SunOS Reference Manual

ll\J/Igﬂltain View, CA 94;043 . @ Sun SO ﬁ

Copyright 1997 Sun Microsystems, Inc. 2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and
decompilation. No part of this product or document may be reproduced in any form by any means without prior written authorization of
Sun and its licensors, if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark
in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, SunSoft, Solaris, SunOS, OpenWindows, DeskSet, ONC, ONC+, and NFS are trademarks, or
registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are
trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are
based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun[] Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun
acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the
computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s
licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license agreements.

RESTRICTED RIGHTS : Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87) and
FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a).

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-
INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 1997 Sun Microsystems, Inc., 2550 Garcia Avenue, Mountain View, Californie 94043-1100 Etats-Unis. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent I'utilisation, la copie, la distribution,
et la décompilation. Aucune partie de ce produit ou document ne peut étre reproduite sous aucune forme, par quelque moyen que ce soit,
sans l'autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la
technologie relative aux polices de caractéres, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront étre dérivées des systémes Berkeley BSD licenciés par I’Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, SunSoft, Solaris, SunOS, OpenWindows, DeskSet, ONC, ONC+, et NFS sont des marques de fabrique
ou des marques déposées, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous
licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les
produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun(l a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun
reconnait les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou
graphique pour I'industrie de I'informatique. Sun détient une licence non exclusive de Xerox sur I'interface d’utilisation graphique Xerox,
cette licence couvrant également les licenciés de Sun qui mettent en place I'interface d’utilisation graphique OPEN LOOK et qui en outre se
conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE "EN L’ETAT" ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N'EST ACCORDEE, Y
COMPRIS DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE
UTILISATION PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE
GARANTIE NE S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

o
Pleﬁsz ‘<‘ ’
Recycle Adobe PostScript

OVERVIEW

Preface

A man page is provided for both the naive user, and sophisticated user who is
familiar with the SunOS operating system and is in need of on-line information.
A man page is intended to answer concisely the question “What does it do?”
The man pages in general comprise a reference manual. They are not intended
to be a tutorial.

The following contains a brief description of each section in the man pages and
the information it references:

e Section 1 describes, in alphabetical order, commands available with the
operating system.

e Section 1M describes, in alphabetical order, commands that are used chiefly
for system maintenance and administration purposes.

e Section 2 describes all of the system calls. Most of these calls have one or
more error returns. An error condition is indicated by an otherwise
impossible returned value.

e Section 3 describes functions found in various libraries, other than those
functions that directly invoke UNIX system primitives, which are described in
Section 2 of this volume.

NAME

SYNOPSIS

e Section 4 outlines the formats of various files. The C structure declarations
for the file formats are given where applicable.

e Section 5 contains miscellaneous documentation such as character set tables,
etc.

e Section 6 contains available games and demaos.

e Section 7 describes various special files that refer to specific hardware
peripherals, and device drivers. STREAMS software drivers, modules and the
STREAMS-generic set of system calls are also described.

e Section 9 provides reference information needed to write device drivers in
the kernel operating systems environment. It describes two device driver
interface specifications: the Device Driver Interface (DDI) and the
Driver—-Kernel Interface (DKI).

e Section 9E describes the DDI/DKI, DDI-only, and DKI-only entry-point
routines a developer may include in a device driver.

e Section 9F describes the kernel functions available for use by device drivers.

e Section 9S describes the data structures used by drivers to share
information between the driver and the kernel.

Below is a generic format for man pages. The man pages of each manual
section generally follow this order, but include only needed headings. For
example, if there are no bugs to report, there is no BUGS section. See the intro
pages for more information and detail about each section, and man(1) for more
information about man pages in general.

This section gives the names of the commands or functions documented,
followed by a brief description of what they do.

This section shows the syntax of commands or functions. When a command or
file does not exist in the standard path, its full pathname is shown. Literal
characters (commands and options) are in bold font and variables (arguments,
parameters and substitution characters) are in italic font. Options and

PROTOCOL

DESCRIPTION

IOCTL

arguments are alphabetized, with single letter arguments first, and options with
arguments next, unless a different argument order is required.

The following special characters are used in this section:

[1 The option or argument enclosed in these brackets is optional. If the
brackets are omitted, the argument must be specified.

Ellipses. Several values may be provided for the previous argument, or
the previous argument can be specified multiple times, for example,
‘filename ...".

| Separator. Only one of the arguments separated by this character can
be specified at time.

{} Braces. The options and/or arguments enclosed within braces are
interdependent, such that everything enclosed must be treated as a
unit.

This section occurs only in subsection 3R to indicate the protocol description
file. The protocol specification pathname is always listed in bold font.

This section defines the functionality and behavior of the service. Thus it
describes concisely what the command does. It does not discuss OPTIONS or
cite EXAMPLES. Interactive commands, subcommands, requests, macros,
functions and such, are described under USAGE.

This section appears on pages in Section 7 only. Only the device class which
supplies appropriate parameters to the ioctl(2) system call is called ioctl and
generates its own heading. ioctl calls for a specific device are listed
alphabetically (on the man page for that specific device). ioctl calls are used for
a particular class of devices all of which have an io ending, such as mtio(7).

Preface iii

OPTIONS

OPERANDS

OUTPUT

RETURN VALUES

ERRORS

This lists the command options with a concise summary of what each option
does. The options are listed literally and in the order they appear in the
SYNOPSIS section. Possible arguments to options are discussed under the
option, and where appropriate, default values are supplied.

This section lists the command operands and describes how they affect the
actions of the command.

This section describes the output - standard output, standard error, or output
files - generated by the command.

If the man page documents functions that return values, this section lists these
values and describes the conditions under which they are returned. If a
function can return only constant values, such as 0 or —1, these values are listed
in tagged paragraphs. Otherwise, a single paragraph describes the return
values of each function. Functions declared as void do not return values, so
they are not discussed in RETURN VALUES.

On failure, most functions place an error code in the global variable errno
indicating why they failed. This section lists alphabetically all error codes a
function can generate and describes the conditions that cause each error. When
more than one condition can cause the same error, each condition is described
in a separate paragraph under the error code.

USAGE

EXAMPLES

ENVIRONMENT

EXIT STATUS

FILES

This section is provided as a guidance on use. This section lists special rules,
features and commands that require in-depth explanations. The subsections
listed below are used to explain built-in functionality:

Commands

Modifiers

Variables

Expressions

Input Grammar

This section provides examples of usage or of how to use a command or
function. Wherever possible a complete example including command line entry
and machine response is shown. Whenever an example is given, the prompt is
shown as

example%
or if the user must be super-user,
example#

Examples are followed by explanations, variable substitution rules, or returned
values. Most examples illustrate concepts from the SYNOPSIS, DESCRIPTION,
OPTIONS and USAGE sections.

This section lists any environment variables that the command or function
affects, followed by a brief description of the effect.

This section lists the values the command returns to the calling program or shell
and the conditions that cause these values to be returned. Usually, zero is
returned for successful completion and values other than zero for various error
conditions.

Preface \Y;

ATTRIBUTES

SEE ALSO

DIAGNOSTICS

WARNINGS

NOTES

BUGS

Vi

This section lists all filenames referred to by the man page, files of interest, and
files created or required by commands. Each is followed by a descriptive
summary or explanation.

This section lists characteristics of commands, utilities, and device drivers by
defining the attribute type and its corresponding value. (See attributes(5) for
more information.)

This section lists references to other man pages, in-house documentation and
outside publications.

This section lists diagnostic messages with a brief explanation of the condition
causing the error. Messages appear in bold font with the exception of variables,
which are in italic font.

This section lists warnings about special conditions which could seriously affect
your working conditions — this is not a list of diagnostics.

This section lists additional information that does not belong anywhere else on
the page. It takes the form of an aside to the user, covering points of special
interest. Critical information is never covered here.

This section describes known bugs and wherever possible suggests
workarounds.

Data Structures for Drivers Intro (9S)

NAME Intro, intro — introduction to kernel data structures
DESCRIPTION Section 9S describes the data structures used by drivers to share information between the
driver and the kernel.
In this section, reference pages contain the following headings:
e NAME summarizes the structure’s purpose.
e SYNOPSIS lists the include file that defines the structure.
e INTERFACE LEVEL describes any architecture dependencies.
e DESCRIPTION provides general information about the structure.
e STRUCTURE MEMBERS lists all accessible structure members.
e SEE ALSO gives sources for further information.
Every driver MUST include <sys/ddi.h> and <sys/sunddi.h>, in that order, and last.
The following table summarizes the STREAMS structures described in this section.
Structure Type
copyreq DDI/DKI
copyresp DDI/DKI
datab DDI/DKI
fmodsw Solaris DDI
free_rtn DDI/DKI
iocblk DDI/DKI
linkblk DDI/DKI
module_info DDI/DKI
msgb DDI/DKI
gband DDI/DKI
qinit DDI/DKI
queclass Solaris DDI
queue DDI/DKI
streamtab DDI/DKI
stroptions DDI/DKI
The following table summarizes structures that are not specific to STREAMS 1/0.
Structure Type
aio_req Solaris DDI
buf DDI/DKI
cb_ops Solaris DDI
ddi_device_acc_attr Solaris DDI
ddi_dma_attr Solaris DDI
ddi_dma_cookie Solaris DDI
ddi_dma_lim_sparc Solaris SPARC DDI
ddi_dma_lim_x86 Solaris x86 DDI
ddi_dma_req Solaris DDI

modified 22 Jan 1997 Sun0S 5.6 9S-5

Intro (9S)

9S-6

NOTES

ddi_dmae_req
ddi_idevice_cookie
ddi_mapdev_ctl
devmap_callback_ctl
dev_ops

iovec

kstat

kstat_intr

kstat_io
kstat_named

map

modldrv
modlinkage
modlstrmod
scsi_address
scsi_arq_status
scsi_device
scsi_extended_sense
scsi_hba_tran
scsi_inquiry
scsi_pkt
scsi_status

uio

Data Structures for Drivers

Solaris x86 DDI
Solaris DDI
Solaris DDI
Solaris DDI
Solaris DDI
DDI/DKI
Solaris DDI
Solaris DDI
Solaris DDI
Solaris DDI
DDI/DKI
Solaris DDI
Solaris DDI
Solaris DDI
Solaris DDI
Solaris DDI
Solaris DDI
Solaris DDI
Solaris DDI
Solaris DDI
Solaris DDI
Solaris DDI
DDI/DKI

Do not declare arrays of structures as the size of the structures may change between
releases. Rely only on the structure members listed in this chapter and not on unlisted
members or the position of a member in a structure.

Name

aio_req(9S)
buf(9S)
cb_ops(9S)
copyreq(9S)

copyresp(9S)

datab(9S)
ddi_device_acc_attr(9S)
ddi_dma_attr(9S)
ddi_dma_cookie(9S)
ddi_dmae_req(9S)

SunOS 5.6

Description

asynchronous 1/0 request structure
block 1/0 data transfer structure
character/block entry points structure

STREAMS data structure for the M_COPYIN and the
M_COPYOUT message types

STREAMS data structure for the M_IOCDATA message
type

STREAMS message data structure

data access attributes structure

DMA attributes structure

DMA address cookie

DMA engine request structure

modified 22 Jan 1997

modified 22 Jan 1997

Data Structures for Drivers

ddi_dma_lim(9S)
ddi_dma_lim_sparc(9S)
ddi_dma_lim_x86(9S)
ddi_dma_req(9S)
ddi_idevice_cookie(9S)
ddi_mapdev_ctl(9S)
devmap_callback_ctl(9S)
dev_ops(9S)
fmodsw(9S)
free_rtn(9S)

iocblk(9S)

iovec(9S)

kstat(9S)

kstat_intr(9S)
kstat_io(9S)
kstat_named(9S)
linkblk(9S)

modldrv(9S)
modlinkage(9S)
modlstrmod(9S)
module_info(9S)
msgb(9S)
qband(9S)
qinit(9S)
queclass(9S)

queue(9S)
scsi_address(9S)
scsi_arq_status(9S)
scsi_device(9S)
scsi_extended_sense(9S)
scsi_hba_tran(9S)

scsi_inquiry(9S)
scsi_pkt(9S)

Intro (9S)

See ddi_dma_lim_sparc(9S)

SPARC DMA limits structure

x86 DMA limits structure

DMA Request structure

device interrupt cookie

device mapping-control structure

device mapping-control structure

device operations structure

STREAMS module declaration structure

structure that specifies a driver’s message freeing routine
STREAMS data structure for the M_IOCTL message type
data storage structure for 1/0 using uio

kernel statistics structure

structure for interrupt kstats

structure for 1/0 kstats

structure for named kstats

STREAMS data structure sent to multiplexor drivers to
indicate a link

linkage structure for loadable drivers

module linkage structure

linkage structure for loadable STREAMS modules
STREAMS driver identification and limit value structure
STREAMS message block structure

STREAMS queue flow control information structure
STREAMS queue processing procedures structure

a STREAMS macro that returns the queue message class
definitions for a given message block

STREAMS queue structure

SCSI address structure

SCSI auto request sense structure
SCSI device structure

SCSI extended sense structure

SCSI Host Bus Adapter (HBA) driver transport vector
structure

SCSI inquiry structure
SCSI packet structure

SunOS 5.6 9S-7

Intro (9S)

9S-8

scsi_status(9S)
streamtab(9S)
stroptions(9S)
tuple(9S)
uio(9S)

Data Structures for Drivers

SCSI status structure

STREAMS entity declaration structure

options structure for M_SETOPTS message

Card Information Structure (CIS) access structure
scatter/gather 1/0 request structure

Sun0S 5.6 modified 22 Jan 1997

Data Structures for Drivers

NAME

SYNOPSIS

INTERFACE
LEVEL

DESCRIPTION

STRUCTURE
MEMBERS

SEE ALSO

modified 28 Mar 1997

aio_req — asynchronous 170 request structure
#include <sys/uio.h>

#include <sys/aio_req.h>

#include <sys/ddi.h>

#include <sys/sunddi.h>

Solaris DDI specific (Solaris DDI)

An aio_req structure describes an asynchronous 1/0 request.

struct uio [hAio_uio; /Ouio structure describing the 1/0O request O

The aio_uio member is a pointer to a uio(9S) structure, describing the 170 transfer
request.

aread(9E), awrite(9E), aphysio(9F), uio(9S)

SunOS 5.6

aio_req(9S)

9S-9

buf (9S)

NAME

SYNOPSIS

INTERFACE

LEVEL
DESCRIPTION

STRUCTURE
MEMBERS

9S-10

Data Structures for Drivers

buf — block 170 data transfer structure

#include <sys/ddi.h>
#include <sys/sunddi.h>

Architecture independent level 1 (DDI/DKI).

The buf structure is the basic data structure for block 1/0 transfers. Each block 1/0
transfer has an associated buffer header. The header contains all the buffer control and
status information. For drivers, the buffer header pointer is the sole argument to a block
driver strategy(9E) routine. Do not depend on the size of the buf structure when writing
adriver.

It is important to note that a buffer header may be linked in multiple lists simultaneously.
Because of this, most of the members in the buffer header cannot be changed by the
driver, even when the buffer header is in one of the driver’s work lists.

Buffer headers are also used by the system for unbuffered or physical 1/0 for block
drivers. In this case, the buffer describes a portion of user data space that is locked into
memory.

Block drivers often chain block requests so that overall throughput for the device is max-
imized. The av_forw and the av_back members of the buf structure can serve as link
pointers for chaining block requests.

int b_flags; /OBuffer status [
struct buf Cav_forw; /ODriver work list link [
struct buf Cav_back; /ODriver work list link [
size t b_bcount; /0# of bytes to transfer [0
union {

caddr_t b_addr; /O0Buffer’s virtual address [
}b_un;
daddr _t b_blkno; /O0Block number on device [
diskaddr_t b_Iblkno; /OExpanded block number on device [
size t b_resid; /0O0# of bytes not transferred [1
size t b_bufsize; /Osize of allocated buffer [0
int ((b_iodone)(struct buf D); /Ofunction called I

/Oby biodone [0

int b_error; /Oexpanded error field 0
void [b_private; /O0"opaque” driver private area
dev t b_edev; /Oexpanded dev field O

The members of the buffer header available to test or set by a driver are as follows;

b_flags stores the buffer status and tells the driver whether to read or write to the device.
The driver must never clear the b_flags member. If this is done, unpredictable results can
occur including loss of disk sanity and the possible failure of other kernel processes.

SunOS 5.6 modified 26 Sep 1996

Data Structures for Drivers buf(9S)

modified 26 Sep 1996

Valid flags are as follows:

B_BUSY indicates the buffer is in use. The driver may not change this flag
unless it allocated the buffer with getrbuf(9F), and no I/0 opera-
tion is in progress.

B_DONE indicates the data transfer has completed. This flag is read-only.

B_ERROR indicates an 170 transfer error. It is set in conjunction with the
b_error field. bioerror(9F) should be used in preference to set-
ting the B_ERROR bhit.

B_PAGEIO indicates the buffer is being used in a paged 1/0 request. See the
description of the b_un.b_addr field for more information. This
flag is read-only.

B_PHYS indicates the buffer header is being used for physical (direct) 1/0

to a user data area. See the description of the b_un.b_addr field
for more information. This flag is read-only.

B_READ indicates data is to be read from the peripheral device into main
memory.
B_WRITE indicates the data is to be transferred from main memory to the

peripheral device. B_WRITE is a pseudo flag and cannot be
directly tested; it is only detected as the NOT form of B_READ.

av_forw and av_back can be used by the driver to link the buffer into driver work lists.

b_bcount specifies the number of bytes to be transferred in both a paged and a non-
paged 170 request.

b_un.b_addr is the virtual address of the 1/0 request, unless B_PAGEIO is set. The
address is a kernel virtual address, unless B_PHYS is set, in which case it is a user virtual
address. I1f B_PAGEIO is set, b_un.b_addr contains kernel private data. Note that either
one of B_PHYS and B_PAGEIO, or neither, may be set, but not both.

b_blkno identifies which logical block on the device (the device is defined by the device
number) is to be accessed. The driver may have to convert this logical block number to a
physical location such as a cylinder, track, and sector of a disk. This is a 32-bit value. The
driver should use b_blkno or b_Iblkno, but not both.

b_Iblkno identifies which logical block on the device (the device is defined by the device
number) is to be accessed. The driver may have to convert this logical block number to a
physical location such as a cylinder, track, and sector of a disk. This is a 64-bit value. The
driver should use b_Iblkno or b_blkno, but not both.

b_resid should be set to the number of bytes not transferred because of an error.
b_bufsize contains the size of the allocated buffer.

b_iodone identifies a specific biodone routine to be called by the driver when the 170 is
complete.

b_error may hold an error code that should be passed as a return code from the driver.
b_error is set in conjunction with the B_ERROR bit set in the b_flags member.
bioerror(9F) should be used in preference to setting the b_error field.

