KCMS™ Application Developer’s Guide

SunSoft, Inc.
A Sun Microsystems, Inc. Business

2550 Garcia Avenue
Mountain View, CA 94043

U.S.A. @

THE NETWORK IS THE COMPUTER"

&E
Please
Recycle

Copyright 1997 Sun Microsystems, Inc. 2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A. All rights reserved.
Copyright 1994 Eastman Kodak Company. Modified by Sun with permission from Kodak.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No part of
this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any. Third-party
software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and
other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, SunSoft, SunDocs, SunExpress, Solaris, OpenWindows, DeskSet, ONC, ONC+, and NFS are trademarks, registered
trademarks, or service marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks
or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture
developed by Sun Microsystems, Inc. PostScript and Display PostScript are trademarks of Adobe Systems Inc., which may be registered in certain
jurisdictions. KCMS is a trademark of Eastman Kodak Company.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the
pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-
exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs and
otherwise comply with Sun’s written license agreements.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87) and FAR 52.227-
19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a).

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 1997 Sun Microsystems, Inc., 2550 Garcia Avenue, Mountain View, Californie 94043-1100 Etatis-Unis. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent I'utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut étre reproduite sous aucune forme, par quelque moyen que ce soit, sans I’autorisation
préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de
caracteres, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront étre dérivées des systémes Berkeley BSD licenciés par I'Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, SunSoft, SunDocs, SunExpress, Solaris, OpenWindows, DeskSet, ONC, ONC+, et NFS sont des marques de fabrique
ou des marques déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées
sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits
portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc. PostScript et Display PostScript sont des marques
déposées d’ Adobe Systems, Inc., lesquelles pourront étre enregistrées dans des juridictions compétentes. KCMS est une marque déposée d’ Eastman
Kodak Company.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnait les
efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique pour I'industrie de
I'informatique. Sun détient une licence non exclusive de Xerox sur I'interface d’utilisation graphique Xerox, cette licence couvrant également les licenciés
de Sun qui mettent en place I'interface d’utilisation graphiqgue OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE "EN L'ETAT" ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N'EST ACCORDEE, Y COMPRIS DES
GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE S’APPLIQUERAIT
PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

a4

Adobe PostScript

Contents

Preface. XV
New Features XXi
1. Introduction.
InThisChapter.
KCMS Architecture
Applications.

T APL.

KCMS Framework. i

Profiles.
Graphics and Imaging Libraries

Color ManagementModules
KCMSFileSystem i e
Sample Programs.

2. Profiles

N N o o A DN W W W N R R R

InThisChapter.

What Is AProfile? 7

What Is Your Interest In Profiles? 8
Profile Typeso e 9
Device Color Profile. i 10
Color Space Profile. 10
Effects Color Profile. L. 11
Complete Color Profile 11
KCMS API Functional Overview. 11
Typical Profile Operations Using the KCMS API. 12
Getting and Setting Profile Attributes. 12
Loading and Saving Profiles. 13
Example: Using Profiles to Convert Color Data. 14
Associating Profiles with Devices 18
Using Color Space Profiles 19
Advanced Profile Operations Using the KCMS API 20
Operation Hints. 20
ContentHints. i, 21
Freeing Profiles. L 21
Managing Profile Memory, 21
Optimizing Profiles 22
Characterizing and Calibrating Profiles 22

3. DataStructures 25
InThisChapter. i, 25
MaCIOS . . ot 25

iv KCMS Application Developer’s Guide—August 1997

Constants

Data Types

Contents

KcsAttributeBase Ce
KcsAttributeName ...
KcsAttributeType .
KcsAttributeValue .
KcsAttrSpace
KcsCalibrationData
KcsCallbackFunction
KcsCharacterizationData
KcsColorSample
KcsComponent
KcsCreationDesc
KcsCreationType
KcsErrDesc
KcsEvalSpeed
KcsFileld
KcsFunction
Kesldent
KcsLoadHints
KcsMeasurementBase
KcsMeasurementSample
KcsOperationType ...
KcsOptimizationType

KcsPixelLayout

KcsPixelLayoutSpeeds

KcsProfileDesc Ce
KcsWindowProfile ..
KcsProfileld
KcsProfileType Ce
KcsSampleType
KcsStatusld

4. Functions
In This Chapter..........
KcsAvailable() ce

KcsConnectProfiles()

KcsCreateProfile()

KcsEvaluate()

KcsFreeProfile() ..

KcsGetAttribute()
KcsGetLastError()

KcsLoadProfile() ..

KcsModifyLoadHints()
KcsOptimizeProfile()

KcsSaveProfile() ..

KcsSetAttribute()

KcsSetCallback() ..

