT
This section lists any environment variables that the command or function
affects, followed by a brief description of the effect.

EXIT STATUS
This section lists the values the command returns to the calling program or shell
and the conditions that cause these values to be returned. Usually, zero is
returned for successful completion and values other than zero for various error
conditions.

FILES

Preface v

This section lists all filenames referred to by the man page, files of interest, and
files created or required by commands. Each is followed by a descriptive
summary or explanation.

ATTRIBUTES
This section lists characteristics of commands, utilities, and device drivers by
defining the attribute type and its corresponding value. (See attributes(5) for
more information.)

SEE ALSO
This section lists references to other man pages, in-house documentation and
outside publications.

DIAGNOSTICS
This section lists diagnostic messages with a brief explanation of the condition
causing the error. Messages appear in bold font with the exception of variables,
which are in italic font.

WARNINGS
This section lists warnings about special conditions which could seriously affect
your working conditions — this is not a list of diagnostics.

NOTES
This section lists additional information that does not belong anywhere else on
the page. It takes the form of an aside to the user, covering points of special
interest. Critical information is never covered here.

BUGS
This section describes known bugs and wherever possible suggests
workarounds.

vi

Headers, Environments, and Macros Intro (5)

NAME Intro, intro − introduction to miscellany

DESCRIPTION Among the topics presented in this section are:

Headers The header (.h) files fcntl, floatingpoint, math, langinfo, nl_types, sig-
info, signal, stat, stdarg, types, ucontext, values, varargs, and wait (on
the wstat page) are described.

Environments The user environment (environ), the subset of the user environment that
depends on language and cultural conventions (locale), the large file
compilation environment (lfcompile), and the transitional compilation
environment (lfcompile64) are described.

Macros The macros to format Reference Manual pages (man and mansun) as
well as other text format macros (me, mm, and ms) are described.

Characters Tables of character sets (ascii, charmap, eqnchar, and iconv), file format
notation (formats), file name pattern matching (fnmatch), and regular
expressions (regex and regexp) are presented.

FNS Topics concerning the Federated Naming Service (fns,
fns_initial_context, fns_policies, and fns_references) are discussed.

Standards The POSIX (IEEE) Standards and the X/Open Specifications are
described on the standards page.

CONTENTS The contents of this section are as follows:

Name Description

advance(5) See regexp(5)

architecture(5) See attributes(5)

ascii(5) map of ASCII character set

attributes(5) characteristics of commands, utilities, and device drivers

availability(5) See attributes(5)

charmap(5) character set description file

compile(5) See regexp(5)

CSI(5) See attributes(5)

environ(5) user environment

eqnchar(5) special character definitions for eqn

extensions(5) localedef extensions description file

fcntl(5) file control options

filesystem(5) file system organization

floatingpoint(5) IEEE floating point definitions

modified 12 Oct 1996 SunOS 5.6 5-5

Intro (5) Headers, Environments, and Macros

fnmatch(5) file name pattern matching

fns(5) overview of FNS

fns_dns(5) overview of FNS over DNS implementation

fns_files(5) overview of FNS over files implementation

fns_initial_context(5) overview of the FNS Initial Context

fns_nis+(5) overview of FNS over NIS+ implementation

fns_nis(5) overview of FNS over NIS (YP) implementation

fns_policies(5) overview of the FNS Policies

fns_references(5) overview of FNS References

fns_x500(5) overview of FNS over X.500 implementation

formats(5) file format notation

iconv(5) code set conversion tables

iconv_1250(5) code set conversion tables for MS 1250 (Windows Latin
2)

iconv_1251(5) code set conversion tables for MS 1251 (Windows Cyril-
lic)

iconv_646(5) code set conversion tables for ISO 646

iconv_852(5) code set conversion tables for MS 852 (MS-DOS Latin 2)

iconv_8859-1(5) code set conversion tables for ISO 8859-1 (Latin 1)

iconv_8859-2(5) code set conversion tables for ISO 8859-2 (Latin 2)

iconv_8859-5(5) code set conversion tables for ISO 8859-5 (Cyrillic)

iconv_dhn(5) code set conversion tables for DHN (Dom Handlowy
Nauki)

iconv_koi8-r(5) code set conversion tables for KOI8-R

iconv_mac_cyr(5) code set conversion tables for Macintosh Cyrillic

iconv_maz(5) code set conversion tables for Mazovia

iconv_pc_cyr(5) code set conversion tables for Alternative PC Cyrillic

iconv_unicode(5) code set conversion tables for Unicode

in(5) Internet Protocol family

inet(5) definitions for internet operations

interface64(5) 64-bit transitional interfaces

isalist(5) the native instruction sets known to Solaris software

langinfo(5) language information constants

largefile(5) large file status of utilities

lfcompile(5) large file compilation environment

lfcompile64(5) transitional compilation environment

5-6 SunOS 5.6 modified 12 Oct 1996

Headers, Environments, and Macros Intro (5)

locale(5) subset of a user’s environment that depends on
language and cultural conventions

man(5) macros to format Reference Manual pages

mansun(5) macros to format Reference Manual pages

math(5) math functions and constants

me(5) macros for formatting papers

mm(5) text formatting (memorandum) macros

ms(5) text formatting macros

MT-Level(5) See attributes(5)

netdb(5) definitions for network database operations

nfssec(5) overview of NFS security modes

nl_types(5) native language data types

pam_dial_auth(5) authentication management PAM module for dialups

pam_rhosts_auth(5) authentication management PAM module using
ruserok()

pam_sample(5) a sample PAM module

pam_unix(5) authentication, account, session, and password manage-
ment PAM modules for UNIX

POSIX(5) See standards(5)

posix(5) See standards(5)

POSIX.1(5) See standards(5)

posix.1(5) See standards(5)

POSIX.2(5) See standards(5)

posix.2(5) See standards(5)

prof(5) profile within a function

regex(5) internationalized basic and extended regular expression
matching

regexp(5) simple regular expression compile and match routines

siginfo(5) signal generation information

signal(5) base signals

socket(5) Internet Protocol family

stability(5) See attributes(5)

standards(5) standards and specifications supported by Solaris

stat(5) data returned by stat system call

stdarg(5) handle variable argument list

step(5) See regexp(5)

modified 12 Oct 1996 SunOS 5.6 5-7

Intro (5) Headers, Environments, and Macros

sticky(5) mark files for special treatment

term(5) conventional names for terminals

types(5) primitive system data types

ucontext(5) user context

un(5) definitions for UNIX-domain sockets

unistd(5) standard symbolic constants and types

values(5) machine-dependent values

varargs(5) handle variable argument list

vgrindefs(5) vgrind’s language definition data base

wstat(5) wait status

XNET(5) See standards(5)

xnet(5) See standards(5)

XNET4(5) See standards(5)

xnet4(5) See standards(5)

XPG(5) See standards(5)

xpg(5) See standards(5)

XPG3(5) See standards(5)

xpg3(5) See standards(5)

XPG4(5) See standards(5)

xpg4(5) See standards(5)

XPG4v2(5) See standards(5)

xpg4v2(5) See standards(5)

5-8 SunOS 5.6 modified 12 Oct 1996

Headers, Environments, and Macros ascii (5)

NAME ascii − map of ASCII character set

SYNOPSIS cat /usr/pub/ascii

DESCRIPTION /usr/pub/ascii is a map of the ASCII character set, to be printed as needed. It contains
octal and hexadecimal values for each character. While not included in that file, a chart
of decimal values is also shown here.

Octal — Character
000 NUL 001 SOH 002 STX 003 ETX 004 EOT 005 ENQ 006 ACK 007 BEL
010 BS 011 HT 012 NL 013 VT 014 NP 015 CR 016 SO 017 SI
020 DLE 021 DC1 022 DC2 023 DC3 024 DC4 025 NAK 026 SYN 027 ETB
030 CAN 031 EM 032 SUB 033 ESC 034 FS 035 GS 036 RS 037 US
040 SP 041 ! 042 " 043 # 044 $ 045 % 046 & 047 ´
050 (051) 052 ∗ 053 + 054 , 055 − 056 . 057 /
060 0 061 1 062 2 063 3 064 4 065 5 066 6 067 7
070 8 071 9 072 : 073 ; 074 < 075 = 076 > 077 ?
100 @ 101 A 102 B 103 C 104 D 105 E 106 F 107 G
110 H 111 I 112 J 113 K 114 L 115 M 116 N 117 O
120 P 121 Q 122 R 123 S 124 T 125 U 126 V 127 W
130 X 131 Y 132 Z 133 [134 135] 136 ˆ 137 _
140 ` 141 a 142 b 143 c 144 d 145 e 146 f 147 g
150 h 151 i 152 j 153 k 154 l 155 m 156 n 157 o
160 p 161 q 162 r 163 s 164 t 165 u 166 v 167 w
170 x 171 y 172 z 173 { 174 175 } 176 ˜

Hexadecimal — Character
00 NUL 01 SOH 02 STX 03 ETX 04 EOT 05 ENQ 06 ACK 07 BEL
08 BS 09 HT 0A NL 0B VT 0C NP 0D CR 0E SO 0F SI
10 DLE 11 DC1 12 DC2 13 DC3 14 DC4 15 NAK 16 SYN 17 ETB
18 CAN 19 EM 1A SUB 1B ESC 1C FS 1D GS 1E RS 1F US
20 SP 21 ! 22 " 23 # 24 $ 25 % 26 & 27 ´
28 (29) 2A ∗ 2B + 2C , 2D − 2E . 2F /
30 0 31 1 32 2 33 3 34 4 35 5 36 6 37 7
38 8 39 9 3A : 3B ; 3C < 3D = 3E > 3F ?
40 @ 41 A 42 B 43 C 44 D 45 E 46 F 47 G
48 H 49 I 4A J 4B K 4C L 4D M 4E N 4F O
50 P 51 Q 52 R 53 S 54 T 55 U 56 V 57 W
58 X 59 Y 5A Z 5B [5C 5D] 5E ˆ 5F _
60 ` 61 a 62 b 63 c 64 d 65 e 66 f 67 g
68 h 69 i 6A j 6B k 6C l 6D m 6E n 6F o
70 p 71 q 72 r 73 s 74 t 75 u 76 v 77 w
78 x 79 y 7A z 7B { 7C 7D } 7E ˜

modified 11 Aug 1994 SunOS 5.6 5-9

ascii (5) Headers, Environments, and Macros

Decimal — Character
0 NUL 1 SOH 2 STX 3 ETX 4 EOT 5 ENQ 6 ACK 7 BEL
8 BS 9 HT 10 NL 11 VT 12 NP 13 CR 14 SO 15 SI
16 DLE 17 DC1 18 DC2 19 DC3 20 DC4 21 NAK 22 SYN 23 ETB
24 CAN 25 EM 26 SUB 27 ESC 28 FS 29 GS 30 RS 31 US
32 SP 33 ! 34 " 35 # 36 $ 37 % 38 & 39 ´
40 (41) 42 ∗ 43 + 44 , 45 − 46 . 47 /
48 0 49 1 50 2 51 3 52 4 53 5 54 6 55 7
56 8 57 9 58 : 59 ; 60 < 61 = 62 > 63 ?
64 @ 65 A 66 B 67 C 68 D 69 E 70 F 71 G
72 H 73 I 74 J 75 K 76 L 77 M 78 N 79 O
80 P 81 Q 82 R 83 S 84 T 85 U 86 V 87 W
88 X 89 Y 90 Z 91 [92 93] 94 ˆ 95 _
96 ` 97 a 98 b 99 c 100 d 101 e 102 f 103 g
104 h 105 i 106 j 107 k 108 l 109 m 110 n 111 o
112 p 113 q 114 r 115 s 116 t 117 u 118 v 119 w
120 x 121 y 122 z 123 { 124 125 } 126 ˜

FILES /usr/pub/ascii On-line chart of octal and hexadecimal values for the ASCII charac-
ter set.

5-10 SunOS 5.6 modified 11 Aug 1994

Headers, Environments, and Macros attributes (5)

NAME attributes, architecture, availability, CSI, stability, MT-Level − characteristics of com-
mands, utilities, and device drivers

DESCRIPTION The ATTRIBUTES man page section contains a table (see below) defining attribute types
and their corresponding values.

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC
Availability SUNcsu
CSI Enabled
Interface Stability Unstable
MT-Level Safe

Architecture Architecture defines processor or specific hardware. (See −p option of uname(1)). In
some cases, it may indicate required adapters or peripherals.

Availability This refers to the software package which contains the command or component being
described on the man page. To be able to use the command, the indicated package must
have been installed. For information on how to add a package see pkgadd(1M).

Code Set
Independence (CSI)

OS utilities and libraries which are free of dependencies on the properties of any code sets
are said to have Code Set Independence (CSI). They have the attribute of being CSI
enabled. This is in contrast to many commands and utilities in Solaris, for example, that
work only with Extended Unix Codesets (EUC), an encoding method that allows con-
current support for up to four code sets and is commonly used to represent Asian charac-
ter sets.

However, for practical reasons, this independence is not absolute. Certain assumptions
are still applied to the current CSI implementation:

· File code is a superset of ASCII.

· In order to support multi-byte characters and NULL-terminated UNIX file names, the
NULL and / (slash) characters cannot be part of any multi-byte characters.

· Only "stateless" file code encodings are supported. Stateless encoding avoids shift,
locking shift, designation, invocation, and so forth, although single shift is not
excluded.

· Process code (wchar_t values) is implementation dependent and can change over time
or between implementations or between locales.

modified 3 June 1997 SunOS 5.6 5-11

attributes (5) Headers, Environments, and Macros

· Not every object in Solaris 2.x can have names composed of arbitrary characters. The
names of the following objects must be composed of ASCII characters:

− User names, group name, and passwords
− System name
− Names of printers and special devices
− Names of terminals (/dev/tty∗)
− Process ID numbers
− Message queues, semaphores, and shared memory labels.

· The following may be composed of ISO Latin-1 or EUC characters:

− File names
− Directory names
− Command names
− Shell variables and environmental variable names
− Mount points for file systems
− NIS key names and domain names

· The names of NFS shared files should be composed of ASCII characters. Although files
and directories may have names and contents composed of characters from non-ASCII
code sets, using only the ASCII codeset allows NFS mounting across any machine,
regardless of localization.

For the commands and utilities that are CSI enabled, all can handle single-byte and
multi-byte locales released in 2.6.

For applications to get full support of internationalization services, dynamic binding has
to be applied. Statically bound programs will only get support for C and POSIX locales.

Interface Stability Sun often provides developers with early access to new technologies, which allows
developers to evaluate with them as soon as possible. Unfortunately, new technologies
are prone to changes and standardization often results in interface incompatibility from
previous versions.

To make reasonable risk assessments, developers need to know how likely an interface is
to change in future releases. To aid developers in making these assessments, interface sta-
bility information is included on some manual pages for commands, entry-points, and
file formats.

The more stable interfaces can safely be used by nearly all applications, because Sun will
endeavor to ensure that these continue to work in future minor releases. Applications
that depend only on Standard and Stable interfaces should reliably continue to function
correctly on future minor releases (but not necessarily on earlier major releases).

The less stable interfaces allow experimentation and prototyping, but should be used
only with the understanding that they might change incompatibly or even be dropped or
replaced with alternatives in future minor releases.

“Interfaces” that Sun does not document (for example, most kernel data structures and
some symbols in system header files) may be implementation artifacts. Such internal
interfaces are not only subject to incompatible change or removal, but we are unlikely to

5-12 SunOS 5.6 modified 3 June 1997

Headers, Environments, and Macros attributes (5)

mention such a change in release notes.

Release Levels Products are given release levels, as well as names, to aid compatibility discussions. Each
release level may also include changes suitable for lower levels.

Release Version Significance

Major x.0 Likely to contain major feature additions;
adhere to different, possibly incompatible
Standard revisions; and though unlikely,
could change, drop, or replace Standard or
Stable interfaces. Initial product releases are
usually 1.0.

Minor x.y Compared to an x.0 or earlier release (y!=0),
it’s likely to contain: minor feature additions,
compatible Standard and Stable interfaces,
possibly incompatible Evolving interfaces, or
likely incompatible Unstable interfaces.

Micro x.y.z Intended to be interface compatible with the
previous release (z!=0), but likely to add bug
fixes, performance enhancements, and sup-
port for additional hardware.

Classifications The following table summarizes how stability level classifications relate to release level.
For a complete discussion of individual classifications, see the appropriate subsection
below.

Release Level
Stability for Incompatible
Level Changes Other Comments

Standard Major (x.0) Actual or de facto.

Stable Major (x.0) Incompatibilities are exceptional.

Evolving Minor (x.y) Migration advice might accompany an incom-
patibility.

Unstable Minor (x.y) Experimental or transitional: incompatibilities
are common.

Obsolete Minor (x.y) Deprecated interface: likely to be removed in a
future minor release.

The interface stability levels described in this manual page apply to both source and
binary interfaces unless otherwise stated. The stability level of each interface is unknown
unless explicitly stated.

modified 3 June 1997 SunOS 5.6 5-13

attributes (5) Headers, Environments, and Macros

Standard: organization_name, standard_name, version
The documented command or function complies with the standard listed.
Most of these interfaces are defined by a formal standard, and controlled by
a standards organization. Changes will usually be made in accordance with
approved changes to that standard. This stability level can also apply to
interfaces that have been adopted (without a formal standard) by an "indus-
try convention."

Support is provided for only the specified version(s) of a standard; support
of later versions is not guaranteed. If the standards organization approves
a non-upwards-compatible change to a Standard interface that Sun decides
to support, we will announce a compatibility and migration strategy.

Stable A Stable interface is a mature interface under Sun’s control. Sun will try to
avoid non-upwards-compatible changes to these interfaces, especially in
minor or micro releases.

If support of a Stable interface must be discontinued, Sun will attempt to
provide notification and the stability level changes to Obsolete.

Evolving An Evolving interface may eventually become Standard or Stable but is still
in transition.

Sun will make reasonable efforts to ensure compatibility with previous
releases as it evolves. When non-upwards compatible changes become
necessary, they will occur in minor and major releases; such changes will be
avoided in micro releases whenever possible. If such a change is necessary,
it will be documented in the release notes for the effected release, and when
feasible, Sun will provide migration aids for binary compatibility and con-
tinued source development.

Unstable An Unstable interface is provided to give developers early access to new or
rapidly changing technology or as an interim solution to a problem for
which a more stable solution is anticipated in the future.

For Unstable interfaces, Sun no claims about either source or binary compa-
tibility from one minor release to another. Applications developed based
on these interfaces may not work in future minor releases.

Obsolete: Scheduled for removal after event
An Obsolete interface is supported in the current release, but is scheduled
to be removed in a future (minor) release. When support of an interface is
to be discontinued, Sun will attempt to provide notification before discon-
tinuing support. Use of an Obsolete interface may produce warning mes-
sages.

MT-Level Libraries are classified into four categories which define their ability to support multiple
threads. Manual pages containing routines that are of multiple or differing levels show
this within their NOTES section.

5-14 SunOS 5.6 modified 3 June 1997

Headers, Environments, and Macros attributes (5)

Safe Safe is an attribute of code that can be called from a multithreaded applica-
tion. The effect of calling into a Safe interface or a safe code segment is that
the results are valid even when called by multiple threads. Often over-
looked is the fact that the result of this Safe interface or safe code segment
can have global consequences that affect all threads. For example, the
action of opening or closing a file from one thread is visible by all the
threads within a process. A multi-threaded application has the responsibil-
ity for using these interfaces in a safe manner, which is different from
whether or not the interface is Safe. For example, a multi-threaded applica-
tion that closes a file that is still in use by other threads within the applica-
tion is not using the close(2) interface safely.

Unsafe An Unsafe library contains global and static data that is not protected. It is
not safe to use unless the application arranges for only one thread at time to
execute within the library. Unsafe libraries may contain routines that are
Safe; however, most of the library’s routines are unsafe to call.

The following table contains reentrant counterparts for Unsafe functions.
This table is subject to change by Sun.

Reentrant functions for libc:

Unsafe Function Reentrant counterpart
ctime ctime_r
localtime localtime_r
asctime asctime_r
gmtime gmtime_r
ctermid ctermid_r
getlogin getlogin_r
rand rand_r
readdir readdir_r
strtok strtok_r
tmpnam tmpnam_r

MT-Safe An MT-Safe library is fully prepared for multithreaded access. It protects its
global and static data with locks, and can provide a reasonable amount of
concurrency. Note that a library can be safe to use, but not MT-Safe. For
example, surrounding an entire library with a monitor makes the library
Safe, but it supports no concurrency so it is not considered MT-Safe. An
MT-Safe library must permit a reasonable amount of concurrency. (This
definition’s purpose is to give precision to what is meant when a library is
described as Safe. The definition of a Safe library does not specify if the
library supports concurrency. The MT-Safe definition makes it clear that
the library is Safe, and supports some concurrency. This clarifies the Safe
definition, which can mean anything from being single threaded to being
any degree of multithreaded.)

modified 3 June 1997 SunOS 5.6 5-15

attributes (5) Headers, Environments, and Macros

Async-Signal-Safe
Async-Signal-Safe refers to particular library routines that can be safely
called from a signal handler. A thread that is executing an Async-Signal-
Safe routine will not deadlock with itself if interrupted by a signal. Signals
are only a problem for MT-Safe routines that acquire locks.

Signals are disabled when locks are acquired in Async-Signal-Safe routines.
This prevents a signal handler that might acquire the same lock from being
called.

The list of Async-Signal-Safe functions includes:

_exit access aio_error
aio_return aio_suspend alarm
cfgetispeed cfgetospeed cfsetispeed
cfsetospeed chdir chmod
chown clock_gettime close
creat dup dup2
execle execve fcntl
fdatasync fork fstat
fsync getegid geteuid
getgid getgroups getpgrp
getpid getppid getuid
kill link lseek
mkdir mkfifo open
pathconf pause pipe
read rename rmdir
sem_post sema_post setgid
setpgid setsid setuid
sigaction sigaddset sigdelset
sigemptyset sigfillset sigismember
sigpending sigprocmask sigqueue
sigsuspend sleep stat
sysconf tcdrain tcflow
tcflush tcgetattr tcgetpgrp
tcsendbreak tcsetattr tcsetpgrp
thr_kill thr_sigsetmask time
timer_getoverrun timer_gettime timer_settime
times umask uname
unlink utime wait
waitpid write

MT-Safe with Exceptions
See the NOTES sections of these pages for a description of the exceptions.

Safe with Exceptions
See the NOTES sections of these pages for a description of the exceptions.

5-16 SunOS 5.6 modified 3 June 1997

Headers, Environments, and Macros attributes (5)

Fork1-Safe
A Fork1-Safe library releases the locks it had held whenever fork1(2) is called in a
Solaris thread program, or fork(2) in a POSIX (see standards(5)) thread program.
Calling fork(2) in a POSIX thread program has the same semantic as calling
fork1(2) in a Solaris thread program. All system calls, libpthread, and libthread
are Fork1-Safe. Otherwise, you should handle the locking clean-up yourself (see
pthread_atfork(3T)).

Cancel-Safety
If a multi-threaded application uses pthread_cancel(3T) to cancel (that is, kill) a
thread, it is possible that the target thread is killed while holding a resource, such
as a lock or allocated memory. If the thread has not installed the appropriate
cancellation cleanup handlers to release the resources appropriately (see
pthread_cancel(3T)), the application is "cancel-unsafe", that is, it is not safe with
respect to cancellation. This unsafety could result in deadlocks due to locks not
released by a thread that gets cancelled, or resource leaks; for example, memory
not being freed on thread cancellation. All applications that use
pthread_cancel(3T) should ensure that they operate in a Cancel-Safe environ-
ment.

Libraries that have cancellation points and which acquire resources such as locks
or allocate memory dynamically, also contribute to the cancel-unsafety of appli-
cations that are linked with these libraries. This introduces another level of safety
for libraries in a multi-threaded program: Cancel-Safety.

There are two sub-categories of Cancel-Safety: Deferred-Cancel-Safety, and
Asynchronous-Cancel-Safety.

An application is considered to be Deferred-Cancel-Safe when it is Cancel-Safe
for threads whose cancellation type is PTHREAD_CANCEL_DEFERRED.

An application is considered to be Asynchronous-Cancel-Safe when it is Cancel-
Safe for threads whose cancellation type is
PTHREAD_CANCEL_ASYNCHRONOUS.

Deferred-Cancel-Safety is easier to achieve than Asynchronous-Cancel-Safety,
since a thread with the deferred cancellation type can be cancelled only at well-
defined cancellation points, whereas a thread with the asynchronous cancellation
type can be cancelled anywhere. Since all threads are created by default to have
the deferred cancellation type, it may never be necessary to worry about asyn-
chronous cancel safety. Indeed, most applications and libraries are expected to
always be Asynchronous-Cancel-Unsafe.

An application which is Asynchronous-Cancel-Safe is also, by definition,
Deferred-Cancel-Safe.

SEE ALSO uname(1), pkgadd(1M), Intro(3), standards(5)

modified 3 June 1997 SunOS 5.6 5-17

charmap (5) Headers, Environments, and Macros

NAME charmap − character set description file

DESCRIPTION A character set description file or charmap defines characteristics for a coded character set.
Other information about the coded character set may also be in the file. Coded character
set character values are defined using symbolic character names followed by character
encoding values.

The character set description file provides:

· The capability to describe character set attributes (such as collation order or
character classes) independent of character set encoding, and using only the
characters in the portable character set. This makes it possible to create gen-
eric localedef(1) source files for all codesets that share the portable character
set.

· Standardized symbolic names for all characters in the portable character set,
making it possible to refer to any such character regardless of encoding.

Symbolic Names Each symbolic name is included in the file and is mapped to a unique encoding value
(except for those symbolic names that are shown with identical glyphs). If the control
characters commonly associated with the symbolic names in the following table are sup-
ported by the implementation, the symbolic names and their corresponding encoding
values are included in the file. Some of the encodings associated with the symbolic
names in this table may be the same as characters in the portable character set table.

<ACK> <DC2> <ENQ> <FS> <IS4> <SOH>
<BEL> <DC3> <EOT> <GS> <LF> <STX>
<BS> <DC4> <ESC> <HT> <NAK> <SUB>

<CAN> <ETB> <IS1> <RS> <SYN>
<CR> <DLE> <ETX> <IS2> <SI> <US>

<DC1> <FF> <IS3> <SO> <VT>

Declarations The following declarations can precede the character definitions. Each must consist of
the symbol shown in the following list, starting in column 1, including the surrounding
brackets, followed by one or more blank characters, followed by the value to be assigned
to the symbol.

<code_set_name> The name of the coded character set for which the character set
description file is defined.

<mb_cur_max> The maximum number of bytes in a multi-byte character. This
defaults to 1.

<mb_cur_min> An unsigned positive integer value that defines the minimum
number of bytes in a character for the encoded character set.

<escape_char> The escape character used to indicate that the characters following
will be interpreted in a special way, as defined later in this section.
This defaults to backslash (\), which is the character glyph used

5-18 SunOS 5.6 modified 3 May 1995

Headers, Environments, and Macros charmap (5)

in all the following text and examples, unless otherwise noted.

<comment_char> The character that when placed in column 1 of a charmap line, is
used to indicate that the line is to be ignored. The default charac-
ter is the number sign (#).

Format The character set mapping definitions will be all the lines immediately following an
identifier line containing the string CHARMAP starting in column 1, and preceding a
trailer line containing the string END CHARMAP starting in column 1. Empty lines and
lines containing a <comment_char> in the first column will be ignored. Each non-
comment line of the character set mapping definition (that is, between the CHARMAP and
END CHARMAP lines of the file) must be in either of two forms:

"%s %s %s\n",<symbolic-name>,<encoding>,<comments>

or
"%s. . .%s %s %s\n",<symbolic-name>,<symbolic-name>, <encoding>,<comments>

In the first format, the line in the character set mapping definition defines a single sym-
bolic name and a corresponding encoding. A character following an escape character is
interpreted as itself; for example, the sequence <\\\>> represents the symbolic name \>
enclosed between angle brackets.

In the second format, the line in the character set mapping definition defines a range of
one or more symbolic names. In this form, the symbolic names must consist of zero or
more non-numeric characters, followed by an integer formed by one or more decimal
digits. The characters preceding the integer must be identical in the two symbolic names,
and the integer formed by the digits in the second symbolic name must be equal to or
greater than the integer formed by the digits in the first name. This is interpreted as a
series of symbolic names formed from the common part and each of the integers between
the first and the second integer, inclusive. As an example, <j0101>. . .<j0104> is inter-
preted as the symbolic names <j0101>, <j0102>, <j0103>, and <j0104>, in that order.

A character set mapping definition line must exist for all symbolic names and must
define the coded character value that corresponds to the character glyph indicated in the
table, or the coded character value that corresponds with the control character symbolic
name. If the control characters commonly associated with the symbolic names are sup-
ported by the implementation, the symbolic name and the corresponding encoding value
must be included in the file. Additional unique symbolic names may be included. A
coded character value can be represented by more than one symbolic name.

The encoding part is expressed as one (for single-byte character values) or more con-
catenated decimal, octal or hexadecimal constants in the following formats:

"%cd%d",<escape_char>,<decimal byte value>
"%cx%x",<escape_char>,<hexadecimal byte value>
"%c%o",<escape_char>,<octal byte value>

Decimal Constants Decimal constants must be represented by two or three decimal digits, preceded by the
escape character and the lower-case letter d; for example, \d05, \d97, or \d143. Hexade-
cimal constants must be represented by two hexadecimal digits, preceded by the escape

modified 3 May 1995 SunOS 5.6 5-19

charmap (5) Headers, Environments, and Macros

character and the lower-case letter x; for example, \x05, \x61, or \x8f. Octal constants
must be represented by two or three octal digits, preceded by the escape character; for
example, \05, \141, or \217. In a portable charmap file, each constant must represent an
8-bit byte. Implementations supporting other byte sizes may allow constants to represent
values larger than those that can be represented in 8-bit bytes, and to allow additional
digits in constants. When constants are concatenated for multi-byte character values,
they must be of the same type, and interpreted in byte order from first to last with the
least significant byte of the multi-byte character specified by the last constant.

Ranges of Symbolic
Names

In lines defining ranges of symbolic names, the encoded value is the value for the first
symbolic name in the range (the symbolic name preceding the ellipsis). Subsequent sym-
bolic names defined by the range will have encoding values in increasing order. For
example, the line

<j0101>. . .<j0104> \d129\d254

will be interpreted as:

<j0101> \d129\d254
<j0102> \d129\d255
<j0103> \d130\d0
<j0104> \d130\d1

Note that this line will be interpreted as the example even on systems with bytes larger
than 8 bits. The comment is optional.

SEE ALSO locale(1), localedef(1), nl_langinfo(3C), extensions(5), locale(5)

5-20 SunOS 5.6 modified 3 May 1995

Headers, Environments, and Macros environ (5)

NAME environ − user environment

DESCRIPTION When a process begins execution, exec routines make available an array of strings called
the environment; see exec(2). By convention, these strings have the form variable=value,
for example, PATH=/sbin:/usr/sbin. These environmental variables provide a way to
make information about a program’s environment available to programs.

A name may be placed in the environment by the export command and name=value argu-
ments in sh(1), or by exec(2). It is unwise to conflict with certain shell variables that are
frequently exported by .profile files: MAIL, PS1, PS2, IFS; see profile(4).

The following environmental variables can be used by applications and are expected to
be set in the target run-time environment.

HOME The name of the user’s login directory, set by login(1) from the password
file; see passwd(4).

LANG The string used to specify internationalization information that allows users
to work with different national conventions. The setlocale(3C) function
checks the LANG environment variable when it is called with "" as the locale
argument. LANG is used as the default locale if the corresponding environ-
ment variable for a particular category is unset or null. If, however, LC_ALL
is set to a valid, non-empty value, its contents are used to override both the
LANG and the other LC_∗ variables.

For example, when setlocale() is invoked as

setlocale(LC_CTYPE, ""),

setlocale() will query the LC_CTYPE environment variable first to see if it is
set and non-null. If LC_CTYPE is not set or null, then setlocale() will check
the LANG environment variable to see if it is set and non-null. If both
LANG and LC_CTYPE are unset or NULL, the default "C" locale will be used
to set the LC_CTYPE category.

Most commands will invoke
setlocale(LC_ALL, "")

prior to any other processing. This allows the command to be used with
different national conventions by setting the appropriate environment vari-
ables.

The following environment variables correspond to each category of
setlocale(3C):

LC_ALL If set to a valid, non-empty string value, override the
values of LANG and all the other LC_∗ variables.

LC_COLLATE This category specifies the character collation sequence
being used. The information corresponding to this
category is stored in a database created by the localedef(1)
command. This environment variable affects strcoll(3C)
and strxfrm(3C).

modified 11 Jul 1996 SunOS 5.6 5-21

environ (5) Headers, Environments, and Macros

LC_CTYPE This category specifies character classification, character
conversion, and widths of multibyte characters. When
LC_CTYPE is set to a valid value, the calling utility can
display and handle text and file names containing valid
characters for that locale; Extended Unix Code (EUC) char-
acters where any individual character can be 1, 2, or 3
bytes wide; and EUC characters of 1, 2, or 3 column
widths. The default "C" locale corresponds to the 7-bit
ASCII character set; only characters from ISO 8859-1 are
valid. The information corresponding to this category is
stored in a database created by the localedef(1) command.
This environment variable is used by ctype(3C),
mblen(3C), and many commands, such as cat(1), ed(1),
ls(1), and vi(1).

LC_MESSAGES This category specifies the language of the message data-
base being used. For example, an application may have
one message database with French messages, and another
database with German messages. Message databases are
created by the mkmsgs(1) command. This environment
variable is used by exstr(1), gettxt(1), srchtxt(1), gettxt(3C),
and gettext(3C).

LC_MONETARY This category specifies the monetary symbols and delim-
iters used for a particular locale. The information
corresponding to this category is stored in a database
created by the localedef(1) command. This environment
variable is used by localeconv(3C).

LC_NUMERIC This category specifies the decimal and thousands delim-
iters. The information corresponding to this category is
stored in a database created by the localedef(1) command.
The default C locale corresponds to "." as the decimal del-
imiter and no thousands delimiter. This environment vari-
able is used by localeconv(3C), printf(3S), and strtod(3C).

LC_TIME This category specifies date and time formats. The infor-
mation corresponding to this category is stored in a data-
base specified in localdef(1). The default C locale
corresponds to U.S. date and time formats. This environ-
ment variable is used by many commands and functions;
for example: at(1), calendar(1), date(1), strftime(3C), and
getdate(3C).

MSGVERB Controls which standard format message components fmtmsg selects when
messages are displayed to stderr; see fmtmsg(1) and fmtmsg(3C).

NETPATH A colon-separated list of network identifiers. A network identifier is a char-
acter string used by the Network Selection component of the system to

5-22 SunOS 5.6 modified 11 Jul 1996

Headers, Environments, and Macros environ (5)

provide application-specific default network search paths. A network
identifier must consist of non-NULL characters and must have a length of at
least 1. No maximum length is specified. Network identifiers are normally
chosen by the system administrator. A network identifier is also the first
field in any /etc/netconfig file entry. NETPATH thus provides a link into the
/etc/netconfig file and the information about a network contained in that
network’s entry. /etc/netconfig is maintained by the system administrator.
The library routines described in getnetpath(3N) access the NETPATH
environment variable.

NLSPATH Contains a sequence of templates which catopen(3C) and gettext(3C) use
when attempting to locate message catalogs. Each template consists of an
optional prefix, one or more substitution fields, a filename and an optional
suffix.

For example:

NLSPATH="/system/nlslib/%N.cat"

defines that catopen() should look for all message catalogs in the directory
/system/nlslib, where the catalog name should be constructed from the
name parameter passed to catopen(), %N, with the suffix .cat.

Substitution fields consist of a % symbol, followed by a single-letter key-
word. The following keywords are currently defined:

%N The value of the name parameter passed to catopen().
%L The value of LANG or LC_MESSAGES.
%l The language element from LANG or LC_MESSAGES.
%t The territory element from LANG or LC_MESSAGES.
%c The codeset element from LANG or LC_MESSAGES.
%% A single % character.

An empty string is substituted if the specified value is not currently defined.
The separators ‘‘_’’ and ‘‘.’’ are not included in %t and %c substitutions.

Templates defined in NLSPATH are separated by colons (:). A leading colon
or two adjacent colons (::) is equivalent to specifying %N.

For example:

NLSPATH=":%N.cat:/nlslib/%L/%N.cat"

indicates to catopen() that it should look for the requested message catalog
in name, name.cat and /nlslib/$LANG/name.cat. For gettext(), %N automat-
ically maps to "messages".

If NLSPATH is unset or NULL, catopen() and gettext() call setlocale(3C),
which checks LANG and the LC_∗ variables to locate the message catalogs.

NLSPATH will normally be set up on a system wide basis (in /etc/profile)
and thus makes the location and naming conventions associated with mes-
sage catalogs transparent to both programs and users.

modified 11 Jul 1996 SunOS 5.6 5-23

environ (5) Headers, Environments, and Macros

PATH The sequence of directory prefixes that sh(1), time(1), nice(1), nohup(1),
and other utilities apply in searching for a file known by an incomplete path
name. The prefixes are separated by colons (:). login(1) sets
PATH=/usr/bin. For more detail, see sh(1).

SEV_LEVEL Define severity levels and associate and print strings with them in standard
format error messages; see addseverity(3C), fmtmsg(1), and fmtmsg(3C).

TERM The kind of terminal for which output is to be prepared. This information
is used by commands, such as vi(1), which may exploit special capabilities
of that terminal.

TZ Timezone information. The contents of this environment variable are used
by the functions ctime(3C), localtime(3C), strftime(3C), and mktime(3C) to
override the default timezone. If TZ is not in the following form, it desig-
nates a path to a timezone database file relative to /usr/share/lib/zoneinfo/,
ignoring the first character if it is a colon (:); otherwise, TZ has the form:

std offset [dst [offset], [start [/time], end [/time]]]

std and dst Three or more bytes that are the designation for the standard
(std) and daylight savings time (dst) timezones. Only std is
required. If dst is missing, then daylight savings time does not
apply in this locale. Upper- and lower-case letters are
allowed. Any characters except a leading colon (:), digits, a
comma (,), a minus (−) or a plus (+) are allowed.

offset Indicates the value one must add to the local time to arrive at
Coordinated Universal Time. The offset has the form:

hh [: mm [: ss]]

The minutes (mm) and seconds (ss) are optional. The hour
(hh) is required and may be a single digit. The offset following
std is required. If no offset follows dst , daylight savings time
is assumed to be one hour ahead of standard time. One or
more digits may be used; the value is always interpreted as a
decimal number. The hour must be between 0 and 24, and the
minutes (and seconds) if present between 0 and 59. Out of
range values may cause unpredictable behavior. If preceded
by a ‘‘−’’, the timezone is east of the Prime Meridian; other-
wise it is west (which may be indicated by an optional preced-
ing ‘‘+’’ sign).

start/time, end/time
Indicate when to change to and back from daylight savings
time, where start/time describes when the change from stan-
dard time to daylight savings time occurs, and end/time
describes when the change back happens. Each time field
describes when, in current local time, the change is made.

5-24 SunOS 5.6 modified 11 Jul 1996

Headers, Environments, and Macros environ (5)

The formats of start and end are one of the following:

Jn The Julian day n (1 ≤ n ≤ 365). Leap days are not
counted. That is, in all years, February 28 is day 59
and March 1 is day 60. It is impossible to refer to
the occasional February 29.

n The zero-based Julian day (0 ≤ n ≤ 365). Leap days
are counted, and it is possible to refer to February
29.

Mm.n.d The dth day, (0 ≤ d ≤ 6) of week n of month m of
the year (1 ≤ n ≤ 5, 1 ≤ m ≤ 12), where week 5
means ‘‘the last d-day in month m’’ which may
occur in either the fourth or the fifth week). Week
1 is the first week in which the dth day occurs.
Day zero is Sunday.

Implementation specific defaults are used for start and end if
these optional fields are not given.

The time has the same format as offset except that no leading
sign (‘‘−’’ or ‘‘+’’) is allowed. The default, if time is not given is
02:00:00.

SEE ALSO cat(1), date(1), ed(1), fmtmsg(1), localedef(1), login(1), ls(1), mkmsgs(1), nice(1),
nohup(1), sh(1), sort(1), time(1), vi(1), exec(2), addseverity(3C), catopen(3C), ctime(3C),
ctype(3C), fmtmsg(3C), getdate(3C), getnetpath(3N), gettext(3C), gettxt(3C),
localeconv(3C), mblen(3C), mktime(3C), printf(3S), setlocale(3C), strcoll(3C),
strftime(3C), strtod(3C), strxfrm(3C), netconfig(4), passwd(4), profile(4), TIMEZONE(4)

modified 11 Jul 1996 SunOS 5.6 5-25

eqnchar (5) Headers, Environments, and Macros

NAME eqnchar − special character definitions for eqn

SYNOPSIS eqn /usr/share/lib/pub/eqnchar [filename] � troff [options]

neqn /usr/share/lib/pub/eqnchar [filename] � nroff [options]

DESCRIPTION The eqnchar command contains troff(1) and nroff(1) character definitions for construct-
ing characters that are not available on the Graphic Systems typesetter. These definitions
are primarily intended for use with eqn(1) and neqn. It contains definitions for the fol-
lowing characters:

ciplus �+ | | || square �
citimes �× langle /

\ circle �
wig ∼ rangle \

/ blot �
-wig ≈ hbar h

�
bullet ·

>wig >∼ ppd �| prop ∝
<wig <∼ <-> ←→ empty ∅
=wig =∼∼ <=> <==> member ∈
star ∗ | < <| nomem ∈/
bigstar +× | > >| cup ∪
=dot =. ang /� cap ∩
orsign \\// rang |� incl |———
andsign //\\ 3dot

... subset ⊂
=del =

∆ thf ... supset ⊃
oppA \\//---- quarter 1⁄4 !subset ⊆
oppE ——

—�� 3quarter 3⁄4 !supset ⊇
angstrom A° degree °

FILES /usr/share/lib/pub/eqnchar

SEE ALSO eqn(1), nroff(1), troff(1)

5-26 SunOS 5.6 modified 25 Feb 1992

Headers, Environments, and Macros extensions (5)

NAME extensions − localedef extensions description file

DESCRIPTION A localedef extensions description file or extensions file defines various extensions for the
localedef(1) command.

The localedef extensions description file provides:

· EUC code set width information via the cswidth keyword:

cswidth bc1 : sw1,bc2 : sw2,bc3 : sw3

where bc1, bc2, and bc3 indicate the number of bytes (byte count) per charac-
ter for EUC codesets 1, 2, and 3, respectively. sw1, sw2, and sw3 indicate
screen width for EUC codesets 1, 2, and 3, respectively.

· Other extensions which will be documented in a future release.

SEE ALSO locale(1), localedef(1), environ(5), locale(5)

modified 20 Dec 1996 SunOS 5.6 5-27

fcntl (5) Headers, Environments, and Macros

NAME fcntl − file control options

SYNOPSIS #include <fcntl.h>

DESCRIPTION The <fcntl.h> header defines the following requests and arguments for use by the func-
tions fcntl(2) and open(2).

Values for cmd used by fcntl() (the following values are unique):
F_DUPFD Duplicate file descriptor.
F_DUP2FD Similar to F_DUPFD, but always returns arg .
F_GETFD Get file descriptor flags.
F_SETFD Set file descriptor flags.
F_GETFL Get file status flags.
F_SETFL Set file status flags.
F_GETOWN Get process or process group ID to receive SIGURG signals.
F_SETOWN Set process or process group ID to receive SIGURG signals.
F_FREESP Free storage space associated with a section of the ordinary file

fildes.
F_GETLK Get record locking information.
F_GETLK64 Equivalent to F_GETLK, but takes a struct flock64 argument

rather than a struct flock argument.
F_SETLK Set record locking information.
F_SETLK64 Equivalent to F_SETLK, but takes a struct flock64 argument

rather than a struct flock argument.
F_SETLKW Set record locking information; wait if blocked.
F_SETLKW64 Equivalent to F_SETLKW, but takes a struct flock64 argument

rather than a struct flock argument.
F_SHARE Set share reservation.
F_UNSHARE Remove share reservation.

File descriptor flags used for fcntl():
FD_CLOEXEC Close the file descriptor upon execution of an exec function (see

exec(2)).

Values for l_type used for record locking with fcntl() (the following values are unique):
F_RDLCK Shared or read lock.
F_UNLCK Unlock.
F_WRLCK Exclusive or write lock.

Values for f_access used for share reservations with fcntl() (the following values are
unique):

F_RDACC Read-only share reservation.
F_WRACC Write-only share reservation.
F_RWACC Read and write share reservation.

Values for f_deny used for share reservations with fcntl() (the following values are
unique):

F_COMPAT Compatibility mode share reservation.

5-28 SunOS 5.6 modified 4 Apr 1997

Headers, Environments, and Macros fcntl (5)

F_RDDNY Deny other read access share reservations.
F_WRDNY Deny other write access share reservations.
F_RWDNY Deny other read or write access share reservations.
F_NODNY Do not deny other read or write access share reservations.

The following four sets of values for the oflag used by open() are bitwise distinct:
O_CREAT Create file if it does not exist.
O_EXCL Exclusive use flag.
O_NOCTTY Do not assign controlling tty.
O_TRUNC Truncate flag.

File status flags used for open() and fcntl():
O_APPEND Set append mode.
O_NDELAY Non-blocking mode.
O_NONBLOCK Non-blocking mode (POSIX; see standards(5)).
O_DSYNC Write I/O operations on the file descriptor complete as defined

by synchronized I/O data integrity completion.
O_RSYNC Read I/O operations on the file descriptor complete at the same

level of integrity as specified by the the O_DSYNC and O_SYNC
flags. If both O_DSYNC and O_RSYNC are set in oflag, all I/O
operations on the file descriptor complete as defined by syn-
chronized I/O data integrity completion. If both O_SYNC and
O_RSYNC are set in oflag, all I/O operations on the file descrip-
tor complete as defined by synchronized I/O file integrity com-
pletion.

O_SYNC When opening a regular file, this flag affects subsequent writes.
If set, each write(2) will wait for both the file data and file status
to be physically updated. Write I/O operations on the file
descriptor complete as defined by synchronized I/O file
integrity completion.

Mask for use with file access modes:
O_ACCMODE Mask for file access modes.

File access modes used for open() and fcntl():
O_RDONLY Open for reading only.
O_RDWR Open for reading and writing.
O_WRONLY Open for writing only.

The flock structure describes a file lock. It includes the following members:

short l_type; /∗ Type of lock ∗/
short l_whence; /∗ Flag for starting offset ∗/
off_t l_start; /∗ Relative offset in bytes ∗/
off_t l_len; /∗ Size; if 0 then until EOF ∗/
long l_sysid; /∗ Returned with F_GETLK ∗/
pid_t l_pid; /∗ Returned with F_GETLK ∗/

modified 4 Apr 1997 SunOS 5.6 5-29

fcntl (5) Headers, Environments, and Macros

The structure fshare describes a file share reservation. It includes the following
members:

short f_access; /∗ Type of reservation ∗/
short f_deny; /∗ Type of reservations to deny ∗/
long f_id; /∗ Process unique identifier ∗/

SEE ALSO creat(2), exec(2), fcntl(2), open(2), fdatasync(3R), fsync(3C), standards(5)

NOTES Data is successfully transferred for a write operation to a regular file when the system
ensures that all data written is readable on any subsequent open of the file (even one that
follows a system or power failure) in the absence of a failure of the physical storage
medium.

Data is successfully transferred for a read operation when an image of the data on the
physical storage medium is available to the requesting process.

Synchronized I/O data integrity completion (see fdatasync(3R)):

For reads, the operation has been completed or diagnosed if unsuccessful. The read
is complete only when an image of the data has been successfully transferred to the
requesting process. If there were any pending write requests affecting the data to be
read at the time that the synchronized read operation was requested, these write
requests will be successfully transferred prior to reading the data.

For writes, the operation has been completed or diagnosed if unsuccessful. The
write is complete only when the data specified in the write request is successfully
transferred, and all file system information required to retrieve the data is success-
fully transferred.

File attributes that are not necessary for data retrieval (access time, modification time,
status change time) need not be successfully transferred prior to returning to the calling
process.

Synchronized I/O file integrity completion (see fsync(3C)):

Identical to a synchronized I/O data integrity completion with the addition that all
file attributes relative to the I/O operation (including access time, modification
time, status change time) will be successfully transferred prior to returning to the
calling process.

5-30 SunOS 5.6 modified 4 Apr 1997

Headers, Environments, and Macros filesystem (5)

NAME filesystem − file system organization

SYNOPSIS /
/usr
/export

DESCRIPTION The file system tree is organized for administrative convenience. Distinct areas within
the file system tree are provided for files that are private to one machine, files that can be
shared by multiple machines of a common architecture, files that can be shared by all
machines, and home directories. This organization allows sharable files to be stored on
one machine but accessed by many machines using a remote file access mechanism such
as NFS. Grouping together similar files makes the file system tree easier to upgrade and
manage.

The file system tree consists of a root file system and a collection of mountable file sys-
tems. The mount(2) program attaches mountable file systems to the file system tree at
mount points (directory entries) in the root file system or other previously mounted file
systems. Two file systems, / (the root) and /usr, must be mounted in order to have a com-
pletely functional system. The root file system is mounted automatically by the kernel at
boot time; the /usr file system is mounted by the system start-up script, which is run as
part of the booting process.

Root File System The root file system contains files that are unique to each machine. It contains the follow-
ing directories:

/dev Primary location for special files. Typically, device files are
built to match the kernel and hardware configuration of the
machine.

/dev/dsk Block disk devices.

/dev/pts Pseudo-terminal devices.

/dev/rdsk Raw disk devices.

/dev/rmt Raw tape devices.

/dev/sad Entry points for the STREAMS Administrative driver.

/dev/term Terminal devices.

/etc Host-specific administrative configuration files and data-
bases. /etc may be viewed as the directory that defines the
machine’s identity.

/etc/acct Accounting system configuration information.

/etc/cron.d Configuration information for cron(1M).

/etc/default Defaults information for various programs.

/etc/dfs Configuration information for exported file systems.

modified 28 Apr 1994 SunOS 5.6 5-31

filesystem (5) Headers, Environments, and Macros

/etc/fs Binaries organized by file system types for operations
required before /usr is mounted.

/etc/inet Configuration files for Internet services.

/etc/init.d Shell scripts for transitioning between run levels.

/etc/lib Shared libraries needed during booting.

/etc/lp Configuration information for the printer subsystem.

/etc/mail Mail subsystem configuration.

/etc/net Configuration information for transport independent net-
work services.

/etc/opt Configuration information for optional packages.

/etc/rc0.d Scripts for entering or leaving run level 0. See init(1M).

/etc/rc1.d Scripts for entering or leaving run level 1. See init(1M).

/etc/rc2.d Scripts for entering or leaving run level 2. See init(1M).

/etc/rc3.d Scripts for entering or leaving run level 3. See init(1M).

/etc/saf Service Access Facility files.

/etc/skel Default profile scripts for new user accounts. See
useradd(1M).

/etc/sm Status monitor information.

/etc/sm.bak Backup status monitor information.

/etc/tm Trademark files; contents displayed at boot time.

/etc/uucp UUCP configuration information. See uucp(1C).

/export Default root of the exported file system tree.

/home Default root of a subtree for user directories.

/kernel Subtree of Platform Independent loadable kernel modules
required as part of the boot process. It includes the generic
part of the core kernel that is platform-independent,
/kernel/genunix. See kernel(1M).

/mnt Default temporary mount point for file systems. This is an
empty directory on which file systems may be temporarily
mounted.

/opt Root of a subtree for add-on application packages.

/platform Subtree of Platform Specific objects which need to reside on
the root filesystem. It contains a series of directories, one per
supported platform. The semantics of the series of direc-
tories is equivalent to / (root).

/platform/∗/kernel Platform Dependent objects with semantics equivalent to
/kernel. It includes the file unix ,the core kernel that is plat-
form dependent. See kernel(1M).

5-32 SunOS 5.6 modified 28 Apr 1994

Headers, Environments, and Macros filesystem (5)

/platform/∗/lib Platform Dependent objects with semantics equivalent to
/lib.

/platform/∗/sbin Platform Dependent objects with semantics equivalent to
/sbin.

/proc Root of a subtree for the process file system.

/sbin Essential executables used in the booting process and in
manual system recovery. The full complement of utilities is
available only after /usr is mounted.

/tmp Temporary files; cleared during the boot operation.

/var Root of a subtree for varying files. Varying files are files that
are unique to a machine but that can grow to an arbitrary
(that is, variable) size. An example is a log file.

/var/adm System logging and accounting files.

/var/cron Log files for cron(1M).

/var/mail Directory where users’ mail is kept.

/var/news Community service messages. Note: this is not the same as
USENET-style news.

/var/nis NIS+ databases.

/var/opt Root of a subtree for varying files associated with optional
software packages.

/var/preserve Backup files for vi(1) and ex(1).

/var/sadm Databases maintained by the software package management
utilities.

/var/saf Service access facility logging and accounting files.

/var/spool Root directory for files used in printer spooling, mail
delivery, cron(1M), at(1), etc.

/var/spool/cron cron(1M) and at(1) spooling files.

/var/spool/locks Spooling lock files.

/var/spool/lp Line printer spool files. See lp(1).

/var/spool/mqueue Mail queued for delivery.

/var/spool/pkg Spooled packages.

/var/spool/uucp Queued uucp(1C) jobs.

/var/spool/uucppublic Files deposited by uucp(1C).

/var/tmp Transitory files; this directory is not cleared during the boot
operation.

/var/uucp uucp(1C) log and status files.

/var/yp Databases needed for backwards compatibility with NIS and
ypbind(1M); unnecessary after full transition to NIS+.

modified 28 Apr 1994 SunOS 5.6 5-33

filesystem (5) Headers, Environments, and Macros

/usr File System Because it is desirable to keep the root file system small and not volatile, on disk-based
systems larger file systems are often mounted on /home, /opt, /usr, and /var.

The file system mounted on /usr contains architecture-dependent and architecture-
independent sharable files. The subtree rooted at /usr/share contains architecture-
independent sharable files; the rest of the /usr tree contains architecture-dependent files.
By mounting a common remote file system, a group of machines with a common archi-
tecture may share a single /usr file system. A single /usr/share file system can be shared
by machines of any architecture. A machine acting as a file server may export many dif-
ferent /usr file systems to support several different architectures and operating system
releases. Clients usually mount /usr read-only so that they do not accidentally change
any shared files.

The /usr file system contains the following subdirectories:

/usr/4lib a.out libraries for the Binary Compatibility Package. See
Binary Compatibility Guide.

/usr/bin Primary location for standard system utilities.

/usr/bin/sunview1 SunView executables. This directory is only present when
the Binary Compatibility Package is installed.

/usr/ccs C compilation system.

/usr/ccs/bin C compilation commands and system utilities.

/usr/ccs/lib Libraries and auxiliary files.

/usr/demo Demo programs and data.

/usr/dt root of a subtree for CDE Motif.

/usr/dt/bin Primary location for CDE Motif system utilities.

/usr/dt/include Header files for CDE Motif.

/usr/dt/lib Libraries for CDE Motif.

/usr/dt/man On-line reference manual pages for CDE Motif.

/usr/games Game binaries and data.

/usr/include Include headers (for C programs, etc).

/usr/kernel Subtree of Platform Independent loadable kernel modules,
not needed in the root filesystem.

