
SunOS Reference Manual

Sun Microsystems, Inc.
2550 Garcia Avenue
Mountain View, CA 94043
U.S.A.

Copyright 1997 Sun Microsystems, Inc. 2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and
decompilation. No part of this product or document may be reproduced in any form by any means without prior written authorization of
Sun and its licensors, if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark
in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, SunSoft, Solaris, SunOS, OpenWindows, DeskSet, ONC, ONC+, and NFS are trademarks, or
registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are
trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are
based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun
acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the
computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s
licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license agreements.

RESTRICTED RIGHTS : Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87) and
FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a).

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-
INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.
��

Copyright 1997 Sun Microsystems, Inc., 2550 Garcia Avenue, Mountain View, Californie 94043-1100 Etats-Unis. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution,
et la décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit,
sans l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la
technologie relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, SunSoft, Solaris, SunOS, OpenWindows, DeskSet, ONC, ONC+, et NFS sont des marques de fabrique
ou des marques déposées, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous
licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les
produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun
reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou
graphique pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox,
cette licence couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se
conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE "EN L’ETAT" ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y
COMPRIS DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE
UTILISATION PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE
GARANTIE NE S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

Please
Recycle

Preface

OVERVIEW
A man page is provided for both the naive user, and sophisticated user who is
familiar with the SunOS operating system and is in need of on-line information.
A man page is intended to answer concisely the question “What does it do?”
The man pages in general comprise a reference manual. They are not intended
to be a tutorial.

The following contains a brief description of each section in the man pages and
the information it references:

· Section 1 describes, in alphabetical order, commands available with the
operating system.

· Section 1M describes, in alphabetical order, commands that are used chiefly
for system maintenance and administration purposes.

· Section 2 describes all of the system calls. Most of these calls have one or
more error returns. An error condition is indicated by an otherwise
impossible returned value.

· Section 3 describes functions found in various libraries, other than those
functions that directly invoke UNIX system primitives, which are described in
Section 2 of this volume.

i

· Section 4 outlines the formats of various files. The C structure declarations
for the file formats are given where applicable.

· Section 5 contains miscellaneous documentation such as character set tables,
etc.

· Section 6 contains available games and demos.

· Section 7 describes various special files that refer to specific hardware
peripherals, and device drivers. STREAMS software drivers, modules and the
STREAMS-generic set of system calls are also described.

· Section 9 provides reference information needed to write device drivers in
the kernel operating systems environment. It describes two device driver
interface specifications: the Device Driver Interface (DDI) and the
Driver–Kernel Interface (DKI).

· Section 9E describes the DDI/DKI, DDI-only, and DKI-only entry-point
routines a developer may include in a device driver.

· Section 9F describes the kernel functions available for use by device drivers.

· Section 9S describes the data structures used by drivers to share
information between the driver and the kernel.

Below is a generic format for man pages. The man pages of each manual
section generally follow this order, but include only needed headings. For
example, if there are no bugs to report, there is no BUGS section. See the intro
pages for more information and detail about each section, and man(1) for more
information about man pages in general.

NAME
This section gives the names of the commands or functions documented,
followed by a brief description of what they do.

SYNOPSIS
This section shows the syntax of commands or functions. When a command or
file does not exist in the standard path, its full pathname is shown. Literal
characters (commands and options) are in bold font and variables (arguments,
parameters and substitution characters) are in italic font. Options and

ii

arguments are alphabetized, with single letter arguments first, and options with
arguments next, unless a different argument order is required.

The following special characters are used in this section:

[] The option or argument enclosed in these brackets is optional. If the
brackets are omitted, the argument must be specified.

. . . Ellipses. Several values may be provided for the previous argument, or
the previous argument can be specified multiple times, for example,
‘filename . . .’.

| Separator. Only one of the arguments separated by this character can
be specified at time.

{ } Braces. The options and/or arguments enclosed within braces are
interdependent, such that everything enclosed must be treated as a
unit.

PROTOCOL
This section occurs only in subsection 3R to indicate the protocol description
file. The protocol specification pathname is always listed in bold font.

DESCRIPTION
This section defines the functionality and behavior of the service. Thus it
describes concisely what the command does. It does not discuss OPTIONS or
cite EXAMPLES. Interactive commands, subcommands, requests, macros,
functions and such, are described under USAGE.

IOCTL
This section appears on pages in Section 7 only. Only the device class which
supplies appropriate parameters to the ioctl(2) system call is called ioctl and
generates its own heading. ioctl calls for a specific device are listed
alphabetically (on the man page for that specific device). ioctl calls are used for
a particular class of devices all of which have an io ending, such as mtio(7).

Preface iii

OPTIONS
This lists the command options with a concise summary of what each option
does. The options are listed literally and in the order they appear in the
SYNOPSIS section. Possible arguments to options are discussed under the
option, and where appropriate, default values are supplied.

OPERANDS
This section lists the command operands and describes how they affect the
actions of the command.

OUTPUT
This section describes the output - standard output, standard error, or output
files - generated by the command.

RETURN VALUES
If the man page documents functions that return values, this section lists these
values and describes the conditions under which they are returned. If a
function can return only constant values, such as 0 or −1, these values are listed
in tagged paragraphs. Otherwise, a single paragraph describes the return
values of each function. Functions declared as void do not return values, so
they are not discussed in RETURN VALUES.

ERRORS
On failure, most functions place an error code in the global variable errno
indicating why they failed. This section lists alphabetically all error codes a
function can generate and describes the conditions that cause each error. When
more than one condition can cause the same error, each condition is described
in a separate paragraph under the error code.

iv

USAGE
This section is provided as a guidance on use. This section lists special rules,
features and commands that require in-depth explanations. The subsections
listed below are used to explain built-in functionality:

Commands
Modifiers
Variables
Expressions
Input Grammar

EXAMPLES
This section provides examples of usage or of how to use a command or
function. Wherever possible a complete example including command line entry
and machine response is shown. Whenever an example is given, the prompt is
shown as

example%

or if the user must be super-user,

example#

Examples are followed by explanations, variable substitution rules, or returned
values. Most examples illustrate concepts from the SYNOPSIS, DESCRIPTION,
OPTIONS and USAGE sections.

ENVIRONMENT
This section lists any environment variables that the command or function
affects, followed by a brief description of the effect.

EXIT STATUS
This section lists the values the command returns to the calling program or shell
and the conditions that cause these values to be returned. Usually, zero is
returned for successful completion and values other than zero for various error
conditions.

FILES

Preface v

This section lists all filenames referred to by the man page, files of interest, and
files created or required by commands. Each is followed by a descriptive
summary or explanation.

ATTRIBUTES
This section lists characteristics of commands, utilities, and device drivers by
defining the attribute type and its corresponding value. (See attributes(5) for
more information.)

SEE ALSO
This section lists references to other man pages, in-house documentation and
outside publications.

DIAGNOSTICS
This section lists diagnostic messages with a brief explanation of the condition
causing the error. Messages appear in bold font with the exception of variables,
which are in italic font.

WARNINGS
This section lists warnings about special conditions which could seriously affect
your working conditions — this is not a list of diagnostics.

NOTES
This section lists additional information that does not belong anywhere else on
the page. It takes the form of an aside to the user, covering points of special
interest. Critical information is never covered here.

BUGS
This section describes known bugs and wherever possible suggests
workarounds.

vi

Driver Entry Points Intro (9E)

NAME Intro, intro − introduction to device driver entry points

DESCRIPTION Section 9E describes the entry-point routines a developer may include in a device driver.
These are called entry-point because they provide the calling and return syntax from the
kernel into the driver. Entry-points are called, for instance, in response to system calls,
when the driver is loaded, or in response to STREAMS events.

Kernel functions usable by the driver are described in section 9F.

In this section, reference pages contain the following headings:

· NAME describes the routine’s purpose.

· SYNOPSIS summarizes the routine’s calling and return syntax.

· INTERFACE LEVEL describes any architecture dependencies. It also indicates
whether the use of the entry point is required, optional, or discouraged.

· ARGUMENTS describes each of the routine’s arguments.

· DESCRIPTION provides general information about the routine.

· RETURN VALUES describes each of the routine’s return values.

· SEE ALSO gives sources for further information.

Overview of Driver
Entry-Point Routines

and Naming
Conventions

By convention, a prefix string is added to the driver routine names. For a driver with the
prefix prefix, the driver code may contain routines named prefixopen, prefixclose,
prefixread, prefixwrite, and so forth. All global variables associated with the driver
should also use the same prefix.

All routines and data should be declared as static.

Every driver MUST include <sys/ddi.h> and <sys/sunddi.h>, in that order, and after all
other include files.

The following table summarizes the STREAMS driver entry points described in this sec-
tion.

Routine Type
put DDI/DKI
srv DDI/DKI

The following table summarizes the driver entry points described in this section.

Routine Type
_fini Solaris DDI
_info Solaris DDI
_init Solaris DDI
aread Solaris DDI
attach Solaris DDI
awrite Solaris DDI
chpoll DDI/DKI
close DDI/DKI

modified 22 Jan 1997 SunOS 5.6 9E-5

Intro (9E) Driver Entry Points

detach Solaris DDI
devmap Solaris DDI
devmap_access Solaris DDI
devmap_contextmgt Solaris DDI
devmap_dup Solaris DDI
devmap_map Solaris DDI
devmap_unmap Solaris DDI
dump Solaris DDI
getinfo Solaris DDI
identify Solaris DDI
ioctl DDI/DKI
ks_update Solaris DDI
mapdev_access Solaris DDI
mapdev_dup Solaris DDI
mapdev_free Solaris DDI
mmap DKI only
open DDI/DKI
power Solaris DDI
print DDI/DKI
probe Solaris DDI
prop_op Solaris DDI
read DDI/DKI
segmap DKI only
strategy DDI/DKI
tran_abort Solaris DDI
tran_destroy_pkt Solaris DDI
tran_dmafree Solaris DDI
tran_getcap Solaris DDI
tran_init_pkt Solaris DDI
tran_reset Solaris DDI
tran_reset_notify Solaris DDI
tran_setcap Solaris DDI
tran_start Solaris DDI
tran_sync_pkt Solaris DDI
tran_tgt_free Solaris DDI
tran_tgt_init Solaris DDI
tran_tgt_probe Solaris DDI
write DDI/DKI

The following table lists the error codes returned by a driver routine when it encounters
an error. The error values are listed in alphabetic order and are defined in <sys/errno.h>.
In the driver open(9E), close(9E), ioctl(9E), read(9E), and write(9E) routines, errors are
passed back to the user by returning the value. In the driver strategy(9E) routine, errors
are passed back to the user by setting the b_error member of the buf(9S) structure to the
error code. For STREAMS ioctl routines, errors should be sent upstream in an M_IOCNAK
message. For STREAMS read and write routines, errors should be sent upstream in an

9E-6 SunOS 5.6 modified 22 Jan 1997

Driver Entry Points Intro (9E)

M_ERROR message. The driver print routine should not return an error code because the
function that it calls, cmn_err(9F), is declared as void (no error is returned).

Error Use in these
Value Error Description Driver Routines (9E)
EAGAIN Kernel resources, such as the buf struc-

ture or cache memory, are not available
at this time (device may be busy, or the
system resource is not available).

open, ioctl, read, write,
strategy

EFAULT An invalid address has been passed as
an argument; memory addressing error.

open, close, ioctl, read,
write, strategy

EINTR Sleep interrupted by signal. open, close, ioctl, read,
write, strategy

EINVAL An invalid argument was passed to the
routine.

open, ioctl, read, write,
strategy

EIO A device error occurred; an error condi-
tion was detected in a device status
register (the I/O request was valid, but
an error occurred on the device).

open, close, ioctl, read,
write, strategy

ENXIO An attempt was made to access a device
or subdevice that does not exist (one
that is not configured); an attempt was
made to perform an invalid I/O opera-
tion; an incorrect minor number was
specified.

open, close, ioctl, read,
write, strategy

EPERM A process attempting an operation did
not have required permission.

open, ioctl, read, write,
close

EROFS openAn attempt was made to open for writ-
ing a read-only device.

The table below cross references error values to the driver routines from which the error
values can be returned.

read, write,
open close ioctl and strategy

EAGAIN EFAULT EAGAIN EAGAIN
EFAULT EINTR EFAULT EFAULT
EINTR EIO EINTR EINTR
EINVAL ENXIO EINVAL EINVAL
EIO EIO EIO
ENXIO ENXIO ENXIO
EPERM EPERM
EROFS

modified 22 Jan 1997 SunOS 5.6 9E-7

Intro (9E) Driver Entry Points

Name Description

aread(9E) asynchronous read from a device

attach(9E) attach a device to the system, or resume it

awrite(9E) asynchronous write to a device

chpoll(9E) poll entry point for a non-STREAMS character driver

close(9E) relinquish access to a device

csx_event_handler(9E) PC Card driver event handler

detach(9E) detach a device

devmap(9E) validate and translate virtual mapping for memory
mapped device

devmap_access(9E) device mapping access entry point

devmap_contextmgt(9E) driver callback function for context management

devmap_dup(9E) device mapping duplication entry point

devmap_map(9E) device mapping create entry point

devmap_unmap(9E) device mapping unmap entry point

dump(9E) dump memory to device during system failure

_fini(9E) loadable module configuration entry points

getinfo(9E) get device driver information

identify(9E) determine if a driver is associated with a device

_info(9E) See _fini(9E)

_init(9E) See _fini(9E)

ioctl(9E) control a character device

ks_update(9E) dynamically update kstats

mapdev_access(9E) device mapping access entry point

mapdev_dup(9E) device mapping duplication entry point

mapdev_free(9E) device mapping free entry point

mmap(9E) check virtual mapping for memory mapped device

open(9E) gain access to a device

pm(9E) power management properties

power(9E) power a device attached to the system

print(9E) display a driver message on system console

probe(9E) determine if a non-self-identifying device is present

prop_op(9E) report driver property information

put(9E) receive messages from the preceding queue

read(9E) read data from a device

9E-8 SunOS 5.6 modified 22 Jan 1997

Driver Entry Points Intro (9E)

segmap(9E) map device memory into user space

srv(9E) service queued messages

strategy(9E) perform block I/O

tran_abort(9E) abort a SCSI command

tran_destroy_pkt(9E) See tran_init_pkt(9E)

tran_dmafree(9E) SCSI HBA DMA deallocation entry point

tran_getcap(9E) get/set SCSI transport capability

tran_init_pkt(9E) SCSI HBA packet preparation and deallocation

tran_reset(9E) reset a SCSI bus or target

tran_reset_notify(9E) request to notify SCSI target of bus reset

tran_setcap(9E) See tran_getcap(9E)

tran_start(9E) request to transport a SCSI command

tran_sync_pkt(9E) SCSI HBA memory synchronization entry point

tran_tgt_free(9E) request to free HBA resources allocated on behalf of a
target

tran_tgt_init(9E) request to initialize HBA resources on behalf of a partic-
ular target

tran_tgt_probe(9E) request to probe SCSI bus for a particular target

write(9E) write data to a device

modified 22 Jan 1997 SunOS 5.6 9E-9

aread (9E) Driver Entry Points

NAME aread − asynchronous read from a device

SYNOPSIS #include <sys/uio.h>
#include <sys/aio_req.h>
#include <sys/cred.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

int prefixaread(dev_t dev, struct aio_req ∗aio_reqp, cred_t ∗cred_p);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI). This entry point is optional . Drivers that do not support
an aread() entry point should use nodev(9F).

ARGUMENTS dev Device number.

aio_reqp Pointer to the aio_req(9S) structure that describes where the data is to be
stored.

cred_p Pointer to the credential structure.

DESCRIPTION The driver’s aread() routine is called to perform an asynchronous read. getminor(9F)
can be used to access the minor number component of the dev argument. aread() may
use the credential structure pointed to by cred_p to check for superuser access by calling
drv_priv(9F). The aread() routine may also examine the uio(9S) structure through the
aio_req structure pointer, aio_reqp . aread() must call aphysio(9F) with the aio_req
pointer and a pointer to the driver’s strategy(9E) routine.

No fields of the uio(9S) structure pointed to by aio_req, other than uio_offset or
uio_loffset, may be modified for non-seekable devices.

RETURN VALUES The aread() routine should return 0 for success, or the appropriate error number.

CONTEXT This function is called from user context only.

EXAMPLES The following is an example of an aread() routine:

static int
xxaread(dev_t dev, struct aio_req ∗aio, cred_t ∗cred_p)
{

int instance;
struct xxstate ∗xsp;

instance = getminor(dev);
xsp = ddi_get_soft_state(statep, instance);

9E-10 SunOS 5.6 modified 28 Mar 1997

Driver Entry Points aread (9E)

/∗Verify soft state structure has been allocated ∗/
if (xsp == NULL)

return (ENXIO);

return (aphysio(xxstrategy, anocancel, dev, B_READ, xxminphys, aio));
}

SEE ALSO read(2), aioread(3), awrite(9E), read(9E), strategy(9E), write(9E), anocancel(9F),
aphysio(9F), ddi_get_soft_state(9F), drv_priv(9F), getminor(9F), minphys(9F),
nodev(9F), aio_req(9S), cb_ops(9S), uio(9S)

Writing Device Drivers

BUGS There is no way other than calling aphysio(9F) to accomplish an asynchronous read.

modified 28 Mar 1997 SunOS 5.6 9E-11

attach (9E) Driver Entry Points

NAME attach − attach a device to the system, or resume it

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int prefixattach(dev_info_t ∗dip, ddi_attach_cmd_t cmd);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS dip A pointer to the device’s dev_info structure.

cmd Attach type. Possible values are DDI_ATTACH, DDI_PM_RESUME, and
DDI_RESUME. Other values are reserved. The driver must return DDI_FAILURE
if reserved values are passed to it.

DESCRIPTION The attach() function is the device-specific initialization entry point. This entry point is
required and must be written. The DDI_ATTACH command must be provided in the
attach entry point. The DDI_PM_RESUME command is optional, but must be supported
if the driver will support power management. See pm(7D). The DDI_RESUME command
is optional, but must be supported if the driver will support the processes of suspend and
resume. See cpr(7). When attach() is called with cmd set to DDI_ATTACH, all normal
kernel services (such as kmem_alloc(9F)) are available for use by the driver. Device
interrupts are not blocked when attaching a device to the system.

The attach() function will be called once for each instance of the device on the system
with cmd set to DDI_ATTACH. Until attach() succeeds, the only driver entry points
which may be called are open(9E) and getinfo(9E). See the "Autoconfiguration" chapter
in Writing Device Drivers. The instance number may be obtained using
ddi_get_instance(9F).

DDI_PM_RESUME The attach() function may be called with cmd set to DDI_PM_RESUME after detach(9E)
has been successfully called with cmd set to DDI_PM_SUSPEND. When called with cmd
set to DDI_PM_RESUME, attach() must restore the hardware state of a device (power
may have been removed from the device), allow pending requests to continue, and ser-
vice new requests.

The driver must not make any assumptions about the state of the hardware, but must
restore it to the state it had when the detach(9E) entry point was called with
DDI_PM_SUSPEND.

DDI_RESUME The attach() function may be called with cmd set to DDI_RESUME after detach(9E) has
been successfully called with cmd set to DDI_SUSPEND.

If the device is still suspended by DDI_PM_SUSPEND, the only effect of DDI_RESUME is
to allow the driver to call ddi_dev_is_needed(9F) for any new or pending requests, as a
subsequent call to attach() will be made with cmd set to DDI_PM_RESUME to restore the
hardware state.

9E-12 SunOS 5.6 modified 28 Oct 1996

Driver Entry Points attach (9E)

When called with cmd set to DDI_RESUME, attach() must restore the hardware state of a
device (power may have been removed from the device), allow pending requests to con-
tinue, and service new requests. In this case, the driver must not make any assumptions
about the state of the hardware, but must restore it to the state it had when the
detach(9E) entry point was called with DDI_SUSPEND.

RETURN VALUES The attach() function returns:

DDI_SUCCESS Successful completion.

DDI_FAILURE The operation failed.

