
2550 Garcia Avenue
Mountain View, CA 94043
U.S.A.

XIL™ Programmer’s Guide

A Sun Microsystems, Inc. Business

Please
Recycle

Copyright 1997 Sun Microsystems, Inc. 2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No part of
this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any. Third-party
software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and
other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, SunSoft, SunDocs, SunExpress, SunVideo, Solaris, Ultra, AnswerBook2, and XIL are trademarks, registered
trademarks, or service marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks
or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture
developed by Sun Microsystems, Inc. KCMS is a trademark of Eastman Kodak Company. PostScript and Display PostScript are trademarks of Adobe
Systems, Inc., which may be registered in certain jurisdictions.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the
pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-
exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs and
otherwise comply with Sun’s written license agreements.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87) and FAR 52.227-
19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a).

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 1997 Sun Microsystems, Inc., 2550 Garcia Avenue, Mountain View, Californie 94043-1100 Etatis-Unis. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans l’autorisation
préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de
caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, SunSoft, SunDocs, SunExpress, SunVideo, Solaris, Ultra, AnswerBook2, et XIL sont des marques de fabrique ou des
marques déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous
licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant
les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc. KCMS est une marque de fabrique d'Eastman Kodak Company.
PostScript et Display PostScript sont des marques déposées d’ Adobe Systems, Inc., lesquelles pourront être enregistrées dans des juridictions
compétentes.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît les
efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique pour l’industrie de
l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence couvrant également les licenciés
de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE "EN L’ETAT" ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS DES
GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE S’APPLIQUERAIT
PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

iii

Contents

Preface. xxix

XIL 1.3 New Features . xxxv

1. Introduction to the XIL Library . 1

Functions in the XIL Library. 1

Image Processing Functions . 2

Image Compression Functions. 3

Additional XIL Functions . 5

XIL Naming Conventions . 6

Format . 6

Example Function Names. 7

The XIL Library: A Foundation Library 8

XIL Library is Multithread Hot . 10

Installation . 11

Examples . 11

Documentation. 12

iv XIL Programmer’s Guide—August 1997

2. Basic XIL Program. 13

Program Overview . 14

Running the Example1 Program. 14

Header Files and Initializing . 15

Including Header Files . 15

Initializing the Library . 16

Program Tasks . 16

Acquiring an Input Image . 17

Creating an Output Image . 27

Processing an Image . 30

Closing the Library . 34

Building an XIL Program . 35

Conditionally Compiling Code for Different XIL Versions . . . 35

3. XIL Images . 39

Digitized Image . 40

Basic XIL Image Attributes . 40

Width, Height, and Number of Bands 40

Data Type . 41

Exporting XIL Images . 42

Providing Data to XIL Images . 43

Types of XIL Images . 44

Memory Images . 44

Device Images . 44

Display Images. 45

Contents v

Additional XIL Image Attributes . 47

Origin . 47

Region of Interest . 49

Color Space . 53

Child Image . 55

Image Type . 59

Synchronization Flag. 60

Readable and Writable Flags . 60

Naming an Image . 61

Temporary Images . 61

Simple Example of Using Temporary Images 61

Functions For Creating Temporary Images 63

Temporary Image Properties . 63

Temporary Image Pseudocode Example. 64

4. XIL Storage. 67

Storage Object. 67

Storage Formats . 68

XIL_PIXEL_SEQUENTIAL . 68

XIL_BAND_SEQUENTIAL . 70

XIL_GENERAL . 74

Tiled Storage . 75

Storage Functions. 76

Creating and Destroying Storage Objects 77

Setting Storage Attributes. 77

vi XIL Programmer’s Guide—August 1997

Getting Storage Attributes . 78

Naming Storage Objects . 79

Tile-Related Storage Functions. 79

Effect of Color Space on Storage Format. 79

Enforcing XIL Image Storage Organization 79

5. XIL Program That Uses Tiling . 83

Tiling . 84

What Is Tiling? . 84

Why Would You Want to Understand Tiling? 86

How Do You Set Up the Tiling Mode? 86

How are Tiled Images Processed? . 87

Example2 Program Overview . 87

Running the Example2 Program. 87

Program Tasks . 88

Turning on Tiling . 89

Acquiring an Input Image. 89

Copying Source Image to an XIL Image 90

Getting The Tile Size . 90

Main Looping Through the Tiles . 91

Setting Up Known Information . 92

Getting Storage. 92

Determining the Storage Type . 92

XIL_PIXEL_SEQUENTIAL Case . 93

Tile Copying Summary . 96

Contents vii

Tile-Related Functions. 97

Getting Tile-Related Data . 97

Setting Tile-Related Data . 98

What is Tile Stripping? . 99

What is the Effect of Tiling on Child Images? 99

6. Handling Input and Output . 101

Moving Image Data From a File to an XIL Image 102

Moving Image Data from an XIL Image to a File. 104

Methods of Getting Image Data From a File into an XIL Image 106

Sharing the Data Between an Image File and an XIL Image 106

Copying the Data From an Image File to an XIL Image . . . 107

Copying the Data From a Large Image File to an XIL Image 108

Providing Data On Demand From an Image File to an XIL
Image. 110

Running Existing Applications . 113

Methods of Getting XIL Image Data Into a File 113

Copying Data From an XIL Image to a File 114

Directly Accessing the Data Used By the XIL Image. 115

Running Existing Applications . 116

Sending Output to (and Reading Input From) the Display . . . 117

Possible Complications . 118

Reading a Display Image . 119

Reading and Writing Devices Other Than Displays 120

Initializing a Device’s Attributes . 120

viii XIL Programmer’s Guide—August 1997

Creating a Device Image . 123

Destroying a Device Object . 125

7. Reading Kodak PhotoCD Images. 127

The PhotoCD Technology . 127

The PhotoCD Imaging Workstation 128

How Images Are Stored . 128

Reading PhotoCD Images Using the XIL Library 129

Creating a Device Image . 130

Setting Device-Image Attributes . 130

Capturing an Image From a PhotoCD Disk 134

Converting the Image’s Color Space 135

8. Preparing Images for Display . 141

Running the Display Program . 142

Converting a Single-Band Image to a Multiband Image. 142

Passing the Source Image Through a Lookup Table 142

Replicating the Source Image in the Bands of the Destination
144

Converting an XIL_SHORT Image to an XIL_BYTE Image . . . 145

Converting an RGB Image to an Indexed-Color Image and a
Colormap . 147

Converting a 24-Bit Image to a 1-Bit Image 148

Converting an 8-Bit Image to a 1-Bit Image 150

Displaying a 1-Bit Image on a Monochrome Display 150

Types of Images Displayed . 150

9. Presentation Functions. 153

Contents ix

Copying an Image to the Display . 153

Copying All Bit Planes . 154

Copying Only the Planes Defined in a Plane Mask. 155

Double Buffering . 157

Rescaling an Image . 158

Casting an Image From One Data Type to Another 160

Dithering an Image . 161

What Is Dithering?. 162

Methods of Dithering . 164

When to Use Each Dithering Function 177

Color Space Manipulation . 178

Converting an Image to a Different Color Space 178

Color Correcting an Image . 181

Additional Color Space Manipulation Functions 185

Color Spaces Represented by I/O Devices 186

Black Generation . 186

10. Error Handling . 189

XIL Error Handling Summary . 189

Writing an Error Handler . 191

Functions You Can Call in Your Error Handler 191

An Error Handler Example. 198

Installing and Chaining Error Handlers 200

Installing Error Handlers . 200

Chaining Error Handlers . 203

x XIL Programmer’s Guide—August 1997

11. Arithmetic, Relational, and Logical Functions 205

Arithmetic Functions . 205

Relational Functions . 208

Logical Functions . 208

Operations With Constants. 209

Arithmetic and Logical Operations With Bit Images. 212

12. Geometric Functions . 215

Interpolation Options . 216

Nearest Neighbor Interpolation. 217

Bilinear Interpolation . 217

Bicubic Interpolation . 217

General Interpolation . 217

Translating Images. 226

Scaling and Subsampling Images . 227

xil_scale() . 228

xil_subsample_adaptive() . 230

xil_subsample_binary_to_gray() 231

Rotating Images . 233

Performing General Affine Transforms. 235

Warping Images . 238

Transposing Images . 241

13. Miscellaneous Image Processing Functions 245

Finding the Minimum and Maximum Values in an Image. . . . 246

Producing a Histogram for an Image . 247

Contents xi

Creating a Histogram . 247

Determining low_value and high_value 249

Writing Level Information to the Histogram Structure. . . . 250

Reading Data From a Histogram . 250

Destroying a Histogram . 252

Thresholding an Image . 252

Filling an Area in an Image. 253

xil_fill() . 253

xil_soft_fill() . 255

Filtering an Image . 257

Creating a Convolution Kernel . 259

Filtering an Image . 260

Destroying a Convolution Kernel . 261

Additional Kernel-Related Functions 262

Creating a Separable Convolution Kernel 262

Detecting Edges in an Image . 264

Dilating or Eroding an Image. 266

Creating a Structuring Element . 268

Dilating or Eroding an Image. 269

Destroying a Structuring Element . 270

Additional Structuring-Element Functions 271

Passing an Image Through a Lookup Table 271

Creating a Lookup Table . 272

Passing an Image Through the Table. 276

xii XIL Programmer’s Guide—August 1997

Destroying a Lookup Table. 277

Additional Lookup-Table Functions 277

Linear Combination of Image Bands . 279

Performing a Linear Combination. 280

How to Use Linear Combinations . 281

Blending Images. 283

Painting on an Image. 285

Setting and Getting the Values of Pixels in an Image 287

xil_set_pixel() and xil_get_pixel() 288

xil_set_value() . 288

Copying a Pattern to an Image. 289

14. Compressed Image Sequences . 291

What is an XIL Compressed Image Sequence?. 291

Compression and Decompression Modules 292

JPEG Baseline Sequential and Lossless Codecs 293

H.261 Decompressor . 293

MPEG Decompressor . 293

CCITT Group 3 and Group 4 Codecs 294

Cell and CellB Codecs . 294

Basic CIS Management . 294

Creating and Destroying a CIS. 295

Putting Compressed Data into a CIS. 296

Reading Data From a CIS . 299

General CIS Attributes . 303

Contents xiii

Compressor and Compression Type 303

Input and Output Image Type . 304

Random Access Flag . 306

Start Frame, Read Frame, Write Frame 306

Maximum Frames and Keep Frames. 307

Error-Recovery Flag. 311

CIS Naming . 312

CIS Error Recovery . 313

15. Compressing and Decompressing Sequences of Images 317

Example Program Overviews. 317

Creating a JPEG Datastream. 318

Building and Running the Example 319

Creating a CIS. 320

Compressing Video Frames and Writing Compressed Data to a
File . 321

Performing Any Outstanding Compression Operations . . 325

Playing a JPEG Movie . 326

Running the Movie Player . 328

Memory Mapping the Movie . 328

Creating a CIS. 329

Putting Compressed Data in a CIS . 329

Creating a Display Image . 330

Creating an Image to Hold Decompressed Frames 332

Initializing Parameters to Be Used With the Dither Function 334

xiv XIL Programmer’s Guide—August 1997

Installing an X Colormap . 334

Playing the Movie . 336

Playing Cell Movies . 338

Installing an X Colormap . 338

Creating an Image to Hold Decompressed Frames 341

Playing the Movie . 342

16. JPEG Baseline Sequential Codec . 345

How the JPEG Baseline Sequential Codec Works 346

Discrete Cosine Transform (DCT) . 347

Quantization. 348

Entropy Coding . 348

Creating a JPEG Baseline Sequential CIS 350

JPEG Baseline Sequential Codec Attributes 350

Compression Attributes . 350

Decompression Attributes . 365

JPEG Molecules . 367

17. JPEG Lossless Codec . 369

How the JPEG Lossless Codec Works . 370

Prediction . 371

Entropy Coding . 372

JPEG Lossless Compressor Attributes. 373

BAND_HUFFMAN_TABLE (W). 373

COMPRESSED_DATA_FORMAT (W) . 374

ENCODE_INTERLEAVED (W). 374

Contents xv

HUFFMAN_TABLE (W) . 375

LOSSLESS_BAND_SELECTOR (W) . 376

LOSSLESS_BAND_PT_TRANSFORM (W) 378

18. H.261 Codec . 379

How an H.261 Codec Works. 380

Source Images. 380

Basic Encoding Scheme. 382

Bit-Rate Control . 387

Provisions for Multipoint Conferencing 388

Creating an H.261 CIS . 388

H.261 Codec Attributes . 389

Compression Attributes . 389

Decompression Attributes . 395

H.261 Molecules . 400

19. MPEG-1 Codec. 401

How an MPEG-1 Codec Works . 402

Similarities Between MPEG-1 and H.261 402

Differences Between MPEG-1 and H.261 402

How MPEG-1 Organizes a Video Sequence 406

Creating an MPEG-1 CIS. 407

MPEG-1 Codec Attributes. 408

Compression Attributes . 408

Decompression Attributes . 427

MPEG-1 Molecules . 433

xvi XIL Programmer’s Guide—August 1997

20. CCITT Group 3 and Group 4 Codecs . 435

How CCITT Group 3 and Group 4 Codecs Work 435

CCITT Group 3 and Group 4 Decompressor Attributes 436

WIDTH (W). 437

HEIGHT (W) . 437

BANDS (W) . 437

21. Cell Codec . 439

How the Cell Codec Works. 440

Choosing a Colormap . 442

Cell Compression Ratios . 443

Image Types . 443

Creating a Cell CIS. 443

Cell Codec Attributes . 444

Compression Attributes . 444

Decompression Attributes . 451

Cell Molecules . 455

Rules for Calling Decompression Molecules 456

Calling Cell Molecules . 457

22. CellB Codec . 465

How the Codec Works. 466

Cell Codes. 466

Skip Codes . 468

Creating a CellB CIS . 469

CellB Decompression Attributes . 469

Contents xvii

WIDTH and HEIGHT (W) . 469

IGNORE_HISTORY (R/W). 470

CellB Molecules . 471

23. Acceleration in XIL Programs . 473

What Is Deferred Execution? . 473

XIL Molecules. 477

Rules for Executing Molecules . 477

Video Decompression Molecules . 478

CCITT Group 4 Decompression Molecule 483

SPARC Molecules That Result in a Display 484

Troubleshooting Molecules. 486

Determining Whether Molecules Are Executing 486

Determining Why a Molecule Is Not Executing 487

Side Effects of Executing Molecules . 490

XIL Functions That Relate to Deferred Execution 491

A. Optimizations and Molecules For XIL Version 1.3 493

Functions. 493

Affine. 493

Arithmetic, Relational, and Logical . 494

Blend . 494

Cast . 494

Convolve. 494

Error Diffusion . 494

Lookup . 495

xviii XIL Programmer’s Guide—August 1997

Nearest Color . 495

Ordered Dither . 495

Paint. 495

Rotate . 495

Scale. 495

Subsample Binary-to-Gray . 496

Threshold . 496

Xlib Display . 496

X Shared Memory Extension Display . 496

Molecules . 496

Cell Decompression. 497

CellB Decompression . 497

FaxG4 Decompression. 497

JPEG Baseline Sequential, MPEG-1, H.261 Decompression 497

GX Display Molecules . 498

B. XIL Error Messages . 499

Error Messages . 499

C. XIL-XGL Interoperability . 539

Using XIL and XGL Calls in the Same Program. 539

Conversions . 540

Restrictions . 541

D. Cell and CellB Bytestream Definitions 543

Introduction to Cell . 543

Encoding Images for Cell . 544

Contents xix

Cell Bytestream Description . 546

Key-Frame Header and Key Parameters 547

Cell Code. 549

Run Length Code . 550

Escape Codes . 550

Summary of Cell Codes . 553

CellB Bytestream Description. 553

Cell Code. 554

Cb/Cr Quantization Table . 555

Y/Y Quantization Table . 556

Skip Code . 558

New Y/Y Table. 559

Default CellB Quantization Tables. 560

E. Bibliography . 569

Glossary . 573

Index . 589

xx XIL Programmer’s Guide—August 1997

xxi

Figures

Figure 1-1 Foundation Libraries and Application Programming Interfaces 9

Figure 3-1 Digitized Image . 40

Figure 3-2 Copying Data from a Backing Image to the Display (Not
Necessary). 45

Figure 3-3 Writing the Output of an Operation to a Display Image. 46

Figure 3-4 Image Origins. 48

Figure 3-5 Regions of Interest . 49

Figure 3-6 Regions of Interest and Origins . 50

Figure 3-7 Child Image Sharing Storage of Parent 55

Figure 3-8 Copying Parent Image Contents . 57

Figure 3-9 Temporary Images. 62

Figure 4-1 RGB Image in XIL_PIXEL_SEQUENTIAL Format. 69

Figure 4-2 RGB Image in XIL_BAND_SEQUENTIAL Format 71

Figure 4-3 Memory Format for a 3-Band, 3-by-3 Image Containing 1-Bit Data
Elements . 73

Figure 4-4 RGB Image in XIL_GENERAL Format . 74

Figure 4-5 Tiled Image. 76

xxii XIL Programmer’s Guide—August 1997

Figure 5-1 Storage Allocation per Tile. 85

Figure 5-2 Copying Images Into Tiled Storage . 96

Figure 8-1 Lookup Table . 143

Figure 9-1 XIL Lookup Operation . 162

Figure 9-2 Dithering an Image . 163

Figure 9-3 Colorcube for Dithering a True-Color Image to a Pseudocolor
Image . 168

Figure 9-4 Error-Distribution Kernel . 172

Figure 9-5 Using xil_error_diffusion() to Dither an Image 172

Figure 9-6 Error Diffusion . 173

Figure 9-7 Dither Mask Replicated over a Source Image 176

Figure 10-1 List of Error Handlers . 201

Figure 10-2 Adding to the List of Error Handlers . 202

Figure 12-1 Conceptual Model of a General Interpolation. 219

Figure 12-2 Determining the Kernel to Use for a General Interpolation . . 222

Figure 12-3 Zooming the Upper-Left Corner of an Image 229

Figure 12-4 Zooming the Center of an Image. 230

Figure 12-5 Subsampling Bit Images . 233

Figure 12-6 Rotating an Image Around Its Default Origin 234

Figure 12-7 Rotating an Image Around Its Center . 235

Figure 12-8 Shearing an Image Along Its x Axis . 238

Figure 12-9 Flipping and Rotating Images Using xil_transpose() . . . 243

Figure 13-1 Boundary Fill . 254

Figure 13-2 Convolution Operation. 258

Figure 13-3 High-Pass Filters . 260

Figure 13-4 Low-Pass Filters . 260

Figures xxiii

Figure 13-5 Separable Kernel . 263

Figure 13-6 Filters Used by the XIL_EDGE_DETECT_SOBEL Algorithm . 265

Figure 13-7 Dilating and Eroding Images. 266

Figure 13-8 Dilating an Image . 267

Figure 13-9 Eroding an Image . 267

Figure 13-10 Single Lookup Table . 273

Figure 13-11 Interband Linear Combination . 279

Figure 13-12 Linear Combination Matrix . 280

Figure 13-13 RGB-to-CMY Conversion Using xil_band_combine() . . . 282

Figure 13-14 RGB-to-Y Conversion Using xil_band_combine() 282

Figure 13-15 Calculating the Normalized Sum of an Image 283

Figure 13-16 Blending Images . 285

Figure 13-17 Painting on an Image . 286

Figure 13-18 Replicating a Source Image . 290

Figure 14-1 Compressing and Decompressing XIL Images 292

Figure 15-1 Decompressing and Dithering a Frame of Video 333

Figure 16-1 JPEG Baseline Sequential Compressor . 346

Figure 16-2 Output of the Discrete Cosine Transform 347

Figure 16-3 Quantization in the JPEG Encoder . 348

Figure 16-4 Zigzag Sequencing in JPEG Encoder . 349

Figure 17-1 JPEG Lossless Compressor. 370

Figure 17-2 Predicting Values in the JPEG Lossless Compressor 371

Figure 18-1 Macroblock . 381

Figure 18-2 Flow Diagram for H.261 Encoding . 383

Figure 18-3 Motion Compensation in H.261 . 385

xxiv XIL Programmer’s Guide—August 1997

Figure 18-4 Encoding of YCbCr or Difference Values in H.261 386

Figure 19-1 An MPEG-1 Bitstream Containing I and P Pictures 403

Figure 19-2 MPEG-1 Display Order Versus Decoding Order 404

Figure 19-3 Bidirectional Prediction in MPEG-1 . 405

Figure 19-4 Zigzag Ordering of Quantization Table Values 417

Figure 19-5 Sample Group of Pictures. 420

Figure 21-1 Cell Compression. 441

Figure 22-1 Cell Code. 466

Figure 22-2 Vectors in Chrominance Table. 467

Figure 22-3 Vectors in Luminance Table. 467

Figure 23-1 Stored Atomic Operations . 474

Figure 23-2 Replacing Atomic Functions With a Molecule 476

Figure D-1 Cell . 544

Figure D-2 Encoding a Cell . 546

Figure D-3 Default CellB Chrominance Quantization Table 556

Figure D-4 Default CellB Luminance Quantization Table 558

xxv

Tables

Table 0-1 Typographic Conventions . xxxiv

Table 1-1 Function Name Components. 7

Table 1-2 Example Function Names . 7

Table 1-3 Example Programs Provided With the XIL Developer’s Release 11

Table 2-1 Source Files for Example1 . 14

Table 2-2 Incompatible XIL functions . 26

Table 2-3 Examples of Major and Minor Version Numbers. 36

Table 3-1 Functions for Reading an Image’s Width, Height, or Number of
Bands . 41

Table 3-2 Functions for Importing and Exporting Images 43

Table 3-3 Functions for Getting and Setting an Image’s Origin 48

Table 3-4 Functions Used to Build a ROI . 51

Table 3-5 ROI Naming Functions . 52

Table 3-6 Parameters to xil_create_child() 56

Table 3-7 Image Type Utility Functions . 59

Table 3-8 Image Naming Functions . 61

Table 4-1 Setting Storage Attributes . 77

xxvi XIL Programmer’s Guide—August 1997

Table 4-2 Getting Storage Attributes . 78

Table 4-3 Naming Storage Objects . 79

Table 4-4 XilStorageMovement Enumerators . 80

Table 5-1 Source Files for Example2 . 87

Table 5-2 Getting Tile-Related Information . 97

Table 5-3 Setting Tile-Related Information . 98

Table 6-1 XilDataType Values. 103

Table 7-1 Resolutions of PhotoCD Images . 129

Table 7-2 PhotoCD Image Attributes. 131

Table 7-3 Converting PhotoYCC Data to Another Color Space 136

Table 8-1 Source Files for display . 142

Table 8-2 Cases Handled by the display Program 150

Table 9-1 Matching Source and Display Images . 154

Table 9-2 Plane Masks for an Overlay . 156

Table 9-3 Functions for Managing Colorcubes. 170

Table 9-4 Utility Functions for Dither Masks . 177

Table 9-5 Review of Dithering Operations . 177

Table 9-6 Strings Used to Specify Color Spaces . 179

Table 9-7 Color Space Manipulation Functions . 185

Table 10-1 XIL Error Categories . 193

Table 11-1 Valid Values for Each XIL Data Type. 207

Table 11-2 Arithmetic Operations Using a Source Image and a Constant 211

Table 11-3 Logical Operations Using a Source Image and a Constant . . . 212

Table 12-1 Types of Interpolation. 216

Table 12-2 Additional Interpolation Table Functions 225

Tables xxvii

Table 12-3 Constants in the Enumeration XilFlipType 242

Table 13-1 Parameters to xil_histogram_create() 248

Table 13-2 Additional Histogram Functions . 251

Table 13-3 Parameters to xil_soft_fill() . 256

Table 13-4 Handling Edges in a Convolution Operation 261

Table 13-5 Utility Functions for Convolution Kernels 262

Table 13-6 Utility Functions for Structuring Elements 271

Table 13-7 Parameters to xil_lookup_create() 272

Table 13-8 Additional Functions for Lookup Tables 278

Table 13-9 Parameters to xil_paint() . 287

Table 14-1 Types of Images Supported by XIL Compressors 297

Table 14-2 Compressors and Compressor Types. 304

Table 14-3 CIS Naming Functions . 312

Table 15-1 Source Files for Movie-Maker . 318

Table 15-2 Source Files for Movie-Player . 326

Table 15-3 Command-Line Options for xilcis_example 328

Table 15-4 Arguments to xil_cis_put_bits_ptr() 330

Table 16-1 Image Bands and Huffman Tables . 351

Table 16-2 Default Huffman Tables . 358

Table 17-1 JPEG Lossless Prediction Methods . 377

Table 18-1 Sizes of CIF- and QCIF-Format Images 380

Table 19-1 Two Function Call Sequences: CIS Pattern = IPBB. 411

Table 19-2 Releasing a Frame: CIS Pattern = All I Frames 415

Table 19-3 Releasing a Frame: CIS Pattern = IPB . 415

Table 19-4 Releasing a Frame: CIS Pattern = IPBBPBB 415

xxviii XIL Programmer’s Guide—August 1997

Table 19-5 Characters Representing Picture Types 420

Table 23-1 Exceptions to the General Decompression-Molecule Rules . . 481

Table 23-2 Type of Flip Designated on the Call to xil_transpose() . 483

Table 23-3 Functions That Affect Deferred Execution 491

Table B-1 XIL Library Error Messages . 500

Table C-1 XIL-XGL Interoperability . 540

Table D-1 Cell Bytestream Codes . 553

Table D-2 Default CellB Y/Y Table. 560

Table D-3 Default CellB Cb/Cr Table . 564

xxix

Preface

The XIL™ Imaging Library provides a set of key functions for the fields of
image processing and digital video. This book explains how to use these
functions in developing application programming interfaces (APIs) and
applications.

Who Should Use This Book
The XIL library was designed to meet the needs of developers creating APIs
and applications for a number of markets. These markets include:

• Markets that require digital video technology
• Commercial document imaging
• Technical document imaging
• Desktop publishing
• Color prepress
• Graphics arts
• Technical imaging

How This Book Is Organized
This book presents XIL in three parts. Chapters 1 through 8 explain how to
create the framework for an XIL program and discuss such topics as input,
output, and error handling. Chapters 9 through 11 discuss the XIL library’s

xxx XIL Programmer’s Guide—August 1997

image processing functions—functions that would be used inside the
framework. Chapters 12 through 20 explain how the XIL library enables you to
compress and decompress sequences of digital images.

A chapter-by-chapter description of the book follows:

Chapter 1, “Introduction to the XIL Library,” provides an overview of the XIL
library functions. In addition, the chapter discusses how the XIL library relates
to other Sun Microsystems™, and third-party, libraries.

Chapter 2, “Basic XIL Program,” introduces programming with the XIL library
by looking at a simple XIL program that reads an 8-bit grayscale image from a
file and displays it in an X window.

Chapter 3, “XIL Images,” discusses the different types of XIL images, what
attributes XIL images have, and how images are stored in memory.

Chapter 4, “XIL Storage,” describes each of the XIL image storage formats and
the functions for accessing information in a storage object. In addition, the
chapter discusses how to enforce storage organization.

Chapter 5, “XIL Program That Uses Tiling,” describes how to write an XIL
program that uses tiled memory.

Chapter 6, “Handling Input and Output,” takes a systematic look at how you
handle the reading and writing of images in an XIL program, including
input/output (I/O) with files, displays, and other devices.

Chapter 7, “Reading Kodak PhotoCD Images,” discusses the library’s device
handler for reading and decoding the Eastman Kodak Company’s Photo CD
format.

Chapter 8, “Preparing Images for Display,” discusses some of the issues that
arise when you need to display different types of XIL images on different types
of displays.

Chapter 9, “Presentation Functions,” discusses a group of functions that are
useful in preparing images for display. Topics covered include dithering and
color space conversion.

Chapter 10, “Error Handling,” discusses the XIL library’s default error handler
and explains how to write and install a custom error handler.

Preface xxxi

Chapter 11, “Arithmetic, Relational, and Logical Functions,” covers the XIL
library’s arithmetic and logical functions. These functions enable you to add
two images, take the logical AND of two images, multiply an image by a
constant, and so on.

Chapter 12, “Geometric Functions,” discusses the XIL library’s geometric
functions. Included among these are functions enabling you to scale images,
rotate images, and transpose images.

Chapter 13, “Miscellaneous Image Processing Functions,” presents the
remaining image-processing functions in the XIL library. Among other uses,
these functions give you the ability to filter images, pass images through
lookup tables, and dilate or erode images.

Chapter 14, “Compressed Image Sequences,” discusses the compressed image
sequence data structure (called a CIS) in which you store compressed image
data. The chapter goes over basic CIS management operations such as creating
a CIS and writing data to it. In addition the chapter discusses CIS attributes
and how to recover from datastream errors.

Chapter 15, “Compressing and Decompressing Sequences of Images,”
illustrates compressing and decompressing image sequences by presenting two
example programs: a movie maker and a movie player.

Chapter 16, “JPEG Baseline Sequential Codec,” discusses how the library’s
JPEG baseline sequential compressor and decompressor (codec) works and the
special attributes of a JPEG CIS.

Chapter 17, “JPEG Lossless Codec,” explains how the JPEG lossless codec
performs its job and presents information about attributes that are specific to a
CIS associated with a JPEG lossless codec.

Chapter 18, “H.261 Codec,” covers the XIL interface to the codec specified by
the CCITT in Recommendation H.261. The chapter discusses how such a codec
works and lists the CIS attributes that apply specifically to a CIS associated
with an H.261 compressor or decompressor.

Chapter 19, “MPEG-1 Codec,” discusses the XIL interface to the MPEG-1
codec specified by the Moving Pictures Expert Group. The chapter discusses
how an MPEG-1 codec works and lists the CIS attributes that apply specifically
to a CIS associated with an MPEG-1 codec.

xxxii XIL Programmer’s Guide—August 1997

Chapter 20, “CCITT Group 3 and Group 4 Codecs,” discusses how these
document image codecs work and lists the CIS attributes specific to these
codecs.

Chapter 21, “Cell Codec,” deals with the Cell codec. The chapter briefly
explains how the Cell codec works, discusses attributes that are specific to a
Cell codec, and explains how to call optimized routines to play back
Cell-encoded movies.

Chapter 22, “CellB Codec,” discusses the library’s CellB codec, which was
derived from the Cell codec for use in videoconferencing applications. The
chapter explains how the CellB codec works and the special attributes of a
CellB CIS.

Chapter 23, “Acceleration in XIL Programs,” explains how the XIL runtime
system defers the execution of functions called in XIL programs as long as
possible so that it can replace certain sequences of functions with optimized
routines.

Appendix A, “Optimizations and Molecules For XIL Version 1.3,” identifies
the optimizations provided with the current release of the library. Molecules
are optimized routines that the library can execute in lieu of executing a
predefined sequence of functions from the API. The appendix includes
additional optimizations for some of the molecules.

Appendix B, “XIL Error Messages,” provides a list of XIL error messages. For
each message, the appendix specifies an error ID and a list of functions that can
generate the error.

Appendix C, “XIL-XGL Interoperability,” explains how a single program can
use both XIL and XGL™ functions to process an image.

Appendix D, “Cell and CellB Bytestream Definitions,” presents the
information about Cell and CellB bytestreams that you would need to
implement a Cell or CellB codec.

Appendix E, “Bibliography,” lists some books and articles to consult for
further information on such subjects as image processing operations, JPEG
compression, dithering, and color models.

The book also contains a glossary of terms from the fields of image processing
and digital video.

Preface xxxiii

Related Books
The primary companion to this book is the XIL Reference Manual. The reference
manual contains man pages for all the functions in the XIL library.

The XIL Programmer’s Guide and the XIL Reference Manual are included in the
AnswerBook2™ on-line documentation. See the XIL 1.3 AnswerBook located at
the following web site:

http://docs.sun.com

Because programming with the XIL library can be closely tied to programming
with the X library, you may also find it useful to consult the following books:

• Xlib Programming Manual

• Xlib Reference Manual

• Developing Visual Applications XIL: An Imaging Foundation Library (ISBN 0-13-
461948-X)

Ordering Sun Documents
The SunDocsSM program provides more than 250 manuals from Sun
Microsystems, Inc. If you live in the United States, Canada, Europe, or Japan,
you can purchase documentation sets or individual manuals using this
program.

For a list of documents and how to order them, see the catalog section of the
SunExpress™ Internet site at http://www.sun.com/sunexpress .

Note – The term “x86” refers to the Intel 8086 family of microprocessor chips,
including Pentium and Pentium Pro processors and compatible microprocessor
chips made by AMD and Cyrix. In this document, the term “x86” refers to the
overall platform architecture, whereas “Intel Platform Edition” appears in the
product name.

xxxiv XIL Programmer’s Guide—August 1997

What Typographic Changes Mean
The following table describes the typefaces used in this book.

Shell Prompts in Command Examples
The following table shows the default system prompt and superuser prompt
for the C shell, Bourne shell, and Korn shell.

Table 0-1 Typographic Conventions

Typeface Meaning Example

AaBbCc123 The names of commands,
functions, files, and directories;
on-screen computer output

Edit your .login file.
Use ls -a to list all files.
system% You have mail.

AaBbCc123 What you type, contrasted with
on-screen computer output

system% su
password:

AaBbCc123 Command-line placeholder:
replace with a real name or
value

To delete a file, type rm filename.

AaBbCc123 Book titles, new words or terms,
or words to be emphasized

Read Chapter 6 in User’s Guide.
These are called class options.
You must be root to do this.

Table P-1 Shell Prompts

Shell Prompt

C shell prompt machine_name%

C shell superuser prompt machine_name#

Bourne shell and Korn shell
prompt

$

Bourne shell and Korn shell
superuser prompt

#

xxxv

XIL 1.3 New Features

This document lists the new features in XIL 1.3.

Backward Compatibility
The XIL 1.3 library is fully backward compatible. This means that existing
applications should run with XIL 1.3 without being modified or recompiled.

MT-Hot
The XIL 1.3 library is MT-hot. You can write multithreaded applications
without putting locks around XIL functions. Multiple threads from the API can
execute together as long as they don’t require data from the same image. The
library itself also is MT-hot. It takes advantage of multiprocessor systems
without applications having to be rewritten.

Tiled Storage
XIL 1.3 provides the option to store very large images in separate buffers of
contiguous memory called tiles. If a region of an image within a tile boundary
is needed, only that tile is loaded into memory. The XIL library maximizes the
sequence of operations done on a tile while it is loaded into memory, thereby
increasing performance.

xxxvi XIL Programmer’s Guide—August 1997

While using tiled storage is backward compatible with existing XIL
applications, in some cases it can cause performance degradations. By default,
use of tiling is turned off.

Optionally, you can manipulate XIL images stored as tiles by using the tiling
functions listed below. Keep in mind, however, that when tiling is turned on,
XIL uses tiling behind the scenes to enhance performance whether or not an
application makes explicit calls to tiling functions.

The new tiling functions are:

• xil_get_tile_storage()
• xil_get_tilesize()
• xil_set_tile_storage()
• xil_set_tilesize()
• xil_state_get_default_tilesize()
• xil_state_get_default_tiling_mode()
• xil_state_set_default_tilesize()
• xil_state_set_default_tiling_mode()

XIL 1.3 includes a new XilStorage storage object. XilStorage provides
access to an image’s data storage directly. Unlike the backward-compatible
XilMemoryStorage structure, the XilStorage object supports tiled as well
as contiguous storage.

The new storage functions are:

• xil_get_storage_movement()
• xil_get_storage_with_copy()
• xil_set_data_supply_routine()
• xil_set_storage_movement()
• xil_set_storage_with_copy()
• xil_storage_create()
• xil_storage_destroy()
• xil_storage_get_band_stride()
• xil_storage_get_by_name()
• xil_storage_get_coordinates()
• xil_storage_get_data()
• xil_storage_get_image()
• xil_storage_get_name()
• xil_storage_get_offset()
• xil_storage_get_pixel_stride()
• xil_storage_get_scanline_stride()

XIL 1.3 New Features xxxvii

• xil_storage_is_type()
• xil_storage_set_band_stride()
• xil_storage_set_coordinates()
• xil_storage_set_data()
• xil_storage_set_data_release()
• xil_storage_set_name()
• xil_storage_set_offset()
• xil_storage_set_pixel_stride()
• xil_storage_set_scanline_stride()

New Data Type
XIL 1.3 now supports the IEEE 754, 32-bit single-precision floating point data
type. Using this data type allows you to develop highly sophisticated scientific
imaging applications.

Floating Point Warp Tables
XIL 1.3 supports the use of floating point warp tables in xil_tablewarp() .
This is in addition to the previous support of signed, short integer fixed-point
warp tables, which still may be used. Floating point warp tables provide more
fractional precision than fixed-point tables but require more memory.

Temporary Images
XIL 1.3 supports the concept of temporary images. Temporary images are
images used as an intermediate step in creating a subsequent image. They may
only be written to, and read from, once. Temporary images are particularly
advantageous for large images because XIL can release the storage associated
with them when it is no longer needed.

The new temporary image functions are:

• xil_create_temporary()
• xil_create_temporary_from_type()

xxxviii XIL Programmer’s Guide—August 1997

Storage Formats

XIL_GENERAL

XIL 1.3 supports a new XIL_GENERAL storage format. This format allows you
the flexibility of specifying each band of a multiband image as a separate
memory buffer. Furthermore, each band can have its own scanline and pixel
stride.

XIL_BAND_SEQUENTIAL

XIL 1.3 now supports the XIL_BAND_SEQUENTIAL format for all data types,
not just XIL_BIT images.

KCMS Integration
The XIL 1.3 library includes Kodak Color Management System (KCMS™)
support. With KCMS integration, you can achieve as close as possible color
matching between a display image and the actual stored image.

The new color space functions are:

• xil_color_correct()
• xil_colorspace_create()
• xil_colorspace_destroy()
• xil_colorspace_get_by_name()
• xil_colorspace_get_name()
• xil_colorspace_get_type()
• xil_colorspace_set_name()
• xil_colorspacelist_create()
• xil_colorspacelist_destroy()
• xil_colorspacelist_get_by_name()
• xil_colorspacelist_get_name()
• xil_colorspacelist_set_name()

Additional XIL Functions
In addition, the XIL 1.3 library includes the following new functions.

XIL 1.3 New Features xxxix

General Object Functions
• xil_cis_get_state()
• xil_colorspace_get_state()
• xil_colorspacelist_get_state()
• xil_dithermask_get_state()
• xil_get_state()
• xil_histogram_get_state()
• xil_imagetype_get_state()
• xil_kernel_get_state()
• xil_lookup_get_state()
• xil_roi_get_state()
• xil_sel_get_state()
• xil_storage_get_state()

Devices
• xil_device_set_attribute()

Double Buffering Support
• xil_create_double_buffered_window()
• xil_get_active_buffer()
• xil_set_active_buffer()
• xil_swap_buffers()

Miscellaneous Functions
• xil_dithermask_get_values()
• xil_get_writable()
• xil_histogram_create_copy()
• xil_interpolation_table_create_copy()
• xil_interpolation_table_get_values()
• xil_kernel_create_separable()
• xil_kernel_get_values()
• xil_sel_get_values()
• xil_set_data_supply_routine()

xl XIL Programmer’s Guide—August 1997

Performance Optimizations
See Appendix A, “Optimizations and Molecules For XIL Version 1.3,” for the
XIL library performance optimizations in this release.

1

Introduction to the XIL Library 1

This introduction discusses these subjects:

• What functionality the XIL library provides

• How the library works with other Sun and third-party libraries

The chapter is divided into the following main sections:

Functions in the XIL Library
The functions in the XIL library, which you call as C subroutines, fall into two
main categories: image processing and image compression. The next two
sections introduce these groups of functions, and a third section summarizes
the remaining library functions.

Functions in the XIL Library page 1

XIL Naming Conventions page 6

The XIL Library: A Foundation Library page 8

XIL Library is Multithread Hot page 10

Installation page 11

Examples page 11

Documentation page 12

2 XIL Programmer’s Guide—August 1997

1

Image Processing Functions

The image processing functions in the XIL library can be broadly grouped
under the following headings: arithmetic, relational, and logical functions;
geometric functions; and some miscellaneous functions.

Arithmetic, Relational, and Logical Functions

The arithmetic, relational, and logical functions include functions that enable
you to:

• Add two images
• Take the maximum pixelwise values of two images
• Take the logical AND of two images
• Multiply an image by a constant

For detailed information about arithmetic, relational and logical functions, see
Chapter 11, “Arithmetic, Relational, and Logical Functions.”

Geometric Functions

The geometric functions include, among others, routines to:

• Scale images
• Rotate images
• Translate images
• Transpose images
• Warp images

For detailed information about geometric functions, see Chapter 12,
“Geometric Functions.”

Miscellaneous Functions

The miscellaneous functions enable you to:

• Find the minimum and maximum values in an image
• Produce a histogram for an image
• Threshold an image
• Fill an area in an image
• Filter an image
• Detect image edges

Introduction to the XIL Library 3

1

• Dilate or erode an image
• Pass an image through a lookup table to convert between data types
• Perform an interband linear combination
• Blend images
• Paint on an image
• Set and get the values of pixels in an image
• Copy a pattern to an image

For detailed information about miscellaneous functions, see Chapter 13,
“Miscellaneous Image Processing Functions.”

Image Compression Functions

The image compression functions in the library enable you to compress and
decompress images and sequences of images. Several compression and
decompression (codec) formats are supported:

• JPEG baseline sequential
• JPEG lossless
• MPEG-1
• H.261
• CCITT Group 3 and Group 4
• Cell
• CellB

JPEG

The JPEG compression standards were developed by the Joint Photographic
Experts Group to support the compression of still images, both grayscale and
color. Although not specifically designed for the compression of sequences of
images, or movies, JPEG compressors are also used frequently for that
purpose. The JPEG baseline sequential compressor is a lossy compressor, which
means that it compresses an image in such a way that when the compressed
data is decompressed, the decompressed image and the original image may not
match exactly. On the other hand, with a lossless JPEG compressor, the
decompressed image matches the original image pixel for pixel.

For more information about JPEG image compression, see Chapter 16, “JPEG
Baseline Sequential Codec.” For more information about lossless JPEG
compression and decompression, see Chapter 17, “JPEG Lossless Codec.”

4 XIL Programmer’s Guide—August 1997

1

MPEG-1

The MPEG-1 video compression standard was developed by the Moving
Picture Experts Group. The goal of MPEG-1 was to compress full-motion video
and the associated audio at the rate of about 1.5 Mbits/s. This is approximately
the rate at which data can be read from a CD-ROM, so MPEG-1 compressed
video is a good choice for use in interactive multimedia applications.

Note – The current release of the XIL library includes an MPEG-1 decompressor
only. A compressor can be obtained from a third party.

For more information about the MPEG-1 image compression, see Chapter 19,
“MPEG-1 Codec.”

H.261

The H.261 compression-decompression scheme was developed by the
International Telegraph and Telephone Consultative Committee (CCITT). An
H.261 video codec is intended to be used to compress and decompress video
data sent over Integrated Services Digital Network (ISDN) lines. Thus, the
codec is suitable for use in video telephony and videoconferencing
applications.

Note – The current release of the XIL library includes an H.261 decompressor
only. A compressor can be obtained from a third party.

For more information about the H.261 image compression-decompression
scheme, see Chapter 18, “H.261 Codec.”

CCITT Group 3 and Group 4

The CCITT Group 3 and Group 4 compression standards were developed by
the International Telegraph and Telephone Consultative Committee to enable
facsimile machines to compress and decompress digitized documents. Now,
Group 3 and Group 4 compressors and decompressors are also used for
general document storage and retrieval.

For more information about the CCITT Group 3 and Group 4 image
compression, see Chapter 20, “CCITT Group 3 and Group 4 Codecs.”

Introduction to the XIL Library 5

1

Cell

The Cell image compression technology, which was developed by Sun, has
been optimized for the rapid decompression and display of images on simple
hardware. Therefore, the Cell codec is able to achieve reasonable display
quality on indexed-color frame buffers. The initial focus of the Cell technology
is on Sun-to-Sun communications, where the benefits of fast decoding
outweigh the benefits of standards. Possible areas of application include media
distributions on CD-ROM and multimedia mail.

For more information about Cell image compression, see Chapter 21, “Cell
Codec.”

CellB

The CellB codec, which derives from its Cell counterpart, is intended for use
primarily in videoconferencing applications. It features greater balance
between the time spent compressing and decompressing images than the Cell
codec. The CellB codec’s strengths include:

• Software compression at interactive rates
• Very fast decoding and display, especially on indexed-color frame buffers
• Low rates of CPU use
• Good quality output

For more information about CellB image technology, see Chapter 22, “CellB
Codec.”

Additional XIL Functions

The image processing and image compression functions mentioned above are
the heart of the XIL library. However, the library also contains functions that
perform the following tasks.

Copying an Image to the Display page 153

Rescaling an Image page 158

Casting an Image From One Data Type to Another page 160

Dithering an Image page 161

6 XIL Programmer’s Guide—August 1997

1

As you can see, the XIL library contains a broad range of functions. The next
section explains why the XIL library was designed this way and how it relates
to other Sun, and to third-party, libraries.

XIL Naming Conventions
To make it easier to understand what each XIL library function does, XIL uses
a special self describing convention for naming library functions.

Format

The format of a library function is:

xil_ <object_name>_<method>()

Color Space Manipulation page 178

Black Generation page 186

Error Handling page 189

Introduction to the XIL Library 7

1

Each function name component has the meaning shown in Table 1-1.

Example Function Names

Table lists some examples of XIL functions and describes what they do.

Table 1-1 Function Name Components

Name Component Meaning

xil Is the prefix string of a function name. All XIL functions
have this same prefix.

object_name Identifies which XIL object is being acted upon by this
function. The XIL objects are:
cis (compressed image sequence)
colorspace
colorspacelist
device
dithermask
error
histogram
image
imagetype
interpolation_table
kernel
lookup
roi (region of interest)
sel (structuring element)
storage
state

method Is the action the function takes on the object.

Table 1-2 Example Function Names

Function Description

xil_roi_add_rect() Adds a rectangle to an XIL region of interest (ROI)
object

xil_storage_get_name() Gets the name of the XIL storage object

xil_roi_create() Creates an ROI object

8 XIL Programmer’s Guide—August 1997

1

Functions Common to All XIL Objects

There is a basic set of functions that an application can perform on objects.
These function names will become familiar to you as you are introduced to XIL
objects in this guide:

• xil_ <object_name>_create()
• xil_ <object_name>_destroy()
• xil_ <object_name>_get_by_name()
• xil_ <object_name>_get_name()
• xil_ <object_name>_set_name()
• xil_ <object_name>_get_state()

Naming Convention Unique to XIL Image Objects

The XIL image object is special in that the object component of the function
name is omitted: the name consists of the prefix and method only. For example,
the xil_create() function creates an XIL image object.

Understanding the image object naming convention results in functions that
appear similar but, in fact, function differently. Take the following functions as
examples:

• xil_device_set_attribute()
• xil_set_device_attribute()

The former function sets an attribute of the device object; the latter sets the
device attribute of an image object.

The XIL Library: A Foundation Library
The XIL library is what Sun calls a foundation library. Such a library is an
application programming interface (API), but has special characteristics that
distinguish it from other APIs. For example, a foundation library must deal
with hardware dependencies, while most APIs are hardware independent. In
addition, a foundation library is geared toward a broad area of application,
such as imaging and video (the XIL library) or graphics (the XGL library),

Introduction to the XIL Library 9

1

while most APIs have a narrower scope. For example, APIs based on the XIL
library might address such areas as document imaging, medical image
processing, and image compression (see Figure 1-1).

Figure 1-1 Foundation Libraries and Application Programming Interfaces

This extra layer of software is desirable for several reasons. Of note are the
following:

• It minimizes code duplication.

A number of APIs—developed either by Sun or third parties—may require
the same functionality. For instance, an API directed at the commercial
document imaging market and another directed at the facsimile market both
must be able to compress and decompress image data according to CCITT
standards. If the code that handles this compression is part of a foundation
library, the two APIs don’t have to create two functions that do the same
thing.

• It provides a single interface to devices.

End-user
interface

API layer

Foundation library

Hardware layer

Third-party applications

Document
imaging API

Medical
imaging API

Image
compression API

XIL foundation library

Third-party hardware
Sun frame buffers,

accelerators, and so on

10 XIL Programmer’s Guide—August 1997

1

A foundation library provides a single interface to the hardware with which
the library interacts. For example, the XIL library provides an interface to
video cards, scanners, imaging accelerators, frame buffers, and printers.
Any applications or APIs written on top of the XIL library access these
devices using XIL routines.

• It permits object sharing.

A foundation library allows multiple APIs to share objects in a simple way.
For instance, because XIL defines memory formats for different types of
images, all APIs whose imaging functionality is based on XIL routines can
operate on these images without having to convert the format of any image
data.

• It enables extensibility.

Because an API also may need to provide capabilities that the XIL library
does not support, it is possible to export data from the XIL domain into
application space. There, an application or API can do whatever processing of
the data it needs to do. When this processing is complete, the data can be
imported so that the program can process the data using only XIL functions.

XIL Library is Multithread Hot
In this release, the XIL library is MT-hot. You can write multithreaded
applications without putting locks around XIL functions, because XIL protects
the objects of its own data structures. If, for example, two threads call
xil_set_origin() at the same time, XIL guarantees that each call occurs
atomically. Multithreaded applications, however, are still responsible for
managing their own variables and data to prevent race conditions.

Note – The error handler of a multithreaded application may only make XIL
calls on the object that was returned to the error handler; doing otherwise
could lead to a deadlock.

Introduction to the XIL Library 11

1

Installation
With the release of XIL 1.3, the XILHOME environment variable no longer exists.
The various components of the XIL product are now installed into standard
Solaris locations that applications or makefiles access by default. The user or
application developer should not set XILHOME. The user does not need to set
any other environment variables to use XIL 1.3.

For the purposes of information only, the XIL runtime libraries are now
installed in /usr/lib , the pipelines that XIL picks up directly are installed in
/usr/openwin/lib/xil , and the header files are installed in
/usr/openwin/include/xil but a link exists as /usr/include/xil .

When installed, the manual pages are installed in /usr/openwin/man .

Examples
The /usr/openwin/demo/xil/ directory contains several example programs
that are discussed in this book.

Table 1-3 Example Programs Provided With the XIL Developer’s Release

Example Program Description

example1 Reads a grayscale image from a file and displays the image in
an Xlib™ window. See Chapter 2, “Basic XIL Program.”

example2 Performs the same functions as example1 except this program
copies its source image tile-by-tile into XIL memory. See
Chapter 5, “XIL Program That Uses Tiling.”

display Demonstrates how to display images of different data types
and with different numbers of bands in an Xlib window. See
Chapter 8, “Preparing Images for Display.”

encode Demonstrates how to create movies using XIL functions. See
Chapter 15, “Compressing and Decompressing Sequences of
Images.”

xilcis_example Demonstrates how to play back movies using XIL functions.
See Chapter 15, “Compressing and Decompressing Sequences
of Images.”

xil_to_xgl Processes an image using both XIL and XGL 3.x calls in the
same program. See Appendix C, “XIL-XGL Interoperability.”

12 XIL Programmer’s Guide—August 1997

1

Documentation
The XIL Programmer’s Guide is included in the AnswerBook2™ on-line
documentation. To view the on-line version of this guide, see the Solaris XIL
1.3 AnswerBook located at the following web site:

http://docs.sun.com

13

Basic XIL Program 2

This chapter introduces programming with the XIL library by looking at a
simple XIL program called example1 . The program illustrates functions you
typically will find in most XIL programs.

After briefly discussing how to build and run example1 , this chapter walks
you through the program’s code. The chapter concludes with a brief discussion
on building XIL programs.

This chapter has the following main sections:

Program Overview page 14

Running the Example1 Program page 14

Header Files and Initializing page 15

Program Tasks page 16

Acquiring an Input Image page 17

Creating an Output Image page 27

Processing an Image page 30

Closing the Library page 34

Building an XIL Program page 35

Conditionally Compiling Code for Different XIL Versions page 35

14 XIL Programmer’s Guide—August 1997

2

Program Overview
The example1 program reads an 8-bit grayscale image from a file and displays
it in an X window. The program also enables you to take the one’s complement
of the image displayed in the window, which produces a negative of the image.

All XIL applications process images in some way. As you read this book, you
will learn that images can come from a variety of sources. The example1
program gets its image input from two disk files: a header file,
brainscan.header , and an associated data file, brainscan.data . The
header file provides XIL with the image attributes it needs. The data file stores
the image pixel values.

Running the Example1 Program
The source files for the example1 program can be found in the
/usr/openwin/demo/xil/example1 directory. Table 2-1 lists these source
files and indicates what the code in each file does.

The example1 directory also contains an image file that the program should
use as input and a Makefile you can use to build the program.

To run example1 , follow these steps:

1. Change your working directory to /usr/openwin/demo/xil/example1 .

2. To build the program, type make.

3. To execute the program from the directory in which you built it, type:

Table 2-1 Source Files for Example1

Source File Description

example1.c Contains main() , which prepares different types of source
images to be copied to various types of display images

fileio.c Reads an image from a file and loads the image data into an
XIL image

window.c Creates the program’s X colormap and manages that colormap

% example1 brainscan.header

Basic XIL Program 15

2

An X-ray of a brain is displayed in an X window.

4. To take the one’s complement of the image in the window, move your
pointer into the program’s window and press any key on your keyboard.
A second keypress will restore the image to its original state (by causing a
second bitwise negation to be performed).

5. To exit the program, move your pointer into the program’s window and
click any mouse button.

Header Files and Initializing
All XIL programs must include the approproiate XIL header files and XIL
library initialization, as explained in the sections that follow.

Including Header Files

The first XIL-related item in example1.c is a preprocessor directive that
includes the xil.h header file.

All XIL programs must include this header file and, therefore, must include the
line:

#include <xil/xil.h>

This header file defines a number of symbolic constants and enumeration
constants and contains function prototypes for all of the API functions in the
XIL library.

Note – All other header files are private and may be renamed or removed in
subsequent releases.

16 XIL Programmer’s Guide—August 1997

2

Initializing the Library

If you skip down to the main routine in example1.c , you’ll note that after
reading command-line arguments, the example calls the routine xil_open() .

Note – All XIL programs must call the xil_open() function to initialize the
library before using other functions from the XIL library.

As part of the initialization process, xil_open() returns an object of type
XilSystemState called state . The library uses this data structure to keep
track of information such as what XIL images (and other XIL data structures)
have been created during the current session and what the program’s error
handling routine is. You’ll notice later in the program that state must be
passed to any XIL function that creates an image.

Note – It is possible to have multiple XilSystemState objects, which allows
you to use XIL routines and routines from an API built on top of the XIL
library in the same program.

Program Tasks
The example1 program performs three main tasks, namely

• It acquires a disk-based input image. From this input, the program creates
an XIL memory-based image.

• It creates an output image. Because the program displays its output, it
creates a display image, which is written to the screen frame buffer and
displayed in an X window.

XilSystemState state;
...
state = xil_open();
if (state == NULL) {
 /* XIL’s error handler will print an error msg on stderr */
 exit(1);
}
...

Basic XIL Program 17

2

• It performs some XIL functions using the memory-based image as the
source and the display image as the destination. When the user presses a
key, the program takes the one’s complement to display the negative of the
brain scan image.

Each of these tasks is described in detail in the sections that follow.

Acquiring an Input Image

As mentioned previously, images processed by XIL can come from a variety of
sources, and how you bring an image into an application depends on its
source. The example1 program considers the single case in which a program
gets its input image from a disk file. To read such a file, the program must
perform the sequence of steps outlined below. It must

1. Read the image header file (or take whatever steps are appropriate) to
determine the image’s width, height, number of bands, and data type.

2. Create an XIL image of the correct dimensions and data type.
This image will serve as an empty container in which you place the pixel
values from your image data file.

3. Export the XIL image to obtain information about how the image’s pixel
values will be stored in memory.
At all times, an image is either in XIL space or application space. While an
image is in XIL space (is imported), you can operate on the image only by
using XIL functions. In this state, the image is in under XIL control, enabling
it to use acceleration. You do not know the address of the image or its pixel
values.

While an image is in application space (is exported), you can access the
storage allocated to hold the image’s pixel values and use XIL functions to
write data in that memory (or to modify existing data). You can also change
the pointer to the storage.

Note – You are not required to export an XIL image. You can operate on an
image solely by using XIL library functions. Typically, however, developers
want to access the image pixel values to perform tasks such as those listed
above.

18 XIL Programmer’s Guide—August 1997

2

4. Obtain a pointer to the disk-based image data.
The example1 program uses the system call mmap(2) to map the contents
of brainscan.data to application address space. For details on mmap(2) ,
see the manual page.

5. Create an XIL storage object.
An XIL storage object is similar to an XIL image in that it is initially an
empty container that will eventually store the image’s data format and data
pointer. When you create a storage object, your application receives a handle
to it for future reference.

6. Fill in the XIL storage object.
Fill in the XIL storage object describing the format and location of the disk-
based image data.

7. Copy the disk-based image data to your XIL image.

8. Import the XIL image.
This passes control of the image over to XIL, giving XIL the flexibility to
move the image to a hardware accelerator.

The sections below discuss each of these steps in detail and show how the
steps are performed in example1 . The code fragments shown are taken from
the fileio.c source file.

Step 1: Reading the Header File

You need to read the header of your image file to determine the following
attributes of the image:

• Width in pixels
• Height in pixels
• Number of bands, or channels
• Data type

This information is required to create an XIL image in which to store the image
file’s pixel values. How you get this information from your image file’s header
depends on the format of that header.

Basic XIL Program 19

2

The contents of the image header file, brainscan.header , are shown here.

This code fragment from the load_example_image_file() function shows
how the example program handles getting the necessary image attributes from
the header.

512 512 8 1
brainscan.data

XilImage
load_example_image_file(XilSystemState state, char* pathname)
{
 /*
 * XIL Image information and dimensions
 */
 XilImage image;
 unsigned int width;
 unsigned int height;
 unsigned int nbands;
 unsigned int depth;
 XilDataType datatype;
...

 /*
 * Read the header information
 */
 fscanf(header_file, "%d%d%d%d", &width, &height, &depth, &nbands);
 fscanf(header_file, "%s", datafile_pathname);

 /*
 * Convert depth to XIL datatype
 */
 switch(depth) {
 case 1: datatype = XIL_BIT; break;
 case 8: datatype = XIL_BYTE; break;
 case 16: datatype = XIL_SHORT; break;
 case 32: datatype = XIL_FLOAT; break;
 default:
 fprintf(stderr, "unknown data depth %d\n", depth);
 return NULL;
 }

20 XIL Programmer’s Guide—August 1997

2

The load_example_image_file() routine is passed the name of the image
file, opens the file, and reads the four integers contained in the first line of the
header. These integers represent the width of the image, its height, its depth
(number of bits used to represent one band of one pixel), and the number of
bands in the image.

You can pass the width, height, and number-of-bands arguments directly when
you call the routine that creates your XIL image (see “Step 2: Creating an XIL
Image”). However, before making that call, you must use the depth value to set
a variable of the enumeration type XilDataType . The program switches on
the value of depth to set this variable to one of the following constants:
XIL_BIT , XIL_BYTE , XIL_SHORT, or XIL_FLOAT. These enumeration
constants correspond to the four types of data the XIL library supports: 1-bit
data, 8-bit unsigned data, 16-bit signed data, and 32-bit, single-precision IEEE
floating point data.

Because the program is provided a single-band, 8-bit image as input, the
variable datatype is set to XIL_BYTE .

Note – The other item read from the header file (by the second fscanf
statement) is the name of the disk-based image data file that contains the actual
pixel values. The data file is accessed in “Step 4: Obtaining a Pointer to the
Disk-Based Image Data” on page 22.

Step 2: Creating an XIL Image

Once you have read the appropriate values from your image file’s header, you
can create your XIL image by calling xil_create() .

...
XilImage image;
...
/* Create the image to read the data into */
image = xil_create(state, width, height, nbands, datatype);
...

Basic XIL Program 21

2

With the exception of state , the parameters being passed to xil_create()
are the variables set in “Step 1: Reading the Header File” on page 18. The
state parameter is the data structure returned by the call to xil_open()
earlier in the program.

The return value of xil_create() is a handle to an XIL image (an object of
type XilImage). This is the image you export.

Step 3: Exporting the Image

You now need to export the image you just created to get some information
about how the image’s pixel values will be stored in memory. The example1
program uses the following code fragment to accomplish these tasks.

The call to xil_export() , whose only parameter is a handle to the image,
marks the image as exported. By exporting the image, the application gains
access to information about the image that enables it to modify the image
directly.

For example, the application can get a pointer to the location at which the
image’s pixel values will be stored. For further information about exporting
images, see “Types of XIL Images” on page 44.

Note – Any time you plan to use an image’s data, you must export the image
by calling xil_export() and then get pointers to the data. The pointers are
valid only until the image is again imported. For more information, see “Types
of XIL Images” on page 44.

...
XilImage image;
...
 /*
 * Export image for access and control of the image data
 */
 if(xil_export(image) == XIL_FAILURE) {
 /*
 * error msg printed to stderr
 */
...

22 XIL Programmer’s Guide—August 1997

2

Step 4: Obtaining a Pointer to the Disk-Based Image Data

The example1 program uses the system call mmap(2) to map the contents of
brainscan.data to application address space. The mmap(2) call returns a
data pointer to the starting address of the disk-based image file. The code
fragments related to memory mapping are shown below.

...
 /*
 * Data loading variables
 */
 int data_fd;
 void* mmap_ptr;
 struct stat statbuf;
...
 /*
 * Get the size of the data file.
 */
 if(fstat(data_fd, &statbuf) == -1) {
 perror("stat of datafile: ");
 close(data_fd);
 return NULL;
 }

 /* Memory map the data file */
 mmap_ptr = mmap(NULL, statbuf.st_size, PROT_READ, MAP_SHARED, data_fd, 0);
...

Basic XIL Program 23

2

Step 5: Creating an XIL Storage Object

XIL storage is similar to an XIL image in that it is initially an empty container
that will store information about the image’s data format. You need to create a
storage object for your XIL image by making the XIL function call shown in
this code fragment. The xil_storage_create() function returns a storage
handle to your application for reference in subsequent XIL calls.

Note that when the storage object is no longer needed, the program destroys it
with the xil_storage_destroy() function. This function is passed the
storage handle as its only parameter.

Step 6: Describing the Storage to XIL

You must use XIL functions to set values in, and to get values from, the storage
object. In this case, you are setting values about the disk-based image’s data
layout. The disk-based image data file that example1 reads as input is a
single-band (grayscale) image. This particular file is stored in pixel-sequential
format. You can read all the details of XIL data types and supported storage
formats in Chapter 3, “XIL Images.” For now, you need to know that XIL
supports this image format. To set up this format for the XIL image you created
(see “Step 2: Creating an XIL Image”), you must provide XIL with three pieces
of information:

• The pixel stride (distance in bytes to the next pixel on the same scanline) of
the image

• The scanline stride (distance to the same pixel on the next horizontal
scanline) of the image

• The pointer to the disk-based image data

...
 /*
 * Construct storage object for setting storage on the image
 */
 storage = xil_storage_create(state, image);
...

24 XIL Programmer’s Guide—August 1997

2

This code fragment shows the functions you need to call to describe the storage
layout to XIL.

Using XIL Functions For Pixel-Sequential Format
In each of the XIL functions shown above, the storage argument is a handle to
the XIL storage you created. The second argument is always 0 for pixel-
sequential format.

The final arguments of xil_storage_set_pixel_stride() and
xil_storage_set_scanline_stride() are the pixel stride (nbands) and
scanline stride (nbands*width), respectively. These values were obtained
when brainscan.header was read in step 1 (see “Step 1: Reading the Header
File”). Pixel stride is equivalent to the number of bands in the image. Likewise,
scanline stride is the number of bands times the width. On some hardware, a
scanline can include extra bytes of padding for boundary alignment. By
specifying nbands*width , XIL knows exactly how many bytes of the scanline
contain actual image data.

The third argument of the xil_storage_set_data() function is the pointer
to the image data that was returned when the image data file was memory
mapped in step 4 (see Step 4: Obtaining a Pointer to the Disk-Based Image
Data”). The final argument is not used but provides for an optional callback
routine, which XIL could use to tell the user when it is done with the data.

Using XIL Functions For Other Formats
The storage setting functions described above work for setting up the pixel-
sequential format. However, you need to determine which storage setting
functions to use for other formats XIL supports. Say, for instance, the
example1 program read an RGB image from a file and the 8-bit (XIL_BYTE)
RGB values in the file were stored in band-sequential format. In this case, you
would need to provide XIL with different storage layout information. In

...
 /*
 * Describe the storage to XIL.
 */
 xil_storage_set_pixel_stride(storage, 0, nbands);
 xil_storage_set_scanline_stride(storage, 0, nbands*width);
 xil_storage_set_data(storage, 0, mmap_ptr, NULL);
...

Basic XIL Program 25

2

addition to setting the pointer to the data file with
xil_storage_set_data() and the scanline stride with
xil_storage_set_scanline_stride() as described earlier, you would
need to set the band stride (distance in bytes to the same pixel in the next band).
You can do this with the xil_storage_set_band_stride() function. See
the manual pages on these functions for details. Also see Chapter 4, “XIL
Storage,” for more information on storage formats.

Note – You do not explicitly set the storage type. XIL determines the type from
the values you set in the storage object.

Step 7: Copying Disk_Based Image Data to Your XIL Image

Your XIL program can use a number of methods to copy the data from the
image data file to the XIL image. It can use a simple copy function or more
advanced techniques that require you to create routines that write the disk-
based data into memory tile by tile.

The example1 program uses a simple method: calling the “convenience”
function xil_set_storage_with_copy() . Chapter 5, “XIL Program That
Uses Tiling,” describes one of the more advanced methods that gets tile storage
on an image with a function called xil_get_tile_storage() .

Note – Historically, XIL applications used the xil_get_memory_storage()
and xil_set_memory_storage() functions to get and set an
XilMemoryStorage structure to access or change an exported image’s
formatting information. xil_get_memory_storage() filled in an
XilMemoryStorage structure from which your application could access the
image’s pixel values; xil_set_memory_storage() allowed your application
to set an image’s memory storage. These functions are still supported.
However, they are not compatible with functions in the current version of the

26 XIL Programmer’s Guide—August 1997

2

XIL library that are used with images stored as tiles. Table 2-2 lists the
incompatible functions. It is recommended that you use the new functions in
new applications that you write.

In example1 , the xil_set_storage_with_copy() function uses the
information in the storage object previously set in step 6 (see “Step 6:
Describing the Storage to XIL”) to copy the disk-based image to the memory-
based XIL image in the specified layout. The function knows where to write
each pixel value it reads from the disk file—even if there are unused bytes
between pixels in the XIL image—because it knows the pixel stride and
scanline stride.

With this function, the file data are conveniently copied to the XIL image as
shown in this code fragment.

Table 2-2 Incompatible XIL functions

Old XIL Functions New XIL Functions

xil_get_memory_storage() xil_get_storage_with_copy()

xil_set_memory_storage() xil_set_storage_with_copy()

xil_get_tile_storage()

xil_set_tile_storage()

xil_release_storage()

...
XilStorage storage;
...
if(xil_set_storage_with_copy(image, storage) == XIL_FAILURE) {
 /*
 * Print an error msg to stderr
 */
...

Basic XIL Program 27

2

Step 8: Importing the Image

Once you have read image data from a file into an XIL image, you should
import the image so you can accelerate imaging operations where possible.
You import the image with a call to xil_import() .

Note – Importing an image is the opposite of exporting it. When you import an
image, any pointer to the image’s pixel values you had while the image was
exported becomes invalid, so you can no longer modify the image directly. You
must make all modifications using XIL functions. To access the data again, you
must export the image again and get new pointers to the data. For more
information, see “Types of XIL Images” on page 44.

The argument image is a handle to the image being imported, and TRUE is a
change flag. The flag indicates that the image was modified while it was
exported. In this case, it was filled with pixel values.

Creating an Output Image

Because example1 displays its output, its output image must be a special type
of image called a display image. This type of image is written to a screen’s frame
buffer and is displayed in an X window.

To create this display image, the example program:

• Creates an X window the size of the image it wants to display.

See “Creating an X Window,” for detailed information.

• Uses the xil_create_from_window() function to create a display image
from the X window just created. This routine turns the X window into an
XIL image that can be used as a destination for an XIL operation.

See “Creating a Display Image” on page 29 for detailed information.

...
XilImage image;
...
xil_import(image, TRUE);
...

28 XIL Programmer’s Guide—August 1997

2

Creating an X Window

Most of the Xlib code in this example appears in the open_window() function
defined in the window.c source file. This function:

• Establishes a connection with the X server

• Finds the best X visual to use when displaying a grayscale image on a
particular display

• Creates the X colormap that will be used when the image is displayed

• Creates the X window in which the image will be displayed

• Maps the X window

To create the X window, the open_window() function calls
XCreateWindow() .

XilImage
open_window(XilSystemState state,
 unsigned int width,
 unsigned int height,
 unsigned int nbands,
 XilDataType datatype,
 XVisualInfo* vinfo,
 Xil_boolean prefer_depth_24)
...
Display* xdisplay;
Window xwindow;
...
xwindow = XCreateWindow(xdisplay,DefaultRootWindow(xdisplay),
 0, 0, width, height, 0,
 vinfo->depth, InputOutput, vinfo->visual,
 attribmask, &winattr);
...

Basic XIL Program 29

2

The return value of XCreateWindow() is an X window ID, which is used in
the call to XMapWindow() , as shown below.

Once the X window is mapped, the XIL display image can be created. See
“Creating a Display Image.”

Creating a Display Image

Before you can use an XIL function to display an image, you must create a
display image with the xil_create_from_window() function. This code
fragment from window.c turns an X window into a special type of XIL image
so the window can be used as the source or (as in this case) the destination
image for an operation.

xil_create_from_window() returns a handle to the newly created display
image. The parameters you pass to the routine are a handle to the system state
data structure returned by xil_open() , a pointer to a structure describing
your display, and the ID of your X window.

...
/*
 * Make the window visible -- XIL can only create from mapped
 * and visible windows.
 */
XMapWindow(xdisplay, xwindow);
...

...
XilImage
open_window(XilSystemState state,
...
 Display* xdisplay;
 Window xwindow;
...
 /*
 * Create the XIL display image
 */
 display_image = xil_create_from_window(state, xdisplay, xwindow);

30 XIL Programmer’s Guide—August 1997

2

At this point, the program is ready to do some image processing of the source
image it read earlier.

Processing an Image

With handles to a source and destination image, example1 is now ready to use
XIL functions to process the source image and eventually write the processed
image to the display. The functions used in this part of the program can be
thought of as serving two purposes.

One purpose is to alter the source image so that it can be written to the
destination image. For example, in the sample program, the source image
contains 8-bit data, but the display image may be just 1-bit deep (if the screen
on which the image is to be shown is monochrome). In this case, the source
image must be converted to 1-bit data before it can be copied to the display
image. This kind of conversion may require that you create an intermediate
image.

The second purpose is to change the source image to alter its appearance in
some way. For instance, you might darken the image or enhance the edges in
the image. The example1 program enables you to take the one’s complement
of its source image.

Making Source and Destination Images Compatible

The example1 program handles only one type of source image: an 8-bit
grayscale image. However, it handles several types of display images. It may
write its output to:

• A 3-band XIL_BYTE display image whose X colormap is read only.

• A 1-band XIL_BYTE display image. There are actually two cases here
because the image’s X colormap (grayscale) may be read-write or read only.

• A 1-band XIL_BIT display image whose X colormap is read only.

In only one of these cases can the source image be copied to the display image
as is. The following sections briefly describe how each case must be handled.

Basic XIL Program 31

2

Three-Band, Eight-Bit Destination—Read-Only Colormap
In this case, the source image contains one band, and the display image
contains three. To solve this problem, The following code fragment from
example1.c creates a temporary 3-band XIL_BYTE image, called
retained_image , and copies the source image to each band of the temporary
image.

Note that the example program actually creates three band children of the
temporary image and copies the source image to those children. Once this has
been done, retained_image can be copied to the display image.

One-Band, Eight-Bit Destination—Read-Write Colormap
In this case, the program could write the source image directly to the display
image. However, doing that would require that the program create and use a
colormap with 256 entries. If such a colormap were installed, it might cause
other X clients, including the window manager, to display their output in false
colors.

...
if (vinfo.class == TrueColor) {
 /* Copy the grayscale image into each of the bands */
 retained_image = xil_create(state, width, height, 3,
 XIL_BYTE);
 band0 = xil_create_child(retained_image, 0, 0, width,
 height, 0, 1);
 band1 = xil_create_child(retained_image, 0, 0, width,
 height, 1, 1);
 band2 = xil_create_child(retained_image, 0, 0, width,
 height, 2, 1);
 xil_copy(image, band0);
 xil_copy(image, band1);
 xil_copy(image, band2);
}
...

32 XIL Programmer’s Guide—August 1997

2

To avoid this problem, the example program creates an X colormap of 256
entries, but writes its grayscale ramp in the last 216 entries. The program then
uses a call to xil_rescale() to ensure that all the values in the image to be
displayed fall between 40 and 255.

One-Band, Eight-Bit Destination—Read-Only Colormap
In this case, the example program can write the source image directly to the
display image because the program’s X colormap is a read-only grayscale
ramp.

One-Band, One-Bit Destination—Read-Only Colormap
In this case, the example program creates a single-bit XIL image (using
xil_create()) and then uses the function xil_error_diffusion() to
dither the 8-bit image to a 1-bit image.

Basic XIL Program 33

2

Additional Image Processing

Besides processing the source image so that it can be written to the display,
example1 enables you to take the one’s complement of the brain scan by
pressing any key while your pointer is in the program’s window. The
following code fragment from example1.c performs this operation.

If the example gets a keypress event, it calls xil_not() to take the one’s
complement of the source image. This single statement works for all cases
except the case where the program is using a GrayScale X visual. In that case,
the values in retained_image before the call to xil_not() fall in the range
40 to 255. After the call to xil_not() , they fall in the range 0 to 215.
Therefore, before the one’s complement is displayed, the example adds 40 to
each value in the image using the function xil_add_const() .

You may want to experiment with removing from the example the code used
to take the one’s complement of the brain scan and replacing it with code that
performs another image-processing operation. You might try any of the

...
 Display* xdisplay;
...
 XEvent xevent;
...
 /*
 * Refresh window as necessary till program terminates
 */
 while(1) {
 XNextEvent(xdisplay, &xevent);

 if(xevent.xany.type == KeyPress) {
 xil_not(retained_image, retained_image);
...
 if(vinfo.class == GrayScale) {
 xil_add_const(retained_image, &offset, retained_image);
 }
 xil_copy(retained_image, display_image);
 } else if(xevent.xany.type == Expose) {
 xil_copy(retained_image, display_image);
 } else if(xevent.xany.type == ButtonPress) {
 break;
...

34 XIL Programmer’s Guide—August 1997

2

arithmetic and logical operations that work with one source image and a
constant. These operations are discussed in Chapter 11, “Arithmetic, Relational,
and Logical Functions.” Or you might try replacing the logical negation with a
geometric operation. The XIL geometric operations are the subject of
Chapter 12, “Geometric Functions.”

Closing the Library

Before exiting, all XIL programs should deallocate the memory associated with
any XIL data structures that haven’t already been destroyed.

...
XilSystemState state;
...
 /*
 * We are responsible for destroying all of the XIL
 * objects we created. Like free(), XIL supports
 * destroying NULL objects.
 */
 xil_destroy(image);
 xil_destroy(display_image);
 xil_destroy(bit_image);
 xil_destroy(band0);
 xil_destroy(band1);
 xil_destroy(band2);

 if(retained_image != image) {
 xil_destroy(retained_image);
 }

 xil_lookup_destroy(colorcube);

 /*
 * We do not destroy the XilKernel because we didn't
 * create it. We aquired it using the
 * xil_kernel_get_by_name() call.
 */

 xil_close(state);

...

Basic XIL Program 35

2

Note – If your program creates a display image, you must destroy it with a call
to xil_destroy() before you break your connection with the X server and
display (XCloseDisplay()).

Building an XIL Program
The example1 directory, which contains the source files for example1 , also
contains the Makefile you use to build the program. The library line is shown
below.

When you link your XIL program, you must include the XIL library (-lxil).
The X window library (-X11) can be omitted if your program doesn’t display
output in an X window.

Note – XIL applications should not compile using the -fnonstd flag. XIL’s
geometric code depends on IEEE standard handling of floating point
exceptions. When divide by zero is encountered, a valid value is generated,
which is processed accordingly. If, however, an application is compiled with
the -fnonstd flag, it may crash in XIL’s code with an exception.

Conditionally Compiling Code for Different XIL Versions
Beginning with release 1.2, the XIL library lets you conditionally compile code
so you can take advantage of new interfaces in a current release while still
supporting earlier releases of the library. To permit compile-time decisions, the
library uses preprocessor directives to define symbols that identify the current
XIL major and minor version numbers; these
symbols—XIL_API_MAJOR_VERSION and XIL_API_MINOR_VERSION—are
available to your application when you include the xil.h header file (see
“Including Header Files” on page 15).

LD_LIBS += -lxil -lX11

36 XIL Programmer’s Guide—August 1997

2

By convention, the major version number is the numeral preceding the decimal
point in the XIL version number, and the minor version number is the numeral
following the decimal point. Table 2-3 shows what the major and minor
version numbers would be for various XIL releases.

By using these symbols, you can maintain a single source-code file that can be
compiled against different versions of the XIL library. For example, version 1.2
of the XIL library introduced XilDevice objects, which can be used to
initialize device attributes before creating the corresponding device image;
earlier versions of the library can’t use this object. The following code fragment
shows how you might use the XIL_API_MAJOR_VERSION and
XIL_API_MINOR_VERSION symbols to write code that uses an XilDevice
object when you compile your application with the 1.2 version of the library,
but code that omits the object when you compile with earlier versions:

Table 2-3 Examples of Major and Minor Version Numbers

XIL Version Number Major Version Number Minor Version Number

1.2 1 2

1.3 1 3

2.0 2 0

2.1 2 1

#if (XIL_API_MAJOR_VERSION == 1 && XIL_API_MINOR_VERSION >= 2) ||
 (XIL_API_MAJOR_VERSION > 1)
{
 /*create a device object */
 XilDevice device;
 device = xil_device_create(state, “SUNWrtvc”);
 /* initialize the DEVICE_NAME attribute */
 xil_device_set_value(device, “DEVICE_NAME”, (void *)devname);
 /* create a device image with the initialized attribute */
 rtvc_image = xil_create_from_device(state, “SUNWrtvc”, device);
 xil_device_destroy(device);
}
#else
 /* create a device image without initialized attributes */
 rtvc_image = xil_create_from_device(state, “SUNWrtvc”,
 (void *) devname);
#endif

Basic XIL Program 37

2

In this example, a device image with an initialized attribute is created only for
XIL versions 1.2 and later; otherwise, the device image is created without
initialized attributes.

See “XIL 1.3 New Features” on page xxxv for a discussion of the new features
introduced in the current release of the library.

38 XIL Programmer’s Guide—August 1997

2

39

XIL Images 3

Because all XIL programs work with XIL images, you should not only know
how to create an XIL image, but understand exactly what an XIL image is and
what its characteristics are. This chapter explains key information to
understand about XIL images.

This chapter has the following main sections:

Digitized Image page 40

Basic XIL Image Attributes page 40

Exporting XIL Images page 42

Providing Data to XIL Images page 43

Types of XIL Images page 44

Additional XIL Image Attributes page 47

Temporary Images page 61

40 XIL Programmer’s Guide—August 1997

3

Digitized Image
When you first think about a computer image, you probably think of a picture
or scene that has been digitized and is represented as a two-dimensional array
of numbers or vectors. For example, the upper-left corner of an 8-bit,
single-band image might look like this:

Figure 3-1 Digitized Image

One component of an XIL image is a set of pixel values like those shown in
Figure 3-1. However, an XIL image is more than that. It is an object containing
many members, one of which is a pointer to a set of pixel values.

Basic XIL Image Attributes
When you use the xil_create() function to create an XIL image, you must
specify four attributes of the image being created: its width, height, number of
bands, and data type.

Width, Height, and Number of Bands

These three attributes define the dimensions of an image. An image’s width
and height are given in pixels. Its number of bands is the number of values
needed to describe a single pixel; for example, in a grayscale image, one value
describes the gray level of each pixel, so the image is said to have one band. In

255

255

255

255

255

255

255

255

255

254

254

254

254

254

254

254

255

254

253

253

253

253

253

253

255

254

253

252

252

252

252

252

255

254

253

252

251

251

251

251

255

254

253

252

251

250

250

250

255

254

253

252

251

250

249

249

255

254

253

252

251

250

249

248

255

254

253

252

251

250

249

248

255

254

253

252

251

250

249

248

255

254

253

252

251

250

249

248

255

254

253

252

251

250

249

248

XIL Images 41

3

an RGB image, three values (red, green, and blue) are required to describe a
single pixel, so such an image has three bands. Each band in a multiband
image must have the same width and height.

Each of these image attributes is stored as an unsigned 32-bit integer. In this
release of the XIL library, the image is only limited by the system’s resources.

Note – The three attributes (width, height, and number of bands) are set when
you create an XIL image and cannot be changed afterwards.

The functions you use to read the values of these attributes are shown in
Table 3-1.

Data Type

This image attribute specifies the type of data used to represent the value of
one band of one pixel. The XIL library supports four data types: 1-bit data,
8-bit unsigned data, 16-bit signed data, and single-precision IEEE floating point
data. You establish an image’s data type when you create the image by passing
to the xil_create() function one of the following enumeration constants:
XIL_BIT , XIL_BYTE , XIL_SHORT, or XIL_FLOAT. These enumerators are of
type XilDataType.

Note – The single-precision IEEE floating point data type is only available
through the new XIL storage access functions, namely:
xil_get_storage_with_copy() , xil_set_storage_with_copy() ,

Table 3-1 Functions for Reading an Image’s Width, Height, or Number of Bands

Function Description

xil_get_width() Gets the width of an image in pixels

xil_get_height() Gets the height of an image in pixels

xil_get_info() Gets the width, height, number of bands,
and datatype of an image

xil_get_size() Gets the width and height of an image in
pixels

xil_get_nbands() Gets the number of bands in an image

42 XIL Programmer’s Guide—August 1997

3

xil_get_tile_storage() , and xil_set_tile_strorage() . It is not
available through the xil_set_memory_storage() or
xil_get_memory_storage() functions.

The library enables you to convert an image from one supported data type to
another by providing the xil_cast() function.

To read an image’s data type, you use the xil_get_datatype() function.
The XIL library also includes the xil_get_info() function, which reads an
image’s width, height, number of bands, and data type.

Exporting XIL Images
When you first create an XIL image using xil_create() , you receive a
handle to the image, and the image is in a state called imported. While the
image is in this state, you can process it only with XIL functions because you
don’t know, and can’t find out, the address at which the image’s pixel values
are stored. Nor do you know the exact layout of those values in memory.

However, you do have the option of exporting the image, using the
xil_export() function. Once an image is exported, you can obtain a
complete description of how its pixel values are stored in memory using XIL
functions for getting image storage attributes from the image’s associated
storage object. (See “Storage Functions” on page 76 for details.) You can also
continue to process the image using XIL functions while it is exported;
however, you may lose some acceleration.

Note – The xil_export() function has very little overhead. It simply sets a
flag.

While an image is exported, you can also set its memory storage using the
functions for setting attributes on the image’s associated storage object. (See
“Storage Functions” on page 76 for details.) Defining an image’s memory
storage in this way would be appropriate, for example, if you had exported an
empty image and wanted to fill it with pixel values by setting a pointer to
some pixel values in system memory.

After you’ve finished the work you needed to perform with the image
exported, you should import the image using the xil_import() function.
While imported, the image must be processed using XIL functions.

XIL Images 43

3

Note – XIL still supports the xil_get_memory_storage() and
xil_set_memory_storage() functions for getting and setting an image’s
pixel values in memory. However these functions are not compatible with the
functions in the current version of the XIL library that are used for images
stored as tiles. See Table 2-1 in Chapter 2, “Basic XIL Program,” for a list of the
incompatible XIL functions.

Table 3-2 lists and describes the XIL functions related to importing and
exporting XIL images.

Caution – The description of memory storage that you read is valid only as
long as your image remains exported. (This is provided that you do not enforce
storage organization. For details, see “Enforcing XIL Image Storage
Organization” on page 79.) Once you import the image, both the address at
which the image’s pixel values are located and their layout in memory may
change. Trying to access pixel values using an invalid pointer or invalid
information about their layout can cause serious problems in your application.

If you plan to export an image to set and get storage attributes, you need to
understand XIL image storage formats. See “Storage Formats” on page 68 for
details.

Providing Data to XIL Images
In Chapter 2, “Basic XIL Storage,” you learned of one way of providing data to
an XIL image using the xil_set_storage_with_copy() function.

Table 3-2 Functions for Importing and Exporting Images

Function Description

xil_import() Imports an image so that XIL functions
may be accelerated

xil_export() Exports an image so that you can get or
set the image’s pointer to its pixel values

xil_get_exported() Determines whether an image is
currently exported

!

44 XIL Programmer’s Guide—August 1997

3

In a number of cases, however, it’s not possible to provide a description of the
entire image’s storage. A tile, for example, may be located across the network
or in a file whose data cannot be memory mapped (that is, a compressed image
file). In these cases, it is more efficient to provide the tile data to XIL on
demand so that only one tile is loaded into memory at a time.

Your application can specify a data supply routine for an image or tile using
the xil_set_data_supply_routine() function. When an XIL operation
needs data for a tile of the image, XIL calls the routine to obtain the memory.
The routine is only called when there are no data associated with a tile. So, the
first time a tile from the image is needed, your application’s routine is called to
provide data. From that point on, the data remains under XIL control as if the
storage had been set.

Types of XIL Images
There are two basic types of XIL images:

• Memory images
• Device images

Memory Images

The memory image is the most common type of XIL image. When you create
this type of image, using the function xil_create() , system memory is
allocated to store both the image structure that describes the image and the
image’s pixel values. All operations that do not read or write a device use
memory images exclusively.

Device Images

XIL device images represent devices such as displays, cameras, frame grabbers,
scanners, and printers. For each device image, the structure describing the
image is stored in system memory, but the image’s pixel values are read from
or written to the device. Device images can be subdivided into images that
represent displays and images that represent other devices. Images that
represent displays are referred to as display images. The main difference
between these two subtypes of device image is the way in which they are

XIL Images 45

3

created. To create a device image, you pass the name of a device to the
xil_create_from_device() function. To create a display image, you call
the xil_create_from_window() function.

You can use a device image as either a source image or a destination image in
an XIL operation. When you use a device image as a source image, data is read
from the device; similarly, when you use a device image as a destination
image, data is written to the device.

The handler for each device is responsible for moving XIL images to or from
the device. The current release of the XIL library includes a group of these
handlers that support standard devices.

Display Images

Display images are a special subclass of device images. They are very valuable
because they eliminate the need for the scenario shown in Figure 3-2.

Figure 3-2 Copying Data from a Backing Image to the Display (Not Necessary)

Source

image

Backing

image

X window

1. Process a source image and write
your output to a temporary image.

2. Call a display routine that copies the
temporary image to your display.

46 XIL Programmer’s Guide—August 1997

3

Display images enable the XIL library to process a source image and write the
results of the processing directly to an X window by using a display image as
the destination image for the operation. In other words, functions can write
directly to frame-buffer memory, so the need for the backing image is
eliminated (see Figure 3-3).

Figure 3-3 Writing the Output of an Operation to a Display Image

To create a display image, you first create an X window. Then, you call the
xil_create_from_window() function, passing information to it about
which display and which window to associate with the display image.

A display image can also serve as a source image in most cases (if the display
is readable). Any pixels that are obscured by another window when a read
takes place are undefined.

Source

image

X window

1. Process a source image and write your output
directly to a display image.

XIL Images 47

3

There are some restrictions on the types of images that can be display images.
The only possibilities are:

• 1-band images containing 1-bit data elements

• 1-band images containing 8-bit data elements

• 1-band images containing 16-bit data elements

• 3-band images containing 8-bit data elements

Additional XIL Image Attributes
This section discusses the following additional image attributes:

• Origin
• Region of interest
• Color space
• Parent
• Image type
• Synchronization flag
• Readable and writable flags
• Name

Note – It is possible for applications to create additional image attributes. To
create and set an attribute, you use the xil_set_attribute() function. To
retrieve the value of an application-defined attribute, you use the
xil_get_attribute() function.

Origin

An image’s origin is a pair of floating-point numbers that define a point in the
image’s coordinate plane. By default, an image’s origin is in its upper-left
corner (0.0, 0.0), but you can change the origin using the xil_set_origin()
function. When an operation is performed, the origins of the source image or
images and the destination image are aligned. (For nongeometric operations,
the floating-point origin values are rounded to integers for this purpose.)

For all nongeometric operations, the intersection of the source and destination
images determines which pixels in the destination image will be modified. This
is illustrated in Figure 3-4.

48 XIL Programmer’s Guide—August 1997

3

Figure 3-4 Image Origins

Only the shaded area shown in Figure 3-4 is modified in the destination image,
and only the shaded area in the source is used by the operator.

Table 3-3 lists and describes the XIL functions you use to read or set an image’s
origin.

Table 3-3 Functions for Getting and Setting an Image’s Origin

Function Description

xil_get_origin() Gets both coordinates of an image’s origin

xil_get_origin_x() Gets the x coordinate of an image’s origin

xil_get_origin_y() Gets the y coordinate of an image’s origin

xil_set_origin() Sets an image’s origin

Source Destination Intersection

S D

S

D

origin

origin origin

XIL Images 49

3

Region of Interest

An XIL region of interest (ROI) is an object of type XilRoi that describes a
single-bit mask for an image. If the ROI is an attribute of a destination image,
it determines which pixels in the destination may be written. Where there are
0’s in the ROI, the destination image may not be modified, and where there are
1’s, it may be modified. If the ROI is an attribute of a source image, it
determines which pixels may be used as input to an operation.

Since an ROI is an attribute of an image, as opposed to a parameter for an
operation, two or three ROIs may be involved in a single operation. For example,
the operation’s source image may have one ROI, and the operation’s destination
image, another. In this case, the ROI used for the operation is the intersection of
the ROIs associated with the source and destination images, as shown in
Figure 3-5.

Figure 3-5 Regions of Interest

The dark gray area in the image on the right represents the ROI used for the
operation.

If the origin of the source or destination has been set to something other than
0.0, the origins are first aligned. Then, the ROI is determined. This is illustrated
in Figure 3-6.

Source ROI Destination ROI ROI used for operation

50 XIL Programmer’s Guide—August 1997

3

Figure 3-6 Regions of Interest and Origins

The dark gray area represents the ROI used for the operation.

Creating and Destroying an ROI

You can create an ROI in several ways:

• You can create a new ROI object using the xil_roi_create() function,
which returns a handle to the ROI. When first created, the ROI is empty.

For information on how to set values in the ROI, see “Building an ROI.”

• You can create a copy of an existing ROI using the
xil_roi_create_copy() function.

• You can get a copy of the ROI associated with an image using the
xil_get_roi() function.

• You can create an ROI by taking the union or intersection of two existing
ROIs. The functions you use for these operations are xil_roi_unite()
and xil_roi_intersect() .

When you are finished with an ROI, use the xil_roi_destroy() function to
destroy it.

Source ROI Destination ROI ROI used for operation

origin origin

XIL Images 51

3

Building an ROI

After creating an empty ROI, you can build a region of interest using the
functions listed and described in Table 3-4.

Note – It’s also possible to convert an ROI to a single-bit XIL image or an X
region. To perform these tasks, use the xil_roi_get_as_image() and
xil_roi_get_as_region() functions, respectively.

Setting an Image’s ROI Attribute

Once you have created an ROI and established its contents, you make it an
attribute of an image using the xil_set_roi() function. You can get a copy
of the ROI associated with a particular image by using the xil_get_roi()
function.

Translating an ROI

The library includes a xil_roi_translate() function that moves all the
pixels in an ROI that have been set left or right and/or up or down. The
prototype for this function is shown below.

Table 3-4 Functions Used to Build a ROI

Function Description

xil_roi_add_rect() Adds a rectangle to the ROI (you specify
the width and height of the rectangle and
its coordinates)

xil_roi_subtract_rect() Subtracts a rectangle from an ROI

xil_roi_add_image() Adds an XIL_BIT image to the ROI (bits
that are set in the image are added to the
ROI)

xil_roi_add_region() Adds an X region to an ROI

XilRoi xil_roi_translate(XilRoi roi, int xoffset, int yoffset);

52 XIL Programmer’s Guide—August 1997

3

The roi parameter is the ROI whose pixels you want to translate. The
xoffset and yoffset parameters are integers that represent the number of
pixels the ROI should be moved horizontally and vertically. If xoffset is
positive, the ROI is moved to the right, and if it is negative, the ROI is moved
to the left. If yoffset is positive, the ROI is moved down, and if it is negative,
the ROI is moved up.