SunOS 5.6 9S-11

buf(9S) Data Structures for Drivers

b_private is for the private use of the device driver.
b_edev contains the major and minor device numbers of the device accessed.

SEE ALSO | strategy(9E), aphysio(9F), bioclone(9F), biodone(9F), bioerror(9F), bioinit(9F),
clrbuf(9F), getrbuf(9F), physio(9F), iovec(9S), uio(9S)

Writing Device Drivers
WARNINGS Buffers are a shared resource within the kernel. Drivers should read or write only the

members listed in this section. Drivers that attempt to use undocumented members of
the buf structure risk corrupting data in the kernel or on the device.

9S-12 SunOS 5.6 modified 26 Sep 1996

Data Structures for Drivers cb_ops(9S)

NAME cb_ops - character/block entry points structure

SYNOPSIS | #include <sys/conf.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

INTERFACE Solaris DDI specific (Solaris DDI).
LEVEL
DESCRIPTION cb_ops contains all entry points for drivers that support both character and block entry
points. All leaf device drivers supporting direct user process access to a device should
declare a cb_ops structure.

All drivers which safely allow multiple threads of execution in the driver at the same
time must set the D_MP flag in the cb_flag field.

If the driver properly handles 64-bit offsets, it should also set the D_64BIT flag in the
cb_flag field. This specifies that the driver will use the uio_loffset field of the uio(9S)
structure.

mt-streams(9F) describes other flags that may be set in the cb_flag field.
cb_rev is the cb_ops structure revision number. This field must be set to CB_REV.
Non-STREAMS drivers should set cb_str to NULL.

The following DDI/DKI or DKI-only or DDI-only functions are provided in the
character/block driver operations structure.

block/char Function Description
b/c XXopen DDI/DKI
b/c XXclose DDI/DKI
b XXstrategy DDI/DKI

b XXprint DDI/DKI

b XXdump DDI(Sun)

c XXread DDI/DKI

c XXwrite DDI/DKI

c XXioctl DDI/DKI

c XXdevmap DDI(Sun)

c XXmmap DKI

c XXsegmap DKI

c XXchpoll DDI/DKI

c XXprop_op DDI(Sun)

c XXaread DDI(Sun)

c XXawrite DDI(Sun)

STRUCTURE int (Ctb_open)(dev_t [devp, int flag, int otyp, cred_t Ctredp);
MEMBERS int (Ctb_close)(dev_t dev, int flag, int otyp, cred_t Ctredp);

int (Ctb_strategy)(struct buf [hp);

modified 30 Sep 1996 SunOS 5.6 9S-13

cb_ops(9S) Data Structures for Drivers

int (Ceb_print)(dev_t dev, char [5tr);

int (Ccb_dump)(dev_t dev, caddr_t addr, daddr_t blkno, int nblk);

int (Ctb_read)(dev_t dev, struct uio Cuiop, cred_t [tredp);

int (Ctb_write)(dev_t dev, struct uio [Cuiop, cred_t Ctredp);

int (Ctb_ioctl)(dev_t dev, int cmd, intptr_t arg, int mode,
cred_t Ctredp, int Crvalp);

int (Ctb_devmap)(dev_t dev, devmap_cookie_t dhp, offset_t off,
size_t len, size_t Cmaplen, uint_t model);

int (Ccb_mmap)(dev_t dev, off_t off, int prot);

int (Ctb_segmap)(dev_t dev, off _t off, struct as Casp,

caddr_t Caddrp, off_t len, unsigned int prot,
unsigned int maxprot, unsigned int flags, cred_t Ctredp);

int (Ceb_chpoll)(dev_t dev, short events, int anyyet,
short [reventsp, struct pollhead [(Tphpp);
int (Ctb_prop_op)(dev_t dev, dev_info_t [dip,

ddi_prop_op_t prop_op, int mod_flags,
char Chame, caddr_t valuep, int Oength);
struct streamtab [tb_str; /Ostreams information O

int cb_flag;

int cb_rev;

int (Ctb_aread)(dev_t dev, struct aio_req [&io, cred_t [tredp);
int (Ctb_awrite)(dev_t dev, struct aio_req [aio, cred_t [tredp);

SEE ALSO aread(9E), awrite(9E), chpoll(9E), close(9E), dump(9E), ioctl(9E), mmap(9E), open(9E),
print(9E), prop_op(9E), read(9E), segmap(9E), strategy(9E), write(9E), nochpoll(9F),
nodev(9F), nulldev(9F), dev_ops(9S), ginit(9S)

Writing Device Drivers

STREAMS Programming Guide

9S-14 SunOS 5.6 modified 30 Sep 1996

Data Structures for Drivers copyreq (9S)

NAME

SYNOPSIS

INTERFACE
LEVEL

DESCRIPTION

STRUCTURE
MEMBERS

SEE ALSO

modified 14 Nov 1996

copyreq — STREAMS data structure for the M_COPYIN and the M_COPYOUT message
types

#include <sys/stream.h>

Architecture independent level 1 (DDI/DKI).

The data structure for the M_COPYIN and the M_COPYOUT message types.

int cq_cmd; /0ioctl command (from ioc_cmd) [/
cred_ t [tq_cr; /0full credentials [/

uint cq_id; /0ioctl id (from ioc_id) [/

uint cq_flag; /see below ¥

mblk_t [tq_private; /UOprivate state information [/
caddr_t cq_addr; /Oaddress to copy data to/from [/
size t cq_size; /0number of bytes to copy [/

/cq_flag values [/

#define STRCANON 0x01 /0b_cont data block contains [/
/Ocanonical format specifier [

#define RECOPY 0x02 /Operform |_STR copyin again, [/
/this time using canonical [/
/0Oformat specifier [/

STREAMS Programming Guide

SunOS 5.6 9S-15

copyresp (9S) Data Structures for Drivers

NAME copyresp — STREAMS data structure for the M_IOCDATA message type
SYNOPSIS | #include <sys/stream.h>
INTERFACE | Architecture independent level 1 (DDI/DKI).

LEVEL
DESCRIPTION The data structure copyresp is used with the M_IOCDATA message type.

STRUCTURE int cp_cmd; /0ioctl command (from ioc_cmd) [/
MEMBERS cred t [tp_cr; /0full credentials O/
uint cp_id; /0ioctl id (fromioc_id) [/
uint cp_flag; /0Oioctl flags I/
mblk t [tp_private; /Oprivate state information [/
caddr_t cp_rval; /Ostatus of request: 0 -> success; non-zero -> failure ¥

SEE ALSO STREAMS Programming Guide

9S-16 Sun0S 5.6 modified 14 Nov 1996

Data Structures for Drivers datab (9S)

NAME datab - STREAMS message data structure
SYNOPSIS | #include <sys/stream.h>

INTERFACE | Architecture independent level 1 (DDI/DKI).
LEVEL
DESCRIPTION The datab structure describes the data of a STREAMS message. The actual data con-
tained in a STREAMS message is stored in a data buffer pointed to by this structure. A
msgb (message block) structure includes a field that points to a datab structure.

A data block can have more than one message block pointing to it at one time, so the
db_ref member keeps track of a data block’s references, preventing it from being deallo-
cated until all message blocks are finished with it.

STRUCTURE unsigned char [db_base; /Ofirst byte of buffer [

MEMBERS unsigned char [db_lim; /Olast byte (+1) of buffer [
unsigned char db_ref; /0# of message pointers to this data [J
unsigned char db_type; /Omessage type [1

A datab structure is defined as type dblk t.

SEE ALSO | free_rtn(9S), msgb(9S)
Writing Device Drivers
STREAMS Programming Guide

modified 11 Apr 1991 SunOS 5.6 9S-17

ddi_device_acc_attr (9S) Data Structures for Drivers

NAME

SYNOPSIS

INTERFACE
LEVEL
DESCRIPTION

STRUCTURE
MEMBERS

9S-18

ddi_device_acc_attr — data access attributes structure

#include <sys/ddi.h>
#include <sys/sunddi.h>

Solaris DDI specific (Solaris DDI).

The ddi_device_acc_attr structure describes the data access characteristics and require-
ments of the device.

ushort t devacc_attr_version;
uchar _t devacc_attr_endian_flags;
uchar _t devacc_attr_dataorder;

The devacc_attr_version member identifies the version number of this structure. The
current version number is DDI_DEVICE_ATTR_VO.

The devacc_attr_endian_flags member describes the endian characteristics of the device.
Specify one of the following values.

DDI_NEVERSWAP_ACC
data access with no byte swapping.

DDI_STRUCTURE_BE_ACC
structural data access in big endian format.

DDI_STRUCTURE_LE_ACC
structural data access in little endian format.

DDI_STRUCTURE_BE_ACC and DDI_STRUCTURE_LE_ACC describes the endian charac-
teristics of the device as big endian or little endian, respectively. Even though most of the
devices will have the same endian characteristics as their buses, there are examples of
devices with 1/0 an processor that has opposite endian characteristics of the buses. When
DDI_STRUCTURE_BE_ACC or DDI_STRUCTURE_LE_ACC is set, byte swapping will
automatically be performed by the system if the host machine and the device data for-
mats have opposite endian characteristics. The implementation may take advantage of
hardware platform byte swapping capabilities.

When DDI_NEVERSWAP_ACC is specified, byte swapping will not be invoked in the data
access functions.

The devacc_attr_dataorder member describes order in which the CPU will reference data.
Specify one of the following values.

DDI_STRICTORDER_ACC
The data references must be issued by a CPU in program order. Strict
ordering is the default behavior.

DDI_UNORDERED_OK_ACC
The CPU may re-order the data references. This includes all kinds of
re-ordering. (i.e. a load followed by a store may be replaced by a
store followed by a load).

Sun0S 5.6 modified 27 Oct 1994

Data Structures for Drivers ddi_device_acc_attr (9S)

EXAMPLES

Example 1

modified 27 Oct 1994

DDI_MERGING_OK_ACC
The CPU may merge individual stores to consecutive locations. For
example, the CPU may turn two consecutive byte stores into one half-
word store. It may also batch individual loads. For example, the CPU
may turn two consecutive byte loads into one halfword load.
DDI_MERGING_OK_AcCC also implies re-ordering.

DDI_LOADCACHING_OK_ACC
The CPU may cache the data it fetches and reuse it until another store
occurs. The default behavior is to fetch new data on every load.
DDI_LOADCACHING_OK_ACC also implies merging and re-ordering.

DDI_STORECACHING_OK_ACC
The CPU may keep the data in the cache and push it to the device
(perhaps with other data) at a later time. The default behavior is to
push the data right away. DDI_STORECACHING_OK_ACC also
implies load caching, merging, and re-ordering.

These values are advisory, not mandatory. For example, data can be ordered without
being merged or cached, even though a driver requests unordered, merged and cached
together.

The following examples illustrate the use of device register address mapping setup func-
tions and different data access functions.

This example demonstrates the use of the ddi_device_acc_attr structure in
ddi_regs_map_setup(9F). It also shows the use of ddi_getw(9F) and ddi_putw(9F) func-
tions in accessing the register contents.

dev_info_t [dip;

uint_ t rnumber;

ushort_t [dev_addr;

offset_t offset;

offset_t len;

ushort_t dev_command;

ddi_device_acc_attr_t dev_attr;

ddi_acc_handle_t handle;

/0

Osetup the device attribute structure for little endian,

Ostrict ordering and 16-bit word access.

i

dev_attr.devacc_attr_version = DDI_DEVICE_ATTR_VO;
dev_attr.devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC;
dev_attr.devacc_attr_dataorder = DDI_STRICTORDER_ACC;

SunOS 5.6 9S-19

ddi_device_acc_attr (9S) Data Structures for Drivers

9S-20

Example 2

/0

Oset up the device registers address mapping

a

ddi_regs_map_setup(dip, rnumber, (caddr_t D&dev_addr, offset, len,
&dev_attr, &handle);

/Oread a 16-bit word command register from the devicell
dev_command = ddi_getw(handle, dev_addr);

dev_command |= DEV_INTR_ENABLE;
/Ostore a new value back to the device command register
ddi_putw(handle, dev_addr, dev_command);

The following example illustrates the steps used to access a device with different aper-
tures. We assume that several apertures are grouped under one single "reg" entry. For
example, the sample device has four different apertures each 32K in size. The apertures
represent YUV little-endian, YUV big-endian, RGB little-endian, and RGB big-endian.
This sample device uses entry 1 of the "reg" property list for this purpose. The size of the
address space is 128K with each 32K range as a separate aperture. In the register map-
ping setup function, the sample driver uses the offset and len parameters to specify one of
the apertures.

ulong_t [dev_addr;
ddi_device_acc_attr_t dev_attr;
ddi_acc_handle_t handle;
uchar_t buf[256];

/0

Osetup the device attribute structure for never swap,
Ounordered and 32-bit word access.

i

dev_attr.devacc_attr_version = DDI_DEVICE_ATTR_VO;
dev_attr.devacc_attr_endian_flags = DDI_NEVERSWAP_ACC;
dev_attr.devacc_attr_dataorder = DDI_UNORDERED_OK_ACC;

/0

Omap in the RGB big-endian aperture

Owhile running in a big endian machine

O - offset 96K and len 32K

a

ddi_regs_map_setup(dip, 1, (caddr_t D&dev_addr, 9611024, 32[1024,
&dev_attr, &handle);

/d

Sun0S 5.6 modified 27 Oct 1994

Data Structures for Drivers ddi_device_acc_attr (9S)

Example 3

modified 27 Oct 1994

OWrite to the screen buffer

O first 1K bytes words, each size 4 bytes

i

ddi_rep_putl(handle, buf, dev_addr, 256, DDI_DEV_AUTOINCR);

The following example illustrates the use of the functions that explicitly call out the data
word size to override the data size in the device attribute structure.

struct device_blk {

ushort d_command, /Ocommand register [J
ushort d_status; /Ostatus register O
ulong d_data; /Odata register [J

} Cdev_blkp;

dev_info_t [dip;

caddr_t dev_addr;
ddi_device_acc_attr_t dev_attr;
ddi_acc_handle_t handle;
uchar_t buf[256];

/0

Osetup the device attribute structure for never swap,

Ostrict ordering and 32-bit word access.

i

dev_attr.devacc_attr_version = DDI_DEVICE_ATTR_VO;
dev_attr.devacc_attr_endian_flags = DDI_NEVERSWAP_ACC;
dev_attr.devacc_attr_dataorder= DDI_STRICTORDER_ACC;

ddi_regs_map_setup(dip, 1, (caddr_t D&dev_blkp, 0, 0,
&dev_attr, &handle);

/Owrite command to the 16-bit command register [
ddi_putw(handle, &dev_blkp->d_command, START_XFER);

/O0Read the 16-bit status register [I
status = ddi_getw(handle, &dev_blkp->d_status);

if (status & DATA_READY)
/ORead 1K bytes off the 32-bit data register [
ddi_rep_getl(handle, buf, &dev_blkp->d_data,
256, DDI_DEV_NO_AUTOINCRY);

SunOS 5.6 9S-21

ddi_device_acc_attr (9S) Data Structures for Drivers

SEE ALSO ddi_getw(9F), ddi_putw(9F), ddi_regs_map_setup(9F)
Wrkiting Device Drivers

9S-22 SunOS 5.6 modified 27 Oct 1994

Data Structures for Drivers ddi_dma_attr (9S)

NAME
SYNOPSIS
INTERFACE

LEVEL
DESCRIPTION

STRUCTURE
MEMBERS

modified 26 Sep 1996

ddi_dma_attr - DMA attributes structure
#include <sys/ddidmareq.h>
Solaris DDI specific (Solaris DDI).

A ddi_dma_attr_t structure describes device and DMA engine specific attributes neces-
sary to allocate DMA resources for a device. The driver may have to extend the attributes
with bus specific information depending on the bus to which the device is connected.

uint_t dma_attr_version; /Oversion number O

uinté4_t dma_attr_addr_lo; /Olow DMA address range [
uinté4_t dma_attr_addr_hi; /Ohigh DMA address range [
uinté4_t dma_attr_count_max; /ODMA counter register [1
uinté4_t dma_attr_align; /ODMA address alignment I
uint_t dma_attr_burstsizes; /ODMA burstsizes [
uint32_t dma_attr_minxfer; /Omin effective DMA size [0
uinté4_t dma_attr_maxxfer; /Omax DMA xfer size O
uinté4_t dma_attr_seg; /Osegment boundary O

int dma_attr_sgllen; /0s/g list length O

uint32_t dma_attr_granular; /Ogranularity of device
uint_t dma_attr_flags; /ODMA transfer flags [

dma_attr_version stores the version number of this DMA attribute structure. It should be
set to DMA_ATTR_VO.

The dma_attr_addr_lo and dma_attr_addr_hi fields specify the address range the
device’s DMA engine can access. The dma_attr_addr_lo field describes the inclusive
lower 64 bit boundary. The dma_attr_addr_hi describes the inclusive upper 64 bit boun-
dary. The system will ensure that allocated DMA resources are within the range specified
(see ddi_dma_cookie(9S)).

The dma_attr_count_max describes an inclusive upper bound for the device’s DMA
counter register. For example, OxFFFFFF would describe a DMA engine with a 24 bit
counter register. DMA resource allocation functions have to break up a DMA object into
multiple DMA cookies if the size of the object exceeds the size of the DMA counter regis-
ter.

The dma_attr_align specifies alignment requirements for allocated DMA resources. This
field can be used to force more restrictive alignment than imposed by
dma_attr_burstsizes or dma_attr_minxfer, such as alignment at a page boundary. Most
drivers will set this to 1 indicating byte alignment.