/usr/platform Subtree of Platform Specific objects which does not need to
reside on the root filesystem. It contains a series of direc-
tories, one per supported platform. The semantics of the
series of directories is equivalent to /platform, except for
subdirectories which don’t provide utility under one or the
other (for example: /platform/include isn’t needed).

/platform/∗/include Platform Dependent headers with semantics equivalent to
/usr/include.

/platform/∗/kernel Platform Dependent objects with semantics equivalent to

5-34 SunOS 5.6 modified 28 Apr 1994

Headers, Environments, and Macros filesystem (5)

/usr/kernel.

/platform/∗/lib Platform Dependent objects with semantics equivalent to
/usr/lib.

/platform/∗/sbin Platform Dependent objects with semantics equivalent to
/usr/sbin.

/usr/lib Program libraries, various architecture-dependent databases,
and executables not invoked directly by the user (system
daemons, etc).

/usr/lib/acct Accounting scripts and binaries. See acct(1M).

/usr/lib/dict Database files for spell(1).

/usr/lib/class Scheduling class-specific directories containing executables
for priocntl(1) and dispadmin(1M).

/usr/lib/font troff(1) font description files.

/usr/lib/fs File system type dependent modules; generally not intended
to be invoked directly by the user.

/usr/lib/iconv Conversion tables for iconv(1).

/usr/lib/libp Profiled libraries.

/usr/lib/locale Localization databases.

/usr/lib/lp Line printer subsystem databases and back-end executables.

/usr/lib/mail Auxiliary programs for the mail(1) subsystem.

/usr/lib/netsvc Internet network services.

/usr/lib/nfs Auxiliary NFS-related programs and daemons.

/usr/lib/pics Position Independent Code (PIC) archives needed to rebuild
the run-time linker.

/usr/lib/refer Auxiliary programs for refer(1).

/usr/lib/sa Scripts and commands for the system activity report pack-
age. See sar(1).

/usr/lib/saf Auxiliary programs and daemons related to the service
access facility.

/usr/lib/spell Auxiliary programs and databases for spell(1). This direc-
tory is only present when the Binary Compatibility Package
is installed.

/usr/lib/uucp Auxiliary programs and daemons for uucp(1C).

/usr/local Commands local to a site.

/usr/net/servers Entry points for foreign name service requests relayed using
the network listener. See listen(1M).

/usr/oasys Commands and files related to the optional Framed Access
Command Environment (FACE) package. See face(1).

modified 28 Apr 1994 SunOS 5.6 5-35

filesystem (5) Headers, Environments, and Macros

/usr/old Programs that are being phased out.

/usr/openwin Installation or mount point for the OpenWindows software.

/usr/sadm System administration files and directories.

/usr/sadm/bin Binaries for the Form and Menu Language Interpreter
(FMLI) scripts. See fmli(1).

/usr/sadm/install Executables and scripts for package management.

/usr/sbin Executables for system administration.

/usr/sbin/static Statically linked version of selected programs from /usr/bin
and /usr/sbin. These are used to recover from broken
dynamic linking and before all pieces necessary for dynamic
linking are present.

/usr/share Architecture-independent sharable files.

/usr/share/man On-line reference manual pages (if present).

/usr/share/lib Architecture-independent databases.

/usr/share/lib/keytables Keyboard layout description tables.

/usr/share/lib/mailx Help files for mailx(1).

/usr/share/lib/nterm nroff(1) terminal tables.

/usr/share/lib/pub Character set data files.

/usr/share/lib/spell Auxiliary scripts and databases for spell(1).

/usr/share/lib/tabset Tab setting escape sequences.

/usr/share/lib/terminfo Terminal description files for terminfo(4).

/usr/share/lib/tmac Macro packages and related files for text processing tools, for
example, nroff(1) and troff(1).

/usr/share/lib/zoneinfo Time zone information.

/usr/share/src Source code for utilities and libraries.

/usr/snadm SNAG files.

/usr/ucb Berkeley compatibility package binaries. See Source Compati-
bility Guide.

/usr/ucbinclude Berkeley compatibility package headers.

/usr/ucblib Berkeley compatibility package libraries.

/usr/vmsys Commands and files related to the optional FACE package.
See face(1). Berkeley compatibility package libraries.

/export File System A machine with disks may export root file systems, swap files, and /usr file systems to
diskless or partially-disked machines that mount them into the standard file system
hierarchy. The standard directory tree for sharing these file systems from a server is:

/export The default root of the exported file system tree.

/export/exec/architecture-name

5-36 SunOS 5.6 modified 28 Apr 1994

Headers, Environments, and Macros filesystem (5)

The exported /usr file system supporting architecture-name for
the current release.

/export/exec/architecture-name.release-name
The exported /usr file system supporting architecture-name for
release-name.

/export/exec/share The exported common /usr/share directory tree.

/export/exec/share.release-name
The exported common /usr/share directory tree for release-
name.

/export/root/hostname The exported root file system for hostname .

/export/swap/hostname The exported swap file for hostname .

/export/var/hostname The exported /var directory tree for hostname .

SEE ALSO at(1), ex(1), face(1), fmli(1), iconv(1), lp(1), mail(1), mailx(1), nroff(1), priocntl(1),
refer(1), sar(1), sh(1), spell(1), troff(1), uucp(1C), vi(1), acct(1M), cron(1M),
dispadmin(1M), fsck(1M), init(1M), kernel(1M), mknod(1M), mount(1M), useradd(1M),
ypbind(1M), mount(2), intro(4), terminfo(4)

Binary Compatibility Guide
Source Compatibility Guide

modified 28 Apr 1994 SunOS 5.6 5-37

floatingpoint (5) Headers, Environments, and Macros

NAME floatingpoint − IEEE floating point definitions

SYNOPSIS #include <floatingpoint.h>

DESCRIPTION This file defines constants, types, and functions used to implement standard floating
point according to ANSI/IEEE Std 754-1985. The functions are implemented in libc. The
included header file <sys/ieeefp.h> defines certain types of interest to the kernel.

IEEE Rounding Modes:

fp_direction_type The type of the IEEE rounding direction mode. Note: the order of
enumeration varies according to hardware.

fp_precision_type The type of the IEEE rounding precision mode, which only applies
on systems that support extended precision such as machines
based on the Intel 80387 FPU or the 80486.

SIGFPE handling:

sigfpe_code_type The type of a SIGFPE code.

sigfpe_handler_type The type of a user-definable SIGFPE exception handler called to
handle a particular SIGFPE code.

SIGFPE_DEFAULT A macro indicating the default SIGFPE exception handling, namely
to perform the exception handling specified by the user, if any, and
otherwise to dump core using abort(3C).

SIGFPE_IGNORE A macro indicating an alternate SIGFPE exception handling,
namely to ignore and continue execution.

SIGFPE_ABORT A macro indicating an alternate SIGFPE exception handling,
namely to abort with a core dump.

IEEE Exception Handling:

N_IEEE_EXCEPTION The number of distinct IEEE floating-point exceptions.

fp_exception_type The type of the N_IEEE_EXCEPTION exceptions. Each exception is
given a bit number.

fp_exception_field_type
The type intended to hold at least N_IEEE_EXCEPTION bits
corresponding to the IEEE exceptions numbered by
fp_exception_type. Thus fp_inexact corresponds to the least
significant bit and fp_invalid to the fifth least significant bit. Note:
some operations may set more than one exception.

IEEE Formats and Classification:

single; extended; quadruple
Definitions of IEEE formats.

fp_class_type An enumeration of the various classes of IEEE values and symbols.

5-38 SunOS 5.6 modified 5 Mar 1993

Headers, Environments, and Macros floatingpoint (5)

IEEE Base Conversion:

The functions described under floating_to_decimal(3) and
decimal_to_floating(3) satisfy not only the IEEE Standard, but also the stricter
requirements of correct rounding for all arguments.

DECIMAL_STRING_LENGTH
The length of a decimal_string.

decimal_string The digit buffer in a decimal_record.

decimal_record The canonical form for representing an unpacked decimal
floating-point number.

decimal_form The type used to specify fixed or floating binary to decimal
conversion.

decimal_mode A struct that contains specifications for conversion between binary
and decimal.

decimal_string_form An enumeration of possible valid character strings representing
floating-point numbers, infinities, or NaNs.

FILES /usr/include/sys/ieeefp.h

SEE ALSO abort(3C), decimal_to_floating(3), econvert(3), floating_to_decimal(3), sigfpe(3),
string_to_decimal(3), strtod(3C)

modified 5 Mar 1993 SunOS 5.6 5-39

fnmatch (5) Headers, Environments, and Macros

NAME fnmatch − file name pattern matching

DESCRIPTION The pattern matching notation described below is used to specify patterns for matching
strings in the shell. Historically, pattern matching notation is related to, but slightly dif-
ferent from, the regular expression notation. For this reason, the description of the rules
for this pattern matching notation is based on the description of regular expression nota-
tion described on the regex(5) manual page.

Patterns Matching a
Single Character

The following patterns matching a single character match a single character: ordinary charac-
ters, special pattern characters and pattern bracket expressions. The pattern bracket expres-
sion will also match a single collating element.

An ordinary character is a pattern that matches itself. It can be any character in the sup-
ported character set except for NUL, those special shell characters that require quoting,
and the following three special pattern characters. Matching is based on the bit pattern
used for encoding the character, not on the graphic representation of the character. If any
character (ordinary, shell special, or pattern special) is quoted, that pattern will match the
character itself. The shell special characters always require quoting.

When unquoted and outside a bracket expression, the following three characters will
have special meaning in the specification of patterns:

? A question-mark is a pattern that will match any character.

∗ An asterisk is a pattern that will match multiple characters, as described in Patterns
Matching Multiple Characters, below.

[The open bracket will introduce a pattern bracket expression.

The description of basic regular expression bracket expressions on the regex(5) manual
page also applies to the pattern bracket expression, except that the exclamation-mark
character (!) replaces the circumflex character (ˆ) in its role in a non-matching list in the
regular expression notation. A bracket expression starting with an unquoted circumflex
character produces unspecified results.

The restriction on a circumflex in a bracket expression is to allow implementations that
support pattern matching using the circumflex as the negation character in addition to
the exclamation-mark. A portable application must use something like [\ˆ!] to match
either character.

When pattern matching is used where shell quote removal is not performed (such as in
the argument to the find −name primary when find is being called using one of the exec
functions, or in the pattern argument to the fnmatch(3C) function, special characters can
be escaped to remove their special meaning by preceding them with a backslash charac-
ter. This escaping backslash will be discarded. The sequence \\ represents one literal
backslash. All of the requirements and effects of quoting on ordinary, shell special and
special pattern characters will apply to escaping in this context.

Both quoting and escaping are described here because pattern matching must work in
three separate circumstances:

· Calling directly upon the shell, such as in pathname expansion or in a case

5-40 SunOS 5.6 modified 28 Mar 1995

Headers, Environments, and Macros fnmatch (5)

statement. All of the following will match the string or file abc:

abc "abc" a"b"c a\bc a[b]c
a["b"]c a[\b]c a["\b"]c a?c a∗c

The following will not:

"a?c" a\∗c a\[b]c

· Calling a utility or function without going through a shell, as described for find(1)
and the function fnmatch(3C).

· Calling utilities such as find, cpio, tar or pax through the shell command line. In
this case, shell quote removal is performed before the utility sees the argument.
For example, in:

find /bin -name e\c[\h]o -print

after quote removal, the backslashes are presented to find and it treats them as
escape characters. Both precede ordinary characters, so the c and h represent
themselves and echo would be found on many historical systems (that have it in
/bin). To find a file name that contained shell special characters or pattern charac-
ters, both quoting and escaping are required, such as:

pax -r . . . "∗a\ (\?"

to extract a filename ending with a(?.

Conforming applications are required to quote or escape the shell special characters
(sometimes called metacharacters). If used without this protection, syntax errors can
result or implementation extensions can be triggered. For example, the KornShell sup-
ports a series of extensions based on parentheses in patterns; see ksh(1).

Patterns Matching
Multiple Characters

The following rules are used to construct patterns matching multiple characters from pat-
terns matching a single character:

· The asterisk (∗) is a pattern that will match any string, including the null string.

· The concatenation of patterns matching a single character is a valid pattern that will
match the concatenation of the single characters or collating elements matched by
each of the concatenated patterns.

· The concatenation of one or more patterns matching a single character with one or
more asterisks is a valid pattern. In such patterns, each asterisk will match a string
of zero or more characters, matching the greatest possible number of characters
that still allows the remainder of the pattern to match the string.

Since each asterisk matches zero or more occurrences, the patterns a∗b and a∗∗b have
identical functionality.

Examples:

a[bc] matches the strings ab and ac.

a∗d matches the strings ad, abd and abcd, but not the string abc.

a∗d∗ matches the strings ad, abcd, abcdef, aaaad and adddd.

∗a∗d matches the strings ad, abcd, efabcd, aaaad and adddd.

modified 28 Mar 1995 SunOS 5.6 5-41

fnmatch (5) Headers, Environments, and Macros

Patterns Used for
Filename Expansion

The rules described so far in Patterns Matching Multiple Characters and Patterns
Matching a Single Character are qualified by the following rules that apply when pat-
tern matching notation is used for filename expansion.

1. The slash character in a pathname must be explicitly matched by using one or more
slashes in the pattern; it cannot be matched by the asterisk or question-mark special
characters or by a bracket expression. Slashes in the pattern are identified before
bracket expressions; thus, a slash cannot be included in a pattern bracket expression
used for filename expansion. For example, the pattern a[b/c]d will not match such
pathnames as abd or a/d. It will only match a pathname of literally a[b/c]d.

2. If a filename begins with a period (.), the period must be explicitly matched by using a
period as the first character of the pattern or immediately following a slash character.
The leading period will not be matched by:

· the asterisk or question-mark special characters

· a bracket expression containing a non-matching list, such as :

[!a]

a range expression, such as:

[%−0]

or a character class expression, such as:

[[:punct:]]

It is unspecified whether an explicit period in a bracket expression matching list, such
as:

[.abc]

can match a leading period in a filename.

3. Specified patterns are matched against existing filenames and pathnames, as
appropriate. Each component that contains a pattern character requires read permis-
sion in the directory containing that component. Any component, except the last, that
does not contain a pattern character requires search permission. For example, given
the pattern:

/foo/bar/x∗/bam

search permission is needed for directories / and foo, search and read permissions are
needed for directory bar, and search permission is needed for each x∗ directory. If the
pattern matches any existing filenames or pathnames, the pattern will be replaced
with those filenames and pathnames, sorted according to the collating sequence in
effect in the current locale. If the pattern contains an invalid bracket expression or
does not match any existing filenames or pathnames, the pattern string is left
unchanged.

SEE ALSO find(1), ksh(1), fnmatch(3C), regex(5)

5-42 SunOS 5.6 modified 28 Mar 1995

Headers, Environments, and Macros fns (5)

NAME fns − overview of FNS

DESCRIPTION Federated Naming Service (FNS) provides a method for federating multiple naming ser-
vices under a single, simple interface for the basic naming operations. The service sup-
ports resolution of composite names, names that span multiple naming systems, through
the naming interface. In addition to the naming interface, FNS also specifies policies for
composing names in the enterprise namespace. See fns_policies(5) and
fns_initial_context(5).

Fundamental to the FNS model are the notions of composite names and contexts. A con-
text provides operations for:

· associating (binding) names to objects

· resolving names to objects

· removing bindings, listing names, renaming and so on.

A context contains a set of names to reference bindings. A reference contains a list of
communication end-points. Every naming operation in the FNS interface is performed on
a context object.

The federated naming system is formed by contexts from one naming system being
bound in the contexts of another naming system. Resolution of a composite name
proceeds from contexts within one naming system to those in the next, until the name is
resolved.

XFN XFN is X/Open Federated Naming. The programming interface and policies that FNS sup-
ports are specified by XFN. See xfn(3N) and fns_policies(5).

Composite Names A composite name is a name that spans multiple naming systems. It consists of an
ordered list of components. Each component is a name from the namespace of a single
naming system. FNS defines the syntax for constructing a composite name using names
from component naming systems. Individual naming systems are responsible for the
syntax of each component.

The syntax for composite names is that components are composed left to right using the
slash character (’/’) as the component separator. For example, the composite name
. . . /Wiz.Com/site/Oceanview.East consists of four components: . . . , Wiz.COM, site, and
Oceanview.East. See fns_policies(5) and fns_initial_context(5) for more examples of
composite names.

Why FNS? FNS is useful for the following reasons:

· A single uniform naming interface is provided to clients for accessing naming ser-
vices. Consequently, the addition of new naming services does not require
changes to applications or existing naming services. Furthermore, applications
that use FNS will be portable across platforms because the interface exported by
FNS is XFN, a public, open interface endorsed by other vendors and by the X/Open
Company.

modified 22 Nov 1996 SunOS 5.6 5-43

fns (5) Headers, Environments, and Macros

· Names can be composed in a uniform way (that is, FNS supports a model in which
composite names are constructed in a uniform syntactic way and can have any
number of components).

· Coherent naming is encouraged through the use of shared contexts and shared
names.

FNS and Naming
Systems

FNS has support for NIS+, NIS, and files as enterprise-level naming services. This means
that FNS implements the enterprise-level policies using NIS+, NIS, and files. FNS also sup-
ports DNS and X.500 (via DAP or LDAP) as global naming services, as well as support for
federating NIS+ and NIS with DNS and X.500. See the corresponding individual man page
for information about the implementation for a specific naming service.

SEE ALSO nis+(1), xfn(3N), fns_dns(5), fns_files(5), fns_initial_context(5), fns_nis(5), fns_nis+(5),
fns_policies(5), fns_references(5), fns_x500(5)

5-44 SunOS 5.6 modified 22 Nov 1996

Headers, Environments, and Macros fns_dns (5)

NAME fns_dns − overview of FNS over DNS implementation

DESCRIPTION Federated Naming Service (FNS) provides a method for federating multiple naming ser-
vices under a single, simple interface for the basic naming operations. One of the naming
services supported by FNS is the Internet Domain Name System, or DNS (see
in.named(1M)). DNS is a hierarchical collection of name servers that provide the Internet
community with host and domain name resolution. FNS uses DNS to name entities glo-
bally. Names can be constructed for any enterprise that is accessible on the Internet; con-
sequently, names can also be constructed for objects exported by these enterprises.

FNS provides the XFN interface for performing naming resolution on DNS domains and
hosts. In addition, enterprise namespaces such as those served by NIS+ and NIS can be
federated with DNS by adding TXT records to DNS. To federate an NIS+ or NIS
namespace under DNS, you first obtain the root reference for the NIS+ hierarchy or NIS
domain. This reference is referred to as the next naming system reference because it refers
to the next naming system beneath the DNS domain. This reference contains information
about how to communicate with the NIS+ or NIS servers and has the following format:

<domainname> <server name> [<server address>]

where <domainname> is the fully qualified domain name. Note that NIS+ and NIS have
slightly different syntaxes for domain names. For NIS+, the fully qualified domain name
is case-insensitive and terminated by a dot character (’.’). For NIS, the fully qualified
domain name is case-sensitive and is not terminated by a dot character. For both NIS+
and NIS, <server address> is optional. If it is not supplied, a host name lookup will be per-
formed to get the machine’s address.

For example, if the machine wiz-nisplus-server with address 133.33.33.33 serves the NIS+
domain wiz.com., the reference would look like this:

wiz.com. wiz-nisplus-server 133.33.33.33

For NIS, the reference information is of the form:

<domainname> <server name>

For example, if the machine woz-nis-server serves the NIS domain Woz.COM, the refer-
ence would look like this:

Woz.COM woz-nis-server

After obtaining this information, you then edit the DNS table (see in.named(1M)) and add
a TXT record with this reference information. The TXT record must be associated with a
DNS domain that includes an NIS record. For example, the reference information shown
in the examples above would be entered as follows.

For NIS+:

TXT "XFNNISPLUS wiz.com. wiz-nisplus-server 133.33.33.33"

For NIS:

TXT "XFNNIS woz.com woz-nis-server"

modified 22 Nov 1996 SunOS 5.6 5-45

fns_dns (5) Headers, Environments, and Macros

Note the mandatory double quotes (’ " ’) delimiting the contents of the TXT record. After
making any changes to the DNS table, you must notify the server by either restarting it or
sending it a signal to reread the table:

#kill -HUP ‘cat /etc/named.pid‘

This update effectively adds the next naming system reference to DNS. You can look up
this reference using fnlookup(1) to see if the information has been added properly. For
example, the following command looks up the next naming system reference of the DNS
domain Wiz.COM:

#fnlookup -v .../Wiz.COM/

Note the mandatory trailing slash (’/´).

After this administrative step has been taken, clients outside of the NIS+ hierarchy or NIS
domain can access and perform operations on the contexts in the NIS+ hierarchy or NIS
domain. Foreign NIS+ clients access the hierarchy as unauthenticated NIS+ clients. Con-
tinuing the example above, and assuming that NIS+ is federated underneath the DNS
domain Wiz.COM, you can now list the root of the NIS+ enterprise using the command:

#fnlist .../Wiz.COM/

SEE ALSO fnlist(1), fnlookup(1), nis+(1), in.named(1M), ypserv(1M), xfn(3N), fns(5), fns_nis(5),
fns_nis+(5), fns_references(5), fns_x500(5)

5-46 SunOS 5.6 modified 22 Nov 1996

Headers, Environments, and Macros fns_files (5)

NAME fns_files − overview of FNS over files implementation

DESCRIPTION The Federated Naming Service (FNS) provides a method for federating multiple naming
services under a single, simple interface for the basic naming operations. One of the
naming services supported by FNS is /etc files. FNS provides the XFN interface for per-
forming naming and attribute operations on FNS enterprise objects (organization, site,
user, host, and service objects), using files as the naming service. FNS stores bindings for
these objects in files and uses them in conjunction with existing /etc files objects.

FNS Policies and /etc
Files

FNS defines policies for naming objects in the federated namespace (see fns_policies(5)).
At the enterprise level, FNS policies specify naming for organizations, hosts, users, sites,
and services. The enterprise-level naming service provides contexts to allow other
objects to be named relative to these objects.

The organizational unit namespace provides a hierarchical namespace for naming subun-
its of an enterprise. In /etc files, there is no concept of an organization. Hence, with
respect to /etc files as the naming service, there is a single organizational unit context that
represents the entire system. Users in an FNS organizational unit correspond to the users
in the /etc/passwd file. FNS provides a context for each user in the /etc/passwd file.

Hosts in an FNS organizational unit correspond to the hosts in the /etc/hosts file. FNS
provides a context for each host in the /etc/hosts file.

Security
Considerations

Changes to the FNS information (using the commands fncreate(1M), fncreate_fs(1M),
fnbind(1), fndestroy(1M) and fnunbind(1)) can be performed only by the privileged
users on the system that exports the /var/fn directory. Also, based on the UNIX user IDs,
users are allowed to modify their own contexts, bindings, and attributes, from any
machine that mounts the /var/fn directory.

For example, the command fncreate(1M) creates FNS related files and directories in the
system on which the command is executed. Hence, the invoker of the fncreate(1M) com-
mand must have super-user privileges in order to create the user, host, site, and service
contexts. However, a user could use the fnunbind(1) command to create calendar bind-
ings in the user’s own context, as in this example:

fnbind −r thisuser/service/calendar onc_calendar onc_cal_str jsmith@beatrix

The files object name that corresponds to an FNS composite name can be obtained using
fnlookup(1) and fnlist(1).

USAGE The files used for storing FNS information are placed in the directory /var/fn. The
machine on which /var/fn is located has access to the FNS file. The FNS information can
be made accessible to other machines by exporting /var/fn. Client machines that NFS
mount the /var/fn directory would then be able to access the FNS information.

SEE ALSO fnbind(1), fnlist(1), fnlookup(1), fnunbind(1), fncreate(1M), fncreate_fs(1M),
fndestroy(1M), xfn(3N), fns(5), fns_initial_context(5), fns_nis(5), fns_nis+(5),
fns_policies(5), fns_references(5)

modified 13 Dec 1996 SunOS 5.6 5-47

fns_initial_context (5) Headers, Environments, and Macros

NAME fns_initial_context − overview of the FNS Initial Context

DESCRIPTION Every FNS name is interpreted relative to some context, and every FNS naming operation
is performed on a context object. The FNS programming interface (FN) provides a function
that allows the client to obtain an Initial Context object. The Initial Context provides the
initial pathway to other FNS contexts. FNS defines a set of bindings that the client can
expect to find in this context,

FNS assumes that for every process:

1. There is a user associated with the process when fn_ctx_handle_from_initial() is
invoked. This association is based on the effective uid of the process. In the fol-
lowing discussion this user is denoted by U. The association of user to process
may change during the life of a process but does not affect the context handle ori-
ginally returned by fn_ctx_handle_from_initial().

2. The process is running on a host when fn_ctx_handle_from_initial() is invoked.
In the following discussion this host is denoted by H.

The following atomic names can appear in the Initial Context:

. . . thishost thisorgunit
thisens myself myorgunit
myens orgunit site
user host

Except for . . . , these names with an added underscore (’_’) prefix are also in the Initial
Context and have the same binding as their counterpart (for example, thishost and
_thishost have the same binding). In addition, org has the same binding as orgunit, and
thisuser has the same binding as myself. The bindings for these names are summarized
in the following table.

Some of these names may not necessarily appear in all Initial Contexts. For example, a
process owned by the super-user of a machine does not have any of the user-related
bindings. Or, for another example, an installation that has not set up a site namespace
will not have the site-related bindings.

. . . global context for resolving DNS or X.500 names. Synonym: /. . .

thishost H’s host context. Synonym: _thishost

thisens the enterprise root of H. Synonym: _thisens

thisorgunit H’s distinguished organizational unit context. In Solaris, this is H’s NIS+
home domain. Synonym: _thisorgunit

myself U’s user context. Synonyms: _myself, thisuser

myens the enterprise root of U. Synonym: _myens

myorgunit U’s distinguished organizational unit context. In Solaris, this is U’s NIS+
home domain. Synonym: _myorgunit

user the context in which users in the same organizational unit as H are
named. Synonym: _user

5-48 SunOS 5.6 modified 1 Nov 1994

Headers, Environments, and Macros fns_initial_context (5)

host the context in which hosts in the same organizational unit as H are
named. Synonym: _host

org the root context of the organizational unit namespace in H’s enterprise.
In Solaris, this corresponds to the NIS+ root domain. Synonyms:
orgunit, _orgunit

site the root context of the site namespace in H’s enterprise, if the site
namespace has been configured. Synonym: _site

EXAMPLES The types of objects that may be named relative to the enterprise root are user, host, ser-
vice, organizational unit, file, and site. Here are some examples of names that begin with
the enterprise root:

thisens/orgunit/multimedia.servers.engineering
names an organizational unit multimedia.servers.engineering in H’s enterprise.

thisens/site/northwing.floor3.admin
names the north wing site, on the third floor of the administrations building in
H’s enterprise.

myens/user/hdiffie
names the user hdiffie in U’s enterprise.

myens/service/teletax
names the teletax service of U’s enterprise.

The types of objects that may be named relative to an organizational unit name are: user,
host, service, file, and site. Here are some examples of names that begin with organiza-
tional unit names (either explicitly via org, or implicitly via thisorgunit or myorgunit),
and name objects relative to organizational unit names when resolved in the Initial Con-
text:

org/accounts_payable.finance/site/videoconference.northwing
names a conference room videoconference located in the north wing of the site
associated with the organizational unit accounts_payable.finance.

org/finance/user/mjones
names a user mjones in the organizational unit finance.

org/finance/host/inmail
names a machine inmail belonging to the organizational unit finance.

org/accounts_payable.finance/fs/pub/blue-and-whites/FY92-124
names a file pub/blue-and-whites/FY92-124 belonging to the organizational unit
accounts_payable.finance.

org/accounts_payable.finance/service/calendar
names the calendar service of the organizational unit accounts_payable.finance.
This might manage the meeting schedules of the organizational unit.

modified 1 Nov 1994 SunOS 5.6 5-49

fns_initial_context (5) Headers, Environments, and Macros

thisorgunit/user/cmead
names the user cmead in H’s organizational unit.

myorgunit/fs/pub/project_plans/widget.ps
names the file pub/project_plans/widget.ps exported by U’s organizational
unit’s file system.

The types of objects that may be named relative to a site name are users, hosts, services,
and files. Here are some examples of names that begin with site names via site, and
name objects relative to sites when resolved in the Initial Context;

site/b5.mtv/service/printer/speedy
names a printer speedy in the b5.mtv site.

site/admin/fs/usr/dist
names a file directory usr/dist available in the site admin.

The types of objects that may be named relative to a user name are services and files.
Here are some examples of names that begin with user names (explicitly via user or
implicitly via thisuser), and name objects relative to users when resolved in the Initial
Context:

user/jsmith/service/calendar
names the calendar service of the user jsmith.

user/jsmith/fs/bin/games/riddles
names the file bin/games/riddles of the user jsmith.

thisuser/service/printer
names the printer service of U.

The types of objects that may be named relative to a host name are services and files.
Here are some examples of names that begin with host names (explicitly via host or
implicitly via thishost), and name objects relative to hosts when resolved in the Initial
Context:

host/mailhop/service/mailbox
names the mailbox service associated with the machine mailhop.

host/mailhop/fs/pub/saf/archives.91
names the directory pub/saf/archives.91 found under the root directory of the
machine mailhop.

thishost/service/printer
names the printer service of H.

SEE ALSO nis+(1), geteuid(2), fn_ctx_handle_from_initial(3N), xfn(3N), fns(5), fns_policies(5)

5-50 SunOS 5.6 modified 1 Nov 1994

Headers, Environments, and Macros fns_nis+ (5)

NAME fns_nis+ − overview of FNS over NIS+ implementation

DESCRIPTION Federated Naming Service (FNS) provides a method for federating multiple naming ser-
vices under a single, simple interface for the basic naming operations. One of the naming
services supported by FNS is NIS+, the enterprise-wide information service in Solaris (see
nis+(1)). FNS provides the XFN interface for performing naming and attribute operations
on FNS enterprise objects (organization, site, user, host, and service objects) using NIS+.
FNS stores bindings for these objects in NIS+ and uses them in conjunction with existing
NIS+ objects.

FNS Policies and
NIS+

FNS defines policies for naming objects in the federated namespace (see fns_policies(5)).
At the enterprise level, FNS policies specify naming for organizations, hosts, users, sites,
and services. The enterprise-level naming service provides contexts to allow other
objects to be named relative to these objects.

The organizational unit namespace provides a hierarchical namespace for naming subun-
its of an enterprise. An organizational unit maps to an NIS+ domain. Organizational unit
names can be either fully qualified NIS+ domain names or relatively NIS+ domain names.
If a terminal dot is present in the name, it is treated as a fully qualified name. Otherwise,
the name is resolved relative to the root NIS+ domain.

Users in the NIS+ namespace are found in the passwd.org_dir table of an NIS+ domain.
Users in an FNS organizational unit correspond to the users in the passwd.org_dir table
of the corresponding NIS+ domain. FNS provides a context for each user in the
passwd.org_dir table.

Hosts in the NIS+ namespace are found in the hosts.org_dir table of an NIS+ domain.
Hosts in an FNS organizational unit correspond to the hosts in the hosts.org_dir table of
the corresponding NIS+ domain. FNS provides a context for each host in the
hosts.org_dir table.

In NIS+, users and hosts have a notion of a home domain. It is the primary NIS+ domain
that maintains information associated with them. A user or host’s home domain can be
determined directly using its NIS+ principal name, which is composed of the atomic user
(login) name or the atomic host name, and the name of the NIS+ home domain. For
example, user jsmith with home domain wiz.com has an NIS+ principal name,
jsmith.wiz.com.

A user’s NIS+ home domain corresponds to the user’s FNS organizational unit and deter-
mines the binding for myens and myorgunit.

A host’s NIS+ home domain corresponds to the host’s FNS organizational unit and deter-
mines the binding for thisens, thisorgunit, user, and host.

Federating NIS+ with
DNS or X.500

Federating NIS+ with the global naming systems DNS or X.500 makes NIS+ contexts acces-
sible outside of an NIS+ hierarchy. To enable the federation, the administrator must first

modified 22 Nov 1996 SunOS 5.6 5-51

fns_nis+ (5) Headers, Environments, and Macros

add address information in either DNS or X.500 (see fns_dns(5) and fns_x500(5)). After
this administrative step has been taken, clients outside of the NIS+ hierarchy can access
contexts and perform operations from outside the hierarchy as an unauthenticated NIS+
client.

NIS+ Security The command fncreate(1M) creates NIS+ tables and directories in the NIS+ hierarchy
associated with the domain of the host on which it executes. The invoker of fncreate(1M)
and other FNS commands is expected to have the necessary NIS+ credentials. (See nis+(1)
and nisdefaults(1)). The environment variable NIS_GROUP of the process specifies the
group owner for the NIS+ objects thus created. In order to facilitate administration of the
NIS+ objects, NIS_GROUP should be set to the name of the NIS+ administration group for
the domain prior to executing fncreate(1M) and other FNS commands. Changes to NIS+-
related properties, including default access control rights, could be effected using NIS+
administration tools and interfaces after the context has been created. The NIS+ object
name that corresponds to an FNS composite name can be obtained using fnlookup(1) and
fnlist(1).

SEE ALSO fnlist(1), fnlookup(1), nis+(1), nischgrp(1), nischmod(1), nischown(1), nisdefaults(1),
nisls(1), fncreate(1M), xfn(3N), fns(5), fns_dns(5), fns_files(5), fns_initial_context(5),
fns_nis(5), fns_policies(5), fns_references(5), fns_x500(5)

5-52 SunOS 5.6 modified 22 Nov 1996

Headers, Environments, and Macros fns_nis (5)

NAME fns_nis − overview of FNS over NIS (YP) implementation

DESCRIPTION Federated Naming Service (FNS) provides a method for federating multiple naming ser-
vices under a single, simple interface for the basic naming operations. One of the naming
services supported by FNS is NIS (YP), the enterprise-wide information services in Solaris
(see ypcat(1), ypmatch(1), ypfiles(4)). FNS provides the XFN interface for performing
naming and attribute operations on FNS enterprise objects (organization, site, user, host
and service objects) using NIS. FNS stores bindings for these objects in NIS and uses them
in conjunction with existing NIS objects.

FNS Policies and NIS FNS defines policies for naming objects in the federated namespace (see fns_policies(5)).
At the enterprise level, FNS policies specify naming for organizations, hosts, users, sites,
and services. The enterprise-level naming service provides contexts to allow other
objects to be named relative to these objects.

The FNS organizational unit namespace provides a hierarchical namespace for naming
subunits of an enterprise. However, NIS does not support a hierarchical organizational
structure. Therefore, a NIS domain maps to a single organizational unit in the FNS
namespace.

Users in an FNS organizational unit correspond to the users in the passwd.byname map
of the corresponding NIS domain. FNS provides a context for each user in the
passwd.byname map.

Hosts in an FNS organizational unit correspond to the hosts in the hosts.byname map of
the corresponding NIS domain. FNS provides a context for each host in the hosts.byname
map.

Federating NIS with
DNS or X.500

Federating NIS with the global naming systems DNS or X.500 makes NIS contexts accessi-
ble outside of an NIS domain. To enable the federation, the administrator must first add
address information in either DNS or X.500 (see fns_dns(5) and fns_x500(5)). After this
administrative step has been taken, clients outside of the NIS domain can access contexts
and perform operations.

Security
Considerations

Changes to the FNS information (using the commands fncreate(1M), fncreate_fs(1M),
fncreate_printer(1M), fnbind(1), fndestroy(1M), fncheck(1M), and fnunbind(1)) can be
performed only by the privileged users on the NIS master server that maintains the FNS
information.

For example, the command fncreate(1M) creates the NIS map for the associated NIS
domain in the system on which it is executed. Hence, the command must be run by a
privileged user either on the NIS master server or on a system that will serve as a NIS
master server for FNS.

The NIS object name that corresponds to an FNS composite name can be obtained using
fnlookup(1) and fnlist(1).

modified 22 Nov 1996 SunOS 5.6 5-53

fns_nis (5) Headers, Environments, and Macros

SEE ALSO fnbind(1), fnlist(1), fnlookup(1), fnunbind(1), ypcat(1), ypmatch(1), fncheck(1M),
fncreate(1M), fncreate_fs(1M), fncreate_printer(1M), fndestroy(1M), xfn(3N), ypfiles(4),
fns(5), fns_dns(5), fns_files(5), fns_initial_context(5), fns_nis+(5), fns_policies(5),
fns_references(5), fns_x500(5)

5-54 SunOS 5.6 modified 22 Nov 1996

Headers, Environments, and Macros fns_policies (5)

NAME fns_policies − overview of the FNS Policies

DESCRIPTION FNS defines policies for naming objects in the federated namespace. The goal of these
policies is to allow easy and uniform composition of names. The policies use the basic
rule that objects with narrower scopes are named relative to objects with wider scopes.

FNS policies are described in terms of the following three categories: global, enterprise,
and application.

Global naming service
A global naming service is a naming service that has world-wide scope. Internet
DNS and X.500 are examples of global naming services. The types of objects named
at this global level are typically countries, states, provinces, cities, companies,
universities, institutions, and government departments and ministries. These enti-
ties are referred to as enterprises.

Enterprise-level naming service
Enterprise-level naming services are used to name objects within an enterprise.
Within an enterprise, there are naming services that provide contexts for naming
common entities such as organizational units, physical sites, human users, and
computers. Enterprise-level naming services are bound below the global naming
services. Global naming services provide contexts in which the root contexts of
enterprise-level naming services can be bound.

Application-level naming service
Application-level naming services are incorporated in applications offering services
such as file service, mail service, print service, and so on. Application-level naming
services are bound below enterprise naming services. The enterprise-level naming
services provide contexts in which contexts of application-level naming services can
be bound.

FNS has policies for global and enterprise naming. Naming within applications is left to
individual applications or groups of related applications and not specified by FNS.

FNS policy specifies that DNS and X.500 are global naming services that are used to name
enterprises. The global namespace is named using the name A DNS name or an
X.500 name can appear after the Support for federating global naming services is
planned for a future release of FNS.

Within an enterprise, there are namespaces for organizational units, sites, hosts, users,
files and services, referred to by the names orgunit, site, host, user, fs, and service. In
addition, these namespaces can be named using these names with an added underscore
(’_’) prefix (for example, host and _host have the same binding). The following table
summarizes the FNS policies.

modified 4 Nov 1994 SunOS 5.6 5-55

fns_policies (5) Headers, Environments, and Macros

Context Subordinate Parent
Type Context Context

org unit site enterprise root
user
host
file system
service

site user enterprise root
host org unit
file system
service

user service enterprise root
file system org unit

host service enterprise root
file system org unit

service not specified enterprise root
org unit
site
user
host

file system none enterprise root
org unit
site
user
host

In Solaris, an organizational unit name corresponds to an NIS+ domain name and is
identified using either the fully-qualified form of its NIS+ domain name, or its NIS+
domain name relative to the NIS+ root. Fully-qualified NIS+ domain names have a termi-
nal dot (’.’). For example, assume that the NIS+ root domain is "Wiz.COM." and "sales" is
a subdomain of that. Then, the names org/sales.Wiz.COM. and org/sales both refer to
the organizational unit corresponding to the same NIS+ domain sales.Wiz.COM..

User names correspond to names in the corresponding NIS+ passwd.org_dir table. The file
system context associated with a user is obtained from his entry in the NIS+
passwd.org_dir table.

Host names correspond to names in the corresponding NIS+ hosts.org_dir table. The file
system context associated with a host corresponds to the files systems exported by the
host.

5-56 SunOS 5.6 modified 4 Nov 1994

Headers, Environments, and Macros fns_policies (5)

EXAMPLES The types of objects that may be named relative to an organizational unit name are: user,
host, service, file, and site. Here are some examples of names name objects relative to
organizational unit names:

org/accounts_payable.finance/site/videoconference.northwing
names a conference room videoconference located in the north wing of
the site associated with the organizational unit
accounts_payable.finance.

org/finance/user/mjones
names a user mjones in the organizational unit finance.

org/finance/host/inmail
names a machine inmail belonging to the organizational unit finance.

org/accounts_payable.finance/fs/pub/blue-and-whites/FY92-124
names a file pub/blue-and-whites/FY92-124 belonging to the organiza-
tional unit accounts_payable.finance.

org/accounts_payable.finance/service/calendar
names the calendar service of the organizational unit
accounts_payable.finance. This might manage the meeting schedules
of the organizational unit.

The types of objects that may be named relative to a site name are services and files. Here
are some examples of names that name objects relative to sites:

site/b5.mtv/service/printer/speedy
names a printer speedy in the b5.mtv site.

site/admin/fs/usr/dist
names a file directory usr/dist available in the site admin.

The types of objects that may be named relative to a user name are services and files.
Here are some examples of names that name objects relative to users:

user/jsmith/service/calendar
names the calendar service of the user jsmith.

user/jsmith/fs/bin/games/riddles
names the file bin/games/riddles of the user jsmith.

The types of objects that may be named relative to a host name are services and files.
Here are some examples of names that name objects relative to hosts:

host/mailhop/service/mailbox
names the mailbox service associated with the machine mailhop.

host/mailhop/fs/pub/saf/archives.91
names the directory pub/saf/archives.91 found under the root directory
of the machine mailhop.

SEE ALSO fncreate(1M), nis+(1), xfn(3N), fns(5), fns_initial_context(5), fns_references(5)

modified 4 Nov 1994 SunOS 5.6 5-57

fns_references (5) Headers, Environments, and Macros

NAME fns_references − overview of FNS References

DESCRIPTION Every composite name in FNS is bound to a reference. A reference consists of a type and a
list of addresses. The reference type is used to identify the type of object.

An address is something that can be used with some communication mechanism to
invoke operations on an object or service. Multiple addresses are intended to identify
multiple communication endpoints for a single conceptual object or service. Each
address in a reference consists of an address type and an opaque buffer. The address
type determines the format and interpretation of the address data. Together, the
address’s type and data specify how to reach the object. Many communication mechan-
isms are possible; FNS does not place any restrictions on them.

The following summarizes the reference and address types that are currently defined.
New types should be registered with the Federated Naming Group at SunSoft.

Reference Types All reference types use the FN_ID_STRING identifier format unless otherwise qualified.

onc_fn_enterprise
Enterprise root context.

onc_fn_organization
A context for naming objects related to an organizational unit.

onc_fn_hostname
A context for naming hosts.

onc_fn_username
A context for naming users.

onc_fn_user
A context for naming objects related to a user.

onc_fn_host
A context for naming objects related to a computer.

onc_fn_site
A context for naming sites.

onc_fn_service
A context for naming services.

onc_fn_nsid
A context for naming namespace identifiers.

onc_fn_generic
A context for naming application-specific objects.

onc_fn_fs
A context for naming files, directories, and file systems.

5-58 SunOS 5.6 modified 13 Dec 1996

Headers, Environments, and Macros fns_references (5)

onc_fn_printername
A context for naming printers.

onc_printers
A printer object. When implemented on top of NIS+, this could also be a context
for naming printers.

fn_link_ref
An XFN link.

inet_domain
An Internet domain.

Address Types All address types use the FN_ID_STRING identifier format unless otherwise qualified.
The format of address contents is determined by the corresponding address type.

onc_fn_nisplus
For an FNS enterprise-level object implemented on top of NIS+. The address con-
tains the context type, context representation type (either normal or merged), ver-
sion number of the reference, and the NIS+ name of the object. The only intended
use of this reference is that it be passed to fn_ctx_handle_from_ref(3N).

onc_fn_nis
For an FNS enterprise-level object implemented on top of NIS. The address con-
tains the context type and version number of the reference, and the NIS name of
the object. The only intended use of this reference is that it be passed to
fn_ctx_handle_from_ref(3N).

onc_fn_files
For an FNS enterprise-level object implemented on top of /etc files. The address
contains the context type and version number of the reference, and the location of
the object in the /etc file system. The only intended use of this reference is that it
be passed to fn_ctx_handle_from_ref(3N).

onc_fn_fs_user
For a user’s home directory. The address contains the user’s name and the name
of the naming service password table where the user’s home directory is stored.

onc_fn_fs_user_nisplus
For a user’s home directory. The address contains the user’s name and the name
of the NIS+ password table where the user’s home directory is stored.

onc_fn_fs_host
For all file systems exported by a host. The address contains the host’s name.

onc_fn_fs_mount
For a single mount point. The address contains the mount options, the name of
the servers and the exported path. See mount(1M).

modified 13 Dec 1996 SunOS 5.6 5-59

fns_references (5) Headers, Environments, and Macros

onc_fn_printer_files
For a printer’s address in the files naming service.

onc_fn_printer_nis
For a printer’s address in the NIS naming service.

onc_fn_printer_nisplus
For a printer’s address in the NIS+ naming service.

fn_link_addr
For an XFN link address. The contents is the string form of the composite name.

inet_domain
For an Internet domain. The address contains the fully-qualified domain name
(for example, "Wiz.COM.")

inet_ipaddr_string
For an object with an Internet address. The address contains an internet IP
address in dotted string form (for example, "192.144.2.3").

x500 For an X.500 object. The address contains an X.500 Distinguished Name, in the
syntax specified in the X/Open DCE: Directory Services.

osi_paddr
For an object with an OSI presentation address. The address contains the string
encoding of an OSI Presentation Address as defined in A string encoding of Presen-
tation Address (RFC 1278).

onc_printers_bsaddr
For a printer that understands the BSD print protocol. The address contains the
machine name and printer name used by the protocol.

onc_printers_use
For a printer alias. The address contains a printer name.

onc_printers_all
For a list of printers that are enumerated using the "all" option. The address con-
tains a list of printer names.

onc_printers_location
For a printer’s location. The address format is unspecified.

onc_printers_type
For a printer’s type. The address format is unspecified.

onc_printers_speed
For a printer’s speed. The address format is unspecified.

SEE ALSO mount(1M), fn_ctx_handle_from_ref(3N), xfn(3N), fns(5), fns_policies(5)

Hardcastle-Kille, S.E., A string encoding of Presentation Address, RFC 1278, University Col-
lege London, November 1991.

5-60 SunOS 5.6 modified 13 Dec 1996

Headers, Environments, and Macros fns_x500 (5)

NAME fns_x500 − overview of FNS over X.500 implementation

DESCRIPTION Federated Naming Service (FNS) provides a method for federating multiple naming ser-
vices under a single, simple interface for the basic naming operations. One of the naming
services supported by FNS is the X.500 Directory Service (see ITU-T X.500 or ISO/IEC
9594). X.500 is a global directory service. Its components cooperate to manage informa-
tion about a hierarchy of objects on a worldwide scope. Such objects include countries,
organizations, people, services, and machines. FNS uses X.500 to name entities globally.

FNS provides the XFN interface for retrieval and modification of information stored in
X.500. In addition, enterprise namespaces such as those served by NIS+ and NIS can be
federated with X.500 by adding reference information to X.500 describing how to reach
the desired next naming service. To federate a NIS+ or NIS namespace under X.500, per-
form the following steps:

1. Obtain the root reference for the NIS+ hierarchy or NIS domain.

2. Enhance the X.500 schema to support the addition of XFN references.

3. Create an X.500 entry to store the XFN reference.

4. Add the XFN reference.

The root reference is referred to as the next naming system reference because it refers to the
next naming system beneath X.500. This reference contains information about how to
communicate with the NIS+ or NIS servers and has the following format:

<domainname> <server name> [<server address>]

where <domainname> is the fully qualified domain name. Note that NIS+ and NIS have
slightly different syntaxes for domain names. For NIS+, the fully qualified domain name
is case-insensitive and terminated by a dot character (’.’). For NIS, the fully qualified
domain name is case-sensitive and not terminated by a dot character. For both NIS+ and
NIS, <server address> is optional. If it is not supplied, a host name lookup will be per-
formed to get the machine’s address.

For example, if the machine wiz-nisplus-server with address 133.33.33.33 serves the NIS+
domain wiz.com., the reference would look like this:

wiz.com. wiz-nisplus-server 133.33.33.33

For another example, if the machine woz-nis-server serves the NIS domain Woz.COM,
the reference would look like this:

Woz.COM woz-nis-server

Before the next naming system reference can be added to X.500, the X.500 schema must
be altered to include the following object class and associated attributes (defined in ASN.1
notation).

xFNSupplement OBJECT-CLASS : : = {
SUBCLASS OF { top }
KIND auxiliary
MAY CONTAIN { objectReferenceString | nNSReferenceString }

modified 22 Nov 1996 SunOS 5.6 5-61

fns_x500 (5) Headers, Environments, and Macros

ID id-oc-xFNSupplement }

id-oc-xFNSupplement OBJECT IDENTIFIER : : = {
iso member-body(2) ansi(840) sun(113536) 25 }

objectReferenceString ATTRIBUTE : : = {
WITH SYNTAX OCTET STRING
EQUALITY MATCHING RULE octetStringMatch
SINGLE VALUE TRUE
ID id-at-objectReferenceString }

id-at-objectReferenceString OBJECT IDENTIFIER : : = {
iso member-body(2) ansi(840) sun(113536) 30 }

nNSReferenceString ATTRIBUTE : : = {
WITH SYNTAX OCTET STRING
EQUALITY MATCHING RULE octetStringMatch
SINGLE VALUE TRUE
ID id-at-nNSReferenceString }

id-at-nNSReferenceString OBJECT IDENTIFIER : : = {
iso member-body(2) ansi(840) sun(113536) 31 }

The procedures for altering the X.500 schema will vary from implementation to imple-
mentation. Consult Solstice X.500 Directory Management or the schema administration
guide for your X.500 product.

Once X.500 supports XFN references, the next naming system reference can be added by
first creating an X.500 object and then adding the new reference to it. For example, the
following commands create entries for the Wiz and Woz organizations in the U.S.A. and
add the reference information shown in the examples above to them.

For NIS+:

example% fnattr . . . /c=us/o=wiz −a objectclass \
top organization xfnsupplement

example% fnbind −r . . . /c=us/o=wiz/ onc_fn_enterprise \
onc_fn_nisplus_root "wiz.com. wiz-nisplus-server"

For NIS:

example% fnattr . . . /c=us/o=woz −a objectclass \
top organization xfnsupplement

example% fnbind −r . . . /c=us/o=woz/ onc_fn_enterprise \
onc_fn_nis_root "Woz.COM woz-nis-server"

Note the mandatory trailing slash (’/’) in the name argument to fnbind(1).

5-62 SunOS 5.6 modified 22 Nov 1996

Headers, Environments, and Macros fns_x500 (5)

This modification effectively adds the next naming system reference to X.500. The refer-
ence may be retrieved using fnlookup(1) to see if the information has been added prop-
erly. For example, the following command looks up the next naming system reference of
the Wiz organization:

example% fnlookup −v . . . /c=us/o=wiz/

Note the mandatory trailing slash.

After this administrative step has been taken, clients outside of the NIS+ hierarchy or NIS
domain can access and perform operations on the contexts in the NIS+ hierarchy or NIS
domain. Foreign NIS+ clients access the hierarchy as unauthenticated NIS+ clients. Con-
tinuing the example above, and assuming that NIS+ is federated underneath the Wiz
organization, the root of the NIS+ enterprise may be listed using the command:

example% fnlist . . . /c=us/o=wiz/

Note the mandatory trailing slash.

The next naming system reference may be removed using the command:

example% fnunbind . . . /c=us/o=wiz/

Note the mandatory trailing slash.

SEE ALSO fnattr(1), fnbind(1), fnlist(1), fnlookup(1), nis+(1), ypserv(1M), xfn(3N), fns(5),
fns_dns(5), fns_nis(5), fns_nis+(5), fns_references(5)

Solstice X.500 Directory Management

modified 22 Nov 1996 SunOS 5.6 5-63

formats (5) Headers, Environments, and Macros

NAME formats − file format notation

DESCRIPTION Utility descriptions use a syntax to describe the data organization within files—stdin,
stdout, stderr, input files, and output files—when that organization is not otherwise obvi-
ous. The syntax is similar to that used by the printf(3S) function. When used for stdin or
input file descriptions, this syntax describes the format that could have been used to
write the text to be read, not a format that could be used by the scanf(3S) function to read
the input file.

Format The description of an individual record is as follows:

"<format>", [<arg1>, <arg2>, . . ., <argn>]

The format is a character string that contains three types of objects defined below:

characters Characters that are not escape sequences or conversion specifications, as
described below, are copied to the output.

escape sequences Represent non-graphic characters.

conversion specifications
Specifies the output format of each argument. (See below.)

The following characters have the following special meaning in the format string:

" " (An empty character position.) One or more blank characters

∆ Exactly one space character.

The notation for spaces allows some flexibility for application output. Note that an
empty character position in format represents one or more blank characters on the output
(not white space, which can include newline characters). Therefore, another utility that
reads that output as its input must be prepared to parse the data using scanf(3S), awk(1),
and so forth. The ∆ character is used when exactly one space character is output.

Escape Sequences The following table lists escape sequences and associated actions on display devices
capable of the action.

Escape Represents
Sequence Character

Terminal Action

\\ backslash None.
\a alert Attempts to alert the user through audible or visible notification.
\b backspace Moves the printing position to one column before the current

position, unless the current position is the start of a line.
\f form-feed Moves the printing position to the initial printing position of the

next logical page.
\n newline Moves the printing position to the start of the next line.
\r carriage-return Moves the printing position to the start of the current line.

5-64 SunOS 5.6 modified 28 Mar 1995

Headers, Environments, and Macros formats (5)

\t tab Moves the printing position to the next tab position on the
current line. If there are no more tab positions left on the line,
the behaviour is undefined.

\v vertical-tab Moves the printing position to the start of the next vertical tab
position. If there are no more vertical tab positions left on the
page, the behaviour is undefined.

Conversion
Specifications

Each conversion specification is introduced by the percent-sign character (%). After the
character %, the following appear in sequence:

flags Zero or more flags , in any order, that modify the meaning of the conversion
specification.

field width An optional string of decimal digits to specify a minimum field width. For
an output field, if the converted value has fewer bytes than the field width,
it is padded on the left (or right, if the left-adjustment flag (−), described
below, has been given to the field width).

precision Gives the minimum number of digits to appear for the d, o, i, u, x or X
conversions (the field is padded with leading zeros), the number of digits to
appear after the radix character for the e and f conversions, the maximum
number of significant digits for the g conversion; or the maximum number
of bytes to be written from a string in s conversion. The precision takes the
form of a period (.) followed by a decimal digit string; a null digit string is
treated as zero.

conversion characters
A conversion character (see below) that indicates the type of conversion to
be applied.

flags The flags and their meanings are:

− The result of the conversion is left-justified within the field.

+ The result of a signed conversion always begins with a sign (+ or −).

<space> If the first character of a signed conversion is not a sign, a space character is
prefixed to the result. This means that if the space character and + flags
both appear, the space character flag is ignored.

The value is to be converted to an alternative form. For c, d, i, u, and s
conversions, the behaviour is undefined. For o conversion, it increases the
precision to force the first digit of the result to be a zero. For x or X conver-
sion, a non-zero result has 0x or 0X prefixed to it, respectively. For e, E, f, g,
and G conversions, the result always contains a radix character, even if no
digits follow the radix character. For g and G conversions, trailing zeros are
not removed from the result as they usually are.

0 For d, i, o, u, x, X, e, E, f, g, and G conversions, leading zeros (following any
indication of sign or base) are used to pad to the field width; no space pad-
ding is performed. If the 0 and − flags both appear, the 0 flag is ignored.
For d, i, o, u, x and X conversions, if a precision is specified, the 0 flag is

modified 28 Mar 1995 SunOS 5.6 5-65

formats (5) Headers, Environments, and Macros

ignored. For other conversions, the behaviour is undefined.