SEE ALSO cpr(7), pm(7D), detach(9E), getinfo(9E), identify(9E), open(9E), pm(9E), probe(9E),
ddi_add_intr(9F), ddi_create_minor_node(9F), ddi_get_instance(9F), ddi_map_regs(9F),
kmem_alloc(9F)

Writing Device Drivers

modified 28 Oct 1996 SunOS 5.6 9E-13

awrite (9E) Driver Entry Points

NAME awrite − asynchronous write to a device

SYNOPSIS #include <sys/uio.h>
#include <sys/aio_req.h>
#include <sys/cred.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

int prefixawrite(dev_t dev, struct aio_req ∗aio_reqp, cred_t ∗cred_p);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI). This entry point is optional . Drivers that do not support
an awrite () entry point should use nodev(9F).

ARGUMENTS dev Device number.

aio_reqp Pointer to the aio_req(9S) structure that describes where the data is
stored.

cred_p Pointer to the credential structure.

DESCRIPTION The driver’s awrite() routine is called to perform an asynchronous write. getminor(9F)
can be used to access the minor number component of the dev argument. awrite() may
use the credential structure pointed to by cred_p to check for superuser access by calling
drv_priv(9F). The awrite() routine may also examine the uio(9S) structure through the
aio_req structure pointer, aio_reqp . awrite() must call aphysio(9F) with the aio_req
pointer and a pointer to the driver’s strategy(9E) routine.

No fields of the uio(9S) structure pointed to by aio_req, other than uio_offset or
uio_loffset, may be modified for non-seekable devices.

RETURN VALUES The awrite() routine should return 0 for success, or the appropriate error number.

CONTEXT This function is called from user context only.

EXAMPLES The following is an example of an awrite() routine:

static int
xxawrite(dev_t dev, struct aio_req ∗aio, cred_t ∗cred_p)
{

int instance;
struct xxstate ∗xsp;

instance = getminor(dev);
xsp = ddi_get_soft_state(statep, instance);

9E-14 SunOS 5.6 modified 28 Mar 1997

Driver Entry Points awrite (9E)

/∗Verify soft state structure has been allocated ∗/
if (xsp == NULL)

return (ENXIO);

return (aphysio(xxstrategy, anocancel, dev, B_WRITE, xxminphys, aio));
}

SEE ALSO write(2), aiowrite(3), aread(9E), read(9E), strategy(9E), write(9E), anocancel(9F),
aphysio(9F), ddi_get_soft_state(9F), drv_priv(9F), getminor(9F), minphys(9F),
nodev(9F), aio_req(9S), cb_ops(9S), uio(9S)

Writing Device Drivers

BUGS There is no way other than calling aphysio(9F) to accomplish an asynchronous write.

modified 28 Mar 1997 SunOS 5.6 9E-15

chpoll (9E) Driver Entry Points

NAME chpoll − poll entry point for a non-STREAMS character driver

SYNOPSIS #include <sys/types.h>
#include <sys/poll.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

int prefixchpoll(dev_t dev, short events, int anyyet , short ∗reventsp,
struct pollhead ∗∗phpp);

INTERFACE
LEVEL

This entry point is optional .
Architecture independent level 1 (DDI/DKI).

ARGUMENTS dev The device number for the device to be polled.

events The events that may occur. Valid events are:

POLLIN Data other than high priority data may be read without
blocking.

POLLOUT Normal data may be written without blocking.
POLLPRI High priority data may be received without blocking.
POLLHUP A device hangup has occurred.
POLLERR An error has occurred on the device.
POLLRDNORM Normal data (priority band = 0) may be read without

blocking.
POLLRDBAND Data from a non-zero priority band may be read

without blocking
POLLWRNORM The same as POLLOUT.
POLLWRBAND Priority data (priority band > 0) may be written.

anyyet A flag that is non-zero if any other file descriptors in the pollfd array have
events pending. The poll(2) system call takes a pointer to an array of pollfd
structures as one of its arguments. See the poll(2) reference page for more
details.

reventsp A pointer to a bitmask of the returned events satisfied.

phpp A pointer to a pointer to a pollhead structure.

DESCRIPTION The chpoll() entry point routine is used by non-STREAMS character device drivers that
wish to support polling. The driver must implement the polling discipline itself. The fol-
lowing rules must be followed when implementing the polling discipline:

9E-16 SunOS 5.6 modified 11 Oct 1995

Driver Entry Points chpoll (9E)

1. Implement the following algorithm when the chpoll() entry point is called:

if (events_are_satisfied_now) {
∗reventsp = mask_of_satisfied_events;

} else {
∗reventsp = 0;
if (!anyyet)

∗phpp = &my_local_pollhead_structure;
}
return (0);

2. Allocate an instance of the pollhead structure. This instance may be tied to the
per-minor data structure defined by the driver. The pollhead structure should
be treated as a ‘‘black box’’ by the driver. None of its fields should be referenced.
However, the size of this structure is guaranteed to remain the same across
releases.

3. Call the pollwakeup() function whenever an event of type events listed above
occur. This function should only be called with one event at a time.

RETURN VALUES chpoll() should return 0 for success, or the appropriate error number.

SEE ALSO poll(2), nochpoll(9F), pollwakeup(9F)

Writing Device Drivers

NOTES Driver defined locks should not be held across calls to this function.

modified 11 Oct 1995 SunOS 5.6 9E-17

close (9E) Driver Entry Points

NAME close − relinquish access to a device

SYNOPSIS
Block and Character #include <sys/types.h>

#include <sys/file.h>
#include <sys/errno.h>
#include <sys/open.h>
#include <sys/cred.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

int prefixclose(dev_t dev, int flag, int otyp , cred_t ∗cred_p);

STREAMS #include <sys/types.h>
#include <sys/stream.h>
#include <sys/file.h>
#include <sys/errno.h>
#include <sys/open.h>
#include <sys/cred.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

int prefixclose(queue_t ∗q, int flag, cred_t ∗cred_p);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI). This entry point is required for block dev-
ices.

ARGUMENTS
Block and Character dev Device number.

flag File status flag, as set by the open(2) or modified by the fcntl(2) system calls.
The flag is for information only—the file should always be closed completely.
Possible values are: FEXCL, FNDELAY, FREAD, FKLYR, and FWRITE. Refer to
open(9E) for more information.

otyp Parameter supplied so that the driver can determine how many times a device
was opened and for what reasons. The flags assume the open() routine may
be called many times, but the close() routine should only be called on the last
close of a device.

OTYP_BLK close was through block interface for the device

OTYP_CHR close was through the raw/character interface for the device

OTYP_LYR close a layered process (a higher-level driver called the
close() routine of the device)

∗cred_p Pointer to the user credential structure.

9E-18 SunOS 5.6 modified 15 Sep 1992

Driver Entry Points close (9E)

STREAMS ∗q Pointer to queue(9S) structure used to reference the read side of the driver. (A
queue is the central node of a collection of structures and routines pointed to by a
queue.)

flag File status flag.

∗cred_p Pointer to the user credential structure.

DESCRIPTION For STREAMS drivers, the close() routine is called by the kernel through the cb_ops(9S)
table entry for the device. (Modules use the fmodsw table.) A non-null value in the d_str
field of the cb_ops entry points to a streamtab structure, which points to a qinit(9S) con-
taining a pointer to the close() routine. Non-STREAMS close() routines are called
directly from the cb_ops table.

close() ends the connection between the user process and the device, and prepares the
device (hardware and software) so that it is ready to be opened again.

A device may be opened simultaneously by multiple processes and the open() driver
routine is called for each open, but the kernel will only call the close() routine when the
last process using the device issues a close(2) or umount(2) system call or exits. (An
exception is a close occurring with the otyp argument set to OTYP_LYR, for which a close
(also having otyp = OTYP_LYR) occurs for each open.)

In general, a close() routine should always check the validity of the minor number com-
ponent of the dev parameter. The routine should also check permissions as necessary, by
using the user credential structure (if pertinent), and the appropriateness of the flag and
otyp parameter values.

close() could perform any of the following general functions:

· disable interrupts
· hang up phone lines
· rewind a tape
· deallocate buffers from a private buffering scheme
· unlock an unsharable device (that was locked in the open() routine)
· flush buffers
· notify a device of the close
· deallocate any resources allocated on open

The close() routines of STREAMS drivers and modules are called when a stream is dis-
mantled or a module popped. The steps for dismantling a stream are performed in the
following order. First, any multiplexor links present are unlinked and the lower streams
are closed. Next, the following steps are performed for each module or driver on the
stream, starting at the head and working toward the tail:

1. The write queue is given a chance to drain.

2. The close() routine is called.

3. The module or driver is removed from the stream.

modified 15 Sep 1992 SunOS 5.6 9E-19

close (9E) Driver Entry Points

RETURN VALUES close() should return 0 for success, or the appropriate error number. Return errors rarely
occur, but if a failure is detected, the driver should decide whether the severity of the
problem warrants either displaying a message on the console or, in worst cases, trigger-
ing a system panic. Generally, a failure in a close() routine occurs because a problem
occurred in the associated device.

SEE ALSO close(2), fcntl(2), open(2), umount(2), detach(9E), open(9E), cb_ops(9S), qinit(9S),
queue(9S)

Writing Device Drivers

STREAMS Programming Guide

9E-20 SunOS 5.6 modified 15 Sep 1992

Driver Entry Points csx_event_handler (9E)

NAME csx_event_handler − PC Card driver event handler

SYNOPSIS #include <sys/pccard.h>

int32_t prefix event_handler(event_t event, int32_t priority,
event_callback_args_t ∗args);

INTERFACE
LEVEL

Solaris architecture specific (Solaris DDI)

ARGUMENTS event The event.

priority The priority of the event.

args A pointer to the event_callback_t structure.

DESCRIPTION Each instance of a PC Card driver must register an event handler to manage events asso-
ciated with its PC Card. The driver event handler is registered using the event_handler
field of the client_req_t structure passed to csx_RegisterClient(9F). The driver may also
supply a parameter to be passed to its event handler function using the
event_callback_args.client_data field. Typically, this argument is the driver instance’s
soft state pointer. The driver also registers which events it is interested in receiving
through the EventMask field of the client_req_t structure.

Each event is delivered to the driver with a priority, priority . High priority events with
CS_EVENT_PRI_HIGH set in priority are delivered above lock level, and the driver must
use its high-level event mutex initialized with the iblk_cookie returned by
csx_RegisterClient(9F) to protect such events. Low priority events with
CS_EVENT_PRI_LOW set in priority are delivered below lock level, and the driver must
use its low-level event mutex initialized with a NULL interrupt cookie to protect these
events.

csx_RegisterClient(9F) registers the driver’s event handler, but no events begin to be
delivered to the driver until after a successful call to csx_RequestSocketMask(9F).

In all cases, Card Services delivers an event to each driver instance associated with a
function on a multiple function PC Card.

Event Indications The events and their indications are listed below; they are always delivered as low prior-
ity unless otherwise noted:

CS_EVENT_REGISTRATION_COMPLETE
A registration request processed in the background has been completed.

CS_EVENT_CARD_INSERTION
A PC Card has been inserted in a socket.

CS_EVENT_CARD_READY
A PC Card’s READY line has transitioned from the busy to ready state.

modified 22 Nov 1996 SunOS 5.6 9E-21

csx_event_handler (9E) Driver Entry Points

CS_EVENT_CARD_REMOVAL
A PC Card has been removed from a socket.

This event is delivered twice; first as a high priority event, followed by delivery
as a low priority event.

As a high priority event, the event handler should only note that the PC Card is
no longer present to prevent accesses to the hardware from occurring.

As a low priority event, the event handler should release the configuration and
free all I/O, window and IRQ resources for use by other PC Cards.

CS_EVENT_BATTERY_LOW
The battery on a PC Card is weak and is in need of replacement.

CS_EVENT_BATTERY_DEAD
The battery on a PC Card is no longer providing operational voltage.

CS_EVENT_PM_RESUME
Card Services has received a resume notification from the system’s power
management software.

CS_EVENT_PM_SUSPEND
Card Services has received a suspend notification from the system’s power
management software.

CS_EVENT_CARD_LOCK
A mechanical latch has been manipulated preventing the removal of the PC
Card from the socket.

CS_EVENT_CARD_UNLOCK
A mechanical latch has been manipulated allowing the removal of the PC Card
from the socket.

CS_EVENT_EJECTION_REQUEST
A request that the PC Card be ejected from a socket using a motor-driven
mechanism.

CS_EVENT_EJECTION_COMPLETE
A motor has completed ejecting a PC Card from a socket.

CS_EVENT_ERASE_COMPLETE
A queued erase request that is processed in the background has been completed.

CS_EVENT_INSERTION_REQUEST
A request that a PC Card be inserted into a socket using a motor-driven mechan-
ism.

CS_EVENT_INSERTION_COMPLETE
A motor has completed inserting a PC Card in a socket.

CS_EVENT_CARD_RESET
A hardware reset has occurred.

9E-22 SunOS 5.6 modified 22 Nov 1996

Driver Entry Points csx_event_handler (9E)

CS_EVENT_RESET_REQUEST
A request for a physical reset by a client.

CS_EVENT_RESET_COMPLETE
A reset request that is processed in the background has been completed.

CS_EVENT_RESET_PHYSICAL
A reset is about to occur.

CS_EVENT_CLIENT_INFO
A request that the client return its client information data. If
GET_CLIENT_INFO_SUBSVC(args->client_info.Attributes) is equal to
CS_CLIENT_INFO_SUBSVC_CS, the driver should fill in the other fields in the
client_info structure as described below, and return CS_SUCCESS. Otherwise,
it should return CS_UNSUPPORTED_EVENT.

args->client_data.Attributes
Must be OR’ed with CS_CLIENT_INFO_VALID.

args->client_data.Revision
Must be set to a driver-private version number.

args->client_data.CSLevel
Must be set to CS_VERSION.

args->client_data.RevDate
Must be set to the revision date of the PC Card driver, using
CS_CLIENT_INFO_MAKE_DATE(day, month , year). day must be the day of
the month, month must be the month of the year, and year must be the
year, offset from a base of 1980. For example, this field could be set to a
revision date of July 4 1997 with CS_CLIENT_INFO_MAKE_DATE(4, 7, 17).

args->client_data.ClientName
A string describing the PC Card driver should be copied into this space.

args->client_data.VendorName
A string supplying the name of the PC Card driver vendor should be
copied into this space.

args->client_data.DriverName
A string supplying the name of the PC Card driver will be copied into this
space by Card Services after the PC Card driver has successfully processed
this event; the driver does not need to initialize this field.

CS_EVENT_WRITE_PROTECT
The write protect status of the PC Card in the indicated socket has changed. The
current write protect state of the PC Card is in the args->info field:

CS_EVENT_WRITE_PROTECT_WPOFF
Card is not write protected.

CS_EVENT_WRITE_PROTECT_WPON
Card is write protected.

modified 22 Nov 1996 SunOS 5.6 9E-23

csx_event_handler (9E) Driver Entry Points

STRUCTURE
MEMBERS

The structure members of event_callback_args_t are:

void ∗info; /∗ event-specific information ∗/
void ∗client_data; /∗ driver-private data ∗/
client_info_t client_info; /∗ client information ∗/

The structure members of client_info_t are:

uint32_t Attributes; /∗ attributes ∗/
uint32_t Revision; /∗ version nunmber ∗/
uint32_t CSLevel; /∗ Card Services version ∗/
uint32_t RevDate; /∗ revision date ∗/
char ClientName[CS_CLIENT_INFO_MAX_NAME_LEN];

/∗ PC Card driver description ∗/
char VendorName[CS_CLIENT_INFO_MAX_NAME_LEN];

/∗ PC Card driver vendor name ∗/
char DriverName[MODMAXNAMELEN];

/∗ PC Card driver name ∗/

RETURN VALUES CS_SUCCESS The event was handled successfully.
CS_UNSUPPORTED_EVENT Driver does not support this event.
CS_FAILURE Error occurred while handling this event.

CONTEXT This function is called from high-level interrupt context in the case of high priority
events, and from kernel context in the case of low priority events.

EXAMPLES static int
xx_event(event_t event, int priority, event_callback_args_t ∗args)
{

int rval;
struct xxx ∗xxx = args->client_data;
client_info_t ∗info = &args->client_info;

switch (event) {
case CS_EVENT_REGISTRATION_COMPLETE:

ASSERT(priority & CS_EVENT_PRI_LOW);
mutex_enter(&xxx->event_mutex);
xxx->card_state |= XX_REGISTRATION_COMPLETE;
mutex_exit(&xxx->event_mutex);
rval = CS_SUCCESS;
break;

case CS_EVENT_CARD_READY:
ASSERT(priority & CS_EVENT_PRI_LOW);
mutex_enter(&xxx->event_mutex);
rval = xx_card_ready(xxx);
mutex_exit(&xxx->event_mutex);
break;

9E-24 SunOS 5.6 modified 22 Nov 1996

Driver Entry Points csx_event_handler (9E)

case CS_EVENT_CARD_INSERTION:
ASSERT(priority & CS_EVENT_PRI_LOW);
mutex_enter(&xxx->event_mutex);
rval = xx_card_insertion(xxx);
mutex_exit(&xxx->event_mutex);
break;

case CS_EVENT_CARD_REMOVAL:
if (priority & CS_EVENT_PRI_HIGH) {

mutex_enter(&xxx->hi_event_mutex);
xxx->card_state &= ˜XX_CARD_PRESENT;
mutex_exit(&xxx->hi_event_mutex);

} else {
mutex_enter(&xxx->event_mutex);
rval = xx_card_removal(xxx);
mutex_exit(&xxx->event_mutex);

}
break;

case CS_EVENT_CLIENT_INFO:
ASSERT(priority & CS_EVENT_PRI_LOW);
if (GET_CLIENT_INFO_SUBSVC_CS(info->Attributes) ==

CS_CLIENT_INFO_SUBSVC_CS) {
info->Attributes |= CS_CLIENT_INFO_VALID;
info->Revision = 4;
info->CSLevel = CS_VERSION;
info->RevDate = CS_CLIENT_INFO_MAKE_DATE(4, 7, 17);
(void)strncpy(info->ClientName,

"WhizBang Ultra Zowie PC card driver",
CS_CLIENT_INFO_MAX_NAME_LEN);

(void)strncpy(info->VendorName,
"ACME PC card drivers, Inc.",

CS_CLIENT_INFO_MAX_NAME_LEN);
rval = CS_SUCCESS;

} else {
rval = CS_UNSUPPORTED_EVENT;

}
break;

case CS_EVENT_WRITE_PROTECT:
ASSERT(priority & CS_EVENT_PRI_LOW);
mutex_enter(&xxx->event_mutex);
if (args->info == CS_EVENT_WRITE_PROTECT_WPOFF) {

xxx->card_state &= ˜XX_WRITE_PROTECTED;

modified 22 Nov 1996 SunOS 5.6 9E-25

csx_event_handler (9E) Driver Entry Points

} else {
xxx->card_state |= XX_WRITE_PROTECTED;

}
mutex_exit(&xxx->event_mutex);
rval = CS_SUCCESS;
break;

default:
rval = CS_UNSUPPORTED_EVENT;
break;

}

return (rval);
}

SEE ALSO csx_Event2Text(9F), csx_RegisterClient(9F), csx_RequestSocketMask(9F)

PC Card 95 Standard, PCMCIA/JEIDA

9E-26 SunOS 5.6 modified 22 Nov 1996

Driver Entry Points detach (9E)

NAME detach − detach a device

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int prefixdetach(dev_info_t ∗dip, ddi_detach_cmd_t cmd);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI). This entry point is required. If it is nodev, the device
will not support suspend/resume or power management (see cpr(7), pm(7), and
pm(9E)).

ARGUMENTS dip A pointer to the device’s dev_info structure.

cmd Type of detach; the driver should return DDI_FAILURE if any value other than
DDI_DETACH, DDI_PM_SUSPEND, or DDI_SUSPEND is passed to it.

DESCRIPTION The detach() function is the complement of the attach(9E) routine.

DDI_DETACH If cmd is set to DDI_DETACH, detach() is used to remove the state associated with a given
instance of a device node prior to the removal of that instance from the system.