KcsUpdateProfile()

vi KCMS Application Developer’s Guide—August 1997

5. KCMS Profile Attributes 103

InThisChapter. 103
Using the Attribute Name 103
Interpreting the Attribute Value 104
Required and Optional Attributes. 104
Names of CMM-Specific Attributes. 104

Required ICC Attributes., 106
InputProfile 107
Display Profile 108
Output Profile. 109
Additional Profile Formats. 110
Listof All Attributes 111

Attribute Types. 113
Constants 113
SIgNAtUNeS 114
Other ENUMS e 120
Arraysof Numbers 123

Attribute Type Definitions 133

CMM-Specific Attribute Definitions 138

6. Warning and Error Messages 141

InThisChapter., 141

Warnings oo 142

Brrors. .o 142

Localizing Status Messagesc .. 147

Contents Vii

viii

KCMS Application Developer’s Guide—August 1997

Figures

Figure 1-1
Figure 2-1
Figure 2-2
Figure 2-3
Figure 3-1

KCMS Architecture 2
Converting Color Data From a Scanner to a Monitor 14
Buildinga CCP From TwoDCPSttt 16
Profile Load Hint Operations 17

24-bit Color Component-Interleaved Data for RGB Pixel Image 55

KCMS Application Developer’s Guide—August 1997

Tables

Table 1-1
Table 1-2
Table 2-1
Table 2-2
Table 3-1
Table 3-2
Table 3-3
Table 3-4
Table 4-1
Table 4-2
Table 4-3
Table 4-4
Table 4-5
Table 4-6
Table 4-7
Table 4-8

Optional Imaging and Graphics Libraries.................

KCMS Directories

KCMS and ICC Profile Format Equivalents

KCMS API Functions

KcsFunction

Bit Constants. . .

Bit Positions And Masks For Load Hints.

Bit Mask Values for Load Hints

KcsSampleType Constants ...

KcsAvailable()
KcsAvailable()

KcsConnectProfiles()
KcsConnectProfiles()
KcsCreateProfile()

KcsCreateProfile()

KcsEvaluate()

KcsEvaluate()

Arguments .

ReturnStrings

Arguments . .

Return Strings

Arguments.
Return Strings
Arguments

Return Strings

11
41
42
44
59
62
62
64
64
67
67
69
69

Xi

xii

Table 4-9

Table 4-10
Table 4-11
Table 4-12
Table 4-13
Table 4-14
Table 4-15
Table 4-16
Table 4-17
Table 4-18
Table 4-19
Table 4-20
Table 4-21
Table 4-22
Table 4-23
Table 4-24
Table 4-25
Table 4-26
Table 4-27
Table 4-28
Table 5-1

Table 6-1

Table 6-2

KcsFreeProfile() Arguments., 71
KcsConnectProfiles() Return Strings 71
KcsGetAttribute() Arguments 72
KcsGetAttribute() Return Strings. 72
KcsGetLastError() Argumentso 76
KcsGetLastError() Return Strings. 77
KcsLoadProfile() Arguments., 79
KcsConnectProfiles() Return Strings 79
KcsModifyLoadHints () Arguments.................. 83
KcsModifyLoadHints() Return Strings................ 83
KcsOptimizeProfile() Arguments................... 85
KcsOptimizeProfile() Return Strings................ 85
KcsSaveProfile() Arguments., 87
KcsSaveProfile() Return Strings. 87
KcsSetAttribute() Argments. i 89
KcsConnectProfiles() Return Strings................ 90
KcsSetCallback() Arguments. 94
KcsSetCallback() Return Strings. 94
KcsUpdateProfile() Arguments 98
KcsUpdateProfile() Return Strings 98
Attributes Required Depending on Interpretation.......... 107
Warning Codes ... 142
Error Codes. 142

KCMS Application Developer’s Guide—August 1997

Code Samples

Code Example 2-1 Simple Color Data Conversion 15
Code Example 2-2 ConnectingaDCPand CSP...................... 19
Code Example 3-1 KcsAttributeValue 30
Code Example 3-2 KcsCallbackFunction 35
Code Example 3-3 Load Hint Bit Mask Combinations................ 45
Code Example 3-4 ~ Component-Interleaved, 3-by-7 Layout. 54
Code Example 4-1 KcsConnectProfiles() 65
Code Example 4-2 KcsCreateProfile() ... 67
Code Example 4-3 KesEvaluate() ... 70
Code Example 4-4 KcsFreeProfile() 71
Code Example 4-5 KesGetAttribute() ™ .o 72
Code Example 4-6 KesGetLastError() ..o 77
Code Example 4-7 KcsLoadProfile() ... 80
Code Example 4-8 KesModifyLoadHints() ... 83
Code Example 4-9 KcsOptimizeProfile() ... 85
Code Example 4-10 KcsSaveProfile() — i 88

xiii

Xiv

Code Example 4-11
Code Example 4-12
Code Example 4-13

Code Example 5-1

KcsSetAttribute() 90

KcsSetCallback() ... 95
KcsUpdateProfile() ... 99
icSigNumTag and icSigListTag 105

KCMS Application Developer’s Guide—August 1997

Preface

The KCMS Application Developer’s Guide describes the Kodak Color
Management System (KCMS™) framework C-language application
programming interface (API). The KCMS framework enables the accurate
reproduction, and improves the appearance of, digital color images on desktop
computers and associated peripherals. With the framework’s “C” API, you can
write applications that perform correct color conversions and manipulations.