The function returns a handle to the new translated ROI.

Naming an ROI

As with all objects, the XIL library enables you to specify a string that serves as
the name for an ROI. This naming is useful because it enables you to later get
a handle to an ROI by using its name. Table 3-5 lists and describes the ROI
naming functions.

Note – When you call xil_roi_get_by_name() , a pointer to the named
object is returned, not a copy of it. Therefore, you should not destroy an ROI
obtained in this way.

Table 3-5 ROI Naming Functions

Function Description

xil_roi_set_name() Sets the name of an ROI

xil_roi_get_name() Returns a copy of an ROI’s name

xil_roi_get_by_name() Returns a handle to an existing ROI that
has the name you specify

XIL Images 53

3

Color Space

You can manipulate the color spaces associated with an image using either of
two methods, depending on your requirements. You can convert an image with
a particular associated color space to another image associated with a different
color space. This is the default method. Alternately, you can correct the color of
a destination image to compensate for individual device characteristics.

Each of these methods is briefly described below. For more information on
these methods, see “Color Space Manipulation” on page 178.

Color Conversion

A newly created image does not have a color space associated with it, but you
can assign one to it using the xil_set_colorspace() function. The possible
color spaces are:

• CCIR Rec. 709 RGB
• A linear version of CCIR Rec. 709 RGB
• CCIR Rec. 709 YCbCr

• A luminance-only space derived from CCIR Rec. 709 YCbCr

• A linear version of the luminance-only space derived from
CCIR Rec. 709 YCbCr

• CCIR Rec. 601 YCbCr

• A luminance-only space derived from CCIR Rec. 601 YCbCr

• A YCbCr color space defined by Kodak for PhotoCD
• A linear CMY
• A linear CMYK

You associate color spaces with images to convert an image from one color
space to another (using the xil_color_convert() function). Say, for
example, you have an RGB image and want to convert it to the YCbCr color
space. To do this, you would follow the procedure outlined below:

1. Set the color-space attribute of your RGB image to one of the RGB color
spaces listed above.

2. Create an image whose width, height, number of bands, and data type
match those of the RGB image.

3. Set the new image’s color-space attribute to one of the YCbCr color spaces
listed above.

54 XIL Programmer’s Guide—August 1997

3

4. Use the xil_color_convert() function to convert the RGB data from the
first image to its YCbCr counterpart, and write the converted data to the
newly created image.

Color Correction

Each display device has an associated profile containing characteristics about
that device. If a color image is created on one device, it may not display the
colors with the exact same intensities, hues, and so forth on other devices. To
compensate for differences in device characteristics, you can use the
xil_color_correct() function.

To perform the color correction, xil_color_correct() uses Kodak Color
Management System (KCMS) functions integrated into the XIL library. For
details on KCMS, you should read the KCMS Application Developer’s Guide.

Say, for example, you create an RGB image on one color monitor. Then you
send the image over the network to another machine where you want to print
that image such that the printout reflects the same color characteristics as the
original image. To accomplish this, you would follow the procedure outlined
below:

1. Create a destination image whose width, height, number of bands, and data
type match those of your RGB image.

2. Create a color space (color_space0) for your source image based on a
profile type of your choice. You use the xil_colorspace_create()
function, which accepts any of three types of profiles based on the
XilColorspaceType enumeration.

3. Create a color space (color_space1) from the profile of the machine in the
network that will send your image to the printer.

4. Create a color space (color_space2) from the printer’s profile for the
destination image.

5. Use the xil_colorspacelist_create() function to create a color space
list from the color spaces you created in steps 2 through 4.

6. Use the xil_color_correct() function to color correct the images.

XIL Images 55

3

Child Image

The XIL library enables you to create a child image (subimage) from an XIL
image (the child’s parent). Once created, a child image is a discrete XilImage
object. It does not inherit the attributes (ROI, origin, and so forth) of its parent.
You can operate on a child image (set ROIs on it, reset its origin, export it, copy
it, and so forth) as you would any XIL image (with a few exceptions noted in
“Relationship Between a Child and its Parent,” below).

Relationship Between a Child and its Parent

The main difference between a child image and an ordinary XIL image (that is,
one that is not a child) is that a child shares the storage of its parent. A child
image does not get a copy of part of the parent’s pixel data, but a pointer to
that data. See Figure Figure 3-7.

Figure 3-7 Child Image Sharing Storage of Parent

Sharing storage has certain implications:

• If you modify a child image, you modify the contents of the parent.

• Although you can access the data of a child image through an XilStorage
object using either xil_get_storage_with_copy() or
xil_get_tile_storage() , you cannot set storage on a child using
xil_set_storage_with_copy() or xil_set_tile_storage . (For
details on these functions, see Chapter 6, “Handling Input and Output.”)

Storage

Child Image

Parent Image

56 XIL Programmer’s Guide—August 1997

3

• You can use the xil_set_tilesize() function to set the tile size on the
parent image but not on the child.

Creating a Child Image

To create the child image, use the xil_create_child() function, whose
prototype is shown below.

This function returns a handle to the child image. The parameters to the
function are defined in Table 3-6.

Identifying a Parent

A child image has an attribute that identifies its parent image. To retrieve this
attribute, a handle to the parent image, use the xil_get_parent() function.

XilImage xil_create_child(XilImage src, unsigned int xstart,
 unsigned int ystart, unsigned int width, unsigned int height,
 unsigned int startband, unsigned int numbands);

Table 3-6 Parameters to xil_create_child()

Parameter Description

src A handle to the parent image

xstart The horizontal offset in pixels from the upper-left corner of the
source image to the upper-left corner of the child

ystart The vertical offset in pixels from the upper-left corner of the
source image to the upper-left corner of the child

width The width of the child image in pixels

height The height of the child image in pixels

startband The offset in bands from the first band in the parent to the first
band in the child

numbands The number of bands in the child image (these bands must
match contiguous bands in the parent)

XIL Images 57

3

Using a Child Image

The following are a few ways you can use child images:

• Take a larger image and operate from one section to another.

For example, you might copy the contents of one section of an image to
another. To do this create two child images from a parent: one representing
the source (child1) and the other, the destination (child2). Then perform
an xil_copy() . See Figure 3-8.

Figure 3-8 Copying Parent Image Contents

Parent Parent

xil_copy of
child1 to child2

Child2

Child1

Child2

Child1

58 XIL Programmer’s Guide—August 1997

3

• Convert a single-band source image to a multiband destination image.

Say, for example, you want to display a 1-band XIL_BYTE source image as a
3-band XIL_BYTE image. To do this, you can create a child image the full
width and height of each band of the 3-band XIL_BYTE image. Then copy
the child image into each band of the 3-band image, as shown here.

The display program, which is located in the
/usr/openwin/demo/xil/display/ directory, uses this technique to
display a grayscale image. See “Replicating the Source Image in the Bands
of the Destination” on page 144 for more information.

• Operate on a subset of an image (a spatial subset and/or subset of
contiguous bands.

If, for example, you want to do geometric operations on only the center
100x100 pixels of an image, establishing this region as a child image allows
you to select origins and ROIs on it.

• Set a ROI on a different region of a multiband image.

As you recall, an ROI is single-bit mask for an image. See “Region of
Interest” on page 49. As such, an ROI can only be set on all bands of an XIL
image. To set an ROI on a different region of each band, first create a child of
each band.

If you specify overlapping but not coincident sibling images (children of the
same parent) as the source and destination for an operation, the operation is
performed. However, the XIL library generates a warning message and the
results of the operation are undefined.

temp_image = xil_create(state, width, height, 3, XIL_BYTE);
band0 = xil_create_child(temp_image, 0, 0, width, height, 0,
 1);
band1 = xil_create_child(temp_image, 0, 0, width, height, 1,
 1);
band2 = xil_create_child(temp_image, 0, 0, width, height, 2,
 1);
xil_copy(image, band0);
xil_copy(image, band1);
xil_copy(image, band2);

XIL Images 59

3

Note – An exception to this behavior is xil_copy() , which detects the
overlap and correctly generates the destination image.

In general, you read the attributes of a child image using the same functions
you use to read the attributes of a parent. However, the library does contain a
xil_get_child_offsets() function that is designed for use only with child
images. This function returns the values of xstart , ystart , and startband
used in creating the child image.

Image Type

For very XIL image, there is a subset of attributes that constitutes its image
type. These attributes are the image’s width, height, number of bands, data
type, and color space. If you call the xil_get_imagetype() function and
pass it a handle to an image, the routine returns an object of type
XilImageType that contains only these data elements. You can use this object
to create an image of the same type as the one whose image type you just
ascertained. To create an image in this way, use the
xil_create_from_type() function.

The XIL library also contains a number of utility functions that affect image
types. These are listed and described in Table 3-7.

void xil_get_child_offsets(XilImage child,
 unsigned int *offset_x, unsigned int *offset_y,
 unsigned int *offset_band);

Table 3-7 Image Type Utility Functions

Function Description

xil_imagetype_get_width() Gets the width of an image type in pixels

xil_imagetype_get_height() Gets the height of an image type in pixels

xil_imagetype_get_size() Gets the width and height of an image type
in pixels

xil_imagetype_get_nbands() Gets the number of bands in an image type

xil_imagetype_get_datatype() Gets the data type of an image type

60 XIL Programmer’s Guide—August 1997

3

Synchronization Flag

XIL operations that affect images may be deferred in a way similar to the way
in which Xlib client requests are buffered before being sent to the X server.
However, if an image’s synchronization flag is set, operations on that image are
not deferred. You set this flag using the xil_set_synchronize() function.
You can determine whether the flag is currently set by calling the
xil_get_synchronize() function.

Readable and Writable Flags

Memory images can always be read and written to; however, certain device
images may be read-only or write-only. To determine whether a device image
is readable, use the xil_get_readable() function.

This function returns TRUE if the device image is readable.

To determine whether a device image is writable, use the
xil_get_writable() function.

This function returns TRUE if the device image is writable.

xil_imagetype_get_info() Gets the width, height, number of bands,
and data type of an image type

xil_imagetype_set_name() Sets the name of an image type

xil_imagetype_get_name() Returns a copy of an image type’s name

xil_imagetype_get_by_name() Returns a handle to an image type that has
the name you specify

Xil_boolean xil_get_readable(XilImage device_image);

Xil_boolean xil_get_writable(XilImage device_image);

Table 3-7 Image Type Utility Functions

Function Description

XIL Images 61

3

Naming an Image

The XIL library enables you to assign a name (char *) to an image. This type
of naming is useful because it enables you to get a handle to an image later in
your program by specifying the name of the image. The functions that allow
for the naming of images are listed and described in Table 3-8.

Temporary Images
The XIL library supports temporary images. You can create temporary images
for interim images resulting from performing a sequence of XIL functions on a
source image to produce a particular destination image you’re interested in
using.

Temporary images provide significant benefits with tiling. In addition, they
help the deferred execution mechanism recognize when images are not needed.
See Chapter 23, “Acceleration in XIL Programs,” for details about deferred
execution. It is strongly recommended that you create a temporary image for
each interim image that you know you won’t be accessing again.

Simple Example of Using Temporary Images

Say, for example, your application reads in an image into memory from a file.
It performs a series of function calls such as an xil_lookup() followed by
xil_convolve() and xil_ordered_dither() ultimately to display the
image. (For now, accept that each function includes source and destination
image parameters.) The output from xil_lookup() becomes the input
(source image) to xil_convolve() and so forth. An
xil_ordered_dither() results in an image that takes up less memory. See
the example shown in Figure 3-9.

Table 3-8 Image Naming Functions

Function Description

xil_set_name() Sets the name of an image

xil_get_name() Returns a copy of an image’s name

xil_get_by_name() Returns a handle to the image that has
the name you specify

62 XIL Programmer’s Guide—August 1997

3

If your original image is very large, storage for the interim images can be a
significant amount of memory. In Figure 3-9, the total image storage is 52 Mb.

Figure 3-9 Temporary Images

By using temporary images, only the memory for one interim image is
required at a time. Once the output image from the xil_lookup() function is
read as the input image to xil_convolve() , XIL invalidates (discards) the
output image. In Figure 3-9, the maximum amount of memory needed to store
images would be 36Mb.

Note – If your application uses tiling functions, it can significantly reduce the
storage requirements. (For details on tiling, see Chapter 5, “XIL Program That
Uses Tiling.”)

Even when using tiling functions, the same rule applies. Once the tile is read
by the next function in the series, the memory for that interim tile is discarded.

xil_convolve() xil_ordered_dither()xil_lookup()

16Mb 16Mb 16Mb 4Mb

Source image
from file.

Dithered image.xil_lookup()
output becomes
input image to
xil_convolve().

xil_convolve()
output becomes
input image to
xil_ordered_dither().

Source image
from file.

xil_ordered_dither()xil_convolve()xil_lookup()

16Mb

xil_lookup()
output becomes
input image to
xil_convolve().

16Mb

xil_convolve()
output becomes
input image to
xil_ordered_dither().

16Mb

Dithered image.

4Mb

XIL Images 63

3

Functions For Creating Temporary Images

The XIL library provides two functions to create temporary images:
xil_create_temporary() and xil_create_temporary_from_type() .
Their function prototypes are shown here.

These functions have the same parameters as the respective image creating
functions xil_create() , which is described in “Step 2: Creating an XIL
Image” on page 20, and xil_create_from_type() , which is described in
“Image Type” on page 59. The only difference is that the temporary functions
return a temporary rather than real images.

Temporary Image Properties

From the application point of view, a temporary image has the following
properties:

• It is a write-once, read-once image.

Your application can write to a temporary image once and read from it once.
Then XIL destroys the image.

• It is implicitly destroyed once read.

If your application creates a temporary image and writes into it but then
does not to read from it, your application should call xil_destroy() to
clean up the image object. If, however, if the image is read from, XIL
destroys the image.

• Only the regions of the temporary image operated upon by a function are
populated.

XilImage
xil_create_temporary(XilSystemState system_state,
 unsigned int width,
 unsigned int height,
 unsigned int nbands,
 XilDataType datatype);

XilImage
xil_create_temporary_from_type(XilSystemState system_state,
 XilImageType imagetype);

64 XIL Programmer’s Guide—August 1997

3

Like regular images, only the region acted upon by a function is populated.
If, for example, an image is 10K pixels by 10K pixels but a function operates
on a 2K-pixel by 2K-pixel region of it, only that region is populated.

• Storage is transient.

Storage is not persistent. Once one function is done reading a temporary
image, that temporary image’s storage is released.

• Its characteristics can be changed dynamically.

As examples, an application can change the origin, set an ROI, set attributes,
and color spaces up until the point at which the application writes into the
temporary image. Once a temporary image is written into (is used as a
destination), it can no longer be altered. It becomes a static image.

Temporary Image Pseudocode Example

The pseudocode below demonstrates how to use temporary images.

filesrc = xil_create(state, width, height, nbands, datatype);
display = xil_create_from_window(state, xdisplay, xwindow);
tmp1 = xil_create_temporary(state, width, height, nbands,
 datatype);
xil_lookup(filesrc, tmp1);
tmp2 = xil_create_temporary(state, width, height, nbands,
 datatype);
xil_convolve(tmp1, tmp2);
xil_ordered_dither (tmp2, display);
// wait //
xil_destroy(filesrc);
xil_destroy(display);

XIL Images 65

3

The following pseudocode shows how your application can change an ROI of
a temporary image (tmp1 in this case) . However, an error is returned if your
application tries to change tmp1 ’s ROI again after it is used as a destination in
the call to xil_lookup() .

fileSrc = xil_create();
display = xil_create_from_window();
tmp1 = xil_create_temporary();
xil_set_roi(tmp1, roi);
xil_lookup(fileSrc, tmp1);
// The following would generate an error.
xil_set_roi(tmp1,NULL);

66 XIL Programmer’s Guide—August 1997

3

67

XIL Storage 4

This chapter describes XIL image storage. If you plan to export an image, you
need to understand XIL image storage.

This chapter has the following main sections:

Storage Object
You use an XilStorage object to describe an image’s storage attributes, such
as its scanline and pixel strides, and to store the address of the image’s data.
When you first create an XilStorage object with the
xil_storage_create() function, the storage object contains 0 values for the
image’s storage attributes and a NULL pointer to image data. You must use XIL
functions to fill in the storage object with this information. The particular
attributes you need depend on the image storage format.

Storage Object page 67

Storage Formats page 68

Tiled Storage page 75

Storage Functions page 76

Effect of Color Space on Storage Format page 79

Enforcing XIL Image Storage Organization page 79

68 XIL Programmer’s Guide—August 1997

4

If you are going to access data already associated with an XIL image, you need
to ask XIL to fill in the storage object attributes to learn how the data is
formatted. If you are going to provide an XIL image with data that you control,
you need to set the attributes of the storage object to tell XIL how to process
the new data.

Storage Formats
XIL supports three image storage formats:

• XIL_PIXEL_SEQUENTIAL
• XIL_BAND_SEQUENTIAL
• XIL_GENERAL

These enumerators are of type XilStorageType . The sections that follow
describe each of the storage formats and explain which attributes must be set
for each format in the XilStorage object.

Note – You may choose to have XIL store portions of very large images in
equal-sized buffers called tiles. In this case, XIL uses tiling behind the scenes to
enhance image processing. Using explicit tiling functions is optional. For
simplicity, and because you may never need to know about tiling to write an
XIL application, storage is described here without introducing this extra layer
of detail. If you want to write applications that explicitly manage tiled
memory, a chapter is dedicated to this topic. See Chapter 5, “XIL Program That
Uses Tiling.”

XIL_PIXEL_SEQUENTIAL

XIL_PIXEL_SEQUENTIAL storage represents an image with a band stride of 1
and an arbitrary pixel stride. Storage for all the bands is in a single memory
buffer.

Data Types

The data type of an image stored in XIL_PIXEL_SEQUENTIAL format can be
any of the following:

• XIL_BYTE
• XIL_SHORT

XIL Storage 69

4

• XIL_FLOAT

A Conceptual View of XIL_PIXEL_SEQUENTIAL Format

To illustrate the XIL_PIXEL_SEQUENTIAL storage format and to explain
storage attributes, Figure 4-1 shows a conceptual view of a very small 3x3 RGB
image.

Figure 4-1 RGB Image in XIL_PIXEL_SEQUENTIAL Format

To the left, Figure 4-1 depicts the red (Rx), green (Gx), and blue (Bx) pixel
components in each of the image’s bands. To the right, the figure shows the
image’s scanlines.

The band stride is the number of data elements from one band to the next. Band
stride is always 1 for XIL_PIXEL_SEQUENTIAL format.

The scanline stride is the distance in data elements to the next pixel on the next
horizontal scanline. For this image, scanline stride is 9.

The pixel stride is the distance in data elements to the next pixel of the same
band (such as the distance from R0 to R1). The pixel stride in this case is 3.

From the data pointer (depicted by the arrow), you can access each subsequent
band in the buffer.

band 2

band 1

band 0

R0

R3

R6

G0

G3

G6

B0

B3

B6

R1

R4

R7

G1

G4

G7

B1

B4

B7

R2

R5

R8

G2

G5

G8

B2

B5

B8

B0 B1 B2

B5

B8

G0 G1 G2

G5

G8

R0 R1 R2

R3 R4 R5

R6 R7 R8

3X3 RGB Image

XIL_PIXEL_SEQUENTIAL

70 XIL Programmer’s Guide—August 1997

4

Because the image’s pixel data may be intermixed with non-pixel data, such as
alpha channels or padding bytes, you must explicitly use the pixel stride and
scanline stride to move around the data of an image in
XIL_PIXEL_SEQUENTIAL format.

XIL_BAND_SEQUENTIAL

XIL_BAND_SEQUENTIAL storage represents an image with a pixel stride of 1
and a constant band stride. Storage for all the bands of data is in a single
memory buffer.

Data Types

An image stored in XIL_BAND_SEQUENTIAL format can be any of the
following data types:

• XIL_BIT
• XIL_BYTE
• XIL_SHORT
• XIL_FLOAT

A Conceptual View of XIL_BAND_SEQUENTIAL Format

Figure 4-2 uses a 3x3 RGB image to illustrate XIL_BAND_SEQUENTIAL format.
You might compare Figure 4-2 to the 3x3 RGB image shown in Figure 4-1 on
page 69.

XIL Storage 71

4

Figure 4-2 RGB Image in XIL_BAND_SEQUENTIAL Format

To the left, Figure 4-2 depicts the red (Rx), green (Gx), and blue (Bx) pixel
components in each of the image’s bands. To the right, the figure shows the
image’s scanlines.

The pixel stride for XIL_BAND_SEQUENTIAL format is always 1.

The band stride is constant, because one band always follows the next in the
same buffer. In this case, the band stride is 9.

For this image, the scanline stride is 3.

From the data pointer (depicted by the arrow), you can access each subsequent
band in the buffer.

Because the image’s pixel data may be intermixed with non-pixel data, such as
alpha channels or padding bytes, you must explicitly use the band stride and
scanline stride to move around the data of an image in
XIL_BAND_SEQUENTIALformat.

band 2

band 1

band 0
R0 R1 R2

R3 R4 R5

R6 R7 R8

G0 G1 G2

G3 G4 G5

G6 G7 G8

B0 B1 B2

B3 B4 B5

B6 B7 B8

B0 B1 B2

B5

B8

G0 G1 G2

G5

G8

R0 R1 R2

R3 R4 R5

R6 R7 R8

3X3 RGB Image

XIL_BAND_SEQUENTIAL

72 XIL Programmer’s Guide—August 1997

4

Note – For XIL_BIT images, each data element is represented by a single bit in
memory. In this case, you need to understand more about the image than is
described in Figure 4-2. See “XIL_BIT Images” for more information.

XIL_BIT Images

The memory format for XIL_BAND_SEQUENTIAL images of the XIL_BIT data
type is different than it is for those of type XIL_BYTE , XIL_SHORT, or
XIL_FLOAT. Bit data is packed into bytes, and scanlines are padded to the
nearest byte boundary if necessary. For instance, Figure 4-3 shows how a
3-band, 3-by-3 image containing 1-bit data elements might look in memory.

Note – All strides are units of bytes.

To process a particular pixel, you need to be concerned about the band it is in
and its offset within that band. To set and get the offset into the byte, the XIL
library provides the respective functions, xil_storage_set_offset() and
the xil_storage_get_offset() . These functions are only valid for
XIL_BIT images.

The display program in the /usr/openwin/demo/xil/display directory
handles XIL_BIT images.

XIL Storage 73

4

Figure 4-3 Memory Format for a 3-Band, 3-by-3 Image Containing 1-Bit Data Elements

Pixel 1

Line 1

Pixel 2

Line 1

Pixel 3

Line 1

Pixel 1

Line 2

Pixel 2

Line 2

Pixel 3

Line 2

Byte 1

Byte 2

Byte 3
Pixel 1

Line 3

Pixel 2

Line 3

Pixel 3

Line 3

Band 1

Pixel 1

Line 1

Pixel 2

Line 1

Pixel 3

Line 1

Pixel 1

Line 2

Pixel 2

Line 2

Pixel 3

Line 2

Byte 4

Byte 5

Byte 6 Pixel 1

Line 3

Pixel 2

Line 3

Pixel 3

Line 3

Band 2

Pixel 1

Line 1

Pixel 2

Line 1

Pixel 3

Line 1

Pixel 1

Line 2

Pixel 2

Line 2

Pixel 3

Line 2

Byte 7

Byte 8

Byte 9
Pixel 1

Line 3

Pixel 2

Line 3

Pixel 3

Line 3

Band 3

74 XIL Programmer’s Guide—August 1997

4

XIL_GENERAL

XIL_GENERAL storage represents an image each band of which can be stored
in a different location. There is no correlation between data pointers, nor do all
bands have to be of the same format. Scanline stride and pixel stride can be
different for each band.

Data Types

An image stored in XIL_GENERAL format can be any of the following data
types:

• XIL_BIT
• XIL_BYTE
• XIL_SHORT
• XIL_FLOAT

Figure 4-4 RGB Image in XIL_GENERAL Format

band 2

band 1

band 0

R0

R3

R6

G0

G3

G6

B0

B3

B6

R1

R4

R7

G1

G4

G7

B1

B4

B7

R2

R5

R8

G2

G5

G8

B2

B5

B8

R0

R3

R6

G0

G3

G6

B0

B3

B6

R1

R4

R7

G1

G4

G7

B1

B4

B7

R2

R5

R8

G2

G5

G8

B2

B5

B8

B0 B1 B2

B5

B8

G0 G1 G2

G5

G8

R0 R1 R2

R3 R4 R5

R6 R7 R8

B0 B1 B2

B3 B4 B5

B6 B7 B8

3X3 RGB Image

XIL Storage 75

4

Figure 4-4 illustrates an example of the XIL_GENERAL format. One rule to
remember is that you cannot assume the band stride. In Figure 4-4, a separate
data pointer points to the start of each of the image’s bands. Note that each
band can be of a different storage format. You must process each band through
its own data pointer. To move around the data, you must explicitly use the
appropriate attributes for that storage format.

Note – Unless you have special requirements, you should strive to use either
XIL_PIXEL_SEQUENTIAL for non-bit images or XIL_BAND_SEQUENTIAL for
bit images. They have constant pixel and band strides that allow use of more
efficient pixel processing code.

Tiled Storage
The XIL library supports storage of data in tiles.

Up to this point, this chapter described the buffers pointing to the image data
as single buffers (except for XIL_GENERAL storage, which allows a separate
buffer for each band of image data). If your application has turned on tiling,
(see “How Do You Set Up the Tiling Mode?” on page 86 for details), XIL may
store a single image’s data as a set of rectangular, uniformly sized tiles each of
which can reside in one or more separate memory buffers.

Say, for example, that tiling is turned on and your XIL application is processing
a very large image that XIL stores in four tiles for faster processing. See
Figure 4-5.

76 XIL Programmer’s Guide—August 1997

4

Figure 4-5 Tiled Image

The dashed lines separate regions of this image that might be stored in
separate tiles in memory. Each tile would contain the image data for all the
bands in that particular image region. For details on processing images a tile at
a time, see Chapter 5, “XIL Program That Uses Tiling.”

Note – XIL still supports the xil_get_memory_storage() and
xil_set_memory_storage() functions for getting and setting an image’s
pixel values in memory whether or not tiling is turned on.These functions,
however, are not compatible with XIL functions for tiled images. See Table 2-2
on page 26 for a list of the incompatible XIL functions. New applications are
encouraged to use tiled storage--either by using convenience functions that
handle tiled storage or by writing routines that process image data a tile at a
time.

Storage Functions
This section briefly describes the storage functions. Several of these functions
are implemented in the example programs provided with the XIL product.

XIL Storage 77

4

Creating and Destroying Storage Objects

You use the xil_storage_create() function to create a storage object.
When you are done with a storage object, you must free the resource by calling
the xil_storage_destroy() function. This doesn’t destroy the storage
associated with the storage object, just the object describing the data.

Setting Storage Attributes

You explicitly set information about data storage to pass existing data into
XIL’s control. By doing so, you are telling XIL how to process the data.

Table 4-1 lists and describes the functions for setting storage attributes.

Table 4-1 Setting Storage Attributes

Function Description

xil_storage_set_band_stride() Sets the band stride in the
storage object associated with
the image

xil_storage_set_data() Sets the pointer to the start of
the image data

xil_storage_set_data_release() Notifies an application that XIL
is done with the data; an
optional function that can be
called after calling
xil_storage_set_data()

xil_storage_set_offset() Sets the offset to the start of the
bit data within a byte
(XIL_BIT data only)

xil_storage_set_pixel_stride() Sets the pixel stride in the
storage object associated with
the image

xil_storage_set_scanline_stride() Sets the scanline stride in the
storage object associated with
the image

78 XIL Programmer’s Guide—August 1997

4

Getting Storage Attributes

You use the following functions to read or modify data in an XIL image. These
functions cause XIL to fill in the storage object with the appropriate values for
the image’s current format.

Table 4-2 lists and describes the functions for getting storage attributes.

Table 4-2 Getting Storage Attributes

Function Description

xil_storage_get_band_stride() Gets the band stride from the
storage object associated with
the image

xil_storage_get_data() Returns the pointer to the start
of the image data

xil_storage_get_image() Gets the image associated with
the storage object

xil_storage_get_offset() Returns the offset to the start of
the bit data within a byte
(XIL_BIT data only)

xil_storage_get_pixel_stride() Gets the pixel stride from the
storage object associated with
the image

xil_storage_get_scanline_stride() Gets the scanline stride from the
storage object associated with
the image

XIL Storage 79

4

Naming Storage Objects

As with all objects, the XIL library enables you to specify a string that serves as
the name for a storage object. This naming is useful because it enables you to
later get a handle to a storage object by using its name. Table 4-3 lists and
describes the storage object naming functions.

Tile-Related Storage Functions

See Chapter 5, “XIL Program That Uses Tiling,” for a list of the tile-related
storage functions.

Effect of Color Space on Storage Format
Besides an image’s data type, its color space can play a part in how the image
is stored. Consequently, you need to be aware of the ordering of bands for
multiband images of different color spaces, such as RGB, YCbCr , CMY, and
CMYK. For an RGB image, blue values are stored in the first band, green
values in the second, and red values in the third. For YCbCr images, luminance
(Y) values are stored in the first band, Cb values in the second, and Cr values in
the third. For CMY and CMYK images, cyan values are stored in the first band,
magenta values in the second, and yellow values in the third. For CMYK
images, black values are stored in a fourth band.

Enforcing XIL Image Storage Organization
Ordinarily, getting or setting storage information while the image is exported
does not guarantee that the data format or location will not change when you
import the data back into XIL.

Table 4-3 Naming Storage Objects

Function Description

xil_storage_set_name() Sets the name of a storage object

xil_storage_get_name() Returns a copy of a storage
object’s name

xil_storage_get_by_name() Returns a handle to a previously
existing XIL storage object that
has the name you specify

80 XIL Programmer’s Guide—August 1997

4

To set the storage movement flag and to get the current flag settings, you use
the respective functions, xil_set_storage_movement() and
xil_get_storage_movement() .

The storage movement flag is the enumeration type XilStorageMovement
shown here.

Table 4-4 describes each of the enumeration constants.

enum XilStorageMovement {
 XIL_ALLOW_MOVE,
 XIL_KEEP_STATIONARY,
 XIL_REPLACE
};

Table 4-4 XilStorageMovement Enumerators

Enumerator Description

XIL_ALLOW_MOVE Allows XIL to move the data to a different storage
device or to reformat it. On the next call to
xil_export() , the user has no guarantee that the
storage is in the same place or format and must call
XIL functions to get storage information. This is the
default mode; it is strongly recommended for the best
performance.

XIL_KEEP_STATIONARY Instructs XIL to leave the storage in exactly the same
place and in the same format when the
xil_import() function is called. This mode would
typically be used when the caller expects to export the
image again after one or a very few operations, and
wants to avoid the cost of any data copying or
reformatting that might occur.

XIL_REPLACE Instructs XIL to return the storage to the same location
and format on subsequent image exports. This allows
XIL to move the storage if an accelerator is available to
speed subsequent processing operations, but ensures
that the caller gets the data back in the same location
and format on the next export.

XIL Storage 81

4

Caution – Use the XIL_KEEP_STATIONARY and XIL_REPLACE modes with
extreme care. They may have drastic negative effects on an application’s
performance by limiting the possibility of hardware acceleration or causing
extra data reformatting.

Setting either XIL_KEEP_STATIONARY or XIL_REPLACE on an XilImage
frees you from having to reacquire storage layout information after every call
to xil_export() .

82 XIL Programmer’s Guide—August 1997

4

83

XIL Program That Uses Tiling 5

This chapter takes a look at an XIL program called example2 . The program
performs the same basic tasks as the XIL program called example1 described
in Chapter 2, “Basic XIL Program.” It uses two of the same source files as the
example1 program (that is, window.c and example1.c). However,
example2 uses a different fileio.c source file, which incorporates a routine
for copying the source image data tile-by-tile into an XIL image in memory.

Because example2 is more advanced, it requires that you understand tiling in
greater detail than previous chapters present. This chapter starts by revisiting
the tiling concept. Then it provides an overview of example2 . Finally, it hones
in on the code in the fileio.c module that shows how you can implement
tiling in your own XIL application.

This chapter does not describe the entire program. Instead, it focuses on those
portions of its fileio.c module that differ from example1 ’s fileio.c
module. For an overview of example1 , you should read Chapter 2, “Basic XIL
Program,” before reading this chapter. This chapter assumes you have read
and understand all previous chapters in this guide.

Note – You are not required to use tiling in your applications. However, if you
read this chapter, you will understand the advantages of tiling, which may
outweigh the extra effort you put into writing this type of program. You can
use coding fragments of example2 as templates to facilitate navigating
through tiled memory.

84 XIL Programmer’s Guide—August 1997

5

This chapter has the following main sections:

Tiling
This release of the XIL library supports tiling.

What Is Tiling?

You can specify that, when an image is larger than an XIL-specified threshold,
XIL should break up its storage into tiles in memory. When multiple tiles are
used to represent a single image, all of the tiles must be the same size.

Note – By default, XIL stores whole images as contiguous data. This is for
backward compatibility and consistent performance of existing XIL
applications. You must explicitly enable tiling mode. See “How Do You Set Up
the Tiling Mode?” on page 86 for details.

A tile represents all of the storage for its spatial region of the image. If an
image consists of three bands, every tile represents three bands of storage.
How those three bands are represented can change on a per-tile basis. XIL
supports storing a tile in three formats: XIL_PIXEL_SEQUENTIAL ,
XIL_BAND_SEQUENTIAL, and XIL_GENERAL. For details on these formats, see
“Storage Formats” on page 68.

Tiling page 84

Example2 Program Overview page 87

Running the Example2 Program page 87

Program Tasks page 88

Turning on Tiling page 89

Acquiring an Input Image page 89

Copying Source Image to an XIL Image page 90

Tile-Related Functions page 97

What is Tile Stripping? page 99

What is the Effect of Tiling on Child Images? page 99

XIL Program That Uses Tiling 85

5

The size of a tile in both the x and y direction can be arbitrary to a lower limit
of 16x16. (Note that there is no limit in the y direction for tile stripping.) You
can set the tile dimensions to power-of-two values, which may yield some
performance advantage, but you are not required to do so. Moreover, you are
not required to have the same tile size for source and destination images for a
single operation. However, if the tiles are not the same size or are misaligned
because of origin shifts, your application’s performance may degrade
somewhat.

Note – Care should be taken when changing the tile size of an image.
Operations between images of different tile sizes are slower than operations
between images with the same tile size. XIL chooses a default tile size for all
images according to the system configuration. Imprudent tile sizes can cause
significant performance penalties.

You need to distinguish between the description of tile coordinates and the
description of tile storage. This distinction is very important at image
boundaries. If, for example, an image’s tile size is set to 1024x1024 pixels, that
means a 1025x1025-pixel image has four tiles. However, since each tile has its
own storage description, it is not necessary that all of the tiles be laid out in the
same fashion. In particular, it is not necessary that 1024x1024 pixels worth of
storage be allocated for each tile. Only the actual data in the tile needs to be
represented. In the case of a1025x1025-pixel image, the lower right tile of the
image has only one pixel of data. (See Figure 5-1.)

Figure 5-1 Storage Allocation per Tile

Full tile data

Partial tile data

No tile data

86 XIL Programmer’s Guide—August 1997

5

Therefore, if you are manipulating an exported image in tiled form, you can
make calculations based on pixel coordinates as if the image consisted of fully-
populated uniform-sized tiles. This allows easy conversion of image
coordinates to x and y tile indices. However, as soon as you reference any
actual data storage, you must determine the storage format for each tile you
reference.

Why Would You Want to Understand Tiling?

Tiling an image can boost the performance of new XIL applications. It allows
your application to process an image region within a single tile without
bringing the entire image into memory.

How Do You Set Up the Tiling Mode?

Before XIL will use tiling, your application must explicitly call the
xil_state_set_default_tiling_mode() function and specify the tiling
mode. xil_state_set_default_tiling_mode() allows your application to
specify one of three image storage configuration values of the enumeration
type XilTilingMode . These are:

• XIL_TILING
• XIL_STRIPPING
• XIL_WHOLE_IMAGE

The default value is XIL_WHOLE_IMAGE, which stores an image in memory in
its entirety. XIL_STRIPPING is single-buffer storage and is described in “What
is Tile Stripping?” on page 99.

To determine the current tiling mode, your application must call the
xil_state_get_default_tiling_mode() function.

Note – Applications work even if XIL_TILING is not specified. In such cases,
the image is treated as a single tile. The tile’s width and height are the width
and height of the whole image.

XIL Program That Uses Tiling 87

5

How are Tiled Images Processed?

You optionally can process tiled images using tile-related functions instead of
the “convenience” functions such as xil_get_storage_with_copy() and
xil_set_storage_with_copy() that manage tiled memory for you. To do
this, you must write a routine to manage the tiles. For a description of the XIL
functions specifically related to tiling, see “Tile-Related Functions” on page 97.
Using tile-related functions in your own tile managing routine avoids the
costly overhead of having XIL cobble the image into a continuous memory
buffer, which it does when you use the convenience functions. It also allows
you to access image data by reference for immediate modification. See
Chapter 6, “Handling Input and Output,” for a comparison of the different
methods you can use to perform I/O to and from XIL images.

Example2 Program Overview
The example2 program contains identical functionality to example1 . It reads
an 8-bit grayscale image from a file and displays it in an X window. The
program enables you to take the one’s complement of the image displayed in
the window, which produces a negative of the image.

Running the Example2 Program
The source files for the example2 program can be found in the
/usr/openwin/demo/xil/example2 directory. Table 5-1 lists the source files
and indicates what the code in each file does.

Table 5-1 Source Files for Example2

Source File Description

example2.c Contains main() , which prepares different types of source
images to be copied to various types of display images (is the
same file as used by the example1 program)

fileio.c Reads an image from a file and copies the image data tile-by-
tile into an XIL image in memory

window.c Creates the program’s X colormap and manages that colormap
(is the same window.c file used by the example1 program)

88 XIL Programmer’s Guide—August 1997

5

The example2 directory also contains a Makefile you can use to build the
program.

Just as you did with example1 , you can run example2 to see how it works.
For instructions, see “Running the Example1 Program” on page 14. Simply
change your working directory to the /usr/openwin/demo/xil/example2
directory, and execute the program by typing:

You can display the negative of the brainscan image. From the user’s
perspective, example2 runs exactly the same as example1.

Program Tasks
After initializing the XIL library by calling xil_open() , the example2
program performs four main tasks, namely

• It turns on XIL_TILING .
• It acquires an input image.
• It creates an output image.
• It displays the negative of the brain scan image when the user presses a key.

The first task listed here is not performed by the example1 program because
that program used the default tiling mode (XIL_WHOLE_IMAGE). The second
task is implemented differently by the example2 program and is explained in
detail this chapter. The remaining tasks use the same source files (that is,
windows.c and example1.c) as the example1 program. Because there are no
differences in these modules, they are not addressed in this chapter. For details
on these modules, you should read the appropriate sections in Chapter 2,
“Basic XIL Program.”

The example2 program code for the first two tasks is contained in the module
fileio.c . Code fragments from this module are shown in this chapter.

% example2 brainscan.header

XIL Program That Uses Tiling 89

5

Turning on Tiling
Because XIL_TILING is not the default tiling mode, the example2 program
explicitly calls the xil_state_set_default_tiling_mode() function and
specifies the XIL_TILING option, as shown in the code fragment here. This
enables the program to take advantage of tiling.

Acquiring an Input Image
As you inspect fileio.c , you will find that the steps to acquiring the input
image are the same as they are in the example1 program. You can refer to
these steps in Chapter 2 to understand how they work. For your convenience,
references back to the sections with detailed descriptions are provided here.

1. Read the image header file.
See “Step 1: Reading the Header File” on page 18 for detailed information.

2. Create an XIL image.
See “Step 2: Creating an XIL Image” on page 20 for detailed information.

3. Export the XIL image.
See “Step 3: Exporting the Image” on page 21 for detailed information.

4. Obtain a pointer to the disk-based image data.
See “Step 4: Obtaining a Pointer to the Disk-Based Image Data” on page 22
for detailed information.

5. Create an XIL storage object.
See “Step 5: Creating an XIL Storage Object” on page 23 for detailed
information.

This brings you to the point at which you need to copy the source image on
disk to the XIL image in memory.

The example2 program uses an entirely different technique than example1
does to perform this task. Instead of relying on a convenience function that
handles tiling, example2 ’s fileio.c module incorporates a routine to
manage tiled storage for the image. In fact, the module can manage tiled

xil_state_set_default_tiling_mode(state,XIL_TILING);

90 XIL Programmer’s Guide—August 1997

5

images in any of the storage formats that XIL supports. Your understanding of
the XIL storage formats is imperative to understanding how this module
works. This chapter assumes you understand them.

Once the copy routine is complete, however, the example2 program, like
example1 , calls xil_import() to import the image so that XIL can use
acceleration to enhance performance.

Copying Source Image to an XIL Image
Image copying is implemented as a series of nested for loops. To support
copying the image from disk to memory tile-by tile, example2 uses some new
variables and functions that you don’t see in the example1 program.

Getting The Tile Size

The first function performed on tiles in fileio.c is xil_get_tilesize() .
This function gets the image’s tile size and is shown here.

You use the tile size to access the image’s storage on a tile basis.

Note – You must export the XIL image before getting the tile size. Exporting
freezes tile size while an image is exported.

 /*
 * Get the image's tile size.
 */
 xil_get_tilesize(image, &tile_xsize, &tile_ysize);

XIL Program That Uses Tiling 91

5

Main Looping Through the Tiles

The example2 program uses several for loops to copy the image data tile-by-
tile from the file to the XIL image in memory. The major double loop shown
here loops through the tiles, one tile at a time, in the x and y directions.

The inner for loop (x loop) copies data from the source file to the XIL image a
tile at a time for the width of the image. The outer loop (y loop) advances to
the next tile in the vertical direction.

Tiles are processed starting at the x and y coordinates (0,0) or the upper left
corner of the image.

A lot of activity takes place within the x and y loops. The loop counters i , j ,
and k keep track of:

• The number of bands in a pixel
• The number of pixels in a scanline
• The number of scanlines in a tile

...
 /*
 * Loop through tiles in the image,copying storage from
 * disk into each tile.
 */
 for(y = 0; y < height; y += tile_ysize) {
 for(x = 0; x < width; x += tile_xsize) {
 /*
 * Loop counters.
 */
 int i, j, k;
...

92 XIL Programmer’s Guide—August 1997

5

Setting Up Known Information

Within the x loop, example2 sets up already known information about the
source image on disk. The disk-based data are in pixel-sequential format. This
information, combined with the x and y loop counters, is used to calculate the
source scanline stride (src_scanline_stride) and the source pointer
(src_start), as shown here.

Getting Storage

The first tile-related function called within the x loop is the
xil_get_tile_storage() function shown below.

This function takes the XIL image created, the x and y pixel coordinates that
fall within the desired tile, and the storage object as parameters. It fills the
storage object with information for the specified tile. The storage attributes
(scanline stride, pixel stride, band stride, and so forth) determine the storage
type.

Determining the Storage Type

The xil_storage_is_type() function returns type Xil_boolean . Given
the storage object handle and the storage type as arguments, it returns TRUE if
the given type matches that of the data format contained in the storage object.

/*
 * Calculate the start address that corresponds to the tile
 * area in our contiguous disk storage.
 */
unsigned int src_scanline_stride = width*nbands;
Xil_unsigned8* src_start = ((Xil_unsigned8*)mmap_ptr) +
 y * src_scanline_stride + x * nbands;

...
 /*
 * Get the storage for this tile.
 */
 if(xil_get_tile_storage(image, x, y, storage) == FALSE){
...

XIL Program That Uses Tiling 93

5

The following code determines the XIL storage type of this particular tile of the
XIL image.

With the storage type known, example2 uses an appropriate strategy to
navigate through the bands, pixels, and scanlines, copying the image data—
data element by data element—from the disk-based source file to the XIL
image storage.

Note that example2 checks the storage type within the x loop (that is, for each
tile of the image). You can’t assume each tile of an image has the same storage
format. Say, for example, an ROI of the image within the boundaries of a tile
had been previously processed. In such a case, that tile may have a different
format than the other tiles for the image: it may have been processed by a
hardware accelerator, whereas the other tiles had not.

XIL_PIXEL_SEQUENTIAL Case

This chapter looks at the case in which the XIL image is in
XIL_PIXEL_SEQUENTIAL format. The other two storage formats are left for
you to examine. You can use the source code in fileio.c as a template for
manipulating tiled storage in your XIL application.

...
 /*
 * Determine its type (XIL_PIXEL_SEQUENTIAL,
 * XIL_BAND_SEQUENTIAL or XIL_GENERAL) and copy the
 * storage from disk into the tile.
 */
 if(xil_storage_is_type(storage, XIL_PIXEL_SEQUENTIAL)) {
...
 } else if(xil_storage_is_type(storage,
 XIL_BAND_SEQUENTIAL)) {
...
 } else {
 /*
 * Setup to copy into XIL_GENERAL storage which means the
 * data location and layout can be different in each band.
 */
...

94 XIL Programmer’s Guide—August 1997

5

Note – The XIL_GENERAL loop actually works for all storage types: you do not
need to write a separate loop for each. If, however, you know that the image to
be processed is in a particular format, writing a separate loop for that format
would enhance performance.

Obtaining Storage Object Information

As you recall, the band stride for this format is always 1. The example2
program obtains the following information from the storage object:

• The destination image data pointer
• The scanline stride
• The pixel stride

The XIL functions for obtaining this information are shown here.

The xil_storage_get_data() function returns the data pointer in the
storage object. The data pointer is the starting address of the image’s storage in
memory. This is where example2 starts copying the image’s pixels.

For XIL_PIXEL_SEQUENTIAL storage, the program calls
xil_get_scanline_stride() and xil_get_pixel_stride() for band 0
only.

In the above code fragment, example2 also sets pointers to the source and
destination scanlines, which now are known information.

...
dst_start = (Xil_unsigned8*)
 xil_storage_get_data(storage, 0);

dst_scanline_stride = xil_storage_get_scanline_stride
 (storage, 0);

dst_pixel_stride = xil_storage_get_pixel_stride(storage, 0);

src_scanline = src_start;
dst_scanline = dst_start;
...

XIL Program That Uses Tiling 95

5

Navigating Through a Tile

In the next code fragment, the program uses three nested for loops to account
for the bands, pixels, and scanlines of the image for this tile. The code below
sets up pointers to source and destination bands, pixels, and scanlines.

When (k < nbands) is no longer true, all bands of a pixel have been copied,
and the program increments the source and destination pixel pointers. To be
sure that the destination band pointer is synchronized with the destination
pixel pointer, the pixel stride (dst_pixel_stride) is used to update the
destination pixel pointer (dst_pixel) as shown in the line

Now, when the next pixel is processed, the destination band pointer is updated
to the destination pixel pointer as shown in the line

...
for(i = 0; i < tile_ysize; i++) {
 src_pixel = src_scanline;
 dst_pixel = dst_scanline;

 for(j = 0; j < tile_xsize; j++) {
 src_band = src_pixel;
 dst_band = dst_pixel;

 for(k = 0; k < nbands; k++) {
 *dst_band++ = *src_band++;
 }

 src_pixel += nbands;
 dst_pixel += dst_pixel_stride;
 }

 src_scanline += src_scanline_stride;
 dst_scanline += dst_scanline_stride;
}
...

dst_pixel += dst_pixel_stride;

dst_band = dst_pixel;

96 XIL Programmer’s Guide—August 1997

5

This is important when traversing the bands in case there is an alpha channel
or some other data between pixels. Say, for example, the image is an RGB
image. The pixel stride is not necessarily 3. It could be 4 or some other value,
indicating padding of some nature between pixels. Using the pixel stride
ensures that the band pointer will be pointing to the correct data element (that
is, the next pixel of the image) when the next pixel is copied.

Finally, when all scanlines of the tile have been processed (i < tile_ysize is
no longer true), execution falls out to the end of the inner x loop and the next
tile of the image is processed.

Once all scanlines have been processed for the tile, the x loop increments to the
next tile in the image’s width and processing for that tile takes place. The
procedure described in “Main Looping Through the Tiles” on page 91 repeats.

Tile Copying Summary

Figure 5-2 illustrates how an image stored in 4 tiles would be copied. The inner
x loop copies pixels from left to right, then top to bottom of each tile. The outer
y loop advances to the next row of tiles. The program executes until the image
is completely copied from the source file on disk to the destination XIL image.

Figure 5-2 Copying Images Into Tiled Storage

1 2

3 4Image in disk file

Image in tiled memory

y

x

1 2

3 4

Image in tiled memory

Image in disk file

x

y

XIL Program That Uses Tiling 97

5

Tile-Related Functions

Getting Tile-Related Data

If you are going to access data already associated with an XIL image, you need
to ask XIL to fill in the storage object attributes to learn how the data is
formatted. Functions for getting tile data are listed and described in Table 5-2.
All of the functions are valid regardless of the tiling mode.

Table 5-2 Getting Tile-Related Information

Function Description

xil_get_tilesize() Gets the current tile size of the
image’s data; (gets the image’s
width and height in
XIL_WHOLE_IMAGE mode)

xil_get_tile_storage() Fills in the storage object with the
appropriate storage attributes and
data pointer for the image’s storage
for a given tile; (the data pointer
points to the whole image in
XIL_WHOLE_IMAGE mode)

xil_state_get_default_tilesize() Gets the default tile size for all
images created with a particular
object of type XilSystemState ;
(the values returned are 0, 0 unless
otherwise set by the user)

xil_state_get_default_tiling_mode() Gets the tiling mode; (is
XIL_WHOLE_IMAGE unless
otherwise set by the user)

xil_storage_get_coordinates() Gets the x and y pixel coordinates
of the upper left corner of the tile
within the image; values for the
storage object must have been
previously set by calling either of
the following functions:
xil_get_tile_storage()
xil_get_storage_with_copy()

98 XIL Programmer’s Guide—August 1997

5

Setting Tile-Related Data

If you are going to provide an XIL image with data that you control, you need
to use and set the attributes of the storage object to tell XIL how to process the
new data.

Table 5-3 lists and describes the functions for setting tile-related data. All of the
functions are valid regardless of the tiling mode.

Table 5-3 Setting Tile-Related Information

Function Description

xil_set_tilesize() Sets a new tile size on an image; (the
only valid values for t_xsize and
t_ysize are values greater than or
equal to the respective image width
and height in XIL_WHOLE_IMAGE
mode)

xil_set_tile_storage() Sets one tile of the image’s storage;
(there is a maximum of one tile for
the image in XIL_WHOLE_IMAGE
mode)

xil_state_set_default_tilesize() Sets the default tile size for all
images created with a particular
object of type XilSystemState ;
(the tile size can be set to any value
but is only referred to when images
are created in XIL_TILING or
XIL_STRIPPING mode)

xil_state_set_default_tiling_mode Sets the tiling mode to any of the
following values:
XIL_TILING
XIL_STRIPPING
XIL_WHOLE_IMAGE

xil_storage_set_coordinates() Sets the upper left corner of the tile
to position the tile within the image;
must be called before calling
xil_set_tile_storage()

XIL Program That Uses Tiling 99

5

Note – If an image already has data associated with it, calling
xil_set_tilesize() on it can seriously impede performance because of
internal reformatting. In cases where the existing data is not needed, you
should use a different image or destroy and recreate the image using the
respective functions, xil_destroy() and xil_create() .

What is Tile Stripping?
Tile stripping is processing an image in horizontal strips. Each strip is
equivalent to a tile except that tile width always equals the image width. Like
tiled storage, all strips in the image must have the same width and height. To
obtain tile stripping as the image storage configuration, your application must
call the xil_state_set_default_tiling_mode() function and specify
XIL_STRIPPING . See “How Do You Set Up the Tiling Mode?” on page 86 for
more information.

Usually tile stripping is done by simply referencing a single buffer of memory
at different y locations. In addition to this technique, XIL supports storing each
strip in a separate memory buffer.

Tile stripping can be used to display an image to the user in sections.

What is the Effect of Tiling on Child Images?
Child images are independent of tiles. The following are points you should
remember about child images and tiling:

• A child image shares the storage of its parent. For the implications of shared
storage, see “Relationship Between a Child and its Parent” on page 55.

• You cannot call xil_set_tilesize() on a child image, regardless of the
tiling mode.

• Calling xil_get_tilesize() on a child image returns the parent’s tile
size. To determine the parent tile in which a given child pixel resides, you
must use child offsets.

100 XIL Programmer’s Guide—August 1997

5

101

Handling Input and Output 6

This chapter takes a systematic look at how you read and write images in an
XIL program. Basically, input comes from, and output goes to:

• A file
• A display
• A device such as a scanner, frame grabber, video card, or printer

This chapter has the following main sections:

Note – This chapter deals exclusively with reading and writing single images.
XIL programs can also read and write data streams that represent compressed
video or multipage documents. These data streams are stored in an XIL data
structure called a compressed image sequence (CIS). Moving data into and out
of these structures is discussed in Chapter 15, “Compressing and
Decompressing Sequences of Images.”

Moving Image Data From a File to an XIL Image page 102

Moving Image Data from an XIL Image to a File page 104

Methods of Getting Image Data From a File into an XIL Image page 106

Methods of Getting XIL Image Data Into a File page 113

Sending Output to (and Reading Input From) the Display page 117

Reading and Writing Devices Other Than Displays page 120

102 XIL Programmer’s Guide—August 1997

6

Moving Image Data From a File to an XIL Image
The XIL library does not include any single functions that you use to read
image data from a particular type of image file into an XIL image. Instead, the
library provides routines that enable you to use the following general
procedure to load images from files.

1. Read the image file’s header (or take whatever action is appropriate) to
determine the dimensions and data type of the image.
Specifically, you need to know the image’s width in pixels, its height in
pixels, the number of bands in the image, and the type of data used to
represent the value of one band of one pixel. You need this information to
create an XIL image in which you can store the image’s pixel values.

2. Create an XIL image in which to store the pixel values you will read from
the image file.
To create your XIL image, you use the xil_create() function, whose
prototype is shown below.

The parameter state is the system-state data structure that was returned
when you called xil_open() to initialize the library. The parameters
width , height , and nbands are integers (unsigned int) representing the

XilImage xil_create(XilSystemState state, unsigned int width,
 unsigned int height, unsigned int nbands,
 XilDataType datatype);

Handling Input and Output 103

6

image’s width, height, and number of bands. The final parameter datatype
is an enumeration constant of type XilDataType . The values of
XilDataType are listed and described in Table 6-1.

When the image has been created, the library returns a handle to the XIL
image.

3. Export the XIL image you just created.
You export the image using the xil_export() function, whose prototype
is shown below.

You pass this routine the handle to the image you created in the last step.
The return value—XIL_SUCCESS or XIL_FAILURE —indicates whether the
export operation was successful.

The reason for exporting the image is to gain access to information about
how the image is stored in memory. This information is not available to
your application while the image is imported.

4. Choose the optimal method for getting the image file's data into the XIL
image.
The XIL library offers several functions for getting data into an XIL image.
Each has its own considerations. See “Methods of Getting Image Data From
a File into an XIL Image” on page 106 for a description of the appropriate
function you should use for each of the following situations:

• Sharing data between an image file and an XIL image

• Copying data from an image file to an XIL image

Table 6-1 XilDataType Values

Value Description

XIL_BIT 1-bit data

XIL_BYTE 8-bit unsigned data

XIL_SHORT 16-bit signed data

XIL_FLOAT 32-bit single-precision, floating point data

int xil_export(XilImage image);

104 XIL Programmer’s Guide—August 1997

6

• Copying data from a large image file to an XIL image to maximize
performance

• Providing data on demand from an image file to an XIL image

• Running existing applications

5. Import your XIL image.
You import that image using a call to xil_import() , whose function
prototype is shown below.

The parameter image is a handle to an XIL image, and change_flag is a
flag that indicates whether the image was modified while it was exported. If
the image was modified, the flag should be set to 1; otherwise, it should be
set to 0.

Caution – When you import an image, you give up control of it. Pointers to the
image’s data received from a previous call to xil_export() are invalidated
unless xil_set_storage_movement() was called to ensure their continued
validity. If you need to use the image's data after the image has been imported,
you must again call xil_export() to export the image. Then use one of the
storage access functions described above to get new pointers to the data.

Note – The xil_export() and xil_import() functions have very little
overhead. They simply set a flag.

Moving Image Data from an XIL Image to a File
Just as the XIL library doesn’t contain single functions that enable you to read
particular types of image files, it does not include single functions that enable
you to write images to files in particular formats. Instead, the XIL library
provides a general mechanism for writing XIL image data to files. The
procedure to follow is discussed below.

void xil_import(XilImage image, Xil_boolean change_flag);

Handling Input and Output 105

6

1. Determine the dimensions and data type of your XIL image.
You may already know the following attributes of your XIL image: width,
height, number of bands, and data type. But if you don’t, you can use the
xil_get_info() function to obtain that information. You need to know
these values to determine how much image data to write to the file.

The function prototype for xil_get_info() is shown below.

The parameter image is a handle to an XIL image. The remaining
parameters are the addresses of the variables in which you want the
function to return the information you asked for.

You may want to read other attributes of your XIL image depending on
what type of information about the image you must write to your image file.
See the section “Additional XIL Image Attributes” on page 47 for a list of
image attributes you may be interested in.

2. Export the image.
You export the image using the xil_export() function. Again, the reason
for exporting the image is to gain access to information about how the
image is stored in memory. For example, for an XIL_BYTE image, you need
to know the address at which the image data begins, the number of bytes
between pixels, and the number of bytes between scanlines.

3. Choose the optimal method for getting the XIL image data into the image
file.
Just as the XIL library offers several functions for getting data from a file
image into an XIL image, it offers several functions for getting data from an
XIL image into a file image. See “Methods of Getting XIL Image Data Into a
File” on page 113 for a description of the appropriate function you should
use for each of the following situations:

• Copying data from an XIL image to a file

• Directly accessing data used by an XIL image

• Running existing applications

void xil_get_info(XilImage image, unsigned int *width,
 unsigned int *height, unsigned int *nbands,
 XilDataType *datatype);

106 XIL Programmer’s Guide—August 1997

6

Methods of Getting Image Data From a File into an XIL Image
Several functions can be used to get data into an XIL image, and each has its
own considerations. This section discusses the situations in which you might
write data into an XIL image and describes the appropriate XIL function for
each.

Note – Before you can move image data from a file into an XIL image, you
must export the image. See step 3 in the overview section, “Moving Image
Data From a File to an XIL Image” on page 102.

Sharing the Data Between an Image File and an XIL Image

When an XIL image and a file image can share data by pointing to the same
memory buffer, your application can optimize performance by setting the XIL
image to point to the memory-mapped image file's data location by calling the
xil_set_tile_storage() function. XIL may ultimately copy the data to a
new location for acceleration but will only do so when:

• It is necessary to move the data out of the CPU’s address space
• A hardware device must reformat the data

To use xil_set_tile_storage() :

1. Create a storage object.

2. Determine the XIL image's tile size.

storage = xil_storage_create(state,image);

xil_get_tile_size(image, &tx, &ty);

Handling Input and Output 107

6

3. Set the information for the next tile's storage format and data pointer in
the storage object.

4. Optionally tell XIL to notify your application when it is done with the
data pointed to by data_ptr .

Note – Your application cannot release the data in data_ptr until notified by
the callback because XIL is sharing the data.

5. Inform the XIL image about the next tile's storage information.

Copying the Data From an Image File to an XIL Image

XIL provides the convenience function xil_set_storage_with_copy() to
set the data associated with an image without requiring your application to
handle pixel copying. If tiling is turned on and the image is tiled, the data
pointed to by storage is copied into the various storage tiles of the image
automatically. Subsequent changes to the original image file's data pointer do
not affect the XIL image's data.

To use xil_set_storage_with_copy() :

1. Create a storage object.

<increment next_x, next_y>
<calculate new file_mmap_ptr corresponding to next_x, next_y>

xil_storage_set_pixel_stride(storage,0,file_pixel_stride);
xil_storage_set_scanline_stride(storage,0,file_scanline_stride;
xil_storage_set_coordinates(storage, next_x, next_y);
xil_storage_set_data(storage,0,file_mmap_ptr,NULL);

xil_storage_set_data_release(storage,0,file_mmap_ptr,data_ptr);

xil_set_tile_storage(image,storage);

storage = xil_storage_create(state,image);

108 XIL Programmer’s Guide—August 1997

6

2. Fill the storage object with the file's information.
The following code statements illustrate which functions you would need to
call to fill in the storage object if the file is in pixel-sequential format. The
functions you use depend on the format of the data. For a description of the
storage formats, see “Storage Formats” on page 68.

3. Call the xil_set_storage_with_copy() function.

Note – To use the xil_set_storage_with_copy() function, the image file's
data must be in a contiguous memory buffer. In addition, the convenience
function can only be used to copy data for the whole image.

Copying the Data From a Large Image File to an XIL Image

To copy data from a large image file to an XIL image in order to maximize
performance, XIL allows you to write a routine that provides the image file
data to the XIL image on a per-tile basis by using xil_get_tile_storage() .
When tiling is turned on, this function limits the data copy to only those
portions of the XIL image that are actually needed.
xil_get_tile_storage() is illustrated in the example2 program in
Chapter 5, “XIL Program That Uses Tiling.” Note that, since XIL is merely
returning a pointer to its own data, this function has very little overhead.

To use xil_get_tile_storage() :

1. Create a storage object.

xil_storage_set_pixel_stride(storage, 0, file_pixel_stride);
xil_storage_set_scanline_stide(storage,0,file_scanline_stride);
xil_storage_set_data(storage,0,file_mmap_ptr,NULL);

int xil_set_storage_with_copy(XilImage* image, XilStorage
 storage);

storage = xil_storage_create(state,image);

Handling Input and Output 109

6

2. Determine the XIL image's tile size.

3. Loop to the next tile of the image; then call xil_get_tile_storage() to
get the storage information for that tile.

4. Test for the format type of the storage returned.

5. To determine how to access the data, retrieve information from the storage
object about the tile's storage format and its data pointer.
The following code statements illustrate which functions you would need to
call to retrieve tile storage information that is in pixel-sequential format. The
functions you use depend on the format of the data. For a description of the
storage formats, see “Storage Formats” on page 68.

6. Move to the appropriate pointer in the file and copy the data from the file
to the tile data pointer (datap).

7. Repeat steps 3 through 6 until you have processed as much of the file as
you want to process.

Note – If the tiling mode of your application is the default XIL_WHOLE_IMAGE,
the above code still works, although the XIL image's tile size always is the size
of the image (the image consists of a single tile).

xil_get_tile_size(image, &tx, &ty);

<increment next_x, next_y>
xil_get_tile_storage(image,next_x,next_y,storage);

xil_storage_is_type(storage, XIL_PIXEL_SEQUENTIAL);

ps = xil_storage_get_pixel_stride(storage,0);
ss = xil_storage_get_scanline_stride(storage,0);
datap = xil_storage_get_data(storage,0);

110 XIL Programmer’s Guide—August 1997

6

Note – If the file image data is in tiles, your application can set the XIL image's
tile size to match the tile size of the file's data. The tiling mode must be
XIL_TILING before the XIL image is created.

Providing Data On Demand From an Image File to an XIL Image

When your application can delay providing the data from the image file (such
as when the image data is not changing asynchronously), XIL provides a
method for the application to supply the image data on demand.

This technique provides the best performance on large images and is also
extremely useful in cases where it is not possible to provide a description of
the storage for the entire image in the file. For example, tiles may be located
across the network or in a compressed image file whose data cannot be
memory mapped.

Handling Input and Output 111

6

To use an application data supply routine:

1. Define an application data supply routine according to the prototype
shown here.

This is an example.

typedef int (*XilDataSupplyFuncPtr)(XilImage image,
 XilStorage storage,
 unsigned int x,
 unsigned int y,
 unsigned int xsize,
 unsigned int ysize,
 void* user_args);

struct arg_info {
 unsigned int width;
 unsigned int height;
 unsigned int nbands;
 };

int myAppSupplyRoutine(XilImage image, XilStorage storage,
 unsigned int x,unsigned int y, unsigned int xsize,
 unsigned int ysize,void* myArgs);

112 XIL Programmer’s Guide—August 1997

6

2. Write the application data supply routine to handle each image that you
intend to fill.
The image is included as an argument in the event that the same data
supply routine is used for multiple images. You provide the data to the
image through the storage object argument.

As the example code shows, the routine must call the appropriate storage
functions, such as xil_storage_set_pixel_stride() ,
xil_storage_set_scanline_stride() , and
xil_storage_set_data() , to set the image data.

The x and y arguments are a convenient way to get the upper left
coordinate of the data portion required.

int
myapp_supply_routine(XilImage image,
 XilStorage storage,
 unsigned int x,
 unsigned int y,
 unsigned int xsize,
 unsigned int ysize,
 void *myArgs)
{
 struct arg_info* argptr;
 unsigned int width;
 unsigned int height;
 unsigned int bands;
 Xil_unsigned8* dataptr;

 argptr = (struct arg_info*)myArgs;
 width = argptr->width;
 height = argptr->height;
 bands = argptr->nbands;

 /* calculate this pixel stride, etc */
 /* This code assumes PIXEL_SEQUENTIAL data */
 xil_storage_set_pixel_stride(storage,0,pixel_stride);
 xil_storage_set_scanline_stride(storage,0, scanline_stride);
 dataptr = go_mmap_data(image, x, y, xsize, ysize);
 xil_storage_set_data(storage, 0, dataptr);
 return XIL_SUCCESS;
}

Handling Input and Output 113

6

The xsize and ysize most likely will be the tile xsize and tile ysize, but as
the image may have been re-imported, you will have no way to access the
values at the time of the callback.

user_args are available to provide any specific data that the routine may
require, and will match the user arguments provided in the call to
xil_set_data_supply_routine() for the image.

3. Set the application data supply routine on the image.

Note – The application data supply routine is only called the first time that an
image needs data.

Note – To avoid deadlock, your application must not call any other XIL
operations on the image while in the callback. The image is provided solely for
identification.

Running Existing Applications

XIL continues to support xil_get_memory_storage() , for getting data from
an XIL image, and xil_set_memory_storage() , for having the XIL image
share data with a file. Because these functions do not support tiling and cannot
be used with any of the above storage functions, they are not recommended for
new applications.

Methods of Getting XIL Image Data Into a File
Several functions can be used to access data in an XIL image to be written to a
file, and each has its own considerations. This section discusses the situations
in which you might write an XIL image to a file and describes the appropriate
XIL function for each.

myarg_info.width = image_width;
myarg_info.height = image_height;
myarg_info.nbands = image_nbands;

xil_set_data_supply_routine(tile_image, myapp_supply_routine,
 (void*)&myarg_info);

114 XIL Programmer’s Guide—August 1997

6

Note – Before you can move image data from an XIL image to a file, you must
export the image. See step 2 in the overview section, “Moving Image Data from
an XIL Image to a File” on page 104.

Copying Data From an XIL Image to a File

xil_get_storage_with_copy() provides a convenient way of retrieving
storage for the image without having to loop over tiles. Because the storage
data pointer points to a copy of image's storage, no changes made to the XIL
image propagate to the file image.

To use xil_get_storage_with_copy() :

1. Call the xil_set_storage_with_copy() function which returns an
XilStorage object.
You do not need to call xil_storage_create() .

2. Test for the format type of the storage returned.
This statement tests for XIL_PIXEL_SEQUENTIAL format.

storage = xil_get_storage_with_copy(image);

if(xil_storage_is_type(storage,XIL_PIXEL_SEQUENTIAL))
...

Handling Input and Output 115

6

3. To determine how to access the data, retrieve information from the storage
object about the storage format and its data pointer.
The following code statements illustrate which functions you would need to
call to retrieve information that is in pixel-sequential format. The functions
you use depend on the format of the data. For a description of the storage
formats, see “Storage Formats” on page 68.

You may then use the data pointer as the basis for the file you intend to
make, or you may copy the contents into an existing buffer.

Note – If the XIL Image is very large, copying the image data will result in a
performance penalty.

Directly Accessing the Data Used By the XIL Image

If you want to share the XIL image data to avoid a copy or to maintain
synchronization, you should use the xil_get_tile_storage() function.

To use xil_get_tile_storage() :

1. Create a storage object.

2. Determine the XIL image's tile size.

ps = xil_storage_get_pixel_stride(storage,0);
ss = xil_storage_get_scanline_stride(storage,0);
datap = xil_storage_get_data(storage,0);

storage = xil_storage_create(state,image);

xil_get_tile_size(image, &tx, &ty);

116 XIL Programmer’s Guide—August 1997

6

3. Loop to the next tile of the image, and get the storage information for that
tile.

4. Test for the format type of the storage returned.
This statement tests for XIL_PIXEL_SEQUENTIAL format.

5. Retrieve information about the tile's storage format and its data pointer
from the storage object.
The following code statements assume pixel-sequential format. The
functions you use depend on the storage format. For details, see “Storage
Formats” on page 68.

Ideally you would use this data pointer directly to represent this portion of
the image file, but you could also copy the contents into an existing buffer.
The data pointer and image format remain valid as long as the image
remains exported.

Note – If the tiling mode of your application is the default XIL_WHOLE_IMAGE,
the above code still works, although the XIL image's tile size always is the size
of the image (the image consists of a single tile).

Running Existing Applications

Existing applications may continue to use xil_get_memory_storage() for
accessing the data associated with an XIL image. If your application is using
tiling, xil_get_memory_storage() cobbles the image data together.
Because xil_get_memory_storage() cannot be used in conjunction with the
other storage functions, it is not recommended for use in new applications.

<increment next_x,next_y>
xil_get_tile_storage(image,next_x,next_y,storage);

xil_storage_is_type(storage, XIL_PIXEL_SEQUENTIAL);

ps = xil_storage_get_pixel_stride (storage, 0);
ss = xil_storage_get_scanline_stride(storage, 0);
datap = xil_storage_get_data(storage,0);

Handling Input and Output 117

6

Sending Output to (and Reading Input From) the Display
If you want to display an image in an XIL program, you must display that
image in an X window. To perform this task, you first create an X window of
the correct size. You then call the function xil_create_from_window() to
create an XIL display image. This function turns an X window into a legitimate
destination image for an XIL operation. You can then call an XIL function such
as xil_rotate() and name the display image as the function’s destination
image. If you do, a rotated image is written to your display’s frame buffer.

The steps listed below discuss this procedure in more detail:

1. Use the Xlib function XCreateSimpleWindow() or XCreateWindow() to
create your X window.
Before you create this window, you need to know—at a minimum—the
width and height of the image you want to display. If you don’t have this
information, call the xil_get_info() function. It gives you information
about an image’s width, height, number of bands, and data type. You can
then call one of the Xlib functions mentioned above to create the window.

For information about using XCreateSimpleWindow() and
XCreateWindow() , see the Xlib Programming Manual and the Xlib Reference
Manual.

Note – A display image cannot be created from an X window associated with
an 8-bit StaticColor , TrueColor , or DirectColor visual.

2. Create an XIL display image.
As mentioned above, you create this display image by calling the
xil_create_from_window() function, whose function prototype is shown
below.

The state parameter is the system-state data structure that was returned
when you called xil_open() to initialize the XIL library. The display and
window parameters are of data types defined in Xlib. The display
parameter is a pointer to a structure that is returned when you initially
connect to the X server. It contains information about the server and the

XilImage xil_create_from_window (XilSystemState state,
 Display *display, Window window);

118 XIL Programmer’s Guide—August 1997

6

screens the server controls. The window parameter is the ID of the X
window you created in the previous step. The return value of
xil_create_from_window() is a handle to your newly created display
image.

Once you have created this display image, you can use it as a destination
image for XIL operations just as you would an XIL memory image. When
you name the display image as your destination image, the operation’s
output is written directly to your display’s frame buffer and displayed in
the X window you created in Step 1.

3. Call an XIL function that processes a source image and writes its output to
the display image.
xil_copy() is the simplest function to use to copy a source XIL image to
the display. This function takes two arguments: a handle to the source image
and a handle to the display image.

Note – To see a simple example of a program that displays its output in an X
window, look in /examples/example1 . The relevant code is in the
example1.c and window.c source files.

To resize a window that contains an XilImage , destroy the XilImage
attached to the window, resize the window, wait for a ConfigureNotify
event to ensure the XResizeWindow() is complete, then call
xil_create_from_window() to recreate the image in the new window size.

You cannot use an X window’s backing_store attribute to maintain an
image in the window when the window is obscured or unmapped (see the Xlib
Programming Manual). Thus, your code should always check for an Expose
event and take the appropriate measures for displaying the image again when
the window is exposed.

Possible Complications

One concern is “What if the depths of your source image and your X window
are different?” What if you have a source image that has three bands and
contains 8-bit data (24 bits per pixel) and an X window that is 8 bits deep? The
answer to this question might be that you call an XIL function to dither the

Handling Input and Output 119

6

source image from 24 bits to 8 bits before writing it to the window. But other
types of mismatches can occur. Chapter 8, “Preparing Images for Display,”
discusses an example program that handles many of these mismatches.

Another concern is “What happens if the currently installed X colormap is not
appropriate for the image you want to display?” You must solve this problem
using Xlib calls. Specifically, you need to create and install an X colormap
suitable for displaying your image. For complete information about how to
create and install an X colormap, see the Xlib Programming Manual and the Xlib
Reference Manual. For examples of functions that handle this task, look in the
directory /examples , which contains a number of sample programs. For
example, you might be interested in looking at the following routines:

• window.c , which is located in the example1 subdirectory

• window.c (a modified version of the routine mentioned above), which is
located in the display subdirectory

• xilcis_color.c , which is located in the movie_player_example
subdirectory

Reading a Display Image

Although display images are generally used for output, you can also read a
display image. Assuming that you have created such an image, you can read
the data in the X window associated with it into an XIL image by taking these
steps:

1. If you don’t already have an XIL image into which you can read the image
data in the frame buffer, you must create one.
Use the xil_create() function to create this image. The image you create
must have the proper width, height, number of bands, and data type.

2. Perform an XIL operation using the display image as your source image.
For example, you could use the xil_copy() function to copy an image
from your screen to an XIL memory image. Any pixels in the on-screen
image that are obscured by another window when the read occurs are
undefined.

120 XIL Programmer’s Guide—August 1997

6

Reading and Writing Devices Other Than Displays
The XIL library enables you to get input from, and write output to, not only
displays, but other devices such as scanners, frame grabbers, video cards, and
printers. The interface to these devices is very simple. You call a single XIL
function to link a device to an XIL device image, which for most practical
purposes is treated like an XIL memory image. Keep in mind that when you
perform an XIL operation and your source image is a device image, the
operation reads its input from the associated device. Likewise, if an operation’s
destination image is a device image, output is written to the associated device.

Each device type has attributes associated with it. For example, the PhotoCD
reader that comes with the XIL library (see Chapter 7, “Reading Kodak
PhotoCD Images”) has a FILEPATH attribute that indicates the PhotoCD image
you want to read, and a RESOLUTION attribute that specifies a display
resolution.

Depending on the device, you either need to create the device image, then set
its attributes, or initialize the device attributes before creating the device image.
The method to use depends on the device. Typically, devices don’t require
initialized attributes, so you create the device image, then set its attributes.
However, some devices do require initialized attributes; this generally occurs
when:

• The device needs one or more attributes defined at the time the device is
created

• Multiple attributes are interdependent and need to be set simultaneously for
the device

• Setting the attributes requires you to allocate a substantial block of memory
before creating the image

The group that writes the device handler must indicate whether the device
requires initialized attributes.

Initializing a Device’s Attributes

As mentioned in the previous section, some device types require you to
initialize one or more device attributes before creating an image for the device.
To initialize a device’s attributes in the XIL library, you create an XIL object of
type XilDevice . Once this device object exists, you use it to store the device-
initialization values. You then pass the device object as an argument in the

Handling Input and Output 121

6

xil_create_from_device() function that creates the device image, as
discussed in “Creating a Device Image” on page 123; all the attributes stored
by the device object applies to the device image.

Note – Devices that don’t require attribute initialization typically don’t
recognize or support device objects. For these devices, you can’t use a device
object to initialize device attributes, and you pass NULL for the deviceObj
parameter in the xil_create_from_device() function.

After you’re done using the device object, you need to destroy it to release the
memory allocated to it. You can destroy it immediately after using it, or you
can keep the object around for creating other devices of the same type, then
destroy the object when you are finally done with it.

The following steps discuss the device object in more detail. These steps can be
used only for devices that require or can recognize initialized device attributes.

1. Create the device object.
To create the device object, call the function xil_device_create() ,
whose function prototype is shown below.

The state parameter is the system-state data structure that was returned
by xil_open() when you initialized the XIL library. The devicename
parameter is the name of the device to be associated with the device image.
This name must be provided by the group that writes the device handler
that enables the device in the XIL library.

XilDevice xil_device_create(XilSystemState state,
 char *devicename);

122 XIL Programmer’s Guide—August 1997

6

For example, if you plan to write an image to a video card, you might
associate a device object with it as shown in the following code fragment:

In this example, the device’s name is vidCard . This name is provided by
the group that writes the device handler. The deviceObj object is now
associated only with a vidCard device type; the object cannot subsequently
be associated with a different device type.

The device object’s only use is to initialize device attributes when you call
the xil_create_from_device() function that creates the device image. It
cannot be used to adjust a device image’s attributes after the device image is
created; xil_set_device_attribute() does that, as discussed on
page 124. However, after using the device object to create one device image,
you can use the same object to store different initialization attributes, then
use the modified device object when you create another device image of the
same type.

2. Set the device initialization values.
To store the device-initialization values in a device object, call the function
xil_device_set_value() , whose function prototype is shown below.

The deviceObj parameter is the device object associated with the device
type. The attribute parameter is the name of the attribute you want to
set, and value is the attribute’s value. As with device names, the attribute
names and their possible values are defined by the group that writes the
device handler.

Only attributes the device understands should be set on the device object.
Setting attributes the device doesn’t recognize generates an error. Attributes
and their associated values may reference data in an application’s data
space; therefore, any data associated with an XilDevice object must
remain valid while it is referenced by the device object.

XilSystemState state = xil_open();
XilDevice deviceObj;

deviceObj = xil_device_create(state, “vidCard”);

void xil_device_set_value(XilDevice deviceObj,
 char *attribute, void *value);

Handling Input and Output 123

6

To set multiple attributes, make a separate xil_device_set_value()
function call for each; although the attributes are set individually on the
device object, they are applied simultaneously to the device image when
that device image is actually created (see “Creating a Device Image” on
page 123). You can set as many attributes as you need to derive all required
initialization attributes for the device.

For example, if you created deviceObj for a video card as shown in Step 1
on page 121, you might initialize its volume and speed attributes as shown
in the following code fragment:

3. Create the device image.
Do this only after setting all needed device attributes. The next section tells
you how to create the image.

4. Destroy the device object.
You can do this immediately after creating the device image. However, if
you plan to create other devices of the same type, you might want to keep
the device object to initialize those other devices. If desired, you could set
different initialization values on the object. When you’re finished using it,
destroy the object, see “Destroying a Device Object” on page 125.

Creating a Device Image

As explained in “Initializing a Device’s Attributes” on page 120, some device
types require that one or more device attributes be initialized before the device
image is created; for those devices, initialize the required attributes before
following the steps in this section. For devices that don’t support initialized
attributes, the first step for using the device is to create a device image for it.
Once the device image is created, you can set its required attributes, then use
the image in an XIL operation.

The following steps show you how to create a device image and set its
attributes.

int vol_control = 4, speed_control = 5;

xil_device_set_value(deviceObj,
 “VOLUME”, (void*) vol_control);
xil_device_set_value(deviceObj,
 “SPEED”, (void*) speed_control);

124 XIL Programmer’s Guide—August 1997

6

1. Create a device image.
To create a device image, call the function xil_create_from_device() ,
whose function prototype is shown below.

The state parameter is the system-state data structure that was returned to
you when you called xil_open() to initialize the XIL library. The
devicename parameter is the name of the device to be associated with the
device image; the name of the device must be provided by the group that
writes the device handler. If you initialized attributes for this device type,
the device name should be the same name specified in the
xil_device_create() function shown in Step 1 on page 121. The
deviceObj parameter is the device object you created to initialize the
device’s attributes. If you didn’t create a device object for this device type,
pass NULL for this parameter.

Note – Devices that don’t require attribute initialization typically don’t
recognize or support device objects. For these devices, you can’t use a device
object to set attributes and you must pass NULL for the deviceObj argument.

2. Set any required attributes for the device you’re reading or writing.
For instance, you want to acquire an image from a frame grabber, and the
frame grabber has a brightness control. Before you grab the image, you
might want to adjust that control. The xil_set_device_attribute()
function enables you to make this adjustment. Its prototype is shown below.

The parameters to this function are a handle to your device image, the name
of an attribute, and a value for the attribute. For example, you might set the
frame grabber’s brightness using the function call:

xil_set_device_attribute(device_image, “BRIGHTNESS”, (void *).5);

Like device names, the names of device attributes and their possible values
are defined by the group that writes the handler for the device.

XilImage xil_create_from_device(XilSystemState state,
 char *devicename, XilDevice deviceObj);

int xil_set_device_attribute(XilImage image, char *attribute,
 void *value);

Handling Input and Output 125

6

Normally, xil_set_device_attribute() returns the value
XIL_SUCCESS. If the function is unable to set the attribute, it returns
XIL_FAILURE .

The XIL library also provides the xil_get_device_attribute()
function, which reads the value of a device attribute. Its prototype is shown
below.

3. Perform an XIL operation using your device image as either the source or
destination for the operation.
If the operation’s source image is a device image, the operation reads an
image from the associated device. For example, the operation might read a
document on a scanner or get a frame of video from a video card. If the
operation’s destination image is a device image, the operation writes an
image to the associated device. For instance, the operation might print a
color image on a color printer.

Destroying a Device Object

When you create a device object, you associate it with a particular device type.
You can then use the device object to initialize as many device images of the
same device type as needed. When you are done using the device object, you
must destroy it to release the memory allocated to it.

To destroy a device object, call the function xil_device_destroy() , whose
function prototype is shown below.

The only parameter on xil_device_destroy() is the handle to the device
object.

int xil_get_device_attribute(XilImage image,
 char *attribute, void **value);

void xil_device_destroy(XilDevice deviceObj);

126 XIL Programmer’s Guide—August 1997

6

127

Reading Kodak PhotoCD Images 7

The XIL library includes a device handler that reads and decodes images
stored in the Eastman Kodak Company’s PhotoCD format. This chapter
explains how you use the XIL library to read such images. Before delving into
that subject, however, the chapter briefly discusses PhotoCD technology in
general: how images are scanned in, the PhotoYCC color space in which image
data are stored, and how the data are stored on the compact disk.

This chapter has the following main sections:

The PhotoCD Technology
You can take your 35 mm film or slides to a licensed photofinisher and have
your pictures stored on a PhotoCD disk. Each disk can accommodate over 100
photographs. You can then view your pictures on a television set using either a
PhotoCD player or a Philips CD-I system. Or you can view them on your
computer using a CD-ROM player, if you have the necessary software.

The PhotoCD Technology page 127

How Images Are Stored page 128

Reading PhotoCD Images Using the XIL Library page 129

Creating a Device Image page 130

Setting Device-Image Attributes page 130

Capturing an Image From a PhotoCD Disk page 134

Converting the Image’s Color Space page 135

128 XIL Programmer’s Guide—August 1997

7

The PhotoCD Imaging Workstation

When you take your film or slides to the photofinisher, the photofinisher puts
your pictures on a PhotoCD disk using a PhotoCD Imaging Workstation. This
workstation includes a scanner, a workstation that serves as a “Data Manager,”
and a CD writer. The scanner scans your 35 mm film or slides and produces
digital images.

The data in these images represent RGB values. The Data Manager then:

• Converts the RGB image data to the PhotoYCC color space

• Reduces the number of chrominance values in each PhotoYCC image (using
the mathematical procedure subsampling) so that there is one pair of
chrominance values for each two-by-two block of luminance values

• Produces multiple versions of each image with varying resolutions

• Uses the CD writer to write the multiple versions of each image to a
compact disk

How Images Are Stored

For XIL programming, the two main things to keep in mind about PhotoCD
images are:

• The images are stored in the PhotoYCC color space

• Each image is stored at multiple resolutions

The PhotoYCC Color Space

Kodak decided to convert images to a YCbCr color space because the data in
the chrominance channels of YCbCr images can be subsampled without greatly
affecting image quality. This ability to subsample the image data was
considered important because a single scanned-in image requires 18 Mbytes of
storage. After subsampling, an image requires only half that amount.

Kodak decided to develop the PhotoYCC color space instead of using an
existing YCbCr color space (such as the one defined in CCIR Recommendation
709) because it wanted a device-independent color space, one with a broad
color gamut. CCIR Rec. 709 YCbCr , for example, limits its color gamut to colors
that can be displayed on a high-definition television. PhotoCD images may be
displayed on televisions, but they may also be output to high-quality printers.

Reading Kodak PhotoCD Images 129

7

As an XIL programmer, you really only need to know that:

• When you read a PhotoCD image into an XIL image, the image data is
PhotoYCC data.

• XIL removes the chrominance channel subsampling (so that the image
requires more storage space).

• The XIL library supports the conversion of images to and from the
PhotoYCC color space.

You must convert the data to another color space before you can display or
print the image. For more information on this subject, see “Converting the
Image’s Color Space” on page 135.

Image Resolutions Supported in the XIL Library

As mentioned in “The PhotoCD Imaging Workstation” on page 128, PhotoCD
images are stored at multiple resolutions. Table 7-1 shows the resolutions
supported by the XIL library and the names Kodak has given to them.

Reading PhotoCD Images Using the XIL Library
Chapter 3, “XIL Images,” introduced the idea of a device image—an image that
resides on a device such as a scanner or a printer and can be used as the source
or destination image for an XIL operation. In general, support for these devices
is provided by third parties. However, the XIL library does include a loadable
device handler that reads PhotoCD images. This means that PhotoCD images
can be treated as device images.

Table 7-1 Resolutions of PhotoCD Images

Resolution Name

192 by 128 Base/16

384 by 256 Base/4

768 by 512 Base

1536 by 1024 4Base

3072 by 2048 16Base

6144 by 4096 64Base

130 XIL Programmer’s Guide—August 1997

7

The section “Reading and Writing Devices Other Than Displays” on page 120
covered the general procedure for creating a device image, setting
device-image attributes, and using a device image in an operation. The sections
below detail the specific calls you use to read and operate on a PhotoCD
image.

Creating a Device Image

To create a device image that represents a PhotoCD image, use the
xil_create_from_device() function, whose prototype is shown below.

The first parameter is a handle to the system state. The second is a string that
identifies the PhotoCD device handler: “SUNWPhotoCD”. And the third
specifies a device object that has been associated with the device type for
initializing device attributes. In this release of the XIL library, the PhotoCD
reader recognizes the device object and initializes the attributes.

The code to create a device image associated with a PhotoCD image would
look something like this.

The return value of the function, ycc_photocd_image , is a handle to the
device image.

Setting Device-Image Attributes

Before you can read a PhotoCD image, you must either

• Use a device object of type XilDevice (see “Initializing a Device’s
Attributes” on page 120 for details).

XilImage xil_create_from_device(XilSystemState state,
char* devicename, XilDevice deviceObj);

XilImage ycc_photocd_image;
XilSystemState state;

ycc_photocd_image = xil_create_from_device(state,
“ioSUNWPhotoCD”, NULL);

Reading Kodak PhotoCD Images 131

7

• Create the appropriate device image; then set the necessary attributes for
that image.

The attributes you can set for a PhotoCD device image are shown in Table 7-2.

A PhotoCD device image doesn’t require any attribute values at creation time;
therefore, it does not require a device object with it to initialize its attributes at
creation time (see “Initializing a Device’s Attributes” on page 120).

The FILEPATH Attribute

After creating a PhotoCD image, you must set a FILEPATH attribute for it that
indicates which image you want to read. To set this attribute, call the
xil_set_device_attribute() function.

Note – The last part of the path to the image usually takes the form of
.../PHOTO_CD/IMAGES/IMG nnnn.PCD. This part of the pathname reflects the
directory structure on the PhotoCD disk.

Table 7-2 PhotoCD Image Attributes

Attribute Description

FILEPATH The full pathname of the PhotoCD image you want to read.

RESOLUTION The resolution at which you want to read the image. The
possible resolutions are listed in Table 7-1 on page 129.

MAX_RESOLUTION A read-only attribute indicating the highest resolution at which
an image is stored. (In general, each image is stored at all
possible resolutions, but there are exceptions to this rule.)

ROTATION A read-only attribute indicating the amount of rotation
required to display the image in its proper orientation.

XilImage ycc_photocd_image;
char *pathname = “...”;

xil_set_device_attribute(ycc_photocd_image, “FILEPATH”,
(void *)pathname);

132 XIL Programmer’s Guide—August 1997

7

You can also read the value of the FILEPATH attribute if you need to determine
which image you’ll be reading if you read the device image. You read this
value using the xil_get_device_attribute() function.

The RESOLUTION Attribute

By default, when you read a PhotoCD image, you read the Base version of that
image (the one whose resolution is 768 by 512). To read a higher or lower
resolution version of the image, you must set the value of the RESOLUTION
attribute to one of the enumeration constants shown here.

These constants correspond to the resolutions listed in Table 7-1 on page 129.

For example, to read the 192-by-128 version of an image, you would set the
RESOLUTION attribute as shown below.

XilImage ycc_photocd_image;
char *pathname;

xil_get_device_attribute(ycc_photocd_image, “FILEPATH”,
(void **)pathname;

typedef enum{
XIL_PHOTOCD_16TH_BASE,
XIL_PHOTOCD_4TH_BASE,
XIL_PHOTOCD_BASE,
XIL_PHOTOCD_4X_BASE,
XIL_PHOTOCD_16X_BASE,
XIL_PHOTOCD_64X_BASE

} XilPhotoCDResolution;

XilImage ycc_photocd_image;

xil_set_device_attribute(ycc_photocd_image, “RESOLUTION”,
(void *)XIL_PHOTOCD_16TH_BASE);

Reading Kodak PhotoCD Images 133

7

You can also read the value of the attribute using code similar to that shown
below.

The MAX_RESOLUTION Attribute

This is a read-only attribute that enables you to determine the highest
resolution version of an image that is available for a particular PhotoCD image.
In general, each image is available at all possible resolutions; however, on some
pre-recorded PhotoCD disks, this may not be the case.

To read the value of this attribute, you call the
xil_get_device_attribute() function and request that it store the value
in a variable of the enumerated type XilPhotoCDResolution .

The value returned in resolution will be one of the enumeration constants
shown below.

XilImage ycc_photocd_image;
XilPhotoCDResolution resolution;

xil_get_device_attribute(ycc_photocd_image, “RESOLUTION”,
(void **)&resolution);

XilImage ycc_photocd_image;
XilPhotoCDResolution resolution;

xil_get_device_attribute(ycc_photocd_image, “MAX_RESOLUTION”,
(void **)&resolution);

typedef enum{
XIL_PHOTOCD_16TH_BASE,
XIL_PHOTOCD_4TH_BASE,
XIL_PHOTOCD_BASE,
XIL_PHOTOCD_4X_BASE,
XIL_PHOTOCD_16X_BASE,
XIL_PHOTOCD_64X_BASE

} XilPhotoCDResolution;

134 XIL Programmer’s Guide—August 1997

7

The ROTATION Attribute

This is a read-only attribute that enables you to determine the proper
orientation for displaying a particular PhotoCD image. The rotation attribute is
analogous to the portrait or landscape modes of printed text: it merely indicates
the orientation of the data.

To read the value of this attribute, you call the
xil_get_device_attribute() function and request that it store the value
in a variable of the enumerated type XilPhotoCDRotate .

The value returned in rotation will be one of the enumeration constants
shown below.

Based upon the constant returned by xil_get_device_attribute() , you
can perform the appropriate rotation on the image by calling
xil_transpose() (see “Transposing Images” on page 241).

Capturing an Image From a PhotoCD Disk

Once you’ve created a PhotoCD device image and set the appropriate device
image attributes, capturing an image from the device is a simple two-step
process. You need to:

1. Create an XIL image that has the same dimensions and data type as the
image you’re reading.

XilImage ycc_photocd_image;
XilPhotoCDRotate rotation;

xil_get_device_attribute(ycc_photocd_image, “ROTATION”,
(void **)&rotation);

typedef enum{
XIL_PHOTOCD_CCW0,
XIL_PHOTOCD_CCW90,
XIL_PHOTOCD_CCW180,
XIL_PHOTOCD_CCW270

} XilPhotoCDRotate;

Reading Kodak PhotoCD Images 135

7

The width and height of this image will be determined by the resolution of
the PhotoCD image and also by its rotation. The number of bands in the
image should be three, since an image in PhotoYCC format has three
channels. And the data type of the image should be XIL_BYTE , since each Y,
Cb, and Cr value in a PhotoCD image is an 8-bit value.

2. Perform an XIL operation using your device image as the source image and
the XIL image mentioned above as the destination.

The code fragment below creates a destination image that will hold a Base
PhotoCD image and then copies an image from the PhotoCD disk to the
destination.

