
NFS Administration Guide

Sun Microsystems, Inc.
2550 Garcia Avenue

Mountain View, CA 94043-1100
U.S.A.

Part No: 802-5754
August 1997

Copyright 1997 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, California 94303-4900 U.S.A. All rights reserved.
This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and
decompilation. No part of this product or document may be reproduced in any form by any means without prior written authorization of
Sun and its licensors, if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.
Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered
trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.
Sun, Sun Microsystems, the Sun logo, SunSoft, SunDocs, SunExpress, and Solaris are trademarks, registered trademarks, or service marks
of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered
trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an
architecture developed by Sun Microsystems, Inc.
The OPEN LOOK and SunTM Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun
acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the
computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s
licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license agreements.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227–14(g)(2)(6/87) and
FAR 52.227–19(6/87), or DFAR 252.227–7015(b)(6/95) and DFAR 227.7202–3(a).
DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY
INVALID.

Copyright 1997 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, Californie 94303-4900 Etats-Unis. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la
distribution, et la décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque
moyen que ce soit, sans l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et
qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.
Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.
Sun, Sun Microsystems, le logo Sun, SunSoft, SunDocs, SunExpress, et Solaris sont des marques de fabrique ou des marques déposées, ou
marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence
et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits
portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.
L’interface d’utilisation graphique OPEN LOOK et SunTM a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés.
Sun reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou
graphique pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox,
cette licence couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre
se conforment aux licences écrites de Sun.
CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y
COMPRIS DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE
UTILISATION PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE
GARANTIE NE S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

Please
Recycle

Contents

Preface ix

Part I Introduction

1. Solaris NFS Environment 3

NFS Servers and Clients 3

NFS File Systems 4

About the NFS Environment 4

NFS Version 2 5

NFS Version 3 5

NFS ACL Support 6

NFS Over TCP 6

Network Lock Manager 6

NFS Large File Support 6

NFS Client Failover 6

Kerberos Hooks for the NFS Environment 7

WebNFS Support 7

About Autofs 7

Autofs Features 8

Part II All About NFS Services

2. NFS Administration 11

Contents iii

Automatic File-System Sharing 12

H How to Set Up Automatic File-System Sharing 12

Mounting File Systems 13

H How to Mount at Boot Time 13

H How to Mount From the Command Line 14

H How to Verify Options Used With the mount Command 14

H How to Mount With the Automounter 15

Setting Up NFS Services 16

H How to Start the NFS Services 16

H How to Stop the NFS Services 16

H How to Disable Large Files on an NFS Server 16

H How to Use Client-Side Failover 17

H How to Disable Mount Access for One Client 18

Administering the Secure NFS System 18

H How to Set Up a Secure NFS Environment With DH Authentication 18

H How to Set Up a Secure NFS Environment With KERB Authentication 20

WebNFS Administration Tasks 21

Planning for WebNFS Access 21

H How to Enable WebNFS Access 22

H How to Browse Using an NFS URL 23

H How to Enable WebNFS Access Through a Firewall 23

Strategies for NFS Troubleshooting 24

NFS Troubleshooting Procedures 25

H How to Check Connectivity on an NFS Client 25

H How to Remotely Check the NFS Server 26

H How to Verify the NFS Service on the Server 28

H How to Restart NFS Services 30

H How to Warm-Start rpcbind 30

iv NFS Administration Guide ♦ August 1997

H How to Identify Which Host Is Providing NFS File Service 31

NFS Error Messages 31

3. NFS Reference 35

NFS Files 35

NFS Daemons 36

lockd 36

mountd 37

nfsd 38

statd 38

NFS Commands 38

clear_locks 39

mount 39

umount 42

mountall 43

umountall 43

share 44

unshare 49

shareall 49

unshareall 49

showmount 50

setmnt 50

Other Useful Commands 51

nfsstat 51

pstack 52

rpcinfo 53

snoop 55

truss 55

How It All Works Together 56

Contents v

Version 2 and Version 3 Negotiation 56

UDP and TCP Negotiation 56

File Transfer Size Negotiation 56

Client-Side Failover 57

Large Files 58

How the WebNFS Service Works 58

WebNFS Limitations With Web Browser Use 59

The Secure NFS System 60

Secure RPC 61

Part III All About Autofs

4. Autofs Administration 67

Setting Up Autofs 67

H How to Start the Automounter 68

H How to Stop the Automounter 68

Common Tasks and Procedures 68

Administrative Tasks Involving Maps 68

Modifying the Maps 70

H How to Modify the Master Map 70

H How to Modify Indirect Maps 70

H How to Modify Direct Maps 70

Avoiding Mount-Point Conflicts 71

Accessing Non-NFS File Systems 72

H How to Access CD-ROM Applications With Autofs 72

H How to Access PC-DOS Data Diskettes With Autofs 72

Accessing NFS File Systems Using CacheFS 72

H How to Access NFS File Systems Using CacheFS 73

Customizing the Automounter 73

H How to Set Up a Common View of /home 73

vi NFS Administration Guide ♦ August 1997

H How to Set Up /home With Multiple Home Directory File Systems 74

H How to Consolidate Project-Related Files Under /ws 75

H How to Set Up Different Architectures to Access a Shared Name Space 77

H How to Support Incompatible Client Operating System Versions 78

H How to Replicate Shared Files Across Several Servers 79

H How to Apply Security Restrictions 79

Disabling Autofs Browsability 79

H How to Completely Disable Autofs Browsability on a Single NFS Client 80

H How to Disable Autofs Browsability for All Clients 80

H How to Disable Autofs Browsability on an NFS Client 81

Troubleshooting Autofs 82

Error Messages Generated by automount -v 82

Miscellaneous Error Messages 83

Other Errors With Autofs 85

5. About Autofs 87

Autofs Programs 87

automount 87

automountd 88

Autofs Maps 88

Master Map 88

Direct Maps 91

Indirect Maps 92

How Autofs Works 94

How Autofs Navigates Through the Network (Maps) 96

How Autofs Starts the Navigation Process (Master Map) 96

Autofs Mount Process 97

How Autofs Selects the Nearest Read-Only Files for Clients (Multiple
Locations) 98

Contents vii

Variables in a Map Entry 101

Maps That Refer to Other Maps 102

Executable Autofs Maps 103

Modifying How Autofs Navigates the Network (Modifying Maps) 104

Default Autofs Behavior With Name Services 104

Autofs Reference 105

Metacharacters 106

Special Characters 107

A. NFS Tunables 109

How to Set the Value of a Kernel Parameter 113

Index 115

viii NFS Administration Guide ♦ August 1997

Preface

NFS Administration Guide presents the administrative tasks required for the
successful operation of the SunSoftTM NFS® distributed file system. This
resource-sharing product enables you to share files and directories among a number
of computers on a network.

Also included in this manual is how to set up and use autofs (formerly called the
automounter) to automatically mount and unmount NFS file systems.

This book is organized into explanatory background material and task-oriented
instructions.

Who Should Use This Book
This book is intended for the system administrator whose responsibilities include
setting up and maintaining NFS systems. Though much of the book is directed
toward the experienced system administrator, it also contains information useful to
novice administrators and other readers who may be new to the SolarisTM platform.

How This Book Is Organized
Chapter 1 provides an overview of the Solaris NFS environment and autofs.

Chapter 2 provides information on how to set up NFS servers with NIS or NIS+ as
your name service.

Preface ix

Chapter 3 presents background information on the security features of the NFS
service as well as fundamental procedures for setting up and maintaining NFS
security.

Chapter 4 describes problems that might occur on machines using NFS services. It
contains procedures for tracking NFS problems. Background and reference sections
are also included.

Chapter 5 provides procedures for setting up and using autofs. It also includes
background, reference, and troubleshooting sections.

Appendix A lists several parameters that you can change to improve the NFS
service. It includes instructions for making these changes.

Related Books
This is a list of related documentation that is refered to in this book.

� Solaris Naming Administration Guide

� Solaris Naming Setup and Configuration Guide

� System Administration Guide

� TCP/IP and Data Communications Administration Guide

Ordering Sun Documents
The SunDocsSM program provides more than 250 manuals from Sun Microsystems,
Inc. If you live in the United States, Canada, Europe, or Japan, you can purchase
documentation sets or individual manuals using this program.

For a list of documents and how to order them, see the catalog section of
SunExpressTM Internet site at http://www.sun.com/sunexpress .

What Typographic Changes Mean
Table P–1 describes the typographic changes used in this book.

x NFS Administration Guide ♦ August 1997

TABLE P–1 Typographic Conventions

Typeface or
Symbol

Meaning Example

AaBbCc123 The names of commands,
files, and directories;
on-screen computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% You have mail.

AaBbCc123 What you type, contrasted
with on-screen computer
output

machine_name% su

Password:

AaBbCc123 Command-line placeholder:

replace with a real name or
value

To delete a file, type rm filename.

AaBbCc123 Book titles, new words or
terms, or words to be
emphasized

Read Chapter 6 in User’s Guide. These
are called class options.

You must be root to do this.

Shell Prompts in Command Examples
Table P–2 shows the default system prompt and superuser prompt for the C shell,
Bourne shell, and Korn shell.

TABLE P–2 Shell Prompts

Shell Prompt

C shell prompt machine_name%

C shell superuser prompt machine_name#

Bourne shell and Korn shell prompt $

Bourne shell and Korn shell superuser prompt #

xi

xii NFS Administration Guide ♦ August 1997

PART I Introduction

This part provides an overview of the services provided in the NFS environment.

� “NFS Servers and Clients” on page 3

� “NFS File Systems” on page 4

� “About the NFS Environment” on page 4

� “About Autofs” on page 7

CHAPTER 1

Solaris NFS Environment

This chapter provides an overview of the NFS environment. It includes a short
introduction to networking, a description of the NFS service, and a discussion of the
concepts necessary to understand the NFS environment.

� “NFS Servers and Clients” on page 3

� “NFS File Systems” on page 4

� “About the NFS Environment” on page 4

� “About Autofs” on page 7

NFS Servers and Clients
The terms client and server are used to describe the roles that a computer plays when
sharing file systems. If a file system resides on a computer’s disk and that computer
makes the file system available to other computers on the network, then that
computer acts as a server. The computers that are accessing that file system are said
to be clients. The NFS service enables any given computer to access any other
computer’s file systems and, at the same time, to provide access to its own file
systems. A computer can play the role of client, server, or both at any given time on
a network.

A server can provide files to a diskless client, a computer that has no local disk. A
diskless client relies completely on the server for all its file storage. A diskless client
can act only as a client—never as a server.

Clients access files on the server by mounting the server’s shared file systems. When
a client mounts a remote file system, it does not make a copy of the file system;
rather, the mounting process uses a series of remote procedure calls that enable the

3

client to access the file system transparently on the server’s disk. The mount looks
like a local mount and users type commands as if the file systems were local.

Once a file system has been shared on a server through an NFS operation, it can be
accessed from a client. NFS file systems can be mounted automatically with autofs.

NFS File Systems
The objects that can be shared with the NFS service include any whole or partial
directory tree or a file hierarchy—including a single file. A computer cannot share a
file hierarchy that overlaps one that is already shared. Peripheral devices such as
modems and printers cannot be shared.

In most UNIX® system environments, a file hierarchy that can be shared corresponds
to a file system or to a portion of a file system; however, NFS support works across
operating systems, and the concept of a file system might be meaningless in other,
non-UNIX environments. Therefore, the term file system used throughout this guide
refers to a file or file hierarchy that can be shared and mounted over the NFS
environment.

About the NFS Environment
The NFS service enables computers of different architectures running different
operating systems to share file systems across a network. NFS support has been
implemented on many platforms ranging from the MS-DOS to the VMS operating
systems.

The NFS environment can be implemented on different operating systems because it
defines an abstract model of a file system, rather than an architectural specification.
Each operating system applies the NFS model to its file system semantics. This
means that file system operations like reading and writing function as though they
are accessing a local file.

The benefits of the NFS service are that it:

� Allows multiple computers to use the same files, so everyone on the network can
access the same data

� Reduces storage costs by having computers share applications instead of needing
local disk space for each user application

� Provides data consistency and reliability because all users can read the same set of
files

4 NFS Administration Guide ♦ August 1997

� Makes mounting of file systems transparent to users

� Makes accessing remote files transparent to users

� Supports heterogeneous environments

� Reduces system administration overhead

The NFS service makes the physical location of the file system irrelevant to the user.
You can use the NFS implementation to enable users to see all the relevant files
regardless of location. Instead of placing copies of commonly used files on every
system, the NFS service enables you to place one copy on one computer’s disk and
have all other systems access it across the network. Under NFS operation, remote file
systems are almost indistinguishable from local ones.

NFS Version 2
Version 2 was the first version of the NFS protocol in wide use. It continues to be
available on a large variety of platforms. SunOSTM releases prior to Solaris 2.5
support version 2 of the NFS protocol.

NFS Version 3
An implementation of NFS version 3 protocol was a new feature of the Solaris 2.5
release. Several changes have been made to improve interoperability and to improve
performance. To take advantage of these improvements, the version 3 protocol must
be running on both the NFS servers and clients.

This version allows for safe asynchronous writes on the server, which improves
performance by allowing the server to cache client write requests in memory. The
client does not need to wait for the server to commit the changes to disk, so the
response time is faster. Also, the server can batch the requests, which improves the
response time on the server.

All NFS version 3 operations return the file attributes, which are stored in the local
cache. Because the cache is updated more often, the need to do a separate operation
to update this data arises less often. Therefore, the number of RPC calls to the server
is reduced, improving performance.

The process for verifying file access permissions has been improved. In particular,
version 2 would generate a message reporting a “write error” or a “read error” if
users tried to copy a remote file that they did not have permissions to. In version 3,
the permissions are checked before the file is opened, so the error is reported as an
“open error.”

The NFS version 3 implementation removes the 8-Kbyte transfer size limit. Clients
and servers will negotiate whatever transfer size they support, rather than be

Solaris NFS Environment 5

restricted by the 8-Kbyte limit that was imposed in version 2. The Solaris 2.5
implementation defaults to a 32-Kbyte transfer size.

NFS ACL Support
Access control list (ACL) support was added in the Solaris 2.5 release. ACLs provide
a finer-grained mechanism to set file access permissions than is available through
standard UNIX file permissions. NFS ACL support provides a method of changing
and viewing ACL entries from a Solaris NFS client to a Solaris NFS server.

NFS Over TCP
The default transport protocol for the NFS protocol was changed to the transport
control protocol (TCP) in the Solaris 2.5 release, which will help performance on slow
networks and wide-area networks. TCP provides congestion control and error
recovery. NFS over TCP works with version 2 and version 3. Prior to 2.5, the default
NFS protocol was user datagram protocol (UDP).

Network Lock Manager
The Solaris 2.5 release also included an improved version of the network lock
manager, which provided UNIX record locking and PC file sharing for NFS files. The
locking mechanism is now more reliable for NFS files, so commands like ksh and
mail , which use locking, are less likely to hang.

NFS Large File Support
The Solaris 2.6 release of the NFS version 3 protocol can correctly manipulate files
larger than 2 Gbytes. The NFS version 2 protocol and the Solaris 2.5 implementation
of the version 3 protocol cannot handle files larger than 2 Gbytes.

NFS Client Failover
Dynamic failover of read-only file systems is supported in the 2.6 Solaris release. It
provides a high level of availability for read-only resources that are already
replicated, such as man pages, AnswerBookTM documentation, and shared binaries.
Failover can occur anytime after the file system is mounted. Manual mounts can now
list multiple replicas, much like the automounter allowed in previous releases. The

6 NFS Administration Guide ♦ August 1997

automounter has not changed, except that failover need not wait until the file system
is remounted.

Kerberos Hooks for the NFS Environment
The mount and share commands have been altered to support NFS mounts over
Kerberos V4. The share command has been changed to allow for multiple
authentication flavors to different clients.

WebNFS Support
The Solaris 2.6 release also includes the ability to make a file system on the Internet
accessible through firewalls using an extension to the NFS protocol. One of the
advantages to using the WebNFSTM protocol for Internet access is that the service is
built as an extension of the NFS version 3 and version 2 protocol, which is very
reliable. Soon, applications will be written to utilize this new file system access
protocol. Also, an NFS server provides greater throughput under a heavy load than
HyperText Transfer Protocol (HTTP) access to a Web server. This can decrease the
amount of time required to retrieve a file. In addition, the WebNFS implementation
provides the ability to share these files without the administrative overhead of an
anonymous ftp site.

About Autofs
File systems shared through the NFS service can be mounted using automatic
mounting. Autofs, a client-side service, is a file system structure that provides
automatic mounting. The autofs file system is initialized by automount , which is run
automatically when a system is booted. The automount daemon, automountd , runs
continuously, mounting and unmounting remote directories on an as-needed basis.

Whenever a user on a client computer running automountd tries to access a remote
file or directory, the daemon mounts the file system to which that file or directory
belongs. This remote file system remains mounted for as long as it is needed. If the
remote file system is not accessed for a certain period of time, it is automatically
unmounted.

Mounting need not be done at boot time, and the user no longer has to know the
superuser password to mount a directory; users need not use the mount and
umount commands. The autofs service mounts and unmounts file systems as
required without any intervention on the part of the user.

Solaris NFS Environment 7

Mounting some file hierarchies with automountd does not exclude the possibility of
mounting others with mount . A diskless computer must mount / (root), /usr , and
/usr/kvm through the mount command and the /etc/vfstab file.

Chapter 5 gives more specific information about the autofs service.

Autofs Features
Autofs works with file systems specified in the local name space. This information
can be maintained in NIS, NIS+, or local files.

The Solaris 2.6 release includes a fully multithreaded version of automountd . This
enhancement makes autofs more reliable and allows for concurrent servicing of
multiple mounts, which prevents the service from hanging if a server is unavailable.

The new automountd also provides better on-demand mounting. Previous releases
would mount an entire set of file systems if they were hierarchically related. Now
only the top file system is mounted. Other file systems related to this mountpoint are
mounted when needed.

The autofs service now support browsability of indirect maps. This allows a user to
see what directories could be mounted, without having to actually mount each one
of the file systems. A −nobrowse option has been added to the autofs maps, so that
large file systems, such as /net and /home , are not automatically browsable. Also,
autofs browsability maybe turned off on each client by using the −n option with
automount .

8 NFS Administration Guide ♦ August 1997

PART II All About NFS Services

This part of the manual describes most of the the NFS services and how to
administer them. The next part covers autofs.

� “Automatic File-System Sharing” on page 12

� “Mounting File Systems” on page 13

� “Setting Up NFS Services” on page 16

� “Administering the Secure NFS System” on page 18

� “WebNFS Administration Tasks” on page 21

� “NFS Troubleshooting Procedures” on page 25

� “NFS Error Messages” on page 31

� “NFS Files” on page 35

� “NFS Daemons” on page 36

� “NFS Commands” on page 38

CHAPTER 2

NFS Administration

This chapter provides information on how to perform such NFS administration tasks
as setting up NFS services, adding new file systems to share, mounting file systems,
using the Secure NFS system, or using the WebNFS functionality. The last part of the
chapter includes troubleshooting procedures and a list many of the NFS error
messages and their meanings.

� “Automatic File-System Sharing” on page 12

� “Mounting File Systems” on page 13

� “How to Start the NFS Services” on page 16

� “How to Disable Large Files on an NFS Server” on page 16

� “How to Use Client-Side Failover” on page 17

� “Administering the Secure NFS System” on page 18

� “WebNFS Administration Tasks” on page 21

� “Strategies for NFS Troubleshooting” on page 24

� “NFS Troubleshooting Procedures” on page 25

� “NFS Error Messages” on page 31

Your responsibilities as an NFS administrator depend on your site’s requirements
and the role of your computer on the network. You might be responsible for all the
computers on your local network, in which case you might be responsible for
determining these configuration items:

� Which computers, if any, should be dedicated servers

� Which computers should act as both servers and clients

� Which computers should be clients only

Maintaining a server once it has been set up involves the following tasks:

� Sharing and unsharing file systems as necessary

11

� Modifying administrative files to update the lists of file systems your computer
shares or mounts automatically

� Checking the status of the network

� Diagnosing and fixing NFS-related problems as they arise

� Setting up maps for autofs

Remember, a computer can be both a server and a client—sharing local file systems
with remote computers and mounting remote file systems.

Automatic File-System Sharing
Servers provide access to their file systems by sharing them over the NFS
environment. You specify which file systems are to be shared with the share
command and/or the /etc/dfs/dfstab file.

Entries in the /etc/dfs/dfstab file are shared automatically whenever you start
NFS server operation. You should set up automatic sharing if you need to share the
same set of file systems on a regular basis. For example, if your computer is a server
that supports diskless clients, you need to make your clients’ root directories
available at all times. Most file system sharing should be done automatically, the
only time that manual sharing should occur is during testing or troubleshooting.

The dfstab file lists all the file systems that your server shares with its clients and
controls which clients can mount a file system. If you want to modify dfstab to add
or delete a file system or to modify the way sharing is done, simply edit the file with
any supported text editor (such as vi). The next time the computer enters run level
3, the system reads the updated dfstab to determine which file systems should be
shared automatically.

Each line in the dfstab file consists of a share command—the same command you
would type at the command-line prompt to share the file system. The share
command is located in /usr/sbin .

How to Set Up Automatic File-System Sharing
1. Edit the /etc/dfs/dfstab file.

Add one entry to the file for each file system that you want to have shared
automatically. Each entry must be on a line by itself in the file and uses this
syntax:

share [-F nfs] [-o specific-options] [-d description] pathname

2. Check that the NFS service is running on the server.

12 NFS Administration Guide ♦ August 1997

If this is the first share command or set of share commands that you have
initiated, it is likely that the NFS daemons are not running. The following
commands kill the daemons and restart them.