Who Should Use This Guide

The intended audience of this guide is the professional programmer who is
fluent in the C programming language and writing an application that:

Uses color data
Prints images

Is an imaging tool
Uses PhotoCD

Note — Although the KCMS API is a “C” language interface to the KCMS
framework, you can write your application in other languages such as C++ by
following the guidelines for making C-language calls.

XV

Before You Read This Guide

Related Manuals

XVi

Check the following documentation for any corrections or updates to the
information in this guide:

See the on-line SUNWrdm packages for information on bugs and issues,
engineering news, and patches. For Solaris installation bugs and for late-
breaking bugs, news, and patch information, see the Installation Instructions for
Solaris 2.6 (SPARC Platform Edition) and the Installation Instructions for Solaris 2.6
(Intel Platform Edition).

For SPARC™ systems, consult any updates your hardware manufacturer
provided.

Although you do not have to be a color scientist to write applications with the
KCMS API, a certain amount of color literacy is helpful. Table P-1 lists two
white papers that contain some basic information on color and KCMS. The files
are located online in the /usr/openwin/demo/kcms/docs/ directory.

Table P-1 KCMS White Papers

File Name Title
kems-wp.ps An Introduction to the Kodak Color Management System
kems-wp-solaris.ps Kodak Color Management System

The KCMS framework this guide describes uses the International Color
Consortium (ICC) format as the default format for color manipulation. For
details on ICC, you should read the International Color Consortium Profile Format
Specification. The ICC profile format specification is located by default in the
icc.ps file in the /opt/SUNWsdk/kcms/doc directory. This is the
specification to which this version of KCMS conforms. For the most current
version of the ICC specification, see the web site at http://www.color.org

The following manuals will help you further understand the Driver Developer
Kit (DDK) portion of the KCMS software product.

® KCMS CMM Developer’s Guide
® KCMS CMM Reference Manual
® KCMS Test Suite User’s Guide

KCMS Application Developer’s Guide—August 1997

The following manuals will help you further understand the Calibrator Tool
portion of the KCMS software product.

® Solaris Advanced User’s Guide

In Chapter 10, “Customizing Your Environment,” there is a section called
“Calibrating Your Monitor.” The section tells you how to adjust your
viewing environment and how to calibrate your monitor with Calibrator
Tool.

® KCMS Calibrator Tool Loadable Interface Guide

This guide will help you further understand the API to the Calibrator Tool.
You can tailor the Calibrator Tool for your specific calibrator hardware and
software with this API.

How This Guide Is Organized

This guide consists of the following chapters and appendix:

® Chapter 1, “Introduction” explains the KCMS architecture and
programming environment. In addition, it introduces you to several on-line
sample programs that demonstrate the use of the KCMS API.

® Chapter 2, “Profiles” explains profiles, which are the focus of your
programming efforts with the KCMS framework.

® Chapter 3, “Data Structures” describes the data structures of the KCMS
framework.

® Chapter 4, “Functions” details each KCMS “C” API function.
® Chapter 5, “KCMS Profile Attributes” details each profile attribute (tag).

® Chapter 6, “Warning and Error Messages” describes status codes (error and
warning messages) returned by the KCMS framework functions.

Ordering Sun Documents

The SunDocs*™ program provides more than 250 manuals from Sun
Microsystems, Inc. If you live in the United States, Canada, Europe, or Japan,
you can purchase documentation sets or individual manuals using this
program.

Preface XVii

For a list of documents and how to order them, see the catalog section of the
SunExpress™ Internet site at http://www.sun.com/sunexpress

Note — The term “x86” refers to the Intel 8086 family of microprocessor chips,
including Pentium and Pentium Pro processors and compatible microprocessor
chips made by AMD and Cyrix. In this document, the term “x86” refers to the
overall platform architecture, whereas “Intel Platform Edition” appears in the

product name.

What Typographic Changes Mean

The following table describes the typographic changes used in this guide.