The detach() function will be called once for each instance of the device for which there
has been a successful attach() once there are no longer any opens on the device. The
detach() function should clean up any per instance data initialized in attach(9E) and call
kmem_free(9F) to free any heap allocations. For information on how to unregister inter-
rupt handlers see ddi_add_intr(9F). This should also include putting the underlying
device into a quiescent state so that it will not generate interrupts.

Drivers that set up timeout(9F) routines should ensure that they are cancelled before
returning DDI_SUCCESS from detach().

If detach() determines a particular instance of the device cannot be removed when
requested because of some exceptional condition, detach() must return DDI_FAILURE,
which prevents the particular device instance from being detached. This will also
prevent the driver from being unloaded.

The system guarantees that the function will only be called for a particular dev_info node
after (and not concurrently with) a successful attach(9E) of that device. The system also
guarantees that detach() will only be called when there are no outstanding open(9E) calls
on the device.

DDI_PM_SUSPEND If cmd is set to DDI_PM_SUSPEND detach() is used to suspend all activity of a device
before power is (possibly) removed from the device. In this case, detach() may be called
with outstanding open(9E) requests. It must save the hardware state of the device to
memory and block incoming or existing requests until attach(9E) is called with a com-
mand value of DDI_PM_RESUME. When the driver receives a request, it should call
ddi_dev_is_needed(9F) to request to the framework that the device be resumed.

modified 4 Feb 1997 SunOS 5.6 9E-27

detach (9E) Driver Entry Points

The DDI_PM_SUSPEND cmd is issued when the device is being suspended prior to setting
component 0 of the device to power level 0 (see pm(7) and power(9E)). A return of
DDI_FAILURE will result in component 0 of the device not being set to power level 0.

DDI_SUSPEND If cmd is set to DDI_SUSPEND, detach() is used to suspend all activity of a device before
power is (possibly) removed from the device. In this case, detach() may be called with
outstanding open(9E) requests. It must save the hardware state of the device to memory
and block incoming or existing requests until attach() is called with DDI_RESUME.

The DDI_SUSPEND cmd is issued when the entire system is being suspended and power
removed from it or when the system must be made quiescent. It will be issued only to
devices which have a reg property or which export a pm-hardware-state property with
the value needs-suspend-resume.

If the device is used to store file systems, then after DDI_SUSPEND is issued, the device
should still honor dump(9E) requests (calling ddi_dev_is_needed(9F) if the device has
also been suspended with DDI_PM_SUSPEND), as this entry point may be used by cpr(7)
to save the system state. It must do this, however, without disturbing the saved
hardware state of the device.

Before returning successfully from a call to detach() with a command of DDI_SUSPEND,
the driver must cancel any outstanding timeouts and make any driver threads quiescent.

If DDI_FAILURE is returned for the DDI_SUSPEND cmd , either the operation to suspend
the system or to make it quiescent will be aborted.

RETURN VALUES DDI_SUCCESS For DDI_DETACH, the state associated with the given device was suc-
cessfully removed. For DDI_SUSPEND and DDI_PM_SUSPEND, the
driver was successfully suspended.

DDI_FAILURE The operation failed or the request was not understood. The associated
state is unchanged.

CONTEXT This function is called from user context only.

SEE ALSO cpr(7), pm(7), attach(9E), dump(9E), open(9E), pm(9E), power(9E), ddi_add_intr(9F),
ddi_dev_is_needed(9F), ddi_map_regs(9F), kmem_free(9F), timeout(9F)

Writing Device Drivers

9E-28 SunOS 5.6 modified 4 Feb 1997

Driver Entry Points devmap (9E)

NAME devmap − validate and translate virtual mapping for memory mapped device

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int prefixdevmap(dev_t dev, devmap_cookie_t dhp, offset_t off, size_t len,
size_t ∗maplen, uint_t model);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS dev Device whose memory is to be mapped.

dhp An opaque mapping handle that the system uses to describe the mapping.

off User offset within the logical device memory at which the mapping begins.

len Length (in bytes) of the mapping to be mapped.

maplen Pointer to length (in bytes) of mapping that has been validated. maplen is less
than or equal to len.

model The data model type of the current thread.

DESCRIPTION devmap() is a required entry point for character drivers supporting memory-mapped
devices if the drivers use the devmap framework to set up the mapping. A memory
mapped device has memory that can be mapped into a process’s address space. The
mmap(2) system call, when applied to a character special file, allows this device memory
to be mapped into user space for direct access by the user applications.

As a result of a mmap(2) system call, the system calls the devmap() entry point during
the mapping setup when D_DEVMAP is set in the cb_flag field of the cb_ops(9S) struc-
ture, and any of the following conditions apply:

· ddi_devmap_segmap(9F) is used as the segmap(9E) entry point.

· segmap(9E) entry point is set to NULL.

· mmap(9E) entry point is set to NULL.

· ddi_devmap_segmap(9F) is used in the segmap(9E) entry point.

Otherwise EINVAL will be returned to mmap(2).

Device drivers should use devmap() to validate the user mappings to the device, to
translate the logical offset, off, to the corresponding physical offset within the device
address space, and to pass the mapping information to the system for setting up the map-
ping.

dhp is a device mapping handle that the system uses to describe a mapping to a memory
that is either contiguous in physical address space or in kernel virtual address space. The
system may create multiple mapping handles in one mmap(2) system call (for example, if
the mapping contains multiple physically discontiguous memory regions).

modified 15 Jan 1997 SunOS 5.6 9E-29

devmap (9E) Driver Entry Points

model returns the C Language Type Model which the current thread expects. It is set to
DDI_MODEL_ILP32 if the current thread expects 32-bit (ILP32) semantics, or
DDI_MODEL_LP64 if the current thread expects 64-bit (LP64) semantics. model is used in
combination with ddi_model_convert_from(9F) to determine whether there is a data
model mismatch between the current thread and the device driver. The device driver
might have to adjust the shape of data structures before exporting them to a user thread
which supports a different data model.

devmap() should return EINVAL if the logical offset, off, is out of the range of memory
exported by the device to user space. If off + len exceeds the range of the contiguous
memory, devmap() should return the length from off to the end of the contiguous
memory region. The system will repeatedly call devmap() until the original mapping
length is satisfied. The driver sets ∗maplen to the validated length which must be either
less than or equal to len.

The devmap() entry point must initialize the mapping parameters before passing them to
the system through either devmap_devmem_setup(9F) (if the memory being mapped is
device memory) or devmap_umem_setup(9F) (if the memory being mapped is kernel
memory). The devmap() entry point initializes the mapping parameters by mapping the
control callback structure (see devmap_callback_ctl(9S)), the device access attributes,
mapping length, maximum protection possible for the mapping, and optional mapping
flags. See devmap_devmem_setup(9F) and devmap_umem_setup(9F) for further infor-
mation on initializing the mapping parameters.

The system will copy the driver’s devmap_callback_ctl(9S) data into its private memory
so the drivers do not need to keep the data structure after the return from either
devmap_devmem_setup(9F) or devmap_umem_setup(9F).

For device mappings, the system establishes the mapping to the physical address that
corresponds to off by passing the register number and the offset within the register
address space to devmap_devmem_setup(9F).

For kernel memory mapping, the system selects a user virtual address that is aligned
with the kernel address being mapped for cache coherence.

RETURN VALUES 0 Successful completion.

Non-zero An error occurred.

EXAMPLES The following is an example of the implementation for the devmap() entry point. For
mapping device memory, devmap() calls devmap_devmem_setup(9F) with the register
number, rnumber, and the offset within the register, roff. For mapping kernel memory,
the driver must first allocate the kernel memory using ddi_umem_alloc(9F). For exam-
ple, ddi_umem_alloc(9F) can be called in the attach(9E) routine. The resulting kernel
memory cookie is stored in the driver soft state structure (see ddi_soft_state(9F)), which
is accessible from the devmap() entry point. devmap() passes the cookie obtained from
ddi_umem_alloc(9F) and the offset within the allocated kernel memory to
devmap_umem_setup(9F). The corresponding ddi_umem_free(9F) can be made in the
detach(9E) routine to free up the kernel memory.

9E-30 SunOS 5.6 modified 15 Jan 1997

Driver Entry Points devmap (9E)

. . .

#define MAPPING_SIZE 0x2000 /∗ size of the mapping ∗/
#define MAPPING_START 0x70000000 /∗ logical offset at beginning

of the mapping ∗/
static
struct devmap_callback_ctl xxmap_ops = {

DEVMAP_OPS_REV, /∗ devmap_ops version number ∗/
xxmap_map, /∗ devmap_ops map routine ∗/
xxmap_access, /∗ devmap_ops access routine ∗/
xxmap_dup, /∗ devmap_ops dup routine ∗/
xxmap_unmap, /∗ devmap_ops unmap routine ∗/

};

static int
xxdevmap(dev_t dev, devmap_cookie_t dhp, offset_t off, size_t len,

size_t ∗maplen, uint_t model)
{

int instance;
struct xxstate ∗xsp;
struct ddi_device_acc_attr ∗endian_attr;
struct devmap_callback_ctl ∗callbackops = NULL;
ddi_umem_cookie_t cookie;
dev_info_t ∗dip;
offset_t roff;
offset_t koff;
u_int rnumber;
u_int maxprot;
u_int flags = 0;
size_t length;
int err;

/∗ get device soft state ∗/
instance = getminor(dev);
xsp = ddi_get_soft_state(statep, instance);
if (xsp == NULL)

return (-1);

dip = xsp->dip;
/∗ check for a valid offset ∗/
if (off is invalid)

return (-1);

/∗ check if len is within the range of contiguous memory ∗/

modified 15 Jan 1997 SunOS 5.6 9E-31

devmap (9E) Driver Entry Points

if ((off + len) is contiguous.)
length = len;

else
length = MAPPING_START + MAPPING_SIZE - off;

/∗ device access attributes ∗/
endian_attr = xsp->endian_attr;

if (off is referring to a device memory.) {
/∗ assign register related parameters ∗/
rnumber = XXX; /∗ index to register set at off ∗/
roff = XXX; /∗ offset of rnumber at local bus ∗/
callbackops = &xxmap_ops; /∗ do all callbacks for this mapping ∗/
maxprot = PROT_ALL; /∗ allowing all access ∗/
if ((err = devmap_devmem_setup(dhp, dip, callbackops, rnumber, roff,

length, maxprot, flags, endian_attr)) < 0)
return (err);

} else if (off is referring to a kernel memory.) {
cookie = xsp->cookie; /∗ cookie is obtained from

ddi_umem_alloc(9F) ∗/
koff = XXX; /∗ offset within the kernel memory. ∗/
callbackops = NULL; /∗ don’t do callback for this mapping ∗/
maxprot = PROT_ALL; /∗ allowing all access ∗/
if ((err = devmap_umem_setup(dhp, dip, callbackops, cookie, koff,

length, maxprot, flags, endian_attr)) < 0)
return (err);

}

∗maplen = length;
return (0);

}

SEE ALSO mmap(2), attach(9E), detach(9E), mmap(9E), segmap(9E), ddi_devmap_segmap(9F),
ddi_model_convert_from(9F), ddi_soft_state(9F), ddi_umem_alloc(9F),
ddi_umem_free(9F), devmap_devmem_setup(9F), devmap_setup(9F),
devmap_umem_setup(9F), cb_ops(9S), devmap_callback_ctl(9S)

Writing Device Drivers

9E-32 SunOS 5.6 modified 15 Jan 1997

Driver Entry Points devmap_access (9E)

NAME devmap_access − device mapping access entry point

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int prefix devmap_access(devmap_cookie_t dhp, void ∗pvtp, offset_t off, size_t len,
u_int type , u_int rw)

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS dhp An opaque mapping handle that the system uses to describe the map-
ping.

pvtp Driver private mapping data.

off User offset within the logical device memory at which the access begins.

len Length (in bytes) of the memory being accessed.

type Type of access operation. Possible values are:

DEVMAP_ACCESS Memory access.

DEVMAP_LOCK Lock the memory being accessed.

DEVMAP_UNLOCK Unlock the memory being accessed.

rw Direction of access. Possible values are:

DEVMAP_READ Read access attempted.

DEVMAP_WRITE Write access attempted.

DEVMAP_EXEC Execution access attempted.

DESCRIPTION The devmap_access() entry point is an optional routine. It notifies drivers whenever an
access is made to a mapping described by dhp that has not been validated or does not
have sufficient protection for the access. The system expects devmap_access() to call
either devmap_do_ctxmgt(9F) or devmap_default_access(9F) to load the memory
address translations before it returns. For mappings that support context switching, dev-
ice drivers should call devmap_do_ctxmgt(9F). For mappings that do not support con-
text switching, the drivers should call devmap_default_access(9F).

In devmap_access, drivers perform memory access related operations such as, context
switching, checking the availability of the memory object, and locking and unlocking the
memory object being accessed. The devmap_access() entry point is set to NULL if no
operations need to be performed.

pvtp is a pointer to the driver’s private mapping data that was allocated and initialized in
the devmap_map(9E) entry point.

off and len define the range to be affected by the operations in devmap_access(). type
defines the type of operation that device drivers should perform on the memory object. If
type is either DEVMAP_LOCK or DEVMAP_UNLOCK, the length passed to either
devmap_do_ctxmgt(9F) or devmap_default_access(9F) must be same as len. rw specifies

modified 17 Jan 1997 SunOS 5.6 9E-33

devmap_access (9E) Driver Entry Points

the direction of access on the memory object.

A non-zero return value from devmap_access() may result in a SIGSEGV or SIGBUS sig-
nal being delivered to the process.

RETURN VALUES devmap_access returns the following values:

0 Successful completion.

Non-zero An error occurred. The return value from devmap_do_ctxmgt(9F) or
devmap_default_access(9F) should be returned.

EXAMPLES The following is an example of the devmap_access() entry point. If the mapping sup-
ports context switching, devmap_access() calls devmap_do_ctxmgt(9F). Otherwise,
devmap_access() calls devmap_default_access(9F).

. . .

#define OFF_DO_CTXMGT 0x40000000
#define OFF_NORMAL 0x40100000
#define CTXMGT_SIZE 0x100000
#define NORMAL_SIZE 0x100000

/∗
∗ Driver devmap_contextmgt(9E) callback function.
∗/
static int
xx_context_mgt(devmap_cookie_t dhp, void ∗pvtp, offset_t offset,

size_t length, u_int type, u_int rw)
{

......
/∗
∗ see devmap_contextmgt(9E) for an example
∗/

}

/∗
∗ Driver devmap_access(9E) entry point
∗/
static int
xxdevmap_access(devmap_cookie_t dhp, void ∗pvtp, offset_t off,

size_t len, u_int type, u_int rw)
{

offset_t diff;
int err;

/∗
∗ check if off is within the range that supports

9E-34 SunOS 5.6 modified 17 Jan 1997

Driver Entry Points devmap_access (9E)

∗ context management.
∗/
if ((diff = off - OFF_DO_CTXMG) >= 0 && diff < CTXMGT_SIZE) {

/∗
∗ calculates the length for context switching
∗/
if ((len + off) > (OFF_DO_CTXMGT + CTXMGT_SIZE))

return (-1);

/∗
∗ perform context switching
∗/
err = devmap_do_ctxmgt(dhp, pvtp, off, len, type,

rw, xx_context_mgt);
/∗
∗ check if off is within the range that does normal
∗ memory mapping.
∗/
} else if ((diff = off - OFF_NORMAL) >= 0 && diff < NORMAL_SIZE) {

if ((len + off) > (OFF_NORMAL + NORMAL_SIZE))
return (-1);

err = devmap_default_access(dhp, pvtp, off, len, type, rw);
} else

return (-1);

return (err);
}

SEE ALSO devmap_map(9E), devmap_default_access(9F), devmap_do_ctxmgt(9F),
devmap_callback_ctl(9S)

Writing Device Drivers

modified 17 Jan 1997 SunOS 5.6 9E-35

devmap_contextmgt (9E) Driver Entry Points

NAME devmap_contextmgt − driver callback function for context management

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int devmap_contextmgt(devmap_cookie_t dhp, void ∗pvtp , offset_t off,
size_t len, u_int type , u_int rw);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS dhp An opaque mapping handle that the system uses to describe the mapping.

pvtp Driver private mapping data.

off User offset within the logical device memory at which the access begins.

len Length (in bytes) of the memory being accessed.

type Type of access operation. Possible values are:

DEVMAP_ACCESS Memory access.

DEVMAP_LOCK Lock the memory being accessed.

DEVMAP_UNLOCK Unlock the memory being accessed.

rw Direction of access. Possible values are:

DEVMAP_READ Read access attempted.

DEVMAP_WRITE Write access attempted.

DESCRIPTION devmap_contextmgt() is a driver-supplied function that performs device context switch-
ing on a mapping. Device drivers pass devmap_contextmgt() as an argument to
devmap_do_ctxmgt(9F) in the devmap_access(9E) entry point. The system will call
devmap_contextmgt() when memory is accessed. The system expects
devmap_contextmgt() to load the memory address translations of the mapping by cal-
ling devmap_load(9F) before returning.

dhp uniquely identifies the mapping and is used as an argument to devmap_load(9F) to
validate the mapping. off and len define the range to be affected by the operations in
devmap_contextmgt().

The driver must check if there is already a mapping established at off that needs to be
unloaded. If a mapping exists at off, devmap_contextmgt() must call
devmap_unload(9F) on the current mapping. devmap_unload(9F) must be followed by
devmap_load() on the mapping that generated this call to devmap_contextmgt().
devmap_unload(9F) unloads the current mapping so that a call to devmap_access(9E),
which causes the system to call devmap_contextmgt(), will be generated the next time
the mapping is accessed.

pvtp is a pointer to the driver’s private mapping data that was allocated and initialized in
the devmap_map(9E) entry point. type defines the type of operation that device drivers
should perform on the memory object. If type is either DEVMAP_LOCK or

9E-36 SunOS 5.6 modified 16 Jan 1997

Driver Entry Points devmap_contextmgt (9E)

DEVMAP_UNLOCK, the length passed to either devmap_unload(9F) or devmap_load(9F)
must be same as len. rw specifies the access direction on the memory object.

A non-zero return value from devmap_contextmgt() will be returned to
devmap_access(9E) and will cause the corresponding operation to fail. The failure may
result in a SIGSEGV or SIGBUS signal being delivered to the process.

RETURN VALUES 0 Successful completion.

Non-zero An error occurred.

EXAMPLES The following shows an example of managing a device context.

struct xxcontext cur_ctx;

static int
xxdevmap_contextmgt(devmap_cookie_t dhp, void ∗pvtp, offset_t off,

size_t len, u_int type, u_int rw)
{

devmap_cookie_t cur_dhp;
struct xxpvtdata ∗p;
struct xxpvtdata ∗pvp = (struct xxpvtdata ∗)pvtp;
struct xx_softc ∗softc = pvp->softc;
int err;

mutex_enter(&softc->mutex);

/∗
∗ invalidate the translations of current context before
∗ switching context.
∗/
if (cur_ctx != NULL && cur_ctx != pvp->ctx) {

p = cur_ctx->pvt;
cur_dhp = p->dhp;
if ((err = devmap_unload(cur_dhp, off, len)) != 0)

return (err);
}

/∗ Switch device context - device dependent∗/
...

/∗ Make handle the new current mapping ∗/
cur_ctx = pvp->ctx;

/∗
∗ Load the address translations of the calling context.
∗/

modified 16 Jan 1997 SunOS 5.6 9E-37

devmap_contextmgt (9E) Driver Entry Points

err = devmap_load(pvp->dhp, off, len, type, rw);

mutex_exit(&softc->mutex);

return (err);
}

SEE ALSO devmap_access(9E), devmap_do_ctxmgt(9F) devmap_load(9F), devmap_unload(9F)

Writing Device Drivers

9E-38 SunOS 5.6 modified 16 Jan 1997

Driver Entry Points devmap_dup (9E)

NAME devmap_dup − device mapping duplication entry point

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int prefixdevmap_dup(devmap_cookie_t dhp, void ∗pvtp, devmap_cookie_t new_dhp,
void ∗∗new_pvtp);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS dhp An opaque mapping handle that the system uses to describe the map-
ping currently being duplicated.

pvtp Driver private mapping data for the mapping currently being dupli-
cated.

new_dhp An opaque data structure that the system uses to describe the dupli-
cated device mapping.

new_pvtp A pointer to be filled in by device drivers with the driver private map-
ping data for the duplicated device mapping.