It is important to note that, after the copy operation, the data in dst_image is
in the PhotoYCC color space. The next section tells you how to convert this
data to another color space.

Converting the Image’s Color Space

Before you can display or print an image you’ve read from a PhotoCD image
file, you must convert the data in the image from the PhotoYCC color space to
another color space. For example, if you wanted to display the image on a
24-bit frame buffer, you would convert the data to an RGB space before

XilSystemState state;
XilImage ycc_photocd_image, dst_image;

dst_image = xil_create(state, 768, 512, 3, XIL_BYTE);
xil_copy(ycc_photocd_image, dst_image);

136 XIL Programmer’s Guide—August 1997

7

displaying it. Table 7-3 lists some of the different output devices to which you
might want to send the image and the color space conversion that is necessary
for each case.

For detailed information about the color spaces that the library supports and
about converting image data from one color space to another, see “Color Space
Manipulation” on page 178.

The code fragment on this and the following pages shows how the ROTATION
attribute from a PhotoCD image is read and used, and how the image’s data is
converted to the RGB color space specified in CCIR Recommendation 709.

Table 7-3 Converting PhotoYCC Data to Another Color Space

Output Device Color-Space Conversion

True-color display Convert the data to an RGB color space, such as the
one named rgb709 in the XIL library.

Indexed-color display Convert the data to an RGB color space, such as the
one named rgb709 in the XIL library. Then, dither the
RGB image to an 8-bit image. For information about
XIL dithering operations, see “Dithering an Image” on
page 161.

Grayscale display Convert the data to a luminance-only color space, such
as the XIL color space y709 or ylinear .

Monochrome display Convert the data to a luminance-only color space, such
as the XIL color space y709 or ylinear . Then, dither
the 8-bit luminance data to a 1-bit image. For
information about XIL dithering operations, see
“Dithering an Image” on page 161.

Color printer Convert the data to a CMYK color space. The XIL
library supports a linear CMYK space named cmyk.

Code Example 7-1 Using the ROTATION attribute

XilSystemState state;
XilImage ycc_photocd_image;
XilImage rgb_photocd_image;
XilImage rotated_photocd_image;
XilImage display;
XilPhotoCDRotate rotation;
unsigned int width;

Reading Kodak PhotoCD Images 137

7

unsigned int height;
unsigned int nbands;
unsigned int datatype;
char* pathname = “my_photocd_image”;

/*
 * Open the XIL Library
 */
state = xil_open();

if (state == NULL) {
 fprintf(stderr, “Failed to open XIL library.\n”);
 return 1;
}

/*
 * Create the PhotoCD device image.
 */
ycc_photocd_image =
 xil_create_from_device(state, “SUNWPhotoCD”, NULL);

if (ycc_photocd_image == NULL) {
 fprintf(stderr, “Failed to construct SUNWPhotoCD device image.\n”);
 return 1;
}

/*
 * Set the file name. The default resolution is XIL_PHOTOCD_BASE.
 */
xil_set_device_attribute(ycc_photocd_image, “FILEPATH”, pathname);

/*
 * Get the rotation attribute and image’s width and height.
 */
xil_get_device_attribute(ycc_photocd_image,
 “ROTATION”, (void**)&rotation);

xil_get_info(ycc_photocd_image, &width, &height, &nbands, &datatype);

/*
 * Transpose (rotate) the image based on the rotation angle.
 * Depending upon the rotation angle, construct an image to store
 * the transpose results.

Code Example 7-1 Using the ROTATION attribute

138 XIL Programmer’s Guide—August 1997

7

 */
switch (rotation) {
 case XIL_PHOTOCD_CCW0:
 rotated_photocd_image = ycc_photocd_image;
 break;

 case XIL_PHOTOCD_CCW90:
 /*
 * Flip the image’s width and the height.
 */
 rotated_photocd_image =
 xil_create(state, height, width, nbands, datatype);
 xil_transpose(ycc_photocd_image,
 rotated_photocd_image, XIL_FLIP_90);
 xil_get_info(rotated_photocd_image, &width, &height, NULL, NULL);
 break;

 case XIL_PHOTOCD_CCW180:
 rotated_photocd_image =
 xil_create(state, width, height, nbands, datatype);
 xil_transpose(ycc_photocd_image,
 rotated_photocd_image, XIL_FLIP_180);
 break;

 case XIL_PHOTOCD_CCW270:
 /*
 * Flip the image’s width and the height.
 */
 rotated_photocd_image =
 xil_create(state, height, width, nbands, datatype);
 xil_transpose(ycc_photocd_image,
 rotated_photocd_image, XIL_FLIP_270);
 xil_get_info(rotated_photocd_image, &width, &height, NULL, NULL);
 break;
}

/*
 * Perform a color space conversion to rgb709.
 */
rgb_photocd_image =
 xil_create(state, width, height, nbands, datatype);

/*

Code Example 7-1 Using the ROTATION attribute

Reading Kodak PhotoCD Images 139

7

 * Set color spaces for color space conversion
 */
xil_set_colorspace(rotated_photocd_image,
 xil_colorspace_get_by_name(state, “photoycc”));
xil_set_colorspace(rgb_photocd_image,
 xil_colorspace_get_by_name(state, “rgb709”));

/*
 * Convert the image’s color space so it can be displayed
 */
xil_color_convert(rotated_photocd_image, rgb_photocd_image);

/*
 * ...code to open an X window of correct depth...
 */
display = xil_create_from_window(state, xdisplay, xwindow);

if (display == NULL) {
 fprintf(stderr, “Failed to construct display device\n”);
 return 1;
}

/*
 * Copy the RGB image to the display and continue to
 * redisplay on Expose events.
 */
xil_copy(rgb_photocd_image, display);

while (1) {
 XNextEvent(xdisplay, &event);
 if (event.xany.type == Expose) {
 xil_copy(rgb_photocd_image, display);
 } else if (event.xany.type == ButtonPress)
 break;
 }
}

/*
 * Destroy images.
 */
xil_destroy(display);
xil_destroy(rgb_photocd_image);

Code Example 7-1 Using the ROTATION attribute

140 XIL Programmer’s Guide—August 1997

7

if(rotated_photocd_image != ycc_photocd_image) {
 xil_destroy(rotated_photocd_image);
}

xil_destroy(ycc_photocd_image);

Code Example 7-1 Using the ROTATION attribute

141

Preparing Images for Display 8

To introduce you to programming with the XIL library, Chapter 2, “Basic XIL
Program,” presented an example program that read in an 8-bit grayscale image
and displayed it in an X window created from one of four X visuals. This
chapter looks at a revision of that example called display . The new example
can display images of several data types and images of more than one band
and was designed to illustrate how to handle some of the many display cases
you may encounter.

The first part of this chapter explains briefly how to build and run the
display example. The bulk of the chapter then discusses the most important
tasks performed in the example.

This chapter has the following main sections:

The chapter concludes with a list of all the cases handled in the program.

Converting a Single-Band Image to a Multiband Image page 142

Converting an XIL_SHORT Image to an XIL_BYTE Image page 145

Converting an RGB Image to an Indexed-Color Image and a Colormap page 147

Converting a 24-Bit Image to a 1-Bit Image page 148

Converting an 8-Bit Image to a 1-Bit Image page 150

Displaying a 1-Bit Image on a Monochrome Display page 150

142 XIL Programmer’s Guide—August 1997

8

Running the Display Program
The source files for the display program can be found in the
/usr/openwin/demo/xil/display directory. Table 8-1 lists these source
files and indicates what the code in each file does.

To run this example:

1. Change your working directory to /usr/openwin/demo/xil/display .

2. Build the program using the Makefile in that directory.

3. Execute the program from the directory in which you built it, using the
command line:
% display toys.header

The program displays an RGB image of a group of toys in an X window. To
stop the program, move your pointer into the program’s window, and click
any mouse button.

Converting a Single-Band Image to a Multiband Image
The display program approaches this problem in two ways: by passing the
source image through a lookup table and by replicating the source image in the
multiple bands of the destination image.

Passing the Source Image Through a Lookup Table

If there are only a few different values in the source image—for example, when
the source image is a 1-bit image—passing the source image through a lookup
table is an effective method of performing this conversion. For instance, if all

Table 8-1 Source Files for display

Source File Description

display.c Contains main() , which prepares different types of source
images to be copied to various types of display images

fileio.c Reads an image from a file and loads the image data into an
XIL image (is the same fileio.c that is used by the
example1 program)

window.c Creates the program’s X colormap and manages that colormap

Preparing Images for Display 143

8

the values in the source are 0 or 1, you can use a lookup table with only two
entries: one that specifies the values to appear in each band of the destination
for pixels that have a value of 0 in the source, and another that specifies the
values to appear in each band of the destination for pixels that have a value of
1.

For example, the program uses this method to prepare a bit image for display
in a 24-bit window. To make the source image compatible with the display
image, the program converts the source image to a 3-band, 8-bit image. To do
this, the example:

1. Creates a temporary image, retained_image , that has the same width and
height as the source image, but is 3 bands deep and contains XIL_BYTE
data. (This temporary image is copied later to the display.)

2. Creates the lookup table (an object of type XilLookup) shown in Figure 8-1.

Figure 8-1 Lookup Table

3. For each pixel in the source image, looks up the proper value in the left
column of the table and writes the three values to its right to the first,
second, and third bands of the corresponding pixel in retained_image .

0

1

0 0 0

255 255 255

Lookup
Index
(XIL_BIT)

Values to be written to
temporary image (XIL_BYTE)

144 XIL Programmer’s Guide—August 1997

8

The code that implements these steps is shown below.

Replicating the Source Image in the Bands of the Destination

The second method the example uses to convert a single-band source image to
a multiband destination image is to replicate the source image in each band of
the destination. To perform this task using the XIL library, you must first create
a child image representing each band of the destination and then copy the
source to each child image. Because any changes made to an XIL child image
affect the parent, these copies result in the source being copied to each band of
the destination.

...
#define BITSIZE 2
...
XilImage image = NULL;
XilImage retained_image = NULL;
...
XilLookup lookup = NULL;
Xil_unsigned8 lookupdata[] = {0, 0, 0, 255, 255, 255};
...
retained_image = xil_create(state, width, height, 3, XIL_BYTE);
lookup = xil_lookup_create(state, XIL_BIT, XIL_BYTE, 3,
 BITSIZE, 0, lookupdata);
xil_lookup(image, retained_image, lookup);

Preparing Images for Display 145

8

The display program converts a 1-band XIL_BYTE source image to a 3-band
XIL_BYTE image using the following code.

Converting an XIL_SHORT Image to an XIL_BYTE Image
Converting an XIL_SHORT image to an XIL_BYTE image is a two-step process.
First, you must rescale the values in the source image so that they fall in the
range 0 to 255. Then, you must cast the values in the source image to values of
type XIL_BYTE .

In the rescaling step, you could simply map the lowest possible value in the
source (-32768) to the lowest possible value in the destination (0) and the
highest possible value in the source (32767) to the highest possible value in the
destination (255). However, you’ll generally achieve better results by first
finding the extreme values in the source and then mapping the lowest value
actually in the source to 0 and the highest value to 255.

...
XilImage image = NULL;
XilImage retained_image = NULL;
XilImage band0 = NULL;
XilImage band1 = NULL;
XilImage band2 = NULL;
...
/*
 * Copy the grayscale image into each of the bands
/*
retained_image = xil_create(state, width, height, 3, XIL_BYTE);
band0 = xil_create_child(retained_image, 0, 0, width, height, 0,
 1);
band1 = xil_create_child(retained_image, 0, 0, width, height, 1,
 1);
band2 = xil_create_child(retained_image, 0, 0, width, height, 2,
 1);
xil_copy(image, band0);
xil_copy(image, band1);
xil_copy(image, band2);
...

146 XIL Programmer’s Guide—August 1997

8

The code that display uses to perform this task (in one instance) is as follows:

The call to xil_extrema() stores the source image’s highest value in high
and its lowest value in low . Then, the call to xil_rescale() maps the lowest
value in the image to 0 and the highest to 255. Once the values in image have
been brought into the proper range, the example casts them to values of type
XIL_BYTE . When casting a 16-bit value to an 8-bit value, xil_cast()
preserves the 8 least significant bits of each input value, which is what the
program requires.

...
#define CMAPSIZE 256
...
 /*
 * Rescale Parameters
 */
 float mult;
 float offset;
...
 /*
 * Range of data
 */
 float low;
 float high;
...
 /*
 * Remap the range of image data to 0 to 255
 */
 xil_extrema(image, &high, &low);
 mult = (CMAPSIZE - 1) / (high - low);
 offset = -((low * (CMAPSIZE - 1)) / (high - low));
 xil_rescale(image, image, &mult, &offset);

 /*
 * Cast the remapped image into each band of a 3 banded
 * byte image
 */
 xil_cast(image, band0);
 xil_cast(image, band1);
 xil_cast(image, band2);
...

Preparing Images for Display 147

8

Converting an RGB Image to an Indexed-Color Image and a Colormap
The display program prepares a true-color image to be shown on an
indexed-color display by performing an ordered dither on the source image.
The general procedure the example employs is to create a colorcube and a
dither mask and then to call the xil_ordered_dither() function. After this
operation, the program has a single-band version of the source image and a
colorcube that defines the RGB values to be associated with each value in the
indexed-color image. Before displaying the indexed-color image, the example
creates a virtual X colormap and writes the values in the XIL colorcube to the X
colormap.

Note – For a more detailed explanation of ordered dithering, see “Dithering an
Image” on page 161.

The code the example uses to perform the ordered dither is shown below.

The cc496 colorcube and the dm443 dither mask are default objects the library
makes available when it is initialized. The colorcube is appropriate for
dithering an RGB image to 216 colors (the indexes range from 38 to 253), and
dm443 is a 4-by-4 dither mask.

...
XilImage image = NULL;
XilImage display_image = NULL;
XilImage retained_image = NULL;
...
XilLookup colorcube = NULL;
...
XilDitherMask dithermask;
...
retained_image = xil_create(state, width, height, 1, XIL_BYTE);
colorcube = xil_lookup_get_by_name(state, “cc496”);
dithermask = xil_dithermask_get_by_name(state, “dm443”);
...
set_colormap(display_image, xdisplay, xwindow, colorcube);
xil_ordered_dither(image, retained_image, colorcube,
 dithermask);
...

148 XIL Programmer’s Guide—August 1997

8

Note – These objects could also have been created with the
xil_colorcube_create() and xil_dithermask_create() functions.

Before the indexed-color image can be displayed, the color values in the
colorcube colorcube must be stored in color cells 38 to 253 in the
application’s X colormap. This task is handled by the set_colormap()
function. Note that the colormap data that is being loaded into the X colormap
is taken from the lookup table that was used as the colorcube for the dithering
operation.

The XIL library also includes two other types of dithering operations that you
can use in preparing a true-color image to be shown on an indexed-color
display. The functions that perform these dithering operations are called
xil_nearest_color() and xil_error_diffusion() . For further
information about these functions, see “xil_nearest_color()” on page 164 and
“xil_error_diffusion()” on page 170.

Converting a 24-Bit Image to a 1-Bit Image
The example uses a two-step process to convert an RGB image to a 1-bit image.
The first step is to convert the 24-bit source image to an 8-bit grayscale image
by extracting luminance information from the source image. Using the XIL
library, you perform this task by converting the source image from the RGB
color space to the Y color space. The destination image for this color-space
conversion must be a single-band image.

Preparing Images for Display 149

8

The code display used to perform this color-space conversion is as follows:

The second step in the process is to dither the 8-bit image to a 1-bit image
using either the xil_ordered_dither() or xil_error_diffusion()
function. If execution speed is your primary concern, use the ordered-dither
function. To obtain the best quality image, use the error-diffusion function. For
more information about these functions, see “xil_ordered_dither()” on page 174
and “xil_error_diffusion()” on page 170.

The display example dithers the image using xil_error_diffusion() .

XilImage image = NULL;
XilImage bit_image = NULL;
...
XilColorspace rgb_cspace;
XilColorspace ylinear_cspace;
...
bit_image = xil_create(state, width, height, 1, XIL_BYTE);
...
rgb_cspace = xil_colorspace_get_by_name(state,"rgblinear");
xil_set_colorspace(image, rgb_cspace);
ylinear_cspace = xil_colorspace_get_by_name(state, "ylinear");
xil_set_colorspace(bit_image, ylinear_cspace);
xil_color_convert(image, bit_image);
...

...
XilKernel distribution;
...
XilLookup colorcube = NULL;
int multipliers = -1;
unsigned int dimensions = 2;
...
retained_image = xil_create(state, width, height, 1, XIL_BIT);
distribution = xil_kernel_get_by_name(state, “floyd-steinberg”);
colorcube = xil_colorcube_create(state, XIL_BIT, XIL_BYTE, 1, 0,
 multipliers, dimensions);
xil_error_diffusion(bit_image, retained_image, colorcube,
 distribution);
...

150 XIL Programmer’s Guide—August 1997

8

Converting an 8-Bit Image to a 1-Bit Image
This task is the same as the second step described in the preceding section. You
should dither the 8-bit image to a 1-bit image using either the
xil_ordered_dither() or the xil_error_diffusion() function. As
noted above, the first of these functions is the fastest, but the second generally
produces better looking results.

Displaying a 1-Bit Image on a Monochrome Display
The display program is set up to deal with XIL_BIT images in which 0’s
represent black pixels and 1’s represent white pixels (the normal case). In the X
colormap for monochrome displays supported by the XIL library, however, 0
represents white and a 1 represents black; therefore, the display program
takes the one’s complement of the source image (using xil_not()) before
displaying it.

Types of Images Displayed
This section simply lists the cases handled by the display example so that
you can quickly determine whether a case you’re interested in is covered. In
Table 8-2, the types of images the program can process are shown in the left
column, and the supported X visuals are listed in the top row. A check mark
indicates that the program can display a particular type of image in an X
window created using a particular X visual.

Table 8-2 Cases Handled by the display Program

TrueColor
 24 Bits

PseudoColor
8 Bits

GrayScale
8 Bits

StaticGray
8 Bits

StaticGray
1 Bit

XIL_BIT
1 Band

✔ ✔ ✔ ✔

XIL_BYTE
1 Band

✔ ✔ ✔

XIL_BYTE
3 Bands

✔ ✔ ✔ ✔

XIL_SHORT
1 Band

✔ ✔ ✔ ✔

Preparing Images for Display 151

8

Note – For an explanation of X visuals and their uses, see the Xlib Programming
Manual.

152 XIL Programmer’s Guide—August 1997

8

153

Presentation Functions 9

This chapter covers a group of functions you are likely to use when displaying
or printing images.

This chapter has the following main sections:

Copying an Image to the Display
The xil_copy() function lets you copy a source image to a destination image.
xil_copy() copies each plane (bit) in a source-image pixel to the destination
image pixel, replacing the value in each corresponding plane in the destination
pixel. To control the pixel planes copied from the source to the destination, you
can define a plane mask to specify the bit planes to copy, then call
xil_copy_with_planemask() to perform the copy.

The xil_copy() and xil_copy_with_planemask() functions are
discussed separately in the following sections.

Copying an Image to the Display page 153

Rescaling an Image page 158

Casting an Image From One Data Type to Another page 160

Dithering an Image page 161

Color Space Manipulation page 178

Black Generation (preparing CMY images for printing) page 186

154 XIL Programmer’s Guide—August 1997

9

Copying All Bit Planes

The simplest way to display an image is to use xil_copy() to copy your
source image to the display. The xil_copy() function copies each plane (bit)
in a source image pixel to the destination image pixel, replacing the value in
each corresponding plane in the destination pixel. For example, an eight-bit-
deep frame buffer has eight bit-planes; if you use xil_copy() to copy an
XIL_BYTE image to that frame buffer, all eight planes of each source pixel are
copied to all eight planes in the frame buffer’s destination pixel.

For xil_copy() to work, you must have created a display image that serves
as the destination for the copy. (For information about what display images are
and how you create them, see “Display Images” on page 45.) In addition, the
source image—the image to be displayed—and the display image must use the
same number of bits to represent a pixel. Table 9-1 lists the combinations of
source and display images that match in this way.

If your source and destination images match, you can display the source image
using code similar to this.

Besides performing this kind of explicit copy using xil_copy() , you can also
request that an image processing function (like a rotate function) copy its
output to the display. You do this by specifying a display image as the

Table 9-1 Matching Source and Display Images

Source Image Type Required Display Image Depth

Single-band XIL_BIT image One bit

Single-band XIL_BYTE image Eight bits

Three-band XIL_BYTE image Twenty-four bits

XilImage src, display_image;

xil_copy(src, display_image);

Presentation Functions 155

9

destination for the operation. For example, the following call to
xil_rotate() rotates the source image and writes the rotated image to the
display.

Note – Before this type of operation will work, the source and display images
must use the same number of bits to represent a pixel. If your source and
display images do not match in this respect, you must perform one or more of
the tasks discussed in this chapter before displaying your image.

If overlapping but not coincident sibling images (children of the same parent)
are specified as the source and destination, xil_copy() detects the overlap
and correctly generates the destination image. All other operations generate a
warning message under these conditions and have undefined results, as
mentioned in the discussion on parent and child images on page 58.

Copying Only the Planes Defined in a Plane Mask

The xil_copy() function copies each plane (bit) in a source-image pixel to
the destination image pixel, replacing the value in each corresponding plane in
the destination pixel. To control the pixel planes copied from the source to the
destination, you can define a plane mask to specify the bit planes to copy. Then
call the xil_copy_with_planemask() function to perform the copy. The
prototype for xil_copy_with_planemask() is shown here.

A typical reason to copy with plane mask control is to overlay one image over
another. Because you can copy specific planes from each source image pixel,
the underlying image isn’t visible where the overlay is drawn; however, all
planes from the underlying image are still available and can be refreshed in the

XilImage src, display_image;

xil_rotate(src, display_image, “bilinear”, -0.7854);

void xil_copy_with_planemask(XilImage src, XilImage dst,
 unsigned int planemask[]);

156 XIL Programmer’s Guide—August 1997

9

destination by rendering it with another plane mask. Overlays can improve
performance by reducing the amount of graphic information that has to be
redrawn. They can also be used to highlight graphics for selection.

Note – Because read/write color cells can be allocated only in PseudoColor
and DirectColor visuals, you need to provide an alternative technique to
overlays for other visuals. You may also want to provide an alternative in case
the overlay fails. For more information on overlays and their advantages and
disadvantages, see the Xlib Programming Manual.

When you use xil_copy_with_planemask() , each pixel in the destination
image is defined by the following operation:

dst = (dst & ~mask) | (src & mask)

Here, dst is the destination image, mask is the plane mask, and src is the
source image. Thus, if the plane-mask bit is “on,” the copy overwrites the
corresponding bit in the destination image; otherwise, the bit in the destination
image is unchanged.

As an example, assume you have two single-band XIL_BYTE images you want
to overlay. Table 9-2 shows the plane masks you might use.

In Table 9-2, Mask 1 has only its low order bit turned on; thus, it ensures that
only the source image’s low order bit is copied to the destination. Mask 2, on
the other hand, has its seven high-order bits turned on, so it ensures that the
source image’s seven high-order bits are copied to the destination.

Table 9-2 Plane Masks for an Overlay

Plane Mask Binary Base Hexadecimal Base Decimal Base

Mask 1 00000001 0x1 1

Mask 2 11111110 0xfe 254

Presentation Functions 157

9

The following code shows how you might define and use the plane masks
shown in Table 9-2.

The plane mask must be an array of unsigned integers. The number of array
elements must match the number of image bands; each array element specifies
the plane mask for the corresponding band in the destination image. Both the
source and destination images must have the same type and number of bands,
and in-place operations are supported.

When using a plane mask for copying an image to the display, the depth of the
window is the upper limit on the number of meaningful bits you can set in the
plane mask, and you must manipulate the colormap to get a reasonable
display. For more information on allocating color cells for overlays, see the Xlib
Programming Manual.

In addition to overlays, you can use a plane mask for double buffering on
hardware that doesn’t have separate memory buffers. For details on XIL’s
double buffering support, see “Double Buffering,” below.

Double Buffering

On hardware that has separate memory buffers, the XIL library directly
supports double buffering of device images.

The xil_create_double_buffered_window() function creates an image
associated with a specified X window. This function works similarly to
xil_create_from_window() except it attempts to establish hardware
double buffering.

The active buffer represents the buffer that will be affected when an operation
uses a double-buffered image. At creation of a double-buffered image, the
active buffer is the back buffer.

XilImage src1, src2, dst;
unsigned int planemask1[1], planemask2[1];

planemask1[0] = 0x1;
planemask2[0] = 0xfe;

xil_copy_with_planemask(src1, dst, planemask1);
xil_copy_with_planemask(src2, dst, planemask2);

158 XIL Programmer’s Guide—August 1997

9

xil_get_active_buffer() returns the current XilBufferId for the active
buffer. XilBufferId is an enumeration type that can be one of the following
enumeration constants:

• XIL_FRONT_BUFFER
• XIL_BACK_BUFFER

xil_set_active_buffer() sets the active buffer to either
XIL_FRONT_BUFFER or XIL_BACK_BUFFER. Changing the active buffer to
XIL_FRONT_BUFFER does not affect the buffer contents.

The xil_swap_buffers() function swaps the the contents of the back buffer
to the front buffer. The contents of the back buffer is undefined after the swap.

Double buffering is useful for animation because you can render an image in a
hidden memory buffer while you display another image in a second buffer.
Once rendering is complete in the hidden buffer, you can display its contents,
then hide the second buffer and render a new image into it. Rendering into the
hidden buffer and quickly switching between buffers smooths the transition
between images.

As with overlays, double buffering requires you to toggle between two
colormaps as you change plane masks between images. For more information
on using double buffering for animation, consult Foley, et al. Computer
Graphics: Principles and Practice (see Appendix E, “Bibliography”).

Rescaling an Image

The xil_rescale() function maps the values in each band of an image from
one range (for example, 0 to 2047) to another range (for example, 0 to 255). The
function performs this mapping by multiplying each value in a band by one
constant and then adding a constant to the result of the multiplication.

The prototype for xil_rescale() is shown below.

The src and dst parameters are handles to the source and destination images.
The scale parameter is an array of floating-point numbers that serve as the
constants by which values in the bands of the source image are multiplied. The

void xil_rescale(XilImage src, XilImage dst, float *scale,
 float *offset);

Presentation Functions 159

9

values in band 0 are multiplied by scale[0] , the values in band 1 are
multiplied by scale[1] , and so on. Therefore, the number of elements in the
array must match the number of bands in the image. The final parameter,
offset , is an array of floating-point numbers, one of which is added to the
scaled values in each band of the source image.

There are many cases in which this function is useful as you prepare an image
for display. Two are mentioned below.

One obvious case is that in which you want to display an image containing
XIL_SHORT values. Say, for example, you want to display a single-band
XIL_SHORT image in an X window created using an 8-bit GrayScale visual.
The values in your image may range from -32768 to 32767, but the values you
write to the display image must fall in the range 0 to 255 (or some subset of
that range). To handle this situation, you could perform these steps:

1. Use the xil_extrema() function to determine the minimum and
maximum values in your source image.
For a description of xil_extrema() , see the section entitled “Converting
an XIL_SHORT Image to an XIL_BYTE Image” on page 145. Your image
looks better when displayed if you map the minimum value to 0 and the
maximum value to 255, as opposed to mapping -32768 to 0 and 32767 to 255.
In the latter case, you might wind up with very few gray levels in the image
to be displayed.

2. Rescale the values in your XIL_SHORT image so that they fall in the range
0 to 255.
You might use the following code to accomplish this step.

XilImage src, dst;
float maximum[1], minimum[1];
float multiplier[1], offset[1];

multiplier[0] = 255 / (maximum[0] - minimum[0]);
offset[0] = -((minimum * 255) / (maximum[0] - minimum[0]));
xil_rescale(src, dst, multiplier, offset);

160 XIL Programmer’s Guide—August 1997

9

3. Cast the values in the rescaled image to be of type XIL_BYTE .
Although you have rescaled your image so that its values fall in the range 0
to 255, those values are still 16-bit signed values. Before copying your image
to the display, you must use the xil_cast() function to create an
XIL_BYTE version of the image. For more information about xil_cast() ,
see “Casting an Image From One Data Type to Another,” below.

Here’s another case in which you may need to rescale an image before
displaying it. Suppose you want to display an 8-bit grayscale image in an 8-bit
GrayScale window, but you do not want to use the currently installed X
colormap in displaying it. You want to create a new virtual X colormap, store a
grayscale ramp in that colormap, and have it installed when your application
is active. If you write values to all 256 color cells in the virtual colormap,
you’re almost certainly going to see colormap flashing when the colormap is
installed, so you may decide not to write values to the first 16 color cells—to
write all the values needed to display your image in color cells 17 through 255.
This strategy requires that you rescale the values in your image so that they fall
in the range 17 to 255.

Casting an Image From One Data Type to Another
The xil_cast() function casts an XIL image from one data type to another.
The function’s prototype is shown below.

The src parameter is a handle to your source image, and dst is a handle to a
destination image. This destination must have the same width, height, and
number of bands as the source image and must have the data type to which
you want to cast the source image.

There are a number of instances in which you may need to use this function as
you prepare an image for display. For example, you may have a single-band
XIL_SHORT image that you want to display in an 8-bit window. To do this you
need to follow these steps.

void xil_cast(XilImage src, XilImage dst);

Presentation Functions 161

9

1. Rescale the image.
Unless the values in your XIL_SHORT image already fall in the range 0 to
255, you must use the xil_rescale() function to map them to that range,
or a subset of that range. For more information about rescaling images, see
“Rescaling an Image” on page 158.

2. Cast the XIL_SHORT image to an XIL_BYTE image.
Before you can display your image in an 8-bit window, you must cast the
16-bit values in the source image to 8-bit values, as shown in this code
fragment.

Similarly, if you have an XIL_BIT image that you want to display in an 8-bit
window, you must cast the source image to an XIL_BYTE image before
displaying it. In this cast, the values 0 and 1 in the XIL_BIT image are cast to
indices 0 and 1 in the XIL_BYTE image. If you want different indices, convert
the image by passing it through a lookup table rather than by casting its data
type. For information about lookup tables, see “Passing an Image Through a
Lookup Table” on page 271.

Note – When casting the image so you can display it, you may want to use a
display image as the destination image for the cast. However, if you intend to
use the converted image again, you can cast the source image to an interim
destination image, then use xil_copy() to copy the interim image to the
display.

Dithering an Image
The XIL library provides several functions you can use to prepare images for
display by dithering them. Before looking at these functions, though, this
section explains what it means to dither an image in an XIL application.

XilImage short_image, byte_image;
unsigned int width, height, nbands; /* Dimensions of images */

byte_image = xil_create(state, width, height, nbands,
 XIL_BYTE);
xil_cast(short_image, byte_image);

162 XIL Programmer’s Guide—August 1997

9

What Is Dithering?

First, you need to know that the XIL library gives you the ability to pass a
single-band image of any data type through a lookup table to produce a
single-band or multiband image of the same or another data type. The lookup
table used for this operation is a data structure of type XilLookup and has
(among others) the following attributes:

• An input data type
• An output data type
• A number of bands on the output side

Figure 9-1 shows a single-band XIL_BIT image being passed through a lookup
table to produce a three-band XIL_BYTE image.

Figure 9-1 XIL Lookup Operation

A dither operation is an inverse lookup operation. As Figure 9-2 indicates, the
dither operation matches a value (or values) in the source image—the image to
be dithered—with a value from the output side of the lookup table being used,
and then writes the corresponding value from the input side of the lookup table
to a single-band destination image.

0

1 2550

0 0 0 0 0

0

0

0

0

0

1

1 255 255 255

255

255

255

255

255

Source image Lookup table Destination image

Output side: three bands,

XIL_BYTE data

Input side: XIL_BIT data

Presentation Functions 163

9

Note – Since the values in the source image don’t actually match values in the
output side of the table, each source-image value is paired with the value in
the table closest to it.

Figure 9-2 Dithering an Image

The purpose of this dithering operation is to produce an image that, when
mapped forward through the lookup table, produces an image as similar as
possible to the original source image. Another way to state this is that the
dithering operation produces an image that, when displayed using the lookup
table as its colormap, looks as much like the original as possible.

Such dithering operations have many applications, but a couple of them are by
far the most common:

• To convert a true-color (3-band XIL_BYTE) image to a pseudocolor (1-band
XIL_BYTE) image

• To convert a grayscale (1-band XIL_BYTE) image to a monochrome (1-band
XIL_BIT) image

0

1

2

3

4

26

77

128

179

230

96 31 219

187 121 73

255 0 155

1 0 4

3 2 1

4 0 3

Source imageLookup tableDestination image

Output side: one band,

XIL_BYTE data

Input side: XIL_BYTE data

164 XIL Programmer’s Guide—August 1997

9

Methods of Dithering

This section contains information about the three functions the XIL library
provides for performing dithering operations: xil_nearest_color() ,
xil_error_diffusion() , and xil_ordered_dither() .

xil_nearest_color()

The xil_nearest_color() function is the simplest of the dithering
functions in that its algorithm for performing the inverse lookup described
above is the most straightforward. This algorithm includes no provision for
eliminating unwanted contours in the dithered image.

The function prototype for xil_nearest_color() is shown below.

The src and dst parameters are handles to the source image—the image to be
dithered—and the destination image. The lookup parameter is a handle to the
lookup table through which the source image is passed to produce the
destination. There are actually two types of lookup tables that can be referred
to here. One is the generic lookup table that is used for lookup operations, and
the other is a special type of lookup table called a colorcube. The basic
difference between the two types of lookup tables is this: when you create a
generic lookup table, you specify the dimensions of the table and the data to be
stored in the table; when you create a colorcube, you specify the dimensions of
the colorcube, and the function you use to create the colorcube fills in the data
in the table for you. The sections below provide additional information about
these two types of lookup tables.

Lookup Tables
You can create a generic lookup table using either of two functions:
xil_lookup_create() or xil_choose_colormap() . In either case,
xil_nearest_color() pairs the values in your source image with values on
the output side of the lookup table by searching for nearest matches. This
means that for each pixel in your source image, xil_nearest_color() must

void xil_nearest_color(XilImage src, XilImage dst,
 XilLookup lookup);

Presentation Functions 165

9

examine each entry in the lookup table. This is a time consuming process.
However, generic lookup tables do give you the best control over the contents
of your lookup table and, therefore, over the quality of the dithered image.

The function prototype for xil_lookup_create() is shown below.

For more information on the parameters to xil_lookup_create() and on
creating a generic lookup table, see “Creating a Lookup Table” on page 272.

Here’s an example of a time when you might want to use this function to
create your lookup table: You have a true-color image that you want to dither
to a single-band XIL_BYTE image, and you want to be able to display the
dithered image using the currently installed X colormap. The code you use to
create this lookup table might look like this.

Using this table for your dither operation enables you to produce a dithered
image that contains the maximum number of unique values (256) and to
display the image without having to write anything to the X colormap. You
won’t have to worry about colormap flashing. The disadvantage of this
method is that there may be few or no exact matches between the RGB values
in your source image and the RGB values on the output side of the lookup
table. Clearly, this can affect how accurately the dithered image, when
displayed, reflects the original source image.

The other function you might use to create a lookup table for dithering the
true-color image mentioned above to a pseudocolor image is
xil_choose_colormap() . This function returns the best lookup table of a

XilLookup xil_lookup_create(XilSystemState state,
 XilDataType input_datatype, XilDataType output_datatype,
 unsigned int output_nbands, unsigned int num_entries,
 short first_entry_offset, void *table_data);

/* Read the color values stored in the X colormap and write them
 to an array of Xil_unsigned8. The values should be written
 in the following order: b 0, g 0, r 0, b 1, g 1, r 1, and so on.
 Let’s say the array is called table_data */

xil_lookup_create(state, XIL_BYTE, XIL_BYTE, 3, 256, 0,
 table_data);

166 XIL Programmer’s Guide—August 1997

9

particular size to use in dithering the image. The best lookup table is defined to
be the one that contains as many as possible of the most frequently used colors
in the source image.

The function prototype for xil_choose_colormap() is shown below.

When you use this function to create your lookup table, there are two basic
approaches you might take to dithering your true-color image. One approach
is to use xil_choose_colormap() to create a lookup table that contains 256
entries. This strategy produces a dithered image that looks very much like the
original source image when displayed because the 256 most frequently used
colors in the original are reproduced exactly. However, you also have to get 256
specific colors into a hardware colormap to display your image. This leads to
colormap flashing on most displays.

A second approach is to use xil_choose_colormap() to create a lookup
table with fewer than 256 entries, say 240 entries. You still have most of the
colors you need to display your image, and you can write those colors to your
hardware colormap (if you only have one) without overwriting the first 16
entries in that colormap. This should prevent your application from
contending with the window system tools for colors.

Note – xil_choose_colormap() accepts only 3-banded XIL_BYTE source
images.

Colorcubes
You create a colorcube using the xil_colorcube_create() function. The
prototype for this function is shown below.

XilLookup xil_choose_colormap(XilImage src, unsigned int size);

XilLookup xil_colorcube_create(XilSystemState state,
 XilDataType input_type, XilDataType output_type,
 unsigned int nbands, short offset, int multipliers[],
 unsigned int dimensions[]);

Presentation Functions 167

9

Note that the parameters to this function are similar to those for
xil_lookup_create() . However, you don’t specify a number of entries in
the lookup table or the data to be loaded into the table. Instead you provide
arrays called dimensions and multipliers . The number of elements in both
of these arrays must equal the number of bands in the image being dithered.

To understand the roles of dimensions and multipliers , consider the
situation where you want to dither an XIL_BYTE RGB image to a 1-band
XIL_BYTE image. To handle this case, you might declare and initialize
dimensions and multipliers shown below.

These values would lead to the creation of a colorcube that would dither blue
values in the source image to one of 4 blue levels, green values to one of 9
green levels, and red values to one of 6 red levels. You could picture this
colorcube as a cube with dimensions of 4, 9, and 6, but it’s probably more
helpful to think of it as a lookup table with three bands on the output side.
Figure 9-3 shows what the first 22 elements of the 216-element table would
look like.

unsigned int dimensions[] = {4, 9, 6};
int multipliers[] = {1, 4, 36};

168 XIL Programmer’s Guide—August 1997

9

Figure 9-3 Colorcube for Dithering a True-Color Image to a Pseudocolor Image

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

0 0 0

85

170

255

85

170

255

0 32

0

0

0

32

32

32

85

170

255

0

85

170

255

0

85

170

255

0

85

0

64

64

64

64

96

96

96

96

128

128

128

128

159

159

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Blue
values

Green
values

Red
values

Values to be written
to indexed-color
image.

Presentation Functions 169

9

This illustration should help clarify the significance of the three elements of
multipliers . The multipliers[0] element indicates the distance between
changes in blue levels on the output side of the table, multipliers[1]
indicates the distance between changes in green levels, and multipliers[2]
indicates the distance between changes in red levels. That is, the blue level
changes with each entry, the green level changes every fourth entry, and the
red level changes every thirty-sixth entry.

Note – The elements of multipliers can be negative numbers. Negative
numbers indicate that the values in a color ramp should appear in decreasing
as opposed to increasing order.

The values in the table are calculated by xil_colorcube_create() based on
the dimensions and multipliers you supply. This means that when you dither
an image using a colorcube, the dither function does not need to search the
output side of a lookup table to find a set of values. Instead, it can calculate the
value to be written to the dithered image using the values stored in the
dimensions and multipliers arrays. As a result, dithering operations that
use a colorcube are much faster than those that use a generic lookup table.
What you give up is control over the exact contents of the colorcube.

One other note about colorcubes. Although they are called colorcubes,
colorcubes need not have three dimensions. As mentioned earlier, a colorcube
has a number of dimensions equal to the number of bands in the image to be
dithered. Therefore, to create a colorcube suitable for dithering a grayscale
image to a monochrome image, you might define dimensions and
multipliers as follows.

Note – The XIL library creates two colorcubes when you initialize the library.
One of these has the dimensions 4:9:6 and is useful for dithering RGB images
to 216 colors. The other has the dimensions 8:5:5 and is useful for dithering
YCbCr images to 200 colors. To get a handle to one of these colorcubes, use the
xil_lookup_get_by_name() function.

unsigned int dimensions[] = {2};
int multipliers[] = {-1};

170 XIL Programmer’s Guide—August 1997

9

In addition to xil_colorcube_create() , the XIL library contains the
colorcube-related functions listed and described in Table 9-3.

xil_error_diffusion()

The xil_error_diffusion() function is similar to
xil_nearest_color() , but in addition to performing an inverse lookup, it
uses a process called error diffusion to deal with any difference between a
source-image pixel value and a value on the output side of a lookup table with
which that pixel value is matched. The difference (or error) is distributed to the
source-image pixels immediately to the right of and below the last pixel
processed.

The function prototype for xil_error_diffusion() is shown below.

The first three parameters are the same as the parameters to
xil_nearest_color() . The src parameter is a handle to your source image,
and dst is a handle to your destination image. The lookup parameter can be
either a generic lookup table or a special type of lookup table called a
colorcube. For information about these lookup tables, see “Lookup Tables” on
page 164 and “Colorcubes” on page 166. The final parameter, distribution ,
is an error-distribution kernel.

Table 9-3 Functions for Managing Colorcubes

Function Description

xil_lookup_get_colorcube() Determines whether a lookup table is a
colorcube or a generic lookup table

xil_lookup_get_colorcube_info() Determines whether a lookup table is a
colorcube and, if it is, returns the
dimensions and multipliers used to
create the colorcube and the colorcube’s
origin

void xil_error_diffusion(XilImage src, XilImage dst,
 XilLookup lookup, XilKernel distribution);

Presentation Functions 171

9

Note – XIL kernels (data structures of type XilKernel) are used primarily for
convolution operations, which are discussed in “Filtering an Image” on
page 257. The utility functions that affect kernels are also discussed in that
section.

You create the error-distribution kernel using the xil_kernel_create()
function, whose function prototype is shown below.

The width and height parameters determine the size of the kernel, keyx and
keyy determine the kernel’s origin, and data is a pointer to the floating-point
values to be stored in the kernel. For example, the code below creates a 3-by-3
kernel with an origin of 1,1.

Note – The library provides a special shorthand method of creating the kernel
shown above because it is used so commonly in error-diffusion operations.
This method is to call the xil_kernel_get_by_name() function using a
name of “floyd-steinberg” .

Figure 9-4 shows what this kernel looks like.

XilKernel xil_kernel_create(XilSystemState system_state,
 unsigned int width, unsigned int height, unsigned int keyx,
 unsigned int keyy, float *data);

XilKernel kernel;
float kernel_data[] = {
 0/16.0, 0/16.0, 0/16.0,
 0/16.0, 0/16.0, 7/16.0,
 3/16.0, 5/16.0, 1/16.0
};

kernel = xil_kernel_create(state, 3, 3, 1, 1, kernel_data);

172 XIL Programmer’s Guide—August 1997

9

Figure 9-4 Error-Distribution Kernel

Note – The value of the kernel’s origin and of the elements above and to the
left of the origin must be 0 when you’re calling xil_error_diffusion() .

Here’s how xil_error_diffusion() uses the kernel. Say that you’re
dithering a grayscale image with values in the range 0 to 255 to a grayscale
image with values in the range 0 to 4. This situation is shown in Figure 9-5.

Figure 9-5 Using xil_error_diffusion() to Dither an Image

0/16 0/16 0/16

0/16 0/16 7/16

3/16 5/16 1/16

Origin

0

1

2

3

4

26

77

128

179

230

96 31 219

187 121 73

255 0 155

1 0 4

3 2 1

4 0 3

Source imageLookup tableDestination image

Presentation Functions 173

9

When the pixel in the middle of the top scanline of the source image (31) is
passed through the lookup table, it is matched with a 26, so a 0 is written to the
destination image. When the destination is displayed using the lookup table as
its colormap, this pixel has the value 26. Thus, in the dither-and-reconstruction
process, there is an error of 5 (31 - 26).

To counteract the loss of data inherent in this process,
xil_error_diffusion() distributes this error before passing the next pixel
(219) through the lookup table. The way in which the error is distributed
depends on the kernel created earlier. See Figure 9-6 for an example.

Figure 9-6 Error Diffusion

The kernel is laid on top of the source image so that its origin aligns with the
last pixel to be passed through the lookup table. Before the next pixel is passed
through, the following processing takes place:

• The pixel at 0,2 is set to 219 + (5 * (7 / 16.0))
• The pixel at 1,0 is set to 187 + (5 * (3 / 16.0))
• The pixel at 1,1 is set to 121 + (5 * (5 / 16.0))

96 31 219

187 121 73

255 0 155

0/16 0/16 0/16

0/16 0/16 7/16

3/16 5/16 1/16

Source image

Kernel

174 XIL Programmer’s Guide—August 1997

9

• The pixel at 1,2 is set to 73 + (5 * (1 / 16.0))

This processing is fairly time-consuming, but can greatly reduce contouring in
the dithered image.

xil_ordered_dither()

The XIL library’s third dithering function is xil_ordered_dither() . Like
xil_nearest_color() and xil_error_diffusion() ,
xil_ordered_dither() processes an image by performing an inverse
lookup. However, two characteristics distinguish xil_ordered_dither()
from the other dithering functions.

• The lookup table the function uses to do its job must be a colorcube; it
cannot be a generic lookup table. (For information about the differences
between colorcubes and generic lookup tables, see “Lookup Tables” on
page 164 and “Colorcubes” on page 166.)

• xil_ordered_dither() makes use of an XIL data structure called a
dither mask to help eliminate contouring in the dithered image

The function prototype for xil_ordered_dither() is shown below.

The parameters src and dst are handles to the source and destination images,
and lookup is the lookup table to be used for the dither operation. As
mentioned above, this lookup table must be a colorcube; that is, it must have
been created with the xil_colorcube_create() function—or
xil_lookup_get_by_name() function. The final parameter, mask, is the
dither mask, a data structure of type XilDitherMask .

You create the dither mask using the xil_dithermask_create() function,
whose prototype is shown below.

void xil_ordered_dither(XilImage src, XilImage dst,
 XilLookup lookup, XilDitherMask mask);

XilDitherMask xil_dithermask_create(XilSystemState state,
 unsigned int width, unsigned int height,
 unsigned int nbands, float *data);

Presentation Functions 175

9

The width and height parameters define the width and height of the dither
mask in pixels. These values are user defined. The next parameter, nbands ,
determines the number of bands in the dither mask. This number must match
the number of bands in the image being dithered. Finally, data is a pointer to
the data to be stored in the dither mask. All the values in the mask must fall in
the range 0.0 to 1.0. For example, the code below creates a 1-band, 4-by-4 dither
mask.

Note – When you initialize the XIL library, four standard dither masks are
created: 1- and 3-band 4-by-4 masks and 1- and 3-band 8-by-8 masks. To get a
handle to one of these masks, you use the xil_dithermask_get_by_name()
function.

Here’s how the mask is used. Assume that you’re dithering a grayscale image
with values in the range 0 to 255 and that the destination is to contain values in
the range 0 to 15. First, think of the 4-by-4 dither mask as having been
replicated over the entire source image, as depicted in Figure 9-7.

XilDitherMask mask;
float mask_data[] = {
 0/16.0, 8/16.0, 2/16.0,10/16.0,
 12/16.0, 4/16.0,14/16.0, 6/16.0,
 3/16.0,11/16.0, 1/16.0, 9/16.0,
 15/16.0, 7/16.0,13/16.0, 5/16.0
}

mask = xil_dithermask_create(state, 4, 4, 1, mask_data);

176 XIL Programmer’s Guide—August 1997

9

Figure 9-7 Dither Mask Replicated over a Source Image

At this point, each pixel in each 4-by-4 block of the image has been associated
with (in this case) a unique dither-mask value. For each pixel in the image, the
xil_ordered_dither() function performs the following sequence:

1. It passes the value through the lookup table.

The function actually divides values in the source image by 17 (the number
of values that can be represented in 8 bits divided by the length of the
colorcube minus one). That is, if no further processing were to take place, a
200 in the source image would map to an 11 since 200 divided by 17 equals
11.76.

2. It considers the dither-mask value associated with the source-image pixel
value.

The dither function now compares the fractional part of the quotient from
the division operation with the source pixel’s dither-mask value. If the
fractional part is greater than the dither-mask value, the dividend shown
above (11) is incremented by one, so a 12 is written to the destination image.
Otherwise, an 11 is written to the image.

When you use the dither mask in this way, you’re essentially performing
averaging. This averaging helps prevent undesirable contours from appearing
in the dithered image.

8-by-8 source image

Presentation Functions 177

9

Table 9-4 lists and describes the XIL utility functions that affect dither masks.

When to Use Each Dithering Function

When you’re trying to decide on the best way to perform a dither operation,
it’s helpful to think of the matrix shown in Table 9-5.

If you look at the right column—labeled “Colorcube”—you’ll see that each of
the dithering functions can perform its inverse lookup using a colorcube. If
you compare the functions used with a colorcube, you’ll see that choosing one
over another involves a trade-off between speed and quality. The
xil_nearest_color() function is the fastest, but produces the poorest
quality image, and xil_error_diffusion() is the slowest, but produces the
best quality image. The xil_ordered_dither() function is somewhat faster
than xil_error_diffusion() , but does not produce quite as clear an image.

Table 9-4 Utility Functions for Dither Masks

Function Description

xil_dithermask_destroy() Deallocates the memory used by a dither mask

xil_dithermask_get_height() Returns the height of a dither mask in pixels

xil_dithermask_get_width() Returns the width of a dither mask in pixels

xil_dithermask_get_nbands() Returns the number of bands in a dither mask

xil_dithermask_create_copy() Returns a copy of a dither mask

xil_dithermask_set_name() Sets the name of a dither mask

xil_dithermask_get_name() Returns a copy of a dither mask’s name

xil_dithermask_get_values() Returns a copy of the internal values in a
dither mask

Table 9-5 Review of Dithering Operations

Function
Generic
Lookup Colorcube Speed Quality

xil_nearest_color() X X fastest poor

xil_error_diffusion() X X slow best

xil_ordered_dither() X faster better

178 XIL Programmer’s Guide—August 1997

9

Similarly, if you compare operations that use generic lookup tables, the
trade-off is one between speed and quality. The guidelines mentioned in the
preceding paragraph apply, except that xil_ordered_dither() cannot work
with a generic lookup table.

Now, if you read the table from left to right, you can compare operations that
use generic lookup tables with corresponding operations that use colorcubes.
Operations that use colorcubes are much faster than their counterparts because
they do not need to search a lookup table. On the other hand, when you use a
colorcube for dithering, you lose some of your control over the quality of the
dithered image, because you cannot specify the exact values in the colorcube.
You also lose the ability to use the colors in the currently installed colormap,
again because you don’t specify the values to be written to the lookup table.

Color Space Manipulation
The XIL library provides functions for manipulating the color spaces
associated with an image.

Converting an Image to a Different Color Space

The XIL library enables you to convert an image from any one to any other of
the following color spaces:

• CCIR Rec. 709 RGB
• A linear version of CCIR Rec. 709 RGB
• CCIR Rec. 709 YCbCr

• A luminance-only space derived from CCIR Rec. 709 YCbCr

• A linear version of the luminance-only space mentioned above
• CCIR Rec. 601 YCbCr

• A luminance-only space derived from CCIR Rec. 601 YCbCr

• A YCbCr color space defined by Kodak for PhotoCD
• A linear CMY
• A linear CMYK

The procedure for converting an image from one color space to another is
outlined below.

Presentation Functions 179

9

1. Set the color-space attribute of your source image.
When you create an XIL image, it does not have a color space associated
with it. To associate one with it, you must call the
xil_colorspace_get_by_name() function to get the appropriate color-
space data structure; then, you call xil_set_colorspace() to set the
attribute.

The following code fragment shows a program getting an object of type
XilColorspace that describes a linear RGB color space.

The state parameter is a handle to the system state, and rgblinear is a
string identifying the color space. The strings you use to identify the various
XIL color spaces are listed in Table 9-6.

XilColorspace colorspace;

colorspace = xil_colorspace_get_by_name(state, “rgblinear”);

Table 9-6 Strings Used to Specify Color Spaces

Color Space String

CCIR Rec. 709 RGB rgb709

Linear version of CCIR Rec. 709 RGB rgblinear

CCIR Rec. 709 YCbCr ycc709

Luminance-only space derived from CCIR Rec. 709 YCbCr y709

Linear version of y709 ylinear

CCIR Rec. 601 YCbCr ycc601

Luminance-only space derived from CCIR Rec. 601 YCbCr y601

YCbCr color space defined by Kodak for Photo CD photoycc

Linear CMY cmy

Linear CMYK cmyk

180 XIL Programmer’s Guide—August 1997

9

After you’ve gotten this color-space data structure, you set an image’s
color-space attribute using the xil_set_colorspace() function.

2. Create a destination image, and assign it the color space to which you
want to convert your source image.
The destination image must have the same width, height, and data type as
the source image, and it must have a number of bands appropriate to the
color space you assign it. That is, if you want to assign the destination
image the ycc709 color space, it must have three bands. You assign a color
space to the destination using the same method you used to assign a color
space to the source image.

Note – It is possible to perform an in-place color conversion if the destination
image is a child of the source and has the same width and height as the source.
This procedure is not generally recommended, however, because the color-
conversion operation overwrites some or all of the data in the source image.

3. Perform the color conversion.
You perform the color conversion by calling the xil_color_convert()
function. This function takes handles to your source and destination images
as its two parameters.

Note – Regions of interest are ignored when you perform a color conversion.

There are many applications for this type of color conversion. For example,
you may want to:

• Convert an image from a YCbCr color space to an RGB color space in order
to display the image

• Convert an image from an RGB color space to a YCbCr color space to
prepare it as input to the JPEG or CellB compressor

• Convert an image to the CMY or CMYK color space to prepare it to be
printed on a subtractive color printer

XilImage image;
XilColorspace colorspace;

xil_set_colorspace(image, colorspace);

Presentation Functions 181

9

• Convert an RGB or YCbCr image to the y709, ylinear , or y601 color space
as a way of converting a 24-bit image to an 8-bit grayscale image

• Convert an XIL_BYTE image from a linear color space to a gamma-corrected
color space to prevent contouring in low-intensity regions of the image

Color Correcting an Image

Each display device has an associated profile containing characteristics about
that device. If a color image is created on one device, it may not display the
colors with the exact same intensities, hues, and so forth on other devices.

To compensate for differences in device characteristics, you can use the
xil_color_correct() function. It uses Kodak Color Management System
(KCMS) functions integrated into the XIL library to color correct images
displayed on various devices. For details on KCMS, you should read the KCMS
Application Developer’s Guide.

182 XIL Programmer’s Guide—August 1997

9

The following is a simple example that shows how to compensate for
differences in device characteristics.

#define SRC_PROFILE "kcmsEKphcdcn.inp"
#define DST_PROFILE "kcmsEKsony20.mon"

 XilSystemState state;
 XilImage src, dst;
 XilColorspace cspaces[2];
 XilColorspaceList cspaceList;
 float values[3];

 /* Open XIL and create 2 three banded byte images */
 state = xil_open();
 src = xil_create(state, 512, 512, 3, XIL_BYTE);
 dst = xil_create(state, 512, 512, 3, XIL_BYTE);

 /* Set some values on the src image */
 values[0] = 0.0;
 values[1] = 255.0;
 values[2] = 0.0;
 xil_set_value(src, values);

 /*
 * Create the colorspaces using a filename
 */
 cspaces[0] = xil_colorspace_create(state,
 XIL_COLORSPACE_FILENAME,SRC_PROFILE);
 cspaces[1] = xil_colorspace_create(state,
 XIL_COLORSPACE_FILENAME,DST_PROFILE);

 /* Create the colorspace list */
 cspaceList = xil_colorspacelist_create(state, cspaces, 2);

 /* Color correct the images */
 xil_color_correct(src, dst, cspaceList);

 /* Destroy the colorspace list then the colorspaces */
 xil_colorspacelist_destroy(cspaceList);
 xil_colorspace_destroy(cspaces[0]);
 xil_colorspace_destroy(cspaces[1]);

Presentation Functions 183

9

The example shows the following steps:

1. It creates source and destination images whose width, height, number of
bands, and data type match.

2. It uses the xil_colorspace_create() function to create a color space
(cspaces[0]) for the source image based on a given profile type.
The xil_colorspace_create() function accepts profiles from any of
three sources based on the XilColorspaceType enumeration type, which
is shown below.

In this case, xil_colorspace_create() specifies the
XIL_COLORSPACE_FILENAME enumerator. It tells XIL to use the profile
SRC_PROFILE in the current directory to create the color space.

The other enumerators of XilColorspaceType are
XIL_COLORSPACE_NAME and XIL_COLORSPACE_KCS_ID.
XIL_COLORSPACE_NAME tells XIL to use one of the color spaces in the
default list of color spaces listed in “Color Space Manipulation” on
page 178. The XIL_COLORSPACE_KCS_ID enumerator tells XIL to use a
KCMS profile you created.

3. It uses the xil_colorspace_create() function to create a color space
(cspaces[1]) for the destination image.
This call is shown below.

typedef enum {
 XIL_COLORSPACE_NAME,
 XIL_COLORSPACE_FILENAME,
 XIL_COLORSPACE_KCS_ID
} XilColorspaceType;

cspaces[0] = xil_colorspace_create(state,
 XIL_COLORSPACE_FILENAME,SRC_PROFILE);

cspaces[1] = xil_colorspace_create(state,
 XIL_COLORSPACE_FILENAME,DST_PROFILE);

184 XIL Programmer’s Guide—August 1997

9

Note – If you move your image to any other display devices between the
source and destination, you need to call xil_colorspace_create() to
create a color space based on a profile for each of these devices as well.

4. Use the xil_colorspacelist_create() function to create a list of the
color spaces.
The order of the color spaces in the color space list is important. The first
color space is the one associated with the source image and the last, the
color space associated with the destination image. If the image is routed to
any other devices between the source and destination devices, color spaces
for those devices must be created and included in the color space list in the
order in which they are used.

5. Use the xil_color_correct() function to color correct the images.
This call is shown below.

The cspaceList parameter is the color space list with color spaces in the
order described in step 4.

The following is additional information you should consider when color
correcting an image:

• When no longer needed, you should destroy the color spaces and the color
space list. The calls to do this in the example are shown below.

• If you had previously set color spaces for the images using the
xil_set_colorspace() function (described in “Color Space
Manipulation” on page 178), they would be ignored by
xil_color_correct() . The xil_color_correct() function only
recognizes the color spaces you specify in the color space list.

• If, however, you call xil_color_correct() with an
XilColorspaceList object containing two XIL_COLORSPACE_NAME color
spaces, this is equivalent to calling xil_set_colorspace() on the source

xil_color_correct(src, dst, cspaceList);

xil_colorspacelist_destroy(cspaceList);
 xil_colorspace_destroy(cspaces[0]);
 xil_colorspace_destroy(cspaces[1]);

Presentation Functions 185

9

and destination images and then calling xil_color_convert() . (The
procedure for doing this is described in “Color Space Manipulation” on
page 178.)

• Finally, to get the color space of a device image, you must use the
COLORSPACE attribute. You can then add this color space to the color space
list in the call to xil_color_correct() . The following code fragment
shows how to get the attribute.

Additional Color Space Manipulation Functions

The XIL library provides the additional color space manipulation functions
listed and described in Table 9-7.

XilColorspace* cspace
...
wimage = xil_create_from_window(state, display, win);
...
xil_get_device_attribute(wimage, "COLORSPACE", (void**)&space);

Table 9-7 Color Space Manipulation Functions

Function Description

xil_colorspace_get_name() Gets any associated name of the color
space, or, if no name is set on the color
space, returns NULL

xil_colorspace_get_type() Gets the type of the color space and the
associated data

xil_colorspace_set_name() Sets the name on the color space with
the specified name

xil_colorspacelist_get_by_name() Returns a color space list associated
with the name, or, if there is no color
space list, returns NULL

xil_colorspacelist_get_name() Gets any associated name of the color
space list, or, if there is no associated
color space list, returns NULL

xil_colorspacelist_set_name() Sets the name of the color space list
with the specified name

186 XIL Programmer’s Guide—August 1997

9

Color Spaces Represented by I/O Devices

COLORSPACE is a required attribute that XIL device images provide. This
attribute describes the color space of the device. You can use this attribute to
correct the color of images to and from the device.

Black Generation
The XIL library also enables you to perform undercolor removal and black
generation on CMYK images—images to be printed on a four-color printing
system. Normally, the process of undercolor removal and black generation
goes something like this. For each pixel in the image:

• Black (K) equals the minimum of C, M, and Y
• C = C - K
• M = M - K
• Y = Y - K

However, the XIL function that performs undercolor removal and black
generation gives you more control over how much cyan, magenta, and yellow
are removed from your image and how much black is added to it. This
function is called xil_black_generation() , and its function prototype is
shown below.

The src and dst parameters are handles to your source and destination
images. Both images must be CMYK images. Therefore, if you want to process
a CMY image, you must first convert it to a CMYK image. For instructions on
how to do this, see “Color Space Manipulation” on page 178. In-place
operations are allowed.

The black and undercolor parameters are used as follows. For each pixel in
your source image:

• K = (black * minimum of C, M, and Y)
• C = C - (undercolor * minimum of C, M, and Y)
• M = M - (undercolor * minimum of C, M, and Y)
• Y = Y - (undercolor * minimum of C, M, and Y)

void xil_black_generation(XilImage src, XilImage dst,
 float black, float undercolor);

Presentation Functions 187

9

Thus, if both black and undercolor are set to 1.0, you’ll get standard
undercolor removal. You’ll frequently achieve better results, though, if the
percentage of black you add to your image is slightly higher than the
percentage of C, M, and Y you remove from it. For example, you might try
using the call shown here.

Note – Regions of interest are ignored when you perform undercolor removal.

XilImage src, dst;

xil_black_generation(src, dst, 0.7, 0.5);

188 XIL Programmer’s Guide—August 1997

9

189

Error Handling 10

This chapter discusses the XIL default error handler and how to write and
install your own error handler(s).

This chapter has the following main sections:

XIL Error Handling Summary
The list below summarizes the most important facts about XIL error handling.

• Error handling is asynchronous.

For example, assume that your program includes a call to xil_copy() that
attempts to copy a three-band image to a single-band image. This is an error,
and at some point the library reports that the source and destination images
do not contain the same number of bands. However, this error may not be
reported when the line in your program containing the xil_copy() is
called. This is true because the XIL library’s deferred execution scheme
enables it to store many operations before executing them. (For more
information on deferred execution, see Chapter 23, “Acceleration in XIL
Programs.”) Later, when a set of stored operations is performed, the error is
reported.

XIL Error Handling Summary page 189

Writing an Error Handler page 191

Functions You Can Call in Your Error Handler page 191

Installing and Chaining Error Handlers page 200

190 XIL Programmer’s Guide—August 1997

10

The fact that error reporting is asynchronous does not really affect the way
you handle errors in your XIL programs, but you should be aware of it.

• The amount of error handling that you can do by checking the return values
of XIL functions is limited.

About half of the functions in the XIL library return void , and for the
remaining functions, while you may be able to tell from the return value
whether an error occurred, you won’t be able to determine exactly what the
error was. To handle errors properly, your program needs to examine the
error object (of type XilError) that the library creates whenever an error
occurs. This object contains such information as an error ID and a string
containing a description of the error.

• Your can deal with the error object referred to above in one of two ways:

One way is to have your application do nothing. In this case, the library’s
default error handler looks at the error object and prints a message to
stderr . As shown in “An Error Handler Example” on page 198, this option
isn’t recommended because the default handler prints information that is
intended for application developers and isn’t useful to an end user.

Alternately, write your own error handler and install it. This is the
recommended method. For information on writing such an error handler,
see “Writing an Error Handler.” For information on installing the routine,
see “Installing and Chaining Error Handlers” on page 200.

Note – You can actually have more than one error handler installed at a time.
In addition, you can chain these error handlers so that if the first error handler
in the chain does not deal with an error, it can pass the error object containing
information about the error to a second error handler, and so on. This subject is
explained in “Installing and Chaining Error Handlers” on page 200.

Error Handling 191

10

Writing an Error Handler
Any error handler you write should take one parameter, a handle to the error
object the library created when the last error occurred. In addition, the function
should return a value of type Xil_boolean . Thus, the header of your function
should look like this.

The function returns TRUE if it has handled the error and FALSE if it has not.

The XIL library contains a number of routines you can use in building the body
of your error handler. These are discussed in “Functions You Can Call in Your
Error Handler.” To see how you might use these functions to write an error
handler, see “An Error Handler Example” on page 198.

Functions You Can Call in Your Error Handler

This section discusses the XIL functions you can use in writing your own error
handler. These functions fall broadly into two groups:

• Those that get information from the error object that the library passes to
your error handler

• Those that retrieve information from objects of type XilObject .

Note – The error handler of a multithreaded application may only make XIL
calls on the object that was returned to the error handler; doing otherwise
could lead to a deadlock.

Getting Information From an Error Object

The functions listed in this section take as their only parameter the name of the
error object the library has passed to your error handler.

Xil_boolean function-name(XilError error);

192 XIL Programmer’s Guide—August 1997

10

xil_error_get_string()

This function returns an internationalized string (char *) that describes the
error that just occurred. For a complete list of possible messages, see
Appendix B, “XIL Error Messages.”

You should either use this string immediately or make a copy of it because the
pointer to it becomes invalid after the next call your program makes to
dgettext(3I) or to one of the XIL error functions that returns a string.

You should not free or modify this string.

xil_error_get_id()

This function returns a string (char *) of the form di- n, where is n is a
unique identifier. For a complete list of possible error IDs, see Appendix B,
“XIL Error Messages.”

You should not free or modify this string.

Note – Errors other than those generated by the base XIL library may return a
device name instead of di- in the error identifier. You should check your
device’s documentation for more information.

xil_error_get_category()

This function returns an enumeration constant of type XilErrorCategory .
The declaration of this enumeration is shown here.

enum XilErrorCategory {
 XIL_ERROR_SYSTEM,
 XIL_ERROR_RESOURCE,
 XIL_ERROR_ARITHMETIC,
 XIL_ERROR_CIS_DATA,
 XIL_ERROR_USER,
 XIL_ERROR_CONFIGURATION,
 XIL_ERROR_OTHER
 XIL_ERROR_INTERNAL
} XilErrorCategory;

Error Handling 193

10

Table 10-1 explains briefly what types of error fall into each category.

xil_error_get_category_string()

This function returns a string (char *) that indicates which category of error
has occurred. The strings for the possible categories are:

• System
• Resource
• Arithmetic
• Cis Data
• User
• Configuration
• Other

Table 10-1 XIL Error Categories

Category Explanation

XIL_ERROR_SYSTEM The library cannot perform an operation correctly.
This type of error is usually a secondary error
caused by a user, resource, or configuration error.

XIL_ERROR_RESOURCE Usually means that there is insufficient memory
for the library to create an image or other object.

XIL_ERROR_ARITHMETIC Indicates an arithmetic error such as a divide by 0.

XIL_ERROR_CIS_DATA Means that the data stream being decompressed
does not conform to the appropriate datastream
definition.

XIL_ERROR_USER The programmer has specified an invalid
parameter to an XIL function. For example, for a
lookup operation, the data type of the source
image and the input data type of the lookup table
might not match.

XIL_ERROR_CONFIGURATION Usually indicates that the XIL software has not
been installed properly or that an environment
variable has not been set properly. The specific
error may be that the runtime system is unable to
find a loadable driver that it needs.

XIL_ERROR_OTHER Miscellaneous errors, such as Xlib and DGA
errors.

XIL_ERROR_INTERNAL Indicates an error in the XIL library.

194 XIL Programmer’s Guide—August 1997

10

As with the string returned by xil_error_get_string() , you should either
use this string immediately or make a copy of it because the pointer to it
becomes invalid after the next call your program makes to dgettext(3I) or
to one of the XIL error functions that returns a string.

You should not free this string.

xil_error_get_primary()

This function returns a value of type Xil_boolean , either TRUE or FALSE. A
value of TRUE indicates that the error being processed was the primary cause
of a problem you’re seeing. For example, if you run out of memory and
xil_create() is unable to create an image, the primary error produced is a
resource error. The XIL library may also generate secondary errors as the NULL
image is used internally.

xil_error_get_location()

This function returns a string (char *) that indicates where in the XIL library
the error was generated. This location helps Customer Support to resolve any
problems you report to them.

You should not free this string.

xil_error_get_object()

This function returns a handle of type XilObject to the object affected by the
error. This object may be:

• A compressed image sequence (CIS)
• A color space
• A color space list
• A device
• A dither mask
• An error
• A histogram
• An image
• An image type
• An interpolation table
• A kernel
• A lookup table
• A region of interest
• A structuring element

Error Handling 195

10

• A storage object
• A system state object

Once you have this handle, you can use the functions discussed in the next
section to obtain further information about the object.

Note – If the error did not affect a particular object, you receive a NULL handle.

xil_error_is_warning()

This function allows your application to determine whether an error returned
is a warning that it can handle or an error resulting from a catastrophic event.

Getting Information About the Object Affected by the Error

If your error handler uses the function xil_error_get_object() to retrieve
a handle to the object affected by the last error, you can use the functions
discussed below to request further information about the object.

xil_object_get_error_string()

This function attempts to get from an object a string containing additional
information about the object. For instance, if you query a CIS object, you get a
string containing information about the values of the start frame, read frame,
and write frame at the time of the error.

The prototype for this function is shown below.

The object parameter is the object handle returned by
xil_error_get_object() . string is an array of chars in which the string
is returned; and string_size is the maximum number of characters the array
can contain.

void xil_object_get_error_string(XilObject object,
 char *string, int string_size);

196 XIL Programmer’s Guide—August 1997

10

In the following code fragment, an error handler uses
xil_object_get_error_string() to request information about the object
affected by an error and prints any information that is available.

xil_object_get_type()

You use this function to determine what kind of object the last error affected.
The prototype for the function is shown below.

#define MAX 1024

Xil_boolean UserDefinedErrorFunc(XilError error)
{
 XilObject object;
 char buffer[MAX];

 object = xil_error_get_object(error);
 if (object) {
 xil_object_get_error_string(object, buffer, MAX);
 if (buffer[0] != 0)
 fprintf(stderr, “object info: %s\n”, buffer);

XilObjectType xil_object_get_type(XilObject object);

Error Handling 197

10

The parameter to the function is the object handle returned by
xil_get_error_object() . The return value is an enumeration constant of
type XilObjectType . The declaration of this enumeration is written as shown
here.

Note – The XIL_ROI_LIST enumerator is obsolete.

Once you know the type of object that was affected by the last error, you can
cast the object handle returned by xil_get_error_object() to a handle to
the particular type of object you have. For example, if the object is an image,
you can cast the handle of type XilObject to one of type XilImage . Doing so
gives you the ability to write code like the following.

typedef enum {
 XIL_IMAGE,
 XIL_IMAGE_TYPE,
 XIL_LOOKUP,
 XIL_CIS,
 XIL_DITHER_MASK,
 XIL_KERNEL,
 XIL_SEL,
 XIL_ROI,
 XIL_HISTOGRAM,
 XIL_COLORSPACE,
 XIL_ATTRIBUTE,
 XIL_INTERPOLATION_TABLE,
 XIL_STORAGE,
 XIL_DEVICE,
 XIL_COLORSPACE_LIST
} XilObjectType;

XilObject object;

object = xil_error_get_object(error);
if (object)
 if (xil_object_get_type(object) == XIL_IMAGE)
 fprintf(stderr, “image bands: %d\n”,
 xil_get_nbands((XilImage)object));

198 XIL Programmer’s Guide—August 1997

10

Because the error handler has a handle to the image, it can use any of the XIL
functions that read image attributes to get additional information about the
image. In this case, the error handler finds out how many bands are in the
image.

An Error Handler Example

The library’s default error handler prints a message like the following one each
time an error occurs.

As you can see, the message indicates that the XIL default error handler
handled the error, and it prints the category of the error, an error message, an
error ID, and the location at which the error occurred, indicating whether the
error was a primary or secondary error.

This information should be useful to the application developer because it
verifies that the XIL handler handled this error. Also the error location is useful
when contacting Customer Support. However, you wouldn’t want your
application to identify the error handler and error location because this
information isn’t useful to an end user and, moreover, would be confusing to

XilDefaultErrorFunc:
 error category: User
 error string: Destination colorspace not specified
 error id: di-203
 primary error detected at location colorConvert79 in XIL

Error Handling 199

10

that user. The following code shows how you could implement an error
handler that doesn’t identify the error handler and doesn’t print the error
location.

Xil_boolean UserDefinedErrorFunc(XilError error)
{
 if (xil_error_get_primary(error) == TRUE)
 fprintf(stderr, "\nPrimary Error:\n");
 else
 fprintf(stderr, "\nSecondary Error:\n");
 fprintf(stderr, " error category: %s\n",
 xil_error_get_category_string(error));
 fprintf(stderr, " error string: %s\n",
 xil_error_get_string(error));
 fprintf(stderr, " error id: %s\n",
 xil_error_get_id(error));
 return TRUE;
}

200 XIL Programmer’s Guide—August 1997

10

Installing and Chaining Error Handlers
By default, when an XIL error occurs, the library creates an error object of type
XilError and passes that object to the default error handler. To override this
behavior, you can write your own error handler and install it. Once you install
your error handler, the library calls it instead of the default error handler when
an error occurs. If you write and install more than one error handler, the
library always calls the most recently installed error routine. For more
information on installing error handlers, see “Installing Error Handlers.”

The XIL library allows you to have more than one user-defined error routine
installed at the same time. At first glance, this seems a waste because the
library can only call the most recently installed routine when an error occurs.
However, having more than one user-defined error handler installed is often
useful because the library allows you to call one error handler from another, an
action referred to as chaining. For an explanation of why you might want to
chain error routines and how to chain them, see “Chaining Error Handlers” on
page 203.

Installing Error Handlers

To install an error handler you’ve written, you call the function
xil_install_error_handler() , whose prototype is shown here.

The function’s return value indicates whether the installation was successful. A
value of XIL_SUCCESS means that it was successful, and a value of
XIL_FAILURE means that it wasn’t.

int xil_install_error_handler(XilSystemState state,
 XilErrorFunc func);

Error Handling 201

10

The state parameter is the system-state data structure you received when you
initialized the library, and func is a pointer to your error handler.
(XilErrorFunc is a defined type representing a pointer to a function.) Thus,
the call you would use to install the error handler shown in “An Error Handler
Example” on page 198 would look like this.

When you install an error handler, the library adds it to a list of error handlers
that it recognizes. Figure 10-1 shows what the list would look like at this point.

Figure 10-1 List of Error Handlers

XilSystemState state;

xil_install_error_handler(state, UserDefinedErrorFunc);

DefaultErrorHandler

UserDefinedErrorFunc

202 XIL Programmer’s Guide—August 1997

10

If you then installed a third error handler, called UserDefinedErrorFunc2() ,
the list would grow as shown in Figure 10-2.

Figure 10-2 Adding to the List of Error Handlers

When an XIL error occurs, the library always calls the topmost routine (the last
routine to be installed) in the list.

The library also includes a routine for removing error handlers from this list.
Its name is xil_remove_error_handler() .

The parameters to this function are the same as those for
xil_install_error_handler() .

Note – If the same error handler has been installed twice, only the most recent
version of the error handler is removed.

void xil_remove_error_handler(XilSystemState state,
 XilErrorFunc func);

DefaultErrorHandler

UserDefinedErrorFunc

UserDefinedErrorFunc2

Error Handling 203

10

Chaining Error Handlers

Again, having more than one error handler installed is useful because the
library enables you to call one error handler from another. From the topmost
error handler in a list of handlers, you can call either the next-to-last error
handler to be installed or the default error handler. Thus, in your topmost error
routine, you might handle only resource errors. If the error you’re passed is a
resource error, you take whatever action is appropriate and return TRUE;
otherwise, you call the next error handler in the list. This next error handler
might also check for one special type of error. Like the previous routine, if it is
passed the proper type of error, it handles the error and returns TRUE; if it
receives another type of error, it might call the error handler below it on the
list. This process can continue until the error handler being called is the default
error handler. This routine handles any XIL error and always returns TRUE.

To chain error handlers you use the xil_call_next_error_handler() and
the xil_default_error_handler() functions.

The error parameter is the error object that the library passed to the topmost
error handler in its list of error handlers (the last one to be installed). The
return value of both functions indicates whether the error routine being called
handled the error. A return value of TRUE indicates that the routine did handle
the error, and a return value of FALSE indicates that it didn’t.

The brief example below shows the xil_call_next_error_handler()
function being used in an error-handling routine. This routine simply ensures
that if the error is a resource error, the program exits after handling the error in
the normal way.

Xil_boolean xil_call_next_error_handler(XilError error);

Xil_boolean xil_default_error_handler(XilError error);

Xil_boolean resource_errors(XilError error)
{
 if (xil_error_get_category(error) == XIL_ERROR_RESOURCE)
 exit(1);
 return (xil_call_next_error_handler(error));
}

204 XIL Programmer’s Guide—August 1997

10

205

Arithmetic, Relational, and Logical
Functions 11

This chapter discusses the XIL library’s arithmetic, relational, and logical
functions. These functions can be used to lighten or darken an image, to
increase or decrease contrast in an image, or to produce the “negative” of an
image.

This chapter has the following main sections:

Note – All the functions discussed in this chapter can be performed in place;
that is, the source and destination images can be the same image.

Arithmetic Functions
If you have two source images and a destination image, the XIL library enables
you to:

• Add the two source images and store the results in the destination
(xil_add())

Arithmetic Functions page 205

Relational Functions page 208

Logical Functions page 208

Operations With Constants page 209

Arithmetic and Logical Operations With Bit Images page 212

206 XIL Programmer’s Guide—August 1997

11

• Subtract one source image from the other and store the results in the
destination (xil_subtract())

• Multiply the two source images and store the results in the destination
(xil_multiply())

• Divide one source image into the other and store the results in the
destination (xil_divide())

For a single source image, you can find the absolute value of pixels in the
image and store the result in a destination image (xil_absolute()).

For each of these operations to work, the source and destination images must
have the same data type: XIL_BIT , XIL_BYTE , XIL_SHORT, or XIL_FLOAT.
Also, the images must have the same number of bands. The images do not have
to have the same width and height. For an explanation of which pixels an
operation would affect if the images have different sizes, see “Region of
Interest” on page 49.

When you add two images, you take the value at location 0,0 in one source
image, add it to the value at location 0,0 in a second source image, and write
the sum at location 0,0 in a destination image. You then follow the same
procedure for all other points in the images. Subtraction, multiplication, and
division are handled similarly. When multiband images are involved, the
arithmetic operation is performed on corresponding bands in the source
images; that is, band 0 in the first source image is added to band 0 in the
second source image, and so on.

This all seems very straightforward. But there are a few points you should
keep in mind when using these functions:

• If the result of an operation is out of range for a particular data type, the
result is not truncated, but is clamped to the minimum or maximum value
for the data type.

Arithmetic, Relational, and Logical Functions 207

11

Thus, if you’re working with XIL_BYTE images, adding a 200 and a 200
gives a result of 255 because 400 cannot be represented in 8 bits and the
greatest valid value for an XIL_BYTE image is 255. Likewise, if you subtract
200 from 100, the result is 0. Table 11-1 indicates the valid range of values for
each XIL data type.

• Division by 0 is permitted.

If the image serving as the divisor contains 0’s, you receive one XIL error
message indicating that division by 0 occurred. However, the division
operation is performed. If a 0 in an image is divided by 0, the result is 0, and
if any other value is divided by 0, the result is the greatest valid value for
the data type (or the lowest valid value if the numerator is a negative value
of type XIL_SHORT or XIL_FLOAT).

The xil_absolute() function finds the absolute value of pixels in a source
image and stores the result in a destination image. Since XIL_BIT and
XIL_BYTE images don’t have negative values, xil_absolute() is useful only
for XIL_SHORT and XIL_FLOAT images. For each band in the image, the
absolute value at location 0,0 in the source is written to location 0,0 in the
destination; the same procedure is then followed for all other points in the
image.

Note – On XIL_BIT and XIL_BYTE images, xil_absolute() is effectively
xil_copy() .

Table 11-1 Valid Values for Each XIL Data Type

Data Type Lowest Value Greatest Value

XIL_BIT 0 1

XIL_BYTE 0 255

XIL_SHORT -32768 32767

XIL_FLOAT min max

208 XIL Programmer’s Guide—August 1997

11

Relational Functions
If you have two source images and a destination image, the XIL library enables
you to:

• Find the larger of pixels in the two source images and store the results in the
destination (xil_max())

• Find the lesser of pixels in the two source images and store the results in the
destination (xil_min())

As with the arithmetic operations, xil_max() and xil_min() require the
source and destination images to have the same data type and the same
number of bands. The images do not have to have the same width and height.

Taking the maximum or minimum values from two images performs a band by
band comparison. For example, if src1 and src2 images are 4-banded images,
comparing the value at location 0,0 writes to location 0,0 in the destination
image the maximum (or minimum) for each source band; thus, the first band at
0,0 in the destination might receive its value from src1 , whereas the remaining
three bands might receive their values from src2 . This band by band
comparison is repeated for all other points in the source images.

Note – Don’t confuse these relational functions with finding the maximum or
minimum pixel value within each band of a single image. To find those values,
use xil_extrema() , discussed in “Finding the Minimum and Maximum
Values in an Image” on page 246.

Logical Functions
If you have two source images and a destination image, the XIL library also
enables you to:

• Take the bitwise AND of the two source images and store the results in the
destination (xil_and())

• Take the bitwise OR of the two source images and store the results in the
destination (xil_or())

• Take the bitwise XOR of the two source images and store the results in the
destination (xil_xor())

Arithmetic, Relational, and Logical Functions 209

11

Note – The supported data types for bitwise operators are XIL_BIT ,
XIL_BYTE , and XIL_SHORT.

As with the arithmetic and relational operations, for these operations to work,
all three images must have the same data type and the same number of bands.
The images do not have to have the same width and height.

The XIL library also contains a bitwise NOT operator (xil_not()). This
function works on a single source image. It looks at the values in that image as
binary values and changes all the 1’s in those values to 0’s, and all the 0’s to
1’s. The function then writes this one’s complement version of the source
image to the destination.

Operations With Constants
For each of the arithmetic and logical functions that operate on two source
images—addition and so on—the XIL library includes a similar function that
takes as input one source image and a constant. For instance, the library
contains the xil_add() function, whose prototype is shown below.

It also contains the xil_add_const() function, whose prototype is shown
below.

To add a constant to a single-band image, you declare a one-element array of
type float , assign that element a value, and then call xil_add_const() . For
instance, the code to add 8.0 to each value in a single-band image might look
like this.

void xil_add (XilImage src1, XilImage src2, XilImage dst);

void xil_add_const (XilImage src1, float *constants,
 XilImage dst);

XilImage src1, dst;
float constants[1] = {8.0};

xil_add_const(src1, constants, dst);

210 XIL Programmer’s Guide—August 1997

11

This operation is roughly the equivalent of adding to src1 a second source
image, all of whose values are 8. The only difference between these two
operations is that using a constant instead of a second source image enables
you to use noninteger values in the operation. When you add a constant to an
image, which has data type XIL_BIT , XIL_BYTE , or XIL_SHORT (no rounding
for XIL_FLOAT), each sum is rounded and then cast to the data type of the
source and destination images.

Note – As stated on page 206, if the result of an operation is out of range, the
value is clamped and assigned the minimum or maximum value for the data
type. It’s important to realize that the operation is performed first, then the
result is clamped. For example, if the operation is division and you divide a
negative constant into the values for an XIL_BYTE image, the division is first
performed. Thus, for a pixel value of 10 divided by the constant -2, the result is

 10 / -2 = -5, which is clamped to 0.

Notice that clamping the -2 to 0 before the division is performed would yield
10 / 0, which would result in a value of 255 in the destination image.

In operations that involve a multiband source image and a constant, the
constant must actually be an array of constants, and the number of constants in
the array must equal the number of bands in the image. The following code
adds a different constant to each band of a 3-band image.

This operation adds 8.0 to each value in band 0 of the image, 12.0 to each value
in band 1, and 2.0 to each value in band 2.

For operations that are not associative—subtraction and division—the XIL
library enables you to specify the constant as the first operand or the second.
That is, for a subtraction, the constant can be either the minuend or the
subtrahend, and for a division, it can be either the dividend or the divisor.

XilImage src1, dst;
float constants[3] = {8.0, 12.0, 2.0};

xil_add_const(src1, constants, dst);

Arithmetic, Relational, and Logical Functions 211

11

Table 11-2 lists and describes the arithmetic functions that can take constants.

You can also perform logical operations using an image and a constant. For
instance, besides the function xil_and() , the library contains the function
xil_and_const() , whose prototype is shown below.

To take the logical AND of a constant and a single-band image, you declare a
one-element array of type unsigned int , assign that element a value, and
then call xil_and_const() . For instance, the code to find the logical AND of
each value in an image and 8 might look like this.

This operation is the equivalent of taking the logical AND of src1 and a
second source image, all of whose values are 8.

Table 11-2 Arithmetic Operations Using a Source Image and a Constant

Function Description

xil_add_const() Adds an image and a constant

xil_subtract_const() Subtracts a constant from an image

xil_subtract_from_const() Subtracts an image from a constant

xil_multiply_const() Multiplies an image by a constant

xil_divide_by_const() Divides an image by a constant

xil_divide_into_const() Divides an image into a constant

void xil_and_const (XilImage src1, unsigned int *constants,
 XilImage dst);

XilImage src1, dst;
unsigned int constants[1] = {8};

xil_and_const(src1, constants, dst);

212 XIL Programmer’s Guide—August 1997

11

Table 11-3 lists and describes the logical functions that can take constants.

Note – The relational operations xil_max() and xil_min() always require
two source images and cannot operate on one source image and one constant.

Arithmetic and Logical Operations With Bit Images
The arithmetic and logical operations discussed in this chapter are defined for
XIL_BIT images. If you keep in mind that the values in the destination image
produced by such an operation cannot fall below 0 or go above 1, the results to
expect are usually obvious. For example, when you add two XIL_BIT images,
the following calculations are used:

• 0 + 0 = 0
• 0 + 1 = 1
• 1 + 0 = 1
• 1 + 1 = 1

Note that 1 plus 1 equals 1. Two is not a valid value for a 1-bit data element, so
the result has been clamped at 1. Similarly, when you subtract one XIL_BIT
image from another, 0 minus 1 equals 0 because -1 is not a valid value.

When performing division, keep in mind that 0 divided by 0 equals 0 and that
a positive nonzero value divided by 0 equals the maximum valid value for the
data type, in this case 1.

When you perform an arithmetic or logical operation that involves a bit image
and a constant, similar rules apply. For arithmetic operations, think of the
following sequence taking place:

1. Addition, subtraction, multiplication, or division is performed using a 1-bit
value (0 or 1) and a floating-point value.

Table 11-3 Logical Operations Using a Source Image and a Constant

Function Description

xil_and_const() ANDs an image and a constant

xil_or_const() ORs an image and a constant

xil_xor_const() XORs an image and a constant

Arithmetic, Relational, and Logical Functions 213

11

2. The result is rounded and clamped to 0 or 1.

3. The 0 or 1 is cast to the XIL_BIT data type.

For logical operations involving a constant, the constant (an unsigned int) is
set to 1 if it is greater than 0; then the operation is performed.

214 XIL Programmer’s Guide—August 1997

11

215

Geometric Functions 12

This chapter discusses the XIL library’s geometric functions. Because you must
pass an interpolation option as an argument to most of these functions, this
chapter begins with a discussion of the available interpolation options.

This chapter has the following main sections:

Note – The functions discussed in this chapter cannot be performed in place.
That is, the source and destination images for a geometric operation must be
different images.

Interpolation Options page 216

Translating Images (moving an image up, down, left, or right) page 226

Scaling and Subsampling Images (changing an image’s width or height) page 227

Rotating Images page 233

Performing General Affine Transforms page 235

Warping Images page 238

Transposing Images (flipping an image across a horizontal or vertical
axis, or across a diagonal)

page 241

216 XIL Programmer’s Guide—August 1997

12

Interpolation Options
Geometrically transforming images centers around the notion of point sampling.
In point sampling, each pixel in a destination image is located with integer
coordinates at a distinct point D in the image plane. The geometric transform T
identifies each destination pixel with a corresponding point S in the source
image; thus, T maps D to S. In general, S doesn’t correspond to a single source
pixel; that is, it doesn’t have integer coordinates. Therefore, the value assigned
to the pixel D must be computed as an estimated or interpolated combination of
the pixel values closest to S in the source image.

When performing most geometric transformations, you must specify the
interpolation method to be used in calculating the destination pixel values.
Table 12-1 shows the interpolation options the XIL library provides, and the
strings you use to request them.

To see how the interpolation type can affect the result of a geometric operation,
see Color Plate 1.

Note – The XIL library does not generate results in the destination for which
there are no source data defined for the operation. This means that, if the
interpolation kernel must read outside the source image for the source image
edge, XIL won’t generate a destination pixel for that particular location. The
values of the destination pixel that cannot be calculated by interpolation
remain as they were before the geometric operation was performed.

Table 12-1 Types of Interpolation

Interpolation Type String Assigned to D

Nearest neighbor nearest The value of the pixel nearest S

Bilinear bilinear A value that’s a bilinear function of the four
pixels surrounding S

Bicubic bicubic A value that’s a bicubic function of the sixteen
pixels surrounding S

General general A value that’s a separable user-defined function
of the pixels in a rectangular region surrounding
S

Geometric Functions 217

12

Nearest Neighbor Interpolation

Nearest-neighbor interpolation, sometimes called zero-order interpolation, is
the fastest interpolation method because it simply assigns to point D in the
destination image the value of the pixel nearest S in the source image (see
“Interpolation Options” on page 216). Though it’s a good choice when speed is
important or when you want to retain the spectral distribution of the source
image, nearest-neighbor interpolation can produce undesirable artifacts in the
destination image, especially near edges where there may be a big change in
color or gray level between two adjacent pixels. For example, smooth lines in
the source image may show up as jagged lines in the destination.

Bilinear Interpolation

A routine that performs bilinear, or first-order, interpolation assigns to point D
in the destination image a value that’s a bilinear function of the four pixels
surrounding S in the source image (see “Interpolation Options” on page 216).
This interpolation type yields better results than nearest-neighbor
interpolation, but can itself have an undesirable smoothing effect on an image.
To alleviate this problem, you can use bicubic interpolation.

Bicubic Interpolation

A routine that performs bicubic interpolation assigns to point D in the
destination image a value that’s a bicubic function of the 16 pixels surrounding
S in the source image (see “Interpolation Options” on page 216). Using bicubic
interpolation preserves fine detail present in a source image, but it takes more
time than the nearest-neighbor or bilinear interpolation methods.

General Interpolation

The interpolation options discussed so far base the interpolated values on
relatively few pixels: nearest neighbor uses 1 pixel, bilinear uses 4 pixels, and
bicubic uses 16. If these options don’t provide the quality you need, you can
use the general interpolation option. For example, if you’re subsampling by a
factor of four, bicubic interpolation would result in aliasing artifacts that can be
improved by using more source pixels in the interpolation.

218 XIL Programmer’s Guide—August 1997

12

General interpolation lets you:

• Determine how many pixels nearest point S in the source image are used to
calculate the interpolated pixel value of point D in the destination image
(see “Interpolation Options” on page 216). If desired, you could use every
pixel in the source image.

• Weight the pixels used in the calculation. By ensuring that the pixels closest
to point S in the source image have more influence on the value assigned to
D than pixels that are further from S, you can reduce the contrast between
adjacent pixels in the destination image, thus providing smoother line and
color transitions.

• Designate the number of pixel subsamples to use for interpolating pixel
values in the destination. This effectively lets you divide into fractional
locations the space between adjacent source-image pixels so you can
interpolate a destination pixel’s value differently, depending on which
location point S falls in.

To use general interpolation, you must:

1. Create horizontal and vertical interpolation tables; these form the filters or
kernels for the interpolation. The tables determine the kernel sizes, weighted
pixel values, and number of subsamples used for a general interpolation.

2. Set the interpolation tables on the system-state object. The tables affect all
general interpolation operations using images created from this system-state
object.

3. Pass general as the interpolation string on any XIL function that requires
an interpolation argument. This causes the interpolation tables to be used as
the interpolation method.

4. Destroy the interpolation tables when they are no longer needed. This
releases the memory that was allocated for them.

The sections that follow discuss these steps in more detail. Before proceeding
to them, however, it’s useful to consider a conceptual model of a general
interpolation.

Figure 12-1 represents an interpolation kernel as a 5-by-5 matrix of weighted
values; for simplicity, the values are labelled a through y.

Geometric Functions 219

12

Figure 12-1 Conceptual Model of a General Interpolation

During a general interpolation, the kernel’s key value—generally its center
value—is laid over the source-image pixel to be processed; this means the
other kernel values lie over neighboring pixels. Each source-image pixel that is
covered by the kernel is then multiplied by the kernel value that lies over it. In
Figure 12-1, the source-image pixel 2,2 is multiplied by kernel value m; pixel 0,0
is multiplied by kernel value a; pixel 1,0 is multiplied by b; and so on. The
multiplication products are then summed together, and this sum becomes the
pixel value in the destination.