/etc/init.d/nfs.server stop
/etc/init.d/nfs.server start

This ensures that NFS service is now running on the servers and will restart
automatically when the server is at run level 3 during boot.

At this point, set up your autofs maps so that clients can access the file systems
you’ve shared on the server. See “Setting Up Autofs” on page 67.

Mounting File Systems
There are several ways to mount file systems. They can be mounted automatically
when the system is booted, on demand from the command line, or through the
automounter. The automounter provides many advantages to mounting at boot time
or mounting from the command line, but many situations require a combination of
all three.

How to Mount at Boot Time
If you want to mount file systems at boot time instead of using autofs maps, follow
this procedure. Although you must follow this procedure for all local file systems, it
is not recommended for remote file systems because it must be completed on every
client.

♦ Edit the /etc/vfstab file.

Entries in the /etc/vfstab file have the following syntax:

special fsckdev mountp fstype fsckpass mount-at-boot mntopts

Example of a vfstab entry
You want a client computer to mount the /var/mail directory on the server wasp.
You would like it mounted as /var/mail on the client. You want the client to have
read-write access. Add the following entry to the client’s vfstab file.

NFS Administration 13

wasp:/var/mail - /var/mail nfs - yes rw

Caution - NFS servers should not have NFS vfstab entries because of a potential
deadlock. The NFS service is started after the entries in /etc/vfstab are checked,
so that if you have two servers fail at the same time that are mounting file systems
from each other, each system could hang as the systems reboot.

How to Mount From the Command Line
To manually mount a file system during normal operation, run the mount command
as superuser:

mount -F nfs -o ro bee:/export/share/local /mnt

In this case, the /export/share/local file system from the server bee is mounted
on read-only /mnt on the local system. Mounting from the command line allows for
temporary viewing of the file system. You can unmount the file system with umount
or by rebooting the local host.

Caution - The version of the mount command released in Solaris 2.6 and in future
patches will not warn about invalid options. The command silently ignores any
options that cannot be interpreted. Make sure to verify all of the options that were
used to prevent unexpected behavior.

How to Verify Options Used With the mount
Command
In the Solaris 2.6 release and in any versions of the mount command that were
patched after the 2.6 release, no warning is issued for invalid options. The following
procedure helps determine whether the options that were supplied either on the
command line or through /etc/vfstab were valid.

For this example, assume that the following command has been run:

mount -F nfs -o ro,vers=2 bee:/export/share/local /mnt

1. Run the nfsstat command to verify the options.

nfsstat -m
/mnt from bee:/export/share/local
Flags: vers=2,proto=tcp,sec=sys,hard,intr,dynamic,acl,rsize=8192,wsize=8192,

retrans=5

(continued)

14 NFS Administration Guide ♦ August 1997

(Continuation)

Note that the file system from bee has been mounted with the protocol version
set to 2. Unfortunately the nfsstat command does not display information
about all of the options, but using the nfsstat command is the most accurate
way to verify the options.

2. Check the entry in /etc/mnttab .

The mount command does not allow invalid options to be added to the mount
table, so verifying that the options listed in the file match those listed on the
command line is a way to check those options not reported by the nfsstat
command.

grep bee /etc/mnttab
bee:/export/share/local /mnt nfs ro,vers=2,dev=2b0005e 859934818

How to Mount With the Automounter
Chapter 5 includes the specific instructions for establishing and supporting mounts
with the automounter. Without any changes to the generic system, clients should be
able to access remote file systems through the /net mount point. To mount the
/export/share/local file system from the previous example, all you would need
to do is:

% cd /net/bee/export/share/local

Because the automounter allows all users to mount file systems, root access is not
required. It also provides for automatic unmounting of file systems, so there is no
need to unmount file systems after you are done.

NFS Administration 15

Setting Up NFS Services
This section discusses some of the tasks necessary to initialize or use NFS services.

How to Start the NFS Services
♦ To enable daemons without rebooting, become superuser and type the

following command.

/etc/init.d/nfs.server start

This starts the daemons if there is an entry in /etc/dfs/dfstab .

How to Stop the NFS Services
♦ To disable daemons without rebooting, become superuser and type the

following command.

/etc/init.d/nfs.server stop

How to Disable Large Files on an NFS Server
1. Check that no large files exist on the file system.

Here is an example of a command that you can run to locate large files:

cd /export/home1
find . -xdev -size +2000000 -exec ls -l {} \;

If there are large files on the file system, you must remove or move them to
another file system.

2. Unmount the file system.

umount /export/home1

16 NFS Administration Guide ♦ August 1997

3. Reset the file system state if the file system has been mounted using
−largefiles .

fsck resets the file system state if no large files exist on the file system:

fsck /export/home1

4. Mount the file system using −nolargefiles .

mount -F ufs -o nolargefiles /export/home1

You can do this from the command line, but to make the option more permanent,
add an entry like the following into /etc/vfstab :

/dev/dsk/c0t3d0s1 /dev/rdsk/c0t3d0s1 /export/home1 ufs 2 yes nolargefiles

Note - Previous versions of the Solaris operating system cannot use large files.
Check that clients of the NFS server are running at least version 2.6 if the clients
need to access large files.

How to Use Client-Side Failover
♦ On the NFS client, mount the file system using the −ro option.

You can do this from the command line, through the automounter, or by adding an
entry to /etc/vfstab that looks like:

bee,wasp:/export/share/local - /usr/local nfs - no -o ro

This syntax has been allowed by the automounter in earlier releases, but the failover
was not available while file systems were mounted, only when a server was being
selected.

Note - Servers that are running different versions of the NFS protocol can not be
mixed using a command line or in a vfstab entry. Mixing servers supporting NFS V2
and V3 protocols can only be done with autofs, in which case the best subset of
version 2 or version 3 servers is used.

NFS Administration 17

How to Disable Mount Access for One Client
1. Edit /etc/dfs/dfstab .

The first example allows mount access to all clients in the eng netgroup except
the host named rose . The second example allows mount access to all clients in
the eng.sun.com DNS domain except for rose .

share -F nfs -o ro=-rose:eng /export/share/man
share -F nfs -o ro=-rose:.eng.sun.com /export/share/man

For additional information on access lists, see “Setting Access Lists With the
share Command” on page 47.

2. Run the shareall command.

The NFS server will not use changes to /etc/dfs/dfstab until the file systems
are shared again or until the server is rebooted.

shareall

Administering the Secure NFS System
To use the Secure NFS system, all the computers you are responsible for must have a
domain name. A domain is an administrative entity, typically consisting of several
computers, that joins a larger network. If you are running NIS+, you should also
establish the NIS+ name service for the domain. See Solaris Naming Setup and
Configuration Guide.

You can configure the Secure NFS environment to use either Diffie-Hellman or
Kerberos Version 4 authentication or a combination of the two. The System
Administration Guide discusses these authentication services.

How to Set Up a Secure NFS Environment With
DH Authentication
1. Assign your domain a domain name, and make the domain name known to

each computer in the domain.

See the Solaris Naming Administration Guide if you are using NIS+ as your name
service.

18 NFS Administration Guide ♦ August 1997

2. Establish public keys and secret keys for your clients’ users using the newkey
or nisaddcred command, and have each user establish his or her own secure
RPC password using the chkey command.

Note - For information about these commands, see the newkey (1M), the
nisaddcred (1M), and the chkey (1) man pages.

When public and secret keys have been generated, the public and encrypted
secret keys are stored in the publickey database.

3. Verify that the name service is responding. If you are running NIS+, type the
following:

nisping -u
Last updates for directory eng.acme.com. :
Master server is eng-master.acme.com.

Last update occurred at Mon Jun 5 11:16:10 1995

Replica server is eng1-replica-replica-58.acme.com.
Last Update seen was Mon Jun 5 11:16:10 1995

If you are running NIS, verify that the ypbind daemon is running.

4. To verify that the keyserv daemon (the keyserver) is running, type the
following:

ps -ef | grep keyserv
root 100 1 16 Apr 11 ? 0:00 /usr/sbin/keyserv
root 2215 2211 5 09:57:28 pts/0 0:00 grep keyserv

If the daemon isn’t running, to start the keyserver, type the following:

/usr/sbin/keyserv

5. Run keylogin to decrypt and store the secret key.

Usually, the login password is identical to the network password. In this case,
keylogin is not required. If the passwords are different, the users have to log in,
and then do a keylogin . You still need to use the keylogin -r command as
root to store the decrypted secret key in /etc/.rootkey .

NFS Administration 19

Note - You only need to run keylogin -r if the root secret key changes or
/etc/.rootkey is lost.

6. Edit the /etc/dfs/dfstab file and add the −sec=dh option to the appropriate
entries (for Diffie-Hellman authentication).

share -F nfs -o sec=dh /export/home

7. Edit the auto_master data to include −sec=dh as a mount option in the
appropriate entries (for Diffie-Hellman authentication):

/home auto_home -nosuid,sec=dh

Note - With Solaris 2.5 and earlier releases, if a client does not mount as secure a
file system that is shared as secure, users have access as user nobody , rather than
as themselves. With Version 2 on the Solaris 2.6 release, the NFS server will refuse
access if the security modes do not match, unless −sec=none is included on the
share command line. With version 3, the mode will be inherited from the NFS
server, so there is no need for the clients to specify −sec=krb4 or −sec=dh . The
users will have access to the files as themselves.

When you reinstall, move, or upgrade a computer, remember to save
/etc/.rootkey if you don’t establish new keys or change them for root . If you
do delete /etc/.rootkey , you can always type:

keylogin -r

How to Set Up a Secure NFS Environment With
KERB Authentication
1. Edit the /etc/dfs/dfstab file and add the −sec=krb4 option to the

appropriate entries.

share -F nfs -o sec=krb4 /export/home

2. Edit the auto_master data to include −sec=krb4 as a mount option.

20 NFS Administration Guide ♦ August 1997

/home auto_home -nosuid,sec=krb4

Note - With Solaris 2.5 and earlier releases, if a client does not mount as secure a
file system that is shared as secure, users have access as user nobody , rather than
as themselves. With Version 2 on the Solaris 2.6 release, the NFS server will refuse
access if the security modes do not match, unless −sec=none is included on the
share command line. With version 3, the mode will be inherited from the NFS
server, so there is no need for the clients to specify −sec=krb4 or −sec=dh . The
users will have access to the files as themselves.

WebNFS Administration Tasks
This section provides instructions for administering the WebNFS system. The
following tasks are discussed.

� “Planning for WebNFS Access” on page 21

� “How to Enable WebNFS Access” on page 22

� “How to Browse Using an NFS URL” on page 23

� “How to Enable WebNFS Access Through a Firewall” on page 23

Planning for WebNFS Access
To use the WebNFS functionality, you first need an application capable of running
and loading an NFS URL (for example, nfs://server/path). The next step is to
choose the file system that will be exported for WebNFS access. If the application is
web browsing, often the document root for the web server is used. Several factors
need to be considered when choosing a file system to export for WebNFS access.

1. Each server has one public file handle that by default is associated with the
server’s root file system. The path in an NFS URL is evaluated relative to the
directory with which the public file handle is associated. If the path leads to a file
or directory within an exported file system, then the server provides access. You
can use the −public option of the share command to associate the public file
handle with a specific exported directory. Using this option allows URLs to be
relative to the shared file system rather than to the servers’ root file system. By
default the public file handle points to the root file system, but this file handle
does not allow web access unless the root file system is shared.

NFS Administration 21

2. The WebNFS environment allows users who already have mount privileges to
access files through a browser regardless of whether the file system is exported
using the −public option. Because users already have access to these files
through the NFS setup, this should not create any additional security risk. You
only need to share a file system using the −public option if users who cannot
mount the file system need to be able to use WebNFS access.

3. File systems that are already open to the public make good candidates for using
the −public option, like the top directory in an ftp archive or the main URL
directory for a web site.

4. You can use the −index option with the share command to force the loading of
an HTML file instead of listing the directory when an NFS URL is accessed.

After a file system is chosen, review the files and set access permissions to restrict
viewing of files or directories as needed. Establish the permissions as appropriate
for any NFS file system that is being shared. For many sites, 755 permissions for
directories and 644 permissions for files provides the correct level of access.

Additional factors need to be considered if both NFS and HTTP URLs are going
to be used to access one Web site. These are described in “WebNFS Limitations
With Web Browser Use” on page 59.

How to Enable WebNFS Access
By default in the 2.6 release, all file systems that are available for NFS mounting are
automatically available for WebNFS access. The only time that this procedure needs
to be followed is on servers that do not already allow NFS mounting, if resetting the
public file handle is useful to shorten NFS URLs, or if the −index option is required.

1. Edit the /etc/dfs/dfstab file.

Add one entry to the file for the file system that you want to have shared
automatically. The −index tag is optional.

share -F nfs -o ro,public,index=index.html /export/ftp

2. Check that the NFS service is running on the server.

If this is the first share command or set of share commands that you have
initiated, it is likely that the NFS daemons are not running. The following
commands kill and restart the daemons.

/etc/init.d/nfs.server stop
/etc/init.d/nfs.server start

22 NFS Administration Guide ♦ August 1997

3. Share the file system.

Once the entry is in /etc/dfs/dfstab , the file system can be shared by either
rebooting the system or by using the shareall command. If the NFS daemons
were restarted in step 2, then this command does not need to be run because the
script runs the command.

shareall

4. Verify that the information is correct.

Run the share command to check that the correct options are listed:

share
- /export/share/man ro ""
- /usr/src rw=eng ""
- /export/ftp ro,public,index=index.html ""

How to Browse Using an NFS URL
Browsers capable of supporting WebNFS access should provide access using an NFS
URL that looks something like:

nfs:// server<: port>/ path

server is the name of the file server, port is the port number to use (the default value
is 2049), and path is the path to the file. Path can either be relative to the public file
handle or relative to the root file system on the server.

Note - In most browsers, the URL service type (for example, nfs or http) is
remembered from one transaction to the next, unless a URL that includes a different
service type is loaded. When using NFS URLs, if a reference to a HTTP URL is
loaded, then subsequent pages are loaded using the HTTP protocol instead of the
NFS protocol, unless the URLs specify an NFS URL.

How to Enable WebNFS Access Through a
Firewall
You can enable WebNFS access for clients that are not part of the local subnet by
configuring the firewall to allow a TCP connection on port 2049 . Simply allowing
access for httpd does not allow NFS URLs to be used.

NFS Administration 23

Strategies for NFS Troubleshooting
When tracking down an NFS problem, keep in mind that there are three main points
of possible failure: the server, the client, and the network. The strategy outlined in
this section tries to isolate each individual component to find the one that is not
working. In all cases, the mountd and nfsd daemons must be running on the server
for remote mounts to succeed.

Note - The mountd and nfsd daemons start automatically at boot time only if there
are NFS share entries in the /etc/dfs/dfstab file. Therefore, mountd and nfsd
must be started manually when setting up sharing for the first time.

The −intr option is set by default for all mounts. If a program hangs with a “server
not responding” message, you can kill it with the keyboard interrupt Control-c.

When the network or server has problems, programs that access hard-mounted
remote files fail differently than those that access soft-mounted remote files.
Hard-mounted remote file systems cause the client’s kernel to retry the requests until
the server responds again. Soft-mounted remote file systems cause the client’s system
calls to return an error after trying for a while. Because these errors can result in
unexpected application errors and data corruption, avoid soft mounting.

When a file system is hard mounted, a program that tries to access it hangs if the
server fails to respond. In this case, the NFS system displays the following message
on the console:

NFS server hostname not responding still trying

When the server finally responds, the following message appears on the console:

NFS server hostname ok

A program accessing a soft-mounted file system whose server is not responding
generates the following message:

NFS operation failed for server hostname: error # (error_message)

Note - Because of possible errors, do not soft-mount file systems with read-write
data or file systems from which executables are run. Writable data could be
corrupted if the application ignores the errors. Mounted executables might not load
properly and can fail.

24 NFS Administration Guide ♦ August 1997

NFS Troubleshooting Procedures
To determine where the NFS service has failed, you need to follow several
procedures to isolate the failure. Check for the following items:

� Can the client reach the server?

� Can the client contact the NFS services on the server?

� Are the NFS services running on the server?

In the process of checking these items, it might become apparent that other portions
of the network are not functioning, such as the name service or the physical network
hardware. The Solaris Naming Administration Guide contains debugging procedures
for the NIS+ name service. Also, during the process it might become obvious that the
problem isn’t at the client end (for instance, if you get at least one trouble call from
every subnet in your work area). In this case, it is much more timely to assume that
the problem is the server or the network hardware near the server, and start the
debugging process at the server, not at the client.

How to Check Connectivity on an NFS Client
1. Check that the NFS server is reachable from the client. On the client, type the

following command.

% /usr/sbin/ping bee
bee is alive

If the command reports that the server is alive, remotely check the NFS server
(see “How to Remotely Check the NFS Server” on page 26).

2. If the server is not reachable from the client, make sure that the local name
service is running. For NIS+ clients type the following:

% /usr/lib/nis/nisping -u
Last updates for directory eng.acme.com. :
Master server is eng-master.acme.com.

Last update occurred at Mon Jun 5 11:16:10 1995

Replica server is eng1-replica-58.acme.com.
Last Update seen was Mon Jun 5 11:16:10 1995

NFS Administration 25

3. If the name service is running, make sure that the client has received the
correct host information by typing the following:

% /usr/bin/getent hosts bee
129.144.83.117 bee.eng.acme.com

4. If the host information is correct, but the server is not reachable from the
client, run the ping command from another client.

If the command run from a second client fails, see “How to Verify the NFS
Service on the Server” on page 28.

5. If the server is reachable from the second client, use ping to check connectivity
of the first client to other systems on the local net.

If this fails, check the networking software configuration on the client
(/etc/netmasks , /etc/nsswitch.conf , and so forth).

6. If the software is correct, check the networking hardware.

Try moving the client onto a second net drop.

How to Remotely Check the NFS Server
1. Check that the NFS services have started on the NFS server by typing the

following command:

% rpcinfo -s bee|egrep ’nfs|mountd’
100003 3,2 tcp,udp nfs superuser
100005 3,2,1 ticots,ticotsord,tcp,ticlts,udp mountd superuser

If the daemons have not been started, see “How to Restart NFS Services” on page
30.

2. Check that the server’s nfsd processes are responding. On the client, type the
following command.

26 NFS Administration Guide ♦ August 1997

% /usr/bin/rpcinfo -u bee nfs
program 100003 version 2 ready and waiting

program 100003 version 3 ready and waiting

If the server is running, it prints a list of program and version numbers. Using
the −t option tests the TCP connection. If this fails, skip to “How to Verify the
NFS Service on the Server” on page 28.

3. Check that the server’s mountd is responding, by typing the following
command.

% /usr/bin/rpcinfo -u bee mountd
program 100005 version 1 ready and waiting
program 100005 version 2 ready and waiting
program 100005 version 3 ready and waiting

Using the −t option tests the TCP connection. If either attempt fails, skip to
“How to Verify the NFS Service on the Server” on page 28.

4. Check the local autofs service if it is being used:

% cd /net/wasp

Choose a /net or /home mount point that you know should work properly. If
this doesn’t work, then as root on the client, type the following to restart the
autofs service:

/etc/init.d/autofs stop
/etc/init.d/autofs start

5. Verify that file system is shared as expected on the server.

NFS Administration 27

% /usr/sbin/showmount -e bee
/usr/src eng
/export/share/man (everyone)

Check the entry on the server and the local mount entry for errors. Also check the
name space. In this instance, if the first client is not in the eng netgroup, then
that client would not be able to mount the /usr/src file system.

Check all entries that include mounting informtion in all of the local files. The list
includes /etc/vfstab and all the /etc/auto_* files.

How to Verify the NFS Service on the Server
1. Log on to the server as root .

2. Check that the server can reach the clients.

ping lilac
lilac is alive

3. If the client is not reachable from the server, make sure that the local name
service is running. For NIS+ clients type the following:

% /usr/lib/nis/nisping -u
Last updates for directory eng.acme.com. :
Master server is eng-master.acme.com.

Last update occurred at Mon Jun 5 11:16:10 1995

Replica server is eng1-replica-58.acme.com.
Last Update seen was Mon Jun 5 11:16:10 1995

4. If the name service is running, check the networking software configuration on
the server (/etc/netmasks , /etc/nsswitch.conf, and so forth).

5. Type the following command to check whether the nfsd daemon is running.

28 NFS Administration Guide ♦ August 1997

rpcinfo -u localhost nfs
program 100003 version 2 ready and waiting
program 100003 version 3 ready and waiting
ps -ef | grep nfsd

root 232 1 0 Apr 07 ? 0:01 /usr/lib/nfs/nfsd -a 16
root 3127 2462 1 09:32:57 pts/3 0:00 grep nfsd

Also use the −t option with rpcinfo to check the TCP connection. If these
commands fail, restart the NFS service (see “How to Restart NFS Services” on
page 30).

6. Type the following command to check whether the mountd daemon is running.

/usr/bin/rpcinfo -u localhost mountd
program 100005 version 1 ready and waiting
program 100005 version 2 ready and waiting
program 100005 version 3 ready and waiting
ps -ef | grep mountd
root 145 1 0 Apr 07 ? 21:57 /usr/lib/autofs/automountd
root 234 1 0 Apr 07 ? 0:04 /usr/lib/nfs/mountd
root 3084 2462 1 09:30:20 pts/3 0:00 grep mountd

Also use the −t option with rpcinfo to check the TCP connection. If these
commands fail, restart the NFS service (see “How to Restart NFS Services” on
page 30).

7. Type the following command to check whether the rpcbind daemon is
running.

/usr/bin/rpcinfo -u localhost rpcbind
program 100000 version 1 ready and waiting
program 100000 version 2 ready and waiting
program 100000 version 3 ready and waiting

If rpcbind seems to be hung, either reboot the server or follow the steps in
“How to Warm-Start rpcbind ” on page 30.