DESCRIPTION The system calls devmap_dup() when a device mapping is duplicated such as during the
fork(2) system call. The system expects devmap_dup() to generate new driver private
data for the new mapping, and to set new_pvtp to point to it. new_dhp is the handle of the
new mapped object.

A non-zero return value from devmap_dup() will cause a corresponding operation, such
as fork() to fail.

RETURN VALUES devmap_dup(9E) returns the following values:

0 Successful completion.

Non-zero An error occurred.

EXAMPLES static int
xxdevmap_dup(devmap_cookie_t dhp, void ∗pvtp, devmap_cookie_t new_dhp,

void ∗∗new_pvtp)
{

struct xxpvtdata ∗prvtdata;
struct xxpvtdata ∗p = (struct xxpvtdata ∗)pvtp;
struct xx_softc ∗softc = p->softc;

mutex_enter(&softc->mutex);
/∗ Allocate a new private data structure ∗/
prvtdata = kmem_alloc(sizeof (struct xxpvtdata), KM_SLEEP);

/∗ Return the new data ∗/
prvtdata->off = p->off;
prvtdata->len = p->len;

modified 21 Jan 1997 SunOS 5.6 9E-39

devmap_dup (9E) Driver Entry Points

prvtdata->ctx = p->ctx;
prvtdata->dhp = new_dhp;
prvtdata->softc = p->softc;
∗new_pvtp = prvtdata;
mutex_exit(&softc->mutex);

return (0);
}

SEE ALSO fork(2), devmap_callback_ctl(9S)

Writing Device Drivers

9E-40 SunOS 5.6 modified 21 Jan 1997

Driver Entry Points devmap_map (9E)

NAME devmap_map − device mapping create entry point

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int prefix devmap_map(devmap_cookie_t dhp, dev_t dev, u_int flags , offset_t off,
size_t len, void ∗∗pvtp)

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS dhp An opaque mapping handle that the system uses to describe the map-
ping currently being created.

dev The device whose memory is to be mapped.

flags Flags indicating type of mapping. Possible values are:

MAP_PRIVATE Changes are private.

MAP_SHARED Changes should be shared.

off User offset within the logical device memory at which the mapping
begins.

len Length (in bytes) of the memory to be mapped.

pvtp A pointer to be filled in by device drivers with the driver private map-
ping data.

DESCRIPTION The devmap_map() entry point is an optional routine that allows drivers to perform
additional processing or to allocate private resources during the mapping setup time.
For example, in order for device drivers to support context switching, the drivers allocate
private mapping data and associate the private data with the mapping parameters in the
devmap_map() entry point.

The system calls devmap_map() after the user mapping to device physical memory has
been established. (For example, after the devmap(9E) entry point is called.)

devmap_map() receives a pointer to the driver private data for this mapping in pvtp .
The system expects the driver to allocate its private data and set ∗pvtp to the allocated
data. The driver must store off and len, which define the range of the mapping, in its
private data. Later, when the system calls devmap_unmap(9E), the driver will use the off
and len stored in pvtp to check if the entire mapping, or just a part of it, is being
unmapped. If only a part of the mapping is being unmapped, the driver must allocate a
new private data for the remaining mapping before freeing the old private data. The
driver will receive ∗pvtp in subsequent event notification callbacks.

If the driver support context switching, it should store the mapping handle, dhp, in its
private data ∗pvtp , for later use in devmap_unload(9F).

For a driver that supports context switching, flags indicates whether or not the driver
should allocate a private context for the mapping. For example, a driver may allocate a
memory region to store the device context if flags is set to MAP_PRIVATE.

modified 7 Jan 1997 SunOS 5.6 9E-41

devmap_map (9E) Driver Entry Points

RETURN VALUES devmap_map(9E) returns the following values:

0 Successful completion.

Non-zero An error occurred.

EXAMPLES The following shows an example implementation for devmap_map().

static int
xxdevmap_map(devmap_cookie_t dhp, dev_t dev, u_int flags, offset_t off,

size_t len, void ∗∗pvtp)
{

struct xx_resources ∗pvt;
struct xx_context ∗this_context;
struct xx_softc ∗softc;

softc = ddi_get_soft_state(statep, getminor(dev));

this_context = get_context(softc, off, len);

/∗ allocate resources for the mapping - Device dependent ∗/
pvt = kmem_zalloc(sizeof (struct xx_resources), KM_SLEEP);

pvt->off = off;
pvt->len = len;
pvt->dhp = dhp;
pvt->ctx = this_context;
∗pvtp = pvt;

}

SEE ALSO devmap_unmap(9E), devmap_unload(9F), devmap_callback_ctl(9S)

Writing Device Drivers

9E-42 SunOS 5.6 modified 7 Jan 1997

Driver Entry Points devmap_unmap (9E)

NAME devmap_unmap − device mapping unmap entry point

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

void prefix devmap_unmap(devmap_cookie_t dhp, void ∗pvtp , offset_t off,
size_t len, devmap_cookie_t new_dhp1, void ∗∗new_pvtp1,
devmap_cookie_t new_dhp2, void ∗∗new_pvtp2)

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS dhp An opaque mapping handle that the system uses to describe the map-
ping.

pvtp Driver private mapping data.

off User offset within the logical device memory at which the unmapping
begins.

len Length (in bytes) of the memory being unmapped.

new_dhp1 The opaque mapping handle that the system uses to describe the new
region that ends at (off - 1). new_dhp1 may be NULL.

new_pvtp1 A pointer to be filled in by the driver with the driver private mapping
data for the new region that ends at (off - 1); ignored if new_dhp1 is
NULL.

new_dhp2 The opaque mapping handle that the system uses to describe the new
region that begins at (off + len); new_dhp2 may be NULL.

new_pvtp2 A pointer to be filled in by the driver with the driver private mapping
data for the new region that begins at (off + len); ignored if new_dhp2 is
NULL.

DESCRIPTION devmap_unmap() is called when the system removes the mapping in the range [off, off +
len] such as in the munmap(2) or exit(2) system calls. Device drivers use
devmap_unmap() to free up the resources allocated in devmap_map(9E).

dhp is the mapping handle that uniquely identifies the mapping. The driver stores the
mapping attributes in the driver’s private data, pvtp , when the mapping is created. See
devmap_map(9E) for details.

off and len define the range to be affected by devmap_unmap(). This range is within the
boundary of the mapping described by dhp.

If the range [off, off + len] covers the entire mapping, the system passes NULL to
new_dhp1, new_pvtp1, new_dhp2, and new_pvtp2. The system expects device drivers to
free all resources allocated for this mapping.

If off is at the beginning of the mapping and len does not cover the entire mapping, the
system sets NULL to new_dhp1 and to new_pvtp1. The system expects the drivers to allo-
cate new driver private data for the region that starts at off + len and to set ∗new_pvtp2 to

modified 21 Jan 1997 SunOS 5.6 9E-43

devmap_unmap (9E) Driver Entry Points

point to it. new_dhp2 is the mapping handle of the newly mapped object.

If off is not at the beginning of the mapping, but off + len is at the end of the mapping the
system passes NULL to new_dhp2 and new_pvtp2. The system then expects the drivers to
allocate new driver private data for the region that begins at the beginning of the map-
ping (for example, stored in pvtp) and to set ∗new_pvtp1 to point to it. new_dhp1 is the
mapping handle of the newly mapped object.

The drivers should free up the driver private data, pvtp , previously allocated in
devmap_map(9E) before returning to the system.

EXAMPLES static void
xxdevmap_unmap(devmap_cookie_t dhp, void ∗pvtp, offset_t off,

size_t len, devmap_cookie_t new_dhp1, void ∗∗new_pvtp1,
devmap_cookie_t new_dhp2, void ∗∗new_pvtp2)

{

struct xxpvtdata ∗ptmp;
struct xxpvtdata ∗p = (struct xxpvtdata ∗)pvtp;
struct xx_softc ∗softc = p->softc;

mutex_enter(&softc->mutex);
/∗
∗ If new_dhp1 is not NULL, create a new driver private data
∗ for the region from the beginning of old mapping to off.
∗/
if (new_dhp1 != NULL) {

ptmp = kmem_zalloc(sizeof (struct xxpvtdata), KM_SLEEP);
ptmp->dhp = new_dhp1;
ptmp->off = pvtp->off;
ptmp->len = off - pvtp->off;
∗new_pvtp1 = ptmp;

}

/∗
∗ If new_dhp2 is not NULL, create a new driver private data
∗ for the region from off+len to the end of the old mapping.
∗/
if (new_dhp2 != NULL) {

ptmp = kmem_zalloc(sizeof (struct xxpvtdata), KM_SLEEP);
ptmp->off = off + len;
ptmp->len = pvpt->len - (off + len - pvtp->off);
ptmp->dhp = new_dhp2;
∗new_pvtp2 = ptmp;

}

/∗ Destroy the driver private data - Device dependent ∗/

9E-44 SunOS 5.6 modified 21 Jan 1997

Driver Entry Points devmap_unmap (9E)

...

kmem_free(pvtp, sizeof (struct xxpvtdata));
mutex_exit(&softc->mutex);

}

SEE ALSO exit(2), munmap(2), devmap_map(9E), devmap_callback_ctl(9S)

Writing Device Drivers

modified 21 Jan 1997 SunOS 5.6 9E-45

dump (9E) Driver Entry Points

NAME dump − dump memory to device during system failure

SYNOPSIS #include <sys/types.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

int prefixdump(dev_t dev, caddr_t addr, daddr_t blkno , int nblk);

INTERFACE
LEVEL

Solaris specific (Solaris DDI). This entry point is required. For drivers that do not imple-
ment dump routines, nodev should be used.

ARGUMENTS dev Device number.

addr Address for the beginning of the area to be dumped.

blkno Block offset to dump memory to.

nblk Number of blocks to dump.

DESCRIPTION dump() is used to dump a portion of virtual address space directly to a device in the case
of system failure. The memory area to be dumped is specified by addr (base address) and
nblk (length). It is dumped to the device specified by dev starting at offset blkno. Upon
completion dump() returns the status of the transfer.

dump() is called at interrupt priority.

RETURN VALUES dump() should return 0 on success, or the appropriate error number.

SEE ALSO Writing Device Drivers

9E-46 SunOS 5.6 modified 1 May 1992

Driver Entry Points _fini (9E)

NAME _fini, _info, _init − loadable module configuration entry points

SYNOPSIS #include <sys/modctl.h>

int _fini(void);

int _info(struct modinfo ∗modinfop);

int _init(void);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI). These entry points are required. You must write
them.

ARGUMENTS
_info() modinfop A pointer to an opaque modinfo structure.

DESCRIPTION _init() initializes a loadable module. It is called before any other routine in a loadable
module. _init() returns the value returned by mod_install(9F). The module may option-
ally perform some other work before the mod_install(9F) call is performed. If the
module has done some setup before the mod_install(9F) function is called, then it should
be prepared to undo that setup if mod_install(9F) returns an error.

_info() returns information about a loadable module. _info() returns the value returned
by mod_info(9F).

_fini() prepares a loadable module for unloading. It is called when the system wants to
unload a module. If the module determines that it can be unloaded, then _fini() returns
the value returned by mod_remove(9F). Upon successful return from _fini() no other
routine in the module will be called before _init() is called.

RETURN VALUES _init() should return the appropriate error number if there is an error, else it should
return the return value from mod_install(9F).

_info() should return the return value from mod_info(9F)

_fini() should return the return value from mod_remove(9F).

EXAMPLES The following example demonstrates how to initialize and free a mutex(9F).
#include <sys/modctl.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

static struct dev_ops drv_ops;
/∗
∗ Module linkage information for the kernel.
∗/
static struct modldrv modldrv = {

&mod_driverops, /∗ Type of module. This one is a driver ∗/
"Sample Driver",
&drv_ops /∗ driver ops ∗/

modified 29 Jun 1995 SunOS 5.6 9E-47

_fini (9E) Driver Entry Points

};

static struct modlinkage modlinkage = {
MODREV_1,
&modldrv,
NULL

};

/∗
∗ Global driver mutex
∗/
static kmutex_t xx_global_mutex;

int
_init(void)
{

int i;

/∗
∗ Initialize global mutex before mod_install’ing driver.
∗ If mod_install() fails, must clean up mutex initialization
∗/

mutex_init(&xx_global_mutex, "XXX Global Mutex",
MUTEX_DRIVER, (void ∗)NULL);

if ((i = mod_install(&modlinkage)) != 0) {
mutex_destroy(&xx_global_mutex);

}

return (i);
}

int
_info(struct modinfo ∗modinfop)
{

return (mod_info(&modlinkage, modinfop));
}

int
_fini(void)
{

int i;

9E-48 SunOS 5.6 modified 29 Jun 1995

Driver Entry Points _fini (9E)

/∗
∗ If mod_remove() is successful, we destroy our global mutex
∗/

if ((i = mod_remove(&modlinkage)) == 0) {
mutex_destroy(&xx_global_mutex);

}
return (i);

}

SEE ALSO add_drv(1M), mod_info(9F), mod_install(9F), mod_remove(9F), mutex(9F),
modldrv(9S), modlinkage(9S), modlstrmod(9S)

Writing Device Drivers

WARNINGS Do not change the structures referred to by the modlinkage structure after the call to
mod_install(), as the system may copy or change them.

NOTES Even though the identifiers _fini(), _info(), and _init() appear to be declared as globals,
their scope is restricted by the kernel to the module that they are defined in.

BUGS On some implementations _info() may be called before _init().

modified 29 Jun 1995 SunOS 5.6 9E-49

getinfo (9E) Driver Entry Points

NAME getinfo − get device driver information

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int prefixgetinfo(dev_info_t ∗dip, ddi_info_cmd_t cmd, void ∗arg , void ∗∗resultp);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI). This entry point is required for drivers which export
cb_ops(9S) entry points.

ARGUMENTS dip Do not use.

cmd Command argument − valid command values are
DDI_INFO_DEVT2DEVINFO and DDI_INFO_DEVT2INSTANCE.

arg Command specific argument.

resultp Pointer to where the requested information is stored.

DESCRIPTION When cmd is set to DDI_INFO_DEVT2DEVINFO, getinfo() should return the dev_info_t
pointer associated with the dev_t arg . The dev_info_t pointer should be returned in the
field pointed to by resultp.

When cmd is set to DDI_INFO_DEVT2INSTANCE, getinfo() should return the instance
number associated with the dev_t arg . The instance number should be returned in the
field pointed to by resultp.

Drivers which do not export cb_ops(9S) entry points are not required to provide a
getinfo() entry point, and may use nodev(9F) in the devo_getinfo field of the
dev_ops(9S) structure. A SCSI HBA driver is an example of a driver which is not required
to provide cb_ops(9S) entry points.

RETURN VALUES getinfo() should return:

DDI_SUCCESS on success.

DDI_FAILURE on failure.

EXAMPLES /∗ARGSUSED∗/
static int
rd_getinfo(dev_info_t ∗dip, ddi_info_cmd_t infocmd, void ∗arg, void ∗∗result)
{

/∗ Note that in this simple example
∗ the minor number is the instance
∗ number.
∗/

devstate_t ∗sp;
int error = DDI_FAILURE;

9E-50 SunOS 5.6 modified 1 May 1992

Driver Entry Points getinfo (9E)

switch (infocmd) {
case DDI_INFO_DEVT2DEVINFO:

if ((sp = ddi_get_soft_state(statep,
getminor((dev_t) arg))) != NULL) {

∗resultp = sp->devi;
error = DDI_SUCCESS;

} else
∗result = NULL;

break;

case DDI_INFO_DEVT2INSTANCE:
∗resultp = (void ∗) getminor((dev_t) arg);
error = DDI_SUCCESS;
break;

}

return (error);
}

SEE ALSO nodev(9F), cb_ops(9S), dev_ops(9S)

Writing Device Drivers

modified 1 May 1992 SunOS 5.6 9E-51

identify (9E) Driver Entry Points

NAME identify − determine if a driver is associated with a device

SYNOPSIS #include <sys/conf.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

int prefixidentify(dev_info_t ∗dip);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI). This entry point is obsolete and is no longer required.
This entry point may not be supported in future releases. nulldev(9F) should be
specified in the dev_ops(9S) structure.

ARGUMENTS dip A pointer to a dev_info structure.

DESCRIPTION identify() was used to determine whether a driver drives the device pointed to by dip.
identify() is currently supported to provide backward compatibility with older drivers
and should not be implemented. See the INTERFACE LEVEL section.

RETURN VALUES The return value from identify() is ignored.

SEE ALSO nulldev(9F), dev_ops(9S)

WARNINGS This routine may be called multiple times. It may also be called at any time. The driver
should not infer anything from the the sequence or the number of times this entry point
has been called.

This entry point may not be supported in future releases.

9E-52 SunOS 5.6 modified 12 Oct 1995

Driver Entry Points ioctl (9E)

NAME ioctl − control a character device

SYNOPSIS #include <sys/cred.h>
#include <sys/file.h>
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

int prefixioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t ∗cred_p, int ∗rval_p);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI). This entry point is optional.

ARGUMENTS dev Device number.

cmd Command argument the driver ioctl routine interprets as the operation to be
performed.

arg Passes parameters between a user program and the driver. When used with
terminals, the argument is the address of a user program structure containing
driver or hardware settings. Alternatively, the argument may be a value that
has meaning only to the driver. The interpretation of the argument is driver
dependent and usually depends on the command type; the kernel does not
interpret the argument.

mode A bit field that contains:

· Information set when the device was opened. The driver may use it to
determine if the device was opened for reading or writing. The driver can
make this determination by checking the FREAD or FWRITE flags. See the
flag argument description of the open() routine for further values.

· Information on whether the caller is a 32-bit or 64-bit thread.

· In some circumstances address space information about the arg argument.
See below.

cred_p Pointer to the user credential structure.

rval_p Pointer to return value for calling process. The driver may elect to set the
value which is valid only if the ioctl() succeeds.

DESCRIPTION ioctl() provides character-access drivers with an alternate entry point that can be used
for almost any operation other than a simple transfer of characters in and out of buffers.
Most often, ioctl() is used to control device hardware parameters and establish the proto-
col used by the driver in processing data.

The kernel determines that this is a character device, and looks up the entry point rou-
tines in cb_ops (9S). The kernel then packages the user request and arguments as
integers and passes them to the driver’s ioctl() routine. The kernel itself does no process-
ing of the passed command, so it is up to the user program and the driver to agree on
what the arguments mean.

modified 3 Dec 1996 SunOS 5.6 9E-53

ioctl (9E) Driver Entry Points

I/O control commands are used to implement the terminal settings passed from
ttymon(1M) and stty(1), to format disk devices, to implement a trace driver for debug-
ging, and to clean up character queues. Since the kernel does not interpret the command
type that defines the operation, a driver is free to define its own commands.

Drivers that use an ioctl() routine typically have a command to ‘‘read’’ the current ioctl()
settings, and at least one other that sets new settings. Drivers can use the mode argument
to determine if the device unit was opened for reading or writing, if necessary, by check-
ing the FREAD or FWRITE setting.

If the third argument, arg , is a pointer to a user buffer, the driver can call the copyin(9F)
and copyout(9F) functions to transfer data between kernel and user space.

Other kernel subsystems may need to call into the drivers ioctl routine. Drivers that
intend to allow their ioctl() routine to be used in this way should publish the ddi-
kernel-ioctl property on the associated devinfo node(s).

When the ddi-kernel-ioctl property is present, the mode argument is used to pass address
space information about arg through to the driver. If the driver expects arg to contain a
buffer address, and the FKIOCTL flag is set in mode , then the driver should assume that it
is being handed a kernel buffer address. Otherwise, arg may be the address of a buffer
from a user program. The driver can use ddi_copyin(9F) and ddi_copyout(9F) perform
the correct type of copy operation for either kernel or user address spaces. See the exam-
ple on ddi_copyout(9F).