Conversion
Characters

Each conversion character results in fetching zero or more arguments. The results are
undefined if there are insufficient arguments for the format. If the format is exhausted
while arguments remain, the excess arguments are ignored.

The conversion characters and their meanings are:

d,i,o,u,x,X The integer argument is written as signed decimal (d or i), unsigned octal
(o), unsigned decimal (u), or unsigned hexadecimal notation (x and X). The
d and i specifiers convert to signed decimal in the style [−]dddd. The x
conversion uses the numbers and letters 0123456789abcdef and the X
conversion uses the numbers and letters 0123456789ABCDEF. The precision
component of the argument specifies the minimum number of digits to
appear. If the value being converted can be represented in fewer digits than
the specified minimum, it is expanded with leading zeros. The default pre-
cision is 1. The result of converting a zero value with a precision of 0 is no
characters. If both the field width and precision are omitted, the implemen-
tation may precede, follow or precede and follow numeric arguments of
types d, i and u with blank characters; arguments of type o (octal) may be
preceded with leading zeros.

The treatment of integers and spaces is different from the printf(3S) func-
tion in that they can be surrounded with blank characters. This was done
so that, given a format such as:

"%d\n",<foo>

the implementation could use a printf() call such as:

printf("%6d\n", foo);

and still conform. This notation is thus somewhat like scanf() in addition
to printf().

f The floating point number argument is written in decimal notation in the
style [−]ddd.ddd, where the number of digits after the radix character
(shown here as a decimal point) is equal to the precision specification. The
LC_NUMERIC locale category determines the radix character to use in this
format. If the precision is omitted from the argument, six digits are written
after the radix character; if the precision is explicitly 0, no radix character
appears.

e,E The floating point number argument is written in the style [−]d.ddde±dd (the
symbol ± indicates either a plus or minus sign), where there is one digit
before the radix character (shown here as a decimal point) and the number
of digits after it is equal to the precision. The LC_NUMERIC locale category
determines the radix character to use in this format. When the precision is
missing, six digits are written after the radix character; if the precision is 0,
no radix character appears. The E conversion character produces a number
with E instead of e introducing the exponent. The exponent always con-
tains at least two digits. However, if the value to be written requires an

5-66 SunOS 5.6 modified 28 Mar 1995

Headers, Environments, and Macros formats (5)

exponent greater than two digits, additional exponent digits are written as
necessary.

g,G The floating point number argument is written in style f or e (or in style E in
the case of a G conversion character), with the precision specifying the
number of significant digits. The style used depends on the value con-
verted: style g is used only if the exponent resulting from the conversion is
less than −4 or greater than or equal to the precision. Trailing zeros are
removed from the result. A radix character appears only if it is followed by
a digit.

c The integer argument is converted to an unsigned char and the resulting
byte is written.

s The argument is taken to be a string and bytes from the string are written
until the end of the string or the number of bytes indicated by the precision
specification of the argument is reached. If the precision is omitted from
the argument, it is taken to be infinite, so all bytes up to the end of the string
are written.

% Write a % character; no argument is converted.

In no case does a non-existent or insufficient field width cause truncation of a field; if the
result of a conversion is wider than the field width, the field is simply expanded to con-
tain the conversion result. The term field width should not be confused with the term pre-
cision used in the description of %s.

One difference from the C function printf() is that the l and h conversion characters are
not used. There is no differentiation between decimal values for type int, type long, or
type short. The specifications %d or %i should be interpreted as an arbitrary length
sequence of digits. Also, no distinction is made between single precision and double pre-
cision numbers (float or double in C). These are simply referred to as floating point
numbers.

Many of the output descriptions use the term line, such as:

"%s", <input line>

Since the definition of line includes the trailing newline character already, there is no need
to include a \n in the format; a double newline character would otherwise result.

EXAMPLES To represent the output of a program that prints a date and time in the form Sunday, July
3, 10:02, where <weekday> and <month> are strings:

"%s,∆%s∆%d,∆%d:%.2d\n",<weekday>,<month>,<day>,<hour>,<min>

To show π written to 5 decimal places:

"pi∆=∆%.5f\n",<value of π>

To show an input file format consisting of five colon-separated fields:

"%s:%s:%s:%s:%s\n",<arg1>,<arg2>,<arg3>,<arg4>,<arg5>

modified 28 Mar 1995 SunOS 5.6 5-67

formats (5) Headers, Environments, and Macros

SEE ALSO awk(1), printf(1), printf(3S), scanf(3S)

5-68 SunOS 5.6 modified 28 Mar 1995

Headers, Environments, and Macros iconv_1250 (5)

NAME iconv_1250 − code set conversion tables for MS 1250 (Windows Latin 2)

DESCRIPTION The following code set conversions are supported:

Code Set Conversions Supported
Code Symbol Target Code Symbol Target Output

MS 1250 win2 ISO 8859-2 iso2 ISO Latin 2
MS 1250 win2 MS 852 dos2 MS-DOS Latin 2
MS 1250 win2 Mazovia maz Mazovia
MS 1250 win2 DHN dhn Dom Handlowy Nauki

CONVERSIONS The conversions are performed according to the following tables. All values in the tables
are given in octal.

MS 1250 to
ISO 8859-2

For the conversion of MS 1250 to ISO 8859-2, all characters not in the following table are
mapped unchanged.

Conversions Performed
MS 1250 ISO 8859-2 MS 1250 ISO 8859-2

24-211 40 235 273
212 251 236 276
213 40 237 274
214 246 241 267
215 253 245 241
216 256 246-267 40
217 254 271 261
221-231 40 273 40
232 271 274 245
233 40 276 265
234 266 247 365

modified 18 Apr 1997 SunOS 5.6 5-69

iconv_1250 (5) Headers, Environments, and Macros

MS 1250 to
MS 852

For the conversion of MS 1250 to MS 852, all characters not in the following table are
mapped unchanged.

Conversions Performed
MS 1250 MS 852 MS 1250 MS 852

200-211 40 311 220
212 346 312 250
213 40 313 323
214 227 314 267
215 233 315 326
216 246 316 327
217 215 317 322
220-231 40 320 321
232 347 321 343
233 40 322 325
234 230 323 340
235 234 324 342
236 247 325 212
237 253 326 231
240 377 327 236
241 363 330 374
242 364 331 336
243 235 332 351
244 317 333 353
245 244 334 232
246 40 335 355
247 365 336 335
250 371 337 341
251 40 340 352
252 270 341 240
253 256 342 203
254 252 343 307
255 360 344 204
256 40 345 222
257 275 346 206
260 370 347 207
261 40 350 237
262 362 351 202
263 210 352 251
264 357 353 211
265-267 40 354 330
270 367 355 241
271 245 356 214
272 255 357 324

5-70 SunOS 5.6 modified 18 Apr 1997

Headers, Environments, and Macros iconv_1250 (5)

Conversions Performed
MS 1250 MS 852 MS 1250 MS 852

273 257 360 320
274 225 361 344
275 361 362 345
276 226 363 242
277 276 364 223
300 350 365 213
301 265 366 224
302 266 367 366
303 306 370 375
304 216 371 205
305 221 372 243
306 217 374 201
307 200 375 354
310 254 376 356

MS 1250 to
Mazovia

For the conversion of MS 1250 to Mazovia, all characters not in the following table are
mapped unchanged.

Conversions Performed
MS 1250 Mazovia MS 1250 Mazovia

200-213 40 310-311 40
214 230 312 220
215-216 40 313-320 40
217 240 321 245
220-233 40 322 40
234 236 323 243
235-236 40 324-325 40
237 246 326 231
240 377 327-333 40
241-242 40 334 232
243 234 335-336 40
244 40 337 341
245 217 340-341 40
246-252 40 342 203
253 256 343 40
254 252 344 204
255-256 40 345 40
257 241 346 215
260 370 347 207
261 361 350 40
262 40 351 202
263 222 352 221

modified 18 Apr 1997 SunOS 5.6 5-71

iconv_1250 (5) Headers, Environments, and Macros

Conversions Performed
MS 1250 Mazovia MS 1250 Mazovia

264 40 353 211
265 346 354-355 40
266 40 356 214
267 372 357-360 40
270 40 361 244
271 206 362 40
272 40 363 242
273 257 364 223
274-276 40 365 40
277 247 366 224
300-303 40 367 366
304 216 370-373 40
305 40 374 201
306 225 375-376 40
307 200

MS 1250 to
DHN

For the conversion of MS 1250 to DHN, all characters not in the following table are
mapped unchanged.

Conversions Performed
MS 1250 DHN MS 1250 DHN

200-213 40 306 201
214 206 307-311 40
215-216 40 312 202
217 207 313-320 40
220-233 40 321 204
234 217 322 40
235-236 40 323 205
237 220 324-325 40
240 377 326 231
241-242 40 327-333 40
243 203 334 232
244 40 335-336 40
245 200 337 341
246-252 40 340 40
253 256 341 240
254 252 342-345 40
255-256 40 346 212
257 210 347-351 40
260 370 352 213
261 361 353-354 40
262 40 355 241

5-72 SunOS 5.6 modified 18 Apr 1997

Headers, Environments, and Macros iconv_1250 (5)

Conversions Performed
MS 1250 DHN MS 1250 DHN

263 214 356-360 40
264 40 361 215
265 346 362 40
266 40 363 216
267 372 364 223
270 40 365 40
271 211 366 224
272 40 367 366
273 257 370-371 40
274-276 40 372 243
277 221 373-376 40
300-305 40

FILES /usr/lib/iconv/∗.so conversion modules
/usr/lib/iconv/∗.t conversion tables
/usr/lib/iconv/iconv_data list of conversions supported by conversion tables

SEE ALSO iconv(1), iconv(3), iconv(5)

modified 18 Apr 1997 SunOS 5.6 5-73

iconv_1251 (5) Headers, Environments, and Macros

NAME iconv_1251 − code set conversion tables for MS 1251 (Windows Cyrillic)

DESCRIPTION The following code set conversions are supported:

Code Set Conversions Supported
Code Symbol Target Code Symbol Target Output

MS 1251 win5 ISO 8859-5 iso5 ISO 8859-5 Cyrillic
MS 1251 win5 KOI8-R koi8 KOI8-R
MS 1251 win5 PC Cyrillic alt Alternative PC Cyrillic
MS 1251 win5 Mac Cyrillic mac Macintosh Cyrillic

CONVERSIONS The conversions are performed according to the following tables. All values in the tables
are given in octal.

MS 1251 to
ISO 8859-5

For the conversion of MS 1251 to ISO 8859-5, all characters not in the following table are
mapped unchanged.

Conversions Performed
MS 1251 ISO 8859-5 MS 1251 ISO 8859-5

24 4 310 270
200 242 311 271
201 243 312 272
202 40 313 273
203 363 314 274
204-207 40 315 275
210 255 316 276
211 40 317 277
212 251 320 300
213 40 321 301
214 252 322 302
215 254 323 303
216 253 324 304
217 257 325 305
220 362 326 306
221-227 40 327 307
230 255 330 310
231 40 331 311
232 371 332 312
233 40 333 313
234 372 334 314
235 374 335 315
236 373 336 316
237 377 337 317

5-74 SunOS 5.6 modified 18 Apr 1997

Headers, Environments, and Macros iconv_1251 (5)

Conversions Performed
MS 1251 ISO 8859-5 MS 1251 ISO 8859-5

241 256 340 320
242 376 341 321
243 250 342 322
244-247 40 343 323
250 241 344 324
251 40 345 325
252 244 346 326
253-254 40 347 327
255 55 350 330
256 40 351 331
257 247 352 332
260-261 40 353 333
262 246 354 334
263 366 355 335
264-267 40 356 336
270 361 357 337
271 360 360 340
272 364 361 341
273 40 362 342
274 370 363 343
275 245 364 344
276 365 365 345
277 367 366 346
300 260 367 347
301 261 370 350
302 262 371 351
303 263 372 352
304 264 373 353
305 265 374 354
306 266 375 355
307 267 376 356

MS 1251 to
KOI8-R

For the conversion of MS 1251 to KOI8-R , all characters not in the following table are
mapped unchanged.

Conversions Performed
MS 1251 KOI8-R MS 1251 KOI8-R

24 4 310 351
200 261 311 352
201 262 312 353
202 40 313 354
203 242 314 355

modified 18 Apr 1997 SunOS 5.6 5-75

iconv_1251 (5) Headers, Environments, and Macros

Conversions Performed
MS 1251 KOI8-R MS 1251 KOI8-R

204-207 40 315 356
210 255 316 357
211 40 317 360
212 271 320 362
213 40 321 363
214 272 322 364
215 274 323 365
216 273 324 346
217 277 325 350
220 241 326 343
221-227 40 327 376
230 255 330 373
231 40 331 375
232 251 332 377
233 40 333 371
234 252 334 370
235 254 335 374
236 253 336 340
237 257 337 361
241 276 340 301
242 256 341 302
243 270 342 327
244-247 40 343 307
250 263 344 304
251 40 345 305
252 264 346 326
253-254 40 347 332
255 55 350 311
256 40 351 312
257 267 352 313
260-261 40 353 314
262 266 354 315
263 246 355 316
264-267 40 356 317
270 243 357 320
271 260 360 322
272 244 361 323
273 40 362 324
274 250 363 325
275 265 364 306
276 245 365 310
277 247 366 303
300 341 367 336

5-76 SunOS 5.6 modified 18 Apr 1997

Headers, Environments, and Macros iconv_1251 (5)

Conversions Performed
MS 1251 KOI8-R MS 1251 KOI8-R

301 342 370 333
302 367 371 335
303 347 372 337
304 344 373 331
305 345 374 330
306 366 375 334
307 372 376 300

MS 1251 to
PC Cyrillic

For the conversion of MS 1251 to PC Cyrillic, all characters not in the following table are
mapped unchanged.

Conversions Performed
MS 1251 PC Cyrillic MS 1251 PC Cyrillic

24 4 332 232
200-207 40 333 233
210 260 334 234
211-227 40 335 235
230 260 336 236
231-247 40 337 237
250 360 340 240
251-254 40 341 241
255 55 342 242
256-267 40 343 243
270 361 344 244
271-277 40 345 245
300 200 346 246
301 201 347 247
302 202 350 250
303 203 351 251
304 204 352 252
305 205 353 253
306 206 354 254
307 207 355 255
310 210 356 256
311 211 357 257
312 212 360 340
313 213 361 341
314 214 362 342
315 215 363 343
316 216 364 344
317 217 365 345
320 220 366 346

modified 18 Apr 1997 SunOS 5.6 5-77

iconv_1251 (5) Headers, Environments, and Macros

Conversions Performed
MS 1251 PC Cyrillic MS 1251 PC Cyrillic

321 221 367 347
322 222 370 350
323 223 371 351
324 224 372 352
325 225 373 353
326 226 374 354
327 227 375 355
330 230 376 356
331 231

MS 1251 to
Mac Cyrillic

For the conversion of MS 1251 to Mac Cyrillic, all characters not in the following table are
mapped unchanged.

Conversions Performed
MS 1251 Mac Cyrillic MS 1251 Mac Cyrillic

24 4 260 241
200 253 262 247
201 256 263 264
202 40 264 266
203 257 266 246
204 327 267 245
205 311 270 336
206 240 271 334
207-211 40 272 271
212 274 273 310
213 40 274 300
214 276 275 301
215 315 276 317
216 40 277 273
217 332 300 200
220 254 301 201
221 324 302 202
222 325 303 203
223 322 304 204
224 323 305 205
225 40 306 206
226 320 307 207
227 321 310 210
230 40 311 211
231 252 312 212
232 275 313 213
233 40 314 214

5-78 SunOS 5.6 modified 18 Apr 1997

Headers, Environments, and Macros iconv_1251 (5)

Conversions Performed
MS 1251 Mac Cyrillic MS 1251 Mac Cyrillic

234 277 315 215
235 316 316 216
236 40 317 217
237 333 320 220
240 312 321 221
241 330 322 222
242 331 323 223
243 267 324 224
244 377 325 225
245 242 326 226
246 40 327 227
247 244 330 230
250 335 331 231
252 270 332 232
253 307 333 233
254 302 334 234
255 55 335 235
256 250 336 236
257 272 337 237
355 316

FILES /usr/lib/iconv/∗.so conversion modules
/usr/lib/iconv/∗.t conversion tables
/usr/lib/iconv/iconv_data list of conversions supported by conversion tables

SEE ALSO iconv(1), iconv(3), iconv(5)

modified 18 Apr 1997 SunOS 5.6 5-79

iconv (5) Headers, Environments, and Macros

NAME iconv − code set conversion tables

DESCRIPTION The following code set conversions are supported:

Code Set Conversions Supported
Code Symbol Target Code Symbol Target Output

ISO 646 646 ISO 8859-1 8859 US ASCII
ISO 646de 646de ISO 8859-1 8859 German
ISO 646da 646da ISO 8859-1 8859 Danish
ISO 646en 646en ISO 8859-1 8859 English ASCII
ISO 646es 646es ISO 8859-1 8859 Spanish
ISO 646fr 646fr ISO 8859-1 8859 French
ISO 646it 646it ISO 8859-1 8859 Italian
ISO 646sv 646sv ISO 8859-1 8859 Swedish
ISO 8859-1 8859 ISO 646 646 7 bit ASCII
ISO 8859-1 8859 ISO 646de 646de German
ISO 8859-1 8859 ISO 646da 646da Danish
ISO 8859-1 8859 ISO 646en 646en English ASCII
ISO 8859-1 8859 ISO 646es 646es Spanish
ISO 8859-1 8859 ISO 646fr 646fr French
ISO 8859-1 8859 ISO 646it 646it Italian
ISO 8859-1 8859 ISO 646sv 646sv Swedish
ISO 8859-2 iso2 MS 1250 win2 Windows Latin 2
ISO 8859-2 iso2 MS 852 dos2 MS-DOS Latin 2
ISO 8859-2 iso2 Mazovia maz Mazovia
ISO 8859-2 iso2 DHN dhn Dom Handlowy Nauki
MS 1250 win2 ISO 8859-2 iso2 ISO Latin 2
MS 1250 win2 MS 852 dos2 MS-DOS Latin 2
MS 1250 win2 Mazovia maz Mazovia
MS 1250 win2 DHN dhn Dom Handlowy Nauki
MS 852 dos2 ISO 8859-2 iso2 ISO Latin 2
MS 852 dos2 MS 1250 win2 Windows Latin 2
MS 852 dos2 Mazovia maz Mazovia
MS 852 dos2 DHN dhn Dom Handlowy Nauki

5-80 SunOS 5.6 modified 18 Apr 1997

Headers, Environments, and Macros iconv (5)

Code Set Conversions Supported
Code Symbol Target Code Symbol Target Output

Mazovia maz ISO 8859-2 iso2 ISO Latin 2
Mazovia maz MS 1250 win2 Windows Latin 2
Mazovia maz MS 852 dos2 MS-DOS Latin 2
Mazovia maz DHN dhn Dom Handlowy Nauki
DHN dhn ISO 8859-2 iso2 ISO Latin 2
DHN dhn MS 1250 win2 Windows Latin 2
DHN dhn MS 852 dos2 MS-DOS Latin 2
DHN dhn Mazovia maz Mazovia
ISO 8859-5 iso5 KOI8-R koi8 KOI8-R
ISO 8859-5 iso5 PC Cyrillic alt Alternative PC Cyrillic
ISO 8859-5 iso5 MS 1251 win5 Windows Cyrillic
ISO 8859-5 iso5 Mac Cyrillic mac Macintosh Cyrillic
KOI8-R koi8 ISO 8859-5 iso5 ISO 8859-5 Cyrillic
KOI8-R koi8 PC Cyrillic alt Alternative PC Cyrillic
KOI8-R koi8 MS 1251 win5 Windows Cyrillic
KOI8-R koi8 Mac Cyrillic mac Macintosh Cyrillic
PC Cyrillic alt ISO 8859-5 iso5 ISO 8859-5 Cyrillic
PC Cyrillic alt KOI8-R koi8 KOI8-R
PC Cyrillic alt MS 1251 win5 Windows Cyrillic
PC Cyrillic alt Mac Cyrillic mac Macintosh Cyrillic
MS 1251 win5 ISO 8859-5 iso5 ISO 8859-5 Cyrillic
MS 1251 win5 KOI8-R koi8 KOI8-R
MS 1251 win5 PC Cyrillic alt Alternative PC Cyrillic
MS 1251 win5 Mac Cyrillic mac Macintosh Cyrillic
Mac Cyrillic mac ISO 8859-5 iso5 ISO 8859-5 Cyrillic
Mac Cyrillic mac KOI8-R koi8 KOI8-R
Mac Cyrillic mac PC Cyrillic alt Alternative PC Cyrillic
Mac Cyrillic mac MS 1251 win5 Windows Cyrillic

modified 18 Apr 1997 SunOS 5.6 5-81

iconv (5) Headers, Environments, and Macros

CONVERSIONS The conversions are performed according to the tables contained in the manual pages
cross-referenced in the Index of Conversion Code Tables below.

Index of Conversion Code Tables
Code Target Code See Manual Page

ISO 646 ISO 8859-1
ISO 646de ISO 8859-1
ISO 646da ISO 8859-1
ISO 646en ISO 8859-1
ISO 646es ISO 8859-1
ISO 646fr ISO 8859-1
ISO 646it ISO 8859-1
ISO 646sv ISO 8859-1

iconv_646(5)

ISO 8859-1 ISO 646
ISO 8859-1 ISO 646de
ISO 8859-1 ISO 646da
ISO 8859-1 ISO 646en
ISO 8859-1 ISO 646es
ISO 8859-1 ISO 646fr
ISO 8859-1 ISO 646it
ISO 8859-1 ISO 646sv

iconv_8859-1(5)

ISO 8859-2 MS 1250
ISO 8859-2 MS 852
ISO 8859-2 Mazovia
ISO 8859-2 DHN

iconv_8859-2(5)

MS 1250 ISO 8859-2
MS 1250 MS 852
MS 1250 Mazovia
MS 1250 DHN

iconv_1250(5)

MS 852 ISO 8859-2
MS 852 MS 1250
MS 852 Mazovia
MS 852 DHN

iconv_852(5)

Mazovia ISO 8859-2
Mazovia MS 1250
Mazovia MS 852
Mazovia DHN

iconv_maz(5)

5-82 SunOS 5.6 modified 18 Apr 1997

Headers, Environments, and Macros iconv (5)

Index of Conversion Code Tables
Code Target Code See Manual Page

DHN ISO 8859-2
DHN MS 1250
DHN MS 852
DHN Mazovia

iconv_dhn(5)

ISO 8859-5 KOI8-R
ISO 8859-5 PC Cyrillic
ISO 8859-5 MS 1251
ISO 8859-5 Mac Cyrillic

iconv_8859-5(5)

KOI8-R ISO 8859-5
KOI8-R PC Cyrillic
KOI8-R MS 1251
KOI8-R Mac Cyrillic

iconv_koi8-r(5)

PC Cyrillic ISO 8859-5
PC Cyrillic KOI8-R
PC Cyrillic MS 1251
PC Cyrillic Mac Cyrillic

iconv_pc_cyr(5)

MS 1251 ISO 8859-5
MS 1251 KOI8-R
MS 1251 PC Cyrillic
MS 1251 Mac Cyrillic

iconv_1251(5)

Mac Cyrillic ISO 8859-5
Mac Cyrillic KOI8-R
Mac Cyrillic PC Cyrillic
Mac Cyrillic MS 1251

iconv_mac_cyr(5)

FILES /usr/lib/iconv/∗.so conversion modules
/usr/lib/iconv/∗.t conversion tables
/usr/lib/iconv/iconv_data list of conversions supported by conversion tables

SEE ALSO iconv(1), iconv(3), iconv_1250(5), iconv_1251(5), iconv_646(5), iconv_852(5),
iconv_8859-1(5), iconv_8859-2(5), iconv_8859-5(5), iconv_dhn(5), iconv_koi8-r(5),
iconv_mac_cyr(5), iconv_maz(5), iconv_pc_cyr(5), iconv_unicode(5)

modified 18 Apr 1997 SunOS 5.6 5-83

iconv_646 (5) Headers, Environments, and Macros

NAME iconv_646 − code set conversion tables for ISO 646

DESCRIPTION The following code set conversions are supported:

Code Set Conversions Supported
Code Symbol Target Code Symbol Target Output

ISO 646 646 ISO 8859-1 8859 US ASCII
ISO 646de 646de ISO 8859-1 8859 German
ISO 646da 646da ISO 8859-1 8859 Danish
ISO 646en 646en ISO 8859-1 8859 English ASCII
ISO 646es 646es ISO 8859-1 8859 Spanish
ISO 646fr 646fr ISO 8859-1 8859 French
ISO 646it 646it ISO 8859-1 8859 Italian
ISO 646sv 646sv ISO 8859-1 8859 Swedish

CONVERSIONS The conversions are performed according to the following tables. All values in the tables
are given in octal.

ISO 646 (US ASCII)
to ISO 8859-1

For the conversion of ISO 646 to ISO 8859-1, all characters in ISO 646 can be mapped
unchanged to ISO 8859-1

ISO 646de
(GERMAN) to ISO

8859-1

For the conversion of ISO 646de to ISO 8859-1, all characters not in the following table are
mapped unchanged.

Conversions Performed
ISO 646de ISO 8859-1 ISO 646de ISO 8859-1

100 247 173 344
133 304 174 366
134 326 175 374
135 334 176 337

ISO 646da (DANISH)
to ISO 8859-1

For the conversion of ISO 646da to ISO 8859-1, all characters not in the following table
are mapped unchanged.

Conversions Performed
ISO 646da ISO 8859-1 ISO 646da ISO 8859-1

133 306 173 346
134 330 174 370
135 305 175 345

5-84 SunOS 5.6 modified 28 Apr 1997

Headers, Environments, and Macros iconv_646 (5)

ISO 646en (ENGLISH
ASCII) to ISO 8859-1

For the conversion of ISO 646en to ISO 8859-1, all characters not in the following table are
mapped unchanged.

Conversions Performed
ISO 646en ISO 8859-1

043 243

ISO 646es
(SPANISH) to ISO

8859-1

For the conversion of ISO 646es to ISO 8859-1, all characters not in the following table are
mapped unchanged.

Conversions Performed
ISO 646es ISO 8859-1 ISO 646es ISO 8859-1

100 247 173 260
133 241 174 361
134 321 175 347
135 277

ISO 646fr (FRENCH)
to ISO 8859-1

For the conversion of ISO 646fr to ISO 8859-1, all characters not in the following table are
mapped unchanged.

Conversions Performed
ISO 646fr ISO 8859-1 ISO 646fr ISO 8859-1

043 243 173 351
100 340 174 371
133 260 175 350
134 347 176 250
135 247

ISO 646it (ITALIAN)
to ISO 8859-1

For the conversion of ISO 646it to ISO 8859-1, all characters not in the following table are
mapped unchanged.

Conversions Performed
ISO 646it ISO 8859-1 ISO 646it ISO 8859-1

043 243 140 371
100 247 173 340
133 260 174 362
134 347 175 350
135 351 176 354

modified 28 Apr 1997 SunOS 5.6 5-85

iconv_646 (5) Headers, Environments, and Macros

ISO 646sv
(SWEDISH) to ISO

8859-1

For the conversion of ISO 646sv to ISO 8859-1, all characters not in the following table are
mapped unchanged.

Conversions Performed
ISO 646sv ISO 8859-1 ISO 646sv ISO 8859-1

100 311 140 351
133 304 173 344
134 326 174 366
135 305 175 345
136 334 176 374

FILES /usr/lib/iconv/∗.so conversion modules
/usr/lib/iconv/∗.t conversion tables
/usr/lib/iconv/iconv_data list of conversions supported by conversion tables

SEE ALSO iconv(1), iconv(3), iconv(5)

5-86 SunOS 5.6 modified 28 Apr 1997

Headers, Environments, and Macros iconv_852 (5)

NAME iconv_852 − code set conversion tables for MS 852 (MS-DOS Latin 2)

DESCRIPTION The following code set conversions are supported:

Code Set Conversions Supported
Code Symbol Target Code Symbol Target Output

MS 852 dos2 ISO 8859-2 iso2 ISO Latin 2
MS 852 dos2 MS 1250 win2 Windows Latin 2
MS 852 dos2 Mazovia maz Mazovia
MS 852 dos2 DHN dhn Dom Handlowy Nauki

CONVERSIONS The conversions are performed according to the following tables. All values in the tables
are given in octal.

MS 852 to
ISO 8859-2

For the conversion of MS 852 to ISO 8859-2, all characters not in the following table are
mapped unchanged.

Conversions Performed
MS 852 ISO 8859-2 MS 852 ISO 8859-2
24-177 40 271-274 40
200 307 275 257
201 374 276 277
202 351 277-305 40
203 342 306 303
204 344 307 343
205 371 310-316 40
206 346 317 244
207 347 320 360
210 263 321 320
211 353 322 317
212 325 323 313
213 365 324 357
214 356 325 322
215 254 326 315
216 304 327 316
217 306 330 354
220 311 331-334 40
221 305 335 336
222 345 336 331
223 364 337 40
224 366 340 323
225 245 341 337

modified 18 Apr 1997 SunOS 5.6 5-87

iconv_852 (5) Headers, Environments, and Macros

Conversions Performed
MS 852 ISO 8859-2 MS 852 ISO 8859-2
226 265 342 324
227 246 343 321
230 266 344 361
231 326 345 362
232 334 346 251
233 253 347 271
234 273 350 300
235 243 351 332
236 327 352 340
237 350 353 333
240 341 354 375
241 355 355 335
242 363 356 376
243 372 357 264
244 241 360 255
245 261 361 275
246 256 362 262
247 276 363 267
250 312 364 242
251 352 365 247
252 40 366 367
253 274 367 270
254 310 370 260
255 272 371 250
256-264 40 372 377
265 301 374 330
266 302 375 370
267 314 376 40
270 252

5-88 SunOS 5.6 modified 18 Apr 1997

Headers, Environments, and Macros iconv_852 (5)

MS 852 to
MS 1250

For the conversion of MS 852 to MS 1250, all characters not in the following table are
mapped unchanged.

Conversions Performed
MS 852 MS 1250 MS 852 MS 1250
200 307 270 252
201 374 271-274 40
202 351 275 257
203 342 276 277
204 344 277-305 40
205 371 306 303
206 346 307 343
207 347 310-316 40
210 263 317 244
211 353 320 360
212 325 321 320
213 365 322 317
214 356 323 313
215 217 324 357
216 304 325 322
217 306 326 315
220 311 327 316
221 305 330 354
222 345 331-334 40
223 364 335 336
224 366 336 331
225 274 337 40
226 276 340 323
227 214 341 337
230 234 342 324
231 326 343 321
232 334 344 361
233 215 345 362
234 235 346 212
235 243 347 232
236 327 350 300
237 350 351 332
240 341 352 340
241 355 353 333
242 363 354 375
243 372 355 335
244 245 356 376
245 271 357 264
246 216 360 255

modified 18 Apr 1997 SunOS 5.6 5-89

iconv_852 (5) Headers, Environments, and Macros

Conversions Performed
MS 852 MS 1250 MS 852 MS 1250
247 236 361 275
250 312 362 262
251 352 363 241
252 254 364 242
253 237 365 247
254 310 366 367
255 272 367 270
256 253 370 260
257 273 371 250
260-264 40 372 377
265 301 374 330
266 302 375 370
267 314 376 40

MS 852 to
Mazovia

For the conversion of MS 852 to Mazovia, all characters not in the following table are
mapped unchanged.

Conversions Performed
MS 852 Mazovia MS 852 Mazovia
205 40 246-247 40
206 215 250 220
210 222 251 221
212-213 40 253 246
215 240 254-270 40
217 225 275 241
220-226 40 276 247
227 230 306-336 40
230 236 340 243
233-234 40 342 40
235 234 343 245
236-243 40 344 244
244 217 345-375 40
245 206

5-90 SunOS 5.6 modified 18 Apr 1997

Headers, Environments, and Macros iconv_852 (5)

MS 852 to
DHN

For the conversion of MS 852 to DHN, all characters not in the following table are
mapped unchanged.

Conversions Performed
MS 852 DHN MS 852 DHN
200-205 40 244 200
206 212 245 211
207 40 246-247 40
210 214 250 202
211-214 40 251 213
215 207 253 220
216 40 254-270 40
217 201 275 210
220-226 40 276 221
227 206 306-336 40
230 217 340 205
233-234 40 342 40
235 203 343 204
236-237 40 344 215
242 216 345-375 40
252 254

FILES /usr/lib/iconv/∗.so conversion modules
/usr/lib/iconv/∗.t conversion tables
/usr/lib/iconv/iconv_data list of conversions supported by conversion tables

SEE ALSO iconv(1), iconv(3), iconv(5)

modified 18 Apr 1997 SunOS 5.6 5-91

iconv_8859-1 (5) Headers, Environments, and Macros

NAME iconv_8859-1 − code set conversion tables for ISO 8859-1 (Latin 1)

DESCRIPTION The following code set conversions are supported:

Code Set Conversions Supported
Code Symbol Target Code Symbol Target Output

ISO 8859-1 8859 ISO 646 646 7 bit ASCII
ISO 8859-1 8859 ISO 646de 646de German
ISO 8859-1 8859 ISO 646da 646da Danish
ISO 8859-1 8859 ISO 646en 646en English ASCII
ISO 8859-1 8859 ISO 646es 646es Spanish
ISO 8859-1 8859 ISO 646fr 646fr French
ISO 8859-1 8859 ISO 646it 646it Italian
ISO 8859-1 8859 ISO 646sv 646sv Swedish

CONVERSIONS The conversions are performed according to the following tables. All values in the tables
are given in octal.

ISO 8859-1 to ISO 646
(7-bit ASCII)

For the conversion of ISO 8859-1 to ISO 646, all characters not in the following table are
mapped unchanged.

Converted to Underscore ’_’ (137)
200 201 202 203 204 205 206 207
210 211 212 213 214 215 216 217
220 221 222 223 224 225 226 227
230 231 232 233 234 235 236 237
240 241 242 243 244 245 246 247
250 251 252 253 254 255 256 257
260 261 262 263 264 265 266 267
270 271 272 273 274 275 276 277
300 301 302 303 304 305 306 307
310 311 312 313 314 315 316 317
320 321 322 323 324 325 326 327
330 331 332 333 334 335 336 337
340 341 342 343 344 345 346 347
350 351 352 353 354 355 356 357
360 361 362 363 364 365 366 367
370 371 372 373 374 375 376 377

5-92 SunOS 5.6 modified 28 Apr 1997

Headers, Environments, and Macros iconv_8859-1 (5)

ISO 8859-1 to ISO
646de (GERMAN)

For the conversion of ISO 8859-1 to ISO 646de, all characters not in the following tables
are mapped unchanged.

Conversions Performed
ISO 8859-1 ISO 646de ISO 8859-1 ISO 646de

247 100 337 176
304 133 344 173
326 134 366 174
334 135 374 175

Converted to Underscore ’_’ (137)
100 133 134 135 173 174 175 176
200 201 202 203 204 205 206 207
210 211 212 213 214 215 216 217
220 221 222 223 224 225 226 227
230 231 232 233 234 235 236 237
240 241 242 243 244 245 246
250 251 252 253 254 255 256 257
260 261 262 263 264 265 266 267
270 271 272 273 274 275 276 277
300 301 302 303 305 306 307
310 311 312 313 314 315 316 317
320 321 322 323 324 325 327
330 331 332 333 335 336 337
340 341 342 343 345 346 347
350 351 352 353 354 355 356 357
360 361 362 363 364 365 367
370 371 372 373 375 376 377

modified 28 Apr 1997 SunOS 5.6 5-93

iconv_8859-1 (5) Headers, Environments, and Macros

ISO 8859-1 to ISO
646da (DANISH)

For the conversion of ISO 8859-1 to ISO 646da, all characters not in the following tables
are mapped unchanged.

Conversions Performed
ISO 8859-1 ISO 646da ISO 8859-1 ISO 646da

305 135 345 175
306 133 346 173
330 134 370 174

Converted to Underscore ’_’ (137)
133 134 135 173 174 175
200 201 202 203 204 205 206 207
210 211 212 213 214 215 216 217
220 221 222 223 224 225 226 227
230 231 232 233 234 235 236 237
240 241 242 243 244 245 246 247
250 251 252 253 254 255 256 257
260 261 262 263 264 265 266 267
270 271 272 273 274 275 276 277
300 301 302 303 304 307
310 311 312 313 314 315 316 317
320 321 322 323 324 325 326 327

331 332 333 334 335 336 337
340 341 342 343 344 347
350 351 352 353 354 355 356 357
360 361 362 363 364 365 366 367

371 372 373 374 376 377

5-94 SunOS 5.6 modified 28 Apr 1997

Headers, Environments, and Macros iconv_8859-1 (5)

ISO 8859-1 to ISO
646en (ENGLISH

ASCII)

For the conversion of ISO 8859-1 to ISO 646en, all characters not in the following tables
are mapped unchanged.

Conversions Performed
ISO 8859-1 ISO 646en

243 043

Converted to Underscore ’_’ (137)
043
200 201 202 203 204 205 206 207
210 211 212 213 214 215 216 217
220 221 222 223 224 225 226 227
230 231 232 233 234 235 236 237
240 241 242 244 245 246 247
250 251 252 253 254 255 256 257
260 261 262 263 264 265 266 267
270 271 272 273 274 275 276 277
300 301 302 303 304 305 306 307
310 311 312 313 314 315 316 317
320 321 322 323 324 325 326 327
330 331 332 333 334 335 336 337
340 341 342 343 344 345 346 347
350 351 352 353 354 355 356 357
360 361 362 363 364 365 366 367
370 371 372 373 374 375 376 377

modified 28 Apr 1997 SunOS 5.6 5-95

iconv_8859-1 (5) Headers, Environments, and Macros

ISO 8859-1 to ISO
646fr (FRENCH)

For the conversion of ISO 8859-1 to ISO 646fr, all characters not in the following tables are
mapped unchanged.

Conversions Performed
ISO 8859-1 ISO 646fr ISO 8859-1 ISO 646fr

243 043 347 134
247 135 350 175
250 176 351 173
260 133 371 174
340 100

Converted to Underscore ’_’ (137)
043
100 133 134 135 173 174 175 176
200 201 202 203 204 205 206 207
210 211 212 213 214 215 216 217
220 221 222 223 224 225 226 227
230 231 232 233 234 235 236 237
240 241 242 244 245 246

251 252 253 254 255 256 257
261 262 263 264 265 266 267

270 271 272 273 274 275 276 277
300 301 302 303 304 305 306 307
310 311 312 313 314 315 316 317
320 321 322 323 324 325 326 327
330 331 332 333 334 335 336 337

341 342 343 344 345 346
352 353 354 355 356 357

360 361 362 363 364 365 366 367
370 372 373 374 375 376 377

5-96 SunOS 5.6 modified 28 Apr 1997

Headers, Environments, and Macros iconv_8859-1 (5)

ISO 8859-1 to ISO
646it (ITALIAN)

For the conversion of ISO 8859-1 to ISO 646it, all characters not in the following tables are
mapped unchanged.

Conversions Performed
ISO 8859-1 ISO 646it ISO 8859-1 ISO 646it

243 043 350 175
247 100 351 135
260 133 354 176
340 173 362 174
347 134 371 140

Converted to Underscore ’_’ (137)
043
100 133 134 135 173 174 175 176
200 201 202 203 204 205 206 207
210 211 212 213 214 215 216 217
220 221 222 223 224 225 226 227
230 231 232 233 234 235 236 237
240 241 242 244 245 246
250 251 252 253 254 255 256 257

261 262 263 264 265 266 267
270 271 272 273 274 275 276 277
300 301 302 303 304 305 306 307
310 311 312 313 314 315 316 317
320 321 322 323 324 325 326 327
330 331 332 333 334 335 336 337

341 342 343 344 345 346
352 353 354 355 356 357

360 361 363 364 365 366 367
370 372 373 374 375 376 377

modified 28 Apr 1997 SunOS 5.6 5-97

iconv_8859-1 (5) Headers, Environments, and Macros

ISO 8859-1 to ISO
646es (SPANISH)

For the conversion of ISO 8859-1 to ISO 646es, all characters not in the following tables
are mapped unchanged.

Conversions Performed
ISO 8859-1 ISO 646es ISO 8859-1 ISO 646es

241 133 321 134
247 100 347 175
260 173 361 174
277 135

Converted to Underscore ’_’ (137)
100 133 134 135 173 174 175
200 201 202 203 204 205 206 207
210 211 212 213 214 215 216 217
220 221 222 223 224 225 226 227
230 231 232 233 234 235 236 237
240 242 243 244 245 246
250 251 252 253 254 255 256 257

261 262 263 264 265 266 267
270 271 272 273 274 275 276
300 301 302 303 304 305 306 307
310 311 312 313 314 315 316 317
320 322 323 324 325 326 327
330 331 332 333 334 335 336 337
340 341 342 343 344 345 346
350 351 352 353 354 355 356 357
360 362 363 364 365 366 367
370 371 372 373 374 375 376 377

5-98 SunOS 5.6 modified 28 Apr 1997

Headers, Environments, and Macros iconv_8859-1 (5)

ISO 8859-1 to ISO
646sv (SWEDISH)

For the conversion of ISO 8859-1 to ISO 646sv, all characters not in the following tables
are mapped unchanged.

Conversions Performed
ISO 8859-1 ISO 646sv ISO 8859-1 ISO 646sv

304 133 344 173
305 135 345 175
311 100 351 140
326 134 366 174
334 136 374 176

Converted to Underscore ’_’ (137)
100 133 134 135 136 140
173 174 175 176
200 201 202 203 204 205 206 207
210 211 212 213 214 215 216 217
220 221 222 223 224 225 226 227
230 231 232 233 234 235 236 237
240 241 242 243 244 245 246 247
250 251 252 253 254 255 256 257
260 261 262 263 264 265 266 267
270 271 272 273 274 275 276 277
300 301 302 303 306 307
310 312 313 314 315 316 317
320 321 322 323 324 325 327
330 331 332 333 335 336 337
340 341 342 343 346 347
350 352 353 354 355 356 357
360 361 362 363 364 365 367
370 371 372 373 375 376 377

FILES /usr/lib/iconv/∗.so conversion modules
/usr/lib/iconv/∗.t conversion tables
/usr/lib/iconv/iconv_data list of conversions supported by conversion tables

SEE ALSO iconv(1), iconv(3), iconv(5)

modified 28 Apr 1997 SunOS 5.6 5-99

iconv_8859-2 (5) Headers, Environments, and Macros

NAME iconv_8859-2 − code set conversion tables for ISO 8859-2 (Latin 2)

DESCRIPTION The following code set conversions are supported:

Code Set Conversions Supported
Code Symbol Target Code Symbol Target Output

ISO 8859-2 iso2 MS 1250 win2 Windows Latin 2
ISO 8859-2 iso2 MS 852 dos2 MS-DOS Latin 2
ISO 8859-2 iso2 Mazovia maz Mazovia
ISO 8859-2 iso2 DHN dhn Dom Handlowy Nauki

CONVERSIONS The conversions are performed according to the following tables. All values in the tables
are given in octal.

ISO 8859-2 to
MS 1250

For the conversion of ISO 8859-2 to MS 1250, all characters not in the following table are
mapped unchanged.

Conversions Performed
ISO 8859-2 MS 1250 ISO 8859-2 MS 1250

24 4 261 271
177-237 40 265 276
241 245 266 234
245 274 267 241
246 214 271 232
251 212 273 235
253 215 274 237
254 217 276 236
256 216 266 236

ISO 8859-2 to
MS 852

For the conversion of ISO 8859-2 to MS 852, all characters not in the following table are
mapped unchanged.

Conversions Performed
ISO 8859-2 MS 852 ISO 8859-2 MS 852

24 4 316 327
177-237 40 317 322
240 377 320 321
241 244 321 343
242 364 322 325
243 235 323 340
244 317 324 342
245 225 325 212
246 227 326 231

5-100 SunOS 5.6 modified 18 Apr 1997

Headers, Environments, and Macros iconv_8859-2 (5)

Conversions Performed
247 365 327 236
250 371 330 374
251 346 331 336
252 270 332 351
253 233 333 353
254 215 334 232
255 360 335 355
256 246 336 335
257 275 337 341
260 370 340 352
261 245 341 240
262 362 342 203
263 210 343 307
264 357 344 204
265 226 345 222
266 230 346 206
267 363 347 207
270 367 350 237
271 347 351 202
272 255 352 251
273 234 353 211
274 253 354 330
275 361 355 241
276 247 356 214
277 276 357 324
300 350 360 320
301 265 361 344
302 266 362 345
303 306 363 242
304 216 364 223
305 221 365 213
306 217 366 224
307 200 367 366
310 254 370 375
311 220 371 205
312 250 372 243
313 323 374 201
314 267 375 354
315 326 376 356
366 367

ISO 8859-2 to
Mazovia

For the conversion of ISO 8859-2 to Mazovia, all characters not in the following table are
mapped unchanged.

modified 18 Apr 1997 SunOS 5.6 5-101

iconv_8859-2 (5) Headers, Environments, and Macros

Conversions Performed
ISO 8859-2 Mazovia ISO 8859-2 Mazovia

24 4 323 243
177-237 40 324-325 40
240 377 326 231
241 217 327-333 40
242 40 334 232
243 234 335-336 40
244-245 40 337 341
246 230 340-341 40
247-253 40 342 203
254 240 343 40
255-256 40 344 204
257 241 345 40
260 370 346 215
261 206 347 207
262 40 350 40
263 222 351 202
264-265 40 352 221
266 236 353 211
267-273 40 354-355 40
274 246 356 214
275-276 40 357-360 40
277 247 361 244
300-303 40 362 40
304 216 363 242
305 40 364 223
306 225 365 40
307 200 366 224
310-311 40 367 366
312 220 370-373 40
313-320 40 374 201
321 245 375-376 40
322 40

ISO 8859-2 to
DHN

For the conversion of ISO 8859-2 to DHN, all characters not in the following table are
mapped unchanged.

5-102 SunOS 5.6 modified 18 Apr 1997

Headers, Environments, and Macros iconv_8859-2 (5)

Conversions Performed
ISO 8859-2 DHN ISO 8859-2 DHN

24 4 322 40
177-237 40 323 205
240 377 324-325 40
241 200 326 231
242 40 327-333 40
243 203 334 232
244-245 40 335-336 40
246 206 337 341
247-253 40 340 40
254 207 341 240
255-256 40 342-345 40
257 210 346 212
260 370 347-351 40
261 211 352 213
262 40 353-354 40
263 214 355 241
264-265 40 356-360 40
266 217 361 215
267-273 40 362 40
274 220 363 216
275-276 40 364 223
277 221 365 40
300-305 40 366 224
306 201 367 366
307-311 40 370-371 40
312 202 372 243
313-320 40 373-376 40
321 204

FILES /usr/lib/iconv/∗.so conversion modules
/usr/lib/iconv/∗.t conversion tables
/usr/lib/iconv/iconv_data list of conversions supported by conversion tables

SEE ALSO iconv(1), iconv(3), iconv(5)

modified 18 Apr 1997 SunOS 5.6 5-103

iconv_8859-5 (5) Headers, Environments, and Macros

NAME iconv_8859-5 − code set conversion tables for ISO 8859-5 (Cyrillic)

DESCRIPTION The following code set conversions are supported:

Code Set Conversions Supported
Code Symbol Target Code Symbol Target Output

ISO 8859-5 iso5 KOI8-R koi8 KOI8-R
ISO 8859-5 iso5 PC Cyrillic alt Alternative PC Cyrillic
ISO 8859-5 iso5 MS 1251 win5 Windows Cyrillic
ISO 8859-5 iso5 Mac Cyrillic mac Macintosh Cyrillic

CONVERSIONS The conversions are performed according to the following tables. All values in the tables
are given in octal.

ISO 8859-5 to
KOI8-R

For the conversion of ISO 8859-5 to KOI8-R, all characters not in the following table are
mapped unchanged.

Conversions Performed
ISO 8859-5 KOI8-R ISO 8859-5 KOI8-R

24 4 320 301
241 263 321 302
242 261 322 327
243 262 323 307
244 264 324 304
245 265 325 305
246 266 327 332
247 267 330 311
250 270 331 312
251 271 332 313
252 272 333 314
253 273 334 315
254 274 335 316
256 276 336 317
257 277 337 320
260 341 340 322
261 342 341 323
262 367 342 324
263 347 343 325
264 344 344 306
265 345 345 310
266 366 346 303
267 372 347 336
270 351 350 333

5-104 SunOS 5.6 modified 18 Apr 1997

Headers, Environments, and Macros iconv_8859-5 (5)

Conversions Performed
ISO 8859-5 KOI8-R ISO 8859-5 KOI8-R

271 352 351 335
272 353 352 337
273 354 353 331
274 355 354 330
275 356 355 334
276 357 356 300
277 360 357 321
300 362 360 260
301 363 361 243
302 364 362 241
303 365 363 242
304 346 364 244
305 350 365 245
306 343 366 246
307 376 367 247
310 373 370 250
311 375 371 251
312 377 372 252
313 371 373 253
314 370 374 254
315 374 375 255
316 340 376 256
317 361

modified 18 Apr 1997 SunOS 5.6 5-105

iconv_8859-5 (5) Headers, Environments, and Macros

ISO 8859-5 to
PC Cyrillic

For the conversion of ISO 8859-5 to PC Cyrillic, all characters not in the following table
are mapped unchanged.

Conversions Performed
ISO 8859-5 PC Cyrillic ISO 8859-5 PC Cyrillic

24 4 307 227
200-240 40 310 230
241 360 311 231
242-254 40 312 232
255 260 313 233
256-257 40 314 234
260 200 315 235
261 201 316 236
262 202 317 237
263 203 320 240
264 204 321 241
265 205 322 242
266 206 323 243
267 207 324 244
270 210 325 245
271 211 326 246
272 212 327 247
273 213 330 250
274 214 331 251
275 215 332 252
276 216 333 253
277 217 334 254
300 220 335 255
301 221 336 256
302 222 337 257
303 223 360-374 40
304 224 375 260
305 225 376 40
306 226 365 40

5-106 SunOS 5.6 modified 18 Apr 1997

Headers, Environments, and Macros iconv_8859-5 (5)

ISO 8859-5 to
MS 1251

For the conversion of ISO 8859-5 to MS 1251, all characters not in the following table are
mapped unchanged.

Conversions Performed
ISO 8859-5 MS 1251 ISO 8859-5 MS 1251

24 4 317 337
200-237 40 320 340
241 250 321 341
242 200 322 342
243 201 323 343
244 252 324 344
245 275 325 345
246 262 326 346
247 257 327 347
250 243 330 350
251 212 331 351
252 214 332 352
253 216 333 353
254 215 334 354
255 210 335 355
256 241 336 356
257 217 337 357
260 300 340 360
261 301 341 361
262 302 342 362
263 303 343 363
264 304 344 364
265 305 345 365
266 306 346 366
267 307 347 367
270 310 350 370
271 311 351 371
272 312 352 372
273 313 353 373
274 314 354 374
275 315 355 375
276 316 356 376
277 317 357 377
300 320 360 271
301 321 361 270
302 322 362 220
303 323 363 203
304 324 364 272
305 325 365 276

modified 18 Apr 1997 SunOS 5.6 5-107

iconv_8859-5 (5) Headers, Environments, and Macros

Conversions Performed
ISO 8859-5 MS 1251 ISO 8859-5 MS 1251

306 326 366 263
307 327 367 277
310 330 370 274
311 331 371 232
312 332 372 234
313 333 373 236
314 334 374 235
315 335 375 210
316 336 376 242
376 331

ISO 8859-5 to
Mac Cyrillic

For the conversion of ISO 8859-5 to Mac Cyrillic, all characters not in the following table
are mapped unchanged.

Conversions Performed
ISO 8859-5 Mac Cyrillic ISO 8859-5 Mac Cyrillic

24 4 317 237
200-237 40 320 340
240 312 321 341
241 335 322 342
242 253 323 343
243 256 324 344
244 270 325 345
245 301 326 346
246 247 327 347
247 272 330 350
250 267 331 351
251 274 332 352
252 276 333 353
253 40 334 354
254 315 335 355
255 40 336 356
256 330 337 357
257 332 340 360
260 200 341 361
261 201 342 362
262 202 343 363
263 203 344 364
264 204 345 365
265 205 346 366
266 206 347 367
267 207 350 370

5-108 SunOS 5.6 modified 18 Apr 1997

Headers, Environments, and Macros iconv_8859-5 (5)

Conversions Performed
ISO 8859-5 Mac Cyrillic ISO 8859-5 Mac Cyrillic

270 210 351 371
271 211 352 372
272 212 353 373
273 213 354 374
274 214 355 375
275 215 356 376
276 216 357 337
277 217 360 334
300 220 361 336
301 221 362 254
302 222 363 257
303 223 364 271
304 224 365 317
305 225 366 264
306 226 367 273
307 227 370 300
310 230 371 275
311 231 372 277
312 232 373 40
313 233 374 316
314 234 375 40
315 235 376 331
316 236

FILES /usr/lib/iconv/∗.so conversion modules
/usr/lib/iconv/∗.t conversion tables
/usr/lib/iconv/iconv_data list of conversions supported by conversion tables

SEE ALSO iconv(1), iconv(3), iconv(5)

modified 18 Apr 1997 SunOS 5.6 5-109

iconv_dhn (5) Headers, Environments, and Macros

NAME iconv_dhn − code set conversion tables for DHN (Dom Handlowy Nauki)

DESCRIPTION The following code set conversions are supported:

Code Set Conversions Supported
Code Symbol Target Code Symbol Target Output
DHN dhn ISO 8859-2 iso2 ISO Latin 2
DHN dhn MS 1250 win2 Windows Latin 2
DHN dhn MS 852 dos2 MS-DOS Latin 2
DHN dhn Mazovia maz Mazovia

CONVERSIONS The conversions are performed according to the following tables. All values in the tables
are given in octal.

DHN to
ISO 8859-2

For the conversion of DHN to ISO 8859-2, all characters not in the following table are
mapped unchanged.

Conversions Performed
DHN ISO 8859-2 DHN ISO 8859-2
24-177 40 222 40
200 241 223 364
201 306 224 366
202 312 225-230 40
203 243 231 326
204 321 232 334
205 323 233-237 40
206 246 240 341
207 254 241 355
210 257 242 363
211 261 243 372
212 346 244-340 40
213 352 341 337
214 263 342-365 40
215 361 366 367
216 363 367 40
217 266 370 260
220 274 371-376 40
221 277

5-110 SunOS 5.6 modified 18 Apr 1997

Headers, Environments, and Macros iconv_dhn (5)

DHN to
MS 1250

For the conversion of DHN to MS 1250, all characters not in the following table are
mapped unchanged.

Conversions Performed
DHN MS 1250 DHN MS 1250

200 245 233-237 40
201 306 240 341
202 312 241 355
203 243 242 363
204 321 243 372
205 323 244-251 40
206 214 252 254
207 217 253-255 40
210 257 256 253
211 271 257 273
212 346 260-340 40
213 352 341 337
214 263 342-345 40
215 361 346 265
216 363 347-360 40
217 234 361 261
220 237 362-365 40
221 277 366 367
222 40 367 40
223 364 370 260
224 366 371 40
225-230 40 372 267
231 326 373-376 40
232 334

modified 18 Apr 1997 SunOS 5.6 5-111

iconv_dhn (5) Headers, Environments, and Macros

DHN to
MS 852

For the conversion of DHN to MS 852, all characters not in the following table are
mapped unchanged.