Though Figure 12-1 provides a useful conceptual model, the general
interpolation method doesn’t actually construct the two-dimensional kernel
shown in the figure because it’s computationally expensive. To improve
efficiency, general interpolation uses separate horizontal and vertical vector
arrays—the kernels in the interpolation tables you create—to calculate the
same values a two-dimensional kernel would calculate. The vector arrays
require you to provide fewer data elements for the kernel values; this
reduction is particularly significant for large tables with many subsamples.
Nonetheless, for a horizontal table with M elements and a vertical table with N
elements, the number of pixels that contribute to the interpolated value is still
given by M * N.

Key value

Source pixel
being processed

Image

Kernel
a b c d e
f g h i j
k l m n o
p q r s t
u v w x y

220 XIL Programmer’s Guide—August 1997

12

Note – To translate the horizontal and vertical kernels into a two-dimensional
matrix as shown in Figure 12-1, the 1xn kernel values would have to be matrix-
multiplied to obtain the corresponding two-dimensional kernel values.

When interpolating pixels that are at, or near, the source image edges, the
general interpolation method temporarily reduces the kernel height and width
so the edges fit within the defined kernel size. This strategy lets the method
interpolate pixels that originally formed the image edges. Pixels outside of the
source image don’t contribute to any interpolation values.

Creating Vertical and Horizontal Interpolation Tables

To support general interpolation, XIL has an XilInterpolationTable
object, which is an array of 1xn kernels representing either a horizontal or
vertical interpolation filter. General interpolation can be performed using two
interpolation tables, one to represent the horizontal filter and one to represent
the vertical filter. Or it can be performed using a single interpolation table that
represents either the horizontal or the vertical filter, in which case the missing
matrix dimension is 1. For example, if the horizontal table defines 1-by-7
kernels and the vertical table defines 1-by-5 kernels, the effective matrix is
7-by-5; if only the 1-by-7 horizontal table is defined, the effective matrix is
7-by-1. If both the horizontal and vertical interpolation tables are NULL,
nearest-neighbor interpolation is performed.

To create an XilInterpolationTable object, you call the
xil_interpolation_table_create() function, whose prototype is shown
here.

The table’s data type is XIL_FLOAT. The state parameter is the handle to the
system-state object created when you initialized the XIL library. The
kernel_size parameter specifies the number of elements in each kernel. The
subsamples parameter indicates the number of subsamples or fractional
locations between source-image pixels; each subsample requires its own kernel
data. The data parameter specifies the data values for each kernel. There is no
limit or restriction on the kernel_size or number of subsamples .

XilInterpolationTable xil_interpolation_table_create(
 XilSystemState state, unsigned int kernel_size,
 unsigned int subsamples, float* data);

Geometric Functions 221

12

The following code fragment creates a horizontal and a vertical interpolation
table. The horizontal table has seven kernel elements, and the vertical table has
three; each table has only one subsample.

Kernel Size
The xil_interpolation_table_create() function’s kernel_size
parameter determines the number of data elements in each subsample of the
kernel defined by the interpolation table. There is no limit on the kernel size.
The horizontal and vertical tables can have different kernel sizes, as well as
different subsampling values.

The key element in a kernel is its center element; for an even-numbered kernel
size, the key element is offset to the next-lowest index element. Thus, the key
element for a 5-element table is the center element, which has array index 2;
the key element for an 8-element table is the fourth element, which has index 3.
The key element’s array index can be computed as an integer calculation:

int array_index = (kernel_size - 1) / 2

Subsamples
The xil_interpolation_table_create() function’s subsamples
parameter determines the number of subsamples used for a general
interpolation. Increasing the number of subsamples lets you specify different
data values to be used for the interpolation kernel, depending on where point

XilSystemState state;
XilInterpolationTable horizTable;
XilInterpolationTable vertTable;

int subsamples = 1,
 horizSize = 7,
 vertSize = 3;

float horizData[] = {.005, .005, .04, .9, .04, .005, .005};
float vertData[] = {.12, .8, .08};

horizTable = xil_interpolation_table_create(state,
 horizSize, subsamples, horizData);

vertTable = xil_interpolation_table_create(state,
 vertSize, subsamples, vertData);

222 XIL Programmer’s Guide—August 1997

12

S in the source image falls between pixels. There is still only one interpolation
performed to determine each destination pixel value, but the weights used to
interpolate the value depend on which subsample’s kernel is used, and that, in
turn, depends on the exact location of point S.

There is no limit on the number of subsamples you can use. For each
subsample, you must define separate kernel data. Thus, for n subsamples, an
interpolation table must have n * kernel_size data elements. For example, if
you create a 7-element horizontal interpolation table with 4 subsamples, you
must define 28 data elements. The first 7 elements define the first subsample’s
kernel, the second 7 elements define the second subsample’s kernel, and so on.

Figure 12-2 shows how the interpolation tables are used to determine which
kernel applies to a particular subsample location. In the figure, the
subsampling is 4 (0-3) in both the horizontal and vertical directions.

Figure 12-2 Determining the Kernel to Use for a General Interpolation

Typically, the kernel values for each subsample are weighted according to the
subsample location’s proximity to the pixels used in the calculation: the closer
a pixel is to the subsample location, the larger its weight value in the kernel.

Vertical Interp Table

Subpixel location specifies
which kernel to use

Backward mapping to
point S's location

Horizontal Interp Table
0 1 2 3

0 1 2 3

0

1

2

3

0
1

2
3

Geometric Functions 223

12

Kernel Data
The kernel data for each table is an array of floating point numbers. As
mentioned in “Subsamples” on page 221, for n subsamples, there must be n *
kernel_size data elements. Thus, for a 3-element kernel size with 2 subsamples,
you must define an array of 6 floating point numbers; the first 3 numbers form
the first subsample’s kernel, and the second 3 numbers form the second
subsample’s kernel.

Caution – Providing too few kernel values to complete an interpolation table
results in bad values.

To preserve the source image’s intensity in the destination image, the sum of
the data values in each interpolation kernel should equal one. Kernel values
whose sum is greater than one tend to increase the destination image’s
intensity, and those whose sum is less than one tend to diminish the intensity.
The results of applying a given kernel depend on the image it is used on.

To sharpen an image, the kernel values should be weighted heavily toward the
center, with approximately 90% of the kernel value being concentrated there.
To blur an image, the kernel values can be weighted away from the center.

Setting the Interpolation Tables on the System-State Object

After creating the vertical and horizontal tables, you must set them on the
system-state object by calling the
xil_state_set_interpolation_tables() function, whose prototype is
shown here.

The state parameter is a system-state data structure; the horiz_kernel and
vertical_kernel parameters are the horizontal and vertical interpolation
tables you created for general interpolation (see “Creating Vertical and
Horizontal Interpolation Tables” on page 220).

void xil_state_set_interpolation_tables(
 XilSystemState state,
 XilInterpolationTable horiz_kernel,
 XilInterpolationTable vertical_kernel);

!

224 XIL Programmer’s Guide—August 1997

12

The following code fragment creates horizontal and vertical interpolation
tables, sets them on the system-state object, and uses them to perform a general
interpolation for translating an image (see “Translating Images” on page 226).

In this example, the general interpolation effectively performs a bilinear
interpolation with 8 subsamples. The kernel values indicate how much
influence the source-image pixels have on the destination value; the kernel
value 1 indicates that a source pixel completely determines the value for the
destination pixel, and 0 indicates a source pixel has no influence on the
destination value. If S is a source-image point to which a given destination
pixel D maps (S and D are described in “Interpolation Options” on page 216),
the closer S is to the source pixel used to interpolate D’s value, the more

XilSystemState state;
XilInterpolationTable horizTable;
XilInterpolationTable vertTable;
XilImage src, dst;

int subsamples = 8, /* subsample and kernel sizes */
 horizSize = 2,
 vertSize = 2;

float kernelData[] = {1.0, 0.0,
 .875, .125, /* 7/8, 1/8 */
 .75, .25, /* 6/8, 2/8 */
 .625, .375, /* 5/8, 3/8 */
 .5, .5, /* 4/8, 4/8 */
 .375, .625, /* 3/8, 5/8 */
 .25, .75, /* 2/8, 6/8 */
 .125, .875 }; /* 1/8, 7/8 */

horizTable = xil_interpolation_table_create(state,
 horizSize, subsamples, kernelData);

vertTable = xil_interpolation_table_create(state,
 vertSize, subsamples, kernelData);

xil_state_set_interpolation_tables(
 state, horizTable, vertTable);

xil_translate(src, dst, “general”, 50.0, 50.0);

Geometric Functions 225

12

influence that source pixel has on the computation. Conversely, the further S is
from the source pixel, the less influence the source pixel has on D’s computed
value.

Additional Interpolation Table Functions

The XIL library also contains additional interpolation table functions. These are
listed and described in Table 12-2.

Note – You should use the xil_interpolation_table_get_values()
function rather than xil_interpolation_table_get_data() in new
applications that you write. xil_interpolation_table_get_data()
requires that you allocate memory for, and provide the address of, the floating
point data array.

Table 12-2 Additional Interpolation Table Functions

Function Description

xil_interpolation_table_get_kernel_size() Gets the kernel size of the
subsample kernels in an
interpolation table object

xil_interpolation_table_get_subsamples() Gets the number of
subsample kernels in an
interpolation table object

xil_interpolation_table_get_data() Gets the data in an
interpolation table object

xil_state_get_interpolation_tables() Gets an interpolation table

xil_interpolation_table_get_values() Gets the values stored in
an interpolation table
object

xil_interpolation_table_create_copy() Creates and returns a copy
of the specified
interpolation table object

226 XIL Programmer’s Guide—August 1997

12

Destroying an Interpolation Table

After performing a general interpolation, you should destroy the vertical and
horizontal interpolation tables if you aren’t going to use them again.
Destroying the tables releases the memory that was allocated to them.

To destroy an interpolation table, call the
xil_interpolation_table_destroy() function, whose prototype is
shown here.

The only parameter to this function is a handle to the kernel you want to
destroy.

Translating Images
Translating an image means moving it up, down, left, or right. The XIL
function you use to translate an image is called xil_translate() . The
prototype for this function is shown here.

The src and dst parameters are handles to the source and destination images.
The interpolation parameter is a string that specifies an interpolation type.
For information on this parameter, see “Interpolation Options” on page 216.
The xoffset and yoffset parameters are floating-point numbers that
represent the number of pixels the image should be moved horizontally and
vertically. If xoffset is positive, the image is moved to the right, and if it is
negative, the image is moved to the left. If yoffset is positive, the image is
moved down, and if it is negative, the image is moved up.

void xil_interpolation_table_destroy(
 XilInterpolationTable table);

void xil_translate(XilImage src, XilImage dst,
 char *interpolation, float xoffset, float yoffset);

Geometric Functions 227

12

If you have already read “Origin” on page 47, which discusses image origins,
you may think that translating an image is equivalent to setting the destination
image’s origin and then copying the source image to the destination. For the
most part, this is true. That is, the following two code fragments have the same
effect.

Both fragments move the source image 50 pixels to the right and 50 pixels
down.

However, what if the 50.0’s in the fragments above are changed to 49.5’s? In
the first case, the coordinates that make up the destination image’s origin (49.5,
49.5) are rounded to integers (50, 50) before the copy occurs, so the result does
not change. In the second case, though, xil_translate() actually moves the
image 49.5 pixels down and 49.5 pixels to the right so that pixels in the
destination image map to noninteger coordinates in the source image. Since
there is no longer a one-to-one correspondence between the pixels in the source
and destination images, the values of the pixels in the destination image must
be interpolated. The different types of interpolation the XIL library provides
are discussed in “Interpolation Options” on page 216.

Scaling and Subsampling Images
You can change the width and height of an image with these XIL library
functions:

• xil_scale()
• xil_subsample_adaptive()
• xil_subsample_binary_to_gray()

XilImage src, dst;

xil_set_origin(dst, 50.0, 50.0);
xil_copy(src, dst);

XilImage src, dst;

xil_translate(src, dst, “nearest”, 50.0, 50.0);

228 XIL Programmer’s Guide—August 1997

12

The first function, xil_scale() , is the most general of the routines: it
increases or decreases either the width or height of an image. The second,
xil_subsample_adaptive() , is useful only for reducing an image’s size; it
is not useful for enlarging an image. It is available for reducing images because
it often produces better results than using xil_scale() to reduce images. The
last function, xil_subsample_binary_to_gray() is a special function used
only for reducing the size of XIL_BIT images.

xil_scale()

The XIL library’s general scaling routine is xil_scale() , whose function
prototype is as follows:

The src and dst parameters are handles to the image to be scaled and to the
destination image, respectively. The interpolation parameter is a string that
specifies the type of interpolation to be used for the operation: nearest
neighbor, bilinear, bicubic, or general. (For information about these
interpolation methods and how to request one of them, see “Interpolation
Options” on page 216.) The xscale and yscale parameters are the horizontal
and vertical scale factors. If xscale is greater than 1, the width of the source
image increases, and if it is between 0 and 1 (exclusive), the width decreases.
Similarly, if yscale is greater than 1, the height of the source image increases,
and if it is between 0 and 1 (exclusive), the height decreases.

When scaling images, image origins can affect the scaling operation. (For
information about image origins, see “Origin” on page 47.) For instance,
assume the source and destination images are the same size and that you want

void xil_scale(XilImage src, XilImage dst, char *interpolation,
 float xscale, float yscale);

Geometric Functions 229

12

to scale the source image by a factor of 2 both horizontally and vertically.
Figure 12-3 shows what happens if, when you scale the image, the origins of
both the source and destination images are set to 0.0, 0.0 (the default).

Figure 12-3 Zooming the Upper-Left Corner of an Image

The image on the left is the original image, and the image on the right is the
scaled image. Because the origins are in the upper-left corner of the images, the
destination image contains a zoomed version of the upper-left quadrant of the
source image.

Source image Destination image

230 XIL Programmer’s Guide—August 1997

12

If, on the other hand, the origins of the source and destination images are set to
the pixels at the centers of the images, the scale operation produces the results
shown in Figure 12-4.

Figure 12-4 Zooming the Center of an Image

This time the destination image contains a zoomed version of a block taken
from the center of the source image.

xil_subsample_adaptive()

The xil_scale() function discussed in the last section is a convenient way to
enlarge images. You can reduce an image’s size using either xil_scale() or
xil_subsample_adaptive() .

The XIL library includes the second function because when you scale down an
image using xil_scale() , you must request one of the interpolation methods
discussed earlier: nearest neighbor, bilinear, bicubic, or general. The first three
of these interpolation methods look at relatively few source-image pixels when
calculating the value of a destination pixel. Therefore, if you use one of these
options on xil_scale() to reduce the size of an image, there are many cases
where some pixels in the source image make no contribution to the value of a
pixel in the destination. For example, say that you scale down a 512-by-512
image using an x scale factor of .25, a y scale factor of .25, and bilinear
interpolation. The source image contains 262,144 pixels, and the part of the
destination image that represents the scaled-down source image contains
16,384 pixels. Since the operation used bilinear interpolation, the maximum

Source image Destination image

Geometric Functions 231

12

number of source-image pixels that could have contributed to the scaled-down
image is 4 times 16,384, or 65,536. In other words, at least three-fourths of the
pixels in the source image had no effect on the values in the scaled-down
image.

To increase the number of source-image pixels used in the calculation with
xil_scale() , you could specify the general interpolation method and define
your own interpolation tables. However, the xil_subsample_adaptive()
function circumvents this problem for you because it guarantees that no matter
what scale factors you use, every pixel in the source image contributes to the
value of one (and only one) pixel in the scaled-down image. For this reason,
scaling down images using xil_subsample_adaptive() is generally
preferable to using xil_scale() .

The function prototype for xil_subsample_adaptive() is shown here.

The parameters to this function look much like those used by the
xil_scale() function. Note, however, that you don’t specify an interpolation
type. The reason for this is that xil_subsample_adaptive() has an
interpolation scheme built in.

Because xil_subsample_adaptive() is useful only for reducing the size of
images, xscale and yscale must be less than or equal to 1.

xil_subsample_binary_to_gray()

The xil_subsample_binary_to_gray() function is similar to
xil_subsample_adaptive() in that you use it to scale down an image and
it guarantees that all the pixels in the source image make a contribution to the
value of one pixel in the scaled-down image. However,
xil_subsample_binary_to_gray() is designed specifically for scaling
down XIL_BIT images.

void xil_subsample_adaptive(XilImage src, XilImage dst,
 float xscale, float yscale);

232 XIL Programmer’s Guide—August 1997

12

The function prototype for xil_subsample_binary_to_gray() is shown
here.

This specialized function is necessary because if you scale down a 1-bit image
using xil_subsample_adaptive() or xil_scale() , no matter how many
source pixels you consider in determining the value of a destination-image
pixel, the destination pixel can only have one of two values: 0 or 1. Obviously,
a great deal of information about the image can be lost in this way.

The xil_subsample_binary_to_gray() function helps solve this problem
by allowing up to 256 gray levels in the destination image, which must have
the XIL_BYTE data type. For defining gray levels, one colormap index is used
for each possible gray level that could result from the x and y scaling factors.
The colormap indexes are consecutive values, with 0 representing all 0’s in the
source image. You must modify your colormap to define a gray level for each
resulting index.

For example, Figure 12-5 shows a source image being scaled down by a factor
of .5 in both the x and y dimensions. This means that a block of four pixels in
the source image determines the value of each pixel in the destination. Since
there are five possible combinations of values that can appear in a 2-by-2 block
of pixels in the source, there are five possible gray levels in the destination. The
equations below indicate how the subsampling is performed:

• Zero 1’s in the source (all 0’s) = 0 in the destination
• One 1 in the source = 1 in the destination
• Two 1’s in the source = 2 in the destination
• Three 1’s in the source = 3 in the destination
• Four 1’s in the source = 4 in the destination

void xil_subsample_binary_to_gray(XilImage src, XilImage dst,
 float xscale, float yscale);

Geometric Functions 233

12

Figure 12-5 Subsampling Bit Images

If the scaling factors require a fractional block of pixels in the source to
determine the destination pixel values, the block size is rounded up. For
example, if a 2.2-by-2.2 block of pixels would be required to determine pixel
values in the destination, a 3-by-3 block is used, resulting in 10 possible gray
levels and therefore 10 colormap indexes whose values are 0 through 9.

The result of this type of operation is much clearer than the image obtained by
scaling down a 1-bit image using xil_subsample_adaptive() or
xil_scale() .

Rotating Images
The XIL library’s rotation function is called xil_rotate() . This function’s
prototype is shown below.

void xil_rotate(XilImage src, XilImage dst, char *interpolation,
 float angle);

0 10

0 0

0

0 0

0

0

1

1

0 1

1 1

1

1

1

1

1

1

1

1 1 1

1

1

1

1

1

1

1

0 0 0 0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

00000

4

0 1 2 3

0 2 0

0 2 1 3

0 0 2 3

XIL_BIT source image

XIL_BYTE destination image

234 XIL Programmer’s Guide—August 1997

12

The src parameter is a handle to the image to be rotated, and dst is a handle
to the destination image. The interpolation parameter is a string that
specifies the type of interpolation to be used for the operation: nearest
neighbor, bilinear, bicubic, or general. For information about these
interpolation methods and how to request one of them, see “Interpolation
Options” on page 216. The last parameter, angle , indicates the desired angle
of rotation in radians. (One radian is approximately equal to 57.2958 degrees.)
A positive angle results in a counterclockwise rotation, and a negative angle
results in a clockwise rotation.

Note – XIL does not touch pixels that are not written by the source.

When you’re rotating an image, xil_rotate() rotates an image around its
origin. (For information about image origins, see “Origin” on page 47.) For
example, consider the situation where you have not set the origin of the source
or destination image. Figure 12-6 shows what happens when you rotate the
source image by 90 degrees counterclockwise.

Figure 12-6 Rotating an Image Around Its Default Origin

Because you’re rotating the image about its default origin, which is in the
upper-left corner, the image is rotated out of sight. Only the pixels in the
leftmost column of the source image are written to the destination. They
become part of the topmost scanline in that image. XIL does not touch pixels in
the destination that are not written by the source.

Source image Destination image

Geometric Functions 235

12

To rotate the source image in the usual sense, you must first set the origins of
the source and destination images to their respective centers.

This code produces the results shown in Figure 12-7.

Figure 12-7 Rotating an Image Around Its Center

Performing General Affine Transforms
An affine transform is a transformation of an image in which straight lines
remain straight and parallel lines remain parallel, but the distance between
lines and the angles between lines may change. Thus, translation, scaling, and
rotation are all affine transforms.

unsigned int width, height;

width = xil_get_width(src);
height = xil_get_height(src);
xil_set_origin(src, (width-1.0)/2.0, (height-1.0)/2.0);
xil_set_origin(dst, (width-1.0)/2.0, (height-1.0)/2.0);
xil_rotate(src, dst, “nearest”, 1.5708);

236 XIL Programmer’s Guide—August 1997

12

The XIL functions that perform one of these transforms are discussed in
“Translating Images,” “Scaling and Subsampling Images,” and “Rotating
Images.” However, the XIL library also contains a function that can perform
any of these transforms, or a combination of them, such as a rotate and a scale.
This function is called xil_affine() , and its prototype is shown below.

The src parameter is a handle to the image to be transformed, and dst is a
handle to the destination image. The interpolation parameter is a string
that specifies the type of interpolation to be used for the operation. For
information about the available methods of interpolation and how to request
one of them, see “Interpolation Options” on page 216. The last parameter,
matrix , must be a six-element array of floating-point numbers.

If we call the six elements in the array a, b, c, d, tx, and ty, the equations used
in performing the transform look like this:

xd = (a * xs) + (c * ys) + tx
yd = (b * xs) + (d * ys) + ty

Or written as a matrix operation:

where (xs, ys) are the source image coordinates and (xd, yd), the destination
image coordinates.

To illustrate how these equations relate to particular transforms, look at how
you would perform the translation, scale, and rotation considered earlier in the
chapter using xil_affine() .

void xil_affine(XilImage src, XilImage dst, char *interpolation,
 float *matrix);

xd

yd

a c

b d

xs

ys

tx

ty
+=

Geometric Functions 237

12

This code fragment illustrates an image being translated 50 pixels to the right
and 50 pixels down.

The fifth value in the matrix is used to control the horizontal translation of the
image, and the sixth is used to control the amount of vertical translation.

This code fragment shows an image being zoomed by a factor of 2 in both the
x and y directions:

And this code fragment shows an image being rotated 90 degrees
counterclockwise.

XilImage src, dst;
float matrix[6] = {1.0, 0.0, 0.0, 1.0, 50.0, 50.0};

xil_affine(src, dst, “nearest”, matrix);

XilImage src, dst;
float matrix[6] = {2.0, 0.0, 0.0, 2.0, 0.0, 0.0};

xil_affine(src, dst, “nearest”, matrix);

XilImage src, dst;
float matrix[6];

matrix[0] = (float)cos(1.5708);
matrix[1] = (float)-sin(1.5708);
matrix[2] = (float)sin(1.5708);
matrix[3] = (float)cos(1.5708);
matrix[4] = 0.0;
matrix[5] = 0.0;
xil_affine(src, dst, “nearest”, matrix);

238 XIL Programmer’s Guide—August 1997

12

You can also use xil_affine() to perform many other affine transforms. For
example, the code below shears a source image along the x axis and then
translates the image to the left so that it is centered in the destination.

Note – In this case, the y coordinate of a pixel in the source image affects the x
coordinate of a pixel in the destination. Figure 12-8 shows an image before and
after this shearing operation.

Figure 12-8 Shearing an Image Along Its x Axis

Warping Images
Each of the geometric functions discussed so far in this chapter performs some
type of affine transformation: xil_translate() moves an image up, down,
left, or right; xil_scale() changes an image’s width or height; and so on.
The XIL library also contains a set of general functions that let you customize a
transformation to meet an individual set of needs by creating warp tables that
perform pixelwise displacement horizontally, vertically, or in both directions.
The warp tables are XIL images whose pixel values define the backward

XilImage src, dst;
float matrix[6] = {1.0, 0.0, -0.4, 1.0, 50.0, 0.0};

xil_affine(src, dst, “nearest”, matrix);

Source image Destination image

Geometric Functions 239

12

mapping from a pixel in the destination to a pixel in the source. Note that this
differs from affine transformation wherein the supplied coefficients define the
forward mapping.

Warp tables are typically used to stretch an image according to predefined
rules and are most useful for performing nonlinear transformations. For
example, they might be used to correct distortions that were imposed on an
image by the equipment used to capture it. Or they might be used for
cartographic projection of an image.

To displace pixels in a single dimension, use either the
xil_tablewarp_horizontal() or xil_tablewarp_vertical() function.

To displace pixels in two dimensions, use the xil_tablewarp() function.

xil_tablewarp_horizontal() specifies a horizontal displacement,
xil_tablewarp_vertical() specifies a vertical displacement, and
xil_tablewarp() specifies a displacement in both directions. For these
functions, the src and dst parameters are handles to the source and
destination images. The interpolation parameter is a string that specifies an
interpolation type for the operation: nearest neighbor, bilinear, bicubic, or
general (see “Interpolation Options” on page 216). The warp_table parameter
is a handle to a defined warp table. For a one-dimensional displacement, the
warp table is a 1-banded image that specifies the displacement in one direction.
For a two-dimensional displacement, the warp table is a 2-banded image; the
first band specifies the horizontal displacement and the second band specifies
the vertical displacement.

void xil_tablewarp_horizontal(XilImage src, XilImage dst,
 char* interpolation, XilImage warp_table);

void xil_tablewarp_vertical(XilImage src, XilImage dst,
 char* interpolation, XilImage warp_table);

void xil_tablewarp(XilImage src, XilImage dst,
 char* interpolation, XilImage warp_table);

240 XIL Programmer’s Guide—August 1997

12

A warp table is applied at the destination image’s origin; the source image’s
origin is then added to the backward mapping position specified by the warp
table. By default, an image’s origin is 0,0; to change the origin, use the
xil_set_origin() function.

A warp table must have either the XIL_SHORT or XIL_FLOAT data type,
though it can be used to warp images of any data type. In the case of an
XIL_SHORT warp table, each XIL_SHORT value is interpreted as fixed point
data with a 12-bit value and 4 bits of fractional precision. Both the source and
destination images must have the same type and number of bands. The
tablewarp operations cannot be performed in place.

Warp tables can be used to perform any type of geometric transformation. For
example, as discussed in “Translating Images” on page 226, you can move a
source image up, down, left, or right with xil_translate() . You can also
use a warp table to move the image. The following code fragment shows how
you could define a two-dimensional warp table to move an image to the left
100 pixels and up 500 pixels. Note that the source of the translation is opposite
to that of xil_translate() : the tablewarp operation defines a backward
mapping, whereas the affine operation defines a forward mapping.

In this example, the warp_table variable stores the warp table for the
operation; it is assumed that the source image’s width and height have already
been stored in the width and height variables. The warp_table image has
two bands; the first band is needed to store the horizontal displacement
defined by values[0] , and the second is needed to store the vertical
displacement defined by values[1] . The call to xil_set_values() sets all

XilSystemState state;
XilImage src, dst, warp_table;
float values[2];
int width, height;

warp_table = xil_create(state, width, height, 2, XIL_SHORT);
/* multiply offsets by 16 because of 12 bit values with
 * 4 bit precision */
values[0] = 100.0 * 16;
values[1] = 500.0 * 16;
xil_set_value(warp_table, values);

xil_tablewarp(src, dst, “bilinear”, warp_table);

Geometric Functions 241

12

pixels in the table-warp image to the values defined by the values array; thus,
the displacement is identical for all pixels. The call to xil_tablewarp() then
applies the warp table to the source image, using a bilinear interpolation.

Of course, you wouldn’t use a warp table to perform a simple translation;
warp tables are better used to define algorithms that implement nonlinear
displacements. The algorithm would typically define a pixelwise displacement
for source-image pixels, in which case you would set the displacements on the
warp table by calling xil_set_pixel() rather than xil_set_value() . For
a discussion of warping transformations, see Gonzalez and Wintz, Digital Image
Processing (see Appendix E, “Bibliography”).

Transposing Images
The XIL library’s transposition function, xil_transpose() , enables you to:

• Flip an image across an imaginary horizontal line that runs through the
center of the image

• Flip an image across an imaginary vertical line that runs through the center
of the image

• Flip an image across its main diagonal

• Flip an image across its antidiagonal

• Rotate an image counterclockwise about its center by 90, 180, or 270 degrees

The function’s prototype is shown here.

void xil_transpose(XilImage src, XilImage dst,
 XilFlipType fliptype);

242 XIL Programmer’s Guide—August 1997

12

The src and dst parameters are handles to the source and destination images.
The fliptype parameter is an enumeration constant of type XilFlipType .
The constants in the enumeration are listed and described in Table 12-3.

Note – You don’t specify an interpolation type when you call
xil_transpose() . This is not necessary because xil_transpose() differs
slightly from the other geometric operators in that it maps pixels in the source
image directly to pixels in the destination. Also, xil_transpose() ignores
image origins when it flips or rotates images. The function always flips an
image across a line that passes through the center of the image and always
rotates an image around its center.

Table 12-3 Constants in the Enumeration XilFlipType

Constant Description

XIL_FLIP_X_AXIS Flips the image across a horizontal line running
through its center

XIL_FLIP_Y_AXIS Flips the image across a vertical line running
through its center

XIL_FLIP_MAIN_DIAGONAL Flips the image across its main diagonal

XIL_FLIP_ANTIDIAGONAL Flips the image across its antidiagonal

XIL_FLIP_90 Rotates the image 90 degrees counterclockwise
about its center

XIL_FLIP_180 Rotates the image 180 degrees counterclockwise
about its center

XIL_FLIP_270 Rotates the image 270 degrees counterclockwise
about its center

Geometric Functions 243

12

Figure 12-9 illustrates several of the operations that xil_transpose() can
perform.

Figure 12-9 Flipping and Rotating Images Using xil_transpose()

Original image Flipped across vertical axis

Flipped across horizontal axis Rotated 180 degrees counterclockwise

244 XIL Programmer’s Guide—August 1997

12

245

Miscellaneous Image Processing
Functions 13

Earlier chapters in this book discussed several classes of XIL image-processing
functions:

• Chapter 9, “Presentation Functions,” discussed the XIL functions to use in
preparing an image for display.

• Chapter 11, “Arithmetic, Relational, and Logical Functions,” considered the
XIL library’s arithmetic and logical functions.

• Chapter 12, “Geometric Functions,” discussed the library’s geometric
functions.

This chapter covers the library’s remaining image-processing functions. The
chapter has the following main sections:

Finding the Minimum and Maximum Values in an Image page 246

Producing a Histogram for an Image page 247

Thresholding an Image page 252

Filling an Area in an Image page 253

Filtering an Image page 257

Detecting Edges in an Image page 264

Dilating or Eroding an Image page 266

Passing an Image Through a Lookup Table page 271

Linear Combination of Image Bands page 279

Blending Images page 283

246 XIL Programmer’s Guide—August 1997

13

Finding the Minimum and Maximum Values in an Image
The xil_extrema() function finds the minimum and maximum values in a
single-band image or the minimum and maximum values in each band of a
multiband image. The prototype for this function is as follows:

The src parameter is a handle to a source image. The max parameter is an
array of floats in which the function returns the maximum value found in
each band of the source image. The min parameter is an array of float s in
which the function returns the minimum value found in each band of the
image. The number of elements in the max and min arrays must match the
number of bands in the image.

Consider the example shown here.

After this call, max[0] contains the maximum value in band 0 of src , max[1]
contains the maximum value in band 1, and max[2] contains the maximum
value in band 2. Similarly, min contains the minimum values in the three bands
of the image.

Note – xil_extrema() returns a minimum or maximum value, depending on
which one you specify. Don’t confuse this with finding the larger or lesser of
pixels between two source images and storing the results in a destination
image. To perform that relational function, use xil_max() or xil_min() ,
discussed on page 208.

Painting on an Image page 285

Setting and Getting the Values of Pixels in an Image page 287

Copying a Pattern to an Image page 289

void xil_extrema(XilImage src, float *max, float *min);

XilImage src;
float max[3], min[3];

xil_extrema(src, max, min);

Miscellaneous Image Processing Functions 247

13

Producing a Histogram for an Image
The XIL library defines a data type called XilHistogram . An object of this
type is designed to hold information on the frequency of occurrence of gray
levels (or color-levels) in an image. This section discusses how to produce a
histogram for an image and how to read intensity-level information from an
XIL histogram structure. The primary tasks you need to perform are listed
below:

• Create a histogram data structure.

• Collect gray- or color-level frequency information on an image in the data
structure.

• Read the histogram data stored in the structure.

• Destroy the histogram.

These tasks are discussed in detail in the sections that follow.

Creating a Histogram

An XIL histogram structure contains a set of bins for each band of the image
whose histogram you want to read. These bins are used to hold information on
gray or color levels. For instance, if you want to take the histogram of an 8-bit
grayscale image, you might create a histogram structure that contains 256 bins,
where the number of 0’s in the image is stored in bin 0, the number of 1’s in the
image is stored in bin 1, and so on up to bin 255.

Your histogram need not contain a bin for each possible value in the image.
You can specify the lowest and highest values that results in a bin count being
incremented. In addition, you can specify that the histogram structure contain
a number of bins less than the number of levels you are checking for. In this
case, each bin holds a count for a range of values. For example, if you create a
histogram for an 8-bit grayscale image and specify four bins, occurrences of the
values 0 to 63 are stored in bin 0, occurrences of 64 to 127 are stored in bin 1,
and so on.

Note that for multi-band images, the histogram produced is, in fact, a joint
histogram across all bands of the image. A joint histogram holds information
on the frequency of occurrence of combinations of color levels. If, for example,

248 XIL Programmer’s Guide—August 1997

13

there are 4 bins per band, the joint histogram contains 4*4*4=64 bins. Each bin
corresponds to a frequency p(v1, v2, v3) giving the total number of pixels or
having band 1, 2, and 3 values equal to v1, v2, and v3, respectively.

You create a histogram data structure by calling the
xil_histogram_create() function, whose function prototype is shown
below.

Table 13-1 lists and describes each of the parameters.

Note – The total number of bins in the histogram is the product of the nbins
values for all bands. Specifying too many bins for multi-band images could
significantly degrade performance by using large amounts of memory. For
example, if you create a histogram for a 3-band image with 256 bins for each

XilHistogram xil_histogram_create(XilSystemState state,
 unsigned int nbands, unsigned int *nbins, float *low_value,
 float *high_value);

Table 13-1 Parameters to xil_histogram_create()

Parameter Description

state The system-state data structure returned when you initialized
the library.

nbands The number of bands in the histogram. This number must
match the number of bands in the image whose histogram you
want to take.

nbins An array of unsigned int s, each element of which specifies
the number of bins to be used for one band of the image. The
number of elements in the array must match the number of
bands in the image.

low_value A pointer to an array of float s, each element of which is the
midpoint of the first bin. (See “Determining low_value and
high_value.”) The number of elements in the array must match
the number of bands in the image.

high_value A pointer to an array of float s, each element of which is the
midpoint of the last bin. See “Determining low_value and
high_value.”) The number of elements in the array must match
the number of bands in the image.

Miscellaneous Image Processing Functions 249

13

band, the histogram data structure would require approximately 16 million
bins (64 MBytes). (You can generate an individual histogram for each band of
an image by creating a child image.)

Determining low_value and high_value

The following are examples of how to determine low_value and high_value
for three grayscale images.

First Image
8-bit grayscale, XIL_BYTE , range: 0 to 255

4 bins: [0 , 63][64 , 127] [128 , 191] [192 , 255]

low_value = 32

high_value = 224

Second Image
floating point grayscale, XIL_FLOAT, range: 0.00 to 1.00

4 bins: [0.00 , 0.25) [0.25 , 0.50) [0.50 , 0.75)[0.75 , 1.00)

low_value = 0.125

high_value = 0.875

Third Image
16-bit grayscale, XIL_SHORT , range : -32768 to 32767

4 bins: [-32768 , -16385] [-16384 , -1] [0 , 16383][16384 , 32767]

low_value = -24576

high_value = +24576

250 XIL Programmer’s Guide—August 1997

13

Writing Level Information to the Histogram Structure

Once you have created an appropriate histogram structure, you generate the
histogram for an image using the xil_histogram() function. The prototype
for this function is shown below.

The src parameter is a handle to the image whose histogram you want to take.
The histogram parameter is a handle to the histogram structure you created
earlier. The skip_x and skip_y parameters tell xil_histogram() whether
it should count every pixel in the source image, or whether it can skip some
pixels, either horizontally or vertically.

If skip_x is set to 1, xil_histogram() counts every pixel on a scanline; if it
is set to 2, the function counts every other pixel; and so on. The value of
skip_y has an analogous effect on whether xil_histogram() counts every
pixel in the vertical direction.

Reading Data From a Histogram

Once you’ve generated histogram data for an image, you’ll want to read the
counts stored in the bins of the histogram structure. You read this data using
the xil_histogram_get_values() function, whose prototype is shown
below.

The histogram parameter is a handle to your histogram structure, and data
is a pointer to an array of unsigned int s in which
xil_histogram_get_values() places the histogram data.

void xil_histogram(XilImage src, XilHistogram histogram,
 unsigned int skip_x, unsigned int skip_y);

void xil_histogram_get_values(XilHistogram histogram,
 unsigned int *data);

Miscellaneous Image Processing Functions 251

13

The following code fragment shows how you might retrieve the histogram
data for a 3-band XIL_BYTE image. This code assumes that 32 bins were used
for each band of the image.

The array data is populated and accessed as a ‘C’ multi-dimensional array,
where the last index is that of the highest-numbered band.

The XIL library also contains functions to retrieve other information from
histogram structures, to name histograms, and to create a copy of a histogram.
These are listed and described in Table 13-2.

#define BINS 32

XilHistogram histogram;
unsigned int *data;

data = (unsigned int *)malloc(BINS * BINS * BINS *
 sizeof(unsigned int));
xil_histogram_get_values(histogram, data);

Table 13-2 Additional Histogram Functions

Function Description

xil_histogram_get_nbands() Returns the number of bands in the
histogram

xil_histogram_get_nbins() Fills a user-supplied array with values
representing the number of histogram bins
for each histogram band

xil_histogram_get_limits() Fills one user-supplied array with floating-
point numbers that represent the low values
for the histogram’s bands and a second array
with numbers representing the high values

xil_histogram_get_info() Returns information on the number of bands,
the number of bins, and the low and high
values in the histogram

xil_histogram_set_name() Sets the name of a histogram

252 XIL Programmer’s Guide—August 1997

13

Destroying a Histogram

After reading the histogram data for your image, you should destroy the
histogram structure if you don’t intend to use it again. Destroying the
histogram frees the memory that was allocated to store it.

You destroy a histogram structure by calling the xil_histogram_destroy()
function, whose prototype is shown here.

The only parameter to this function is a handle to the histogram you want to
destroy.

Thresholding an Image
The XIL library’s xil_threshold() function provides a simple mechanism
for defining the boundaries of objects that appear on a contrasting background.
The function’s prototype is shown here.

The src and dst parameters are handles to the source and destination images
for the operation. The lowvalue parameter is a pointer to an array of
floating-point numbers that define the lower bound for the threshold operation
for each band of src . That is, the operation affects only values greater than or
equal to lowvalue[0] in band 0, only values greater than or equal to
lowvalue[1] in band 1, and so on. The highvalue parameter is a pointer to

xil_histogram_get_name() Returns a copy of a histogram’s name

xil_histogram_get_by_name() Returns a handle to a histogram that has the
name you specify

xil_histogram_create_copy() Creates and returns a copy of the specified
histogram

void xil_histogram_destroy(XilHistogram histogram);

void xil_threshold(XilImage src, XilImage dst, float *lowvalue,
 float *highvalue, float *mapvalue);

Table 13-2 Additional Histogram Functions (Continued)

Function Description

Miscellaneous Image Processing Functions 253

13

an array of float s that define the upper bound for the threshold operation for
each band of src . The final parameter, mapvalue , is also a pointer to an array
of float s and is used as follows. For band n of an image, all values in the
range lowvalue[n] to highvalue[n] inclusive are set to mapvalue[n] .

A standard way of arriving at the optimal values for the elements of the arrays
lowvalue and highvalue is to create a histogram for the image. For
information on XIL histograms, see “Producing a Histogram for an Image” on
page 247.

Filling an Area in an Image
The XIL library contains two fill functions: xil_fill() and
xil_soft_fill() . The first function performs boundary fills, and the second
performs soft fills.

xil_fill()

The xil_fill() function fills a 4-connected region of pixels with a specified
color. (One pixel is 4-connected to another if it is located directly above, below,
to the left of, or to the right of that pixel.) The region begins at a starting pixel
(the seed) and grows until it encounters a boundary color or the edge of the
image.

254 XIL Programmer’s Guide—August 1997

13

Figure 13-1 shows a fill operation in which the boundary color is black, the fill
color is dark gray, and the starting point for the fill is 3,2.

Figure 13-1 Boundary Fill

The function prototype for xil_fill() is shown below.

The src and dst parameters are handles to the source and destination images
for the operation. These images must have the same number of bands and the
same data type. The xseed and yseed parameters represent the x and y
coordinates of the starting point in the source image. The boundary and
fill_color parameters are arrays of floating-point numbers. Both arrays
must contain a number of elements equal to the number of bands in the source
and destination images. The elements of boundary represent the boundary
color, and those in fill_color represent the fill color.

void xil_fill(XilImage src, XilImage dst, float xseed,
 float yseed, float *boundary, float *fill_color);

Source image Destination image

Boundary color

Fill color

Starting point

Miscellaneous Image Processing Functions 255

13

xil_soft_fill()

The xil_soft_fill() function is designed to solve the problem of filling a
region that does not have a distinct boundary, usually because the outline of
the region has been antialiased. It also fills regions that are shaded or contain
specular reflections without losing the special effects.

Here’s how xil_soft_fill() works. Suppose, for example, that you want to
fill a red object that appears on a blue background, and the object has been
antialiased so that there’s a transition at the edge of the object from red to
magenta to blue. You want to fill the object with green. To get started, you
specify:

• The foreground color, the region to be filled: red
• The background color: blue. (There may be more than one background

color.)
• A fill color: green
• A starting point (seed) known to be inside the region to be filled

The soft-fill function then determines which pixels are inside the region and
sets those pixels appropriately. To be considered part of the region to be filled,
a pixel must be 4-connected to a pixel inside the region and must contain some
fraction of the foreground color. That is, the value of each pixel in the region
can be expressed as shown here.

When setting the values of pixels in the destination image, xil_soft_fill()
uses this equation.

As a consequence, where there was a transition from red to magenta to blue in
the source, there is a transition from green to cyan to blue in the destination.

Pixel value = (fraction * foreground_color) + ((1 - fraction) *
background_color)

Pixel value = (fraction * fill_color) + ((1 - fraction) *
background_color)

256 XIL Programmer’s Guide—August 1997

13

The prototype for xil_soft_fill() is shown below.

Table 13-3 lists and describes each of the parameters.

void xil_soft_fill(XilImage src, XilImage dst, float xseed,
 float yseed, float *fgcolor, unsigned int num_bgcolor,
 float *bgcolor, float *fill_color);

Table 13-3 Parameters to xil_soft_fill()

Parameter Description

src A handle to the source image for the operation

dst A handle to the destination image. This image must have the
same number of bands and the same data type as the source
image

xseed The x coordinate of the starting point in the source image for
the operation

yseed The y coordinate of the starting point in the source image for
the operation

fgcolor An array of float s containing a number of elements equal to
the number of bands in the source and destination images.
These elements specify the current color of the region to be
filled

num_bgcolor The number of background colors in the image

bgcolor An array of float s containing a number of elements equal to
the number of background colors times the number of bands in
the source and destination images. If your RGB source image
contained two background colors—black and red—your
declaration of bgcolor might look like this:

float bgcolor[6] = {0.0,0.0,0.0,0.0,0.0,255.0};

fill_color An array of float s containing a number of elements equal to
the number of bands in the source and destination images.
These elements specify the color to be used in filling the region
of interest

Miscellaneous Image Processing Functions 257

13

Filtering an Image
The XIL function for filtering is called xil_convolve() . Depending on the
convolution filter, or kernel, that you specify as a parameter to this function, the
function can perform a variety of tasks, including:

• Sharpening images
• Blurring images
• Highlighting the edges in images

See Color Plate 2 for a few examples of how different kernels can affect a
source image.

Note – To detect edges, you can also use xil_edge_detection() , which
uses the Sobel algorithm. For information on xil_edge_detection() , see
“Detecting Edges in an Image” on page 264.

The kernel you supply as a parameter is a two-dimensional array of weighted
values that the xil_convolve() function uses as follows.

To calculate the value of each pixel in the destination image, the function
rotates the kernel 180 degrees about its key value. Then it lays the key
value—usually the value at the center of the kernel—over the source-image
pixel. This means that the other values in the kernel lie on top of neighbors of
the source image pixel. Figure 13-2 shows a 3-by-3 kernel being laid on top of

258 XIL Programmer’s Guide—August 1997

13

the source image pixel at 1,1 and its neighbors. Note that, in this case, rotating
the kernel has no effect in calculating the destination pixels, as the values
surrounding the kernel key are symmetric.

Figure 13-2 Convolution Operation

The convolution function then multiplies the source-image pixel as well as
each pixel in the neighborhood defined by the kernel by the appropriate kernel
value. Finally, it sums the products of these multiplications. (The result of this
sum becomes the destination pixel value.)

Three basic steps are involved in performing this type of convolution operation
using the XIL library:

• Creating the convolution kernel
• Filtering your image
• Destroying the kernel

These tasks are discussed in detail in the next several sections.

Image

Kernel

Key value

Pixel being processed
-1

-1

-1

-1 5

0 0

0 0

Miscellaneous Image Processing Functions 259

13

Creating a Convolution Kernel

Convolution kernels are XIL objects of type XilKernel and are created with
the xil_kernel_create() function. The prototype for this function is shown
here.

The state parameter is a system-state data structure. You received a handle to
this structure when you initialized the library. The width and height
parameters are the width and height of the kernel in pixels. These values are
usually odd numbers so that the kernel has a center value, but need not be.
Common sizes for kernels are 3-by-3 and 5-by-5. The keyx and keyy
parameters define the coordinates of the key value in the kernel. These
coordinates are specified with respect to the upper-left value in the kernel (0,0).
As mentioned earlier, the key value is usually in the center of the kernel. The
last parameter, data , is a pointer to the floating-point values written to the
kernel.

Note – Alternately as an optimization, you can create a separable convolution
kernel of type XilKernel . For details, see “Creating a Separable Convolution
Kernel” on page 262.

The code needed to create the kernel shown in Figure 13-2 would look
something like this.

XilKernel xil_kernel_create(XilSystemState state,
 unsigned int width, unsigned int height, unsigned int keyx,
 unsigned int keyy, float *data);

XilKernel high_pass_filter;
XilSystemState state;
unsigned int width, height, keyx, keyy;
float data[] = {0.0, -1.0, 0.0,
 -1.0, 5.0, -1.0,
 0.0, -1.0, 0.0};

width = height = 3;
keyx = keyy = 1;
high_pass_filter = xil_kernel_create(state, width, height, keyx,
 keyy, data);

260 XIL Programmer’s Guide—August 1997

13

The kernel created here is a high-pass filter, used for sharpening an image. Two
other common high-pass filters are shown in Figure 13-3.

Figure 13-3 High-Pass Filters

Figure 13-4 shows several low-pass filters. These are useful for smoothing or
blurring images.

Figure 13-4 Low-Pass Filters

Filtering an Image

Once you have created the convolution kernel you want to use for your
filtering operation, call xil_convolve() to perform the actual filtering. The
prototype for this function is as follows:

void xil_convolve(XilImage src, XilImage dst, XilKernel kernel,
 XilEdgeCondition edge_condition);

-1.0

9.0

-1.0 -1.0

-1.0 -1.0

-1.0 -1.0 -1.0

1.0 -2.0

5.0

1.0

1.0

1.0

-2.0 -2.0

-2.0

0.1111 0.1111 0.1111

0.1111 0.1111 0.1111

0.1111 0.1111 0.1111

0.1

0.2

0.1 0.1

0.1 0.1

0.1 0.1 0.1

0.2500

0.0625 0.1250

0.12500.1250

0.1250

0.0625

0.0625 0.0625

Miscellaneous Image Processing Functions 261

13
The src and dst parameters are handles to a source and destination image.
These two images must have the same number of bands and contain the same
type of data. The kernel parameter is a handle to the convolution kernel you
created earlier. The final parameter, edge_condition , is an enumeration
constant that indicates how xil_convolve() should handle pixels at, or near,
the edge of the source image. Table 13-4 lists the three constants you can use
here and explains what effect they have.

Destroying a Convolution Kernel

After filtering your image, you should destroy the convolution kernel you used
for the filtering if you don’t intend to use it again. Destroying this kernel frees
the memory that was allocated to store it.

You destroy a convolution kernel by calling the xil_kernel_destroy()
function, whose prototype is shown here.

The only parameter to this function is a handle to the kernel you want to
destroy.

Table 13-4 Handling Edges in a Convolution Operation

Value for edge_condition Effect on Convolution Operation

XIL_EDGE_NO_WRITE The pixels at the edge of the destination image are
not touched (that is, they retain the values they
had prior to convolution).

XIL_EDGE_ZERO_FILL Pixels at the edge of the destination image are set
to zero.

XIL_EDGE_EXTEND The convolution operator temporarily extends the
width and height of the source image by
replicating the pixels at the edge of the image.
This strategy enables the operator to filter the
pixels that were originally at the edge of the
image.

void xil_kernel_destroy(XilKernel kernel);

262 XIL Programmer’s Guide—August 1997

13

Additional Kernel-Related Functions

The preceding sections have discussed the most frequently used XIL functions
that affect kernels. However, the library also contains the kernel-related
functions listed and described in Table 13-5. These functions enable you to
make a copy of a kernel, read the values of kernel attributes, and assign a name
to a kernel, among other things.

Creating a Separable Convolution Kernel

As an optimization, XIL supports creating a separable convolution kernel
object of type XilKernel with the xil_kernel_create_separable()
function. The prototype for this function is shown here.

Table 13-5 Utility Functions for Convolution Kernels

Function Description

xil_kernel_create_copy() Creates a copy of a kernel

xil_kernel_get_width() Gets the width of a kernel in pixels

xil_kernel_get_height() Gets the height of a kernel in pixels

xil_kernel_get_key_x() Gets the x coordinate of the kernel’s key value

xil_kernel_get_key_y() Gets the y coordinate of the kernel’s key value

xil_kernel_set_name() Assigns a name to a kernel

xil_kernel_get_name() Returns a copy of a kernel’s name

xil_kernel_get_by_name() Gets a handle to a kernel by specifying the name
of the kernel

xil_kernel_get_values() Gets the values stored internally in the kernel

XilKernel xil_kernel_create_separable(XilSystemState State,
 unsigned int width,
 unsigned int height,
 unsigned int keyx,
 unsigned int keyy,
 float *x_data,
 float *y_data);

Miscellaneous Image Processing Functions 263

13

A separable convolution kernel can be expressed as 2 one-dimensional vectors
whose outer product produces a 2-dimensional kernel.

Example Separable Kernel

The code to create a simple convolution kernel (5 columns by 3 rows)
expressed in separable form would look something like this.

The resulting kernel is shown in Figure 13-5.

Figure 13-5 Separable Kernel

Advantages of Separable Kernels

Creating a separable convolution kernel has two advantages:

XilSystemState state;
XilKernel kernel;
unsigned int width, height, keyx, keyy;
float x_data[5] = { 1.0/5.0, 1.0/5.0, 1.0/5.0, 1.0/5.0, 1.0/5.0 };
float y_data[3] = { 1.0/3.0, 1.0/3.0, 1.0/3.0 };

width = 6;
height = 3;
keyx = 2;
keyy = 1;

kernel = xil_kernel_create_separable(state, width, height, keyx,
keyy, x_data, y_data);
xil_convolve(source, destination, kernel, XIL_EDGE_ZERO_FILL);

1.0/5.0

1.0/15.0

1.0/15.0

1.0/15.0

1.0/3.0

1.0/3.0

1.0/3.0

1.0/5.0

1.0/15.0

1.0/15.0

1.0/15.0

1.0/5.0

1.0/15.0

1.0/15.0

1.0/15.0

1.0/5.0

1.0/15.0

1.0/15.0

1.0/15.0

1.0/5.0

1.0/15.0

1.0/15.0

1.0/15.0

x_data

y_data

1.0/5.0

1.0/15.0

1.0/15.0

1.0/15.0

1.0/3.0

1.0/3.0

1.0/3.0

1.0/5.0

1.0/15.0

1.0/15.0

1.0/15.0

1.0/5.0

1.0/15.0

1.0/15.0

1.0/15.0

1.0/5.0

1.0/15.0

1.0/15.0

1.0/15.0

1.0/5.0

1.0/15.0

1.0/15.0

1.0/15.0

x_data

y_data

264 XIL Programmer’s Guide—August 1997

13

• It increases performance. XIL is required to make fewer calculations.

• You can streamline the code you write. Instead of providing 15 array values,
the above example only requires 8.

Note – XIL tests kernels created with the xil_kernel_create() function to
determine if they are separable. If so, it uses separable convolution routines to
perform the actual colvolution calculations with such kernels, thereby
enhancing performance.

Separable Kernel Functions

Once a separable kernel is created, it can use all the functions of a standard
convolution kernel. For details on these functions, see the following sections:

• “Filtering an Image” on page 260
• “Destroying a Convolution Kernel” on page 261
• “Additional Kernel-Related Functions” on page 262

Detecting Edges in an Image
The xil_edge_detection() function detects edges in a source image and
writes the result to a destination image. The prototype for this function is
shown here.

The src and dst parameters are handles to a source and destination image.
The two images must have the same number of bands and contain the same
type of data. The edge_detection_method parameter is an enumeration
constant describing the type of edge detection to perform.

void xil_edge_detection(XilImage src, XilImage dst,
 XilEdgeDetection edge_detection_method);

Miscellaneous Image Processing Functions 265

13

Currently, XIL_EDGE_DETECT_SOBEL is the only edge detection method
supported; to detect vertical and horizontal edges in an image, it uses the
masks shown in Figure 13-6.

Figure 13-6 Filters Used by the XIL_EDGE_DETECT_SOBEL Algorithm

The XIL_EDGE_DETECT_SOBEL method detects edges by finding the gradient
of an image as follows:

• It performs two correlation operations on the source image: one operation
detects vertical edges using the vertical mask shown in Figure 13-6, the
other detects horizontal edges using the horizontal mask. This yields two
intermediate images: a and b.

• It squares all the pixel values in image a and then in image b, yielding the
intermediate images a2 and b2.

• It forms the final destination image by taking the square root of a2 + b2.

Note – The correlation operations duplicate the source-image edges. This is
similar to using the XIL_EDGE_EXTEND edge condition on xil_convolve() .
For information on xil_convolve() , see “Filtering an Image” on page 257.

Note – For a discussion of the Sobel edge condition algorithm, consult
Gonzalez and Wintz, Digital Image Processing (see Appendix E, “Bibliography”).

Vertical

-0.5 0.0 0.5

-1.0 0.0 1.0

-0.5 0.0 0.5

Horizontal

-0.5 -1.0 -0.5

0.0 0.0 0.0

0.5 1.0 0.5

266 XIL Programmer’s Guide—August 1997

13

Dilating or Eroding an Image
The XIL library includes two functions—xil_dilate() and
xil_erode() —that enable you to dilate and erode regions within images.
One of the main uses of these functions is to perform trapping on color images
that are printed. This trapping involves creating some overlap where regions of
different colors meet. Once a trap is in place, slight registration problems
during the printing process should not result in gaps appearing between the
edge of an object and its background.

Dilation and erosion are similar to convolution in that both calculate
destination-image pixels by looking at a neighborhood of source-image pixels
and the values in a matrix (called a structuring element). Like a convolution
kernel, this structuring element contains a key value. As each pixel in the
destination is calculated, this key value is laid over the corresponding pixel in
the source; see Figure 13-7.

Figure 13-7 Dilating and Eroding Images

Note that a structuring element contains only 0’s and 1’s.

For each placement of the structuring element, the dilation function calculates
a destination pixel value as follows. It looks at the values of the source-image
pixels that correspond to a 1 in the structuring element and assigns the
maximum of these values to the appropriate destination pixel. In the case of an
XIL_BIT image, this means that if any of the source-image pixels associated
with a 1 in the structuring element is set, the destination pixel is set.

Image

Key value

Pixel being processed
1

1

1

1 1

0 0

0 0

Structuring
element

Miscellaneous Image Processing Functions 267

13

Figure 13-8 shows a binary image before and after dilation of the image’s white
region. The dilation was performed using the structuring element shown in
Figure 13-7.

Figure 13-8 Dilating an Image

The erosion function does the opposite of this. It looks at the values of the
source-image pixels that correspond to a 1 in the structuring element and
assigns the minimum of these values to the appropriate destination pixel.
Figure 13-9 shows a binary image before and after erosion of the image’s white
region.

Figure 13-9 Eroding an Image

Source image Dilated image

Source image Eroded image

268 XIL Programmer’s Guide—August 1997

13

Performing either a dilation or an erosion in an XIL program is a three-step
process:

1. Create a structuring element.

2. Perform the dilation or erosion.

3. Destroy the structuring element.

These tasks are discussed in detail in the sections below.

Creating a Structuring Element

Structuring elements, which are XIL objects of type XilSel , are created with
the xil_sel_create() function. The prototype for this function is shown
here.

The state parameter is a system-state data structure. You received a handle to
this structure when you initialized the library. The width and height
parameters are the width and height of the structuring element in pixels. These
values are usually odd numbers so that the structuring element has a center
value, but need not always be odd. Common sizes for structuring elements are
3-by-3 and 5-by-5. The keyx and keyy parameters define the coordinates of
the key value in the kernel. These coordinates are specified with respect to the
upper-left value in the structuring element (0,0). The key value is usually in the
center of the structuring element. The last parameter, data , is a pointer to the
Boolean values that are written to the kernel.

XilSel xil_sel_create(XilSystemState state,
 unsigned int width, unsigned int height, unsigned int keyx,
 unsigned int keyy, unsigned int *data);

Miscellaneous Image Processing Functions 269

13

The code needed to create the structuring element shown in Figure 13-7 would
look something like this.

You can also assign names to structuring elements that you’ve created and then
get handles to those structuring elements using the
xil_sel_get_by_name() function. To assign a name to a custom structuring
element, you use the xil_sel_set_name() function, whose prototype is as
shown here.

You can determine whether a structuring element has a name and, if it does,
get that name by using the xil_sel_get_name() function.

Dilating or Eroding an Image

Once you have created a structuring element, call xil_dilate() to perform a
dilation. This function’s prototype is shown here.

XilSel cross_sel;
XilSystemState state;
unsigned int width, height, keyx, keyy;
unsigned int data[] = {0, 1, 0,
 1, 1, 1,
 0, 1, 0};

width = height = 3;
keyx = keyy = 1;
cross_sel = xil_sel_create(state, width, height, keyx, keyy,
 data);

void xil_sel_set_name(XilSel sel, char *sel_name);

char *xil_sel_get_name(XilSel sel);

void xil_dilate(XilImage src, XilImage dst, XilSel sel);

270 XIL Programmer’s Guide—August 1997

13

The src and dst parameters are handles to the source and destination images
for the operation. These images must have the same number of bands and the
same data type. The sel parameter is a handle to the structuring element you
created earlier.

To erode a region in an image, you call xil_erode() , which takes the same
parameters as xil_dilate() .

Destroying a Structuring Element

After performing your dilation or erosion, you should destroy your structuring
element if you don’t intend to use it again. Destroying the structuring element
frees the memory that was allocated to store that structure.

To destroy a structuring element, call xil_sel_destroy() . This function’s
prototype is shown below.

The only parameter to this function is a handle to the structuring element you
want to destroy.

void xil_erode(XilImage src, XilImage dst, XilSel sel);

void xil_sel_destroy(XilSel sel);

Miscellaneous Image Processing Functions 271

13

Additional Structuring-Element Functions

The preceding sections discussed the most frequently used XIL functions that
affect structuring elements. However, the library also contains the
structuring-element-related functions listed and described in Table 13-6. These
functions enable you to make a copy of a structuring element and read the
values of structuring-element attributes.

Passing an Image Through a Lookup Table
XIL lookup tables provide a very general mechanism for modifying images. A
lookup table enables you to 1) convert a single-band image of any data type to
a single-band or multiband image of any data type, or 2) convert a multiband
image of any data type to a multiband image of any data type. Each lookup
table allows you to specify precisely the mapping from source image pixel
values to destination image pixel values.

The general procedure for performing a lookup operation involves three steps:

1. Create a lookup table.

2. Pass a source image through the lookup table.

3. Destroy the table.

These tasks are discussed in detail in the sections that follow.

Table 13-6 Utility Functions for Structuring Elements

Function Description

xil_sel_create_copy() Returns a copy of a structuring element

xil_sel_get_width() Gets the width of a structuring element

xil_sel_get_height() Gets the height of a structuring element

xil_sel_get_key_x() Gets the x coordinate of the key value of
a structuring element

xil_sel_get_key_y() Gets the y coordinate of the key value of
a structuring element

xil_sel_get_values() Gets the values stored internally for a
structuring element

272 XIL Programmer’s Guide—August 1997

13

Creating a Lookup Table

The steps for creating a lookup table vary slightly, depending on whether the
input image is a single-band or multiband image. For a single-band input
image, you create a single lookup table; for a multiband input image, you
create a single lookup table for each band in the input image, then combine
those tables into a combined lookup table. Regardless of whether you create a
single lookup table or a combined lookup table, you pass the image through
the table in the same way.

Lookup tables for single-band and multiband input images are discussed
separately in the following sections.

Creating Lookup Tables for Single-Band Input Images

To create a lookup table for a single-band input image, you make a single call
to the xil_lookup_create() function, whose prototype is shown here.

This function returns a handle to an object of type XilLookup , which is the
lookup table. Table 13-7 lists and describes the parameters to
xil_lookup_create() .

XilLookup xil_lookup_create(XilSystemState state,
 XilDataType input_data_type, XilDataType output_data_type,
 unsigned int output_nbands, unsigned int num_entries,
 short first_entry_offset, void *data);

Table 13-7 Parameters to xil_lookup_create()

Parameter Description

state A handle to the system-state data structure that was
created when you initialized the XIL library

input_data_type The data type of the pixel values in the source image. The
four possible data types are XIL_BIT , XIL_BYTE ,
XIL_SHORT, and XIL_FLOAT

output_data_type The data type of the pixel values in the destination image

output_nbands The number of bands in the destination image

Miscellaneous Image Processing Functions 273

13

You might use this function if, for example, you had an XIL_BIT image that
you want to convert to a three-band XIL_BYTE image so that you can display
it on a 24-bit display. Further, you want black pixels in the source to appear
dark gray in the destination image, and white pixels to appear light blue. The
code to create a lookup table for this operation is shown here.

The lookup table this code would produce is shown in Figure 13-10.

Figure 13-10 Single Lookup Table

num_entries The number of entries in the lookup table. Each entry
specifies the correspondence between a source-image pixel
value and the value, or values, that define the
corresponding pixel in the destination image

first_entry_offset The source-image pixel value for the first entry in the table.
The source-image pixel value for the last entry in the table
is first_entry_offset + num_entries - 1

data A pointer to the data to be stored in the table

XilLookup lookup_table;
XilSystemState state;
Xil_unsigned8 data[] = {79, 79, 47, 216, 216, 191};

lookup_table = xil_lookup_create(state, XIL_BIT, XIL_BYTE, 3, 2,
 0, data);

Table 13-7 Parameters to xil_lookup_create() (Continued)

Parameter Description

0

1

79 79 47

216 216 191

274 XIL Programmer’s Guide—August 1997

13

The numbers to the left of the bold line are XIL_BIT values to be looked up in
the source image. The numbers to the right of the line are XIL_BYTE values to
be written to the destination image. Because the destination has three bands,
the table contains three values for each pixel.

A lookup table can also be used to convert an XIL_BIT image to an 8-bit
XIL_BYTE image; however, it may be easier to use xil_cast() to cast the
XIL_BIT data type to XIL_BYTE . The xil_cast() function casts the values 0
and 1 in the XIL_BIT image to indices 0 and 1 in the XIL_BYTE image. If you
need different indices, convert the image by passing it through a lookup table.

After creating the lookup table, you must pass the image through it, as
discussed in “Passing an Image Through the Table” on page 276.

Creating Lookup Tables for Multiband Input Images

To create a lookup table for a multiband input image, call
xil_lookup_create() once for each band in the input image, then combine
these single lookup tables into a combined lookup table. To create the combined
lookup table, you call the xil_lookup_create_combined() function,
whose prototype is shown here.

This function returns a handle to an object of type XilLookup , which is the
combined lookup table. The state parameter is a handle to the system-state
data structure that was created when you initialized the XIL library,
lookup_list[] is an array of type XilLookup that stores the single lookup
tables created for each of the input image’s bands, and num_lookups indicates
how many lookup tables are stored in the lookup_list[] array.

To create the combined lookup table:

1. Create an array variable of data type XilLookup .
The variable should have as many array elements as there are bands in the
input image so you can store each band’s values in a separate element. Store
the values for band 0 in element 0, those for band 1 in element 1, and so on.

XilLookup xil_lookup_create_combined(XilSystemState state,
 XilLookup lookup_list[], unsigned int num_lookups);

Miscellaneous Image Processing Functions 275

13

2. Call xil_lookup_create() to create a single lookup table for each band
in the input image.
Each single lookup table defines values for only one band in the destination
image; thus, you must pass a 1 for the xil_lookup_create() function’s
output_nbands argument. The single lookup tables must all have the same
data type, but each can use a different offset.

For more information, see “Creating Lookup Tables for Single-Band Input
Images” on page 272.

3. Call xil_lookup_create_combined() to combine the single tables.
Pass it the array variable you created in Step 1.

4. Pass the input image through the combined lookup table.
For detailed information, see “Passing an Image Through a Lookup Table”
on page 271.

276 XIL Programmer’s Guide—August 1997

13

This code fragment shows how you might alter a 3-band XIL_BYTE input
image whose green band is accented but whose red and blue bands are
subdued.

Passing an Image Through the Table

Once you’ve created a lookup table, you call xil_lookup() to perform the
actual lookup operation. The prototype for this function is shown below.

The src parameter is a handle to your source image. The data type of this
image must match the data type of the values on the input side of your lookup
table. The dst parameter is a handle to your destination image. The data type
of this image must match the data type of the values on the output side of the
table. For a single-band input image, the number of bands in the destination

XilImage image;
XilLookup lookup_tables[3];/* var to store 3 lookup components */
XilLookup combined_lookup_table;
Xil_unsigned8 red[256]; /* red component of lookup */
Xil_unsigned8 green[256]; /* green component of lookup */
Xil_unsigned8 blue[256]; /* blue component of lookup */
int i;

for(i=0; i<256; i++) {
 green[i] = (i + 20) < 255 ? i + 20 : 255;
 blue[i] = red[i] = (i - 10) < 0 ? 0 : i - 10;
}
/* create single lookup tables for each input band */
lookup_tables[0] = xil_lookup_create(state, XIL_BYTE, XIL_BYTE,
 1, 256, 0, red);
lookup_tables[1] = xil_lookup_create(state, XIL_BYTE, XIL_BYTE,
 1, 256, 0, green);
lookup_tables[2] = xil_lookup_create(state, XIL_BYTE, XIL_BYTE,
 1, 256, 0, blue);
/*combine the tables and pass input image through combined
table*/
combined_lookup_table = xil_lookup_create_combined(state,
 lookup_tables, 3);
xil_lookup(image, image, combined_lookup_table);

void xil_lookup(XilImage src, XilImage dst, XilLookup lookup);

Miscellaneous Image Processing Functions 277

13

image must match the number of values per pixel on the output side of the
table; for a multiband input image, the number of bands in the destination
image must match the number of lookup tables that compose the combined
lookup table. The final parameter, lookup , is the handle to the lookup table
you received when you called xil_lookup_create() for a single-band input
image, or xil_lookup_create_combined() for a multiband input image.

Destroying a Lookup Table

After performing your lookup operation, you should destroy your lookup table
if you won’t be using it in a subsequent operation. Destroying the table frees
the memory that was allocated to store it. For multiband input images, be sure
to destroy the tables created for each input band, as well as the combined table.

You destroy a lookup table by calling the xil_lookup_destroy() function,
whose prototype is shown below.

The only parameter to this function is a handle to the lookup table you want to
destroy.

Additional Lookup-Table Functions

The preceding sections discussed the most frequently used XIL functions that
affect lookup tables. However, the library also contains other functions related
to lookup tables. Table 13-8 lists and describes these functions. They enable
you to make a copy of a lookup table, read the values of lookup-table
attributes, assign a name to a lookup table, and so on.

void xil_lookup_destroy(XilLookup lookup);

278 XIL Programmer’s Guide—August 1997

13

Note – Some of the functions cannot be used on a combined lookup table.
However, you can extract a band from a combined lookup table and perform
those functions on the extracted copy. You can then use the altered table for
creating another combined lookup table.

Table 13-8 Additional Functions for Lookup Tables

Function Description

xil_lookup_create_copy() Creates and returns a copy of an existing
lookup table (LUT).

xil_lookup_get_input_datatype() Gets the data type of an LUT’s input.

xil_lookup_get_output_datatype() Gets the data type of an LUT’s output.

xil_lookup_get_input_nbands() Gets the number of bands in the LUT’s
input.

xil_lookup_get_output_nbands() Gets the number of bands defined for the
LUT’s output.

xil_lookup_get_num_entries() Gets the number of entries in the LUT.
Cannot be used on a combined LUT.

xil_lookup_get_offset() Gets the input value for the first entry in
the LUT. Cannot be used on a combined
LUT.

xil_lookup_set_offset() Sets the input value for the first entry in
the LUT. Cannot be used on a combined
LUT.

xil_lookup_get_band_lookup() Gets a particular lookup table out of a
combined LUT.

xil_lookup_get_values() Retrieves the values in an LUT. Cannot
be used on a combined LUT.

xil_lookup_set_values() Sets the values in an LUT. Cannot be
used on a combined LUT.

xil_lookup_get_version() Gets a unique identifier associated with
an LUT.

xil_lookup_convert() Creates an LUT that includes input data
from one lookup table and output data
from another. Cannot be used on a
combined LUT.

Miscellaneous Image Processing Functions 279

13

Linear Combination of Image Bands
The xil_band_combine() function calculates each value in a destination
image by performing a linear combination (matrix multiply) of the values of all
the bands of a pixel in the source image. The nonimage values used in this
calculation are stored in a matrix. For example, assume that
xil_band_combine() is operating on the three-band single-pixel image
shown in Figure 13-11 using the matrix shown in the figure and is writing its
output to a one-band single-pixel image.

Figure 13-11 Interband Linear Combination

xil_squeeze_range() Creates an LUT that maps a single-band
image to a single-band image with
contiguous values. Cannot be used on a
combined LUT.

xil_lookup_get_name() Reads the name of an LUT.

xil_lookup_set_name() Assigns a name to an LUT.

xil_lookup_get_by_name() Gets a handle to an LUT by specifying
the name of the table.

Table 13-8 Additional Functions for Lookup Tables (Continued)

Function Description

Source image

.25 .5 .75 1.0255

157

28

Band 0

Band 1

Band 2

Matrix

280 XIL Programmer’s Guide—August 1997

13

The equation used to calculate the value of the destination-image pixel would
be:

dst = (255 * .25) + (157 * .5) + (28 * .75) + 1.0

As you can see, the number of columns in the matrix is equal to the number of
bands in the source image plus one. This number of columns provides a
multiplier for each band in the source image plus a constant that is to be added
to the sum of the products obtained using the multipliers and the values in the
source image. The number of rows in the matrix must equal the number of
bands in the destination image. If the destination image had three bands, the
values in the second row of the matrix would be used in calculating the values
in the second band of the destination, and the values in the third row would be
used in calculating the values in the third band.

Thus, the matrix shown in Figure 13-12 would operate on a three-band source
image and would produce a three-band image identical to the source.

Figure 13-12 Linear Combination Matrix

Performing a Linear Combination

Performing a linear combination is a two-step process. You first create an XIL
kernel (an object of type XilKernel) in which to store a matrix. (For details on
creating kernels, see “Creating a Convolution Kernel” on page 259.) Then, you
call xil_band_combine() to perform the operation.

1.0

1.0

1.0

0.0 0.0 0.0

0.0 0.0 0.0

0.0 0.0 0.0

Miscellaneous Image Processing Functions 281

13

To create the kernel that holds the matrix, you call the
xil_kernel_create() function. For instance, to create a kernel that
describes the matrix shown in Figure 13-12, you could use this code.

The values of keyx and keyy , which define the key value of the kernel, are
irrelevant if the kernel is used in a linear-combination operation because
xil_band_combine() ignores these values. For more information on key
values, see “Filtering an Image” on page 257.

Note – When you’ve finished using this kernel, you should destroy it using the
xil_kernel_destroy() function.

Once you’ve created this kernel, you can call xil_band_combine() , whose
function prototype is shown below.

The src parameter is a handle to the source image, dst is a handle to the
destination image, and matrix is a handle to the XIL kernel created earlier.

How to Use Linear Combinations

The xil_band_combine() function is a general-purpose function that can be
used in a few ways.

XilSystemState state;
XilKernel matrix;
unsigned int width = 4, height = 3, keyx = 0, keyy = 0;
float data[] = {1.0, 0.0, 0.0, 0.0,
 0.0, 1.0, 0.0, 0.0,
 0.0, 0.0, 1.0, 0.0};

matrix = xil_kernel_create(state, width, height, keyx, keyy,
 data);

void xil_band_combine(XilImage src, XilImage dst, XilKernel
 matrix);

282 XIL Programmer’s Guide—August 1997

13

One possibility is to use the function to convert an image from one color space
to another. For example, you could use the matrix shown in Figure 13-13 to
convert a three-band XIL_BYTE image from the RGB to the CMY color space.

Figure 13-13 RGB-to-CMY Conversion Using xil_band_combine()

Note – You need to be aware of the ordering of bands for multiband images of
different color spaces. See “Effect of Color Space on Storage Format” on
page 79 for details.

Similarly, you could use the matrix shown in Figure 13-14 to convert a
three-band XIL_BYTE RGB image to a one-band Y image.

Figure 13-14 RGB-to-Y Conversion Using xil_band_combine()

However, in most cases using xil_band_combine() is not the best way of
performing color-space conversions using the XIL library. For information on
the preferred method of performing these conversions, see “Color Space
Manipulation” on page 178 .

0.0

-1.0

0.0

0.0 -1.0 255.0

0.0 0.0 255.0

-1.0 0.0 255.0

0.114 0.587 0.299 0.0

Miscellaneous Image Processing Functions 283

13

Another possibility would be to use the matrix shown in Figure 13-15 to
convert a three-band source image to a single-band destination of the same
data type.

Figure 13-15 Calculating the Normalized Sum of an Image

Each pixel in the destination would equal the normalized sum of the three
values of the corresponding pixel in the source.

Blending Images
The XIL library’s blending function, xil_blend() , blends two images using
an alpha mask. The function’s prototype is shown below.

The src1 and src2 parameters are handles to the two images to be blended,
and dst is a handle to the destination image. The last parameter, alpha , is a
handle to an XIL image that serves as an alpha mask for the blending
operation. This alpha image must be a single-band image.

The following equation shows how xil_blend() uses the values in the mask
as it calculates the values of pixels in the destination image:

dst = (((1 - normalized-alpha) * src1) + (normalized-alpha * src2))

Note – A normalized value is one that has been scaled into the range 0 to 1,
where 0 corresponds to the minimum value for the image’s data type and 1
corresponds to the maximum value. For example, in an XIL_BYTE image, a
value of 127 would be normalized to approximately .5 since it falls about half
way between 0 and 255.

void xil_blend(XilImage src1, XilImage src2, XilImage dst,
 XilImage alpha);

0.333 0.333 0.333 0.0

284 XIL Programmer’s Guide—August 1997

13

Figure 13-16 illustrates the blending of two XIL_BYTE images, labeled src1
and src2 . The pixels in the dark areas of these images have values of 100, and
the white pixels have values of 255. The alpha mask, alpha , has all its pixels
set to 127, so normalized alpha is approximately .5. Thus, the equation used to
calculate destination-image values in this example is:

dst = ((.5 * src1) + (.5 * src2))

There are only three distinct values in the destination:

• Where src1 and src2 were both white, the destination value is calculated
as follows:

(.5 * 255) + (.5 * 255) = 255

These pixels appear white in the destination.

• Where src1 and src2 were both dark (pixel value of 100), the destination
value is calculated as follows:

(.5 * 100) + (.5 * 100) = 100

These pixels appear dark gray in the destination.

• Where src1 was white and src2 was dark, or vice versa, the destination
value is calculated as follows:

(.5 * 255) + (.5 * 100) = 178

Miscellaneous Image Processing Functions 285

13

These pixels appear light gray in the destination.

Figure 13-16 Blending Images

To see an example of the blending of two color images, see Color Plate 3.

Painting on an Image
The library’s paint operation requires you to provide a list of the pixels in the
source image you want to paint by specifying their coordinates. You also
specify a kernel that the operation uses as a brush. This kernel is like the kernel
you use with xil_convolve() , except that all the values in the kernel must
fall in the range 0.0 to 1.0. Finally, you specify a color that you want to use for
your painting.

src1 src2

alpha dst

286 XIL Programmer’s Guide—August 1997

13

Note – For information on creating an XIL kernel, see “Creating a Convolution
Kernel” on page 259.

The paint function uses the kernel you supply much as the convolution
operation does. For each pixel that you want to paint, the paint function lays
the key value of the kernel over the pixel. See Figure 13-17.

Figure 13-17 Painting on an Image

However, the paint function uses the kernel differently. In a paint operation, a
neighborhood of pixels in the source does not contribute to the value of a singe
pixel in the destination. Instead, for each placement of the kernel, each source-
image pixel that lies under the kernel affects the value of the corresponding
pixel in the destination. This part of the painting operation is similar to a
blending operation. The pixels under the kernel are blended with the paint
color, and the kernel serves as the equivalent of an alpha mask.
Destination-image pixel values are determined by the following formula:

dst = (brush-value * color) + ((1.0 - brush-value) * src)

Image

Kernel

Key value

Pixel being painted
.5

.5

.5

.5 1.0

.5 .5

.5 .5

Miscellaneous Image Processing Functions 287

13

You perform a paint operation in an XIL program by calling xil_paint() ,
whose prototype is as follows:

Table 13-9 lists and describes each of the parameters.

Setting and Getting the Values of Pixels in an Image
The XIL library contains three functions that set or retrieve the values of pixels
in an image. Two of these functions—xil_set_pixel() and
xil_get_pixel() —set or get the value of individual pixels. The third,
xil_set_value() , sets all the pixels in an image.

void xil_paint(XilImage src, XilImage dst, float *color,
 XilKernel brush, unsigned int count, float *coord_list);

Table 13-9 Parameters to xil_paint()

Parameter Description

src A handle to the source image for the operation.

dst A handle to the destination image. This image must have the
same number of bands and the same data type as the source
image.

color An array of float s containing a number of elements equal to
the number of bands in the source and destination images. The
elements in this array define the color to be used for painting.

brush A handle to the kernel used as the brush.

count The number of pixels to be painted.

coord_list An array of float s containing 2 * count elements. These
elements represent the x and y source coordinates of the pixels
to be painted.

288 XIL Programmer’s Guide—August 1997

13

xil_set_pixel() and xil_get_pixel()

The prototypes for these two functions are shown here.

In both prototypes, the image parameter is a handle to the image you’re
working with. The parameters x and y are the x and y coordinates of the pixel
you want to read or write. These coordinates should describe the location of
the pixel of interest with respect to the image’s origin, which by default is in
the upper-left corner of the image (0,0). The final parameter, values , is an
array of floating-point numbers. The number of elements in this array must
match the number of bands in the image.

When you read a pixel, the value of band 0 of that pixel is written to
values[0] , the value of band 1 is written to values[1] , and so on. Similarly,
when you write a pixel, values[0] is written to band 0 of the pixel, and so
forth. Before the writing actually takes place, the floating-point numbers in
values are converted to integers.

Note – If you attempt to write to a pixel a value that is out of range for the
source image’s data type, the value is clamped to the low or high limit for the
data type. For example, an XIL_BYTE image can only accommodate values in
the range 0 to 255. If you try to write a 400 to such an image, the function
actually writes a 255.

xil_set_value()

The xil_set_value() function is useful for clearing an image by setting all
the pixels in the image to the same color. The prototype for this function is
shown here.

void xil_set_pixel(XilImage image, unsigned int x,
 unsigned int y, float *values);

void xil_get_pixel(XilImage image, unsigned int x,
 unsigned int y, float *values);

void xil_set_value(XilImage dst, float *values);

Miscellaneous Image Processing Functions 289

13

The dst parameter is a handle to the image you are working with, and values
is an array of floating point numbers. The number of elements in this array
must match the number of bands in the image dst . The first element in the
array is rounded to an integer and is then written to all of band 0 of your
image; the second element is rounded to an integer and written to band 1 of
the image; and so on.

Note – The array elements are rounded if and only if the image dst data type
is not XIL_FLOAT.

Note – If you attempt to write to a band a value that is out of range for the
image’s data type, the value is clamped to the low or high limit for the data
type. For example, an XIL_BYTE image can only accommodate values in the
range 0 to 255. If you try to write a 400 to a band, the function actually writes
a 255.

Copying a Pattern to an Image
Besides xil_copy() , which copies a source image to a destination image, the
XIL library includes a function, xil_copy_pattern() , that writes as many
copies of the source image as possible to the destination image. The function
prototype for xil_copy_pattern() is shown here.

The src parameter is a handle to the source image, and dst is a handle to the
destination image.

If your destination image is the same size as or is smaller than your source
image and aligning image origins results in the source image completely
covering the destination, using xil_copy() and xil_copy_pattern()
produce the same result. If, however, your destination image is larger than
your source image or aligning origins causes any portion of the destination
image not to be covered by the source, xil_copy() writes one copy of the
source image to the destination, while xil_copy_pattern() writes as many
copies as possible. Some of these copies are partial copies if the dimensions of
the destination are not multiples of the dimensions of the source. Figure 13-18

void xil_copy_pattern(XilImage src, XilImage dst);

290 XIL Programmer’s Guide—August 1997

13

illustrates the difference between xil_copy() and xil_copy_pattern()
when using each function to copy a source image to a destination image that is
twice the height and width of the source.

Figure 13-18 Replicating a Source Image

xil_copy() xil_copy_pattern()

291

Compressed Image Sequences 14

Besides enabling you to perform image processing operations on XIL images,
the XIL library also gives you the ability to compress one or more XIL images
and to store the compressed images in an object called a compressed image
sequence (CIS).

This chapter has the following main sections:

What is an XIL Compressed Image Sequence?
An XIL compressed image sequence (CIS) is an object of type XilCis that is a
container for compressed images. You can compress image data stored in a CIS
in one of several formats that may represent a series of still images, frames

What is an XIL Compressed Image Sequence? page 291

Compression and Decompression Modules page 292

Basic CIS Management page 294

General CIS Attributes page 303

CIS Error Recovery page 313

292 XIL Programmer’s Guide—August 1997

14

from a movie, or pages from a document. You can also decompress the data
stored in a CIS and write your output to one or more XIL images. The
compression-decompression process is shown in Figure 14-1.

Figure 14-1 Compressing and Decompressing XIL Images

Uncompressed images can take up a lot of disk space and a long time to move
over a network. For example, a 512-by-512 3-band image containing XIL_BYTE
data takes up .75 Mbytes. A compressed version of this image might be
anywhere from one-half to one-fiftieth this size, depending on the type of
compressor used.

Compression and Decompression Modules
The XIL library contains several compression and decompression modules:

• JPEG baseline sequential and lossless codecs
• An H.261 decompressor
• An MPEG-1 decompressor
• CCITT Group 3 and Group 4 codecs
• Cell and CellB codecs

XIL
image

XIL
image

Compression

Decompression

Compressed image sequence Compressed image data

Compressed Image Sequences 293

14

Note – The current release of the XIL library includes modules for H.261 and
an MPEG-1 decompressors only. However, compressor interfaces are defined
for third parties who want to implement them.

JPEG Baseline Sequential and Lossless Codecs

The JPEG compression standards were developed by the Joint Photographic
Experts Group to support the compression of still images, both grayscale and
color. Although not specifically designed for the compression of sequences of
images, or movies, JPEG compressors are also used frequently for that
purpose. A lossy JPEG compressor compresses an image in such a way that
when the compressed data is decompressed, the decompressed image and the
original image may not match exactly. On the other hand, a lossless JPEG
compressor processes an image so that the decompressed image matches the
original image pixel for pixel.

H.261 Decompressor

The H.261 compression standard was developed by the International Telegraph
and Telephone Consultative Committee (CCITT). The H.261 video encoder is
intended to be used to compress video data that is sent over Integrated
Services Digital Network (ISDN) lines. The H.261 codec is intended primarily
for use in video telephony and videoconferencing applications.

MPEG Decompressor

The MPEG-1 video compression standard was developed by the Moving
Picture Experts Group. The group’s goal was to compress full-motion video
and the associated audio at the rate of about 1.5 Mbits/s. This is approximately
the rate at which data can be read from a 1 x speed CD-ROM, so MPEG-1
compressed video is a good choice for use in interactive multimedia
applications.

294 XIL Programmer’s Guide—August 1997

14

CCITT Group 3 and Group 4 Codecs

The CCITT Group 3 and Group 4 compression standards were developed by
the International Telegraph and Telephone Consultative Committee to enable
facsimile machines to compress and decompress digitized documents. Now,
Group 3 and Group 4 codecs are also used for general document storage and
retrieval.

Cell and CellB Codecs

The Cell image compression technology, which was developed by Sun, has
been optimized for the rapid decompression and display of images, especially
on indexed-color frame buffers. The initial focus of the Cell technology is on
Sun-to-Sun communications, where the benefits of fast decoding outweigh the
benefits of standards. Possible areas of application include media distributions
on CD-ROM and multimedia mail.

The CellB codec, which derives from its Cell counterpart, is intended for use
primarily in videoconferencing applications. It features greater balance
between the time spent compressing and decompressing images than the Cell
codec. The CellB codec’s strengths include:

• Software compression at interactive rates
• Very fast decoding and display, especially on indexed-color frame buffers
• Low rates of CPU use
• Good quality output

Basic CIS Management
This section explains several basic CIS-related tasks:

• Creating and destroying a CIS
• Putting compressed data in a CIS
• Reading data from a CIS

If you have looked at the example programs presented in Chapter 15,
“Compressing and Decompressing Sequences of Images,” you already know
something about performing these tasks. Don’t skip the following sections,
however, because they introduce a number of functions that are not used in the
examples.

Compressed Image Sequences 295

14

Creating and Destroying a CIS

You create a CIS by calling the xil_cis_create() function. This function
takes two arguments: a handle to the system-state data structure that was
created when you initialized the XIL library and a string that identifies the
codec that is used to write compressed data to, or read compressed data from,
the CIS. For example, the call to create a CIS might look like this.

The string you pass to the function—Jpeg in the code fragment above—can be
any one of the following strings:

• Jpeg (a JPEG baseline sequential codec)
• JpegLL (a JPEG lossless codec)
• H261 (an H.261 decompressor)
• Mpeg1 (an MPEG-1 decompressor)
• faxG3 (a CCITT Group 3 codec)
• faxG4 (a CCITT Group 4 codec)
• Cell (a Cell codec)
• CellB (a CellB codec)

The return value from xil_cis_create() is a handle to the newly created
CIS. You use this handle as an argument to all subsequent functions that affect
the CIS.

Three primary actions occur as a result of the xil_cis_create() call:

• An XilCis object is created and initialized.

• The shared object (.so file) for the requested codec is loaded (if not done
already).

• Structures to manage the buffering of frames are created.

A function related to xil_cis_create() is xil_cis_reset() . The latter
function takes an existing CIS, which may contain compressed data, and
returns it to its initial state. That is, it clears out all existing compressed data

XilCis cis;
XilSystemState state;

cis = xil_cis_create(state, “Jpeg”);

296 XIL Programmer’s Guide—August 1997

14

and frees any memory the CIS has allocated to hold that data. The only
argument to xil_cis_reset() is a handle to the CIS whose compressed data
you want to clear.

To destroy a CIS, you call the xil_cis_destroy() function. This function
deallocates any buffers allocated to hold compressed data and frees the
memory used to hold other information about the CIS. The function’s only
argument is a handle to the CIS.

Putting Compressed Data into a CIS

There are two primary ways to get compressed data into a CIS. One way is to
call the xil_compress() function to compress one or more XIL images and
write the compressed data to the CIS. The second way is to move an existing
compressed data stream from system memory to a CIS. This compressed data
may have been compressed originally by an XIL or a compatible non-XIL
compressor.

Both of these methods change the value of an internal CIS index so that the
next operation that writes compressed data to the CIS appends its data to
existing data in the CIS. For more information about this index, see “Start
Frame, Read Frame, Write Frame” on page 306.

Using xil_compress()

The xil_compress() function reads an XIL image (or possibly more than one
image), compresses it, and writes the compressed data to a CIS. The function
takes two arguments. The first argument is a handle to a source image, and the
second is a handle to a CIS. You do not have to specify a compressor or codec
because each CIS is associated with a single compressor/decompressor when
the CIS is created.

Note – This description of what xil_compress() does is somewhat
oversimplified. Some compressors may prefer to compress groups of frames.
Therefore, they read an image each time your application calls
xil_compress() , but they may not actually compress the images and write
data to the CIS until they have read n frames. If you need to make sure that a

Compressed Image Sequences 297

14

compressor has compressed all the frames it has read so far, call the
xil_cis_flush() function which is defined on “Performing Any
Outstanding Compression Operations” on page 325.

Each compressor has certain requirements regarding the type of XIL image you
can compress using xil_compress() . These requirements are summarized in
Table 14-1. An N/A in a table box indicates that there is no requirement in a
particular area.

Note – For information on the Common Interchange Format (CIF) and
Quarter-CIF (QCIF) images listed in Table 14-1, see “How an H.261 Codec
Works” on page 380.

You can also obtain information about the type of XIL image that can be
written to a particular CIS using the xil_cis_get_input_type() function.
For more information about this function, see “Input and Output Image Type”
on page 304.

Table 14-1 Types of Images Supported by XIL Compressors

Compressor
Width and

Height
 Number of

Bands Data Type
Color
Space

JPEG baseline
sequential

N/A 1 to 255 XIL_BYTE N/A

JPEG lossless N/A 1 to 255 XIL_BYTE
XIL_SHORT

N/A

H.261 176 x 144 (QCIF)
or

352 x 288 (CIF)

 3 XIL_BYTE ycc601

MPEG-1 N/A 3 XIL_BYTE ycc601

CCITT Group 3 N/A 1 XIL_BIT N/A

CCITT Group 4 N/A 1 XIL_BIT N/A

Cell Multiple of 4 3 XIL_BYTE rgb709
ycc601
ycc709

CellB Multiple of 4 3 XIL_BYTE ycc601

298 XIL Programmer’s Guide—August 1997

14

Putting a Compressed Datastream into a CIS

If you have an existing stream of compressed data in system memory, you can
put that data into a CIS in one of two ways. (In both cases, the compressed
data must have been compressed with a compressor of the same type as the
compressor/decompressor associated with the CIS.)

First, you can copy the datastream into the CIS buffer using the
xil_cis_put_bits() function, whose function prototype is shown below.

This function copies nbytes of compressed data representing nframes of
uncompressed data from the caller’s buffer into the CIS cis . The data
argument is a generic pointer to the data to be copied into the CIS.

The argument nframes normally indicates the number of frames represented
by nbytes of compressed data. If you do not know the exact number of frames
in the datastream, but know that there are no partial frames (frames that are
not completely represented in the datastream), you should set nframes to -1.
This value informs the CIS that the data being placed into it contains one or
more complete frames and no partial frames. If you know that the first or last
frame is not represented completely by the data in the stream, or you’re not
sure whether the datastream contains a partial frame, you should set nframes
to 0. This value alerts the compressor that the datastream may contain a partial
frame.

Note – Don’t set nframes to 0 if you know that the datastream contains only
complete frames. Doing so slows down the copy.

You can also put a compressed datastream into a CIS using the
xil_cis_put_bits_ptr() function, whose prototype is shown here.

void xil_cis_put_bits(XilCis cis, int nbytes, int nframes,
 void *data);

void xil_cis_put_bits_ptr(XilCis cis, int nbytes, int nframes,
 void *data, XIL_FUNCPTR_DONE_WITH_DATA done_with_data);

Compressed Image Sequences 299

14

This function does not copy data into the CIS buffer, but gives the CIS a
pointer to the datastream. If you use this function, your application is
responsible for ensuring that the datastream remains valid.