Table P-2

Typographic Conventions

Typeface or

Symbol Meaning Example
AaBbCc123 The names of commands, Edit your .login file.
files, and directories; Usels -a to list all files.
on-screen computer output machine_name% You have mail.
AaBbCc123 What you type, contrasted machine_name% su
with on-screen computer Password:
output
AaBbCc123 Command-line placeholder: To delete a file, type rm filename.
replace with a real name or
value
AaBbCcl123 Book titles, new words or Read Chapter 6 in User’s Guide.

terms, or words to be
emphasized

These are called class options.
You must be root to do this.

Xviii

KCMS Application Developer’s Guide—August 1997

KCMS Naming Conventions

The KCMS “C” API naming conventions shown in Table P-3 are used

throughout the KCMS framework and this guide.

with “ic ”—ic <AttributeName>

Table P-3 APl Naming Conventions
Item Convention Examples
Attribute names ICC profile format attribute names begin icHeader

Data structures

ICC profile format data structures begin with

icTextDescription

Typedefs “ic . All other data structures, typedefs, and | KcsCalibrationData
Constants constants are KCMS specific and begin with
“Kes ”—Kces <TypeDefName>
Functions Each significant word in a function name is KcsConnectProfiles()
capitalized. Intervening spaces are
removed—Kcs <FunctionName>()
Macros Macros are KCMS specific and are KCS_DEFAULT_ATTRIB_COUNT

capitalized—KCS_<MACRO_NAME>

All status codes are capitalized and have the | KCS_PROF_ID_BAD

format KCS <STATUS_CODE>

Status codes

Note — Historically KCMS was referred to by the abbreviation KCS (or Kcs).
This abbreviation has been carried forward as the prefix in KCMS data type
names, for example, KcsCalibrationData

Equivalent Terms In This Guide

For historic reasons, this guide uses several equivalent Kodak and ICC terms.
The terms evolved at different times. Development of the ICC specification
introduced new ICC terms with meanings the same as (or similar to) already
existing Kodak terms.

Preface XiX

You should be familiar with the terms listed in the table below, as you will
encounter them in the ICC specification and KCMS color management
documentation, as well as in the KCMS header files and example programs.
The terms are defined as they are introduced in this guide.

Table P-4 Equivalent ICC and Kodak Terms

Kodak Term ICC Term

attribute tag

device color profile (DCP) input, display, or output profile
effects color profile (ECP) abstract profile

complete color profile (CCP) device link profile

reference color space (RCS) profile connection space (PCS)

Note — The text in this guide uses the term attribute instead of tag, (but code
examples and header files may use tag for the historic reasons previously
mentioned.

Shell Prompts in Command Examples

The following table shows the default system prompt and superuser prompt
for the C shell, Bourne shell, and Korn shell.

Table P-5 Shell Prompts

Shell Prompt
C shell prompt machine_name%
C shell superuser prompt machine_name#

Bourne shell and Korn shell $
prompt

Bourne shell and Korn shell #
superuser prompt

XX KCMS Application Developer’s Guide—August 1997

New Features

Multithread Safe

In this release, KCMS supports multithread programs; it is multithread safe
(MT-safe). If your application uses multithread capabilities you do not need to
put locks around KCMS library calls.

XXi

XXii KCMS Application Developer’s Guide—August 1997

In This Chapter

KCMS Architecture

Introduction 1

This chapter introduces you to the Kodak Color Management System (KCMS)
product. It describes each of the components of the KCMS architecture and
tells you about programming requirements and hints when writing your
KCMS application.

The KCMS architecture provides a way to encapsulate specific color
management functions in color profiles. Figure 1-1 illustrates the architecture
of the KCMS environment. Each segment filled with gray is supplied by
SunSoft. These are the default components. The other segments, filled with
white, are components that you can add to your development environment.

Each component is discussed further in the following sections.

Note — SunSoft supplies the XIL imaging library. KCMS is integrated into this
library.

Application

“C” API (SDK)

v

Graphics
Library

L

Y

Imaging
Library

Y

|: efault Color

KCMS Framework

Management
Module
(CMM)

Third-Party
CMM

Profiles

Figure 1-1 KCMS Architecture

Applications

At the top of the hierarchy are applications. Using the KCMS “C” API to the

Third-Party
CMM

“C++" CMM Interface (DDK)

KCMS framework, you can write an application that:

Uses color data
Prints

Is an imaging tool
Uses PhotoCD

Applications connect color profiles to provide a variety of new forms, thus
minimizing the task of predefining all possibilities. With the 14 available
KCMS API functions, your application can load, create, and update profiles,

connect and optimize profiles, and then process data through the result. (For a
summary description of each KCMS API function, see “KCMS API Functional

Overview” on page 11.)

KCMS Application Developer’s Guide—August 1997

[EEN
I

“C” API

The KCMS “C” API provides functions for your application to communicate
with the KCMS framework and color management modules (CMMs). The API
is a portable programming interface that allows applications to manipulate
color profiles and to use them to correct color data.