Conversions Performed
DHN MS 852 DHN MS 852
200 244 212 206
201 217 213 251
202 250 214 210
203 235 215 344
204 343 216 242
205 340 217 230
206 227 220 253
207 215 221 276
210 275 222-375 40
211 245

DHN to
Mazovia

For the conversion of DHN to Mazovia, all characters not in the following table are
mapped unchanged.

Conversions Performed
DHN Mazovia DHN Mazovia
200 217 212 215
201 225 213 221
202 220 214 222
203 234 215 244
204 245 216 242
205 243 217 236
206 230 220 246
207 240 221 247
210 241 222-247 40
211 206

FILES /usr/lib/iconv/∗.so conversion modules
/usr/lib/iconv/∗.t conversion tables
/usr/lib/iconv/iconv_data list of conversions supported by conversion tables

SEE ALSO iconv(1), iconv(3), iconv(5)

5-112 SunOS 5.6 modified 18 Apr 1997

Headers, Environments, and Macros iconv_koi8-r (5)

NAME iconv_koi8-r − code set conversion tables for KOI8-R

DESCRIPTION The following code set conversions are supported:

Code Set Conversions Supported
Code Symbol Target Code Symbol Target Output

KOI8-R koi8 ISO 8859-5 iso5 ISO 8859-5 Cyrillic
KOI8-R koi8 PC Cyrillic alt Alternative PC Cyrillic
KOI8-R koi8 MS 1251 win5 Windows Cyrillic
KOI8-R koi8 Mac Cyrillic mac Macintosh Cyrillic

CONVERSIONS The conversions are performed according to the following tables. All values in the tables
are given in octal.

KOI8-R to
ISO 8859-5

For the conversion of KOI8-R to ISO 8859-5, all characters not in the following table are
mapped unchanged.

Conversions Performed
KOI8-R ISO 8859-5 KOI8-R ISO 8859-5

24 4 320 337
241 362 321 357
242 363 322 340
243 361 323 341
244 364 324 342
245 365 325 343
246 366 327 322
247 367 330 354
250 370 331 353
251 371 332 327
252 372 333 350
253 373 334 355
254 374 335 351
256 376 336 347
257 377 337 352
260 360 340 316
261 242 341 260
262 243 342 261
263 241 343 306
264 244 344 264
265 245 345 265
266 246 346 304
267 247 347 263
270 250 350 305

modified 18 Apr 1997 SunOS 5.6 5-113

iconv_koi8-r (5) Headers, Environments, and Macros

Conversions Performed
KOI8-R ISO 8859-5 KOI8-R ISO 8859-5

271 251 351 270
272 252 352 271
273 253 353 272
274 254 354 273
275 255 355 274
276 256 356 275
277 257 357 276
300 356 360 277
301 320 361 317
302 321 362 300
303 346 363 301
304 324 364 302
305 325 365 303
306 344 366 266
307 323 367 262
310 345 370 314
311 330 371 313
312 331 372 267
313 332 373 310
314 333 374 315
315 334 375 311
316 335 376 307
317 336

5-114 SunOS 5.6 modified 18 Apr 1997

Headers, Environments, and Macros iconv_koi8-r (5)

KOI8-R to
PC Cyrillic

For the conversion of KOI8-R to PC Cyrillic, all characters not in the following table are
mapped unchanged.

Conversions Performed
KOI8-R PC Cyrillic KOI8-R PC Cyrillic
24 4 333 350
200-242 40 334 355
243 361 335 351
244-254 40 336 347
255 260 337 352
256-262 40 340 236
263 360 341 200
264-274 40 342 201
275 260 343 226
276-277 40 344 204
300 356 345 205
301 240 346 224
302 241 347 203
303 346 350 225
304 244 351 210
305 245 352 211
306 344 353 212
307 243 354 213
310 345 355 214
311 250 356 215
312 251 357 216
313 252 360 217
314 253 361 237
315 254 362 220
316 255 363 221
317 256 364 222
320 257 365 223
321 357 366 206
322 340 367 202
323 341 370 234
324 342 371 233
325 343 372 207
326 246 373 230
327 242 374 235
330 354 375 231
331 353 376 227
332 247

modified 18 Apr 1997 SunOS 5.6 5-115

iconv_koi8-r (5) Headers, Environments, and Macros

KOI8-R to
MS 1251

For the conversion of KOI8-R to MS 1251, all characters not in the following table are
mapped unchanged.

Conversions Performed
KOI8-R MS 1251 KOI8-R MS 1251
24 4 317 356
200-237 40 320 357
241 220 321 377
242 203 322 360
243 270 323 361
244 272 324 362
245 276 325 363
246 263 326 346
247 277 327 342
250 274 330 374
251 232 331 373
252 234 332 347
253 236 333 370
254 235 334 375
255 210 335 371
256 242 336 367
257 237 337 372
260 271 340 336
261 200 341 300
262 201 342 301
263 250 343 326
264 252 344 304
265 275 345 305
266 262 346 324
267 257 347 303
270 243 350 325
271 212 351 310
272 214 352 311
273 216 353 312
274 215 354 313
275 210 355 314
276 241 356 315
277 217 357 316
300 376 360 317
301 340 361 337
302 341 362 320
303 366 363 321
304 344 364 322
305 345 365 323
306 364 366 306

5-116 SunOS 5.6 modified 18 Apr 1997

Headers, Environments, and Macros iconv_koi8-r (5)

Conversions Performed
KOI8-R MS 1251 KOI8-R MS 1251
307 343 367 302
310 365 370 334
311 350 371 333
312 351 372 307
313 352 373 330
314 353 374 335
315 354 375 331
316 355 376 327
376 227

KOI8-R to
Mac Cyrillic

For the conversion of KOI8-R to Mac Cyrillic, all characters not in the following table are
mapped unchanged.

Conversions Performed
KOI8-R Mac Cyrillic KOI8-R Mac Cyrillic
24 4 317 356
200-237 40 320 357
240 312 321 337
241 254 322 360
242 257 323 361
243 336 324 362
244 271 325 363
245 317 326 346
246 264 327 342
247 273 330 374
250 300 331 373
251 275 332 347
252 277 333 370
253 40 334 375
254 316 335 371
255 40 336 367
256 331 337 372
257 333 340 236
260 334 341 200
261 253 342 201
262 256 343 226
263 335 344 204
264 270 345 205
265 301 346 224
266 247 347 203
267 272 350 225
270 267 351 210

modified 18 Apr 1997 SunOS 5.6 5-117

iconv_koi8-r (5) Headers, Environments, and Macros

Conversions Performed
KOI8-R Mac Cyrillic KOI8-R Mac Cyrillic
271 274 352 211
272 276 353 212
273 40 354 213
274 315 355 214
275 40 356 215
276 330 357 216
277 332 360 217
300 376 361 237
301 340 362 220
302 341 363 221
303 366 364 222
304 344 365 223
305 345 366 206
306 364 367 202
307 343 370 234
310 365 371 233
311 350 372 207
312 351 373 230
313 352 374 235
314 353 375 231
315 354 376 227
316 355

FILES /usr/lib/iconv/∗.so conversion modules
/usr/lib/iconv/∗.t conversion tables
/usr/lib/iconv/iconv_data list of conversions supported by conversion tables

SEE ALSO iconv(1), iconv(3), iconv(5)

5-118 SunOS 5.6 modified 18 Apr 1997

Headers, Environments, and Macros iconv_mac_cyr (5)

NAME iconv_mac_cyr − code set conversion tables for Macintosh Cyrillic

DESCRIPTION The following code set conversions are supported:

Code Set Conversions Supported
Code Symbol Target Code Symbol Target Output

Mac Cyrillic mac ISO 8859-5 iso5 ISO 8859-5 Cyrillic
Mac Cyrillic mac KOI8-R koi8 KOI8-R
Mac Cyrillic mac PC Cyrillic alt Alternative PC Cyrillic
Mac Cyrillic mac MS 1251 win5 Windows Cyrillic

CONVERSIONS The conversions are performed according to the following tables. All values in the tables
are given in octal.

Mac Cyrillic to
ISO 8859-5

For the conversion of Mac Cyrillic to ISO 8859-5, all characters not in the following table
are mapped unchanged.

Conversions Performed
Mac Cyrillic ISO 8859-5 Mac Cyrillic ISO 8859-5

24 4 276 252
200 260 277 372
201 261 300 370
202 262 301 245
203 263 302-311 40
204 264 312 240
205 265 313 242
206 266 314 362
207 267 315 254
210 270 316 374
211 271 317 365
212 272 320-327 40
213 273 330 256
214 274 331 376
215 275 332 257
216 276 333 377
217 277 334 360
220 300 335 241
221 301 336 361
222 302 337 357
223 303 340 320
224 304 341 321
225 305 342 322
226 306 343 323
227 307 344 324

modified 18 Apr 1997 SunOS 5.6 5-119

iconv_mac_cyr (5) Headers, Environments, and Macros

Conversions Performed
Mac Cyrillic ISO 8859-5 Mac Cyrillic ISO 8859-5

230 310 345 325
231 311 346 326
232 312 347 327
233 313 350 330
234 314 351 331
235 315 352 332
236 316 353 333
237 317 354 334
240-246 40 355 335
247 246 356 336
250-252 40 357 337
253 242 360 340
254 362 361 341
255 40 362 342
256 243 363 343
257 363 364 344
260-263 40 365 345
264 366 366 346
265-266 40 367 347
267 250 370 350
270 244 371 351
271 364 372 352
272 247 373 353
273 367 374 354
274 251 375 355
275 371 376 356
375 370

Mac Cyrillic to
KOI8-R

For the conversion of Mac Cyrillic to KOI8-R, all characters not in the following table are
mapped unchanged.

Conversions Performed
Mac Cyrillic KOI8-R Mac Cyrillic KOI8-R

24 4 276 272
200 341 277 252
201 342 300 250
202 367 301 265
203 347 302-311 40
204 344 312 240
205 345 313 261
206 366 314 241
207 372 315 274
210 351 316 254

5-120 SunOS 5.6 modified 18 Apr 1997

Headers, Environments, and Macros iconv_mac_cyr (5)

Conversions Performed
Mac Cyrillic KOI8-R Mac Cyrillic KOI8-R

211 352 317 245
212 353 320-327 40
213 354 330 276
214 355 331 256
215 356 332 277
216 357 333 257
217 360 334 260
220 362 335 263
221 363 336 243
222 364 337 321
223 365 340 301
224 346 341 302
225 350 342 327
226 343 343 307
227 376 344 304
230 373 345 305
231 375 346 326
232 377 347 332
233 371 350 311
234 370 351 312
235 374 352 313
236 340 353 314
237 361 354 315
240-246 40 355 316
247 266 356 317
250-252 40 357 320
253 261 360 322
254 241 361 323
255 40 362 324
256 262 363 325
257 242 364 306
260-263 40 365 310
264 246 366 303
265-266 40 367 336
267 270 370 333
270 264 371 335
271 244 372 337
272 267 373 331
273 247 374 330
274 271 375 334
275 251 376 300
375 370

modified 18 Apr 1997 SunOS 5.6 5-121

iconv_mac_cyr (5) Headers, Environments, and Macros

Mac Cyrillic to
PC Cyrillic

For the conversion of Mac Cyrillic to PC Cyrillic, all characters not in the following table
are mapped unchanged.

Conversions Performed
Mac Cyrillic PC Cyrillic Mac Cyrillic PC Cyrillic

24 4 355 255
240-334 40 356 256
335 360 357 257
336 361 360 340
337 357 361 341
340 240 362 342
341 241 363 343
342 242 364 344
343 243 365 345
344 244 366 346
345 245 367 347
346 246 370 350
347 247 371 351
350 250 372 352
351 251 373 353
352 252 374 354
353 253 375 355
354 254 376 356
303 366

Mac Cyrillic to
MS 1251

For the conversion of Mac Cyrillic to MS 1251, all characters not in the following table are
mapped unchanged.

Conversions Performed
Mac Cyrillic MS 1251 Mac Cyrillic MS 1251

24 4 255 40
200 300 256 201
201 301 257 203
202 302 260-263 40
203 303 264 263
204 304 266 264
205 305 267 243
206 306 270 252
207 307 271 272
210 310 272 257
211 311 273 277
212 312 274 212
213 313 275 232
214 314 276 214

5-122 SunOS 5.6 modified 18 Apr 1997

Headers, Environments, and Macros iconv_mac_cyr (5)

Conversions Performed
Mac Cyrillic MS 1251 Mac Cyrillic MS 1251

215 315 277 234
216 316 300 274
217 317 301 275
220 320 302 254
221 321 303-306 40
222 322 307 253
223 323 310 273
224 324 311 205
225 325 312 240
226 326 313 200
227 327 314 220
230 330 315 215
231 331 316 235
232 332 317 276
233 333 320 226
234 334 321 227
235 335 322 223
236 336 323 224
237 337 324 221
240 206 325 222
241 260 326 40
242 245 327 204
243 40 330 241
244 247 331 242
245 267 332 217
246 266 333 237
247 262 334 271
250 256 335 250
252 231 336 270
253 200 337 377
254 220 362 324

FILES /usr/lib/iconv/∗.so conversion modules
/usr/lib/iconv/∗.t conversion tables
/usr/lib/iconv/iconv_data list of conversions supported by conversion tables

SEE ALSO iconv(1), iconv(3), iconv(5)

modified 18 Apr 1997 SunOS 5.6 5-123

iconv_maz (5) Headers, Environments, and Macros

NAME iconv_maz − code set conversion tables for Mazovia

DESCRIPTION The following code set conversions are supported:

Code Set Conversions Supported
Code Symbol Target Code Symbol Target Output

Mazovia maz ISO 8859-2 iso2 ISO Latin 2
Mazovia maz MS 1250 win2 Windows Latin 2
Mazovia maz MS 852 dos2 MS-DOS Latin 2
Mazovia maz DHN dhn Dom Handlowy Nauki

CONVERSIONS The conversions are performed according to the following tables. All values in the tables
are given in octal.

Mazovia to
ISO 8859-2

For the conversion of Mazovia to ISO 8859-2, all characters not in the following table are
mapped unchanged.

Conversions Performed
Mazovia ISO 8859-2 Mazovia ISO 8859-2
24-177 40 230 246
200 307 231 326
201 374 232 334
202 351 233 40
203 342 234 243
204 344 235 40
205 40 236 266
206 261 237 40
207 347 240 254
210 40 241 257
211 353 242 363
212-213 40 243 323
214 356 244 361
215 346 245 321
216 304 246 274
217 241 247 277
220 312 250-340 40
221 352 341 337
222 263 342-365 40
223 364 366 367
224 366 367 40
225 306 370 260
226-227 40 371-376 40
256 201

5-124 SunOS 5.6 modified 18 Apr 1997

Headers, Environments, and Macros iconv_maz (5)

Mazovia to
MS 1250

For the conversion of Mazovia to MS 1250, all characters not in the following table are
mapped unchanged.

Conversions Performed
Mazovia MS 1250 Mazovia MS 1250
200 307 236 234
201 374 237 40
202 351 240 217
203 342 241 257
204 344 242 363
205 40 243 323
206 271 244 361
207 347 245 321
210 40 246 237
211 353 247 277
212-213 40 250-251 40
214 356 252 254
215 346 253-255 40
216 304 256 253
217 245 257 273
220 312 260-340 40
221 352 341 337
222 263 342-345 40
223 364 346 265
224 366 347-360 40
225 306 361 261
226-227 40 362-365 40
230 214 366 367
231 326 367 40
232 334 370 260
233 40 371 40
234 243 372 267
235 40 373-376 40
274 212

Mazovia to
MS 852

For the conversion of Mazovia to MS 852, all characters not in the following table are
mapped unchanged.

Conversions Performed
Mazovia MS 852 Mazovia MS 852
205 40 234 235
206 245 235 40
210-213 40 236 230
215 206 237 40
217 244 240 215
220 250 241 275

modified 18 Apr 1997 SunOS 5.6 5-125

iconv_maz (5) Headers, Environments, and Macros

Conversions Performed
Mazovia MS 852 Mazovia MS 852
221 251 243 340
222 210 244 344
225 217 245 343
226-227 40 246 253
230 227 247 276
233 40 250-375 40
227 327

Mazovia to
DHN

For the conversion of Mazovia to DHN, all characters not in the following table are
mapped unchanged.

Conversions Performed
Mazovia DHN Mazovia DHN
200-205 40 234 203
206 211 236 217
207-214 40 240 207
215 212 241 210
216 40 242 216
217 200 243 205
220 202 244 215
221 213 245 204
222 214 246 220
225 201 247 221
230 206

FILES /usr/lib/iconv/∗.so conversion modules
/usr/lib/iconv/∗.t conversion tables
/usr/lib/iconv/iconv_data list of conversions supported by conversion tables

SEE ALSO iconv(1), iconv(3), iconv(5)

5-126 SunOS 5.6 modified 18 Apr 1997

Headers, Environments, and Macros iconv_pc_cyr (5)

NAME iconv_pc_cyr − code set conversion tables for Alternative PC Cyrillic

DESCRIPTION The following code set conversions are supported:
Code Set Conversions Supported

Code Symbol Target Code Symbol Target Output
PC Cyrillic alt ISO 8859-5 iso5 ISO 8859-5 Cyrillic
PC Cyrillic alt KOI8-R koi8 KOI8-R
PC Cyrillic alt MS 1251 win5 Windows Cyrillic
PC Cyrillic alt Mac Cyrillic mac Macintosh Cyrillic

CONVERSIONS The conversions are performed according to the following tables. All values in the tables
are given in octal.

PC Cyrillic to
ISO 8859-5

For the conversion of PC Cyrillic to ISO 8859-5, all characters not in the following table
are mapped unchanged.

Conversions Performed
PC Cyrillic ISO 8859-5 PC Cyrillic ISO 8859-5

24 4 231 311
200 260 232 312
201 261 233 313
202 262 234 314
203 263 235 315
204 264 236 316
205 265 237 317
206 266 240 320
207 267 241 321
210 270 242 322
211 271 243 323
212 272 244 324
213 273 245 325
214 274 246 326
215 275 247 327
216 276 250 330
217 277 251 331
220 300 252 332
221 301 253 333
222 302 254 334
223 303 255 335
224 304 256 336
225 305 257 337
226 306 260-337 255
227 307 360 241
230 310 362-376 255

modified 18 Apr 1997 SunOS 5.6 5-127

iconv_pc_cyr (5) Headers, Environments, and Macros

PC Cyrillic to
KOI8-R

For the conversion of PC Cyrillic to KOI8-R, all characters not in the following table are
mapped unchanged.

Conversions Performed
PC Cyrillic KOI8-R PC Cyrillic KOI8-R

24 4 242 327
200 341 243 307
201 342 244 304
202 367 245 305
203 347 246 326
204 344 247 332
205 345 250 311
206 366 251 312
207 372 252 313
210 351 253 314
211 352 254 315
212 353 255 316
213 354 256 317
214 355 257 320
215 356 260-337 255
216 357 340 322
217 360 341 323
220 362 342 324
221 363 343 325
222 364 344 306
223 365 345 310
224 346 346 303
225 350 347 336
226 343 350 333
227 376 351 335
230 373 352 337
231 375 353 331
232 377 354 330
233 371 355 334
234 370 356 300
235 374 357 321
236 340 360 263
237 361 361 243
240 301 362-376 255
241 302

5-128 SunOS 5.6 modified 18 Apr 1997

Headers, Environments, and Macros iconv_pc_cyr (5)

PC Cyrillic to
MS 1251

For the conversion of PC Cyrillic to MS 1251, all characters not in the following table are
mapped unchanged.

Conversions Performed
PC Cyrillic MS 1251 PC Cyrillic MS 1251

24 4 242 342
200 300 243 343
201 301 244 344
202 302 245 345
203 303 246 346
204 304 247 347
205 305 250 350
206 306 251 351
207 307 252 352
210 310 253 353
211 311 254 354
212 312 255 355
213 313 256 356
214 314 257 357
215 315 260-337 210
216 316 340 360
217 317 341 361
220 320 342 362
221 321 343 363
222 322 344 364
223 323 345 365
224 324 346 366
225 325 347 367
226 326 350 370
227 327 351 371
230 330 352 372
231 331 353 373
232 332 354 374
233 333 355 375
234 334 356 376
235 335 357 377
236 336 360 250
237 337 361 270
240 340 362-376 210
241 341

modified 18 Apr 1997 SunOS 5.6 5-129

iconv_pc_cyr (5) Headers, Environments, and Macros

PC Cyrillic to
Mac Cyrillic

For the conversion of PC Cyrillic to Mac Cyrillic, all characters not in the following table
are mapped unchanged.

Conversions Performed
PC Cyrillic Mac Cyrillic PC Cyrillic Mac Cyrillic

24 4 341 361
240 340 342 362
241 341 343 363
242 342 344 364
243 343 345 365
244 344 346 366
245 345 347 367
246 346 350 370
247 347 351 371
250 350 352 372
251 351 353 373
252 352 354 374
253 353 355 375
254 354 356 376
255 355 357 337
256 356 360 335
257 357 361 336
260-337 40 362-376 40
340 360

FILES /usr/lib/iconv/∗.so conversion modules
/usr/lib/iconv/∗.t conversion tables
/usr/lib/iconv/iconv_data list of conversions supported by conversion tables

SEE ALSO iconv(1), iconv(3), iconv(5)

5-130 SunOS 5.6 modified 18 Apr 1997

Headers, Environments, and Macros iconv_unicode (5)

NAME iconv_unicode − code set conversion tables for Unicode

DESCRIPTION The following code set conversions are supported:

CODE SET CONVERSIONS SUPPORTED
FROM Code Set TO Code Set

Code Target CodeFROM Filename
Element

TO Filename
Element

ISO 8859-1 (Latin 1) 8859-1 UTF-8 UTF-8
ISO 8859-2 (Latin 2) 8859-2 UTF-8 UTF-8
ISO 8859-3 (Latin 3) 8859-3 UTF-8 UTF-8
ISO 8859-4 (Latin 4) 8859-4 UTF-8 UTF-8
ISO 8859-5 (Cyrillic) 8859-5 UTF-8 UTF-8
ISO 8859-6 (Arabic) 8859-6 UTF-8 UTF-8
ISO 8859-7 (Greek) 8859-7 UTF-8 UTF-8
ISO 8859-8 (Hebrew) 8859-8 UTF-8 UTF-8
ISO 8859-9 (Latin 5) 8859-9 UTF-8 UTF-8
ISO 8859-10 (Latin 6) 8859-10 UTF-8 UTF-8
Japanese EUC eucJP UTF-8 UTF-8

gb2312 UTF-8 UTF-8Chinese/PRC EUC
(GB 2312-1980)
ISO-2022 iso2022 UTF-8 UTF-8
Korean EUC ko_KR-euc Korean UTF-8 ko_KR-UTF-8
ISO-2022-KR ko_KR-iso2022-7 Korean UTF-8 ko_KR_UTF-8

ko_KR-johap Korean UTF-8 ko_KR-UTF-8Korean Johap
(KS C 5601-1987)

ko_KR-johap92 Korean UTF-8 ko_KR-UTF-8Korean Johap
(KS C 5601-1992)
Korean UTF-8 ko_KR-UTF-8 Korean EUC ko_KR-euc
Korean UTF-8 ko_KR-UTF-8 ko_KR-johapKorean Johap

(KS C 5601-1987)
Korean UTF-8 ko_KR-UTF-8 ko_KR-johap92Korean Johap

(KS C 5601-1992)
KOI8-R (Cyrillic) KOI8-R UCS-2 UCS-2
KOI8-R (Cyrillic) KOI8-R UTF-8 UTF-8
PC Kanji (SJIS) PCK UTF-8 UTF-8
PC Kanji (SJIS) SJIS UTF-8 UTF-8
UCS-2 UCS-2 KOI8-R (Cyrillic) KOI8-R
UCS-2 UCS-2 UCS-4 UCS-4

modified 18 Apr 1997 SunOS 5.6 5-131

iconv_unicode (5) Headers, Environments, and Macros

CODE SET CONVERSIONS SUPPORTED
FROM Code Set TO Code Set

Code Target CodeFROM Filename
Element

TO Filename
Element

UCS-2 UCS-2 UTF-7 UTF-7
UCS-2 UCS-2 UTF-8 UTF-8
UCS-4 UCS-4 UCS-2 UCS-2
UCS-4 UCS-4 UTF-16 UTF-16
UCS-4 UCS-4 UTF-7 UTF-7
UCS-4 UCS-4 UTF-8 UTF-8
UTF-16 UTF-16 UCS-4 UCS-4
UTF-16 UTF-16 UTF-8 UTF-8
UTF-7 UTF-7 UCS-2 UCS-2
UTF-7 UTF-7 UCS-4 UCS-4
UTF-7 UTF-7 UTF-8 UTF-8
UTF-8 UTF-8 ISO 8859-1 (Latin 1) 8859-1
UTF-8 UTF-8 ISO 8859-2 (Latin 2) 8859-2
UTF-8 UTF-8 ISO 8859-3 (Latin 3) 8859-3
UTF-8 UTF-8 ISO 8859-4 (Latin 4) 8859-4
UTF-8 UTF-8 ISO 8859-5 (Cyrillic) 8859-5
UTF-8 UTF-8 ISO 8859-6 (Arabic) 8859-6
UTF-8 UTF-8 ISO 8859-7 (Greek) 8859-7
UTF-8 UTF-8 ISO 8859-8 (Hebrew) 8859-8
UTF-8 UTF-8 ISO 8859-9 (Latin 5) 8859-9
UTF-8 UTF-8 ISO 8859-10 (Latin 6) 8859-10
UTF-8 UTF-8 Japanese EUC eucJP
UTF-8 UTF-8 gb2312Chinese/PRC EUC

(GB 2312-1980)
UTF-8 UTF-8 ISO-2022 iso2022
UTF-8 UTF-8 KOI8-R (Cyrillic) KOI8-R
UTF-8 UTF-8 PC Kanji (SJIS) PCK
UTF-8 UTF-8 PC Kanji (SJIS) SJIS
UTF-8 UTF-8 UCS-2 UCS-2
UTF-8 UTF-8 UCS-4 UCS-4
UTF-8 UTF-8 UTF-16 UTF-16
UTF-8 UTF-8 UTF-7 UTF-7
UTF-8 UTF-8 zh_CN.eucChinese/PRC EUC

(GB 2312-1980)

5-132 SunOS 5.6 modified 18 Apr 1997

Headers, Environments, and Macros iconv_unicode (5)

CODE SET CONVERSIONS SUPPORTED
FROM Code Set TO Code Set

Code Target CodeFROM Filename
Element

TO Filename
Element

UTF-8 UTF-8 ISO 2022-CN zh_CN.iso2022-7
UTF-8 UTF-8 Chinese/Taiwan Big5 zh_TW-big5
UTF-8 UTF-8 zh_TW-eucChinese/Taiwan EUC

(CNS 11643-1992)
UTF-8 UTF-8 ISO 2022-TW zh_TW-iso2022-7

zh_CN.euc UTF-8 UTF-8Chinese/PRC EUC
(GB 2312-1980)
ISO 2022-CN zh_CN.iso2022-7 UTF-8 UTF-8
Chinese/Taiwan Big5 zh_TW-big5 UTF-8 UTF-8

zh_TW-euc UTF-8 UTF-8Chinese/Taiwan EUC
(CNS 11643-1992)
ISO 2022-TW zh_TW-iso2022-7 UTF-8 UTF-8

EXAMPLES In the conversion library, /usr/lib/iconv (see iconv(3)), the library module file name is
composed of two symbolic elements separated by the percent sign (%). The first symbol
specifies the code set that is being converted; the second symbol specifies the target code,
that is, the code set to which the first one is being converted.

In the conversion table above, the first symbol is termed the "FROM Filename Element".
The second symbol, representing the target code set, is the "TO Filename Element".

For example, the library module filename to convert from the Korean EUC code set to the
Korean UTF-8 code set is

ko_KR-euc%ko_KR-UTF-8

FILES /usr/lib/iconv/∗.so conversion modules

SEE ALSO iconv(1), iconv(3), iconv(5)

Chernov, A., Registration of a Cyrillic Character Set, RFC 1489, RELCOM Development
Team, July 1993.

Chon, K., H. Je Park, and U. Choi, Korean Character Encoding for Internet Messages , RFC
1557, Solvit Chosun Media, December 1993.

Goldsmith, D., and M. Davis, UTF-7 − A Mail-Safe Transformation Format of Unicode, RFC
1642, Taligent, Inc., July 1994.

Lee, F., HZ − A Data Format for Exchanging Files of Arbitrarily Mixed Chinese and ASCII char-
acters, RFC 1843, Stanford University, August 1995.

Murai, J., M. Crispin, and E. van der Poel, Japanese Character Encoding for Internet Mes-
sages , RFC 1468, Keio University, Panda Programming, June 1993.

modified 18 Apr 1997 SunOS 5.6 5-133

iconv_unicode (5) Headers, Environments, and Macros

Nussbacher, H., and Y. Bourvine, Hebrew Character Encoding for Internet Messages , RFC
1555, Israeli Inter-University, Hebrew University, December 1993.

Ohta, M., Character Sets ISO-10646 and ISO-10646-J-1 , RFC 1815, Tokyo Institute of Tech-
nology, July 1995.

Ohta, M., and K. Handa, ISO-2022-JP-2: Multilingual Extension of ISO-2022-JP , RFC 1554,
Tokyo Institute of Technology, December 1993.

Reynolds, J., and J. Postel, ASSIGNED NUMBERS, RFC 1700, University of Southern
California/Information Sciences Institute, October 1994.

Simonson, K., Character Mnemonics & Character Sets, RFC 1345, Rationel Almen Planlaegn-
ing, June 1992.

Spinellis, D., Greek Character Encoding for Electronic Mail Messages , RFC 1947, SENA S.A.,
May 1996.

The Unicode Consortium, The Unicode Standard , Version 2.0, Addison Wesley Developers
Press, July 1996.

Wei, Y., Y. Zhang, J. Li, J. Ding, and Y. Jiang, ASCII Printable Characters-Based Chinese
Character Encoding for Internet Messages , RFC 1842, AsiaInfo Services Inc., Harvard
University, Rice University, University of Maryland, August 1995.

Yergeau, F., UTF-8, a transformation format of Unicode and ISO 10646, RFC 2044, Alis Tech-
nologies, October 1996.

Zhu, H., D. Hu, Z. Wang, T. Kao, W. Chang, and M. Crispin, Chinese Character Encoding
for Internet Messages , RFC 1922, Tsinghua University, China Information Technology
Standardization Technical Committee (CITS), Institute for Information Industry (III),
University of Washington, March 1996.

NOTES ISO 8859 character sets using Latin alphabetic characters are distinguished as follows:

ISO 8859-1 (Latin 1)
For most West European languages, including:

Albanian Finnish Italian
Catalan French Norwegian
Danish German Portuguese
Dutch Galician Spanish
English Irish Swedish
Faeroese Icelandic

ISO 8859-2 (Latin 2)
For most Latin-written Slavic and Central European languages:

Czech Polish Slovak
German Rumanian Slovene
Hungarian Croatian

ISO 8859-3 (Latin 3)
Popularly used for Esperanto, Galician, Maltese, and Turkish.

5-134 SunOS 5.6 modified 18 Apr 1997

Headers, Environments, and Macros iconv_unicode (5)

ISO 8859-4 (Latin 4)
Introduces letters for Estonian, Latvian, and Lithuanian. It is an incomplete
predecessor of ISO 8859-10 (Latin 6).

ISO 8859-9 (Latin 5)
Replaces the rarely needed Icelandic letters in ISO 8859-1 (Latin 1) with the Turk-
ish ones.

ISO 8859-10 (Latin 6)
Adds the last Inuit (Greenlandic) and Sami (Lappish) letters that were not
included in ISO 8859-4 (Latin 4) to complete coverage of the Nordic area.

modified 18 Apr 1997 SunOS 5.6 5-135

in (5) Headers, Environments, and Macros

NAME in − Internet Protocol family

SYNOPSIS #include <netinet/in.h>

DESCRIPTION The <netinet/in.h> header defines the following types through typedef:

in_port_t An unsigned integral type of exactly 16 bits.

in_addr_t An unsigned integral type of exactly 32 bits.

The <netinet/in.h> header defines the in_addr structure that includes the following
member:

in_addr_t s_addr

The <netinet/in.h> header defines the type sa_family_t as described in socket(5).

The <netinet/in.h> header defines the following macros for use as values of the level
argument of getsockopt() and setsockopt():

IPPROTO_IP Dummy for IP

IPPROTO_ICMP Control message protocol

IPPROTO_TCP TCP

IPPROTO_UDP User datagram protocol

The <netinet/in.h> header defines the following macros for use as destination addresses
for connect(), sendmsg(), and sendto():

INADDR_ANY Local host address

INADDR_BROADCAST Broadcast address

Default For applications that do not require standard-conforming behavior (those that use the
socket interfaces described in section 3N of the reference manual; see Intro(3) and stan-
dards(5)), the <netinet/in.h> header defines the sockaddr_in structure that includes the
following members:

sa_family_t sin_family
in_port_t sin_port
struct in_addr sin_addr
char sin_zero[8]

Standard-conforming For applications that require standard-conforming behavior (those that use the socket
interfaces described in section 3XN of the reference manual; see Intro(3) and stan-
dards(5)), the <netinet/in.h> header defines the sockaddr_in structure that includes the
following members:

sa_family_t sin_family
in_port_t sin_port
struct in_addr sin_addr
unsigned char sin_zero[8]

5-136 SunOS 5.6 modified 8 May 1997

Headers, Environments, and Macros in (5)

The sockaddr_in structure is used to store addresses for the Internet protocol family.
Values of this type must be cast to struct sockaddr for use with the socket interfaces.

SEE ALSO Intro(3), connect(3N), connect(3XN), getsockopt(3N), getsockopt(3XN), sendmsg(3N),
sendmsg(3XN), sendto(3N), sendto(3XN), setsockopt(3N), setsockopt(3XN), socket(5),
standards(5)

modified 8 May 1997 SunOS 5.6 5-137

inet (5) Headers, Environments, and Macros

NAME inet − definitions for internet operations

SYNOPSIS #include <arpa/inet.h>

DESCRIPTION The <arpa/inet.h> header defines the type in_port_t, the type in_addr_t, and the in_addr
structure, as described in in(5).

Inclusion of the <arpa/inet.h> header may also make visible all symbols from in(5).

The following are declared as functions, and may also be defined as macros:

in_addr_t inet_addr(const char ∗cp);
in_addr_t inet_lnaof(struct in_addr in);
struct in_addr inet_makeaddr(in_addr_t net, in_addr_t lna);
in_addr_t inet_netof(struct in_addr in);
in_addr_t inet_network(const char ∗cp);
char ∗inet_ntoa(struct in_addr in);

Default For applications that do not require standard-conforming behavior (those that use the
socket interfaces described in section 3N of the reference manual; see Intro(3) and stan-
dards(5)), the following may be declared as functions, or defined as macros, or both:

uint32_t htonl(uint32_t hostlong);
uint16_t htons(uint16_t hostshort);
uint32_t ntohl(uint32_t netlong);
uint16_t ntohs(uint16_t netshort);

Standard-conforming For applications that require standard-conforming behavior (those that use the socket
interfaces described in section 3XN of the reference manual; see Intro(3) and stan-
dards(5)), the following may be declared as functions, or defined as macros, or both:

in_addr_t htonl(in_addr_t hostlong);
in_port_t htons(in_port_t hostshort);
in_addr_t ntohl(in_addr_t netlong);
in_port_t ntohs(in_port_t netshort);

SEE ALSO Intro(3), htonl(3N), htonl(3XN), inet_addr(3N), inet_addr(3XN), in(5), standards(5)

5-138 SunOS 5.6 modified 8 May 1997

Headers, Environments, and Macros interface64 (5)

NAME interface64 − 64-bit transitional interfaces

DESCRIPTION The interfaces, macros, and data types described on this page section are explicit 64-bit
instances of the standard API. They are accessible through the transitional compilation
environment described on the lfcompile64(5) manual page. The function prototype and
semantics of a transitional interface are equivalent to those of the standard version of the
call, except that relevant data types are 64-bit entities.

Data Types The following table shows the standard data or struct types and their corresponding 64-
bit types. The absence of an entry in the Standard Definition column indicates that there
is no existing 32-bit type that corresponds to the type listed in the 64-bit Definition
column.

Standard Definition 64-bit Definition Header
struct aiocb struct aiocb64 <aio.h>

off_t aio_offset; off64_t aio_offset;
struct dirent struct dirent64 <sys/dirent.h>

ino_t d_ino; ino64_t d_ino;
off_t d_off; off64_t d_off;

struct flock struct flock64 <sys/fcntl.h>
off_t l_start; off64_t l_start;
off_t l_len; off64_t l_len;

F_SETLK F_SETLK64
F_SETLKW F_SETLKW64
F_GETLK F_GETLK64
F_FREESP F_FREESP64

O_LARGEFILE

fpos_t fpos64_t <sys/stdio.h>
rlim_t rlim64_t <sys/resource.h>
struct rlimit struct rlimit64

rlim_t rlim_cur; rlim64_t rlim_cur;
rlim_t rlim_max; rlim64_t rlim_max;

RLIM_INFINITY RLIM64_INFINITY
RLIM_SAVED_MAX RLIM64_SAVED_MAX
RLIM_SAVED_CUR RLIM64_SAVED_CUR

struct stat struct stat64 <sys/stat.h>
ino_t st_ino; ino64_t st_ino;
off_t st_size; off64_t st_size;
blkcnt_t st_blocks; blkcnt64_t st_blocks;

modified 20 Aug 1996 SunOS 5.6 5-139

interface64 (5) Headers, Environments, and Macros

Standard Definition 64-bit Definition Header
struct statvfs struct statvfs64 <sys/statvfs.h>

fsblkcnt_t f_blocks; fsblkcnt64_t f_blocks;
fsblkcnt_t f_bfree; fsblkcnt64_t f_bfree;
fsblkcnt_t f_bavial; fsblkcnt64_t f_bavial;
fsfilcnt_t f_files; fsfilcnt64_t f_files;
fsfilcnt_t f_ffree; fsfilcnt64_t f_ffree;
fsfilcnt_t f_favail; fsfilcnt64_t f_favail;

off_t; off64_t; <sys/types.h>
ino_t; ino64_t;
blkcnt_t; blkcnt64_t;
fsblkcnt_t; fsblkcnt64_t;
fsfilcnt_t; fsfilcnt64_t;

_LFS64_LARGEFILE <unistd.h>
_LFS64_STDIO

_CS_LFS64_CFLAGS <sys/unistd.h>
_CS_LFS64_LDFLAGS
_CS_LFS64_LIBS
_CS_LFS64_LINTFLAGS

System Interfaces The following table shows the standard API and the corresponding 64-bit interfaces. The
interface name and the affected data types are shown in bold faces.

Existing Interface 64-bit Definition Header
int aio_cancel(. . ., int aio_cancel64(. . ., <aio.h>

struct aiocb ∗); struct aiocb64 ∗);
int aio_error int aio_error64

(const struct aiocb ∗); (const struct aiocb64 ∗);
int aio_fsync(. . ., int aio_fsync64(. . .,

struct aiocb ∗); struct aiocb64 ∗);
int aio_read(struct aiocb ∗); int aio_read64(struct aiocb64 ∗);
int aio_return(struct aiocb ∗); int aio_return64(struct aiocb64 ∗);
int aio_suspend int aio_suspend64

(const struct aiocb ∗, . . .); (const struct aiocb64 ∗, . . .);
int aio_write(struct aiocb ∗); int aio_write64(struct aiocb64 ∗);
int lio_listio(. . ., int lio_listio64(. . .,

const struct aiocb ∗, . . .); const struct aiocb64 ∗, . . .);
struct dirent ∗readdir(); struct dirent64 ∗readdir64(); <dirent.h>
struct dirent ∗readdir_r(); struct dirent64 ∗readdir64_r();
int creat(); int creat64(); <fcntl.h>
int open(); int open64();

5-140 SunOS 5.6 modified 20 Aug 1996

Headers, Environments, and Macros interface64 (5)

Existing Interface 64-bit Definition Header
int ftw(. . ., const int ftw64(. . ., const <ftw.h>

struct stat ∗, . . .); struct stat64 ∗, . . .);
int nftw(. . ., const int nftw64(. . ., const

struct stat ∗, . . .); struct stat64 ∗, . . .);
char ∗copylist(. . ., off_t); char ∗copylist64(. . ., off64_t); <libgen.h>
int fgetpos(); int fgetpos64(); <stdio.h>
FILE ∗fopen(); FILE ∗fopen64();
FILE ∗freopen(); FILE ∗freopen64();
int fseeko(. . ., off_t, . . .); int fseeko64(. . ., off64_t, . . .);
int fsetpos(. . ., int fsetpos64(. . .,

const fpos_t ∗); const fpos64_t ∗);
off_t ftello(); off64_t ftello64();
FILE ∗tmpfile(); FILE ∗tmpfile64();
int mkstemp(); int mkstemp64(); <stdlib.h>
int aioread(. . ., off_t, . . .); int aioread64(. . ., off64_t, . . .); <sys/async.h>
int aiowrite(. . ., off_t, . . .); int aiowrite64(. . ., off64_t, . . .);
int alphasort(int alphasort64(<ucbinclude/sys/dir.h>

struct direct ∗∗, struct direct64 ∗∗,
struct direct ∗∗); struct direct64 ∗∗);

struct direct ∗readdir(); struct direct64 ∗readdir64();
int scandir(. . ., int scandir64(. . .,

struct direct ∗(∗[]);, . . .); struct direct64 ∗(∗[]);, . . .);
int getdents(. . ., dirent); int getdents64(. . ., dirent64); <sys/dirent.h>
void mmap(. . ., off_t); void mmap64(. . ., off64_t); <sys/mman.h>
int getrlimit(. . ., int getrlimit64(. . ., <sys/resource.h>

struct rlimit ∗); struct rlimit64 ∗);
int setrlimit(. . ., int setrlimit64(. . .,

const struct rlimit ∗); const struct rlimit64 ∗);
int fstat(. . ., struct stat ∗); int fstat64(. . ., struct stat64 ∗); <sys/stat.h>
int lstat(. . ., struct stat ∗); int lstat64(. . ., struct stat64 ∗);
int stat(. . ., struct stat ∗); int stat64(. . ., struct stat64 ∗);
int statvfs(. . ., int statvfs64(. . ., <sys/statvfs.h>

struct statvfs ∗); struct statvfs64 ∗);
int fstatvfs(. . ., int fstatvfs64(. . .,

struct statvfs ∗); struct statvfs64 ∗);
int lockf(. . ., off_t); int lockf64(. . ., off64_t); <unistd.h>
off_t lseek(. . ., off_t, . . .); off64_t lseek64(. . ., off64_t, . . .);
int ftruncate(. . ., off_t); int ftruncate64(. . ., off64_t);
ssize_t pread(. . ., off_t); ssize_t pread64(. . ., off64_t);
ssize_t pwrite(. . ., off_t); ssize_t pwrite64(. . ., off64_t);
int truncate(. . ., off_t); int truncate64(. . ., off64_t);

modified 20 Aug 1996 SunOS 5.6 5-141

interface64 (5) Headers, Environments, and Macros

SEE ALSO lfcompile(5), lfcompile64(5)

5-142 SunOS 5.6 modified 20 Aug 1996

Headers, Environments, and Macros isalist (5)

NAME isalist − the native instruction sets known to Solaris software

DESCRIPTION The possible instruction set names returned by isalist(1) and the SI_ISALIST command of
sysinfo(2) are listed here.

The list is ordered within an instruction set family in the sense that later names are gen-
erally faster then earlier names; note that this is in the reverse order than listed by isal-
ist(1) and sysinfo(2). In the following list of values, numbered entries generally
represent increasing performance; lettered entries are either mutually exclusive or cannot
be ordered.

SPARC Platforms Where appropriate, correspondence with a given value of the −xarch option of Sun’s C
4.0 compiler is indicated. Other compilers may have similar options.

1a. sparc
Indicates the SPARC V8 instruction set, as defined in The SPARC Architecture
Manual, Version 8, Prentice-Hall, Inc., 1992. Some instructions (such as integer
multiply and divide, FSMULD, and all floating point operations on quad
operands) may be emulated by the kernel on certain systems.

1b. sparcv7
Same as sparc. This corresponds to code produced with the −xarch=v7 option of
Sun’s C 4.0 compiler.

2. sparcv8−fsmuld
Like sparc, except that integer multiply and divide must be executed in
hardware. This corresponds to code produced with the −xarch=v8a option of
Sun’s C 4.0 compiler.

3. sparcv8
Like sparcv8−fsmuld, except that FSMULD must also be executed in hardware.
This corresponds to code produced with the −xarch=v8 option of Sun’s C 4.0
compiler.

4. sparcv8plus
Indicates the SPARC V8 instruction set plus those instructions in the SPARC V9
instruction set, as defined in The SPARC Architecture Manual, Version 9, Prentice-
Hall, 1994, that can be used according to The V8+ Technical Specification. This
corresponds to code produced with the −xarch=v8plus option of Sun’s C 4.0
compiler.

5a. sparcv8plus+vis
Like sparcv8plus, with the addition of those UltraSPARC I Visualization Instruc-
tions that can be used according to The V8+ Technical Specification. This
corresponds to code produced with the −xarch=v8plusa option of Sun’s C 4.0
compiler.

5b. sparcv8plus+fmuladd
Like sparcv8plus, with the addition of the Hal SPARC64 floating multiply-add
and multiply-subtract instructions.

modified 18 Feb 1997 SunOS 5.6 5-143

isalist (5) Headers, Environments, and Macros

6. sparcv9
Indicates the SPARC V9 instruction set, as defined in The SPARC Architecture
Manual, Version 9, Prentice-Hall, 1994.

7a. sparcv9+vis
Like sparcv9, with the addition of the UltraSPARC I Visualization Instructions.

7b. sparcv9+fmuladd
Like sparcv9, with the addition of the Hal SPARC64 floating multiply-add and
multiply-subtract instructions.

Intel Platforms 1. i386 The Intel 80386 instruction set, as described in The i386 Microprocessor
Programmer’s Reference Manual.

2. i486 The Intel 80486 instruction set, as described in The i486 Microprocessor
Programmer’s Reference Manual. (This is effectively i386, plus the CMPXCHG,
BSWAP, and XADD instructions.)

3. pentium
The Intel Pentium instruction set, as described in The Pentium Processor User’s
Manual. (This is effectively i486, plus the CPU_ID instruction, and any features
that the CPU_ID instruction indicates are present.)

4. pentium+mmx
Like pentium, with the MMX instructions guaranteed present.

5. pentium_pro
The Intel PentiumPro instruction set, as described in The PentiumPro Family
Developer’s Manual. (This is effectively pentium, with the CMOVcc, FCMOVcc,
FCOMI, and RDPMC instructions guaranteed present.)

6. pentium_pro+mmx
Like pentium_pro, with the MMX instructions guaranteed present.

SEE ALSO isalist(1), sysinfo(2)

5-144 SunOS 5.6 modified 18 Feb 1997

Headers, Environments, and Macros langinfo (5)

NAME langinfo − language information constants

SYNOPSIS #include <langinfo.h>

DESCRIPTION This header contains the constants used to identify items of langinfo data. The mode of
items is given in nl_types.

DAY_1 Locale’s equivalent of ’sunday’
DAY_2 Locale’s equivalent of ’monday’
DAY_3 Locale’s equivalent of ’tuesday’
DAY_4 Locale’s equivalent of ’wednesday’
DAY_5 Locale’s equivalent of ’thursday’
DAY_6 Locale’s equivalent of ’friday’
DAY_7 Locale’s equivalent of ’saturday’
ABDAY_1 Locale’s equivalent of ’sun’
ABDAY_2 Locale’s equivalent of ’mon’
ABDAY_3 Locale’s equivalent of ’tue’
ABDAY_4 Locale’s equivalent of ’wed’
ABDAY_5 Locale’s equivalent of ’thur’
ABDAY_6 Locale’s equivalent of ’fri’
ABDAY_7 Locale’s equivalent of ’sat’
MON_1 Locale’s equivalent of ’january’
MON_2 Locale’s equivalent of ’february’
MON_3 Locale’s equivalent of ’march’
MON_4 Locale’s equivalent of ’april’
MON_5 Locale’s equivalent of ’may’
MON_6 Locale’s equivalent of ’june’
MON_7 Locale’s equivalent of ’july’
MON_8 Locale’s equivalent of ’august’
MON_9 Locale’s equivalent of ’september’
MON_10 Locale’s equivalent of ’october’
MON_11 Locale’s equivalent of ’november’
MON_12 Locale’s equivalent of ’december’
ABMON_1 Locale’s equivalent of ’jan’
ABMON_2 Locale’s equivalent of ’feb’
ABMON_3 Locale’s equivalent of ’mar’
ABMON_4 Locale’s equivalent of ’apr’
ABMON_5 Locale’s equivalent of ’may’
ABMON_6 Locale’s equivalent of ’jun’
ABMON_7 Locale’s equivalent of ’jul’
ABMON_8 Locale’s equivalent of ’aug’
ABMON_9 Locale’s equivalent of ’sep’
ABMON_10 Locale’s equivalent of ’oct’
ABMON_11 Locale’s equivalent of ’nov’
ABMON_12 Locale’s equivalent of ’dec’

modified 3 Jul 1990 SunOS 5.6 5-145

langinfo (5) Headers, Environments, and Macros

RADIXCHAR Locale’s equivalent of ’.’
THOUSEP Locale’s equivalent of ’,’
YESSTR Locale’s equivalent of ’yes’
NOSTR Locale’s equivalent of ’no’
CRNCYSTR Locale’s currency symbol
D_T_FMT Locale’s default format for date and time
D_FMT Locale’s default format for the date
T_FMT Locale’s default format for the time
AM_STR Locale’s equivalent of ’AM’
PM_STR Locale’s equivalent of ’PM’

This information is retrieved by nl_langinfo.

The items CRNCYSTR, RADIXCHAR and THOUSEP are extracted from the fields
currency_symbol, decimal_point and thousands_sep in the structure returned by
localeconv.

The items T_FMT, D_FMT, D_T_FMT, YESSTR and NOSTR are retrieved from a special
message catalog named Xopen_info which should be generated for each locale sup-
ported and installed in the appropriate directory [see gettxt(3C) and mkmsgs(1)]. This
catalog should have the messages in the order T_FMT, D_FMT, D_T_FMT, YESSTR and
NOSTR.

All other items are as returned by strftime.

SEE ALSO mkmsgs(1), gettxt(3C), localeconv(3C), nl_langinfo(3C), strftime(3C), nl_types(5)

5-146 SunOS 5.6 modified 3 Jul 1990

Headers, Environments, and Macros largefile (5)

NAME largefile − large file status of utilities

DESCRIPTION On a 32-bit system, a large file is a regular file whose size is greater than or equal to 2
Gbyte (231 bytes). A small file is a regular file whose size is less than 2 Gbyte.

Large file aware
utilities

A utility is called large file aware if it can process large files in the same manner as it does
small files. A utility that is large file aware is able to handle large files as input and gen-
erate large files as output.

The following /usr/bin utilities are large file aware:

adb awk bdiff cat chgrp
chmod chown cksum cmp compress
cp csh csplit cut dd
dircmp du egrep fgrep file
find ftp getconf grep head
join jsh ksh ln ls
mkdir mkfifo more mv nawk
page paste pathchk pg rcp
remsh rksh rm rmdir rsh
sed sh sort split sum
tail tee test touch tr
uncompress uudecode uuencode wc zcat

The following /usr/sbin utilities are large file aware:

install mkfile mknod mvdir

The following /usr/ucb utilities are large file aware:

Mail chown from ln lpr
ls sed sum touch

The /usr/bin/cpio, /usr/bin/pax, and /usr/bin/tar utilities are large file aware, but cannot
archive a file whose size exceeds 8 Gbyte − 1 byte.

The /usr/sbin/crash and /usr/bin/truss utilities have been modified to read a dump file
and display information relevant to large files, such as offsets.

cachefs file systems The following /usr/bin utilities are large file aware for cachefs file systems:

cachefspack cachefsstat

The following /usr/sbin utilities are large file aware for cachefs file systems:

cachefslog cachefswssize cfsadmin fsck
mount umount

nfs file stytems The following utilities are large file aware for nfs file systems:

/usr/lib/autofs/automountd /usr/sbin/mount

SunOS 5.6 5-147

largefile (5) Headers, Environments, and Macros

ufs file stytems The following /usr/bin utilitiy is large file aware for ufs file systems:

df

The following /usr/sbin utilities are large file aware for ufs file systems:

clri dcopy edquota ff fsck
fsdb fsirand fstyp labelit lockfs
mkfs mount ncheck newfs quot
quota quotacheck quotaoff quotaon repquota
tunefs ufsdump ufsrestore umount

Large file safe
utilities

A utility is called large file safe if it causes no data loss or corruption when it encounters a
large file. A utility that is large file safe is unable to process properly a large file, but
returns an appropriate error.

The following /usr/bin utilities are large file safe:

audioconvert audioplay audiorecord comm diff
diff3 diffmk ed lp mail
mailcompat mailstats mailx pack pcat
red rmail sdiff unpack vi
view

The following /usr/sbin utilities are large file safe:

lpfilter lpforms swap

The following /usr/lib utility is large file safe:

sendmail

SEE ALSO lfcompile(5), lfcompile64(5), interface64(5)

5-148 SunOS 5.6

Headers, Environments, and Macros lfcompile (5)

NAME lfcompile − large file compilation environment

DESCRIPTION In the large file compilation environment, source interfaces are bound to appropriate 64-
bit functions, structures, and types. Compiling in this environment allows applications to
access files whose size is greater than or equal to 2 Gbyte (231 bytes).

Each interface named xxx() that needs to access 64-bit entities to access large files maps
to a xxx64() call in the resulting binary. All relevant data types are defined to be of
correct size (for example, off_t has a typedef definition for a 64-bit entity).

An application compiled in this environment is able to use the xxx() source interfaces to
access both large and small files, rather than having to explicitly utilize the transitional
xxx64() interface calls to access large files. See the lfcompile64(5) manual page for infor-
mation regarding the transitional compilation environment.

Applications can be compiled in the large file compilation environment by using the fol-
lowing methods:

· Use the getconf(1) utility with one or more of the arguments listed in the table below.
This method is recommended for portable applications.

argument purpose
LFS_CFLAGS obtain compilation flags necessary to

enable the large file compilation
environment

LFS_LDFLAGS obtain link editor options
LFS_LIBS obtain link library names
LFS_LINTFLAGS obtain lint options

· Set the compile-time flag _FILE_OFFSET_BITS to 64 before including any headers.

Applications may combine objects produced in the large file compilation environment
with objects produced in the transitional compilation environment, but must be careful
with respect to interoperability between those objects. Applications should not declare
global variables of types whose sizes change between compilation environments.

Access to Additional
Large File Interfaces

The fseek() and ftell() functions do not map to functions named fseek64() and ftell64();
rather, the large file additions fseeko() and ftello(), have functionality identical to
fseek() and ftell() and do map to the 64-bit functions fseeko64() and ftello64(). Appli-
cations wishing to access large files should use fseeko() and ftello() in place of fseek()
and ftell(). See the fseek(3S) and ftell(3S) manual pages for information about fseeko()
and ftello().