You must also free the memory where the datastream is stored. One way to do
this is to pass xil_cis_put_bits_ptr() a pointer to a function
(done_with_data) that frees the memory. The xil_cis_put_bits_ptr()
function calls this function if the CIS is destroyed, is reset, or no longer needs
the data. You should define this function to return void and to take as its only
argument a generic pointer to data . Thus, the prototype for the function
should look like this.

When you call xil_cis_put_bits_ptr() , put the function’s name in the
spot where done_with_data is shown in the function prototype.

If you don’t pass xil_cis_put_bits_ptr() a pointer to a function, pass
NULL as the final argument. In this case, your program must determine when
the memory holding the datastream is no longer needed.

The value of nframes has the same meanings when you’re using
xil_cis_put_bits_ptr() as it does when you’re using
xil_cis_put_bits() .

Reading Data From a CIS

As with putting data into a CIS, there are two basic ways to get data out of a
CIS. First, you can use the xil_decompress() function to read one frame’s
worth of compressed data from the CIS, decompress the data, and write the
decompressed data to an XIL image. Second, you can get a pointer to the
compressed data in the CIS and write the data to a file using a function like
fwrite() .

void free_memory(void *data)

xil_cis_put_bits_ptr(cis, nbytes, nframes, data, free_memory);

300 XIL Programmer’s Guide—August 1997

14

Both of these methods change the value of an internal CIS index, so the next
operation that reads compressed data from the CIS begins reading with the
first frame in the CIS following the last frame read during the just-completed
operation. For more information about this index, see “Start Frame, Read
Frame, Write Frame” on page 306.

Using xil_decompress()

The function prototype for xil_decompress() is shown below.

The first argument to the function is a handle to your CIS, and the second is a
handle to an XIL image into which a frame of video can be decompressed. The
decompressor used for the operation is the one you specified when you created
your CIS.

The XIL image into which you decompress a frame of data must have the same
width, height, number of bands, and data type as the images stored in the CIS.
If you do not know these attributes of the images in the CIS, you can determine
them using the xil_cis_get_output_type() function. For more
information on this function, see “Input and Output Image Type” on page 304.

Copying Compressed Data From a CIS

If you want to copy data from a CIS without decompressing it, you should
follow this procedure:

1. Use the xil_cis_get_bits_ptr() function to get a generic pointer to the
compressed data in the CIS.

2. Use a function like fwrite() to copy the data from the CIS buffer to a file.

The function prototype for xil_cis_get_bits_ptr() is shown below.

void xil_decompress(XilCis cis, XilImage dst);

void *xil_cis_get_bits_ptr(XilCis cis, int *nbytes,
 int *nframes);

Compressed Image Sequences 301

14

The first argument to this function is a handle to the CIS. The second argument
is the address of a variable in which the function stores the number of bytes to
which its return value (a pointer to void) points. The third argument is the
address of a variable in which the function stores the number of frames
represented by nbtyes .

Note that nbytes is frequently not the total number of bytes of compressed
data stored in the CIS. This is true because the CIS’s “buffer” may actually be a
list of buffers. As a result, you may have to call xil_cis_get_bits_ptr()
multiple times to read all the compressed data in a CIS. See “Reading Data
From a CIS in a Loop” for information about controlling loops in which you’re
reading data from a CIS.

Reading Data From a CIS in a Loop

If you want to decompress all the frames in a CIS or copy all the compressed
data in a CIS to a file, you need to decompress data or copy data repeatedly,
until all the data in the CIS has been read. A good way to control the loop that
decompresses or copies data is to use the xil_cis_has_frame() function, as
shown below.

The xil_cis_has_frame() function returns TRUE as long as one complete
frame of compressed data remains in the CIS. Its single argument is a handle to
your CIS.

Note – A loop like the one shown above works because a call to
xil_decompress() or xil_cis_get_bits_ptr() changes an attribute of
the CIS called its read frame. (For complete information about this attribute, see
“Start Frame, Read Frame, Write Frame” on page 306.) If you decompress a
frame, the read frame is incremented by 1, and if you copy 50 frames, the read
frame is increased by 50.

XilCis cis;
XilImage dst;

while (xil_cis_has_frame(cis) == TRUE){
 xil_decompress(cis, dst);
}

302 XIL Programmer’s Guide—August 1997

14

You can also control this type of loop using the xil_cis_has_data() and
xil_cis_number_of_frames() functions. The first of these functions
returns the number of unread bytes in the CIS, and the second returns the
number of unread frames. Neither function, however, is as effective as
xil_cis_has_frame() for normal loop control, because
xil_cis_has_data() can return a nonzero value even after the last complete
frame has been read (if the CIS contains a partial frame), and
xil_cis_number_of_frames() may take longer to execute than
xil_cis_has_frame() .

Nonsequential Reads

Normally, when you read data from a CIS, you begin reading at the last frame
read plus 1. However, you can also begin reading at a different point. To do
this, you call the xil_cis_seek() function to indicate the frame you would
like to read next. The prototype for this function is shown below.

The first argument to this function is a handle to your CIS. The second and
third arguments, taken together, determine which frame becomes the CIS’s
read frame (the frame that is read first the next time you read data from the
CIS). The second argument, framenumber , is a number of frames and is to be
construed as an offset from one of three locations. This location is specified by
the value of relative_to . This argument is analogous to the direction
argument to the UNIX lseek(3) function. A value of 0 indicates that
framenumber is an offset from the beginning of the CIS (frame 0), a value of 1
that framenumber is an offset from the current read frame, and a value of 2
that framenumber is an offset from the last frame in the CIS.

It is an error to seek to a frame prior to the first frame currently in the CIS or to
a frame beyond the end of the CIS. For information about determining the
frame numbers of the first and last frames in the CIS, see “Start Frame, Read
Frame, Write Frame” on page 306. It is also an error to seek a frame prior to the
current read frame if the CIS’s random-access attribute is set to 0. For a
discussion of this attribute, see the section “Random Access Flag” on page 306.

void xil_cis_seek(XilCis cis, int framenumber, int relative_to);

Compressed Image Sequences 303

14
General CIS Attributes

Up to this point, this chapter has presented the CIS as a buffer or database in
which you store compressed data. However, you can also think of a CIS as a
structure with members that contain information about the
compressor/decompressor associated with the CIS, the type of the images in a
CIS, and so on. These members are referred to as attributes of the CIS. The
following list shows you the general CIS attributes:

Note – The term general attribute is used because CISs also have codec-specific
attributes. These are covered in chapters Chapter 16, “JPEG Baseline Sequential
Codec” through Chapter 22, “CellB Codec,” where the different XIL
compressors/decompressors are discussed.

• Compressor (or decompressor) associated with the CIS
• Type of the compressor
• Type of image that can be compressed and stored in the CIS
• Type of image that results when compressed data in the CIS is

decompressed
• Flag indicating whether the data in the CIS can be accessed randomly
• Index to the first image currently in the CIS
• Index to the image that is read next
• Index to the image that is written next
• Maximum number of images the CIS can contain
• Number of already-read images the CIS should try to keep in its buffer
• Flag indicating whether the compressor should automatically recover from

an error it knows how to handle
• Name of the CIS

These attributes are discussed in detail in the following sections.

Compressor and Compression Type

A CIS’s compressor attribute is a string that identifies the
compressor/decompressor that is used to compress or decompress data for the
CIS. This attribute is set when you create the CIS. For example, if you create
your CIS using this statement, the attribute is set to Cell .

cis = xil_cis_create(state, “Cell”);

304 XIL Programmer’s Guide—August 1997

14

You cannot change the value of this attribute after creating the CIS. However,
you can read its value using the xil_cis_get_compressor() function.

The compression-type attribute is a string that identifies a compressor’s class.
In this release of the XIL library, each class contains only one
compressor/decompressor. However, as Sun and third parties write new XIL
compressors/decompressors, this situation will change. For instance, if a third
party writes a JPEG baseline sequential compressor, that compressor will have
a unique compressor name, but a compression type of JPEG, which is the
compression type of the XIL JPEG baseline sequential codec. Like the
compressor attribute, this attribute is set when you create your CIS and cannot
be changed afterwards. You can retrieve the value, however, using the
xil_cis_get_compression_type() function.

Input and Output Image Type

A CIS’s input-image-type attribute is a data structure of type XilImageType
that defines the type of XIL image that may be compressed and written to the
CIS. This structure contains information about an image’s width, height,
number of bands, and data type.

Table 14-2 Compressors and Compressor Types

Compressor Compression Type

Jpeg JPEG

JpegLL JPEGLL

H261 H261

Mpeg1 MPEG1

faxG3 FAXG3

faxG4 FAXG4

Cell CELL

CellB CELLB

Compressed Image Sequences 305

14

This information is available as soon as the CIS is created and may be retrieved
with the xil_cis_get_input_type() function. Say, for example, you use
this statement to create a CIS.

The statement creates a CIS that is written to by the Cell compressor. If you
then call xil_cis_get_input_type() to determine the type of image that
can be compressed and written to this CIS, you find that the image must have
three bands and contain XIL_BYTE data. The Cell compressor can only work
with images that have these characteristics. At this point, the values of the
image type’s width and height members are 0, which indicates that there are
currently no specific requirements for these characteristics.

After you have used xil_compress() to write compressed data to your CIS,
additional information about the input image type becomes available. For
instance, a call to xil_cis_get_input_type() returns nonzero values for
the image type’s width and height. These correspond to the width and height
of the images that have already been compressed.

Note – Once images have been compressed into a CIS, all additional images
must have the same size, band count, and data type, unless the CIS is reset.

A CIS’s output-data-type attribute is also a structure of type XilImageType ,
but indicates the type of image that is produced when data stored in the CIS is
decompressed. You get this image-type structure by calling
xil_cis_get_output_type() .

It’s an error to call xil_cis_get_output_type() before writing data to your
CIS. However, once the CIS contains data, xil_cis_get_output_type()
returns information about the width, height, number of bands, and data type
of the images stored in the CIS. In general, programs that decompress data
must call this function because xil_decompress() expects its second
argument to be an XIL image to which it can write its output. Before you can
create this XIL image, you must know the output image type.

cis = xil_cis_create(state, “Cell”);

306 XIL Programmer’s Guide—August 1997

14

Random Access Flag

You can always seek forward in a CIS using the xil_cis_seek() function.
However, only certain compressors/decompressors allow you to seek
backwards. To find out whether your compressor/decompressor allows this
type of seek, call the xil_cis_get_random_access() function to determine
the value of the CIS’s random-access attribute. A return value of 1 indicates
that backward seeks are supported, and a return value of 0 indicates that such
seeks are not allowed.

Start Frame, Read Frame, Write Frame

These attributes are integer indexes to certain important images or frames
stored in a CIS.

The start-frame attribute is an index to the first frame in the CIS that is
currently accessible. For now, think of the start frame as the first frame written
to the CIS (frame 0). To obtain the number of the current start frame, you call
the xil_cis_get_start_frame() function.

The read-frame attribute is an index to the frame that is read the next time you
read data from the CIS. If you use xil_decompress() to decompress a frame,
the function decompresses the current read frame and then increments the read
frame by 1. If you get a pointer to data you want to read using the
xil_cis_get_bits_ptr() function, the read frame is incremented by the
number of frames that you read from the CIS. You can determine the current
read frame using the xil_cis_get_read_frame() function.

The write-frame attribute is an index to the frame that is written to the next
time you put data into the CIS. (Thus, the index to the last frame currently in
the CIS is the write-frame index minus 1.) When you add data to the CIS using
xil_compress() , xil_cis_put_bits() , or xil_cis_put_bits_ptr() ,
this write-frame index is incremented by the number of frames added to the
CIS. To read the current value of the write-frame attribute, use the
xil_cis_get_write_frame() function.

The four diagrams below shed further light on how these indexes relate to one
another. In each diagram, each row of rectangles represents a CIS buffer, and
each rectangle in the row represents a frame of compressed data. Start frames,
read frames, and write frames are labeled S, R, and W, respectively.

Compressed Image Sequences 307

14

The first diagram shows a CIS buffer before and after a call to
xil_compress() .

This second diagram illustrates the buffer before and after a call to
xil_decompress() .

This third diagram shows the buffer before and after a call to
xil_cis_get_bits_ptr() that returns a pointer to the data from the read
frame to the write frame minus 1 inclusive. After obtaining this pointer, you
can use a function like fwrite() to write the data to a file.

This final diagram shows the buffer before and after a seek operation. Only the
read-frame index changes.

Maximum Frames and Keep Frames

The maximum-number-of-frames attribute specifies the maximum number of
frames a CIS should buffer at any one time. You set this attribute using the
xil_cis_set_max_frames() function, and you can read the value of the
attribute using xil_cis_get_max_frames() .

S

S

R

R

W

W

S

S

R

R

W

W

S

S

R

R

W

W

S

S

R

R

W

W

308 XIL Programmer’s Guide—August 1997

14

Each CIS has a maximum-frames attribute whether or not you set it. If you
don’t set the value of the attribute, the value is a default value that depends on
the codec associated with the CIS. You can set the value of the attribute by
passing an integer greater than 0 to xil_cis_set_max_frames() . You can
also pass a -1 to this function: this value indicates that there should be no limit
on the number of frames that the CIS can buffer.

Note – In the case where you set the maximum frames attribute to an integer
greater than 0, this setting is actually a suggestion rather than a requirement.
Some codecs cannot function properly if a CIS’s buffer is too small and will
enforce a minimum value of maximum-frames.

Compressed Image Sequences 309

14

The keep-frames attribute specifies the number of frames prior to the current
read frame that a CIS should try to keep in its buffer. As with the
maximum-frames attribute, the keep-frames attribute has a compressor-specific
value if you do not set it. If you set the attribute, you can pass to
xil_cis_set_keep_frames() an integer representing the number of frames
to buffer or a -1, which means that there is no limit on the number of keep
frames. You read the value of the keep-frames attribute using the
xil_cis_get_keep_frames() function.

Note – Like the maximum-frames attribute, the keep-frames attribute is only a
hint to the compressor/decompressor. Some decompression algorithms do not
work if certain already-decompressed frames, such as key frames, aren’t
available.

The diagrams below illustrate how the maximum-frames and keep-frames
attributes affect the state of the CIS buffer.

The first diagram shows how compressing frames affects a buffer that already
contains the maximum number of frames. The first line in the illustration
shows the initial state of the buffer. The second line shows how the buffer
looks after a call to xil_compress() , the third line how the buffer looks after
a second call to xil_compress() , and so on. If you lose the current read
frame while adding new data to the buffer, an error occurs. An error also
occurs if R minus S becomes less than the value of the keep-frames attribute.
This error is reported only once, after the operation that first causes this
condition.

310 XIL Programmer’s Guide—August 1997

14

Note – An error does not occur if you cause R minus S to become less than the
value of the keep-frames attribute by seeking backwards in the buffer.

In the next two diagrams, R minus S equals the value of the keep-frames
attribute in the initial view of the buffer.

The first diagram below shows the effect of decompressing a frame from the
CIS. Note that S is incremented to prevent R minus S from exceeding the value
of the keep-frames attribute. Frame S - 1 is no longer accessible.

S R W

R

R

R

S

S

S

W

W

W

RS W

S
R W

W

W

This is an error

S
R

S
R

S

S

R W

WR

Compressed Image Sequences 311

14

This second diagram shows the CIS buffer before and after an operation that
reads all the compressed data between the read frame and the write frame
minus 1 inclusive. Note that R minus S equals the value of the keep-frames
attributes in both depictions of the buffer.

Error-Recovery Flag

There are two types of XIL datastream errors: those that a codec or
decompressor knows how to recover from and those that it can’t recover from
without help from the programmer. Here’s an example of the former type of
error. Some datastreams contain end-of-line markers. If a decompressor, while
it is decoding data, finds a line that is longer or shorter than expected, it can
(but doesn’t have to) recover from this error by truncating or zero-filling the
line. The value of a CIS’s error-recovery flag determines whether a codec or
decompressor automatically recovers from errors that it knows how to handle
or doesn’t. For information on recovering from errors that the module doesn’t
know how to handle, see “CIS Error Recovery” on page 313.

By default, a CIS’s error-recovery flag is set to FALSE. This setting indicates
that a codec or decompressor should not automatically recover from the type
of error mentioned above.

Note – The library generates an error structure when any type of datastream
error occurs and passes that structure to the currently installed error handler.
The error handler can then deal with the error as it sees fit.

To set this flag to TRUE in order to enable automatic error recovery, you call the
xil_cis_set_autorecover() function.

The cis parameter is a handle to the CIS whose datastream is being accessed,
and on_off is the enumeration constant TRUE. (You would use the constant
FALSE to turn automatic recovery back off.)

void xil_cis_set_autorecover(XilCis cis, Xil_boolean on_off);

S

S

R W

W
R

312 XIL Programmer’s Guide—August 1997

14

The XIL library also includes a function that determines whether the
error-recovery flag is currently set. This function is called
xil_cis_get_autorecover() , whose prototype is shown below.

Note – If you set the error-recovery flag for a codec that cannot automatically
recover from any datastream errors—like the Cell compressor—the flag has no
effect.

CIS Naming

The library enables you to assign a name (char *) to a CIS. This type of
naming is useful because it enables you to get a handle to a CIS later in your
program by specifying the name of the CIS. The CIS naming functions are
listed and described in Table 14-3.

Xil_boolean xil_cis_get_autorecover(XilCis cis);

Table 14-3 CIS Naming Functions

Function Description

xil_cis_set_name() Sets the name of a CIS

xil_cis_get_name() Returns a copy of a CIS’s name

xil_cis_get_by_name() Returns a handle to the CIS that has the
name you specify

Compressed Image Sequences 313

14

CIS Error Recovery
This section discusses how you recover from datastream errors that a codec or
decompressor does not know how to handle. For information on handling
errors that such a module knows how to handle, see “Error-Recovery Flag” on
page 311.

When a datastream error occurs that a codec or decompressor cannot recover
from, two events take place:

• The CIS is marked invalid. If the datastream error occurs while data is being
decompressed, the CIS is marked invalid for further reading. If the error
occurs while data is being compressed, the CIS is marked invalid for further
writing. To determine whether a CIS is invalid, you call either
xil_cis_get_read_invalid() or xil_cis_get_write_invalid() .

• The XIL library generates an error structure and passes it to the currently
installed error handler. If this is a user-installed error handler, it may take
some action to deal with the datastream error.

Once a CIS has been marked invalid, there are three ways to make it valid
again:

• Reset the CIS by calling xil_cis_reset() . This function clears all existing
compressed data from the CIS.

• Seek a valid frame using xil_cis_seek() . If this seek fails, the library
generates a seek error.

• Ask the library to recover from the error by calling
xil_cis_attempt_recovery() . The remainder of this section explains
how to use this function.

You use the xil_cis_attempt_recovery() function to try to recover from a
datastream error that (1) occurred while you were decompressing a CIS and (2)
made the CIS invalid for further reading. The prototype for this function is
shown below.

void xil_cis_attempt_recovery(XilCis cis, unsigned int nframes,
 unsigned int nbytes);

314 XIL Programmer’s Guide—August 1997

14

The cis parameter is a handle to the CIS you’re working with. The nframes
parameter indicates the maximum number of frames the function should scan
in its attempt to recover from the error. The nbytes parameter is the
maximum number of bytes the function should scan. If both nframes and
nbytes are set to 0, the function can search as far forward as necessary in
order to recover.

If one of the last two parameters is zero and the other is nonzero, the function
behaves as follows. If nframes is nonzero and nbytes is zero, the error
recovery mechanism attempts to search nframes frames ahead, using its best
guess as to exactly how many bytes those frames would contain. If nframes is
zero, and nbytes is nonzero, the recovery routine scans nbytes bytes,
regardless of how many frames those bytes represent.

When xil_cis_attempt_recovery() returns, you can check to see whether
it was successful by calling the xil_cis_get_read_invalid() function. If
you asked the recovery routine to scan a relatively few frames or bytes, it may
be necessary to call the routine several times to recover from the error.

The example below shows xil_cis_attempt_recovery() being used
inside a user-defined error handler. (For a complete discussion of writing error
handlers, see Chapter 10, “Error Handling.”)

Xil_boolean cis_error_handler(XilError error)
{
 XilCis cis;
 XilObject object;

 if ((xil_error_get_category(error) == XIL_ERROR_CIS_DATA) &&
 ((object = xil_error_get_object(error)) != NULL) &&
 (xil_object_get_type(object) == XIL_CIS)) {

 cis = (XilCis)object;
 if (xil_cis_get_read_invalid(cis)) {
 xil_cis_attempt_recovery(cis, 0, 0);
 if (!xil_cis_get_read_invalid(cis))
 return TRUE;
 }
 }
 return xil_call_next_error_handler(error);
}

Compressed Image Sequences 315

14

If the error affects a CIS and the CIS has been marked read invalid, the error
handler uses xil_cis_attempt_recovery() to try to recover from the
error. The recovery routine has permission to scan the entire datastream if
necessary. The error handler returns TRUE if the recovery is successful.
Otherwise, it calls the next error handler.

Note – When xil_cis_attempt_recovery() is called from within an error
handler, the call to xil_decompress() that produced the error fails even if
the recovery is successful. The next call to xil_decompress() succeeds.

316 XIL Programmer’s Guide—August 1997

14

317

Compressing and Decompressing
Sequences of Images 15

Before describing the details of specific compression modules (in a chapter
dedicated to each), this guide provides an overview of how compression and
decompression work by presenting the two example programs, encode and
xilcis_example .

This chapter discusses these programs and has the following main sections:

Example Program Overviews
The first example program this chapter presents is called encode . This
program builds a JPEG, Cell, or CellB movie. It reads a series of video frames
from disk files, compresses each frame, and writes the compressed image data
to a CIS. As frames are compressed, the program writes the compressed data in
the CIS to an output file. This output file can serve as input to the second
example program, a movie player.

The second example program, xilcis_example , plays back a JPEG, H.261,
MPEG-1, Cell, or CellB datastream on an 8- or 24-bit frame buffer. It reads a
datastream from a disk file and stores the compressed data in a CIS. Then, for
each compressed image in the CIS, it takes the following actions. First, it

Example Program Overviews page 317

Creating a JPEG Datastream page 318

Playing a JPEG Movie page 326

Playing Cell Movies page 338

318 XIL Programmer’s Guide—August 1997

15

decompresses a frame of video from the CIS and stores the resulting image in a
3-band XIL_BYTE image. Then, it prepares each image for display on a
particular frame buffer and writes the image to a display image. These steps
result in a frame of video being displayed.

Creating a JPEG Datastream
The source files for the movie-making example can be found in the
/usr/openwin/demo/xil/ movie_maker_example directory. Table 15-1
lists these source files and indicates what the code in each file does.

The movie_maker_example directory also contains the image files that the
program uses as input and a Makefile you can use to build the program.

After briefly discussing how to build and run the example, this section walks
you through the program’s code to clarify how the program produces a JPEG
datastream. (Cell and CellB bytestreams are produced in a very similar way.)
The basic algorithm is shown below:

1. Create a CIS.

2. While all the video frames have not been compressed, perform the following
steps:

a. Load data from an image file into an XIL image.

b. Convert the format of the XIL image if that’s necessary or desirable. It is
necessary if the image does not contain XIL_BYTE data because the JPEG
compressor expects input of that type. If your image is not a YCbCr

image, it is desirable to convert the image to that color space because
YCbCr images are optimized for compression and decompression. The
JPEG compressor works with images of any color space, but it typically
produces superior compression with YCbCr images.

Table 15-1 Source Files for Movie-Maker

Source File Description

encode.c Contains main() , which prepares different types of source
images to be copied to various types of display images (is the
same as example1.c in the example1 program)

fileio.c Reads an image from a file and loads the image data into an
XIL image

Compressing and Decompressing Sequences of Images 319

15

c. Compress the image and write the compressed data to the CIS.

d. Destroy the image in order to free the memory allocated to hold the
image structure and the image data.

e. Write any compressed data in the CIS to a disk file.

3. Perform any outstanding compression operations, and write any resulting
compressed data to the output file.

Building and Running the Example

To build and run the encode example:

1. Change your working directory to
/usr/openwin/demo/xil/movie_maker_example .

2. Type make.
The Makefile in that directory builds the program.

3. Execute the program using the following syntax:

% encode [-c | -cb] file-list [output-file]

By default, the program creates a JPEG bitstream. To produce a Cell bytestream
instead, use the -c option, and to produce a CellB bytestream, use the -cb
option.

The file-list argument must be the name of a file that contains a list of files
(images) to be processed. The list of files supplied with this example is called
mifkin.list .

The output-file argument is optional. If you supply a file name here, the
example writes its output to a file of that name; otherwise, it writes its output
to out.jpg , out.cell , or out.cellb , depending on which compressor
you’ve used.

320 XIL Programmer’s Guide—August 1997

15

Creating a CIS

Before a program can compress an image or sequence of images, it must create
a CIS in which to store compressed data. The example program creates this
data structure using code similar to this.

You use the xil_cis_create() function to create the CIS, which is a data
structure of type XilCis . The two arguments to this function are a
system-state structure (this was returned by an earlier call to xil_open())
and the name of a compressor/decompressor. The example requests the JPEG
baseline sequential codec (Jpeg), but could have requested another
compressor/decompressor. (For information about the strings you use to create
CISs associated with other compressors/decompressors, see “Creating and
Destroying a CIS” on page 295.)

The next line sets a JPEG-specific attribute called ENCODE_411_INTERLEAVED
to TRUE. If the images being compressed are 3-band YCbCr images, setting this
attribute causes the codec to subsample the data in the color bands, so only one
color value is encoded for each four color values in the original (4:1:1). This
subsampling enables the compressor to achieve a much higher level of
compression than it could otherwise.

The last line sets a CIS attribute that limits the number of frames the CIS
buffers. In this case, the CIS maintains 100 frames in its buffer. If more than 100
frames are compressed, the oldest frames become inaccessible. This means that
it is not possible to seek back more than 100 frames. It also means that 100
frames is the maximum number of unplayed (decompressed) frames that can
be accumulated in the CIS. This attribute is set to keep the program from using
too much memory in instances when there are many frames to be compressed.

CIS attributes are discussed in more detail in “General CIS Attributes” on
page 303.

XilSystemState state;
XilCis cis;

cis = xil_cis_create(state, “Jpeg”);
xil_cis_set_attribute(cis, “ENCODE_411_INTERLEAVED”,
 (void *)TRUE);
xil_cis_set_max_frames(cis, 100);

Compressing and Decompressing Sequences of Images 321

15

Compressing Video Frames and Writing Compressed Data to a File

After creating a CIS, the example begins compressing frames of video. For each
frame, the program performs the steps described in the sections below.

Loading Data From a File into an XIL Image

To read an image from a disk file into an XIL image, the example calls the
load_example_image_file() function. load_example_image_file() is
very similar to the XIL file loading functions in previous examples except that
it reads a color space from the image file header. After creating the XIL image
into which it reads pixel values, it sets that XIL image’s color-space attribute
appropriately. See the following code fragment in fileio.c .

You check the color space of the input image because the JPEG compressor is
optimized for compressing YCbCr images. The images supplied with the
example are RGB images, so the example converts each image to the YCbCr

color space before compressing it. This task is described in the next section.

...
XilSystemState state;
...
XilImage image;
unsigned int width, height, nbands, depth;
XilDataType datatype;
char colorspace[80];
...
FILE* header_file;

fscanf(header_file, “%s”, colorspace);
...
image = xil_create(state, width, height, nbands, datatype);
...
xil_set_colorspace(image, xil_colorspace_get_by_name(state,
 colorspace));
...

322 XIL Programmer’s Guide—August 1997

15

Converting an XIL Image to the Proper Format

Compressors have certain requirements for the images they compress. (For a
list of these requirements, see “Putting Compressed Data into a CIS” on
page 296.) For example, the JPEG compressor used in this example requires
XIL_BYTE images. In addition, the compressor would produce a bitstream that
can be decompressed most rapidly if the input is YCbCr images.

The images provided for you to use as input to the example are RGB
XIL_BYTE images. Thus, although the example does not have to convert the
images in any way, it can produce a bitstream that can be played back the
fastest if it converts the color space of the images. This conversion is handled
in the image_transform_colorspace() function in encode.c .

This routine is passed a source image and a desired color space (ycc601).
Given this data, the function:

• Creates a second XIL image, new_image , that has the same width, height,
and data type as image and a number of bands that fits the desired color
space. Because a YCbCr image must have three bands, new_image is a
3-band image.

XilImage
image_transform(XilSystemState state, XilImage image,
 int desired_nbands, char *desired_colorspace)
{
 XilImage new_image;
 unsigned int width, height, nbands;
 XilDataType datatype;

 xil_get_info(image, &width, &height, &nbands, &datatype);
 new_image = xil_create(state, width, height, desired_nbands,
 datatype);
 if (new_image == NULL) {
 /* XIL sends an error msg to stderr if image create fails */
 return(NULL);
 }
 xil_set_colorspace(new_image,
 xil_colorspace_get_by_name(state, desired_colorspace));
 xil_color_convert(image, new_image);
 xil_destroy(image);
 return(new_image);
}

Compressing and Decompressing Sequences of Images 323

15

• Uses the xil_set_colorspace() function to set new_image ’s color space
attribute to ycc601 .

• Calls xil_color_convert() to convert the data in image from the RGB
color space to the YCbCr color space. The converted data is stored in
new_image .

• Destroys image since it is no longer needed.

A JPEG playback program runs fastest if the images it decompresses are
multiples of 16 in width and height. For this reason, the example (encode.c)
uses the following code to clip each source image to a multiple of 16 in width
and height before compressing it.

Compressing an XIL Image

Compressing the clipped YCbCr image requires a single function call.

The first argument to this function is the child YCbCr image child_clip , and
the second is a handle to the program’s CIS. The call both compresses the
image and writes the compressed data to the CIS.

XilImage src, child_clip;

child_clip = xil_create_child(src, 0, 0,
 xil_get_width(src) & ~0xf,
 xil_get_height(src) & ~0xf, 0, 3);

XilImage src;
XilCis cis;

xil_compress(child_clip, cis);

324 XIL Programmer’s Guide—August 1997

15

Destroying an XIL Image

Once an image has been compressed, the example destroys that image to free
the resources associated with it.

Writing the Compressed Data to a File

After compressing each frame of video, the example calls a write_file()
function to write any compressed data in the CIS to the program’s output file.
The basic algorithm for this routine is shown below.

While the CIS contains data that has not been read:

• Get a pointer to the first byte of compressed data that has not been read.
After the first call to the function that gets this pointer, the pointer points to
the first byte of data in the CIS.

• Using the pointer retrieved in the previous step, read data from the CIS and
write it to a file.

Note – The loop is necessary because all of the compressed data in the CIS may
not be in one contiguous buffer.

The following code implements this algorithm.

xil_destroy(child_clip);
xil_destroy(src);

int nbytes, nframes;
XilCis cis;
Xil_unsigned8 *data;
FILE *out;
...
while (xil_cis_has_frame(cis) == TRUE) {
 data = (Xil_unsigned8 *)xil_cis_get_bits_ptr(cis, &nbytes,
 &nframes);
...
 fwrite((char *)data, sizeof(Xil_unsigned8), nbytes, out);
}

Compressing and Decompressing Sequences of Images 325

15

The xil_cis_has_frame() function determines whether there is at least one
complete frame’s worth of compressed data in the CIS that has not been read.
If there is remaining data, the function returns TRUE, and the statements inside
the loop are executed.

Note – The function must check for more than one frame’s worth of data in the
CIS because compressors are not required to write data to the CIS each time
xil_compress() is called. Instead, they might read a number of frames of
video and store them internally before doing any compression. Then, they
might write a number of frames’ worth of compressed data to the CIS at once.
This type of strategy is necessary, for instance, when a compressor wants to do
interframe compression.

The first call to xil_cis_get_bits_ptr() returns a generic pointer to the
beginning of the compressed data in the CIS. It also returns the number of
bytes the pointer points to (nbytes) and the number of video frames these
bytes represent (nframes). In addition to returning these values, the function
changes an attribute of the CIS called its read frame from 0 to nframes . (Frames
are numbered beginning with 0.) Thus, a second call to
xil_cis_get_bits_ptr() returns a pointer to the first byte of compressed
data that is part of the frame numbered nframes . The arguments to this
function are a handle to your CIS and the addresses of the variables nbytes
and nframes .

The only other action taking place in the loop is that the example uses the
fwrite() function to write the compressed data pointed to by data to the
output file out .

Performing Any Outstanding Compression Operations

When the loop described in the preceding section ends, the compressor might
have read frames of video that it has not yet compressed. To deal with this
possibility, the example makes the following two calls.

XilCis cis;
FILE *out;

xil_cis_flush(cis);
write_file(cis, &total_nbytes, &total_nframes, out);

326 XIL Programmer’s Guide—August 1997

15

The xil_cis_flush() function instructs the compressor to compress any
images it has read but not compressed and to write the last of its output to the
CIS. The call to write_file() is the same as the one used in the loop
discussed in the last section. It writes to the output file any compressed data
written to the CIS as a result of the call to xil_cis_flush() .

Playing a JPEG Movie
This section discusses a movie-player example supplied with the XIL library.
This program can display Cell, CellB, JPEG, H.261, and MPEG-1 movies on 8-
and 24-bit displays.

The source files for the movie-player example can be found in the
/usr/openwin/demo/xil/ movie_player_example directory. Table 15-2
lists these source files and indicates what the code in each file does.

The /movie_player_example directory also contains a one-frame JPEG
bitstream that the example can use as input and a Makefile that you can use
to build the program. In addition, you can use as input to this program the
output of the movie-maker example discussed in “Creating a JPEG
Datastream” on page 318.

Note – The JPEG code in the program is optimized to handle movies
containing YCbCr images. The JPEG movie supplied with the example contains
this type of image.

After briefly discussing how to build and run the example, the section takes a
look at the code the example uses to play back a JPEG movie on an 8-bit
display. (If you look at the program, you’ll notice that the CellB, H.261, and

Table 15-2 Source Files for Movie-Player

Source File Description

xilcis_example.c Contains main() , which displays either single frames or
movie sequences of JPEG or CELL encoded images

memmap.c Maps the contents of a file containing a movie to system
memory

xilcis_color.c Sets up the X colormap to display dithered frames

Compressing and Decompressing Sequences of Images 327

15

MPEG-1 cases are handled very similarly to the JPEG case.) The code specific
to the Cell case for 8-bit displays is covered in “Playing Cell Movies” on
page 338.

The basic algorithm the example uses to play a JPEG movie on an
indexed-color display is shown below.

1. Memory map the contents of the movie file (the compressed data) into your
process’s address space.

2. Create a CIS.

3. Give the CIS a pointer to the compressed data you memory mapped earlier.
At this point, the CIS is all set up.

4. Create a display image in which to show the movie by following these steps:

a. Determine the dimensions of the frames in the movie.

b. Create an X window that is equal in width and height to the frames in
the movie.

c. Create an XIL display image from the X window.

5. Create an XIL image that holds frames as they are decompressed. This
image must have the same width, height, number of bands, and data type as
the frames in the movie.

6. Initialize the parameters the example uses when dithering each 24-bit XIL
image (frame of video) so that it can be displayed on an 8-bit frame buffer.

7. Install an X colormap.

8. Play back the movie. While the CIS contains unread frames of compressed
data:

a. Decompress a frame of video and store the resulting image in the XIL
image created above.

b. Dither the XIL image, and write the dithered image to the display.

328 XIL Programmer’s Guide—August 1997

15

Running the Movie Player

To run the movie player, change your working directory to
/usr/openwin/demo/xil/movie_player_example , and then build the
program in that directory by typing make. You should execute the example
from this same directory, using a command line of the following form:

% xilcis_example [-i filename] [-h | -m | -c | -cb] [-s width height]

When the program runs, it shows the movie you have selected in an X window.
To terminate the program, move your cursor into the program’s window and
press any mouse button.

Memory Mapping the Movie

When you run the example program, you use the -i filename option to pass it
the name of a file containing a movie. Before the example can attach the
compressed image data in the file to a CIS, it must map the contents of the file
to system memory. You can find the code that handles this task in the source
file memmap.c.

As you see in that source file, after opening the movie file, the example uses
the fstat(2V) system call to determine the length of the movie in bytes and
the mmap(2) system call to memory map the file and get a pointer to the

Table 15-3 Command-Line Options for xilcis_example

Option Description

-i filename Specifies the name of the movie (a file containing compressed
movie frames) that you want to play back. If you omit this
option, the program plays back a one-frame movie called
earth.jpg .

-h Instructs the movie player to play back an H.261 bitstream.

-m Instructs the movie player to play back an MPEG-1 bitstream.

-c Instructs the movie player to play back a Cell movie. By
default, the player is set up to play a JPEG movie.

-cb Instructs the movie player to play back a CellB bytestream.

-s width height If you’re decoding a CellB bytestream, you must use this
option. The width and height arguments are the width and
height in pixels of the images being decoded.

Compressing and Decompressing Sequences of Images 329

15

beginning of the datastream. Following these calls, the memfile->mstart
structure member is a pointer to the beginning of the datastream, and
memfile->mlen is the number of bytes in the datastream.

Creating a CIS

After mapping the compressed movie data to memory, the example creates a
CIS to hold that data. The following code creates this XilCis object.

The arguments to xil_cis_create() are a handle to a system-state data
structure returned by an earlier call to xil_open() and the name of the codec
or decompressor to decompress frames from the datastream, in this case
“Jpeg” . The function returns a handle to the newly created CIS.

Putting Compressed Data in a CIS

Now that the CIS exists and the example has a pointer to the JPEG bitstream,
the example can set the data-pointer member of the CIS to point to the
beginning of the JPEG bitstream. It does this using a call to
xil_cis_put_bits_ptr() .

XilCis cis;
XilSystemState state;
char *cis_type = “Jpeg”;

cis = xil_cis_create(state, cis_type);
if (!cis) {
 /* XIL sends error message to stderr if xil_cis_create fails */
 exit(1);
}

XilCis cis;
int frame_count = -1;

xil_cis_put_bits_ptr(cis, memfile->mlen, frame_count,
 memfile->mstart, NULL);

330 XIL Programmer’s Guide—August 1997

15

After the call to xil_cis_put_bits_ptr() has been made, the CIS is ready
for use. Before the example can begin decompressing frames of video,
however, it must create two XIL images: an 8-bit display image in which to
display the video and a 24-bit memory image to serve as a destination image
for the decompression function.

Creating a Display Image

There are three steps involved in creating the 8-bit display image in which the
movie is shown.

Table 15-4 Arguments to xil_cis_put_bits_ptr()

Argument Description

cis A handle to the CIS whose data pointer is being set.

memfile->mlen The length in bytes of the JPEG bitstream.

frame_count The number of video frames the JPEG bitstream represents
is unknown (because frame_count is set to -1). If the
number of frames in the movie were known,
frame_count would be set to that number.

memfile->mstart A pointer to the beginning of the JPEG bitstream.

NULL The example has assumed responsibility for freeing the
memory in which the JPEG bitstream is stored.
Alternatively, the example could have passed a pointer to a
function used to free or unmap the bitstream memory. In
the latter case, the function passed to
xil_cis_put_bits_ptr() would be called if the CIS
were destroyed or reset.

Compressing and Decompressing Sequences of Images 331

15

1. Determine the dimensions of the images stored in the CIS.
The code used to get these dimensions is shown below.

The first function called, xil_cis_get_output_type() , takes a handle to
the CIS as its only argument and returns an image type. This image type, an
object of type XilImageType , contains information about the images stored
in the CIS, such as their width, height, number of bands, and data type. For
more information the image type of an XIL image, see “Image Type” on
page 59.

The following call to xil_imagetype_get_info() takes the image type
as its first argument and returns the width, height, number of bands, and
data type of the image type in its remaining arguments. The data type,
stored in cis_datatype , is one of the following enumeration constants:
XIL_BIT , XIL_BYTE , or XIL_SHORT. (In this case, the value is XIL_BYTE
because the movie supplied with the XIL release was made from 3-band
XIL_BYTE images.)

Note – Currently none of the XIL codec modules supports XIL_FLOAT data.

XilImageType outputtype;
XilCis cis;
unsigned int cis_xsize, cis_ysize, cis_nbands;
XilDataType cis_datatype;

outputtype = xil_cis_get_output_type(cis);
xil_imagetype_get_info(outputtype, &cis_xsize, &cis_ysize,
 &cis_nbands, &cis_datatype);

332 XIL Programmer’s Guide—August 1997

15

2. Create an X window that matches the width and height of the images in
the CIS.
In this example, the X window is created with a call to
XCreateSimpleWindow() . When the example is run on a system with an
8-bit display, this window is 8 bits deep by default.

3. Create a display image based on the X window created above.
This display image is the destination image to which frames are written in
order to display them. To create the display image, the example calls
xil_create_from_window() .

For a complete discussion of display images, see “Display Images” on
page 45.

Creating an Image to Hold Decompressed Frames

If you have loaded the JPEG movie supplied with the XIL release (earth.jpg)
or a JPEG movie you created with the example movie maker into your CIS, the
images in the CIS are YCbCr images (24 bits deep). Because they cannot be

int screen_num;
Display *display;
Window window;

screen_num = DefaultScreen(display);
window = XCreateSimpleWindow(display,
 RootWindow(display, screen_num), 0, 0, cis_xsize,
 cis_ysize, 0, BlackPixel(display, screen_num),
 WhitePixel(display, screen_num));

XilImage displayimage = NULL;
XilSystemState state;
Display *display;
Window window;

displayimage = xil_create_from_window(state, display, window);
if (!displayimage) {
 /* XIL err msg to stderr if xil_create_from_window fails */
 exit(1);
}

Compressing and Decompressing Sequences of Images 333

15

decompressed directly into the program’s display image (8 bits deep), the
example must create an XIL memory image whose purpose is to hold those
decompressed frames. That is, for each frame in the movie, the example must
perform the two-step sequence shown in Figure 15-1.

Figure 15-1 Decompressing and Dithering a Frame of Video

The code used to create the XIL memory image is shown below.

The cis_xsize , cis_ysize , cis_nbands , and cis_datatype variables
were set earlier by a call to xil_imagetype_get_info() , which returned the
width, height, number of bands, and data type of the compressed images in the
CIS. Thus, the image returned here, imageYCC, is identical to the images
stored in the CIS in both dimensions and data type.

XilSystemState state;
XilImage imageYCC = NULL;
unsigned int cis_xsize, cis_ysize, cis_nbands;
XilDataType cis_datatype;

imageYCC = xil_create(state, cis_xsize, cis_ysize, cis_nbands,
 cis_datatype);

24-Bit Images

Compressed

Image

Sequence

XIL Memory

Image

24-Bit Image

Step 1:Decompress Step 2: Dither 8-Bit Display Image

334 XIL Programmer’s Guide—August 1997

15

Initializing Parameters to Be Used With the Dither Function

Next, the example program produces the colorcube and dither mask that is
need later to dither images to the display. To get the colorcube, the example
calls xil_lookup_get_by_name() .

This call returns a handle to a special colorcube that the library creates when it
is initialized. This colorcube has dimensions of 8, 5, and 5 and is designed for
dithering the values in a YCbCr image to 200 colors.

The program then creates a dither mask.

This call returns a handle to a special dither mask the library creates when it is
initialized. The mask is 4 pixels high and wide and 3 bands deep.

For more information on dithering, see “Dithering an Image” on page 161.

Installing an X Colormap

At this point, the program calls the create_cmap() function, from the
xilcis_color.c source file, to set up the X colormap that is used in
displaying the dithered frames. This function contains primarily Xlib code, but
does get some information from the XIL library to get started.

First, the function is passed an XIL lookup table called yuv_to_rgb . This is a
standard lookup table that is useful for converting the values in a dithered
YCbCr image to RGB values.

Note – The YCbCr images must have been dithered using the standard
colorcube cc855 .

XilLookup colorcube;

colorcube = xil_lookup_get_by_name(state, “cc855”);

XilDitherMask dmask;

dmask = xil_dithermask_get_by_name(state, “dm443”);

Compressing and Decompressing Sequences of Images 335

15

This lookup table specifies which color values should be written to which
colorcells in the X colormap.

The create_cmap() function then calls xil_lookup_get_num_entries()
to determine the number of entries in the colormap.

Once the function knows how many colorcells it needs to allocate, it creates an
X colormap and allocates the colorcells it needs to hold the information stored
in yuvtorgb . Note that to avoid colormap flashing, the function avoids
allocating the last two colorcells in the X colormap if possible and also leaves
free as many colorcells as possible at the beginning of the X colormap.

At this point, create_cmap() allocates a buffer called data and then uses the
xil_lookup_get_values() function to copy colormap entries from the
lookup table yuvtorgb to the buffer data .

The second argument to xil_lookup_get_values() enables you to start
copying entries from the lookup table at an entry other than 0, and here is set
to the offset of yuvtorgb .

Once create_cmap() has copied the colormap information from yuvtorgb
to the buffer data , the function has direct access to the color values it needs to
store in the X colormap, and it goes on to store those values. The only
remaining XIL call in the create_cmap() function changes the offset of the
colorcube that main uses to dither decompressed images to match the offset at
which create_cmap() began writing color values to the X colormap.

int cmapsize;

cmapsize = xil_lookup_get_num_entries(yuvtorgb);

Xil_unsigned8 *data;

data = (Xil_unsigned8 *)malloc(sizeof(Xil_unsigned8) * cmapsize
 * 3);
xil_lookup_get_values(yuvtorgb,
 xil_lookup_get_offset(yuvtorgb), cmapsize, data);

xil_lookup_set_offset(colorcube, (unsigned int)pixels[0]);

336 XIL Programmer’s Guide—August 1997

15

The first argument to xil_lookup_set_offset() is a handle to the
colorcube—main passed this handle to cmap_create() —and the second
represents the pixel value associated with the first colorcell in which
cmap_create() stored color values. This call ensures that all the pixel values
in the dithered images created in main map to the correct spot in the X
colormap.

Playing the Movie

After returning from create_cmap() , the program is ready to play the movie.
The calls it uses to do this are shown below.

The loop is controlled by the return value of xil_cis_has_frame() . As long
as the CIS contains at least one complete frame of video, the function returns 1,
and the statements in the loop are performed.

The call to xil_decompress() decompresses an image from the CIS and
stores it in the intermediate image imageYCC. Since this is a CCIR Rec. 601
YCbCr image, the values in the Y band of the image can range from 16 to 235,
and those in the color bands can range from 16 to 240. Before such an image is
dithered, the values in each band should be scaled to fall in the range 0 to 255.

while (xil_cis_has_frame(cis)) {
 xil_decompress(cis, imageYCC);
 xil_rescale(imageYCC, imageYCC, scale, offset);
 xil_ordered_dither(imageYCC, displayimage, colorcube,
 dmask);
}

Compressing and Decompressing Sequences of Images 337

15

This rescaling is handled by the call to xil_rescale() . Since imageYCC is
both the source and destination image for the operation, the rescale is
performed in place. The scale and offset arguments were defined earlier as
shown here.

Finally, xil_ordered_dither() dithers the 3-band YCbCr image in
imageYCC using the colorcube and dither mask created earlier and writes the
result to the displayimage display image. This results in a frame of the
movie being shown in the X window.

Note – When a JPEG movie made from YCbCr images is displayed on an 8-bit
frame buffer, as in this example, the exact sequence of calls you use to play the
movie has a dramatic effect on the speed with which the movie is shown. The
reason for this is that by using the deferred-execution scheme explained in
Chapter 23, “Acceleration in XIL Programs,” the XIL library can look for a
certain sequence of functions at runtime and, if it finds that sequence, replace
all the functions in the sequence with a single, highly optimized routine. In this
example, the sequence xil_decompress() , xil_rescale() ,
xil_ordered_dither() is such a sequence. Thus, when you play a JPEG
movie using this program, these functions are not executed, but are replaced
by an optimized function (molecule) that performs the jobs of all three
functions. For a complete list of decompression molecules, see “Video
Decompression Molecules” on page 478.

float scale[3], offset[3];

scale[0] = 255.0 / (235.0 - 16.0);
scale[1] = 255.0 / (240.0 - 16.0);
scale[2] = 255.0 / (240.0 - 16.0);
offset[0] = -16.0 * scale[0];
offset[1] = -16.0 * scale[1];
offset[2] = -16.0 * scale[2];

338 XIL Programmer’s Guide—August 1997

15

Playing Cell Movies
The example movie player performs the same steps through the point where it
creates a display image, regardless of whether its input is a JPEG movie or a
Cell movie. From that point on, however, it treats the JPEG and Cell cases
differently to get the maximum playback speed for each case. The algorithm
for the Cell case is summarized below:

1. Install an X colormap.

2. Create an XIL image to hold images as they are decompressed.

3. Decompress frames from the movie and display them.

Each of these steps is considered in more detail in the following sections.

Installing an X Colormap

As you look at this part of the example program, keep in mind that the Cell
playback code may update the X colormap many times as it plays back a
movie. In fact, the decompressor may use a different colormap for each frame
of a movie. This need to modify the X colormap makes colormap handling a bit
more complex than it is in the JPEG case.

The first thing the example does in this section is to call the create_cmap()
function, which is defined in the xilcis_color.c file.

XilLookup xil_cmap;
Colormap x_cmap;
XilIndexList *ilist;

xil_cmap = create_cmap(state, cis, display, window,
 DefaultScreen(display), &x_cmap, CELL, ilist, NULL, NULL);

Compressing and Decompressing Sequences of Images 339

15

This routine returns an XIL lookup table that serves as the colormap for the
Cell decompressor. The &x_cmap argument is the address of an X Colormap ,
and ilist is a structure that is defined (in an XIL header file) as shown here.

The pixels array can hold up to ncolors colormap index values, and these
values later determine which X colormap entries the Cell decompressor can
modify.

The first thing the create_cmap() function does is to look at the CIS’s
DECOMPRESSOR_MAX_CMAP_SIZE attribute to determine how many colorcells
to allocate in the X colormap.

The function then creates an X colormap and allocates cmapsize colorcells in
that colormap.

The next section of code sets up the ilist structure used to determine which
X colormap entries the Cell decompressor can modify. In this example, ilist
is set up so that the decompressor can modify any of the colorcells allocated by
create_cmap() .

typedef struct
{
 Xil_unsigned32 *pixels;
 Xil_unsigned16 ncolors;
} XilIndexList;

int cmapsize;

xil_cis_get_attribute(cis, “DECOMPRESSOR_MAX_CMAP_SIZE”,
 (void **)&cmapsize);

ilist->pixels = (Xil_unsigned32 *)malloc(sizeof(Xil_unsigned32)
 * cmapsize);
ilist->ncolors = cmapsize;
for (i = 0; i < cmapsize; i++)
 ilist->pixels[i] = (Xil_unsigned32)pixels[i];

340 XIL Programmer’s Guide—August 1997

15

Next, the cmap_create() function creates the XIL colormap that it passes
back to main . Because the XIL function that creates this colormap requires as
one of its arguments an array of bytes containing the color values to be stored
in the colormap, cmap_create() first reads the color values in the default X
colormap into a buffer called data . It then uses xil_lookup_create() to
create the XIL colormap.

The lookup table created contains three bands on the output side and
cmapsize entries. Also, note that color values are entered in the table in BGR
order.

After create_cmap() returns the XIL lookup table to main , the example gets
the version number of this colormap (xil_cmap) as shown here.

This version number, lu_version , changes whenever the lookup table’s
contents are changed by the Cell decompressor. Therefore, after decompressing
each movie frame, the program can test the version number to determine
whether it needs to update the X colormap.

data = (Xil_unsigned8 *)malloc(sizeof(Xil_unsigned8) * cmapsize
 * 3);
for (i = 0; i < cmapsize; i++)
 cdefs[i].pixel = i + pixels[0];
XQueryColors(display, DefaultColormap(display, screen), cdefs,
 cmapsize);
for (i = 0, j = 0; i < cmapsize; i++, j += 3) {
 data[j] = cdefs[i].blue >> 8;
 data[j + 1] = cdefs[i].green >> 8;
 data[j + 2] = cdefs[i].red >> 8;
}
lut = xil_lookup_create(state, XIL_BYTE, XIL_BYTE, 3, cmapsize,
 (int)pixels[0], data);

XilVersionNumber lu_version;

lu_version = xil_lookup_get_version(xil_cmap);

Compressing and Decompressing Sequences of Images 341

15

The example then sets two important attributes of the Cell decompressor:
DECOMPRESSOR_COLORMAP and RDWR_INDICES.

The DECOMPRESSOR_COLORMAP attribute specifies the XIL lookup table that
serves as the Cell decompressor’s XIL colormap. Because colormap
information is stored in the Cell bytestream along with pixel values, any time a
frame is decompressed, the contents of the decompressor’s colormap can
change. When the contents of the colormap change, a subset of its entries are
written to the X colormap before the next video frame is displayed.

By default, however, the decompressor’s colormap is read only. To make an
entry writable, you register its index in RDWR_INDICES (in this case,
ilist->pixels). Only the entries whose indexes are stored in this array can
change. For example, in this program, only the entries whose indexes
correspond to those of the X colorcells allocated earlier can be written to.

Note – If you want to play Cell movies using a fixed colormap (for example, to
avoid colormap flashing between windows), don’t set the RDWR_INDICES
attribute. In this case, the Cell compressor does its best using the colors stored
in the lookup table xil_cmap .

Creating an Image to Hold Decompressed Frames

The program now creates a 3-band XIL_BYTE image to hold frames as they are
decompressed. This task is handled with a call to xil_create() as shown
here.

Later in the program, these images are converted to 8-bit images for display.

xil_cis_set_attribute(cis, “DECOMPRESSOR_COLORMAP”, xil_cmap);
xil_cis_set_attribute(cis, “RDWR_INDICES”, ilist);

XilImage image24 = NULL;

image24 = xil_create(state, cis_xsize, cis_ysize, 3, XIL_BYTE);

342 XIL Programmer’s Guide—August 1997

15

Playing the Movie

Like the JPEG player, the Cell player plays a movie by executing a few
statements in a loop that terminates when the function call
xil_cis_has_frame(cis) returns 0.

First, the example decompresses a frame of data using the
xil_decompress() function and checks the version number of the
decompressor’s XIL colormap as shown here.

The version number of the original XIL colormap was stored in lu_version .
If this colormap has changed, then xil_cmap ’s version number has changed,
and the program calls cell_install_cmap() to update the X colormap. The
program then saves xil_cmap ’s new version number in lu_version so that
it can check again to see if the colormap has changed after the next call to
xil_decompress() .

Finally, the example converts the RGB image stored in image24 to an 8-bit
image and copies the 8-bit image to displayimage . This is done using the
xil_nearest_color() function.

For each set of RGB values in image24 , this function performs a pixel-by-pixel
search for the nearest matching color in the supplied colormap (xil_cmap)
and sets the destination image pixel value to the appropriate colormap index.

xil_decompress(cis, image24);
if (lu_version != xil_lookup_get_version(xil_cmap))
{
 cell_install_cmap(x_cmap, displayimage, xil_cmap, ilist);
 lu_version = xil_lookup_get_version(xil_cmap);
}

xil_nearest_color(image24, displayimage, xil_cmap);

Compressing and Decompressing Sequences of Images 343

15

Note – When a Cell movie is displayed on an 8-bit frame buffer, as in this
example, the exact sequence of calls you use to play the movie has a dramatic
effect on the speed with which the movie is shown. The reason for this is that
by using the deferred-execution scheme explained in Chapter 23, “Acceleration
in XIL Programs,” the XIL library can look for a certain sequence of functions
and, if it finds that sequence, replace all the functions in the sequence with a
single highly optimized routine.

In this example, the sequence xil_decompress() , xil_nearest_color()
is such a sequence. Thus, when you play a Cell movie using this program,
these functions are not executed, but are replaced by an optimized function
(molecule) that performs the jobs of both functions. For a complete list of Cell-
related molecules, see “Cell Molecules” on page 455.

344 XIL Programmer’s Guide—August 1997

15

345

JPEG Baseline Sequential Codec 16

The JPEG baseline sequential codec is one of the digital-image codecs that has
been specified by the Joint Photographic Experts Group, a joint ISO and CCITT
technical committee. The JPEG lossless compressor, discussed in Chapter 17,
“JPEG Lossless Codec,” is another of these codecs. Taken together, the JPEG
codecs provide a standard means of compressing continuous-tone (grayscale
and color) still images.

The JPEG standard was originally developed for use in areas such as desktop
publishing, graphic arts, medical imaging, and document imaging, where the
archiving of still images is important. However, the introduction of
high-performance hardware capable of coding and decoding JPEG images in
real-time has enabled the development of full-motion video applications based
on JPEG.

This chapter has the following main sections:

How the JPEG Baseline Sequential Codec Works page 346

Creating a JPEG Baseline Sequential CIS page 350

JPEG Baseline Sequential Codec Attributes page 350

JPEG Molecules page 367

346 XIL Programmer’s Guide—August 1997

16

How the JPEG Baseline Sequential Codec Works
The JPEG baseline sequential codec is one of the DCT-based compressors,
which also include the MPEG-1 and H.261 compressors. Figure 16-1 shows the
basic steps the compressor uses to compress an image.

Figure 16-1 JPEG Baseline Sequential Compressor

As the figure indicates, the input to the encoder is an 8-by-8 block of samples
from the image being compressed. The compressor encodes each block of data
in an image by:

• Performing a Discrete Cosine Transform (DCT) on the 8-by-8 block of data
• Quantizing the results of the DCT
• Entropy coding the results of the quantization step

Each of these steps is discussed in more detail in the following sections.

DCT Quantizer Entropy coder

0 1 0 0 0 0 0 0 01 1 1 1 1 1 1

8-by-8 block
of data from
input image

Encoder

Output bitstream

JPEG Baseline Sequential Codec 347

16

Discrete Cosine Transform (DCT)

The DCT is a mathematical operation that takes a block of image samples as its
input and converts the information in that input from the spatial domain to the
frequency domain. For example, in JPEG, the input to the DCT is an 8-by-8
matrix whose values represent brightness levels at particular x, y coordinates,
and the output is an 8-by-8 matrix whose values represent relative amounts of
the 64 spatial frequencies that make up the input data’s spectrum. In the
output matrix, information about the lowest frequencies is stored in the
upper-left corner, and information about the highest frequencies is stored in
the lower-right corner. See Figure 16-2.

Figure 16-2 Output of the Discrete Cosine Transform

This transformation provides a strong basis for compression because in a
typical block of input, low spatial frequencies far outweigh high spatial
frequencies. As a result, most of the values in the output matrix, outside of
those in the upper-left corner, have values close to 0 and end up not being
encoded.

Low frequencies

High frequencies

Representation of
the input data in the
frequency domain

348 XIL Programmer’s Guide—August 1997

16

Quantization

Quantization is the simplest step in the encoder’s algorithm. It simply involves
dividing the DCT output (each matrix value) by the corresponding value in a
quantization table.

Figure 16-3 Quantization in the JPEG Encoder

Figure 16-3 shows part of an 8-by-8 block of values output by the DCT and
part of a table to be used in quantizing this data. In this example, the quantizer
divides 512 by 10 and then rounds off 51.2 to 51. Likewise, it divides 256 by 9
and 0 by 8. During quantization, any value in the matrix on the left that is
divided by a number greater than itself times 2 goes to 0 and is not encoded in
the JPEG bitstream. The quantizer is the part of the JPEG baseline sequential
encoder that causes the encoder to be a lossy one.

Entropy Coding

Once a block of data has been quantized, it enters an entropy coder, which
creates the actual JPEG bitstream. The entropy coder first looks at the values in
the quantized block of data in the zigzag sequence shown in Figure 16-4. Using
this pattern produces a sequence in approximately increasing frequency order.
This increases the likelihood of long runs of zero-valued quantized coefficients.

10 8512 0

Output of DCT Quantization table

256 9

JPEG Baseline Sequential Codec 349

16

Figure 16-4 Zigzag Sequencing in JPEG Encoder

As the entropy encoder moves through the values in this order, it records three
pieces of information each time it encounters a nonzero value: the number of
0’s it passed over before finding the nonzero value, the number of bits it will
take to encode the nonzero value, and the value itself. The first two pieces of
information are considered a pair. For example, if the encoder skips over 7
zeros and then finds a 3, the pair would be 7/2 (2 is the number of bits
required to encode the value 3). The encoder then consults a Huffman table to
find the variable-length bit sequence that represents the pair 7/2 and writes
this bit sequence to the JPEG bitstream. It then appends additional bits to
represent the actual value 3. The encoder continues this process until all the
remaining values in the block are 0’s, at which point, it writes a special
end-of-block bit sequence to the bitstream.

350 XIL Programmer’s Guide—August 1997

16

Creating a JPEG Baseline Sequential CIS
Before you can use the JPEG codec to compress images or decompress a JPEG
bitstream, you must create a JPEG CIS. To do this you pass the compressor
name Jpeg to the xil_cis_create() function. See the code fragment below.

JPEG Baseline Sequential Codec Attributes
As discussed in “General CIS Attributes” on page 303, there is a class of
attributes that can be set for any CIS. There is also a set of attributes that are
valid only for CISs attached to a JPEG baseline sequential codec. You set
codec-specific attributes using the xil_cis_set_attribute() function, and
you read them using the xil_cis_get_attribute() function.

The JPEG baseline sequential attributes can be broadly grouped into those that
affect compression and those that affect decompression. The attributes are
discussed under these headings below.

Compression Attributes

Setting any of the following attributes affects how the JPEG baseline sequential
compressor compresses images. Attributes are identified as read-only (R),
write-only(W), or read/write (R/W).

XilCis cis;
XilSystemState state;

cis = xil_cis_create(state, “Jpeg”);

JPEG Baseline Sequential Codec 351

16

BAND_HUFFMAN_TABLE (W)

This attribute enables you to associate a particular Huffman table with a
particular band of your image. As shown in Table 16-2 on page 358, the JPEG
compressor supports four tables (0 to 3) for both types of DCT coefficients (DC
and AC). Table 16-1 shows the default relationship between image bands and
Huffman tables.

Note – Tables 2 and 3 for both DC and AC coefficients can be used for JPEG
extended-baseline-sequential mode encoding. Keep in mind, though, that
many JPEG decompressors are unable to decompress the extended-mode
bitstream.

Before calling xil_cis_set_attribute() to change one of these
relationships, you must declare and assign values to the members of a
structure of type XilJpegBandHTable .

Table 16-1 Image Bands and Huffman Tables

Table Type Band

 0 DC Encodes the DC coefficient in band 0

 1 DC Encodes the DC coefficients in all bands except band 0

 2 DC Not used

 3 DC Not used

 0 AC Encodes the AC coefficients in band 0

 1 AC Encodes the AC coefficients in all bands except band 0

 2 AC Not used

 3 AC Not used

typedef struct {
 int band;
 int table;
 XilJpegHTableType type;
} XilJpegBandHTable;

352 XIL Programmer’s Guide—August 1997

16

The member band can have a value in the range 0 to 255 and represents the
image band to be associated with a different Huffman table. (The first band in
an image is band 0.) The member table can be 0 to 3, and the member type
can be set to DC or AC (which are enumeration constants of type
XilJpegHTableType). The setting of type determines whether the table you
specify will be used to encode DC or AC coefficients in the band you selected.

The code fragment below associates table 0 (type DC) with band 1 of the image
to be encoded.

BAND_QUANTIZER (W)

The BAND_QUANTIZER attribute enables you to specify the quantization table
that will be used in encoding a particular band of an image. Before setting this
attribute, you must declare and assign values to the members of a structure of
type XilJpegBandQTable .

The integer band can have a value in the range 0 to 255. In a YCbCr image, the
Y band is band 0, the Cb band is band 1, and the Cr band is band 2.

The integer table can have a value in the range 0 to 3. By default, table 0
contains the values shown in Table K.1 of Annex K of the ISO JPEG
specification, table 1 contains the values shown in Table K.2 of Annex K; and
tables 2 and 3 are not loaded. You can load tables 2 and 3 or change the values
in tables 0 and 1 using the QUANTIZATION_TABLE attribute. See
“QUANTIZATION_TABLE (W)” on page 363.

XilCis cis;
XilJpegBandHTable table_for_band = {1, 0, DC};

xil_cis_set_attribute(cis, “BAND_HUFFMAN_TABLE”,
 (void *)&table_for_band);

typedef struct {
 int band;
 int table;
} xilJpegBandQTable;

JPEG Baseline Sequential Codec 353

16

By default, band 0 is associated with table 0, and all other bands are associated
with table 1. The example code below shows band 2 being associated with
table 2.

BYTES_PER_FRAME (R)

The BYTES_PER_FRAME attribute is a read-only attribute that tells you the
number of bytes in the last compressed image written to the CIS. The value of
this attribute is 0 if no data has been written to the CIS.

BYTES_PER_FRAME is useful for helping you select an appropriate setting for
the COMPRESSION_QUALITY attribute. (See “COMPRESSION_QUALITY (W)”
on page 354.) If the number of bytes being used to store a compressed image is
too high, you can lower it by lowering the value of COMPRESSION_QUALITY,
and vice versa.

The code fragment below reads the value of the BYTES_PER_FRAME attribute.

COMPRESSED_DATA_FORMAT (W)

The COMPRESSED_DATA_FORMAT attribute is a set-only attribute that defines
the format of the JPEG compressor’s output. It can be set to either
INTERCHANGE or ABBREVIATED_FORMAT.

XilCis cis;
XilJpegBandQTable band_to_table;

band_to_table.band = 2;
band_to_table.table = 2;
xil_cis_set_attribute(cis, “BAND_QUANTIZER”,
 (void *)&band_to_table);

XilCis cis;
int bytes_per_frame;

xil_cis_get_attribute(cis, “BYTES_PER_FRAME”,
 (void **)&bytes_per_frame);

354 XIL Programmer’s Guide—August 1997

16

Setting the attribute to INTERCHANGE causes the compressor to produce output
in JPEG interchange format. In this format, the quantization tables and
Huffman tables required by the decompressor are included in each compressed
frame.

The default value, ABBREVIATED_FORMAT, causes the compressor to produce
output in JPEG abbreviated format. In this format, quantization tables and
Huffman tables are not included in a compressed frame if the tables needed to
decompress that frame have been defined in a previous frame in the sequence.
If a table changes during the course of the sequence, the new table definition is
included in the first compressed frame that uses the new table values.

Note – The compressor does not enable you to produce abbreviated-table
output in which frames contain only table specifications. However, the
decompressor accepts bitstreams in this format.

The code fragment below shows COMPRESSED_DATA_FORMAT being set to
INTERCHANGE.

COMPRESSION_QUALITY (W)

The COMPRESSION_QUALITY attribute tells the compressor how it should
handle the trade-off between image quality and compression ratio. The
attribute can be set to any value between 1 and 100. Setting the attribute to 100
is a request that the compressor produce very high quality images, even
though this means a lower compression ratio. A setting of 1 tells the
compressor to increase its compression ratio, even though the result is lower
image quality. By default, this attribute is set to 50.

Studies by the JPEG committee indicate that for color images of average
complexity, the following relationships exist between level of compression and
image quality:

XilCis cis;

xil_cis_set_attribute(cis, “COMPRESSED_DATA_FORMAT”,
 (void *)INTERCHANGE);

JPEG Baseline Sequential Codec 355

16

• 0.25-0.5 bits/pixel: moderate to good quality, sufficient for some
applications

• 0.5-0.75 bits/pixel: good to very good quality, sufficient for many
applications

• 0.75-1.5 bits/pixel: excellent quality, sufficient for most applications

• 1.5-2.0 bits/pixel: usually indistinguishable from the original, sufficient
for the most demanding applications1

Also, see Color Plate 4. It shows an image compressed at a high-quality setting
(95) and one compressed at a low-quality setting (5).

The setting of the COMPRESSION_QUALITY attribute controls image quality
and the compression ratio by determining a scaling factor the compressor uses
in creating scaled versions of its quantization tables. These scaled tables are
used during compression. A COMPRESSION_QUALITY value of 50 results in a
scaling factor of 1; that is, the scaled tables are identical to the original tables. A
COMPRESSION_QUALITY value greater than 50 results in a scaling factor that is
less than 1, and a value less than 50 results in a scaling factor greater than 1.

Note – The trade-off between image quality and compression ratio can also be
affected by the values stored in the compressor’s quantization tables. See
“QUANTIZATION_TABLE (W)” on page 363.

The code fragment below shows the COMPRESSION_QUALITY attribute being
set to 100.

1. G. K. Wallace, “The JPEG Still Picture Compression Standard,” Communications of the ACM, April 1991, p. 35.

XilCis cis;
int quality = 100;

xil_cis_set_attribute(cis, “COMPRESSION_QUALITY”,
 (void *)quality);

356 XIL Programmer’s Guide—August 1997

16

ENCODE_INTERLEAVED (W)

The ENCODE_INTERLEAVED attribute is a set-only attribute that determines
whether the compressor produces an interleaved bitstream when compressing
multiband images. If the attribute is set to TRUE, the default value, the
compressor produces an interleaved bitstream, and if the attribute is set to
FALSE, the compressor produces a noninterleaved bitstream. Interleaving
refers to how the DCT blocks from the different bands are ordered. In a
noninterleaved bitstream, all blocks from band 1 precede blocks from band 2.

The ENCODE_INTERLEAVED attribute is ignored if the image being compressed
has more than four bands, because the bitstream for such images is never
interleaved. Also, note that the ENCODE_411_INTERLEAVED attribute takes
precedence over this attribute if the image being compressed has three bands.

In the example below, ENCODE_INTERLEAVED is being set to FALSE.

ENCODE_411_INTERLEAVED (W)

The ENCODE_411_INTERLEAVED attribute is a set-only attribute that affects
how the compressor handles 3-band images and is intended specifically for use
with YCbCr images (not RGB images). If the input to the compressor is an
image of a different type, this attribute should be set to FALSE (its default
value).

Note – If the input images are not 3-band images and this attribute is set to
TRUE, the compressor operates as if the attribute were set to FALSE.

If the input is a 3 band image (presumably YCbCr) and
ENCODE_411_INTERLEAVED is set to TRUE, the compressor:

• Subsamples the data in the color bands so that only one color value is
encoded for each four color values in the original (4:1:1)

• Interleaves the data for the three image bands on a macroblock basis, where
a macroblock is defined as a 16-by-16 block of pixels

XilCis cis;

xil_cis_set_attribute(cis, “ENCODE_INTERLEAVED”, (void *)FALSE);

JPEG Baseline Sequential Codec 357

16

Note – This is the only method the XIL library provides for producing JPEG
bitstreams with subsampled bands.

If you are making a movie from YCbCr images, ENCODE_411_INTERLEAVED
should be set to TRUE because the XIL library’s accelerated routines for playing
back JPEG movies require input in the format just described. The
ENCODE_411_INTERLEAVED attribute tells the JPEG compressor to subsample
the Cb and Cr data instead of using the evenly sampled bands that the XIL
software produces. The output of a decompression (and later export) is still an
evenly sampled 3-banded image with the Cb and Cr duplicated.

If the attribute is set to FALSE, the setting of the ENCODE_INTERLEAVED
attribute determines the format of the JPEG bitstream.

In the following example, ENCODE_411_INTERLEAVED is being set to TRUE.

HUFFMAN_TABLE (W)

The HUFFMAN_TABLE attribute enables you to supply the compressor with a
Huffman table to use in encoding quantized DC or AC coefficients. Before
calling xil_cis_set_attribute() to set this attribute, you must store
information about the Huffman table in a structure of type XilJpegHTable .

The table member must be set to 0 to 3, and the type member must be set to
DC or AC. In a Huffman table of type DC, the array value contains 16 elements.
In a table of type AC, this array contains 256 elements.

XilCis cis;

xil_cis_set_attribute(cis, “ENCODE_411_INTERLEAVED”,
 (void *)TRUE);

typedef struct {
 int table;
 XilJpegHTableType type;
 XilJpegHTableValue *value;
} XilJpegHTable;

358 XIL Programmer’s Guide—August 1997

16

The default contents of the eight Huffman tables are shown in Table 16-2.

Note – Tables 2 and 3, for both DC and AC coefficients, can be used for JPEG
extended-baseline-sequential mode encoding. Keep in mind, though, that
many JPEG decompressors are unable to decompress the extended-mode
bitstream.

The final member of the XilJpegHTable structure, value , is an array of
structures of type XilJpegHTableValue .

Table 16-2 Default Huffman Tables

Table Type Default Contents

 0 DC Contains the values specified in Table K.3 of the ISO JPEG
specification. These values are useful for encoding the DC
coefficients of the luminance band of 8-bit YCbCr images.

 1 DC Contains the values specified in Table K.4 of the ISO JPEG
specification. These values are useful for encoding the DC
coefficients of the chrominance bands of 8-bit YCbCr images.

 2 DC Empty.

 3 DC Empty.

 0 AC Contains the values specified in Table K.5 of the ISO JPEG
specification. These values are useful for encoding the AC
coefficients of the luminance band of 8-bit YCbCr images.

 1 AC Contains the values specified in Table K.6 of the ISO JPEG
specification. These values are useful for encoding the AC
coefficients of the chrominance bands of 8-bit YCbCr images.

 2 AC Empty.

 3 AC Empty.

typedef struct {
 int bits;
 int pattern;
} XilJpegHTableValue;

JPEG Baseline Sequential Codec 359

16

Each structure of this type defines a pair of values to be written to the Huffman
table. The bits member is the length of a Huffman code in bits, and pattern
contains the code itself (the bits least significant bits of pattern are the
code).

The examples below indicate how the structures referred to above are used in
setting up a Huffman table. This first example shows table 0 (type DC) being
loaded with values suitable for encoding DC coefficients. Entry
huffman_values[k] is the huffman code for DC size category k.

Note that there are only twelve meaningful value pairs being loaded into the
table. The last four are there to fill out huffman_table.value , which is an
array of sixteen structures.

This next example shows table 0 (type AC) being loaded with values suitable
for encoding AC coefficients. Entry huffman_values[k] is the huffman code
for k = run_length * 16 + (AC size category).

XilCis cis;
XilJpegHTable huffman_table;

XilJpegHTableValue huffman_values[16] = {
 {2, 0x0000}, {3, 0x0002}, {3, 0x0003}, {3, 0x0004},
 {3, 0x0005}, {3, 0x0006}, {4, 0x000e}, {5, 0x001e},
 {6, 0x003e}, {7, 0x007e}, {8, 0x00fe}, {9, 0x01fe},
 {0, 0x0000}, {0, 0x0000}, {0, 0x0000}, {0, 0x0000}
};

huffman_table.table = 0;
huffman_table.type = DC;
huffman_table.value = huffman_values;
xil_cis_set_attribute(cis, “HUFFMAN_TABLE”,
 (void *)&huffman_table);

XilCis cis;
XilJpegHTable huffman_table;

XilJpegHTableValue huffman_values[256] = {
 {4, 0x000a}, {2, 0x0000}, {2, 0x0001}, {3, 0x0004},
 {4, 0x000b}, {5, 0x001a}, {7, 0x0078}, {8, 0x00f8},
 {10, 0x03f6}, {16, 0xff82}, {16, 0xff83}, {0, 0x0000},
 {0, 0x0000},{0, 0x0000},{0, 0x0000},{0, 0x0000},

360 XIL Programmer’s Guide—August 1997

16

 {0, 0x0000}, {4, 0x000c}, {5, 0x001b}, {7, 0x0079},
 {9, 0x01f6}, {11, 0x07f6}, {16, 0xff84}, {16, 0xff85},
 {16, 0xff86}, {16, 0xff87}, {16, 0xff88}, {0, 0x0000},
 {0, 0x0000},{0, 0x0000},{0, 0x0000},{0, 0x0000},

 {0, 0x0000}, {5, 0x001c}, {8, 0x00f9}, {10, 0x03f7},
 {12, 0x0ff4}, {16, 0xff89}, {16, 0xff8a}, {16, 0xff8b},
 {16, 0xff8c}, {16, 0xff8d}, {16, 0xff8e}, {0, 0x0000},
 {0, 0x0000},{0, 0x000},{0, 0x0000},{0, 0x0000},

 {0, 0x0000}, {6, 0x003a}, {9, 0x01f7}, {12, 0x0ff5},
 {16, 0xff8f}, {16, 0xff90}, {16, 0xff91}, {16, 0xff92},
 {16, 0xff93}, {16, 0xff94}, {16, 0xff95}, {0, 0x0000},
 {0, 0x0000},{0, 0x0000},{0, 0x0000},{0, 0x0000},

 {0, 0x0000}, {6, 0x003b}, {10, 0x03f8}, {16, 0xff96},
 {16, 0xff97}, {16, 0xff98}, {16, 0xff99}, {16, 0xff9a},
 {16, 0xff9b}, {16, 0xff9c}, {16, 0xff9d}, {0, 0x0000},
 {0, 0x0000},{0, 0x0000},{0, 0x0000},{0, 0x0000},

 {0, 0x0000}, {7, 0x007a}, {11, 0x07f7}, {16, 0xff9e},
 {16, 0xff9f}, {16, 0xffa0}, {16, 0xffa1}, {16, 0xffa2},
 {16, 0xffa3}, {16, 0xffa4}, {16, 0xffa5}, {0, 0x0000},
 {0, 0x0000},{0, 0x0000},{0, 0x0000},{0, 0x0000},

 {0, 0x0000}, {7, 0x007b}, {12, 0x0ff6}, {16, 0xffa6},
 {16, 0xffa7}, {16, 0xffa8}, {16, 0xffa9}, {16, 0xffaa},
 {16, 0xffab}, {16, 0xffac}, {16, 0xffad}, {0, 0x0000},
 {0, 0x0000},{0, 0x0000},{0, 0x0000},{0, 0x0000},

 {0, 0x0000}, {8, 0x00fa}, {12, 0x0ff7}, {16, 0xffae},
 {16, 0xffaf}, {16, 0xffb0}, {16, 0xffb1}, {16, 0xffb2},
 {16, 0xffb3}, {16, 0xffb4}, {16, 0xffb5}, {0, 0x0000},
 {0, 0x0000},{0, 0x0000},{0, 0x0000},{0, 0x0000},

 {0, 0x0000}, {9, 0x01f8}, {15, 0x7fc0}, {16, 0xffb6},
 {16, 0xffb7}, {16, 0xffb8}, {16, 0xffb9}, {16, 0xffba},
 {16, 0xffbb}, {16, 0xffbc}, {16, 0xffbd}, {0, 0x0000},
 {0, 0x0000},{0, 0x0000},{0, 0x0000},{0, 0x0000},

 {0, 0x0000}, {9, 0x01f9}, {16, 0xffbe}, {16, 0xffbf},
 {16, 0xffc0}, {16, 0xffc1}, {16, 0xffc2}, {16, 0xffc3},
 {16, 0xffc4}, {16, 0xffc5}, {16, 0xffc6}, {0, 0x0000},
 {0, 0x0000},{0, 0x0000},{0, 0x0000},{0, 0x0000},

JPEG Baseline Sequential Codec 361

16

Note that huffman_values is an array of 256 structures of type
XilJpegHTableValue , and that the structures are organized as 16 groups of
16 structures. Because there are not 16 bit lengths (bits) for each of the 16 run
lengths, each group of 16 structures contains 5 meaningless structures at the
end.

 {0, 0x0000}, {9, 0x01fa}, {16, 0xffc7}, {16, 0xffc8},
 {16, 0xffc9}, {16, 0xffca}, {16, 0xffcb}, {16, 0xffcc},
 {16, 0xffcd}, {16, 0xffce}, {16, 0xffcf}, {0, 0x0000},
 {0, 0x0000},{0, 0x0000},{0, 0x0000},{0, 0x0000},

 {0, 0x0000}, {10, 0x03f9}, {16, 0xffd0}, {16, 0xffd1},
 {16, 0xffd2}, {16, 0xffd3}, {16, 0xffd4}, {16, 0xffd5},
 {16, 0xffd6}, {16, 0xffd7}, {16, 0xffd8}, {0, 0x0000},
 {0, 0x0000},{0, 0x0000},{0, 0x0000},{0, 0x0000},

 {0, 0x0000}, {10, 0x03fa}, {16, 0xffd9}, {16, 0xffda},
 {16, 0xffdb}, {16, 0xffdc}, {16, 0xffdd}, {16, 0xffde},
 {16, 0xffdf}, {16, 0xffe0}, {16, 0xffe1}, {0, 0x0000},
 {0, 0x0000},{0, 0x0000},{0, 0x0000},{0, 0x0000},

 {0, 0x0000}, {11, 0x07f8}, {16, 0xffe2}, {16, 0xffe3},
 {16, 0xffe4}, {16, 0xffe5}, {16, 0xffe6}, {16, 0xffe7},
 {16, 0xffe8}, {16, 0xffe9}, {16, 0xffea}, {0, 0x0000},
 {0, 0x0000},{0, 0x0000},{0, 0x0000},{0, 0x0000},

 {0, 0x0000}, {16, 0xffeb}, {16, 0xffec}, {16, 0xffed},
 {16, 0xffee}, {16, 0xffef}, {16, 0xfff0}, {16, 0xfff1},
 {16, 0xfff2}, {16, 0xfff3}, {16, 0xfff4}, {0, 0x0000},
 {0, 0x0000},{0, 0x0000},{0, 0x0000},{0, 0x0000},

 {11, 0x07f9}, {16, 0xfff5}, {16, 0xfff6}, {16, 0xfff7},
 {16, 0xfff8}, {16, 0xfff9}, {16, 0xfffa}, {16, 0xfffb},
 {16, 0xfffc}, {16, 0xfffd}, {16, 0xfffe}, {0, 0x0000},
 {0, 0x0000},{0, 0x0000},{0, 0x0000},{0, 0x0000}
};

huffman_table.table = 0;
huffman_table.type = AC;
huffman_table.value = huffman_values;
xil_cis_set_attribute(cis, “HUFFMAN_TABLE”,
 (void *)&huffman_table);

362 XIL Programmer’s Guide—August 1997

16

OPTIMIZE_HUFFMAN_TABLES (W)

You can use the OPTIMIZE_HUFFMAN_TABLE attribute to tell the compressor to
generate optimal Huffman tables instead of using the default tables included in
the ISO specification or tables you loaded earlier. When the compressor creates
optimal Huffman tables, its Huffman tables can vary from image to image, and
you should see higher rates of compression.

If OPTIMIZE_HUFFMAN_TABLES is set to FALSE, its default value, the
compressor uses fixed Huffman tables for each image in a sequence. If the
attribute is set to TRUE, the compressor uses optimal Huffman tables.

Note – If an application sets OPTIMIZE_HUFFMAN_TABLES to TRUE and then
later sets it to FALSE, the compressor loads a default set of tables. It does not
restore the tables it was using when the attribute was first set to TRUE.

The following code fragment shows OPTIMIZE_HUFFMAN_TABLES being set to
TRUE.

Note – Setting this attribute to TRUE will cause increased compression time
and memory usage, as a two-pass appproach is required.

XilCis cis;

xil_cis_set_attribute(cis, “OPTIMIZE_HUFFMAN_TABLES”,
 (void *)TRUE);

JPEG Baseline Sequential Codec 363

16

QUANTIZATION_TABLE (W)

The QUANTIZATION_TABLE attribute enables you to load values into one of
four quantization tables that the compressor may use to quantize DCT
coefficients. Prior to actually setting the attribute you must declare and assign
values to the members of an XilJpegQTable structure.

The integer table must have a value between 0 and 3. This value indicates
which of the four quantization tables you want to load. By default, table 0
contains the values shown in Table K.1 of Annex K of the ISO JPEG
specification. These values are designed to be used with the luminance band of
8-bit YCC images. Likewise, table 1 contains the values shown in Table K.2 of
Annex K. The values in this table are designed to be used with the
chrominance bands of 8-bit YCC images. By default, tables 2 and 3 are not
loaded.

You use the pointer value (a pointer to an array of 8 integers) to point to the
64 quantization values that you want to load into the table.

typedef struct {
 int table;
 int (*value)[8];
} XilJpegQTable;

364 XIL Programmer’s Guide—August 1997

16

The code fragment below illustrates 64 quantization values being loaded into
table 2.

TEMPORAL_FILTERING (R/W)

The TEMPORAL_FILTERING attribute controls whether the JPEG compressor
filters 3-band images before it encodes them. If the attribute is set to FALSE, its
default value, the compressor does not filter the images, and if it is set to TRUE,
the compressor does filter them. This filtering can help in cases where the
images being encoded contain a lot of noise; however, the filtering can also
have the undesirable side effect of producing ghosting artifacts.

The example below shows the attribute being set to TRUE.

Xilcis cis;
XilJpegQTable quantization;
int quantization_array[8][8] = {
 {16, 11, 10, 16, 24, 40, 51, 61},
 {12, 12, 14, 19, 26, 58, 60, 55),
 {14, 13, 16, 24, 40, 57, 69, 56},
 {14, 17, 22, 29, 51, 87, 80, 62},
 {18, 22, 37, 56, 68, 109, 103, 77},
 {24, 35, 55, 64, 81, 104, 113, 92},
 {49, 64, 78, 87, 103, 121, 120, 101},
 {72, 92, 95, 98, 112, 100, 103, 99}
};

quantization.table = 2;
quantization.value = quantization_array;
xil_cis_set_attribute(cis, “QUANTIZATION_TABLE”,
 (void *)&quantization);

XilCis cis;

xil_cis_set_attribute(cis, “TEMPORAL_FILTERING”, (void *)TRUE);

JPEG Baseline Sequential Codec 365

16

And this fragment demonstrates how to read the attribute’s value.

Decompression Attributes

Setting the following attribute affects how the JPEG baseline sequential codec
decompresses images.

DECOMPRESSION_QUALITY (W)

You use the DECOMPRESSION_QUALITY attribute to provide a hint to the
compressor concerning how it should handle the trade-off between the quality
of decompressed images and the speed of decompression. The decompressor is
free to ignore this hint.

The attribute’s value must be an integer in the range of 1 to 100. A setting of
100 is a request for a high level of image quality, and a setting of 1 is a request
from a high playback speed. By default, the attribute is set to 100.

Note – The JPEG compressor increases playback speed by decreasing the
number of quantized coefficients it uses in reconstructing an image. It drops
high-frequency coefficients first.

The example code below shows DECOMPRESSION_QUALITY being set to 75.

XilCis cis;
Xil_boolean filtering_enabled;

xil_cis_get_attribute(cis, “TEMPORAL_FILTERING”,
 (void **)&filtering_enabled);

XilCis cis;
int quality = 75;

xil_cis_set_attribute(cis, “DECOMPRESSION_QUALITY”,
 (void *)quality);

366 XIL Programmer’s Guide—August 1997

16

IGNORE_HISTORY (W)

The setting of the IGNORE_HISTORY attribute affects what happens when you
seek backward or forward in a JPEG CIS whose random-access flag is not set.
If your CIS’s random-access flag is set, the value of IGNORE_HISTORY is
irrelevant: you can always seek backward or forward and get correct results. To
determine whether the random-access flag is set, call the
xil_cis_get_random_access() function.

Note – When you create a JPEG CIS, its random-access flag is always set. This
flag remains set if the quantization and Huffman tables needed to decode the
entire JPEG bitstream are encoded with the first image or if those tables are
encoded with each image in the sequence. Otherwise, the decoder clears the
flag as soon as it discovers that the bitstream cannot be accessed randomly.

If your CIS’s random-access bit is not set and IGNORE_HISTORY is FALSE (its
default value), the following rules apply:

• Seeking backward is illegal

• Seeking forward is successful; that is, the image you decode after the seek
will be reconstructed properly. However, seeking forward with
IGNORE_HISTORY set to FALSE may be slower than one with the attribute
set to TRUE.

If your CIS’s random-access bit is not set and IGNORE_HISTORY is TRUE, these
rules apply:

• Seeking backward is legal. However, it is the responsibility of your
application to seek to an image that can be decoded correctly. That is, the
image you seek to must either define its own tables or depend on the tables
that were most recently loaded into the decoder.

• You can also seek forward. However, your application should not seek
forward past images that contain table definitions if those definitions are
needed to decode the image you’re seeking to. The decoder does not ensure
that these table definitions are loaded.

JPEG Baseline Sequential Codec 367

16

The code below shows IGNORE_HISTORY being set to TRUE.

JPEG Molecules
The XIL library includes a series of molecules that accelerate the playback of
JPEG baseline sequential bitstreams. These molecules are optimized routines
that perform the jobs of two or more functions from the XIL API. You do not
call such an optimized routine directly; rather, the library calls a molecule
when your program calls a predefined sequence of XIL functions, sometimes
with specific arguments.

For example, if your program calls xil_decompress() to decode an image
stored in a JPEG CIS and then calls xil_ordered_dither() to convert the
decoded image from a 24- to an 8-bit image, the library may not call these two
functions. Instead, it may call a molecule that performs the decompression and
the dithering in an optimized way.

For more information about accelerating the playback of JPEG bitstreams, see
Chapter 23, “Acceleration in XIL Programs.” For information about the JPEG
molecules that are available and information about how to call those
molecules, see “XIL Molecules” on page 477.

XilCis cis;

xil_cis_set_attribute(cis, “IGNORE_HISTORY”, (void *)TRUE);

368 XIL Programmer’s Guide—August 1997

16

369

JPEG Lossless Codec 17

Like the JPEG baseline sequential compressor discussed in Chapter 16, “JPEG
Baseline Sequential Codec, the JPEG lossless compressor is designed to
compress continuous-tone still images. The difference between the two is that
the baseline sequential compressor is a lossy compressor: once an image has
been compressed, you cannot recover the original image samples. The JPEG
lossless compressor does allow you to recover these samples; however, the
lossless compressor produces much lower compression ratios than the lossy
compressor. The compression ratio for the lossless compressor is about 2:1.

One other difference between the two compressors is that while the baseline
sequential compressor works only with XIL_BYTE images, the lossless
compressor can work with both XIL_BYTE and XIL_SHORT images.

This chapter has the following main sections.

How the JPEG Lossless Codec Works page 370

JPEG Lossless Compressor Attributes page 373

370 XIL Programmer’s Guide—August 1997

17

How the JPEG Lossless Codec Works
The JPEG lossless compressor is not based on the DCT like the baseline
sequential encoder. Instead, it uses a predictive method, as shown in
Figure 17-1.

Figure 17-1 JPEG Lossless Compressor

Each sample in the source image is encoded as follows: the predictor makes a
guess at the sample’s value based on its knowledge of the values of
neighboring samples and then subtracts the predicted value of the sample from
its actual value. The difference calculated by the predictor is then passed on to
the entropy coder, which does a lookup in a Huffman table and writes encoded
data to the bitstream.

The prediction and entropy-coding steps in the encoding process are discussed
in more detail in the following sections.

Note – The XIL library’s JPEG lossless encoder lets you perform an operation
called a point transformation on your source image before the encoding begins.
The point transformation can be done on a band-by-band basis. If you supply a
point-transform value other than 0 for a band of an image, each sample in the
band is divided by 2 raised to the power x, where x is the point-transform

Entropy coder

1 0 0 0 0 0 0 01 1 1 1 1 1 1

Encoder

Output bitstream

Predictor

Source Image

0

JPEG Lossless Codec 371

17

value. This operation leads to a higher compression ratio because smaller
values will need to be encoded; however, it is not actually part of the
lossless-encoding process because it can result in the loss of some data.

Prediction

The predictor predicts the value of an image sample based on its knowledge of
the values of neighboring samples. The neighboring samples it can take into
consideration are shown in Figure 17-2 and are labeled A, B, and C. The
sample whose value is being predicted is labeled P.

Figure 17-2 Predicting Values in the JPEG Lossless Compressor

Seven prediction methods are defined. These are shown below:

1. P = A

2. P = B

3. P = C

4. P = A + B - C

5. P = A + ((B - C) / 2)

6. P = B + ((A - C) / 2)

7. P = (A + B) / 2

C

A

B

P

372 XIL Programmer’s Guide—August 1997

17

By default, the compressor uses prediction method 1 for all bands in an image.
However, you can select a different prediction method for a particular band
using the CIS attribute, LOSSLESS_BAND_SELECTOR. See
“LOSSLESS_BAND_SELECTOR (W)” on page 376.

After the predictor has predicted the value of a sample, it subtracts the
predicted value of the sample from its actual value. It is this difference that is
encoded by the entropy coder.

Entropy Coding

The entropy coder takes as input a difference, the difference between a
predicted and an actual sample value. On the output side, the entropy coder
writes a sequence of bits to the JPEG bitstream.

To produce its output, the entropy coder uses the number of bits (k) required to
represent a difference as an index into a Huffman table. At the proper location
in the table, the encoder reads a code word—a sequence of bits—and then
writes this code word to the bitstream. Immediately after the code word, the
encoder writes to the bitstream the difference itself. The encoder performs
these steps for each sample in the image (modulo 2k-1).

JPEG Lossless Codec 373

17

JPEG Lossless Compressor Attributes
The attributes discussed in this section affect the way that the JPEG lossless
compressor works. Attributes are identified as read-only(R), write-only(W), or
read/write (R/W).

BAND_HUFFMAN_TABLE (W)

With the BAND_HUFFMAN_TABLE attribute you can specify that a particular
Huffman table be used in encoding a particular band of your image. Before
calling xil_cis_set_attribute() to set this attribute, you must declare
and assign values to the members of a structure of type XilJpegBandHTable .

The band member can have a value in the range 0 to 255 and represents the
image band to be associated with a particular Huffman table. The table
member can have a value between 0 and 3 and specifies one of four possible
Huffman tables, and the type member must be set to DC.