Drivers have to interact with 32-bit and 64-bit applications. If a device driver shares data
structures with the application (for example, through exported kernel memory) and the
driver gets recompiled for a 64-bit kernel but the application remains 32-bit, binary lay-
out of any data structures will be incompatible if they contain longs or pointers. The
driver needs to know whether there is a model mismatch between the current thread and
the kernel and take necessary action. The mode argument has additional bits set to deter-
mine the C Language Type Model which the current thread expects. mode has FILP32 set
if the current thread expects 32-bit (ILP32) semantics, or FLP64 if the current thread
expects 64-bit (LP64) semantics. mode is used in combination with
ddi_model_convert_from(9F) and the FMODELS mask to determine whether there is a
data model mismatch between the current thread and the device driver (see the example
below). The device driver might have to adjust the shape of data structures before export-
ing them to a user thread which supports a different data model.

To implement I/O control commands for a driver the following two steps are required:

1. Define the I/O control command names and the associated value in the driver’s
header and comment the commands.

2. Code the ioctl routine in the driver that defines the functionality for each I/O
control command name that is in the header.

The ioctl routine is coded with instructions on the proper action to take for each com-
mand. It is commonly a switch statement, with each case definition corresponding to an
ioctl name to identify the action that should be taken. However, the command passed to
the driver by the user process is an integer value associated with the command name in
the header.

9E-54 SunOS 5.6 modified 3 Dec 1996

Driver Entry Points ioctl (9E)

RETURN VALUES ioctl() should return 0 on success, or the appropriate error number. The driver may also
set the value returned to the calling process through rval_p .

EXAMPLES The following is an example of the ioctl() entry point and how to support 32-bit and 64-
bit applications with the same device driver.

struct passargs32 {
int len;
caddr32_t addr;

};

struct passargs {
int len;
caddr_t addr;

};

xxioctl(dev_t dev, int cmd, intptr_t arg, int mode,
cred_t ∗credp, int ∗rvalp) {

struct passargs pa;

#ifdef _MULTI_DATAMODEL
switch (ddi_model_convert_from(mode & FMODELS)) {

case DDI_MODEL_ILP32:
{

struct passargs32 pa32;

ddi_copyin(arg, &pa32, sizeof (struct passargs32), mode);
pa.len = pa32.len;
pa.address = pa32.address;
break;

}
case DDI_MODEL_NONE:

ddi_copyin(arg, &pa, sizeof (struct passargs), mode);
break;

}
#else /∗ _MULTI_DATAMODEL ∗/

ddi_copyin(arg, &pa, sizeof (struct passargs), mode);
#endif /∗ _MULTI_DATAMODEL ∗/

do_ioctl(&pa);
. . . .

}

SEE ALSO stty(1), ttymon(1M), dkio(7I), fbio(7I), termio(7I), open(9E), put(9E), srv(9E), copyin(9F),
copyout(9F), ddi_copyin(9F), ddi_copyout(9F), ddi_model_convert_from(9F),
cb_ops(9S)

modified 3 Dec 1996 SunOS 5.6 9E-55

ioctl (9E) Driver Entry Points

Writing Device Drivers

WARNINGS Non-STREAMS driver ioctl() routines must make sure that user data is copied into or
out of the kernel address space explicitly using copyin(9F), copyout(9F), ddi_copyin(9F),
or ddi_copyout(9F), as appropriate.

It is a severe error to simply dereference pointers to the user address space, even when in
user context.

Failure to use the appropriate copying routines can result in panics under load on some
platforms, and reproducible panics on others.

NOTES STREAMS drivers do not have ioctl routines. The stream head converts I/O control
commands to M_IOCTL messages, which are handled by the driver’s put(9E) or srv(9E)
routine.

9E-56 SunOS 5.6 modified 3 Dec 1996

Driver Entry Points ks_update (9E)

NAME ks_update − dynamically update kstats

SYNOPSIS #include <sys/types.h>
#include <sys/kstat.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

int prefix_ks_update(kstat_t ∗ksp , int rw);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI)

ARGUMENTS ksp Pointer to a kstat(9S) structure.

rw Read/Write flag. Possible values are

KSTAT_READ Update kstat structure statistics from the driver.

KSTAT_WRITE Update driver statistics from the kstat structure.

DESCRIPTION The kstat mechanism allows for an optional ks_update() function to update kstat data.
This is useful for drivers where the underlying device keeps cheap hardware statistics,
but extraction is expensive. Instead of constantly keeping the kstat data section up to
date, the driver can supply a ks_update() function which updates the kstat’s data section
on demand. To take advantage of this feature, set the ks_update field before calling
kstat_install(9F).

The ks_update() function must have the following structure:

static int
xx_kstat_update(kstat_t ∗ksp, int rw)
{

if (rw == KSTAT_WRITE) {
/∗ update the native stats from ksp->ks_data ∗/
/∗ return EACCES if you don’t support this ∗/

} else {
/∗ update ksp->ks_data from the native stats ∗/

}
return (0);

}

In general, the ks_update() routine may need to refer to provider-private data; for exam-
ple, it may need a pointer to the provider’s raw statistics. The ks_private field is avail-
able for this purpose. Its use is entirely at the provider’s discretion.

No kstat locking should be done inside the ks_update() routine. The caller will already
be holding the kstat’s ks_lock (to ensure consistent data) and will prevent the kstat from
being removed.

modified 27 May 1994 SunOS 5.6 9E-57

ks_update (9E) Driver Entry Points

RETURN VALUES ks_update() should return

0 for success

EACCES if KSTAT_WRITE is not allowed

EIO for any other error.

SEE ALSO kstat_create(9F), kstat_install(9F), kstat(9S)

Writing Device Drivers

9E-58 SunOS 5.6 modified 27 May 1994

Driver Entry Points mapdev_access (9E)

NAME mapdev_access − device mapping access entry point

SYNOPSIS #include <sys/sunddi.h>

int prefixmapdev_access(ddi_mapdev_handle_t handle, void ∗devprivate , off_t offset);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS handle An opaque pointer to a device mapping.

devprivate Driver private mapping data from ddi_mapdev(9F).

offset The offset within device memory at which the access occurred.

DESCRIPTION Future releases of Solaris will provide this function for binary and source compatibility.
However, for increased functionality, use devmap_access(9F) or devmap_contextmgt(9F)
instead. See devmap_access(9F) or devmap_contextmgt(9F) for details.

mapdev_access() is called when an access is made to a mapping that has either been
newly created with ddi_mapdev(9F) or that has been enabled with a call to
ddi_mapdev_intercept(9F).

mapdev_access() is passed the handle of the mapped object on which an access has
occurred. This handle uniquely identifies the mapping and is used as an argument to
ddi_mapdev_intercept(9F) or ddi_mapdev_nointercept(9F) to control whether or not
future accesses to the mapping will cause mapdev_access() to be called. In general,
mapdev_access() should call ddi_mapdev_intercept() on the mapping that is currently
in use and then call ddi_mapdev_nointercept() on the mapping that generated this call
to mapdev_access(). This will ensure that a call to mapdev_access() will be generated
for the current mapping next time it is accessed.

mapdev_access() must at least call ddi_mapdev_nointercept() with offset passed in in
order for the access to succeed. A request to allow accesses affects the entire page con-
taining the offset .

Accesses to portions of mappings that have been disabled by a call to
ddi_mapdev_nointercept() will not generate a call to mapdev_access(). A subsequent
call to ddi_mapdev_intercept() will enable mapdev_access() to be called again.

A non-zero return value from mapdev_access() will cause the corresponding operation
to fail. The failure may result in a SIGSEGV or SIGBUS signal being delivered to the pro-
cess.

RETURN VALUES mapdev_access() should return 0 on success, -1 if there was a hardware error, or the
return value from ddi_mapdev_intercept() or ddi_mapdev_nointercept().

CONTEXT This function is called from user context only.

modified 17 Jan 1997 SunOS 5.6 9E-59

mapdev_access (9E) Driver Entry Points

EXAMPLES The following shows an example of managing a device context that is one page in length.

ddi_mapdev_handle_t cur_hdl;

static int
xxmapdev_access(ddi_mapdev_handle_t handle, void ∗devprivate,

off_t offset)
{

int err;

/∗ enable calls to mapdev_access for the current mapping ∗/
if (cur_hdl != NULL) {

if ((err = ddi_mapdev_intercept(cur_hdl, off, 0)) != 0)
return (err);

}

/∗ Switch device context - device dependent∗/
...

/∗ Make handle the new current mapping ∗/
cur_hdl = handle;

/∗
∗ Disable callbacks and complete the access for the
∗ mapping that generated this callback.
∗/

return (ddi_mapdev_nointercept(handle, off, 0));
}

SEE ALSO mmap(2), mapdev_dup(9E), mapdev_free(9E), segmap(9E), ddi_mapdev(9F),
ddi_mapdev_intercept(9F), ddi_mapdev_nointercept(9F), ddi_mapdev_ctl(9S)

Writing Device Drivers

9E-60 SunOS 5.6 modified 17 Jan 1997

Driver Entry Points mapdev_dup (9E)

NAME mapdev_dup − device mapping duplication entry point

SYNOPSIS #include <sys/sunddi.h>

int prefixmapdev_dup(ddi_mapdev_handle_t handle, void ∗devprivate ,
ddi_mapdev_handle_t new_handle, void ∗∗new_devprivatep);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS handle The handle of the mapping that is being duplicated.

devprivate Driver private mapping data from the mapping that is being duplicated.

new_handle An opaque pointer to the duplicated device mapping.

new_devprivatep A pointer to be filled in by the driver with the driver private mapping
data for the duplicated device mapping.

DESCRIPTION Future releases of Solaris will provide this function for binary and source compatibility.
However, for increased functionality, use devmap_dup(9F) instead. See
devmap_dup(9F) for details.

mapdev_dup() is called when a device mapping is duplicated such as through fork(2).
mapdev_dup() is expected to generate new driver private data for the new mapping, and
set new_devprivatep to point to it. new_handle is the handle of the new mapped object.

A non-zero return value from mapdev_dup() will cause the corresponding operation,
such as fork() to fail.

RETURN VALUES mapdev_dup() returns 0 for success or the appropriate error number on failure.

CONTEXT This function is called from user context only.

EXAMPLES static int
xxmapdev_dup(ddi_mapdev_handle_t handle, void ∗devprivate,

ddi_mapdev_handle_t new_handle, void ∗∗new_devprivate)
{

struct xxpvtdata ∗pvtdata;

/∗ Allocate a new private data structure ∗/
pvtdata = kmem_alloc(sizeof (struct xxpvtdata), KM_SLEEP);

/∗ Copy the old data to the new - device dependent∗/
...

/∗ Return the new data ∗/
∗new_pvtdata = pvtdata;

return (0);
}

modified 17 Dec 1996 SunOS 5.6 9E-61

mapdev_dup (9E) Driver Entry Points

SEE ALSO fork(2), mmap(2), mapdev_access(9E), mapdev_free(9E), segmap(9E), ddi_mapdev(9F),
ddi_mapdev_intercept(9F), ddi_mapdev_nointercept(9F), ddi_mapdev_ctl(9S)
Writing Device Drivers

9E-62 SunOS 5.6 modified 17 Dec 1996

Driver Entry Points mapdev_free (9E)

NAME mapdev_free − device mapping free entry point

SYNOPSIS #include <sys/sunddi.h>

void prefixmapdev_free(ddi_mapdev_handle_t handle, void ∗devprivate);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS handle An opaque pointer to a device mapping.

devprivate Driver private mapping data from ddi_mapdev(9F).

DESCRIPTION Future releases of Solaris will provide this function for binary and source compatibility.
However, for increased functionality, use devmap_unmap(9F) instead. See
devmap_unmap(9F) for details.

mapdev_free() is called when a mapping created by ddi_mapdev(9F) is being destroyed.
mapdev_free() receives the handle of the mapping being destroyed and a pointer to the
driver private data for this mapping in devprivate .

The mapdev_free() routine is expected to free any resources that were allocated by the
driver for this mapping.

CONTEXT This function is called from user context only.

EXAMPLES static void
xxmapdev_free(ddi_mapdev_handle_t hdl, void ∗pvtdata)
{

/∗ Destroy the driver private data - Device dependent ∗/
...

kmem_free(pvtdata, sizeof (struct xxpvtdata));
}

SEE ALSO exit(2), mmap(2), munmap(2), mapdev_access(9E), mapdev_dup(9E), segmap(9E),
ddi_mapdev(9F), ddi_mapdev_intercept(9F), ddi_mapdev_nointercept(9F),
ddi_mapdev_ctl(9S)

Writing Device Drivers

modified 17 Dec 1996 SunOS 5.6 9E-63

mmap (9E) Driver Entry Points

NAME mmap − check virtual mapping for memory mapped device

SYNOPSIS #include <sys/types.h>
#include <sys/cred.h>
#include <sys/mman.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

int prefixmmap(dev_t dev, off_t off, int prot);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

ARGUMENTS dev Device whose memory is to be mapped.

off Offset within device memory at which mapping begins.

prot A bit field that specifies the protections this page of memory will receive. Possible
settings are:

PROT_READ Read access will be granted.

PROT_WRITE Write access will be granted.

PROT_EXEC Execute access will be granted.

PROT_USER User-level access will be granted.

PROT_ALL All access will be granted.

DESCRIPTION Future releases of Solaris will provide this function for binary and source compatibility.
However, for increased functionality, use devmap(9E) instead. See devmap(9E) for
details.

The mmap(9E) entry point is a required entry point for character drivers supporting
memory-mapped devices. A memory mapped device has memory that can be mapped
into a process’s address space. The mmap(2) system call, when applied to a character
special file, allows this device memory to be mapped into user space for direct access by
the user application.

The mmap(9E) entry point is called as a result of an mmap(2) system call, and also as a
result of a page fault. mmap(9E) is called to translate the offset off in device memory to
the corresponding physical page frame number.

The mmap(9E) entry point checks if the offset off is within the range of pages exported by
the device. For example, a device that has 512 bytes of memory that can be mapped into
user space should not support offsets greater than 512. If the offset does not exist, then -1
is returned. If the offset does exist, mmap(9E) returns the value returned by
hat_getkpfnum(9F) for the physical page in device memory containing the offset off.

hat_getkpfnum(9F) accepts a kernel virtual address as an argument. A kernel virtual
address can be obtained by calling ddi_regs_map_setup(9F) in the driver’s attach(9E)
routine. The corresponding ddi_regs_map_free(9F) call can be made in the driver’s
detach(9E) routine. Refer to the EXAMPLES section below for more information.

9E-64 SunOS 5.6 modified 14 Jan 1997

Driver Entry Points mmap (9E)

mmap(9E) should only be supported for memory-mapped devices. See the segmap(9E)
and ddi_mapdev(9F) reference pages for further information on memory-mapped device
drivers.

If a device driver shares data structures with the application (for example, through
exported kernel memory) and the driver gets recompiled for a 64-bit kernel but the appli-
cation remains 32-bit, binary layout of any data structures will be incompatible if they
contain longs or pointers. The driver needs to know whether there is a model mismatch
between the current thread and the kernel and take necessary action.
ddi_mmap_get_model(9F) can be use to get the C Language Type Model which the
current thread expects. In combination with ddi_model_convert_from(9F) the driver can
determine whether there is a data model mismatch between the current thread and the
device driver. The device driver might have to adjust the shape of data structures before
exporting them to a user thread which supports a different data model. (see
ddi_mmap_get_model(9F) for an example)

RETURN VALUES If the protection and offset are valid for the device, the driver should return the value
returned by hat_getkpfnum(9F), for the page at offset off in the device’s memory. If not,
-1 should be returned.

EXAMPLES The following is an example of the mmap() entry point. If offset off is valid,
hat_getkpfnum(9F) is called to obtain the page frame number corresponding to this
offset in the device’s memory. In this example, xsp→regp→csr is a kernel virtual address
which maps to device memory. ddi_regs_map_setup(9F) can be used to obtain this
address. For example, ddi_regs_map_setup(9F) can be called in the driver’s attach(9E)
routine. The resulting kernel virtual address is stored in the xxstate structure (see
ddi_soft_state(9F)), which is accessible from the driver’s mmap() entry point. The
corresponding ddi_regs_map_free(9F) call can be made in the driver’s detach(9E) rou-
tine.

struct reg {
uint8_t csr;
uint8_t data;

};

struct xxstate {
. . .
struct reg ∗regp
. . .

};

struct xxstate ∗xsp;
. . .

static int
xxmmap(dev_t dev, off_t off, int prot)
{

modified 14 Jan 1997 SunOS 5.6 9E-65

mmap (9E) Driver Entry Points

int instance;
struct xxstate ∗xsp;

/∗ No write access ∗/
if (prot & PROT_WRITE)

return (-1);

instance = getminor(dev);
xsp = ddi_get_soft_state(statep, instance);
if (xsp == NULL)

return (-1);

/∗ check for a valid offset ∗/
if (off is invalid)

return (-1);
return (hat_getkpfnum (xsp->regp->csr + off));

}

SEE ALSO mmap(2), attach(9E), detach(9E), devmap(9E), segmap(9E), ddi_btop(9F),
ddi_get_soft_state(9F), ddi_mmap_get_model(9F), ddi_model_convert_from(9F),
ddi_regs_map_free(9F), ddi_regs_map_setup(9F), ddi_soft_state(9F),
devmap_setup(9F), getminor(9F), hat_getkpfnum(9F)

Writing Device Drivers

NOTES For some devices, mapping device memory in the driver’s attach(9E) routine and unmap-
ping device memory in the driver’s detach(9E) routine is a sizeable drain on system
resources. This is especially true for devices with a large amount of physical address
space.

One alternative is to create a mapping for only the first page of device memory in
attach(9E). If the device memory is contiguous, a kernel page frame number may be
obtained by calling hat_getkpfnum(9F) with the kernel virtual address of the first page of
device memory and adding the desired page offset to the result. The page offset may be
obtained by converting the byte offset off to pages (see ddi_btop(9F)).

Another alternative is to call ddi_regs_map_setup(9F) and ddi_regs_map_free(9F) in
mmap. These function calls would bracket the call to hat_getkpfnum(9F).

However, note that the above alternatives may not work in all cases. The existence of
intermediate nexus devices with memory management unit translation resources which
are not locked down may cause unexpected and undefined behavior.

9E-66 SunOS 5.6 modified 14 Jan 1997

Driver Entry Points open (9E)

NAME open − gain access to a device

SYNOPSIS
Block and Character #include <sys/types.h>

#include <sys/file.h>
#include <sys/errno.h>
#include <sys/open.h>
#include <sys/cred.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

int prefixopen(dev_t ∗devp, int flag, int otyp, cred_t ∗cred_p);

STREAMS #include <sys/file.h>
#include <sys/stream.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

int prefixopen(queue_t ∗q, dev_t ∗devp, int oflag, int sflag, cred_t ∗cred_p);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI). This entry point is required, but it can be
nulldev(9F).

ARGUMENTS
Block and Character devp Pointer to a device number.

flag A bit field passed from the user program open(2) system call that instructs the
driver on how to open the file. Valid settings are:

FEXCL Open the device with exclusive access; fail all other attempts to
open the device.

FNDELAY Open the device and return immediately (do not block the open
even if something is wrong).

FREAD Open the device with read-only permission (if ORed with
FWRITE, then allow both read and write access)

FWRITE Open a device with write-only permission (if ORed with FREAD,
then allow both read and write access)

otyp Parameter supplied so that the driver can determine how many times a device
was opened and for what reasons.
For OTYP_BLK and OTYP_CHR, the open() routine may be called many times,
but the close(9E) routine is called only when the last reference to a device is
removed. If the device is accessed through file descriptors, this is by a call to
close(2) or exit(2). If the device is accessed through memory mapping, this is by
a call to munmap(2) or exit(2).
For OTYP_LYR, there is exactly one close(9E) for each open() called. This per-
mits software drivers to exist above hardware drivers and removes any ambi-
guity from the hardware driver regarding how a device is used.

modified 13 Jan 1993 SunOS 5.6 9E-67

open (9E) Driver Entry Points

OTYP_BLK Open occurred through block interface for the device

OTYP_CHR Open occurred through the raw/character interface for the dev-
ice

OTYP_LYR Open a layered process. This flag is used when one driver calls
another driver’s open or close (9E) routine. The calling driver
will make sure that there is one layered close for each layered
open. This flag applies to both block and character devices.

cred_p Pointer to the user credential structure.