NFS Administration 29

How to Restart NFS Services
♦ To enable daemons without rebooting, become superuser and type the

following commands.

/etc/init.d/nfs.server stop
/etc/init.d/nfs.server start

This stops the daemons and restart them, if there is an entry in /etc/dfs/dfstab .

How to Warm-Start rpcbind

If the NFS server can not be rebooted because of work in progress, it is possible to
restart rpcbind without having to restart all of the services that use RPC by
completing a warm start as described in this procedure.

1. As root on the server, get the PID for rpcbind .

Run ps to get the PID (which is the value in the second column).

ps -ef |grep rpcbind
root 115 1 0 May 31 ? 0:14 /usr/sbin/rpcbind
root 13000 6944 0 11:11:15 pts/3 0:00 grep rpcbind

2. Send a SIGTERM signal to the rpcbind process.

In this example, term is the signal that is to be sent and 115 is the PID for the
program (see the kill (1) man page). This causes rpcbind to create a list of the
current registered services in /tmp/portmap.file and /tmp/rpcbind.file .

kill -s term 115

Note - If you do not kill the rpcbind process with the −s term option, then
you cannot complete a warm start of rpcbind and will have to reboot the server
to restore service.

3. Restart rpcbind .

30 NFS Administration Guide ♦ August 1997

Do a warm restart of the command so that the files created by the kill
command are consulted, and the process resumes without requiring that all of the
RPC services be restarted (see the rpcbind (1M) man page).

/usr/sbin/rpcbind -w

How to Identify Which Host Is Providing NFS File
Service
♦ Run the nfsstat command with the −moption to gather current NFS

information.

The name of the current server is printed after “currserver= ”.

% nfsstat -m
/usr/local from bee,wasp:/export/share/local

Flags: vers=3,proto=tcp,sec=sys,hard,intr,llock,link,synlink,
acl,rsize=32768,wsize=32678,retrans=5

Failover: noresponse=0, failover=0, remap=0, currserver=bee

NFS Error Messages

Bad argument specified with index option - must be a file

You must include a file name with the −index option. You cannot use directory
names.

Cannot establish NFS service over /dev/ tcp: transport setup
problem

This message is often created when the services information in the name space
has not been updated. It can also be reported for UDP. To fix this problem, you
must update the services data in the name space. For NIS+ the entries should be:

NFS Administration 31

nfsd nfsd tcp 2049 NFS server daemon
nfsd nfsd ucp 2049 NFS server daemon

For NIS and /etc/services , the entries should be:

nfsd 2049/tcp nfs # NFS server daemon
nfsd 2049/ucp nfs # NFS server daemon

Cannot use index option without public option

Include the public option with the index option in the share command. You
must define the public file handle for the −index option to work.

Note - Releases prior to 2.6 required that the public file handle be set using the
share command. Since the Solaris 2.6 release sets the public file handle to be / by
default, this error message is no longer relevant.

NOTICE: NFS3: failing over from host1 to host2

This message is displayed on the console when a failover has occurred. It is an
advisory message only.

filename: File too large

An NFS version 2 client is trying to access a file that is over 2 Gbytes.

mount: ... server not responding:RPC_PMAP_FAILURE -
RPC_TIMED_OUT

The server sharing the file system you are trying to mount is down or
unreachable, at the wrong run level, or its rpcbind is dead or hung.

mount: ... server not responding: RPC_PROG_NOT_REGISTERED

mount registered with rpcbind , but the NFS mount daemon mountd is not
registered.

mount: ... No such file or directory

Either the remote directory or the local directory does not exist. Check the spelling
of the directory names. Run ls on both directories.

mount: ...: Permission denied

Your computer name might not be in the list of clients or netgroup allowed access
to the file system you want to mount. Use showmount -e to verify the access list.

nfs mount: ignoring invalid option " -option"

32 NFS Administration Guide ♦ August 1997

The -option flag is not valid. Refer to the mount_nfs (1M) man page to verify the
required syntax.

Note - This error message is not displayed when running the 2.6 version of the
mount command or in earlier versions that have been patched.

nfs mount: NFS can’t support "nolargefiles"

A Solaris 2.6 NFS client has attempted to mount a file system from an NFS server
using the −nolargefiles option. This option is not supported for NFS file
system types.

nfs mount: NFS V2 can’t support "largefiles"

The NFS version 2 protocol cannot handle large files. You must use version 3 if
access to large files is required.

NFS server hostname not responding still trying

If programs hang while doing file-related work, your NFS server might be dead.
This message indicates that NFS server hostname is down or that there is a problem
with the server or with the network. If failover is being used, then hostname is a list
of servers. Start with “How to Check Connectivity on an NFS Client” on page 25.

NFS fsstat failed for server hostname: RPC: Authentication error

This error can be caused by many situations. One of the most difficult to debug is
when this occurs because a user is in too many groups. Currently a user can be in
as many as 16 groups but no more if they are accessing files through NFS mounts.
If a user must have the functionality of being in more than 16 groups and if
Solaris 2.5 is running on the NFS server and the NFS clients, then use ACLs to
provide the needed access privileges.

relicas must have the same version

For NFS failover to function properly, the NFS servers that are replicas must
support the same version of the NFS protocol. Mixing version 2 and version 3
servers is not allowed.

replicated mounts must be read-only

NFS failover does not work on file systems that are mounted read-write.
Mounting the file system read-write would increase the likelihood that a file will
change. NFS failover depends on the file systems being identical.

replicated mounts must not be soft

Replicated mounts require that you wait for a timeout before failover occurs. The
soft option requires that the mount fail immediately when a timeout starts, so
you cannot include the −soft option with a replicated mount.

NFS Administration 33

share_nfs: Cannot share more than one filesystem with ’public’
option

Check the /etc/dfs/dfstab file to make sure that only one file system is
selected to be shared with the −public option. Only one public file handle can be
established per server, so only one file system per server can be shared with this
option.

WARNING: No network locking on hostname: path: contact admin to
install server change

An NFS client has unsuccessfully attempted to establish a connection with the
network lock manager on an NFS server. Rather than fail the mount, this warning
is generated to warn you that locking is not going to work.

34 NFS Administration Guide ♦ August 1997

CHAPTER 3

NFS Reference

This chapter provides an introduction to the NFS commands. This chapter also
provides information about all of the pieces of the NFS environment and how these
pieces work together.

� “NFS Files” on page 35

� “NFS Daemons” on page 36

� “NFS Commands” on page 38

� “Other Useful Commands” on page 51

� “How It All Works Together” on page 56

NFS Files
You need several ASCII files to support NFS activities on any computer. Table 3–1
lists these files and their functions.

TABLE 3–1 NFS ASCII Files

File Name Function

/etc/mnttab Lists file systems that are currently mounted including
automounted directories (see the mnttab (4) man page); do
not edit this file.

/etc/netconfig Lists the transport protocols; do not edit this file.

/etc/nfssec.conf Lists NFS security services; do not edit this file.

35

TABLE 3–1 NFS ASCII Files (continued)

File Name Function

/etc/rmtab Lists file systems remotely mounted by NFS clients (see the
rmtab (4) man page); do not edit this file.

/etc/vfstab Defines file systems to be mounted locally (see the
vfstab (4) man page).

/etc/default/fs Lists the default file system type for local file systems.

/etc/dfs/dfstab Lists the local resources to be shared.

/etc/dfs/fstypes Lists the default file-system types for remote file systems.

/etc/dfs/sharetab Lists the resources (local and remote) that are shared (see the
sharetab (4) man page); do not edit this file.

The first entry in /etc/dfs/fstypes is often used as the default file-system type
for remote file systems. This entry defines the NFS file-system type as the default.

There is only one entry in /etc/default/fs : the default file-system type for local
disks. You can determine the file system types that are supported on a client or
server by checking the files in /kernel/fs .

NFS Daemons
To support NFS activities, several daemons are started when a system goes into
run-level 3 or multiuser mode. Two of these daemons (mountd and nfsd) are run on
systems that are NFS servers. The automatic startup of the server daemons depends
on the existence of entries labeled with the NFS file-system type in
/etc/dfs/sharetab .

The other two daemons (lockd and statd) are run on NFS clients to support NFS
file locking. These daemons must also run on the NFS servers.

lockd
This daemon supports record-locking operations on NFS files. It will send locking
requests from the client to the NFS server. On the NFS server, it will start local

36 NFS Administration Guide ♦ August 1997

locking. The daemon is normally started without any options. You can use three
options with this command (see the lockd (1M) man page).

The −g graceperiod option selects the number of seconds that the clients have to
reclaim locks after a server reboot. During this time, the NFS server will only process
reclaims of old locks. All other requests for service must wait until the grace period is
over. This option affects the NFS server-side response, so can be can be changed only
on an NFS server. The default value for graceperiod is 45 seconds. Reducing this value
means that NFS clients can resume operation more quickly after a server reboot, but
it increases the chances that a client might not be able to recover all its locks.

The −t timeout option selects the number of seconds to wait before retransmitting a
lock request to the remote server. This option affects the NFS client-side service. The
default value for timeout is 15 seconds. Decreasing the timeout value can improve
response time for NFS clients on a noisy network, but it can cause additional server
load by increasing the frequency of lock requests.

The nthreads option specifies the maximum number of concurrent threads that the
server will handle per connection. Base the value for nthreads should on the load
expected on the NFS server. The default value is 20. Since each NFS client using TCP
uses a single connection with the NFS server, each TCP client will be granted the
ability to use up to 20 concurrent threads on the server. All NFS clients using UDP
will share a single connection with the NFS server. Under these conditions it might
be necessary to increase the number of threads available for the UDP connection. A
minimum calculation would be to allow for two threads for each UDP client, but this
is specific to the workload on the client, so two threads per client might not be
sufficient. The disadvantage to using more threads is that when the threads are used,
more memory will be used on the NFS server, but if the threads are never used
increasing nthreads will have no effect.

mountd
This is a remote procedure call (RPC) server that handles file system mount requests
from remote systems and provides access control. It checks /etc/dfs/sharetab to
determine which file systems are available for remote mounting and which systems
are allowed to do the remote mounting. Two options might be used with this
command (see the mountd (1M) man page).

The −v option runs the command in verbose mode. Each time an NFS server
determines the access a client should get, a message will be printed on the console.
The information generated can be useful when trying to determine why a client can
not access a file system.

The −r option rejects all future mount requests from clients. This does not affect
clients that already have a file system mounted.

NFS Reference 37

nfsd
This daemon handles other client file-system requests. You can use several options
with this command. See the nfsd (1M) man page for a complete listing.

The −l option sets the connection queue length for the NFS/TCP over
connection-oriented transports. The default value is 32 entries.

The −c #_conn option selects the maximum number of connections per
connection-oriented transport. The default value for #_conn is unlimited.

The nservers option is the maximum number of concurrent requests that a server can
handle. The default value for nservers is 1, but the startup scripts select 16.

Unlike older versions of this daemon, nfsd does not spawn multiple copies to
handle concurrent requests. Checking the process table with ps only shows one copy
of the daemon running.

statd
This daemon works with lockd to provide crash and recovery functions for the lock
manager. It keeps track of the clients that hold locks on an NFS server. If a server
crashes, upon rebooting statd on the server contacts statd on the client. The client
statd can then attempt to reclaim any locks on the server. The client statd also
informs the server statd when a client has crashed, so that the client’s locks on the
server can be cleared. There are no options to select with this daemon. For more
information see the statd (1M) man page.

NFS Commands
These commands must be run as root to be fully effective, but requests for
information can be made by all users:

� “clear_locks ” on page 39

� “mount ” on page 39

� “mountall ” on page 43

� “setmnt ” on page 50

� “share ” on page 44

� “shareall ” on page 49

� “showmount ” on page 50

� “umount ” on page 42

� “umountall ” on page 43

38 NFS Administration Guide ♦ August 1997

� “unshare ” on page 49

� “unshareall ” on page 49

clear_locks
This command enables you to remove all file, record, and share locks for an NFS
client. You must be root to run this command. From an NFS server you can clear
the locks for a specific client and from an NFS client you can clear locks for that
client on a specific server. The following example would clear the locks for the NFS
client named tulip on the current system.

clear_locks tulip

Using the −s option enables you to specify which NFS host to clear the locks from. It
must be run from the NFS client, which created the locks. In this case, the locks from
the client would be removed from the NFS server named bee .

clear_locks -s bee

Caution - This command should only be run when a client crashes and cannot clear
its locks. To avoid data corruption problems, do not clear locks for an active client.

mount
With this command, you can attach a named file system, either local or remote, to a
specified mount point. For more information, see the mount (1M) man page. Used
without arguments, mount displays a list of file systems that are currently mounted
on your computer.

Many types of file systems are included in the standard Solaris installation. For a
complete description of all of the file system types, see the System Administration
Guide. Each file system type has a specific man page that lists the options to mount
that are appropriate for that file system type. The man page for NFS file systems is
mount_nfs (1M); for UFS file systems it is mount_ufs (1M); and so forth.

Caution - The version of the mount command released in Solaris 2.6 and in future
patches will not warn about invalid options. The command will silently ignore any
options that can not be interpreted. Make sure to verify all of the options that were
used to prevent unexpected behavior.

NFS Reference 39

mount Options for NFS File Systems
The subsequent text lists some of the options that can follow the −o flag when
mounting an NFS file system.

bg|fg

These options can be used to select the retry behavior if a mount fails. The −bg
option causes the mount attempts to be run in the background. The −fg option
causes the mount attempt to be run in the foreground. The default is −fg , which is
the best selection for file systems that must be available. It prevents further
processing until the mount is complete. −bg is a good selection for file systems that
are not critical, because the client will do other processing while waiting for the
mount request to complete.

largefiles

This option makes it possible to access files larger than 2 Gbytes on a server running
the Solaris 2.6 release. Whether a large file can be accessed can only be controlled on
the server, so this option is silently ignored on NFS version 3 mounts. By default, all
2.6 UFS file systems are mounted with −largefiles . For mounts using the NFS
version 2 protocol, the −largefiles option causes the mount to fail with an error.

nolargefiles

This option for UFS mounts guarantees that there are and will be no large files on the
file system (see the mount_ufs (1M) man page). Because the existence of large files
can only be controlled on the NFS server, there is no option for −nolargefiles
using NFS mounts. Attempts to NFS mount a file system using this option will be
rejected with an error.

rw|ro

The −rw and −ro options indicate whether a file system is to be mounted read-write
or read-only. The default is read-write, which is the appropriate option for remote
home directories, mail-spooling directories, or other file systems that need to be
changed by users. The read-only option is appropriate for directories that should not
be changed by users; for example, shared copies of the man pages should not be
writable by users.

sec=mode

You can use this option to specify the authentication mechanism to be used during
the mount transaction. The value for mode can be one of the values shown in Table
3–2. The modes are also defined in /etc/nfssec.conf .

40 NFS Administration Guide ♦ August 1997

TABLE 3–2 NFS Security Modes

Mode Authentication Service Selected

krb4 Kerberos Version 4

none No authentication

dh Diffie-Hellman (DH) authentication

sys Standard UNIX authentication

soft|hard

An NFS file system mounted with the soft option returns an error if the server does
not respond. The hard option causes the mount to continue to retry until the server
responds. The default is hard , which should be used for most file systems.
Applications frequently do not check return values from soft -mounted file systems,
which can make the application fail or can lead to corrupted files. Even if the
application does check, routing problems and other conditions can still confuse the
application or lead to file corruption if the soft option is used. In most cases the
soft option should not be used. If a file system is mounted using the hard option
and becomes unavailable, an application using this file system will hang until the file
system becomes available.

Using the mount Command
Both of these commands mount an NFS file system from the server bee read-only:

mount -F nfs -r bee:/export/share/man /usr/man

mount -F nfs -o ro bee:/export/share/man /usr/man

This command uses the −O option to force the man pages from the server bee to be
mounted on the local system even if /usr/man has already been mounted on:

mount -F nfs -O bee:/export/share/man /usr/man

This command uses client failover:

mount -F nfs -r bee,wasp:/export/share/man /usr/man

NFS Reference 41

Note - When used from the command line, the listed servers must support the same
version of the NFS protocol. Do not mix version 2 and version 3 servers when
running mount from the command line. You can use mixed servers with autofs, in
which case the best subset of version 2 or version 3 servers is used.

Use the mount command with no arguments to display file systems mounted on a
client.

% mount
/ on /dev/dsk/c0t3d0s0 read/write/setuid on Tues Jan 24 13:20:47 1995
/usr on /dev/dsk/c0t3d0s6 read/write/setuid on Tues Jan 24 13:20:47 1995
/proc on /proc read/write/setuid on Tues Jan 24 13:20:47 1995
/dev/fd on fd read/write/setuid on Tues Jan 24 13:20:47 1995
/tmp on swap read/write on Tues Jan 24 13:20:51 1995
/opt on /dev/dsk/c0t3d0s5 setuid/read/write on Tues Jan 24 13:20:51 1995
/home/kathys on bee:/export/home/bee7/kathys

intr/noquota/nosuid/remote on Tues Jan 24 13:22:13 1995

umount
This command enables you to remove a remote file system that is currently
mounted. The umount command supports the −V option to allow for testing. You
might also use the −a option to umount several file systems at one time. If
mount_points are included with the −a option, then those file systems are unmounted.
If no mount points are included, then an attempt is made to unmount all file systems
listed in /etc/mnttab , except for the “required” file systems, such as / , /usr ,
/var , /proc , /dev/fd, and /tmp .

Because the file system is already mounted and should have an entry in
/etc/mnttab you do not need to include a flag for the file system type.

The command will not succeed if the file system is in use. For instance, if a user has
used cd to get access to a file system, the file system will be busy until the working
directory is changed. The umount command may hang temporarily if the NFS server
is unreachable.

Using the umount Command
This example unmounts a file system mounted on /usr/man :

umount /usr/man

This example displays the results of running umount −a -V :

42 NFS Administration Guide ♦ August 1997

umount -a -V
umount /home/kathys
umount /opt
umount /home
umount /net

Note that this command will not actually unmount the file systems.

mountall
Use this command to mount all file systems or a specific group of file systems listed
in a file system table. The command provides a way to select the file system type to
be accessed with the −F FSType option, to select all the remote file systems listed in a
file system table with the −r option, and to select all the local file systems with the
−l option. Because all file systems labeled as NFS file system type are remote file
systems, some of these options are redundant. For more information, see the
mountall (1M) man page.

Using the mountall Command
These two examples are equivalent:

mountall -F nfs

mountall -F nfs -r

umountall
Use this command to unmount a group of file systems. The −k option indicates that
the fuser −k mount_point command should be used to kill any processes associated
with the mount_point. The −s option indicates that unmount is not to be performed
in parallel. −l specifies that only local file systems are to be used, and −r specifies
that only remote file systems are to be used. The −h host option indicates that all file
systems from the named host should be unmounted. You cannot combine the −h
option with −l or −r .

Using the umountall Command
This command unmounts all file systems that are mounted from remote hosts:

umountall -r

NFS Reference 43

This command unmounts all file systems currently mounted from the server bee :

umountall -h bee

share
With this command, you can make a local file system on an NFS server available for
mounting. You can also use the share command to display a list of the file systems
on your system that are currently shared. The NFS server must be running for the
share command to work. The NFS server software is started automatically during
boot if there is an entry in /etc/dfs/dfstab . The command will not report an
error if the NFS server software is not running, so you must check this yourself.

The objects that can be shared include any directory tree, but each file system
hierarchy is limited by the disk slice or partition that the file system is located on.
For instance, sharing the root (/) file system would not also share /usr , unless they
are on the same disk partition or slice. Normal installation places root on slice 0 and
/usr on slice 6. Also, sharing /usr would not share any other local disk partitions
that are mounted on subdirectories of /usr .

A file system cannot be shared that is part of a larger file system that is already
shared. For example, if /usr and /usr/local are on one disk slice, then /usr can
be shared or /usr/local can be shared, but if both need to be shared with different
share options, then /usr/local will need to be moved to a separate disk slice.

Note - You can gain access to a file system that is shared read-only through the file
handle of a file system that is shared read-write if the two file systems are on the
same disk slice. It is more secure to place those file systems that need to be
read-write on a separate partition or disk slice than the file systems that you need to
share read-only.

share Options
Some of the options that you can include with the −o flag are:

rw|ro

The pathname file system is shared read-write or read-only to all clients.

rw=accesslist

The file system is shared read-write to the listed clients only. All other requests are
denied. The list of clients defined in accesslist has been expanded for the Solaris 2.6
release. See “Setting Access Lists With the share Command” on page 47 for more
information. You can use this option to override an −ro option.

44 NFS Administration Guide ♦ August 1997

The options that you can use with NFS file systems only include:

aclok

This option enables an NFS server supporting the NFS version 2 protocol to be
configured to do access control for NFS version 2 clients (running SunOS 2.4 or
earlier releases). Without this option all clients are given minimal access. With this
option the clients have maximal access. For instance, on file systems shared with the
−aclok option, if anyone has read permissions, then everyone does. However,
without this option, it is possible to deny access to a client who should have access
permissions. Whether it is preferred to permit too much access or to permit too little,
will depend on the security systems already in place. See the System Administration
Guide for more information about access control lists (ACLs).