The following code fragment associates table 0 (type DC) with band 1 of the
image to be encoded.

By default, table 0 is used in encoding band 0 of an image, and table 1 is used
in encoding all other bands (1 to 255).

typedef struct {
 int band;
 int table;
 XilJpegHTableType type;
} XilJpegBandHTable;

XilCis cis;
XilJpegBandHTable table_for_band = {1, 0, DC};

xil_cis_set_attribute(cis, “BAND_HUFFMAN_TABLE”,
 (void *)&table_for_band);

374 XIL Programmer’s Guide—August 1997

17

COMPRESSED_DATA_FORMAT (W)

The COMPRESSED_DATA_FORMAT attribute is a set-only attribute that defines
the format of the JPEG lossless compressor’s output. It can be set to either
INTERCHANGE or ABBREVIATED_IMAGE.

Setting the attribute to INTERCHANGE causes the compressor to produce output
in JPEG interchange format. In this format, the Huffman tables required by the
decompressor are included in each compressed frame.

The default value, ABBREVIATED_IMAGE, causes the compressor to produce
output in JPEG abbreviated format. In this format, Huffman tables are not
included in a compressed frame if the tables needed to decompress that frame
have been defined in a previous frame in the sequence. If a table changes
during the course of the sequence, the new table definition is included in the
first compressed frame that uses the new table values.

The code fragment below shows COMPRESSED_DATA_FORMAT being set to
INTERCHANGE.

ENCODE_INTERLEAVED (W)

The ENCODE_INTERLEAVED attribute is a set-only attribute that determines
whether the compressor produces an interleaved bitstream when compressing
multiband images. If the attribute is set to TRUE, the default value, the
compressor produces an interleaved bitstream, and if the attribute is set to
FALSE, the compressor produces a noninterleaved bitstream. Band interleaving
is performed on a pixel-by-pixel basis.

This attribute is ignored if the image being compressed has more than four
bands, or if different point transformations or different predictors are being
used in encoding different bands. In these instances, the compressor never
produces an interleaved bitstream.

XilCis cis;

xil_cis_set_attribute(cis, “COMPRESSED_DATA_FORMAT”,
 (void *)INTERCHANGE);

JPEG Lossless Codec 375

17

In this example, ENCODE_INTERLEAVED is being set to FALSE.

HUFFMAN_TABLE (W)

With the HUFFMAN_TABLE attribute you can supply the compressor with a
Huffman table to use in encoding difference values. By default, the
compressor’s four Huffman tables are loaded as follows: Tables 0 and 2 contain
the values specified in Table K.3 of the ISO JPEG specification (extended to 17
entries). These values are useful for encoding pixel differences for the
luminance band of 8-bit YCbCr images. Tables 1 and 3 contain the values
specified in Table K.4 of the ISO JPEG specification (again extended to 17
entries). These values are useful for encoding pixel differences for the
chrominance bands of 8-bit YCbCr images.

Before calling xil_cis_set_attribute() to set this attribute, you must
store information about the Huffman table in a structure of type
XilJpegHTable .

The table member must be set to a value between 0 and 3, and the type
member must be set to DC. The final member of the XilJpegHTable structure,
value , is an array of 17 structures of type XilJpegHTableValue .

XilCis cis;

xil_cis_set_attribute(cis, “ENCODE_INTERLEAVED”, (void *)FALSE);

typedef struct {
 int table;
 XilJpegHTableType type;
 XilJpegHTableValue *value;
} XilJpegHTable;

typedef struct {
 int bits;
 int pattern;
} XilJpegHTableValue;

376 XIL Programmer’s Guide—August 1997

17

Each structure of this type defines a pair of values to be written to the Huffman
table. The bits member is the length of a Huffman code in bits, and pattern
contains the code itself (the bits least significant bits of pattern are the
code).

This example shows table 0 (type DC) being loaded with values suitable for
encoding difference values.

LOSSLESS_BAND_SELECTOR (W)

As mentioned in “Prediction” on page 371, there are seven methods the
predictor can use to predict the values of an image sample. This attribute
enables you to specify which of these methods the compressor should use in
encoding a particular band of an image.

Before calling xil_cis_set_attribute() to set this attribute, you must
declare and assign values to the members of a structure of type
XilJpegLLBandSelector .

XilCis cis;
XilJpegHTable huffman_table;

XilJpegHTableValue huffman_values[17] = {
 {2, 0x0000}, {3, 0x0002}, {3, 0x0003}, {3, 0x0004},
 {3, 0x0005}, {3, 0x0006}, {4, 0x000e}, {5, 0x001e},
 {6, 0x003e}, {7, 0x007e}, {8, 0x00fe}, {9, 0x01fe},
 {10, 0x03fe},{11, 0x07fe}, {12, 0x0ffe}, {13, 0x1ffe},
 {14, 0x3ffe}
};

huffman_table.table = 0;
huffman_table.type = DC;
huffman_table.value = huffman_values;
xil_cis_set_attribute(cis, “HUFFMAN_TABLE”,
 (void *)&huffman_table);

typedef struct {
 int band;
 XilJpegLLBandSelectorType selector;
} XilJpegLLBandSelector;

JPEG Lossless Codec 377

17

The band structure member must be set to a value between 0 and 255 (where
band 0 is the first band in an image). The selector member can have any of
the values shown in the following enumeration.

The correspondence between these enumeration constants and the prediction
methods described earlier is shown in Table 17-1.

The following code fragment shows the prediction formula
P = A + ((B - C) / 2) being selected for band 2 of an image.

typedef enum {
 ONE_D1=1, ONE_D2, ONE_D3, TWO_D1, TWO_D2, TWO_D3, TWO_D4
} XilJpegLLBandSelectorType;

Table 17-1 JPEG Lossless Prediction Methods

Constant Prediction Method

ONE_D1 P = A

ONE_D2 P = B

ONE_D3 P = C

TWO_D1 P = A + B - C

TWO_D2 P = A + ((B - C) / 2)

TWO_D3 P = B + ((A - C) / 2)

TWO_D4 P = (A + B) / 2

XilCis cis;
XilJpegLLBandSelector predictor_band = {2, TWO_D2};

xil_cis_set_attribute(cis, “LOSSLESS_BAND_SELECTOR”,
 (void *)&predictor_band);

378 XIL Programmer’s Guide—August 1997

17

LOSSLESS_BAND_PT_TRANSFORM (W)

With the LOSSLESS_BAND_PT_TRANSFORM attribute you can request that a
point transformation be performed on a particular band of an image before the
image is encoded. If you request this operation, each sample in the band is
divided by 2 raised to power of x, where x is the prediction-transformation
value. The default prediction-transformation value for all bands is 0.

Before calling xil_cis_set_attribute() to set this attribute, you must
declare and assign values to the members of a structure of type
XilJpegLLBandPtTransform .

The band structure member must be set to a value between 0 and 255 (where
band 0 is the first band in an image), and the PtTransform member must be
set to an integer in the range 0 to 15 that represents the power of two by which
you want to divide all the samples in a band.

The code below requests that the samples in band 2 of an image be divided by
16 (24) before the lossless encoding process takes place.

typedef struct {
 int band;
 int PtTransform;
} XilJpegLLBandPtTransform;

XilCis cis;
XilJpegLLBandPtTransform pt_transform = {2, 4};

xil_cis_set_attribute(cis, “LOSSLESS_BAND_PT_TRANSFORM”,
 (void *)&pt_transform);

379

H.261 Codec 18

The H.261 codec takes its name from the title of the recommendation in which
the H.261 codec is specified: Recommendation H.261 published by the CCITT.
This recommendation defines a video encoder that is intended to be used to
compress video data sent over Integrated Services Digital Network (ISDN)
lines.

The H.261 codec is intended primarily for use in video telephony and
videoconferencing applications. Video telephony, in which generally a picture
of the speaker’s face against a stationary background is transmitted, is possible
when only one or two ISDN channels (each capable of carrying 64Kb/s of
information) are available. If more channels are available, more complex
images can be sent.

Note – This chapter discusses both H.261 compression and decompression.
However, the current release of the XIL library includes only an H.261
decompressor. The compressor interface is defined for third parties who want
to implement XIL H.261 compressors.

This chapter has the following main sections:

How an H.261 Codec Works page 380

Creating an H.261 CIS page 388

H.261 Codec Attributes page 389

H.261 Molecules (accelerating the playback of H.261 bitstreams) page 400

380 XIL Programmer’s Guide—August 1997

18

How an H.261 Codec Works
This section presents an overview of how an H.261 codec works. It discusses:

• The format of the images that can be used as input to the encoder
• The basic encoding scheme
• Methods of controlling the size of the bitstream produced by the encoder
• How the codec supports multipoint conferencing

Source Images

The images supplied as input to an H.261 compressor must meet both color
space and size (width and height) requirements. In terms of color space, the
images must be YCbCr images that conform to the standard set forth in CCIR
Recommendation 601. In terms of size, the images must adhere to either the
Common Interchange Format (CIF) or the Quarter-CIF (QCIF) format.
Table 18-1 indicates the widths and heights defined by these formats.

All H.261 encoders must be able to compress QCIF images. The ability to
compress CIF images is optional.

Given an image of the appropriate format, the H.261 compressor subsamples
the chrominance values so that there is one Cb value and one Cr value for each
two-by-two block of luminance values. It then processes the image in segments
called macroblocks. Each macroblock consists of a 16-by-16 block of luminance
values and the chrominance values associated with those luminance values; see
Figure 18-1.

Table 18-1 Sizes of CIF- and QCIF-Format Images

Width Height

CIF images 352 288

QCIF images 176 144

H.261 Codec 381

18

Figure 18-1 Macroblock

The encoder performs some operations on 8-by-8 blocks of values. Each
macroblock contains six blocks: four blocks of luminance values, one block of
Cb values, and one block of Cr values.

Luminance value Cb value Cr value

382 XIL Programmer’s Guide—August 1997

18

Basic Encoding Scheme

The flow chart in Figure 18-2 illustrates the procedure the H.261 encoder uses
to encode a macroblock.

H.261 Codec 383

18

Figure 18-2 Flow Diagram for H.261 Encoding

Intraframe or
interframe

Prediction

Motion
compensation

Loop filter

Significant
difference?

No information about
Discrete Cosine
Transform

Quantization

Variable-length
coding

To bitstream

No

Yes

Interframe
In

tr
af

ra
m

e
macroblock?

pixel values sent
(A motion vector or
loop-filter bit may be
sent)

384 XIL Programmer’s Guide—August 1997

18

Intraframe Versus Interframe Encoding

For each macroblock that it encodes, the H.261 encoder can perform intraframe
or interframe compression. In intraframe mode, the compressor encodes the
actual YCbCr values in the macroblock. In interframe mode, the compressor:

• Looks at the YCbCr values in the macroblock it is encoding.

• Calculates the difference between the predicted values for the macroblock
and the actual values in the macroblock. The predicted values are taken
from the most recently compressed image, which is stored in a history
buffer.

• Encodes the difference values if they are significant.

In general, the H.261 compressor relies very heavily on interframe encoding
because this type of encoding leads to greater rates of compression than
intraframe compression. However, Recommendation H.261 requires that the
encoder intraframe encode each macroblock at least once every 132 frames.
This requirement ensures that if you join a videoconference in progress or your
videoconference is disrupted by data transmission problems, all macroblocks
will be updated properly within a few seconds.

Prediction

As noted in the last section, in interframe-encoding mode, the encoder
calculates the difference between YCbCr values in the macroblock it is encoding
currently and the values in the corresponding macroblock in the preceding
picture. Before performing this calculation, the encoder may perform either a
motion-compensation operation or a motion-compensation operation followed
by a loop-filter operation. Both of these operations are optional.

When the encoder performs motion compensation, it compares the YCbCr

values in the current macroblock not only with those in the spatially
corresponding macroblock in the preceding picture, but also with the values in
macroblocks that neighbor the spatially corresponding macroblock in the
preceding picture; see Figure 18-3.

H.261 Codec 385

18

Figure 18-3 Motion Compensation in H.261

The neighboring macroblocks being examined can be offset from the matching
macroblock by a maximum of ±15 pixels in both the x and y directions. The
macroblock in the history image that best matches the macroblock in the
current image is used in calculating the difference values to encode.

If the macroblock in the history image used to calculate difference values is not
the matching macroblock, the encoder must record the number of pixels by
which the former is offset from the latter. These x and y offsets are written to a
motion vector, which is later variable-length coded and written to the H.261
bitstream along with any encoded difference values.

The second operation that the encoder may perform before calculating the
difference between macroblocks is a filter of the macroblock of interest in the
history image. This filtering operation is designed to remove high-frequency
information from the macroblock. Generally, this filtering leads to smaller
differences between the macroblocks and, thus, to a more compact bitstream.

Preceding picture Current picture

Current macroblock

Matching macroblock

Some of the neighbors of the matching macroblock

386 XIL Programmer’s Guide—August 1997

18

Encoding YCbCr or Difference Values

Whether the encoder is encoding the actual values in a macroblock from the
current picture or difference values calculated during the prediction step, it
uses the procedure depicted in Figure 18-4.

Figure 18-4 Encoding of YCbCr or Difference Values in H.261

Each of the six blocks in a macroblock (four blocks of luminance values and
two blocks of color values) is encoded separately. The values for each block
are:

• Transformed from the spatial to the transform domain using a Discrete
Cosine Transform (DCT)

• Linearly quantized

• Encoded with variable length codes or, for less frequently occurring values,
with 20-bit codes

Discrete Cosine
Quantization

Variable-length
codingTransform

Block of Y, Cb, or Cr values or differences

H.261 bitstream

0 1 0 0 0 0 0 0 0 01 1 1 1 1 1 1

H.261 Codec 387

18

This encoding scheme is very similar to the one used in the JPEG still-image
compression standard. For a more detailed discussion of the steps involved in
this type of encoding, see “How the JPEG Baseline Sequential Codec Works”
on page 346.

Bit-Rate Control

As mentioned earlier, the H.261 codec is intended primarily for use in
videophone and videoconferencing applications. Because these applications
need to send data at a constant rate over a network, the encoder must use a
constant number of bits to encode, say, a second’s worth of video. The encoder
can achieve this constant bit rate using any combination of the following
techniques:

• Altering the criterion that determines whether a macroblock that is to be
interframe encoded actually needs to be encoded.

The macroblock needs to be encoded only if its luminance values differ from
those in the corresponding macroblock in the preceding picture by a certain
amount. By increasing this amount, the encoder decreases the number of
macroblocks it must compress.

• Changing the values in the quantizer.

To produce a lower bit rate, the encoder can increase the size of the values in
the quantizer. This strategy results in quantized coefficients with relatively
low values, which can be encoded with relatively short code words.

• Using the loop filter operation described in “Prediction” on page 384.

388 XIL Programmer’s Guide—August 1997

18

Provisions for Multipoint Conferencing

The CCITT’s specification of the H.261 codec includes several features
designed to facilitate multipoint conferencing. In a multipoint conference, the
receiver may elect to switch between two or more sources of video. These
features include:

• A freeze-picture request

This request is an external signal that causes the decoder to stop updating
the currently displayed picture. The picture remains frozen until the
decoder sees a freeze-picture-release flag in the bitstream or until a timeout
period of six seconds or more has elapsed.

• A fast-update request

This request is an external signal that causes the encoder to compress the
next picture using intraframe encoding exclusively. The encoder must
compress this frame without overflowing its output buffer.

• A freeze-picture release

When an encoder receives a free-picture release request, it sets a bit in the
header of the next picture it encodes. This bit tells a decoder that has frozen
its display to resume displaying pictures in the normal way.

Creating an H.261 CIS
Before you use the H.261 decompressor to decompress an H.261 bitstream, you
must create an H.261 CIS (and write an H.261 bitstream to the CIS). You create
this CIS by passing the decompressor name H261 to the xil_cis_create()
function. See the following code fragment.

XilCis cis;
XilSystemState state;

cis = xil_cis_create(state, “H261”);

H.261 Codec 389

18

H.261 Codec Attributes
As discussed in “General CIS Attributes” on page 303, there is a class of
attributes that can be set for any CIS. There is also a set of attributes that are
valid only for CISs attached to an H.261 compressor or decompressor. You set
compressor-specific attributes using the xil_cis_set_attribute()
function, and you read compressor-specific attributes using the
xil_cis_get_attribute() function.

The H.261 attributes can be broadly grouped into those that affect
compression, see “Compression Attributes,” and those that affect
decompression, see “Decompression Attributes” on page 395. Attibutes are
identified as read-only (R), write-only, or read/write (R/W).

Compression Attributes

Setting any of the following attributes affects how an H.261 compressor
compresses images.

COMPRESSOR_BITS_PER_IMAGE (R/W)

This attribute controls the number of bits the encoder uses to encode pictures.
Normally, you arrive at this value by taking the number of bits per second you
can move over a network and dividing that number by the number of pictures
you’re encoding each second. For example, if you have 2 ISDN channels
available for transporting data (2 * 65536 == 131,072 bits per second) and you
want to encode 30 pictures a second, you would set BITS_PER_IMAGE to 4369.
This setting would cause the compressor to encode a QCIF picture using about
0.17 bits per pixel.

The following code shows the bits-per-image attribute being set to 4369.

XilCis cis;
int bits_per_image = 4369;

xil_cis_set_attribute(cis, “COMPRESSOR_BITS_PER_IMAGE”,
(void *)bits_per_image);

390 XIL Programmer’s Guide—August 1997

18

COMPRESSOR_BITS_PER_IMAGE can be set to any int greater than or equal to
0. Its default value is 5069, the number of bits needed to encode a QCIF picture
at 0.2 bits per pixel.

You can read the value of this attribute using code similar to the following.

COMPRESSOR_DOC_CAMERA (R/W)

The setting of this attribute determines whether the encoder sets the
document-camera bit in the picture header of the pictures it encodes. If the
attribute is set to FALSE, the encoder does not set this bit, and if it is set to
TRUE, the encoder does set the bit. By default, the attribute is set to FALSE.

The following code fragment shows the attribute being set to TRUE.

You can also read the value of this attribute using code similar to the following.

XilCis cis;
int bits_per_image;

xil_cis_get_attribute(cis, “COMPRESSOR_BITS_PER_IMAGE”,
(void **)&bits_per_image);

XilCis cis;

xil_cis_set_attribute(cis, “COMPRESSOR_DOC_CAMERA”,
(void *)TRUE);

XilCis cis;
Xil_boolean doc_camera_status;

xil_cis_get_attribute(cis, “COMPRESSOR_DOC_CAMERA”,
(void **)&doc_camera_status);

H.261 Codec 391

18

COMPRESSOR_ENCODE_INTRA (R/W)

When the COMPRESSOR_ENCODE_INTRA attribute is set, a call to
xil_compress() causes the encoder to compress a whole picture in intraframe
mode. The encoder must compress this picture without causing its output
buffer to overflow.

In general, this attribute should be set to FALSE, its default value. An
application should set the attribute to TRUE only upon receiving a fast-update
request and should set the attribute back to FALSE after compressing one
frame.

The following code shows this attribute being set to TRUE.

You can read the value of this attribute using code similar to the following.

COMPRESSOR_FREEZE_RELEASE (R/W)

As mentioned in “Provisions for Multipoint Conferencing” on page 388, an
H.261 decoder can, in response to an external signal, freeze the picture
currently being displayed. This freeze remains in effect until a timeout period
has elapsed or until the decoder sees a freeze-release bit set in the bitstream.

Setting the encoder’s COMPRESSOR_FREEZE_RELEASE attribute to TRUE causes
the encoder to set the freeze-release bit in the header of the subsequent pictures
it encodes. If a decoder has been in freeze-display mode, it exits that mode
when it reads the freeze-release bit. By default,
COMPRESSOR_FREEZE_RELEASE is set to FALSE.

XilCis cis;

xil_cis_set_attribute(cis, “COMPRESSOR_ENCODE_INTRA”,
(void *)TRUE);

XilCis cis;
Xil_boolean encode_intra_status;

xil_cis_get_attribute(cis, “COMPRESSOR_ENCODE_INTRA”,
(void **)&encode_intra_status);

392 XIL Programmer’s Guide—August 1997

18

The following code shows FREEZE_RELEASE being set to TRUE.

You can also read the value of this attribute, as is done in the following code.

COMPRESSOR_IMAGE_SKIP (R/W)

The COMPRESSOR_IMAGE_SKIP attribute does not control the number of
pictures the compressor skips between compressed pictures: the application
controls that. However, if the application is skipping pictures, the attribute
should be set to the number of pictures being skipped. This value figures in a
calculation the compressor performs before filling in the 5-bit temporal-
reference field in the header of each compressed picture. The compressor sets
the value of this field to the value of the temporal-reference field in the last
compressed picture plus the value of COMPRESSOR_IMAGE_SKIP plus 1.

The attribute can have a value in the range 0 to 31, and its default value is 0.
The following code shows IMAGE_SKIP being set to 1. This is the appropriate
setting if your application is compressing every other frame of video input.

XilCis cis;

xil_cis_set_attribute(cis, “COMPRESSOR_FREEZE_RELEASE”,
(void *)TRUE);

XilCis cis;
Xil_boolean freeze_release_status;

xil_cis_get_attribute(cis, “COMPRESSOR_FREEZE_RELEASE”,
(void **)&freeze_release_status);

XilCis cis;
int images_skipped = 1;

xil_cis_set_attribute(cis, “COMPRESSOR_IMAGE_SKIP”,
(void *)images_skipped);

H.261 Codec 393

18

You can also read the value of this attribute using code similar to the following.

COMPRESSOR_LOOP_FILTER(R/W)

When an H.261 encoder is interframe encoding a macroblock and is using
motion compensation, the encoder has the option of filtering the macroblock in
the history image that is being used in the operation. (For more information
about interframe encoding in H.261, see “Prediction” on page 384.) The setting
of the COMPRESSOR_LOOP_FILTER attribute provides a hint to the encoder
concerning whether it should filter the macroblock in the history image or not:
a setting of TRUE suggests that the encoder perform the filtering if necessary,
and a setting of FALSE suggests that it not use the filter.

The default value for COMPRESSOR_LOOP_FILTER is TRUE. This setting gives
the encoder the flexibility to produce the most compact bitstream. Use the
FALSE setting when you need to minimize compression and decompression
time.

The following code shows COMPRESSOR_LOOP_FILTER being set to FALSE.

You can also read the value of this attribute. Use code similar to the following.

XilCis cis;
int images_skipped;

xil_cis_get_attribute(cis, “COMPRESSOR_IMAGE_SKIP”,
(void **)&images_skipped);

XilCis cis;

xil_cis_set_attribute(cis, “COMPRESSOR_LOOP_FILTER”,
(void *)FALSE);

XilCis cis;
Xil_boolean loop_filter_status;

xil_cis_get_attribute(cis, “COMPRESSOR_LOOP_FILTER”,
(void **)&loop_filter_status);

394 XIL Programmer’s Guide—August 1997

18

COMPRESSOR_MV_SEARCH_RANGE(R/W)

As discussed in “Prediction” on page 384, when an H.261 encoder is interframe
encoding a macroblock, it may use a technique called motion compensation in
determining which macroblock in the history image to use for the operation.
This macroblock in the history image may be offset by up to ±15 pixels in both
the x and y directions from the macroblock in the history image that matches
exactly the position of the macroblock that is being encoded. This means that
the encoder may have to look at the contents of 961 (31 * 31) macroblocks to
find the best match for the macroblock it is encoding. The
COMPRESSOR_MV_SEARCH_RANGE attribute enables you to limit the extent of
this search and, consequently, to speed up the encoding process.

Before setting the value of this attribute, you must declare and assign values to
the members of an XilH261MVSearchRange structure.

The value of x determines the extent of the search horizontally; that is, if x is
set to 5, the encoder can only search five pixels to the right or left. The value of
y determines the extent of the search vertically. Setting both values to 0 means
that the encoder should not perform motion compensation at all.

Note – The value of this attribute is actually only a hint to the encoder and
could be ignored.

The following code shows COMPRESSOR_MV_SEARCH_RANGE being set so that
the encoder searches only 7 pixels horizontally and vertically.

typedef struct {
int x;
int y;

} XilH261MVSearchRange;

XilCis cis;
XilH261MVSearchRange search_range;

search_range.x = 7;
search_range.y = 7;
xil_cis_set_attribute(cis, “COMPRESSOR_MV_SEARCH_RANGE”,

(void *)&search_range);

H.261 Codec 395

18

You can also read the value of this attribute. See the following code fragment.

COMPRESSOR_SPLIT_SCREEN(R/W)

The setting of the COMPRESSOR_SPLIT_SCREEN attribute determines whether
the encoder sets the split-screen bit in the picture header of the pictures it
encodes. If the attribute is set to FALSE, the encoder does not set this bit, and if
it is set to TRUE, the encoder sets the bit. By default, the attribute is set to
FALSE.

The following code fragment shows the attribute being set to TRUE.

You can also read the value of this attribute using code similar to the following.

Decompression Attributes

Of the decompression attributes, only IGNORE_HISTORY affects the behavior
of the decoder. The remaining attributes simply enable you to read values from
the header of the most recently decompressed picture.

XilCis cis;
XilH261MVSearchRange search_range;

xil_cis_get_attribute(cis, “COMPRESSOR_MV_SEARCH_RANGE”,
(void **)&search_range);

XilCis cis;

xil_cis_set_attribute(cis, “COMPRESSOR_SPLIT_SCREEN”,
(void *)TRUE);

XilCis cis;
Xil_boolean split_screen_status;

xil_cis_get_attribute(cis, “COMPRESSOR_SPLIT_SCREEN”,
(void **)&split_screen_status);

396 XIL Programmer’s Guide—August 1997

18

IGNORE_HISTORY(R/W)

The IGNORE_HISTORY attribute affects your ability to seek forward and
backward in an H.261 bitstream. These seeks are somewhat problematic in
H.261 because the codec relies so heavily on interframe encoding and does not
require periodic key frames.

By default, IGNORE_HISTORY is set to FALSE. In this case, seeking backward is
illegal because there is no way to seek backward and still have a valid history
frame to use in decoding a picture. Seeking forward is possible, but to ensure
that the decoder can properly decode the frame you seek to, the decoder must
actually decode all the frames you “skip.” This is the only way the decoder can
maintain the correct data in its history buffer.

If you set IGNORE_HISTORY to TRUE, you’re telling the decoder that it’s OK if,
after a seek, it does not have the correct data in its history buffer to decode the
next picture. In this case, seeking backward is legal, and seeking forward is
faster than they would be otherwise. The drawback to ignoring the history
image is that you may have to decode as many as 132 frames after a seek
before you get a properly reconstructed picture.

Note – There is one exception to this problem. If IGNORE_HISTORY is set to
TRUE and you seek backward by one frame and then call xil_decompress() ,
you get a good picture. The decompressor can copy this picture from its
history buffer.

The following code shows IGNORE_HISTORY being set to TRUE.

XilCis cis;

xil_cis_set_attribute(cis, “IGNORE_HISTORY”, (void *)TRUE);

H.261 Codec 397

18

You can also read the value of this attribute. To do this, use code similar to the
following.

DECOMPRESSOR_DOC_CAMERA(R)

Reading the DECOMPRESSOR_DOC_CAMERA attribute tells you whether the
document-camera bit was set in the header of the most recently decompressed
picture. If the value of the attribute is TRUE, the bit was set, and if the value is
FALSE, it was not set.

The following code fragment illustrates how to read the attribute.

DECOMPRESSOR_FREEZE_RELEASE(R)

The DECOMPRESSOR_FREEZE_RELEASE attribute enables you to read the value
of the freeze-release bit for the most recently decompressed picture. If the bit is
set, the value of the attribute is TRUE; otherwise, it is FALSE.

Here’s how an application uses this information: If the application has frozen
the display in response to a freeze-picture request and
DECOMPRESSOR_FREEZE_RELEASEis set to FALSE, the application does not
display the picture it just decoded (unless a timeout period has elapsed). On
the other hand, if the attribute is set to TRUE, it displays that picture, and all
ensuing pictures until it receives another freeze-picture request.

XilCis cis;
Xil_boolean ignore_history_status;

xil_cis_get_attribute(cis, “IGNORE_HISTORY”,
(void **)&ignore_history_status);

XilCis cis;
Xil_boolean doc_camera_status;

xil_cis_get_attribute(cis, “DECOMPRESSOR_DOC_CAMERA”,
(void **)&doc_camera_status);

398 XIL Programmer’s Guide—August 1997

18

The following code shows how to read the value of
DECOMPRESSOR_FREEZE_RELEASE.

DECOMPRESSOR_SOURCE_FORMAT(R)

The DECOMPRESSOR_SOURCE_FORMAT attribute enables you to determine
whether the most recently decompressed picture was in CIF (352 by 288 pixels)
or QCIF (176 by 144 pixels) format. The value of the attribute is one of the
following enumeration constants.

The following code shows how you might read the value of
DECOMPRESSOR_SOURCE_FORMAT.

DECOMPRESSOR_SPLIT_SCREEN(R)

Reading the DECOMPRESSOR_SPLIT_SCREEN attribute tells you whether the
split-screen bit is set in the header of the most recently decompressed picture.
If the value of the attribute is TRUE, the bit is set, and if the value is FALSE, it
is not set.

XilCis cis;
Xil_boolean stop_freeze;

xil_cis_get_attribute(cis, “DECOMPRESSOR_FREEZE_RELEASE”,
(void **)&stop_freeze);

typedef enum {
QCIF, CIF

} XilH261SourceFormat;

XilCis cis;
XilH261SourceFormat source_format;

xil_cis_get_attribute(cis, “DECOMPRESSOR_SOURCE_FORMAT”,
(void **)&source_format);

H.261 Codec 399

18

The following code fragment illustrates how to read the attribute.

DECOMPRESSOR_TEMPORAL_REFERENCE(R)

The DECOMPRESSOR_TEMPORAL_REFERENCE attribute enables you to retrieve
the value of the temporal-reference field in the header of the last picture
decoded. Since this is a 5-bit field, the value is in the range 0 to 31.

By looking at the temporal reference fields of the last two decompressed
frames, an application can determine how many pictures the encoder skipped
between these pictures. In most instances, the number of skipped pictures
equals:

temporal reference for picturex - temporal reference for picturex-1 - 1

However, if the temporal reference value for picturex is less than the temporal
reference for picturex-1, the calculation becomes:

31 + temporal reference for picturex - temporal reference for picturex-1

The following code shows how to read the value of
DECOMPRESSOR_TEMPORAL_REFERENCE.

XilCis cis;
Xil_boolean split_screen_status;

xil_cis_get_attribute(cis, “DECOMPRESSOR_SPLIT_SCREEN”,
(void **)&split_screen_status);

XilCis cis;
int temp_ref;

xil_cis_get_attribute(cis, “DECOMPRESSOR_TEMPORAL_REFERENCE”,
(void **)&temp_ref);

400 XIL Programmer’s Guide—August 1997

18

H.261 Molecules
The XIL library includes a series of molecules that accelerate the playback of
H.261 bitstreams. These molecules are optimized routines that perform the jobs
of two or more functions from the XIL API. You do not call such an optimized
routine directly; rather, the library calls a molecule when your program calls a
predefined sequence of XIL functions, sometimes with specific arguments.

For example, if your program calls xil_decompress() to decode an image
stored in an H.261 CIS and then calls xil_ordered_dither() to dither the
decoded image from a 24- to an 8-bit image, the library may not call these two
functions. Instead, it may call a molecule that performs the decompression and
the dithering in an optimized way.

For more information about accelerating the playback of H.261 bitstreams, see
Chapter 23, “Acceleration in XIL Programs.” For information about the H.261
molecules that are available and information about how to call those
molecules, see “XIL Molecules” on page 477.

401

MPEG-1 Codec 19

This chapter discusses the MPEG-1 video codec specified by the Moving
Picture Experts Group, an ISO working group. This group has produced a
standard that is similar to the H.261 standard developed by the CCITT (see
Chapter 18, “H.261 Codec”), but places less emphasis on low bit rates. By
accepting a higher bit rate—for example, 1.5 Mbits per second—an MPEG-1
codec is able to recreate very high-quality pictures and to produce a bitstream
that is easily editable.

Note – This chapter discusses both MPEG-1 compression and decompression.
However, the current release of the XIL library includes only an MPEG-1
decompressor. The compressor interface is defined for third parties who want
to implement XIL MPEG-1 compressors.

The rate of 1.5 Mbits/s makes the MPEG-1 codec especially viable in
applications that read compressed data from CD-ROMs because even older
(1x) CD-ROM readers can read data at this speed. Thus, putting an MPEG-1
bitstream on a CD-ROM is an effective way to distribute movies, business
presentations, and training videos.

This chapter has the following main sections:

How an MPEG-1 Codec Works page 402

Creating an MPEG-1 CIS page 407

MPEG-1 Codec Attributes page 408

MPEG-1 Molecules page 433

402 XIL Programmer’s Guide—August 1997

19

How an MPEG-1 Codec Works
Since the work done by the Motion Picture Experts Group grew out of the
work done by the CCITT in developing the H.261 video codec, this section
compares and contrasts the MPEG-1 codec with the H.261 codec to show how
the MPEG-1 codec works. (If you’re unfamiliar with how an H.261 codec
works, see “How an H.261 Codec Works” on page 380.) The present section
also includes a subsection that describes the organizational structure that
MPEG-1 imposes on a video sequence.

Similarities Between MPEG-1 and H.261

These are the key similarities between MPEG-1 and H.261:

• Both compressors work with YCbCr pictures in which the information in the
chroma channels has been subsampled so that there is one Cb and one Cr

value for each 2-by-2 block of luma values.

• Like the H.261 compressor, the MPEG-1 compressor can compress a
macroblock (a 16-by-16 block of pixels in a picture) by encoding the actual Y,
Cb, and Cr values in the macroblock (intraframe encoding) or by encoding
the differences between values in the current block and values in the
corresponding macroblock in the previous picture (forward prediction). In
addition, when using the forward-prediction encoding method, the MPEG-1
compressor, like the H.261 compressor, can employ motion compensation.

• Both compressors encode 8-by-8 blocks of pixel values or difference values
using the same method. The compressors first perform a DCT on the 8-by-8
block of values. This operation transforms the values in the block from the
spatial to the transform domain. Second, the compressors quantize the
coefficients produced by the DCT. Finally, the compressors use entropy
coding to encode the quantized coefficients.

Differences Between MPEG-1 and H.261

Although the Moving Picture Experts Group drew heavily on the work of the
CCITT, there are also significant differences between the MPEG-1 and H.261
compressors. Most of these differences provide for random access to the
MPEG-1 bitstream and make the bitstream easily editable.

MPEG-1 Codec 403

19

I Pictures and P Pictures

In H.261, the ideas of intraframe encoding and predictive encoding are applied
for the most part at the macroblock level. MPEG-1, on the other hand, includes
the notion of intraframe-encoded pictures and predicted pictures.

In an intraframe-encoded picture, or I picture, all macroblocks are intraframe
encoded. This means that the decoder needs no information from a preceding
picture to decode an I picture. For this reason, seeking to I frames can be
performed very quickly.

In a predicted picture, or P picture, each macroblock can be intraframe encoded
or encoded using the forward-prediction method. This type of picture is very
similar to an H.261 picture.

Typically, an MPEG-1 bitstream contains more P pictures than I pictures
because the P picture can be encoded using fewer bits. Encoding difference
values generally requires fewer bits than encoding pixel values. Also, the
encoder does not have to encode macroblocks that are very similar to their
counterparts in the preceding I or P picture.

B Pictures

Based on the previous discussion, you might picture an MPEG-1 bitstream as
containing periodic I pictures followed by a number of P pictures. See
Figure 19-1.

Figure 19-1 An MPEG-1 Bitstream Containing I and P Pictures

I I I IP P P P P P P P P

404 XIL Programmer’s Guide—August 1997

19

This does constitute a legal MPEG-1 bitstream. However, the bitstream may
also contain one or more bidirectionally predicted pictures, or B pictures,
between any pair of I or P pictures. In a B picture, each macroblock may be:

• Intraframe encoded

• Forward predicted from the nearest preceding I or P picture

• Backward predicted from the nearest succeeding I or P picture

• Bidirectionally predicted from the nearest preceding I or P picture and the
nearest succeeding I or P picture

Intraframe encoding and forward prediction are discussed in “I Pictures and P
Pictures” on page 403.

Backward prediction is strictly analogous to forward prediction. A
backward-predicted macroblock is encoded with respect to the values in the
corresponding macroblock in a picture that follows its own picture in the video
sequence. This option may seem unintuitive at first because it results in a
situation where pictures are not transmitted in the order in which they will be
displayed; see Figure 19-2.

Figure 19-2 MPEG-1 Display Order Versus Decoding Order

However, backward prediction is an option because it can lead to a more
compact bitstream in instances where the macroblocks in a B picture match
their counterparts in the closest succeeding I or P picture more closely than
they match their counterparts in the closest preceding I or P picture.

A bidirectionally predicted macroblock is coded with respect to the
corresponding macroblock in both the closest preceding and succeeding I/P
pictures; see Figure 19-3.

Images that are to
be displayed in
this order...

must be transmitted
in this order.

I B P I P B

MPEG-1 Codec 405

19

Figure 19-3 Bidirectional Prediction in MPEG-1

In this case, the encoder averages the values in macroblocks A and C and then
encodes the difference between values in macroblock B and the averaged
macroblock. Bidirectional prediction is effective because the difference
mentioned above is often so small that it does not need to be encoded.

For MPEG-1, the behavior of the xil_cis_get_bits_ptr() function
(defined on page 300) differs from its usual behavior. For a bitstream with out-
of-order frames (that is, a bitstream with B frames), the actual number of
frames in the data returned by xil_cis_get_bits_ptr() might not equal
the value of its nframes parameter. The value of nframes is the number of
frames the CIS read frame has been advanced by the
xil_cis_get_bits_ptr() call. A backward seek of nframes called by
xil_cis_seek() (defined on page 302) restores the read position to the
original read frame (before the xil_cis_get_bits_ptr() call). This is
useful for an application that uses a preview mode, where the compress and
write-to-file is followed by a decompress.

The number of frames reported may not represent the actual number of frames.
Therefore, if the chunk is subsequently used for an xil_cis_put_bits()
(defined on page 298) or xil_cis_put_bits_ptr() call (defined on
page 298), the nframes parameter must be set to -1, which indicates an
unknown number of frames.

I/P Picture B Picture I/P Picture

A B C

Corresponding macroblocks

406 XIL Programmer’s Guide—August 1997

19

Groups of Pictures

Another concept used in MPEG-1 that does not apply in H.261 is that of a
group of pictures. This is a series of consecutive pictures from a video
sequence. Generally, the group of pictures provides a unit of the bitstream that
can be removed without destroying the integrity of the bitstream and a unit
that can be decoded independently of the rest of the bitstream. As you’ll see in
a moment, however, the group of pictures does not always have these
characteristics.

By definition, a group of pictures (considered in display order) must begin
with an I picture or with one or more B pictures followed by an I picture. It
must end with an I or a P picture. A closed group of pictures can be decoded
without any information from the preceding group of pictures. Thus, a closed
group is one that begins with an I picture or one that begins with one or more
B pictures whose macroblocks have been encoded using only intraframe
encoding and backward prediction. An open group of pictures begins with one
or more B pictures, at least one of which contains macroblocks encoded using
forward or bidirectional prediction. This type of group can be decoded only if
the preceding group of pictures is available. If that group is not available—for
example, if an MPEG-1 bitstream editing program has removed the group—a
broken-link bit must be set in the header for the open group of pictures.

How MPEG-1 Organizes a Video Sequence

Some of the organizational units used in MPEG-1, such as the group of pictures
and the macroblock are mentioned in “Groups of Pictures.” This section
provides a complete overview of these units. This information should be useful
to you as you read about MPEG-1 CIS attributes later in this chapter because
many of these attributes are associated with a particular unit.

The largest unit MPEG-1 defines is the video sequence. You might think of this
unit as an entire movie or presentation. Each MPEG-1 bitstream includes a
sequence header, which defines several attributes for the entire sequence.
These include the pixel aspect ratio for the sequence, the picture rate for the
sequence in pictures per second, and the bit rate of the data channel over
which the compressed sequence will be moved. An additional sequence header
is written to the bitstream each time one of the encoder’s quantization tables is
changed.

MPEG-1 Codec 407

19

Each sequence is divided into a series of groups of pictures. See “Groups of
Pictures” on page 406 for a definition of this unit. If you’re compressing video
using an XIL-compliant MPEG-1 encoder, you can control the makeup of each
group of pictures using the COMPRESSOR_PATTERN attribute.

Each group of pictures consists of pictures, which are individual frames of
video. The major attributes associated with each picture are a picture type and
a temporal reference. The major picture types are intraframe-encoded pictures,
forward-predicted pictures, and bidirectionally predicted pictures. The
temporal reference is an integer identifying a picture’s place within a group of
pictures.

The largest subdivision of a picture is called a slice, which consists of a series
of consecutive macroblocks. Slices within a picture may vary in size, but each
macroblock in a picture must be part of a slice. This unit is designed primarily
to help a decoder recover from a bitstream error. If a decoder detects an error,
one way to recover is to skip to the next slice header.

Slices are built from macroblocks that are a 16-by-16 block of pixels. The
macroblock is the level at which motion compensation is performed. Also, the
type of encoding used—intraframe, forward prediction, backward prediction,
or bidirectional prediction—can change from macroblock to macroblock.

Finally, each macroblock is divided into six 8-by-8 blocks. Four of these blocks
contain luma values, one contains Cb values, and one contains Cr values. This
is the level at which the DCT is performed.

Creating an MPEG-1 CIS
Before you can use the MPEG-1 decompressor to decompress an MPEG-1
bitstream, you must create an MPEG-1 CIS (and write an MPEG-1 bitstream to
the CIS). You create this CIS by passing the decompressor name Mpeg1 to the
xil_cis_create() function; see the following code fragment.

XilCis cis;
XilSystemState state;

cis = xil_cis_create(state, “Mpeg1”);

408 XIL Programmer’s Guide—August 1997

19

MPEG-1 Codec Attributes
As discussed in “General CIS Attributes” on page 303, there is a class of
attributes that can be set for any CIS. There is also a set of attributes that are
valid only for CISs attached to an MPEG-1 compressor or decompressor. You
set codec-specific attributes using the xil_cis_set_attribute() function,
and you read codec-specific attributes using the xil_cis_get_attribute()
function.

The MPEG-1 attributes can be broadly grouped into those that affect
compression, discussed in “Compression Attributes,” and those that affect
decompression, discussed in “Decompression Attributes” on page 427.

Compression Attributes

Setting any of the following attributes affects how an MPEG-1 compressor
compresses images. It is also possible to read the value of each of these
attributes. Attributes are identified as read-only (R), write-only (W), or
read/write (R/W).

COMPRESSOR_BITS_PER_SECOND(R/W)

You use the COMPRESSOR_BITS_PER_SECOND attribute to tell the encoder how
many bits it can use to encode one second’s worth of pictures. This value is
written to the sequence header for a picture sequence and is assumed to
remain constant for the duration of the sequence. You cannot change the value
of this attribute after the encoder compresses the first picture in the sequence.

The value you assign to the attribute must fall in the range 1 to 104,856,800.
Before inserting this value in the sequence header, the encoder rounds it up to
the nearest multiple of 400. The default value of the attribute is 1,152,000.

The following code shows how you might set the value of
COMPRESSOR_BITS_PER_SECOND to 1,856,000.

XilCis cis;
int bits_per_second = 1856000;

xil_cis_set_attribute(cis, “COMPRESSOR_BITS_PER_SECOND”,
(void *)bits_per_second);

MPEG-1 Codec 409

19

To read the value of the attribute, you might use code similar to this.

COMPRESSOR_INSERT_VIDEO_SEQUENCE_END(R/W)

Normally, the value of the COMPRESSOR_INSERT_VIDEO_SEQUENCE_END
attribute is FALSE. If you set it to TRUE, any time a subsequent call is made to
xil_cis_flush() (defined on page 325), the encoder writes a video-
sequence-end (eos) code to the last frame in the CIS. This action is added to the
normal actions taken by the flush routine. When set to FALSE, this attribute
doesn’t affect the normal actions of the flush routine.

Setting COMPRESSOR_INSERT_VIDEO_SEQUENCE_END to TRUE

The following code shows the attribute being set to TRUE.

Note – The library prevents multiple eos codes from being written to the same
frame. Thus, when the write-frame’s number doesn’t change and
COMPRESSOR_INSERT_VIDEO_SEQUENCE_END is TRUE, multiple calls to
xil_cis_flush() result in only one eos code in the frame; this code is
written after the first call to xil_cis_flush() .

XilCis cis;
int bits_per_second;

xil_cis_get_attribute(cis, “COMPRESSOR_BITS_PER_SECOND”,
(void **)&bits_per_second);

XilCis cis;

xil_cis_set_attribute(cis,
“COMPRESSOR_INSERT_VIDEO_SEQUENCE_END”, (void *)TRUE);

410 XIL Programmer’s Guide—August 1997

19

You can read the value of this attribute using code similar to this.

XilCis cis;
Xil_boolean sequence_end_status;

xil_cis_get_attribute(cis,
“COMPRESSOR_INSERT_VIDEO_SEQUENCE_END”,
(void **)&sequence_end_status);

MPEG-1 Codec 411

19

Table 19-1 shows two sequences of function calls that result in the same CIS
pattern; these sequences assume the call to xil_cis_set_attribute() sets
the COMPRESSOR_INSERT_VIDEO_SEQUENCE_END attribute to TRUE.

Note – The term CIS pattern refers to the order that frames appear in the
bitstream. Don’t confuse this with the COMPRESSOR_PATTERN attribute (see
page 419), which lets you specify the makeup of a group of pictures. For
example, the COMPRESSOR_PATTERN IBBPBBP results in the bitstream CIS
pattern IPBBPBB.

For the two sequences shown in Table 19-1, the resulting CIS sequence is:

vsh.I0.P3.B1.B2.eos

where vsh represents the video sequence header information, and eos
represents the end-of-sequence code. Between the vsh and the eos code are
the frame types and their display id’s; among the frame types, I =
interframe encoding, P = predicted pictures, and B = bidirectionally
predicted pictures.

From the XIL point of view, the vsh is bundled with the first frame, I0 , and
the eos is bundled with the last frame, B2.

Handling Multiple Video Sequence Headers and Sequences
There may be multiple vsh components associated with one eos, since the vsh
changes as certain CIS attributes change (within the XIL limitations that there
are no width/height changes).

Table 19-1 Two Function Call Sequences: CIS Pattern = IPBB

Function Call Sequence 1 Function Call Sequence 2

xil_compress() xil_cis_set_attribute()

xil_compress() xil_compress()

xil_compress() xil_compress()

xil_compress() xil_compress()

xil_cis_flush() /* normal */ xil_compress()

xil_cis_set_attribute() xil_cis_flush() /* normal + eos */

xil_cis_flush() /* normal + eos */

412 XIL Programmer’s Guide—August 1997

19

In addition, there may be multiple sequences within a bitstream; thus,

vsh-----eos.vsh----eos.vsh----eos

constitutes three sequences.

If frames are compressed into the CIS after the call to xil_cis_flush() , it’s
the compressor’s responsibility to provide the vsh per sequence. Before the
application changes an attribute that would result in a new sequence header, it
must first output an eos for the current sequence by calling
xil_cis_flush() with COMPRESSOR_INSERT_VIDEO_SEQUENCE_END =
TRUE. For example, before you can change the
COMPRESSOR_BITS_PER_SECOND attribute (see page 408), you must first set
COMPRESSOR_INSERT_VIDEO_SEQUENCE_END to TRUE and call
xil_cis_flush() to write the eos code to the bitstream.

An MPEG-1 sequence isn’t valid without the eos code; therefore, the last frame
in the sequence must be followed by the eos code. Since it cannot be predicted
when an application will end a sequence, the MPEG-1 codec reserves the last
frame or subgroup of frames in the CIS so that you can write an eos to that
frame or subgroup. The reserved frame or subgroup must be released before it
can be retrieved with xil_cis_get_bits_ptr() or xil_decompress() .

Releasing Reserved Frames

Note – The reserved frame or subgroup affects the logic you need for calling
xil_cis_get_bits_ptr() and xil_decompress() . For example, typically
you call xil_decompress() from within a loop that executes only when
xil_cis_has_frame() returns TRUE. When decompressing an MPEG-1 CIS,
you must first release the reserved frames before you can expect a loop control
condition that depends on the return value of xil_cis_has_frame() to
evaluate to TRUE.

The following paragraphs tell you how to release the reserved frames.
Beginning on page 414, the discussion moves to some example function-call
sequences and shows how these sequences would affect both the return value
of xil_cis_has_frame() and xil_cis_get_bits_ptr() .

MPEG-1 Codec 413

19

A frame or subgroup is released when:

• It is followed by an eos, thus providing a valid sequence. This is done by
setting the COMPRESSOR_INSERT_VIDEO_SEQUENCE_END attribute to TRUE
and then calling xil_cis_flush() , as described above.

• It is followed by another frame or subgroup. For an all I bitstream or a
mixed I-P bitstream, this means that another frame is added to the CIS.
Since there are no out-of-order frames, a subgroup for this type of CIS is a
frame.

The following sequences release a frame:

I0.I1 I1 releases I0

I0.P1 P1 releases I0

For any bitstream with B frames, releasing a frame or subgroup is more
complicated. B frames have a future-predictive frame that appears in the
bitstream previous to the B frame, and multiple B frames may share the same
predictive frame. So you can get the following (in these examples, any of the I’s
can be replaced by a P):

I2.B1

I3.B1.B2

I4.B1.B2.B3

I6.B1.B2.B3.B4.B5

I9.B1.B2.B3.B4.B5.B6.B7.B8

Sequence Subgroups
A sequence is considered a complete subgroup when its predictive frame has
the display id N, and the predictive frame is followed by one or more B frames,
the last one’s display id is N-1. Thus, all of the above bitstream fragments are
complete subgroups.

The following are examples of bitstreams with incomplete subgroups:

I3.B1 missing B2

I6.B1.B2.B3 missing B4,B5

When there are incomplete subgroups, the compressor must buffer the
compressed frames until the buffer contains a complete subgroup, at which
point the compressor adds the completed subgroup to the bitstream. In this
manner, the compressor can handle interruptions to the compression-frame

414 XIL Programmer’s Guide—August 1997

19

sequence as necessary. For example, if, halfway through the IPBBB group, the
video player’s Stop/Output button is pressed, the compressor must be able to
take the resulting I0.P4.B1 bitstream and rework it into a legal output form.

Once the subgroup is complete, it cannot be released until it is followed by an
eos, or it is followed by another valid subgroup. The following sequences show
a subgroup being released:

I0.I2.B1.eos I2.B1 released by eos

I0.I2.B1.I4.B3 I2.B1 released by I4.B3

I0.I3.B1.B2.P5.B4 I3.B1.B2 released by P5.B4

I0.I3.B1.B2.P5.B4.eos P5.B4 released by eos

Table 19-2, Table 19-3, and Table 19-4 show how subgroups are affected by a
particular sequence of function calls. In each of these tables:

• Column heading WF is an abbreviation for Write Frame.

• Column heading has_frame is an abbreviation for the
xil_cis_has_frame() function and the column text shows what the
return value for that function would be.

• Column heading get_bits_ptr is an abbreviation for the
xil_cis_get_bits_ptr() function and the column text shows the
frames that would be returned by a call to that function.

• Column heading RF is an abbreviation for Read Frame and the column text
shows what the read frame would be after the call to
xil_cis_get_bits_ptr() .

• A call to xil_cis_set_attribute() in the sequence sets the
COMPRESSOR_INSERT_VIDEO_SEQUENCE_END attribute to TRUE.

MPEG-1 Codec 415

19

In Table 19-2, the CIS pattern is all I frames and the result is that subgroup I2 is
released by an appended eos. Notice that the first xil_cis_flush() call has
no affect on the subgroup since the default setting for the
COMPRESSOR_INSERT_VIDEO_SEQUENCE_END attribute is FALSE.

In Table 19-3, the CIS pattern is IPB and the result is that subgroup P2.B1 is
released by the appended eos .

Finally, in Table 19-4, the CIS pattern is IPBBPBB and the result is that
subgroup P3.B1.B2 is released by the next subgroup, P6.B4.B5.

Table 19-2 Releasing a Frame: CIS Pattern = All I Frames

Function WF has_frame get_bits_ptr RF CIS

xil_compress() 1 FALSE NULL 0 I0

xil_compress() 2 TRUE I0 1 I0.I1

xil_compress() 3 TRUE I1 2 I0.I1.I2

xil_cis_flush() 3 FALSE NULL 2 I0.I1.I2

xil_cis_set_attribute()

xil_cis_flush() 3 TRUE I2.eos 3 I0.I1.I2.eos

Table 19-3 Releasing a Frame: CIS Pattern = IPB

Function WF has_frame get_bits_ptr RF CIS

xil_compress() 1 FALSE NULL 0 I0

xil_compress() 2 FALSE NULL 0 I0

xil_compress() 3 TRUE I0 1 I0.P2.B1

xil_cis_set_attribute()

xil_cis_flush() 3 TRUE P2.B1.eos 3 I0.P2.B1.eos

Table 19-4 Releasing a Frame: CIS Pattern = IPBBPBB

Function WF has_frame get_bits_ptr RF CIS

xil_compress() 1 FALSE NULL 0 I0

xil_compress() 2 FALSE NULL 0 I0

xil_compress() 3 FALSE NULL 0 I0

416 XIL Programmer’s Guide—August 1997

19

COMPRESSOR_INTRA_QUANTIZATION_TABLE(R)

The COMPRESSOR_INTRA_QUANTIZATION_TABLE attribute enables you to
specify an 8-by-8 matrix of values to be used in quantizing the DCT coefficients
for blocks in intraframe-encoded macroblocks. If you set this attribute, the
table is written to your bitstream’s sequence header. If you don’t set it, the
encoder uses a default implementation-specific table.

If you supply your own table, it must meet these requirements:

• The first value in the table must be an 8, the fixed quantization level of the
DC coefficient for the block.

• The remaining values must fall in the range 1 to 255.

• The values must be listed in the zigzag order shown in Figure 19-4.

xil_compress() 4 TRUE I0 1 I0.P3.B1.B2

xil_compress() 5 FALSE NULL 1 I0.P3.B1.B2

xil_compress() 6 FALSE NULL 1 I0.P3.B1.B2

xil_compress() 7 TRUE P3.B1.B2 4 I0.P3.B1.B2.P6.B4.B5

Table 19-4 Releasing a Frame: CIS Pattern = IPBBPBB

Function WF has_frame get_bits_ptr RF CIS

MPEG-1 Codec 417

19

Figure 19-4 Zigzag Ordering of Quantization Table Values

The following code shows how to specify a table. This particular table is the
one that is used as an example in the MPEG-1 standard and may well be the
encoder’s default table.

XilCis cis;
Xil_unsigned8 intra_quant_table[64] = {

8, 16, 19, 22, 26, 27, 29, 34,
16, 16, 22, 24, 27, 29, 34, 37,
19, 22, 26, 27, 29, 34, 34, 38,
22, 22, 26, 27, 29, 34, 37, 40,
22, 26, 27, 29, 32, 35, 40, 48,
26, 27, 29, 32, 35, 40, 48, 58,
26, 27, 29, 34, 38, 46, 56, 69,
27, 29, 35, 38, 46, 56, 69, 83 };

xil_cis_set_attribute(cis,
“COMPRESSOR_INTRA_QUANTIZATION_TABLE”,
(void *)intra_quant_table);

418 XIL Programmer’s Guide—August 1997

19

You can read the value of the attribute using code similar to this.

If, after this call, intra_quant_table is a null pointer, the default table is in
use; otherwise, intra_quant_table is a pointer to a user-supplied
quantization matrix. In the latter case, your application must free the matrix
pointed to by intra_quant_table when it is no longer needed.

COMPRESSOR_NON_INTRA_QUANTIZATION_TABLE(R/W)

The COMPRESSOR_NON_INTRA_QUANTIZATION_TABLE attribute enables you
to specify an 8-by-8 matrix of values to be used in quantizing the DCT
coefficients for blocks in nonintraframe-encoded macroblocks. If you set this
attribute, the table is written to your bitstream’s sequence header. If you don’t
set it, the encoder uses an implementation-specific default table.

If you supply an alternate table, it must meet these requirements:

• The values in the table must fall in the range 1 to 255.

• The values must be listed in the zigzag order shown in Figure 19-4 on
page 417.

XilCis cis;
Xil_unsigned8 *intra_quant_table;

xil_cis_get_attribute(cis,
“COMPRESSOR_INTRA_QUANTIZATION_TABLE”,
(void **)&intra_quant_table);

MPEG-1 Codec 419

19

The following code is an example of how you might supply a custom table.
This table, which contains all 16’s, is used as an example in the MPEG-1
specification.

You can read the value of the attribute using code similar to the following.

COMPRESSOR_PATTERN(R)

The COMPRESSOR_PATTERN attribute enables you to specify the makeup of
each group of pictures. You dictate the number of pictures in each group, the
types of the pictures in the group, and the display order of those pictures. Your
specification must conform to the following rules:

• A group of pictures may begin with one or more B pictures or an I picture.

• If the group starts with one or more B pictures, those pictures must be
followed by an I picture.

• The first I picture in the group may be followed by any number of I and P
pictures, and any combination of an I and a P picture may have intervening
B pictures.

• The group of pictures must end with an I or a P picture.

XilCis cis;
Xil_unsigned8 non_intra_quant_table[64];
int i;

for (i = 0; i < 64; i++)
 non_intra_quant_table[i] = 16;

xil_cis_set_attribute(cis,
 “COMPRESSOR_NON_INTRA_QUANTIZATION_TABLE”,
 (void *)non_intra_quant_table);

XilCis cis;
Xil_unsigned8 *non_intra_quant_table;

xil_cis_get_attribute(cis,
 “COMPRESSOR_NON_INTRA_QUANTIZATION_TABLE”,
 (void **)&non_intra_quant_table);

420 XIL Programmer’s Guide—August 1997

19

Note – A group of pictures can also contain all D pictures. (A D picture
contains only low-frequency information and is used for fast visible searches.)
However, the XIL library’s MPEG-1 decompressor cannot decode bitstreams
containing D pictures.

You specify the makeup of the group by assigning values to a structure of type
XilMpeg1Pattern , as shown here.

The string pattern determines the types of the pictures (in display order) that
appear at the beginning of the group of pictures. This string must contain a
combination of the characters shown in Table 19-5.

For example, suppose you want each group of pictures to begin with the
thirteen pictures shown in Figure 19-5.

Figure 19-5 Sample Group of Pictures

You would set pattern to “IBBPBBPBBPBBP”.

typedef struct {
char *pattern;
Xil_unsigned32 repeat_count;

} XilMpeg1Pattern;

Table 19-5 Characters Representing Picture Types

Character Picture Type

I Intraframe picture

P Forward-predicted picture

B Bidirectionally predicted picture

D DC-coefficient picture

I B P P P PB B B B B B B

MPEG-1 Codec 421

19

The repeat_count parameter is a number greater than 0 that determines the
total number of pictures in the group of pictures. For example, suppose that
you set repeat_count to 3 as shown in this example.

This call requests that the pattern shown in Figure 19-5 be repeated 3 times, so
there will be a total of 39 pictures in the group.

When you set this attribute, the encoder terminates the group of pictures it was
working on immediately. Thus, the next call to xil_compress() causes the
encoder to compress the first picture in a new group of the type you just
specified.

If you do not set this attribute, a default implementation-specific pattern is
used. To select the default pattern after having selected a custom pattern, you
pass a null pointer to xil_cis_set_attribute() .

You can also read the value of COMPRESSOR_PATTERN. To do this, you might
use code similar to the following.

If, after this call, picture_pattern is a null pointer, the encoder uses the
default picture pattern. Otherwise, picture_pattern points to a structure
containing a pattern string and a repeat count. In the latter case, when you
have finished using the structure, your application should free the storage that
the XIL library allocated to hold the pattern string and then free the storage the
library allocated to hold the structure.

XilCis cis;
XilMpeg1Pattern picture_pattern = {“IBBPBBPBBPBBP”, 3};

xil_cis_set_attribute(cis, “COMPRESSOR_PATTERN”,
(void *)&picture_pattern);

XilCis cis;
XilMpeg1Pattern *picture_pattern;

xil_cis_get_attribute(cis, “COMPRESSOR_PATTERN”,
(void **)&picture_pattern);

422 XIL Programmer’s Guide—August 1997

19

COMPRESSOR_PEL_ASPECT_RATIO(R/W)

The value of the COMPRESSOR_PEL_ASPECT_RATIO attribute, along with the
width and height of a picture in pixels, indicates the shape a picture is meant
to have when it is displayed. Basically, the ratio of the width to the height of
the displayed picture should be:

width in pixels / (height in pixels * aspect ratio)

If you supply an aspect ratio, this value is written to the sequence header for
your bitstream and can be read later by an XIL-compliant MPEG-1
decompressor. The default value is implementation specific.

The valid values for COMPRESSOR_PEL_ASPECT_RATIO are contained in the
following enumeration.

The most important values in the enumeration are Ratio_1_0 ,
Ratio_0_9157 , and Ratio_1_0950 . The value Ratio_1_0 indicates that the
pictures in the sequence can be shown without distortion on a computer
monitor, which has square pixels. Ratio_0_9157 indicates that pictures can
be displayed without distortion on CCIR Rec. 601 625-line televisions. And
Ratio_1_0950 indicates that pictures can be displayed without distortion on
CCIR Rec. 601 525-line televisions.

typedef enum {
NullDefault,
Ratio_1_0, /* 1.0 */
Ratio_0_6735, /* 0.6735 */
Ratio_0_7031, /* 0.7031 */
Ratio_0_7615, /* 0.7615 */
Ratio_0_8055, /* 0.8055 */
Ratio_0_8437, /* 0.8437 */
Ratio_0_8935, /* 0.8935 */
Ratio_0_9157, /* 0.9157 */
Ratio_0_9815, /* 0.9815 */
Ratio_1_0255, /* 1.0255 */
Ratio_1_0695, /* 1.0695 */
Ratio_1_0950, /* 1.0950 */
Ratio_1_1575, /* 1.1575 */
Ratio_1_2015 /* 1.2015 */

} XilMpeg1PelAspectRatio;

MPEG-1 Codec 423

19

You can use the NullDefault value to reset the aspect ratio to its default
value.

The following code shows COMPRESSOR_PEL_ASPECT_RATIO being set to
Ratio_1_0 .

You can read the current value of this attribute using code similar to the
following.

If aspect_ratio equals NullDefault after this call, the aspect ratio for the
sequence is the default aspect ratio defined by the implementors of the
encoder.

COMPRESSOR_PICTURE_RATE(R/W)

You use the COMPRESSOR_PICTURE_RATE attribute to specify the picture rate
of the sequence being encoded in pictures per second. This value and the value
of COMPRESSOR_BITS_PER_SECOND enable the encoder to determine how
many bits it can use to encode each picture.

XilCis cis;
XilMpeg1PelAspectRatio aspect_ratio = Ratio_1_0;

xil_cis_set_attribute(cis, “COMPRESSOR_PEL_ASPECT_RATIO”,
(void *)aspect_ratio);

XilCis cis;
XilMpeg1PelAspectRatio aspect_ratio;

xil_cis_get_attribute(cis, “COMPRESSOR_PEL_ASPECT_RATIO”,
(void **)&aspect_ratio);

424 XIL Programmer’s Guide—August 1997

19

The valid values for COMPRESSOR_PICTURE_RATE are the following
enumeration constants. These constants correspond to the rates of commonly
available sources of analog and digital video.

The default value of this attribute is implementation specific. The following
code shows the value being set to Rate_29_97 .

You can read the current value of this attribute using code similar to the
following.

If picture_rate equals NullDefault after this call, the rate for the sequence
is the default rate defined by the implementors of the encoder.

typedef enum {
NullDefault,
Rate_23_976, /* 23.976 */
Rate_24, /* 24.0 */
Rate_25, /* 25.0 */
Rate_29_97, /* 29.97 */
Rate_30, /* 30.0 */
Rate_50, /* 50.0 */
Rate_59_94, /* 59.94 */
Rate_60 /* 60.0 */

} XilMpeg1PictureRate;

XilCis cis;
XilMpeg1PictureRate picture_rate = Rate_29_97;

xil_cis_set_attribute(cis, “COMPRESSOR_PICTURE_RATE”,
(void *)picture rate);

XilCis cis;
XilMpeg1PictureRate picture_rate;

xil_cis_get_attribute(cis, “COMPRESSOR_PICTURE_RATE”,
(void **)&picture_rate);

MPEG-1 Codec 425

19

COMPRESSOR_SLICES_PER_PICTURE(R/W)

The value of the COMPRESSOR_SLICES_PER_PICTURE attribute provides a
hint to the encoder concerning the number of slices into which it should divide
the next picture it compresses; however, an XIL-compliant encoder may ignore
this suggested value.

The valid values for this attribute range from 1 to the number of macroblocks
in the picture. (The default value of the attribute is implementation specific.)
Because slices are designed to aid in error recovery from bitstream errors, the
value you choose should be dictated by your assessment of the likelihood that
data will be corrupted. If bitstream errors are rare, one slice per picture may be
sufficient. On the other hand, if errors are common, one slice per row of
macroblocks may be needed. Don’t request more slices than you need because
there is a certain amount of overhead—for instance, a 40-bit slice
header—associated with each slice.

The following code shows COMPRESSOR_SLICES_PER_PICTURE being set to
13.

You can also read the value of this attribute. To do this, you might use the
following code.

If slices contains 0 after this call, the value of the attribute is set to an
implementation-specific default.

XilCis cis;
int slices = 13;

xil_cis_set_attribute(cis, “COMPRESSOR_SLICES_PER_PICTURE”,
(void *)slices);

XilCis cis;
int slices;

xil_cis_get_attribute(cis, “COMPRESSOR_SLICES_PER_PICTURE”,
(void **)&slices);

426 XIL Programmer’s Guide—August 1997

19

COMPRESSOR_TIME_CODE(R/W)

The COMPRESSOR_TIME_CODE attribute enables you to associate a time stamp
with the first picture in the next group of pictures that is encoded. This time
stamp contains the same information as an SMPTE time stamp.

Before actually setting the attribute, you must declare and assign values to the
members of a structure of type XilMpeg1TimeCode .

An application obtains the values for most of the members of this
structure—hours , minutes , seconds , and pictures —by reading a SMPTE
time code in the video being encoded. The hours member can have a value in
the range 0 to 23, and minutes and seconds can have values in the range 0 to
59. The pictures member, where a picture is a subdivision of a second, can
also have a value in the range 0 to 59.

The other member in the structure, drop_frame_flag , should be set to 0
unless the picture rate for the bitstream is 29.97. In this case, the flag can be set
to 0 or 1. A setting of 0 indicates that the bitstream is played back as if the
picture rate were 30 pictures per second. A setting of 1 indicates that a
play-back application should not count certain pictures so that movie time will
not get ahead of clock time. Specifically, the application should not count
pictures 0 and 1 at the beginning of each minute except minutes 0, 10, 20, 30,
40, and 50.

typedef struct {
Xil_boolean drop_frame_flag;
Xil_unsigned32 hours;
Xil_unsigned32 minutes;
Xil_unsigned32 seconds;
Xil_unsigned32 pictures;

} XilMpeg1TimeCode;

MPEG-1 Codec 427

19

The following code sets COMPRESSOR_TIME_CODE so that the time stamp
19:07:34:13 is associated with the next group of pictures encoded. The
drop-frame flag is set to 0.

To read the value of COMPRESSOR_TIME_CODE, you would use code similar to
this.

After this call, time_code points to a structure of type XilMpeg1TimeCode
that contains the current time-code information, or it is a null pointer,
indicating that COMPRESSOR_TIME_CODE has not been set. If the library
successfully creates a time-code structure, your application is responsible for
freeing the structure’s storage.

Decompression Attributes

Only one of the attributes discussed in this
section—DECOMPRESSOR_QUALITY—affects how the decoder works. The
remaining attributes simply return information from the bitstream being
decoded.

DECOMPRESSOR_QUALITY(R/W)

The value of the DECOMPRESSOR_QUALITY attribute provides a hint to the
decompressor concerning how it should handle the trade-off between the
quality of reconstructed pictures and the speed of decoding those pictures. An
XIL-compliant decoder need not act on this hint.

XilCis cis;
XilMpeg1TimeCode time_code = {0, 19, 7, 34, 13};

xil_cis_set_attribute(cis, “COMPRESSOR_TIME_CODE”,
(void *)&time_code);

XilCis cis;
XilMpeg1TimeCode *time_code;

xil_cis_get_attribute(cis, “COMPRESSOR_TIME_CODE”,
(void **)&time_code);

428 XIL Programmer’s Guide—August 1997

19

The valid values for this attribute are integers in the range 1 to 100. A value of
100 is a request that the decoder produce the highest quality pictures possible,
and a value of 1 is a request that the decompressor decode pictures as fast as
possible. By default, DECOMPRESSOR_QUALITY is set to 100.

The following code shows DECOMPRESSOR_QUALITY being set to 90. This
setting usually provides satisfactory quality and may result in a significant
increase in speed (compared to a setting of 100).

To read the value of this attribute, use code similar to this.

DECOMPRESSOR_BROKEN_LINK(R)

The DECOMPRESSOR_BROKEN_LINK attribute is a read-only attribute that
indicates whether B pictures at the beginning of the current group of pictures
(before any I pictures) can be decoded correctly. Generally, of course, these
pictures can be decoded correctly. However, it’s possible that during an editing
session, the preceding group of pictures—or maybe even just the last I or P
picture in that group—was removed. If that type of editing takes place and a B
picture at the beginning of the next group of pictures contains macroblocks
that were forward predicted or bidirectionally predicted, the decoder is not
able to decode the complete picture. In this case, a broken-link flag should
have been set in the group-of-pictures header at the time of the editing.

XilCis cis;
int quality = 90;

xil_cis_set_attribute(cis, “DECOMPRESSOR_QUALITY”,
(void *)quality);

XilCis cis;
int quality;

xil_cis_get_attribute(cis, “DECOMPRESSOR_QUALITY”,
(void **)&quality);

MPEG-1 Codec 429

19

To read the value of this attribute, you might use code similar to this.

If the broken-link flag for the group of pictures currently being decoded is set,
the value of broken_link is TRUE. In this case, any B pictures at the
beginning of the group cannot be decoded correctly. If the flag is not set, the
value is FALSE.

DECOMPRESSOR_CLOSED_GOP(R)

The DECOMPRESSOR_CLOSED_GOP attribute is a read-only attribute that
indicates whether the group of pictures currently being decoded is a closed
group or an open group. A closed group is one that begins with an I picture or
with one or more B pictures that can be decoded without reference to the last
picture in the preceding group. This type of group can be decoded
independently. An open group, on the other hand, begins with one or more B
pictures, at least one of which contains macroblocks that are forward or
bidirectionally predicted. Such a B picture cannot be decoded if the preceding
group of pictures is not available (for example, if it has been edited out of the
bitstream).

To read the value of this attribute, you might use code similar to this.

If the closed-group-of-pictures flag for the group is set, the value of
closed_gop is TRUE. In this case, any B pictures at the beginning of the group
can be decoded independently of the preceding group. If the flag is not set, the
value is FALSE.

XilCis cis;
Xil_boolean broken_link;

xil_cis_get_attribute(cis, “DECOMPRESSOR_BROKEN_LINK”,
(void **)&broken_link);

XilCis cis;
Xil_boolean closed_gop;

xil_cis_get_attribute(cis, “DECOMPRESSOR_CLOSED_GOP”,
(void **)&closed_gop);

430 XIL Programmer’s Guide—August 1997

19

DECOMPRESSOR_FRAME_TYPE(R)

The DECOMPRESSOR_FRAME_TYPE attribute is a read-only attribute whose
value describes the type of the last picture decoded. This type can be any one
of the types included in the following enumeration.

For a description of I, P, and B pictures, see “I Pictures and P Pictures” on
page 403 and “B Pictures” on page 403.

This code illustrates how you might read the value of
DECOMPRESSOR_FRAME_TYPE.

DECOMPRESSOR_PEL_ASPECT_RATIO_VALUE(R)

The DECOMPRESSOR_PEL_ASPECT_RATIO_VALUE attribute is a read-only
attribute whose value is the pixel aspect ratio stored in the sequence header for
the MPEG-1 sequence you’re decoding. This value, along with the width and
height of the pictures in the sequence, defines the shape of a decoded picture.

The value stored in this attribute will be one of the following constants:

• 0.6735
• 0.7031
• 0.7615
• 0.8055
• 0.8437
• 0.8935

typedef enum {
I, /* intraframe picture */
P, /* forward predicted picture */
B, /* bidirectionally predicted picture */
D /* DC picture */

} XilMpeg1FrameType;

XilCis cis;
XilMpeg1FrameType frame_type;

xil_cis_get_attribute(cis, “DECOMPRESSOR_FRAME_TYPE”,
(void **)&frame_type);

MPEG-1 Codec 431

19

• 0.9157
• 0.9815
• 1.0
• 1.0255
• 1.0695
• 1.0950
• 1.1575
• 1.2015

The key values in this list are 1.0, 0.9157, and 1.0950. A value of 1.0 indicates
that the pixels are square and that the pictures in the sequence are meant to be
displayed on computer monitors. The value 0.9157 means that decoded
pictures can be displayed without distortion on 625-line 50 Hz televisions, and
the value 1.0950 indicates that decoded pictures can be displayed without
distortion on 525-line 60 Hz televisions.

To read the value of this attribute, use code similar to this.

DECOMPRESSOR_PICTURE_RATE_VALUE(R)

The value of the DECOMPRESSOR_PICTURE_RATE_VALUE read-only attribute
is the picture-rate value from the sequence header of the MPEG-1 sequence
you’re decoding. This picture-rate value is the number of pictures that should
be decoded and displayed each second.

The value will be one of the following constants:

• 23.976
• 24.0
• 25.0
• 29.97
• 30.0
• 50.0
• 59.94

XilCis cis;
float aspect_ratio;

xil_cis_get_attribute(cis,
“DECOMPRESSOR_PEL_ASPECT_RATIO_VALUE”,
(void **)&aspect_ratio);

432 XIL Programmer’s Guide—August 1997

19

• 60.0

You can use code similar to this to read the value of this attribute.

DECOMPRESSOR_TEMPORAL_REFERENCE(R)

Because the pictures in a group of pictures may need to be decoded in one
order and displayed in another order, each picture contains a
temporal-reference value. This value indicates a picture’s place in the display
order for the group. Picture 0 is meant to be displayed first, picture 1 to be
displayed second, and so on. The maximum value the temporal-reference field
can accommodate is 1023; therefore, if a group of pictures contains more than
1024 pictures, the counter is reset to 0 for picture 1025 (or more generally, for
picture (1024 * n) + 1).

The DECOMPRESSOR_TEMPORAL_REFERENCE attribute contains the
temporal-reference value for the most recently decompressed picture. To read
the value of this attribute, you might use the code below.

Note – In a legal MPEG-1 bitstream, the temporal reference values for the
pictures in a group must be consecutive values (except in the case where the
counter resets). However, it is not uncommon for bitstreams that have been
edited to violate this requirement. That is, if the pictures with
temporal-reference values between 12 and 24 have been cut from a group, you
may find that the picture with a temporal reference of 11 is followed by one
with a temporal reference of 25.

XilCis cis;
float picture_rate;

xil_cis_get_attribute(cis, “DECOMPRESSOR_PICTURE_RATE_VALUE”,
(void **)&picture_rate);

XilCis cis;
int temporal_reference;

xil_cis_get_attribute(cis, “DECOMPRESSOR_TEMPORAL_REFERENCE”,
(void **)&temporal_reference);

MPEG-1 Codec 433

19

DECOMPRESSOR_TIME_CODE(R)

One field in a group-of-pictures header is a SMPTE time code. This time code
is associated with the first picture (in display order) in the group. When you
read the DECOMPRESSOR_TIME_CODE attribute, the decoder places information
about this time code for the current group of pictures in a structure of type
XilMpeg1TimeCode .

The hours member has a value in the range 0 to 23; minutes , seconds , and
pictures have values in the range 0 to 59.

You can read the value of this attribute using code similar to this.

Your application is responsible for freeing the storage the library allocates to
hold the time-code structure.

MPEG-1 Molecules
The XIL library includes a series of molecules that accelerate the playback of
MPEG-1 bitstreams. These molecules are optimized routines that perform the
jobs of two or more functions from the XIL API. You do not call such an
optimized routine directly; rather, the library calls a molecule when your
program calls a predefined sequence of XIL functions, sometimes with specific
arguments.

typedef struct {
Xil_boolean drop_frame_flag;
Xil_unsigned32 hours;
Xil_unsigned32 minutes;
Xil_unsigned32 seconds;
Xil_unsigned32 pictures;

} XilMpeg1TimeCode;

XilCis cis;
XilMpeg1TimeCode *time_code;

xil_cis_get_attribute(cis, “DECOMPRESSOR_TIME_CODE”,
(void **)&time_code);

434 XIL Programmer’s Guide—August 1997

19

For example, if your program calls xil_decompress() to decode an image
stored in an MPEG-1 CIS and then calls xil_ordered_dither() to dither
the decoded image from a 24- to an 8-bit image, the library might not call these
two functions. Instead, it might call a molecule that performs the
decompression and the dithering in an optimized way.

For further information on accelerating the playback of MPEG-1 bitstreams, see
Chapter 23, “Acceleration in XIL Programs.” For information about the MPEG-
1 molecules that are available and information about how to call those
molecules, see “XIL Molecules” on page 477.

435

CCITT Group 3 and Group 4 Codecs 20

The CCITT Group 3 and Group 4 compression methods were developed by the
International Telegraph and Telephone Consultative Committee for the
compression of bi-tonal document images. Like continuous-tone still images,
document images can be stored and transmitted much more inexpensively if
they are compressed. Originally, the CCITT’s compression techniques were
adopted by the developers of facsimile equipment. Today, however, the
techniques are also used heavily by the makers of general document storage
and retrieval systems.

This chapter has the following main sections:

How CCITT Group 3 and Group 4 Codecs Work
The Group 3 and Group 4 codecs take advantage of a couple of important
characteristics of document images. One of these characteristics is that
document images tend to consist of small amounts of black (letters or lines) on
a white background. Thus, on a given scanline, there are likely to be long
stretches of white pixels interrupted by shorter runs of black pixels.

This characteristic has led to the use of run-length encoding in the CCITT
compressors. This coding method involves translating information about runs
of white and black pixels (within a scanline) into code words stored in a

How CCITT Group 3 and Group 4 Codecs Work page 435

CCITT Group 3 and Group 4 Decompressor Attributes page 436

436 XIL Programmer’s Guide—August 1997

20

Huffman table. Run lengths that occur commonly are represented by short
code words, and run lengths that occur infrequently are represented by longer
code words.

This type of encoding generally produces quite a bit of compression. For
instance, a run of 1024 white pixels (128 bytes) might be represented by a code
word of 9 bits. This translation results in a compression ratio of about 114:1.
However, the compression ratio achievable with run-length encoding is highly
dependent on the image being compressed. For example, a noisy image might
contain many short runs whose code words contain more bits than the runs
themselves.

On standard text, the XIL library’s Group 3 compressor achieves a compression
ratio of about 5:1, and the library’s Group 4 compressor achieves a ratio of
about 10:1.

A second characteristic of document images is that the position of a transition
from a black pixel to a white pixel (or vice versa) on one scanline is usually not
more than a few pixels away from a corresponding transition on the preceding
scanline. This characteristic is sometimes called vertical coherence. Because
document images have this characteristic, once one scanline has been encoded,
subsequent lines can be encoded by specifying the position of a black-to-white
transition relative to the same transition on the preceding line, or relative to the
last transition on the same line.

The XIL library’s CCITT Group 3 compressor uses the run-length encoding
method described above, and the Group 4 compressor relies almost entirely on
the two-dimensional technique.

CCITT Group 3 and Group 4 Decompressor Attributes
Although other compression standards include size information (the image
width, height, and number of bands) within the data bitstream, the fax
standards do not. Thus, before you can decompress a fax CIS, you must set the
decompressor attributes for the width, height, and number of bands. These
attributes are discussed separately in the following sections. The attributes are
identified as read-only (R), write-only (W), or read/write (RW).

CCITT Group 3 and Group 4 Codecs 437

20

WIDTH (W)

If you have put compressed data into your CIS using xil_cis_put_bits()
or xil_cis_put_bits_ptr() , you must set the value of the WIDTH attribute
to the width in pixels of the images to be decompressed. If you do not set it, its
value is 0, and an error occurs when you call xil_decompress() .

The legal values for this attribute are integers in the range 0 to 32,767. This
code fragment shows the WIDTH attribute being set to 1728.

HEIGHT (W)

If you have put compressed data into your CIS using xil_cis_put_bits()
or xil_cis_put_bits_ptr() , you must set the value of this attribute to the
height in pixels of the images to be decompressed. If you do not set it, its value
is 0, and an error occurs when you call xil_decompress() .

The legal values for this attribute are integers in the range 0 to 32,767. This
code fragment shows the HEIGHT attribute being set to 2156.

BANDS(W)

If you have put compressed data into your CIS using xil_cis_put_bits()
or xil_cis_put_bits_ptr() , you must set the value of this attribute to the
number of bands in the images to be decompressed. If you do not set it, its
value is 0, and an error occurs when you call xil_decompress() .

XilCis cis;
int width = 1728;

xil_cis_set_attribute(cis, “WIDTH”, (void *)width);

XilCis cis;
int height = 2156;

xil_cis_set_attribute(cis, “HEIGHT”, (void *)height);

438 XIL Programmer’s Guide—August 1997

20

The legal values for this attribute are integers in the range 0 to 32,767. This
code fragment shows the BANDS attribute being set to 1.

XilCis cis;
int bands = 1;

xil_cis_set_attribute(cis, “BANDS”, (void *)bands);

439

Cell Codec 21

The Cell image compression technology, which was developed by Sun, has
been optimized for the rapid decompression and display of images on simple
hardware. Therefore, Cell compression achieves reasonable display quality on
indexed-color frame buffers. The initial focus of the Cell technology is on Sun-
to-Sun communications, where the benefits of fast decoding outweigh the
benefits of standards. Other possible areas of application include media
distributions on CD-ROM and multimedia mail applications.

Note – To see the quality of an image that has been compressed and
decompressed using the Cell compressor, see Color Plate 4.

This chapter has the following main sections:

How the Cell Codec Works (and the type of applications it was
designed for)

page 440

Creating a Cell CIS page 443

Cell Codec Attributes page 444

Cell Molecules (playback routines that you may be able to take
advantage of when you’re playing back movies)

page 455

440 XIL Programmer’s Guide—August 1997

21

How the Cell Codec Works
The Cell encoding process transforms individual video frames into a
bytestream that is displayable with the Cell decompressor. Normally, the
encoder works with RGB images; however, it can also handle XIL images
whose color-space attribute is set to ycc601 or ycc709 . The decompressor
always produces RGB images.

In the first step of the encoding process, video images are analyzed to produce
an appropriate colormap to represent the frames to be encoded (unless the
programmer has already specified one). This step allows the specification of
the colormap size in order to leave colors unused. This strategy enhances
cooperation with the window manager and other applications. Cell also
provides for Adaptive Colormap Selection (ACS), in which a new colormap is
generated when the current colormap becomes unsuitable. This colormap can
be used in subsequent frames.

Cell Codec 441

21

Given the images and the colormap, the second step is to encode the individual
frames into a Cell bytestream. The basic coding scheme used in Cell encoding
is based on an image coding method called Block Truncation Coding (BTC). A
4-by-4 region of pixels (a cell) from an image is represented by 2 colors and a
16-bit mask; see Figure 21-1.

Figure 21-1 Cell Compression

The mask indicates which color to place at each of the pixel positions. The
mask and colors may be chosen to maintain certain statistics of the cell, or they
may be chosen to reduce contouring in a manner similar to ordered dithering.

The primary advantage of this coding method lies in the similarity of the
decoding process to the operation of character fonting. The character display
process for a color frame buffer takes as input a foreground color, a

Color 0: 8-bit index into colormap

Color 1: 8-bit index into colormap

16-bit mask: Each bit represents a pixel in the 4-by-4 block. Each bit value
determines whether a pixel will be represented by color 0 or color 1.

4-by-4 block (cell) of
pixels from a 24-bit
image

384 bits compressed to
32 bits (2 bits per pixel)

8 bits

442 XIL Programmer’s Guide—August 1997

21

background color, and a mask that specifies which color to use at each pixel.
Because this function is so important to the window system, it is often
implemented as a display primitive in graphics accelerators. The Cell
compression technique uses this existing capability to provide full-motion
video decoding with no special hardware or modifications to the window
system.

There are actually two different encoding methods used to generate the
encoded bytestream. The BTC encoding method, chooses a 4-by-4 binary pixel
mask and two colors (a foreground and a background color), while attempting
to maintain the mean and variance of the luminance within the block. The
Dither method determines the pair of colors from the colormap that produce
the least error when dithered over the 4-by-4 region. The BTC method is fastest
and usually produces good results; the Dither method is slower, but is less
likely to produce noticeable contours in regions of slow color variation.

Finally, encoded frames are combined into a frame sequence in the interframe
compression step, where the compression ratio can be increased by anywhere
from a factor of two to a factor of five. The colors and mask in each cell are
compared to those used in the previous frames of the movie. If the colors and
mask match to within a certain tolerance, a special skip code is generated.
Runs of skip codes are combined to further reduce the bytestream. If either a
single color changes or the mask changes, special escape codes are sent to
update the changed data. Changes in the colormap are also detected by the
interframe encoder, which causes special codes to be inserted into the stream to
update the colormap.

Note – Details about the makeup of a Cell bytestream can be found in
Appendix D, “Cell and CellB Bytestream Definitions.”

Choosing a Colormap

The compressor chooses which colormap to use to encode the current image in
one of three ways. If ACS is enabled and a new colormap has not been
associated with the compressor since the last call to xil_compress() , the
compressor uses a colormap adapted to the current frame. When ACS is
disabled, the compressor uses the colormap associated with the
COMPRESSOR_COLORMAP attribute, if that attribute has been set. If ACS is
disabled and the COMPRESSOR_COLORMAP attribute has not been set, the
compressor calls xil_choose_colormap() to generate an optimal colormap

Cell Codec 443

21

for the image. When this optimal colormap is created, it is associated with the
COMPRESSOR_COLORMAP attribute and will be used to encode subsequent
frames.

Cell Compression Ratios

The basic Cell compression technique achieves a compression ratio of 2 bits per
pixel. Additional encodings further reduce the data required per pixel. First,
the compressor can use code words to specify a run of constant intensity cells.
This type of coding is very effective in synthetic imagery, often leading to rates
of less than 1 bit per pixel. The decompressor can also optimize the
decompression of these constant colored cells by using rectangle-fill hardware.
A second coding technique involves the introduction of frame-to-frame
coherence (interframe coding), by instructing the decoder to skip over cells that
are identical to those in the previous frame. These skip codes are implemented
by simply updating the current writing position to skip over the number of
cells specified.

The combination of the basic Cell encoding with run codes and skip codes can
lead to compression ratios of about 0.5 bits per pixel.

Image Types

The Cell compressor is designed to work with 3-band RGB and YCbCr images.
The width and height of these images must be divisible by four. The Cell
decompressor always produces RGB images.

Creating a Cell CIS
Before you can use the Cell codec to compress images or decompress a Cell
bytestream, you must create a Cell CIS. You do this by passing the compressor
name Cell to the xil_cis_create() function as shown in this code
fragment.

XilCis cis;
XilSystemState state;

cis = xil_cis_create(state, “Cell”);

444 XIL Programmer’s Guide—August 1997

21

Cell Codec Attributes
As discussed in “General CIS Attributes” on page 303, there is a class of
attributes that can be set for any CIS. There is also a set of attributes that are
valid only for CISs attached to a Cell codec. You set compressor-specific
attributes using the xil_cis_set_attribute() function, and you read
compressor-specific attributes using the xil_cis_get_attribute()
function.

Attributes are identified as read-only (R), write-only (W), or read/write (R/W).
The example, or examples, that conclude the discussion of each attribute
indicate how the attribute can be used.

The Cell attributes can be broadly grouped into those that affect compression
and those that affect decompression. The attributes are discussed under these
headings.

Compression Attributes

Setting any of the following attributes affects how the Cell compressor
compresses images.

BITS_PER_SECOND(R/W)

The BITS_PER_SECOND attribute controls the size of the bytestream the Cell
compressor produces. You specify the maximum number of bits the
compressor can use to encode one second’s worth of video, and the compressor
guarantees that it will meet this bit-rate requirement on a frame-group basis
(where a frame group is a key frame and all the ensuing frames up to the next
key frame). That is, if every sixth frame is a key frame and your video was
captured at 30 frames per second, the compressor encodes each frame group in
a maximum of BITS_PER_SECOND divided by 5.

Note – You use the COMPRESSOR_FRAME_RATE attribute to indicate the rate at
which your images were captured.

Setting BITS_PER_SECOND to 0, the default value, disables bit-rate control. In
addition, if you set BITS_PER_SECOND to a rate lower than the compressor can
achieve, an error is generated, and bit-rate control is disabled.

Cell Codec 445

21

This code shows the bit-rate being set to 1152000 bits per second. This is the
rate necessary to encode 30 320-by-240 frames at half a bit per pixel.

The code below reads the value of the BITS_PER_SECOND attribute.

COLORMAP_ADAPTION(R/W)

The value of the COLORMAP_ADAPTION attribute determines whether the Cell
compressor’s ACS feature is enabled. When enabled, ACS looks at the colors in
the current image to generate a colormap for the next image to be compressed.
Thus, each frame in a movie can have its own colormap.

The possible values for this attribute are TRUE and FALSE, which are values of
type Xil_boolean . A setting of TRUE, the default value, enables ACS, and
FALSE disables it.

This code shows the COLORMAP_ADAPTION attribute being set to FALSE.

XilCis cis;
int bit_rate;

bit_rate = 1152000;
xil_cis_set_attribute(cis, “BITS_PER_SECOND”,
 (void *)bit_rate);

XilCis cis;
int bit_rate;

xil_cis_get_attribute(cis, “BITS_PER_SECOND”,
 (void **)&bit_rate);

XilCis cis;

xil_cis_set_attribute(cis, “COLORMAP_ADAPTION”, (void *)FALSE);

446 XIL Programmer’s Guide—August 1997

21

The code below reads the value of the attribute.

COMPRESSOR_COLORMAP(W)

The COMPRESSOR_COLORMAP attribute specifies the colormap the Cell
compressor should use as it encodes images. To set this attribute, you pass an
XIL lookup table (a data structure of type XilLookup) that contains 8-bit
indexes on the input side and 24-bit RGB values on the output side to
xil_cis_set_attribute() . The default value of this attribute is NULL.

This code shows the attribute being set.

COMPRESSOR_FRAME_RATE (R/W)

Use the COMPRESSOR_FRAME_RATE attribute to let the compressor know the
rate at which the images to be compressed were captured. Express this rate in
microseconds per frame (a microsecond is one millionth of a second). The
default value is 33333, which indicates that the frames were captured at 30
frames per second.

The frame rate you supply, or the default frame rate, is encoded in the Cell
bytestream. When you play your movie back, you can read the value of the
DECOMPRESSOR_FRAME_RATE attribute to determine the rate at which frames
should be decompressed.

Xil_boolean acs_enabled;

xil_cis_get_attribute(cis, “COLORMAP_ADAPTION”,
 (void **)&acs_enabled);

XilCis cis;
XilLookup colormap;

xil_cis_set_attribute(cis, “COMPRESSOR_COLORMAP”,
 (void *)colormap);

Cell Codec 447

21

This code fragment shows the frame rate being set to 66666 microseconds per
frame (15 frames per second).

COMPRESSOR_MAX_CMAP_SIZE (R/W)

The COMPRESSOR_MAX_CMAP_SIZE attribute is an integer that defines the
maximum number of entries in the colormap, or colormaps, encoded in the
Cell bytestream. If ACS is enabled, this attribute limits the size of the
colormaps produced by the compressor. If ACS is disabled, the attribute limits
the size of the colormap you can pass to the compressor using the
COMPRESSOR_COLORMAP attribute. If you pass a colormap with more than the
maximum number of entries, the colormap is truncated.

When you first create a Cell CIS, the COMPRESSOR_MAX_CMAP_SIZE attribute
is set to -1, which indicates that the attribute is settable at this point. To set the
attribute to a value other than 256, you must set it prior to your application’s
first call to xil_compress() . If you have not set the attribute by that point, it
defaults to 256. Also, note that the colormap size can only be set once during
the life of a CIS.

Note – When decompressing a Cell bytestream, you can determine the
maximum colormap size by reading the CIS attribute
DECOMPRESSOR_MAX_CMAP_SIZE. Knowing this maximum enables you to
allocate the appropriate number of X colorcells to hold the colormap.

This code shows the COMPRESSOR_MAX_CMAP_SIZE attribute being set to 240.