Applications wishing to access fseeko() and ftello() as well as the POSIX and X/Open
specification-conforming interfaces should define the macro _LARGEFILE_SOURCE to be
1 and set whichever feature test macros are appropriate to obtain the desired environ-
ment (see standards(5)).

modified 21 Mar 1997 SunOS 5.6 5-149

lfcompile (5) Headers, Environments, and Macros

EXAMPLES In the following examples, the large file compilation environment is accessed by invoking
the getconf utility with one of the arguments listed in the table above. The additional
large file interfaces are accessed by specifying −D_LARGEFILE_SOURCE.

The examples that use the form of command substitution specifying the command within
parentheses preceded by a dollar sign can be executed only in a POSIX-conforming shell
such as the Korn Shell (see ksh(1)). In a shell that is not POSIX-conforming, such as the
Bourne Shell (see sh(1)) and the C Shell (see csh(1)), the getconf calls must be enclosed
within grave accent marks, as shown in the second example.

1. An example of compiling a program with a “large” off_t, and that uses fseeko(),
ftello(), and yacc(1):

$ c89 −D_LARGEFILE_SOURCE \
−D_FILE_OFFSET_BITS=64 −o foo \
$(getconf LFS_CFLAGS) y.tab.c b.o \
$(getconf LFS_LDFLAGS) \
−ly $(getconf LFS_LIBS)

2. An example of compiling a program with a “large” off_t that does not use fseeko()
and ftello() and has no application specific libraries:

% c89 −D_FILE_OFFSET_BITS=64 \
`getconf LFS_CFLAGS` a.c \
`getconf LFS_LDFLAGS` \
`getconf LFS_LIBS`

3. An example of compiling a program with a “default” off_t and that uses fseeko() and
ftello():

$ c89 −D_LARGEFILE_SOURCE a.c

4. An example of running lint on a program with a “large” off_t:

$ lint −D_LARGEFILE_SOURCE \
−D_FILE_OFFSET_BITS=64 \
$(getconf LFS_LINTFLAGS) . . . \
$(getconf LFS_LIBS)

SEE ALSO csh(1), getconf(1), ksh(1), sh(1), fseek(3S), ftell(3S), interface64(5), lfcompile64(5), stan-
dards(5)

5-150 SunOS 5.6 modified 21 Mar 1997

Headers, Environments, and Macros lfcompile64 (5)

NAME lfcompile64 − transitional compilation environment

DESCRIPTION In the transitional compilation environment, 64-bit functions, structures, and types are
added to the API. Compiling in this environment allows applications to access files whose
size is greater than or equal to 2 Gbyte (231 bytes).

The transitional compilation environment exports all the explicit 64-bit functions
(xxx64()) and types in addition to all the regular 32-bit functions (xxx()) and types. Both
xxx() and xxx64() functions are available to the program source. An application must
use the xxx64() functions in order to access large files. See the interface64(5) manual
page for a complete listing of the 64-bit transitional interfaces.

The transitional compilation environment differs from the large file compilation environ-
ment, wherein the underlying interfaces are bound to 64-bit functions, structures, and
types. An application compiled in the large file compilation environment is able to use
the xxx() source interfaces to access both large and small files, rather than having to
explicitly utilize the transitional xxx64() interface calls to access large files. See the lfcom-
pile(5) manual page for more information regarding the large file compilation environ-
ment.

Applications may combine objects produced in the large file compilation environment
with objects produced in the transitional compilation environment, but must be careful
with respect to interoperability between those objects. Applications should not declare
global variables of types whose sizes change between compilation environments.

For applications that do not wish to conform to the POSIX or X/Open specifications, the
64-bit transitional interfaces are available by default. No compile-time flags need to be
set.

Access to Additional
Large File Interfaces

Applications that wish to access the transitional interfaces as well as the POSIX or
X/Open specification-conforming interfaces should use the following compilation
methods and set whichever feature test macros are appropriate to obtain the desired
environment (see standards(5)).

· Set the compile-time flag _LARGEFILE64_SOURCE to 1 before including any headers.

· Use the getconf(1) command with one or more of the following arguments:

argument purpose
LFS64_CFLAGS obtain compilation flags necessary to

enable the transitional compilation
environment

LFS64_LDFLAGS obtain link editor options
LFS64_LIBS obtain link library names
LFS64_LINTFLAGS obtain lint options

EXAMPLES In the following examples, the transitional compilation environment is accessed by invok-
ing the getconf utility with one of the arguments listed in the table above. The additional
large file interfaces are accessed either by specifying

modified 21 Mar 1997 SunOS 5.6 5-151

lfcompile64 (5) Headers, Environments, and Macros

−D_LARGEFILE64_SOURCE or by invoking the getconf utility with the arguments listed
above.

The example that uses the form of command substitution specifying the command within
parentheses preceded by a dollar sign can be executed only in a POSIX-conforming shell
such as the Korn Shell (see ksh(1)). In a shell that is not POSIX-conforming, such as the
Bourne Shell (see sh(1)) and the C Shell (see csh(1)), the command must be enclosed
within grave accent marks.

1. An example of compiling a program using transitional interfaces such as lseek64()
and fopen64():

$ c89 −D_LARGEFILE64_SOURCE \
$(getconf LFS64_CFLAGS) a.c \
$(getconf LFS64_LDFLAGS) \
$(getconf LFS64_LIBS)

2. An example of running lint on a program using transitional interfaces:

% lint −D_LARGEFILE64_SOURCE \
`getconf LFS64_LINTFLAGS` . . . \
`getconf LFS64_LIBS`

SEE ALSO getconf(1), lseek(2), fopen(3S), interface64(5), lfcompile(5), standards(5)

5-152 SunOS 5.6 modified 21 Mar 1997

Headers, Environments, and Macros locale (5)

NAME locale − subset of a user’s environment that depends on language and cultural conven-
tions

DESCRIPTION A locale is the definition of the subset of a user’s environment that depends on language
and cultural conventions. It is made up from one or more categories. Each category is
identified by its name and controls specific aspects of the behavior of components of the
system. Category names correspond to the following environment variable names:

LC_CTYPE Character classification and case conversion.

LC_COLLATE Collation order.

LC_TIME Date and time formats.

LC_NUMERIC Numeric formatting.

LC_MONETARY Monetary formatting.

LC_MESSAGES Formats of informative and diagnostic messages and interactive
responses.

The standard utilities base their behavior on the current locale, as defined in the
ENVIRONMENT section for each utility. The behavior of some of the C-language func-
tions will also be modified based on the current locale, as defined by the last call to
setlocale(3C).

Locales other than those supplied by the implementation can be created by the applica-
tion via the localedef(1) utility. The value that is used to specify a locale when using
environment variables will be the string specified as the name operand to localedef when
the locale was created. The strings "C" and "POSIX" are reserved as identifiers for the
POSIX locale.

Applications can select the desired locale by invoking the setlocale() function with the
appropriate value. If the function is invoked with an empty string, such as:

setlocale(LC_ALL, "");

the value of the corresponding environment variable is used. If the environment variable
is unset or is set to the empty string, the setlocale() function sets the appropriate environ-
ment.

Locale Definition Locales can be described with the file format accepted by the localedef utility.

The locale definition file must contain one or more locale category source definitions, and
must not contain more than one definition for the same locale category.

A category source definition consists of a category header, a category body and a
category trailer. A category header consists of the character string naming of the
category, beginning with the characters LC_. The category trailer consists of the string
END, followed by one or more blank characters and the string used in the corresponding
category header.

The category body consists of one or more lines of text. Each line contains an identifier,
optionally followed by one or more operands. Identifiers are either keywords, identify-
ing a particular locale element, or collating elements. Each keyword within a locale must

modified 20 Dec 1996 SunOS 5.6 5-153

locale (5) Headers, Environments, and Macros

have a unique name (that is, two categories cannot have a commonly-named keyword);
no keyword can start with the characters LC_. Identifiers must be separated from the
operands by one or more blank characters.

Operands must be characters, collating elements or strings of characters. Strings must be
enclosed in double-quotes. Literal double-quotes within strings must be preceded by the
<escape character>, described below. When a keyword is followed by more than one
operand, the operands must be separated by semicolons; blank characters are allowed
both before and after a semicolon.

The first category header in the file can be preceded by a line modifying the comment
character. It has the following format, starting in column 1:

"comment_char %c\n",<comment character>

The comment character defaults to the number sign (#). Blank lines and lines containing
the <comment character> in the first position are ignored.

The first category header in the file can be preceded by a line modifying the escape char-
acter to be used in the file. It has the following format, starting in column 1:

"escape_char %c\n",<escape character>

The escape character defaults to backslash.

A line can be continued by placing an escape character as the last character on the line;
this continuation character will be discarded from the input. Although the implementa-
tion need not accept any one portion of a continued line with a length exceeding
{LINE_MAX} bytes, it places no limits on the accumulated length of the continued line.
Comment lines cannot be continued on a subsequent line using an escaped newline char-
acter.

Individual characters, characters in strings, and collating elements must be represented
using symbolic names, as defined below. In addition, characters can be represented
using the characters themselves or as octal, hexadecimal or decimal constants. When
non-symbolic notation is used, the resultant locale definitions will in many cases not be
portable between systems. The left angle bracket (<) is a reserved symbol, denoting the
start of a symbolic name; when used to represent itself it must be preceded by the escape
character. The following rules apply to character representation:

1. A character can be represented via a symbolic name, enclosed within angle brackets
< and >. The symbolic name, including the angle brackets, must exactly match a
symbolic name defined in the charmap file specified via the localedef −f option, and
will be replaced by a character value determined from the value associated with the
symbolic name in the charmap file. The use of a symbolic name not found in the
charmap file constitutes an error, unless the category is LC_CTYPE or LC_COLLATE,
in which case it constitutes a warning condition (see localedef(1) for a description of
action resulting from errors and warnings). The specification of a symbolic name in
a collating-element or collating-symbol section that duplicates a symbolic name in
the charmap file (if present) is an error. Use of the escape character or a right angle
bracket within a symbolic name is invalid unless the character is preceded by the
escape character.

5-154 SunOS 5.6 modified 20 Dec 1996

Headers, Environments, and Macros locale (5)

Example:

<c>;<c−cedilla> "<M><a><y>"

2. A character can be represented by the character itself, in which case the value of the
character is implementation-dependent. Within a string, the double-quote character,
the escape character and the right angle bracket character must be escaped (preceded
by the escape character) to be interpreted as the character itself. Outside strings, the
characters

, ; < > escape_char

must be escaped to be interpreted as the character itself.

Example:

c β "May"

3. A character can be represented as an octal constant. An octal constant is specified as
the escape character followed by two or more octal digits. Each constant represents
a byte value. Multi-byte values can be represented by concatenated constants
specified in byte order with the last constant specifying the least significant byte of
the character.

Example:

\143;\347;\143\150 "\115\141\171"

4. A character can be represented as a hexadecimal constant. A hexadecimal constant
is specified as the escape character followed by an x followed by two or more hexa-
decimal digits. Each constant represents a byte value. Multi-byte values can be
represented by concatenated constants specified in byte order with the last constant
specifying the least significant byte of the character.

Example:

\x63;\xe7;\x63\x68 "\x4d\x61\x79"

5. A character can be represented as a decimal constant. A decimal constant is
specified as the escape character followed by a d followed by two or more decimal
digits. Each constant represents a byte value. Multi-byte values can be represented
by concatenated constants specified in byte order with the last constant specifying
the least significant byte of the character.

Example:

\d99;\d231;\d99\d104 "\d77\d97\d121"

Only characters existing in the character set for which the locale definition is created can
be specified, whether using symbolic names, the characters themselves, or octal, decimal
or hexadecimal constants. If a charmap file is present, only characters defined in the
charmap can be specified using octal, decimal or hexadecimal constants. Symbolic names
not present in the charmap file can be specified and will be ignored, as specified under
item 1 above.

modified 20 Dec 1996 SunOS 5.6 5-155

locale (5) Headers, Environments, and Macros

LC_CTYPE The LC_CTYPE category defines character classification, case conversion and other char-
acter attributes. In addition, a series of characters can be represented by three adjacent
periods representing an ellipsis symbol (. . .). The ellipsis specification is interpreted as
meaning that all values between the values preceding and following it represent valid
characters. The ellipsis specification is valid only within a single encoded character set;
that is, within a group of characters of the same size. An ellipsis is interpreted as includ-
ing in the list all characters with an encoded value higher than the encoded value of the
character preceding the ellipsis and lower than the encoded value of the character follow-
ing the ellipsis.

Example:

\x30;. . .;\x39;

includes in the character class all characters with encoded values between the endpoints.

The following keywords are recognized. In the descriptions, the term ‘‘automatically
included’’ means that it is not an error either to include or omit any of the referenced
characters.

The character classes digit, xdigit, lower, upper, and space have a set of automatically
included characters. These only need to be specified if the character values (that is,
encoding) differ from the implementation default values.

cswidth Moved to extensions file (see extensions(5)).

upper Define characters to be classified as upper-case letters.

In the POSIX locale, the 26 upper-case letters are included:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

In a locale definition file, no character specified for the keywords cntrl, digit,
punct, or space can be specified. The upper-case letters A to Z are automati-
cally included in this class.

lower Define characters to be classified as lower-case letters.

In the POSIX locale, the 26 lower-case letters are included:

a b c d e f g h i j k l m n o p q r s t u v w x y z

In a locale definition file, no character specified for the keywords cntrl, digit,
punct, or space can be specified. The lower-case letters a to z of the portable
character set are automatically included in this class.

alpha Define characters to be classified as letters.

In the POSIX locale, all characters in the classes upper and lower are included.
In a locale definition file, no character specified for the keywords cntrl, digit,
punct, or space can be specified. Characters classified as either upper or
lower are automatically included in this class.

digit Define the characters to be classified as numeric digits.

In the POSIX locale, only

5-156 SunOS 5.6 modified 20 Dec 1996

Headers, Environments, and Macros locale (5)

0 1 2 3 4 5 6 7 8 9

are included.

In a locale definition file, only the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9 can be
specified, and in contiguous ascending sequence by numerical value. The
digits 0 to 9 of the portable character set are automatically included in this
class.

The definition of character class digit requires that only ten characters; the
ones defining digits can be specified; alternative digits (for example, Hindi or
Kanji) cannot be specified here.

space Define characters to be classified as white-space characters.

In the POSIX locale, at a minimum, the characters SPACE, FORMFEED, NEW-
LINE, CARRIAGE RETURN, TAB, and VERTICAL TAB are included.

In a locale definition file, no character specified for the keywords upper,
lower, alpha, digit, graph, or xdigit can be specified. The characters SPACE,
FORMFEED, NEWLINE, CARRIAGE RETURN, TAB, and VERTICAL TAB of the
portable character set, and any characters included in the class blank are
automatically included in this class.

cntrl Define characters to be classified as control characters.

In the POSIX locale, no characters in classes alpha or print are included.

In a locale definition file, no character specified for the keywords upper,
lower, alpha, digit, punct, graph, print, or xdigit can be specified.

punct Define characters to be classified as punctuation characters.

In the POSIX locale, neither the space character nor any characters in classes
alpha, digit, or cntrl are included.

In a locale definition file, no character specified for the keywords upper,
lower, alpha, digit, cntrl, xdigit or as the space character can be specified.

graph Define characters to be classified as printable characters, not including the
space character.

In the POSIX locale, all characters in classes alpha, digit, and punct are
included; no characters in class cntrl are included.

In a locale definition file, characters specified for the keywords upper, lower,
alpha, digit, xdigit, and punct are automatically included in this class. No
character specified for the keyword cntrl can be specified.

print Define characters to be classified as printable characters, including the space
character.

In the POSIX locale, all characters in class graph are included; no characters in
class cntrl are included.

In a locale definition file, characters specified for the keywords upper, lower,
alpha, digit, xdigit, punct, and the space character are automatically included
in this class. No character specified for the keyword cntrl can be specified.

modified 20 Dec 1996 SunOS 5.6 5-157

locale (5) Headers, Environments, and Macros

xdigit Define the characters to be classified as hexadecimal digits.

In the POSIX locale, only:

0 1 2 3 4 5 6 7 8 9 A B C D E F a b c d e f

are included.

In a locale definition file, only the characters defined for the class digit can be
specified, in contiguous ascending sequence by numerical value, followed by
one or more sets of six characters representing the hexadecimal digits 10 to 15
inclusive, with each set in ascending order (for example A, B, C, D, E, F, a, b,
c, d, e, f). The digits 0 to 9, the upper-case letters A to F and the lower-case
letters a to f of the portable character set are automatically included in this
class.

The definition of character class xdigit requires that the characters included in
character class digit be included here also.

blank Define characters to be classified as blank characters.
In the POSIX locale, only the space and tab characters are included.

In a locale definition file, the characters space and tab are automatically
included in this class.

charclass Define one or more locale-specific character class names as strings separated
by semi-colons. Each named character class can then be defined subsequently
in the LC_CTYPE definition. A character class name consists of at least one
and at most {CHARCLASS_NAME_MAX} bytes of alphanumeric characters
from the portable filename character set. The first character of a character
class name cannot be a digit. The name cannot match any of the LC_CTYPE
keywords defined in this document.

charclass-name
Define characters to be classified as belonging to the named locale-specific
character class. In the POSIX locale, the locale-specific named character
classes need not exist.

If a class name is defined by a charclass keyword, but no characters are subse-
quently assigned to it, this is not an error; it represents a class without any
characters belonging to it.

The charclass-name can be used as the property argument to the wctype(3C)
function, in regular expression and shell pattern-matching bracket expres-
sions, and by the tr(1) command.

toupper Define the mapping of lower-case letters to upper-case letters.

In the POSIX locale, at a minimum, the 26 lower-case characters:

a b c d e f g h i j k l m n o p q r s t u v w x y z

are mapped to the corresponding 26 upper-case characters:

5-158 SunOS 5.6 modified 20 Dec 1996

Headers, Environments, and Macros locale (5)

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

In a locale definition file, the operand consists of character pairs, separated by
semicolons. The characters in each character pair are separated by a comma
and the pair enclosed by parentheses. The first character in each pair is the
lower-case letter, the second the corresponding upper-case letter. Only char-
acters specified for the keywords lower and upper can be specified. The
lower-case letters a to z, and their corresponding upper-case letters A to Z, of
the portable character set are automatically included in this mapping, but only
when the toupper keyword is omitted from the locale definition.

tolower Define the mapping of upper-case letters to lower-case letters.
In the POSIX locale, at a minimum, the 26 upper-case characters

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

are mapped to the corresponding 26 lower-case characters:

a b c d e f g h i j k l m n o p q r s t u v w x y z

In a locale definition file, the operand consists of character pairs, separated by
semicolons. The characters in each character pair are separated by a comma
and the pair enclosed by parentheses. The first character in each pair is the
upper-case letter, the second the corresponding lower-case letter. Only char-
acters specified for the keywords lower and upper can be specified. If the
tolower keyword is omitted from the locale definition, the mapping will be
the reverse mapping of the one specified for toupper.

LC_COLLATE The LC_COLLATE category provides a collation sequence definition for numerous utilities
(such as sort(1), uniq(1), and so forth), regular expression matching (see regex(5)), and
the strcoll(3C), strxfrm(3C), wcscoll(3C), and wcsxfrm(3C) functions.

A collation sequence definition defines the relative order between collating elements
(characters and multi-character collating elements) in the locale. This order is expressed
in terms of collation values; that is, by assigning each element one or more collation
values (also known as collation weights). At least the following capabilities are provided:

1. Multi-character collating elements. Specification of multi-character collating
elements (that is, sequences of two or more characters to be collated as an entity).

2. User-defined ordering of collating elements. Each collating element is assigned
a collation value defining its order in the character (or basic) collation sequence.
This ordering is used by regular expressions and pattern matching and, unless
collation weights are explicity specified, also as the collation weight to be used in
sorting.

3. Multiple weights and equivalence classes. Collating elements can be assigned
one or more (up to the limit {COLL_WEIGHTS_MAX}) collating weights for use in
sorting. The first weight is hereafter referred to as the primary weight.

4. One-to-Many mapping. A single character is mapped into a string of collating
elements.

5. Equivalence class definition. Two or more collating elements have the same

modified 20 Dec 1996 SunOS 5.6 5-159

locale (5) Headers, Environments, and Macros

collation value (primary weight).

6. Ordering by weights. When two strings are compared to determine their rela-
tive order, the two strings are first broken up into a series of collating elements;
the elements in each successive pair of elements are then compared according to
the relative primary weights for the elements. If equal, and more than one
weight has been assigned, then the pairs of collating elements are recompared
according to the relative subsequent weights, until either a pair of collating ele-
ments compare unequal or the weights are exhausted.

The following keywords are recognized in a collation sequence definition. They are
described in detail in the following sections.

collating-element Define a collating-element symbol representing a multi-character
collating element. This keyword is optional.

collating-symbol Define a collating symbol for use in collation order statements.
This keyword is optional.

order_start Define collation rules. This statement is followed by one or more
collation order statements, assigning character collation values and
collation weights to collating elements.

order_end Specify the end of the collation-order statements.

collating-element
keyword

In addition to the collating elements in the character set, the collating-element keyword
is used to define multi-character collating elements. The syntax is:

"collating-element %s from \"%s\"\n",<collating-symbol>,<string>

The <collating-symbol> operand is a symbolic name, enclosed between angle brackets (<
and >), and must not duplicate any symbolic name in the current charmap file (if any), or
any other symbolic name defined in this collation definition. The string operand is a
string of two or more characters that collates as an entity. A <collating-element> defined
via this keyword is only recognized with the LC_COLLATE category.

Example:

collating-element <ch> from "<c><h>"
collating-element <e-acute> from "<acute><e>"
collating-element <ll> from "ll"

collating-symbol
keyword

This keyword will be used to define symbols for use in collation sequence statements;
that is, between the order_start and the order_end keywords. The syntax is:

"collating-symbol %s\n",<collating-symbol>

The <collating-symbol> is a symbolic name, enclosed between angle brackets (< and >),
and must not duplicate any symbolic name in the current charmap file (if any), or any
other symbolic name defined in this collation definition.

A collating-symbol defined via this keyword is only recognized with the LC_COLLATE
category.

5-160 SunOS 5.6 modified 20 Dec 1996

Headers, Environments, and Macros locale (5)

Example:

collating-symbol <UPPER_CASE>
collating-symbol <HIGH>

The collating-symbol keyword defines a symbolic name that can be associated with a
relative position in the character order sequence. While such a symbolic name does not
represent any collating element, it can be used as a weight.

order_start keyword The order_start keyword must precede collation order entries and also defines the
number of weights for this collation sequence definition and other collation rules.

The syntax of the order_start keyword is:

"order_start %s;%s;. . .;%s\n",<sort-rules>,<sort-rules>

The operands to the order_start keyword are optional. If present, the operands define
rules to be applied when strings are compared. The number of operands define how
many weights each element is assigned; if no operands are present, one forward operand
is assumed. If present, the first operand defines rules to be applied when comparing
strings using the first (primary) weight; the second when comparing strings using the
second weight, and so on. Operands are separated by semicolons (;). Each operand con-
sists of one or more collation directives, separated by commas (,). If the number of
operands exceeds the {COLL_WEIGHTS_MAX} limit, the utility will issue a warning mes-
sage. The following directives will be supported:

forward Specifies that comparison operations for the weight level proceed from
start of string towards the end of string.

backward Specifies that comparison operations for the weight level proceed from
end of string towards the beginning of string.

position Specifies that comparison operations for the weight level will consider
the relative position of elements in the strings not subject to IGNORE.
The string containing an element not subject to IGNORE after the
fewest collating elements subject to IGNORE from the start of the com-
pare will collate first. If both strings contain a character not subject to
IGNORE in the same relative position, the collating values assigned to
the elements will determine the ordering. In case of equality, subse-
quent characters not subject to IGNORE are considered in the same
manner.

The directives forward and backward are mutually exclusive.

Example:

order_start forward;backward

If no operands are specified, a single forward operand is assumed.

The character (and collating element) order is defined by the order in which characters
and elements are specified between the order_start and order_end keywords. This char-
acter order is used in range expressions in regular expressions (see regex(5)). Weights
assigned to the characters and elements define the collation sequence; in the absence of

modified 20 Dec 1996 SunOS 5.6 5-161

locale (5) Headers, Environments, and Macros

weights, the character order is also the collation sequence.

The position keyword provides the capability to consider, in a compare, the relative posi-
tion of characters not subject to IGNORE. As an example, consider the two strings ‘‘o-
ring’’ and ‘‘or-ing’’. Assuming the hyphen is subject to IGNORE on the first pass, the two
strings will compare equal, and the position of the hyphen is immaterial. On second
pass, all characters except the hyphen are subject to IGNORE, and in the normal case the
two strings would again compare equal. By taking position into account, the first collates
before the second.

Collation Order The order_start keyword is followed by collating identifier entries. The syntax for the
collating element entries is

"%s %s;%s;. . .;%s\n"<collating-identifier>,<weight>,<weight>, . . .

Each collating-identifier consists of either a character described in Locale Definition above,
a <collating-element>, a <collating-symbol>, an ellipsis, or the special symbol UNDEFINED.
The order in which collating elements are specified determines the character order
sequence, such that each collating element compares less than the elements following it.
The NUL character compares lower than any other character.

A <collating-element> is used to specify multi-character collating elements, and indicates
that the character sequence specified via the <collating-element> is to be collated as a unit
and in the relative order specified by its place.

A <collating-symbol> is used to define a position in the relative order for use in weights.
No weights are specified with a <collating-symbol>.

The ellipsis symbol specifies that a sequence of characters will collate according to their
encoded character values. It is interpreted as indicating that all characters with a coded
character set value higher than the value of the character in the preceding line, and lower
than the coded character set value for the character in the following line, in the current
coded character set, will be placed in the character collation order between the previous
and the following character in ascending order according to their coded character set
values. An initial ellipsis is interpreted as if the preceding line specified the NUL charac-
ter, and a trailing ellipsis as if the following line specified the highest coded character set
value in the current coded character set. An ellipsis is treated as invalid if the preceding
or following lines do not specify characters in the current coded character set.

The symbol UNDEFINED is interpreted as including all coded character set values not
specified explicitly or via the ellipsis symbol. Such characters are inserted in the charac-
ter collation order at the point indicated by the symbol, and in ascending order according
to their coded character set values. If no UNDEFINED symbol is specified, and the
current coded character set contains characters not specified in this section, the utility will
issue a warning message and place such characters at the end of the character collation
order.

The optional operands for each collation-element are used to define the primary, secon-
dary, or subsequent weights for the collating element. The first operand specifies the
relative primary weight, the second the relative secondary weight, and so on. Two or
more collation-elements can be assigned the same weight; they belong to the same

5-162 SunOS 5.6 modified 20 Dec 1996

Headers, Environments, and Macros locale (5)

equivalence class if they have the same primary weight. Collation behaves as if, for each
weight level, elements subject to IGNORE are removed, unless the position collation
directive is specified for the corresponding level with the order_start keyword. Then
each successive pair of elements is compared according to the relative weights for the ele-
ments. If the two strings compare equal, the process is repeated for the next weight level,
up to the limit {COLL_WEIGHTS_MAX}.

Weights are expressed as characters described in Locale Definition above, <collating-
symbol>s, <collating-element>s, an ellipsis, or the special symbol IGNORE. A single charac-
ter, a <collating−symbol> or a <collating−element> represent the relative position in the
character collating sequence of the character or symbol, rather than the character or char-
acters themselves. Thus, rather than assigning absolute values to weights, a particular
weight is expressed using the relative order value assigned to a collating element based
on its order in the character collation sequence.

One-to-many mapping is indicated by specifying two or more concatenated characters or
symbolic names. For example, if the character <eszet> is given the string "<s><s>" as a
weight, comparisons are performed as if all occurrences of the character <eszet> are
replaced by <s><s> (assuming that <s> has the collating weight <s>). If it is necessary to
define <eszet> and <s><s> as an equivalence class, then a collating element must be
defined for the string ss.

All characters specified via an ellipsis will by default be assigned unique weights, equal
to the relative order of characters. Characters specified via an explicit or implicit UNDE-
FINED special symbol will by default be assigned the same primary weight (that is,
belong to the same equivalence class). An ellipsis symbol as a weight is interpreted to
mean that each character in the sequence has unique weights, equal to the relative order
of their character in the character collation sequence. The use of the ellipsis as a weight is
treated as an error if the collating element is neither an ellipsis nor the special symbol
UNDEFINED.

The special keyword IGNORE as a weight indicates that when strings are compared using
the weights at the level where IGNORE is specified, the collating element is ignored; that
is, as if the string did not contain the collating element. In regular expressions and pat-
tern matching, all characters that are subject to IGNORE in their primary weight form an
equivalence class.

An empty operand is interpreted as the collating element itself.

For example, the order statement:

<a> <a>;<a>

is equal to:

<a>

An ellipsis can be used as an operand if the collating element was an ellipsis, and is inter-
preted as the value of each character defined by the ellipsis.

The collation order as defined in this section defines the interpretation of bracket expres-
sions in regular expressions.

modified 20 Dec 1996 SunOS 5.6 5-163

locale (5) Headers, Environments, and Macros

Example:

order_start forward;backward
UNDEFINED IGNORE;IGNORE
<LOW>
<space> <LOW>;<space>
. . . <LOW>;. . .
<a> <a>;<a>
<a-acute> <a>;<a-acute>
<a-grave> <a>;<a-grave>
<A> <a>;<A>
<A-acute> <a>;<A-acute>
<A-grave> <a>;<A-grave>
<ch> <ch>;<ch>
<Ch> <ch>;<Ch>
<s> <s>;<s>
<eszet> "<s><s>";"<eszet><eszet>"
order_end

This example is interpreted as follows:

1. The UNDEFINED means that all characters not specified in this definition (explicitly or
via the ellipsis) are ignored for collation purposes; for regular expression purposes
they are ordered first.

2. All characters between <space> and <a> have the same primary equivalence class and
individual secondary weights based on their ordinal encoded values.

3. All characters based on the upper− or lower−case character a belong to the same pri-
mary equivalence class.

4. The multi-character collating element <ch> is represented by the collating symbol
<ch> and belongs to the same primary equivalence class as the multi-character collat-
ing element <Ch>.

order_end keyword The collating order entries must be terminated with an order_end keyword.

LC_MONETARY The LC_MONETARY category defines the rules and symbols that are used to format
monetary numeric information. This information is available through the localeconv(3C)
function

The following items are defined in this category of the locale. The item names are the
keywords recognized by the localedef(1) utility when defining a locale. They are also
similar to the member names of the lconv structure defined in <locale.h>. The
localeconv function returns {CHAR_MAX} for unspecified integer items and the empty
string ("") for unspecified or size zero string items.

In a locale definition file the operands are strings. For some keywords, the strings can
contain only integers. Keywords that are not provided, string values set to the empty
string (""), or integer keywords set to −1, are used to indicate that the value is not avail-
able in the locale.

5-164 SunOS 5.6 modified 20 Dec 1996

Headers, Environments, and Macros locale (5)

int_curr_symbol The international currency symbol. The operand is a four-
character string, with the first three characters containing the
alphabetic international currency symbol in accordance with
those specified in the ISO 4217:1987 standard. The fourth char-
acter is the character used to separate the international currency
symbol from the monetary quantity.

currency_symbol The string used as the local currency symbol.

mon_decimal_point The operand is a string containing the symbol that is used as the
decimal delimiter (radix character) in monetary formatted quan-
tities. In contexts where standards (such as the ISO C standard)
limit the mon_decimal_point to a single byte, the result of speci-
fying a multi-byte operand is unspecified.

mon_thousands_sep The operand is a string containing the symbol that is used as a
separator for groups of digits to the left of the decimal delimiter
in formatted monetary quantities. In contexts where standards
limit the mon_thousands_sep to a single byte, the result of
specifying a multi-byte operand is unspecified.

mon_grouping Define the size of each group of digits in formatted monetary
quantities. The operand is a sequence of integers separated by
semicolons. Each integer specifies the number of digits in each
group, with the initial integer defining the size of the group
immediately preceding the decimal delimiter, and the following
integers defining the preceding groups. If the last integer is not
−1, then the size of the previous group (if any) will be repeatedly
used for the remainder of the digits. If the last integer is −1, then
no further grouping will be performed.

The following is an example of the interpretation of the
mon_grouping keyword. Assuming that the value to be format-
ted is 123456789 and the mon_thousands_sep is ’, then the fol-
lowing table shows the result. The third column shows the
equivalent string in the ISO C standard that would be used by
the localeconv function to accommodate this grouping.

modified 20 Dec 1996 SunOS 5.6 5-165

locale (5) Headers, Environments, and Macros

mon_grouping Formatted Value ISO C String
3;−1 123456’789 "\3\177"
3 123’456’789 "\3"
3;2;−1 1234’56’789 "\3\2\177"
3;2 12’34’56’789 "\3\2"
−1 123456789 "\177"

In these examples, the octal value of {CHAR_MAX} is 177.

positive_sign A string used to indicate a non-negative-valued formatted
monetary quantity.

negative_sign A string used to indicate a negative-valued formatted monetary
quantity.

int_frac_digits An integer representing the number of fractional digits (those to
the right of the decimal delimiter) to be written in a formatted
monetary quantity using int_curr_symbol.

frac_digits An integer representing the number of fractional digits (those to
the right of the decimal delimiter) to be written in a formatted
monetary quantity using currency_symbol.

p_cs_precedes An integer set to 1 if the currency_symbol or int_curr_symbol
precedes the value for a monetary quantity with a non-negative
value, and set to 0 if the symbol succeeds the value.

p_sep_by_space An integer set to 0 if no space separates the currency_symbol or
int_curr_symbol from the value for a monetary quantity with a
non-negative value, set to 1 if a space separates the symbol from
the value, and set to 2 if a space separates the symbol and the
sign string, if adjacent.

n_cs_precedes An integer set to 1 if the currency_symbol or int_curr_symbol
precedes the value for a monetary quantity with a negative
value, and set to 0 if the symbol succeeds the value.

n_sep_by_space An integer set to 0 if no space separates the currency_symbol or
int_curr_symbol from the value for a monetary quantity with a
negative value, set to 1 if a space separates the symbol from the
value, and set to 2 if a space separates the symbol and the sign
string, if adjacent.

p_sign_posn An integer set to a value indicating the positioning of the
positive_sign for a monetary quantity with a non-negative
value. The following integer values are recognized for both
p_sign_posn and n_sign_posn:

0 Parentheses enclose the quantity and the
currency_symbol or int_curr_symbol.

1 The sign string precedes the quantity and the
currency_symbol or int_curr_symbol.

5-166 SunOS 5.6 modified 20 Dec 1996

Headers, Environments, and Macros locale (5)

2 The sign string succeeds the quantity and the
currency_symbol or int_curr_symbol.

3 The sign string precedes the currency_symbol or
int_curr_symbol.

4 The sign string succeeds the currency_symbol or
int_curr_symbol.

n_sign_posn An integer set to a value indicating the positioning of the
negative_sign for a negative formatted monetary quantity.

The following table shows the result of various combinations:

p_sep_by_space
2 1 0

p_cs_precedes = 1 p_sign_posn = 0 ($1.25) ($ 1.25) ($1.25)
p_sign_posn = 1 + $1.25 +$ 1.25 +$1.25
p_sign_posn = 2 $1.25 + $ 1.25+ $1.25+
p_sign_posn = 3 + $1.25 +$ 1.25 +$1.25
p_sign_posn = 4 $ +1.25 $+ 1.25 $+1.25

p_cs_precedes = 0 p_sign_posn = 0 (1.25 $) (1.25 $) (1.25$)
p_sign_posn = 1 +1.25 $ +1.25 $ +1.25$
p_sign_posn = 2 1.25$ + 1.25 $+ 1.25$+
p_sign_posn = 3 1.25+ $ 1.25 +$ 1.25+$
p_sign_posn = 4 1.25$ + 1.25 $+ 1.25$+

The monetary formatting definitions for the POSIX locale follow; the code listing depict-
ing the localedef(1) input, the table representing the same information with the addition
of localeconv(3C) and nl_langinfo(3C) formats. All values are unspecified in the POSIX
locale.

LC_MONETARY
This is the POSIX locale definition for
the LC_MONETARY category.
#
int_curr_symbol ""
currency_symbol ""
mon_decimal_point ""
mon_thousands_sep ""
mon_grouping -1
positive_sign ""
negative_sign ""
int_frac_digits -1
p_cs_precedes -1
p_sep_by_space -1
n_cs_precedes -1
n_sep_by_space -1
p_sign_posn -1

modified 20 Dec 1996 SunOS 5.6 5-167

locale (5) Headers, Environments, and Macros

n_sign_posn -1
#
END LC_MONETARY

The entry n/a indicates that the value is not available in the POSIX locale.

LC_NUMERIC The LC_NUMERIC category defines the rules and symbols that will be used to format
non-monetary numeric information. This information is available through the
localeconv(3C) function.

The following items are defined in this category of the locale. The item names are the
keywords recognized by the localedef utility when defining a locale. They are also simi-
lar to the member names of the lconv structure defined in <locale.h>. The localeconv()
function returns {CHAR_MAX} for unspecified integer items and the empty string ("") for
unspecified or size zero string items.

In a locale definition file the operands are strings. For some keywords, the strings only
can contain integers. Keywords that are not provided, string values set to the empty
string (""), or integer keywords set to −1, will be used to indicate that the value is not
available in the locale. The following keywords are recognized:

decimal_point The operand is a string containing the symbol that is used as the
decimal delimiter (radix character) in numeric, non-monetary for-
matted quantities. This keyword cannot be omitted and cannot be
set to the empty string. In contexts where standards limit the
decimal_point to a single byte, the result of specifying a multi-byte
operand is unspecified.

thousands_sep The operand is a string containing the symbol that is used as a
separator for groups of digits to the left of the decimal delimiter in
numeric, non-monetary formatted monetary quantities. In contexts
where standards limit the thousands_sep to a single byte, the result
of specifying a multi-byte operand is unspecified.

grouping Define the size of each group of digits in formatted non-monetary
quantities. The operand is a sequence of integers separated by semi-
colons. Each integer specifies the number of digits in each group,
with the initial integer defining the size of the group immediately
preceding the decimal delimiter, and the following integers defining
the preceding groups. If the last integer is not −1, then the size of the
previous group (if any) will be repeatedly used for the remainder of
the digits. If the last integer is −1, then no further grouping will be
performed.

The non-monetary numeric formatting definitions for the POSIX locale follow; the code
listing depicting the localedef input, the table representing the same information with the
addition of localeconv values and nl_langinfo constants.

LC_NUMERIC
This is the POSIX locale definition for
the LC_NUMERIC category.

5-168 SunOS 5.6 modified 20 Dec 1996

Headers, Environments, and Macros locale (5)

#
decimal_point "<period>"
thousands_sep ""
grouping -1
#
END LC_NUMERIC

POSIX locale langinfo localeconv() localedef
Item

Value Constant Value Value
decimal_point "." RADIXCHAR "." .
thousands_sep n/a THOUSEP "" ""
grouping n/a - "" −1

The entry n/a indicates that the value is not available in the POSIX locale.

LC_TIME The LC_TIME category defines the interpretation of the field descriptors supported by
date(1) and affects the behavior of the strftime(3C), wcsftime(3C), strptime(3C), and
nl_langinfo(3C) functions. Because the interfaces for C-language access and locale
definition differ significantly, they are described separately.

For locale definition, the following mandatory keywords are recognized:

abday Define the abbreviated weekday names, corresponding to the %a field
descriptor (conversion specification in the strftime(), wcsftime(), and
strptime() functions). The operand consists of seven semicolon-
separated strings, each surrounded by double-quotes. The first string is
the abbreviated name of the day corresponding to Sunday, the second the
abbreviated name of the day corresponding to Monday, and so on.

day Define the full weekday names, corresponding to the %A field descriptor.
The operand consists of seven semicolon-separated strings, each sur-
rounded by double-quotes. The first string is the full name of the day
corresponding to Sunday, the second the full name of the day
corresponding to Monday, and so on.

abmon Define the abbreviated month names, corresponding to the %b field
descriptor. The operand consists of twelve semicolon-separated strings,
each surrounded by double-quotes. The first string is the abbreviated
name of the first month of the year (January), the second the abbreviated
name of the second month, and so on.

mon Define the full month names, corresponding to the %B field descriptor.
The operand consists of twelve semicolon-separated strings, each sur-
rounded by double-quotes. The first string is the full name of the first
month of the year (January), the second the full name of the second
month, and so on.

d_t_fmt Define the appropriate date and time representation, corresponding to
the %c field descriptor. The operand consists of a string, and can contain
any combination of characters and field descriptors. In addition, the

modified 20 Dec 1996 SunOS 5.6 5-169

locale (5) Headers, Environments, and Macros

string can contain the escape sequences \\, \a, \b, \f, \n, \r, \t, \v.

date_fmt Define the appropriate date and time representation, corresponding to
the %C field descriptor. The operand consists of a string, and can contain
any combination of characters and field descriptors. In addition, the
string can contain the escape sequences \\, \a, \b, \f, \n, \r, \t, \v.

d_fmt Define the appropriate date representation, corresponding to the %x field
descriptor. The operand consists of a string, and can contain any combi-
nation of characters and field descriptors. In addition, the string can con-
tain the escape sequences \\, \a, \b, \f, \n, \r, \t, \v.

t_fmt Define the appropriate time representation, corresponding to the %X field
descriptor. The operand consists of a string, and can contain any combi-
nation of characters and field descriptors. In addition, the string can con-
tain the escape sequences \\, \a, \b, \f, \n, \r, \t, \v.

am_pm Define the appropriate representation of the ante meridiem and post meri-
diem strings, corresponding to the %p field descriptor. The operand con-
sists of two strings, separated by a semicolon, each surrounded by
double-quotes. The first string represents the ante meridiem designation,
the last string the post meridiem designation.

t_fmt_ampm Define the appropriate time representation in the 12-hour clock format
with am_pm, corresponding to the %r field descriptor. The operand con-
sists of a string and can contain any combination of characters and field
descriptors. If the string is empty, the 12-hour format is not supported in
the locale.

era Define how years are counted and displayed for each era in a locale. The
operand consists of semicolon-separated strings. Each string is an era
description segment with the format:

direction:offset:start_date:end_date:era_name:era_format

according to the definitions below. There can be as many era description
segments as are necessary to describe the different eras.

The start of an era might not be the earliest point For example, the Chris-
tian era B.C. starts on the day before January 1, A.D. 1, and increases with
earlier time.

direction Either a + or a − character. The + character indicates that
years closer to the start_date have lower numbers than those
closer to the end_date . The − character indicates that years
closer to the start_date have higher numbers than those
closer to the end_date .

offset The number of the year closest to the start_date in the era,
corresponding to the %Ey field descriptor.

start_date A date in the form yyyy/mm/dd, where yyyy, mm, and dd
are the year, month and day numbers respectively of the
start of the era. Years prior to A.D. 1 are represented as

5-170 SunOS 5.6 modified 20 Dec 1996

Headers, Environments, and Macros locale (5)

negative numbers.

end_date The ending date of the era, in the same format as the
start_date , or one of the two special values −∗ or +∗. The
value −∗ indicates that the ending date is the beginning of
time. The value +∗ indicates that the ending date is the end
of time.

era_name A string representing the name of the era, corresponding to
the %EC field descriptor.

era_format A string for formatting the year in the era, corresponding to
the %EY field descriptor.

era_d_fmt Define the format of the date in alternative era notation, corresponding to
the %Ex field descriptor.

era_t_fmt Define the locale’s appropriate alternative time format, corresponding to
the %EX field descriptor.

era_d_t_fmt Define the locale’s appropriate alternative date and time format,
corresponding to the %Ec field descriptor.

alt_digits Define alternative symbols for digits, corresponding to the %O field
descriptor modifier. The operand consists of semicolon-separated
strings, each surrounded by double-quotes. The first string is the alterna-
tive symbol corresponding with zero, the second string the symbol
corresponding with one, and so on. Up to 100 alternative symbol strings
can be specified. The %O modifier indicates that the string correspond-
ing to the value specified via the field descriptor will be used instead of
the value.

LC_TIME C-language
Access

The following information can be accessed. These correspond to constants defined in
<langinfo.h> and used as arguments to the nl_langinfo(3C) function.

ABDAY_x The abbreviated weekday names (for example Sun), where x is a
number from 1 to 7.

DAY_x The full weekday names (for example Sunday), where x is a number
from 1 to 7.

ABMON_x The abbreviated month names (for example Jan), where x is a number
from 1 to 12.

MON_x The full month names (for example January), where x is a number from
1 to 12.

D_T_FMT The appropriate date and time representation.

D_FMT The appropriate date representation.

T_FMT The appropriate time representation.

AM_STR The appropriate ante-meridiem affix.

PM_STR The appropriate post-meridiem affix.

modified 20 Dec 1996 SunOS 5.6 5-171

locale (5) Headers, Environments, and Macros

T_FMT_AMPM The appropriate time representation in the 12-hour clock format with
AM_STR and PM_STR.

ERA The era description segments, which describe how years are counted
and displayed for each era in a locale. Each era description segment
has the format:

direction:offset:start_date:end_date:era_name:era_format

according to the definitions below. There will be as many era descrip-
tion segments as are necessary to describe the different eras. Era
description segments are separated by semicolons.

The start of an era might not be the earliest point For example, the
Christian era B.C. starts on the day before January 1, A.D. 1, and
increases with earlier time.

direction Either a + or a − character. The + character indicates that
years closer to the start_date have lower numbers than
those closer to the end_date . The − character indicates that
years closer to the start_date have higher numbers than
those closer to the end_date .

offset The number of the year closest to the start_date in the era.

start_date A date in the form yyyy/mm/dd, where yyyy, mm, and dd
are the year, month and day numbers respectively of the
start of the era. Years prior to AD 1 are represented as
negative numbers.

end_date The ending date of the era, in the same format as the
start_date , or one of the two special values −∗ or +∗. The
value −∗ indicates that the ending date is the beginning of
time. The value +∗ indicates that the ending date is the
end of time.

era_name The era, corresponding to the %EC conversion
specification.

era_format The format of the year in the era, corresponding to the
%EY conversion specification.

ERA_D_FMT The era date format.

ERA_T_FMT The locale’s appropriate alternative time format, corresponding to the
%EX field descriptor.

ERA_D_T_FMT The locale’s appropriate alternative date and time format, correspond-
ing to the %Ec field descriptor.

ALT_DIGITS The alternative symbols for digits, corresponding to the %O conversion
specification modifier. The value consists of semicolon-separated sym-
bols. The first is the alternative symbol corresponding to zero, the
second is the symbol corresponding to one, and so on. Up to 100 alter-
native symbols may be specified.

5-172 SunOS 5.6 modified 20 Dec 1996

Headers, Environments, and Macros locale (5)

The following table displays the correspondence between the items described above and
the conversion specifiers used by date(1) and the strftime(3C), wcsftime(3C), and
strptime(3C) functions.

localedef langinfo Conversion
Keyword Constant Specifier

abday ABDAY_x %a
day DAY_x %A
abmon ABMON_x %b
mon MON %B
d_t_fmt D_T_FMT %c
date_fmt DATE_FMT %C
d_fmt D_FMT %x
t_fmt T_FMT %X
am_pm AM_STR %p
am_pm PM_STR %p
t_fmt_ampm T_FMT_AMPM %r
era ERA %EC, %Ey, %EY
era_d_fmt ERA_D_FMT %Ex
era_t_fmt ERA_T_FMT %EX
era_d_t_fmt ERA_D_T_FMT %Ec
alt_digits ALT_DIGITS %O

LC_TIME General
Information

Although certain of the field descriptors in the POSIX locale (such as the name of the
month) are shown with initial capital letters, this need not be the case in other locales.
Programs using these fields may need to adjust the capitalization if the output is going to
be used at the beginning of a sentence.

The LC_TIME descriptions of abday, day, mon, and abmon imply a Gregorian style
calendar (7-day weeks, 12-month years, leap years, and so forth). Formatting time strings
for other types of calendars is outside the scope of this document set.

As specified under date in Locale Definition and strftime(3C), the field descriptors
corresponding to the optional keywords consist of a modifier followed by a traditional
field descriptor (for instance %Ex). If the optional keywords are not supported by the
implementation or are unspecified for the current locale, these field descriptors are
treated as the traditional field descriptor. For instance, assume the following keywords:

alt_digits "0th" ; "1st" ; "2nd" ; "3rd" ; "4th" ; "5th" ; \
"6th" ; "7th" ; "8th" ; "9th" ; "10th"

d_fmt "The %Od day of %B in %Y"

On 7/4/1776, the %x field descriptor would result in “The 4th day of July in 1776” while
7/14/1789 would come out as “The 14 day of July in 1789” It can be noted that the above
example is for illustrative purposes only; the %O modifier is primarily intended to pro-
vide for Kanji or Hindi digits in date formats.

modified 20 Dec 1996 SunOS 5.6 5-173

locale (5) Headers, Environments, and Macros

LC_MESSAGES The LC_MESSAGES category defines the format and values for affirmative and negative
responses.

The following keywords are recognized as part of the locale definition file. The
nl_langinfo(3C) function accepts upper-case versions of the first four keywords.

yesexpr The operand consists of an extended regular expression (see regex(5)) that
describes the acceptable affirmative response to a question expecting an
affirmative or negative response.

noexpr The operand consists of an extended regular expression that describes the
acceptable negative response to a question expecting an affirmative or nega-
tive response.

yesstr The operand consists of a fixed string (not a regular expression) that can be
used by an application for composition of a message that lists an acceptable
affirmative response, such as in a prompt.

nostr The operand consists of a fixed string that can be used by an application for
composition of a message that lists an acceptable negative response.

The format and values for affirmative and negative responses of the POSIX locale follow;
the code listing depicting the localedef input, the table representing the same information
with the addition of nl_langinfo() constants.

LC_MESSAGES
This is the POSIX locale definition for
the LC_MESSAGES category.
#
yesexpr "<circumflex><left-square-bracket><y><Y><right-square-bracket>"
#
noexpr "<circumflex><left-square-bracket><n><N><right-square-bracket>"
#
yesstr "yes"
nostr "no"
END LC_MESSAGES

localedef langinfo
Keyword Constant

POSIX Locale Value

yesexpr YESEXPR "ˆ[yY]"
noexpr NOEXPR "ˆ[nN]"
yesstr YESSTR "yes"
nostr NOSTR "no"

SEE ALSO date(1), locale(1), localedef(1), sort(1), tr(1), uniq(1), localeconv(3C), nl_langinfo(3C),
setlocale(3C), strcoll(3C), strftime(3C), strptime(3C), strxfrm(3C), wcscoll(3C),
wcsftime(3C), wcsxfrm(3C), wctype(3C), attributes(5), charmap(5), extensions(5),
regex(5)

5-174 SunOS 5.6 modified 20 Dec 1996

Headers, Environments, and Macros man (5)

NAME man − macros to format Reference Manual pages

SYNOPSIS nroff −man filename. . .

troff −man filename. . .

DESCRIPTION These macros are used to lay out the reference pages in this manual. Note: if filename con-
tains format input for a preprocessor, the commands shown above must be piped
through the appropriate preprocessor. This is handled automatically by the man(1) com-
mand. See the ‘‘Conventions’’ section.

Any text argument t may be zero to six words. Quotes may be used to include SPACE
characters in a “word”. If text is empty, the special treatment is applied to the next input
line with text to be printed. In this way .I may be used to italicize a whole line, or .SB
may be used to make small bold letters.

A prevailing indent distance is remembered between successive indented paragraphs,
and is reset to default value upon reaching a non-indented paragraph. Default units for
indents i are ens.

Type font and size are reset to default values before each paragraph, and after processing
font and size setting macros.

These strings are predefined by −man:

\∗R ‘’, ‘(Reg)’ in nroff.
\∗S Change to default type size.

Requests ∗ n.t.l. = next text line; p.i. = prevailing indent
Request Cause If no Explanation

Break Argument

.B t no t=n.t.l.∗ Text is in bold font.

.BI t no t=n.t.l. Join words, alternating bold and italic.

.BR t no t=n.t.l. Join words, alternating bold and roman.

.DT no .5i 1i... Restore default tabs.

.HP i yes i=p.i.∗ Begin paragraph with hanging indent.
Set prevailing indent to i.

.I t no t=n.t.l. Text is italic.

.IB t no t=n.t.l. Join words, alternating italic and bold.

.IP x i yes x="" Same as .TP with tag x.

.IR t no t=n.t.l. Join words, alternating italic and roman.

.IX t no - Index macro, for SunSoft internal use.

.LP yes - Begin left-aligned paragraph.
Set prevailing indent to .5i.

.P yes - Same as .LP.

.PD d no d=.4v Set vertical distance between paragraphs.

.PP yes - Same as .LP.

.RE yes - End of relative indent.
Restores prevailing indent.

.RB t no t=n.t.l. Join words, alternating roman and bold.

modified 30 Jan 1995 SunOS 5.6 5-175

man (5) Headers, Environments, and Macros

.RI t no t=n.t.l. Join words, alternating roman and italic.

.RS i yes i=p.i. Start relative indent, increase indent by i.
Sets prevailing indent to .5i for nested
indents.

.SB t no - Reduce size of text by 1 point, make text bold.

.SH t yes - Section Heading.

.SM t no t=n.t.l. Reduce size of text by 1 point.

.SS t yes t=n.t.l. Section Subheading.

.TH n s d f m yes - Begin reference page n, of of section s; d is the
date of the most recent change. If present, f is
the left page footer; m is the main page
(center) header. Sets prevailing indent and
tabs to .5i.

.TP i yes i=p.i. Begin indented paragraph, with the tag given
on the next text line.
Set prevailing indent to i.

.TX t p no - Resolve the title abbreviation t; join to punc-
tuation mark (or text) p.

Conventions When formatting a manual page, man examines the first line to determine whether it
requires special processing. For example a first line consisting of:

’\" t

indicates that the manual page must be run through the tbl(1) preprocessor.

A typical manual page for a command or function is laid out as follows:

.TH title [1-9]
The name of the command or function, which serves as the title of the manual
page. This is followed by the number of the section in which it appears.

.SH NAME
The name, or list of names, by which the command is called, followed by a dash
and then a one-line summary of the action performed. All in roman font, this
section contains no troff(1) commands or escapes, and no macro requests. It is
used to generate the windex database, which is used by the whatis(1) command.

.SH SYNOPSIS

Commands:

The syntax of the command and its arguments, as typed on the com-
mand line. When in boldface, a word must be typed exactly as printed.
When in italics, a word can be replaced with an argument that you sup-
ply. References to bold or italicized items are not capitalized in other
sections, even when they begin a sentence.

5-176 SunOS 5.6 modified 30 Jan 1995

Headers, Environments, and Macros man (5)

Syntactic symbols appear in roman face:

[] An argument, when surrounded by brackets is optional.

| Arguments separated by a vertical bar are exclusive. You can
supply only one item from such a list.

. . . Arguments followed by an ellipsis can be repeated. When an
ellipsis follows a bracketed set, the expression within the brack-
ets can be repeated.

Functions:

If required, the data declaration, or #include directive, is shown first, fol-
lowed by the function declaration. Otherwise, the function declaration
is shown.

.SH DESCRIPTION
A narrative overview of the command or function’s external behavior. This
includes how it interacts with files or data, and how it handles the standard
input, standard output and standard error. Internals and implementation details
are normally omitted. This section attempts to provide a succinct overview in
answer to the question, "what does it do?"