Note - To take advantage of ACLs, it is best to have clients and servers run software
that supports the NFS version 3 and NFS_ACL protocols. If the software only
supports the NFS version 3 protocol, then clients will get correct access, but will not
be able to manipulate the ACLs. If the software supports the NFS_ACL protocol,
then the clients will get correct access and the capability to manipulate the ACLs.
Starting with release 2.5, the Solaris system supports both protocols.

anon=uid

You use uid to select the user ID of unauthenticated users. If you set uid to -1 , the
server denies access to unauthenticated users. You can grant root access by setting
anon=0 , but this will allow unauthenticated users to have root access, so use the
root option instead.

index=filename

You can use the −index= filename option to force the loading of a HyperText Markup
Language (HTML) file instead of displaying a listing of the directory when a user
accesses an NFS URL. This option will mimic the action of current browsers if an
index.html file is found in the directory that the HTTP URL is accessing. This is
the equivalent of setting the DirectoryIndex option for httpd . For instance, if the
dfstab file entry looks like:

share -F nfs -o ro,public,index=index.html /export/web

these URLs will display the same information:

nfs://< server>/< dir>
nfs://< server>/< dir>/index.html
nfs://< server>//export/web/< dir>
nfs://< server>//export/web/< dir>/index.html

(continued)

NFS Reference 45

(Continuation)

http://< server>/< dir>
http://< server>/< dir>/index.html

nosuid

This option signals that all attempts to enable the setuid or setgid mode should
be ignored. NFS clients will not be able to create files with the setuid or setgid
bits on.

public

The −public option has been added to the share command to enable WebNFS
browsing. Only one file system on a server may be shared with this option.

root=accesslist

The server gives root access to the hosts in the list. By default, the server does not
give root access to any remote hosts. If the selected security mode is anything other
than −sec=sys , then you can only include client host names in the accesslist. The list
of clients defined in accesslist has been expanded for the Solaris 2.6 release. See
“Setting Access Lists With the share Command” on page 47 for more information.

Caution - Granting root access to other hosts has far-reaching security implications;
use the root= option with extreme caution.

sec=mode[:mode]

mode selects the security modes that are needed to get access to the file system. By
default, the security mode is UNIX authentication. You can specify multiple modes
but only use each security mode once per command line. Each −mode option applies
to any subsequent −rw , −ro , −rw= , −ro= , −root= , and −window= options, until
another −mode is encountered. Using −sec=none maps all users to user nobody .

window=value

value selects the maximum life time in seconds of a credential on the NFS server. The
default value is 30000 seconds or 8.3 hours.

46 NFS Administration Guide ♦ August 1997

Setting Access Lists With the share Command

In OS releases prior to 2.6, the accesslist included with either the −ro= , −rw= , or
−root= option of the share command were restricted to a list of host names or
netgroup names. In the Solaris 2.6 release, the access list can also include a domain
name, a subnet number, or an entry to deny access. These extensions should make it
easier to control file access control on a single server, without having to change the
name space or maintain long lists of clients.

This command provides read-only access for most systems but allows read-write
access for rose and lilac :

share -F nfs -o ro,rw=rose:lilac /usr/src

In the next example, read-only access is assigned to any host in the eng netgroup.
The client rose is specifically given read-write access.

share -F nfs -o ro=eng,rw=rose /usr/src

Note - You cannot specify both rw and ro without arguments. If no read-write
option is specified, the default is read-write for all clients.

To share one file system with multiple clients, you must enter all options on the same
line, as multiple invocations of the share command on the same object “remember”
only the last command run. This command enables read-write access to three client
systems, but only rose and tulip are given access to the file system as root .

share -F nfs -o rw=rose:lilac:tulip,root=rose:tulip /usr/src

When sharing a file system using multiple authentication mechanisms, make sure to
include the −ro , −ro= , −rw , −rw= , −root , and −window options after the correct
security modes. In this example, UNIX authentication is selected for all hosts in the
netgroup named eng . These hosts can only mount the file system in read-only mode.
The hosts tulip and lilac will be able to mount the file system read-write if they
use Diffie-Hellman authentication. With these options, tulip and lilac will be
able to mount the file system read-only even if they are not using DH authentication,
if the host names are listed in the eng netgroup.

share -F nfs -o sec=dh,rw=tulip:lilac,sec=sys,ro=eng /usr/src

Even though UNIX authentication is the default security mode, it is not included if
the −sec option is used, so it is important to include a −sec=sys option if UNIX
authentication is to be used with any other authentication mechanism.

You can use a DNS domain name in the access list by preceding the actual domain
name with a dot. The dot indicates that the string following it is a domain name, not

NFS Reference 47

a fully qualified host name. The following entry will allow mount access to all hosts
in the eng.sun.com domain:

share -F nfs -o ro=.:.eng.sun.com /export/share/man

In this example, the single “. ” matches all hosts that are matched through the NIS or
NIS+ name spaces. The results returned from these name services do not include the
domain name. The “.eng.sun.com ” entry matches all hosts that use DNS for name
space resolution. DNS always returns a fully qualified host name, so the longer entry
is required if you use a combination of DNS and the other name spaces.

You can use a subnet number in an access list by preceding the actual network
number or the network name with “@”. This differentiates the network name from a
netgroup or a fully qualified host name. You must identify the subnet in either
/etc/networks or in a NIS or NIS+ name space. The following entries will have
the same effect if the 129.144 subnet has been identified as the eng network:

share -F nfs -o ro=@eng /export/share/man
share -F nfs -o ro=@129.144 /export/share/man
share -F nfs -o ro=@129.144.0.0 /export/share/man

The last two entries show that it is not necessary to include the full network address.

If the network prefix is not byte aligned, as with Classless Inter-Domain Routing
(CIDR), the mask length can be explicitly specified on the command line. The mask
length is defined by following either the network name or the network number with
a slash and the number of significant bits in the prefix of the address. For example:

share -f nfs -o ro=@eng/17 /export/share/man
share -F nfs -o ro=@129.144.132/17 /export/share/man

In these examples, the “/17 ” indicates that the first 17 bits in the address are to be
used as the mask. For additional information on CIDR, look up RFC 1519.

You can also select negative access by placing a “- ” before the entry. Note that
because the entries are read from left to right, you must place the negative access
entries before the entry they are to apply to:

share -F nfs -o ro=-rose:.eng.sun.com /export/share/man

This example would allow access to any hosts in the eng.sun.com domain except
the host named rose .

48 NFS Administration Guide ♦ August 1997

unshare
This command allows you to make a previously available file system unavailable for
mounting by clients. You can use the unshare command to unshare any file
system—whether the file system was shared explicitly with the share command or
automatically through /etc/dfs/dfstab . If you use the unshare command to
unshare a file system that you shared through the dfstab file, remember that it will
be shared again when you exit and re-enter run level 3. You must remove the entry
for this file system from the dfstab file if the change is to continue.

When you unshare an NFS file system, access from clients with existing mounts is
inhibited. The file system might still be mounted on the client, but the files will not
be accessible.

Using the unshare Command
This command unshares a specific file system:

unshare /usr/src

shareall
This command allows for multiple file systems to be shared. When used with no
options, the command shares all entries in /etc/dfs/dfstab . You can include a
file name to specify the name of a file that lists share command lines. If you do not
include a file name, /etc/dfs/dfstab is checked. If you use a “- ” to replace the
file name, then you can type share commands from standard input.

Using the shareall Command
This command shares all file systems listed in a local file:

shareall /etc/dfs/special_dfstab

unshareall
This command makes all currently shared resources unavailable. The −F FSType
option selects a list of file system types defined in /etc/dfs/fstypes . This flag
enables you to choose only certain types of file systems to be unshared. The default
file system type is defined in /etc/dfs/fstypes . To choose specific file systems,
use the unshare command.

Using the unshareall Command
This example should unshare all NFS type file systems:

NFS Reference 49

unshareall -F nfs

showmount
This command displays all the clients that have remotely mounted file systems that
are shared from an NFS server, or only the file systems that are mounted by clients,
or the shared file systems with the client access information. The command syntax is:

showmount [−ade] [hostname]

where −a prints a list all the remote mounts (each entry includes the client name and
the directory), −d prints a list of the directories that are remotely mounted by clients,
−e prints a list of the files shared (or exported), and hostname selects the NFS server
to gather the information from. If hostname is not specified then the local host is
queried.

Using the showmount Command

This command lists all clients and the directory that they have mounted.

showmount -a bee
lilac:/export/share/man
lilac:/usr/src
rose:/usr/src
tulip:/export/share/man

This command lists the directories that have been mounted.

showmount -d bee
/export/share/man
/usr/src

This command lists file systems that have been shared.

showmount -e bee
/usr/src (everyone)
/export/share/man eng

setmnt
This command creates an /etc/mnttab table. The mount and umount commands
consult the table. Generally, there is no reason to run this command manually; it is
run automatically when a system is booted.

50 NFS Administration Guide ♦ August 1997

Other Useful Commands
These commands can be useful when troubleshooting NFS problems.

� “nfsstat ” on page 51

� “pstack ” on page 52

� “rpcinfo ” on page 53

� “snoop ” on page 55

� “truss ” on page 55

nfsstat
You can use this command to gather statistical information about NFS and RPC
connections. The syntax of the command is:

nfsstat [−cmnrsz]

where −c displays client-side information, −mdisplays statistics for each
NFS-mounted file system, −n specifies that NFS information is to be displayed (both
client and server side), −r displays RPC statistics, −s displays the server-side
information, and −z specifies that the statistics should be set to zero. If no options
are supplied on the command line, the −cnrs options are used.

Gathering server-side statistics can be important for debugging problems when new
software or hardware is added to the computing environment. Running this
command at least once a week, and storing the numbers provides a good history of
previous performance.

Using the nfsstat Command

nfsstat -s

Server rpc:
Connection oriented:
calls badcalls nullrecv badlen xdrcall dupchecks dupreqs
11420263 0 0 0 0 1428274 19
Connectionless:
calls badcalls nullrecv badlen xdrcall dupchecks dupreqs
14569706 0 0 0 0 953332 1601

Server nfs:
calls badcalls
24234967 226

(continued)

NFS Reference 51

(Continuation)

Version 2: (13073528 calls)
null getattr setattr root lookup readlink read
138612 1% 1192059 9% 45676 0% 0 0% 9300029 71% 9872 0% 1319897 10%
wrcache write create remove rename link symlink
0 0% 805444 6% 43417 0% 44951 0% 3831 0% 4758 0% 1490 0%
mkdir rmdir readdir statfs
2235 0% 1518 0% 51897 0% 107842 0%
Version 3: (11114810 calls)
null getattr setattr lookup access readlink read
141059 1% 3911728 35% 181185 1% 3395029 30% 1097018 9% 4777 0% 960503 8%
write create mkdir symlink mknod remove rmdir
763996 6% 159257 1% 3997 0% 10532 0% 26 0% 164698 1% 2251 0%
rename link readdir readdirplus fsstat fsinfo pathconf
53303 0% 9500 0% 62022 0% 79512 0% 3442 0% 34275 0% 3023 0%
commit
73677 0%

Server nfs_acl:
Version 2: (1579 calls)
null getacl setacl getattr access
0 0% 3 0% 0 0% 1000 63% 576 36%
Version 3: (45318 calls)
null getacl setacl
0 0% 45318 100% 0 0%

This is an example of NFS server statistics. The first five lines deal with RPC and the
remaining lines report NFS activities. In both sets of statistics knowing the average
number of badcalls or calls and the number of calls per week, can help identify
when something is going wrong. The badcalls value reports the number of bad
messages from a client and can point out network hardware problems.

Some of the connections generate write activity on the disks. A sudden increase in
these statistics could indicate trouble and should be investigated. For NFS version 2
statistics, the connections to note to are: setattr, write, create, remove, rename, link,
symlink, mkdir, and rmdir. For NFS version 3 statistics the value to watch is commit.
If the commit level is high in one NFS server as compared to another almost
identical one, check that the NFS clients have enough memory. The number of
commit operations on the server go up when clients do not have resources available.

pstack
This command displays a stack trace for each process. It must be run by root . You
can use it to determine where a process is hung. The only option allowed with this
command is the PID of the process that you want to check (see the proc (1) man
page).

The example below is checking the nfsd process that is running.

52 NFS Administration Guide ♦ August 1997

/usr/proc/bin/pstack 243
243: /usr/lib/nfs/nfsd -a 16

ef675c04 poll (24d50, 2, ffffffff)
000115dc ???????? (24000, 132c4, 276d8, 1329c, 276d8, 0)
00011390 main (3, efffff14, 0, 0, ffffffff, 400) + 3c8
00010fb0 _start (0, 0, 0, 0, 0, 0) + 5c

It shows that the process is waiting for a new connection request. This is a normal
response. If the stack shows that the process is still in poll after a request is made, it
is possible that the process is hung. Follow the instructions in “How to Restart NFS
Services” on page 30 to fix this problem. Review the instructions in “NFS
Troubleshooting Procedures” on page 25 to fully verify that your problem is a hung
program.

rpcinfo
This command generates information about the RPC service running on a system.
You can also use it to change the RPC service. There are many options available with
this command (see the rpcinfo (1M) man page). This is a shortened synopsis for
some of the options that you can use with the command:

rpcinfo [−m | −s] [hostname]

rpcinfo [−t | −u] [hostname] [progname]

where −mdisplays a table of statistics of the rpcbind operations, −s displays a
concise list of all registered RPC programs, −t displays the RPC programs that use
TCP, −u displays the RPC programs that use UDP, hostname selects the host name of
the server you need information from, and progname selects the RPC program to
gather information about. If no value is given for hostname, then the local host name
is used. You can substitute the RPC program number for progname, but many users
will remember the name and not the number. You can use the −p option in place of
the −s option on those systems that do not run the NFS version 3 software.

The data generated by this command can include:

� The RPC program number

� The version number for a specific program

� The transport protocol that is being used

� The name of the RPC service

� The owner of the RPC service

NFS Reference 53

Using the rpcinfo Command

This example gathers information on the RPC services running on a server. The text
generated by the command is filtered by the sort command to make it more
readable. Several lines listing RPC services have been deleted from the example.

% rpcinfo -s bee |sort -n
program version(s) netid(s) service owner

100000 2,3,4 udp,tcp,ticlts,ticotsord,ticots portmapper superuser
100001 4,3,2 ticlts,udp rstatd superuser
100002 3,2 ticots,ticotsord,tcp,ticlts,udp rusersd superuser
100003 3,2 tcp,udp nfs superuser
100005 3,2,1 ticots,ticotsord,tcp,ticlts,udp mountd superuser
100008 1 ticlts,udp walld superuser
100011 1 ticlts,udp rquotad superuser
100012 1 ticlts,udp sprayd superuser
100021 4,3,2,1 ticots,ticotsord,ticlts,tcp,udp nlockmgr superuser
100024 1 ticots,ticotsord,ticlts,tcp,udp status superuser
100026 1 ticots,ticotsord,ticlts,tcp,udp bootparam superuser
100029 2,1 ticots,ticotsord,ticlts keyserv superuser
100068 4,3,2 tcp,udp cmsd superuser
100078 4 ticots,ticotsord,ticlts kerbd superuser
100083 1 tcp,udp - superuser
100087 11 udp adm_agent superuser
100088 1 udp,tcp - superuser
100089 1 tcp - superuser
100099 1 ticots,ticotsord,ticlts pld superuser
100101 10 tcp,udp event superuser
100104 10 udp sync superuser
100105 10 udp diskinfo superuser
100107 10 udp hostperf superuser
100109 10 udp activity superuser

.

.
100227 3,2 tcp,udp - superuser
100301 1 ticlts niscachemgr superuser
390100 3 udp - superuser

1342177279 1,2 tcp - 14072

This example shows how to gather information about a particular RPC service using
a particular transport on a server.

% rpcinfo -t bee mountd
program 100005 version 1 ready and waiting
program 100005 version 2 ready and waiting
program 100005 version 3 ready and waiting
% rpcinfo -u bee nfs
program 100003 version 2 ready and waiting
program 100003 version 3 ready and waiting

The first example checks the mountd service running over TCP. The second example
checks the NFS service running over UDP.

54 NFS Administration Guide ♦ August 1997

snoop
This command is often used to watch for packets on the network. It must be run as
root . It is a good way to make sure that the network hardware is functioning on
both the client and the server. Many options are available (see the snoop (1M) man
page). A shortened synopsis of the command is given below:

snoop [-d device] [−o filename] [host hostname]

where −d device specifies the local network interface, −o filename stores all the
captured packets into the named file, and hostname indicates to display only packets
going to and from a specific host.

The −d device option is useful on those servers that have multiple network interfaces.
You can use many other expressions besides setting the host. A combination of
command expressions with grep can often generate data that is specific enough to
be useful.

When troubleshooting make sure that packets are going to and from the host that
you expect them to. Also, look for error messages. Saving the packets to a file can
make it much easier to review the data.

truss
You can use this command to see if a process is hung. It must be run by root . You
can use many options with this command (see the truss (1) man page). A
shortened syntax of the command is:

truss [-t syscall] −p pid

where −t syscall selects system calls to trace, and −p pid indicates the PID of the
process to be traced. The syscall may be a comma-separated list of system calls to be
traced. Also, starting syscall with a ! selects to exclude the system calls from the trace.

This example shows that the process is waiting for another connection request from a
new client.

/usr/bin/truss -p 243
poll(0x00024D50, 2, -1) (sleeping...)

This is a normal response. If the response does not change after a new connection
request has been made, the process could be hung. Follow the instructions in “How
to Restart NFS Services” on page 30 to fix the hung program. Review the instructions
in “NFS Troubleshooting Procedures” on page 25 to fully verify that your problem is
a hung program.

NFS Reference 55

How It All Works Together
The following sections describe some of the complex functions of the NFS software.

Version 2 and Version 3 Negotiation
Because NFS servers might be supporting clients that are not using the NFS version
3 software, part of the initiation procedure includes negotiation of the protocol level.
If both the client and the server can support version 3, then that version will be used.
If either the client or the server can only support version 2, then that version will be
selected.

You can override the values determined by the negotiation by using the −vers
option to the mount command (see the mount_nfs (1M) man page). Under most
circumstances, you should not have to specify the version level, as the best one will
be selected by default.

UDP and TCP Negotiation
During initiation, the transport protocol is also negotiated. By default, the first
connection-oriented transport supported on both the client and the server is selected.
If this does not succeed, then the first available connectionless transport protocol is
used. The transport protocols supported on a system are listed in /etc/netconfig .
TCP is the connection-oriented transport protocol supported by the Solaris 2.6
release. UDP is the connectionless transport protocol.

When both the NFS protocol version and the transport protocol are determined by
negotiation, the NFS protocol version is given precedence over the transport
protocol. The NFS version 3 protocol using UDP will be given higher precedence
than the NFS version 2 protocol using TCP. You can manually select both the NFS
protocol version and the transport protocol with the mount command (see the
mount_nfs (1M) man page). Under most conditions, it is better to allow the
negotiation to select the best options.

File Transfer Size Negotiation
The file transfer size establishes the size of the buffers that are used when
transferring data between the client and the server. In general, larger transfer sizes
are better. The NFS version 3 protocol has an unlimited transfer size, but the Solaris
2.6 release bids a default buffer size of 32 Kbytes. The client can bid a smaller
transfer size at mount time if needed, but under most conditions this is not necessary.

56 NFS Administration Guide ♦ August 1997

The transfer size is not negotiated with systems using the NFS version 2 protocol.
Under this condition the maximum transfer size is set to 8 Kbytes.

You can use the −rsize and −wsize options to manually set the transfer size with
the mount command. You might need to reduce the transfer size for some PC clients.
Also, you can increase the transfer size if the NFS server is configured to use larger
transfer sizes.

Client-Side Failover
Using client-side failover, an NFS client can switch to another server if the server
supporting a replicated file system becomes unavailable. The file system can become
unavailable if the server it is connected to crashes, if the server is overloaded or if
there is a network fault. The failover, under these conditions, will normally be
transparent to the user. Once established the failover can occur at any time without
disrupting the processes running on the client.

Failover requires that the file system be mounted read-only. The file systems must be
identical for the failover to occur successfully. See “What Is a Replicated File
System?” on page 58 for a description of what makes a file system identical. A static
file system or one that is not changed often is the best candidate for failover.

You can not use file systems that are mounted using cachefs with failover. Extra
information is stored for each cachefs file system. This information can not be
updated during failover, so only one of these two features may be used when
mounting a file system.

The number of replicas that need to be established for each file system depends on
many factors. In general, it is better to have a couple of servers, each supporting
multiple subnets rather than have a unique server on each subnet. The process
requires checking of each server in the list, so the more servers that are listed the
slower each mount will be.

Failover Terminology
To fully comprehend the process, two terms need to be understood.

� failover – Selecting a server from a list of servers supporting a replicated file
system. Normally, the next server in the sorted list is used, unless it fails to
respond.

� remap – Making use of a new server. Through normal use, the clients store the
path name for each active file on the remote file system. During the remap, these
path names are evaluated to locate the files on the new server.

NFS Reference 57

What Is a Replicated File System?
For the purposes of failover, a file system may be called a replica when each file is the
same size and has the same vnode type as the original file system. Permissions,
creation dates, and other file attributes are not considered. If the file size or vnode
types are different, then the remap will fail and the process will hang until the old
server becomes available.

You can maintain a replicated file system using rdist , cpio , or other file transfer
mechanisms. Because updating the replicated file systems will cause inconsistency,
follow these suggestions for best results:

� Rename the old version of the file before installing a new one.

� Run the updates at night when client usage is low.

� Keep the updates small.

� Minimize the number of copies.

Failover and NFS Locking
Some software packages require read locks on files. To prevent these products from
breaking, read locks on read-only file systems are allowed, but are visible to the
client side only. The locks will persist through a remap because the server doesn’t
“know” about them. Because the files should not be changing, you do not need to
lock the file on the server side.

Large Files
The Solaris 2.6 release supports files that are over 2 Gbytes. By default, UFS file
systems are mounted with the −largefiles option to support the new
functionality. Previous releases are not able to handle files of this size. See “How to
Disable Large Files on an NFS Server” on page 16 for instructions.

No changes need to occur on a Solaris 2.6 NFS client to be able to access a large file,
if the file system on the server is mounted with the −largefiles option. However,
not all 2.6 commands will be able to handle these large files. See largefile(5) for
a list of the commands that can handle the large files. Clients that cannot support the
NFS version 3 protocol with the large file extensions will be unable to access any
large files. Although clients running the Solaris 2.5 release can use the NFS version 3
protocol, large file support was not included in that release.