XilCis cis;
Xil_unsigned32 microseconds;

microseconds = 66666;
xil_cis_set_attribute(cis, “COMPRESSOR_FRAME_RATE”,
 (void *)microseconds);

XilCis cis;
int cmap_size = 240;

xil_cis_set_attribute(cis, “COMPRESSOR_MAX_CMAP_SIZE”,
 (void *)cmap_size);

448 XIL Programmer’s Guide—August 1997

21

The code below reads the value of the attribute.

COMPRESSOR_USER_DATA(W)

This attribute writes user data to a Cell bytestream. This user data can be
anything you choose as long as it does not exceed 8 Kbytes. It can be an XGL
rendering or an executable. The attribute’s main purpose, however, is to enable
you to store audio data in the bytestream.

Before setting this attribute, you must assign values to the members of a
structure of type XilCellUserData . The definition of this structure is shown
here.

The data member is a pointer to the user data, and the length member
specifies the length of the data in bytes.

Once you’ve set up this structure, you can set the attribute using code similar
to this fragment.

After you set the attribute, the next time your application calls
xil_compress() , the Cell compressor:

XilCis cis;
int cmap_size;

xil_cis_get_attribute(cis, “COMPRESSOR_MAX_CMAP_SIZE”,
 (void **)&cmap_size);

typedef struct {
 Xil_unsigned8 *data;
 Xil_unsigned32 length;
} XilCellUserData;

XilCis cis;
XilCellUserData user_data;

xil_cis_set_attribute(cis, “COMPRESSOR_USER_DATA”,
 (void *)&user_data);

Cell Codec 449

21

• Writes the user data to the bytestream just before the compressed image
data.

• Clears the setting of the attribute.

Thus, each time you set COMPRESSOR_USER_DATA, the compressor writes data
to the bytestream only once.

To read user data from a Cell bytestream, you must read the
DECOMPRESSOR_USER_DATA attribute.

ENCODING_TYPE (R/W)

The ENCODING_TYPE attribute indicates whether a Cell compressor uses the
BTC or the Dither method. BTC chooses a 4-by-4 binary pixel mask and two
colors (a foreground and a background color), while attempting to maintain
the mean and variance of the luminance within the block. The Dither technique
determines the pair of colors from the colormap that produce the least error
when dithered over the 4-by-4 region. The BTC method is fastest, and usually
produces good results; the Dither method is slower, but is less likely to
produce noticeable contours in regions of slow color variation.

The value of the attribute can be either of the enumeration constants shown
here. The default value is BTC.

The following call shows the ENCODING_TYPE attribute being set to DITHER.

typedef enum {
 BTC, DITHER
} XilCellEncodingType;

XilCis cis;

xil_cis_set_attribute(cis, “ENCODING_TYPE”, (void *)DITHER);

450 XIL Programmer’s Guide—August 1997

21

This code shows the attribute being read.

KEYFRAME_INTERVAL (R/W)

A key frame in a Cell bytestream is one that contains a bytestream information
header and a colormap and uses no interframe escape codes. The
KEYFRAME_INTERVAL attribute is an integer (type int) that specifies how
frequently the compressor should encode key frames in the bytestream. That is,
if the value of the attribute is 6, every sixth frame will be a key frame. The
default value of the attribute is 6.

If you set the KEYFRAME_INTERVAL attribute to 0, no key frames are encoded
in the resulting Cell bytestream. In this case, bit-rate control is disabled. (For
further information about bit-rate control, see “BITS_PER_SECOND (R/W)” on
page 444.)

This code shows KEYFRAME_INTERVAL being set to 10.

The code below reads the value of the KEYFRAME_INTERVAL attribute.

XilCis cis;
XilCellEncodingType encode_type;

xil_cis_get_attribute(cis, “ENCODING_TYPE”,
 (void **)&encode_type);

XilCis cis;
int key_frame = 10;

xil_cis_set_attribute(cis, “KEYFRAME_INTERVAL”,
 (void *)key_frame);

XilCis cis;
int key_frame;

xil_cis_get_attribute(cis, “KEYFRAME_INTERVAL”,
 (void **)&key_frame);

Cell Codec 451

21

TEMPORAL_FILTERING (R/W)

This attribute turns on or off a form of temporal filtering. When this filtering is
turned on, the compressor does not encode a new value for a pixel in frame n
if the value of that pixel is within a certain tolerance of the same pixel in frame
n - 1. Having the filter on generally reduces noise in an image sequence and
also significantly reduces the size of the bytestream the compressor produces.
The primary reason to turn the filter off would be to eliminate ghosting
artifacts.

By default, the attribute is set to TRUE.

This code shows TEMPORAL_FILTERING being set to FALSE.

This code reads the value of the TEMPORAL_FILTERING attribute.

Decompression Attributes

Setting any of the following attributes affects the operation of the Cell
decompressor.

DECOMPRESSOR_COLORMAP (R/W)

When playing a Cell movie by decompressing frames and then using
xil_nearest_color() to convert the resulting RGB images to 8-bit images,
you must set this attribute if you want your playback code to be accelerated.
The attribute specifies the XIL lookup table that xil_nearest_color()

XilCis cis;

xil_cis_set_attribute(cis, “TEMPORAL_FILTERING”, (void *)FALSE);

XilCis cis;
Xil_boolean status;

xil_cis_get_attribute(cis, “TEMPORAL_FILTERING”,
 (void **)&status);

452 XIL Programmer’s Guide—August 1997

21

should use when doing its 24-bit to 8-bit conversion. Of course, your
application also needs to write the values stored in this lookup table to the X
colormap your application is using.

As the Cell decompressor decompresses frames, it may change the values in
the lookup table. (By default, the lookup table is read-only, but you can make it
writable by setting the RDWR_INDICES attribute, which is discussed in
“RDWR_INDICES (W)” on page 454.) Therefore, your application may need to
call the xil_lookup_get_version() function to check the version number
of the lookup table after each call to xil_decompress() . A change in version
number means that the values in the lookup table have changed. If the values
have changed, your application must ensure that corresponding changes are
made in its X colormap before displaying the most recently decompressed
frame.

Note – “Playing Cell Movies” on page 338 discusses an example program that
sets this attribute and checks the version number of the lookup table.

You can also read the value of the DECOMPRESSOR_COLORMAP attribute. If it
has been set, you get back a handle to an XIL lookup table (the decompressor’s
colormap). If it has not been set, xil_cis_get_attribute() returns NULL.

This code fragment shows DECOMPRESSOR_COLORMAP being set.

This code reads the value of the attribute.

XilCis cis;
XilLookup colormap;

xil_cis_set_attribute(cis, “DECOMPRESSOR_COLORMAP”,
 (void *)colormap);

XilCis cis;
XilLookup colormap;

xil_cis_get_attribute(cis, “DECOMPRESSOR_COLORMAP”,
 (void **)&colormap);

Cell Codec 453

21

DECOMPRESSOR_FRAME_RATE (R)

If the COMPRESSOR_FRAME_RATE attribute was set when the Cell compressor
encoded your movie, you can use the DECOMPRESSOR_FRAME_RATE attribute
to determine the rate, in microseconds per frame, at which the frames in the
movie were captured. The attribute may contain different values at different
points in the Cell bytestream.

If the COMPRESSOR_FRAME_RATE attribute was not set when the Cell
compressor encoded your movie, the DECOMPRESSOR_FRAME_RATE attribute
contains the default value 33333 (30 frames per second).

This code fragment shows the DECOMPRESSOR_FRAME_RATE attribute being
read.

DECOMPRESSOR_MAX_CMAP_SIZE (R)

This is a read-only attribute that indicates the size of the colormap you should
use when playing back your Cell movie. It’s important to use the smallest
colormap possible because your application must create an X colormap that is
the same size as the decompressor’s XIL colormap. If the X colormap is too
large, colormap flashing may occur when it is installed.

Information about a movie’s maximum colormap size is encoded in the Cell
bytestream that represents the movie. Therefore, it is an error to read this
attribute of an empty CIS.

This code shows the DECOMPRESSOR_MAX_CMAP_SIZE attribute being read.

XilCis cis;
Xil_unsigned32 frame_rate;

xil_cis_get_attribute(cis, “DECOMPRESSOR_FRAME_RATE”,
 (void **)&frame_rate);

XilCis cis;
int cmapsize;

xil_cis_get_attribute(cis, “DECOMPRESSOR_MAX_CMAP_SIZE”,
 (void **)&cmapsize);

454 XIL Programmer’s Guide—August 1997

21

DECOMPRESSOR_USER_DATA (R)

This attribute holds a pointer to any user data that was encoded with the most
recently decompressed image. To get this pointer, you might use code similar
to this.

If user data was encoded with the last image that was decompressed,
user_data.data is a pointer to that data, and user_data.length is the
length of the data in bytes. If no user data was encoded with that image,
user_data.data is NULL, and user_data.length is 0.

Any data pointer you get by using this attribute is only valid until the next call
to xil_decompress() so you need to copy it if it must be retained for a
longer time.

RDWR_INDICES (W)

If your Cell movie-playback application uses the xil_nearest_color()
function to convert 24-bit RGB images to 8-bit pseudocolor images,
xil_nearest_color() uses the decompressor’s colormap (XIL lookup table)
to perform this conversion. For your application to display images using the
best colors possible, the Cell decompressor must be able to alter the color
values in this lookup table as the colors in the frames it is decompressing
change. By default, however, the colormap is read only.

The RDWR_INDICES attribute enables you to make the colormap writable for a
subset of its entries. Before you actually set the attribute, you must set up a
structure of type XilIndexList . The definition of this structure is shown
here.

XilCis cis;
XilCellUserData user_data;

xil_cis_get_attribute(cis, “DECOMPRESSOR_USER_DATA”,
 (void **)&user_data);

typedef struct {
 Xil_unsigned32 *pixels;
 Xil_unsigned16 ncolors;
} XilIndexList;

Cell Codec 455

21

You set the ncolors member of the structure to indicate how many of the
elements in the colormap are being made writable. The pixels array lists the
pixel values in the colormap whose RGB values the decompressor may change.

Note – If you allow the decompressor to alter the contents of its colormap, you
must check the version number of the colormap after each call to
xil_decompress() . You check this version number using the
xil_lookup_get_version() function. If the version number has
changed—that is, the contents of the colormap have changed—you must make
corresponding changes in your application’s X colormap before displaying the
most recently decompressed frame.

Calls to RDWR_INDICES are not cumulative. Only the RGB values associated
with the pixel values specified in your most recent setting of the attribute are
writable.

The following code fragment shows the RDWR_INDICES attribute being set.

To see how the structure indexes might be filled out, see the
xilcis_color.c function in the
/usr/openwin/demo/xil/movie_player_example directory.

Cell Molecules
The XIL library includes a series of molecules that accelerate the playback of
Cell movies. These molecules are optimized functions that perform the jobs of
two or more functions from the XIL API. You do not call such an optimized
function directly; rather, the library calls a molecule when your program calls a
predefined sequence of XIL functions, sometimes with specific arguments.
(These sequences of functions are discussed later in this section.)

XilCis cis;
XilIndexList indexes;

xil_cis_set_attribute(cis, “RDWR_INDICES”, (void *)&indexes);

456 XIL Programmer’s Guide—August 1997

21

For example, if your program calls xil_decompress() to decode an image
stored in a Cell CIS and then calls xil_nearest_color() to convert the
decoded image from a 24- to an 8-bit image, the library may not call these two
functions. Instead, it may call a molecule that performs the decompression and
the conversion in an optimized way.

Note – This replacement of two or more atomic functions by a molecule is made
possible by the XIL library’s deferred-execution scheme, discussed in
Chapter 23, “Acceleration in XIL Programs.” This chapter also contains a more
detailed definition of molecules than the one presented here and explains how
to determine whether a molecule you want to call is actually being executed.

The library’s Cell-decompression molecules enable you to accelerate the
playback of a Cell bytestream on:

• A one-bit destination image
• A display image associated with a GX frame buffer (available only on local

GX frame buffer screens)
• An 8-bit destination image other than a GX display image

The procedures you follow to call these molecules are documented later in this
chapter, see “Calling Cell Molecules” on page 457. Before moving on to that
subject, however, this chapter lists some general rules you must follow to
execute any decompression molecule.

Rules for Calling Decompression Molecules

This section goes over the global rules for calling decompression molecules.

• As mentioned earlier, you must call a predefined sequence of XIL functions,
sometimes with specific arguments. This sequence is replaced by the
molecule.

Note – The calls to the functions in the sequence do not have to be consecutive
statements in your program. For instance, notice how the example shown in
“Other 8-Bit Destination Images” on page 461,” calls one function in the
sequence, xil_decompress() , and then immediately calls an XIL function
that is not part of the sequence and checks that function’s return value.
Depending on this return value, the example may then call a function that
loads an X colormap before it gets around to calling the second function in the

Cell Codec 457

21

sequence. The key here is that between calls to the functions in the sequence,
the program cannot call any XIL functions whose execution the library defers.
For more information about the XIL library’s deferred-execution scheme, see
“What Is Deferred Execution?” on page 473.

• The images being decompressed and the molecule’s destination image must
have the same width and height, except when the molecule performs a
scaling operation. In that case, the destination image must have the same
dimensions as the scaled version of the source image.

• The destination image must not have a region of interest. The destination
will not have a region of interest unless you have explicitly set its region-of-
interest attribute.

• The destination image must have an origin of 0.0, 0.0. This is the destination
image’s default origin.

• If a molecule uses an intermediate image, it too must have an origin of 0.0,
0.0 and no region of interest.

If any of these conditions is not met, the XIL functions in your playback code
are executed individually, and are not replaced by a molecule. This has a
significant impact on the speed at which your movie is played.

Calling Cell Molecules

Cell decompression molecules have been implemented for applications that
play back movies using 1- and 8-bit destination images (usually display
images). These molecules and the series of XIL functions you must call for
these molecules to be executed are discussed below.

One-Bit Destination Image

One molecule has been defined for playing back Cell movies using a 1-bit
destination image. This molecule is appropriate for playing movies on
monochrome displays.

The molecule performs several tasks:

• Decompresses an image

• Converts the RGB image to a 1-band image by extracting the luminance of
the RGB image

458 XIL Programmer’s Guide—August 1997

21

• Rescales the values in the 8-bit grayscale image so that they fall in the range
0 to 255

• Optionally zooms the 8-bit image by a factor of 2 in both the x and y
dimensions

• Performs an ordered dither on the 8-bit image to produce a 1-bit image

Cell Codec 459

21

For this molecule to be called, your application must include code similar to
this.

XilColorspace rgblinear, ylinear;
float scale[1], offset[1];
XilLookup colorcube;
int mult[1] = {-1};
unsigned short dims[1] = 2;
XilDitherMask dmask;

rgblinear = xil_colorspace_get_by_name(state, “rgblinear”);
ylinear = xil_colorspace_get_by_name(state, “ylinear”);
xil_set_colorspace(imageRGB_24, rgblinear);
xil_set_colorspace(imageY_8, ylinear);
scale[0] = 255.0 / (235.0 - 16.0);
offset[0] = -16.0 * scale[0];

/* Basically, the colorcube to be used for the ordered dither
 must be defined as shown here. The molecule will still
 execute if mult[0] is 1 instead of -1; however,
 this change will cause images to be
 displayed in reverse video. */

colorcube = xil_colorcube_create(state, XIL_BIT, XIL_BYTE, 1, 0,
 mult, dims);

/* The dither mask to be used in the ordered dither must be an
 8-by-8 mask. You can change the values in the mask if you
 want to. */
dmask = xil_dithermask_get_by_name(state, “dm881”);

/* MOLECULE STARTS HERE */
xil_decompress(cis, imageRGB_24);
xil_color_convert(imageRGB_24, imageY_8);
xil_rescale(imageY_8, imageY_8, scale, offset);
if (ZOOM) {
 xil_scale(imageY_8, zoom_imageY_8, “nearest” , 2.0 , 2.0);
 xil_ordered_dither(zoom_imageY_8, zoom_image_1, colorcube,
 dmask);
}
else
 xil_ordered_dither(imageY_8, image_1, colorcube, dmask);
/* MOLECULE ENDS HERE */

460 XIL Programmer’s Guide—August 1997

21

Note – In the code above, some arguments are shown in boldface. These
arguments must be typed as shown (using the exact characters, but without the
boldface attribute) for the molecule to execute correctly.

SPARC: Eight-Bit Display Image (GX)

Another molecule has been defined specifically for playing back Cell movies
on local GX frame-buffer screens. This molecule performs these tasks:

• Decompresses an image

• Converts the RGB image to an 8-bit image by finding the closest match for
the RGB values in the source image in a lookup table

• Optionally zooms the 8-bit image by a factor of 2 in both the x and y
dimensions

Note – Several of the molecule rules presented in “Rules for Calling
Decompression Molecules” on page 456 do not apply to the version of this
molecule that does not perform the zooming operation. If no zooming is
requested, the destination image for the molecule does not need to be the same
size as the images stored in the Cell CIS. In addition, the destination image can
have a region of interest and an origin other than 0.0, 0.0.

Cell Codec 461

21

For this molecule to be called, your application must use this code.

Other 8-Bit Destination Images

If you want to play back your Cell movie using an 8-bit destination image
other than a local GX display image, you can use one of three molecules. The
first two molecules use a nearest-color strategy to convert images from 24 bits

XilLookup cmap;
XilIndexList indexlist;

/* You must set this attribute, or the molecule will not
 execute. cmap is the lookup table that will be passed
 to xil_nearest_color().*/
xil_cis_set_attribute(cis, “DECOMPRESSOR_COLORMAP”,
 (void *)cmap);

/* To get the best results, you should set this attribute
 so that the decompressor can change any of the entries in
 cmap. */
xil_cis_set_attribute(cis, “RDWR_INDICES”, (void *)&indexlist);

/* MOLECULE STARTS HERE */
xil_decompress(cis, imageRGB_24);

/* This checking of the lookup table’s version number is
 necessary, but is not part of the molecule. */
if (lu_version != xil_lookup_get_version(cmap)) {
 /* Include code to write the appropriate values from cmap to
 the application’s X colormap */
 ...
 lu_version = xil_lookup_get_version(cmap);
}

if (ZOOM) {
 xil_nearest_color(imageRGB_24, image_8, cmap);
 xil_scale(image_8, zoom_image_GX, “nearest” , 2.0 , 2.0);
}
else
 xil_nearest_color(imageRGB_24, image_GX, cmap);
/* MOLECULE ENDS HERE */

462 XIL Programmer’s Guide—August 1997

21

to 8 bits, and the third molecule uses an ordered dither. All three molecules
require that you set the DECOMPRESSOR_COLORMAP CIS attribute before you
execute them.

Nearest-Color Approach
Functionally the first molecule in this class is identical to the basic molecule
(no zoom) designed for playing movies on a local GX frame buffer. (See
“Eight-Bit Display Image (GX)” on page 460.) However, it is not as fast as the
GX version, so displaying a movie on an indexed-color frame buffer other than
the GX is not quite as fast as on a GX.

For this molecule to execute, your application must use the code shown in
“Eight-Bit Display Image (GX)” on page 460. In addition:

• The destination image must be stored on a 32-bit aligned boundary. It is
stored on such a boundary unless it is a child image created with an x offset
from its parent that is not a multiple of four.

• The pixel stride in the destination image must be one. This is always true
unless the destination image is a single-band child of a multiband parent.

The second molecule in this class rapidly decompresses Cell images and
displays them in a small window. It performs the following tasks:

• Decompresses an image

• Converts the RGB image to an 8-bit image by finding the closest match for
the RGB values in the source image in a lookup table

• Scales the image down using x and y scale factors of 1 / (4 * n), where n is
a positive integer

The destination image must be at least 4-by-4 pixels in size.

Cell Codec 463

21

For this molecule to be called, your application must use code similar to this.

Ordered-Dither Approach
This molecule performs the following tasks:

• Decompresses an image

• Optionally zooms the RGB image by a factor of 2 in the x and y dimensions

• Dithers the 3-band image to a 1-band image using a colorcube

For the molecule to execute, the destination image must be 32-bit aligned and
must have a pixel stride of one.

/* MOLECULE BEGINS HERE */
xil_decompress(cis, imageRGB_24);
if (lu_version != xil_lookup_get_version(cmap)) {
 /* Include code to write the appropriate values from cmap to
 the application’s X colormap. */
 ...
 lu_version = xil_lookup_get_version(cmap);
}
xil_nearest_color(imageRGB_24, image_8, cmap);
xil_scale(image_8, small_image_8, “nearest” , .25, .25);
/* MOLECULE ENDS HERE */

464 XIL Programmer’s Guide—August 1997

21

To call this molecule, your application must use code similar to this.

/* Create a colorcube and dither mask. All legal XIL
 colorcubes are supported, including those that have
 decreasing ramps in one or more bands. The dither mask
 must be a 4-by-4 mask, but there are no restrictions
 regarding its contents. */
...

/* MOLECULE STARTS HERE */
xil_decompress(cis, imageRGB_24);
if (ZOOM) {
 xil_scale(imageRGB_24, zoom_imageRGB_24, “nearest” , 2.0 ,
 2.0);
 xil_ordered_dither(zoom_imageRGB_24, zoom_image_8, colorcube,
 dithermask);
}
else
 xil_ordered_dither(imageRGB_24, image_8, colorcube,
 dithermask);
/* MOLECULE ENDS HERE */

465

CellB Codec 22

The Cell codec discussed in Chapter 21, “Cell Codec,” is useful primarily in
authoring applications. Its advantages are its fast decoding and the high
quality of the images it produces, particularly on indexed-color frame buffers.
The CellB codec, which derives from its Cell counterpart, is intended for use
primarily in videoconferencing applications. It features a greater balance
between the time spent compressing and decompressing images than the Cell
codec and employs a fixed colormap. The CellB codec’s strengths include:

• Software compression at interactive rates
• Very fast decoding and display, especially on indexed-color frame buffers
• Low rates of CPU use
• Good quality output

This chapter has the following main sections:

How the Codec Works page 466

Creating a CellB CIS page 469

CellB Decompression Attributes page 469

CellB Molecules page 471

466 XIL Programmer’s Guide—August 1997

22

How the Codec Works
The CellB compressor works only on YCbCr images that conform to the
guidelines set forth in CCIR Recommendation 601. The compressor performs
intraframe compression by representing 4-by-4 blocks of pixels using cell codes.
It performs interframe encoding using skip codes.

Cell Codes

The images you compress using the CellB compressor must have a width and
height that are multiples of four because the compressor works with 4-by-4
cells of pixels. For each frame, the compressor begins with the cell in the
upper-left corner and then proceeds from left to right. The compressor
processes rows of cells in this way, moving from the top of the frame to the
bottom.

When the compressor encodes a cell without reference to a cell in a preceding
frame, it uses a four-byte cell code to represent the content of that cell. This cell
code specifies two colors and includes a 16-bit bit mask that indicates which of
the two colors should be used to represent each pixel in the cell. See
Figure 22-1.

Figure 22-1 Cell Code

The two colors are encoded as follows. The compressor calculates the average
Cb and Cr values for the 4-by-4 block. Then, it calculates an index into a table of
256 vectors in which each vector looks like the one shown in Figure 22-2.

16-bit mask

CB/CR Y/Y

Index into table of chrominance values

Index into table of luminance values

CellB Codec 467

22

Figure 22-2 Vectors in Chrominance Table

The values in the vector pointed to by the index are the pair of values in the
table nearest to the mean Cb and Cr values for the cell. The compressor writes
the index to this vector to the third byte of the cell code.

The compressor also analyzes the luminance values in the cell. First, it
calculates the mean luminance for the cell. Second, it partitions the 16
luminance values in the cell into those values that fall below the mean and
those that fall above the mean. Then, it calculates the average luminance in the
two partitions.

After arriving at the average luminance values for the two partitions, the
compressor calculates an index into a table of vectors of the form shown in
Figure 22-3.

Figure 22-3 Vectors in Luminance Table

The values in the vector pointed to by the index are the pair of values in the
table closest to the average luminance values for the two partitions. The
compressor then writes the index to this vector to the fourth byte of the cell
code.

The first color for a cell consists of the first byte of the cell’s luminance vector
and the chrominance values in the cell’s chrominance vector. The second color
consists of the second byte of the cell’s luminance vector and the same
chrominance values.

CB value CR value

Byte 0 Byte 1

Y0 value Y1 value

Byte 0 Byte 1

468 XIL Programmer’s Guide—August 1997

22

The bit mask shown in Figure 22-1 is filled out in this way. Each bit in the mask
is associated with a pixel in the cell. If the luminance value for a pixel is below
the mean luminance value for the cell, its bit is set to 0. This pixel will be
represented by the first color when the cell is decompressed. If a pixel’s
luminance value is above the mean, its bit is set to 1.

Because each cell code represents the values of 16 pixels using 32 bits,
compression using cell codes alone leads to a compression rate of 2 bits per
pixel. To better this compression rate, the CellB compressor uses skip codes to
achieve interframe compression.

Skip Codes

The CellB compressor encodes the first image in a sequence using cell codes
exclusively. But after the first image, the compressor begins looking for cells in
the current image that match—within a certain tolerance—the corresponding
cells in the preceding image. Anywhere from 1 to 32 consecutive cells that
match their counterparts in the previous image can be represented by a single
1-byte skip code.

The only restriction on the use of skip codes is that the cell at a particular set of
coordinates cannot be skipped indefinitely. There are a couple of reasons for
this restriction. First, a user might join a videoconference that is already in
progress. Cells represented by skip codes in the first image the uer receives will
not be displayed correctly, and this problem must be corrected within a certain
period of time. Similarly, if the CellB bytestream is being sent over an
unreliable transport and a packet of data is lost, the period of the resulting
error should be limited.

The policy concerning skip codes is that a particular cell must be updated at
least every n frames, where n is an implementation-specific maximum. The
exact value used is selected randomly for each cell each time that cell is
encoded using a cell code. A random number is used to prevent the periodic
bit-rate increase that might result were each cell to be updated at a fixed
interval.

In a typical videoconference, about 80 percent of the cells in the average frame
are represented by skip codes. This ratio leads to an average compression rate
of about .8 bits per pixel.

CellB Codec 469

22

Note – For details about the makeup of a CellB bytestream, see Appendix D,
“Cell and CellB Bytestream Definitions.”

Creating a CellB CIS
Before you can use the CellB codec to compress images or decompress a CellB
bytestream, you must create a CellB CIS. To do this you pass the compressor
name CellB to the xil_cis_create() function, as shown in this code
fragment.

CellB Decompression Attributes
As discussed in “General CIS Attributes” on page 219, there is a class of
attributes that can be set for any CIS. There is also a set of attributes that are
valid only for a CIS attached to a CellB codec. You set these codec-specific
attributes using the xil_cis_set_attribute() function and read them
using xil_cis_get_attribute() . Attributes are identified as read-only (R),
write-only (W), or read/write (R/W).

WIDTH and HEIGHT (W)

If you have put compressed data into your CIS using xil_cis_put_bits()
or xil_cis_put_bits_ptr() , you must set the values of these attributes to
the width and height in pixels of the images to be decompressed. If you do not
set these attributes, their values will be 0, and an error will occur if you:

• Create an XIL image into which to decompress the compressed image
sequences in the CIS by calling the xil_cis_get_output_type() and
xil_create_from_type() functions.

• Call xil_decompress() to decompress an image stored in the CIS.

XilCis cis;
XilSystemState state;

cis = xil_cis_create(state, “CellB”);

470 XIL Programmer’s Guide—August 1997

22

The legal values for both attributes are integers in the range 4 to 32764 (short
int) . This code fragment shows the WIDTH attribute being set to 320 and the
HEIGHT attribute being set to 240.

IGNORE_HISTORY (R/W)

The IGNORE_HISTORY attribute affects your ability to seek forward and
backward in a CellB bytestream. Such seeking is somewhat problematic in
CellB because the codec relies so heavily on interframe encoding and does not
require periodic key frames.

By default, IGNORE_HISTORY is set to FALSE. In this case, seeking backward is
illegal because no past frame contains all the information necessary to
reproduce an entire image. Seeking forward is possible, but to ensure that it
can decode properly the frame you seek, the decoder must actually decode all
the frames you “skip.”

If you set IGNORE_HISTORY to TRUE, you’re telling the decoder that it’s
acceptable if, after seeking, it does not produce a correct image. You’re willing
to let it decode only the cells described with cell codes in the frame you’re
seeking to, and to fill in bad cells as it decodes subsequent frames. In this case,
seeking backward is legal, and seeking forward is faster than it would be
otherwise. The drawback to setting IGNORE_HISTORY to TRUE is that you may
have to decode a number of frames after seeking before you get a properly
reconstructed picture. (The exact number of frames is implementation
dependent.)

This code shows IGNORE_HISTORY being set to TRUE.

XilCis cis;
short width = 320;
short height = 240;

xil_cis_set_attribute(cis, “WIDTH”, (void *)width);
xil_cis_set_attribute(cis, “HEIGHT”, (void *)height);

XilCis cis;

xil_cis_set_attribute(cis, “IGNORE_HISTORY”, (void *)TRUE);

CellB Codec 471

22

You can also read the value of this attribute using code similar to that shown
here.

CellB Molecules
The XIL library includes a series of molecules that accelerate the playback of
CellB bytestreams. These molecules are optimized routines that perform the
jobs of two or more functions from the XIL API. You do not call such an
optimized routine directly; rather, the library calls a molecule when your
program calls a predefined sequence of XIL functions, sometimes with specific
arguments.

For example, if your program calls xil_decompress() to decode an image
stored in a CellB CIS and then calls xil_ordered_dither() to convert the
decoded image from a 24- to an 8-bit image, the library may not call these two
functions. Instead, it may call a molecule that performs the decompression and
the dithering in an optimized way.

For more information about accelerating the playback of CellB bytestreams, see
Chapter 23, “Acceleration in XIL Programs.” For information about the CellB
molecules that are available and information about how to call those
molecules, see “XIL Molecules” on page 477.

XilCis cis;
Xil_boolean history_status;

xil_cis_get_attribute(cis, “IGNORE_HISTORY”,
(void **)&history_status);

472 XIL Programmer’s Guide—August 1997

22

473

Acceleration in XIL Programs 23

Obviously, much of the speed of an XIL program is determined by the speed of
the individual functions that make up the API. However, XIL applications can
also realize big performance improvements when the library is able to replace
the execution of a sequence of API-level functions (or atoms) with the execution
of an optimized function that performs the work of all the atoms in the
sequence. This type of optimized function is called a molecule.

You do not call a molecule directly. Rather, the library itself recognizes
sequences of atoms that can be replaced by a molecule and performs the
replacement automatically. This type of replacement is made possible by the
library’s deferred-execution scheme.

This chapter has the following main sections:

What Is Deferred Execution?
In general, when an atomic function that affects the state of an image or a
compressed image sequence is called, the function is not executed immediately.
Instead, information about the operation—such as the function called and the

What Is Deferred Execution? page 473

XIL Molecules page 477

Troubleshooting Molecules page 486

Side Effects of Executing Molecules page 490

XIL Functions That Relate to Deferred Execution page 491

474 XIL Programmer’s Guide—August 1997

23

arguments to the function—is stored by the library. This information continues
to be stored until the library must produce a particular destination image—for
example, because that image is to be displayed.

Suppose the library has stored the five atomic operations shown in Figure 23-1
and that by performing these operations, it could decompress an image from a
Cell CIS and prepare that image for display on a monochrome display.

Figure 23-1 Stored Atomic Operations

xil_decompress()

xil_color_convert()

xil_rescale()

xil_scale()

xil_ordered_dither()

Acceleration in XIL Programs 475

23

When it must produce the destination of the ordered dither, instead of simply
performing the five atomic functions, the library searches a list of molecules to
see if all or part of this sequence can be replaced by a molecule. If the library
finds a molecule that can perform this entire sequence of operations, the
execution of the program proceeds as shown in Figure 23-2.

476 XIL Programmer’s Guide—August 1997

23

Figure 23-2 Replacing Atomic Functions With a Molecule

xil_color_convert()

Molecule

scale

rescale

Flow of execution

xil_decompress()

xil_rescale()

xil_scale()

xil_ordered_dither()

dither

decompress

color
convert

Acceleration in XIL Programs 477

23

The molecule shown is executed and performs the jobs of all five atomic
functions. None of the atomic functions is ever executed.

The ability to replace a series of atomic functions with a molecule like this can
lead to dramatic increases in performance. Two reasons for this increase are
that a molecule may:

• Need to page an image into memory only once, whereas the equivalent
atomic functions would have paged the image into memory several times

• Not need to create temporary images that would be required by the
equivalent atomic functions

XIL Molecules
The molecules available in the base XIL library can be grouped into two
categories:

• Molecules that decompress images stored in a compressed image sequence.
This is the largest category of molecules, and these molecules are available
on all platforms that can run XIL applications.

• SPARC: Molecules that perform a common XIL operation and then display
the results of the operation on a GX frame buffer. These molecules are
available only on local GX frame-buffer screens.

• Molecules provided by third party hardware vebdors or other platform-
specific acceleration. For example, the SunVideo™ product has a number of
compression molecules and Ultra™ systems have a wide array of molecules
to accelerate display on Ultra Creator systems.

In this section some general rules you must follow to execute XIL molecules
are discussed first. (Particular molecules may require that you follow other
rules as well.) Then the molecules that have been implemented in the
categories mentioned in the preceding paragraph are discussed.

Rules for Executing Molecules

There are a few general rules you must follow to execute XIL molecules:

478 XIL Programmer’s Guide—August 1997

23

• The images that a molecule works with—source, intermediate, and
destination—must have the same width and height. The principal exception
to this rule occurs when a molecule performs a scaling operation. In that
case, the destination image for the scale operation must have the same
dimensions as the scaled source image.

• The images the molecule works with must have the same region of interest.
For decompression molecules, this rule dictates that the molecule’s
destination image and any intermediate images have no region of interest
because the images stored in the CIS cannot have a region of interest. In
addition, if a molecule includes a scale operation, the images involved
cannot have a region of interest. These images do not have a region of
interest unless you have explicitly set their region-of-interest attributes.

• The images the molecule works with must have the same origin. For
decompression molecules, this rule dictates that the molecule’s destination
image and any intermediate images have origins of 0.0, 0.0. This is true
because the images stored in a CIS cannot have anything other than the
default origin.

There are one or two exceptions to these rules among the decompression
molecules. These exceptions are covered in “Video Decompression Molecules.”

Video Decompression Molecules

The library’s video decompression molecules decompress an image from a
compressed image sequence, process that image in some way, and write it to a
destination, usually a display image. This destination may have a depth of 1
bit (a monochrome display), 8 bits (an indexed-color display), or 24 bits (a
true-color display). To display video at the best possible speed, it is important
that you use these molecules. They provide much better performance than the
equivalent set of atomic functions.

Eight-Bit Destination

This molecule is optimized where the molecule’s destination image is an 8-bit
display image associated with a local GX frame buffer. However, the molecule
also accelerates the decompression and subsequent processing of images being
written to other 8-bit destinations as well.

The molecule performs the following tasks:

Acceleration in XIL Programs 479

23

• Decompresses an image from a CIS

• Optionally rescales the values in the three bands of the YCbCr image

• Dithers the 24-bit YCbCr image to an 8-bit pseudocolor image

• Optionally zooms the dithered image by a factor of 2 in both the x and y
dimensions

There are certain restrictions on the use of this molecule. One is that the
molecule can decompress images from a JPEG CIS only if those images are
YCbCr images and the images are 4:1:1 interleaved in the bitstream. (CellB,
H.261, and MPEG-1 CISs always contain YCbCr images.) In addition, in most
cases, JPEG, H.261, and MPEG-1 CISs must contain images whose width and
height are multiples of 16. Exceptions to this rule are discussed in “Exceptions
to the Rules” on page 481.

Note – Arguments shown in boldface must be typed as shown for the molecule
to execute correctly.

For this molecule to be executed, your application must include the following
code.

float scale_values[3], offset_values[3];
XilLookup colorcube, colormap;
XilDitherMask dmask;

scale_values[0] = 255.0 / (235.0 - 16.0);
scale_values[1] = 255.0 / (240.0 - 16.0);
scale_values[2] = 255.0 / (240.0 - 16.0);
offset_values[0] = -16.0 * scale_values[0];
offset_values[1] = -16.0 * scale_values[1];
offset_values[2] = -16.0 * scale_values[2];
colorcube = xil_lookup_get_by_name(state, “cc855”);
dmask = xil_dithermask_get_by_name(state, “dm443”);

/* The lookup table yuv_to_rgb is matched with the colorcube
 cc855. If you use cc855 when dithering your images, you must
 install the 200 sets of RGB values in yuv_to_rgb in your
 application’s X colormap before executing the molecule.
 Install the first set of RGB values at colorcell 54. */
colormap = xil_lookup_get_by_name(state, “yuv_to_rgb”);

480 XIL Programmer’s Guide—August 1997

23

/* MOLECULE STARTS HERE */
xil_decompress(cis, imageYCC_24);

/* Perform this rescale if your image’s color space is CCIR Rec.
 601 YCC. The rescale adjusts the range of the values in the
 three bands of the image to 0 to 255. The ordered dither
 operation that takes place later will produce the best results
 if the values are in this range. Note that YCC images produced
 by compressors that use the JFIF format have already been
 rescaled to 0 to 255 and, therefore, should not be rescaled
 here. */
if (CCIR601)
 xil_rescale(imageYCC_24, imageYCC_24, scale_values,
 offset_values);
if (ZOOM) {
 xil_ordered_dither(imageYCC_24, imageYCC_8, colorcube,
 dmask);
 xil_scale(imageYCC_8, zoom_displayimage, “nearest” , 2.0 ,

2.0);
}
else
 xil_ordered_dither(imageYCC_24, displayimage, colorcube,
 dmask);
/* MOLECULE ENDS HERE */

Acceleration in XIL Programs 481

23

Exceptions to the Rules
Table 23-1 shows the exceptions to the general rules for executing this
molecule. The exceptions have been classified on the basis of the decompressor
to which they relate.

Table 23-1 Exceptions to the General Decompression-Molecule Rules

Decompressor Exceptions

CellB If you want the molecule to zoom the image it decompresses, the
call to xil_scale() that zooms the image must precede the call to
xil_ordered_dither() .

JPEG If the destination image is a display image associated with a GX
window, the images in the CIS do not have to have a width and
height that are multiples of 16.

If the destination image is not a display image associated with a GX
window, the molecule cannot perform the optional zoom.

If the destination image is not a display image associated with a GX
window, the destination cannot be a single-band child of a
multiband parent image.

H.261 If the destination image is a display image associated with a GX
window, the images in the CIS do not have to have a width and
height that are multiples of 16.

There is one exception to the general rules that a molecule’s
destination image must have the same width and height as the
images in the CIS and that the destination image must have an
origin of 0.0, 0.0. The molecule can execute even though the two
rules mentioned above are not met, if the following conditions are
satisfied: (1) the destination image is a display image associated
with a window on a local GX frame buffer, (2) the coordinates of the
destination image’s origin are less than or equal to 0.0, and (3) all of
the pixels in the display image are written to. This exception allows
for the clipping of letterboxed images.

MPEG-1 If the destination image is a display image associated with a GX
window, the images in the CIS do not have to have a width and
height that are multiples of 16.

482 XIL Programmer’s Guide—August 1997

23

Twenty-Four-Bit Destination

The molecule decompresses a YCbCr image from a CIS and converts the color
space of the YCbCr image to RGB.

Obviously, the images in a JPEG CIS must be YCbCr images before you can use
this molecule. (CellB, H.261, and MPEG-1 CISs always contain YCbCr images.)
In addition, the images in a JPEG CIS must be 4:1:1 interleaved in the
bitstream. One other restriction is that JPEG, H.261, and MPEG-1 CISs must
contain images whose width and height are multiples of 16.

For this molecule to be executed, your application must include the following
code.

The molecule can only convert images from ycc601 to rgb709 (as shown in
the example).

XilColorspace ycc, rgb;

ycc = xil_colorspace_get_by_name(state, “ycc601”);
rgb = xil_colorspace_get_by_name(state, “rgb709”);
xil_set_colorspace(imageYCC_24, ycc);
xil_set_colorspace(imageRGB_24, rgb);

/* MOLECULE STARTS HERE */
xil_decompress(cis, imageYCC_24);
xil_color_convert(imageYCC_24, imageRGB_24);
/* MOLECULE ENDS HERE */

Acceleration in XIL Programs 483

23

CCITT Group 4 Decompression Molecule

Because it is common to transpose an image immediately after decompressing
it from a CCITT compressed image sequence, there is a molecule for
accelerating the transposition of images that were compressed with the Group
4 compressor. The molecule takes advantage of the fact that, when
decompressing these images, an intermediate representation of the original
image is generated, and it is faster to transpose this representation than it is to
transpose the bits of the actual image. For images that were compressed with
the Group 3 compressor, this intermediate representation is not generated and
so the molecule does not execute.

The xil_transpose() call must immediately follow the image
decompression; otherwise the intermediate representation is lost and the
molecule cannot execute. In this case, the transposition is performed on the bit
image.

The type of flip designated on the xil_transpose() call determines whether
the destination size is checked as

src_x_size == dest_x_size && src_y_size == dest_y_size

or

src_x_size == dest_y_size && src_y_size == dest_x_size

One of the above expressions must be true for the molecule to be called.
Table 23-2 shows the destination image size expected for the source image size
(100, 140).

Table 23-2 Type of Flip Designated on the Call to xil_transpose()

Type of Flip Expected Destination Size

XIL_FLIP_X_AXIS (100, 140)

XIL_FLIP_Y_AXIS (100, 140)

XIL_FLIP_X_180 (100, 140)

XIL_FLIP_MAIN_DIAGONAL (140, 100)

XIL_FLIP_ANTIDIAGONAL (140, 100)

XIL_FLIP_90 (140, 100)

XIL_FLIP_270 (140, 100)

484 XIL Programmer’s Guide—August 1997

23

SPARC: Molecules That Result in a Display

Molecules that combine a common operation and a display are available only
on local GX frame-buffer screens. Before you look over the list of molecules in
this category, you should understand that operations that read from or write to
a device image (including a display image) are treated specially by the XIL
library.

Generally, calling an XIL function results in the library’s storing one operation.
However, operations that read from or write to a device image cause two
operations to be stored. For example, you might call xil_scale() using a
scanner as your source image in order to read an image from the scanner and
zoom it. The two operations stored are a capture operation, which writes its
output to a temporary image, and a scale operation, which writes its output to
the destination image named in the call to xil_scale() . Likewise, you might
call xil_scale() using a display as your destination image in order to zoom
the image and display it. In this case, the two operations stored are a scale and
a display operation.

Several molecules are available that replace two-operation sequences in which
the second operation is a display to a GX frame buffer. These molecules are:

• Add (xil_add_const()), pixel-by-pixel, the constant values of a source
image to a GX display image

• Copy (xil_copy()) an 8-bit image to a GX display image

• Copy (xil_copy()) a GX display source image to a GX display destination
image (in-place copy)

• Cast (xil_cast()) a 1-bit image to a GX display image

• Multiply (xil_multiply_const()), pixel-by-pixel, a source image by a
GX display destination image

• Pass a 1-bit image through a lookup table (xil_lookup()) to a GX display
image

• Pass an 8-bit image through a lookup table to produce a different result to a
GX display image

• Rescale (xil_rescale()) an image to a GX display image

• Scale (xil_scale()) a GX display image about its origin with nearest-
neighbor interpolation and a scale factor of 2.0 in both x and y

Acceleration in XIL Programs 485

23

• Set all the values of a GX display image (xil_set_value())

• Threshold (xil_threshold()) a 16-bit image (set value of bands within a
specified range); threshold the 16-bit image; then cast (xil_cast()) the
16-bit image to a GX display image

• Translate (xil_translate()) an 8-bit image using nearest-neighbor
interpolation to a GX display image

486 XIL Programmer’s Guide—August 1997

23

Troubleshooting Molecules
Once you have coded your application with a replaceable sequence of atomic
functions, you may want to make sure a molecule executes when your
program runs. And if the molecule is not called, you should determine why it’s
not being called. This section discusses both how to determine whether a
molecule is executing and what to check for if the molecule is not being called.

Determining Whether Molecules Are Executing

To determine whether a molecule you want to execute is executing, set the
XIL_DEBUG environment variable before executing your program:

% setenv XIL_DEBUG show_action

Once you’ve done this, the XIL library prints a message to stderr each time
an operation that affects the state of an XIL image or a compressed image
sequence (CIS) is executed. By looking at these messages, you can determine
whether the molecules your application is attempting to call are being
executed.

For example, try setting XIL_DEBUG to show_action and then playing a JPEG
movie using the xilcis_example example program. Instructions for running
the example are presented in “Running the Movie Player” on page 328. As the
program runs, you see one or more pairs of messages—depending on the
length of the movie—displayed on stderr .

The first message indicates that a molecule has been executed. This molecule
performs a decompression, a rescale, and an ordered dither. The second
message indicates that this molecule was followed by an atomic display
operation; this message assumes the display operation uses function calls from
ioxlib .

XIL_ACTION[XilDeviceCompJpegMemory]:ordereddither8to8(rescale8(
decompress_Jpeg()))
XIL_ACTION[XilDeviceIOioxlib]:display_ioxlib()

Acceleration in XIL Programs 487

23

If you were now to edit this program so that it did something that prevented
the molecule from being executed—like setting the origin of the display image
to 1.0, 1.0—you would see the following messages:

As you can see, the molecule would be unable to execute, and the
decompression, rescale, and ordered dither would have to be executed
individually.

Besides the XIL_DEBUG environment variable, there are two XIL functions that
enable you to control whether the messages discussed above are printed. One
of these, xil_state_set_show_action() , sets a system-state attribute
called SHOW_ACTION. The setting of this attribute determines whether the
library prints the messages, does not print the messages, or prints the messages
only if XIL_DEBUG is set to show_action . The other function,
xil_state_get_show_action() , reads the value of SHOW_ACTION. See the
man pages for more information about these functions.

Determining Why a Molecule Is Not Executing

Basically, there are two reasons why a molecule might not execute. Either you
didn’t call the proper sequence of atomic functions with the proper arguments,
or you did something that caused the library to flush some operations from
storage before you finished building the molecule. These two situations are
discussed in more detail in the next section.

XIL_ACTION[XilDeviceCompJpegMemory]:ordereddither8to8(rescale8(
decompress_Jpeg()))
XIL_ACTION:FAILED
XIL_ACTION[XilDeviceCompJpegMemory]:decompress_Jpeg()
XIL_ACTION[XilDeviceComputeMemory]:rescale8()
XIL_ACTION[XilDeviceComputeMemory]:ordereddither8to8()
XIL_ACTION[XilDeviceIOioxlib]:display_ioxlib()

488 XIL Programmer’s Guide—August 1997

23

Not Calling a Correct Sequence of Functions

The most likely reason a molecule is not executing is that you haven’t followed
all the rules for calling the molecule. Remember, you must call the correct
functions, in the proper order, sometimes with specific arguments. Any
mistake can cause the molecule not to be called or to fail.

For example, let’s say you are decompressing a JPEG movie and displaying
frames on an 8-bit frame buffer, and that you call the following code.

If for no other reason, these four functions won’t be replaced by a molecule
because the call to xil_scale() uses an interpolation type of bilinear . For
this molecule to execute, the interpolation type for the scale must be nearest
(nearest neighbor). So, if you expect a molecule to execute and it doesn’t, first
check to make sure that you’ve met all the guidelines presented in “XIL
Molecules” on page 477. Also see Appendix A, “Optimizations and Molecules
For XIL Version 1.3.

A more subtle problem can arise when the calls that make up a molecule are
not consecutive calls in your program. For instance, consider the following
code fragment taken from the Cell movie playback code discussed in “Playing
Cell Movies” on page 338.

xil_decompress(cis, imageYCC);
xil_rescale(imageYCC, imageYCC, scale, offset);
xil_ordered_dither(imageYCC, image8, colorcube, dmask);
xil_scale(image8, zoom_displayimage, “bilinear”, 2.0, 2.0);

xil_decompress(cis, image24);

/* Look at the Lookup version number to see if it is time
 to reinstall the colormap. */
if (lu_version != xil_lookup_get_version(xil_cmap)) {
 cell_install_cmap(x_cmap, displayimage, xil_cmap, ilist);
 lu_version = xil_lookup_get_version(xil_cmap);
}
xil_nearest_color(image24, displayimage, xil_cmap);

Acceleration in XIL Programs 489

23

This code is attempting to call a molecule that replaces the
xil_decompress()-xil_nearest_color() sequence.

Your first thought may be that this code won’t cause the molecule to be
executed because the calls to xil_decompress() and
xil_nearest_color() are not consecutive. Between these two calls, the
program calls xil_lookup_get_version() at least once and may call a
user-defined function, cell_install_cmap() , which doesn’t contain any
XIL functions. Actually, this code causes the molecule to be called because only
the decompress and nearest-color operations are deferred and become part of
the stored chain of operations that the library tries to replace with a molecule.

Of course, Calls to non-XIL functions, like cell_install_cmap() are never
deferred by the library. In addition, there is a class of XIL functions that are
never deferred, and calls that read object attributes fall in this class. Therefore,
the call to xil_lookup_get_version() does not affect the
deferred-operation chain.

On the other hand, if you used the following code, the library would not
execute a molecule.

The add-constant operation would be deferred (because it changes values in
the image) and would prevent the library from finding an
xil_decompress() -xil_nearest_color() sequence.

Flushing Operations Before a Molecule Is Complete

One other subtle problem to guard against is calling a function that causes the
library to execute atomically functions that you intended to be the beginning of
a molecule. For example, let’s say that you want to execute a molecule that
replaces four API-level functions. You call the first three atomic functions, and
information about these deferred operations is stored. Then before you call the
fourth function, you do something that causes the first three operations to be
flushed from storage and executed.

xil_decompress(cis, image24);
xil_add_const(image24, constants, image24);
xil_nearest_color(image24, displayimage, xil_cmap);

490 XIL Programmer’s Guide—August 1997

23

What could you do to cause this to happen? There are a number of things,
some obvious and some not so obvious. At the obvious end of the spectrum,
you could:

• Turn deferred execution off using the xil_state_set_synchronize()
function. Once deferred execution is turned off, of course, no operations are
deferred.

• Call xil_sync() on an intermediate image. This call causes the library to
produce that image immediately, which involves flushing all the stored
operations needed to produce it.

• Use an intermediate image whose synchronization flag has been set using
the xil_set_synchronize() function. The operations required to
produce this image cannot be deferred.

You can also flush operations that you meant to be part of a molecule by:

• Calling xil_export() to export an intermediate image. The operations
needed to produce the intermediate image must be executed before the
image can be exported.

• Calling a function that returns information about the values in an
intermediate image—like xil_extrema() , xil_histogram() , or
xil_get_pixel() . Such a call causes the operations that will produce the
source image to be executed.

Side Effects of Executing Molecules
When a molecule executes, it may not create one or more temporary images
that would have been created had the set of atomic functions replaced by the
molecule been executed. This section briefly explains the possible side effects
of this behavior and how you can deal with them.

As an example, consider the following JPEG decompression code.

XilImage imageYCC, displayimage;

xil_decompress(cis, imageYCC);
xil_rescale(imageYCC, imageYCC, scale, offset);
xil_ordered_dither(imageYCC, displayimage, colorcube, dmask);

Acceleration in XIL Programs 491

23

If these functions are executed atomically, decompressed data is written to the
24-bit image imageYCC, the data in imageYCC is rescaled, and then the data in
imageYCC is dithered to produce an 8-bit image. However, if a JPEG
decompression molecule is executed, imageYCC is never actually used. This
difference can lead to unexpected results later on.

Suppose the decompression molecule executed, and imageYCC was never
written to. If you later ask the library to destroy the CIS (without having first
destroyed imageYCC), before it destroys the CIS, the library calls
xil_decompress() to decompress data from the CIS and write it to
imageYCC. The library does this because it knows that it never wrote data to
imageYCC, that the contents of imageYCC depend on the CIS, and that the
image may be used again later in the program. If you don’t plan to use the
image later in your program, the call to xil_decompress() is unnecessary
and hurts the performance of your program. Another option is to use
temporary images for intermediate images in the chain of operation. (For
details on temporary images, see “Temporary Images” on page 61.)

You can check for unexpected side effects like the one described above by
setting XIL_DEBUG to show_action and monitoring stderr to see which
functions execute when you run your program.

XIL Functions That Relate to Deferred Execution
Several XIL functions have a direct effect on the way deferred execution works.
These are listed in Table 23-3.

Table 23-3 Functions That Affect Deferred Execution

Function Description

xil_sync() Forces the library to compute the value of an
image when the operations that produce the
image have been deferred.

xil_cis_sync() Forces any outstanding call to
xil_compress() to complete when it
would otherwise have been deferred.

xil_set_synchronize() Sets an image’s synchronization attribute.
When an image has this attribute set,
operations on it cannot be deferred.

492 XIL Programmer’s Guide—August 1997

23

xil_get_synchronize() Determines whether an image’s
synchronization attribute is set.

xil_state_set_synchronize() Turns deferred execution on or off.

xil_state_get_synchronize() Determines whether deferred execution is
being used or not.

xil_toss() Tells the library to “toss,” or throw away, the
contents of an image, but not to destroy the
image.

Table 23-3 Functions That Affect Deferred Execution

Function Description

493

Optimizations and Molecules For
XIL Version 1.3 A

This appendix describes the optimizations that are available in the 1.3 release
of the XIL imaging library. Optimizations are presented in the following
categories:

• Functions
• Xlib display
• X Shared Memory Extension display
• Molecules
• GX display molecules

Functions

Affine

xil_affine() is optimized to:

• Call xil_rotate() if only rotation is specified

• Call xil_scale() if only scaling is specified

• Call xil_translate() if only translation is specified

• Call xil_transpose() if origins for source and destination are set to the
center of the image and transposition is specified

494 Title of Book—Month 1996

A

Arithmetic, Relational, and Logical

These functions are specially optimized for packed 1-band and 3-band images.

Blend

xil_blend() is optimized for the following data:

• 1-band BYTE with BYTE Alpha
• 3-band BYTE with BYTE Alpha

Cast

xil_cast() is optimized when casting images from:

• 1-band BYTE -> BIT
• n-band BIT -> BYTE
• n-band BIT -> SHORT
• n-band BIT -> FLOAT

Convolve

xil_convolve() is optimized under the following circumstances:

• If separable kernel, the separable kernel function is called, which does less
work.

• If a 3x3 kernel with a key at 1,1 for BYTE or SHORT data

• If square kernels for 1-band BYTE or SHORT data

Error Diffusion

xil_error_diffusion() is optimized for:

• Color cube
• Floyd-steinberg 8 bit -> 1 bit
• Floyd-steinberg 24 bit -> 8 bit (3-band BYTE -> 1-band BYTE)

Optimizations and Molecules For XIL Version 1.3 495

A

Lookup

xil_lookup() is optimized for the following source and destination image
data types:

• 1-band BYTE -> 1-band BYTE
• 1-band BYTE -> 1-band BYTE
• 1-band BYTE -> 3-band BYTE
• 3-band BYTE -> 3-band BYTE

Nearest Color

xil_nearest_color() is optimized for 3-band BYTE -> 1-band BYTE.

Ordered Dither

xil_ordered_dither() is optimized for 24-bit -> 8-bit
(3-band BYTE -> 1-band BYTE).

Paint

xil_paint() is optimized for 3-band BYTE image data.

Rotate

xil_rotate() is optimized for 90-, 180-, and 270-degree rotations and the
origin is the center of the image.

Scale

xil_scale() is optimized for the following interpolation types:

• Nearest neighbor (2.0 in both x and y)
• Bilinear (0.5 or 2.0 in both x and y)

496 Title of Book—Month 1996

A

Subsample Binary-to-Gray

xil_subsample_binary_to_gray() is optimized for the following x and y
scale factors:

• 0.25, 0.25 (1/4 in x and y)
• 0.33333, 0.33333 (1/3 in x and y)
• 0.5, 0.5 (1/2 in x and y)

Threshold

xil_threshold() is optimized as follows:

• Two thresholds with the same intermediate image are done as a combined
threshold

• 1-band BYTE is specially optimized

Xlib Display
Xlib displays are optimized as follows:

• xil_set_value() is done as XFillRectangle()

• xil_cast() of a 1-bit image to 8-bit display uses the X server to convert
from 1-bit to 8-bit (only 1-bit data are sent)

X Shared Memory Extension Display
The X Shared Memory Extension is optimized as follows:

• When no device-specific acceleration is available, XIL uses the X Shared
Memory Extension until there is no more system shared memory to display
images

• The xil_set_value() and xil_cast() functions are optimized in the
same way as Xlib displays (see “Xlib Display”)

Molecules
This section summarizes the molecules that are available with XIL 1.3 and lists
the available optimizations.

Optimizations and Molecules For XIL Version 1.3 497

A

Cell Decompression

xil_decompress() -> xil_nearest_color()

xil_decompress() -> xil_ordered_dither()

Optimizations:

• 4x4 dither mask
• 1-band with pixel stride of 1 for destination
• 4-byte alignment

xil_decompress() ->[xil_scale()] -> xil_ordered_dither()

Optimizations:

• 4x4 dither mask
• 1-band with pixel stride of 1 for destination
• 4-byte alignment

Note – xil_scale() only supports 2.0 scale factor in x and y.

CellB Decompression

xil_decompress() -> xil_color_convert()

• Color conversion must be ycc601 -> rgb709

xil_decompress() -> xil_ordered_dither()

xil_decompress() -> xil_rescale() -> xil_ordered_dither()

FaxG4 Decompression

xil_decompress() -> xil_transpose()

• Supports FLIP 90, 180, 270

JPEG Baseline Sequential, MPEG-1, H.261 Decompression

xil_decompress() -> xil_color_convert()

• Color conversion must be ycc601 -> rgb709

498 Title of Book—Month 1996

A

xil_decompress() -> [xil_rescale()] -> xil_ordered_dither

• 4x4 dither mask
• 855 color cube only
• Image dimensions are multiple of 16

GX Display Molecules
These optimizations are performed as a single operation into the frame buffer
when the display image on a GX device is used as the destination. Often, the
frame buffer is used to accelerate the operations, providing greater speed.

• xil_copy()

• xil_set_value()

• xil_add_const()

• xil_cast() -> BIT -> BYTE

• xil_copy() with a GX display image used as source and destination
(in-place copy)

• xil_lookup() 1-band BIT -> 1-band BYTE

• xil_lookup() 1-band BYTE -> 1-band BYTE

• xil_multiply_const()

• xil_rescale()

• xil_scale() with nearest interpolation and a scale factor equal to 2.0 in
both x and y

• xil_translate()

• xil_threshold() for SHORT ; xil_threshold() for SHORT;
xil_cast() from SHORT -> BYTE (medical imaging
“window/level”operation)

These operations are performed into a GX frame buffer with a GX display
image as the destination.

499

XIL Error Messages B

Error Messages
This appendix contains a listing of the error messages that can be generated by
the XIL library. Breaks in the sequential numbering of the errors do not
indicate missing errors. These are merely gaps that occurred as the numbers
were assigned.

Note – Your application may receive errors from functions not listed in this
appendix. The function list is not complete at this writing.

500 XIL Programmer’s Guide—August 1997

B

Table B-1 XIL Library Error Messages

Error
Number Error Message Function That Generates Error

di -1 Out Of Memory All functions.

di-2 Image source1 bands or type
does not match destination

xil_extrema(), xil_fill(),
xil_add(), xil_add_const(),
xil_and(), xil_and_const(),
xil_threshold(),
xil_black_generation(),
xil_convolve(), xil_copy(),
xil_dilate(), xil_divide(),
xil_divide_by_const(),
xil_divide_into_const(),
xil_erode(), xil_histogram(),
xil_multiply(),
xil_multiply_const(), xil_not(),
xil_or(), xil_or_const(),
xil_ordered_dither(),
xil_paint(), xil_rescale(),
xil_set_value(),
xil_soft_fill(),
xil_squeeze_range(),
xil_subsample_adaptive(),
xil_subtract(),
xil_subtract_const(),
xil_subtract_from_const(),
xil_transpose(), xil_xor(),
xil_cis_get_output_type(),
xil_decompress(),
xil_absolute(),
xil_edge_detection(), xil_max(),
xil_min(), xil_tablewarp(),
xil_tablewarp_horizontal(),
xil_tablewarp_vertical()

XIL Error Messages 501

B

di-3 Image source 2 does not
match destination

xil_extrema(), xil_fill(),
xil_add(), xil_add_const(),
xil_and(), xil_and_const(),
xil_threshold(),
xil_black_generation(),
xil_convolve(), xil_copy(),
xil_dilate(), xil_divide(),
xil_divide_by_const(),
xil_divide_into_const(),
xil_erode(), xil_histogram(),
xil_multiply(),
xil_multiply_const(), xil_not(),
xil_or(), xil_or_const(),
xil_ordered_dither(),
xil_paint(), xil_rescale(),
xil_set_value(),
xil_soft_fill(),
xil_squeeze_range(),
xil_subsample_adaptive(),
xil_subtract(),
xil_subtract_const(),
xil_subtract_from_const(),
xil_transpose(), xil_xor(),
xil_cis_get_output_type(),
xil_decompress(),
xil_absolute(),
xil_edge_detection(), xil_max(),
xil_min(), xil_tablewarp(),
xil_tablewarp_horizontal(),
xil_tablewarp_vertical()

Table B-1 XIL Library Error Messages (Continued)

Error
Number Error Message Function That Generates Error

502 XIL Programmer’s Guide—August 1997

B

di-4 Image source 3 does not
match destination

xil_extrema(), xil_fill(),
xil_add(), xil_add_const(),
xil_and(), xil_and_const(),
xil_threshold(),
xil_black_generation(),
xil_convolve(), xil_copy(),
xil_dilate(), xil_divide(),
xil_divide_by_const(),
xil_divide_into_const(),
xil_erode(), xil_histogram(),
xil_multiply(),
xil_multiply_const(), xil_not(),
xil_or(), xil_or_const(),
xil_ordered_dither(),
xil_paint(), xil_rescale(),
xil_set_value(),
xil_soft_fill(),
xil_squeeze_range(),
xil_subsample_adaptive(),
xil_subtract(),
xil_subtract_const(),
xil_subtract_from_const(),
xil_transpose(), xil_xor(),
xil_cis_get_output_type(),
xil_decompress()

di-5 Operation not implemented All functions.

di-6 Could not get ROI of an
image

A secondary error caused by an internal
error. Could occur with any function.

di-7 Could not intersect ROIs A secondary error caused by an internal
error. Could occur with any function.

di-8 Could not get region list
from ROI

A secondary error caused by an internal
error. Could occur with any function.

Table B-1 XIL Library Error Messages (Continued)

Error
Number Error Message Function That Generates Error

XIL Error Messages 503

B

di-9 Could not get src1 as
memory

xil_add(), xil_add_const(),
xil_affine(), xil_and(),
xil_and_const(),
xil_black_generation(),
xil_blend(), xil_cast(),
xil_convolve(), xil_copy(),
xil_copy_pattern(),
xil_dilate(), xil_divide(),
xil_divide_by_const(),
xil_divide_into_const(),
xil_erode(),
xil_error_diffusion(),
xil_extrema(), xil_fill(),
xil_rotate(), xil_scale(),
xil_translate(),
xil_transpose(),
xil_histogram(), xil_lookup(),
xil_multiply(),
xil_multiply_const()
xil_nearest_color(), , xil_not(),
xil_or(), xil_or_const(),
xil_ordered_dither(),
xil_paint(), xil_rescale(),
xil_soft_fill(),
xil_subsample_adaptive(),
xil_subsample_binary_to_gray(),
xil_subtract(),
xil_subtract_const(),
xil_subtract_from_const(),
xil_threshold(), xil_xor(),
xil_edge_detection(),
xil_tablewarp(),
xil_tablewarp_horizontal(),
xil_tablewarp_vertical()

Table B-1 XIL Library Error Messages (Continued)

Error
Number Error Message Function That Generates Error

504 XIL Programmer’s Guide—August 1997

B

di-10 Couldn’t get dst1 as memory xil_add(), xil_add_const(),
xil_affine(), xil_and(),
xil_and_const(),
xil_black_generation(),
xil_blend(), xil_cast(),
xil_choose_colormap(),
xil_color_convert(),
xil_convolve(), xil_copy(),
xil_copy_pattern(),
xil_dilate(), xil_divide(),
xil_divide_by_const(),
xil_divide_into_const(),
xil_erode(),
xil_error_diffusion(),
xil_extrema(), xil_fill(),
xil_rotate(), xil_scale(),
xil_translate(),
xil_transpose(), xil_lookup(),
xil_multiply(),
xil_multiply_const(),
xil_nearest_color(), xil_not(),
xil_or(), xil_or_const(),
xil_ordered_dither(),
xil_paint(), xil_rescale(),
xil_soft_fill(),
xil_subsample_adaptive(),
xil_subsample_binary_to_gray(),
xil_subtract(),
xil_subtract_const(),
xil_subtract_from_const(),
xil_threshold(), xil_xor(),
xil_absolute(),
xil_copy_with_planemask(),
xil_max(), xil_min(),
xil_tablewarp(),
xil_tablewarp_horizontal(),
xil_tablewarp_vertical()

di-11 Could not get alpha as
memory

xil_blend()

Table B-1 XIL Library Error Messages (Continued)

Error
Number Error Message Function That Generates Error

XIL Error Messages 505

B

di-12 Could not get combined ROI xil_add(),
xil_add_const(),xil_and(),
xil_and_const(),
xil_black_generation(),
xil_blend(), xil_cast(),
xil_color_convert(), xil_copy(),
xil_dilate(), xil_divide(),
xil_divide_by_const(),
xil_divide_into_const(),
xil_erode(),
xil_error_diffusion(),
xil_lookup(), xil_multiply(),
xil_multiply_const(),
xil_nearest_color(), xil_not(),
xil_or(), xil_or_const(),
xil_ordered_dither(),
xil_paint(), xil_rescale(),
xil_subtract(),
xil_subtract_const(),
xil_subtract_from_const(),
xil_threshold(), xil_xor(),
xil_absolute(),
xil_copy_with_planemask(),
xil_max(), xil_min()

di-13 Dependent count overflow xil_compress(), xil_decompress()

di-14 Could not copy ROI A secondary error caused by memory
resource limitations. Could occur with any
function.

di-15 Could not get src2 as
memory

A secondary error caused by an internal
error. Could occur with any function.

di-16 ROI translation failed xil_copy_pattern() . Secondary error
probably due to resource problems.

di-17 Attempted to get an
unknown attribute

xil_cis_get_attribute()

di-18 Attempted to get a set-only
attribute

xil_cis_get_attribute()

Table B-1 XIL Library Error Messages (Continued)

Error
Number Error Message Function That Generates Error

506 XIL Programmer’s Guide—August 1997

B

di-19 Attempted to set an
unknown attribute

xil_cis_set_attribute()

di-20 Attempted to set a get-only
attribute

xil_cis_set_attribute()

di-21 Cannot create op A secondary error probably due to resource
problems. Could occur with any function.

di-22 Image type mismatch Any function

di-23 Unable to perform the
specified function

Should not happen unless an error occurred
during the operation

di-24 Could not get the ROI list xil_transpose()

di-55 XilCis: JPEG attribute error:
cannot have interleaved
bands with different
selector(s) and/or
pt_transform values

Reported by the JPEG lossless compressor

di-56 XilCis: JPEG attribute error:
DECOMPRESSION_
QUALITY value must be >= 1
and <= 100

xil_cis_set_attribute()

di-57 XilCis: JPEG attribute error:
ENCODE_INTERLEAVED
value must be either TRUE
or FALSE

xil_cis_set_attribute()

di-58 XilCis: JPEG attribute error:
ENCODE_VIDEO value must
be either TRUE or FALSE

xil_cis_set_attribute()

di-59 XilCis: JPEG attribute error:
COMPRESSION_QUALITY
value must be >=1 and
<=100

xil_cis_set_attribute()

di-60 XilCis: JPEG attribute error:
TEMPORAL_FILTER value
must be either TRUE or
FALSE

xil_cis_set_attribute()

Table B-1 XIL Library Error Messages (Continued)

Error
Number Error Message Function That Generates Error

XIL Error Messages 507

B

di-61 XilCis: JPEG attribute error:
OPTIMIZE_HUFFMAN_TABLE
S value must be either TRUE
or FALSE

xil_cis_set_attribute()

di-62 XilCis: JPEG attribute error:
COMPRESSED_DATA_FORMAT
 value must be either
INTERCHANGE or
ABBREVIATED_FORMAT

xil_cis_set_attribute()

di-63 XilCis: Cell attribute error:
Must set DECOMPRESSOR_
COLORMAP before
RDWR_INDICES

xil_cis_set_attribute() (for Cell)

di-64 XilCis: Cell attribute error:
RDWR_INDICES: Invalid
NULL index list

xil_cis_set_attribute() (for Cell)

di-65 XilCis: Cell attribute error:
RDWR_INDICES: Invalid
index list count

xil_cis_set_attribute() (for Cell)

di-66 XilCis: ROIs not allowed for
compress image

Reported by JPEG lossless compressor

di-67 XilCis: JPEG bytestream
error: Invalid code value
index

xil_decompress() . This error can also be
generated by xil_cis_has_frame() ,
xil_cis_number_of_frames() , and
xil_cis_seek() if user inserts data into
CIS with xil_cis_put_bits_[ptr]()
with an unknown or partial number of
frames.

di-68 XilCis: JPEG bytestream
error: Invalid symbol table
ID

xil_decompress() . This error can also be
generated by xil_cis_has_frame() ,
xil_cis_number_of_frames() , and
xil_cis_seek() if user inserts data into
CIS with xil_cis_put_bits_[ptr]()
with an unknown or partial number of
frames.

Table B-1 XIL Library Error Messages (Continued)

Error
Number Error Message Function That Generates Error

508 XIL Programmer’s Guide—August 1997

B

di-69 XilCis: JPEG bytestream
error: Invalid Huffman code
length

xil_decompress() . This error can also be
generated by xil_cis_has_frame() ,
xil_cis_number_of_frames() , and
xil_cis_seek() if user inserts data into
CIS with xil_cis_put_bits_[ptr]()
with an unknown or partial number of
frames.

di-70 XilCis: JPEG bitstream error:
Invalid value for prediction
selector

xil_cis_set_attribute()

di-71 XilCis: JPEG bitstream error:
Invalid value for point
transform

xil_cis_set_attribute()

di-72 XilCis: JPEG bitstream error:
Invalid SOF marker for this
decompressor

xil_decompress()

di-73 XilCis: JPEG bitstream error:
Invalid selector in SOF
segment

xil_decompress()

di-74 XilCis: JPEG bitstream error:
Unsupported image
precision in SOF segment

xil_decompress()

di-75 XilCis: JPEG bitstream error:
Invalid image height in SOF
segment

xil_decompress()

di-76 XilCis: JPEG bitstream error:
Invalid image width in SOF
segment

xil_decompress()

di-77 XilCis: JPEG bitstream error:
Invalid qtable marker 0

xil_compress()

di-78 XilCis: JPEG bitstream error:
Table not used by any bands

xil_compress()

di-79 XilCis: JPEG bitstream error:
Invalid quantizer precision
identifier

xil_cis_create(),
xil_compress(), xil_decompress()

Table B-1 XIL Library Error Messages (Continued)

Error
Number Error Message Function That Generates Error

XIL Error Messages 509

B

di-80 XilCis: JPEG bitstream error:
Number of quantizer tables
too large

xil_cis_create()

di-81 XilCis: JPEG bitstream error:
Table identifier not in use

xil_decompress()

di-82 XilCis: JPEG bitstream error:
Invalid table identifier

xil_decompress()

di-83 XilCis: JPEG bitstream error:
Invalid ac table identifier

xil_decompress()

di-84 XilCis: JPEG bitstream error:
dc table identifier not in use

xil_compress()

di-85 XilCis: JPEG bitstream error:
Invalid dc table identifier

xil_compress()

di-86 XilCis: JPEG bitstream error:
Invalid component identifier

xil_decompress()

di-87 XilCis: JPEG bitstream error:
Attempted use of non-
loaded ac table

xil_decompress()

di-88 XilCis: JPEG bitstream error:
Attempted use of non-
loaded dc table

xil_compress()

di-89 XilCis: JPEG bitstream error:
Attempted use of non-
loaded qtable

xil_compress()

di-90 XilCis: JPEG bitstream error:
Invalid htable identifier

xil_decompress()

di-91 XilCis: JPEG bitstream error:
Invalid qtable identifier

xil_cis_create(), xil_compress()

di-92 XilCis: JPEG bitstream error:
Unknown htable type

xil_cis_set_attribute()

di-93 XilCis: JPEG bitstream error:
Invalid band number

xil_cis_get_attribute()

Table B-1 XIL Library Error Messages (Continued)

Error
Number Error Message Function That Generates Error

510 XIL Programmer’s Guide—August 1997

B

di-94 XilCis: JPEG bitstream error:
Table index too large

xil_decompress()

di-95 XilCis: Internal error xil_cis_create(),
xil_cis_get_output_type(),
xil_cis_get_attribute(),
xil_compress(),
xil_decompress(),
xil_cis_has_data(),
xil_nearest_color(),
xil_cis_destroy()

di-96 XilCis: Wrong number of ops
in molecule

xil_nearest_color()

di-97 XilCis: Cell bitstream error xil_nearest_color()

di-98 XilCis: JPEG bitstream error xil_decompress()

di-100 XilCis: No data to
decompress

xil_cis_get_output_type()

di-101 XilCis: Could not create CIS
destination image

xil_decompress() . A secondary error
that occurs when the compressor is unable
to allocate a temporary image to compress
into.

di-102 XilCis: JPEG cannot encode
image as 4:1:1 yuv, using
ENCODE_INTERLEAVED
attribute instead

xil_compress()

di-103 XilCis: JPEG cannot
interleave image, it has 5 or
more bands

xil_compress()

di-104 XilCis: Wrote more than
maximum frame size into
buffer space

xil_compress() . Internal error. This
should never happen.

di-105 XilCis: Seek to frame number
not in CIS

xil_cis_seek()

di-106 XilCis: Desired frame
number no longer in CIS

xil_cis_seek()

Table B-1 XIL Library Error Messages (Continued)

Error
Number Error Message Function That Generates Error

XIL Error Messages 511

B

di-107 XilCis: CIS is empty, cannot
seek to frame number

xil_cis_seek()

di-108 XilCis: No previous desired
frame type to seek backward
to

xil_cis_seek() . Internal error.

di-109 XilCis: Unable to complete
seek by skipping (burning)
frames

xil_nearest_color()

di-110 XilCis: Complete frame does
not exist. No data to
decompress

xil_decompress()

di-111 XilCis: Image width and
height must be a multiple of
4

xil_cis_get_attribute(),
xil_decompress(),
xil_cis_get_output_type(),
xil_cis_has_data()

di-112 XilCis: Could not create
XilLookup for colormap

xil_decompress() (for Cell)

di-113 XilCis: Fax: Source not a bit
image

xil_compress()

di-114 XilCis: Incomplete frame in
buffer, cannot copy until
complete

xil_compress(),
xil_cis_put_bits()

di-115 Xilcis: start_frame
adjusted past read_frame .
CIS data lost.

xil_cis_seek(), xil_compress()

di-116 XilCis: Unsupported or
illegal precision for
compressed image

xil_decompress() . Internal error.

di-117 XilCis: Invalid NULL CIS
specified

xil_cis*() (ny xil_cis* routine)

di-118 XilCis: Partial frame end
adjustment error on frame
position

xil_compress(),
xil_cis_put_bits()

Table B-1 XIL Library Error Messages (Continued)

Error
Number Error Message Function That Generates Error

512 XIL Programmer’s Guide—August 1997

B

di-119 XilCis: Partial frame end
adjustment error on frame
list

xil_compress(),
xil_cis_put_bits()

di-120 XilCis: Cannot create copy
op

xil_compress(), xil_decompress()

di-121 XilCis: Invalid compression
type or specification

xil_compress(), xil_decompress()

di-122 XilCis: Can’t create
compression op

xil_decompress()

di-123 XilCis: Decompress
destination image’s type or
nbands does not match CIS

xil_decompress()

di-124 XilCis: Illegal relative_to
value in xil_cis_seek()

xil_cis_seek()

di-125 XilCis: Compression device
is unavailable

xil_cis_create()

di-126 XilCis: Couldn’t create
compression device

xil_cis_create()

di-127 Lookup would be too large
for data type

xil_lookup_create(),
xil_colorcube_create()

di-128 Colorcube multipliers do not
match sizes

xil_colorcube_create()

di-129 Object would be too large for
32-bit addressability

xil_create(),
xil_create_from_type(),
xil_create_temporaty(),
xil_kernel_create(),
xil_dithermask_create(),
xil_sel_create(),
xil_lookup_create(),
xil_colorcube_create(),
xil_histogram_create()

di-130 Attempted to read or write
outside the range of a
lookup

xil_lookup_get_values(),
xil_lookup_set_values()

Table B-1 XIL Library Error Messages (Continued)

Error
Number Error Message Function That Generates Error

XIL Error Messages 513

B

di-131 Invalid NULL lookup xil_ordered_dither(),
xil_error_diffusion(),
xil_nearest_color(),
xil_lookup_convert(),
xil_choose_colormap(),
xil_lookup(),
xil_lookup_destroy(),
xil_lookup_get_input_datatype(),
xil_lookup_get_output_datatype(),
xil_lookup_get_output_nbands(),
xil_lookup_get_num_entries(),
xil_lookup_get_version(),
xil_lookup_get_offset(),
xil_lookup_set_offset(),
xil_lookup_get_colorcube(),
xil_lookup_get_colorcube_info(),
xil_lookup_get_values(),
xil_lookup_set_values(),
xil_lookup_create_copy()

di-132 Look-up type mismatch xil_lookup_convert()

di-133 Lookup may not have input
type of XIL_FLOAT

xil_lookup_create(),
xil_colorcube_create()

di-134 Incorrect data type for image xil_create()
xil_create_temporary()

di-135 Attempted to set attribute on
a non-device image

xil_set_device_attribute()

di-136 Attempted to get attribute of
a non-device image

xil_get_device_attribute()

di-137 Requested pixel outside
range of image

xil_set_pixel(), xil_get_pixel()

di-138 Could not get image as
memory

xil_get_memory_storage()

Table B-1 XIL Library Error Messages (Continued)

Error
Number Error Message Function That Generates Error

514 XIL Programmer’s Guide—August 1997

B

di-139 Could not propagate image
storage

xil_get_memory_storage(),
xil_set_memory_storage().
This is probably the result of another error,
such as running out of memory.

di-140 Could not get image storage Internal system error

di-141 Could not create storage
device

xil_get_pixel(),
xil_set_pixel(),
xil_get_memory_storage()

di-142 Cannot get memory storage
on non-exported image

xil_get_memory_storage()

di-143 Could not access storage
device

Internal system error

di-144 Could not copy colormap xil_ordered_dither()

di-145 Could not create ROI A secondary error caused by an internal
error. Could occur with any function.

di-146 Invalid parameters passed to
function

xil_add(),
xil_create(),
xil_create_child(),
xil_create_copy(),
xil_set_origin(),
xil_histogram_create(),
xil_kernel_create(),
xil_lookup_create(),
xil_sel_create()

di-147 Could not create image Secondary error in xil_create()
xil_create_child(),
xil_create_copy()
xil_create_temporary()

di-148 Child count exceeded on
parent—could not create
child image

xil_create_child()

di-149 Could not create
input/output device

Internal system error

Table B-1 XIL Library Error Messages (Continued)

Error
Number Error Message Function That Generates Error

XIL Error Messages 515

B

di-150 Could not access
input/output device

Internal system error

di-151 Image already exported xil_export()

di-152 Image is of a type that
cannot be exported

xil_export()

di-153 Cannot import image that
was not previously exported

xil_import()

di-154 Image must be exported to
set memory storage

xil_set_memory_storage()

di-155 Cannot set memory storage
on a child image

xil_set_memory_storage()

di-156 Image band mismatch xil_cast(), xil_copy(),
xil_affine(), xil_blend(),
xil_copy_pattern(),
xil_rotate(), xil_scale(),
xil_subsample_binary_to_gray(),
xil_translate(), xil_absolute(),
xil_edge_detection(), xil_max(),
xil_min()

di-157 Undefined image data type
encountered

Internal error

di-158 Could not load .so file xil_open(),
xil_create_from_device()

di-159 Could not extract symbols
from .so file

xil_open()

di-160 Could not expand path xil_open()

di-161 Could not open /lib/
xil.compute file

xil_open()

di-162 XIL Xlib I/O Driver: Could
not get graphics context

xil_create_from_window()

di-163 Could not copy kernel xil_convolve(),
xil_kernel_create(),
xil_error_diffusion()

Table B-1 XIL Library Error Messages (Continued)

Error
Number Error Message Function That Generates Error

516 XIL Programmer’s Guide—August 1997

B

di-164 Input and output must be in
CMYK color space

xil_black_generation()

di-165 Alpha channel image must
have only 1 band

xil_blend()

di-166 Invalid size for lookup xil_choose_colormap(),
xil_lookup_create(),
xil_error_diffusion(),
xil_nearest_color()

di-167 Image must have 3 bands xil_choose_colormap()

di-169 SEL must be specified xil_dilate(), xil_erode()

di-170 Could not copy SEL xil_dilate(), xil_erode(),
xil_sel_create_copy()

di-171 Coefficient(s) would cause a
divide by zero

xil_divide()

di-172 Supplied coefficient(s)
contained NaN

xil_divide(), xil_multiply(),
xil_subtract()

di-173 Number of bands in src
image does not match look-
up table

xil_error_diffusion(),
xil_nearest_color(),
xil_ordered_dither()

di-174 Data type of dest image does
not match look-up table
input type

xil_error_diffusion(),
xil_nearest_color()

di-175 Data type of src image does
not match look-up table
output type

xil_error_diffusion(),
xil_nearest_color(),
xil_ordered_dither()

di-176 Output image must be single
banded

xil_error_diffusion(),
xil_nearest_color(),
xil_ordered_dither()

di-177 Could not copy lookup xil_error_diffusion(),
xil_nearest_color(),
xil_lookup_create_copy()

Table B-1 XIL Library Error Messages (Continued)

Error
Number Error Message Function That Generates Error

XIL Error Messages 517

B

di-179 Data type of src image does
not match look-up table
input type

xil_lookup()

di-180 Data type of dest image does
not match look-up table
output type

xil_lookup()

di-181 Input image must be single
banded

xil_lookup()

di-182 Brush must be specified xil_paint()

di-183 Could not copy brush xil_paint()

di-184 XilCis: Error AdjustStart Internal error

di-185 Attempt to insert at illegal
position in linked list

Internal error

di-186 Attempt to delete at illegal
position in linked list

Internal error

di-187 NULL ROI passed to
intersect routine

xil_roi_intersect()

di-188 Could not create image type xil_cis_get_output_type(),
xil_cis_get_input_type(),
xil_create(),
xil_create_child(),
xil_create_copy(),
xil_create_from_device(),
xil_create_from_type(),
xil_create_from_window()

di-189 Could not create kernel xil_kernel_create()

di-190 Could not create dithermask xil_dithermask_create()

di-191 Could not create SEL xil_sel_create()

di-192 Could not create lookup xil_lookup_create()

di-193 Could not branch to op Internal error

di-194 No capture operation
defined for this device

xil_copy()

Table B-1 XIL Library Error Messages (Continued)

Error
Number Error Message Function That Generates Error

518 XIL Programmer’s Guide—August 1997

B

di-195 No display operation
defined for this device

xil_copy()

di-197 Internal error in getting op
parameters

Internal error

di-198 Internal error in setting op
parameters

Internal error

di-199 Internal error searching for
optimized execution path

Internal error

di-202 Source color space not
specified

xil_color_convert()

di-203 Destination color space not
specified

xil_color_convert()

di-204 Unsupported color
conversion

xil_color_convert()

di-205 Could not get colorcube
information

Internal error

di-206 Lookup must be a colorcube xil_ordered_dither()

di-207 Invalid NULL image
specified

All functions

di-208 Tried to remove an error
handler that was not
installed

xil_remove_error_handler()

di-209 Cannot get system state from
image

Internal error

di-210 Cannot create lookup for
returning data

xil_squeeze_range()

di-211 Cannot squeeze range of
multiband image

xil_squeeze_range()

di-212 XIL I/O Driver: Could not
open specified frame buffer

xil_create_from_device()

di-213 XIL I/O Driver: Could not
perform ioctl on frame buffer

xil_create_from_device()

Table B-1 XIL Library Error Messages (Continued)

Error
Number Error Message Function That Generates Error

XIL Error Messages 519

B

di-214 XIL I/O Driver: Frame
buffer not of expected type

xil_create_from_device()

di-215 XIL I/O Driver: Could not
mmap device

xil_create_from_device()

di-216 Could not get FLOAT image
as memory

Internal error

di-217 XIL Memory Driver: Could
not get named storage type

A secondary error that can be seen after any
call that creates or copies images or CISs

di-218 XIL Memory Driver: Could
not create named storage
device

A secondary error that can be seen after any
call that creates or copies images or CISs

di-219 XIL I/O Driver: Could not
connect to dga

xil_create_from_device()

di-220 XIL I/O Driver: Could not
get window geometry

xil_create_from_device()

di-221 Invalid NULL kernel
specified

xil_convolve(),
xil_error_diffusion(),
xil_kernel_get_width(),
xil_kernel_get_height(),
xil_kernel_get_key_x(),
xil_kernel_get_key_y(),
xil_kernel_create_copy()

di-222 Invalid NULL dither mask
specified

xil_dithermask_get_width(),
xil_dithermask_get_height(),
xil_dithermask_get_nbands(),
xil_dithermask_create_copy(),
xil_error_diffusion(),
xil_ordered_dither()

di-223 Tried to write to an invalid
CIS

xil_compress()

di-224 Tried to read from an invalid
CIS

xil_decompress()

Table B-1 XIL Library Error Messages (Continued)

Error
Number Error Message Function That Generates Error

520 XIL Programmer’s Guide—August 1997

B

di-230 XilCis: Cell attribute failed
because too few bytes per
frame group

xil_cis_set_attribute()
(BITS_PER_SECOND)

di-231 XilCis: Cell key frame
interval is too large for bit
rate control

xil_cis_set_attribute()
(KEYFRAME_INTERVAL)

di-232 XilCis: Cell key frame
interval exceeds maximum

xil_cis_set_attribute()
(KEYFRAME_INTERVAL)

di-233 Must specify histogram xil_histogram()

di-234 Number of bands in image
and histogram do not match

xil_histogram()

di-235 Zero bins in histogram not
allowed

xil_create_histogram()

di-236 Cannot create histogram xil_create_histogram()

di-237 Could not initialize
compression type

xil_cis_create()

di-238 Could not initialize
input/output type

xil_create_from_device()

di-239 Could not set image
attribute

xil_set_attribute() . A secondary
error.

di-240 Error opening or parsing
/lib/xil.modules

xil_open()

di-241 Error loading Xlib display
driver

xil_create_from_window()

di-242 Couldn’t create display
image

xil_create_from_window() . A
secondary error.

di-243 Number of bands cannot be
0

xil_lookup_create()

di-244 Cannot create system state xil_open() . A secondary error.

di-245 Invalid dither mask
dimensions

xil_dithermask_create()

di-246 Cannot create global state xil_open() . A secondary error.