STREAMS q A pointer to the read queue.

devp Pointer to a device number. For STREAMS modules, devp always points to the
device number associated with the driver at the end (tail) of the stream.

oflag Valid oflag values are FEXCL, FNDELAY, FREAD, and FWRITEL, the same as those
listed above for flag. For STREAMS modules, oflag is always set to 0.

sflag Valid values are as follows:

CLONEOPEN Indicates that the open routine is called through the clone
driver. The driver should return a unique device number.

MODOPEN Modules should be called with sflag set to this value. Modules
should return an error if they are called with sflag set to a dif-
ferent value. Drivers should return an error if they are called
with sflag set to this value.

0 Indicates a driver is opened directly, without calling the clone
driver.

cred_p Pointer to the user credential structure.

DESCRIPTION The driver’s open() routine is called by the kernel during an open(2) or a mount(2) on
the special file for the device. The routine should verify that the minor number com-
ponent of ∗devp is valid, that the type of access requested by otyp and flag is appropriate
for the device, and, if required, check permissions using the user credentials pointed to
by cred_p.

The open() routine is passed a pointer to a device number so that the driver can change
the minor number. This allows drivers to dynamically create minor instances of the dev-
ice. An example of this might be a pseudo-terminal driver that creates a new pseudo-
terminal whenever it is opened. A driver that chooses the minor number dynamically,
normally creates only one minor device node in attach(9E) with
ddi_create_minor_node(9F), then changes the minor number component of ∗devp using
makedevice(9F) and getmajor(9F). The driver needs to keep track of available minor
numbers internally.

∗devp = makedevice(getmajor(∗devp), new_minor);

9E-68 SunOS 5.6 modified 13 Jan 1993

Driver Entry Points open (9E)

RETURN VALUES The open() routine should return 0 for success, or the appropriate error number.

SEE ALSO close(2), exit(2), mmap(2), mount(2), munmap(2), open(2), intro(9E), attach(9E),
close(9E), ddi_create_minor_node(9F), getmajor(9F), getminor(9F), makedevice(9F),
nulldev(9F)

Writing Device Drivers

STREAMS Programming Guide

WARNINGS Do not attempt to change the major number.

modified 13 Jan 1993 SunOS 5.6 9E-69

pm (9E) Driver Entry Points

NAME pm − power management properties

DESCRIPTION There is a property, pm-hardware-state, that may be used to influence the behavior of the
power management portion of the DDI framework. Its syntax and interpretation is
described below.

Note that this property is only interpreted by the system immediately after the device has
successfully attached. Changes in the property made by the driver after the driver has
attached will not be recognized.

pm-hardware-state is a string-valued property. The existence of the pm-hardware-state
property indicates that a device needs special handling by the power management frame-
work with regard to its hardware state.

If the value of this property is needs-suspend-resume, the device has a hardware state that
cannot be deduced by the framework. The framework definition of a device with
hardware state is one with a reg property. Some drivers, such as SCSI disk and tape
drivers, have no reg property but manage devices with "remote" hardware. Such a device
must have a pm-hardware-state property with a value of needs-suspend-resume in order
for the system to identify it as needing a call to its detach(9E) entry point with command
DDI_SUSPEND or DDI_PM_SUSPEND before power is removed from the device, and a
call to attach(9E) with command DDI_RESUME or DDI_PM_RESUME after power is
restored.

A value of no-suspend-resume indicates that, in spite of the existence of a reg property, a
device has no hardware state that needs saving and restoring. A device exporting this
property will not have its detach() entry point called with command DDI_SUSPEND or
DDI_PM_SUSPEND before power is removed from the device, nor will its attach() entry
point be called with command DDI_RESUME after power is restored to the device.

A value of parental-suspend-resume indicates that the device does not implement the
detach() DDI_SUSPEND or DDI_PM_SUSPEND semantics, nor the attach() DDI_RESUME
or DDI_PM_RESUME semantics, but that a call should be made up the device tree by the
framework to effect the saving and/or restoring of hardware state for this device.

EXAMPLES Because the sd driver drives a device with no reg property, but needs to know when
power will be removed from its controller, it exports a property with the name pm-
hardware-state and the value needs-suspend-resume.

On an x86 system with Advanced Power Management (APM) BIOS support, a device
that can have its state saved by the APM BIOS can create a pm-hardware-state property
with the value parental-suspend-resume, and requests to save the state of the device will be
passed up the device tree to the platform-specific power management driver that will call
into the BIOS.

SEE ALSO power.conf(4), pm(7D), attach(9E), detach(9E), pm_busy_component(9F),
pm_create_components(9F), pm_destroy_components(9F), pm_idle_component(9F)

9E-70 SunOS 5.6 modified 28 Oct 1996

Driver Entry Points power (9E)

NAME power − power a device attached to the system

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int prefixpower(dev_info_t ∗dip, int component, int level)

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI). This entry point is required. If the driver writer does
not supply this entry point, the nulldev(9F) function must be used.

ARGUMENTS dip A pointer to the device’s dev_info structure.

component The component of the driver to be managed.

level The desired power level for the component.

DESCRIPTION The power() function is the device-specific power management entry point. This func-
tion is called when the system wants the driver to set the power level of component to
level.

The level argument is the driver-defined power level to which component is set. Except for
power level 0 which is defined by the framework to mean “powered off”, the interpreta-
tion of level is entirely up to the driver.

The component argument is the component of the device to be power-managed. Except
for component 0, which must represent the entire device, the interpretation of component
is entirely up to the driver.

The power() function can assume that the driver will be suspended (using detach(9E)
with command DDI_PM_SUSPEND), before a request is made to set component 0 to
power level 0 and resumed (using attach(9E) with command DDI_PM_RESUME) after set-
ting component 0 from power level 0 to a non-zero power level.

RETURN VALUES The power() function returns:

DDI_SUCCESS Successfully set the power to the requested level.

DDI_FAILURE Failed to set the power to the requested level.

CONTEXT The power() function is called from user or kernel context only.

SEE ALSO attach(9E), detach(9E), nulldev(9F), pm_busy_component(9F),
pm_create_components(9F), pm_destroy_components(9F), pm_idle_component(9F)

Writing Device Drivers

modified 31 Jan 1997 SunOS 5.6 9E-71

print (9E) Driver Entry Points

NAME print − display a driver message on system console

SYNOPSIS #include <sys/types.h>
#include <sys/errno.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

int prefixprint(dev_t dev, char ∗str);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI). This entry point is required for block dev-
ices.

ARGUMENTS dev Device number.

str Pointer to a character string describing the problem.

DESCRIPTION The print() routine is called by the kernel when it has detected an exceptional condition
(such as out of space) in the device. To display the message on the console, the driver
should use the cmn_err(9F) kernel function. The driver should print the message along
with any driver specific information.

RETURN VALUES The print() routine should return 0 for success, or the appropriate error number. The
print routine can fail if the driver implemented a non-standard print() routine that
attempted to perform error logging, but was unable to complete the logging for whatever
reason.

SEE ALSO cmn_err(9F)

Writing Device Drivers

9E-72 SunOS 5.6 modified 15 Sep 1992

Driver Entry Points probe (9E)

NAME probe − determine if a non-self-identifying device is present

SYNOPSIS #include <sys/conf.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

static int prefixprobe(dev_info_t ∗dip);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI). This entry point is required for non-self-identifying
devices. You must write it for such devices. For self-identifying devices, nulldev(9F)
should be specified in the dev_ops(9S) structure if a probe routine is not necessary.

ARGUMENTS dip Pointer to the device’s dev_info structure.

DESCRIPTION probe() determines whether the device corresponding to dip actually exists and is a valid
device for this driver. probe() is called after identify(9E) and before attach(9E) for a
given dip. For example, the probe() routine can map the device registers using
ddi_map_regs(9F) then attempt to access the hardware using ddi_peek(9F) and/or
ddi_poke(9F) and determine if the device exists. Then the device registers should be
unmapped using ddi_unmap_regs(9F).

probe() should only probe the device − it should not create or change any software state.
Device initialization should be done in attach(9E).

For a self-identifying device, this entry point is not necessary. However, if a device exists
in both self-identifying and non-self-identifying forms, a probe() routine can be provided
to simplify the driver. ddi_dev_is_sid(9F) can then be used to determine whether
probe() needs to do any work. See ddi_dev_is_sid(9F) for an example.

RETURN VALUES DDI_PROBE_SUCCESS if the probe was successful.

DDI_PROBE_FAILURE if the probe failed.

DDI_PROBE_DONTCARE if the probe was unsuccessful, yet attach(9E) should still be
called.

DDI_PROBE_PARTIAL if the instance is not present now, but may be present in the
future.

SEE ALSO attach(9E), identify(9E), ddi_dev_is_sid(9F), ddi_map_regs(9F), ddi_peek(9F),
ddi_poke(9F), nulldev(9F), dev_ops(9S)

Writing Device Drivers

modified 18 Nov 1992 SunOS 5.6 9E-73

prop_op (9E) Driver Entry Points

NAME prop_op − report driver property information

SYNOPSIS #include <sys/types.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

int prefixprop_op(dev_t dev, dev_info_t ∗dip, ddi_prop_op_t prop_op, int flags,
char ∗name, caddr_t valuep, int ∗lengthp)

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI). This entry point is required, but it can be
ddi_prop_op(9F).

ARGUMENTS dev Device number associated with this device.

dip A pointer to the device information structure for this device.

prop_op Property operator. Valid operators are:

PROP_LEN
Get property length only. (valuep unaffected)

PROP_LEN_AND_VAL_BUF
Get length and value into caller’s buffer. (valuep used as input)

PROP_LEN_AND_VAL_ALLOC
Get length and value into allocated buffer. (valuep returned as
pointer to pointer to allocated buffer)

flags The only possible flag value is:

DDI_PROP_DONTPASS
Don’t pass request to parent if property not found.

name Pointer to name of property to be interrogated.

valuep If prop_op is PROP_LEN_AND_VAL_BUF, this should be a pointer to the users
buffer. If prop_op is PROP_LEN_AND_VAL_ALLOC, this should be the address
of a pointer.

lengthp On exit, ∗lengthp will contain the property length. If prop_op is
PROP_LEN_AND_VAL_BUF then before calling prop_op(), lengthp should
point to an int that contains the length of caller’s buffer.

DESCRIPTION prop_op() is an entry point which reports the values of certain "properties" of the driver
or device to the system. Each driver must have an prefixprop_op entry point, but most
drivers which do not need to create or manage their own properties can use
ddi_prop_op() for this entry point. Then the driver can use ddi_prop_update(9F) to
create properties for its device.

9E-74 SunOS 5.6 modified 8 Jul 1996

Driver Entry Points prop_op (9E)

RETURN VALUES prop_op() should return:

DDI_PROP_SUCCESS Property found and returned.

DDI_PROP_NOT_FOUND Property not found.

DDI_PROP_UNDEFINED Prop explicitly undefined.

DDI_PROP_NO_MEMORY Property found, but unable to allocate memory. lengthp
has the correct property length.

DDI_PROP_BUF_TOO_SMALL Property found, but the supplied buffer is too small.
lengthp has the correct property length.

EXAMPLES In the following example, prop_op() intercepts requests for the temperature property. The
driver tracks changes to temperature using a variable in the state structure in order to
avoid frequent calls to ddi_prop_update(9F). The temperature property is only updated
when a request is made for this property. It then uses the system routine
ddi_prop_op(9F) to process the property request. If the property request is not specific to
a device, the driver does not intercept the request. This is indicated when the value of the
dev parameter is equal to DDI_DEV_T_ANY.

int temperature; /∗ current device temperature ∗/
.
.
.

static int
xxprop_op(dev_t dev, dev_info_t ∗dip, ddi_prop_op_t prop_op,

int flags, char ∗name, caddr_t valuep, int ∗lengthp)
{

int instance;
struct xxstate ∗xsp;

if (dev == DDI_DEV_T_ANY)
goto skip;

instance = getminor(dev);
xsp = ddi_get_soft_state(statep, instance);
if (xsp == NULL)

return (DDI_PROP_NOTFOUND);

if (strcmp(name, "temperature") == 0) {
ddi_prop_update_int(dev, dip, "temperature", temperature);

}
/∗ other cases... ∗/

skip:
return (ddi_prop_op(dev, dip, prop_op, flags, name, valuep, lengthp));

}

modified 8 Jul 1996 SunOS 5.6 9E-75

prop_op (9E) Driver Entry Points

SEE ALSO ddi_prop_op(9F), ddi_prop_update(9F)

Writing Device Drivers

9E-76 SunOS 5.6 modified 8 Jul 1996

Driver Entry Points put (9E)

NAME put − receive messages from the preceding queue

SYNOPSIS #include <sys/types.h>
#include <sys/stream.h>
#include <sys/stropts.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

int prefixrput(queue_t ∗q, mblk_t ∗mp); /∗ read side ∗/

int prefixwput(queue_t ∗q, mblk_t ∗mp); /∗ write side ∗/

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI). This entry point is required for STREAMS.

ARGUMENTS q Pointer to the queue(9S) structure.

mp Pointer to the message block.

DESCRIPTION The primary task of the put() routine is to coordinate the passing of messages from one
queue to the next in a stream. The put() routine is called by the preceding stream com-
ponent (stream module, driver, or stream head). put() routines are designated ‘‘write’’
or ‘‘read’’ depending on the direction of message flow.

With few exceptions, a streams module or driver must have a put() routine. One excep-
tion is the read side of a driver, which does not need a put() routine because there is no
component downstream to call it. The put() routine is always called before the
component’s corresponding srv(9E) (service) routine, and so put() should be used for the
immediate processing of messages.

A put() routine must do at least one of the following when it receives a message:

· pass the message to the next component on the stream by calling the putnext(9F)
function

· process the message, if immediate processing is required (for example, to handle
high priority messages)

· enqueue the message (with the putq(9F) function) for deferred processing by the
service srv(9E) routine

Typically, a put() routine will switch on message type, which is contained in the db_type
member of the datab structure pointed to by mp. The action taken by the put() routine
depends on the message type. For example, a put() routine might process high priority
messages, enqueue normal messages, and handle an unrecognized M_IOCTL message by
changing its type to M_IOCNAK (negative acknowledgement) and sending it back to the
stream head using the qreply(9F) function.

modified 12 Nov 1992 SunOS 5.6 9E-77

put (9E) Driver Entry Points

The putq(9F) function can be used as a module’s put() routine when no special process-
ing is required and all messages are to be enqueued for the srv (9E) routine.

RETURN VALUES Ignored.

CONTEXT put() routines do not have user context.

SEE ALSO srv(9E), putctl(9F), putctl1(9F), putnext(9F), putnextctl(9F), putnextctl1(9F), putq(9F),
qreply(9F), queue(9S), streamtab(9S)

Writing Device Drivers
STREAMS Programming Guide

9E-78 SunOS 5.6 modified 12 Nov 1992

Driver Entry Points read (9E)

NAME read − read data from a device

SYNOPSIS #include <sys/types.h>
#include <sys/errno.h>
#include <sys/open.h>
#include <sys/uio.h>
#include <sys/cred.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

int prefixread(dev_t dev, struct uio ∗uio_p, cred_t ∗cred_p);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI). This entry point is optional .

ARGUMENTS dev Device number.

uio_p Pointer to the uio(9S) structure that describes where the data is to be
stored in user space.

cred_p Pointer to the user credential structure for the I/O transaction.

DESCRIPTION The driver read() routine is called indirectly through cb_ops(9S) by the read(2) system
call. The read() routine should check the validity of the minor number component of dev
and the user credential structure pointed to by cred_p (if pertinent). The read() routine
should supervise the data transfer into the user space described by the uio(9S) structure.

RETURN VALUES The read() routine should return 0 for success, or the appropriate error number.

EXAMPLES The following is an example of a read() routine using physio(9F) to perform reads from a
non-seekable device:

static int
xxread(dev_t dev, struct uio ∗uiop, cred_t ∗credp)
{

int rval;
offset_t off;
int instance;
xx_t xx;

instance = getminor(dev);
xx = ddi_get_soft_state(xxstate, instance);
if (xx == NULL)

return (ENXIO);
off = uiop->uio_loffset;
rval = physio(xxstrategy, NULL, dev, B_READ,

xxmin, uiop);
uiop->uio_loffset = off;

modified 28 Mar 1997 SunOS 5.6 9E-79

read (9E) Driver Entry Points

return (rval);
}

SEE ALSO read(2), write(9E), physio(9F), cb_ops(9S), uio(9S)

Writing Device Drivers

9E-80 SunOS 5.6 modified 28 Mar 1997

Driver Entry Points segmap (9E)

NAME segmap − map device memory into user space

SYNOPSIS #include <sys/types.h>
#include <sys/mman.h>
#include <sys/param.h>
#include <sys/vm.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

int prefixsegmap(dev_t dev, off_t off, struct as ∗asp , caddr_t ∗addrp , off_t len,
unsigned int prot , unsigned int maxprot , unsigned int flags , cred_t ∗cred_p);

INTERFACE
LEVEL

Architecture independent level 2 (DKI only).

ARGUMENTS dev Device whose memory is to be mapped.

off Offset within device memory at which mapping begins.

asp Pointer to the address space into which the device memory should be
mapped.

addrp Pointer to the address in the address space to which the device memory
should be mapped.

len Length (in bytes) of the memory to be mapped.

prot A bit field that specifies the protections. Possible settings are:

PROT_READ Read access is desired.

PROT_WRITE Write access is desired.

PROT_EXEC Execute access is desired.

PROT_USER User-level access is desired (the mapping is being done as a
result of a mmap(2) system call).

PROT_ALL All access is desired.

maxprot Maximum protection flag possible for attempted mapping; the PROT_WRITE
bit may be masked out if the user opened the special file read-only.

flags Flags indicating type of mapping. Possible values are (other bits may be set):

MAP_SHARED Changes should be shared.

MAP_PRIVATE Changes are private.

cred_p Pointer to the user credentials structure.

DESCRIPTION The segmap() entry point is an optional routine for character drivers that support
memory mapping. The mmap(2) system call, when applied to a character special file,
allows device memory to be mapped into user space for direct access by the user applica-
tion.

modified 14 Jan 1997 SunOS 5.6 9E-81

segmap (9E) Driver Entry Points

Typically, a character driver that needs to support the mmap(2) system call supplies
either an devmap(9E) entry point, or both an devmap (9E) and a segmap() entry point
routine (see the devmap(9E) reference page). If no segmap() entry point is provided for
the driver, devmap_setup(9F) is used as a default.

A driver for a memory-mapped device would provide a segmap() entry point if it:

· needs to maintain a separate context for each user mapping. See
devmap_setup(9F) for details.

· needs to assign device access attributes to the user mapping.

The responsibilities of a segmap() entry point are:

· Verify that the range, defined by offset and len, to be mapped is valid for the dev-
ice. Typically, this task is performed by calling the devmap(9E) entry point.
Note that if you are using ddi_devmap_segmap(9E) or devmap_setup(9E) to set
up the mapping, it will call your devmap(9E) entry point for you to validate the
range to be mapped.

· Assign device access attributes to the mapping. See ddi_devmap_segmap(9F),
and ddi_device_acc_attr(9S) for details.

· Set up device contexts for the user mapping if your device requires context
switching. See devmap_setup(9F) for details.

· Perform the mapping with ddi_devmap_segmap(9E), or devmap_setup(9E) and
return the status if it fails.

RETURN VALUES The segmap() routine should return 0 if the driver is successful in performing the
memory map of its device address space into the specified address space.

The segmap() must return an error number on failure. For example, valid error numbers
would be ENXIO if the offset/length pair specified exceeds the limits of the device
memory, or EINVAL if the driver detects an invalid type of mapping attempted.

If one of the mapping routines ddi_devmap_segmap(), or devmap_setup() fails, you
must return the error number returned by the respective routine.