How the WebNFS Service Works
The WebNFS service makes files in a directory available to clients using a public file
handle. A file handle is simply an address generated by the kernel that identifies a

58 NFS Administration Guide ♦ August 1997

file for NFS clients. The public file handle has a predefined value, so there is no need
for the server to generate a file handle for the client. The ability to use this
predefined file handle reduces network traffic by eliminating the MOUNTprotocol and
should increase response time for the clients.

By default the public file handle on an NFS server is established on the root file
system. This default will provide WebNFS access to any clients that already have
mount privileges on the server. You can change the public file handle to point to any
file system by using the share command.

When the client has the file handle for the file system, a LOOKUPis run to determine
the file handle for the file to be accessed. The NFS protocol allows the evaluation of
only one path name component at a time. Each additional level of directory
hierarchy requires another LOOKUP. A WebNFS server can evaluate an entire path
name with a single transaction, called multicomponent lookup, when the LOOKUPis
relative to the public file handle. With multicomponent lookup, the WebNFS server is
able to deliver the file handle to the desired file without having to exchange the file
handles for each directory level in the path name.

In addition, an NFS client can initiate concurrent downloads over a single TCP
connection, which provides quick access without the additional load on the server
caused by setting up multiple connections. Although Web browser applications
support concurrent downloading of multiple files, each file has its own connection.
By using one connection, the WebNFS software reduces the overhead on the server.

If the final component in the path name is a symbolic link to another file system, the
client can access the file if the client already has access through normal NFS activities.

Normally, an NFS URL will be evaluated relative to the public file handle. The
evaluation can be changed to be relative to the server’s root file system by adding an
additional slash to the beginning of the path. In this example, these two NFS URLs
would be equivalent if the public file handle has been established on the
/export/ftp file system.

nfs://server/junk
nfs://server//export/ftp/junk

WebNFS Limitations With Web Browser Use
There are several functions that a Web site using HTTP can provide that are not
supported by the WebNFS software. These differences are caused by the fact that the
NFS server will only send the file, so any special processing must be done on the
client. If you need to have one Web site that is configured for both WebNFS and
HTTP access, then consider the following issues:

� NFS browsing does not run CGI scripts, so a file system with an active Web site
that uses many CGI scripts might not be appropriate for NFS browsing.

NFS Reference 59

� The browser might start different viewers, to handle files in different file formats.
Accessing these files through an NFS URL will start an external viewer as long as
the file type can be determined by the file name. The browser should recognize
any file name extension for a standard MIME type when an NFS URL is used.
Because the WebNFS software does not check inside the file to determine the file
type—unlike some Web browser applications—the only way to determine a file
type is by the file name extension.

� NFS browsing cannot utilize server-side image maps (clickable images). However,
it can utilize client-side image maps (clickable images) because the URLs are
defined with the location. No additional response is required from the document
server.

The Secure NFS System
The NFS environment is a powerful and convenient way to share file systems on a
network of different computer architectures and operating systems. However, the
same features that make sharing file systems through NFS operation convenient also
pose some security problems. Historically, most NFS implementations have used
UNIX (or AUTH_SYS) authentication, but stronger authentication methods such as
AUTH_DH have also been available. When using UNIX authentication, an NFS
server authenticates a file request by authenticating the computer making the
request, but not the user, so a client user can run su and impersonate the owner of a
file. If DH authentication is used, the NFS server will authenticate the user, making
this sort of impersonation much harder.

With root access and knowledge of network programming, anyone can introduce
arbitrary data into the network and extract any data from the network. The most
dangerous attacks are those involving the introduction of data, such as
impersonating a user by generating the right packets or recording “conversations”
and replaying them later. These attacks affect data integrity. Attacks involving
passive eavesdropping—merely listening to network traffic without impersonating
anybody—are not as dangerous, as data integrity is not compromised. Users can
protect the privacy of sensitive information by encrypting data that goes over the
network.

A common approach to network security problems is to leave the solution to each
application. A better approach is to implement a standard authentication system at a
level that covers all applications.

The Solaris operating system includes an authentication system at the level of remote
procedure call (RPC)—the mechanism on which NFS operation is built. This system,
known as Secure RPC, greatly improves the security of network environments and
provides additional security to services such as the NFS system. When the NFS
system uses the facilities provided by Secure RPC, it is known as a Secure NFS
system.

60 NFS Administration Guide ♦ August 1997

Secure RPC
Secure RPC is fundamental to the Secure NFS system. The goal of Secure RPC is to
build a system at least as secure as a time-sharing system (one in which all users
share a single computer). A time-sharing system authenticates a user through a login
password. With data encryption standard (DES) authentication, the same is true.
Users can log in on any remote computer just as they can on a local terminal, and
their login passwords are their passports to network security. In a time-sharing
environment, the system administrator has an ethical obligation not to change a
password in order to impersonate someone. In Secure RPC, the network
administrator is trusted not to alter entries in a database that stores public keys.

You need to be familiar with two terms to understand an RPC authentication system:
credentials and verifiers. Using ID badges as an example, the credential is what
identifies a person: a name, address, birthday, and so on. The verifier is the photo
attached to the badge: you can be sure the badge has not been stolen by checking the
photo on the badge against the person carrying it. In RPC, the client process sends
both a credential and a verifier to the server with each RPC request. The server sends
back only a verifier because the client already “knows” the server’s credentials.

RPC’s authentication is open ended, which means that a variety of authentication
systems may be plugged into it. Currently, there are three systems: UNIX, DH, and
KERB (for Kerberos Version 4).

When UNIX authentication is used by a network service, the credentials contain the
client’s host name, UID, GID, and group-access list, but the verifier contains nothing.
Because there is no verifier, a superuser could falsify appropriate credentials, using
commands such as su. Another problem with UNIX authentication is that it assumes
all computers on a network are UNIX computers. UNIX authentication breaks down
when applied to other operating systems in a heterogeneous network.

To overcome the problems of UNIX authentication, Secure RPC uses either DH
authentication or KERB authentication.

DH Authentication
DH authentication uses the data encryption standard (DES) and Diffie-Hellman
public-key cryptography to authenticate both users and computers in the network.
DES is a standard encryption mechanism; Diffie-Hellman public-key cryptography is
a cipher system that involves two keys: one public and one secret. The public and
secret keys are stored in the name space. NIS stores the keys in the publickey map,
and NIS+ stores the keys in the cred table. These maps contain the public key and
secret key for all potential users. See the System Administration Guide for more
information on how to set up the maps and tables.

The security of DH authentication is based on a sender’s ability to encrypt the current
time, which the receiver can then decrypt and check against its own clock. The time
stamp is encrypted with DES. There are two requirements for this scheme to work:

� The two agents must agree on the current time.

NFS Reference 61

� The sender and receiver must be using the same encryption key.

If a network runs a time-synchronization program, then the time on the client and
the server is synchronized automatically. If a time synchronization program is not
available, time stamps can be computed using the server’s time instead of the
network time. The client asks the server for the time before starting the RPC session,
then computes the time difference between its own clock and the server’s. This
difference is used to offset the client’s clock when computing time stamps. If the
client and server clocks get out of synchronization to the point where the server
begins to reject the client’s requests, the DH authentication system on the client
resynchronizes with the server.

The client and server arrive at the same encryption key by generating a random
conversation key, also known as the session key, and then using public-key
cryptography to deduce a common key. The common key is a key that only the client
and server are capable of deducing. The conversation key is used to encrypt and
decrypt the client’s time stamp; the common key is used to encrypt and decrypt the
conversation key.

KERB Authentication
Kerberos is an authentication system developed at MIT. Encryption in Kerberos is
based on DES.

Kerberos works by authenticating the user’s login password. A user types the kinit
command, which obtains a ticket that is valid for the time of the session (or eight
hours, the default session time) from the authentication server. When the user logs
out, the ticket may be destroyed using the kdestroy command.

The Kerberos server software is available from MIT Project Athena, and is not part of
the SunOS software. SunOS software provides

� Routines used by the client to create, acquire, and verify tickets

� An authentication option to Secure RPC

� A client-side daemon, kerbd

See the System Administration Guide for more details.

Using Secure RPC With NFS
Be aware of the following points if you plan to use Secure RPC:

� If a server crashes when no one is around (after a power failure for example), all
the secret keys that are stored on the system are deleted. Now no process can
access secure network services or mount an NFS file system. The important
processes during a reboot are usually run as root, so these processes would work
if root’s secret key were stored away, but nobody is available to type the password

62 NFS Administration Guide ♦ August 1997

that decrypts it. keylogin -r allows root to store the clear secret key in
/etc/.rootkey , which keyserv reads.

� Some systems boot in single-user mode, with a root login shell on the console and
no password prompt. Physical security is imperative in such cases.

� Diskless computer booting is not totally secure. Somebody could impersonate the
boot server and boot a devious kernel that, for example, makes a record of your
secret key on a remote computer. The Secure NFS system provides protection only
after the kernel and the key server are running. Before that, there is no way to
authenticate the replies given by the boot server. This could be a serious problem,
but it requires a sophisticated attack, using kernel source code. Also, the crime
would have evidence. If you polled the network for boot servers, you would
discover the devious boot server’s location.

� Most setuid programs are owned by root; if root’s secret key is stored in
/etc/.rootkey , these programs behave as they always have. If a setuid program
is owned by a user, however, it may not always work. For example, if a setuid
program is owned by dave and dave has not logged into the computer since it
booted, then the program would not be able to access secure network services.

� If you log in to a remote computer (using login , rlogin , or telnet) and use
keylogin to gain access, you give access to your account. This is because your
secret key gets passed to that computer’s key server, which then stores it. This is
only a concern if you don’t trust the remote computer. If you have doubts,
however, don’t log in to a remote computer if it requires a password. Instead, use
the NFS environment to mount file systems shared by the remote computer. As an
alternative, you can use keylogout to delete the secret key from the key server.

� If a home directory is shared with the −o sec=dh or −o sec=krb4 options, then
remote logins can be a problem. If the /etc/hosts.equiv or ~/.rhosts files
are set to not prompt for a password, the login will succeed, but the user will not
be able to access their home directory because no authentication has occurred
locally. If the user is prompted for a password, then as long as the password
matches the network password, the user will have access to their home directory.

NFS Reference 63

64 NFS Administration Guide ♦ August 1997

PART III All About Autofs

This part of the manual discusses the autofs service and the procedures to use autofs.

� “Setting Up Autofs” on page 67

� “Common Tasks and Procedures” on page 68

� “Troubleshooting Autofs” on page 82

� “Autofs Programs” on page 87

� “Autofs Maps” on page 88

� “How Autofs Works” on page 94

CHAPTER 4

Autofs Administration

This chapter provides information on how to perform autofs administration tasks,
such as modifying automounter maps, using the automounter to reach non-NFS type
devices, and how to configure maps.

� “How to Start the Automounter” on page 68

� “How to Modify the Master Map” on page 70

� “How to Modify Indirect Maps” on page 70

� “How to Modify Direct Maps” on page 70

� “How to Access CD-ROM Applications With Autofs” on page 72

� “How to Access PC-DOS Data Diskettes With Autofs” on page 72

� “How to Set Up a Common View of /home ” on page 73

� “How to Consolidate Project-Related Files Under /ws ” on page 75

� “How to Set Up Different Architectures to Access a Shared Name Space” on page
77

� “How to Apply Security Restrictions” on page 79

� “Disabling Autofs Browsability” on page 79

� “Troubleshooting Autofs” on page 82

Setting Up Autofs
This section includes procedures to start and stop the autofs service.

67

How to Start the Automounter
♦ To enable the daemon without rebooting, become superuser and type the

following command.

/etc/init.d/autofs start

This starts the daemon.

How to Stop the Automounter
♦ To disable the daemon without rebooting, become superuser and type the

following command.

/etc/init.d/autofs stop

Common Tasks and Procedures
This section describes some of the most common tasks you might encounter in your
own environment. Recommended procedures are included for each scenario to help
you configure autofs to best meet your clients’ needs.

Note - Use the Solstice System Management Tools or see the Solaris Naming
Administration Guide to perform the tasks discussed in this section.

Administrative Tasks Involving Maps
The following list shows the different administrative tasks you might need to
perform involving maps to change your autofs environment.

� “How to Modify the Master Map” on page 70

� “How to Modify Indirect Maps” on page 70

� “How to Modify Direct Maps” on page 70

� “Avoiding Mount-Point Conflicts ” on page 71

Table 4–1 describes the types of maps and their uses.

68 NFS Administration Guide ♦ August 1997

TABLE 4–1 Types of autofs Maps and Their Uses

Type of Map Use

Master Associates a directory with a map

Direct Directs autofs to specific file systems

Indirect Directs autofs to reference-oriented file systems

Table 4–2 describes how to make changes to your autofs environment based on your
name service.

TABLE 4–2 Map Maintenance

Name Service Method

Local files Text editor

NIS make files

NIS+ nistbladm

Table 4–3 tells you when to run the automount command depending on the
modification you have made to the type of map. For example, if you’ve made an
addition or a deletion to a direct map, you need to run the automount command on
the local system to allow the change take effect; however, if you’ve modified an
existing entry, you do not need to run the automount command to make the change
take effect.

TABLE 4–3 When to Run the automount Command

Type of Map Restart automount ?

Addition or Deletion Modification

auto_master Y Y

direct Y N

indirect N N

Autofs Administration 69

TABLE 4–3 When to Run the automount Command (continued)

Modifying the Maps
The following procedures require that you are using NIS+ as your name service.

How to Modify the Master Map
1. Using the nistbladm command, make the changes you want to the master

map.

See the Solaris Naming Administration Guide.

2. For each client, become superuser by typing su at a prompt and then the
superuser password.

3. For each client, run the automount command to ensure the changes you made
take effect.

4. Notify your users of the changes.

Notification is required so that the users can also run the automount command as
superuser on their own computers.

The automount command consults the master map whenever it is run.

How to Modify Indirect Maps
♦ Using the nistbladm command, make the changes you want to the indirect

map.

See the Solaris Naming Administration Guide.

The change takes effect the next time the map is used, which is the next time a
mount is done.

How to Modify Direct Maps
1. Using the nistbladm command, add or delete the changes you want to the

direct map.

See the Solaris Naming Administration Guide.

70 NFS Administration Guide ♦ August 1997

2. If you added or deleted a mount-point entry in step 1, run the automount
command.

3. Notify your users of the changes.

Notification is required so that the users can also run the automount command as
superuser on their own computers.

Note - If you simply modify or change the contents of an existing direct map
entry, you do not need to run the automount command.

For example, suppose you modify the auto_direct map so that the /usr/src
directory is now mounted from a different server. If /usr/src is not mounted at
this time, the new entry takes effect immediately when you try to access
/usr/src . If /usr/src is mounted now, you can wait until the
auto-unmounting takes place, and then access it.

Note - Because of the additional steps, and because they do not take up as much
space in the mount table as direct maps, use indirect maps whenever possible.
They are easier to construct, and less demanding on the computers’ file systems.

Avoiding Mount-Point Conflicts
If you have a local disk partition mounted on /src and you also want to use the
autofs service to mount other source directories, you can encounter a problem. If you
specify the mount point /src , the service hides the local partition whenever you try
to reach it.

You need to mount the partition somewhere else; for example, on /export/src .
You would the need an entry in /etc/vfstab like:

/dev/dsk/d0t3d0s5 /dev/rdsk/c0t3d0s5 /export/src ufs 3 yes -

and this entry in auto_src :

terra terra:/export/src

where terra is the name of the computer.

Autofs Administration 71

Accessing Non-NFS File Systems
Autofs can also mount files other than NFS files. Autofs mounts files on removable
media, such as diskettes or CD-ROM. Normally, you would mount files on removable
media using the Volume Manager. The following examples show how this mounting
could be done through autofs. The Volume Manager and autofs do not work together,
so these entries would not be used without first deactivating the Volume Manager.

Instead of mounting a file system from a server, you put the media in the drive and
reference it from the map. If you want to access non-NFS file systems and you are
using autofs, see the following procedures. For more information about Volume
Manager, see the System Administration Guide.

How to Access CD-ROM Applications With Autofs

Note - Use this procedure if you are not using Volume Manager.

♦ Specify the CD-ROM file system type as follows:

hsfs -fstype=hsfs,ro :/dev/sr0

The CD-ROM device you want to mount must appear as a name following a
colon.

How to Access PC-DOS Data Diskettes With
Autofs

Note - Use this procedure if you are not using Volume Manager.

♦ Specify the diskette file system type as follows:

pcfs -fstype=pcfs :/dev/diskette

Accessing NFS File Systems Using CacheFS
The cache file system (CacheFS) is a generic nonvolatile caching mechanism that
improves the performance of certain file systems by utilizing a small, fast, local disk.

You can improve the performance of the NFS environment by using CacheFS to
cache data from an NFS file system on a local disk.

72 NFS Administration Guide ♦ August 1997

How to Access NFS File Systems Using CacheFS
1. Run the cfsadmin command to create a cache directory on the local disk.

cfsadmin -c /var/cache

2. Add the cachefs entry to the appropriate automounter map.

For example, adding this entry to the master map will cache all home directories:

/home auto_home -fstype=cachefs,cachedir=/var/cache,backfstype=nfs

Adding this entry to the auto_home map will only cache the home directory for
the user named rich :

rich -fstype=cachefs,cachedir=/var/cache,backfstype=nfs dragon:/export/home1/rich

Note - Options that are included in maps that are searched later will override
options that are set in maps that are searched earlier. The last options that are
found are the ones that are used. In the previous example, a specific entry added
to the auto_home map would only need to include the options listed in the
master maps if some of the options needed to be changed.

Customizing the Automounter
There are several ways to set up the automounter maps. The following tasks give
detailed instructions on how to customize the automounter maps to provide an
easy-to-use directory structure.

How to Set Up a Common View of /home

The ideal is for every network user to be able to locate their own, or anyone else’s
home directory under /home . This view should be common across all computers,
whether client or server.

Every Solaris installation comes with a master map: /etc/auto_master .

Master map for autofs
#
+auto_master
/net -hosts -nosuid,nobrowse
/home auto_home -nobrowse

(continued)

Autofs Administration 73

(Continuation)

/xfn -xfn

A map for auto_home is also installed under /etc .

Home directory map for autofs
#
+auto_home

Except for a reference to an external auto_home map, this map is empty. If the
directories under /home are to be common to all computers, then do not modify this
/etc/auto_home map. All home directory entries should appear in the name
service files, either NIS or NIS+.

Note - Users should not be permitted to run setuid executables from their home
directories because without a restriction any user could have superuser privileges on
any computer.

How to Set Up /home With Multiple Home
Directory File Systems
1. Install home directory partitions under /export/home .

If there are several partitions, install them under separate directories, for example,
/export/home1 , /export/home2 , and so on.

2. Use the Solstice System Management Tools to create and maintain the
auto_home map.

Whenever you create a new user account, type the location of the user’s home
directory in the auto_home map. Map entries can be simple, for example:

rusty dragon:/export/home1/&
gwenda dragon:/export/home1/&
charles sundog:/export/home2/&
rich dragon:/export/home3/&

Note the use of the & (ampersand) to substitute the map key. This is an
abbreviation for the second occurrence of rusty in the following example.

rusty dragon:/export/home1/rusty

74 NFS Administration Guide ♦ August 1997

With the auto_home map in place, users can refer to any home directory
(including their own) with the path /home/ user, where user is their login name
and the key in the map. This common view of all home directories is valuable
when logging in to another user’s computer. Autofs mounts your home directory
for you. Similarly, if you run a remote windowing system client on another
computer, the client program has the same view of the /home directory as you do
on the computer providing the windowing system display.

This common view also extends to the server. Using the previous example, if
rusty logs in to the server dragon , autofs there provides direct access to the
local disk by loopback-mounting /export/home1/rusty onto /home/rusty .

Users do not need to be aware of the real location of their home directories. If
rusty needs more disk space and needs to have his home directory relocated to
another server, you need only change rusty ’s entry in the auto_home map to
reflect the new location. Everyone else can continue to use the /home/rusty
path.

How to Consolidate Project-Related Files Under
/ws

You are the administrator of a large software development project. You want to make
all project-related files available under a directory called /ws . This directory is to be
common across all workstations at the site.

1. Add an entry for the /ws directory to the site auto_master map, either NIS or
NIS+.

/ws auto_ws -nosuid

The auto_ws map determines the contents of the /ws directory.

2. Add the -nosuid option as a precaution.

This option prevents users from running setuid programs that might exist in any
workspaces.

3. Add entries to the auto_ws map.

The auto_ws map is organized so that each entry describes a subproject. Your
first attempt yields a map that looks like the following:

compiler alpha:/export/ws/&
windows alpha:/export/ws/&
files bravo:/export/ws/&

(continued)

Autofs Administration 75

(Continuation)

drivers alpha:/export/ws/&
man bravo:/export/ws/&
tools delta:/export/ws/&

The ampersand (&) at the end of each entry is just an abbreviation for the entry
key. For instance, the first entry is equivalent to:

compiler alpha:/export/ws/compiler

This first attempt provides a map that looks simple, but it turns out to be
inadequate. The project organizer decides that the documentation in the man
entry should be provided as a subdirectory under each subproject. Also, each
subproject requires subdirectories to describe several versions of the software. You
must assign each of these subdirectories to an entire disk partition on the server.