Note — The SDK API is sometimes referred to as the “C” API to distinguish it
from the DDK “C++” framework interface used to develop CMM:s.

The “C” API consists of:

® A set of callable functions
® Header files
® A shared library and dynamically loaded code modules required for Solaris

KCMS Framework

Profiles

The KCMS framework loads and saves profiles, gets and sets KCMS profile
attributes, and directs requests for color management to the right CMM at the
right time. It is particularly vital in calls that involve more than one CMM. The
KCMS framework also maintains attributes and executes certain default
behaviors and functionality.

Color management is performed by the framework and the CMMs. You can
concentrate on dealing with profiles because the KCMS framework makes
color management details transparent to the caller.

Profiles are files that tell the KCMS framework how to convert input color data
to the appropriate color-corrected output color data. They are the focus of your
programming efforts. For example, your application might load profiles, read

profile attributes, connect profiles, optimize profiles, and apply profiles to color
data.

See Chapter 2, “Profiles,” for detailed information.

Introduction 3

Graphics and Imaging Libraries

Table 1-1 lists some of the imaging and graphics libraries available to use with
the KCMS framework.

Table 1-1 Optional Imaging and Graphics Libraries

Library Description

PEXIib PHIGS Extensions to the X Library
XGL Solaris 3D Graphics Foundation Library
XIElib X Imaging Extension Library

XIL Solaris Foundation Imaging Library
Xlib X11 Window System Library

You can mix KCMS calls with any calls from these libraries. If the library you
choose supports color management, your application may not need to make
direct calls to the KCMS framework. The library may already make those direct
KCMS calls. The XIL Imaging Library, for example, supports color
management and includes integrated KCMS functions.

Refer to the documentation for the imaging and graphics library of your choice
to determine if that library already supports color management.

Color Management Modules

A color management module (CMM) is the component that ultimately does the
color correction. Different CMMs use different techniques for evaluating color
data, which can result in differences in quality, profile size, and speed of color
manipulation.

Because CMMs are loaded at run-time and CMM interfaces are extendable, an
application that uses the “C” API can take advantage of the improvements in
existing technologies and the latest color-correction technology, along with
hardware acceleration. To do so, you just change or adding new CMMs,
profiles, or both. You can do this without changing the code or rebuilding your
application.

KCMS Application Developer’s Guide—August 1997

[EEN
I

The default CMM is Kodak-supplied. You can write your own CMM (third-
party CMM) or override portions of the default CMM. To write your own
CMM you must purchase the Solaris Device Developer’s Kit (DDK) that
includes the following KCMS CMM manuals:

® KCMS CMM Developer’s Guide
®* KCMS CMM Reference Manual
® KCMS Test Suite User’s Guide

KCMS File System
The software product’s directory structure indicates the types and locations of
files. Table 1-2 shows you the top-level directories.
Table 1-2 KCMS Directories
Directory Subdirectory Content

/usr/openwin

SUNWSsdk/kcms

bin
demo/kcms
demo/kecms/imagesttiff
demo/kcms/docs
lib
share/etc/gpiutils

share/etc/devhandlers

share/etc/devdata/profiles
include/kcms

man/manl

man/man6

demo

doc

man/man3

Configuration and networking binaries
KCMS demonstration programs
Sample TIFF images

KCMS user white papers

libkcs.so ; main KCMS library

CMM libraries

Dynamically loadable modules and
third-party CMMs

Device profiles provided with KCMS
Various library header files

KCMS command/utility manual pages
KCMS demo manual pages

Sample programs

ICC specification

KCMS API manual pages

Introduction

1]l
H

Table 1-2 KCMS Directories (Continued)

Directory Subdirectory Content
man/man6 KCMS demo manual pages
src Sample source code
xi_lib XIL-based library to read and write TIFF
files

Sample Programs

Several sample programs demonstrate how to use the API described in this
guide. These programs are available on-line in the SUNWsdk/kcms/demo
directory. The programs show you how to

® Check profile calibration (kcms_update.c)

® Test the loading of a scanner profile and a monitor profile, and correct the
color image data (kcstest.c)

® Print header attributes in a profile (print_attributes.c)

The /demo directory also provides files used in the sample programs. These
include

kcms_create.c
kcmstest_tiff.c
kcms_timer.c
kems_utils.c
kems_utils.h
print_header.c
print_montbls.c

Check the README_SDKile for additional information.

6 KCMS Application Developer’s Guide—August 1997

In This Chapter

What Is A Profile?

Profiles 2

This chapter provides an overview of p rofiles. It discusses their contents,
format, and KCMS profile classifications. It proceeds to describe how you
typically use KCMS API functions in your application to manipulate profiles.
The chapter provides an illustrated example, threading together some of the
most frequently used operations. Finally, the chapter presents more advanced
programming techniques your application can perform using the API.