Literal text from the synopsis appears in constant width, as do literal filenames
and references to items that appear elsewhere in the reference manuals. Argu-
ments are italicized.

If a command interprets either subcommands or an input grammar, its command
interface or input grammar is normally described in a USAGE section, which fol-
lows the OPTIONS section. The DESCRIPTION section only describes the behavior
of the command itself, not that of subcommands.

.SH OPTIONS
The list of options along with a description of how each affects the command’s
operation.

.SH RETURN VALUES
A list of the values the library routine will return to the calling program and the
conditions that cause these values to be returned.

.SH EXIT STATUS
A list of the values the utility will return to the calling program or shell, and the
conditions that cause these values to be returned.

.SH FILES
A list of files associated with the command or function.

.SH SEE ALSO
A comma-separated list of related manual pages, followed by references to other
published materials.

.SH DIAGNOSTICS
A list of diagnostic messages and an explanation of each.

modified 30 Jan 1995 SunOS 5.6 5-177

man (5) Headers, Environments, and Macros

.SH BUGS
A description of limitations, known defects, and possible problems associated
with the command or function.

FILES /usr/share/lib/tmac/an
/usr/share/man/windex

SEE ALSO man(1), nroff(1), troff(1), whatis(1)

Dale Dougherty and Tim O’Reilly, Unix Text Processing

5-178 SunOS 5.6 modified 30 Jan 1995

Headers, Environments, and Macros mansun (5)

NAME mansun − macros to format Reference Manual pages

SYNOPSIS nroff −mansun filename. . .

troff −mansun filename. . .

DESCRIPTION These macros are used to lay out the reference pages in this manual. Note: if filename con-
tains format input for a preprocessor, the commands shown above must be piped
through the appropriate preprocessor. This is handled automatically by man(1). See the
‘‘Conventions’’ section.

Any text argument t may be zero to six words. Quotes may be used to include SPACE
characters in a “word”. If text is empty, the special treatment is applied to the next input
line with text to be printed. In this way .I may be used to italicize a whole line, or .SB
may be used to make small bold letters.

A prevailing indent distance is remembered between successive indented paragraphs,
and is reset to default value upon reaching a non-indented paragraph. Default units for
indents i are ens.

Type font and size are reset to default values before each paragraph, and after processing
font and size setting macros.

These strings are predefined by −mansun:

\∗R ‘’, ‘(Reg)’ in nroff.
\∗S Change to default type size.

Requests ∗ n.t.l. = next text line; p.i. = prevailing indent
Request Cause If no Explanation

Break Argument

.B t no t=n.t.l.∗ Text is in bold font.

.BI t no t=n.t.l. Join words, alternating bold and italic.

.BR t no t=n.t.l. Join words, alternating bold and Roman.

.DT no .5i 1i... Restore default tabs.

.HP i yes i=p.i.∗ Begin paragraph with hanging indent.
Set prevailing indent to i.

.I t no t=n.t.l. Text is italic.

.IB t no t=n.t.l. Join words, alternating italic and bold.

.IP x i yes x="" Same as .TP with tag x.

.IR t no t=n.t.l. Join words, alternating italic and Roman.

.IX t no - Index macro, for SunSoft internal use.

.LP yes - Begin left-aligned paragraph.
Set prevailing indent to .5i.

.P yes - Same as .LP.

.PD d no d=.4v Set vertical distance between paragraphs.

.PP yes - Same as .LP.

.RE yes - End of relative indent.
Restores prevailing indent.

.RB t no t=n.t.l. Join words, alternating Roman and bold.

modified 11 Jun 1992 SunOS 5.6 5-179

mansun (5) Headers, Environments, and Macros

.RI t no t=n.t.l. Join words, alternating Roman and italic.

.RS i yes i=p.i. Start relative indent, increase indent by i.
Sets prevailing indent to .5i for nested
indents.

.SB t no - Reduce size of text by 1 point, make text bold.

.SH t yes - Section Heading.

.SM t no t=n.t.l. Reduce size of text by 1 point.

.SS t yes t=n.t.l. Section Subheading.

.TH n s d f m yes - Begin reference page n, of of section s; d is the
date of the most recent change. If present, f is
the left page footer; m is the main page
(center) header. Sets prevailing indent and
tabs to .5i.

.TP i yes i=p.i. Begin indented paragraph, with the tag given
on the next text line.
Set prevailing indent to i.

.TX t p no - Resolve the title abbreviation t; join to punc-
tuation mark (or text) p.

Conventions When formatting a manual page, mansun examines the first line to determine whether it
requires special processing. For example a first line consisting of:

’\" t

indicates that the manual page must be run through the tbl(1) preprocessor.

A typical manual page for a command or function is laid out as follows:

.TH title [1-8]
The name of the command or function, which serves as the title of the manual
page. This is followed by the number of the section in which it appears.

.SH NAME
The name, or list of names, by which the command is called, followed by a dash
and then a one-line summary of the action performed. All in Roman font, this
section contains no troff(1) commands or escapes, and no macro requests. It is
used to generate the windex database, which is used by the whatis(1) command.

.SH SYNOPSIS

Commands:

The syntax of the command and its arguments, as typed on the com-
mand line. When in boldface, a word must be typed exactly as printed.
When in italics, a word can be replaced with an argument that you sup-
ply. References to bold or italicized items are not capitalized in other
sections, even when they begin a sentence.

5-180 SunOS 5.6 modified 11 Jun 1992

Headers, Environments, and Macros mansun (5)

Syntactic symbols appear in Roman face:

[] An argument, when surrounded by brackets is optional.

| Arguments separated by a vertical bar are exclusive. You can
supply only one item from such a list.

. . . Arguments followed by an ellipsis can be repeated. When an
ellipsis follows a bracketed set, the expression within the brack-
ets can be repeated.

Functions:

If required, the data declaration, or #include directive, is shown first, fol-
lowed by the function declaration. Otherwise, the function declaration
is shown.

.SH DESCRIPTION
A narrative overview of the command or function’s external behavior. This
includes how it interacts with files or data, and how it handles the standard
input, standard output and standard error. Internals and implementation details
are normally omitted. This section attempts to provide a succinct overview in
answer to the question, "what does it do?"

Literal text from the synopsis appears in constant width, as do literal filenames
and references to items that appear elsewhere in the reference manuals. Argu-
ments are italicized.

If a command interprets either subcommands or an input grammar, its command
interface or input grammar is normally described in a USAGE section, which fol-
lows the OPTIONS section. The DESCRIPTION section only describes the behavior
of the command itself, not that of subcommands.

.SH OPTIONS
The list of options along with a description of how each affects the command’s
operation.

.SH FILES
A list of files associated with the command or function.

.SH SEE ALSO
A comma-separated list of related manual pages, followed by references to other
published materials.

.SH DIAGNOSTICS
A list of diagnostic messages and an explanation of each.

.SH BUGS
A description of limitations, known defects, and possible problems associated
with the command or function.

modified 11 Jun 1992 SunOS 5.6 5-181

mansun (5) Headers, Environments, and Macros

FILES /usr/share/lib/tmac/ansun
/usr/share/man/windex

SEE ALSO man(1), nroff(1), troff(1), whatis(1)

Dale Dougherty and Tim O’Reilly, Unix Text Processing

5-182 SunOS 5.6 modified 11 Jun 1992

Headers, Environments, and Macros math (5)

NAME math − math functions and constants

SYNOPSIS #include <math.h>

DESCRIPTION This file contains declarations of all the functions in the Math Library (described in Sec-
tion 3M), as well as various functions in the C Library (Section 3C) that return floating-
point values.

It defines the structure and constants used by the matherr(3M) error-handling mechan-
isms, including the following constant used as a error-return value:

HUGE The maximum value of a single-precision floating-point number.

The following mathematical constants are defined for user convenience:

M_E The base of natural logarithms (e).

M_LOG2E The base-2 logarithm of e.

M_LOG10E The base-10 logarithm of e.

M_LN2 The natural logarithm of 2.

M_LN10 The natural logarithm of 10.

M_PI π, the ratio of the circumference of a circle to its diameter.

M_PI_2 π/2.

M_PI_4 π/4.

M_1_PI 1/π.

M_2_PI 2/π.

M_2_SQRTPI 2/√π.

M_SQRT2 The positive square root of 2.

M_SQRT1_2 The positive square root of 1/2.

The following mathematical constants are also defined in this header file:

MAXFLOAT The maximum value of a non-infinite single-precision floating point
number.

HUGE_VAL positive infinity.

For the definitions of various machine-dependent constants see values(5).

SEE ALSO intro(3), matherr(3M), values(5)

modified 3 Jul 1990 SunOS 5.6 5-183

me (5) Headers, Environments, and Macros

NAME me − macros for formatting papers

SYNOPSIS nroff −me [options] filename . . .
troff −me [options] filename . . .

DESCRIPTION This package of nroff and troff macro definitions provides a canned formatting facility
for technical papers in various formats. When producing 2-column output on a terminal,
filter the output through col(1).

The macro requests are defined below. Many nroff and troff requests are unsafe in con-
junction with this package, however, these requests may be used with impunity after the
first .pp:

.bp begin new page

.br break output line here

.sp n insert n spacing lines

.ls n (line spacing) n=1 single, n=2 double space

.na no alignment of right margin

.ce n center next n lines

.ul n underline next n lines

.sz +n add n to point size

Output of the eqn(1), neqn(1), refer(1), and tbl(1) preprocessors for equations and tables
is acceptable as input.

REQUESTS In the following list, “initialization” refers to the first .pp, .lp, .ip, .np, .sh, or .uh macro.
This list is incomplete.

Request Initial Cause Explanation
Value Break

.(c - yes Begin centered block.

.(d - no Begin delayed text.

.(f - no Begin footnote.

.(l - yes Begin list.

.(q - yes Begin major quote.

.(xx - no Begin indexed item in index x.

.(z - no Begin floating keep.

.)c - yes End centered block.

.)d - yes End delayed text.

.)f - yes End footnote.

.)l - yes End list.

.)q - yes End major quote.

.)x - yes End index item.

.)z - yes End floating keep.

.++ m H - no Define paper section.
m defines the part of the paper,
and can be C (chapter), A (appendix),
P (preliminary, for instance,

5-184 SunOS 5.6 modified 25 Feb 1992

Headers, Environments, and Macros me (5)

abstract, table of contents, etc.),
B (bibliography), RC (chapters
renumbered from page one each
chapter), or RA (appendix renumbered
from page one).

.+c T - yes Begin chapter (or appendix, etc.,
as set by .++). T is
the chapter title.

.1c 1 yes One column format on a new page.

.2c 1 yes Two column format.

.EN - yes Space after equation produced by eqn
or neqn.

.EQ x y - yes Precede equation; break out and
add space. Equation number is y.
The optional argument x may be I
to indent equation (default),
L to left-adjust the equation, or
C to center the equation.

.GE - yes End gremlin picture.

.GS - yes Begin gremlin picture.

.PE - yes End pic picture.

.PS - yes Begin pic picture.

.TE - yes End table.

.TH - yes End heading section of table.

.TS x - yes Begin table; if x is H table
has repeated heading.

.ac A N - no Set up for ACM style output.
A is the Author’s name(s), N is the
total number of pages. Must be given
before the first initialization.

.b x no no Print x in boldface; if no argument
switch to boldface.

.ba +n 0 yes Augments the base indent by n.
This indent is used to set the indent
on regular text (like paragraphs).

.bc no yes Begin new column.

.bi x no no Print x in bold italics (nofill only).

.bu - yes Begin bulleted paragraph.

.bx x no no Print x in a box (nofill only).

.ef ´x´y´z ´´´´´ no Set even footer to x y z.

.eh ´x´y´z ´´´´´ no Set even header to x y z.

.fo ´x´y´z ´´´´´ no Set footer to x y z.

.hx - no Suppress headers and footers on
next page.

.he ´x´y´z ´´´´´ no Set header to x y z.

modified 25 Feb 1992 SunOS 5.6 5-185

me (5) Headers, Environments, and Macros

.hl - yes Draw a horizontal line.

.i x no no Italicize x; if x missing, italic
text follows.

.ip x y no yes Start indented paragraph, with
hanging tag x. Indentation is
y ens (default 5).

.lp yes yes Start left-blocked paragraph.

.lo - no Read in a file of local macros
of the form .∗x. Must be
given before initialization.

.np 1 yes Start numbered paragraph.

.of ´x´y´z ´´´´´ no Set odd footer to x y z.

.oh ´x´y´z ´´´´´ no Set odd header to x y z.

.pd - yes Print delayed text.

.pp no yes Begin paragraph. First line indented.

.r yes no Roman text follows.

.re - no Reset tabs to default values.

.sc no no Read in a file of special characters
and diacritical marks. Must be
given before initialization.

.sh n x - yes Section head follows, font
automatically bold. n is level
of section, x is title of section.

.sk no no Leave the next page blank.
Only one page is remembered ahead.

.sm x - no Set x in a smaller pointsize.

.sz +n 10p no Augment the point size by n points.

.th no no Produce the paper in thesis format.
Must be given before initialization.

.tp no yes Begin title page.

.u x - no Underline argument (even in troff).
(Nofill only).

.uh - yes Like .sh but unnumbered.

.xp x - no Print index x.

FILES /usr/share/lib/tmac/e
/usr/share/lib/tmac/∗.me

SEE ALSO eqn(1), nroff(1), refer(1), tbl(1), troff(1)

5-186 SunOS 5.6 modified 25 Feb 1992

Headers, Environments, and Macros mm (5)

NAME mm − text formatting (memorandum) macros

SYNOPSIS nroff −mm [options] filename . . .

troff −mm [options] filename . . .

DESCRIPTION This package of nroff(1) and troff(1) macro definitions provides a formatting facility for
various styles of articles, theses, and books. When producing 2-column output on a ter-
minal or lineprinter, or when reverse line motions are needed, filter the output through
col(1). All external −mm macros are defined below.

Note: this −mm macro package is an extended version written at Berkeley and is a super-
set of the standard −mm macro packages as supplied by Bell Labs. Some of the Bell Labs
macros have been removed; for instance, it is assumed that the user has little interest in
producing headers stating that the memo was generated at Whippany Labs.

Many nroff and troff requests are unsafe in conjunction with this package. However, the
first four requests below may be used with impunity after initialization, and the last two
may be used even before initialization:

.bp begin new page

.br break output line

.sp n insert n spacing lines

.ce n center next n lines

.ls n line spacing: n=1 single, n=2 double space

.na no alignment of right margin

Font and point size changes with \f and \s are also allowed; for example, \fIword\fR
will italicize word . Output of the tbl(1), eqn(1) and refer(1) preprocessors for equations,
tables, and references is acceptable as input.

REQUESTS Macro Initial Break? Explanation
Name Value Reset?
.1C on y,y one column format on a new page
.2C [l] − y,y two column format l=line length
.AE − y end abstract
.AL [t] [i] [s] t=1;i=.Li;s=0 y Start automatic list type t=[1,A,a,I,i]

1=arabic numbers; A=uppercase lette
a=lowercase letters; I=uppercase Rom
numerals; i=lowercase Roman nume
indentation i; separation s

.AS m [n] n=0 y begin abstract

.AU − y author’s name

.AV x − y signature and date line of verifier x

.B x − n embolden x; if no x, switch to boldfac

.BE − y end block text

.BI x y − n embolden x and underline y

.BL − y bullet list

modified 1 Jan 1997 SunOS 5.6 5-187

mm (5) Headers, Environments, and Macros

.BR x y − n embolden x and use Roman font for y

.BS − n start block text

.CN − y same as .DE (nroff)

.CS − y cover sheet

.CW − n same as .DS I (nroff)

.DE − y end display

.DF [p] [f] [rp] p=L;f=N y start floating display; position p=[L,C
L=left; I=indent; C=center; CB=cente
fill f=[N,Y]; right position rp (fill only

.DL [i] [s] − y start dash list

.DS [p] [f] [rp] p=L;f=N y begin static display
(see .DF for argument descriptions)

.EC x [n] n=1 y equation title; equation x; number n

.EF x − n even footer appears at the bottom of
even-numbered pages; x="l’c’r"
l=left; c=center; r=right

.EH x − n even header appears at the top of
even-numbered pages; x="l’c’r"
l=left; c=center; r=right

.EN − y end displayed equation produced by

.EQ − y break out equation produced by eqn

.EX x [n] n=1 y exhibit title; exhibit x
number n

.FD [f] [r] f=10;r=1 n set footnote style
format f=[0-11]; renumber r=[0,1]

.FE − y end footnote

.FG x [n] n=1 y figure title; figure x; number n

.FS − n start footnote

.H l [t] − y produce numbered heading
level l=[1-7]; title t

.HU t − y produce unnumbered heading; title t

.I x − n underline x

.IB x y − n underline x and embolden y

.IR x y − n underline x and use Roman font on y

.LE [s] s=0 y end list; separation s

.LI [m] [p] − y start new list item; mark m
prefix p (mark only)

.ML m [i] [s] s=0 y start marked list; mark m
indentation i; separation s=[0,1]

.MT x y memo title; title x

.ND x n no date in page footer; x is date on co

.NE − y end block text

.NS − y start block text

.OF x − n odd footer appears at the bottom of
odd-numbered pages; x="l’c’r"

5-188 SunOS 5.6 modified 1 Jan 1997

Headers, Environments, and Macros mm (5)

l=left; c=center; r=right
.OF x − n odd header appears at the top of

odd-numbered pages; x="l’c’r"
l=left; c=center; r=right

.OP − y skip to the top of an odd-number pag

.P [t] t=0 y,y begin paragraph; t=[0,1]
0=justified; 1=indented

.PF x − n page footer appears at the bottom of
every page; x="l’c’r"
l=left; c=center; r=right

.PH x − n page header appears at the top of
every page; x="l’c’r"
l=left; c=center; r=right

.R on n return to Roman font

.RB x y − n use Roman on x and embolden y

.RI x y − n use Roman on x and underline y

.RP x - y,y released paper format ?
x=no stops title on first

.RS 5n y,y right shift: start level of relative inden

.S m n − n set character point size & vertical spa
character point size m; vertical space

.SA x x=1 n justification; x=[0,1]

.SK x − y skip x pages

.SM − n smaller; decrease point size by 2

.SP [x] − y leave x blank lines

.TB x [n] n=1 y table title; table x; number n

.TC − y print table of contents (put at end of
input file)

.TE − y end of table processed by tbl

.TH − y end multi-page header of table

.TL − n title in boldface and two points large

.TM − n UC Berkeley thesis mode

.TP i y y i=p.i. Begin indented paragraph,
with the tag given on the next text lin
Set prevailing indent to i.

.TS x − y,y begin table; if x=H table has
multi-page header

x P 0 (view:<−y>Contents) link-dest
.TY − y display centered title CONTENTS
.VL i [m] [s] m=0;s=0 y start variable-item list; indentation i

mark-indentation m; separation s

REGISTERS Formatting distances can be controlled in −mm by means of built-in number registers.
For example, this sets the line length to 6.5 inches:

.nr LL 6.5i

modified 1 Jan 1997 SunOS 5.6 5-189

mm (5) Headers, Environments, and Macros

Here is a table of number registers and their default values:

Name Register Controls Takes Effect Default
Cl contents level table of contents 2
De display eject display 0
Df display floating display 5
Ds display spacing display 1v
Hb heading break heading 2
Hc heading centering heading 0
Hi heading indent heading 1
Hi heading spacing heading 1
Hu heading unnumbered heading 2
Li list indentation list 6 (nroff)

5 (troff)
Ls list spacing list 6
Pi paragraph indent paragraph 5
Pt paragraph type paragraph 1
Si static indent display 5 (nroff)

3 (troff)

When resetting these values, make sure to specify the appropriate units. Setting the line
length to 7, for example, will result in output with one character per line. Setting Pi to 0
suppresses paragraph indentation

Here is a list of string registers available in −mm; they may be used anywhere in the text:

Name String’s Function

\∗Q quote (" in nroff, ‘‘ in troff)
\∗U unquote (" in nroff, ’’ in troff)
\∗− dash (-- in nroff, — in troff)
\∗(MO month (month of the year)
\∗(DY day (current date)
\∗∗ automatically numbered footnote
\∗´ acute accent (before letter)
\∗` grave accent (before letter)
\∗ˆ circumflex (before letter)
\∗, cedilla (before letter)
\∗: umlaut (before letter)
\∗˜ tilde (before letter)

\(BU bullet item
\(DT date (month day, yr)
\(EM em dash
\(Lf LIST OF FIGURES title
\(Lt LIST OF TABLES title
\(Lx LIST OF EXHIBITS title
\(Le LIST OF EQUATIONS title
\(Rp REFERENCES title

5-190 SunOS 5.6 modified 1 Jan 1997

Headers, Environments, and Macros mm (5)

\(Tm trademark character (TM)

When using the extended accent mark definitions available with .AM, these strings
should come after, rather than before, the letter to be accented.

FILES /usr/share/lib/tmac/m
/usr/share/lib/tmac/mm.[nt]

nroff and troff definitions of mm.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWdoc

SEE ALSO col(1), eqn(1), nroff(1), refer(1), tbl(1), troff(1), attributes(5)

BUGS Floating keeps and regular keeps are diverted to the same space, so they cannot be mixed
together with predictable results.

modified 1 Jan 1997 SunOS 5.6 5-191

ms (5) Headers, Environments, and Macros

NAME ms − text formatting macros

SYNOPSIS nroff −ms [options] filename . . .

troff −ms [options] filename . . .

DESCRIPTION This package of nroff(1) and troff(1) macro definitions provides a formatting facility for
various styles of articles, theses, and books. When producing 2-column output on a ter-
minal or lineprinter, or when reverse line motions are needed, filter the output through
col(1). All external −ms macros are defined below.

Note: this −ms macro package is an extended version written at Berkeley and is a super-
set of the standard −ms macro packages as supplied by Bell Labs. Some of the Bell Labs
macros have been removed; for instance, it is assumed that the user has little interest in
producing headers stating that the memo was generated at Whippany Labs.

Many nroff and troff requests are unsafe in conjunction with this package. However, the
first four requests below may be used with impunity after initialization, and the last two
may be used even before initialization:

.bp begin new page

.br break output line

.sp n insert n spacing lines

.ce n center next n lines

.ls n line spacing: n=1 single, n=2 double space

.na no alignment of right margin

Font and point size changes with \f and \s are also allowed; for example, \fIword\fR
will italicize word . Output of the tbl(1), eqn(1) and refer(1) preprocessors for equations,
tables, and references is acceptable as input.

REQUESTS Macro Initial Break? Explanation
Name Value Reset?

.AB x − y begin abstract; if x=no do not label abstract

.AE − y end abstract

.AI − y author’s institution

.AM − n better accent mark definitions

.AU − y author’s name

.B x − n embolden x; if no x, switch to boldface

.B1 − y begin text to be enclosed in a box

.B2 − y end boxed text and print it

.BT date n bottom title, printed at foot of page

.BX x − n print word x in a box

.CM if t n cut mark between pages

.CT − y,y chapter title: page number moved to CF (TM only)

.DA x if n n force date x at bottom of page; today if no x

.DE − y end display (unfilled text) of any kind

.DS x y I y begin display with keep; x=I, L, C, B; y=indent

5-192 SunOS 5.6 modified 25 Feb 1992

Headers, Environments, and Macros ms (5)

.ID y 8n,.5i y indented display with no keep; y=indent

.LD − y left display with no keep

.CD − y centered display with no keep

.BD − y block display; center entire block

.EF x − n even page footer x (3 part as for .tl)

.EH x − n even page header x (3 part as for .tl)

.EN − y end displayed equation produced by eqn

.EQ x y − y break out equation; x=L,I,C; y=equation number

.FE − n end footnote to be placed at bottom of page

.FP − n numbered footnote paragraph; may be redefined

.FS x − n start footnote; x is optional footnote label

.HD undef n optional page header below header margin

.I x − n italicize x; if no x, switch to italics

.IP x y − y,y indented paragraph, with hanging tag x; y=indent

.IX x y − y index words x y and so on (up to 5 levels)

.KE − n end keep of any kind

.KF − n begin floating keep; text fills remainder of page

.KS − y begin keep; unit kept together on a single page

.LG − n larger; increase point size by 2

.LP − y,y left (block) paragraph.

.MC x − y,y multiple columns; x=column width

.ND x if t n no date in page footer; x is date on cover

.NH x y − y,y numbered header; x=level, x=0 resets, x=S sets
to y

.NL 10p n set point size back to normal

.OF x − n odd page footer x (3 part as for .tl)

.OH x − n odd page header x (3 part as for .tl)

.P1 if TM n print header on first page

.PP − y,y paragraph with first line indented

.PT - % - n page title, printed at head of page

.PX x − y print index (table of contents); x=no suppresses
title

.QP − y,y quote paragraph (indented and shorter)

.R on n return to Roman font

.RE 5n y,y retreat: end level of relative indentation

.RP x − n released paper format; x=no stops title on first
page

.RS 5n y,y right shift: start level of relative indentation

.SH − y,y section header, in boldface

.SM − n smaller; decrease point size by 2

.TA 8n,5n n set TAB characters to 8n 16n . . . (nroff)
5n 10n . . . (troff)

.TC x − y print table of contents at end; x=no suppresses
title

.TE − y end of table processed by tbl

modified 25 Feb 1992 SunOS 5.6 5-193

ms (5) Headers, Environments, and Macros

.TH − y end multi-page header of table

.TL − y title in boldface and two points larger

.TM off n UC Berkeley thesis mode

.TS x − y,y begin table; if x=H table has multi-page header

.UL x − n underline x, even in troff

.UX x − n UNIX; trademark message first time; x appended

.XA x y − y another index entry; x=page or no for none;
y=indent

.XE − y end index entry (or series of .IX entries)

.XP − y,y paragraph with first line indented, others
indented

.XS x y − y begin index entry; x=page or no for none; y=indent

.1C on y,y one column format, on a new page

.2C − y,y begin two column format

.] − − n beginning of refer reference

.[0 − n end of unclassifiable type of reference

.[N − n N= 1:journal-article, 2:book, 3:book-article,
4:report

REGISTERS Formatting distances can be controlled in −ms by means of built-in number registers. For
example, this sets the line length to 6.5 inches:

.nr LL 6.5i

Here is a table of number registers and their default values:

Name Register Controls Takes Effect Default

PS point size paragraph 10
VS vertical spacing paragraph 12
LL line length paragraph 6i
LT title length next page same as LL
FL footnote length next .FS 5.5i
PD paragraph distance paragraph 1v (if n), .3v (if t)
DD display distance displays 1v (if n), .5v (if t)
PI paragraph indent paragraph 5n
QI quote indent next .QP 5n
FI footnote indent next .FS 2n
PO page offset next page 0 (if n), ∼1i (if t)
HM header margin next page 1i
FM footer margin next page 1i
FF footnote format next .FS 0 (1, 2, 3 available)

When resetting these values, make sure to specify the appropriate units. Setting the line
length to 7, for example, will result in output with one character per line. Setting FF to 1
suppresses footnote superscripting; setting it to 2 also suppresses indentation of the first
line; and setting it to 3 produces an .IP-like footnote paragraph.

5-194 SunOS 5.6 modified 25 Feb 1992

Headers, Environments, and Macros ms (5)

Here is a list of string registers available in −ms; they may be used anywhere in the text:

Name String’s Function

\∗Q quote (" in nroff, ‘‘ in troff)
\∗U unquote (" in nroff, ’’ in troff)
\∗− dash (-- in nroff, — in troff)
\∗(MO month (month of the year)
\∗(DY day (current date)
\∗∗ automatically numbered footnote
\∗´ acute accent (before letter)
\∗` grave accent (before letter)
\∗ˆ circumflex (before letter)
\∗, cedilla (before letter)
\∗: umlaut (before letter)
\∗˜ tilde (before letter)

When using the extended accent mark definitions available with .AM, these strings
should come after, rather than before, the letter to be accented.

FILES /usr/share/lib/tmac/s
/usr/share/lib/tmac/ms.???

SEE ALSO col(1), eqn(1), nroff(1), refer(1), tbl(1), troff(1)

BUGS Floating keeps and regular keeps are diverted to the same space, so they cannot be mixed
together with predictable results.

modified 25 Feb 1992 SunOS 5.6 5-195

netdb (5) Headers, Environments, and Macros

NAME netdb − definitions for network database operations

SYNOPSIS #include <netdb.h>

DESCRIPTION The <netdb.h> header defines the type in_port_t and the type in_addr_t as described in
in(5).

The <netdb.h> header defines the hostent structure that includes the following members:

char ∗h_name Official name of the net.
char ∗∗h_aliases A pointer to an array of pointers to alternative host names,

terminated by a null pointer.
int h_addrtype Address type.
int h_length The length, in bytes, of the address.
char ∗∗h_addr_list A pointer to an array of pointers to network addresses (in

network byte order) for the host, terminated by a null pointer.

The <netdb.h> header defines the netent structure that includes the following members:

char ∗n_name Official, fully-qualified (including the domain) name of the host.
char ∗∗n_aliases A pointer to an array of pointers to alternative network names,

terminated by a null pointer.
int n_addrtype The address type of the network.
in_addr_t n_net The network number, in host byte order.

The <netdb.h> header defines the protoent structure that includes the following
members:

char ∗p_name Official name of the protocol.
char ∗∗p_aliases A pointer to an array of pointers to alternative protocol names,

terminated by a null pointer.
int p_proto The protocol number.

The <netdb.h> header defines the servent structure that includes the following members:

char ∗s_name Official name of the service.
char ∗∗s_aliases A pointer to an array of pointers to alternative service names,

terminated by a null pointer.
int s_port The port number at which the service resides, in network byte order.
char ∗s_proto The name of the protocol to use when contacting the service.

The <netdb.h> header defines the macro IPPORT_RESERVED with the value of the
highest reserved Internet port number.

The <netdb.h> header provides a declaration for h_errno:

extern int h_errno;

The <netdb.h> header defines the following macros for use as error values for gethost-
byaddr() and gethostbyname():

HOST_NOT_FOUND NO_DATA
NO_RECOVERY TRY_AGAIN

5-196 SunOS 5.6 modified 8 May 1997

Headers, Environments, and Macros netdb (5)

Inclusion of the <netdb.h> header may also make visible all symbols from in(5).

Default For applications that do not require standard-conforming behavior (those that use the
socket interfaces described in section 3N of the reference manual; see Intro(3) and stan-
dards(5)), the following are declared as functions, and may also be defined as macros:

int endhostent(void);
int endnetent(void);
int endprotoent(void);
int endservent(void);
struct hostent ∗gethostbyaddr(const void ∗addr, int len, int type);
struct hostent ∗gethostbyname(const char ∗name);
struct hostent ∗gethostent(void);
struct netent ∗getnetbyaddr(long net, int type);
struct netent ∗getnetbyname(const char ∗name);
struct netent ∗getnetent(void);
struct protoent ∗getprotobyname(const char ∗name);
struct protoent ∗getprotobynumber(int proto);
struct protoent ∗getprotoent(void);
struct servent ∗getservbyname(const char ∗name, const char ∗proto);
struct servent ∗getservbyport(int port, const char ∗proto);
struct servent ∗getservent(void);
int sethostent(int stayopen);
int setnetent(int stayopen);
int setprotoent(int stayopen);
int setservent(int stayopen);

Standard-conforming For applications that require standard-conforming behavior (those that use the socket
interfaces described in section 3XN of the reference manual; see Intro(3) and stan-
dards(5)), the following are declared as functions, and may also be defined as macros:

void endhostent(void);
void endnetent(void);
void endprotoent(void);
void endservent(void);
struct hostent ∗gethostbyaddr(const void ∗addr, size_t len, int type);
struct hostent ∗gethostbyname(const char ∗name);
struct hostent ∗gethostent(void);
struct netent ∗getnetbyaddr(in_addr_t net, int type);
struct netent ∗getnetbyname(const char ∗name);
struct netent ∗getnetent(void);
struct protoent ∗getprotobyname(const char ∗name);
struct protoent ∗getprotobynumber(int proto);
struct protoent ∗getprotoent(void);
struct servent ∗getservbyname(const char ∗name, const char ∗proto);
struct servent ∗getservbyport(int port, const char ∗proto);
struct servent ∗getservent(void);

modified 8 May 1997 SunOS 5.6 5-197

netdb (5) Headers, Environments, and Macros

void sethostent(int stayopen);
void setnetent(int stayopen);
void setprotoent(int stayopen);
void setservent(int stayopen);

SEE ALSO Intro(3), endhostent(3N), endhostent(3XN), endnetent(3N), endnetent(3XN),
endprotoent(3N), endprotoent(3XN), endservent(3N), endservent(3XN), in(5), stan-
dards(5)

5-198 SunOS 5.6 modified 8 May 1997

Headers, Environments, and Macros nfssec (5)

NAME nfssec − overview of NFS security modes

DESCRIPTION The mount_nfs(1M) and share_nfs(1M) commands each provide a way to specify the
security mode to be used on an NFS file system through the sec=mode option. mode can be
either sys, dh, krb4, or none. These security modes may also be added to the automount
maps. Note that mount_nfs(1M) and automount(1M) do not support sec=none at this
time.

The sec=mode option on the share_nfs(1M) command line establishes the security mode
of NFS servers. If the NFS connection uses the NFS Version 3 protocol, the NFS clients must
query the server for the appropriate mode to use. If the NFS connection uses the NFS Ver-
sion 2 protocol, then the NFS client will use the default security mode, which is currently
sys. NFS clients may force the use of a specific security mode by specifying the sec=mode
option on the command line. However, if the file system on the server is not shared with
that security mode, the client may be denied access.

If the NFS client wants to authenticate the NFS server using a particular (stronger) security
mode, the client will want to specify the security mode to be used, even if the connection
uses the NFS Version 3 protocol. This guarantees that an attacker masquerading as the
server does not compromise the client.

The NFS security modes are described as follows:

sys Use AUTH_SYS authentication. The user’s UNIX user-id and group-ids are
passed in the clear on the network, unauthenticated by the NFS server. This is the
simplest security method and requires no additional administration. It is the
default used by Solaris NFS Version 2 clients and Solaris NFS servers.

dh Use a Diffie-Hellman public key system (AUTH_DES, which is referred to as
AUTH_DH in the forthcoming Internet RFC).

krb4 Use the Kerberos Version 4 authentication system (AUTH_KERB, which is
referred to as AUTH_KERB4 in a forthcoming Internet RFC).

none Use null authentication (AUTH_NONE). NFS clients using AUTH_NONE have no
identity and are mapped to the anonymous user nobody by NFS servers. A client
using a security mode other than the one with which a Solaris NFS server shares
the file system will have its security mode mapped to AUTH_NONE. In this case,
if the file system is shared with sec=none, users from the client will be mapped to
the anonymous user. The NFS security mode none is supported by
share_nfs(1M), but not by mount_nfs(1M) or automount(1M).

FILES /etc/nfssec.conf NFS security service configuration file.

modified 10 Mar 1997 SunOS 5.6 5-199

nfssec (5) Headers, Environments, and Macros

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO automount(1M), mount_nfs(1M), share_nfs(1M), rpc_clnt_auth(3N), secure_rpc(3N),
attributes(5)

NOTES /etc/nfssec.conf lists the NFS security services. Do not edit this file. It is not intended to
be user-configurable.

5-200 SunOS 5.6 modified 10 Mar 1997

Headers, Environments, and Macros nl_types (5)

NAME nl_types − native language data types

SYNOPSIS #include <nl_types.h>

DESCRIPTION This header contains the following definitions:

nl_catd Used by the message catalog functions catopen, catgets and catclose to
identify a catalogue.

nl_item Used by nl_langinfo to identify items of langinfo data. Values for
objects of type nl_item are defined in <langinfo.h>.

NL_SETD Used by gencat when no $set directive is specified in a message text
source file. This constant can be used in subsequent calls to catgets as
the value of the set identifier parameter.

NL_MGSMAX Maximum number of messages per set.

NL_SETMAX Maximum number of sets per catalogue.

NL_TEXTMAX Maximum size of a message.

SEE ALSO gencat(1), catgets(3C), catopen(3C), nl_langinfo(3C), langinfo(5)

modified 3 Jul 1990 SunOS 5.6 5-201

pam_dial_auth (5) Headers, Environments, and Macros

NAME pam_dial_auth − authentication management PAM module for dialups

SYNOPSIS /usr/lib/security/pam_dial_auth.so.1

DESCRIPTION The dialup PAM module, /usr/lib/security/pam_dial_auth.so.1, authenticates a user
according to the /etc/dialups and /etc/d_passwd files. Only pam_sm_authenticate() is
implemented within this module. pam_sm_setcred() is a null function.
/usr/lib/security/pam_dial_auth.so.1 is designed to be stacked immediately below the
/usr/lib/security/pam_unix.so.1 module for the login service.

pam_sm_authenticate() performs authentication only if both the /etc/dialups and
/etc/d_passwd files exist. The user’s terminal line is checked against entries in the
/etc/dialups file. If there is a match, the user’s shell is compared against entries in the
/etc/d_passwd file. If there is a matching entry, the user is prompted for a password
which is validated against the entry in the /etc/d_passwd file. If the passwords match, the
user is authenticated. The following option may be passed in to this service module:

debug syslog(3) debugging information at LOG_DEBUG level.

ATTRIBUTES See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level MT-Safe with exceptions

SEE ALSO pam(3), pam_authenticate(3), d_passwd(4), dialups(4), libpam(4), pam.conf(4), attri-
butes(5)

NOTES The interfaces in libpam() are MT-Safe only if each thread within the multi-threaded
application uses its own PAM handle.

5-202 SunOS 5.6 modified 28 Oct 1996

Headers, Environments, and Macros pam_rhosts_auth (5)

NAME pam_rhosts_auth − authentication management PAM module using ruserok()

SYNOPSIS /usr/lib/security/pam_rhosts_auth.so.1

DESCRIPTION The rhosts PAM module, /usr/lib/security/pam_rhosts_auth.so.1, authenticates a user via
the rlogin authentication protocol. Only pam_sm_authenticate() is implemented within
this module. pam_sm_authenticate() uses the ruserok(3) library function to authenticate
the rlogin or rsh user. pam_sm_setcred() is a null function.

/usr/lib/security/pam_rhosts_auth.so.1 is designed to be stacked on top of the
/usr/lib/security/pam_unix.so.1 module for both the rlogin and rsh services. This
module is normally configured as sufficient so that subsequent authentication is per-
formed only on failure of pam_sm_authenticate(). The following option may be passed
in to this service module:

debug syslog(3) debugging information at LOG_DEBUG level.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE
MT Level MT-Safe with exceptions

SEE ALSO pam(3), pam_authenticate(3), ruserok(3N), syslog(3), libpam(4), pam.conf(4), attri-
butes(5)

NOTES The interfaces in libpam() are MT-Safe only if each thread within the multi-threaded
application uses its own PAM handle.

modified 28 Oct 1996 SunOS 5.6 5-203

pam_sample (5) Headers, Environments, and Macros

NAME pam_sample − a sample PAM module

SYNOPSIS /usr/lib/security/pam_sample.so.1

DESCRIPTION The SAMPLE service module for PAM is divided into four components: authentication,
account management, password management, and session management. The sample
module is a shared object that is dynamically loaded to provide the necessary functional-
ity.

SAMPLE
Authentication

Component

The SAMPLE authentication module, typically /usr/lib/security/pam_sample.so.1, pro-
vides functions to test the PAM framework functionality using the
pam_sm_authenticate(3) call. The SAMPLE module implementation of the
pam_sm_authenticate(3) function compares the user entered password with the pass-
word set in the pam.conf(4) file, or the string "test" if a default test password has not been
set. The following options may be passed in to the SAMPLE Authentication module:

debug Syslog debugging information at the LOG_DEBUG level.

passwd=newone Sets the password to be "newone."

first_pass_good The first password is always good when used with the use_first_pass
or try_first_pass option.

first_pass_bad The first password is always bad when used with the use_first_pass
or try_first_pass option.

always_fail Always returns PAM_AUTH_ERR.

always_succeed Always returns PAM_SUCCESS.

always_ignore Always returns PAM_IGNORE.

use_first_pass Use the user’s initial password (entered when the user is authenti-
cated to the first authentication module in the stack) to authenticate
with the SAMPLE module. If the passwords do not match, or if this is
the first authentication module in the stack, quit and do not prompt
the user for a password. It is recommended that this option only be
used if the SAMPLE authentication module is designated as optional in
the pam.conf configuration file.

try_first_pass Use the user’s initial password (entered when the user is authenti-
cated to the first authentication module in the stack) to authenticate
with the SAMPLE module. If the passwords do not match, or if this is
the first authentication module in the stack, prompt the user for a
password.

The SAMPLE module pam_sm_setcred(3) function always returns PAM_SUCCESS.

SAMPLE Account
Management

Component

The SAMPLE Account Management Component, typically pam_sample.so.1, imple-
ments a simple access control scheme that limits machine access to a list of authorized
users. The list of authorized users is supplied as option arguments to the entry for the
SAMPLE account management PAM module in the pam.conf file. Note that the module

5-204 SunOS 5.6 modified 28 Oct 1996

Headers, Environments, and Macros pam_sample (5)

always permits access to the root super user.

The option field syntax to limit access is shown below:

allow= name[,name]

allow= name [allow=name]

The example pam.conf show below permits only larry to login directly. rlogin is
allowed only for don and larry. Once a user is logged in, the user can use su if the user
are sam or eric.

login account require pam_sample.so.1 allow=larry
dtlogin account require pam_sample.so.1 allow=larry
rlogin account require pam_sample.so.1 allow=don allow=larry
su account require pam_sample.so.1 allow=sam,eric

The debug and nowarn options are also supported.

SAMPLE Password
Management

Component

The SAMPLE Password Management Component function (pam_sm_chauthtok(3)),
always returns PAM_SUCCESS.

SAMPLE Session
Management

Component

The SAMPLE Session Management Component functions (pam_sm_open_session(3),
pam_sm_close_session(3)) always return PAM_SUCCESS.

ATTRIBUTES See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level MT-Safe with exceptions

SEE ALSO pam(3), pam_sm_authenticate(3), pam_sm_chauthtok(3), pam_sm_close_session(3),
pam_sm_open_session(3), pam_sm_setcred(3), libpam(4), pam.conf(4), attributes(5)

NOTES The interfaces in libpam() are MT-Safe only if each thread within the multi-threaded
application uses its own PAM handle.

modified 28 Oct 1996 SunOS 5.6 5-205

pam_unix (5) Headers, Environments, and Macros

NAME pam_unix − authentication, account, session, and password management PAM modules
for UNIX

SYNOPSIS /usr/lib/security/pam_unix.so.1

DESCRIPTION The UNIX service module for PAM, /usr/lib/security/pam_unix.so.1, provides func-
tionality for all four PAM modules: authentication, account management, session
management and password management. The pam_unix.so.1 module is a shared object
that can be dynamically loaded to provide the necessary functionality upon demand. Its
path is specified in the PAM configuration file.

Unix
Authentication

Module

The UNIX authentication component provides functions to verify the identity of a user,
(pam_sm_authenticate()) and to set user specific credentials (pam_sm_setcred()).
pam_sm_authenticate() compares the user entered password with the password from
the UNIX password database. If the passwords match, the user is authenticated. If the
user also has secure RPC credentials and the secure RPC password is the same as the
UNIX password, then the secure RPC credentials are also obtained.

The following options may be passed to the UNIX service module:

debug syslog(3) debugging information at LOG_DEBUG level.

nowarn Turn off warning messages.

use_first_pass It compares the password in the password database with the user’s ini-
tial password (entered when the user authenticated to the first authenti-
cation module in the stack). If the passwords do not match, or if no
password has been entered, it quits and does not prompt the user for a
password. This option should only be used if the authentication service
is designated as optional in the pam.conf configuration file.

try_first_pass It compares the password in the password database with the user’s ini-
tial password (entered when the user authenticated to the first authenti-
cation module in the stack). If the passwords do not match, or if no
password has been entered, prompt the user for a password.

When prompting for the current password, the UNIX authentication module will use the
prompt, "password:" unless one of the following scenarios occur:

1. The option try_first_pass is specified and the password entered for the first
module in the stack fails for the UNIX module.

2. The option try_first_pass is not specified, and the earlier authentication
modules listed in the pam.conf file have prompted the user for the pass-
word.

In these two cases, the UNIX authentication module will use the prompt "SYSTEM pass-
word:".

The pam_sm_setcred() function sets user specific credentials. If the user had secure RPC
credentials, but the secure RPC password was not the same as the UNIX password, then a
warning message is printed. If the user wants to get secure RPC credentials, then

5-206 SunOS 5.6 modified 28 Oct 1996

Headers, Environments, and Macros pam_unix (5)

keylogin(1) needs to be run.

Unix Account
Management

Module

The UNIX account management component provides a function to perform account
management, pam_sm_acct_mgmt(). The function retrieves the user’s password entry
from the UNIX password database and verifies that the user’s account and password
have not expired. The following options may be passed in to the UNIX service module:

debug syslog(3) debugging information at LOG_DEBUG level.

nowarn Turn off warning messages.

Unix Session
Management

Module

The UNIX session management component provides functions to initiate
pam_sm_open_session() and terminate pam_sm_close_session() UNIX sessions. For
UNIX, pam_open_session updates the /var/adm/lastlog file. The account management
module reads this file to determine the previous time the user logged in. The following
options may be passed in to the UNIX service module:

debug syslog(3) debugging information at LOG_DEBUG level.

nowarn Turn off warning messages.

pam_close_session is a null function.

Unix Password
Management

Module

The UNIX password management component provides a function to change passwords
pam_sm_chauthtok() in the UNIX password database. This module must be required in
pam.conf. It cannot be optional or sufficient. The following options may be passed in to
the UNIX service module:

debug syslog(3) Debugging information at LOG_DEBUG level.

nowarn Turn off warning messages.

use_first_pass It compares the password in the password database with the user’s old
password (entered to the first password module in the stack). If the
passwords do not match, or if no password has been entered, it quits
and does not prompt the user for the old password. It also attempts to
use the new password (entered to the first password module in the
stack) as the new password for this module. If the new password fails,
it quits and does not prompt the user for a new password.

try_first_pass It compares the password in the password database with the user’s old
password (entered to the first password module in the stack). If the
passwords do not match, or if no password has been entered, it prompts
the user for the old password. It also attempts to use the new password
(entered to the first password module in the stack) as the new password
for this module. If the new password fails, it prompts the user for a new
password.

If the user’s password has expired, the UNIX account module saves this information in
the authentication handle using pam_set_data(), with a unique name,
SUNW_UNIX_AUTHOK_DATA. The UNIX password module retrieves this information
from the authentication handle using pam_get_data() to determine whether or not to
force the user to update the user’s password.

modified 28 Oct 1996 SunOS 5.6 5-207

pam_unix (5) Headers, Environments, and Macros

ATTRIBUTES See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level MT-Safe with exceptions

SEE ALSO keylogin(1), pam(3), pam_authenticate(3), pam_setcred(3), syslog(3), libpam(4),
pam.conf(4), attributes(5)

NOTES The interfaces in libpam() are MT-Safe only if each thread within the multi-threaded
application uses its own PAM handle.

5-208 SunOS 5.6 modified 28 Oct 1996

Headers, Environments, and Macros prof (5)

NAME prof − profile within a function

SYNOPSIS #define MARK
#include <prof.h>

void MARK(name);

DESCRIPTION MARK introduces a mark called name that is treated the same as a function entry point.
Execution of the mark adds to a counter for that mark, and program-counter time spent
is accounted to the immediately preceding mark or to the function if there are no preced-
ing marks within the active function.

name may be any combination of letters, numbers, or underscores. Each name in a single
compilation must be unique, but may be the same as any ordinary program symbol.

For marks to be effective, the symbol MARK must be defined before the header prof.h is
included, either by a preprocessor directive as in the synopsis, or by a command line
argument:

cc −p −DMARK work.c

If MARK is not defined, the MARK(name) statements may be left in the source files con-
taining them and are ignored. prof −g must be used to get information on all labels.

EXAMPLE In this example, marks can be used to determine how much time is spent in each loop.
Unless this example is compiled with MARK defined on the command line, the marks
are ignored.

#include <prof.h>
work()
{

int i, j;
. . .
MARK(loop1);
for (i = 0; i < 2000; i++) {

. . .
}
MARK(loop2);
for (j = 0; j < 2000; j++) {

. . .
}

}

SEE ALSO profil(2), monitor(3C)

modified 3 Jul 1990 SunOS 5.6 5-209

regex (5) Headers, Environments, and Macros

NAME regex − internationalized basic and extended regular expression matching

DESCRIPTION Regular Expressions (REs) provide a mechanism to select specific strings from a set of
character strings. The Internationalized Regular Expressions described below differ from
the Simple Regular Expressions described on the regexp(5) manual page in the following
ways:

· both Basic and Extended Regular Expressions are supported

· the Internationalization features—character class, equivalence class, and
multi-character collation—are supported.

The Basic Regular Expression (BRE) notation and construction rules described in the
BASIC REGULAR EXPRESSIONS section apply to most utilities supporting regular
expressions. Some utilities, instead, support the Extended Regular Expressions (ERE)
described in the EXTENDED REGULAR EXPRESSIONS section; any exceptions for
both cases are noted in the descriptions of the specific utilities using regular expressions.
Both BREs and EREs are supported by the Regular Expression Matching interfaces
regcomp(3C) and regexec(3C).

BASIC REGULAR
EXPRESSIONS
BREs Matching a
Single Character

A BRE ordinary character, a special character preceded by a backslash, or a period
matches a single character. A bracket expression matches a single character or a single
collating element. See RE Bracket Expression, below.

BRE Ordinary
Characters

An ordinary character is a BRE that matches itself: any character in the supported charac-
ter set, except for the BRE special characters listed in BRE Special Characters, below.

The interpretation of an ordinary character preceded by a backslash (\) is undefined,
except for:

1. the characters), (, {, and }

2. the digits 1 to 9 inclusive (see BREs Matching Multiple Characters, below)

3. a character inside a bracket expression.

BRE Special
Characters

A BRE special character has special properties in certain contexts. Outside those contexts,
or when preceded by a backslash, such a character will be a BRE that matches the special
character itself. The BRE special characters and the contexts in which they have their spe-
cial meaning are:

. [\ The combination of period, left-bracket and backslash is special except when
used in a bracket expression (see RE Bracket Expression, below). An expression
containing a [that is not preceded by a backslash and is not part of a bracket
expression produces undefined results.

5-210 SunOS 5.6 modified 2 Jun 1997

Headers, Environments, and Macros regex (5)

∗ The asterisk is special except when used:

· in a bracket expression

· as the first character of an entire BRE (after an initial ˆ, if any)

· as the first character of a subexpression (after an initial ˆ, if any); see BREs
Matching Multiple Characters, below.

ˆ The circumflex is special when used:

· as an anchor (see BRE Expression Anchoring, below).

· as the first character of a bracket expression (see RE Bracket Expression,
below).

$ The dollar sign is special when used as an anchor.

Periods in BREs A period (.), when used outside a bracket expression, is a BRE that matches any character
in the supported character set except NUL.

RE Bracket
Expression

A bracket expression (an expression enclosed in square brackets, []) is an RE that matches
a single collating element contained in the non-empty set of collating elements
represented by the bracket expression.

The following rules and definitions apply to bracket expressions:

1. A bracket expression is either a matching list expression or a non-matching list
expression. It consists of one or more expressions: collating elements, collating
symbols, equivalence classes, character classes, or range expressions (see rule 7
below). Portable applications must not use range expressions, even though all
implementations support them. The right-bracket (]) loses its special meaning
and represents itself in a bracket expression if it occurs first in the list (after an ini-
tial circumflex (ˆ), if any). Otherwise, it terminates the bracket expression, unless
it appears in a collating symbol (such as [.].]) or is the ending right-bracket for a
collating symbol, equivalence class, or character class. The special characters:

. ∗ [\

(period, asterisk, left-bracket and backslash, respectively) lose their special mean-
ing within a bracket expression.

The character sequences:

[. [= [:

(left-bracket followed by a period, equals-sign, or colon) are special inside a
bracket expression and are used to delimit collating symbols, equivalence class
expressions, and character class expressions. These symbols must be followed by
a valid expression and the matching terminating sequence .], =] or :], as described
in the following items.

2. A matching list expression specifies a list that matches any one of the expressions
represented in the list. The first character in the list must not be the circumflex.
For example, [abc] is an RE that matches any of the characters a, b or c.

modified 2 Jun 1997 SunOS 5.6 5-211

regex (5) Headers, Environments, and Macros

3. A non-matching list expression begins with a circumflex (ˆ), and specifies a list that
matches any character or collating element except for the expressions represented
in the list after the leading circumflex. For example, [ˆabc] is an RE that matches
any character or collating element except the characters a, b or c. The circumflex
will have this special meaning only when it occurs first in the list, immediately
following the left-bracket.

4. A collating symbol is a collating element enclosed within bracket-period ([. .]) del-
imiters. Multi-character collating elements must be represented as collating sym-
bols when it is necessary to distinguish them from a list of the individual charac-
ters that make up the multi-character collating element. For example, if the string
ch is a collating element in the current collation sequence with the associated col-
lating symbol <ch>, the expression [[.ch.]] will be treated as an RE matching the
character sequence ch, while [ch] will be treated as an RE matching c or h. Col-
lating symbols will be recognized only inside bracket expressions. This implies
that the RE [[.ch.]]∗c matches the first to fifth character in the string chchch. If the
string is not a collating element in the current collating sequence definition, or if
the collating element has no characters associated with it, the symbol will be
treated as an invalid expression.

5. An equivalence class expression represents the set of collating elements belonging to
an equivalence class. Only primary equivalence classes will be recognised. The
class is expressed by enclosing any one of the collating elements in the
equivalence class within bracket-equal ([= =]) delimiters. For example, if a, à and
â belong to the same equivalence class, then [[=a=]b], [[=à=]b] and [[=â=]b] will
each be equivalent to [aàâb]. If the collating element does not belong to an
equivalence class, the equivalence class expression will be treated as a collating
symbol .

6. A character class expression represents the set of characters belonging to a character
class, as defined in the LC_CTYPE category in the current locale. All character
classes specified in the current locale will be recognized. A character class
expression is expressed as a character class name enclosed within bracket-colon
([: :]) delimiters.

The following character class expressions are supported in all locales:
[:alnum:] [:cntrl:] [:lower:] [:space:]
[:alpha:] [:digit:] [:print:] [:upper:]
[:blank:] [:graph:] [:punct:] [:xdigit:]

In addition, character class expressions of the form:

[:name:]

are recognized in those locales where the name keyword has been given a char-
class definition in the LC_CTYPE category.

7. A range expression represents the set of collating elements that fall between two
elements in the current collation sequence, inclusively. It is expressed as the
starting point and the ending point separated by a hyphen (−).

5-212 SunOS 5.6 modified 2 Jun 1997

Headers, Environments, and Macros regex (5)

Range expressions must not be used in portable applications because their
behavior is dependent on the collating sequence. Ranges will be treated accord-
ing to the current collating sequence, and include such characters that fall within
the range based on that collating sequence, regardless of character values. This,
however, means that the interpretation will differ depending on collating
sequence. If, for instance, one collating sequence defines a" as a variant of a, while
another defines it as a letter following z, then the expression [a"−z] is valid in the
first language and invalid in the second.

In the following, all examples assume the collation sequence specified for the
POSIX locale, unless another collation sequence is specifically defined.