SEE ALSO mmap(2), devmap(9E), devmap_setup(9F), ddi_devmap_segmap(9F),
ddi_device_acc_attr(9S)

Writing Device Drivers

9E-82 SunOS 5.6 modified 14 Jan 1997

Driver Entry Points srv (9E)

NAME srv − service queued messages

SYNOPSIS #include <sys/types.h>
#include <sys/stream.h>
#include <sys/stropts.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

int prefixrsrv(queue_t ∗q); /∗ read side ∗/

int prefixwsrv(queue_t ∗q); /∗ write side ∗/

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI). This entry point is required for STREAMS.

ARGUMENTS q Pointer to the queue(9S) structure.

DESCRIPTION The optional service (srv()) routine may be included in a STREAMS module or driver for
many possible reasons, including:

· to provide greater control over the flow of messages in a stream

· to make it possible to defer the processing of some messages to avoid depleting
system resources

· to combine small messages into larger ones, or break large messages into smaller
ones

· to recover from resource allocation failure. A module’s or driver’s put(9E) rou-
tine can test for the availability of a resource, and if it is not available, enqueue
the message for later processing by the srv routine.

A message is first passed to a module’s or driver’s put(9E) routine, which may or may
not do some processing. It must then either:

· Pass the message to the next stream component with putnext(9F).

· If a srv routine has been included, it may call putq(9F) to place the message on
the queue.

Once a message has been enqueued, the STREAMS scheduler controls the service routine’s
invocation. The scheduler calls the service routines in FIFO order. The scheduler cannot
guarantee a maximum delay srv routine to be called except that it will happen before any
user level process are run.

Every stream component (stream head, module or driver) has limit values it uses to
implement flow control. Each component should check the tunable high and low water
marks to stop and restart the flow of message processing. Flow control limits apply only
between two adjacent components with srv routines.

STREAMS messages can be defined to have up to 256 different priorities to support
requirements for multiple bands of data flow. At a minimum, a stream must distinguish
between normal (priority zero) messages and high priority messages (such as
M_IOCACK). High priority messages are always placed at the head of the srv routine’s

modified 12 Nov 1992 SunOS 5.6 9E-83

srv (9E) Driver Entry Points

queue, after any other enqueued high priority messages. Next are messages from all
included priority bands, which are enqueued in decreasing order of priority. Each prior-
ity band has its own flow control limits. If a flow controlled band is stopped, all lower
priority bands are also stopped.

Once the STREAMS scheduler calls a srv routine, it must process all messages on its
queue. The following steps are general guidelines for processing messages. Keep in
mind that many of the details of how a srv routine should be written depend of the
implementation, the direction of flow (upstream or downstream), and whether it is for a
module or a driver.

1. Use getq(9F) to get the next enqueued message.

2. If the message is high priority, process (if appropriate) and pass to the next
stream component with putnext(9F).

3. If it is not a high priority message (and therefore subject to flow control),
attempt to send it to the next stream component with a srv routine. Use
bcanputnext(9F) to determine if this can be done.

4. If the message cannot be passed, put it back on the queue with putbq(9F). If it
can be passed, process (if appropriate) and pass with putnext().

RETURN VALUES Ignored.

SEE ALSO put(9E), bcanput(9F), bcanputnext(9F), canput(9F), canputnext(9F), getq(9F),
nulldev(9F), putbq(9F), putnext(9F), putq(9F), qinit(9S), queue(9S)

Writing Device Drivers
STREAMS Programming Guide

WARNINGS Each stream module must specify a read and a write service (srv()) routine. If a service
routine is not needed (because the put() routine processes all messages), a NULL pointer
should be placed in module’s qinit(9S) structure. Do not use nulldev(9F) instead of the
NULL pointer. Use of nulldev(9F) for a srv() routine may result in flow control errors.

9E-84 SunOS 5.6 modified 12 Nov 1992

Driver Entry Points strategy (9E)

NAME strategy − perform block I/O

SYNOPSIS #include <sys/types.h>
#include <sys/buf.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

int prefixstrategy(struct buf ∗bp);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI). This entry point is required for block dev-
ices.

ARGUMENTS bp Pointer to the buf(9S) structure.

DESCRIPTION The strategy() routine is called indirectly (through cb_ops(9S)) by the kernel to read and
write blocks of data on the block device. strategy() may also be called directly or
indirectly to support the raw character interface of a block device (read(9E), write(9E)
and ioctl(9E)). The strategy() routine’s responsibility is to set up and initiate the transfer.

RETURN VALUES The strategy() routine should always return 0. On an error condition, it should OR the
b_flags member of the buf(9S) structure with B_ERROR, set the b_error member to the
appropriate error value, and call biodone(9F). Note that a partial transfer is not con-
sidered to be an error.

SEE ALSO ioctl(9E), read(9E), write(9E), biodone(9F), buf(9S), cb_ops(9S)

Writing Device Drivers

modified 15 Oct 1993 SunOS 5.6 9E-85

tran_abort (9E) Driver Entry Points

NAME tran_abort − abort a SCSI command

SYNOPSIS #include <sys/scsi/scsi.h>

int prefixtran_abort(struct scsi_address ∗ap, struct scsi_pkt ∗pkt);

INTERFACE
LEVEL

Solaris architecture specific (Solaris DDI).

ARGUMENTS ap Pointer to a scsi_address(9S) structure.

pkt Pointer to a scsi_pkt(9S) structure.

DESCRIPTION The tran_abort() vector in the scsi_hba_tran(9S) structure must be initialized during the
HBA driver’s attach(9E) to point to an HBA entry point to be called when a target driver
calls scsi_abort(9F).

tran_abort() should attempt to abort the command pkt that has been transported to the
HBA. If pkt is NULL, the HBA driver should attempt to abort all outstanding packets for
the target/logical unit addressed by ap .

Depending on the state of a particular command in the transport layer, the HBA driver
may not be able to abort the command.

While the abort is taking place, packets issued to the transported layer may or may not be
aborted.

For each packet successfully aborted, tran_abort() must set the pkt_reason to
CMD_ABORTED, and pkt_statistics must be OR’ed with STAT_ABORTED.

RETURN VALUES tran_abort() must return:

1 on success or partial success.

0 on failure.

SEE ALSO attach(9E), scsi_abort(9F), scsi_hba_attach(9F), scsi_address(9S), scsi_hba_tran(9S),
scsi_pkt(9S)

Writing Device Drivers

NOTES If pkt_reason already indicates that an earlier error had occurred, tran_abort() should
not overwrite pkt_reason with CMD_ABORTED.

9E-86 SunOS 5.6 modified 30 Aug 1995

Driver Entry Points tran_dmafree (9E)

NAME tran_dmafree − SCSI HBA DMA deallocation entry point

SYNOPSIS #include <sys/scsi/scsi.h>

void prefixtran_dmafree(struct scsi_address ∗ap , struct scsi_pkt ∗pkt);

INTERFACE
LEVEL

Solaris architecture specific (Solaris DDI).

ARGUMENTS ap A pointer to a scsi_address(9S) structure.

pkt A pointer to a scsi_pkt(9S) structure.

DESCRIPTION The tran_dmafree() vector in the scsi_hba_tran(9S) structure must be initialized during
the HBA driver’s attach(9E) to point to an HBA entry point to be called when a target
driver calls scsi_dmafree(9F).

tran_dmafree() must deallocate any DMA resources previously allocated to this pkt in a
call to tran_init_pkt(9E). tran_dmafree() should not free the structure pointed to by pkt
itself. Since tran_destroy_pkt(9E) must also free DMA resources, it is important that the
HBA driver keeps accurate note of whether scsi_pkt(9S) structures have DMA resources
allocated.

SEE ALSO attach(9E), tran_destroy_pkt(9E), tran_init_pkt(9E), scsi_dmafree(9F), scsi_dmaget(9F),
scsi_hba_attach(9F), scsi_init_pkt(9F), scsi_address(9S), scsi_hba_tran(9S), scsi_pkt(9S)

Writing Device Drivers

NOTES A target driver may call tran_dmafree() on packets for which no DMA resources were
allocated.

modified 30 Aug 1995 SunOS 5.6 9E-87

tran_getcap (9E) Driver Entry Points

NAME tran_getcap, tran_setcap − get/set SCSI transport capability

SYNOPSIS #include <sys/scsi/scsi.h>

int prefixtran_getcap(struct scsi_address ∗ap , char ∗cap, int whom);

int prefixtran_setcap(struct scsi_address ∗ap , char ∗cap, int value, int whom);

INTERFACE
LEVEL

Solaris architecture specific (Solaris DDI).

ARGUMENTS ap Pointer to the scsi_address(9S) structure.

cap Pointer to the string capability identifier.

value Defines the new state of the capability.

whom Specifies whether all targets or only the specified target is affected.

DESCRIPTION The tran_getcap() and tran_setcap() vectors in the scsi_hba_tran(9S) structure must be
initialized during the HBA driver’s attach(9E) to point to HBA entry points to be called
when a target driver calls scsi_ifgetcap(9F) and scsi_ifsetcap(9F).

tran_getcap() is called to get the current value of a capability specific to features pro-
vided by the HBA hardware or driver. The name of the capability cap is the NULL ter-
minated capability string.

If whom is non-zero, the request is for the current value of the capability defined for the
target specified by the scsi_address(9S) structure pointed to by ap ; if whom is 0, all targets
are affected; else, the target specified by the scsi_address structure pointed to by ap is
affected.

tran_setcap() is called to set the value of the capability cap to the value of value. If whom
is non-zero, the capability should be set for the target specified by the scsi_address(9S)
structure pointed to by ap ; if whom is 0, all targets are affected; else, the target specified by
the scsi_address structure pointed to by ap is affected. It is recommended that HBA
drivers do not support setting capabilities for all targets (that is, whom is 0).

A device may support only a subset of the defined capabilities.

Refer to scsi_ifgetcap(9F) for the list of defined capabilities.

HBA drivers should use scsi_hba_lookup_capstr(9F) to match cap against the canonical
capability strings.

RETURN VALUES tran_setcap() must return 1 if the capability was successfully set to the new value, 0 if the
HBA driver does not support changing the capability, and −1 if the capability was not
defined.

tran_getcap() must return the current value of a capability or −1 if the capability was not
defined.

9E-88 SunOS 5.6 modified 30 Aug 1995

Driver Entry Points tran_getcap (9E)

SEE ALSO attach(9E), scsi_hba_attach(9F), scsi_hba_lookup_capstr(9F), scsi_ifgetcap(9F),
scsi_address(9S), scsi_hba_tran(9S)
Writing Device Drivers

modified 30 Aug 1995 SunOS 5.6 9E-89

tran_init_pkt (9E) Driver Entry Points

NAME tran_init_pkt, tran_destroy_pkt − SCSI HBA packet preparation and deallocation

SYNOPSIS #include <sys/scsi/scsi.h>

struct scsi_pkt ∗prefixtran_init_pkt(struct scsi_address ∗ap , struct scsi_pkt ∗pkt ,
struct buf ∗bp, int cmdlen, int statuslen, int tgtlen, int flags ,
int (∗callback)(caddr_t), caddr_t arg);

void prefixtran_destroy_pkt(struct scsi_address ∗ap , struct scsi_pkt ∗pkt);

INTERFACE
LEVEL

Solaris architecture specific (Solaris DDI).

ARGUMENTS ap Pointer to a scsi_address(9S) structure.

pkt Pointer to a scsi_pkt(9S) structure allocated in an earlier call, or NULL.

bp Pointer to a buf(9S) structure if DMA resources are to be allocated for the pkt ,
or NULL.

cmdlen The required length for the SCSI command descriptor block (CDB) in bytes.

statuslen The required length for the SCSI status completion block (SCB) in bytes.

tgtlen The length of the packet private area within the scsi_pkt to be allocated on
behalf of the SCSI target driver.

flags Flags for creating the packet.

callback Pointer to either NULL_FUNC or SLEEP_FUNC.

arg Always NULL.

DESCRIPTION The tran_init_pkt() and tran_destroy_pkt() vectors in the scsi_hba_tran structure must
be initialized during the HBA driver’s attach(9E) to point to HBA entry points to be called
when a target driver calls scsi_init_pkt(9F) and scsi_destroy_pkt(9F).

tran_init_pkt() tran_init_pkt() is the entry point into the HBA which is used to allocate and initialize a
scsi_pkt structure on behalf of a SCSI target driver. If pkt is NULL, the HBA driver must
use scsi_hba_pkt_alloc(9F) to allocate a new scsi_pkt structure.

If bp is non-NULL, the HBA driver must allocate appropriate DMA resources for the pkt ,
for example, via ddi_dma_buf_setup(9F) or ddi_dma_buf_bind_handle(9F).

If the PKT_CONSISTENT bit is set in flags , the buffer was allocated by
scsi_alloc_consistent_buf(9F). For packets marked with PKT_CONSISTENT, the HBA
driver must synchronize any cached data transfers before calling the target driver’s com-
mand completion callback.

If the PKT_DMA_PARTIAL bit is set in flags , the HBA driver should set up partial data
transfers, such as setting the DDI_DMA_PARTIAL bit in the flags argument if interfaces
such as ddi_dma_buf_setup(9F) or ddi_dma_buf_bind_handle(9F) are used.

9E-90 SunOS 5.6 modified 1 Mar 1995

Driver Entry Points tran_init_pkt (9E)

If only partial DMA resources are available, tran_init_pkt() must return in the pkt_resid
field of pkt the number of bytes of DMA resources not allocated.

If both pkt and bp are non-NULL, if the PKT_DMA_PARTIAL bit is set in flags , and if DMA
resources have already been allocated for the pkt with a previous call to tran_init_pkt()
that returned a non-zero pkt_resid field, this request is to move the DMA resources for
the subsequent piece of the transfer.

The contents of scsi_address(9S) pointed to by ap are copied into the pkt_address field of
the scsi_pkt(9S) by scsi_hba_pkt_alloc(9F).

tgtlen is the length of the packet private area in the scsi_pkt structure to be allocated on
behalf of the SCSI target driver.

statuslen is the required length for the SCSI status completion block. If the requested
status length is greater than or equal to sizeof(struct scsi_arq_status) and the
auto_rqsense capability has been set, automatic request sense is enabled for this packet.
If the status length is less than sizeof(struct scsi_arq_status), automatic request sense
must be disabled for this pkt .

cmdlen is the required length for the SCSI command descriptor block.

Note: tgtlen, statuslen, and cmdlen are used only when the HBA driver allocates the
scsi_pkt(9S), in other words, when pkt is NULL.

callback indicates what the allocator routines should do when resources are not available:

NULL_FUNC Do not wait for resources. Return a NULL pointer.

SLEEP_FUNC Wait indefinitely for resources.

tran_destroy_pkt() tran_destroy_pkt() is the entry point into the HBA that must free all of the resources that
were allocated to the scsi_pkt(9S) structure during tran_init_pkt().

RETURN VALUES tran_init_pkt() must return a pointer to a scsi_pkt(9S) structure on success, or NULL on
failure.

If pkt is NULL on entry, and tran_init_pkt() allocated a packet via scsi_hba_pkt_alloc(9F)
but was unable to allocate DMA resources, tran_init_pkt() must free the packet via
scsi_hba_pkt_free(9F) before returning NULL.

SEE ALSO attach(9E), tran_sync_pkt(9E), ddi_dma_buf_bind_handle(9F),
ddi_dma_buf_setup(9F), scsi_alloc_consistent_buf(9F), scsi_destroy_pkt(9F),
scsi_hba_attach(9F), scsi_hba_pkt_alloc(9F), scsi_hba_pkt_free(9F), scsi_init_pkt(9F),
buf(9S), scsi_address(9S), scsi_hba_tran(9S), scsi_pkt(9S)

Writing Device Drivers

NOTES If a DMA allocation request fails with DDI_DMA_NOMAPPING, the B_ERROR flag should
be set in bp, and the b_error field should be set to EFAULT.

If a DMA allocation request fails with DDI_DMA_TOOBIG, the B_ERROR flag should be
set in bp, and the b_error field should be set to EINVAL.

modified 1 Mar 1995 SunOS 5.6 9E-91

tran_reset (9E) Driver Entry Points

NAME tran_reset − reset a SCSI bus or target

SYNOPSIS #include <sys/scsi/scsi.h>

int prefixtran_reset(struct scsi_address ∗ap, int level);

INTERFACE
LEVEL

Solaris architecture specific (Solaris DDI).

ARGUMENTS ap Pointer to the scsi_address(9S) structure.

level The level of reset required.

DESCRIPTION The tran_reset() vector in the scsi_hba_tran(9S) structure must be initialized during the
HBA driver’s attach(9E) to point to an HBA entry point to be called when a target driver
calls scsi_reset(9F).

tran_reset() must reset the SCSI bus or a SCSI target as specified by level.

level must be one of the following:

RESET_ALL reset the SCSI bus.

RESET_TARGET reset the target specified by ap .

tran_reset should set the pkt_reason field of all outstanding packets in the transport
layer associated with each target that was successfully reset to CMD_RESET and the
pkt_statistics field must be OR’ed with either STAT_BUS_RESET or STAT_DEV_RESET.

The HBA driver should use a SCSI Bus Device Reset Message to reset a target device.

Packets that are in the transport layer but not yet active on the bus should be returned
with pkt_reason set to CMD_RESET, and pkt_statistics OR’ed with STAT_ABORTED.

RETURN VALUES tran_reset() should return:

1 on success.

0 on failure.

SEE ALSO attach(9E), ddi_dma_buf_setup(9F), scsi_hba_attach(9F), scsi_reset(9F),
scsi_address(9S), scsi_hba_tran(9S)

Writing Device Drivers

NOTES If pkt_reason already indicates that an earlier error had occurred for a particular pkt ,
tran_reset() should not overwrite pkt_reason with CMD_RESET.

9E-92 SunOS 5.6 modified 30 Aug 1995

Driver Entry Points tran_reset_notify (9E)

NAME tran_reset_notify − request to notify SCSI target of bus reset

SYNOPSIS #include <sys/scsi/scsi.h>

int prefixtran_reset_notify(struct scsi_address ∗ap, int flag, void (∗callback)(caddr_t),
caddr_t arg);

INTERFACE
LEVEL

Solaris architecture specific (Solaris DDI).

ARGUMENTS ap Pointer to the scsi_address(9S) structure.

flag A flag indicating registration or cancellation of a notification request.

callback A pointer to the target driver’s reset notification function.

arg The callback function argument.

DESCRIPTION The tran_reset_notify() entry point is called when a target driver requests notification of
a bus reset.

The tran_reset_notify() vector in the scsi_hba_tran(9S) structure may be initialized in
the HBA driver’s attach(9E) routine to point to the HBA entry point to be called when a
target driver calls scsi_reset_notify(9F).

The argument flag is used to register or cancel the notification. The supported values for
flag are as follows:

SCSI_RESET_NOTIFY Register callback as the reset notification function for
the target.

SCSI_RESET_CANCEL Cancel the reset notification request for the target.

The HBA driver maintains a list of reset notification requests registered by the target
drivers. When a bus reset occurs, the HBA driver notifies registered target drivers by cal-
ling the callback routine, callback, with the argument, arg , for each registered target.

RETURN VALUES For SCSI_RESET_NOTIFY requests, tran_reset_notify() must return DDI_SUCCESS if the
notification request has been accepted, and DDI_FAILURE otherwise.

For SCSI_RESET_CANCEL requests, tran_reset_notify() must return DDI_SUCCESS if the
notification request has been canceled, and DDI_FAILURE otherwise.

SEE ALSO attach(9E), scsi_ifgetcap(9F), scsi_reset_notify(9F), scsi_address(9S), scsi_hba_tran(9S)
Writing Device Drivers

modified 30 Aug 1995 SunOS 5.6 9E-93

tran_start (9E) Driver Entry Points

NAME tran_start − request to transport a SCSI command

SYNOPSIS #include <sys/scsi/scsi.h>

int prefixtran_start(struct scsi_address ∗ap , struct scsi_pkt ∗pkt);

INTERFACE
LEVEL

Solaris architecture specific (Solaris DDI).

ARGUMENTS pkt Pointer to the scsi_pkt(9S) structure that is about to be transferred.

ap Pointer to a scsi_address(9S) structure.

DESCRIPTION The tran_start() vector in the scsi_hba_tran(9S) structure must be initialized during the
HBA driver’s attach(9E) to point to an HBA entry point to be called when a target driver
calls scsi_transport(9F).

tran_start() must perform the necessary operations on the HBA hardware to transport the
SCSI command in the pkt structure to the target/logical unit device specified in the ap
structure.