The dma_attr_burstsizes field describes the possible burst sizes the device’s DMA engine
can accept. The format of the data sizes is binary encoded in terms of powers of two.
When DMA resources are allocated, the system may modify the burstsizes value to reflect
the system limits. The driver must use the allowable burstsizes to program the DMA
engine (see ddi_dma_burstsizes(9F)).

SunOS 5.6 9S-23

ddi_dma_attr (9S)

9S-24

Data Structures for Drivers

The dma_attr_minxfer field describes the minimum effective DMA access size in units of
bytes. DMA resources may be modified depending on the presence and use of 1/0 caches
and write buffers between the DMA engine and the memory object. This field is used to
determine alignment and padding requirements for ddi_dma_mem_alloc(9F).

The dma_attr_maxxfer field describes the maximum effective DMA access size in units of
bytes.

The dma_attr_seg field specifies segment boundary restrictions for allocated DMA
resources. The system will allocate DMA resources for the device such that the object does
not span the segment boundary specified by dma_attr_seg. For example a value of
O0xFFFF means DMA resources must not cross a 64K boundary. DMA resource allocation
functions may have to break up a DMA object into multiple DMA cookies to enforce seg-
ment boundary restrictions. In this case, the transfer must be performed using scatter-
gather 170 or multiple DMA windows.

The dma_attr_sgllen field describes the length of the device’s DMA scatter/gather list.
Possible values are as follows:

<0 Device DMA engine is not constrained by the size - for example, DMA
chaining.

=0 Reserved.

=1 Device DMA engine does not support scatter/gather such as third party
DMA, etc.

>1 Device DMA engine uses scatter/gather. dma_attr_sgllen is the max-

imum number of entries in the list.

The dma_attr_granular field describes the granularity of the device transfer size, in units
of bytes. When the system allocates DMA resources, a single segment’s size will be a mul-
tiple of the device granularity. Or if dma_attr_sgllen is larger than 1 within a window,
the sum of the sizes for a subgroup of segments will be a multiple of the device granular-
ity.

The dma_attr_flags field can be set to:

DDI_DMA_FORCE_PHYSICAL
Some platforms [such as SPARC systems] support what is called DVMA
(Direct Virtual Memory Access). On these platforms the device is provided
with a virtual address by the system in order to perform the transfer. In this
case, the underlying platform provides an IOMMU which translates
accesses to these virtual addresses into the proper physical addresses.
Some of these platforms support in addition DMA.
DDI_DMA_FORCE_PHYSICAL indicates that the system should return phy-
sical rather than virtual 170 addresses if the system supports both. If the
system does not support physical DMA, the return value from
ddi_dma_alloc_handle(9F) will be DDI_DMA_BADATTR. In this case, the
driver has to clear DDI_DMA_FORCE_PHYSICAL and retry the operation.

SunOS 5.6 modified 26 Sep 1996

Data Structures for Drivers

EXAMPLES

SEE ALSO

modified 26 Sep 1996

For example, assume a device has the following DMA characteristics:
e Full 32-bit range addressable
e 24-bit DMA counter register
e byte alignment
e 4 and 8-byte burst sizes support
o Minimum effective transfer size of 1 bytes
e 64M maximum transfer size limit
e Maximum segment size of 32K
e 17 scatter/gather list elements
e 512 byte device transfer size granularity
The corresponding ddi_dma_attr_t structure would be initialized as follows:
static ddi_dma_attr_t dma_attrs = {

DMA_ATTR_VO,
(uint64_t)0x0,
(uint64_t)OxFFFFFfef,

/Oversion number [
/Olow address [
/Ohigh address [

(uint64_t)OxfFFfff, /ODMA counter max [
(uint64_t)0x1 /Oalignment 1

0x0c, /Oburst sizes

0x1, /Ominimum transfer size
(uint64_t)Ox3fFFFfT, /Omaximum transfer size (1
(uint64_t)Ox7fff, /Omaximum segment size [J

17, /Oscatter/gather list Igth [J
512, /Ogranularity I
0 /ODMA flags OO

h

ddi_dma_addr_bind_handle(9F), ddi_dma_alloc_handle(9F),

ddi_dma_attr (9S)

ddi_dma_buf _bind_handle(9F), ddi_dma_burstsizes(9F), ddi_dma_mem_alloc(9F),

ddi_dma_nextcookie(9F), ddi_dma_cookie(9S)
Writing Device Drivers

SunOS 5.6

9S-25

ddi_dma_cookie (9S)

NAME
SYNOPSIS
INTERFACE

LEVEL
DESCRIPTION

STRUCTURE
MEMBERS

SEE ALSO

9S-26

Data Structures for Drivers

ddi_dma_cookie - DMA address cookie
#include <sys/sunddi.h>
Solaris DDI specific (Solaris DDI).

The ddi_dma_cookie_t structure contains DMA address information required to program
aDMA engine. lItis filled in by a call to ddi_dma_getwin(9F),
ddi_dma_addr_bind_handle(9F), or ddi_dma_buf _bind_handle(9F) to get device
specific DMA transfer information for a DMA request or a DMA window.

uinté4_t dmac_laddress; /0064 bit address O
uint32_t dmac_address; /032 bit address O

size t dmac_size; /Otransfer size [

uint_t dmac_type; /Obus specific type bits O

dmac_laddress specifies a 64 bit 1/0 address appropriate for programming the device’s
DMA engine. If a device has a 64-bit DMA address register a driver should use this field to
program the DMA engine. dmac_address specifies a 32 bit 1/0 address. It should be used
for devices which have a 32-bit DMA address register. The 1/0 address range that the
device can address and other DMA attributes have to be specified in a ddi_dma_attr(9S)
structure.

dmac_size describes the length of the transfer in bytes.

dmac_type contains bus specific type bits (if appropriate). For example, a device on a
VME bus will have VME address modifier bits placed here.

pci(4), sbus(4), sysbus(4), vme(4), ddi_dma_addr_bind_handle(9F),
ddi_dma_buf_bind_handle(9F), ddi_dma_getwin(9F), ddi_dma_nextcookie(9F),
ddi_dma_attr(9S)

Writing Device Drivers

SunOS 5.6 modified 30 Sep 1996

Data Structures for Drivers ddi_dma_lim_sparc (9S)

NAME
SYNOPSIS
INTERFACE

LEVEL
DESCRIPTION

STRUCTURE
MEMBERS

modified 1 Feb 1994

ddi_dma_lim_sparc, ddi_dma_lim — SPARC DMA limits structure

#include <sys/ddidmareq.h>

Solaris SPARC DDl specific (Solaris SPARC DDI).

A ddi_dma_lim structure describes in a generic fashion the possible limitations of a

device’s DMA engine. This information is used by the system when it attempts to set up
DMA resources for a device.

u_int dlim_addr_lo; /Olow range of 32 bit addressing capability [

u_int dlim_addr_hi; /Oinclusive upper bound of addressing I
/Ocapability OO

u_int dlim_cntr_max; /Oinclusive upper bound of dma engine’s
/Oaddress limit O/

u_int dlim_burstsizes; /Obinary encoded dma burst sizes

u_int dlim_minxfer; /Ominimum effective dma transfer size (I

u_int dlim_dmaspeed; /Oaverage dma data rate (kb/s) O

The dlim_addr_lo and dlim_addr_hi fields specify the address range the device’s DMA
engine can access. The dlim_addr_lo field describes the lower 32 bit boundary of the
device’s DMA engine, the dlim_addr_hi describes the inclusive upper 32 bit boundary.
The system will allocate DMA resources in a way that the address for programming the
device’s DMA engine (see ddi_dma_cookie(9S) or ddi_dma_htoc(9F)) will be within this
range. For example, if your device can access the whole 32 bit address range, you may
use [0,0xFFFFFFFF]. If your device has just a 16 bit address register but will access the
top of the 32 bit address range, then [OxFFFF0000,0xFFFFFFFF] would be the right limit.

The dlim_cntr_max field describes an inclusive upper bound for the device’s DMA engine
address register. This handles a fairly common case where a portion of the address regis-
ter is simply a latch rather than a full register. For example, the upper 8 bits of a 32 bit
address register may be a latch. This splits the address register into a portion which acts
as a true address register (24 bits) for a 16 megabyte segment and a latch (8 bits) to hold a
segment number. To describe these limits, you would specify OXFFFFFF in the
dlim_cntr_max structure.

The dlim_burstsizes field describes the possible burst sizes the device’s DMA engine can
accept. At the time of a DMA resource request, this element defines the possible DMA
burst cycle sizes that the requester’s DMA engine can handle. The format of the data is
binary encoding of burst sizes assumed to be powers of two. That is, if a DMA engine is
capable of doing 1, 2, 4 and 16 byte transfers, the encoding would be 0x17. If the device is
an SBus device and can take advantage of a 64 bit SBus, the lower 16 bits are used to
specify the burst size for 32 bit transfers and the upper 16 bits are used to specify the
burst size for 64 bit transfers. As the resource request is handled by the system, the burst-
sizes value may be modified. Prior to enabling DMA for the specific device, the driver that
owns the DMA engine should check (using ddi_dma_burstsizes(9F)) what the allowed
burstsizes have become and program the DMA engine appropriately.

SunOS 5.6 9S-27

ddi_dma_lim_sparc (9S) Data Structures for Drivers

The dlim_minxfer field describes the minimum effective DMA transfer size (in units of
bytes). It must be a power of two. This value specifies the minimum effective granularity
of the DMA engine. It is distinct from dlim_burstsizes in that it describes the minimum
amount of access a DMA transfer will effect. dlim_burstsizes describes in what electrical
fashion the DMA engine might perform its accesses, while dlim_minxfer describes the
minimum amount of memory that can be touched by the DMA transfer. As a resource
request is handled by the system, the dlim_minxfer value may be modified contingent
upon the presence (and use) of 1/0 caches and DMA write buffers in between the DMA
engine and the object that DMA is being performed on. After DMA resources have been
allocated, the resultant minimum transfer value can be gotten using
ddi_dma_devalign(9F).

The field dlim_dmaspeed is the expected average data rate for the DMA engine (in units
of kilobytes per second). Note that this should not be the maximum, or peak, burst data

rate, but a reasonable guess as to the average throughput. This field is entirely optional,

and may be left as zero. Its intended use is to provide some hints about how much DMA
resources this device may need.

SEE ALSO ddi_dma_addr_setup(9F), ddi_dma_buf_setup(9F), ddi_dma_burstsizes(9F),
ddi_dma_devalign(9F), ddi_dma_htoc(9F), ddi_dma_setup(9F), ddi_dma_cookie(9S),
ddi_dma_lim_x86(9S), ddi_dma_req(9S)

9S-28 Sun0S 5.6 modified 1 Feb 1994

Data Structures for Drivers ddi_dma_lim_x86 (9S)

NAME

SYNOPSIS

INTERFACE
LEVEL

DESCRIPTION

STRUCTURE
MEMBERS

modified 31 Jan 1994

ddi_dma_lim_x86 — x86 DMA limits structure
#include <sys/ddidmareq.h>

Solaris x86 DDI specific (Solaris x86 DDI)

A ddi_dma_lim structure describes in a generic fashion the possible limitations of a dev-
ice or its DMA engine. This information is used by the system when it attempts to set up
DMA resources for a device. When the system is requested to perform a DMA transfer to
or from an object, the request will be broken up, if necessary, into multiple sub-requests,
each of which conforms to the limitations expressed in the ddi_dma_lim structure.

This structure should be filled in by calling the routine ddi_dmae_getlim(9F), which sets
the values of the structure members appropriately based on the characteristics of the
DMA engine on the driver’s parent bus. If the driver has additional limitations, it may
further restrict some of the values in the structure members. A driver should take care to
not relax any restrictions imposed by ddi_dmae_getlim().

u_int dlim_addr_lo; /Olow range of 32 bit addressing capability [1

u_int dlim_addr_hi; /inclusive upper bound of addressing capability [1
u_int dlim_minxfer; /Ominimum effective dma transfer size [J

u_int dlim_version; /Oversion number of this structure OJ

u_int dlim_adreg_max; /Oinclusive upper bound of incrementing addr reg [
u_int dlim_ctreg_max; /Omaximum transfer count minus one [J

u_int dlim_granular; /Ogranularity (and min size) of transfer count [
short dlim_sgllen; /Olength of DMA scatter/gather list [J

u_int dlim_reqgsize; /Omaximum transfer size in bytes of a single 1/0 [0

The dlim_addr_lo and dlim_addr_hi fields specify the address range the device’s DMA
engine can access. The dlim_addr_lo field describes the lower 32 bit boundary of the
device’s DMA engine; dlim_addr_hi describes the inclusive upper 32 bit boundary. The
system will allocate DMA resources in a way that the address for programming the
device’s DMA engine (see ddi_dma_cookie(9S) or ddi_dma_segtocookie(9F)) will be
within this range. For example, if your device can access the whole 32 bit address range,
you may use [0,0xFFFFFFFF].

The dlim_minxfer field describes the minimum effective DMA transfer size (in units of
bytes). It must be a power of two. This value specifies the minimum effective granularity
of the DMA engine. It describes the minimum amount of memory that can be touched by
the DMA transfer. As a resource request is handled by the system, the dlim_minxfer
value may be modified contingent upon the presence (and use) of 170 caches and DMA
write buffers in between the DMA engine and the object that DMA is being performed on.
After DMA resources have been allocated, the resultant minimum transfer value can be
retrieved using ddi_dma_devalign(9F).

SunOS 5.6 9S-29

ddi_dma_lim_x86 (9S) Data Structures for Drivers

The dlim_version field specifies the version number of this structure. This field should
be set to DMALIM_VERO.

The dlim_adreg_max field describes an inclusive upper bound for the device’s DMA
engine address register. This handles a fairly common case where a portion of the
address register is simply a latch rather than a full register. For example, the upper 16
bits of a 32 bit address register may be a latch. This splits the address register into a por-
tion which acts as a true address register (lower 16 bits) for a 64 kilobyte segment and a
latch (upper 16 bits) to hold a segment number. To describe these limits, you would
specify OXFFFF in the dlim_adreg_max structure member.

The dlim_ctreg_max field specifies the maximum transfer count that the DMA engine can
handle in one segment or cookie. The limit is expressed as the maximum count minus
one. This transfer count limitation is a per-segment limitation. It is used as a bit mask, so
it must be one less than a power of two.

The dlim_granular field describes the granularity of the device’s DMA transfer ability, in
units of bytes. This value is used to specify, for example, the sector size of a mass storage
device. DMA requests will be broken into multiples of this value. If there is no
scatter/gather capability, then the size of each DMA transfer will be a multiple of this
value. If there is scatter/gather capability, then a single segment will not be smaller than
the minimum transfer value, but may be less than the granularity; however the total
transfer length of the scatter/gather list will be a multiple of the granularity value.

The dlim_sgllen field specifies the maximum number of entries in the scatter/gather list.
It is the number of segments or cookies that the DMA engine can consume in one 1I/0
request to the device. If the DMA engine has no scatter/gather list, this field should be
set to one.

The dlim_reqgsize field describes the maximum number of bytes that the DMA engine
can transmit or receive in one I/0 command. This limitation is only significant if it is less
than (dlim_ctreg_max +1) Odlim_sgllen. If the DMA engine has no particular limitation,
this field should be set to OXFFFFFFFF.

SEE ALSO ddi_dmae(9F), ddi_dma_addr_setup(9F), ddi_dma_buf_setup(9F),
ddi_dma_devalign(9F), ddi_dma_segtocookie(9F), ddi_dma_setup(9F),
ddi_dma_cookie(9S) ddi_dma_lim_sparc(9S), ddi_dma_req(9S)

9S-30 Sun0S 5.6 modified 31 Jan 1994

Data Structures for Drivers ddi_dma_req(9S)

NAME
SYNOPSIS
INTERFACE

LEVEL
DESCRIPTION

STRUCTURE
MEMBERS

modified 17 May 1994

ddi_dma_req - DMA Request structure
#include <sys/ddidmareq.h>
Solaris DDI specific (Solaris DDI).

A ddi_dma_req structure describes a request for DMA resources. A driver may use it to
describe forms of and ways to allocate DMA resources for a DMA request.

ddi_dma_lim_t Cdmar_limits; /OCaller’s dma engine’s
/Oconstraints [0

u_int dmar_flags; /OContains information for I
/Omapping routines [

int (Cdmar_fp)(caddr_t); /OCallback function [f

caddr_t dmar_arg; /OCallback function’s argument I

ddi_dma_obj_t dmar_object; /ODescription of the object [

/00to be mapped O

For the definition of the DMA limits structure, which dmar_limits points to, see
ddi_dma_lim_sparc(9S) or ddi_dma_lim_x86(9S).

Valid values for dmar_flags are:

DDI_DMA_WRITE /O0Direction memory --> 10 [

DDI_DMA_READ /ODirection 10 --> memory [

DDI_DMA_RDWR /O0Both read and write [

DDI_DMA_REDZONE /OEstablish an MMU redzone at end of mapping
DDI_DMA_PARTIAL /OPartial mapping is allowed O

DDI_DMA_CONSISTENT /OByte consistent access wanted [f
DDI_DMA _SBUS 64BIT /00Use 64 bit capability on SBus [

DDI_DMA_WRITE, DDI_DMA_READ and DDI_DMA_RDWR describe the intended direc-
tion of the DMA transfer. Some implementations may explicitly disallow
DDI_DMA_RDWR.

DDI_DMA_REDZONE asks the system to establish a protected red zone after the object.
The DMA resource allocation functions do not guarantee the success of this request as
some implementations may not have the hardware ability to support it.

DDI_DMA_PARTIAL tells the system that the caller can accept a partial mapping. That is,
if the size of the object exceeds the resources available, only allocate a portion of the
object and return status indicating so. At a later point, the caller can use
ddi_dma_curwin(9F) and ddi_dma_movwin(9F) to change the valid portion of the object
that has resources allocated.