The starting range point and the ending range point must be a collating element
or collating symbol. An equivalence class expression used as a starting or ending
point of a range expression produces unspecified results. An equivalence class
can be used portably within a bracket expression, but only outside the range. For
example, the unspecified expression [[=e=]−f] should be given as [[=e=]e−f]. The
ending range point must collate equal to or higher than the starting range point;
otherwise, the expression will be treated as invalid. The order used is the order
in which the collating elements are specified in the current collation definition.
One-to-many mappings (see locale(5)) will not be performed. For example,
assuming that the character eszet (β) is placed in the collation sequence after r
and s, but before t, and that it maps to the sequence ss for collation purposes,
then the expression [r−s] matches only r and s, but the expression [s−t] matches s,
β or t.

The interpretation of range expressions where the ending range point is also the
starting range point of a subsequent range expression (for instance [a−m−o]) is
undefined.

The hyphen character will be treated as itself if it occurs first (after an initial ˆ, if
any) or last in the list, or as an ending range point in a range expression. As
examples, the expressions [−ac] and [ac−] are equivalent and match any of the
characters a, c, or −; [ˆ−ac] and [ˆac−] are equivalent and match any characters
except a, c, or −; the expression [%− −] matches any of the characters between %
and − inclusive; the expression [− −@] matches any of the characters between −
and @ inclusive; and the expression [a− −@] is invalid, because the letter a follows
the symbol − in the POSIX locale. To use a hyphen as the starting range point, it
must either come first in the bracket expression or be specified as a collating sym-
bol, for example: [][.−.]−0], which matches either a right bracket or any character
or collating element that collates between hyphen and 0, inclusive.

If a bracket expression must specify both − and], the] must be placed first (after
the ˆ, if any) and the − last within the bracket expression.

Note: Latin-1 characters such as à or â are not printable in some locales, for example, the
ja locale.

modified 2 Jun 1997 SunOS 5.6 5-213

regex (5) Headers, Environments, and Macros

BREs Matching
Multiple Characters

The following rules can be used to construct BREs matching multiple characters from
BREs matching a single character:

1. The concatenation of BREs matches the concatenation of the strings matched by
each component of the BRE.

2. A subexpression can be defined within a BRE by enclosing it between the character
pairs \(and \) . Such a subexpression matches whatever it would have matched
without the \(and \), except that anchoring within subexpressions is optional
behavior; see BRE Expression Anchoring, below. Subexpressions can be arbi-
trarily nested.

3. The back-reference expression \n matches the same (possibly empty) string of
characters as was matched by a subexpression enclosed between \(and \)
preceding the \n. The character n must be a digit from 1 to 9 inclusive, nth
subexpression (the one that begins with the nth \(and ends with the correspond-
ing paired \)). The expression is invalid if less than n subexpressions precede the
\n. For example, the expression ˆ\(.∗\)\1$ matches a line consisting of two adja-
cent appearances of the same string, and the expression \(a\)∗\1 fails to match a.
The limit of nine back-references to subexpressions in the RE is based on the use
of a single digit identifier. This does not imply that only nine subexpressions are
allowed in REs. The following is a valid BRE with ten subexpressions:

\(\(\(ab\)∗c\)∗d\)\(ef\)∗\(gh\)\{2\}\(ij\)∗\(kl\)∗\(mn\)∗\(op\)∗\(qr\)∗
4. When a BRE matching a single character, a subexpression or a back-reference is

followed by the special character asterisk (∗), together with that asterisk it
matches what zero or more consecutive occurrences of the BRE would match.
For example, [ab]∗ and [ab][ab] are equivalent when matching the string ab.

5. When a BRE matching a single character, a subexpression, or a back-reference is
followed by an interval expression of the format \{m\}, \{m,\} or \{m,n\}, together
with that interval expression it matches what repeated consecutive occurrences of
the BRE would match. The values of m and n will be decimal integers in the
range 0 ≤ m ≤ n ≤ {RE_DUP_MAX}, where m specifies the exact or minimum
number of occurrences and n specifies the maximum number of occurrences. The
expression \{m\} matches exactly m occurrences of the preceding BRE, \{m,\}
matches at least m occurrences and \{m,n\} matches any number of occurrences
between m and n, inclusive.

For example, in the string abababccccccd, the BRE c\{3\} is matched by charac-
ters seven to nine, the BRE \(ab\)\{4,\} is not matched at all and the BRE
c\{1,3\}d is matched by characters ten to thirteen.

The behavior of multiple adjacent duplication symbols (∗ and intervals) produces
undefined results.

5-214 SunOS 5.6 modified 2 Jun 1997

Headers, Environments, and Macros regex (5)

BRE Precedence The order of precedence is as shown in the following table:

BRE Precedence (from high to low)

collation-related bracket symbols [= =] [: :] [. .]
escaped characters \<special character>
bracket expression []
subexpressions/back-references \(\) \n
single-character-BRE duplication ∗ \{m,n\}
concatenation
anchoring ˆ $

BRE Expression
Anchoring

A BRE can be limited to matching strings that begin or end a line; this is called anchoring.
The circumflex and dollar sign special characters will be considered BRE anchors in the
following contexts:

1. A circumflex (ˆ) is an anchor when used as the first character of an entire BRE.
The implementation may treat circumflex as an anchor when used as the first
character of a subexpression. The circumflex will anchor the expression to the
beginning of a string; only sequences starting at the first character of a string will
be matched by the BRE. For example, the BRE ˆab matches ab in the string
abcdef, but fails to match in the string cdefab. A portable BRE must escape a
leading circumflex in a subexpression to match a literal circumflex.

2. A dollar sign ($) is an anchor when used as the last character of an entire BRE.
The implementation may treat a dollar sign as an anchor when used as the last
character of a subexpression. The dollar sign will anchor the expression to the
end of the string being matched; the dollar sign can be said to match the end-of-
string following the last character.

3. A BRE anchored by both ˆ and $ matches only an entire string. For example, the
BRE ˆabcdef$ matches strings consisting only of abcdef.

4. ˆ and $ are not special in subexpressions.

Note: The Solaris implementation does not support anchoring in BRE subexpressions.

EXTENDED
REGULAR

EXPRESSIONS

The rules specififed for BREs apply to Extended Regular Expressions (EREs) with the fol-
lowing exceptions:

· The characters |, +, and ? have special meaning, as defined below.

· The { and } characters, when used as the duplication operator, are not pre-
ceded by backslashes. The constructs \{ and \} simply match the characters {
and }, respectively.

· The back reference operator is not supported.

· Anchoring (ˆ$) is supported in subexpressions.

modified 2 Jun 1997 SunOS 5.6 5-215

regex (5) Headers, Environments, and Macros

EREs Matching a
Single Character

An ERE ordinary character, a special character preceded by a backslash, or a period
matches a single character. A bracket expression matches a single character or a single
collating element. An ERE matching a single character enclosed in parentheses matches the
same as the ERE without parentheses would have matched.

ERE Ordinary
Characters

An ordinary character is an ERE that matches itself. An ordinary character is any character
in the supported character set, except for the ERE special characters listed in ERE Special
Characters below. The interpretation of an ordinary character preceded by a backslash
(\) is undefined.

ERE Special
Characters

An ERE special character has special properties in certain contexts. Outside those contexts,
or when preceded by a backslash, such a character is an ERE that matches the special
character itself. The extended regular expression special characters and the contexts in
which they have their special meaning are:

. [\ (The period, left-bracket, backslash and left-parenthesis are special except
when used in a bracket expression (see RE Bracket Expression, above). Out-
side a bracket expression, a left-parenthesis immediately followed by a
right-parenthesis produces undefined results.

) The right-parenthesis is special when matched with a preceding left-
parenthesis, both outside a bracket expression.

∗ + ? { The asterisk, plus-sign, question-mark and left-brace are special except when
used in a bracket expression (see RE Bracket Expression, above). Any of the
following uses produce undefined results:

· if these characters appear first in an ERE, or immediately following a
vertical-line, circumflex or left-parenthesis

· if a left-brace is not part of a valid interval expression.

| The vertical-line is special except when used in a bracket expression (see RE
Bracket Expression, above). A vertical-line appearing first or last in an ERE,
or immediately following a vertical-line or a left-parenthesis, or immediately
preceding a right-parenthesis, produces undefined results.

ˆ The circumflex is special when used:

· as an anchor (see ERE Expression Anchoring, below).

· as the first character of a bracket expression (see RE Bracket Expression,
above).

$ The dollar sign is special when used as an anchor.

Periods in EREs A period (.), when used outside a bracket expression, is an ERE that matches any charac-
ter in the supported character set except NUL.

ERE Bracket
Expression

The rules for ERE Bracket Expressions are the same as for Basic Regular Expressions; see
RE Bracket Expression, above).

5-216 SunOS 5.6 modified 2 Jun 1997

Headers, Environments, and Macros regex (5)

EREs Matching
Multiple Characters

The following rules will be used to construct EREs matching multiple characters from
EREs matching a single character:

1. A concatenation of EREs matches the concatenation of the character sequences
matched by each component of the ERE. A concatenation of EREs enclosed in
parentheses matches whatever the concatenation without the parentheses matches.
For example, both the ERE cd and the ERE (cd) are matched by the third and
fourth character of the string abcdefabcdef.

2. When an ERE matching a single character or an ERE enclosed in parentheses is fol-
lowed by the special character plus-sign (+), together with that plus-sign it
matches what one or more consecutive occurrences of the ERE would match. For
example, the ERE b+(bc) matches the fourth to seventh characters in the string
acabbbcde; [ab] + and [ab][ab]∗ are equivalent.

3. When an ERE matching a single character or an ERE enclosed in parentheses is fol-
lowed by the special character asterisk (∗), together with that asterisk it matches
what zero or more consecutive occurrences of the ERE would match. For exam-
ple, the ERE b∗c matches the first character in the string cabbbcde, and the ERE
b∗cd matches the third to seventh characters in the string cabbbcdebbbbbbcdbc.
And, [ab]∗ and [ab][ab] are equivalent when matching the string ab.

4. When an ERE matching a single character or an ERE enclosed in parentheses is fol-
lowed by the special character question-mark (?), together with that question-mark
it matches what zero or one consecutive occurrences of the ERE would match. For
example, the ERE b?c matches the second character in the string acabbbcde.

5. When an ERE matching a single character or an ERE enclosed in parentheses is fol-
lowed by an interval expression of the format {m}, {m,} or {m,n}, together with that
interval expression it matches what repeated consecutive occurrences of the ERE
would match. The values of m and n will be decimal integers in the range 0 ≤ m ≤
n ≤ {RE_DUP_MAX}, where m specifies the exact or minimum number of
occurrences and n specifies the maximum number of occurrences. The expression
{m} matches exactly m occurrences of the preceding ERE, {m,} matches at least m
occurrences and {m,n} matches any number of occurrences between m and n,
inclusive.

For example, in the string abababccccccd the ERE c{3} is matched by characters seven
to nine and the ERE (ab){2,} is matched by characters one to six.

The behavior of multiple adjacent duplication symbols (+, ∗, ? and intervals) produces
undefined results.

ERE Alternation Two EREs separated by the special character vertical-line (|) match a string that is
matched by either. For example, the ERE a((bc)|d) matches the string abc and the string
ad. Single characters, or expressions matching single characters, separated by the vertical
bar and enclosed in parentheses, will be treated as an ERE matching a single character.

modified 2 Jun 1997 SunOS 5.6 5-217

regex (5) Headers, Environments, and Macros

ERE Precedence The order of precedence will be as shown in the following table:

ERE Precedence (from high to low)

collation-related bracket symbols [= =] [: :] [. .]
escaped characters \<special character>
bracket expression []
grouping ()
single-character-ERE duplication ∗ + ? {m,n}
concatenation
anchoring ˆ $
alternation |

For example, the ERE abba | cde matches either the string abba or the string cde (rather
than the string abbade or abbcde, because concatenation has a higher order of pre-
cedence than alternation).

ERE Expression
Anchoring

An ERE can be limited to matching strings that begin or end a line; this is called anchor-
ing. The circumflex and dollar sign special characters are considered ERE anchors when
used anywhere outside a bracket expression. This has the following effects:

1. A circumflex (ˆ) outside a bracket expression anchors the expression or subexpres-
sion it begins to the beginning of a string; such an expression or subexpression can
match only a sequence starting at the first character of a string. For example, the
EREs ˆab and (ˆab) match ab in the string abcdef, but fail to match in the string
cdefab, and the ERE aˆb is valid, but can never match because the a prevents the
expression ˆb from matching starting at the first character.

2. A dollar sign ($) outside a bracket expression anchors the expression or subex-
pression it ends to the end of a string; such an expression or subexpression can
match only a sequence ending at the last character of a string. For example, the
EREs ef$ and (ef$) match ef in the string abcdef, but fail to match in the string cde-
fab, and the ERE e$f is valid, but can never match because the f prevents the
expression e$ from matching ending at the last character.

SEE ALSO localedef(1), regcomp(3C), attributes(5), environ(5), locale(5), regexp(5)

X/OPEN UNIX CONFORMANCE DOCUMENT

5-218 SunOS 5.6 modified 2 Jun 1997

Headers, Environments, and Macros regexp (5)

NAME regexp, compile, step, advance − simple regular expression compile and match routines

SYNOPSIS #define INIT declarations
#define GETC(void) getc code
#define PEEKC(void) peekc code
#define UNGETC(void) ungetc code
#define RETURN(ptr) return code
#define ERROR(val) error code

#include <regexp.h>

char ∗compile(char ∗instring, char ∗expbuf, const char ∗endbuf, int eof);

int step(const char ∗string, const char ∗expbuf);

int advance(const char ∗string, const char ∗expbuf);

extern char ∗loc1, ∗loc2, ∗locs;

DESCRIPTION Regular Expressions (REs) provide a mechanism to select specific strings from a set of
character strings. The Simple Regular Expressions described below differ from the Inter-
nationalized Regular Expressions described on the regex(5) manual page in the following
ways:

· only Basic Regular Expressions are supported

· the Internationalization features—character class, equivalence class, and
multi-character collation—are not supported.

The functions step(), advance(), and compile() are general purpose regular expression
matching routines to be used in programs that perform regular expression matching.
These functions are defined by the <regexp.h> header.

The functions step() and advance() do pattern matching given a character string and a
compiled regular expression as input.

The function compile() takes as input a regular expression as defined below and pro-
duces a compiled expression that can be used with step() or advance().

Basic Regular
Expressions

A regular expression specifies a set of character strings. A member of this set of strings is
said to be matched by the regular expression. Some characters have special meaning
when used in a regular expression; other characters stand for themselves.

The following one-character REs match a single character:

1.1 An ordinary character (not one of those discussed in 1.2 below) is a one-character
RE that matches itself.

1.2 A backslash (\) followed by any special character is a one-character RE that
matches the special character itself. The special characters are:

a. ., ∗, [, and \ (period, asterisk, left square bracket, and backslash, respec-
tively), which are always special, except when they appear within square
brackets ([] ; see 1.4 below).

modified 2 Apr 1996 SunOS 5.6 5-219

regexp (5) Headers, Environments, and Macros

b. ˆ (caret or circumflex), which is special at the beginning of an entire RE (see
4.1 and 4.3 below), or when it immediately follows the left of a pair of
square brackets ([]) (see 1.4 below).

c. $ (dollar sign), which is special at the end of an entire RE (see 4.2 below).

d. The character used to bound (that is, delimit) an entire RE, which is spe-
cial for that RE (for example, see how slash (/) is used in the g command,
below.)

1.3 A period (.) is a one-character RE that matches any character except new-line.

1.4 A non-empty string of characters enclosed in square brackets ([]) is a one-
character RE that matches any one character in that string. If, however, the first
character of the string is a circumflex (ˆ), the one-character RE matches any char-
acter except new-line and the remaining characters in the string. The ˆ has this
special meaning only if it occurs first in the string. The minus (−) may be used to
indicate a range of consecutive characters; for example, [0−9] is equivalent to
[0123456789]. The − loses this special meaning if it occurs first (after an initial ˆ, if
any) or last in the string. The right square bracket (]) does not terminate such a
string when it is the first character within it (after an initial ˆ, if any); for example,
[]a−f] matches either a right square bracket (]) or one of the ASCII letters a
through f inclusive. The four characters listed in 1.2.a above stand for them-
selves within such a string of characters.

The following rules may be used to construct REs from one-character REs:

2.1 A one-character RE is a RE that matches whatever the one-character RE matches.

2.2 A one-character RE followed by an asterisk (∗) is a RE that matches 0 or more
occurrences of the one-character RE. If there is any choice, the longest leftmost
string that permits a match is chosen.

2.3 A one-character RE followed by \{m\}, \{m,\}, or \{m,n\} is a RE that matches a
range of occurrences of the one-character RE. The values of m and n must be
non-negative integers less than 256; \{m\} matches exactly m occurrences; \{m,\}
matches at least m occurrences; \{m,n\} matches any number of occurrences
between m and n inclusive. Whenever a choice exists, the RE matches as many
occurrences as possible.

2.4 The concatenation of REs is a RE that matches the concatenation of the strings
matched by each component of the RE.

2.5 A RE enclosed between the character sequences \ (and \) is a RE that matches
whatever the unadorned RE matches.

2.6 The expression \ n matches the same string of characters as was matched by an
expression enclosed between \ (and \) earlier in the same RE. Here n is a digit;
the sub-expression specified is that beginning with the n-th occurrence of \ (
counting from the left. For example, the expression ˆ \ (. ∗ \) \ 1 $ matches a line
consisting of two repeated appearances of the same string.

5-220 SunOS 5.6 modified 2 Apr 1996

Headers, Environments, and Macros regexp (5)

A RE may be constrained to match words.

3.1 \ < constrains a RE to match the beginning of a string or to follow a character that
is not a digit, underscore, or letter. The first character matching the RE must be a
digit, underscore, or letter.

3.2 \ > constrains a RE to match the end of a string or to precede a character that is
not a digit, underscore, or letter.

An entire RE may be constrained to match only an initial segment or final segment of a
line (or both).

4.1 A circumflex (ˆ) at the beginning of an entire RE constrains that RE to match an
initial segment of a line.

4.2 A dollar sign ($) at the end of an entire RE constrains that RE to match a final seg-
ment of a line.

4.3 The construction ˆentire RE $ constrains the entire RE to match the entire line.

The null RE (for example, //) is equivalent to the last RE encountered.

Addressing with REs Addresses are constructed as follows:

1. The character "." addresses the current line.

2. The character "$" addresses the last line of the buffer.

3. A decimal number n addresses the n-th line of the buffer.

4. ′x addresses the line marked with the mark name character x, which must be an
ASCII lower-case letter (a−z). Lines are marked with the k command described
below.

5. A RE enclosed by slashes (/) addresses the first line found by searching forward
from the line following the current line toward the end of the buffer and stopping
at the first line containing a string matching the RE. If necessary, the search
wraps around to the beginning of the buffer and continues up to and including
the current line, so that the entire buffer is searched.

6. A RE enclosed in question marks (?) addresses the first line found by searching
backward from the line preceding the current line toward the beginning of the
buffer and stopping at the first line containing a string matching the RE. If neces-
sary, the search wraps around to the end of the buffer and continues up to and
including the current line.

7. An address followed by a plus sign (+) or a minus sign (−) followed by a decimal
number specifies that address plus (respectively minus) the indicated number of
lines. A shorthand for .+5 is .5.

8. If an address begins with + or −, the addition or subtraction is taken with respect
to the current line; for example, −5 is understood to mean .−5.

9. If an address ends with + or −, then 1 is added to or subtracted from the address,
respectively. As a consequence of this rule and of Rule 8, immediately above, the
address − refers to the line preceding the current line. (To maintain compatibility
with earlier versions of the editor, the character ˆ in addresses is entirely

modified 2 Apr 1996 SunOS 5.6 5-221

regexp (5) Headers, Environments, and Macros

equivalent to −.) Moreover, trailing + and − characters have a cumulative effect,
so −− refers to the current line less 2.

10. For convenience, a comma (,) stands for the address pair 1,$, while a semicolon
(;) stands for the pair .,$.

Characters With
Special Meaning

Characters that have special meaning except when they appear within square brackets
([]) or are preceded by \ are: ., ∗, [, \ . Other special characters, such as $ have special
meaning in more restricted contexts.

The character ˆ at the beginning of an expression permits a successful match only
immediately after a newline, and the character $ at the end of an expression requires a
trailing newline.

Two characters have special meaning only when used within square brackets. The char-
acter − denotes a range, [c−c], unless it is just after the open bracket or before the closing
bracket, [−c] or [c−] in which case it has no special meaning. When used within brackets,
the character ˆ has the meaning complement of if it immediately follows the open bracket
(example: [ˆc]); elsewhere between brackets (example: [cˆ]) it stands for the ordinary
character ˆ.

The special meaning of the \ operator can be escaped only by preceding it with another
\ , for example \\ .

Macros Programs must have the following five macros declared before the #include <regexp.h>
statement. These macros are used by the compile() routine. The macros GETC, PEEKC,
and UNGETC operate on the regular expression given as input to compile().

GETC This macro returns the value of the next character (byte) in the regular
expression pattern. Successive calls to GETC should return successive
characters of the regular expression.

PEEKC This macro returns the next character (byte) in the regular expression.
Immediately successive calls to PEEKC should return the same character,
which should also be the next character returned by GETC.

UNGETC This macro causes the argument c to be returned by the next call to
GETC and PEEKC. No more than one character of pushback is ever
needed and this character is guaranteed to be the last character read by
GETC. The return value of the macro UNGETC(c) is always ignored.

RETURN(ptr) This macro is used on normal exit of the compile() routine. The value
of the argument ptr is a pointer to the character after the last character of
the compiled regular expression. This is useful to programs which have
memory allocation to manage.

ERROR(val) This macro is the abnormal return from the compile() routine. The
argument val is an error number (see ERRORS below for meanings). This
call should never return.

5-222 SunOS 5.6 modified 2 Apr 1996

Headers, Environments, and Macros regexp (5)

compile() The syntax of the compile() routine is as follows:

compile(instring, expbuf, endbuf, eof)

The first parameter, instring, is never used explicitly by the compile() routine but is use-
ful for programs that pass down different pointers to input characters. It is sometimes
used in the INIT declaration (see below). Programs which call functions to input charac-
ters or have characters in an external array can pass down a value of (char ∗)0 for this
parameter.

The next parameter, expbuf, is a character pointer. It points to the place where the com-
piled regular expression will be placed.

The parameter endbuf is one more than the highest address where the compiled regular
expression may be placed. If the compiled expression cannot fit in (endbuf−expbuf)
bytes, a call to ERROR(50) is made.

The parameter eof is the character which marks the end of the regular expression. This
character is usually a /.

Each program that includes the <regexp.h> header file must have a #define statement for
INIT. It is used for dependent declarations and initializations. Most often it is used to set
a register variable to point to the beginning of the regular expression so that this register
variable can be used in the declarations for GETC, PEEKC, and UNGETC. Otherwise it can
be used to declare external variables that might be used by GETC, PEEKC and UNGETC.
(See EXAMPLES below.)

step(), advance() The first parameter to the step() and advance() functions is a pointer to a string of char-
acters to be checked for a match. This string should be null terminated.

The second parameter, expbuf, is the compiled regular expression which was obtained by
a call to the function compile().

The function step() returns non-zero if some substring of string matches the regular
expression in expbuf and 0 if there is no match. If there is a match, two external character
pointers are set as a side effect to the call to step(). The variable loc1 points to the first
character that matched the regular expression; the variable loc2 points to the character
after the last character that matches the regular expression. Thus if the regular expression
matches the entire input string, loc1 will point to the first character of string and loc2 will
point to the null at the end of string.

The function advance() returns non-zero if the initial substring of string matches the reg-
ular expression in expbuf. If there is a match, an external character pointer, loc2, is set as a
side effect. The variable loc2 points to the next character in string after the last character
that matched.

When advance() encounters a ∗ or \{ \} sequence in the regular expression, it will
advance its pointer to the string to be matched as far as possible and will recursively call
itself trying to match the rest of the string to the rest of the regular expression. As long as
there is no match, advance() will back up along the string until it finds a match or
reaches the point in the string that initially matched the ∗ or \{ \}. It is sometimes desir-
able to stop this backing up before the initial point in the string is reached. If the external

modified 2 Apr 1996 SunOS 5.6 5-223

regexp (5) Headers, Environments, and Macros

character pointer locs is equal to the point in the string at sometime during the backing
up process, advance() will break out of the loop that backs up and will return zero.

The external variables circf, sed, and nbra are reserved.

EXAMPLES The following is an example of how the regular expression macros and calls might be
defined by an application program:

#define INIT register char ∗sp = instring;
#define GETC (∗sp++)
#define PEEKC (∗sp)
#define UNGETC(c) (−−sp)
#define RETURN(∗c) return;
#define ERROR(c) regerr

#include <regexp.h>
. . .

(void) compile(∗argv, expbuf, &expbuf[ESIZE],’\0’);
. . .

if (step(linebuf, expbuf))
succeed;

DIAGNOSTICS The function compile() uses the macro RETURN on success and the macro ERROR on
failure (see above). The functions step() and advance() return non-zero on a successful
match and zero if there is no match. Errors are:

11 range endpoint too large.

16 bad number.

25 \ digit out of range.

36 illegal or missing delimiter.

41 no remembered search string.

42 \(\) imbalance.

43 too many \(.

44 more than 2 numbers given in \{ \}.

45 } expected after \.

46 first number exceeds second in \{ \}.

49 [] imbalance.

50 regular expression overflow.

SEE ALSO regex(5)

5-224 SunOS 5.6 modified 2 Apr 1996

Headers, Environments, and Macros siginfo (5)

NAME siginfo − signal generation information

SYNOPSIS #include <siginfo.h>

DESCRIPTION If a process is catching a signal, it may request information that tells why the system gen-
erated that signal (see sigaction(2)). If a process is monitoring its children, it may receive
information that tells why a child changed state (see waitid(2)). In either case, the system
returns the information in a structure of type siginfo_t, which includes the following
information:

int si_signo /∗ signal number ∗/
int si_errno /∗ error number ∗/
int si_code /∗ signal code ∗/
union sigval si_value /∗ signal value ∗/

si_signo contains the system-generated signal number. For the waitid(2) function,
si_signo is always SIGCHLD.

If si_errno is non-zero, it contains an error number associated with this signal, as defined
in <errno.h>.

si_code contains a code identifying the cause of the signal.

If the value of the si_code member is SI_NOINFO, only the si_signo member of
siginfo_t is meaningful, and the value of all other members is unspecified.

User Signals If the value of si_code is less than or equal to 0, then the signal was generated by a user
process (see kill(2), _lwp_kill(2), sigqueue(3R), sigsend(2), abort(3C), and raise(3C))
and the siginfo structure contains the following additional information:

typedef long pid_t si_pid /∗ sending process ID ∗/
typedef long uid_t si_uid /∗ sending user ID ∗/

If the signal was generated by a user process, the following values are defined for
si_code:

SI_USER the implementation sets si_code to SI_USER if the signal was
sent by kill(2), sigsend(2), raise(3C) or abort(3C).

SI_LWP the signal was sent by _lwp_kill(2).

SI_QUEUE the signal was sent by sigqueue(3R).

SI_TIMER the signal was generated by the expiration of a timer created by
timer_settime(3R).

SI_ASYNCIO the signal was generated by the completion of an asynchronous
I/O request.

SI_MESGQ the signal was generated by the arrival of a message on an empty
message queue. (see mq_notify(3R)).

modified 30 Mar 1993 SunOS 5.6 5-225

siginfo (5) Headers, Environments, and Macros

si_value contains the application specified value, which is passed to the application’s
signal-catching function at the time of the signal delivery, if si_code is any of SI_QUEUE,
SI_TIMER, SI_ASYNCHIO, or SI_MESGQ.

System Signals Otherwise, si_code contains a positive value reflecting the reason why the system gen-
erated the signal:

Signal Code Reason
SIGILL ILL_ILLOPC illegal opcode

ILL_ILLOPN illegal operand
ILL_ILLADR illegal addressing mode
ILL_ILLTRP illegal trap
ILL_PRVOPC privileged opcode
ILL_PRVREG privileged register
ILL_COPROC co-processor error
ILL_BADSTK internal stack error

SIGFPE FPE_INTDIV integer divide by zero
FPE_INTOVF integer overflow
FPE_FLTDIV floating point divide by zero
FPE_FLTOVF floating point overflow
FPE_FLTUND floating point underflow
FPE_FLTRES floating point inexact result
FPE_FLTINV invalid floating point operation
FPE_FLTSUB subscript out of range

SIGSEGV SEGV_MAPERR address not mapped to object
SEGV_ACCERR invalid permissions for mapped object

SIGBUS BUS_ADRALN invalid address alignment
BUS_ADRERR non-existent physical address
BUS_OBJERR object specific hardware error

SIGTRAP TRAP_BRKPT process breakpoint
TRAP_TRACE process trace trap

SIGCHLD CLD_EXITED child has exited
CLD_KILLED child was killed
CLD_DUMPED child terminated abnormally
CLD_TRAPPED traced child has trapped
CLD_STOPPED child has stopped
CLD_CONTINUED stopped child had continued

SIGPOLL POLL_IN data input available
POLL_OUT output buffers available
POLL_MSG input message available
POLL_ERR I/O error
POLL_PRI high priority input available
POLL_HUP device disconnected

5-226 SunOS 5.6 modified 30 Mar 1993

Headers, Environments, and Macros siginfo (5)

In addition, the following signal-dependent information is available for kernel-generated
signals:

Signal Field Value
SIGILL caddr_t si_addr address of faulting instruction
SIGFPE
SIGSEGV caddr_t si_addr address of faulting memory reference
SIGBUS
SIGCHLD pid_t si_pid child process ID

int si_status exit value or signal
SIGPOLL long si_band band event for POLL_IN, POLL_OUT, or

POLL_MSG

SEE ALSO _lwp_kill(2), kill(2), sigaction(2), sigsend(2), waitid(2), abort(3C), raise(3C),
aio_read(3R), mq_notify(3R), sigqueue(3R), timer_create(3R), timer_settime(3R), sig-
nal(5)

NOTES For SIGCHLD signals, if si_code is equal to CLD_EXITED, then si_status is equal to the
exit value of the process; otherwise, it is equal to the signal that caused the process to
change state. For some implementations, the exact value of si_addr may not be available;
in that case, si_addr is guaranteed to be on the same page as the faulting instruction or
memory reference.

modified 30 Mar 1993 SunOS 5.6 5-227

signal (5) Headers, Environments, and Macros

NAME signal − base signals

SYNOPSIS #include <signal.h>

DESCRIPTION A signal is an asynchronous notification of an event. A signal is said to be generated for
(or sent to) a process when the event associated with that signal first occurs. Examples of
such events include hardware faults, timer expiration and terminal activity, as well as the
invocation of the kill(2) or sigsend(2) functions. In some circumstances, the same event
generates signals for multiple processes. A process may request a detailed notification of
the source of the signal and the reason why it was generated (see siginfo(5)).

Signals can be generated synchronously or asynchronously. Events directly caused by
the execution of code by a thread, such as a reference to an unmapped, protected, or bad
memory can generate SIGSEGV or SIGBUS; a floating point exception can generate
SIGFPE; and the execution of an illegal instruction can generate SIGILL. Such events are
referred to as traps; signals generated by traps are said to be synchronously generated.
Synchronously generated signals are initiated by a specific thread and are delivered to
and handled by that thread.

Signals may also be generated by calling kill(), sigqueue(), or sigsend(). Events such as
keyboard interrupts generate signals, such as SIGINT, which are sent to the target pro-
cess. Such events are referred to as interrupts; signals generated by interrupts are said to
be asynchronously generated. Asynchronously generated signals are not directed to a
particular thread but are handled by an arbitrary thread that meets either of the following
conditions:

· The thread is blocked in a call to sigwait(2) whose argument includes the type of sig-
nal generated.

· The thread has a signal mask that does not include the type of signal generated.

A process responds to signals in similar ways whether it is using threads (see
thr_create(3T)) or it is using lightweight processes (LWPs). Each process may specify a
system action to be taken in response to each signal sent to it, called the signal’s disposi-
tion. All threads or LWPs in the process share the disposition. The set of system signal
actions for a process is initialized from that of its parent. Once an action is installed for a
specific signal, it usually remains installed until another disposition is explicitly
requested by a call to either sigaction(), signal() or sigset(), or until the process execs()
(see sigaction(2) and signal(3C)). When a process execs, all signals whose disposition
has been set to catch the signal will be set to SIG_DFL. Alternatively, a process may
request that the system automatically reset the disposition of a signal to SIG_DFL after it
has been caught (see sigaction(2) and signal(3C)).

SIGNAL DELIVERY A signal is said to be delivered to a process when a thread or LWP within the process
takes the appropriate action for the disposition of the signal. Delivery of a signal can be
blocked. There are two methods for handling delivery of a signal in a multithreaded
application. The first method specifies a signal handler function to execute when the sig-
nal is received by the process (see sigaction(2)). The second method creates a thread to

5-228 SunOS 5.6 modified 15 Apr 1997

Headers, Environments, and Macros signal (5)

handle the receipt of the signal (see sigwait(2)). sigaction() can be used for both syn-
chronously and asynchronously generated signals. sigwait() will only work for asyn-
chronously generated signals, as synchronously generated signals are sent to the thread
that caused the event. sigwait() is the recommended interface for use with a mul-
tithreaded application.

SIGNAL MASK Each thread or LWP has a signal mask (see thr_sigsetmask(3T) or sigprocmask(2)) that
defines the set of signals currently blocked from delivery to it. The signal mask of the
main thread or LWP is inherited from the signal mask of the thread or LWP that created it
in the parent process. The selection of the thread or LWP within the process that is to take
the appropriate action for the signal is based on the method of signal generation and the
signal masks of the threads or LWPs in the receiving process. Signals that are generated
by action of a particular thread or LWP such as hardware faults are delivered to the
thread or LWP that caused the signal. Also, see alarm(2) for current semantics of delivery
of SIGALRM. Signals that are directed to a particular thread or LWP (see thr_kill(3T) or
_lwp_kill(2)) are delivered to the targeted thread or LWP. If the selected thread or LWP
has blocked the signal, it remains pending on the thread or LWP until it is unblocked. For
all other types of signal generation (for example, kill(2), sigsend(2), terminal activity,
and other external events not ascribable to a particular thread or LWP) one of the threads
or LWPs that does not have the signal blocked is selected to process the signal. If all the
threads or LWPs within the process block the signal, it remains pending on the process
until a thread or LWP in the process unblocks it. If the action associated with a signal is
set to ignore the signal then both currently pending and subsequently generated signals
of this type are discarded immediately for this process.

The determination of which action is taken in response to a signal is made at the time the
signal is delivered to a thread or LWP within the process, allowing for any changes since
the time of generation. This determination is independent of the means by which the sig-
nal was originally generated.

The signals currently defined by <signal.h> are as follows:
Name Value Default Event

SIGHUP 1 Exit Hangup (see termio(7I))
SIGINT 2 Exit Interrupt (see termio(7I))
SIGQUIT 3 Core Quit (see termio(7I))
SIGILL 4 Core Illegal Instruction
SIGTRAP 5 Core Trace or Breakpoint Trap
SIGABRT 6 Core Abort
SIGEMT 7 Core Emulation Trap
SIGFPE 8 Core Arithmetic Exception
SIGKILL 9 Exit Killed
SIGBUS 10 Core Bus Error
SIGSEGV 11 Core Segmentation Fault
SIGSYS 12 Core Bad System Call
SIGPIPE 13 Exit Broken Pipe
SIGALRM 14 Exit Alarm Clock
SIGTERM 15 Exit Terminated

modified 15 Apr 1997 SunOS 5.6 5-229

signal (5) Headers, Environments, and Macros

SIGUSR1 16 Exit User Signal 1
SIGUSR2 17 Exit User Signal 2
SIGCHLD 18 Ignore Child Status Changed
SIGPWR 19 Ignore Power Fail or Restart
SIGWINCH 20 Ignore Window Size Change
SIGURG 21 Ignore Urgent Socket Condition
SIGPOLL 22 Exit Pollable Event (see

streamio(7I))
SIGSTOP 23 Stop Stopped (signal)
SIGTSTP 24 Stop Stopped (user) (see

termio(7I))
SIGCONT 25 Ignore Continued
SIGTTIN 26 Stop Stopped (tty input) (see

termio(7I))
SIGTTOU 27 Stop Stopped (tty output) (see

termio(7I))
SIGVTALRM 28 Exit Virtual Timer Expired
SIGPROF 29 Exit Profiling Timer Expired
SIGXCPU 30 Core CPU time limit exceeded (see

getrlimit(2))
SIGXFSZ 31 Core File size limit exceeded (see

getrlimit(2))
SIGWAITING 32 Ignore Concurrency signal reserved

by threads library
SIGLWP 33 Ignore Inter-LWP signal reserved by

threads library
SIGFREEZE 34 Ignore Check point Freeze
SIGTHAW 35 Ignore Check point Thaw
SIGCANCEL 36 Ignore Cancellation signal reserved

by threads library
SIGRTMIN ∗ Exit First real time signal
(SIGRTMIN+1) ∗ Exit Second real time signal
. . .

(SIGRTMAX-1) ∗ Exit Second-to-last real time signal
SIGRTMAX ∗ Exit Last real time signal

(The symbols SIGRTMIN through SIGRTMAX are evaluated
dynamically in order to permit future configurability)

SIGNAL
DISPOSITION

A process, using a signal(3C), sigset(3C) or sigaction(2) system call, may specify one of
three dispositions for a signal: take the default action for the signal, ignore the signal, or
catch the signal.

Default Action:
SIG_DFL

A disposition of SIG_DFL specifies the default action. The default action for each signal is
listed in the table above and is selected from the following:

Exit When it gets the signal, the receiving process is to be terminated with all the
consequences outlined in exit(2).

Core When it gets the signal, the receiving process is to be terminated with all the
consequences outlined in exit(2). In addition, a ‘‘core image’’ of the process is

5-230 SunOS 5.6 modified 15 Apr 1997

Headers, Environments, and Macros signal (5)

constructed in the current working directory.

Stop When it gets the signal, the receiving process is to stop. When a process is
stopped, all the threads and LWPs within the process also stop executing.

Ignore When it gets the signal, the receiving process is to ignore it. This is identical to
setting the disposition to SIG_IGN.

Ignore Signal:
SIG_IGN

A disposition of SIG_IGN specifies that the signal is to be ignored. Setting a signal action
to SIG_IGN for a signal that is pending causes the pending signal to be discarded,
whether or not it is blocked. Any queued values pending are also discarded, and the
resources used to queue them are released and made available to queue other signals.

Catch Signal:
function address

A disposition that is a function address specifies that, when it gets the signal, the thread
or LWP within the process that is selected to process the signal will execute the signal
handler at the specified address. Normally, the signal handler is passed the signal
number as its only argument; if the disposition was set with the sigaction() however,
additional arguments may be requested (see sigaction(2)). When the signal handler
returns, the receiving process resumes execution at the point it was interrupted, unless
the signal handler makes other arrangements. If an invalid function address is specified,
results are undefined.

If the disposition has been set with the sigset() or sigaction(), the signal is automatically
blocked in the thread or LWP while it is executing the signal catcher. If a longjmp() (see
setjmp(3C)) is used to leave the signal catcher, then the signal must be explicitly
unblocked by the user (see signal(3C) and sigprocmask(2)).

If execution of the signal handler interrupts a blocked function call, the handler is exe-
cuted and the interrupted function call returns −1 to the calling process with errno set to
EINTR. However, if the SA_RESTART flag is set, the function call will be transparently
restarted.

Some signal-generating functions, such as high resolution timer expiration, asynchronous
I/O completion, inter-process message arrival, and the sigqueue(3R) function, support
the specification of an application defined value, either explicitly as a parameter to the
function, or in a sigevent structure parameter.
The sigevent structure is defined by <signal.h> and contains at least the following
members:

Member Member
Type Name Description
int sigev_notify Notification type
int sigev_signo Signal number
union sigval sigev_value Signal value

The sigval union is defined by <signal.h> and contains at least the following members:

Member Member
Type Name Description
int sival_int Integer signal value
void ∗ sival_ptr Pointer signal value

modified 15 Apr 1997 SunOS 5.6 5-231

signal (5) Headers, Environments, and Macros

The sigev_notify member specifies the notification mechanism to use when an asynchro-
nous event occurs. The sigev_notify member may be defined with the following values:

SIGEV_NONE No asynchronous notification is delivered when the event
of interest occurs.

SIGEV_SIGNAL A queued signal, with its value application-defined, is gen-
erated when the event of interest occurs.

Your implementation may define additional notification mechanisms.

The sigev_signo member specifies the signal to be generated.

The sigev_value member references the application defined value to be passed to the
signal-catching function at the time of the signal delivery as the si_value member of the
siginfo_t structure.

The sival_int member is used when the application defined value is of type int, and the
sival_ptr member is used when the application defined value is a pointer.

When a signal is generated by sigqueue(3R) or any signal−generating function which
supports the specification of an application defined value, the signal is marked pending
and, if the SA_SIGINFO flag is set for that signal, the signal is queued to the process along
with the application specified signal value. Multiple occurrences of signals so generated
are queued in FIFO order. If the SA_SIGINFO flag is not set for that signal, later
occurrences of that signal’s generation, when a signal is already queued, are silently dis-
carded.

SEE ALSO intro(2), _lwp_kill(2), _lwp_sigredirect(2), _signotifywait(2), alarm(2), exit(2),
getrlimit(2), ioctl(2), kill(2), pause(2), sigaction(2), sigaltstack(2), sigprocmask(2), sig-
send(2), sigsuspend(2), sigwait(2), wait(2), setjmp(3C), signal(3C), sigqueue(3R),
sigsetops(3C), thr_create(3T), thr_kill(3T), thr_sigsetmask(3T), siginfo(5), ucontext(5)

NOTES The dispositions of the SIGKILL and SIGSTOP signals cannot be altered from their default
values. The system generates an error if this is attempted.

The SIGKILL and SIGSTOP signals cannot be blocked. The system silently enforces this
restriction.

Whenever a process receives a SIGSTOP, SIGTSTP, SIGTTIN, or SIGTTOU signal, regard-
less of its disposition, any pending SIGCONT signal are discarded.

Whenever a process receives a SIGCONT signal, regardless of its disposition, any pend-
ing SIGSTOP, SIGTSTP, SIGTTIN, and SIGTTOU signals is discarded. In addition, if the
process was stopped, it is continued.

SIGPOLL is issued when a file descriptor corresponding to a STREAMS (see intro(2)) file
has a “selectable” event pending. A process must specifically request that this signal be
sent using the I_SETSIG ioctl call. Otherwise, the process will never receive SIGPOLL.

If the disposition of the SIGCHLD signal has been set with signal or sigset, or with sigac-
tion and the SA_NOCLDSTOP flag has been specified, it will only be sent to the calling
process when its children exit; otherwise, it will also be sent when the calling process’s
children are stopped or continued due to job control.

5-232 SunOS 5.6 modified 15 Apr 1997

Headers, Environments, and Macros signal (5)

The name SIGCLD is also defined in this header and identifies the same signal as
SIGCHLD. SIGCLD is provided for backward compatibility, new applications should use
SIGCHLD.

The disposition of signals that are inherited as SIG_IGN should not be changed.

A signal directed by kill(2), sigqueue(3R), sigsend(2), terminal activity, and other exter-
nal events not ascribable to a particular thread or LWP, such as the SIGXFSZ or SIGPIPE
signal, to a multithreaded process, that is, a process linked with −lthread or −lpthread, is
routed to this process through a special, designated LWP within this process, called the
Asynchronous Signal LWP (ASLWP). The ASLWP within the multi-threaded process
receives notification of any signal directed to this process. Upon receiving this
notification, the ASLWP forwards it to a thread within the process that has the signal
unmasked. Actual signal delivery to the thread occurs only when the thread is running
on an LWP. If no threads exist having that signal number unblocked, the signal remains
pending. The ASLWP is usually blocked in a call to _signotifywait(2), waiting for such
notifications. The eventual target thread receives the signal by way of a call to
_lwp_sigredirect(2), made either by the ASLWP or the thread itself, redirecting the signal
to the LWP that the target thread is running on.

modified 15 Apr 1997 SunOS 5.6 5-233

socket (5) Headers, Environments, and Macros

NAME socket − Internet Protocol family

SYNOPSIS #include <sys/socket.h>

DESCRIPTION The <sys/socket.h> header defines the unsigned integral type sa_family_t through
typedef.

The <sys/socket.h> header defines the sockaddr structure that includes the following
members:

sa_family_t sa_family /∗ address family ∗/
char sa_data[] /∗ socket address (variable-length data) ∗/

The <sys/socket.h> header defines the msghdr structure that includes the following
members:

void ∗msg_name /∗ optional address ∗/
size_t msg_namelen /∗ size of address ∗/
struct iovec ∗msg_iov /∗ scatter/gather array ∗/
int msg_iovlen /∗ members in msg_iov ∗/
void ∗msg_control /∗ ancillary data, see below ∗/
size_t msg_controllen /∗ ancillary data buffer len ∗/
int msg_flags /∗ flags on received message ∗/

The <sys/socket.h> header defines the cmsghdr structure that includes the following
members:

size_t cmsg_len /∗ data byte count, including hdr ∗/
int cmsg_level /∗ originating protocol ∗/
int cmsg_type /∗ protocol-specific type ∗/

Ancillary data consists of a sequence of pairs, each consisting of a cmsghdr structure fol-
lowed by a data array. The data array contains the ancillary data message, and the
cmsghdr structure contains descriptive information that allows an application to
correctly parse the data.

The values for cmsg_level will be legal values for the level argument to the getsockopt()
and setsockopt() functions. The SCM_RIGHTS type is supported for level SOL_SOCKET.

Ancillary data is also possible at the socket level. The <sys/socket.h> header defines the
following macro for use as the cmsg_type value when cmsg_level is SOL_SOCKET:

SCM_RIGHTS Indicates that the data array contains the access rights to
be sent or received.

The <sys/socket.h> header defines the following macros to gain access to the data arrays
in the ancillary data associated with a message header:

CMSG_DATA(cmsg) If the argument is a pointer to a cmsghdr structure, this
macro returns an unsigned character pointer to the data
array associated with the cmsghdr structure.

5-234 SunOS 5.6 modified 4 Apr 1997

Headers, Environments, and Macros socket (5)

CMSG_NXTHDR(mhdr,cmsg)
If the first argument is a pointer to a msghdr structure and
the second argument is a pointer to a cmsghdr structure in
the ancillary data, pointed to by the msg_control field of
that msghdr structure, this macro returns a pointer to the
next cmsghdr structure, or a null pointer if this structure is
the last cmsghdr in the ancillary data.

CMSG_FIRSTHDR(mhdr)
If the argument is a pointer to a msghdr structure, this
macro returns a pointer to the first cmsghdr structure in
the ancillary data associated with this msghdr structure,
or a null pointer if there is no ancillary data associated
with the msghdr structure.

The <sys/socket.h> header defines the linger structure that includes the following
members:

int l_onoff /∗ indicates whether linger option is enabled ∗/
int l_linger /∗ linger time, in seconds ∗/

The <sys/socket.h> header defines the following macros:

SOCK_DGRAM Datagram socket

SOCK_STREAM Byte-stream socket

SOCK_SEQPACKET Sequenced-packet socket

The <sys/socket.h> header defines the following macro for use as the level argument of
setsockopt() and getsockopt().

SOL_SOCKET Options to be accessed at socket level, not protocol level.

The <sys/socket.h> header defines the following macros: for use as the option_name argu-
ment in getsockopt() or setsockopt() calls:

SO_DEBUG Debugging information is being recorded.

SO_ACCEPTCONN Socket is accepting connections.

SO_BROADCAST Transmission of broadcast messages is supported.

SO_REUSEADDR Reuse of local addresses is supported.

SO_KEEPALIVE Connections are kept alive with periodic messages.

SO_LINGER Socket lingers on close.

SO_OOBINLINE Out-of-band data is transmitted in line.

SO_SNDBUF Send buffer size.

SO_RCVBUF Receive buffer size.

SO_ERROR Socket error status.

SO_TYPE Socket type.

modified 4 Apr 1997 SunOS 5.6 5-235

socket (5) Headers, Environments, and Macros

The <sys/socket.h> header defines the following macros for use as the valid values for
the msg_flags field in the msghdr structure, or the flags parameter in recvfrom(),
recvmsg(), sendto(), or sendmsg() calls:

MSG_CTRUNC Control data truncated.

MSG_EOR Terminates a record (if supported by the protocol).

MSG_OOB Out-of-band data.

MSG_PEEK Leave received data in queue.

MSG_TRUNC Normal data truncated.

MSG_WAITALL Wait for complete message.

The <sys/socket.h> header defines the following macros:

AF_UNIX UNIX domain sockets

AF_INET Internet domain sockets

The <sys/socket.h> header defines the following macros:

SHUT_RD Disables further receive operations.

SHUT_WR Disables further send operations.

SHUT_RDWR Disables further send and receive operations.

The following are declared as functions, and may also be defined as macros:

int accept(int socket, struct sockaddr ∗address, size_t ∗address_len);

int bind(int socket, const struct sockaddr ∗address, size_t address_len);

int connect(int socket, const struct sockaddr ∗address, size_t address_len);

int getpeername(int socket, struct sockaddr ∗address, size_t ∗address_len);

int getsockname(int socket, struct sockaddr ∗address, size_t ∗address_len);

int getsockopt(int socket, int level, int option_name, void ∗option_value,
size_t ∗option_len);

int listen(int socket, int backlog);

ssize_t recv(int socket, void ∗buffer, size_t length, int flags);

ssize_t recvfrom(int socket, void ∗buffer, size_t length, int flags,
struct sockaddr ∗address, size_t ∗address_len);

ssize_t recvmsg(int socket, struct msghdr ∗message, int flags);

ssize_t send(int socket, const void ∗message, size_t length, int flags);

ssize_t sendmsg(int socket, const struct msghdr ∗message, int flags);

ssize_t sendto(int socket, const void ∗message, size_t length, int flags,
const struct sockaddr ∗dest_addr, size_t dest_len);

int setsockopt(int socket, int level, int option_name, const void ∗option_value,
size_t option_len);

5-236 SunOS 5.6 modified 4 Apr 1997

Headers, Environments, and Macros socket (5)

int shutdown(int socket, int how);

int socket(int domain, int type, int protocol);

int socketpair(int domain, int type, int protocol, int socket_vector[2]);

SEE ALSO accept(3N), accept(3XN), bind(3N), bind(3XN), connect(3N), connect(3XN),
getpeername(3N), getpeername(3XN), getsockname(3N), getsockname(3XN),
getsockopt(3N), getsockopt(3XN), listen(3N), listen(3XN), recv(3N), recv(3XN),
recvfrom(3N), recvfrom(3XN), recvmsg(3N), recvmsg(3XN), send(3N), send(3XN),
sendmsg(3N), sendmsg(3XN), sendto(3N), sendto(3XN), setsockopt(3N),
setsockopt(3XN), shutdown(3N), shutdown(3XN), socket(3N), socket(3XN),
socketpair(3N) socketpair(3XN)

modified 4 Apr 1997 SunOS 5.6 5-237

standards (5) Headers, Environments, and Macros

NAME standards, posix, POSIX, posix.1, POSIX.1, posix.2, POSIX.2, xnet, XNET, xnet4, XNET4,
xpg, XPG, xpg3, XPG3, xpg4, XPG4, xpg4v2, XPG4v2 − standards and specifications sup-
ported by Solaris

DESCRIPTION Solaris supports IEEE Std 1003.1 and IEEE Std 1003.2, commonly known as POSIX.1 and
POSIX.2, respectively. The following table lists each version of these standards with a
brief description and the SunOS or Solaris release that first conformed to it.

POSIX Standard Description Release
POSIX.1-1988 system interfaces and headers SunOS 4.1
POSIX.1-1990 POSIX.1-1988 update Solaris 2.0
POSIX.1b-1993 Solaris 2.4realtime extensions
POSIX.1c-1996 Solaris 2.6threads extensions
POSIX.2-1992 Solaris 2.5shell and utilities
POSIX.2a-1992 Solaris 2.5interactive shell and utilities

Solaris also supports the X/Open Common Applications Environment (CAE) Portability
Guide Issue 3 (XPG3), Issue 4 (XPG4), Issue 4 Version 2 (XPG4v2), and Networking Ser-
vices Issue 4 (XNET4). The following table lists each X/Open specification with a brief
description and the SunOS or Solaris release that first conformed to it.

X/Open
Specification Description Release

XPG3 SunOS 4.1superset of POSIX.1-1988 contain-
ing utilities from SVID3

XPG4 Solaris 2.4superset of POSIX.1-1990,
POSIX.2-1992, and POSIX.2a-1992
containing extensions to POSIX
standards from XPG3

XPG4v2 Solaris 2.6superset of XPG4 containing his-
torical BSD interfaces widely
used by common application
packages

XNET4 Solaris 2.6sockets and XTI interfaces

Utilities If the behavior required by XPG4 conflicted with historical Solaris utility behavior, the
original Solaris version of the utility was not changed; rather, a new version that was
XPG4-compliant was provided in /usr/xpg4/bin. For applications wishing to take advan-
tage of POSIX.2, POSIX.2a, XPG4, or XPG4v2 features, the PATH (sh or ksh) or
path (csh) environment variables should be set with /usr/xpg4/bin preceding any other
directories in which utilities specified by those specifications are found, such as /bin,
/usr/bin, /usr/ucb, and /usr/ccs/bin.

5-238 SunOS 5.6 modified 11 Apr 1997

Headers, Environments, and Macros standards (5)

Feature Test Macros
POSIX Applications that are intended to be conforming POSIX.1 applications must define the

feature test macros specified by the standard before including any headers. For the stan-
dards listed below, applications must define the feature test macros listed. Application
writers must check the corresponding standards for other macros that can be queried to
determine if desired options are supported by the implementation.

POSIX.1-1990 _POSIX_SOURCE

POSIX.1-1990 _POSIX_SOURCE
and and

POSIX.2-1992
C-Language Bindings Option _POSIX_C_SOURCE=2

POSIX.1b-1993 _POSIX_C_SOURCE=199309L

POSIX.1c-1996 _POSIX_C_SOURCE=199506L

X/Open To build or compile an application that conforms to one of the X/Open specifications, use
the following guidelines. Applications need not set the POSIX feature test macros if they
require both XPG and POSIX functionality.

XPG3 The application must define _XOPEN_SOURCE.

XPG4 The application must define _XOPEN_SOURCE and set _XOPEN_VERSION=4.

XPG4v2 The application must define _XOPEN_SOURCE and set
_XOPEN_SOURCE_EXTENDED=1.

XNET4 The application must define _XOPEN_SOURCE and set
_XOPEN_SOURCE_EXTENDED=1.

Compilation A POSIX.2-, XPG4-, or XPG4v2-compliant implementation must include an ANSI
X3.159-1989 (ANSI C Language) standard-conforming compilation system and the
cc and c89 utilities. Solaris 2.6 was tested with the cc and c89 utilities and the compilation
system provided by Sun WorkShop Compiler C 4.2 in the SPARC and x86 environ-
ments. When cc is used to link applications, /usr/ccs/lib/values-xpg4.o must be specified
on any link/load command line.

An XNET4-conforming application must include −l xnet on any link/load command line.

If the compiler suppports the redefine_extname pragma feature (the Sun WorkShop
Compiler C 4.2 compiler defines the macro __PRAGMA_REDEFINE_EXTNAME to indi-
cate that it supports this feature), then the standard headers use #pragma
redefine_extname directives to properly map function names onto library entry point
names. This mapping provides full support for ISO C, POSIX, and X/Open namespace
reservations. The Sun WorkShop Compiler C 4.2 compiler was used for all branding
and certification tests for Solaris 2.6.