If the flag FLAG_NOINTR is set in pkt_flags in pkt , tran_start() should not return until the
command has been completed. The command completion callback pkt_comp in pkt must
not be called for commands with FLAG_NOINTR set, since the return is made directly to
the function invoking scsi_transport(9F).

When the flag FLAG_NOINTR is not set, tran_start() must queue the command for execu-
tion on the hardware and return immediately. The member pkt_comp in pkt indicates a
callback routine to be called upon command completion.

Refer to scsi_pkt(9S) for other bits in pkt_flags for which the HBA driver may need to
adjust how the command is managed.

If the auto_rqsense capability has been set, and the status length allocated in
tran_init_pkt(9E) is greater than or equal to sizeof(struct scsi_arq_status), automatic
request sense is enabled for this pkt . If the command terminates with a Check Condition,
the HBA driver must arrange for a Request Sense command to be transported to that
target/logical unit, and the members of the scsi_arq_status structure pointed to by
pkt_scbp updated with the results of this Request Sense command before the HBA driver
completes the command pointed by pkt .

The member pkt_time in pkt is the maximum number of seconds in which the command
should complete. A pkt_time of 0 means no timeout should be performed.

For a command which has timed out, the HBA driver must perform some recovery opera-
tion to clear the command in the target, typically an Abort message, or a Device or Bus
Reset. The pkt_reason member of the timed out pkt should be set to CMD_TIMEOUT,
and pkt_statistics OR’ed with STAT_TIMEOUT. If the HBA driver can successfully
recover from the timeout, pkt_statistics must also be OR’ed with one of STAT_ABORTED,
STAT_BUS_RESET, or STAT_DEV_RESET, as appropriate. This informs the target driver
that timeout recovery has already been successfully accomplished for the timed out

9E-94 SunOS 5.6 modified 30 Aug 1995

Driver Entry Points tran_start (9E)

command. The pkt_comp completion callback, if not NULL, must also be called at the
conclusion of the timeout recovery.

If the timeout recovery was accomplished with an Abort Tag message, only the timed out
packet is affected, and the packet must be returned with pkt_statistics OR’ed with
STAT_ABORTED and STAT_TIMEOUT.

If the timeout recovery was accomplished with an Abort message, all commands active in
that target are affected. All corresponding packets must be returned with pkt_reason,
CMD_TIMEOUT, and pkt_statistics OR’ed with STAT_TIMEOUT and STAT_ABORTED.

If the timeout recovery was accomplished with a Device Reset, all packets corresponding
to commands active in the target must be returned in the transport layer for this target.
Packets corresponding to commands active in the target must be returned returned with
pkt_reason set to CMD_TIMEOUT, and pkt_statistics OR’ed with STAT_DEV_RESET and
STAT_TIMEOUT. Currently inactive packets queued for the device should be returned
with pkt_reason set to CMD_RESET and pkt_statistics OR’ed with STAT_ABORTED.

If the timeout recovery was accomplished with a Bus Reset, all packets corresponding to
commands active in the target must be returned in the transport layer. Packets
corresponding to commands active in the target must be returned with pkt_reason set to
CMD_TIMEOUT and pkt_statistics OR’ed with STAT_TIMEOUT and STAT_BUS_RESET.
All queued packets for other targets on this bus must be returned with pkt_reason set to
CMD_RESET and pkt_statistics OR’ed with STAT_ABORTED.

Note that, after either a Device Reset or a Bus Reset, the HBA driver must enforce a reset
delay time of ’scsi-reset-delay’ milliseconds, during which time no commands should be
sent to that device, or any device on the bus, respectively.

tran_start() should initialize the following members in pkt to 0. Upon command comple-
tion, the HBA driver should ensure that the values in these members are updated to accu-
rately reflect the states through which the command transitioned while in the transport
layer.

pkt_resid For commands with data transfer, this member must be
updated to indicate the residual of the data transferred.

pkt_reason The reason for the command completion. This field should
be set to CMD_CMPLT at the beginning of tran_start(), then
updated if the command ever transitions to an abnormal ter-
mination state. To avoid losing information, do not set
pkt_reason to any other error state unless it still has its origi-
nal CMD_CMPLT value.

pkt_statistics Bit field of transport-related statistics

pkt_state Bit field with the major states through which a SCSI com-
mand can transition.

modified 30 Aug 1995 SunOS 5.6 9E-95

tran_start (9E) Driver Entry Points

Note: The members listed above, and pkt_hba_private
member, are the only fields in the scsi_pkt(9S) structure
which may be modified by the transport layer.

RETURN VALUES tran_start() must return:

TRAN_ACCEPT The packet was accepted by the transport layer.

TRAN_BUSY The packet could not be accepted because there was already
a packet in progress for this target/logical unit, the HBA
queue was full, or the target device queue was full.

TRAN_BADPKT The DMA count in the packet exceeded the DMA engine’s
maximum DMA size, or the packet could not be accepted for
other reasons.

TRAN_FATAL_ERROR A fatal error has occurred in the HBA.

SEE ALSO attach(9E), tran_init_pkt(9E), scsi_hba_attach(9F), scsi_transport(9F), scsi_address(9S),
scsi_arq_status(9S), scsi_hba_tran(9S), scsi_pkt(9S)

Writing Device Drivers

9E-96 SunOS 5.6 modified 30 Aug 1995

Driver Entry Points tran_sync_pkt (9E)

NAME tran_sync_pkt − SCSI HBA memory synchronization entry point

SYNOPSIS #include <sys/scsi/scsi.h>

void prefixtran_sync_pkt(struct scsi_address ∗ap, struct scsi_pkt ∗pkt);

INTERFACE
LEVEL

Solaris architecture specific (Solaris DDI).

ARGUMENTS ap A pointer to a scsi_address(9S) structure.

pkt A pointer to a scsi_pkt(9S) structure.

DESCRIPTION The tran_sync_pkt() vector in the scsi_hba_tran(9S) structure must be initialized during
the HBA driver’s attach(9E) to point to an HBA driver entry point to be called when a
target driver calls scsi_sync_pkt(9F).

tran_sync_pkt() must synchronize a CPU’s or device’s view of the data associated with
the pkt, typically by calling ddi_dma_sync(9F). The operation may also involve HBA
hardware-specific details, such as flushing I/O caches, or stalling until hardware buffers
have been drained.

SEE ALSO attach(9E), tran_init_pkt(9E), ddi_dma_sync(9F), scsi_hba_attach(9F), scsi_init_pkt(9F),
scsi_sync_pkt(9F), scsi_address(9S), scsi_hba_tran(9S), scsi_pkt(9S)

Writing Device Drivers

NOTES A target driver may call tran_sync_pkt() on packets for which no DMA resources were
allocated.

modified 1 Nov 1993 SunOS 5.6 9E-97

tran_tgt_free (9E) Driver Entry Points

NAME tran_tgt_free − request to free HBA resources allocated on behalf of a target

SYNOPSIS #include <sys/scsi/scsi.h>

void prefixtran_tgt_free(dev_info_t ∗hba_dip , dev_info_t ∗tgt_dip ,
scsi_hba_tran_t ∗hba_tran, struct scsi_device ∗sd);

INTERFACE
LEVEL

Solaris architecture specific (Solaris DDI).

ARGUMENTS hba_dip Pointer to a dev_info_t structure, referring to the HBA device instance.

tgt_dip Pointer to a dev_info_t structure, referring to the target device instance.

hba_tran Pointer to a scsi_hba_tran(9S) structure, consisting of the HBA’s tran-
sport vectors.

sd Pointer to a scsi_device(9S) structure, describing the target.

DESCRIPTION The tran_tgt_free() vector in the scsi_hba_tran(9S) structure may be initialized during
the HBA driver’s attach(9E) to point to an HBA driver function to be called by the system
when an instance of a target device is being detached. The tran_tgt_free() vector, if not
NULL, is called after the target device instance has returned successfully from its
detach(9E) entry point, but before the dev_info node structure is removed from the sys-
tem. The HBA driver should release any resources allocated during its tran_tgt_init() or
tran_tgt_probe() initialization performed for this target device instance.

SEE ALSO attach(9E), detach(9E), tran_tgt_init(9E), tran_tgt_probe(9E), scsi_device(9S),
scsi_hba_tran(9S)

Writing Device Drivers

9E-98 SunOS 5.6 modified 1 Nov 1993

Driver Entry Points tran_tgt_init (9E)

NAME tran_tgt_init − request to initialize HBA resources on behalf of a particular target

SYNOPSIS #include <sys/scsi/scsi.h>

void prefixtran_tgt_init(dev_info_t ∗hba_dip, dev_info_t ∗tgt_dip,
scsi_hba_tran_t ∗hba_tran, struct scsi_device ∗sd);

INTERFACE
LEVEL

Solaris architecture specific (Solaris DDI).

ARGUMENTS hba_dip Pointer to a dev_info_t structure, referring to the HBA device instance.

tgt_dip Pointer to a dev_info_t structure, referring to the target device instance.

hba_tran Pointer to a scsi_hba_tran(9S) structure, consisting of the HBA’s tran-
sport vectors.

sd Pointer to a scsi_device(9S) structure, describing the target.

DESCRIPTION The tran_tgt_init() vector in the scsi_hba_tran(9S) structure may be initialized during
the HBA driver’s attach(9E) to point to an HBA driver function to be called by the system
when an instance of a target device is being created. The tran_tgt_init() vector, if not
NULL, is called after the dev_info node structure is created for this target device instance,
but before probe(9E) for this instance is called. Before receiving transport requests from
the target driver instance, the HBA may perform any initialization required for this par-
ticular target during the call of the tran_tgt_init() vector.

Note that hba_tran will point to a cloned copy of the scsi_hba_tran_t structure allocated
by the HBA driver if the SCSI_HBA_TRAN_CLONE flag was specified in the call to
scsi_hba_attach(9F). In this case, the HBA driver may choose to initialize the
tran_tgt_private field in the structure pointed to by hba_tran , to point to the data specific
to the particular target device instance.

RETURN VALUES tran_tgt_init() must return:

DDI_SUCCESS the HBA driver can support the addressed target, and was able to
initialize per-target resources.

DDI_FAILURE the HBA driver cannot support the addressed target, or was
unable to initialize per-target resources. In this event, the initiali-
zation of this instance of the target device will not be continued,
the target driver’s probe(9E) will not be called, and the tgt_dip
structure destroyed.

SEE ALSO attach(9E), probe(9E), tran_tgt_free(9E), tran_tgt_probe(9E), scsi_hba_attach_setup(9F),
scsi_device(9S), scsi_hba_tran(9S)

Writing Device Drivers

modified 1 Nov 1993 SunOS 5.6 9E-99

tran_tgt_probe (9E) Driver Entry Points

NAME tran_tgt_probe − request to probe SCSI bus for a particular target

SYNOPSIS #include <sys/scsi/scsi.h>

int prefixtran_tgt_probe(struct scsi_device ∗sd, int (∗waitfunc)(void));

INTERFACE
LEVEL

Solaris architecture specific (Solaris DDI).

ARGUMENTS sd Pointer to a scsi_device(9S) structure.

waitfunc Pointer to either NULL_FUNC or SLEEP_FUNC.

DESCRIPTION The tran_tgt_probe() vector in the scsi_hba_tran(9S) structure may be initialized during
the HBA driver’s attach(9E) to point to a function to be called by scsi_probe(9F) when
called by a target driver during probe(9E) and attach(9E) to probe for a particular SCSI
target on the bus. In the absence of an HBA-specific tran_tgt_probe() function, the
default scsi_probe(9F) behavior is supplied by the function scsi_hba_probe(9F).

The possible choices the HBA driver may make are:

· Initialize the tran_tgt_probe vector to point to scsi_hba_probe(9F), which
results in the same behavior.

· Initialize the tran_tgt_probe vector to point to a private function in the HBA,
which may call scsi_hba_probe(9F) before or after any necessary processing,
as long as all the defined scsi_probe(9F) semantics are preserved.

waitfunc indicates what tran_tgt_probe() should do when resources are not available:

NULL_FUNC Do not wait for resources. See scsi_probe(9F) for defined return
values if no resources are available.

SLEEP_FUNC Wait indefinitely for resources.

SEE ALSO attach(9E), probe(9E), tran_tgt_free(9E), tran_tgt_init(9E), scsi_hba_probe(9F),
scsi_probe(9F), scsi_device(9S), scsi_hba_tran(9S)

Writing Device Drivers

9E-100 SunOS 5.6 modified 1 Nov 1993

Driver Entry Points write (9E)

NAME write − write data to a device

SYNOPSIS #include <sys/types.h>
#include <sys/errno.h>
#include <sys/open.h>
#include <sys/cred.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

int prefixwrite(dev_t dev, struct uio ∗uio_p, cred_t ∗cred_p);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI). This entry point is optional .

ARGUMENTS dev Device number.

uio_p Pointer to the uio(9S) structure that describes where the data is to be
stored in user space.

cred_p Pointer to the user credential structure for the I/O transaction.

DESCRIPTION Used for character or raw data I/O, the driver write() routine is called indirectly through
cb_ops(9S) by the write(2) system call. The write() routine supervises the data transfer
from user space to a device described by the uio(9S) structure.

The write() routine should check the validity of the minor number component of dev and
the user credentials pointed to by cred_p (if pertinent).

RETURN VALUES The write() routine should return 0 for success, or the appropriate error number.

EXAMPLES The following is an example of a write() routine using physio(9F) to perform writes to a
seekable device:

static int
xxwrite(dev_t dev, struct uio ∗uiop, cred_t ∗credp)
{

int instance;
xx_t xx;

instance = getminor(dev);
xx = ddi_get_soft_state(xxstate, instance);
if (xx == NULL)

return (ENXIO);
return (physio(xxstrategy, NULL, dev, B_WRITE,

xxmin, uiop));
}

modified 28 Mar 1997 SunOS 5.6 9E-101

write (9E) Driver Entry Points

SEE ALSO read(2), write(2), read(9E), physio(9F), cb_ops(9S), uio(9S)

Writing Device Drivers

9E-102 SunOS 5.6 modified 28 Mar 1997

Index

A
aread — asynchronous read from a device, 9E-10
asynchronous read — aread, 9E-10
asynchronous write — awrite, 9E-14
awrite — asynchronous write to a device, 9E-14

C
character-oriented drivers

— ioctl, 9E-53
csx_event_handler — PC Card driver event

handler, 9E-21

D
DDI device mapping

devmap_access — device mapping access
entry point, 9E-33

devmap_contextmgt — device mapping
access entry point, 9E-36

devmap_dup — device mapping duplication
entry point, 9E-39

devmap_map — device mapping access entry
point, 9E-41

devmap_unmap — device mapping unmap
entry point, 9E-43

mapdev_access — device mapping access
entry point, 9E-59

mapdev_dup — device mapping duplication
entry point, 9E-61

DDI device mapping, continued
mapdev_free — device mapping free entry

point, 9E-63
dev_info structure

convert device number to — getinfo, 9E-50
device access

— close, 9E-19
— open, 9E-68

device mapping access entry point —
devmap_access, 9E-33, 9E-36, 9E-41, 9E-59

device mapping duplication entry point —
devmap_dup, 9E-39, 9E-61

device mapping free entry point — mapdev_free,
9E-63

device mapping unmap entry point —
devmap_unmap, 9E-43

device number
convert to dev_info structure — getinfo,

9E-50
devices

attach to system — attach, 9E-12
claim to drive a device — identify, 9E-52
detach from system — detach, 9E-27
read data — read, 9E-79
write data to a device — write, 9E-101

devices, memory mapped
check virtual mapping — devmap, 9E-29,

9E-64

Index−1

devices, memory mapping
map device memory into user space — seg-

map, 9E-81
devices, non-self-identifying

determine if present — probe, 9E-73
devmap_access — device mapping access entry

point, 9E-33
devmap_contextmgt — device mapping access

entry point, 9E-36
devmap_dup — device mapping duplication entry

point, 9E-39
devmap_map — device mapping access entry point,

9E-41
devmap_unmap — device mapping unmap entry

point, 9E-43
Driver entry point routines

— _fini, 9E-47
— _info, 9E-47
— _init, 9E-47
— attach, 9E-12
— chpoll, 9E-16
— close, 9E-19
— detach, 9E-27
— devmap, 9E-29
— dump, 9E-46
— getinfo, 9E-50
— identify, 9E-52
— ioctl, 9E-53
— mmap, 9E-64
— open, 9E-68
— print, 9E-72
— probe, 9E-73
— prop_op, 9E-74
— put, 9E-77
— read, 9E-79
— segmap, 9E-81
— srv, 9E-83
— strategy, 9E-85
— write, 9E-101

driver messages
display on system console — print, 9E-72

driver property information
report —prop_op, 9E-74

drivers, character-oriented

drivers, character-oriented, continued
— ioctl, 9E-53

dump — dump memory to disk during system
failure, 9E-46

dynamically update kstats — ks_update, 9E-57

G
get/set SCSI transport capability — tran_getcap,

9E-88
tran_setcap, 9E-88

H
HBA resources

request to free HBA resources allocated on
behalf of a target —
tran_tgt_free, 9E-98

request to initialize HBA resources on behalf of
a particular target —
tran_tgt_init, 9E-99

I
identify — claim to drive a device, 9E-52

K
kernel modules, dynamic loading

initialize a loadable module — _init, 9E-47
prepare loadable module for unloading —

_fini, 9E-47
return loadable module information — _info,

9E-47
ks_update — dynamically update kstats, 9E-57

M
mapdev_access — device mapping access entry

point, 9E-59
mapdev_dup — device mapping duplication entry

point, 9E-61
mapdev_free — device mapping free entry point,

9E-63
memory mapping for devices

check virtual mapping — devmap, 9E-29,
9E-64

map device memory into user space — seg-

Index−2

map,
memory mapping for devices, continued

9E-81

N
non-self-identifying devices

determine if present — probe, 9E-73
non-STREAMS character device driver

poll entry point — chpoll, 9E-16

P
PC Card driver event handler

— csx_event_handler, 9E-21
power — power a device attached to the system,

9E-71
power a device attached to the system — power,

9E-71
put — receive messages from the preceding queue,

9E-77

R
request to notify SCSI target of bus reset

— tran_reset_notify, 9E-93
reset a SCSI bus or target — tran_reset, 9E-92

S
SCSI bus

request to probe SCSI bus for a particular target
— tran_tgt_probe, 9E-100

SCSI command
abort — tran_abort, 9E-86
request to transport — tran_start, 9E-94

SCSI HBA DMA deallocation entry point —
tran_dmafree, 9E-87

SCSI HBA memory synchronization entry point —
tran_sync_pkt, 9E-97

SCSI HBA packet preparation and deallocation —
tran_init_pkt, 9E-90
tran_destroy_pkt, 9E-90

strategy — perform block I/O, 9E-85
STREAMS message queues

receive messages from the preceding queue —
put, 9E-77

STREAMS message queues, continued
service queued messages — srv, 9E-83

T
tran_abort — abort a SCSI command, 9E-86
tran_destroy_pkt — SCSI HBA packet prepara-

tion and deallocation, 9E-90
tran_dmafree — SCSI HBA DMA deallocation

entry point, 9E-87
tran_getcap — get/set SCSI transport capability,

9E-88
tran_init_pkt — SCSI HBA packet preparation

and deallocation, 9E-90
tran_reset — reset a SCSI bus or target, 9E-92
tran_reset_notify — request to notify SCSI tar-

get of bus reset, 9E-93
tran_setcap — get/set SCSI transport capability,

9E-88
tran_start — request to transport a SCSI com-

mand, 9E-94
tran_sync_pkt — SCSI HBA memory synchroni-

zation entry point, 9E-97
tran_tgt_free — request to free HBA resources

allocated on behalf of a target, 9E-98
tran_tgt_init — request to initialize HBA

resources on behalf of a particular target, 9E-99
tran_tgt_probe — request to probe SCSI bus for

a particular target, 9E-100

V
virtual address space

dump portion of to disk in case of system
failure — dump, 9E-46

W
write — write data to a device, 9E-101

Index−3