A profile (also called a color profile) provides the KCMS framework with
information on how to convert input color data to the appropriate color-
corrected output color data.

Profiles contain the following types of information:

® Color spaces in which the input and output data appear (for example, RGB,
CMYK, or CIEXYZ).

® Specific color space parameters (for example, primary color chromaticities
and tables that correct the response of each color component or channel).

® Data determined by the specific conditions in which colors are expected to
be viewed (for example, the lighting conditions and type of media that will
be used).

® Tables of data or equation parameters that a CMM uses to transform color
data.

® CMM-specific information. Each profile is owned by a specific CMM.
Although all profiles have common, public information, there may be
private data in an individual profile format for use by that particular CMM.

What Is Your Interest In Profiles?

Profiles are the focus of your programming efforts. Typically, you write
applications to load profiles, read profile attributes, connect profiles, optimize
profiles, and apply profiles to color data. To perform these types of operations,
you incorporate KCMS API functions into your application. See “KCMS API
Functional Overview” on page 11 for a summary of all the API functions.

Typically, you use the API to combine or connect existing profiles to create
profiles, rather than to generate new ones. Creating new profiles is the left to
the CMM developer.

Profile Format

When you write applications that use the KCMS API, you do not need to
understand the details of the profile file format. However, you might be
interested to know that KCMS, by default, uses the International Color
Consortium (ICC) profile format. The ICC format is an emerging default
defacto standard supported by a wide range of computer and color device
vendors. This is extremely advantageous for users, as this standard allows a
single profile to work over multiple platforms.

Note — The ICC format is endorsed by many regular members. The founding
members are: Adobe Systems Inc., Agfa-Gevaert N.V., Apple Computer Inc.,
Eastman Kodak Company, FOGRA (Honorary), Microsoft Corporation, Silicon
Graphics, Inc., Sun Microsystems Inc., and Taligent Inc.

The KCMS framework uses the ICC format as the default profile format. For
details on the ICC profile format, see the ICC profile format specification. By
default, it is located on-line in the SUNWsdk/kcms/doc directory. For the latest
version of the ICC specification, see the web site at http://www.color.org

KCMS Application Developer’s Guide—August 1997

N
1]

Profile Types

CMM Specifics

Each color profile is owned by or associated with a specific CMM. Each CMM
may have a different way of performing its color-correction technology. For
example, a CMM may incorporate a unique way to calibrate its profiles.

In general, your application does not need to know which CMM owns a
profile. In the case where the profile owner is not present and the profile is a
valid ICC profile, the default CMM can provide the functionality necessary to
use that profile.

The KCMS API functions your application calls are device-independent
interfaces to the KCMS framework. The manner in which these API functions
are preformed may differ depending on the underlying CMM and its particular
color correction technology, but your application interface does not change. It
always calls the API functions in the standard way. What you might want to be
aware of, however, is that occasionally your application may receive CMM-
specific error codes.

For more information on CMMs, see the DDK document, KCMS CMM
Developer’s Guide.

The KCMS framework supports several types of color profiles. Before
describing these types, there are some terminology differences between the
ICC specification and the KCMS framework you should be aware of. Table 2-1
identifies these differences, which are mostly historical.

Table 2-1 KCMS and ICC Profile Format Equivalents

KCMS Profile Format ICC Equivalent

device color profile (DCP) any input, display, or output profile
color space profile (CSP) color space conversion profile
effects color profile (ECP) abstract profile

complete color profile (CCP) device link profile

Profiles 9

10

Device Color Profile

A device color profile (DCP) represents the behavior of a specific digital color
device, such as a flatbed or film scanner, a computer monitor, or a printer. Each
DCP specifies device color appearance under a specific set of conditions (for
example, lighting type, media type, and so on). Because device behavior tends
to change over time, calibration software may adjust a DCP whenever its
device is calibrated. Calibration fine tunes a specific device’s color response by
bring it back to normal using lookup tables. Typically calibration changes the
profile data so that it can be color managed to produce the same color response
as other devices of the same make and model. In other cases, depending on the
device’s method of calibration, the device itself is changed to match the profile.

The ICC specification separates DCPs into three categories: input, output, and
display. This separation can be confusing when a device, such as a printer
includes input device data. The data can be considered an input profile, an
output profile, or both. This occurs in print simulation where the printer is an
input device to a display or other output device.

Conceptually, it may be easier to separate profiles into these three categories
only in terms of how data can and cannot be sent from and to the profile
connection space (PCS). The PCS is the common junction where profiles are
connected together.

KCMS does not make this syntactical separation. Rather it considers all input,
output, and display profiles as device profiles and makes no assumptions
about what profiles can and cannot be connected together. The connection of
the profiles is then evaluated at connection time based on the data contained
within the profile.