DDI_DMA_CONSISTENT gives a hint to the system that the object should be mapped for
byte consistent access. Normal data transfers usually use a streaming mode of operation.
They start at a specific point, transfer a fairly large amount of data sequentially, and then
stop usually on a aligned boundary. Control mode data transfers for memory resident
device control blocks (for example ethernet message descriptors) do not access memory

SunOS 5.6 9S-31

ddi_dma_req(9S)

9S-32

dmar_object
Structure

Data Structures for Drivers

in such a sequential fashion. Instead, they tend to modify a few words or bytes, move
around and maybe modify a few more. There are many machine implementations that
make this difficult to control in a generic and seamless fashion. Therefore, explicit syn-
chronization steps using ddi_dma_sync(9F) or ddi_dma_free(9F) are required in order to
make the view of a memory object shared between a CPU and a DMA device consistent.
However, proper use of the DDI_DMA_CONSISTENT flag gives a hint to the system so
that it will attempt to pick resources such that these synchronization steps are as efficient
as possible.

DDI_DMA_SBUS_64BIT tells the system that the device can do 64 bit transfers on a 64 bit
SBus. If the SBus does not support 64 bit data transfers, data will be transferred in 32
mode.

The callback function specified by the member dmar_fp indicates how a caller to one of
the DMA resource allocation functions (see ddi_dma_setup(9F)) wants to deal with the
possibility of resources not being available. If dmar_fp is set to DDI_DMA_DONTWAIT,
then the caller does not care if the allocation fails, and can deal with an allocation failure
appropriately. If dmar_fp is set to DDI_DMA_SLEEP, then the caller wishes to have the
the allocation routines wait for resources to become available. If any other value is set,
and a DMA resource allocation fails, this value is assumed to be a function to call at a later
time when resources may become available. When the specified function is called, it is
passed the value set in the structure member dmar_arg. The specified callback function
must return either 0 (indicating that it attempted to allocate a DMA resources but failed to
do so, again), in which case the callback function will be put back on a list to be called
again later, or the callback function must return 1 indicating either success at allocating
DMA resources or that it no longer wishes to retry.

The callback function will be called in interrupt context. Therefore, only system functions
and contexts that are accessible from interrupt context will be available. The callback
function must take whatever steps necessary to protect its critical resources, data struc-
tures, queues, so forth.

Note that it is possible that a call to ddi_dma_free(9F), which frees DMA resources, may
cause a callback function to be called, and unless some care is taken an undesired recur-
sion may occur. Unless care is taken, this may cause an undesired recursive
mutex_enter(9F), which will cause a system panic.

The dmar_object member of the ddi_dma_req structure is itself a complex and extensible
structure:

u_int dmao_size; /Osize, in bytes, of the object

ddi_dma_atyp_t dmao_type; /Otype of object J

ddi_dma_aobj t dmao_obj; /Othe object described [

The dmao_size element is the size, in bytes, of the object resources are allocated for DMA.

The dmao_type element selects the kind of object described by dmao_obj. It may be set
to DMA_OTYP_VADDR indicating virtual addresses.

SunOS 5.6 modified 17 May 1994

Data Structures for Drivers ddi_dma_req(9S)

The last element, dmao_obj, consists of the virtual address type:
struct v_address virt_obj;
It is specified as:
struct v_address {
caddr_tv_addr; /Obase virtual address [
struct as _as; /Opointer to address space [

%

SEE ALSO ddi_dma_addr_setup(9F), ddi_dma_buf_setup(9F), ddi_dma_curwin(9F),
ddi_dma_free(9F), ddi_dma_movwin(9F), ddi_dma_setup(9F), ddi_dma_sync(9F),
mutex(9F)

Writing Device Drivers

modified 17 May 1994 SunOS 5.6 9S-33

ddi_dmae_req(9S)

NAME
SYNOPSIS
INTERFACE

LEVEL
DESCRIPTION

STRUCTURE
MEMBERS

9S-34

Data Structures for Drivers

ddi_dmae_req - DMA engine request structure
#include <sys/dma_engine.h>
Solaris x86 DDI specific (Solaris x86 DDI).

A ddi_dmae_req structure is used by a device driver to describe the parameters for a
DMA channel. This structure contains all the information necessary to set up the chan-
nel, except for the DMA memory address and transfer count. The defaults as specified
below support most standard devices. Other modes may be desirable for some devices,
or to increase performance. The DMA engine request structure is passed to
ddi_dmae_prog(9F).

The ddi_dmae_req structure contains several members, each of which controls some
aspect of DMA engine operation. The structure members associated with supported
DMA engine options are described here.

uchar_t der_command; /ORead / Write I

uchar_t der_bufprocess; /OStandard / Chain [

uchar_t der_path; /a8/16/320

u_short der_ioadr; /OMicroChannel 1/O address [0
uchar_t der_cycles; /OCompat/ Type A/ Type B/ Burst
uchar_t der_trans; /d0Single / Demand / Block O
ddi_dma_cookie_t [{[proc)(); /Oaddress of nextcookie routine [J
void Cprocparms; /Oparameter for nextcookie call O

der_command specifies what DMA operation is to be performed. The value
DMAE_CMD_WRITE signifies that data is to be transferred from
memory to the 1/0 device. The value DMAE_CMD_READ signifies that
data is to be transferred from the 1/0 device to memory. This field must
be set by the driver before calling ddi_dmae_prog().

der_bufprocess On some bus types, a driver may set der_bufprocess to the value
DMAE_BUF_CHAIN to specify that multiple DMA cookies will be given
to the DMA engine for a single 1/0 transfer, thus effecting a
scatter/gather operation. In this mode of operation, the driver calls
ddi_dmae_prog() to give the DMA engine the DMA engine request
structure and a pointer to the first cookie. The proc structure member
must be set to the address of a driver nextcookie routine that takes one
argument, specified by the procparms structure member, and returns a
pointer to a structure of type ddi_dma_cookie_t that specifies the next
cookie for the 170 transfer. When the DMA engine is ready to receive
an additional cookie, the bus nexus driver controlling that DMA engine
calls the routine specified by the proc structure member to obtain the
next cookie from the driver. The driver’s nextcookie routine must then
return the address of the next cookie (in static storage) to the bus nexus
routine that called it. If there are no more segments in the current DMA

Sun0S 5.6 modified 1 Jan 1997

Data Structures for Drivers

modified 1 Jan 1997

ddi_dmae_req(9S)

window, then (Cproc)() must return the NULL pointer.

A driver may only specify the DMAE_BUF_CHAIN flag if the particular
bus architecture supports the use of multiple DMA cookies in a single
170 transfer. A bus DMA engine may support this feature either with a
fixed-length scatter/gather list, or via an interrupt chaining feature such
as the one implemented in the EISA architecture. A driver must ascer-
tain whether its parent bus nexus supports this feature by examining the
scatter/gather list size returned in the dlim_sgllen member of the DMA
limit structure (see ddi_dma_lim_x86(9S)) returned by the driver’s call
to ddi_dmae_getlim(). If the size of the scatter/gather list is 1, then no
chaining is available, the driver must not specify the DMAE_BUF_CHAIN
flag in the ddi_dmae_req structure it passes to ddi_dmae_prog(), and
the driver need not provide a nextcookie routine.

If the size of the scatter/gather list is greater than 1, then DMA chaining
is available, and the driver has two options. Under the first option, the
driver chooses not to use the chaining feature, in which case (a) the
driver must set the size of the scatter/gather list to 1 before passing it to
the DMA setup routine, and (b) the driver must not set the
DMAE_BUF_CHAIN flag.

Under the second option, the driver chooses to use the chaining feature,
in which case (a) it should leave the size of the scatter/gather list alone,
and (b) it must set the DMAE_BUF_CHAIN flag in the ddi_dmae_req
structure. Before calling ddi_dmae_prog() the driver must prefetch
cookies by repeatedly calling ddi_dma_nextseg(9F) and
ddi_dma_segtocookie(9F) until either (1) the end of the DMA window
is reached (ddi_dma_nextseg(9F) returns NULL), or (2) the size of the
scatter/gather list is reached, whichever occurs first. These cookies
must be saved by the driver until they are requested by the nexus driver
calling the driver’s nextcookie routine. The driver’s nextcookie routine
must return the prefetched cookies, in order, one cookie for each call to
the nextcookie routine, until the list of prefetched cookies is exhausted.
After the end of the list of cookies is reached, the nextcookie routine
must return the NULL pointer.

The size of the scatter/gather list determines how many discontiguous
segments of physical memory may participate in a single DMA transfer.
ISA and MCA bus DMA engines have no scatter/gather capability, so
their scatter/gather list sizes are 1. EISA bus DMA engines have a DMA
chaining interrupt facility that allows very large scatter/gather opera-
tions. Other finite scatter/gather list sizes would also be possible. For
performance reasons, it is recommended that drivers use the chaining
capability if it is available on their parent bus.

As described above, a driver making use of DMA chaining must pre-
fetch DMA cookies before calling ddi_dmae_prog(). There are two

SunOS 5.6 9S-35

ddi_dmae_req(9S)

9S-36

der_path

der_ioadr

der_cycles

Data Structures for Drivers

reasons why the driver must do this. First, the driver must have some
way to know the total 1/0 count with which to program the 1/0 device.
This I/0 count must match the total size of all the DMA segments that
will be chained together into one DMA operation. Depending on the
size of the scatter/gather list and the memory position and alignment of
the DMA object, all or just part of the current DMA window may be
able to participate in a single 1/0 operation. The driver must compute
the 1/0 count by adding up the sizes of the prefetched DMA cookies.
The number of cookies whose sizes are to be summed is the lesser of (a)
the size of the scatter/gather list, or (b) the number of segments remain-
ing in the window. Second, on some bus architectures, the driver’s
nextcookie routine may be called from a high-level interrupt routine. If
the cookies were not prefetched, the nextcookie routine would have to
call ddi_dma_nextseg() and ddi_dma_segtocookie() from a high-level
interrupt routine, which is not recommended.

When breaking a DMA window into segments, the system arranges that
the end of every segment whose number is an integral multiple of the
scatter/gather list size will fall on a device-granularity boundary (as
specified in the dlim_granular field in the ddi_dma_lim_x86(9S) struc-
ture).

If the scatter/gather list size is 1 (either because no chaining is available
or because the driver does not wish to use the chaining feature), then the
total 170 count for a single DMA operation is simply the size of DMA
segment denoted by the single DMA cookie that is passed in the call to
ddi_dmae_prog() . In this case, the system arranges that each DMA seg-
ment is a multiple of the device-granularity size.

specifies the DMA transfer size. The default of zero (DMAE_PATH_DEF)
specifies ISA compatibility mode. In that mode, channels0, 1, 2, and 3
are programmed in 8-bit mode (DMAE_PATH_8), and channels 5, 6, and
7 are programmed in 16-bit, count-by-word mode (DMAE_PATH_16).
On the EISA bus, other sizes may be specified: DMAE_PATH_32 specifies
32-bit mode, and DMAE_PATH_16B specifies a 16-bit, count-by-byte
mode. MCA channel 4 must be explicitly programmed with
DMAE_PATH_8 or DMAE_PATH_16.

only applicable to devices using MicroChannel DMA services, and if
non-zero, specifies the MicroChannel DMA 1/0 address register value.
This register causes the MicroChannel DMA controller to present the
1/0 address on the bus during DMA cycles; thus a DMA slave device
can be made to respond to the 1/0 request by decoding the address and
control buses rather than the bus arbitration level. Set der_ioadr to the
1/0 address of the device being accessed through DMA if the device
operates in this way.

specifies the timing mode to be used during DMA data transfers. The
default of zero (DMAE_CYCLES_1) specifies ISA compatible timing.

Sun0S 5.6 modified 1 Jan 1997

Data Structures for Drivers

ATTRIBUTES

SEE ALSO

modified 1 Jan 1997

der_trans

ddi_dmae_req(9S)

Drivers using this mode must also specify DMAE_TRANS_SNGL in the
der_trans structure member. On EISA buses, these other timing modes
are available:

DMAE_CYCLES 2 specifies type “A’ timing;
DMAE_CYCLES_3 specifies type ““B” timing;
DMAE_CYCLES 4 specifies “Burst” timing.

specifies the bus transfer mode that the DMA engine should expect from
the device. The default value of zero (DMAE_TRANS_SNGL) specifies
that the device will perform one transfer for each bus arbitration cycle.
Devices that use ISA compatible timing (specified by a value of zero,
which is the default, in the der_cycles structure member) should use the
DMAE_TRANS_SNGL mode.

On EISA buses, a der_trans value of DMAE_TRANS_BLCK specifies that
the device will perform a block of transfers for each arbitration cycle. A
value of DMAE_TRANS_DMND specifies that the device will perform
the Demand Transfer Mode protocol.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE | ATTRIBUTE VALUE

Architecture

x86

eisa(4), isa(4), mca(4), attributes(5), ddi_dma_segtocookie(9F), ddi_dmae(9F),
ddi_dma_lim_x86(9S), ddi_dma_req(9S)

SunOS 5.6 9S-37

ddi_idevice_cookie (9S)

NAME

SYNOPSIS

INTERFACE
LEVEL
DESCRIPTION

STRUCTURE
MEMBERS

SEE ALSO

9S-38

Data Structures for Drivers

ddi_idevice _cookie — device interrupt cookie

#include <sys/ddi.h>
#include <sys/sunddi.h>

Solaris DDI specific (Solaris DDI).

The ddi_idevice_cookie_t structure contains interrupt priority and interrupt vector infor-
mation for a device. This structure is useful for devices having programmable bus-
interrupt levels. ddi_add_intr(9F) assigns values to the ddi_idevice_cookie_t structure
members.

u_short idev_vector; /Uinterrupt vector [/
u_short idev_priority; /Ointerrupt priority [/

The idev_vector field contains the interrupt vector number for vectored bus architectures
such as VMEbus. The idev_priority field contains the bus interrupt priority level.

vme(4), ddi_add_intr(9F)
Wrkiting Device Drivers

SunOS 5.6 modified 13 Sep 1994

Data Structures for Drivers ddi_mapdev_ctl (9S)

NAME

SYNOPSIS

INTERFACE
LEVEL

DESCRIPTION

STRUCTURE
MEMBERS

SEE ALSO

modified 14 Jan 1997

ddi_mapdev_ctl — device mapping-control structure

#include <sys/conf.h>
#include <sys/devops.h>

Solaris DDI specific (Solaris DDI).

Future releases of Solaris will provide this structure for binary and source compatibility.
However, for increased functionality, use devmap_callback_ctl(9S) instead. See
devmap_callback_ctl(9S) for details.

A ddi_mapdev_ctl structure describes a set of routines that allow a device driver to
manage events on mappings of the device created by ddi_mapdev(9F).

See mapdev_access(9E), mapdev_dup(9E), and mapdev_free(9E) for more details on
these entry points.

int mapdev_rev;

int (Omapdev_access)(ddi_mapdev_handle_t handle, void [devprivate,
off_t offset);

void (Omapdev_free)(ddi_mapdev_handle_t handle, void [devprivate);

int (Omapdev_dup)(ddi_mapdev_handle_t handle, void [devprivate,
ddi_mapdev_handle_t new_handle, void [Thew_devprivate);

A device driver should allocate the device mapping control structure and initialize the
following fields:

mapdev_rev Must be set to MAPDEV_REV.

mapdev_access Must be set to the address of the mapdev_access(9E) entry point.
mapdev_free Must be set to the address of the mapdev_free(9E) entry point.
mapdev_dup Must be set to the address of the mapdev_dup(9E) entry point.

exit(2), fork(2), mmap(2), munmap(2), mapdev_access(9E), mapdev_dup(9E),
mapdev_free(9E), segmap(9E), ddi_mapdev(9F), ddi_mapdev_intercept(9F),
ddi_mapdev_nointercept(9F)

Writing Device Drivers

SunOS 5.6 9S-39

dev_ops(9S)

NAME

SYNOPSIS

INTERFACE
LEVEL
DESCRIPTION

STRUCTURE
MEMBERS

SEE ALSO

9S-40

Data Structures for Drivers

dev_ops — device operations structure

#include <sys/conf.h>
#include <sys/devops.h>

Solaris DDI specific (Solaris DDI).

dev_ops contains driver common fields and pointers to the bus_ops and/or cb_ops(9S).

Following are the device functions provided in the device operations structure. All fields
must be set at compile time.

devo_rev
devo_refcnt
devo_getinfo
devo_identify
devo_probe
devo_attach
devo_detach
devo_reset
devo_cb_ops
devo_bus_ops

int
int
int

int

int

int

int

int

struct cb_ops
struct bus_ops

Driver build version. Set this to DEVO_REV.

Driver reference count. Set this to 0.

Get device driver information (see getinfo(9E)).

Determine if a driver is associated with a device (see identify(9E)).
Probe device (see probe(9E)).

Attach driver to dev_info (see attach(9E)).

Detach/prepare driver to unload (see detach(9E)).

Reset device. (Not supported in this release.) Set this to nodev.
Pointer to cb_ops(9S) structure for leaf drivers.

Pointer to bus operations structure for nexus drivers. Set this to
NULL if this is for a leaf driver.

devo rev;

devo_refcnt;

(Cevo_getinfo)(dev_info_t [dip,

ddi_info_cmd_t infocmd, void [arg, void [Ttesult);
(Cevo_identify)(dev_info_t Cdip);
(Cdevo_probe)(dev_info_t [dip);
(Cdevo_attach)(dev_info_t [(Mip, ddi_attach_cmd_t cmd);
(Cdevo_detach)(dev_info_t [dip, ddi_detach_cmd_t cmd);
(Cdevo_reset)(dev_info_t [(dip, ddi_reset_cmd_t cmd);
[devo_cb_ops;

[devo_bus_ops;

attach(9E), detach(9E), getinfo(9E), identify(9E), probe(9E), nodev(9F)
Writing Device Drivers

Sun0S 5.6 modified 30 Oct 1995

Data Structures for Drivers devmap_callback ctl (9S)

NAME

SYNOPSIS

INTERFACE
LEVEL

DESCRIPTION

STRUCTURE
MEMBERS

modified 24 Jul 1996

devmap_callback_ctl — device mapping-control structure
#include <sys/ddidevmap.h>

Solaris DDI specific (Solaris DDI).

A devmap_callback_ctl structure describes a set of callback routines that are called by
the system to notify a device driver to manage events on the device mappings created by
devmap_setup(9F) or ddi_devmap_segmap(9F).