Modify the entries in the map as follows:

compiler \
/vers1.0 alpha:/export/ws/&/vers1.0 \
/vers2.0 bravo:/export/ws/&/vers2.0 \
/man bravo:/export/ws/&/man

windows \
/vers1.0 alpha:/export/ws/&/vers1.0 \
/man bravo:/export/ws/&/man

files \
/vers1.0 alpha:/export/ws/&/vers1.0 \
/vers2.0 bravo:/export/ws/&/vers2.0 \
/vers3.0 bravo:/export/ws/&/vers3.0 \
/man bravo:/export/ws/&/man

drivers \
/vers1.0 alpha:/export/ws/&/vers1.0 \
/man bravo:/export/ws/&/man

tools \
/ delta:/export/ws/&

Although the map now appears to be much bigger, it still contains only the five
entries. Each entry is larger because it contains multiple mounts. For instance, a
reference to /ws/compiler requires three mounts for the vers1.0 , vers2.0 ,
and man directories. The backslash at the end of each line tells autofs that the
entry is continued onto the next line. In effect, the entry is one long line, though
line breaks and some indenting have been used to make it more readable. The
tools directory contains software development tools for all subprojects, so it is

76 NFS Administration Guide ♦ August 1997

not subject to the same subdirectory structure. The tools directory continues to
be a single mount.

This arrangement provides the administrator with much flexibility. Software
projects are notorious for consuming substantial amounts of disk space. Through
the life of the project you might be required to relocate and expand various disk
partitions. As long as these changes are reflected in the auto_ws map, the users
do not need to be notified, as the directory hierarchy under /ws is not changed.

Because the servers alpha and bravo view the same autofs map, any users who
log in to these computers will find the /ws name space as expected. These users
will be provided with direct access to local files through loopback mounts instead
of NFS mounts.

How to Set Up Different Architectures to Access a
Shared Name Space
You need to assemble a shared name space for local executables, and applications,
such as spreadsheet tools and word-processing packages. The clients of this name
space use several different workstation architectures that require different executable
formats. Also, some workstations are running different releases of the operating
system.

1. Create the auto_local map with the nistbladm command.

See the Solaris Naming Administration Guide.

2. Choose a single, site-specific name for the shared name space so that files and
directories that belong to this space are easily identifiable.

For example, if you choose /usr/local as the name, then the path
/usr/local/bin is obviously a part of this name space.

3. For ease of user community recognition, create an autofs indirect map and
mount it at /usr/local . Set up the following entry in the NIS+ (or NIS)
auto_master map:

/usr/local auto_local -ro

Note that the ro mount option implies that clients will not be able to write to any
files or directories.

4. Export the appropriate directory on the server.

5. Include a bin entry in the auto_local map.

Your directory structure looks like this:

Autofs Administration 77

bin aa:/export/local/bin

To satisfy the need to serve clients of different architectures, you need references
to the bin directory to be directed to different directories on the server,
depending on the clients’ architecture type.

6. To serve clients of different architectures, change the entry by adding the
autofs CPUvariable.

bin aa:/export/local/bin/$CPU

Note - For SPARCstationTM clients, make executables available under
/export/local/bin/sparc on the server. For x86 clients, use
/export/local/bin/i386 .

How to Support Incompatible Client Operating
System Versions
1. Combine the architecture type with a variable that determines the operating

system type of the client.

The autofs OSRELvariable can be combined with the CPUvariable to form a
name that determines both CPU type and OS release.

2. Create the following map entry.

bin aa:/export/local/bin/CPUOSREL

For SPARC clients running version 5.1 of the operating system, you need to export
/export/local/bin/sparc5.1 from the server and similarly export for other
releases. Because operating systems attempt to preserve backward compatibility with
executable formats, assume that the OS release is not a factor and eliminate it from
future examples.

So far, you have set up an entry for a single server aa . In a large network, you want
to replicate these shared files across several servers. Each server should have a close
network proximity to the clients it serves so that NFS traffic is confined to local
network segments.

78 NFS Administration Guide ♦ August 1997

How to Replicate Shared Files Across Several
Servers
The best way to share replicated file systems that are read-only is to use failover. See
“Client-Side Failover” on page 57 for a discussion of failover.

♦ Modify the entry to create the list of all replica servers as a comma- separated
list:

bin aa,bb,cc,dd:/export/local/bin/$CPU

Autofs chooses the nearest server. If a server has several network interfaces, then list
each interface. Autofs chooses the nearest interface to the client, avoiding
unnecessary routing of NFS traffic.

How to Apply Security Restrictions
♦ Create the following entry in the name service auto_master file, either NIS or

NIS+:

/home auto_home -nosuid

The nosuid option prevents users from creating files with the setuid or setgid
bit set.

This entry overrides the entry for /home in a generic local /etc/auto_master file
(see the previous example) because the +auto_master reference to the external
name service map occurs before the /home entry in the file. If the entries in the
auto_home map include any mount options, then the nosuid option would be
overwritten, so either no options should be used in the auto_home map or the
nosuid option must be included with each entry.

Note - Do not mount the home directory disk partitions on or under /home on the
server.

Disabling Autofs Browsability
The default version of /etc/auto_master that is installed with the Solaris 2.6
release has the −nobrowse option added to the entries for /home and /net . In

Autofs Administration 79

addition, the upgrade procedure adds the −nobrowse option to the /home and
/net entries in /etc/auto_master if these entries have not been modified.
However, it might be necessary to make these changes manually or to turn off
browsability for site-specific autofs mount points after the installation.

You can turn off the browsability feature in two ways. Disable it using a
command-line option to the automountd daemon, which completely disables autofs
browsability for the client. Or disable it for each map entry on all clients using the
autofs maps in either a NIS or NIS+ name space, or for each map entry on each
client using local autofs maps if no network-wide name space is being used.

How to Completely Disable Autofs Browsability
on a Single NFS Client
1. Add the −n option to the startup script.

As root , edit the /etc/init.d/autofs script and add the −n option to the
line that starts the automountd daemon:

/usr/lib/autofs/automountd -n \
< /dev/null > /dev/console 2>&1 # start daemon

2. Restart the autofs service.

/etc/init.d/autofs stop
/usr/init.d/autofs start

How to Disable Autofs Browsability for All Clients
To disable browsability for all clients, you must employ a name service such as NIS
or NIS+. Otherwise, you need to manually edit the automounter maps on each client.
In this example, the browsability of the /home directory is disabled. You must follow
this procedure for each indirect autofs node that needs to be disabled.

1. Add the −nobrowse option to the /home entry in the name service
auto_master file.

/home auto_home -nobrowse

80 NFS Administration Guide ♦ August 1997

2. On all clients: run the automount command.

The new behavior takes effect after running the automount command on the
client systems or after a reboot.

/usr/sbin/automount

How to Disable Autofs Browsability on an NFS
Client
In this example, browsability of the /net directory is disabled. The same procedure
can be used for /home or any other autofs mount points.

1. Check the automount entry in /etc/nsswitch.conf .

For local file entries to take precedence, the entry in the name service switch file
should list files before the name service. For example:

automount: files nisplus

This is the default configuration in a standard Solaris installation.

2. Check the position of the +auto_master entry in /etc/auto_master .

For additions to the local files to take precedence over the entries in the name
space, the +auto_master entry must be moved below /net :

Master map for automounter
#
/net -hosts -nosuid
/home auto_home
/xfn -xfn
+auto_master

A standard configuration places the +auto_master entry at the top of the file.
This prevents any local changes from being used.

3. Add the −nobrowse option to the /net entry in the /etc/auto_master file.

/net -hosts -nosuid, nobrowse

4. On all clients: run the automount command.

Autofs Administration 81

The new behavior takes effect after running the automount command on the
client systems or after a reboot.

/usr/sbin/automount

Troubleshooting Autofs
Occasionally, you might encounter problems with autofs. This section should make
the problem-solving process easier. It is divided into two subsections.

This section presents a list of the error messages autofs generates. The list is divided
in two parts:

� Error messages generated by the verbose (−v) option of automount

� Error messages that might appear at any time

Each error message is followed by a description and probable cause of the message.

When troubleshooting, start the autofs programs with the verbose (−v) option,
otherwise, you might experience problems without knowing why.

The following paragraphs are labeled with the error message you are likely to see if
autofs fails, and a description of the possible problem.

Error Messages Generated by automount -v

bad key key in direct map mapname

While scanning a direct map, autofs has found an entry key without a prefixed /.
Keys in direct maps must be full path names.

bad key key in indirect map mapname

While scanning an indirect map, autofs has found an entry key containing a / .
Indirect map keys must be simple names—not path names.

can’t mount server: pathname: reason

The mount daemon on the server refuses to provide a file handle for
server:pathname. Check the export table on server.

couldn’t create mount point mountpoint: reason

82 NFS Administration Guide ♦ August 1997

Autofs was unable to create a mount point required for a mount. This most
frequently occurs when attempting to hierarchically mount all of a server’s
exported file systems. A required mount point can exist only in a file system that
cannot be mounted (it cannot be exported) and it cannot be created because the
exported parent file system is exported read-only.

leading space in map entry entry text in mapname

Autofs has discovered an entry in an automount map that contains leading spaces.
This is usually an indication of an improperly continued map entry, for example:

fake
/blat frobz:/usr/frotz

In this example, the warning is generated when autofs encounters the second line
because the first line should be terminated with a backslash (\).

mapname: Not found

The required map cannot be located. This message is produced only when the -v
option is used. Check the spelling and path name of the map name.

remount server: pathname on mountpoint: server not responding

Autofs has failed to remount a file system it previously unmounted.

WARNING: mountpoint already mounted on

Autofs is attempting to mount over an existing mount point. This means there is
an internal error in autofs (an anomaly).

Miscellaneous Error Messages
dir mountpoint must start with ’/’

Automounter mount point must be given as full path name. Check the spelling
and path name of the mount point.

hierarchical mountpoints: pathname1 and pathname2

Autofs does not allow its mount points to have a hierarchical relationship. An
autofs mount point must not be contained within another automounted file
system.

host server not responding

Autofs Administration 83

Autofs attempted to contact but received no response.

hostname: exports: rpc_err

Error getting export list from hostname. This indicates a server or network
problem.

map mapname, key key: bad

The map entry is malformed, and autofs cannot interpret it. Recheck the entry;
perhaps there are characters in it that need escaping.

mapname: nis_err

Error in looking up an entry in a NIS map. This can indicate NIS problems.

mount of server: pathname on mountpoint:reason

Autofs failed to do a mount. This can indicate a server or network problem.

mountpoint: Not a directory

Autofs cannot mount itself on mountpoint because it’s not a directory. Check the
spelling and path name of the mount point.

nfscast: cannot send packet: reason

Autofs cannot send a query packet to a server in a list of replicated file system
locations.

nfscast: cannot receive reply: reason

Autofs cannot receive replies from any of the servers in a list of replicated file
system locations.

nfscast: select: reason

All these error messages indicate problems attempting to ping servers for a
replicated file system. This can indicate a network problem.

pathconf: no info for server: pathname

Autofs failed to get pathconf information for pathname (see the fpathconf (2)
man page).

pathconf: server: server not responding

Autofs is unable to contact the mount daemon on server that provides the
information to pathconf().

84 NFS Administration Guide ♦ August 1997

Other Errors With Autofs
If the /etc/auto* files have the execute bit set, then the automounter will try to
execute the maps, which creates messages like:

/etc/auto_home: +auto_home: not found

In this case, the auto_home file has incorrect permissions. Each entry in the file will
generate an error message much like this one. The permissions to the file should be
reset by typing the following command:

chmod 644 /etc/auto_home

Autofs Administration 85

86 NFS Administration Guide ♦ August 1997

CHAPTER 5

About Autofs

This chapter describes the parts of the autofs service and gives more detailed
information about the autofs maps.

� “Autofs Programs” on page 87

� “Autofs Maps” on page 88

� “How Autofs Works” on page 94

� “Autofs Reference” on page 105

Autofs Programs
Two programs support the autofs service. Both are run when a system is booted, but
only automountd is persistent.

automount
This command installs autofs mount points and associates the information in the
automaster files with each mount point. The syntax of the command is:

automount [−t duration] [−v]

where −t duration sets the time, in seconds, that a file system is to remain mounted,
and −v selects the verbose mode. Running this command in the verbose mode allows
for easier troubleshooting.

If not specifically set, the value for duration is set to 5 minutes. In most
circumstances this is a good value; however, on systems that have many
automounted file systems, you might need to increase the duration value. In

87

particular, if a server has many users active checking the automounted file systems
every five minutes can be inefficient. Checking the autofs file systems every 1800
seconds (or 30 minutes) could be more optimal. By not unmounting the file systems
every 5 minutes, it is possible that /etc/mnttab , which is checked by df , can get
very large. The output from df can be filtered by using the −F option (see the
df (1M) man page) or by using egrep to help fix this problem.

Another factor to consider is that changing the duration also changes how quickly
changes to the automounter maps will be reflected. Changes will not be seen until
the file system is unmounted. Refer to “Modifying the Maps” on page 70 for
instructions on how to modify automounter maps.

automountd
This daemon handles the mount and unmount requests from the autofs service. The
syntax of the command is:

automountd [−Tnv] [-D name=value]

where −T selects to display each RPC call to standard output, −n disables browsing
on all autofs nodes, −v selects to log all status messages to the console, and −D
name=value substitutes value for the automount map variable indicated by name. The
default value for the automount map is /etc/auto_master . Use the −T option for
troubleshooting.

Autofs Maps
Autofs uses three types of maps:

� Master map

� Direct maps

� Indirect maps

Master Map
The auto_master map associates a directory with a map. It is a master list specifying
all the maps that autofs should check. The example below shows what an
auto_master file could contain.

88 NFS Administration Guide ♦ August 1997

CODE EXAMPLE 5–1 Sample /etc/auto_master File

Master map for automounter
#
+auto_master
/net -hosts -nosuid,nobrowse
/home auto_home -nobrowse
/xfn -xfn
/- auto_direct -ro

This example shows the generic auto_master file with one addition for the
auto_direct map. Each line in the master map /etc/auto_master has the following
syntax:

mount-point map-name [mount-options]

mount-point mount-point is the full (absolute) path name of a
directory. If the directory does not exist, autofs
creates it if possible. If the directory exists and is
not empty, mounting on it hides its contents. In
this case, autofs issues a warning.

The notation /- as a mount point indicates that
the map in question is a direct map, and no
particular mount point is associated with the
map as a whole.

map-name map-name is the map autofs uses to find
directions to locations, or mount information. If
the name is preceded by a slash (/), autofs
interprets the name as a local file. Otherwise,
autofs searches for the mount information using
the search specified in the name service switch
configuration file (/etc/nsswitch.conf).
There are also special maps used for /net and
/xfn (see “Mount Point /net ” on page 90 and
“Mount Point /xfn ” on page 91).

mount-options mount-options is an optional, comma-separated
list of options that apply to the mounting of the
entries specified in map-name, unless the entries
in map-name list other options. Options for each
specific type of file system are listed in the mount
man page for that file system (for example, see
the mount_nfs (1M) man page for NFS specific
mount options). For NFS specific mount points,

About Autofs 89

the bg (background) and fg (foreground) options
do not apply.

A line beginning with # is a comment. Everything that follows until the end of the
line is ignored.

To split long lines into shorter ones, put a backslash (\) at the end of the line. The
maximum number of characters of an entry is 1024.

Mount Point /home

The mount point /home is the directory under which the entries listed in
/etc/auto_home (an indirect map) are to be mounted.

Note - Autofs runs on all computers and supports /net and /home (automounted
home directories) by default. These defaults can be overridden by entries in the NIS
auto.master map or NIS+ auto_master table, or by local editing of the
/etc/auto_master file.

Mount Point /net

Autofs mounts under the directory /net all the entries in the special map -hosts.
This is a built-in map that uses only the hosts database. For example, if the computer
gumbo is in the hosts database and it exports any of its file systems, the command:

%cd /net/gumbo

changes the current directory to the root directory of the computer gumbo. Note that
autofs can mount only the exported file systems of host gumbo; that is, those on a
server available to network users as opposed to those on a local disk. Therefore, all
the files and directories on gumbo might not be available through /net/gumbo .

With the /net method of access, the server name is in the path and is location
dependent. If you want to move an exported file system from one server to another,
the path might no longer work. Instead, you should set up an entry in a map
specifically for the file system you want rather than use /net .

Note - Autofs checks the server’s export list only at mount time. Once a server’s file
systems are mounted, autofs does not check with the server again until the server’s
file systems are automatically unmounted. Therefore, newly exported file systems is
not “seen” until the file systems on the client are unmounted and then remounted.

90 NFS Administration Guide ♦ August 1997

Mount Point /xfn

This mount point provides the autofs directory structure for the resources that are
shared through the FNS name space (see the Solaris Naming Setup and Configuration
Guide for more information about FNS).

Direct Maps
A direct map is an automount point. With a direct map, there is a direct association
between a mount point on the client and a directory on the server. Direct maps have
a full path name and indicate the relationship explicitly. This is a typical
/etc/auto_direct map:

/usr/local -ro \
/bin ivy:/export/local/sun4 \
/share ivy:/export/local/share \
/src ivy:/export/local/src
/usr/man -ro oak:/usr/man \

rose:/usr/man \
willow:/usr/man

/usr/games -ro peach:/usr/games
/usr/spool/news -ro pine:/usr/spool/news \

willow:/var/spool/news

Lines in direct maps have the following syntax:

key [mount-options] location

key

key is the path name of the mount point in a direct map.

mount-options

mount-options are the options you want to apply to this particular mount. They are
required only if they differ from the map default. Options for each specific type of
file system are listed in the mount man page for that file system (for example, see the
mount_cachefs (1M) man page for cachefs specific mount options).

location

location is the location of the file system, specified (one or more) as server:pathname
for NFS file systems or :devicename for High Sierra file systems (HSFS).

About Autofs 91

Note - The pathname should not include an automounted mount point; it should be
the actual absolute path to the file system. For instance, the location of a home
directory should be listed as server:/export/home/ username, not as
server:/home/ username.

As in the master map, a line beginning with # is a comment. All the text that follows
until the end of the line is ignored. Put a backslash at the end of the line to split long
lines into shorter ones.

Of all the maps, the entries in a direct map most closely resemble, in their simplest
form, the corresponding entries in /etc/vfstab (vfstab contains a list of all file
systems to be mounted). An entry that appears in /etc/vfstab as:

dancer:/usr/local - /usr/local/tmp nfs - yes ro

appears in a direct map as:

/usr/local/tmp -ro dancer:/usr/local

Note - There is no concatenation of options between the automounter maps. Any
options added to an automounter map override all options listed in maps that are
searched earlier. For instance, options included in the auto_master map would be
overwritten by corresponding entries in any other map.

See “How Autofs Selects the Nearest Read-Only Files for Clients (Multiple
Locations)” on page 98 for other important features associated with this type of map.

Mount Point / −
In Code Example 5–1, the mount point /- tells autofs not to associate the entries in
auto_direct with any specific mount point. Indirect maps use mount points
defined in the auto_master file. Direct maps use mount points specified in the named
map. (Remember, in a direct map the key, or mount point, is a full path name.)

A NIS or NIS+ auto_master file can have only one direct map entry because the
mount point must be a unique value in the name space. An auto_master file that
is a local file can have any number of direct map entries, as long as entries are not
duplicated.

Indirect Maps
An indirect map uses a substitution value of a key to establish the association
between a mount point on the client and a directory on the server. Indirect maps are

92 NFS Administration Guide ♦ August 1997

useful for accessing specific file systems, like home directories. The auto_home map
is an example of an indirect map.

Lines in indirect maps have the following general syntax:

key [mount-options] location

key

key is a simple name (no slashes) in an indirect map.

mount-options

The mount-options are the options you want to apply to this particular mount. They
are required only if they differ from the map default. Options for each specific type
of file system are listed in the mount man page for that file system (for example, see
the mount_nfs (1M) man page for NFS specific mount options).

location

location is the location of the file system, specified (one or more) as server:pathname.

Note - The pathname should not include an automounted mount point; it should be
the actual absolute path to the file system. For instance, the location of a directory
should be listed as server:/usr/local not as server:/net/ server/usr/local .

As in the master map, a line beginning with # is a comment. All the text that follows
until the end of the line is ignored. Put a backslash (\) at the end of the line to split
long lines into shorter ones. Code Example 5–1 shows an auto_master map that
contains the entry:

/home auto_home -nobrowse

auto_home is the name of the indirect map that contains the entries to be mounted
under /home. A typical auto_home map might contain:

david willow:/export/home/david
rob cypress:/export/home/rob
gordon poplar:/export/home/gordon
rajan pine:/export/home/rajan
tammy apple:/export/home/tammy
jim ivy:/export/home/jim
linda -rw,nosuid peach:/export/home/linda

As an example, assume that the previous map is on host oak. If user linda has an
entry in the password database specifying her home directory as /home/linda ,
then whenever she logs in to computer oak, autofs mounts the directory

About Autofs 93

/export/home/linda residing on the computer peach. Her home directory is
mounted read-write, nosuid.

Assume the following conditions occur: User linda’s home directory is listed in the
password database as /home/linda . Anybody, including Linda, has access to this
path from any computer set up with the master map referring to the map in the
previous example.

Under these conditions, user linda can run login or rlogin on any of these
computers and have her home directory mounted in place for her.

Furthermore, now linda can also type the following command:

% cd ~david

autofs mounts David’s home directory for her (if all permissions allow).

Note - There is no concatenation of options between the automounter maps. Any
options added to an automounter map override all options listed in maps that are
searched earlier. For instance, options included in the auto_master map would be
overwritten by corresponding entries in any other map.

On a network without a name service, you have to change all the relevant files (such
as /etc/passwd) on all systems on the network to accomplish this. With NIS, make
the changes on the NIS master server and propagate the relevant databases to the
slave servers. On a network running NIS+, propagating the relevant databases to the
slave servers is done automatically after the changes are made.

How Autofs Works
Autofs is a client-side service that automatically mounts the appropriate file system.
When a client attempts to access a file system that is not presently mounted, the
autofs file system intercepts the request and calls automountd, to mount the
requested directory. The automountd daemon locates the directory, mounts it within
autofs, and replies. On receiving the reply, autofs allows the waiting request to
proceed. Subsequent references to the mount are redirected by the autofs—no further
participation is required by automountd , until the file system is automatically
unmounted by autofs after a period of inactivity.