Color Space Profile

A color space profile (CSP) defines a color space. Colors are defined in terms
directly related to spectral response. A CSP does not depend on the behavior of
a particular color device. CSPs contain information about assumed viewing
conditions in the data expressed for that color space. Typically, the color space
can be relative to CIEXYZ values, defined by the Commission Internationale de
I’Eclairage (CIE). The equivalent ICC term for color space profile is color space
conversion profile. (See Table 2-1.)

KCMS Application Developer’s Guide—August 1997

N
1]

Effects Color Profile

An effects color profile (ECP) represents a condition that changes the appearance
of colors, such as a specific kind of lighting or a simulated anomalous color
vision (color blindness). In addition, an ECP can be applied for artistic
purposes, such as making colors appear lighter or darker. The equivalent ICC
term for effects color profile is abstract profile. (See Table 2-1.)

Complete Color Profile

The preceding three profile types do not contain enough information for the
KCMS framework to convert color data from one form to another. Useful color
transformations can only happen when your application uses the KCMS API to
connect two or more profiles together to form a complete color profile (CCP). A
CCP is a connected sequence of profiles with a DCP or a CSP at either end, and
possibly one or more ECPs or DCPs in between. The equivalent ICC term for
complete color profile is device link profile. (See Table 2-1.)

KCMS API Functional Overview

The KCMS API consists of 14 interfaces for manipulating profiles. Table 2-2
alphabetically lists and briefly describes each function.

Table 2-2 KCMS API Functions

Function Description

KcsAvailable() Determines if the KCMS framework has been
installed on the system (for cross-platform
compatibility).

KcsConnectProfiles() Combines existing profiles to create a new profile or
restricts functionality of a single profile for better
efficiency.

KcsCreateProfile() Creates an empty profile containing neither attributes

nor CMM-specific data.

KcsEvaluate() Applies a color profile to input color data to produce
color-corrected output data.

KcsFreeProfile() Releases all resources a loaded profile is using (for
example, memory).

Profiles 11

1]l
N

Table 2-2 KCMS API Functions

Function Description
KcsGetAttribute() Finds the value of a particular attribute of a given
profile.

KcsGetLastError() Finds information about the most recent error.
KcsLoadProfile() Loads a profile and its resources into the system and
returns the profile Id.

KcsModifyLoadHints() Applies a new set of load hints to a profile already
loaded.

KcsOptimizeProfile() Optimizes a profile by reducing its size, increasing its
speed, or increasing its accuracy.

KcsSaveProfile() Saves a loaded profile and any changes to its
attributes or profile data.

KcsSetAttribute() Creates, modifies, or deletes a specific attribute in a
profile.

KcsSetCallback() Associates a callback function with any of the API

functions that support callbacks.

KcsUpdateProfile() Changes the profile data in the loaded profile
according to the supplied measurement data.

Typical Profile Operations Using the KCMS API

Your application can make function calls to the KCMS API to perform various
tasks. Typically, applications want to use profiles to convert color data from
one device type to another. This involves functions such as loading the profiles,
getting and setting attributes, and saving the results. This section describes
some of the typical API functions.

Getting and Setting Profile Attributes

The KCMS API provides a way to get profile information by examining the
profile’s attribute set. Each attribute has a value, which is data associated with
the attribute. The API provides the following attribute calls:

® KcsGetAttribute() —agets a specific attribute value associated with a
profile. See “KcsGetAttribute()” on page 71 for detailed information.

12 KCMS Application Developer’s Guide—August 1997

2

® KcsSetAttribute() —modifies an attribute. (This is not always possible
because some attributes are read-only.) See “KcsSetAttribute()” on page 88
for detailed information.

For more information on profile attributes, see Chapter 5, “KCMS Profile
Attributes.”

Loading and Saving Profiles

Profiles are typically stored as files on disks, although they can be imbedded in
an image located across a network or in read-only memory in a printer.

Profiles are loaded with the KcsLoadProfile() function (see page 77) and
are saved with the KcsSaveProfile() function (see page 86).
KcsLoadProfile() takes the three arguments listed below.
KcsSaveProfile() takes the first two arguments listed.

® A profile identifier (Id)
* A profile description
® Hints about loading the profile

The profile Id is returned to the calling program from KcsLoadProfile() for
use with other API functions. In the case of KcsSaveProfile() , the profile
identifier is passed back into the KCMS framework library to indicate the
profile to be saved.

The profile description is a union of many different types, each of which
represents a way to supply a location where the profile data should be stored.
The type and the associated fields in the union are required to complete a
profile description. The type field indicates which of the union’s fields to use.

A calling application can request that the KCMS framework load only specific
parts of a profile, (for example, just its attributes). The caller uses the
KesModifyLoadHints() function to provide these load hints, which change
the load status of the profile. Hints are described by the KcsLoadHints data
type discussed on page 42. Load hints that request specific operations and
specific content be loaded for a profile are described in “Operation Hints” on
page 20.