Device drivers pass the initialized devmap_callback_ctl structure to either
devmap_devmem_setup(9F) or devmap_umem_setup(9F) in the devmap(9E) entry
point during the mapping setup. The system will make a private copy of the structure
for later use. Device drivers may specify different devmap_callback_ctl for different
mappings.

A device driver should allocate the device mapping control structure and initialize the
following fields if the driver wants the entry points to be called by the system:

devmap_rev Version number. Set this to DEVMAP_OPS_REV.

devmap_map Set to the address of the devmap_map(9E) entry point or to NULL
if the driver does not support this callback. If set, the system will
call the devmap_map(9E) entry point during the mmap(2) system
call. The drivers typically allocate driver private data structure in
this function and return the pointer to the private data structure to
the system for later use.

devmap_access Set to the address of the devmap_access(9E) entry point or to
NULL if the driver does not support this callback. If set, the system
will call the driver’'s devmap_access(9E) entry point during
memory access. The system expects devmap_access(9E) to call
either devmap_do_ctxmgt(9F) or devmap_default_access(9F) to
load the memory address translations before it returns to the sys-
tem.

devmap_dup Set to the address of the devmap_dup(9E) entry point or to NULL
if the driver does not support this call. If set, the system will call
the devmap_dup(9E) entry point during the fork(2) system call.

devmap_unmap Set to the address of the devmap_unmap(9E) entry point or to
NULL if the driver does not support this call. If set, the system will
call the devmap_unmap(9E) entry point during the munmap(2) or
exit(2) system calls.

int devmap_rev;

int (Cdevmap_map)(devmap_cookie_t dhp, dev_t dev, u_int flags,
offset_t off, size_t len, void [(Tpvtp);

int (Cdevmap_access)(devmap_cookie_t dhp, void [pvtp, offset_t off,
size_t len, u_int type, u_int rw);

SunOS 5.6 9S-41

devmap_callback ctl (9S) Data Structures for Drivers

9S-42

SEE ALSO

int (Cdevmap_dup)(devmap_cookie_t dhp, void Cpvtp,
devmap_cookie_t new_dhp, void [Thew_pvtp);

void (Cdevmap_unmap)(devmap_cookie_t dhp, void [pvtp, offset_t off,
size_t len, devmap_cookie_t new_dhpl, void [(Thew_pvtpl,
devmap_cookie_t new_dhp2, void [(Thew_pvtp2);

exit(2), fork(2), mmap(2), munmap(2), devmap(9E), devmap_access(9E),
devmap_dup(9E), devmap_map(9E), devmap_unmap(9E), ddi_devmap_segmap(9F),
devmap_default_access(9F), devmap_devmem_setup(9F), devmap_do_ctxmgt(9F),
devmap_setup(9F), devmap_umem_setup(9F)

Writing Device Drivers

Sun0S 5.6 modified 24 Jul 1996

Data Structures for Drivers fmodsw (9S)

NAME fmodsw — STREAMS module declaration structure

SYNOPSIS | #include <sys/stream.h>
#include <sys/conf.h>

INTERFACE Solaris DDI specific (Solaris DDI)

LEVEL

DESCRIPTION The fmodsw structure contains information for STREAMS modules. All STREAMS
modules must define a fmodsw structure.

f_name must match mi_idname in the module_info structure (see module_info(9S)).

All modules must set the f_flag to D_MP to indicate that they safely allow multiple
threads of execution. See mt-streams(9F) for additional flags.

STRUCTURE | char f_name[FMNAMESZ + 1]; /O0module name [
MEMBERS struct streamtab [T _str; /Ostreams information O
int f_flag; /Oflags O

SEE ALSO mt-streams(9F), modIstrmod(9S), module_info(9S)
STREAMS Programming Guide

modified 23 Feb 1994 SunOS 5.6 9S-43

free_rtn(9S)

NAME
SYNOPSIS
INTERFACE

LEVEL
DESCRIPTION

STRUCTURE
MEMBERS

SEE ALSO

9S-44

Data Structures for Drivers

free_rtn — structure that specifies a driver’s message freeing routine
#include <sys/stream.h>
Architecture independent level 1 (DDI/DKI).

The free_rtn structure is referenced by the datab structure. When freeb(9F) is called to
free the message, the driver’s message freeing routine (referenced through the free_rtn
structure) is called, with arguments, to free the data buffer.

void ((dree_func)() /Ouser’s freeing routine [
char [free_arg /Oarguments to free_func() 0

The free_rtn structure is defined as type frtn_t.

esballoc(9F), freeb(9F), datab(9S)
STREAMS Programming Guide

Sun0S 5.6 modified 13 Nov 1996

Data Structures for Drivers iocblk (9S)

NAME iocblk — STREAMS data structure for the M_IOCTL message type
SYNOPSIS | #include <sys/stream.h>
INTERFACE | Architecture independent level 1 (DDI/DKI).

LEVEL
DESCRIPTION The iocblk data structure is used for passing M_IOCTL messages.

STRUCTURE int ioc_cmd; /Qioctl command type OO
MEMBERS cred_t Ooc cr; /Ofull credentials OO
uint ioc_id; /Qioctl id O
uint ioc_flag; /Qioctl flags O
uint ioc_count; /Ocount of bytes in data field O
int ioc_rval; /Oreturn value O
int ioc_error; /Oerror code I

SEE ALSO STREAMS Programming Guide

modified 13 Nov 1996 Sun0S 5.6 9S-45

iovec (9S)

NAME
SYNOPSIS
INTERFACE

LEVEL
DESCRIPTION

STRUCTURE
MEMBERS

SEE ALSO

9S-46

Data Structures for Drivers

iovec — data storage structure for I/0 using uio
#include <sys/uio.h>
Architecture independent level 1 (DDI/DKI).

An iovec structure describes a data storage area for transfer in a uio(9S) structure. Con-
ceptually, it may be thought of as a base address and length specification.

caddr_t iov_base; /Obase address of the data storage area [I
/Orepresented by the iovec structure OO
int iov_len; /Osize of the data storage area in bytes [

uio(9S)
Writing Device Drivers

SunOS 5.6 modified 11 Apr 1991

Data Structures for Drivers kstat (9S)

NAME

SYNOPSIS

INTERFACE

LEVEL
DESCRIPTION

STRUCTURE
MEMBERS

modified 4 Apr 1994

kstat — kernel statistics structure

#include <sys/types.h>
#include <sys/kstat.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

Solaris DDI specific (Solaris DDI)

Each kernel statistic (kstat) exported by device drivers consists of a header section and a
data section. The kstat structure is the header portion of the statistic.

A driver receives a pointer to a kstat structure from a successful call to kstat_create(9F).
Drivers should never allocate a kstat structure in any other manner.

After allocation, the driver should perform any further initialization needed before cal-
ling kstat_install(9F) to actually export the kstat.

void [ks_data; /Okstat type-specific data

ulong_t ks _ndata; /0# of type-specific data records [J

ulong_t ks _data_size; /Ototal size of kstat data section [

int (Cks_update)(struct kstat [int);

void [ks_private; /Oarbitrary provider-private data [1

void [ks_lock; /Oprotects this kstat’s data [J

The members of the kstat structure available to examine or set by a driver are as follows:

ks _data points to the data portion of the kstat. Either allocated by
kstat_create(9F) for the drivers use, or by the driver if it is using virtual
kstats.

ks_ndata is the number of data records in this kstat. Set by the ks_update(9E) rou-
tine.

ks data_size is the amount of data pointed to by ks_data. Set by the ks_update(9E)
routine.

ks_update is a pointer to a routine which dynamically updates kstats. This is useful

for drivers where the underlying device keeps cheap hardware stats, but
extraction is expensive. Instead of constantly keeping the kstat data sec-
tion up to date, the driver can supply a ks_update(9E) function which
updates the kstat’s data section on demand. To take advantage of this
feature, set the ks_update field before calling kstat_install(9F).

ks_private is a private field for the driver’s use. Often used in ks_update(9E).

ks_lock is a pointer to a mutex that protects this kstat. kstat data sections are
optionally protected by the per-kstat ks_lock. If ks_lock is non-NULL,
kstat clients (such as /dev/kstat) will acquire this lock for all of their
operations on that kstat. It is up to the kstat provider to decide whether
guaranteeing consistent data to kstat clients is sufficiently important to

SunOS 5.6 9S-47

kstat (9S) Data Structures for Drivers

justify the locking cost. Note, however, that most statistic updates
already occur under one of the provider’s mutexes, so if the provider
sets ks_lock to point to that mutex, then kstat data locking is free.
ks_lock is really of type (kmutex_t 0J; it is declared as (void 0) in the

kstat header so that users don’t have to be exposed to all of the kernel’s
lock-related data structures.

SEE ALSO kstat_create(9F)

Writing Device Drivers

9S-48 SunOS 5.6 modified 4 Apr 1994

Data Structures for Drivers kstat_intr (9S)

NAME

SYNOPSIS

INTERFACE

LEVEL
DESCRIPTION

STRUCTURE
MEMBERS

SEE ALSO

modified 4 Apr 1994

kstat_intr — structure for interrupt kstats

#include <sys/types.h>
#include <sys/kstat.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

Solaris DDI specific (Solaris DDI)

Interrupt statistics are kept in the kstat_intr structure. When kstat_create(9F) creates an
interrupt kstat, the ks_data field is a pointer to one of these structures. The macro
KSTAT_INTR_PTR() is provided to retrieve this field. It looks like this:

#define KSTAT_INTR_PTR(kptr) ((kstat_intr_t O(kptr)->ks_data)

An interrupt is a hard interrupt (sourced from the hardware device itself), a soft interrupt
(induced by the system via the use of some system interrupt source), a watchdog inter-
rupt (induced by a periodic timer call), spurious (an interrupt entry point was entered
but there was no interrupt to service), or multiple service (an interrupt was detected and
serviced just prior to returning from any of the other types).

Drivers generally only report claimed hard interrupts and soft interrupts from their
handlers, but measurement of the spurious class of interrupts is useful for autovectored
devices in order to pinpoint any interrupt latency problems in a particular system
configuration.

Devices that have more than one interrupt of the same type should use multiple struc-
tures.

ulong_t intrs[KSTAT_NUM_INTRS]; /Ointerrupt counters O

The only member exposed to drivers is the intrs member. This field is an array of
counters; the driver must use the appropriate counter in the array based on the type of
interrupt condition. The following indexes are supported:

KSTAT_INTR_HARD hard interrupt

KSTAT_INTR_SOFT soft interrupt

KSTAT_INTR_WATCHDOG watchdog interrupt

KSTAT_INTR_SPURIOUS spurious interrupt

KSTAT_INTR_MULTSVC multiple service interrupt
kstat(9S)

Wrkiting Device Drivers

SunOS 5.6 9S-49

kstat_i0(9S)

NAME

SYNOPSIS

INTERFACE
LEVEL
DESCRIPTION

STRUCTURE
MEMBERS

SEE ALSO

9S-50

Data Structures for Drivers

kstat_io - structure for 1/0 kstats

#include <sys/types.h>
#include <sys/kstat.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

Solaris DDI specific (Solaris DDI)

I/0 kstat statistics are kept in a kstat_io structure. When kstat_create(9F) creates an 1/0
kstat, the ks_data field is a pointer to one of these structures. The macro KSTAT_IO_PTR()
is provided to retrieve this field. It looks like this:

#define KSTAT_IO_PTR(kptr) ((kstat_io_t O)(kptr)->ks_data)

u_longlong_t nread; /Onumber of bytes read [
u_longlong_t nwritten; /Onumber of bytes written [J
ulong_t reads; /Onumber of read operations [J
ulong_t writes; /Onumber of write operations [

The nread field should be updated by the driver with the number of bytes successfully
read upon completion.

The nwritten field should be updated by the driver with the number of bytes successfully
written upon completion.

The reads field should be updated by the driver after each successful read operation.
The writes field should be updated by the driver after each successful write operation
Other 1/0 statistics are updated through the use of the kstat_queue(9F) functions.

kstat_create(9F), kstat_named_init(9F), kstat_queue(9F),
kstat_runq_back to waitq(9F), kstat_runq_enter(9F), kstat_rung_exit(9F),
kstat_waitq_enter(9F), kstat_waitq_exit(9F), kstat_waitg_to_runq(9F)

Writing Device Drivers

SunOS 5.6 modified 4 Apr 1994

Data Structures for Drivers kstat_named (9S)

NAME kstat_named - structure for named kstats

SYNOPSIS | #include <sys/types.h>
#include <sys/kstat.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

INTERFACE Solaris DDI specific (Solaris DDI)
LEVEL
DESCRIPTION Named kstats are an array of name-value pairs. These pairs are kept in the kstat_named
structure. When a kstat is created by kstat_create(9F), the driver specifies how many of
these structures will be allocated. They are returned as an array pointed to by the

ks_data field.
STRUCTURE union {

MEMBERS char c[16];
long I
ulong_t ul;
longlong_t Il;
u_longlong_t ull;

}value; /Ovalue of counter [J

The only member exposed to drivers is the value member. This field is a union of several
data types. The driver must specify which type it will use in the call to
kstat_named_init().

SEE ALSO | kstat_create(9F), kstat_named_init(9F)

Writing Device Drivers

modified 4 Apr 1994 SunOS 5.6 9S-51

linkblk (9S)

NAME
SYNOPSIS
INTERFACE

LEVEL
DESCRIPTION

STRUCTURE
MEMBERS

SEE ALSO

9S-52

Data Structures for Drivers

linkblk — STREAMS data structure sent to multiplexor drivers to indicate a link
#include <sys/stream.h>
Architecture independent level 1 (DDI/DKI).

The linkblk structure is used to connect a lower Stream to an upper STREAMS multi-
plexor driver. This structure is used in conjunction with the I_LINK, I_UNLINK, P_LINK,
and P_UNLINK ioctl commands (see streamio(71)). The M_DATA portion of the M_IOCTL
message contains the linkblk structure. Note that the linkblk structure is allocated and
initialized by the Stream head as a result of one of the above ioctl commands.

queue_t [_qtop; /Olowest level write queue of upper stream [/

/0(set to NULL for persistent links) [/
queue_t [_qgbot; /0highest level write queue of lower stream [/
int |_index; /0index for lower stream. [/

ioctl(2), streamio(71)
STREAMS Programming Guide

Sun0S 5.6 modified 7 Jul 1994

Data Structures for Drivers modlIdrv (9S)

NAME
SYNOPSIS
INTERFACE

LEVEL
DESCRIPTION

STRUCTURE
MEMBERS

SEE ALSO

modified 7 Jun 1993

modldrv - linkage structure for loadable drivers
#include <sys/modctl.h>
Solaris DDI specific (Solaris DDI)

The modldrv structure is used by device drivers to export driver specific information to
the kernel.

struct mod_ops [Cdrv_modops;

char Cdrv_linkinfo;

struct dev_ops Cdrv_dev_ops;

drv_modops Must always be initialized to the address of mod_driverops. This
identifies the module as a loadable driver.

drv_linkinfo Can be any string up to MODMAXNAMELEN, and is used to

describe the module. This is usually the name of the driver, but
can contain other information (such as a version number).

drv_dev_ops Pointer to the driver’s dev_ops(9S) structure.

add_drv(1M), dev_ops(9S), modlinkage(9S)
Wkiting Device Drivers

SunOS 5.6 9S-53

modlinkage (9S)

NAME
SYNOPSIS
INTERFACE

LEVEL
DESCRIPTION

STRUCTURE
MEMBERS

SEE ALSO

9S-54

Data Structures for Drivers

modlinkage — module linkage structure
#include <sys/modctl.h>
Solaris DDI specific (Solaris DDI)

The modlinkage structure is provided by the module writer to the routines which install,
remove, and retrieve information from a module. See _init(9E), _fini(9E), and _info(9E).

int ml_rev

void [Oml_linkage[4];

ml_rev Is the revision of the loadable modules system. This must have the
value MODREV 1.

ml_linkage Is a null terminated array of pointers to linkage structures. For driver

modaules there is only one linkage structure.

add_drv(1M), fini(9E), _info(9E), _init(9E), modldrv(9S), modlstrmod(9S)
Wkiting Device Drivers

SunOS 5.6 modified 18 Sep 1992

Data Structures for Drivers modiIstrmod (9S)

NAME
SYNOPSIS
INTERFACE

LEVEL
DESCRIPTION

STRUCTURE
MEMBERS

SEE ALSO

modified 7 Jun 1993

modlIstrmod - linkage structure for loadable STREAMS modules
#include <sys/modctl.h>
Solaris DDI specific (Solaris DDI)

The modlstrmod structure is used by STREAMS modules to export module specific
information to the kernel.

struct mod_ops [strmod_modops;

char Cstrmod_linkinfo;

struct fmodsw Cstrmod_fmodsw;

strmod_modops Must always be initialized to the address of mod_strmodops. This
identifies the module as a loadable STREAMS module.

strmod_linkinfo Can be any string up to MODMAXNAMELEN, and is used to

describe the module. This is usually the name of the module, but
can contain other information (such as a version number).

strmod_fmodsw Is a pointer to a template of a class entry within the module that is
copied to the kernel’s class table when the module is loaded.

modload(1M)
Wkiting Device Drivers

SunOS 5.6 9S-55

module_info (9S) Data Structures for Drivers

NAME module_info — STREAMS driver identification and limit value structure
SYNOPSIS | #include <sys/stream.h>

INTERFACE | Architecture independent level 1 (DDI/DKI).

LEVEL

DESCRIPTION When a module or driver is declared, several identification and limit values can be set.
These values are stored in the module_info structure.

The module_info structure is intended to be read-only. However, the flow control limits
(mi_hiwat and mi_lowat) and the packet size limits (mi_minpsz and mi_maxpsz) are
copied to the QUEUE structure, where they may be modified.

STRUCTURE | ushort mi_idnum; /Omodule 1D number [0
MEMBERS | char Cmi_idname; /Omodule name [0

ssize_t mi_minpsz; /Ominimum packet size [J

ssize_t mi_maxpsz; /Omaximum packet size [J

size_t mi_hiwat; /Ohigh water mark [J

size_t mi_lowat; /Olow water mark [J

The constant FMNAMESZ, limiting the length of a module’s name, is set to eight in this
release.