Three components that work together to accomplish automatic mounting are:

� The automount command

� The autofs file system

� The automountd daemon

94 NFS Administration Guide ♦ August 1997

The automount command, called at system startup time, reads the master map file
auto_master to create the initial set of autofs mounts. These autofs mounts are not
automatically mounted at startup time. They are points under which file systems are
mounted in the future. These points are also known as trigger nodes.

Once the autofs mounts are set up, they can trigger file systems to be mounted under
them. For example, when autofs receives a request to access a file system that is not
currently mounted, autofs calls automountd , which actually mounts the requested
file system.

Starting with the Solaris 2.5 release, the automountd daemon is completely
independent from the automount command. Because of this separation, it’s possible
to add, delete, or change map information without first having to stop and start the
automountd daemon process.

After initially mounting autofs mounts, the automount command is used to update
autofs mounts as necessary by comparing the list of mounts in the auto_master
map with the list of mounted file systems in the mount table file /etc/mnttab
(formerly /etc/mtab) and making the appropriate changes. This allows system
administrators to change mount information within auto_master and have those
changes used by the autofs processes without having to stop and restart the autofs
daemon. Once the file system is mounted, further access does not require any action
from automountd until the file system is automatically unmounted.

Unlike mount , automount does not read the /etc/vfstab file (which is specific to
each computer) for a list of file systems to mount. The automount command is
controlled within a domain and on computers through the name space or local files.

This is a simplified overview of how autofs works:

The automount daemon automountd starts at boot time from the
/etc/init.d/autofs script (See Figure 5–1). This script also runs the automount
command, which reads the master map (see “How Autofs Starts the Navigation
Process (Master Map)” on page 96) and installs autofs mount points.

Autofs
mounts

mount/unmount automountd

Figure 5–1 /etc/init.d/autofs Script Starts automount

Autofs is a kernel file system that supports automatic mounting and unmounting.

When a request is made to access a file system at an autofs mount point:

1. Autofs intercepts the request.

About Autofs 95

2. Autofs sends a message to the automountd for the requested file system to be
mounted.

3. automountd locates the file system information in a map, creates the trigger
nodes, and performs the mount.

4. Autofs allows the intercepted request to proceed.

5. Autofs unmounts the file system after a period of inactivity.

Note - Mounts managed through the autofs service should not be manually
mounted or unmounted. Even if the operation is successful, the autofs service does
not check that the object has been unmounted, resulting in possible inconsistency. A
reboot clears all of the autofs mount points.

How Autofs Navigates Through the Network
(Maps)
Autofs searches a series of maps to navigate its way through the network. Maps are
files that contain information such as the password entries of all users on a network
or the names of all host computers on a network; that is, network-wide equivalents
of UNIX administration files. Maps are available locally or through a network name
service like NIS or NIS+. You create maps to meet the needs of your environment
using the Solstice System Management Tools. See “Modifying How Autofs Navigates
the Network (Modifying Maps)” on page 104.

How Autofs Starts the Navigation Process (Master
Map)
The automount command reads the master map at system startup. Each entry in the
master map is a direct or indirect map name, its path, and its mount options, as
shown in Figure 5–2. The specific order of the entries is not important. automount
compares entries in the master map with entries in the mount table to generate a
current list.

96 NFS Administration Guide ♦ August 1997

mount or unmount

Master map
/etc/auto_master

automount

Mount table
/etc/mnttab

Compare

Autofs
mounts

Figure 5–2 Navigation Through the Master Map

Autofs Mount Process
What the autofs service does when a mount request is triggered depends on how the
automounter maps are configured. The mount process is generally the same for all
mounts, but the final result changes with the mount point specified and the
complexity of the maps. The mount process has also been changed with the Solaris
2.6 release, to include the creation of the trigger nodes.

A Simple Autofs Mount
To help explain the autofs mount process, assume that the following files are installed.

$ cat /etc/auto_master
Master map for automounter
#
+auto_master
/net -hosts -nosuid,nobrowse
/home auto_home -nobrowse
/xfn -xfn
/share auto_share
$ cat /etc/auto_share
share directory map for automounter
#
ws gumbo:/export/share/ws

When the /share directory is accessed the autofs service creates a trigger node for
/share/ws which can be seen in /etc/mnttab as an entry which resembles the
following entry:

-hosts /share/ws autofs nosuid,nobrowse,ignore,nest,dev=###

When the /share/ws directory is accessed the autofs service completes the process
with these steps:

1. pings the server’s mount service to see if it’s alive.

About Autofs 97

2. mounts the requested file system under /share . Now /etc/mnttab file contains
the following entries:

-hosts /share/ws autofs nosuid,nobrowse,ignore,nest,dev=###
gumbo:/export/share/ws /share/ws nfs nosuid,dev=#### #####

Hierarchical Mounting
When multiple layers are defined in the automounter files, the mount process
becomes more complex. If the /etc/auto_shared file from the previous example is
expanded to contain:

share directory map for automounter
#
ws / gumbo:/export/share/ws

/usr gumbo:/export/share/ws/usr

The mount process is basically the same as the previous example when the
/share/ws mount point is accessed. In addition, a trigger node to the next level
(/usr) is created in the /share/ws file system so that the next level can be easily
mounted if it is accessed.

Note - In this example, /export/share/ws/usr must exist on the NFS server for
the trigger node to be created.

Autofs Unmounting
The unmounting that occurs after a certain amount of idle time is from the bottom
up (reverse order of mounting). If one of the directories at a higher level in the
hierarchy is busy, only file systems below that directory are unmounted.

How Autofs Selects the Nearest Read-Only Files
for Clients (Multiple Locations)
In the example of a direct map, which was:

98 NFS Administration Guide ♦ August 1997

/usr/local -ro \
/bin ivy:/export/local/sun4\
/share ivy:/export/local/share\
/src ivy:/export/local/src

/usr/man -ro oak:/usr/man \
rose:/usr/man \
willow:/usr/man

/usr/games -ro peach:/usr/games
/usr/spool/news -ro pine:/usr/spool/news \

willow:/var/spool/news

the mount points /usr/man and /usr/spool/news list more than one location
(three for the first, two for the second). This means any of the replicated locations
can provide the same service to any user. This procedure makes sense only when
you mount a file system that is read-only, as you must have some control over the
locations of files you write or modify. You don’t want to modify files on one server
on one occasion and, minutes later, modify the “same” file on another server. The
benefit is that the best available server is used automatically without any effort
required by the user.

If the file systems are configured as replicas (see “What Is a Replicated File System?”
on page 58), then the clients have the advantage of using failover. Not only will the
best server be automatically determined, but if that server becomes is unavailable,
the client automatically uses the next-best server. Failover is a new feature
implemented in the Solaris 2.6 release.

An example of a good file system to configure as a replica is man pages. In a large
network, more than one server can export the current set of manual pages. Which
server you mount them from does not matter, as long as the server is running and
exporting its file systems. In the previous example, multiple mount locations are
expressed as a list of mount locations in the map entry.

/usr/man -ro oak:/usr/man rose:/usr/man willow:/usr/man

Here you can mount the man pages from the servers oak , rose , or willow . Which
server is best depends on a number of factors including: the number of servers
supporting a particular NFS protocol level, the proximity of the server, and
weighting.

During the sorting process, a count of the number of servers supporting the NFS
version 2 and NFS version 3 protocols is made. Whichever protocol is supported on
the most servers will be the protocol supported by default. This will provide the
client with the maximum number of servers to depend on.

Once the largerst subset of servers with the same protocol version is found, that
server list is sorted by proximity. Servers on the local subnet are given preference
over servers on a remote subnet. The closest server is given preference, which
reduces latency and network traffic. Figure 5–3 illustrates server proximity.

About Autofs 99

same net

same subnet

different net

Figure 5–3 Server Proximity

If several servers supporting the same protocol are on the local subnet, the time to
connect to each server is determined and the fastest is used. The sorting can also be
influenced by using weighting (see “Autofs and Weighting” on page 100).

If version 3 servers are more abundant, the sorting process becomes more complex.
Normally servers on the local subnet are given preference over servers on a remote
subnet. A version 2 server can complicate matters, as it could be closer than the
nearest version 3 server. If there is a version 2 server on the local subnet and the
closest version 3 server is on a remote subnet, the version 2 server will be given
preference. This is only checked if there are more version 3 servers than version 2
servers. If there are more version 2 servers, then only a version 2 server will be
selected.

With failover the sorting is checked once at mount time to select one server from
which to mount, and again anytime the mounted server becomes unavailable.
Multiple locations are useful in an environment where individual servers might not
export their file systems temporarily.

This feature is particularly useful in a large network with many subnets. Autofs
chooses the nearest server and therefore confines NFS network traffic to a local
network segment. In servers with multiple network interfaces, list the host name
associated with each network interface as if it were a separate server. Autofs selects
the nearest interface to the client.

Autofs and Weighting
You can influence the selection of servers at the same proximity level by adding a
weighting value to the autofs map. For example:

/usr/man -ro oak,rose(1),willow(2):/usr/man

The numbers in parentheses indicate a weighting. Servers without a weighting have
a value of zero (most likely to be selected). The higher the weighting value, the lower
the chance the server will be selected.

100 NFS Administration Guide ♦ August 1997

Note - All other server selection factors are more important than weighting.
Weighting is only considered when selecting between servers with the same network
proximity.

Variables in a Map Entry
You can create a client-specific variable by prefixing a dollar sign ($) to its name.
This helps you to accommodate different architecture types accessing the same file
system location. You can also use curly braces to delimit the name of the variable
from appended letters or digits. Table 5–1 shows the predefined map variables.

TABLE 5–1 Predefined Map Variables

Variable Meaning Derived From Example

ARCH Architecture type uname -m sun4

CPU Processor Type uname -p sparc

HOST Host name uname -n dinky

OSNAME Operating system name uname -s SunOS

OSREL Operating system release uname -r 5.4

OSVERS Operating system version
(version of the release)

uname -v FCS1.0

You can use variables anywhere in an entry line except as a key. For instance, if you
have a file server exporting binaries for SPARC and x86 architectures from
/usr/local/bin/sparc and /usr/local/bin/x86 respectively, you can have
the clients mount through a map entry like the following:

/usr/local/bin -ro server:/usr/local/bin/$CPU

Now the same entry on all the clients applies for all architectures.

About Autofs 101

Note - Most applications written for any of the sun4 architectures can run on all sun4
platforms, so the −ARCHvariable is hardcoded to sun4 instead of sun4m or sun4c .

Maps That Refer to Other Maps
A map entry +mapname used in a file map causes automount to read the specified
map as if it were included in the current file. If mapname is not preceded by a slash,
then autofs treats the map name as a string of characters and uses the name service
switch policy to find it. If the path name is an absolute path name, then automount
looks for a local map of that name. If the map name starts with a dash (-),
automount consults the appropriate built-in map, such as xfn or hosts .

This name service switch file contains an entry for autofs labeled as automount ,
which contains the order in which the name services are searched. The following file
is an example of a name service switch file:

#
/etc/nsswitch.nis:
#
An example file that could be copied over to /etc/nsswitch.conf;
it uses NIS (YP) in conjunction with files.
#
"hosts:" and "services:" in this file are used only if the /etc/netconfig
file contains "switch.so" as a nametoaddr library for "inet" transports.
the following two lines obviate the "+" entry in /etc/passwd and /etc/group.
passwd: files nis
group: files nis

consult /etc "files" only if nis is down.
hosts: nis [NOTFOUND=return] files
networks: nis [NOTFOUND=return] files
protocols: nis [NOTFOUND=return] files
rpc: nis [NOTFOUND=return] files
ethers: nis [NOTFOUND=return] files
netmasks: nis [NOTFOUND=return] files
bootparams: nis [NOTFOUND=return] files
publickey: nis [NOTFOUND=return] files
netgroup: nis
automount: files nis
aliases: files nis
for efficient getservbyname() avoid nis
services: files nis

In this example, the local maps would be searched before the NIS maps, so you can
have a few entries in your local /etc/auto_home map for the most commonly
accessed home directories, and use the switch to fall back to the NIS map for other
entries.

102 NFS Administration Guide ♦ August 1997

bill cs.csc.edu:/export/home/bill
bonny cs.csc.edu:/export/home/bonny

After consulting the included map, automount continues scanning the current map
if no match is found. This means you can add more entries after a + entry.

bill cs.csc.edu:/export/home/bill
bonny cs.csc.edu:/export/home/bonny
+auto_home

The map included can be a local file (remember, only local files can contain + entries)
or a built-in map:

+auto_home_finance # NIS+ map
+auto_home_sales # NIS+ map
+auto_home_engineering # NIS+ map
+/etc/auto_mystuff # local map
+auto_home # NIS+ map
+-hosts # built-in hosts map

Note - You cannot use + entries in NIS+ or NIS maps.

Executable Autofs Maps
You can also create an autofs map that will execute some commands to generate the
autofs mount points. You could benefit from using an executable autofs map if you
need to be able to create the autofs structure from a database or a flat file. The
disadvantage to using an executable map is that the map will need to be installed on
each host. An executable map cannot be included in either the NIS or the NIS+ name
service.

The executable map must have an entry in the auto_master file.

/execute auto_execute

Here is an example of an executable map:

About Autofs 103

#!/bin/ksh
#
executable map for autofs
#

case $1 in
src) echo ’-nosuid,hard bee:/export1’ ;;

esac

For this example to work, the file must be installed as /etc/auto_execute and
must have the executable bit set (set permissions to 744). Under these circumstances
running the following command:

% ls /execute/src

causes the /export1 file system from bee to be mounted.

Modifying How Autofs Navigates the Network
(Modifying Maps)
You can modify, delete, or add entries to maps to meet the needs of your
environment. As applications and other file systems that users require change their
location, the maps must reflect those changes. You can modify autofs maps at any
time. Whether your modifications take effect the next time automountd mounts a file
system depends on which map you modify and what kind of modification you make.

Default Autofs Behavior With Name Services
Booting invokes autofs using the /etc/init.d/autofs script and checks for the
master auto_master map (subject to the rules discussed subsequently).

Autofs uses the name service specified in the automount entry of the
/etc/nsswitch.conf file. If NIS+ is specified, as opposed to local files or NIS, all
map names are used as is. If NIS is selected and autofs cannot find a map that it
needs, but finds a map name that contains one or more underscores, the underscores
are changed to dots, which allows the old NIS file names to work. Then autofs looks
up the map again, as shown in Figure 5–4.

104 NFS Administration Guide ♦ August 1997

lookup key mapname

not /

/path ?

open (mapname)
read ...

open (/etc/mapname)
read ...

nis_list (key, mapname)

entry or map
not found

files nisplus nis

yp_match (key, mapname)

Replace "_" by "."

entry or map
not found

no map &
has "_"?

yp_match (key, newname)

Figure 5–4 How Autofs Uses the Name Service

The screen activity for this session would look like the following example.

$ grep /home /etc/auto_master
/home auto_home

$ ypmatch brent auto_home
Can’t match key brent in map auto_home. Reason: no such map in
server’s domain.

$ ypmatch brent auto.home
diskus:/export/home/diskus1/&

If “files” is selected as the name service, all maps are assumed to be local files in the
/etc directory. Autofs interprets a map name that begins with a slash (/) as local
regardless of which name service it uses.

Autofs Reference
The rest of this chapter describes more advanced autofs features and topics.

About Autofs 105

Metacharacters
Autofs recognizes some characters as having a special meaning. Some are used for
substitutions, some to protect other characters from the autofs map parser.

Ampersand (&)

If you have a map with many subdirectories specified, as in the following, consider
using string substitutions.

john willow:/home/john
mary willow:/home/mary
joe willow:/home/joe
able pine:/export/able
baker peach:/export/baker

You can use the ampersand character (&) to substitute the key wherever it appears. If
you use the ampersand, the previous map changes to:

john willow:/home/&
mary willow:/home/&
joe willow:/home/&
able pine:/export/&
baker peach:/export/&

You could also use key substitutions in a direct map, in situations like this:

/usr/man willow,cedar,poplar:/usr/man

which you can also write as:

/usr/man willow,cedar,poplar:&

Notice that the ampersand substitution uses the whole key string, so if the key in a
direct map starts with a / (as it should), the slash is carried over, and you could not
do, for example, the following:

/progs &1,&2,&3:/export/src/progs

because autofs would interpret it as:

/progs /progs1,/progs2,/progs3:/export/src/progs

Asterisk (*)

You can use the catchall substitute character, the asterisk (*), to match any key. You
could mount the /export file system from all hosts through this map entry.

106 NFS Administration Guide ♦ August 1997

* &:/export

Each ampersand is substituted by the value of any given key. Autofs interprets the
asterisk as an end-of-file character.

Special Characters
If you have a map entry that contains special characters, you might have to mount
directories whose names confuse the autofs map parser. The autofs parser is sensitive
to names containing colons, commas, spaces, and so on. These names should be
enclosed in double quotations, as in the following:

/vms -ro vmsserver: - - - "rc0:dk1 - "
/mac -ro gator:/ - "Mr Disk - "

About Autofs 107

108 NFS Administration Guide ♦ August 1997

APPENDIX A

NFS Tunables

You can set several parameters that can improve the functioning of the NFS service.
You can define these parameters in /etc/system , which is read during the boot
process. Each parameter can be identified by the name of the kernel module that it is
in and a symbol name which identifies it.

Note - The names of the symbols, the modules that they are resident in, and the
default values can change between releases. Check the documentation for the version
of the SunOS release that you are running, before making changes or applying
values from previous releases.

Table A–1 lists the parameters that are part of the nfs module. Table A–2 lists the
parameters that are part of the nfssrv module. Table A–3 lists the parameters that are
part of the rpcmod module. “How to Set the Value of a Kernel Parameter” on page
113 shows how to change these parameters. See the system (4) man page for
information about the /etc/system file.

TABLE A–1 NFS Parameters for the nfs Module

Symbol Name Description Default Setting

authdes_win This symbol controls how much
clock skew will be allowed
between the server and clients
when using AUTH_DES.

Defaults to 300 seconds.

authkerb_win This symbol controls how much
clock skew will be allowed
between the server and clients
when using AUTH_KERB.

Defaults to 300 seconds.

109

TABLE A–1 NFS Parameters for the nfs Module (continued)

Symbol Name Description Default Setting

nfs_acl_cache This symbol controls whether
ACLs are cached on clients that
are using the NFS_ACL protocol.

Defaults to off (0). You can
probably safely enable this
symbol (1) which might be in
future Solaris releases.

nfs_cots_timeo This symbol controls the default
timeout value of NFS version 2
client operations over
connection-oriented transports.

Defaults to 600 tenths of
seconds.

nfs3_cots_timeo This symbol controls the default
timeout value of NFS version 3
client operations over
connection-oriented transports.

Defaults to 600 tenths of
seconds.

nfs_do_symlink_cache This symbol controls whether
symbolic links are cached for file
systems mounted using NFS
version 2 software.

Defaults to on (1). You can
disable this symbol (0) if
something like amd is to be
used on the system. Client
system performance might be
reduced if this symbol is
disabled.

nfs3_do_symlink_cache This symbol controls whether
symbolic links are cached for file
systems mounted using NFS
version 3 software.

Defaults to on (1). You can
disable this symbol (0) but
client system performance
might be reduced.

nfs_dynamic This symbol controls whether
dynamic retransmission support
is used for file systems mounted
using NFS version 2 software.

Defaults to on (1). You can
safely turn off this symbol (0),
with possible interoperability
problems with servers that are
slow or cannot support full 8
KB read or write transfers.

nfs3_dynamic This symbol controls whether
dynamic retransmission support
is used for file systems mounted
using NFS version 3 software.

Defaults to off (0). Do not
change this.

nfs_lookup_neg_cache This symbol controls whether
failed lookup requests are
cached for file systems mounted
using NFS version 2 software.

Defaults to off (0). You can
probably safely enable this
symbol (1) but it may
negatively impact normal
directory name caching.

110 NFS Administration Guide ♦ August 1997

TABLE A–1 NFS Parameters for the nfs Module (continued)

Symbol Name Description Default Setting

nfs3_lookup_neg_cache This symbol controls whether
failed lookup requests are
cached for file systems mounted
using NFS version 3 software.

Defaults to off (0). You can
probably safely enable this
symbol (1) but it may
negatively impact normal
directory name caching.

nfs_max_threads This symbol controls the
maximum number of async
threads started per file system
mounted using NFS version 2
software.

Defaults to 8. Because this
number affects the number of
threads per file system, on a
client with many file systems a
large change could severely
degrade performance.

nfs3_max_threads This symbol controls the
maximum number of async
threads started per file system
mounted using NFS version 3
software.

Defaults to 8. Because this
number affects the number of
threads per file system, on a
client with many file systems a
large change could several
degrade performance.

nfs3_max_transfer_size This symbol controls the NFS
version 3 client file block size.

Defaults to 32 KB. Strongly
recommend that it not be
changed.

nfs_nra This symbol controls the number
of read-ahead blocks that are
read for file systems mounted
using NFS version 2 software.

Defaults to 1. 4 is actually a
much better value, but does
result in increased memory
utilization on the client.

nfs3_nra This symbol controls the number
of read-ahead blocks that are
read for file systems mounted
using NFS version 3 software.

Defaults to 1. 2 is actually a
much better value, but does
result in increased memory
utilization on the client.

nrnode This symbol controls the number
of NFS rnodes that are cached.

The value assigned to this
symbol is configured at boot
time and scales to match the
server. You can set this symbol
to 1 to disable caching.

nfs_shrinkreaddir This symbol controls whether
over-the-wire NFS Version 2
READDIR requests are shrunk
to 1024 bytes. Some old NFS
Version 2 servers could not
correctly handle READDIR
requests larger than 1024 bytes.

Defaults to off (0), which means
to not reduce the READDIR
requests. You can safely enable
this symbol (1) but it may
negatively impact system
performance while reading
directories.