Profiles 13

14

Example: Using Profiles to Convert Color Data

Figure 2-1 shows how color data is converted between a scanner device and a
monitor device.

Color photo

Displayed image

Data in monitor’s color space

/(

Data in scanner’s color space

1
Scanner DCP + Monitor DCP d

CCP

Application

Figure 2-1 Converting Color Data From a Scanner to a Monitor

In the figure, the devices do not perform their own color correction. Rather, the
color data is converted from the form provided by the scanner (Scanner DCP)
to a form appropriate for display on the monitor (Monitor DCP). To convert
the color data, your application would follow the steps below:

1. Load the scanner and monitor profiles.
See “Loading Scanner and Monitor Profiles” on page 15.”

2. Connect the scanner profile to the monitor profile to get a complete profile.
See “Connecting Scanner to Monitor Profiles” on page 16.

3. Evaluate color data through the complete profile.
See “Evaluating Color Data Through the Complete Profile” on page 17.

KCMS Application Developer’s Guide—August 1997

2

Code Example 2-1 shows the sequence of calls that performs this conversion.
For more information on the KcsConnectProfiles() function, see “Using
Color Space Profiles” on page 19 and the detailed function description on
page 63.

Code Example 2-1 Simple Color Data Conversion

[* Load the scanner’s DCP.*/
KcsLoadProfile(&inProfile, &scannerDescription, KcsLoadAllNow);

/* Load the monitor’s DCP. */
KcsLoadProfile(&outProfile, &monitorDescription, KcsLoadAlINow);

[* Connect two DCPs to form a CCP */

profileSequence[0] = inProfile;

profileSequence[1] = outProfile;

KcsConnectProfiles(&completeProfile, 2, profileSequence,
KcsLoadAllINow, &failedProfileindex);

[* Apply the CCP to input color data. */
KcsEvaluate(completeProfile, KcsOperationForward, &inbufLayout,
&outbufLayout);

Loading Scanner and Monitor Profiles

As shown in Code Example 2-1, the first color-conversion step is to use the
KcsLoadProfile() function. KcsLoadProfile() loads the profile
associated with a specific device, effect, partial, or complete profile, and it
allocates any system resources the profile requires. For a detailed description of
KcsLoadProfile() , See page 77.

Profiles 15

16

Connecting Scanner to Monitor Profiles

As shown in Code Example 2-1 and Figure 2-2, the next color-conversion step
is to connect a pair of DCPs to form a CCP. KcsConnectProfiles() provides
this functionality. Continuing with the example illustrated in Figure 2-1, a CCP
is built by connecting the scanner’s DCP to the monitor’s DCP. The resulting
CCP converts scanner data to monitor data.

Scanner Monitor

Scanner Monitor DCP DCP
bcp + | Dcp =

CCP Connects
Scanner to Monitor

Figure 2-2 Building a CCP From Two DCPs

KCMS Application Developer’s Guide—August 1997

N
1]

Evaluating Color Data Through the Complete Profile

The final color-conversion step is to use the KcsEvaluate() function.
KcsEvaluate() applies a color transformation based on the supplied CCP.
One of the following operations is associated with the evaluation. These
operations are illustrated in Figure 2-3.

* OpForward
® OpReverse
® OpSimulate
® OpGamutTest
| Devi Effe Eff§Effect Color . Output Output
F:]r%l:itle evice Pro| ProProfile Device Device
Profile Profile
Scanner *
() (Printer) (Monitor)
| (Optional)
CCP Optional
LEGEND: vt)
OpForward= el
OpSimilate=
OpGamutTest= sl
OpReverse=

Figure 2-3 Profile Load Hint Operations

OpForward

The forward operation is used to transform color from the scanner form to the
monitor form.

Profiles 17

18

OpReverse

The reverse operation is used to transform color from the monitor form to the
scanner form. This is useful if your application modifies some colors in
monitor space, to keep the greatest number of colors that can be converted
back and stored in the scanner’s color space.

A more familiar use of the reverse operation is to transform the color from
printer to monitor form to see what the data looks like from the printer.

OpSimulate

The simulate operation is used to simulate the effect of running color data
through a CCP, but retaining it in the form of the last device profile. For
example, the simulate operation can produce monitor data that simulates the
result of printed data.

OpGamutTest

The gamut-test operation is used to determine if each color in the source data
is within the gamut of the destination device. Physical devices have a range of
colors they can produce. This range of colors is known as the gamut of the
device.

Using A Callback Function When Evaluating

KcsEvaluate() can take a long time to execute, especially if the input image
or graphic contains millions of pixels. Therefore, your application can provide
a callback function using KcsSetCallback() , which KcsEvaluate() calls
when