SEE ALSO queue(9S)
STREAMS Programming Guide

9S-56 Sun0S 5.6 modified 14 Nov 1996

Data Structures for Drivers msgb (9S)

NAME
SYNOPSIS
INTERFACE

LEVEL
DESCRIPTION

STRUCTURE
MEMBERS

SEE ALSO

modified 11 Apr 1991

msgb — STREAMS message block structure
#include <sys/stream.h>
Architecture independent level 1 (DDI/DKI).

A STREAMS message is made up of one or more message blocks, referenced by a pointer
to a msgb structure. The b_next and b_prev pointers are used to link messages together

on a QUEUE. The b_cont pointer links message blocks together when a message is com-

posed of more than one block.

Each msgb structure also includes a pointer to a datab(9S) structure, the data block
(which contains pointers to the actual data of the message), and the type of the message.

struct msgb [(b_next; /Onext message on queue [
struct msgb [(b_prev; /Oprevious message on queue [
struct msgb [b_cont; /Onext message block [

unsigned char [b_rptr; /01st unread data byte of buffer [0
unsigned char [b_wptr; /O1st unwritten data byte of buffer [J
struct datab [b_datap; /Opointer to data block [1

unsigned char b_band; /Omessage priority

unsigned short b _flag; /Oused by stream head [

Valid flags are as follows:
MSGMARK last byte of message is "marked".
MSGDELIM message is delimited.

The msgb structure is defined as type mblk t.

datab(9S)
Wkiting Device Drivers
STREAMS Programming Guide

SunOS 5.6 9S-57

gband (9S)

NAME
SYNOPSIS

INTERFACE
LEVEL
DESCRIPTION

STRUCTURE
MEMBERS

SEE ALSO

NOTES

9S-58

Data Structures for Drivers

gband — STREAMS queue flow control information structure
#include <sys/stream.h>
Architecture independent level 1 (DDI/DKI).

The gband structure contains flow control information for each priority band in a queue.
The gband structure is defined as type gband _t.

struct gband [gb_next; /Onext band’s info

size_t gb_count /Onumber of bytes in band OJ
struct msgb [gb_first; /Ostart of band’s data [J
struct msgb [gb_last; /Oend of band’s data [J

size_t gb_hiwat; /Oband’s high water mark [
size_t gb_lowat; /Oband’s low water mark [
uint qgb_flag; /Osee below [0

Valid flags are as follows:
QB_FULL Band is considered full.
QB_WANTW Someone wants to write to band.

strgget(9F), strgset(9F), msgb(9S), queue(9S)

STREAMS Programming Guide

All access to this structure should be through strqget(9F) and strgset(9F). It is logically
part of the queue(9S) and its layout and partitioning with respect to that structure may

change in future releases. If portability is a concern, do not declare or store instances of
or references to this structure.

Sun0S 5.6 modified 14 Nov 1996

Data Structures for Drivers ginit(9S)

NAME ginit - STREAMS queue processing procedures structure
SYNOPSIS | #include <sys/stream.h>

INTERFACE | Architecture independent level 1 (DDI/DKI).
LEVEL
DESCRIPTION The ginit structure contains pointers to processing procedures for a QUEUE. The
streamtab structure for the module or driver contains pointers to one queue(9S) struc-
ture for both upstream and downstream processing.

STRUCTURE | int (Qi_putp)(); /Oput procedure I
MEMBERS | int (Ti_srvp)(); /Oservice procedure [
int (Chi_gopen)(); /Topen procedure 1
int (Chi_gclose)(); /Oclose procedure O
int (fgi_gadmin)(); /Ounused O
struct module_info [hi_minfo; /O0module parameters [
struct module_stat [hji_mstat; /Omodule statistics O

SEE ALSO queue(9S), streamtab(9S)
Writing Device Drivers
STREAMS Programming Guide

NOTES | This release includes no support for module statistics.

modified 11 Apr 1991 SunOS 5.6 9S-59

gueclass (9S)

NAME

SYNOPSIS

INTERFACE

LEVEL
DESCRIPTION

SEE ALSO

9S-60

Data Structures for Drivers

gueclass —a STREAMS macro that returns the queue message class definitions for a given
message block

#include <sys/stream.h>
queclass(mblk_t [bp);

Solaris DDI specific (Solaris DDI).

queclass returns the queue message class definition for a given data block pointed to by
the message block bp passed in.

The message may either be QNORM, a normal priority, or QPCTL, a high priority, mes-
sage.

STREAMS Programming Guide

Sun0S 5.6 modified 07 Mar 1994

Data Structures for Drivers gueue (9S)

NAME
SYNOPSIS
INTERFACE

LEVEL
DESCRIPTION

STRUCTURE
MEMBERS

SEE ALSO

modified 12 Nov 1996

queue — STREAMS queue structure
#include <sys/stream.h>
Architecture independent level 1 (DDI/DKI).

A STREAMS driver or module consists of two queue structures, one for upstream pro-
cessing (read) and one for downstream processing (write). This structure is the major
building block of a stream. It contains pointers to the processing procedures, pointers to
the next and previous queues in the stream, flow control parameters, and a pointer
defining the position of its messages on the STREAMS scheduler list.

The queue structure is defined as type queue_t.

struct ginit [g_qginfo; /Omodule or driver entry points [J

struct msgb [g_first; /Ofirst message in queue

struct msgb [g_last; /Olast message in queue [J

struct queue [_nhext; /Onext queue in stream [

struct queue [g_link; /00to next queue for scheduling

void Cg_ptr; /Opointer to private data structure [1
size t g_count; /Oapproximate size of message queue [J
uint q_flag; /Ostatus of queue O

ssize t q_minpsz; /Osmallest packet accepted by QUEUE [
ssize t q_maxpsz; /Olargest packet accepted by QUEUE [0
size_t d_hiwat; /Ohigh water mark [

size_t g_lowat; /Olow water mark I

Valid flags are as follows:

QENAB Queue is already enabled to run.
QWANTR Someone wants to read queue.
QWANTW Someone wants to write to queue.
QFULL Queue is considered full.
QREADR This is the reader (first) queue.
QUSE This queue in use (allocation).
QNOENB Do not enable queue via putq.

strgget(9F), strgset(9F), module_info(9S), msgb(9S), qinit(9S), streamtab(9S)
Writing Device Drivers
STREAMS Programming Guide

SunOS 5.6 9S-61

scsi_address (9S)

NAME
SYNOPSIS
INTERFACE

LEVEL
DESCRIPTION

STRUCTURE
MEMBERS

SEE ALSO

9S-62

Data Structures for Drivers

scsi_address — SCSI address structure
#include <sys/scsi/scsi.h>
Solaris architecture specific (Solaris DDI).

A scsi_address structure defines the addressing components for SCSI target device. The
address of the target device is separated into two components: target number and logical
unit number. The two addressing components are used to uniquely identify any type of
SCSI device; however, most devices can be addressed with the target component of the
address. In the case where only the target component is used to address the device, the
logical unit should be set to 0. If the SCSI target device supports logical units, then the
HBA must interpret the logical units field of the data structure.

The pkt_address member of a scsi_pkt(9S) is initialized by scsi_init_pkt(9F).

scsi_hba tran_t [aA _hba tran; /OTransport vectors for the SCSI bus [1
u_short a_target; /OSCSI target id O
u_char a_lun; /OSCSI logical unit

a_hba_tran is a pointer to the controlling HBA'’s transport vector structure. The SCSA
interface uses this field to pass any transport requests from the SCSI target device drivers
to the HBA driver.

a_target is the target component of the SCSI address.

a_lun is the logical unit component of the SCSI address. The logical unit is used to
further distinguish a SCSI target device that supports multiple logical units. The
makecom(9F) family of functions use the a_lun field to set the logical unit field in the
SCSI CDB, for compatibility with SCSI-1.

makecom(9F), scsi_init_pkt(9F), scsi_hba_tran(9S), scsi_pkt(9S)
Writing Device Drivers

SunOS 5.6 modified 30 Aug 1995

Data Structures for Drivers scsi_arg_status (9S)

NAME
SYNOPSIS
INTERFACE

LEVEL
DESCRIPTION

STRUCTURE
MEMBERS

SEE ALSO

modified 30 Sep 1996

scsi_arg_status — SCSI auto request sense structure
#include <sys/scsi/scsi.h>
Solaris DDI specific (Solaris DDI)

When auto request sense has been enabled using scsi_ifsetcap(9F) and the "auto-rgsense”
capability, the target driver must allocate a status area in the SCSI packet structure (see
scsi_pkt(9S)) for the auto request sense structure. In the event of a check condition the
transport layer will automatically execute a request sense command. This ensures that
the request sense information does not get lost. The auto request sense structure sup-
plies the SCSI status of the original command, the transport information pertaining to the
request sense command, and the request sense data.

struct scsi_status sts_status; /OSCSI status O

struct scsi_status sts_rqpkt_status; /O0SCSI status of
request sense cmd [0

u_char sts_rgpkt_reason; /Oreason completion O

u_char sts_rgpkt_resid; /Oresidue O

u_int sts_rgpkt_state; /Ostate of command O

u_int sts_rgpkt_statistics; /Ostatistics [I

struct scsi_extended_sense sts_sensedata; /Oactual sense data O

sts_status is the SCSI status of the original command. If the status indicates a check condi-
tion then the transport layer may have performed an auto request sense command.

sts_rqpkt_status is the SCSI status of the request sense command.

sts_rgpkt_reason is the completion reason of the request sense command. If the reason is
not CMD_CMPLT, then the request sense command did not complete normally.

sts_rgpkt_resid is the residual count of the data transfer and indicates the number of
data bytes that have not been transferred. The auto request sense command requests
SENSE_LENGTH bytes.

sts_rqpkt_state has bit positions representing the five most important status that a SCSI
command can go through.

sts_rqpkt_statistics maintains transport-related statistics of the request sense command.

sts_sensedata contains the actual sense data if the request sense command completed
normally.

scsi_ifgetcap(9F), scsi_init_pkt(9F), scsi_extended_sense(9S), scsi_pkt(9S)
Writing Device Drivers

SunOS 5.6 9S-63

scsi_device (9S)

NAME
SYNOPSIS
INTERFACE

LEVEL
DESCRIPTION

STRUCTURE
MEMBERS

SEE ALSO

9S-64

Data Structures for Drivers

scsi_device — SCSI device structure
#include <sys/scsi/scsi.h>
Solaris DDI specific (Solaris DDI).

The scsi_device structure stores common information about each SCSI logical unit,
including pointers to areas that contain both generic and device specific information.
There is one scsi_device structure for each logical unit attached to the system. The host
adapter driver initializes part of this structure prior to probe(9E) and destroys this struc-
ture after a probe failure or successful detach(9E).

struct scsi_address sd_address; /ORouting information OJ

dev_info_t [kd_dev; /OCross-reference to our dev_info_t [0
kmutex_t sd_mutex; /O0Mutex for this device I

struct scsi_inquiry [kd_inq; /Oscsi_inquiry data structure O

struct scsi_extended_sense [kd_sense; /O00ptional request sense buffer ptr [
caddr_t sd_private; /OTarget drivers private data [J

sd_address contains the routing information that the target driver normally copies into a
scsi_pkt(9S) structure using the collection of makecom(9F) functions. The SCSA library
routines use this information to determine which host adapter, SCSI bus, and target/lun
a command is intended for. This structure is initialized by the host adapter driver.

sd_dev is a pointer to the corresponding dev_info structure. This pointer is initialized by
the host adapter driver.

sd_mutex is a mutual exclusion lock for this device. It is used to serialize access to a dev-
ice. The host adapter driver initializes this mutex. See mutex(9F).

sd_inq is initially NULL (zero). After executing scsi_probe(9F) this field contains the
inquiry data associated with the particular device.

sd_sense is initially NULL (zero). If the target driver wants to use this field for storing
REQUEST SENSE data, it should allocate an scsi_extended_sense(9S) buffer and set this
field to the address of this buffer.

sd_private is reserved for the use of target drivers and should generally be used to point
to target specific data structures.

detach(9E), probe(9E), makecom(9F), mutex(9F), scsi_probe(9F),
scsi_extended_sense(9S), scsi_pkt(9S)

Wrkiting Device Drivers

Sun0S 5.6 modified 19 Feb 1993

Data Structures for Drivers scsi_extended_sense (9S)

NAME
SYNOPSIS

INTERFACE
LEVEL

DESCRIPTION

STRUCTURE
MEMBERS

modified 30 Aug 1995

scsi_extended_sense — SCSI extended sense structure

#include <sys/scsi/scsi.h>

Solaris DDI specific (Solaris DDI).

The scsi_extended_sense structure for error codes 0x70 (current errors) and 0x71
(deferred errors) is returned on a successful REQUEST SENSE command. SCSI-2 compliant

targets are required to return at least the first 18 bytes of this structure. This structure is
part of scsi_device(9S) structure.

u char es valid :1; /Osense data is valid [
u char es_class :3; /OError Class- fixed at 0x7 [
u_char es_code :4; /OVendor Unique error code [

u char es_segnum; /Osegment number: for COPY cmd only

u char es_filmk :1; /OFile Mark Detected I

u char es_eom :1; /OEnd of Media O

u char es_ili :1; /Olncorrect Length Indicator [

u char es_key 4; /OSense key [0

u char es_info_1,; /Oinformation byte 1 [

u char es_info_2; /Oinformation byte 2 [1

u char es_info_3; /Oinformation byte 3 [0

u_char es_info_4; /Oinformation byte 4 [J

u char es_add_len; /Onumber of additional bytes [

u char es_cmd_info[4]; /Ocommand specific information [
u char es_add_code; /O0Additional Sense Code [

u _char es_qual_code; /O0Additional Sense Code Qualifier
u char es_fru_code; /OField Replaceable Unit Code [
u_char es_skey specific[3]; /0Sense Key Specific information [

es_valid, if set, indicates that the information field contains valid information.
es_class should be 0x7.
es_code is either 0x0 or 0x1.

es_segnum contains the number of the current segment descriptor if the REQUEST SENSE
command is in response to a COPY, COMPARE, and COPY AND VERIFY command.

es_filmk, if set, indicates that the current command had read a filemark or setmark
(sequential access devices only).

es_eom, if set, indicates that an end-of-medium condition exists (sequential access and
printer devices only).

es_ili, if set, indicates that the requested logical block length did not match the logical
block length of the data on the medium.

SunOS 5.6 9S-65

scsi_extended_sense (9S) Data Structures for Drivers

9S-66

es_key indicates generic information describing an error or exception condition. The fol-
lowing sense keys are defined:

KEY_NO_SENSE Indicates that there is no specific sense key information to be
reported.

KEY_RECOVERABLE_ERROR
Indicates that the last command completed successfully with
some recovery action performed by the target.

KEY_NOT_READY Indicates that the logical unit addressed cannot be accessed.

KEY_MEDIUM_ERROR
Indicates that the command terminated with a non-
recovered error condition that was probably caused by a
flaw on the medium or an error in the recorded data.

KEY_HARDWARE_ERROR
Indicates that the target detected a non-recoverable
hardware failure while performing the command or during a
self test.

KEY_ILLEGAL_REQUEST
Indicates that there was an illegal parameter in the CDB or in
the additional parameters supplied as data for some com-
mands.

KEY_UNIT_ATTENTION
Indicates that the removable medium may have been
changed or the target has been reset.

KEY_ WRITE_PROTECT/KEY_DATA PROTECT
Indicates that a command that reads or writes the medium
was attempted on a block that is protected from this opera-
tion.

KEY_BLANK_CHECK Indicates that a write-once device or a sequential access dev-
ice encountered blank medium or format-defined end-of-
data indication while reading or a write-once device encoun-
tered a non-blank medium while writing.

KEY_VENDOR_UNIQUE
This sense key is available for reporting vendor-specific con-
ditions.

KEY_COPY_ABORTED
Indicates a COPY, COMPARE, and COPY AND VERIFY com-
mand was aborted.

KEY_ABORTED_COMMAND
Indicates that the target aborted the command.

KEY_EQUAL Indicates a SEARCH DATA command has satisfied an equal
comparison.

SunOS 5.6 modified 30 Aug 1995

Data Structures for Drivers scsi_extended_sense (9S)

KEY_VOLUME_OVERFLOW
Indicates that a buffered peripheral device has reached the
end-of-partition and data may remain in the buffer that has
not been written to the medium.

KEY_MISCOMPARE Indicates that the source data did not match the data read
from the medium.

KEY_RESERVE Indicates that the target is currently reserved by a different
initiator.
es_info_{1,2,3,4} is device type or command specific.
es_add_len indicates the number of additional sense bytes to follow.
es_cmd_info contains information that depends on the command which was executed.

es_add_code (ASC) indicates further information related to the error or exception condi-
tion reported in the sense key field.

es_qual_code (ASCQ) indicates detailed information related to the additional sense code.
es_fru_code (FRU) indicates a device-specific mechanism to unit that has failed.

es_skey specific is defined when the value of the sense-key specific valid bit (bit 7)
is 1. This field is reserved for sense keys not defined above.

SEE ALSO | scsi_device(9S)
ANSI Small Computer System Interface-2 (SCSI-2)
Writing Device Drivers

modified 30 Aug 1995 SunOS 5.6 9S-67

scsi_hba_tran (9S)

NAME
SYNOPSIS
INTERFACE

LEVEL
DESCRIPTION

STRUCTURE
MEMBERS

9S-68

Data Structures for Drivers

scsi_hba_tran — SCSI Host Bus Adapter (HBA) driver transport vector structure

#include <sys/scsi/scsi.h>

Solaris architecture specific (Solaris DDI).