NFS Tunables 111

TABLE A–1 NFS Parameters for the nfs Module (continued)

Symbol Name Description Default Setting

nfs_write_error_interval This symbol controls how often
NFS ENOSPC write error
messages are logged. Its units
are in seconds.

Defaults to 5.

nfs_write_error_to_cons_only This symbol controls whether
NFS write error messages are
logged to the system console or
to the system console and syslog.

Defaults to off (0), which means
to log all NFS write error
messages to the system console
and syslog. Enabling (1) this
functionality means that most
NFS write error messages will
only be printed on the system
console.

TABLE A–2 NFS Parameters for the nfssrv Module

Symbol Name Description Default Setting

nfs_portmon This symbol controls whether the
NFS server will do filtering of
requests based on the IP port
number. It uses the Berkeley notion
of reserved port numbers.

Defaults to off (0). You can enable
this symbol (1), but problems with
interoperability might appear.

nfsreadmap This symbol is no longer active.
Map reads are no longer
implemented. It is left to ease
transitions.

Defaults to off (0).

rfs_write_async This symbol controls whether the
NFS Version 2 server will use write
clustering to safely increase write
throughput.

Defaults to on (1). You can disable
this symbol (0), but performance
may be reduced.

112 NFS Administration Guide ♦ August 1997

TABLE A–3 NFS Parameters for the rpcmod Module

Symbol Name Description Default Setting

authdes_cachesz This symbol controls the size of the
authdes reply cache. It is a
performance enhancement feature
to avoid verifying client credentials
on every secure RPC request.

Defaults to 128. System
performance may be reduced if
this value is set too high.

authkerb_cachesz This symbol controls the size of the
authkerb reply cache. It is a
performance enhancement feature
to avoid verifying client credentials
on every secure RPC request.

Defaults to 128. System
performance may be reduced if
this value is set too high.

How to Set the Value of a Kernel
Parameter
1. Become root.

2. Edit the /etc/system file and add a line to set the parameter.

Each entry should follow this form:

set module:symbol=value

where module is the name of the kernel module that contains the required
parameter, symbol is the name of the parameter, and value is the numerical value
to assign to the parameter. For example:

set nfs:nfs_nra=4

would change the number of read-ahead blocks that are read for file systems
mounted using NFS version 2 software.

3. Reboot the system.

NFS Tunables 113

114 NFS Administration Guide ♦ August 1997

Index

Special Characters
#

comments in direct maps, 92
comments in indirect maps, 93
comments in master map

(auto_master), 90
& in maps, 106
* in maps, 106
+ in map names, 102, 103
- in map names, 102
/

/- as master map mount point, 89, 92
master map names preceded by, 89
root directory, mounting by diskless

clients, 8
\ in maps, 90, 92, 93

A
-a option

umount command, 42, 50
access control list (ACL), 6
administration

administrator responsibilities, 12
NFS files and their functions, 35, 36

already mounted message, 83
ampersand (&) in maps, 106
anon option of share command, 45
applications, hung, 33
ARCH map variable, 101
asterisk (*) in maps, 106
authentication

See also security,

DH, 61, 62
KERB, 62
RPC, 61
UNIX, 60, 61

autofs, 67, 107
See also automount command;

automountd daemon; maps
(autofs); security,

/home directory structure, 73, 74
consolidating project-related files, 75, 77
default behavior, 104, 105
features, 8
home directory server setup, 74, 75
maps

administrative tasks, 68, 105
default behavior, 104, 105
direct, 91, 92
indirect, 93, 94
master, 88, 89
modifying, 104
network navigation, 96
read-only file selection, 98, 100
referring to other maps, 102, 103
starting the navigation process, 90, 96
variables, 101, 101

metacharacters, 106, 106
mount process, 97, 98
mounting file systems, 15
name service use, 104
name space data, 8
non-NFS file system access, 72
operating systems, supporting

incompatible versions, 78

Index-115

overview, 7
reference, 105, 107
replicating shared files across several

servers, 79
shared name space access, 77, 78
special characters, 107
tasks and procedures, 68, 77
troubleshooting, 82, 84

autofs script, 95
automatic file sharing, 12, 13
automatic mounting, see autofs; automount

command; automountd
daemon,

automount command
autofs and, 7
automountd daemon and, 95
error messages, 82, 84
how it works, 95
-v option, 82, 83
when to run, 69

automountd daemon
autofs and, 7
automount command and, 95
how it works, 95, 94

automounter, see autofs,
auto_direct map, see direct maps,
auto_home map

/home directory server setup, 74, 75
/home directory structure, 73, 74
/home mount point, 89, 90

auto_master map, see master map
(auto_master),

B
background mounting option, 40
backslash (\) in maps, 90, 92, 93
bad argument specified with index option, 31
bad key messages, 82
bg option of mount command with -o flag, 40
booting

diskless client security, 63
mounting file systems, 13, 14

C
-c option of nfsd daemon, 38
cache and NFS version 3, 5

cache file system type
autofs access using, 72, 73

CacheFS, 72, 73
can’t mount message, 82
cannot receive reply message, 84
cannot send packet message, 84
cannot use index option without public

option, 32
CD-ROM applications, accessing, 72
cfsadmin command, 73
chkey command, 19
client-side failover, 57

enabling, 17
NFS locking, 58
NFS support, 7
replicated file systems, 58
terminology, 57

clients
incompatible operating system support, 78
NFS services, 3

commands
See also specific commands,
hung programs, 33
NFS commands, 38, 50

comments
in direct maps, 92
in indirect maps, 93
in master map (auto_master), 90

common key, 62
computers, reinstalling, moving, or

upgrading, 20
consolidating project-related files, 75, 77
conversation key, 62
couldn’t create mount point message, 82
CPU map variable, 101
cred table, public keys in, 61
credentials

described, 61
UNIX authentication, 61

D
-d option of showmount command, 50
daemons

Index-116 NFS Administration Guide ♦ August 1997

automountd
autofs and, 7
automount command and, 95
how it works, 95, 94

kerbd, 62
keyserv, 19
lockd, 37
mountd

checking response on server, 27
described, 37
enabling without rebooting, 30
not registered with rpcbind, 32
remote mounting requirement, 24
verifying if running, 29, 32

nfsd
checking response on server, 26
described, 38
enabling without rebooting, 30
remote mounting requirement, 24
syntax, 38
verifying if running, 28

required for remote mounting, 24
rpcbind

dead or hung, 32
mountd daemon not registered, 32

statd, 38
dash (-) in map names, 102
decrypting

See also public-key cryptography,
default file system type, 36
dfsmounts command, 50
dfstab file

automatic file sharing, 12, 13
kerberos option, 20
secure option, 20
syntax, 12

DH authentication
See also public-key cryptography,
dfstab file option, 20
KERB authentication, 20, 62
overview, 61, 62
password protection, 61
user authentication, 60

Diffie-Hellman authentication, see DH
authentication,

Diffie-Hellman public-key cryptography, see
public-key cryptography,

dir must start with ’/’ message, 83

direct maps
comments in, 92
described, 69
example, 91
modifying, 70
overview, 91, 92
syntax, 91, 92
when to run automount command, 69

directory does not exist, 32
diskless clients

manual mounting requirements, 8
NFS services, 3
security during boot process, 63

displaying, see listing,
domain name for Secure NFS system, 18
domain, defined, 18
DOS files, accessing, 72

E
-e option of showmount command, 50
environment, see NFS environment,
error messages

See also troubleshooting,
No such file or directory, 32
Permission denied, 32
generated by automount -v, 82, 83
miscellaneous automount messages, 83, 84
server not responding

during mounting, 41
keyboard interrupt for, 24, 32, 33

errors
See also troubleshooting,
open errors, 5
write errors, 5

/etc/.rootkey file, 20
/etc/auto_direct map, see direct maps,
/etc/auto_master map, see master map

(auto_master),
/etc/default/fs file, 36
/etc/dfs/dfstab file

automatic file sharing, 12, 13, 20
/etc/dfs/fstypes file, 36
/etc/dfs/sharetab file

described, 36, 37
/etc/init.d/autofs script, 95
/etc/mnttab file

Index-117

described, 35, 50, 95
/etc/mtab file, see /etc/mnttab file,
/etc/nfssec.conf file, 35
/etc/rmtab file, 36
/etc/services

nfsd entries, 32
/etc/vfstab file

mounting by diskless clients, 8, 13, 14, 36,
95

executable maps, 103
exports message, 84

F
-F option, unshareall command, 49
failover

error message, 32
NFS support, 7

fg option of mount command with -o flag, 40
file attributes and NFS version 3, 5
file permissions

See also security,
NFS version 3 improvement, 5
your computer not on list, 32

file sharing, 44, 50
See also share command,
automatic, 12, 13
examples, 47, 49
giving root access, 46
listed clients only, 44
multiple file systems, 49
NFS version 3 improvements, 5, 6
options, 44
overview, 44
read-only access, 44, 47
read-write access, 44, 47
replicating shared files across several

servers, 79
security issues, 44, 46, 60
unauthenticated users and, 45
unsharing, 49

file too large message, 32
files and file systems

See also file sharing; mounting;
unmounting,

autofs access
NFS file systems using CacheFS, 72,

73
non-NFS file systems, 72

autofs selection of files, 98, 100
consolidating project-related files, 75, 77
default file system type, 36
file systems defined, 4
local file systems

default file system type, 36
unmounting groups, 43

NFS ASCII files and their functions, 35, 36
NFS treatment of, 4
remote file systems

default types, 36
list of remotely mounted file

systems, 36
listing clients with remotely mounted

file systems, 50
mounting from file system table, 43
unmounting groups, 43

sharing automatically, 12, 13
foreground file mounting option, 40
fs file, 36
fstypes file, 36
fuser -k mount point, 43

G
-g option, lockd, 37

H
-h option, umountall command, 43, 44
hard option of mount command with -o

flag, 41
hierarchical mountpoints message, 83
hierarchical mounts (multiple mounts), 98
/home mount point, 89, 90
/home directory

structure, 73 to 75
HOST map variable, 101
host not responding message, 83
-hosts special map, 90
hosts, unmounting all file systems from, 43
hung programs, 33

Index-118 NFS Administration Guide ♦ August 1997

I
index option

must be a file error message, 31
WebNFS and, 22
without public option error message, 32

indirect maps
comments in, 93
described, 69
example, 93, 94
modifying, 70
overview, 93, 94
syntax, 93
when to run automount command, 69

intr option, mount command, 24

K
-k option of umountall command, 43
KERB authentication

See also DH authentication; public-key
cryptography,

dfstab file option, 20
NFS and, 7
overview, 62

kerbd daemon, 62
Kerberos (KERB) authentication, 20, 62
kerberos, dfstab file option, 20
kernel, checking response on server, 25
/kernel/fs file, checking, 36
key server, starting, 19
keyboard interruption of mounting, 24
keylogin program

remote login security issues, 63
running, 19

keylogout program, 63
keyserv daemon, verifying, 19
ksh command, 6

L
-l option, umountall command, 43
large files, 58

enabling, 16
NFS support, 6

leading space in map entry message, 83
listing

clients with remotely mounted file
systems, 50

mounted file systems, 42
remotely mounted file systems, 36
shared file systems, 47

local cache and NFS version 3, 5
local file systems

default file system type, 36
unmounting groups, 43

lockd daemon
described, 37
syntax, 37

locking, NFS version 3 improvements, 6
login command, remote login, 63

M
mail command, 6
map key bad message, 84
maps (autofs)

See also direct maps; indirect maps; master
map (auto_master); mount
points,

administrative tasks, 68, 105
automount command, when to run, 69
avoiding mount conflicts, 71
comments in, 90, 92, 93
default autofs behavior, 104, 105
direct, 91, 92
executable, 103
-hosts special map, 90
indirect, 93, 94
maintenance methods, 69
master, 88, 89
modifying, 104

direct maps, 70
indirect maps, 70
maintenance method, 69
master map, 70

multiple mounts, 98
network navigation, 96
referring to other maps, 102, 103
selecting read-only files for clients, 98, 100
special characters, 107
splitting long lines in, 90, 92, 93
starting the navigation process, 90, 96

mount points, 90
mount process, 90

types and their uses, 69

Index-119

variables, 101, 101
master map (auto_master)

/- mount point, 89, 92
comments in, 90
comparing with /etc/mnttab file, 95
contents, 88, 90
described, 69
modifying, 70
overriding options, 73
overview, 88, 89
preinstalled, 73
Secure NFS setup, 20
security restrictions, 79
syntax, 89
when to run automount command, 69

messages, see error messages,
MIT Project Athena, 62
mnttab file

comparing with auto_master map, 95
creating, 50
described, 35

mount command, 39, 42
See also mounting,
autofs and, 7
described, 39
diskless clients need for, 8
options

NFS file systems, 40, 41
no arguments, 42

superuser usage, 14
using, 41

mount of server:pathname error, 84
mount points

/- as master map mount point, 89, 92
avoiding conflicts, 71
fuser -k, 43
/home, 89, 90
/net, 90

mountall command, 43
mountd daemon

checking response on server, 27
described, 37
enabling without rebooting, 30
not registered with rpcbind, 32
remote mounting requirement, 24
verifying if running, 29, 32

mounting
See also mount command,

all file systems in a table, 43
autofs and, 7, 8, 15
background retries, 40
boot time method, 13, 14
diskless client requirements, 8
examples, 41, 43
foreground retries, 40
keyboard interruption during, 24
list of mounted file systems, 35
manually (on the fly), 14
options

NFS file systems, 41
options for NFS file systems, 40
overlaying already mounted file

system, 41
read-only specification, 40, 41
read-write specification, 40
remote mounting

daemons required, 24
troubleshooting, 25, 30

server not responding, 41
soft versus hard, 24
soft vs. hard, 24

moving computers, 20
MS-DOS files, accessing, 72
mtab file, see mnttab file,

N
name services

autofs use of, 104
map maintenance methods, 69

name spaces
autofs and, 8
shared, accessing, 77, 78

navigating using maps
overview, 96
starting the process, 90, 96

mount points, 90
mount process, 90

/net mount point
access method, 90

network lock manager, 6
newkey command, 19
NFS commands, see commands,
NFS environment, 4, 6

benefits, 4

Index-120 NFS Administration Guide ♦ August 1997

file systems, 4
overview, 4
Secure NFS system, 60
servers and clients, 3
version 2 protocol, 5
version 3 protocol, 5, 6

NFS locking
client-side failover, 58

NFS server, identifying current, 31
NFS services

restarting, 30
starting, 16
stopping, 16

NFS troubleshooting, 24
determining where NFS service has

failed, 29
hung programs, 33
remote mounting problems, 32
server problems, 25
strategies, 24

NFS URL, browsing, 23
nfscast: cannot receive reply message, 84
nfscast: cannot send packet message, 84
nfscast: select message, 84
nfsd daemon

checking response on server, 27
described, 38
enabling without rebooting, 30
remote mounting requirement, 24
syntax, 38
verifying if running, 29

nfssec.conf file, 35
nfsstat command, 31, 51
nisaddcred command, 19
nistbladm command, 70, 71
nis_err message, 84
no info message, 83, 84
No such file or directory message, 32
nosuid option

share command, 46
Not a directory message, 84
Not found message, 83
number sign (#)

comments in direct maps, 92
comments in indirect maps, 93
comments in master map

(auto_master), 90

O
-O option of mount command, 41
-o option

mount command, 40, 41, 44, 47
open errors, 5
operating systems

map variables, 101
supporting incompatible versions, 78

OSNAME map variable, 101
OSREL map variable, 101
OSVERS map variable, 101
overlaying already mounted file system, 41

P
passwords

autofs and superuser passwords, 7
DH password protection, 61
Secure RPC password creation, 19

pathconf: no info message, 84
pathconf: server not responding message, 84
PC-DOS files, accessing, 72
Permission denied message, 32
permissions

See also security,
NFS version 3 improvement, 5
your computer not on list, 32

plus sign (+) in map names, 102, 103
pound sign (#)

comments in direct maps, 92
comments in indirect maps, 93
comments in master map

(auto_master), 90
printing

list of remotely mounted directories, 50
list of shared or exported files, 50

processor type map variable, 101
programs, hung, 33
projects, consolidating files, 75, 77
pstack command, 52
public file handle, WebNFS and, 21
public option

share error message, 34
WebNFS and, 22

public-key cryptography
See also DH authentication,
common key, 62

Index-121

conversation key, 62
database of public keys, 61
DH authentication, 61, 62
secret key

database, 61
deleting from remote server, 63

time synchronization, 62
publickey map, 19, 61

R
-r option

mount command, 41, 43
read-only type

file selection by autofs, 98, 100
mounting file systems as, 40, 41
sharing file systems as, 44, 47

read-write type
mounting file systems as, 40
sharing file systems as, 44, 47

reinstalling computers, 20
remote file systems

default types, 36
list of remotely mounted file systems, 36
listing clients with remotely mounted file

systems, 50
unmounting groups, 43

remote mounting
daemons required, 24
troubleshooting, 25, 29

remote procedure call, see RPC,
remount message, 83
replicas must have the same version, 33
replicated file system, 58
replicated mounts

mounted read-only, 33
protocol versions, 33
soft option and, 33

replicated mounts must be read-only, 33
replicated mounts must not be soft, 33
replicating shared files across several

servers, 79
resources, shared, 36
rlogin command, remote login, 63
rmtab file, 36
ro option

mount command with -o flag, 40, 41
share command with -o flag, 44, 47

root directory, mounting by diskless clients, 8
root=host option of share command, 46
RPC

authentication, 61
Secure

DH authorization issues, 62, 63
overview, 61

rpcbind daemon
dead or hung, 32
mountd daemon not registered, 32
warm start, 30

rpcinfo command, 53
rw option

mount command with -o flag, 40
share command with -o flag, 44, 47

rw=client option of share command with -o
flag, 45

S
-s option of umountall command, 43
secret key

database, 61
deleting from remote server, 63
server crash and, 63

secure
dfstab file option, 20
mount option, 20

Secure NFS system
administering, 18, 20
domain name, 18
overview, 60
setting up, 18, 20

Secure RPC
DH authorization issues, 62, 63
overview, 61

security
applying restrictions, 79
DH authentication

dfstab file option, 20
overview, 61, 62
password protection, 61
user authentication, 60

file-sharing issues, 44, 46
KERB authentication, 20, 62
NFS version 3 and, 5, 6

Index-122 NFS Administration Guide ♦ August 1997

Secure NFS
overview, 60

Secure NFS system
administering, 18, 20
overview, 60

Secure RPC
DH authorization issues, 62, 65
overview, 61

UNIX authentication, 60, 61
security services, list of, 35
serial unmounting, 43
server not responding message, 83, 84

keyboard interrupt for, 24, 32, 33
servers

autofs selection of files, 99, 100
crashes and secret keys, 63
daemons required for remote

mounting, 24
home directory server setup, 74, 75
maintaining, 12
NFS servers and vfstab file, 14
NFS services, 3
not responding during mounting, 41
replicating shared files, 79
troubleshooting

clearing problems, 25
remote mounting problems, 25, 32

weighting in maps, 100
session key, see conversation key,
setgid mode, share command option

preventing, 46
setmnt command, 50
setuid mode

Secure RPC and, 63
share command option preventing, 46

share command, 44, 47
described, 44
options, 44
security issues, 44, 46
/etc/dfs/dfstab file entries, 12
using, 47

shareall command, 49
shared resources, list of, 36
sharetab file

described, 36
mountd daemon and, 37

sharing files and file systems, see file sharing,
showmount command, 50

single-user mode and security, 63
slash (/)

/- as master map mount point, 89, 92
master map names preceded by, 89
root directory, mounting by diskless

clients, 8
snoop command, 55
soft option of mount command with -o flag, 41
Solaris 2.5 release

NFS version 2 support, 5
NFS version 3 improvements, 6

special characters in maps, 107
statd daemon, 38
superusers

autofs and passwords, 7
running mount command as, 14

synchronizing time, 62

T
-t option, lockd daemon, 37
TCP, NFS version 3 and, 6
telnet command, remote login, 63
time, synchronizing, 62
transmission control protocol, see TCP,
transport setup problem

error message, 32
troubleshooting

See also errors,
autofs, 82, 84

avoiding mount point conflicts, 71
error messages generated by

automount -v, 82, 83
miscellaneous error messages, 83, 84

NFS
determining where NFS service has

failed, 29
hung programs, 33
miscellaneous error messages, 31
remote mounting problems, 25, 32
server problems, 25
strategies, 24

truss command, 55

U
UDP, NFS version 3 and, 6

Index-123

umount command
See also unmounting,
autofs and, 7
described, 42

umountall command, 43
syntax, 43
using, 43

UNIX
authentication, 60, 61
security issues, 60, 61

unmounting
See also autofs; umount command,
autofs and, 7
examples, 42, 43
groups of file systems, 43

unshare command, 49
unshareall command, 49
unsharing file systems

See also file sharing,
unshare command, 49
unshareall command, 49

upgrading computers, 20
user datagram protocol, see UDP,
/usr directory, mounting by diskless clients, 8
/usr/kvm directory, mounting by diskless

clients, 8

V
-V option

umount command, 42

-v option
automount command, 82, 83

variables in map entries, 101, 101
verifiers

described, 61
UNIX authentication, 61

version 2 NFS protocol, 5
version 3 NFS protocol, 5
vfstab file

automount command and, 95
described, 36
mounting by diskless clients, 8
mounting file systems at boot time, 13, 14
NFS servers and, 14

viewing, see listing,

W
warm start

rpcbind service, 30
WARNING: mountpoint already mounted on

message, 83
WebNFS, 7, 58

enabling, 22
index option, 22
NFS URL, 22
planning for, 21
public option, 22

weighting of servers in maps, 100
write errors, 5

Index-124 NFS Administration Guide ♦ August 1997