If this pragma feature is not supported by the compiler, the headers use the #define
directive to map internal function names onto appropriate library entry point names. In
this instance, applications should avoid using the explicit 64-bit symbols listed on the
interface64(5) manual page, since these names are used by the implementation to name

modified 11 Apr 1997 SunOS 5.6 5-239

standards (5) Headers, Environments, and Macros

the alternative entry points.

SEE ALSO sysconf(3C), environ(5), interface64(5)

5-240 SunOS 5.6 modified 11 Apr 1997

Headers, Environments, and Macros stat (5)

NAME stat − data returned by stat system call

SYNOPSIS #include <sys/types.h>
#include <sys/stat.h>

DESCRIPTION The system calls stat, lstat and fstat return data in a stat structure, which is defined in
stat.h.

The constants used in the st_mode field are also defined in this file:

#define S_IFMT /∗ type of file ∗/
#define S_IAMB /∗ access mode bits ∗/
#define S_IFIFO /∗ fifo ∗/
#define S_IFCHR /∗ character special ∗/
#define S_IFDIR /∗ directory ∗/
#define S_IFNAM /∗ XENIX special named file ∗/
#define S_INSEM /∗ XENIX semaphore subtype of IFNAM ∗/
#define S_INSHD /∗ XENIX shared data subtype of IFNAM ∗/
#define S_IFBLK /∗ block special ∗/
#define S_IFREG /∗ regular ∗/
#define S_IFLNK /∗ symbolic link ∗/
#define S_IFSOCK /∗ socket ∗/
#define S_ISUID /∗ set user id on execution ∗/
#define S_ISGID /∗ set group id on execution ∗/
#define S_ISVTX /∗ save swapped text even after use ∗/
#define S_IREAD /∗ read permission, owner ∗/
#define S_IWRITE /∗ write permission, owner ∗/
#define S_IEXEC /∗ execute/search permission, owner ∗/
#define S_ENFMT /∗ record locking enforcement flag ∗/
#define S_IRWXU /∗ read, write, execute: owner ∗/
#define S_IRUSR /∗ read permission: owner ∗/
#define S_IWUSR /∗ write permission: owner ∗/
#define S_IXUSR /∗ execute permission: owner ∗/
#define S_IRWXG /∗ read, write, execute: group ∗/
#define S_IRGRP /∗ read permission: group ∗/
#define S_IWGRP /∗ write permission: group ∗/
#define S_IXGRP /∗ execute permission: group ∗/
#define S_IRWXO /∗ read, write, execute: other ∗/
#define S_IROTH /∗ read permission: other ∗/
#define S_IWOTH /∗ write permission: other ∗/
#define S_IXOTH /∗ execute permission: other ∗/

modified 21 Mar 1997 SunOS 5.6 5-241

stat (5) Headers, Environments, and Macros

The following macros are for POSIX conformance (see standards(5)):

#define S_ISBLK(mode) block special file
#define S_ISCHR(mode) character special file
#define S_ISDIR(mode) directory file
#define S_ISFIFO(mode) pipe or fifo file
#define S_ISREG(mode) regular file
#define S_ISSOCK(mode) socket file

SEE ALSO stat(2), standards(5), types(5)

5-242 SunOS 5.6 modified 21 Mar 1997

Headers, Environments, and Macros stdarg (5)

NAME stdarg − handle variable argument list

SYNOPSIS #include <stdarg.h>

va_list pvar;

void va_start(va_list pvar, void parmN);

(type ∗) va_arg(va_list pvar, type);

void va_copy(va_list dest, va_list src);

void va_end(va_list pvar);

DESCRIPTION This set of macros allows portable procedures that accept variable numbers of arguments
of variable types to be written. Routines that have variable argument lists (such as
printf) but do not use stdarg are inherently non-portable, as different machines use dif-
ferent argument-passing conventions.

va_list is a type defined for the variable used to traverse the list.

The va_start() macro is invoked before any access to the unnamed arguments and initial-
izes pvar for subsequent use by va_arg() and va_end(). The parameter parmN is the
identifier of the rightmost parameter in the variable parameter list in the function
definition (the one just before the , ...). If this parameter is declared with the register
storage class or with a function or array type, or with a type that is not compatible with
the type that results after application of the default argument promotions, the behavior is
undefined.

The parameter parmN is required under strict ANSI C compilation. In other compilation
modes, parmN need not be supplied and the second parameter to the va_start() macro can
be left empty (for example, va_start(pvar,);). This allows for routines that contain no
parameters before the ... in the variable parameter list.

The va_arg() macro expands to an expression that has the type and value of the next
argument in the call. The parameter pvar should have been previously initialized by
va_start(). Each invocation of va_arg() modifies pvar so that the values of successive
arguments are returned in turn. The parameter type is the type name of the next argu-
ment to be returned. The type name must be specified in such a way so that the type of a
pointer to an object that has the specified type can be obtained simply by postfixing a ∗ to
type. If there is no actual next argument, or if type is not compatible with the type of the
actual next argument (as promoted according to the default argument promotions), the
behavior is undefined.

The va_copy() macro saves the state represented by the va_list src in the va_list dest . The
va_list passed as dest should not be initialized by a previous call to va_start(), and must
be passed to va_end() before being reused as a parameter to va_start() or as the dest
parameter of a subsequent call to va_copy(). The behavior is undefined should any of
these restrictions not be met.

modified 18 Feb 1997 SunOS 5.6 5-243

stdarg (5) Headers, Environments, and Macros

The va_end() macro is used to clean up.

Multiple traversals, each bracketed by va_start and va_end, are possible.

EXAMPLES This example gathers into an array a list of arguments that are pointers to strings (but not
more than MAXARGS arguments) with function f1, then passes the array as a single
argument to function f2. The number of pointers is specified by the first argument to f1.

#include <stdarg.h>
#define MAXARGS 31

void f1(int n_ptrs, ...)
{

va_list ap;
char ∗array[MAXARGS];
int ptr_no = 0;

if (n_ptrs > MAXARGS)
n_ptrs = MAXARGS;

va_start(ap, n_ptrs);
while (ptr_no < n_ptrs)

array[ptr_no++] = va_arg(ap, char∗);
va_end(ap);
f2(n_ptrs, array);

}

Each call to f1 shall have visible the definition of the function or a declaration such as

void f1(int, ...)

SEE ALSO vprintf(3S)

NOTES It is up to the calling routine to specify in some manner how many arguments there are,
since it is not always possible to determine the number of arguments from the stack
frame. For example, execl is passed a zero pointer to signal the end of the list. printf can
tell how many arguments there are by the format. It is non-portable to specify a second
argument of char, short, or float to va_arg, because arguments seen by the called function
are not char, short, or float. C converts char and short arguments to int and converts
float arguments to double before passing them to a function.

5-244 SunOS 5.6 modified 18 Feb 1997

Headers, Environments, and Macros sticky (5)

NAME sticky − mark files for special treatment

DESCRIPTION The sticky bit (file mode bit 01000, see chmod(2)) is used to indicate special treatment of
certain files and directories. A directory for which the sticky bit is set restricts deletion of
files it contains. A file in a sticky directory may only be removed or renamed by a user
who has write permission on the directory, and either owns the file, owns the directory,
or is the super-user. This is useful for directories such as /tmp, which must be publicly
writable, but should deny users permission to arbitrarily delete or rename the files of oth-
ers.

If the sticky bit is set on a regular file and no execute bits are set, the system’s page cache
will not be used to hold the file’s data. This bit is normally set on swap files of diskless
clients so that accesses to these files do not flush more valuable data from the system’s
cache. Moreover, by default such files are treated as swap files, whose inode
modification times may not necessarily be correctly recorded on permanent storage.

Any user may create a sticky directory. See chmod for details about modifying file
modes.

FILES /tmp

SEE ALSO chmod(1), chmod(2), chown(2), mkdir(2)

BUGS mkdir(2) will not create a directory with the sticky bit set.

modified 13 Feb 1995 SunOS 5.6 5-245

term (5) Headers, Environments, and Macros

NAME term − conventional names for terminals

DESCRIPTION Terminal names are maintained as part of the shell environment in the environment vari-
able TERM (see sh(1), profile(4), and environ(5)). These names are used by certain com-
mands (for example, tabs, tput, and vi) and certain functions (for example, see
curses(3X)).

Files under /usr/share/lib/terminfo are used to name terminals and describe their capa-
bilities. These files are in the format described in terminfo(4). Entries in terminfo source
files consist of a number of comma-separated fields. To print a description of a terminal
term, use the command infocmp −I term (see infocmp(1M)). White space after each
comma is ignored. The first line of each terminal description in the terminfo database
gives the names by which terminfo knows the terminal, separated by bar (|) characters.
The first name given is the most common abbreviation for the terminal (this is the one to
use to set the environment variable TERMINFO in $HOME/.profile; see profile(4)), the
last name given should be a long name fully identifying the terminal, and all others are
understood as synonyms for the terminal name. All names but the last should contain no
blanks and must be unique in the first 14 characters; the last name may contain blanks for
readability.

Terminal names (except for the last, verbose entry) should be chosen using the following
conventions. The particular piece of hardware making up the terminal should have a
root name chosen, for example, for the AT&T 4425 terminal, att4425. This name should
not contain hyphens, except that synonyms may be chosen that do not conflict with other
names. Up to 8 characters, chosen from the set a through z and 0 through 9, make up a
basic terminal name. Names should generally be based on original vendors rather than
local distributors. A terminal acquired from one vendor should not have more than one
distinct basic name. Terminal sub-models, operational modes that the hardware can be
in, or user preferences should be indicated by appending a hyphen and an indicator of
the mode. Thus, an AT&T 4425 terminal in 132 column mode is att4425−w. The follow-
ing suffixes should be used where possible:

Suffix Meaning Example
−−w Wide mode (more than 80 columns) att4425−−w
−−am With auto. margins (usually default) vt100−−am
−−nam Without automatic margins vt100−−nam
−−n Number of lines on the screen aaa−−60
−−na No arrow keys (leave them in local) c100−−na
−−np Number of pages of memory c100−−4p
−−rv Reverse video att4415−−rv

To avoid conflicts with the naming conventions used in describing the different modes of
a terminal (for example, −w), it is recommended that a terminal’s root name not contain
hyphens. Further, it is good practice to make all terminal names used in the terminfo(4)
database unique. Terminal entries that are present only for inclusion in other entries via
the use= facilities should have a ’+’ in their name, as in 4415+nl.

5-246 SunOS 5.6 modified 3 Jul 1990

Headers, Environments, and Macros term (5)

Here are some of the known terminal names: (For a complete list, enter the command
ls -C /usr/share/lib/terminfo/?).

2621,hp2621 Hewlett-Packard 2621 series
2631 Hewlett-Packard 2631 line printer
2631−−c Hewlett-Packard 2631 line printer,

compressed mode
2631−−e Hewlett-Packard 2631 line printer, expanded

mode
2640,hp2640 Hewlett-Packard 2640 series
2645,hp2645 Hewlett-Packard 2645 series
3270 IBM Model 3270
33,tty33 AT&T Teletype Model 33 KSR
35,tty35 AT&T Teletype Model 35 KSR
37,tty37 AT&T Teletype Model 37 KSR
4000a Trendata 4000a
4014,tek4014 TEKTRONIX 4014
40,tty40 AT&T Teletype Dataspeed 40/2
43,tty43 AT&T Teletype Model 43 KSR
4410,5410 AT&T 4410/5410 in 80-column mode, ver-

sion 2
4410−−nfk,5410−−nfk AT&T 4410/5410 without function keys, ver-

sion 1
4410−−nsl,5410−−nsl AT&T 4410/5410 without pln defined
4410−−w,5410−−w AT&T 4410/5410 in 132-column mode
4410v1,5410v1 AT&T 4410/5410 in 80-column mode, ver-

sion 1
4410v1−−w,5410v1−−w AT&T 4410/5410 in 132-column mode, ver-

sion 1
4415,5420 AT&T 4415/5420 in 80-column mode
4415−−nl,5420−−nl AT&T 4415/5420 without changing labels
4415−−rv,5420−−rv AT&T 4415/5420 80 columns in reverse

video
4415−−rv−−nl,5420−−rv−−nl AT&T 4415/5420 reverse video without

changing labels
4415−−w,5420−−w AT&T 4415/5420 in 132-column mode
4415−−w−−nl,5420−−w−−nl AT&T 4415/5420 in 132-column mode

without changing labels
4415−−w−−rv,5420−−w−−rv AT&T 4415/5420 132 columns in reverse

video
4418,5418 AT&T 5418 in 80-column mode
4418−−w,5418−−w AT&T 5418 in 132-column mode
4420 AT&T Teletype Model 4420
4424 AT&T Teletype Model 4424
4424-2 AT&T Teletype Model 4424 in display func-

tion group ii
4425,5425 AT&T 4425/5425
4425−−fk,5425−−fk AT&T 4425/5425 without function keys

modified 3 Jul 1990 SunOS 5.6 5-247

term (5) Headers, Environments, and Macros

4425−−nl,5425−−nl AT&T 4425/5425 without changing labels in
80-column mode

4425−−w,5425−−w AT&T 4425/5425 in 132-column mode
4425−−w−−fk,5425−−w−−fk AT&T 4425/5425 without function keys in

132-column mode
4425−−nl−−w,5425−−nl−−w AT&T 4425/5425 without changing labels in

132-column mode
4426 AT&T Teletype Model 4426S
450 DASI 450 (same as Diablo 1620)
450−−12 DASI 450 in 12-pitch mode
500,att500 AT&T-IS 500 terminal
510,510a AT&T 510/510a in 80-column mode
513bct,att513 AT&T 513 bct terminal
5320 AT&T 5320 hardcopy terminal
5420_2 AT&T 5420 model 2 in 80-column mode
5420_2−−w AT&T 5420 model 2 in 132-column mode
5620,dmd AT&T 5620 terminal 88 columns
5620−−24,dmd−−24 AT&T Teletype Model DMD 5620 in a 24x80

layer
5620−−34,dmd−−34 AT&T Teletype Model DMD 5620 in a 34x80

layer
610,610bct AT&T 610 bct terminal in 80-column mode
610−−w,610bct−−w AT&T 610 bct terminal in 132-column mode
630,630MTG AT&T 630 Multi-Tasking Graphics terminal
7300,pc7300,unix_pc AT&T UNIX PC Model 7300
735,ti Texas Instruments TI735 and TI725
745 Texas Instruments TI745
dumb generic name for terminals that lack reverse

line-feed and other special escape sequences
hp Hewlett-Packard (same as 2645)
lp generic name for a line printer
pt505 AT&T Personal Terminal 505 (22 lines)
pt505−−24 AT&T Personal Terminal 505 (24-line mode)
sync generic name for synchronous Teletype

Model 4540-compatible terminals

Commands whose behavior depends on the type of terminal should accept arguments of
the form −Tterm where term is one of the names given above; if no such argument is
present, such commands should obtain the terminal type from the environment variable
TERM, which, in turn, should contain term.

FILES /usr/share/lib/terminfo/?/∗
compiled terminal description database

SEE ALSO sh(1), stty(1), tabs(1), tput(1), vi(1), infocmp(1M), curses(3X), profile(4), terminfo(4),
environ(5)

5-248 SunOS 5.6 modified 3 Jul 1990

Headers, Environments, and Macros types (5)

NAME types − primitive system data types

SYNOPSIS #include <sys/types.h>

DESCRIPTION The data types defined in types.h are used in UNIX System code. Some data of these
types are accessible to user code:

typedef struct { int r[1]; } ∗physadr;
typedef long clock_t;
typedef long daddr_t;
typedef char ∗ caddr_t;
typedef unsigned char unchar;
typedef unsigned short ushort;
typedef unsigned int uint;
typedef unsigned long ulong;
typedef unsigned long ino_t;
typedef long uid_t;
typedef long gid_t;
typedef ulong nlink_t;
typedef ulong mode_t;
typedef short cnt_t;
typedef long time_t;
typedef int label_t[10];
typedef ulong dev_t;
typedef long off_t;
typedef long pid_t;
typedef long paddr_t;
typedef int key_t;
typedef unsigned char use_t;
typedef short sysid_t;
typedef short index_t;
typedef short lock_t;
typedef unsigned int size_t;
typedef long clock_t;
typedef long pid_t;

The form daddr_t is used for disk addresses except in an inode on disk. Times are
encoded in seconds since 00:00:00 UTC, January 1, 1970. The major and minor parts of a
device code specify kind and unit number of a device and are installation-dependent.
Offsets are measured in bytes from the beginning of a file. The label_t variables are used
to save the processor state while another process is running.

modified 3 Jul 1990 SunOS 5.6 5-249

ucontext (5) Headers, Environments, and Macros

NAME ucontext − user context

SYNOPSIS #include <ucontext.h>

DESCRIPTION The ucontext structure defines the context of a thread of control within an executing pro-
cess.

This structure includes at least the following members:

ucontext_t uc_link
sigset_t uc_sigmask
stack_t uc_stack
mcontext_t uc_mcontext

uc_link is a pointer to the context that to be resumed when this context returns. If
uc_link is equal to 0, then this context is the main context, and the process exits when this
context returns.

uc_sigmask defines the set of signals that are blocked when this context is active [see sig-
procmask(2)].

uc_stack defines the stack used by this context [see sigaltstack(2)].

uc_mcontext contains the saved set of machine registers and any implementation specific
context data. Portable applications should not modify or access uc_mcontext.

SEE ALSO getcontext(2), sigaction(2), sigaltstack(2), sigprocmask(2), makecontext(3C)

5-250 SunOS 5.6 modified 3 Jul 1990

Headers, Environments, and Macros un (5)

NAME un − definitions for UNIX-domain sockets

SYNOPSIS #include <sys/un.h>

DESCRIPTION The <sys/un.h> header defines the sockaddr_un structure that includes the following
members:

sa_family_t sun_family /∗ address family ∗/
char sun_path[] /∗ socket pathname ∗/

The sockaddr_un structure is used to store addresses for UNIX domain sockets. Values
of this type must be cast to struct sockaddr for use with the socket interfaces.

The <sys/un.h> header defines the type sa_family_t as described in socket(5).

SEE ALSO bind(3N), bind(3XN), socket(3N), socket(3XN), socketpair(3N), socketpair(3XN),
socket(5)

modified 4 Apr 1997 SunOS 5.6 5-251

unistd (5) Headers, Environments, and Macros

NAME unistd − standard symbolic constants and types

SYNOPSIS #include <unistd.h>

DESCRIPTION The <unistd.h> header defines miscellaneous symbolic constants and types, and declares
miscellaneous functions. The contents of this header are shown below.

Version Test Macros The following symbolic constants are defined:

_POSIX_VERSION Integer value indicating version of the ISO POSIX-1 standard (C
language binding).

_POSIX2_VERSION Integer value indicating version of the ISO POSIX-2 standard
(Shell and Utilities).

_POSIX2_C_VERSION Integer value indicating version of the ISO POSIX-2 standard (C
language binding) and whether the X/Open POSIX2 C-language
Binding Feature Group is supported.

_XOPEN_VERSION Integer value indicating version of the X/Open Portability Guide
to which the implementation conforms.

_POSIX_VERSION is defined in the ISO POSIX-1 standard. It changes with each new ver-
sion of the ISO POSIX-1 standard.

_POSIX2_VERSION is defined in the ISO POSIX-2 standard. It changes with each new
version of the ISO POSIX-2 standard.

_POSIX2_C_VERSION is defined in the ISO POSIX-2 standard. It changes with each new
version of the ISO POSIX-2 standard. When the C language binding option of the ISO
POSIX-2 standard and therefore the X/Open POSIX2 C-language Binding Feature Group
is not supported, _POSIX2_C_VERSION will be set to −1.

_XOPEN_VERSION is defined as an integer value greater than or equal to 3, indicating
one of the issues of the X/Open Portability Guide to which the implementation conforms.

_XOPEN_XCU_VERSION is defined as an integer value indicating the version of the XCU
specification to which the implementation conforms. If the value is −1, no commands
and utilities are provided on the implementation. If the value is greater than or equal to
4, the functionality associated with the following symbols is also supported (see Manda-
tory Symbolic Constants and Constants for Options and Feature Groups below.)

_POSIX2_C_BIND _POSIX2_C_VERSION
_POSIX2_CHAR_TERM _POSIX2_LOCALEDEF
_POSIX2_UPE _POSIX2_VERSION

If the constants listed above are not defined, use the sysconf(3C) function to determine
which features are supported.

5-252 SunOS 5.6 modified 8 May 1997

Headers, Environments, and Macros unistd (5)

Each of the following symbolic constants is defined only if the implementation supports
the indicated revision of the X/Open Portability Guide:

_XOPEN_XPG2 X/Open Portability Guide, Volume 2, January 1987, XVS System Calls
and Libraries (ISBN: 0-444-70175-3).

_XOPEN_XPG3 X/Open Specification, February 1992, System Interfaces and Headers,
Issue 3 (ISBN: 1-872630-37-5, C212); this specification was formerly
X/Open Portability Guide, Issue 3, Volume 2, January 1989, XSI System
Interface and Headers (ISBN: 0-13-685843-0, XO/XPG/89/003).

_XOPEN_XPG4 X/Open CAE Specification, July 1992, System Interfaces and Headers,
Issue 4 (ISBN: 1-872630-47-2, C202) (XSH4).

_XOPEN_UNIX X/Open CAE Specification, August 1994, System Interfaces and
Headers, Issue 4, Version 2 (ISBN: 1-85912-037-7, C435) (XSH4v2).

Mandatory Symbolic
Constants

Although all implementations conforming to XSH4 or XSH4v2 support all of the FIPS
features described below, there may be system-dependent or file-system-dependent
configuration procedures that can remove or modify any or all of these features. Such
configurations should not be made if strict FIPS compliance is required.

The following symbolic constants are either undefined or defined with a value other than
−1. If a constant is undefined, an application should use the sysconf(3C), pathconf(2), or
fpathconf(2) functions to determine which features are present on the system at that time
or for the particular pathname in question.

_POSIX_CHOWN_RESTRICTED
The use of chown(2) is restricted to a process with appropriate
privileges, and to changing the group ID of a file only to the effec-
tive group ID of the process or to one of its supplementary group
IDs.

_POSIX_NO_TRUNC Pathname components longer than NAME_MAX generate an error.

_POSIX_VDISABLE Terminal special characters defined in <termios.h> can be disabled
using this character value.

_POSIX_SAVED_IDS Each process has a saved set-user-ID and a saved set-group-ID.

_POSIX_JOB_CONTROL
Implementation supports job control.

_POSIX_CHOWN_RESTRICTED, _POSIX_NO_TRUNC, and _POSIX_VDISABLE will have
values other than −1 when _XOPEN_VERSION has a value greater than or equal to 4.

Constants for
Options and Feature

Groups

The following symbolic constants are defined to have the value −1 if the implementation
will never provide the feature, and to have a value other than −1 if the implementation
always provides the feature. If these are undefined, the sysconf() function can be used to
determine whether the feature is provided for a particular invocation of the application.

_POSIX2_C_BIND Implementation supports the C language binding option.

_POSIX2_C_DEV Implementation supports the C language development utilities

modified 8 May 1997 SunOS 5.6 5-253

unistd (5) Headers, Environments, and Macros

option.

_POSIX2_CHAR_TERM
Implementation supports at least one terminal type.

_POSIX2_FORT_DEV Implementation supports the FORTRAN Development Utilities
Option.

_POSIX2_FORT_RUN Implementation supports the FORTRAN Run-time Utilities
Option.

_POSIX2_LOCALEDEF
Implementation supports the creation of locales by the localedef
utility.

_POSIX2_SW_DEV Implementation supports the Software Development Utilities
Option.

_POSIX2_UPE The implementation supports the User Portability Utilities Option.

_XOPEN_CRYPT The implementation supports the X/Open Encryption Feature
Group.

_XOPEN_ENH_I18N The implementation supports the X/Open Enhanced Interna-
tionalisation Feature Group.

_XOPEN_SHM The implementation supports the X/Open Shared Memory
Feature Group.

Constants for
Functions

The following symbolic constant is defined:

NULL Null pointer.

The following symbolic constants are defined for the access() function:

R_OK Test for read permission.

W_OK Test for write permission.

X_OK Test for execute (search) permission.

F_OK Test for existence of file.

The constants F_OK, R_OK, W_OK, and X_OK and the expressions R_OK | W_OK,
R_OK | X_OK, and R_OK | W_OK | X_OK all have distinct values.

The following symbolic constant is defined for the confstr() function:

_CS_PATH If the ISO POSIX-2 is supported, this is the value for the PATH environ-
ment variable that finds all standard utilities. Otherwise the meaning of
this value is unspecified.

The following symbolic constants are defined for the lseek(2) and fcntl(2) functions (they
have distinct values):

SEEK_SET Set file offset to offset.

SEEK_CUR Set file offset to current plus offset.

SEEK_END Set file offset to EOF plus offset.

5-254 SunOS 5.6 modified 8 May 1997

Headers, Environments, and Macros unistd (5)

The following symbolic constants are defined for sysconf(3C):

_SC_2_C_BIND _SC_2_C_DEV
_SC_2_CHAR_TERM _SC_2_C_VERSION
_SC_2_FORT_DEV _SC_2_FORT_RUN
_SC_2_LOCALEDEF _SC_2_SW_DEV
_SC_2_UPE _SC_2_VERSION
_SC_AIO_LISTIO_MAX _SC_AIO_MAX
_SC_AIO_PRIO_DELTA_MAX _SC_ARG_MAX
_SC_ASYNCHRONOUS_IO _SC_ATEXIT_MAX
_SC_AVPHYS_PAGES _SC_BC_BASE_MAX
_SC_BC_DIM_MAX _SC_BC_SCALE_MAX
_SC_BC_STRING_MAX _SC_CHILD_MAX
_SC_CLK_TCK _SC_COLL_WEIGHTS_MAX
_SC_DELAYTIMER_MAX _SC_EXPR_NEST_MAX
_SC_FSYNC _SC_GETGR_R_SIZE_MAX
_SC_GETPW_R_SIZE_MAX _SC_IOV_MAX
_SC_JOB_CONTROL _SC_LINE_MAX
_SC_LOGIN_NAME_MAX _SC_LOGNAME_MAX
_SC_MAPPED_FILES _SC_MEMLOCK
_SC_MEMLOCK_RANGE _SC_MEMORY_PROTECTION
_SC_MESSAGE_PASSING _SC_MQ_OPEN_MAX
_SC_MQ_PRIO_MAX _SC_NGROUPS_MAX
_SC_NPROCESSORS_CONF _SC_NPROCESSORS_ONLN
_SC_OPEN_MAX _SC_PAGESIZE
_SC_PAGE_SIZE _SC_PASS_MAX
_SC_PHYS_PAGES _SC_PRIORITIZED_IO
_SC_PRIORITY_SCHEDULING _SC_REALTIME_SIGNALS
_SC_RE_DUP_MAX _SC_RTSIG_MAX
_SC_SAVED_IDS _SC_SEMAPHORES
_SC_SEM_NSEMS_MAX _SC_SEM_VALUE_MAX
_SC_SHARED_MEMORY_OBJECTS _SC_SIGQUEUE_MAX
_SC_STREAM_MAX _SC_SYNCHRONIZED_IO
_SC_THREAD_ATTR_STACKADDR _SC_THREAD_ATTR_STACKSIZE
_SC_THREAD_DESTRUCTOR_ITERATIONS _SC_THREAD_KEYS_MAX
_SC_THREAD_PRIO_INHERIT _SC_THREAD_PRIO_PROTECT
_SC_THREAD_PRIORITY_SCHEDULING _SC_THREAD_PROCESS_SHARED
_SC_THREADS _SC_THREAD_SAFE_FUNCTIONS
_SC_THREAD_STACK_MIN _SC_THREAD_THREADS_MAX
_SC_TIMER_MAX _SC_TIMERS
_SC_TTY_NAME_MAX _SC_TZNAME_MAX
_SC_VERSION _SC_XOPEN_CRYPT
_SC_XOPEN_ENH_I18N _SC_XOPEN_SHM
_SC_XOPEN_UNIX _SC_XOPEN_VERSION
_SC_XOPEN_XCU_VERSION

modified 8 May 1997 SunOS 5.6 5-255

unistd (5) Headers, Environments, and Macros

The two constants _SC_PAGESIZE and _SC_PAGE_SIZE may be defined to have the same
value. All other values in this list are distinct.

The following symbolic constants are defined as possible values for the function argument
to the lockf(3C) function:

F_LOCK Lock a section for exclusive use.

F_ULOCK Unlock locked sections.

F_TEST Test section for locks by other processes.

F_TLOCK Test and lock a section for exclusive use.

The following symbolic constants are defined for pathconf(2):

_PC_ASYNC_IO _PC_CHOWN_RESTRICTED
_PC_FILESIZEBITS _PC_LINK_MAX
_PC_MAX_CANON _PC_MAX_INPUT
_PC_NAME_MAX _PC_NO_TRUNC
_PC_PATH_MAX _PC_PIPE_BUF
_PC_PRIO_IO _PC_SYNC_IO
_PC_VDISABLE

The following symbolic constants are defined for file streams:

STDIN_FILENO File number of stdin. It is 0.

STDOUT_FILENO File number of stdout. It is 1.

STDERR_FILENO File number of stderr. It is 2.

Type Definitions The size_t, ssize_t, uid_t, gid_t, off_t, pid_t, and useconds_t types are defined as
described in <sys/types.h>.

Declarations The following are declared as functions and may also be defined as macros:

int access(const char ∗path, int amode);
unsigned int alarm(unsigned int seconds);
int brk(void ∗addr);
int chdir(const char ∗path);
int chown(const char ∗path, uid_t owner, gid_t group);
int chroot(const char ∗path);
int close(int fildes);
size_t confstr (int name, char ∗buf, size_t len);
char ∗crypt(const char ∗key, const char ∗salt);
char ∗ctermid(char ∗s);
char ∗cuserid(char ∗s);
int dup(int fildes);
int dup2(int fildes, int fildes2);
void encrypt(char block64, int edflag);
int execl(const char ∗path, const char ∗arg0, . . .);
int execle(const char ∗file, const char ∗arg0, . . .);
int execlp(const char ∗file, const char ∗arg0, . . .);

5-256 SunOS 5.6 modified 8 May 1997

Headers, Environments, and Macros unistd (5)

int execv(const char ∗path, char ∗const argv[]);
int execve(const char ∗path, char ∗const argv[], char ∗const envp[]);
int execvp(const char ∗file, char ∗const argv[]);
void _exit(int status);
int fchown(int fildes, uid_t owner, gid_t group);
int fchdir(int fildes);
pid_t fork(void);
long int fpathconf(int fildes, int name);
int fsync(int fildes);
int ftruncate(int fildes, off_t length);
char ∗getcwd(char ∗buf, size_t size);
int getdtablesize(void);
gid_t getegid(void);
uid_t geteuid(void);
gid_t getgid(void);
int getgroups(int gidsetsize, gid_t grouplist[]);
long gethostid(void);
int gethostname(char ∗address, int address_len);
char ∗getlogin(void);
int getopt(int argc, char ∗ const argv[], const char ∗optstring);
int getpagesize(void);
char ∗getpass(const char ∗prompt);
pid_t getpgid(pid_t pid);
pid_t getpgrp(void);
pid_t getpid(void);
pid_t getppid(void);
pid_t getsid(pid_t pid);
uid_t getuid(void);
char ∗getwd(char ∗path_name);
int isatty(int fildes);
int lchown(const char ∗path, uid_t owner, gid_t group);
int link(const char ∗path1, const char ∗path2);
int lockf(int fildes,int function,off_t size);
off_t lseek(int fildes, off_t offset, int whence);
int nice(int incr);
long int pathconf(const char ∗path, int name);
int pause(void);
int pipe(int fildes2);
ssize_t read(int fildes, void ∗buf, size_t nbyte);
int readlink(const char ∗path, char ∗buf, size_t bufsiz);
int rmdir(const char ∗path);
void ∗sbrk(int incr);
int setgid(gid_t gid);
int setpgid(pid_t pid, pid_t pgid);
pid_t setpgrp(void);

modified 8 May 1997 SunOS 5.6 5-257

unistd (5) Headers, Environments, and Macros

int setregid(gid_t rgid, gid_t egid);
int setreuid(uid_t ruid, uid_t euid);
pid_t setsid(void);
int setuid(uid_t uid);
unsigned int sleep(unsigned int seconds);
void swab(const void ∗src, void ∗dest, ssize_t nbytes);
int symlink(const char ∗path1, const char ∗path2);
void sync(void);
long int sysconf(int name);
pid_t tcgetpgrp(int fildes);
int tcsetpgrp(int fildes, pid_t pgrp_id);
int truncate(const char ∗path, off_t length);
char ∗ttyname(int fildes);
useconds_t ualarm(useconds_t useconds, useconds_t interval);
int unlink(const char ∗path);
int usleep(useconds_t useconds);
pid_t vfork(void);
ssize_t write(int fildes, const void ∗buf, size_t nbyte);

The following external variables are declared:

extern char ∗optarg;
extern int optind, opterr, optopt;

SEE ALSO access(2), alarm(2), brk(2), chdir(2), chown(2), chroot(2), close(2), dup(2), exit(2),
fchdir(2), fchown(2), fcntl(2), fork(2), fpathconf(2), getegid(2), geteuid(2), getgid(2), get-
groups(2), getpgid(2), getpgrp(2), getpid(2), getppid(2), getsid(2), getuid(2), lchown(2),
link(2), lseek(2), nice(2), pathconf(2), pause(2), pipe(2), read(2), readlink(2), rmdir(2),
sbrk(2), setgid(2), setpgid(2), setpgrp(2), setregid(2), setreuid(2), setsid(2), setuid(2),
symlink(2), sync(2), unlink(2), vfork(2), write(2), crypt(3C), ctermid(3S), cuserid(3S),
encrypt(3C), fsync(3C), ftruncate(3C), getcwd(3C), getdtablesize(3C), gethostid(3C),
gethostname(3C), getlogin(3C), getpagesize(3C), getpass(3C), getwd(3C), isatty(3C),
lockf(3C), sleep(3C), swab(3C), sysconf(3C), tcgetpgrp(3), tcsetpgrp(3), truncate(3C),
ttyname(3C), ualarm(3C), usleep(3C), environ(5), standards(5)

5-258 SunOS 5.6 modified 8 May 1997

Headers, Environments, and Macros values (5)

NAME values − machine-dependent values

SYNOPSIS #include <values.h>

DESCRIPTION This file contains a set of manifest constants, conditionally defined for particular proces-
sor architectures.

The model assumed for integers is binary representation (one’s or two’s complement),
where the sign is represented by the value of the high-order bit.

BITS(type) The number of bits in a specified type (for example, int).

HIBITS The value of a short integer with only the high-order bit set.

HIBITL The value of a long integer with only the high-order bit set.

HIBITI The value of a regular integer with only the high-order bit set.

MAXSHORT The maximum value of a signed short integer.

MAXLONG The maximum value of a signed long integer.

MAXINT The maximum value of a signed regular integer.

MAXFLOAT, LN_MAXFLOAT
The maximum value of a single-precision floating-point number, and its
natural logarithm.

MAXDOUBLE, LN_MAXDOUBLE
The maximum value of a double-precision floating-point number, and its
natural logarithm.

MINFLOAT, LN_MINFLOAT
The minimum positive value of a single-precision floating-point number,
and its natural logarithm.

MINDOUBLE, LN_MINDOUBLE
The minimum positive value of a double-precision floating-point
number, and its natural logarithm.

FSIGNIF The number of significant bits in the mantissa of a single-precision
floating-point number.

DSIGNIF The number of significant bits in the mantissa of a double-precision
floating-point number.

SEE ALSO intro(3), math(5)

modified 2 Mar 1993 SunOS 5.6 5-259

varargs (5) Headers, Environments, and Macros

NAME varargs − handle variable argument list

SYNOPSIS #include <varargs.h>

va_alist

va_dcl

va_list pvar;

void va_start(va_list pvar);

type va_arg(va_list pvar, type);

void va_end(va_list pvar);

DESCRIPTION This set of macros allows portable procedures that accept variable argument lists to be
written. Routines that have variable argument lists (such as printf(3S)) but do not use
varargs are inherently non-portable, as different machines use different argument-
passing conventions.

va_alist is used as the parameter list in a function header.

va_dcl is a declaration for va_alist. No semicolon should follow va_dcl.

va_list is a type defined for the variable used to traverse the list.

va_start is called to initialize pvar to the beginning of the list.

va_arg will return the next argument in the list pointed to by pvar. type is the type the
argument is expected to be. Different types can be mixed, but it is up to the routine to
know what type of argument is expected, as it cannot be determined at runtime.

va_end is used to clean up.

Multiple traversals, each bracketed by va_start and va_end, are possible.

EXAMPLE This example is a possible implementation of execl (see exec(2)).

#include <unistd.h>
#include <varargs.h>
#define MAXARGS 100

/∗ execl is called by
execl(file, arg1, arg2, ..., (char ∗)0);

∗/
execl(va_alist)
va_dcl
{

va_list ap;
char ∗file;
char ∗args[MAXARGS]; /∗ assumed big enough∗/
int argno = 0;

va_start(ap);

5-260 SunOS 5.6 modified 3 Jul 1990

Headers, Environments, and Macros varargs (5)

file = va_arg(ap, char ∗);
while ((args[argno++] = va_arg(ap, char ∗)) != 0)

;
va_end(ap);
return execv(file, args);

}

SEE ALSO exec(2), printf(3S), vprintf(3S), stdarg(5)

NOTES It is up to the calling routine to specify in some manner how many arguments there are,
since it is not always possible to determine the number of arguments from the stack
frame. For example, execl is passed a zero pointer to signal the end of the list. printf can
tell how many arguments are there by the format.

It is non-portable to specify a second argument of char, short, or float to va_arg, since
arguments seen by the called function are not char, short, or float. C converts char and
short arguments to int and converts float arguments to double before passing them to a
function.

stdarg is the preferred interface.

modified 3 Jul 1990 SunOS 5.6 5-261

vgrindefs (5) Headers, Environments, and Macros

NAME vgrindefs − vgrind’s language definition data base

SYNOPSIS /usr/lib/vgrindefs

DESCRIPTION vgrindefs contains all language definitions for vgrind(1). Capabilities in vgrindefs are of
two types: Boolean capabilities which indicate that the language has some particular
feature and string capabilities which give a regular expression or keyword list. Entries
may continue onto multiple lines by giving a \ as the last character of a line. Lines start-
ing with # are comments.

Capabilities The following table names and describes each capability.

Name Type Description
ab str Regular expression for the start of an alternate form comment
ae str Regular expression for the end of an alternate form comment
bb str Regular expression for the start of a block
be str Regular expression for the end of a lexical block
cb str Regular expression for the start of a comment
ce str Regular expression for the end of a comment
id str String giving characters other than letters and digits that may legally occur

in identifiers (default ‘_’)
kw str A list of keywords separated by spaces
lb str Regular expression for the start of a character constant
le str Regular expression for the end of a character constant
oc bool Present means upper and lower case are equivalent
pb str Regular expression for start of a procedure
pl bool Procedure definitions are constrained to the lexical level matched by the

‘px’ capability
px str A match for this regular expression indicates that procedure definitions

may occur at the next lexical level. Useful for lisp-like languages in which
procedure definitions occur as subexpressions of defuns.

sb str Regular expression for the start of a string
se str Regular expression for the end of a string
tc str Use the named entry as a continuation of this one
tl bool Present means procedures are only defined at the top lexical level

Regular Expressions vgrindefs uses regular expressions similar to those of ex(1) and lex(1). The characters ‘ˆ’,
‘$’, ‘:’, and ‘\’ are reserved characters and must be ‘quoted’ with a preceding \ if they are
to be included as normal characters. The metasymbols and their meanings are:

$ The end of a line
ˆ The beginning of a line
\d A delimiter (space, tab, newline, start of line)
\a Matches any string of symbols (like ‘.∗’ in lex)
\p Matches any identifier. In a procedure definition (the ‘pb’ capability) the string

5-262 SunOS 5.6 modified 10 Aug 1994

Headers, Environments, and Macros vgrindefs (5)

that matches this symbol is used as the procedure name.
() Grouping
| Alternation
? Last item is optional
\e Preceding any string means that the string will not match an input string if the

input string is preceded by an escape character (\). This is typically used for
languages (like C) that can include the string delimiter in a string by escaping it.

Unlike other regular expressions in the system, these match words and not characters.
Hence something like ‘(tramp|steamer)flies?’ would match ‘tramp’, ‘steamer’,
‘trampflies’, or ‘steamerflies’. Contrary to some forms of regular expressions, vgrindef
alternation binds very tightly. Grouping parentheses are likely to be necessary in expres-
sions involving alternation.

Keyword List The keyword list is just a list of keywords in the language separated by spaces. If the ‘oc’
boolean is specified, indicating that upper and lower case are equivalent, then all the key-
words should be specified in lower case.

EXAMPLE The following entry, which describes the C language, is typical of a language entry.

C|c|the C programming language:\
:pb=ˆ\d?∗?\d?\p\d?(\a?\)(\d|{):bb={:be=}:cb=/∗:ce=∗/:sb=":se=\e":\
:le=\e’:tl:\
:kw=asm auto break case char continue default do double else enum\
extern float for fortran goto if int long register return short\
sizeof static struct switch typedef union unsigned void while #define\
#else #endif #if #ifdef #ifndef #include #undef # define endif\
ifdef ifndef include undef defined:

Note that the first field is just the language name (and any variants of it). Thus the C
language could be specified to vgrind(1) as ‘c’ or ‘C’.

FILES /usr/lib/vgrindefs file containing vgrind descriptions

SEE ALSO ex(1), lex(1), troff(1), vgrind(1)

modified 10 Aug 1994 SunOS 5.6 5-263

wstat (5) Headers, Environments, and Macros

NAME wstat − wait status

SYNOPSIS #include <sys/wait.h>

DESCRIPTION When a process waits for status from its children via either the wait or waitpid function,
the status returned may be evaluated with the following macros, defined in <sys/wait.h>.
These macros evaluate to integral expressions. The stat argument to these macros is the
integer value returned from wait or waitpid.

WIFEXITED(stat) Evaluates to a non-zero value if status was returned for a child
process that terminated normally.

WEXITSTATUS(stat) If the value of WIFEXITED(stat) is non-zero, this macro evaluates
to the exit code that the child process passed to _exit() (see
exit(2)) or exit(3C), or the value that the child process returned
from main.

WIFSIGNALED(stat) Evaluates to a non-zero value if status was returned for a child
process that terminated due to the receipt of a signal.

WTERMSIG(stat) If the value of WIFSIGNALED(stat) is non-zero, this macro evalu-
ates to the number of the signal that caused the termination of
the child process.

WIFSTOPPED(stat) Evaluates to a non-zero value if status was returned for a child
process that is currently stopped.

WSTOPSIG(stat) If the value of WIFSTOPPED(stat) is non-zero, this macro evalu-
ates to the number of the signal that caused the child process to
stop.

WIFCONTINUED(stat)
Evaluates to a non-zero value if status was returned for a child
process that has continued.

WCOREDUMP(stat) If the value of WIFSIGNALED (stat) is non-zero, this macro
evaluates to a non-zero value if a core image of the terminated
child was created.

SEE ALSO exit(2), wait(2), waitpid(2), exit(3C)

5-264 SunOS 5.6 modified 10 Sep 1991

Index

6
64-bit transitional interfaces — interface64,

5-139

A
architecture — characteristics of commands,

utilities, and device drivers, 5-11
ascii — ASCII character set, 5-9
attributes — characteristics of commands, utili-

ties, and device drivers, 5-11
Architecture, 5-11
Availability, 5-11
Interface Stability, 5-12
MT-Level, 5-14

availability — characteristics of commands,
utilities, and device drivers, 5-11

C
character definitions for equations — eqnchar,

5-26
character set description file — charmap, 5-18
characteristics of commands, utilities, and device

drivers
— architecture, 5-11
— attributes, 5-11
— availability, 5-11
— CSI, 5-11

characteristics of commands, utilities, and device
drivers, continued

— MT-Level, 5-11
— stability, 5-11

charmap — character set description file, 5-18
Decimal Constants, 5-19
Declarations, 5-18
Format, 5-19
Ranges of Symbolic Names, 5-20
Symbolic Names, 5-18

code set conversion tables — iconv_dhn, 5-110,
5-80, 5-69, 5-74, 5-84, 5-87, 5-92, 5-100, 5-104,
5-113, 5-119, 5-124, 5-127, 5-131
— iconv_1250, 5-69
— iconv_1251, 5-74
— iconv_646, 5-84
— iconv_852, 5-87
— iconv_8859-1, 5-92
— iconv_8859-2, 5-100
— iconv_8859-5, 5-104
— iconv_dhn, 5-110
— iconv_koi8-r, 5-113
— iconv_mac_cyr, 5-119
— iconv_maz, 5-124
— iconv_pc_cyr, 5-127

compilation environment, large file — lfcompile,
5-149

compilation environment, transitional — lfcom-

Index−1

pile64, 5-151
CSI — characteristics of commands, utilities, and

device drivers, 5-11

D
data types, primitive system

— types, 5-249
definitions for internet operations — inet, 5-138
definitions for network database operations —

netdb, 5-196
definitions for UNIX-domain sockets — un, 5-251
document production

man — macros to format manual pages, 5-175
mansun — macros to format manual pages,

5-179
me — macros to format technical papers, 5-184
mm — macros to format articles, theses and

books, 5-187
ms — macros to format articles, theses and

books, 5-192
special character definitions for equations —

eqnchar, 5-26

E
environ — user environment, 5-21
environment variables

HOME, 5-21
LANG, 5-21
LC_COLLATE, 5-21
LC_CTYPE, 5-21
LC_MESSAGES, 5-21
LC_MONETARY, 5-21
LC_NUMERIC, 5-21
LC_TIME, 5-21
MSGVERB, 5-21
NETPATH, 5-21
PATH, 5-21
SEV_LEVEL, 5-21
TERM, 5-21
TZ, 5-21

eqnchar — special character definitions for equa-
tions, 5-26

extensions — localedef extensions description
file, 5-27

F
file control options

— fcntl, 5-28
file format notation — formats

formats, 5-64
file name pattern matching — fnmatch, 5-40
filesystem — file system layout, 5-31

/export File System, 5-36
/usr File System, 5-34
Root File System, 5-31

floatingpoint — IEEE floating point definitions,
5-38

fnmatch — file name pattern matching, 5-40
fns — overview of FNS, 5-43

Composite Names, 5-43
FNS and Naming Systems, 5-44

FNS
overview — fns, 5-43
overview of FNS References —

fns_references, 5-58
overview over DNS implementation —

fns_dns, 5-45
overview over files implementation —

fns_files, 5-47
overview over NIS (YP) implementation —

fns_nis, 5-53
overview over NIS+ implementation —

fns_nis+, 5-51
overview over X.500 implementation —

fns_x500, 5-61
fns — overview of FNS

Why FNS?, 5-43
XFN, 5-43

fns_dns — overview of FNS over DNS implemen-
tation, 5-45

fns_files — overview of FNS over files imple-
mentation, 5-47
FNS Policies and /etc Files, 5-47

fns_initial_context — overview of the FNS
Initial Context, 5-48

fns_nis — overview of FNS over NIS (YP) imple-
mentation, 5-53
Federating NIS with DNS or X.500, 5-53
FNS Policies and NIS, 5-53

Index−2

fns_nis — overview of FNS over NIS (YP) imple-
mentation, continued

NIS Security, 5-53
fns_nis+ — overview of FNS over NIS+ imple-

mentation, 5-51
FNS Policies and NIS+, 5-51

fns_policies — overview of the FNS Policies,
5-55

fns_references — overview of FNS References,
5-58
Address Types, 5-59
Reference Types, 5-58

fns_x500 — overview of FNS over X.500 imple-
mentation, 5-61

formats — file format notation, 5-64

I
iconv — code set conversion tables, 5-80
iconv_1250 — code set conversion tables for MS

1250 (Windows Latin 2), 5-69
iconv_1251 — code set conversion tables for MS

1251 (Windows Cyrillic), 5-74
iconv_646 — code set conversion tables for ISO

646, 5-84
iconv_852 — code set conversion tables for MS

852 (MS-DOS Latin 2), 5-87
iconv_8859-1 — code set conversion tables for

ISO 8859-1 (Latin 1), 5-92
iconv_8859-2 — code set conversion tables for

ISO 8859-2 (Latin 2), 5-100
iconv_8859-5 — code set conversion tables for

ISO 8859-5 (Cyrillic), 5-104
iconv_dhn — code set conversion tables for DHN

(Dom Handlowy Nauki), 5-110
iconv_koi8-r — code set conversion tables for

KOI8-R, 5-113
iconv_mac_cyr — code set conversion tables for

Macintosh Cyrillic, 5-119
iconv_maz — code set conversion tables for Mazo-

via, 5-124
iconv_pc_cyr — code set conversion tables for

Alternative PC Cyrillic, 5-127

iconv_unicode — code set conversion tables for
Unicode, 5-131

IEEE arithmetic
floating point definitions — floatingpoint,

5-38
in — Internet Protocol family, 5-136

Default, 5-136
Standard-conforming, 5-136

inet — definitions for internet operations, 5-138
Default, 5-138
Standard-conforming, 5-138

interface64 — 64-bit transitional interfaces, 5-139
Data Types, 5-139
System Interfaces, 5-140

internationalized basic and extended regular expres-
sion matching — regex, 5-210

Internet Protocol family — in, 5-136, 5-234
isalist — the native instruction sets known to

Solaris, 5-143

L
language data types, native — nl_types, 5-201
language information constants — langinfo,

5-145
large file compilation environment — lfcompile,

5-149
large file status of utilities — largefile, 5-147
largefile — large file status of utilities, 5-147

Large file aware utilities, 5-147
Large file safe utilities, 5-148

lfcompile — large file compilation environment,
5-149
Access to Additional Large File Interfaces, 5-149

lfcompile64 — transitional compilation environ-
ment, 5-151
Access to Additional Large File Interfaces, 5-151

locale — subset of a user’s environment that
depends on language and cultural conventions,
5-153
collating-element keyword, 5-160
collating-symbol keyword, 5-160
Collation Order, 5-162
LC_COLLATE, 5-159

Index−3

locale — subset of a user’s environment that
depends on language and cultural con-
ventions, continued

LC_CTYPE, 5-156
LC_MESSAGES, 5-174
LC_MONETARY, 5-164
LC_NUMERIC, 5-168
LC_TIME, 5-169
LC_TIME C-language Access, 5-171
LC_TIME General Information, 5-173
Locale Definition, 5-153
order_end keyword, 5-164
order_start keyword, 5-161

localedef extensions description file — exten-
sions, 5-27

M
machine-dependent values

— values, 5-259
macros

to format articles, theses and books — mm,
5-187, 5-192

to format Manual pages — man, 5-175, 5-179
to format technical papers — me, 5-184

man — macros to format manual pages, 5-175
mansun — macros to format manual pages, 5-179
manual pages

macros to format manual pages — man, 5-175
Sun macros to format manual pages — man-

sun, 5-179
mark files for special treatment — sticky, 5-245
math — math functions and constants, 5-183
math functions and constants — math, 5-183
me — macros to format technical papers, 5-184
mm — macros to format articles, theses and books,

5-187
ms — macros to format articles, theses and books,

5-192
MT-Level — characteristics of commands, utilities,

and device drivers, 5-11

N
native instruction sets known to Solaris — isal-

ist, 5-143
netdb — definitions for network database opera-

tions, 5-196
Default, 5-197
Standard-conforming, 5-197

NFS and sticky bits — sticky, 5-245
nfssec — overview of NFS security modes, 5-199
nl_types — native language data types, 5-201

O
overview of FNS — fns, 5-43
overview of FNS over DNS implementation —

fns_dns, 5-45
overview of FNS over files implementation —

fns_files, 5-47
overview of FNS over NIS (YP) implementation —

fns_nis, 5-53
overview of FNS over NIS+ implementation —

fns_nis+, 5-51
overview of FNS over X.500 implementation —

fns_x500, 5-61
overview of FNS References — fns_references,

5-58
overview of NFS security modes — nfssec, 5-199
overview of the FNS Initial Context —

fns_initial_context, 5-48
overview of the FNS Policies — fns_policies,

5-55

P
pam_dial_auth — authentication management for

dialups, 5-202
pam_rhosts_auth — authentication management

using ruserok(), 5-203
pam_sample — sample module for PAM, 5-204
pam_unix — authentication, account, session and

password management for UNIX, 5-206
POSIX — standards and specifications supported by

Solaris, 5-238
POSIX.1 — standards and specifications supported

Index−4

by Solaris, 5-238
POSIX.2 — standards and specifications supported

by Solaris, 5-238
processes

base signals — signal, 5-228
signal generation information — siginfo,

5-225
wait status — wstat, 5-264

profiling utilities
profile within a function — prof, 5-209

R
regex — internationalized basic and extended reg-

ular expression matching, 5-210
regular expression compile and match routines

— advance, 5-219
— compile, 5-219
— regexp, 5-219
— step, 5-219

S
shell environment

conventional names for terminals — term,
5-246

signal — base signals, 5-228
signal generation information

— siginfo, 5-225
socket — Internet Protocol family, 5-234
special character definitions for equations —

eqnchar, 5-26
stability — characteristics of commands, utili-

ties, and device drivers, 5-11
standard symbolic constants and types — unistd,

5-252
standards — standards and specifications sup-

ported by Solaris, 5-238
Compilation, 5-239
Feature Test Macros, 5-239
POSIX, 5-239
Utilities, 5-238
X/Open, 5-239

standards and specifications supported by Solaris
— POSIX, 5-238

standards and specifications supported by Solaris,
continued

— POSIX.1, 5-238
— POSIX.2, 5-238
— standards, 5-238
— XNET, 5-238
— XNET4, 5-238
— XPG, 5-238
— XPG3, 5-238
— XPG4, 5-238
— XPG4v2, 5-238

stat — data returned by stat system call, 5-241
sticky — mark files for special treatment, 5-245
subset of a user’s environment that depends on

language and cultural conventions — locale,
5-153

system calls
— stat, 5-241

T
term — conventional names for terminals, 5-246
terminals

conventional names — term, 5-246
transitional compilation environment — lfcom-

pile64, 5-151
transitional interfaces,64-bit — interface64,

5-139

U
un — definitions for UNIX-domain sockets, 5-251
unicode

code set conversion tables —
iconv_unicode, 5-131

unistd — standard symbolic constants and types,
5-252
Constants for Functions, 5-254
Constants for Options and Feature Groups,

5-253
Declarations, 5-256
Mandatory Symbolic Constants, 5-253
Type Definitions, 5-256
Version Test Macros, 5-252

UNIX System Code
data types — types, 5-249

Index−5

user context
— ucontext, 5-250

user environment
— environ, 5-21

V
values — machine-dependent values, 5-259
variable arguments

handle list — stdarg, 5-243, 5-260
vgrindefs — vgrind language definitions, 5-262

W
wait status

— wstat, 5-264

X
XNET — standards and specifications supported by

Solaris, 5-238
XNET4 — standards and specifications supported by

Solaris, 5-238
XPG — standards and specifications supported by

Solaris, 5-238
XPG3 — standards and specifications supported by

Solaris, 5-238
XPG4 — standards and specifications supported by

Solaris, 5-238
XPG4v2 — standards and specifications supported

by Solaris, 5-238

Index−6