A scsi_hba_tran_t structure defines vectors that an HBA driver exports to SCSA interfaces
so that HBA specific functions can be executed.

dev_info t

void

void

struct scsi_device
int

int

void

int

int

int

int

int

struct scsi_pkt
void

void
void
void
tran_hba_dip

tran_hba_private

tran_tgt_private

tran_sd
tran_tgt_init

tran_tgt_probe

tran_tgt_free

(ran_hba_dip;
Oran_hba_private;
(ran_tgt_private;
(ran_sd;
(@ran_tgt_init)();

/OHBAs dev_info pointer [f
/OHBA softstate [1

/OHBA target private pointer OJ
/Oscsi_device O

/Otransport target [
/Oinitialization 0

/Otransport target probe OO
/Otransport target free [
/Otransport start (I

/Otransport reset O
/Otransport abort O
/Ocapability retrieval O
/Ocapability establishment O
/Opacket and dma allocation [
/Opacket and dma 0
/Odeallocation O

/O0dma deallocation I

/d0sync DMA [

/Obus reset notification [

(Gran_tgt_probe)();
(Gran_tgt_free)();
(@ran_start)();
(@ran_reset)();
(@ran_abort)();
(@ran_getcap)();
(@ran_setcap)();

O Oran_init_pkt)();
(@ran_destroy_pkt)();

(@ran_dmafree)();
(@ran_sync_pkt)();
(@ran_reset_notify)();
dev_info pointer to the HBA supplying the scsi_hba_tran struc-
ture.

Private pointer which the HBA driver can use to refer to the
device’s soft state structure.

Private pointer which the HBA can use to refer to per-target
specific data. This field may only be used when the
SCSI_HBA_TRAN_CLONE flag is specified in scsi_hba_attach(9F).
In this case, the HBA driver must initialize this field in its
tran_tgt_init(9E) entry point.

pointer to scsi_device(9S) structure if cloning; otherwise NULL.

is the function entry allowing per-target HBA initialization, if
necessary.

is the function entry allowing per-target scsi_probe(9F) customiza-
tion, if necessary.

is the function entry allowing per-target HBA deallocation, if

SunOS 5.6 modified 20 Sep 1994

Data Structures for Drivers scsi_hba_tran (9S)

SEE ALSO

modified 20 Sep 1994

necessary.

tran_start is the function entry that starts a SCSI command execution on the
HBA hardware.

tran_reset is the function entry that resets a SCSI bus or target device.

tran_abort is the function entry that aborts one SCSI command, or all pending
SCSI commands.

tran_getcap is the function entry that retrieves a SCSI capability.

tran_setcap is the function entry that sets a SCSI capability.

tran_init_pkt is the function entry that allocates a scsi_pkt structure.

tran_destroy_pkt is the function entry that frees a scsi_pkt structure allocated by
tran_init_pkt.

tran_dmafree is the function entry that frees DMA resources which were previ-
ously allocated by tran_init_pkt.

tran_sync_pkt synchronize data in pkt after a data transfer has been completed.

tran_reset_notify is the function entry allowing a target to register a bus reset

notification request with the HBA driver.

tran_abort(9E), tran_destroy_pkt(9E), tran_dmafree(9E), tran_getcap(9E),
tran_init_pkt(9E), tran_reset(9E), tran_reset_notify(9E), tran_setcap(9E), tran_start(9E),
tran_sync_pkt(9E), tran_tgt_free(9E), tran_tgt_init(9E), tran_tgt_probe(9E),
ddi_dma_sync(9F), scsi_hba_attach(9F), scsi_hba_pkt_alloc(9F), scsi_hba_pkt_free(9F),
scsi_probe(9F), scsi_device(9S), scsi_pkt(9S)

Wkiting Device Drivers

SunOS 5.6 9S-69

scsi_inquiry (9S)

NAME
SYNOPSIS

INTERFACE
LEVEL

DESCRIPTION

STRUCTURE
MEMBERS

9S-70

Data Structures for Drivers

scsi_inquiry — SCSI inquiry structure

#include <sys/scsi/scsi.h>

Solaris DDI specific (Solaris DDI).

The scsi_inquiry structure contains 36 required bytes, followed by a variable number of
vendor-specific parameters. Bytes 59 through 95, if returned, are reserved for future

standardization. This structure is part of scsi_device(9S) structure and typically filled in
by scsi_probe(9F).

u_char
u_char
u_char
u_char
u_char
u_char
u_char
u_char
u_char
u_char
u_char
u_char
u_char
u_char
u_char
u_char
u_char
char

char

char

ing_dtype;
ing_rmb
ing_qual
ing_iso
ing_ecma
ing_ansi
ing_aenc
ing_trmiop
ing_rdf
ing_len;
ing_reladdr
ing_wbus32
ing_wbus16
ing_sync
ing_linked
ing_cmdque
ing_sftre
ing_vid[8];
ing_pid[16];
ing_revision[4];

APRPRPOLWOMNMAR

Lrall el sl el sl sl

/Operipheral qualifier, device type O
/Oremovable media O

/Odevice type qualifier 0

/OISO version [

/OECMA version [

/OANSI version [

/Oasync event notification cap. [1
/Osupports TERMINATE I/O PROC msg [
/Oresponse data format [
/Oadditional length 0

/Osupports relative addressing [
/Osupports 32 bit wide data xfers [1
/Osupports 16 bit wide data xfers [1
/Osupports synchronous data xfers [J
/Osupports linked commands [
/Osupports command queueing [
/Osupports Soft Reset option I
/Ovendor 1D T

/Oproduct ID [

/Orevision level [

ing_dtype identifies the type of device. Bits 0 - 4 represent the Peripheral Device Type
and bits 5 - 7 represent the Peripheral Qualifier. The following values are appropriate for

Peripheral Device Type field:
DTYPE_ARRAY_CTRL

DTYPE_DIRECT
DTYPE_ESI

DTYPE_SEQUENTIAL

DTYPE_PRINTER
DTYPE_PROCESSOR
DTYPE_WORM

Array controller device (for example, RAID).
Direct-access device (for example, magnetic disk).
Enclosure services device.

Sequential-access device (for example, magnetic tape).
Printer device.

Processor device.

Write-once device (for example, some optical disks).

SunOS 5.6 modified 1 Apr 1997

Data Structures for Drivers scsi_inquiry (9S)

modified 1 Apr 1997

DTYPE_RODIRECT CD-ROM device.
DTYPE_SCANNER Scanner device.
DTYPE_OPTICAL Optical memory device (for example, some optical disks).
DTYPE_CHANGER Medium Changer device (for example, jukeboxes).
DTYPE_COMM Communications device.
DTYPE_UNKNOWN Unknown or no device type.
DTYPE_MASK Mask to isolate Peripheral Device Type field.
The following values are appropriate for the Peripheral Qualifier field:
DPQ_POSSIBLE The specified peripheral device type is currently connected

to this logical unit. If the target cannot determine whether or
not a physical device is currently connected, it shall also use
this peripheral qualifier when returning the INQUIRY data.
This peripheral qualifier does not imply that the device is
ready for access by the initiator.

DPQ_SUPPORTED The target is capable of supporting the specified peripheral
device type on this logical unit. However, the physical dev-
ice is not currently connected to this logical unit.

DPQ_NEVER The target is not capable of supporting a physical device on
this logical unit. For this peripheral qualifier, the peripheral
device type shall be set to DTYPE_UNKNOWN to provide
compatibility with previous versions of SCSI. For all other
peripheral device type values, this peripheral qualifier is
reserved.

DPQ_VUNIQ This is a vendor-unique qualifier.

DTYPE_NOTPRESENT is the peripheral qualifier DPQ_NEVER and the peripheral device
type DTYPE_UNKNOWN combined.

ing_rmb, if set, indicates that the medium is removable.
ing_qual is a device type qualifier.

ing_iso indicates ISO version.

ing_ecma indicates ECMA version.

ing_ansi indicates ANSI version.

ing_aenc, if set, indicates that the device supports asynchronous event notification capa-
bility as defined in SCSI-2 specification.

ing_trmiop, if set, indicates that the device supports the TERMINATE 1/0 PROCESS mes-
sage.

ing_rdf, if reset, indicates the INQUIRY data format is as specified in SCSI-1.

ing_ing_len is the additional length field which specifies the length in bytes of the
parameters.

SunOS 5.6 9S-71

scsi_inquiry (9S)

9S-72

SEE ALSO

Data Structures for Drivers

ing_reladdr, if set, indicates that the device supports the relative addressing mode of this
logical unit.

ing_wbus32, if set, indicates that the device supports 32-bit wide data transfers.
ing_wbusl6, if set, indicates that the device supports 16-bit wide data transfers.
ing_sync, if set, indicates that the device supports synchronous data transfers.

ing_linked, if set, indicates that the device supports linked commands for this logical
unit.

ing_cmdque, if set, indicates that the device supports tagged command queueing.

ing_sftre, if reset, indicates that the device responds to the RESET condition with the hard
RESET alternative. If this bit is set, this indicates that the device responds with the soft
RESET alternative.

ing_vid contains eight bytes of ASCII data identifying the vendor of the product.
ing_pid contains sixteen bytes of ASCII data as defined by the vendor.
ing_revision contains four bytes of ASCII data as defined by the vendor.

scsi_probe(9F), scsi_device(9S)
ANSI Small Computer System Interface-2 (SCSI-2)
Writing Device Drivers

SunOS 5.6 modified 1 Apr 1997

Data Structures for Drivers

NAME

SYNOPSIS

INTERFACE
LEVEL

DESCRIPTION

STRUCTURE
MEMBERS

modified 13 Mar 1997

scsi_pkt (9S)

scsi_pkt — SCSI packet structure

#include <sys/scsi/scsi.h>

Solaris DDI specific (Solaris DDI).

A scsi_pkt structure defines the packet which is allocated by scsi_init_pkt(9F). The tar-
get driver fills in some information, and passes it to scsi_transport(9F) for execution on
the target. The HBA fills in some other information as the command is processed. When
the command completes (or can be taken no further) the completion function specified in
the packet is called with a pointer to the packet as its argument. From fields within the
packet, the target driver can determine the success or failure of the command.

opaque_t

struct scsi_address
opaque_t

void

u_int

int

u_char
u_char
ssize t
u_int
u_int
u_char

pkt_ha_private
pkt_address

pkt_private

pkt_comp

pkt_flags

pkt_ha_private; /Oprivate data for host adapter OJ

pkt_address; /Odestination packet is for [0

pkt_private; /Oprivate data for target driver [J

(Cpkt_comp)(struct scsi_pkt 0); /Ocallback O

pkt_flags; /Oflags O

pkt_time; /Otime allotted to complete [
/Ocommand [

Cpkt_scbp; /Opointer to status block [J

Cpkt_cdbp; /Opointer to command block O

pkt_resid,; /Onumber of bytes not transferred O

pkt_state; /Ostate of command [

pkt_statistics; /Ostatistics 0

pkt_reason; /Oreason completion called [

is an opaque pointer which the Host Bus Adapter uses to reference a
private data structure used to transfer scsi_pkt requests.

is initialized by scsi_init_pkt(9F) and serves to record the intended
route and recipient of a request.

is reserved for the use of the target driver and is not changed by the
HBA driver.

specifies the command completion callback routine. When the host
adapter driver has gone as far as it can in transporting a command to
a SCSI target, and the command has either run to completion, or can
go no further for some other reason, the host adapter driver will call
the function pointed to by this field and pass a pointer to the packet
as argument.

The callback routine itself is called from interrupt context and must
not sleep nor call any function which may sleep.

provides additional information about how the target driver wants
the command to be executed. See pkt_flag Definitions.

SunOS 5.6 9S-73

scsi_pkt (9S)

pkt_time
pkt_scbp
pkt_cdbp

pkt_resid

pkt_state
pkt_statistics

pkt_reason

Data Structures for Drivers

will be set by the target driver to represent the maximum length of
time in seconds that this command is allowed take to complete.
pkt_time may be 0 if no timeout is required.

points to the SCSI status completion block.

points to a kernel addressable buffer whose length was specified by a
call to the proper resource allocation routine, scsi_init_pkt(9F).

contains a residual count, either the number of data bytes that have
not been transferred (scsi_transport(9F)) or the number of data
bytes for which DMA resources could not be allocated
scsi_init_pkt(9F). In the latter case, partial DMA resources may only
be allocated if scsi_init_pkt(9F) is called with the

PKT_DMA PARTIAL flag.

has bit positions representing the five most important states that a
SCSI command can go through (see pkt_state Definitions).

maintains some transport-related statistics. (see pkt_statistics
Definitions).

contains a completion code that indicates why the pkt_comp func-
tion was called.

The host adapter driver will update the pkt_resid, pkt_reason, pkt_state, and
pkt_statistics fields.

pkt_flags Definitions: The definitions that are appropriate for the structure member pkt_flags are:

FLAG_NOINTR Run command with no command completion callback;

command is complete upon return from
scsi_transport(9F).

FLAG_NODISCON Run command without disconnects.
FLAG_NOPARITY Run command without parity checking.

FLAG_HTAG Run command as the head of queue tagged command.
FLAG_OTAG Run command as an ordered queue tagged command.
FLAG_STAG Run command as a simple queue tagged command.
FLAG_SENSING This command is a request sense command.
FLAG_HEAD This command should be put at the head of the queue.

pkt_reason The definitions that are appropriate for the structure member pkt_reason are:

Definitions: CMD_CMPLT No transport errors—normal completion.
CMD_INCOMPLETE Transport stopped with abnormal state.
CMD_DMA _DERR DMA direction error.
CMD_TRAN_ERR Unspecified transport error.
CMD_RESET SCSI bus reset destroyed command.

9S-74

Sun0S 5.6 modified 13 Mar 1997

Data Structures for Drivers

pkt_state Definitions:

pkt_statistics
Definitions:

modified 13 Mar 1997

CMD_ABORTED
CMD_TIMEOUT
CMD_DATA OVR
CMD_CMD_OVR
CMD_STS_OVR
CMD_BADMSG
CMD_NOMSGOUT
CMD_XID_FAIL
CMD_IDE_FAIL
CMD_ABORT FAIL
CMD_REJECT _FAIL
CMD_NOP_FAIL
CMD_PER FAIL
CMD_BDR_FAIL
CMD_ID_FAIL

CMD_UNX_BUS_FREE

CMD_TAG_REJECT

STATE_GOT _BUS

STATE_GOT_TARGET

STATE_SENT_CMD

STATE_XFERRED_DATA
STATE_GOT_STATUS

STATE_ARQ_DONE

STAT_DISCON
STAT_SYNC
STAT_PERR

STAT BUS_RESET
STAT DEV_RESET
STAT_ABORTED
STAT _TIMEOUT

scsi_pkt (9S)

Command transport aborted on request.
Command timed out.

Data Overrun.

Command Overrun.

Status Overrun.

Message not Command Complete.
Target refused to go to Message Out phase.
Extended Identify message rejected.
Initiator Detected Error message rejected.
Abort message rejected.

Reject message rejected.

No Operation message rejected.

Message Parity Error message rejected.
Bus Device Reset message rejected.
Identify message rejected.

Unexpected Bus Free Phase.

Target rejected the tag message.

The definitions that are appropriate for the structure member pkt_state are:

Bus arbitration succeeded.
Target successfully selected.
Command successfully sent.
Data transfer took place.
Status received.

The command resulted in a check condition and the

host adapter driver executed an automatic request
sense cmd.

The definitions that are appropriate for the structure member pkt_statistics are:

Device disconnect.

Command did a synchronous data transfer.
SCSI parity error.

Bus reset.

Device reset.

Command was aborted.

Command timed out.

SunOS 5.6

9S-75

scsi_pkt (9S) Data Structures for Drivers

SEE ALSO | tran_init_pkt(9E), scsi_init_pkt(9F), scsi_transport(9F)
Writing Device Drivers

9S-76 Sun0S 5.6 modified 13 Mar 1997

Data Structures for Drivers scsi_status (9S)

NAME
SYNOPSIS

INTERFACE
LEVEL

DESCRIPTION

STRUCTURE
MEMBERS

modified 30 Aug 1995

scsi_status — SCSI status structure

#include <sys/scsi/scsi.h>

Solaris DDI specific (Solaris DDI)

The SCSI-2 standard defines a status byte which is normally sent by the target to the initia-
tor during the status phase at the completion of each command.

uchar sts_scsi2 1, /OSCSI-2 modifier bit [1
uchar sts_is 1, /Ointermediate status sent [
1
1

uchar sts_busy ; /Odevice busy or reserved [0
uchar sts_cm ; /Ocondition met [0
uchar sts_chk :1; /Ocheck condition

sts_chk indicates that a contingent allegiance condition has occurred.
sts_cm is returned whenever the requested operation is satisfied

sts_busy indicates that the target is busy. This status is returned whenever a target is
unable to accept a command from an otherwise acceptable initiator (that is, no reserva-
tion conflicts). The recommended initiator recovery action is to issue the command again
at a later time.

sts_is is returned for every successfully completed command in a series of linked com-
mands (except the last command), unless the command is terminated with a check condi-
tion status, reservation conflict, or command terminated status. Note that host bus
adapter drivers may not support linked commands (see scsi_ifsetcap(9F)). If sts_is and
sts_busy are both set, then a reservation conflict has occurred.

sts_scsi2 is the SCSI-2 modifier bit. If sts_scsi2 and sts_chk are both set, this indicates a
command terminated status. If sts_scsi2 and sts_busy are both set, this indicates that the
command queue in the target is full.

For accessing the status as a byte, the following values are appropriate:

STATUS_GOOD This status indicates that the target has successfully com-
pleted the command.

STATUS_CHECK This status indicates that a contingent allegiance condition
has occurred.

STATUS_MET This status is returned when the requested operations are
satisfied.

STATUS_BUSY This status indicates that the target is busy.

STATUS_INTERMEDIATE
This status is returned for every successfully completed com-
mand in a series of linked commands.

STATUS_SCSI2 This is the SCSI-2 modifier bit.

SunOS 5.6 9S-77

scsi_status (9S)

9S-78

SEE ALSO

Data Structures for Drivers

STATUS_INTERMEDIATE_MET

This status is a combination of STATUS_MET and
STATUS INTERMEDIATE.

STATUS_RESERVATION_CONFLICT

This status is a combination of STATUS_INTERMEDIATE and
STATUS _BUSY, and is returned whenever an initiator
attempts to access a logical unit or an extent within a logical
unit is reserved.

STATUS_TERMINATED

STATUS_QFULL

This status is a combination of STATUS_SCSI2 and
STATUS_CHECK, and is returned whenever the target ter-
minates the current 1/0 process after receiving a terminate
1/0 process message.

This status is a combination of STATUS_SCSI2 and
STATUS_BUSY, and is returned when the command queue in
the target is full.

scsi_ifgetcap(9F), scsi_init_pkt(9F), scsi_extended_sense(9S), scsi_pkt(9S)

Wrkiting Device Drivers

SunOS 5.6 modified 30 Aug 1995

Data Structures for Drivers streamtab (9S)

NAME | streamtab — STREAMS entity declaration structure
SYNOPSIS | #include <sys/stream.h>

INTERFACE | Architecture independent level 1 (DDI/DKI).
LEVEL
DESCRIPTION Each STREAMS driver or module must have a streamtab structure.

streamtab is made up of ginit structures for both the read and write queue portions of
each module or driver. (Multiplexing drivers require both upper and lower ginit struc-

tures.) The qinit structure contains the entry points through which the module or driver
routines are called.

Normally, the read QUEUE contains the open and close routines. Both the read and
write queue can contain put and service procedures.

STRUCTURE struct qinit [st_rdinit; /Oread QUEUE O
MEMBERS struct ginit [st_wrinit; /Owrite QUEUE O

struct ginit [st_muxrinit; /Olower read QUEUEN

struct ginit [st_muxwinit; /Olower write QUEUE

SEE ALSO qinit(9S)
STREAMS Programming Guide

modified 11 Apr 1991 SunOS 5.6 9S-79

stroptions (9S)

NAME

SYNOPSIS

INTERFACE

LEVEL
DESCRIPTION

STRUCTURE
MEMBERS

9S-80

Data Structures for Drivers

stroptions — options structure for M_SETOPTS message

#include <sys/stream.h>
#include <sys/stropts.h>
#include <sys/ddi.h>

#include <sys/sunddi.h>

Architecture independent level 1 (DDI/DKI).

The M_SETOPTS message contains a stroptions structure and is used to control options
in the stream head.

uint so_flags; /Ooptions to set

short so_readopt; /Oread option O

ushort so_wroff; /Owrite offset O

ssize t SO_minpsz; /Ominimum read packet size
ssize t SO_maxpsz; /Omaximum read packet size (I
size t so_hiwat; /Oread queue high water mark O
size t so_lowat; /Oread queue low water mark O
unsigned char so_band; /Oband for water marks I
ushort so_erropt; /Oerror option

The following are the flags that can be set in the so_flags bit mask in the stroptions struc-
ture. Note that multiple flags can be set.

SO_READOPT set read option

SO_WROFF set write offset
SO_MINPSZ set min packet size
SO_MAXPSZ set max packet size
SO_HIWAT set high water mark
SO_LOWAT set low water mark

SO_MREADON set read notification ON
SO_MREADOFF set read notification OFF

SO_NDELON old TTY semantics for NDELAY reads/writes
SO_NDELOFF STREAMS semantics for NDELAY reads/writes
SO_ISTTY the stream is acting as a terminal

SO_ISNTTY the stream is not acting as a terminal
SO_TOSTOP stop on background writes to this stream
SO_TONSTOP do not stop on background writes to stream
SO_BAND water marks affect band

SO_ERROPT set error option

Sun0S 5.6 modified 14 Nov 1996

Data Structures for Drivers stroptions (9S)

When SO_READOPT is set, the so_readopt field of the stroptions structure can take one
of the following values (see read(2)):

RNORM read msg norm
RMSGD read msg discard
RMSGN read msg no discard
When SO_BAND is set, so_band determines to which band so_hiwat and so_lowat

apply.
When SO_ERROPT is set, the so_erropt field of the stroptions structure can take a value
that is either none or one of:

RERRNORM persistent read errors; default

RERRNONPERSIST non-persistent read errors
OR’ed with either none of one of:

WERRNORM persistent write errors; default

WERRNONPERSIST non-persistent write errors

SEE ALSO read(2), streamio(71)
STREAMS Programming Guide

modified 14 Nov 1996 Sun0S 5.6 9S-81

tuple (9S)

NAME
SYNOPSIS

INTERFACE
LEVEL

DESCRIPTION

STRUCTURE
MEMBERS

9S-82

Data Structures for Drivers

tuple — Card Information Structure (CIS) access structure
#include <sys/pccard.h>

Solaris DDI Specific (Solaris DDI)

The tuple_t structure is the basic data structure provided by Card Services to manage PC
Card information. A PC Card provides identification and configuration information
through its Card Information Structure (CIS). A PC Card driver accesses a PC Card’s CIS
through various Card Services functions.

The CIS information allows PC Cards to be self-identifying, meaning that the CIS provides
information to the system so that it can identify the proper PC Card driver for the PC
Card, and configuration information so that the driver can allocate appropriate resources
to configure the PC Card for proper operation in the system.

The CIS information is contained on the PC Card in a linked list of tuple data structures
called a CIS chain. Each tuple has a one-byte type and a one-byte link, an offset to the
next tuple in the list. A PC Card can have one or more CIS chains.

A multi-function PC Card that complies with the PC Card 95 MultiFunction Metaformat
specification will have one or more global CIS chains that collectively are referred to as
the global CIS. These PC Cards will also have one or more per-function CIS chains. Each
per-function collection of CIS chains is referred to as a function-specific CIS.

To examine a PC Card’s CIS, first a PC Card driver must locate the desired tuple by calling
csx_GetFirstTuple(9F). Once the first tuple is located, subsequent tuples may be located
by calling csx_GetNextTuple(9F) (see csx_GetFirstTuple(9F)). The linked list of tuples
may be inspected one by one, or the driver may narrow the search by requesting only
tuples of a particular type.

Once a tuple has been located, the PC Card driver may inspect the tuple data. The most
convenient way to do this for standard tuples is by calling one of the number of tuple-
parsing utility functions; for custom tuples, the driver may get access to the raw tuple
data by calling csx_GetTupleData(9F).

Solaris PC Card drivers do not need to be concerned with which CIS chain a tuple appears
in. On a multi-function PC Card, the client will get the tuples from the global CIS fol-
lowed by the tuples in the function-specific CIS. The caller will not get any tuples from a
function-specific CIS that does not belong to the caller’s function.

The structure members of tuple_t are:

uint32_t Socket; /O0socket number O
uint32_t Attributes; /Otuple attributes O
cisdata t DesiredTuple; /Otuple to search for O
Sun0S 5.6 modified 20 Dec 1996

Data Structures for Drivers

modified 20 Dec 1996

cisdata_t
cisdata_t
cisdata_t
cisdata_t
cisdata_t
cisdata_t

tuple (9S)

TupleOffset; /Otuple data offset [

TupleDataMax; /Omax tuple data size 0

TupleDatalen; /Oactual tuple data length [

TupleData[CIS_ MAX_TUPLE_DATA_LEN]; /Obody tuple data @
TupleCode; /Otuple type code [0

TupleLink; /Otuple link O

The fields are defined as follows:

Socket

Attributes

DesiredTuple

TupleOffset

TupleDataMax

TupleDatalen

TupleData

TupleCode

TupleLink

Not used in Solaris, but for portability with other Card Services
implementations, it should be set to the logical socket number.

This field is bit-mapped. The following bits are defined:

TUPLE_RETURN_LINK
Return link tuples if set.

TUPLE_RETURN_IGNORED_TUPLES
Return ignored tuples if set. Ignored tuples are those tuples
in a multi-function PC Card’s global CIS chain that are dupli-
cates of the same tuples in a function-specific CIS chain.

TUPLE_RETURN_NAME
Return tuple name string via the csx_ParseTuple(9F) func-
tion if set.

This field is the requested tuple type code to be returned, when calling
csx_GetFirstTuple(9F) or csx_GetNextTuple(9F).

RETURN_FIRST_TUPLE is used to return the first tuple regardless of
tuple type, if it exists.

RETURN_NEXT_TUPLE is used to return the next tuple regardless of
tuple type.

This field allows partial tuple information to be retrieved, starting at the
specified offset within the tuple. This field must only be set before cal-
ling csx_GetTupleData(9F).

This field is the size of the tuple data buffer that Card Services uses to
return raw tuple data from csx_GetTupleData(9F). It can be larger than
the number of bytes in the tuple data body. Card Services ignores any
value placed here by the client.

This field is the actual size of the tuple data body. It represents the
number of tuple data body bytes returned by csx_GetTupleData(9F).

This field is an array of bytes containing the raw tuple data body con-
tents returned by csx_GetTupleData(9F).

This field is the tuple type code and is returned by
csx_GetFirstTuple(9F) or csx_GetNextTuple(9F) when a tuple match-
ing the DesiredTuple field is returned.

This field is the tuple link, the offset to the next tuple, and is returned by
csx_GetFirstTuple(9F) or csx_GetNextTuple(9F) when a tuple

SunOS 5.6 9S-83

tuple (9S) Data Structures for Drivers

matching the DesiredTuple field is returned.

SEE ALSO csx_GetFirstTuple(9F), csx_GetTupleData(9F), csx_ParseTuple(9F),
csx_Parse_CISTPL_BATTERY(9F), csx_Parse_CISTPL_BYTEORDER(9F),
csx_Parse_CISTPL_CFTABLE_ENTRY(9F), csx_Parse_CISTPL_CONFIG(9F),
csx_Parse CISTPL_DATE(9F), csx_Parse_CISTPL_DEVICE(9F),

csx_Parse CISTPL_FUNCE(9F), csx_Parse CISTPL_FUNCID(9F),
csx_Parse CISTPL_JEDEC_C(9F), csx_Parse_ CISTPL_MANFID(9F),
csx_Parse CISTPL_SPCL(9F), csx_Parse CISTPL_VERS 1(9F),

csx_Parse CISTPL_VERS 2(9F)

PC Card 95 Standard, PCMCIAZJEIDA

9S-84 Sun0S 5.6 modified 20 Dec 1996

Data Structures for Drivers uio (9S)

NAME

SYNOPSIS

INTERFACE
LEVEL

DESCRIPTION

STRUCTURE
MEMBERS

SEE ALSO

NOTES

modified 28 Mar 1997

uio — scatter/gather 170 request structure
#include <sys/uio.h>

Architecture independent level 1 (DDI/DKI).

A uio structure describes an 1/0 request that can be broken up into different data storage
areas (scatter/gather 1/0). A request is a list of iovec structures (base/length pairs) indi-
cating where in user space or kernel space the 1/0 data is to be read/written.

The contents of uio structures passed to the driver through the entry points should not be
written by the driver. The uiomove(9F) function takes care of all overhead related to
maintaining the state of the uio structure.

uio structures allocated by the driver should be initialized to zero before use (by
bzero(9F), kmem_zalloc(9F), or an equivalent).

iovec_t Cuio_iov; /Opointer to the start of the iovec [1
/Olist for the uio structure [

int uio_iovent; /Othe number of iovecs in the list [f

off t uio_offset; /032-bit offset into file where data is [

/Otransferred from or to. See NOTES. [
offset_t uio_loffset; /064-bit offset into file where data is [

/Otransferred from or to. See NOTES. [
uio_seg_t uio_segflg; /Oidentifies the type of 1/O transfer: [

/0 UIO_SYSSPACE: kernel <-> kernel

/0 UIO_USERSPACE: kernel <-> user [J
short uio_fmode; /Ofile mode flags (not driver setable) 1
daddr_t uio_limit; /032-bit ulimit for file (maximum block I

/Ooffset). not driver setable. See NOTES. [
diskaddr_t uio_llimit; /064-bit ulimit for file (maximum block O

/Ooffset). not driver setable. See NOTES. [
int uio_resid; /Oresidual count OO0

The uio_iov member is a pointer to the beginning of the iovec(9S) list for the uio. When
the uio structure is passed to the driver through an entry point, the driver should not set
uio_iov. When the uio structure is created by the driver, uio_iov should be initialized by
the driver and not written to afterward.

aread(9E), awrite(9E), read(9E), write(9E), bzero(9F), kmem_zalloc(9F), uiomove(9F),
cb_ops(9S), iovec(9S)

Writing Device Drivers

Only one of uio_offset or uio_loffset should be interpreted by the driver. Which field
the driver interprets is dependent upon the settings in the cb_ops(9S) structure.

SunOS 5.6 9S-85

uio (9S)

9S-86

Data Structures for Drivers

Only one of uio_limit or uio_llimit should be interpreted by the driver. Which field the
driver interprets is dependent upon the settings in the cb_ops(9S) structure.

When performing 170 on a seekable device, the driver should not modify either the
uio_offset or the uio_loffset field of the uio structure. 170 to such a device is constrained
by the maximum offset value. When performing 1/0 on a device on which the concept of
position has no relevance, the driver may preserve the uio_offset or uio_loffset, perform
the 170 operation, then restore the uio_offset or uio_loffset to the field’s initial value.

170 performed to a device in this manner is not constrained.

Sun0S 5.6 modified 28 Mar 1997

Index

A
ai o_r eq — asynchronous 1/0 request structure,
9S-9
asynchronous 1/0 request structure — ai o0_r eq,
9S-9

B
buf — block 170 data transfer structure, 9S-10

C

Card Information Structure (CIS) access structure —
t upl e, 9S5-82

character/block entry points structure for drivers
— cb_ops, 95-13

copyr eq — STREAMS data structure for the
M_COPYIN and the M_COPYOUT message
types, 9S-15

copyr esp — STREAMS data structure for the
M_IOCDATA message type, 9S-16

D
data access attributes structure —
ddi _device_acc_attr, 9S-18
DDI device mapping

ddi _nmapdev_ct| — device mapping-control
structure, 9S-39
devmap_cal | back_ct| — device mapping-

control
DDI device mapping, continued
structure, 9S-41
DDI direct memory access
DMA cookie structure — ddi _dma_cooki e,

9S-26

DMA limits structure — ddi _dma_I| i m 9S-27,
9S-29

DMA Request structure — ddi _dna_r eq,
9S-31

ddi _devi ce_acc_attr — data access attributes
structure, 9S-18

ddi _dnma_at tr — DMA attributes structure, 9S-23

ddi _drmae_r eq — DMA engine request structure,
9S-34

ddi _i devi ce_cooki e — device interrupt cookie,
9S-38

ddi _napdev_ct| — device mapping-control struc-
ture, 9S-39

device interrupt cookie — ddi _i devi ce_cooki e,
9S-38

device mapping-control structure —
ddi _nmapdev_ct 1, 9S-39, 9S-41

device operations structure
— dev_ops, 9S-40

devmap_cal | back_ct| — device mapping-
control structure, 9S-41

Index-1

DMA attributes structure — ddi _dna_attr, 95-23
DMA cookie structure
— ddi _dnma_cooki e, 95-26
DMA engine request structure — ddi _dmae_r eq,
9S-34
DMA limits structure
— ddi _dma_li m 9S-27, 9S-29
DMA Request structure
— ddi _dnma_req, 95-31
driver’s message freeing routine
— free_rtn, 95-44
drivers, loadable, linkage structure
— nodl drv, 9S-53

F

f modsw— STREAMS module declaration structure,
9S-43

|
I/0 data storage structure using uio
— iovec, 95-46
170 request structure, scatter/gather
— ui o0, 95-85
170, block, data transfer structure
— buf, 95-10
i ocbl k — STREAMS data structure for the
M_IOCTL message type, 95-45

K
kernel statistics structure — kst at, 9S-47
kst at — kernel statistics structure, 9S-47
kst at _i ntr — structure for interrupt kstats, 9S-49
kst at _i o — structure for 1/0 kstats, 9S-50
kst at _named — structure for named kstats, 9S-51

L
I i nkbl k — STREAMS data structure sent to multi-
plexor drivers to indicate a link, 9S-52

Index—2

M

nodl i nkage — module linkage structure, 9S-54

O
options structure for M_SETOPTS message —

stroptions, 9S-80

Q

quecl ass — a STREAMS macro that returns the
queue message class definitions for a given
message block, 9S-60

S
SCSI address structure — scsi _addr ess, 9S-62
SCSI auto request sense structure —
scsi _arqg_status, 95-63
SCSI device structure — scsi _devi ce, 95-64,
9S-70
SCSI extended sense structure —
scsi _ext ended_sense, 9S-65
SCSI Host Bus Adapter (HBA) driver transport vec-
tor structure — scsi _hba_t ran, 95-68
SCSI packet structure — scsi _pkt, 9S-73
SCSI status structure — scsi _st at us, 9S-77
scsi _addr ess — SCSI address structure , 9S-62
scsi _arg_st at us — SCSI auto request sense
structure, 9S-63
scsi _devi ce — SCSI device structure, 95-64
scsi _ext ended_sense — SCSI extended sense
structure, 9S-65
scsi _hba_tran — SCSI Host Bus Adapter (HBA)
driver transport vector structure, 9S-68
scsi _i nqui ry — SCSI device structure, 9S-70
scsi _pkt — SCSI packet structure , 9S-73
pkt_flags Definitions, 9S-74
pkt_reason Definitions, 9S-74
pkt_state Definitions, 9S-75
pkt_statistics Definitions, 9S-75
scsi _st at us — SCSI status structure, 9S-77
STREAMS data structure for the M_COPYIN and
the M_COPYOUT message types — copyr eq,
9S-15

STREAMS data structure for the M_IOCDATA mes-
sage type — copyr esp, 95-16

STREAMS data structure for the M_IOCTL message
type — i ocbl k, 95-45

STREAMS data structure sent to multiplexor drivers

to indicate a link — | i nkbl k, 9S-52
STREAMS driver identification and limit value
structure

— nodul e_i nf 0, 9S5-56

STREAMS entity declaration structure
— streant ab, 9S-79

STREAMS macro that returns the queue message
class definitions for a given message block —
guecl ass, 9S-60

STREAMS message block structure
— nmsgb, 9S-57

STREAMS message data structure
— dat ab, 9S-17

STREAMS module declaration structure —
f rodsw;, 95-43

STREAMS modules, loadable, linkage structure
nmodl st r nod, 9S-55

STREAMS queue flow control information structure
— gband, 9S-58

STREAMS queue processing procedures structure
— Qi nit,9S-59

STREAMS queue structure
— queue, 95-61

st ropti ons — options structure for M_SETOPTS
message, 95-80

structure for 1/0 kstats — kst at _i 0, 9S-50

structure for interrupt kstats — kstat _i ntr,
9S-49

structure for named kstats — kst at _naned, 9S-51

T

t upl e — Card Information Structure (CIS) access
structure, 9S-82

U

ui o — scatter/gather 1/0 request structure, 95-85

Index-3