Table B-1 XIL Library Error Messages (Continued)

Error
Number Error Message Function That Generates Error

XIL Error Messages 521

B

di-247 Cannot initialize
localization information

xil_open()

di-248 Unable to load any compute
device handlers

xil_open() . Probably a secondary error
due to improper configuration.

di-249 XIL Xlib I/O Driver: Could
not get window attributes

xil_create_from_window()

di-250 XIL Xlib I/O Driver: Could
not create ximage

xil_create_from_window()

di-251 Number of bands in src
image does not match dither
mask

xil_ordered_dither()

di-252 Invalid colorcube
dimensions

xil_colorcube_create()

di-253 XilCis: Cell compress image
width is not an even
multiple of 4

xil_compress()

di-254 XilCis: Cell compress image
height is not an even
multiple of 4

xil_compress()

di-255 Could not copy image xil_create_copy()

di-256 Could not install error
handler

xil_install_error_handler()

di_257 Invalid NULL ROI specified Any of the xil_roi*() functions

di-258 Seed pixel not within fill
region defined by fill color

xil_soft_fill()

di-259 Invalid NULL data pointer xil_dithermask_create(),
xil_histogram_create(),
xil_kernel_create(),
xil_lookup_get_values(),
xil_lookup_set_values(),
xil_sel_create(),
xil_device_create(),
xil_interpolation_table_create()

Table B-1 XIL Library Error Messages (Continued)

Error
Number Error Message Function That Generates Error

522 XIL Programmer’s Guide—August 1997

B

di-260 Invalid NULL system state xil_create(),
xil_create_from_type(),
xil_create_from_device(),
xil_create_from_window()
xil_create_temporary(),
xil_create_temporaty_from_type(),
xil_cis_create(),
xil_roi_create(),
xil_kernel_create(),
xil_dithermask_create(),
xil_sel_create(),
xil_lookup_create(),
xil_colorcube_create(),
xil_histogram_create(),
xil_close(),
xil_state_get_synchronize(),
xil_state_set_synchronize(),
xil_state_get_show_action(),
xil_state_set_show_action(),
xil_install_error_handler(),
xil_remove_error_handler(),
xil_image_get_by_name(),
xil_lookup_get_by_name(),
xil_imageytpe_get_by_name(),
xil_cis_get_by_name(),
xil_dithermask_get_by_name(),
xil_kernel_get_by_name(),
xil_sel_get_by_name(),
xil_roi_get_by_name(),
xil_histogram_get_by_name(),
xil_colorspace_get_by_name()

di-261 XilCis: Attempted to set Cell
encoding type to unknown
value

xil_cis_set_attribute()
(“CELL_ENCODING_TYPE”)

Table B-1 XIL Library Error Messages (Continued)

Error
Number Error Message Function That Generates Error

XIL Error Messages 523

B

di-262 Invalid NULL SEL specified xil_sel_get_width(),
xil_sel_get_height(),
xil_sel_get_key_x(),
xil_sel_get_key_y,
xil_sel_cretae_copy()

di-263 Invalid kernel value (NaN) xil_kernel_create()

di-264 Invalid kernel value
(infinity or -infinity)

xil_kernel_create()

di-265 Invalid NULL histogram
specified

xil_histogram_get_values(),
xil_histogram_get_limits(),
xil_histogram_get_info(),
xil_histogram_get_nbins(),
xil_histogram_get_nbands(),
xil_histogram_destroy()

di-266 Invalid image dimensions
specified

xil_create(),
xil_create_from_type()
xil_create_temporary()

di-267 Could not copy dither mask xil_ordered_dither(),
xil_dithermask_create_copy()

Table B-1 XIL Library Error Messages (Continued)

Error
Number Error Message Function That Generates Error

524 XIL Programmer’s Guide—August 1997

B

di-268 Invalid NULL object pointer xil_lookup_get_version(),
xil_object_get_type(),
xil_cis_get_name(),
xil_cis_set_name(),
xil_dithermask_get_name(),
xil_dithermask_set_name(),
xil_get_name(), xil_set_name(),
xil_histogram_get_name(),
xil_histogram_set_name(),
xil_imagetype_get_name(),
xil_imagetype_set_name(),
xil_kernel_get_name(),
xil_kernel_set_name(),
xil_lookup_get_name(),
xil_lookup_set_name(),
xil_roi_get_name(),
xil_roi_set_name(),
xil_sel_get_name(),
xil_sel_set_name()

di-269 Could not set image ROI Internal error

di-271 Invalid dither mask value
(NaN)

xil_dithermask_create()

di-272 Invalid dither mask value
(greater than 1.0 or less than
0.0)

xil_dithermask_create()

di-273 Invalid SEL value (must be 0
or 1)

xil_sel_create()

di-274 Could not create internal
symbol table

xil_cis_create()

di-275 Could not create internal
Cell compressor object

xil_cis_create()

di-276 Internal error op number not
found

Internal error

di-277 Could not create internal
CisBufferManager object

xil_cis_create()

Table B-1 XIL Library Error Messages (Continued)

Error
Number Error Message Function That Generates Error

XIL Error Messages 525

B

di-278 Could not create internal
base
XilDeviceCompression
object

xil_cis_create()

di-279 Could not set object name xil_cis_set_name(),
xil_dithermask_set_name(),
xil_set_name(),
xil_histogram_set_name(),
xil_imagetype_set_name(),
xil_kernel_set_name(),
xil_lookup_set_name(),
xil_roi_set_name(),
xil_sel_set_name() . A secondary error.

di-280 Could not create JpegLL
compressor object

xil_cis_create()

di-281 Could not create JpegLL
decompressor object

xil_cis_create()

di-282 Could not create XilCis xil_cis_create()

di-283 XilCis: Cell user data size is
too large

xil_cis_set_attribute()
(“CELL_USER_DATA”)

di-284 XilCis:Bbitstream error:
Invalid SOF marker

xil_decompress(),
xil_cis_number_of_frames(),
xil_cis_get_attribute(),
xil_cis_set_attribute(),
xil_cis_get_input_type(),
xil_cis_get_output_type(),
xil_cis_attempt_recovery(),
xil_cis_get_bits_ptr()

di-285 XilCis: Invalid bitstream
parameters

xil_decompress(),
xil_cis_number_of_frames(),
xil_cis_get_attribute(),
xil_cis_set_attribute(),
xil_cis_get_input_type(),
xil_cis_get_output_type(),
xil_cis_attempt_recovery(),
xil_cis_get_bits_ptr()

Table B-1 XIL Library Error Messages (Continued)

Error
Number Error Message Function That Generates Error

526 XIL Programmer’s Guide—August 1997

B

di-286 Could not create full set of
standard objects

xil_open() . A secondary error.

di-287 Insert of operation failed xil_error_diffusion(),
xil_nearest_color(),
xil_ordered_dither(),
xil_squeeze_range() . A secondary
error.

di-288 XilCis: Image for compress
has ROIs or non-zero origin

xil_compress()

di-289 Invalid data in kernel for use
with error diffusion

xil_error_diffusion()

di-290 Partial frame start
adjustment error on frame
position

xil_decompress() (with partial frame in
the CIS),
xil_cis_number_of_frames(),
xil_cis_get_attribute(),
xil_cis_set_attribute(),
xil_cis_get_input_type(),
xil_cis_get_output_type(),
xil_cis_attempt_recovery(),
xil_cis_get_bits_ptr()

di-291 Partial frame flag not set on
buffer with partial frame

xil_decompress(),
xil_cis_number_of_frames(),
xil_cis_get_attribute(),
xil_cis_set_attribute(),
xil_cis_get_input_type(),
xil_cis_get_output_type(),
xil_cis_attempt_recovery(),
xil_cis_get_bits_ptr()

di-292 Partial frame start
adjustment error—mismatch
with buffer start

xil_decompress(),
xil_cis_number_of_frames(),
xil_cis_get_attribute(),
xil_cis_set_attribute(),
xil_cis_get_input_type(),
xil_cis_get_output_type(),
xil_cis_attempt_recovery(),
xil_cis_get_bits_ptr()

Table B-1 XIL Library Error Messages (Continued)

Error
Number Error Message Function That Generates Error

XIL Error Messages 527

B

di-293 Current buffer manager read
frame unknown

Internal error

di-294 XilCis: Could not derive
output type from data in CIS

xil_decompress()

di-295 Colorspace and image’s
number of bands mismatch

xil_set_colorspace()

di-296 Invalid NULL colorspace
specified

xil_color_convert() . An internal error.

di-297 Could not copy colorspace xil_color_convert() . An internal error.

di-298 Could not create colorspace xil_open() . An internal error, probably
due to running out of memory.

di-299 Number of bands in
destination image does not
match lookup table

xil_lookup()

di-300 Could not create internal fax
compressor

xil_compress()

di-301 Invalid NULL X region
specified

xil_roi_add_region()

di-302 Invalid colorcube multipliers xil_colorcube_create()

di-303 XilCis: Invalid Cell key
frame interval – negative

xil_cis_set_attribute()
(KEYFRAME_INTERVAL)

di-304 XilCis: Illegal seek backward
in a non-random access CIS

xil_cis_seek()

di-305 Bad value for Xil_boolean
type

xil_cis_set_attribute()
(TEMPORAL_FILTERING,
COLORMAP_ADAPTATION)

di-306 XilCis: Cell colormaps must
contain at least 2 colors

xil_cis_set_attribute()
(COMPRESSOR_MAX_CMAP_SIZE,
COMPRESSOR_COLORMAP)

di-307 Cell colormaps cannot
contain more than 256 colors

xil_cis_set_attribute()
(COMPRESSOR_MAX_CMAP_SIZE)

Table B-1 XIL Library Error Messages (Continued)

Error
Number Error Message Function That Generates Error

528 XIL Programmer’s Guide—August 1997

B

di-308 XilCis: Cell
COMPRESSOR_MAX_CMAP_
SIZE attribute cannot be
changed after first
xil_compress() call

xil_cis_set_attribute()
(COMPRESSOR_MAX_CMAP_SIZE)

di-310 XilCis: Quantizer value out
of range

xil_cis_set_attribute()
(QUANTIZATION_TABLE)

di-311 XilCis: Failure
decompressing Cell header

xil_decompress()

do-312 XilCis: Illegal H.261
bitstream

xil_decompress()

di-313 Compressor for px64 device
compression not yet
implemented

xil_compress()

di-314 XilCis: Unable to sync up
with current frame PSC in
H.261 bitstream

xil_decompress()

di-315 XIL I/O Driver: uname
system call failed

xil_create_from_window()

di-316 XIL Xlib I/O Driver: Could
not get ximage

xil_get_pixel()

di-317 XilCis: Error in seeking. No
frames to skip/burn

xil_cis_seek()

di-318 XilCis: Attribute error:
Value must be either TRUE
or FALSE

xil_cis_set_attribute()

di-319 XilCis: No user data
established for already
scanned Mpeg frame

xil_cis_seek()

di-320 XIL I/O Driver: Could not
get frame buffer info

xil_create_from_window()

di-321 Cannot resize a child image Internal error

Table B-1 XIL Library Error Messages (Continued)

Error
Number Error Message Function That Generates Error

XIL Error Messages 529

B

di-322 Cannot resize non-device
images

Internal error

di-323 Compressor for MPEG-1
device compression not yet
implemented

xil_compress()

di-324 XilCis: Attribute error:
Value out of range

xil_cis_set_attribute()

di-325 XilCis: D (DC intra-coded)
frame type not supported

xil_decompress()

di-326 Matrix size does not match
with src or dst number of
bands

xil_band_combine()

di-327 Tried to use an invalid image
in an operation

Any operation with an image that becomes
invalid. An image becomes invalid when an
operation that is supposed to write to it fails.

di-328 Internal error in ROI scan
conversion

Internal error

di-329 XilCis: Mpeg1 bitstream
error, incomplete frame

Any routine that involves a seek operation
within a CIS

di-330 XIL Xlib I/O Driver: Could
not capture image—window
not mapped

xil_copy()

di-331 Null lookup list or zero
number of lookups to
combine

xil_lookup_create_combined()

di-332 Input type of lookups are not
of same type

xil_lookup_create_combined()

di-333 Output type of lookups are
not of same type

xil_lookup_create_combined()

di-334 Not all lookups have a single
band

xil_lookup_create_combined()

Table B-1 XIL Library Error Messages (Continued)

Error
Number Error Message Function That Generates Error

530 XIL Programmer’s Guide—August 1997

B

di-335 Requested lookup table
doesn't exist—num_bands
too large

xil_lookup_create_combined()

di-336 Wrong lookup type—not a
combined lookup object

xil_lookup_create_combined()

di-337 XilCis: Wrote more than
max_frame_size bytes
into frame

xil_compress()

di-338 XilCis: moveEndStart error,
read frame must be at end of
buffer

xil_cis_get_bits_ptr()

di-339 XilCis: moveEndStart error,
read frame must have
following frame

xil_cis_get_bits_ptr()

di-340 XilCis: removeStartFrame
error, read frame must be
start of buffer

xil_cis_get_bits_ptr()

di-341 XilCis: mpeg1 seek,
prev_nonbframe_id is
frame which already has
valid display_id

xil_cis_seek(), xil_decompress()
for MPEG-1 CIS

di-342 XilCis:
doneBufferSpace()
called with negative number
of bytes, illegal

xil_compress()

di-343 Unsupported edge detection
method

xil_edge_detection()

di-344 Invalid NULL attribute
specified

xil_attribute_set_value(),
xil_device_create()

di-347 ROI rectangle width/height
cannot be <= 0

Any function that passes an image as an
argument

di-348 NULL warp table specified xil_tablewarp(),
xil_tablewarp_horizontal(),
xil_tablewarp_vertical()

Table B-1 XIL Library Error Messages (Continued)

Error
Number Error Message Function That Generates Error

XIL Error Messages 531

B

di-349 Warp table datatype
mismatch

xil_tablewarp(),
xil_tablewarp_horizontal(),
xil_tablewarp_vertical()

di-350 Warp table nbands mismatch xil_tablewarp(),
xil_tablewarp_horizontal(),
xil_tablewarp_vertical()

di-351 Could not create
Interpolation Table

xil_affine(),
xil_interpolation_table_create(),
 xil_rotate(), xil_scale(),
xil_tablewarp(),
xil_tablewarp_horizontal(),
xil_tablewarp_vertical(),
xil_translate()

di-352 Invalid NULL Interpolation
Table specified

xil_interpolation_table_create()

di-354 X & Y skip values must have
value greater than 0

xil_histogram(),
xil_histogram_create()

di-356 Cannot open specified data
file(s)

Could occur with any function whose
source image is a Photo CD device image.

di-358 Width and height must be
defined before parsing
XilCis

xil_decompress() of a CellB CIS

di-359 Cannot read from a write-
only device

Could occur with any function that tries to
read from a write-only device

di-360 Cannot write to a read-only
device

Could occur with any function that tries to
write to a read-only device

di-361 Invalid default tile size
specified for current tiling
mode

di-362 I/O device failed to provide
a required attribute for its
type and was not loaded

Table B-1 XIL Library Error Messages (Continued)

Error
Number Error Message Function That Generates Error

532 XIL Programmer’s Guide—August 1997

B

di-364 Unable to process
configuration information in
OWconfig file(s)

di-365 Mismatch in expected
number of boxes for
XilBoxList::getNext() -- full
operation was not done

di-366 Cannot re-size an exported
image

di-367 X scale factor not in the
range [0.0, 1.0]

di-368 Y scale factor not in the
range [0.0, 1.0]

di-369 Could not dlopen()
libdga.so.1

di-370 Could not dlsym() required
DGA symbol from
libdga.so.1

di-371 xil_get/set_memory_storage
not supported for given
datatyp

di-372 Invalid NULL
XilColorspaceList specified

di-373 Invalid NULL XilColorspace
given for the
XilColorspaceList

di-374 Could not create XilStorage

di-375 Could not create
XilColorspaceList

di-376 I/O device operation failed

di-377 Storage device operation
failed

Table B-1 XIL Library Error Messages (Continued)

Error
Number Error Message Function That Generates Error

XIL Error Messages 533

B

di-378 Attempted an operation
which is not supported for
this type of I/O device

di-379 Could not dlopen()
libkcs.so.1

di-380 Could not dlsym() required
KCMS symbol from
libkcs.so.1

di-381 KCMS function did not
return KCS_SUCCESS

di-382 Cannot set a non
XIL_COLORSPACE_NAME
XilColorspace on an image

di-383 Invalid NULL XilStorage
object specified

di-384 Unable to Sync

di-385 Unsupported datatype for
this operation

di-386 Device handler specified
invalid an operation branch
number of '%d'

di-387 Device handler's
describeMembers() returned
failure. '%s' not loaded

di-391 Could not copy
XilHistogram

di-392 Could not initialize the
image tile size

di-395 Could not get image tile size

di-396 Cannot set or get tile size on
a non-exported image

Table B-1 XIL Library Error Messages (Continued)

Error
Number Error Message Function That Generates Error

534 XIL Programmer’s Guide—August 1997

B

di-398 xil_convert() is not
supported for combined
lookups

di-399 Copy failed when in
updating version for non-
deferrable object with
deferrable dependents

di-400 Could not successfully
execute operation

di-401 Could not get source ROI in
global space

di-402 Could not get destination
ROI in global space

di-403 Adding box entry to boxlist
failed

di-404 Could not lock DAG

di-405 Datatype mismatch when
setting storage information

di-406 Band offset is too large for
setting storage information

di-407 Invalid storage type
encountered

di-408 When tiling mode is
XIL_STRIPPING, tile X size
must be 0

di-409 Encountered an invalid
tileing mode

di-411 Thread creation failed

di-412 Error in loading device
handler %s

di-414 Requested name of an
invalid object type

Table B-1 XIL Library Error Messages (Continued)

Error
Number Error Message Function That Generates Error

XIL Error Messages 535

B

di-415 Unable to set preprocess
routine information for the
operation

di-416 Invalid NULL interpolation
specified

di-417 Unable to set input type on
device compressor

di-418 Could not decompress
header information

di-421 Unsupported interpolation
type specified

di-422 Initializing XilTileList class
failed

di-423 Set memory storage failed

di-424 Reducing op queue length
has failed

di-425 Updating operation status
encountered unknown status
-- operation may not have
executed

di-426 Setting invalid band or
parameter on storage object

di-427 Could not determine source
position number in
evaluating dependent

di-428 Invalid operation for a
temporary image

xil_export() ,
xil_get_pixel() ,
xil_set_colorspace() ,
xil_set_origin() ,
xil_set_pixel(),
xil_set_roi()

di-429 Using destroyed image in
operation

Table B-1 XIL Library Error Messages (Continued)

Error
Number Error Message Function That Generates Error

536 XIL Programmer’s Guide—August 1997

B

di-430 Missing mutex reference
while operation evaluating --
unable to wait

di-431 Convex region intersection
generated more than
maximum of 16 vertices

di-432 ROI transpose failed

di-433 ROI unite failed

di-434 Operation source #1 has
incorrect datatype

di-435 Operation source #2 has
incorrect datatype

di-436 Operation source #3 has
incorrect datatype

di-437 Operation destination has
incorrect datatype

di-438 Illegal operation for an
imported image

di-439 Operation destination has
incorrect number of bands

di-440 Could not copy
XilImageType

di-441 Could not copy XilStorage

di-442 Could not copy
XilInterpolationTable

di-443 Tile number is higher than
there are tiles in
setOpStatus()

di-444 Tile number is higher than
there are tiles in
getOpStatus()

Table B-1 XIL Library Error Messages (Continued)

Error
Number Error Message Function That Generates Error

XIL Error Messages 537

B

di-445 Could not translate from one
internal ROI
implementation to another

di-446 Invalid NULL affine
transfomation matrix
specified

di-447 Source smaller than
kernel/sel not yet
implemented

di-448 Invalid XIL XilImageType
specified

xil_create_from_type() ,
xil_create_temporary_from_type()

di-449 Attempting to change a non-
NULL DAG reference

di-450 Non-integral sampling
ratios not yet implemented

di-451 Setting the tile size on a
child image is not supported

di-452 Mismatch of tiling mode and
tile size

Table B-1 XIL Library Error Messages (Continued)

Error
Number Error Message Function That Generates Error

538 XIL Programmer’s Guide—August 1997

B

539

XIL-XGL Interoperability C

Using XIL and XGL Calls in the Same Program
The XIL imaging library includes two functions to process an image using both
XIL and XGL 3.x calls in the same program.

Note – This interface is provided in the form of example code that you must
build into a static library.

The code for these two functions can be found in the convert.c source file,
which is located in the /usr/openwin/demo/xil/libxil_to_xgl
directory. The Makefile in this directory is provided to build the code into
libxil_to_xgl.a . This means that programs that use the conversion
functions must link with:

• -lxil
• -lxgl
• -lxil_to_xgl

With xil_to_xgl() , you can convert an XIL memory image to an XGL
memory raster or you can convert an XIL display image to an XGL window
raster. This is the prototype for this function.

Xgl_ras
xil_to_xgl(XilImage src, Xgl_sys_state xgl_state);

540 XIL Programmer’s Guide—August 1997

C

The src parameter is a handle to an XIL memory image or display image, and
xgl_state is a handle to an XGL System State object. If the function is
successful, the return value is a handle to an XGL memory raster or window
raster. If the functions fails, the return value is NULL.

With the other function, xgl_to_xil() , you can convert an XGL memory
raster to an XIL memory image or you can convert an XGL window raster to
an XIL display image.

The src parameter is a handle to an XGL memory raster or window raster, and
xil_state is an XIL system state. The function’s return value is a handle to
an XIL memory image or display image. If the function fails, the return value is
NULL.

Conversions
Table C-1 lists the specific conversions that these functions make possible.
Within each row, the XIL image listed in the left column can be converted to
the XGL object in the right column and vice versa.

Note – The conversions shown in the first row of Table C-1 are possible only if
the width of the XIL image is an even number.

XilImage
xgl_to_xil(Xgl_ras src, XilSystemState xil_state);

Table C-1 XIL-XGL Interoperability

XIL Image XGL Object

A one-band XIL_BYTE memory image A memory raster with the attribute
XGL_COLOR_INDEX

A four-band XIL_BYTE memory image A memory raster with the attribute
XGL_COLOR_RGB

A one-band XIL_BYTE display image A window raster with the attribute
XGL_COLOR_INDEX

A three-band XIL_BYTE display image A window raster with the attribute
XGL_COLOR_RGB

XIL-XGL Interoperability 541

C

Restrictions
Once you have both an XIL and an XGL handle to an object, you can process it
using either XIL functions or XGL functions. The only restriction on combining
these calls is that there cannot be any outstanding deferred operations on the
object at the time you switch from making XIL calls to XGL calls, or vice versa.
This means that if you have been processing an image using XIL functions, you
must call xil_sync() to flush all outstanding operations on the image before
operating on the image using XGL functions. Similarly, if you have been
processing a raster using XGL functions, you must call
xgl_context_flush() before performing any XIL operations on the raster.

542 XIL Programmer’s Guide—August 1997

C

543

Cell and CellB Bytestream
Definitions D

This appendix provides an overview of the Cell technology, then focuses on the
descriptions of the codes that are used in a Cell bytestream. Although some
rationale for the existence of the various codes is discussed, specific
implementation information about Cell encoders or decoders is not provided.

This appendix has the following main sections:

Introduction to Cell
The Cell image compression technology, which was developed by Sun
Microsystems™, provides high-quality, low bit-rate image compression at low
computational cost. Applications where Cell compression can be used include
videoconferencing, media distributions on CD-ROM, and multimedia mail
applications. The bytestream that is produced by a Cell encoder is variable
length and is made up of instructional codes and information about the
compressed video image.

There are two versions of the Cell image compression technology: Cell and
CellB. Cell compression, which is designed for use with movies, is
computationally asymmetric; it takes longer to compress video data than it

Introduction to Cell page 543

Encoding Images for Cell page 544

Cell Bytestream Description page 546

CellB Bytestream Description page 553

544 XIL Programmer’s Guide—August 1997

D

does to decompress the data. To provide high-quality images, Cell supports
Adaptive Colormap Selection, which enables an encoder to change colormaps
dynamically. The bytestream of images that are compressed with Cell can be
decompressed in software on any SPARCstation™ workstation. Depending on
compression ratios, 640x480-resolution movies can be played back at 30
frames/second (fps). Multiple smaller movies can be displayed simultaneously
at this rate.

CellB, which is derived from Cell, is designed for use in videoconferencing
applications. To reduce computational overhead and meet the timing demands
of videoconferencing, CellB compression is more computationally symmetric
than Cell. CellB uses a fixed colormap and is designed to use vector
quantization techniques. The bytestream of a CellB image is simpler (and more
compact) than that of a Cell image, which reduces requirements on network
bandwidth.

Encoding Images for Cell
Cell works with 3-band RGB images, with no subsampling, and requires that
the width and height of the images be divisible by four. CellB takes
industry-standard 3-band YCbCr video as input.

A cell encoder breaks the video into cells. A cell is 16 pixels, arranged in a
4-by-4 group, as shown in Figure D-1. Cells are encoded into the bytestream in
scanline order, from left to right and from top to bottom.

Figure D-1 Cell

The basic encoding scheme used in both versions of Cell is based on an image
coding method called Block Truncation Coding (BTC). The 16 pixels in a cell
are represented by a 16-bit mask and two colors. The values in the mask

Cell (four blocks of four pixels)

Cell and CellB Bytestream Definitions 545

D

specify which color to place at each of the pixel positions. The mask and colors
can be chosen to maintain certain statistics of the cell or to reduce contouring
in a manner similar to ordered dither.

The primary advantage of BTC is that its decoding process is similar to the
operation of character fonting in a color frame buffer. The character display
process for a frame buffer takes as input a foreground color, a background
color, and a mask that specifies whether to use the foreground or background
color at each pixel. Because this function is so important to the window
system, it is often implemented as a display primitive in graphics accelerators.
The Cell compression technique leverages these existing primitives to provide
full-motion video decoding without special hardware or modifications to the
window system.

The basic component of the Cell and CellB bytestreams is the four-byte cell
code. The first two bytes of the cell code are a bitmask, as shown in Figure D-2.
Each bit in the mask represents a pixel in a 16-bit cell. The bitmask is
normalized so that the most significant bit is 0. The figure shows the
relationship of the bits in the mask to the location of the pixels in a cell. A
value of 0 in a mask bit means that the pixel is rendered in the background
color (color 0). A value of 1 means that the pixel is rendered in the foreground
color (color 1).

The last two bytes of a cell code establish a pixel’s color. Cell and CellB differ
in the way that pixel colors are derived. In Cell, the values in the color 0 and
color 1 bytes are indexes into a colormap. In CellB, the values are indexes into
Y/Y and Cb/Cr vector quantization tables.

546 XIL Programmer’s Guide—August 1997

D

Figure D-2 Encoding a Cell

Cell Bytestream Description
The Cell bytestream can contain the following codes:

• Key-frame headers
• Key parameters
• Cell codes
• Run length codes
• Escape codes

Always 0 ``M14 M13 M12

M11 M10 M09 M08

M07 M06 M05 M04

M03 M02 M01 M00

Cell from a 24-bit image

Cell Encoder

Cell Code (Four Bytes)

Pixel Bitmask Color 0Color 1

M M M M M M M M0 M M M M M M M

015

Normalized
To 0

Cell A

Cell B

BBBBBBBB

Y/Y VectorCb/C r Vector

FFFFFFFF

Cell and CellB Bytestream Definitions 547

D

At a minimum, the Cell bytestream must contain a key-frame header, a key
frame, and cell codes. More compression is provided by using run length codes
for cells. The escape codes enable you to skip frames, load colormaps, change
masks and colors, and include non-video (user) data in the bytestream.

The codes are described in the following sections.

Key-Frame Header and Key Parameters

A Cell bytestream contains periodic key frames, which are free of interframe
escape codes. Every key frame is preceded by a key-frame header, which is
described below. Immediately after the key-frame header, the colormap is
encoded. If the colormap has not changed since the previous frame, it is
repeated anyway. The first frame of a Cell movie is always a key frame.

Key-Frame Header

The key-frame header begins with a series of 8 bytes of all 1’s (0xff). This code
is followed by a number of parameters, which are introduced by 1-byte codes.
The end of a key-frame header is marked by an all-zero byte.

Start of Key-Frame Header

11111111 11111111 11111111 11111111
11111111 11111111 11111111 11111111

Parameters

End of Key-Frame Header

00000000

. .
 .

. .
 .

548 XIL Programmer’s Guide—August 1997

D

Image Dimensions Key-Frame Code

The following code precedes the 16-bit unsigned width and height of an image.

Frame Rate Key-Frame Code

The following code precedes a 32-bit unsigned number that sets the frame rate
in microseconds per frame.

Size of Colormap Key-Frame Code

The following code precedes a byte that specifies the maximum size (Count+1)
of a colormap in the bytestream.

Reserved Key-Frame Codes

The key-frame header codes in the range 00000000 to 11111111 (inclusive) are
reserved.

Example Key-Frame Header

As an example, a key-frame header for a 320-by-240 movie with a frame rate of
30 fps and a maximum colormap size of 240 would look like this (in hex):

Code Width Height

00000001 WWWWWWWW WWWWWWWW HHHHHHHH HHHHHHHH

Code Frame Rate

00000010 RRRRRRRR RRRRRRRR RRRRRRRR RRRRRRRR

Code Count

00000011 CCCCCCCC

Cell and CellB Bytestream Definitions 549

D

ff ff ff ff ff ff ff ff Start of key-frame header
01 01 40 00 f0 Dimensions 320 (0x140) by 240 (0xf0)
02 00 00 82 35 33,333 (0x8235) usecs per frame
03 ef Max colormap size is 239 (0xef) + 1
00 End of key-frame header
c0 ... Escape code for colormap

Cell Code

The four-byte code that describes a 4-by-4 Cell cell is shown below. The values
in the Color1 and Color0 bytes are indexes into the current colormap. If a
pixel’s bit is set, the color that is indexed in the Color1 byte is used. If not set
(0), the pixel is rendered with the color that is indexed by the value of the
Color0 byte.

The relationship of the bitmask bits to the pixels in a cell is shown below.

4x4 Bitmask Color1 Color0

0MMMMMMM MMMMMMMM FFFFFFFF BBBBBBBB

Always 0

0 ``M14 M13 M12
M11 M10 M09 M08

M07 M06 M05 M04

M03 M02 M01 M00

Pixel Bitmask

M M M M M M M M0 M M M M M M M

015

550 XIL Programmer’s Guide—August 1997

D

Run Length Code

Runs of cells that use the same color can be described by a run length code,
which is shown below. The code causes the next Count+1 cells to be rendered
in the color that is specified in the Color0 byte.

Escape Codes

A Cell encoder can use the following escape codes to perform operations such
as loading colormaps, skipping frames, and including user data in the
compressed bytestream. All escape codes start with a 1 in the code’s most
significant bit.

Skip Cells

The following code causes the next N+1 cells to be skipped (to a maximum of
64 cells).

Load a New Colormap

The following code loads a new colormap. Count+1 byte-triples (red byte,
green byte, and blue byte) follow the Count byte.

Runlength Code Color0 Count

00000000 00000000 BBBBBBBB CCCCCCCC

Code

10NNNNNN

Code Count

11000000 CCCCCCCC rrrrrrrr gggggggg bbbbbbbb

Cell and CellB Bytestream Definitions 551

D

Use Same Mask With New Colors

The following code uses the same mask as the previous cell, but with new
colors.

Use Same Mask With Color 0

The following code uses the same mask as the previous cell, but with a new
color as indexed by the value of the Color0 byte.

Use Same Mask With Color 1

The following code uses the same mask as the previous cell, but with a new
color as indexed by the value of the Color1 byte.

Use Same Colors With New Mask

The following code uses the same colors as the previous cell, but with a new
bitmask.

Code Color0 Color1

11000010 BBBBBBBB FFFFFFFF

Code Color0

11000011 BBBBBBBB

Code Color1

11000100 FFFFFFFF

Code 4x4 Bitmask

110000101 MMMMMMMM MMMMMMMM

552 XIL Programmer’s Guide—August 1997

D

Include User Data

The following code enables you to include your own data in the bytestream.
The next N+1 bytes in the bytestream are user data.

Skip an Entire Frame

The following code causes the next frame to be skipped.

First Byte of Key-Frame Header

The following code is the first byte of a key-frame header, which was described
earlier.

Reserved Codes

The codes in the range 11001000 to 11111110 (inclusive) are reserved.

Code Byte Count

11000110 NNNNNNNN NNNNNNNN NNNNNNNN uuuuuuuu uuuuuuuu

Code

11000111

Code

11111111

Cell and CellB Bytestream Definitions 553

D

Summary of Cell Codes

Table D-1 lists the Cell codes.

CellB Bytestream Description
CellB compression is designed for use in videoconferencing applications.
Rather than indexing into a colormap to determine pixel colors (as in Cell),
CellB is designed to be used with vector quantization and dequantization
techniques in the YCbCr color space.

Table D-1 Cell Bytestream Codes

Code Description

0MMMMMMM MMMMMMMM FFFFFFFF BBBBBBBBCell code: M=bit mask, F=color 1 index, B=color 0
index

00000000 00000000 BBBBBBBB CCCCCCCC Run length code: B=color 0 index, cell count =
C+1

10NNNNNN Interframe skip: cell count N+1

11000000 CCCCCCCC Load new colormap: count of entries (RGB
triples) that follow = C+1

11000010 BBBBBBBB FFFFFFFF Same mask, new colors: B=color 0 index, F=color
1 index

11000011 BBBBBBBB Same mask, new color 0: B=color 0 index

11000100 FFFFFFFF Same mask, new color 1: F=color 1 index

11000101 0MMMMMMM MMMMMMMM Same colors, new mask: M=bit mask

11000110 NNNNNNNN NNNNNNNN NNNNNNNNUser data: count of user bytes that follow = C+1

11001000-11111111 Reserved

11111111 11111111 11111111 11111111
11111111 11111111 11111111 11111111

Start of key-frame header

00000001 WWWWWWWW WWWWWWWW HHHHHHHH
HHHHHHHH

Key frame, image dimensions: W=width,
H=height

00000010 RRRRRRRR RRRRRRRR RRRRRRRR
RRRRRRRR

Key frame, frame rate in usec: R=frame rate

00000011 CCCCCCCC Key frame, maximum colormap size = C+1

00000000 End of key-frame header

554 XIL Programmer’s Guide—August 1997

D

The CellB bytestream contains no information about image size and frame
rates. It’s the responsibility of the videoconferencing application to provide
this information.

The CellB bytestream consists of:

• Cell codes
• Skip codes
• Quantization-table specification codes

Cell Code

The four-byte code that describes a 4-by-4 CellB cell is shown below. There are
two possible luminance (Y) levels for each cell but only one pair of
chrominance (Cb and Cr) values.

The value in the Cb/Cr byte represents the chrominance component of the cell.
The value in the Y/Y byte represents two luminance values (Y0 and Y1) that
can represent the cell’s luminance.

If a pixel’s bit is set in the 4-by-4 bitmask, the color that is rendered for the
pixel is <Y1,Cb,Cr>. If a pixel’s bit is not set, the pixel is rendered by the color
represented by <Y0,Cb,Cr>.

MMMMMMMMFFFFFFFF 100SSSSS 0MMMMMMM0MMMMMMM BBBBBBBB

Cell Code Skip Code
Quantization Table

Code

1111111T

4x4 Bitmask U/V Code Y/Y Code

0MMMMMMM MMMMMMMM UVUVUVUV YYYYYYYY

Cell and CellB Bytestream Definitions 555

D

The relationship of the bitmask bits to a cell’s pixels is shown below.

Cb/Cr Quantization Table

The Cb/Cr field of the CellB bytecode represents the chrominance component
of the cell. This Cb/Cr code is an index into a table of vectors that represent two
independent components of chrominance. Figure D-3 on page 556 shows the
default chrominance table. “Cb/Cr Table Values” on page 564 contains a list of
the values used in the table.

The distribution of values in this default table is based on the observation that,
in videoconferencing applications, a cell’s Cb/Cr vectors are clustered around
the origin (0,0). Therefore, the Cb/Cr codeword is circularly symmetric, with
higher densities near the origin.

Always 0

0 ``M14 M13 M12
M11 M10 M09 M08

M07 M06 M05 M04

M03 M02 M01 M00

Pixel Bitmask

M M M M M M M M0 M M M M M M M

015

556 XIL Programmer’s Guide—August 1997

D

Figure D-3 Default CellB Chrominance Quantization Table

Y/Y Quantization Table

The Y/Y field of the CellB bytecode represents two luminance values of a cell
(Y0 and Y1). This Y/Y code is an index into a table of two-component
luminance vectors. Figure D-4 on page 558 shows the default luminance table.
“Y/Y Table Values” on page 560 provides the list of values for the table.

v

128

96

64

32

0

-32

-64

-96

-128

u
-128 -96 -64 -32 0 32 64 96 128

Cell and CellB Bytestream Definitions 557

D

The distribution of values in the default luminance table is statistically
optimized. The quantizer takes advantage of the high correlation of luminance
values within local regions of a cell. This results in a set of representative
vectors that are most densely populated around the diagonal, where y1 equals
y2.

An observer’s sensitivity to contrast is also taken into account, resulting in a
distribution of points that is farther apart in regions where the contrast
between two values is low.

558 XIL Programmer’s Guide—August 1997

D

In Figure D-4, the value for the Y/Y code is selected by approximating the
mean luminance for the cell. Then, the pixels within the cell are separated into
groups that are above and below the mean luminance. The mean luminance of
these two groups is used to index a two-dimensional vector quantizer, which
returns a byte value for the Y/Y code.

Figure D-4 Default CellB Luminance Quantization Table

Skip Code

The single-byte CellB skip code is shown below.

y1

256

224

192

160

128

96

64

32

0
y0

0 32 64 96 128 160 192 224 256

100SSSSS

Cell and CellB Bytestream Definitions 559

D

The skip code tells the decoder to skip the next S+1 cells in the frame that is
being decoded, which, for CellB, supports a simple form of interframe
encoding. There are five skip bits, so that a maximum of 32 cells can be
skipped with a single-byte skip code.

New Y/Y Table

The single-byte “new Y/Y table” code is shown below.

This code tells the decoder that the next 512 bytes are a new Y/Y quantization
table. The bytes are arranged as:

Y1_000 Y2_000
Y1_001 Y2_001
. .
. .
. .
Y1_255 Y2_255

Note – This code is not implemented in the current CellB compressor and
decompressor.

New U/V Table

The single-byte “new U/V table” code is shown below.

This code tells the decoder that the next 512 bytes are a new U/V quantization
table. The bytes are arranged as:

U_000 V_000
U_001 V_001
. .

11111110

11111111

560 XIL Programmer’s Guide—August 1997

D

. .

. .
U_255 V_255

Note – This code is not implemented in the current CellB compressor and
decompressor.

Default CellB Quantization Tables

Y/Y Table Values

Table D-2 lists the default values for the CellB Y/Y quantization table.

Table D-2 Default CellB Y/Y Table (1 of 4)

Index Y1 Y2 Index Y1 Y2 Index Y1 Y2

0 16 20 87 120 136 174 112 64

1 16 24 88 128 136 175 128 64

2 16 32 89 128 144 176 72 68

3 16 48 90 128 160 177 76 72

4 16 64 91 128 176 178 80 72

5 16 80 92 128 192 179 88 72

6 16 112 93 136 144 180 80 76

7 16 144 94 136 152 181 84 80

8 16 176 95 144 152 182 88 80

9 16 208 96 144 160 183 96 80

10 16 240 97 144 176 184 112 80

11 20 24 98 144 192 185 128 80

12 24 28 99 144 208 186 144 80

13 24 32 100 144 240 187 176 80

14 24 40 101 152 160 188 208 80

15 28 32 102 152 168 189 240 80

16 32 36 103 160 168 190 88 84

Cell and CellB Bytestream Definitions 561

D

17 32 40 104 160 176 191 92 88

18 32 48 105 160 192 192 96 88

19 32 64 106 160 208 193 104 88

20 32 80 107 160 224 194 96 92

21 32 96 108 168 176 195 100 96

22 36 40 109 168 184 196 104 96

23 40 44 110 176 184 197 112 96

24 40 48 111 176 192 198 128 96

25 40 56 112 176 208 199 144 96

26 44 48 113 176 224 200 160 96

27 48 52 114 176 240 201 104 100

28 48 56 115 184 192 202 108 104

29 48 64 116 184 200 203 112 104

30 48 80 117 192 200 204 120 104

31 48 96 118 192 208 205 112 108

32 48 112 119 192 224 206 116 112

33 48 144 120 192 240 207 120 112

34 48 176 121 200 208 208 128 112

35 48 208 122 200 216 209 144 112

36 48 240 123 208 216 210 160 112

37 52 56 124 208 224 211 176 112

38 56 60 125 208 240 212 208 112

39 56 64 126 216 232 213 240 112

40 56 72 127 224 240 214 128 120

41 60 64 128 20 16 215 136 120

42 64 68 129 24 16 216 136 128

43 64 72 130 32 16 217 144 128

Table D-2 Default CellB Y/Y Table (2 of 4)

Index Y1 Y2 Index Y1 Y2 Index Y1 Y2

562 XIL Programmer’s Guide—August 1997

D

44 64 80 131 48 16 218 160 128

45 64 96 132 64 16 219 176 128

46 64 112 133 80 16 220 192 128

47 64 128 134 112 16 221 144 136

48 68 72 135 144 16 222 152 136

49 72 76 136 176 16 223 152 144

50 72 80 137 208 16 224 160 144

51 72 88 138 240 16 225 176 144

52 76 80 139 24 20 226 192 144

53 80 84 140 28 24 227 208 144

54 80 88 141 32 24 228 240 144

55 80 96 142 40 24 229 160 152

56 80 112 143 32 28 230 168 152

57 80 128 144 36 32 231 168 160

58 80 144 145 40 32 232 176 160

59 80 176 146 48 32 233 192 160

60 80 208 147 64 32 234 208 160

61 80 240 148 80 32 235 224 160

62 84 88 149 96 32 236 176 168

63 88 92 150 40 36 237 184 168

64 88 96 151 44 40 238 184 176

65 88 104 152 48 40 239 192 176

66 92 96 153 56 40 240 208 176

67 96 100 154 48 44 241 224 176

68 96 104 155 52 48 242 240 176

69 96 112 156 56 48 243 192 184

70 96 128 157 64 48 244 200 184

Table D-2 Default CellB Y/Y Table (3 of 4)

Index Y1 Y2 Index Y1 Y2 Index Y1 Y2

Cell and CellB Bytestream Definitions 563

D

71 96 144 158 80 48 245 200 192

72 96 160 159 96 48 246 208 192

73 100 104 160 112 48 247 224 192

74 104 108 161 144 48 248 240 192

75 104 112 162 176 48 249 208 200

76 104 120 163 208 48 250 216 200

77 108 112 164 240 48 251 216 208

78 112 116 165 56 52 252 224 208

79 112 120 166 60 56 253 240 208

80 112 128 167 64 56 254 232 216

81 112 144 168 72 56 255 240 224

82 112 160 169 64 60

83 112 176 170 68 64

84 112 208 171 72 64

85 112 240 172 80 64

86 120 128 173 96 44

Table D-2 Default CellB Y/Y Table (4 of 4)

Index Y1 Y2 Index Y1 Y2 Index Y1 Y2

564 XIL Programmer’s Guide—August 1997

D

Cb/Cr Table Values

Table D-3 lists the default values for the CellB Cb/Cr quantization table.

Table D-3 Default CellB Cb/Cr Table (1 of 4)

Index U V Index U V Index U V

0 16 16 87 128 184 174 160 120

1 16 48 88 128 192 175 160 128

2 16 80 89 128 208 176 160 136

3 16 112 90 128 224 177 160 144

4 16 144 91 132 136 178 160 152

5 16 176 92 132 140 179 160 160

6 16 208 93 132 144 180 160 168

7 16 240 94 132 148 181 160 176

8 48 16 95 132 152 182 160 184

9 48 48 96 136 104 183 160 192

10 48 80 97 136 112 184 160 208

11 48 112 98 136 120 185 160 224

12 48 144 99 136 128 186 168 112

13 48 176 100 136 132 187 168 120

14 48 208 101 136 136 188 168 128

15 48 240 102 136 140 189 168 136

16 64 112 103 136 144 190 168 144

17 64 128 104 136 148 191 168 152

18 64 144 105 136 152 192 168 160

19 64 160 106 136 156 193 168 168

20 64 176 107 136 160 194 168 176

21 80 16 108 136 168 195 176 16

22 80 48 109 136 176 196 176 48

23 80 80 110 136 184 197 176 64

24 80 96 111 140 132 198 176 80

Cell and CellB Bytestream Definitions 565

D

25 80 112 112 140 136 199 176 96

26 80 128 113 140 140 200 176 112

27 80 144 114 140 144 201 176 120

28 80 160 115 140 148 202 176 128

29 80 176 116 140 152 203 176 136

30 80 192 117 140 156 204 176 144

31 80 208 118 144 16 205 176 152

32 80 240 119 144 48 206 176 160

33 96 80 120 144 64 207 176 168

34 96 96 121 144 80 208 176 176

35 96 112 122 144 96 209 176 192

36 96 128 123 144 104 210 176 208

37 96 144 124 144 112 211 176 224

38 96 160 125 144 120 212 176 240

39 96 176 126 144 128 213 184 128

40 96 192 127 144 132 214 184 136

41 96 208 128 144 136 215 184 144

42 104 128 129 144 140 216 184 152

43 104 136 130 144 144 217 184 160

44 104 144 131 144 148 218 192 80

45 104 152 132 144 152 219 192 96

46 104 160 133 144 156 220 192 112

47 112 16 134 144 160 221 192 128

48 112 48 135 144 168 222 192 144

49 112 64 136 144 176 223 192 160

50 112 80 137 144 184 224 192 176

51 112 96 138 144 192 225 192 192

Table D-3 Default CellB Cb/Cr Table (2 of 4)

Index U V Index U V Index U V

566 XIL Programmer’s Guide—August 1997

D

52 112 112 139 144 208 226 192 208

53 112 120 140 144 224 227 208 16

54 112 128 141 144 240 228 208 48

55 112 136 142 148 132 229 208 80

56 112 144 143 148 136 230 208 96

57 112 152 144 148 140 231 208 112

58 112 160 145 148 144 232 208 128

59 112 168 146 148 148 233 208 144

60 112 176 147 148 152 234 208 160

61 112 192 148 148 156 235 208 176

62 112 208 149 152 104 236 208 192

63 112 224 150 152 112 237 208 208

64 112 240 151 152 120 238 208 240

65 120 112 152 152 128 239 224 112

66 120 120 153 152 132 240 224 128

67 120 128 154 152 136 241 224 144

68 120 136 155 152 140 242 224 160

69 120 144 156 152 144 243 224 176

70 120 152 157 152 148 244 240 16

71 120 160 158 152 152 245 240 48

72 120 168 159 152 156 246 240 80

73 120 176 160 152 160 247 240 112

74 128 64 161 152 168 248 240 144

75 128 80 162 152 176 249 240 176

76 128 96 163 152 184 250 240 208

77 128 104 164 156 136 251 240 240

78 128 112 165 156 140 252 0 0

Table D-3 Default CellB Cb/Cr Table (3 of 4)

Index U V Index U V Index U V

Cell and CellB Bytestream Definitions 567

D

79 128 120 166 156 144 253 0 0

80 128 128 167 156 148 254 0 0

81 128 136 168 156 152 255 0 0

82 128 144 169 160 64

83 128 152 170 160 80

84 128 160 171 160 96

85 128 168 172 160 104

86 128 176 173 160 112

Table D-3 Default CellB Cb/Cr Table (4 of 4)

Index U V Index U V Index U V

568 XIL Programmer’s Guide—August 1997

D

569

Bibliography E

Andrews, H. C. Computer Techniques in Image Processing. New York: Academic
Press, 1970.

Baxes, G. A. Digital Image Processing: A Practical Primer. Englewood Cliffs, N.J.:
Prentice-Hall, 1984.

A nonmathematical introduction to image processing.

Castleman, K. R. Digital Image Processing. Englewood Cliffs, N.J.: Prentice-Hall,
1979.

Foley, J. D., et al. Computer Graphics: Principles and Practice. 2nd ed. Reading,
Mass.: Addison-Wesley, 1990.

Discusses dithering, fills, geometric transforms, and color models.

Gonzalez, R. C., and P. Wintz. Digital Image Processing. 2nd ed. Reading, Mass.:
Addison-Wesley, 1987.

Green, W.B. Digital Image Processing: A Systems Approach. New York: Van
Nostrand Reinhold, 1983.

Groff, V. The Power of Color in Design for Desktop Publishing. Portland: MIS Press,
1990.

570 XIL Programmer’s Guide—August 1997

E

Hall, E. L. Computer Image Processing and Recognition. New York: Academic
Press, 1979.

International Organization for Standardization and International
Electrotechnical Commission. Information Technology—Coding of Moving
Pictures and Associated Audio for Digital Storage Media up to About 1.5 Mbits/s.
1992.

The MPEG-1 standard.

International Organization for Standardization and International
Electrotechnical Commission. Information Technology—Digital Compression
and Coding of Continuous-Tone Still Images. 1991.

The JPEG standard.

International Telegraph and Telephone Consultative Committee (CCITT).
“Recommendation H.261 - Video Codec for Audiovisual Services at p x 64
Kbits/s.” Study Group XV - Report R 37. 1990.

The H.261 standard.

Jain, A. Fundamentals of Digital Image Processing. Englewood Cliffs,
N.J.: Prentice-Hall, 1989.

Magnenat-Thalmann, N., and D. Thalmann. Image Synthesis: Theory and Practice.
Tokyo: Springer-Verlag, 1987.

Nye, A. Xlib Programming Manual. O’Reilly & Associates, Inc., 1988.

OpenWindows Version 3.0.1 Programmer’s Guide. Mountain View, Ca.: SunSoft,
1992.

Discusses colormaps in Sun’s implementation of X11.

Pennebaker, W. B., and J. L. Mitchell. JPEG Still Image Data Compression. Van
Nostrand Reinhold, 1991.

A detailed description of the JPEG still-image compression standard.

Bibliography 571

E

PostScript Language Reference Manual. 2nd ed. Reading, Mass.: Addison-Wesley,
1990.

Discusses color models and filtering operations.

Pratt, W. K. Digital Image Processing. 2nd ed. New York: Wiley, 1991.

Raster Graphics Handbook. 2nd ed. New York: Van Nostrand Reinhold, 1985.

Contains a good appendix on color models.

Rogers, D. F. Procedural Elements for Computer Graphics. New York:
McGraw-Hill, 1985.

Provides information about dithering and fills.

Rosenfield, A., and A. C. Kak. Digital Picture Processing. 2nd ed. 2 vols. New
York: Academic Press, 1982.

Scheifler, R. W., and J. Gettys. X Window System. Bedford, Mass.: Digital Press,
1988.

Covers color management in the X Window System.

Thorell, L. G., and W. J. Smith. Using Computer Color Effectively: An Illustrated
Reference. Englewood Cliffs, N.J.: Prentice Hall, 1990.

Ulichney, R. Digital Halftoning. Cambridge, Mass.: MIT Press, 1987.

Contains good discussions of halftoning and dithering.

Wallace, G. K. “The JPEG Still Picture Compression Standard.” Communications
of the ACM. April 1991, p. 31.

A good introduction to JPEG compression.

Wolberg, G. Digital Image Warping. Los Alamitos, Ca.: IEEE Computer Society
Press, 1990.

572 XIL Programmer’s Guide—August 1997

E

573

Glossary

AC coefficient
A DCT coefficient that corresponds to nonconstant data in the original image.

active buffer
Represents the buffer that will be affected when an operation uses a double-
buffered image.

additive color system
A color model in which colors are built by adding together primary colors.
RGB is an example.

affine transform
Affine transforms include such operations as scaling, rotation, translation, and
shearing. What these operations have in common is that they can change the
lengths and angles of lines, but not their parallelism. The XIL library contains a
function xil_affine() that in one operation can scale, rotate, and translate
an image.

atom
A single XIL function. Because of its deferred-execution scheme, the library is
sometimes able to find groups of atoms that it can replace with an optimized
routine that does the jobs of all the atoms in the group. These optimized
routines are called molecules.

attribute
A term from object-oriented programming that refers to a characteristic of an
object.

574 XIL Programmer’s Guide—August 1997

band stride
The number of data elements from a pixel in one band of an image to the same
pixel in the next band.

Baseline sequential codec
A sequential coder-decoder defined by the JPEG standard. It is designed to
handle images with 8-bit samples and uses Huffman coding for its entropy
coding.

bicubic interpolation
Bicubic interpolation is the most time consuming of the XIL library’s
interpolation methods, but produces the best results. When this type of
interpolation is requested, the library calculates the value of a pixel in the
destination image by determining the point in the source image to which that
pixel maps and then examining the values of the sixteen pixels closest to that
point.

bilinear interpolation
When the XIL library uses bilinear (or first-order) interpolation to determine
the value of an image at noninteger coordinates, it calculates the value by
looking at the values of the four pixels surrounding the point of interest and
then using a bilinear equation. This type of interpolation yields better results
than nearest neighbor interpolation, but can itself have an undesirable
smoothing effect on an image. To alleviate this problem, you can use bicubic
interpolation.

Block Truncation Coding
The image compression method on which the Cell encoding scheme is based.
In Cell compression, a 4-by-4 region of pixels from an image is represented by
two colors and a 16-bit mask.

CCIR
The Committée International de la Radio. This treaty organization, part of the
International Telecommunications Union (ITU), is responsible for obtaining
international agreement on standards for radio and television transmission and
the international exchange of programs.

CCIR Recommendation 601
An international standard for digitizing PAL, NTSC, and SECAM analog video.

Glossary 575

CCITT
International Telegraph and Telephone Consultative Committee, an
international association and standards body composed primarily of
representatives from national telephone agencies. The CCITT promulgates
telephony standards, such as X.25, the Group 3 facsimile standard, and the
H.261 videoconferencing standard (px64).

CCITT Group 3
A standard that specifies how facsimile machines must compress and
decompress image data. The compression method relies heavily on run-length
encoding. Runs of white pixels and runs of black pixels are represented with
codes from a Huffman table.

CCITT Group 4
A standard for compressing document images. This compression technique
takes advantage of a characteristic of document images called vertical
coherence. This means that transitions from black to white or vice versa
generally occur in almost the same place on adjacent scanlines. The Group 4
encoder compresses an image by recording information about the relative
locations of these transitions.

Cell
A 4-by-4 block of pixels. (See also Cell encoding.)

Cell encoding
A video compression algorithm developed by Sun. In Cell encoding, a 4-by-4
region of pixels is represented by two colors and a 16-bit mask that indicates
which of the two colors to place at each of the 16 pixel positions. The colors
and mask are chosen to preserve the mean and variance of the luminance and
the average chrominance for the 4-by-4 block.
Cell decoding takes advantage of the fonting hardware commonly found in
bitmapped displays.

CellB encoding
A video-compression algorithm derived from the Cell algorithm. As with a
Cell compressor, the most fundamental task of a CellB compressor is to encode
4-by-4 cells of pixels in four bytes. The first two bytes of each cell code are a
16-bit mask that indicates which of two colors will represent each pixel in the
cell. The third and fourth bytes contain indexes into tables of luminance and
chrominance values and define the two colors to be used in encoding the cell.
CellB coders and decoders are intended primarily for use in videoconferencing
applications.

576 XIL Programmer’s Guide—August 1997

chrominance
The portion of a composite signal that carries color information. For example,
the Cb or Cr component of a YCbCr signal represents part of a pixel’s
chrominance. (See also luminance.)

CIF
Common Interchange Format. CIF format images contain YCbCr data and are
352 pixels wide and 288 pixels high. Images in this format are one of the two
types of images that may be supported by H.261 codecs.

CIS
Compressed image sequence. The XIL library’s compressors store (generally
related) compressed images in structures called CIS buffers. The images may
represent frames in a movie, pages in a document, and so on.

CMY color model
In the CMY color model, the subtractive primaries cyan, magenta, and yellow
are used to filter their complements (red, green, and blue) from white light.
You use this color model when working with devices like color printers that
put colored ink on paper. For example, to create the color red on a color
printer, you put down a mixture of magenta and yellow ink. The magenta
filters out its complement green; the yellow filters out its complement blue;
and you see only red.

CMYK color model
Similar to the CMY color model, but uses a fourth color: black. Black is used to
replace equal amounts of cyan, magenta, and yellow. This color model is used
in offset color printing.

codec
A coder-decoder for the compression and decompression of image data.

colormap
A color lookup table that stores a set of RGB values. Applications index into
the colormap to get the values to drive the red, blue, and green guns of an RGB
monitor.

compressed image sequence
See CIS.

Glossary 577

compression
The process of converting data from its original format to a format that
requires fewer bits. Compressed data uses less storage than uncompressed data
and can be transmitted over a network more quickly. Some compressors, such
as the CCITT Group 3 compressor, are called lossless compressors because
they compress data in a way so that a decompressor can regenerate the original
data exactly. Other compressors are called lossy compressors because they
compress data in a way that prevents the original data set from being
regenerated exactly.

convolution
An image-processing operation frequently used to sharpen an image, blur an
image, or highlight the edges in an image. The operation calculates the values
of pixels in the destination image using the values of a neighborhood of pixels
in the source image and the values in a special filter called a convolution
kernel.

convolution kernel
A two-dimensional array of weighted values used in a convolution operation.
In the XIL library, a kernel is a data structure of data type XilKernel . (See also
separable convolution kernel.)

DC coefficient
A DCT coefficient that corresponds to the average level of the input image.

DCT
Discrete Cosine Transform. Many encoders, including those that conform to the
JPEG, MPEG-1, and H.261 standards, perform a DCT on an 8-by-8 block of
image data as part of the image-compression process. The DCT converts the
video data from the spatial domain to the frequency domain. The DCT takes an
8-by-8 matrix, whose values represent brightness levels at particular x,y
coordinates, and produces an 8-by-8 matrix whose values represent relative
amounts of the 64 spatial frequencies that make up the input data’s spectrum.
The DCT provides a basis for compression because most of the frequency
levels for a block will be zero or close to zero and do not need to be encoded.

decoder
A program that takes data that has been encoded, or compressed by an
encoder and decompresses it. A decoder can be implemented in hardware,
software, or a combination of both. The decompressed data may or may not
match the original data set exactly, depending on how the data was encoded.
(See also lossless compression and lossy compression.)

578 XIL Programmer’s Guide—August 1997

decompression
The restoring of data that has undergone compression to its original state, or to
something close to its original state. How closely the decompressed data
matches the original data depends on the compression algorithm used. (See also
lossless compression and lossy compression.)

depth
Number of bits representing one band of one pixel of an image.

display image
The XIL library treats displays as special images, and operations allow display
images to serve as destinations. This strategy enables an operation to draw on
a screen directly, without requiring an intermediate copy. In some cases,
display images can also serve as source images.

dithering
The XIL library includes a table-lookup function that enables you to convert a
single-band image of any data type to a single-band or multiband image of any
data type. Dithering can be thought of as an inverse lookup operation; that is,
dithering enables you to convert a single-band or multiband image of any data
type to a single-band image of any data type. The most common dithering
operations convert 3-band, 8-bit images to 1-band, 8-bit images and 1-band,
8-bit images to 1-band, 1-bit images.

encoder
An encoder is a program that encodes data for the purpose of achieving data
compression. The encoders included with the XIL library are designed to
compress images.

entropy coding
Entropy coding is the final step in the compression process in DCT-based
encoders (such as the JPEG baseline sequential encoder). In this step, the
encoder compresses quantized DCT coefficients using Huffman coding.
Therefore, values that occur frequently are encoded with fewer bits than are
values that occur infrequently.

error diffusion
A technique for removing some of the artifacts produced during the dithering
process. In its most common form, Floyd-Steinberg error diffusion, this
technique involves (1) determining the amount of error produced in dithering
a particular pixel and (2) distributing fractions of that error to the pixels to the
right of and below the pixel just dithered.

Glossary 579

frame
A single image taken from a movie.

full-motion video
The showing of a series of related digital images at a rate sufficient to give the
illusion that objects in the images are moving naturally.

gamma correction
In a linear color space, color levels are equally spaced throughout a gamut. The
problem with this type of color space is that level-to-level changes at the low
end of the gamut seem greater to the eye than equal changes at the high end.
In a gamma-corrected color space, color levels are spaced logarithmically so
that level-to-level changes seem consistent throughout the range.

geometric operation
An image-processing operation that changes the size, shape, or orientation of
objects in an image. XIL geometric operations include scaling, rotation, and
general affine transforms.

H.261
A video compression standard developed by the CCITT for use in encoding
video to be transferred over an ISDN (Integrated Service Digital Network). In
this compression method, data is compressed so that the output bit rate is
p x 64 Kbits per second, where p can range from 1 to 30 depending on the
number of ISDN channels used. This standard was developed primarily to
support video phone and videoconferencing applications.

handle
An identifier that refers to a unique object. In the XIL library, for example, an
identifier of type XilImage is a handle to an actual image.

histogram
A collection of information about how frequently certain gray levels or colors
appear in an image. The XIL library contains a data structure of type
XilHistogram to hold this type of information.

Huffman encoding
A method of compressing a given set of data based on the relative frequency of
the individual elements: the more often an element occurs, the shorter (in bits)
its corresponding code. Huffman encoding is often used to compress text files,
with the coding based on letter frequency. Huffman encoding is also used in
many DCT-based video-compression algorithms.

580 XIL Programmer’s Guide—August 1997

image
A two-dimensional array of pixels that represents an object.

indexed color
See pseudocolor.

in-place operations
Operations that require both a source and a destination image but that allow
them to be the same image. If a function doesn’t support in-place operations,
the source and destination images must be different images.

interframe compression
In image sequences, consecutive frames generally have more similarities than
differences. These similarities, or shared elements, are sometimes referred to as
being temporally redundant. This redundancy is important because it allows
groups of individually compressed frames to be compressed further. That is, if
five frames in a group look the same in the upper-left corner, that area needs to
be encoded only once; then the encoder can simply note that the same data
appears in the next four frames. This type of encoding is called interframe
compression.

interpolation
A way of calculating a value that falls between other, known values. In image
processing, interpolation frequently plays a part in geometric operations such
as rotation. After that type of spatial transformation, pixel locations in the
output image correspond to noninteger coordinates in the input image.
Therefore, the pixel values in the output must be calculated by looking at the
values of the pixels surrounding the point of interest in the input. The XIL
library supports several types of interpolation, including nearest neighbor,
bilinear, and bicubic interpolation.

intraframe compression
The compression that can take place within a single image. Contrast with
interframe compression.

ISDN
Integrated Service Digital Network. A worldwide public telecommunications
network designed to handle many types of data, including voice, text,
graphics, and video. The CCITT designed the H.261 video encoder to produce
compact bitstreams that can be sent over ISDN lines.

Glossary 581

JPEG
Joint Photographic Experts Group. A joint venture of the CCITT and ISO that
has developed a standard for compressing grayscale or color still images.
Actually, the standard defines a number of methods for compressing images.
Several of these are lossy methods based on the Discrete Cosine Transform
(DCT), but one method is lossless and is based on a predictive coding
technique.

key frame
If the video portion of a movie has been compressed using both intraframe
compression and interframe compression, a decoder cannot decompress the
majority of the video frames without referring to preceding—and sometimes
succeeding—frames. However, the first frame in the movie, and usually other
frames as well, do not have interframe dependencies and can be decoded in
isolation. These frames are called key frames. Key frames, besides the one that
starts the movie, enable the decoder to decompress other frames without
playing the movie from the beginning.

linear remapping
See rescaling.

local operation
An image-processing operation in which more than one pixel in a source image
is used in calculating the value of a single pixel in the destination image.
Generally, the source-image pixels used include the pixel corresponding to the
destination pixel being calculated and some set of pixels surrounding that
source pixel.

lookup table
In XIL applications, lookup tables are used for general image modification.
Each entry in an XIL lookup table contains an index—a value that may appear
in the source image—and a value or set of values to be written to the
destination image. For each pixel in the source, a table-lookup function finds
the pixel’s value on the index side of the table and then writes the output value
or values for that entry to the corresponding pixel in the destination.

lossless compression
The compression of data in such a way that the original data can be restored
exactly. Huffman encoding is an example of a lossless compression technique.
Some compressors, such as the JPEG baseline sequential compressor, combine
lossy and lossless compression algorithms. (See also lossy compression.)

582 XIL Programmer’s Guide—August 1997

lossy compression
A type of compression that results in the loss of some of the original data.
Lossy compression trades the potential loss of some image quality for the
opportunity for greater compression. The JPEG baseline sequential and Cell
methods are examples of lossy compression techniques. (See also lossless
compression.)

luminance
The portion of a composite signal that carries brightness information. For
example, luminance information is contained in the Y component of a YCbCr

signal. Video compression techniques take advantage of the fact that the
human eye is more sensitive to variations in luminance than it is to variations
in color (chrominance). Therefore, chrominance values can be compressed
(with lossy techniques) more than luminance values, resulting in greater
overall compression.

macroblock
Both the H.261 and the MPEG-1 specifications define a unit within an image
called a macroblock. This unit is a 16-by-16 block of pixels. Both H.261 and
MPEG-1 encoders can switch from intraframe encoding to interframe encoding
on a macroblock basis.

molecule
The XIL term for an optimized routine that performs the work of two or more
XIL functions (atoms). You don’t call a molecule directly. Instead, the XIL
runtime system executes a molecule whenever your program calls a sequence
of XIL functions that the molecule can replace. This type of substitution is
possible because of the library’s deferred-execution scheme.

motion compensation
Both H.261 and MPEG-1 encoders can perform interframe compression by
encoding the differences between the values in a macroblock in the picture
being encoded and the values in the corresponding macroblock in the
preceding image. Sometimes, however, it’s desirable to encode the differences
between the values in a macroblock in the current image and the values in a
macroblock in the preceding image that is slightly offset from the one that
corresponds spatially with the macroblock being encoded. This approach is
desirable because it enables the encoder to track the movement of objects from
image to image and, thus, to encode smaller differences. If an encoder uses this
approach, it must of course record the extent of the offset mentioned above.
This offset is recorded in a motion vector.

Glossary 583

movie
A contiguous series of video frames (and optionally synchronized audio) that
are displayed fast enough to provide the illusion of motion. A frame rate of 30
frames/second is a typical target for a smooth-running movie.

MPEG
Moving Picture Experts Group. This group has developed standards for
compressing moving pictures and audio data and for synchronizing video and
audio datastreams. The XIL library includes a decompression module that can
decode MPEG-1 video bitstreams.

The MPEG-1 video-compression standard is similar to the H.261 standard
developed by the CCITT, but places less emphasis on low bit rates. By
accepting a higher bit rate—up to 1.5 Mbits per second—an MPEG-1 codec is
able to recreate very high-quality pictures and to produce a bitstream that is
easily editable.

The rate of 1.5 Mbits/s makes the MPEG-1 codec especially viable in
applications that read compressed data from CD-ROMs. For example, putting
an MPEG-1 bitstream on a CD-ROM is an effective way to distribute movies,
business presentations, and training videos.

nearest neighbor interpolation
One of the methods that the XIL library uses to determine the value of an input
image at noninteger coordinates. When using this method, the XIL library
takes the value it is looking for to be the value of the pixel closest to the point
of interest. This type of interpolation is the fastest type, but can introduce
artifacts in the output image; for example, smooth lines in the input image may
show up as jagged lines in the output.
Nearest neighbor interpolation is sometimes called zero-order interpolation.

origin
In the XIL library, each image object has an attribute called its origin. This
origin is a pair of floating-point numbers that represent x,y coordinates in the
image. (The point 0.0,0.0 is in the upper-left corner.) When an image-processing
operation is performed, the origins of the input and output images are aligned,
and the rectangle formed by the intersection of these images serves as an
implicit region of interest (ROI).

pixel
Picture element. In a raster grid, a pixel is the smallest unit that can be
addressed and given a color or intensity.

584 XIL Programmer’s Guide—August 1997

pixel stride
The distance in data elements to the next pixel of the same band of an image
(for example, the distance from the first red pixel to the next red pixel).

plane
One bit of a pixel.

point operation
An image-processing operation in which the value of a point (or pixel) in the
destination image depends only on the corresponding point in the source
image or images. For example, if you want to add two source images to
produce a destination image, the value of the pixel in the upper-left corner of
the destination image depends solely on the values of the pixels in the
upper-left corner of the two source images.

predictive encoding
In predictive encoding, an encoder uses the values of neighboring samples to
predict the value of the sample being encoded. The encoder then subtracts this
predicted value from the actual value of the sample and encodes the difference.
This mode of compression is lossless. The XIL library supports a JPEG lossless
compressor that uses this method.

pseudocolor
The distinction between true color and pseudocolor has to do with the design
of a monitor’s frame buffer. If the frame buffer uses 8 bits per pixel to store
color information, the monitor can display 256 colors simultaneously. What
you see on such a monitor is called pseudocolor because the colors that can be
shown at any one time are a small subset of the colors the eye can distinguish.
If the frame buffer uses 24 bits per pixel to store color information, your
monitor can display over 16 million colors (true color).
Pseudocolor is sometimes called indexed color because the values stored in the
frame buffer on a pseudocolor system are not the RGB values needed to drive
the red, green, and blue electron guns in a monitor. Rather, they are indexes
into a colormap, or color lookup table, which stores 256 sets of RGB values.

QCIF
Quarter Common Interchange Format. QCIF images contain YCbCr data and
are 176 pixels wide and 144 pixels high (one-fourth the size of CIF images).
H.261 codecs are required to support images in this format.

Glossary 585

quantization
The technique of scaling down a set of values. In Discrete Cosine Transform
(DCT)-based encoders, like those that conform to the JPEG, MPEG-1, and
H.261 standards, quantization is used to ensure that DCT coefficients are
represented by the smallest range of numbers needed to produce the desired
level of image quality. To bring the coefficients into this range, the quantizer
divides each coefficient by the appropriate value from a quantization table and
rounds the result to the nearest integer.

rescaling
Sometimes called linear remapping, rescaling involves changing the values in
an image using a linear equation. Each value in the image is multiplied by a
constant; then a second constant is added to the product. Rescaling is useful for
mapping the values in an image from one range to another.

RGB color model
A color model in which colors are built by mixing the three additive primary
colors red, green, and blue. In this model, you construct grays by including
equal amounts of each primary: (0,0,0) is black and (1,1,1) is white. The RGB
color model is closely associated with color CRT monitors because they use
this model to produce their colors.

ROI
A region of interest. In the XIL scheme, an ROI is a 1-bit mask that can be
specified as an attribute of an image. This mask determines what part of a
source image can be read or what part of a destination image can modified
during an image-processing operation. The ROI for a given operation is the
intersection of the ROIs of all the images involved in the operation.

run-length encoding
A compression technique that stores counts of the number of consecutive
identical pixels or blocks of pixels in an image.

scanline stride
The distance in data elements to the next pixel on the next horizontal scanline
of an image.

separable convolution kernel
Two one-dimensional vectors whose outer product produces a two-
dimensional convolutional kernel. (See also convolution kernel.)

586 XIL Programmer’s Guide—August 1997

sequential encoding
The encoding of a still image in a single pass through the image data. The
sequential encoder first processes a block of pixels in the upper-left corner of
the image and then proceeds from left to right and top to bottom until it has
processed the entire image.

skip codes
Skip codes are employed during the interframe compression process. They
instruct the decoder to skip over blocks of pixels in the current frame that are
identical to, or very similar to, those in the preceding frame.

slice
MPEG-1 terminology for a group of consecutive macroblocks. Each
macroblock in a picture (or image) must be part of a slice. The slice was
designed primarily to help a decoder recover from bitstream errors. If a
decoder detects an error, one way to recover is to skip to the next slice header.

spatial redundancy
The occurrence of two or more consecutive pixels or blocks of pixels that have
the same, or similar, contents. A high level of spatial redundancy in an image
can lead to a high rate of compression because only the first pixel or block of
pixels in a sequence needs to be encoded fully. A shorthand method can be
used to encode succeeding pixels or blocks.

still-image coding
The encoding of a single image.

structuring element
A two-dimensional array of Boolean values used as a parameter to the XIL
dilation and erosion functions.

subsampling
A way of mathematically reducing a data set to a subset of its original
components. For example, if you have captured a 512-by-512 image, but want
to encode it at a resolution of 256-by-256, you can subsample the data before
encoding it by discarding every other pixel in both and x and y directions. On
systems that work with YCbCr data, it is common to subsample the Cb and Cr
chrominance information so that each pixel has a unique luminance value, but
shares chrominance information with one or more nearby pixels.

Glossary 587

subtractive color system
In a subtractive color system, primary colors are used as filters to subtract their
complements from white light. For example, in the CMY color model, the
primaries cyan, magenta, and yellow subtract red, green, and blue respectively.
That is, if light is reflected from a piece of paper coated with cyan ink, no red
is reflected, so you see the color cyan.

temporal redundancy
See interframe compression.

thresholding
The XIL library’s thresholding function sets all the values (in a band) that fall
between a low threshold and a high threshold to a value (called a map value)
that the programmer specifies.

tiling
One of three image storage configurations XIL supports. The others are whole
image and tile stripping. By default, if an image is greater than an XIL-
specified threshold, XIL may break up its storage into tiles in memory.

transcoding
The conversion of data in one compressed format to another compressed
format. For instance, converting a JPEG-compressed image to its Cell-encoded
counterpart is called transcoding. Transcoding an image usually involves
decoding it and then reencoding it.

translation
A geometric operation in which an image is moved up or down and/or left or
right.

transposition
A quasi-geometric transformation that involves rotating an image by a
multiple of 90 degrees or flipping pixels in an image across a line that passes
through the center of the image. The XIL library’s transposition function allows
for flips across a horizontal or vertical line passing through an image’s center
and across the main diagonal or antidiagonal.

XIL library
The XIL library is a foundation library for imaging and video support. It
provides an implementation of imaging functionality that is common to
multiple higher-level interfaces, provides imaging capabilities that are not
currently available, and provides a way for ISVs to access low-level and
hardware functionality.

588 XIL Programmer’s Guide—August 1997

YCbCr color model
When data is stored in YCbCr format, each pixel is described by a luminance
value (Y) and two color values. This color model is used in the PAL (European)
television format. Also, video analog-to-digital converters often produce data
in this format.
Frequently, the color bands of YCbCr images are subsampled to produce what
are called YCbCr 4:2:2 or YCbCr 4:1:1 images. In these images, pairs of pixels, or
blocks of 4 pixels, share color values; that is, each pixel has its own luminance
information, but shares color values with a neighboring pixel or pixels. This
subsampling in the color dimension has a very minor impact on image quality.

589

Index

A
absolute value of images, 207
acceleration in XIL programs, 473
active buffer, 157
adding images, 205
affine transforms, general, 235
alpha masks, 283
AND of images, 208
arithmetic operations

involving an image and a
constant, 209

involving bit images, 212
involving two images, 205

attributes, see device attributes

B
backing_store attribute, 118
BAND_HUFFMAN_TABLE attribute, 351,

373
BAND_QUANTIZER attribute, 352
BANDS attribute, 437
bibliography, 569
bicubic interpolation, 217
bilinear interpolation, 217
bins, histogram, 247
BITS_PER_SECOND attribute, 444

bitwise logical operations
involving an image and a

constant, 209
involving bit images, 212
involving two images, 208

black generation, 186
blending images, 283
blurring images, 260
boundary fills, 253
BYTES_PER_FRAME attribute, 353

C
casting images from one data type to

another, 160
CCITT Group 3 and Group 4 codecs

applications, 435
decompression attributes of

BANDS, 437
HEIGHT, 437
WIDTH, 437

how they work, 435
transposition molecule, 483

Cell codec
applications, 439
compression attributes of

BITS_PER_SECOND, 444
COLORMAP_ADAPTION, 445

590 XIL Programmer’s Guide—August 1997

COMPRESSOR_COLORMAP, 446
COMPRESSOR_FRAME_RATE, 446
COMPRESSOR_MAX_CMAP_

SIZE , 447
COMPRESSOR_USER_DATA, 448
ENCODING_TYPE, 449
KEYFRAME_INTERVAL, 450
TEMPORAL_FILTERING, 451

creating a CIS associated with a, 443
decompression attributes of

DECOMPRESSOR_
COLORMAP, 341, 451

DECOMPRESSOR_FRAME_
RATE, 453

DECOMPRESSOR_MAX_CMAP_
SIZE , 339, 453

DECOMPRESSOR_USER_
DATA, 454

RDWR_INDICES, 341, 454
how it works, 440
playback molecules, 455

CellB codec
applications, 465
compression rate, 468
creating a CIS associated with a, 469
decompression attributes

HEIGHT, 469
IGNORE_HISTORY, 470
WIDTH, 469

how it works, 466
playback molecules, 471, 478
restriction on size of images to be

compressed, 466
child images, creating, 56
child images, effect of tiling on, 99
CIF images, 380, 398
clearing images, 288
closing the library, 34
color spaces, 53

checking for input image, 321
compensating for differences in

device characteristics, 181 to
185

conversion, 53, 135 to 136
effect on storage formats, 79

H.261 compressor images, 380
identifiers, 179
PhotoYCC, 128
represented by I/O devices, 186

colorcubes
creating, 166
XIL-supplied, 169, 334

COLORMAP_ADAPTION attribute, 445
COLORSPACE attribute, 186
Common Interchange Format (CIF)

images, 380, 398
compiling code, conditional, 35
compressed image sequences

attributes of
compression type, 304
compressor, 303
error recovery flag, 311
input image type, 304
keep frames, 307
maximum frames, 307
name, 312
output image type, 305
random access flag, 306
read frame, 306
start frame, 306
write frame, 306

checking for unread data, 301, 324,
336

creating, 295, 320, 329
decompressing images from, 300,

336, 342
defined, 291
destroying, 296
determining the dimensions of

images stored in, 331
error recovery, 313
flushing compressed data from, 296,

326
getting a pointer to the compressed

data in, 300, 324
putting compressed data into, 296,

329
resetting, 295
seeking an image in, 302, 306

Index 591

COMPRESSED_DATA_FORMAT
attribute, 353, 374

compressing
fax images, 435
images, 323

compressing images, 296
COMPRESSION_QUALITY attribute, 354
COMPRESSOR_BITS_PER_IMAGE

attribute, 389
COMPRESSOR_BITS_PER_SECOND

attribute, 408
COMPRESSOR_COLORMAP attribute, 446
COMPRESSOR_DOC_CAMERA attribute, 390
COMPRESSOR_ENCODE_INTRA

attribute, 391
COMPRESSOR_FRAME_RATE attribute, 446
COMPRESSOR_FREEZE_RELEASE

attribute, 391
COMPRESSOR_IMAGE_SKIP attribute, 392
COMPRESSOR_INSERT_VIDEO_

SEQUENCE_END attribute, 409
COMPRESSOR_INTRA_QUANTIZATION_

TABLE attribute, 416
COMPRESSOR_LOOP_FILTER

attribute, 393
COMPRESSOR_MAX_CMAP_SIZE

attribute, 447
COMPRESSOR_MV_SEARCH_RANGE

attribute, 394
COMPRESSOR_NON_INTRA_

QUANTIZATION_TABLE
attribute, 418

COMPRESSOR_PATTERN attribute, 419
COMPRESSOR_PEL_ASPECT_RATIO

attribute, 422
COMPRESSOR_PICTURE_RATE

attribute, 423
COMPRESSOR_SLICES_PER_PICTURE

attribute, 425
COMPRESSOR_SPLIT_SCREEN

attribute, 395
COMPRESSOR_TIME_CODE attribute, 426

COMPRESSOR_USER_DATA attribute, 448
compressors/decompressors

reading attributes of, 339, 444
setting attributes of, 341, 444
types of images supported, 297
See also individual compressors

conditionally compiling code, 35
ConfigureNotify event, 118
converting

16-bit image to 8-bit image, 145
24-bit image to 1-bit image, 148
grayscale image to 1-bit image, 150
single-band image to multiband

image, 142
true-color image to pseudocolor

image, 147
convolution, 257
convolution filters, See kernels
copying

images to displays, 153
patterns to images, 289
plane mask control, 155

creating
child images, 56
colorcubes, 166
compressed image sequences, 295,

320, 329
device images, 124, 130
device objects, 120
display images, 117
dither masks, 174
histograms, 247
images, 20, 102
kernels, 259
lookup tables, 143, 164
Photo CD image, 130
plane mask, 156
regions of interest, 50

D
data types of images, 41
DCT, 347
decompressing

592 XIL Programmer’s Guide—August 1997

fax images, 435
images, 300, 342

decompressing images, 336
DECOMPRESSION_QUALITY attribute, 365
DECOMPRESSOR_BROKEN_LINK

attribute, 428
DECOMPRESSOR_CLOSED_GOP

attribute, 429
DECOMPRESSOR_COLORMAP

attribute, 341, 451
DECOMPRESSOR_DOC_CAMERA

attribute, 397
DECOMPRESSOR_FRAME_RATE

attribute, 453
DECOMPRESSOR_FRAME_TYPE

attribute, 430
DECOMPRESSOR_FREEZE_RELEASE

attribute, 397
DECOMPRESSOR_MAX_CMAP_SIZE

attribute, 339, 453
DECOMPRESSOR_PEL_ASPECT_RATIO_

VALUE attribute, 430
DECOMPRESSOR_PICTURE_RATE_VALUE

attribute, 431
DECOMPRESSOR_QUALITY attribute, 427
DECOMPRESSOR_SOURCE_FORMAT

attribute, 398
DECOMPRESSOR_SPLIT_SCREEN

attribute, 398
DECOMPRESSOR_TEMPORAL_REFERENCE

attribute, 399, 432
DECOMPRESSOR_TIME_CODE

attribute, 433
DECOMPRESSOR_USER_DATA

attribute, 454
default tiling mode, 86
deferred execution, 61, 189, 473
detecting edges, 257, 264
device attributes

initializing, 120
Photo CD, 130
reading, 124
setting, 124

device images, 44, 124
Photo CD, 129

device object
creating, 120
destroying, 125

devices
initializing attributes of, 120
partial list of, 136
reading images from, 120
writing images to, 120

dilating images, 266
Discrete Cosine Transforms (DCT), 347
display images, 27, 29, 45, 117, 332
displays

monochrome, 150
reading images from, 119
writing images to, 117

dither masks
creating, 174
used by xil_ordered_

dither() , 176
XIL-supplied, 175, 334

dithering operations
defined, 162
error diffusion, 170
nearest color, 164, 342
ordered dither, 174
when to use the different dithering

functions, 177
dividing images, 206
double buffering, device image, 157

E
edge detection, 257, 264
ENCODE_411_INTERLEAVED

attribute, 356
ENCODE_INTERLEAVED attribute, 356,

374
ENCODING_TYPE attribute, 449
entropy coding, 348, 372
eroding images, 266
error categories, 192

Index 593

error diffusion, 170
error handling

installing error handlers, 200
linking error handlers, 200
multithreaded applications, 10, 191
using the default error handler, 190
writing a custom error handler, 191

error IDs, 499
error messages, 192, 499
events

ConfigureNotify , 118
Expose , 118

example programs
basic XIL program, 14
descriptions, 11
listing of, 11
playing a Cell movie, 338
playing a JPEG movie, 326
program that uses tiling, 83
simple display program, 13, 83
more complete display program, 141

exclusive OR of images, 208
exporting images, 21, 42, 103
Expose event, 118
extrema, finding an image’s, 246

F
fax images, decompressing, 435
faxG3, faxG4, see CCITT Group 3 and

Group 4 Codecs
files

reading images from, 17, 89, 102
writing compressed data to, 324
writing images to, 113

filling regions
boundary fills, 253
soft fills, 255

filtering images, 257
floating point, IEEE 754, 32-bit single

precision, xxxvii
Floyd-Steinberg error-distribution

kernel, 171
foundation libraries, 8

frame groups, 444
functions

color space, xxxviii
double buffering, xxxix
general object, xxxix
storage, xxxvi
temporary image, xxxvii
tiling, xxxvi
XIL naming conventions, 6 to ??

G
general interpolation, 217

creating kernels, 220
destroying kernels, 226
edge conditions, 220
kernel data, 223
kernel size, 221
key element, 221
key values, 219
setting on system-state object, 223
subsamples, 221

geometric operations, 215
glossary, 573

H
H.261 codec

applications, 379
bit-rate control, 387
compression attributes of

COMPRESSOR_BITS_PER_
IMAGE, 389

COMPRESSOR_DOC_CAMERA, 390
COMPRESSOR_ENCODE_

INTRA, 391
COMPRESSOR_FREEZE_

RELEASE, 391
COMPRESSOR_IMAGE_SKIP, 392
COMPRESSOR_LOOP_

FILTER , 393
COMPRESSOR_MV_SEARCH_

RANGE, 394
COMPRESSOR_SPLIT_

SCREEN, 395

594 XIL Programmer’s Guide—August 1997

compressor not supplied with XIL
library, 379

creating a CIS associated with an
H.261 decompressor, 388,
389

decompression attributes of
DECOMPRESSOR_DOC_

CAMERA, 397
DECOMPRESSOR_FREEZE_

RELEASE, 397
DECOMPRESSOR_SOURCE_

FORMAT, 398
DECOMPRESSOR_SPLIT_

SCREEN, 398
DECOMPRESSOR_TEMPORAL_

REFERENCE, 399
IGNORE_HISTORY, 396

how it works, 380
loop filtering, 385, 393
motion compensation, 384, 394
multipoint conferencing, 388
playback molecules, 400, 478

header file, xil.h , 15
HEIGHT attribute, 437, 469
histograms

creating, 247
destroying, 252
reading data from, 250

Huffman tables, 349, 357, 372, 375, 436
HUFFMAN_TABLE attribute, 357, 375

I
IGNORE_HISTORY attribute, 366, 396, 470
image types, 59, 331
images

accessing XIL image data to write to a
file, 106 to ??, 113 to ??

acquiring an input image, 17 to 27, 89
attributes of

color space, 53
data type, 41
height, 40
image type, 59
name, 61

number of bands, 40
origin, 47
parent, 55
readable flag, 60
region of interest, 49
width, 40
writable flag, 60

automatic processing of tiled
images, 87

CIF, 380
copying data to an XIL image, 25
copying source image to XIL

image, 90
creating, 20, 102
creating an output image, 27
creating an XIL image, 20
creating an XIL storage object, 23
data types supported, 20, 68, 70, 74
decompressing, 300, 342
describing storage to XIL, 23
determining the dimensions of, 105
displaying in sections, 99
exporting, 21, 42, 90, 103
getting tile size, 90
getting tiled storage, 92
importing, 27, 42, 104
making source and destination

images compatible, 30
minimum and maximum values of,

finding, 246
naming, 61
overlaying, 155
painting, 285
Photo CD, 127
QCIF, 380
reading from devices other than

displays, 120
reading from displays, 119
reading from files, 17, 89, 102
static, 64
storage formats, 68 to 75
storing as tiles, 75
temporary, 61, 65
types of

device images, 44
display images, 45

Index 595

memory images, 44
warping, 238
writing to devices other than

displays, 120
writing to displays, 117
writing to files, 113

images, temporary, xxxvii
importing images, 27, 42, 104
initializing the library, 16
in-place operations, 580
input/output, 101
installing XIL, 11
interpolation

bicubic, 217
bilinear, 217
general, 217
kernels, 219
nearest neighbor, 217

J
JPEG baseline sequential codec

applications, 345
compression attributes of

BAND_HUFFMAN_TABLE, 351
BAND_QUANTIZER, 352
COMPRESSED_DATA_

FORMAT, 353
COMPRESSION_QUALITY, 354
ENCODE_411_

INTERLEAVED, 356
ENCODE_INTERLEAVED, 356
HUFFMAN_TABLE, 357
OPTIMIZE_HUFFMAN_

TABLES, 362
QUANTIZATION_TABLE, 363
TEMPORAL_FILTERING, 364

creating a CIS associated with a, 350
decompression attributes of

BYTES_PER_FRAME, 353
DECOMPRESSION_QUALITY, 365
IGNORE_HISTORY, 366

how it works, 346
playback molecules, 367, 478

JPEG lossless codec

attributes of
BAND_HUFFMAN_TABLE, 373
COMPRESSED_DATA_

FORMAT, 374
ENCODE_INTERLEAVED, 374
HUFFMAN_TABLE, 375
LOSSLESS_BAND_PT_

TRANSFORM, 378
LOSSLESS_BAND_

SELECTOR, 376
how it works, 370

K
keep frames, 307
kernels

advantages of separable, 263
convolution, 257
creating, 171, 259
destroying, 261
error-distribution, 171
Floyd-Steinberg, 171
interpolation, 219
key values of, 219
keys values of, 257
separable, 262 to 264
used for painting, 285

key frames (Cell), 450
KEYFRAME_INTERVAL attribute, 450
Kodak Color Management

System, xxxviii
Kodak’s Photo CD format, see Photo CD

images

L
libraries to link with, 35
linear remapping of images, 158
linking XIL programs, 35
logical operations

involving an image and a
constant, 209

involving bit images, 212
involving two images, 208

lookup tables

596 XIL Programmer’s Guide—August 1997

creating, 143, 164, 272
destroying, 277
determining the number of entries

in, 335
passing images through, 143, 271
reading values from, 335
setting the value of the first

index, 335
version numbers, 340
XIL-supplied, 334

LOSSLESS_BAND_PT_TRANSFORM
attribute, 378

LOSSLESS_BAND_SELECTOR
attribute, 376

M
macroblocks, 380, 407
making a JPEG movie, 318
maximum value

pixel by pixel, 208
memory images, 44
minimum and maximum values, finding

an image’s, 246
minimum value

pixel by pixel, 208
molecules

CCITT Group 4 transposition, 483
Cell playback, 455
CellB playback, 471, 478
determining whether they’re

executing, 486
H.261 playback, 400, 478
involving a copy to a GX display, 484
JPEG baseline sequential

playback, 367, 478
MPEG-1 playback, 433, 478
side effects of, 490

monochrome displays, 150
MPEG-1 codec

applications, 401
broken links, 406, 428
compression attributes of

COMPRESSOR_BITS_PER_
SECOND, 408

COMPRESSOR_INSERT_VIDEO_
SEQUENCE_END, 409

COMPRESSOR_INTRA_
QUANTIZATION_
TABLE, 416

COMPRESSOR_NON_INTRA_
QUANTIZATION_
TABLE, 418

COMPRESSOR_PATTERN, 419
COMPRESSOR_PEL_ASPECT_

RATIO, 422
COMPRESSOR_PICTURE_

RATE, 423
COMPRESSOR_SLICES_PER_

PICTURE, 425
COMPRESSOR_TIME_CODE, 426

compressor not supplied with XIL
library, 401

creating a CIS associated with an
MPEG-1 decompressor, 407

decompression attributes of
DECOMPRESSOR_BROKEN_

LINK , 428
DECOMPRESSOR_CLOSED_

GOP, 429
DECOMPRESSOR_FRAME_

TYPE, 430
DECOMPRESSOR_PEL_ASPECT_

RATIO_VALUE, 430
DECOMPRESSOR_PICTURE_

RATE_VALUE, 431
DECOMPRESSOR_QUALITY, 427
DECOMPRESSOR_TEMPORAL_

REFERENCE, 432
DECOMPRESSOR_TIME_

CODE, 433
groups of pictures, 406, 429
how it works, 402
playback molecules, 433, 478
releasing reserved frames, 413
reserved frames, 412
sequences, 406
slices, 407, 425
subgroups, 413

Index 597

MT-hot, xxxv, 10
multiplying images, 206
multiprocessor, xxxv
multithread applications, 10
multithreaded, xxxv

N
naming conventions, XIL functions, 6 to 7
nearest-neighbor interpolation, 217
NOT of an image, 209
notational conventions, xxxiv

O
objects, functions common to, 8
objects, XIL, 194
on-line documentation, XIL, xxxiii, 12
opening the library, 16
operations, in-place, 484, 580
optimizations, 493 to 498

functions, 493 to 496
molecules, 496 to 498
X Shared Memory Extension

display, 496
Xlib display, 496

OPTIMIZE_HUFFMAN_TABLES
attribute, 362

OR of images, 208
ordered dither, 174
origin of an image, 47
overlaying images, 155

P
painting images, 285
Photo CD images, 127

capturing from disk, 134
creating, 130
FILEPATH attribute, 131
how stored, 128
MAX_RESOLUTION attribute, 133
RESOLUTION attribute, 132
resolutions, 129

ROTATION attribute, 134
setting device attributes, 130

PhotoYCC color space, 128
pixels

reading the values of, 287
setting the values of, 287

plane mask
control, 155
creating, 157

playback
Cell, 455
CellB, 471, 478
H.261, 400, 478

predictive encoding, 370
primary errors, 194
px64, SeeH.261 codec

Q
QCIF images, 380, 398
quantization, 348
quantization tables, 363
QUANTIZATION_TABLE attribute, 363
Quarter Common Interchange Format

(QCIF) images, 380, 398

R
RDWR_INDICES attribute, 341, 454
read frame, 306
reading

images from devices other than
displays, 120

images from displays, 119
images from files, 17, 102

regions of interest
associating with images, 51
building, 51
creating, 50
defined, 49
destroying, 50
naming, 52
performing geometric operations

on, 51

598 XIL Programmer’s Guide—August 1997

relational operations
involving two images, 208

rescaling images, 158
resizing a window, 118
rotating images, 233, 241

S
scaling images, 227
secondary errors, 194
seeking images in compressed image

sequences, 302
CellB, 470
H.261, 396
JPEG baseline sequential, 366

sharpening images, 260
shearing images, 238
smoothing images, 260
soft fills, 255
start frame, 306
storage

determining storage type, 92
enforcing storage organization, 79 to

81
obtaining storage object

information, 94
storage formats

XIL_BAND_SEQUENTIAL, xxxviii
XIL_BAND_SEQUENTIAL, 70 to 71
XIL_GENERAL, xxxviii
XIL_GENERAL, 74 to 75
XIL_PIXEL_SEQUENTIAL , 68 to 70

storage functions, xxxvi
storage objects

creating and destroying, 77
getting storage attributes, 78
naming, 79
setting storage attributes, 77

storage, tiled, 75
structuring elements

creating, 268
defined, 266
destroying, 270
key values of, 266

naming, 269
subimages, creating, 56
subsampling, 128
subsampling images, 227
subtracting images, 206
system state, 16

T
TEMPORAL_FILTERING attribute, 364,

451
temporary images

discarding, 62
example of using, 61 to 64
functions for creating, 63
properties, 63
using with tiling functions, 62

thresholding images, 252
tile stripping, 99
tiled storage, 75
tiles, 68

allocating storage, 85
changing tile size, 85
size limits, 85

tiling
benefits from using temporary

images, 61
copying tiles, 96
getting tile-related data, 97
setting tile-related data, 98
significance to programmer, 86

tiling functions, xxxvi
tiling mode, 75, 76, 89, 109, 110, 116

default option, 86
effect of functions for getting tile-

related information, 97
effect of functions for setting tile-

related information, 98
options, 86
specifying, 89

translating images, 226
transposing images, 241
trapping, 266

Index 599

typographic changes, xxxiv

U
undercolor removal, 186
using an application data supply

routine, 111 to 113

V
version control, 35
version number

major, 36
minor, 36

W
warp tables, floating point, xxxvii
warping images, 238
web site, XIL on-line documentation, 12
WIDTH attribute, 437, 469
window

exposing, 118
resizing, 118

write frame, 306
writing

compressed data to files, 324
images to devices other than

displays, 120
images to displays, 117
images to files, 104

X
X colormaps, 119, 334, 338
X window, 28
XGL functions, using in XIL

programs, 539
xgl_to_xil() , 540
xil, 485
XIL data types

XilVersionNumber , 340
XIL enumerations

XilBufferId , 158

XilCellEncodingType , 449
XilColorspaceType , 183
XilDataType , 20, 103
XilEdgeCondition , 260
XilEdgeDetection , 264
XilErrorCategory , 192
XilFlipType , 242
XilJpegHTableType , 352
XilJpegLLBandSelectorType, 377
XilMpeg1FrameType , 430
XilMpeg1PelAspectRatio , 422
XilMpeg1PictureRate , 424
XilObjectType , 197
XilPhotoCDResolution , 133
XilPhotoCDRotate , 134
XilStorageMovement , 80
XilStorageType , 68
XilTilingMode , 86

XIL functions
getting image file data into XIL

image, 106 to 113
getting XIL image data into file, 113

to 116
XIL objects, 194, 197

listing of, 7
XilCis , 291, 295, 320
XilColorspace , 179
XilColorspaceList , 184
XilDevice , 120
XilDitherMask , 175
XilError , 190
XilHistogram , 247
XilImage , 21
XilImageType , 59, 331
XilInterpolationTable , 220
XilKernel , 259
XilLookup , 143, 272, 274
XilRoi , 49
XilSel , 268
XilStorage , 67, 68
XilSystemState , 16

XIL on-line documentation, xxxiii, 12
XIL structures

XilCellUserData , 448
XilH261MVSearchRange , 394

600 XIL Programmer’s Guide—August 1997

XilIndexList , 339, 454
XilJpegBandHTable , 351, 373
XilJpegBandQTable , 352
XilJpegHTable , 357, 375
XilJpegHTableValue , 358, 375
XilJpegLLBandPtTransform , 378
XilJpegLLBandSelector , 376
XilJpegQTable , 363
XilMemoryStorage , 25
XilMpeg1Pattern , 420
XilMpeg1TimeCode , 426, 433

XIL, installing, 11
xil.h , 15
xil_absolute() , 207
xil_add() , 209
xil_add_const() , 209, 211, 484

xil_affine() , 236
xil_and() , 211
xil_and_const() , 211, 212
xil_band_combine() , 281
xil_black_generation() , 186
xil_blend() , 283
xil_call_next_error_

handler() , 203
xil_cast() , 160, 484, 485
xil_choose_colormap() , 165
xil_cis_attempt_recovery() , 313
xil_cis_create() , 295, 320, 329
xil_cis_destroy() , 296
xil_cis_flush() , 296, 326, 409
xil_cis_get_attribute() , 339, 350
xil_cis_get_autorecover() , 312
xil_cis_get_bits_ptr() , 300, 306,

325, 405, 412
xil_cis_get_by_name() , 312
xil_cis_get_compression_

type() , 304
xil_cis_get_compressor() , 304
xil_cis_get_input_type() , 297, 305
xil_cis_get_keep_frames() , 309
xil_cis_get_max_frames() , 307
xil_cis_get_name() , 312

xil_cis_get_output_type() , 300,
305, 331

xil_cis_get_random_access() , 306
xil_cis_get_read_frame() , 306
xil_cis_get_read_invalid() , 313,

314
xil_cis_get_start_frame() , 306
xil_cis_get_write_frame() , 306
xil_cis_get_write_invalid() , 313
xil_cis_has_data() , 302
xil_cis_has_frame() , 301, 325, 336,

412
xil_cis_number_of_frames() , 302
xil_cis_put_bits() , 298, 306
xil_cis_put_bits_ptr() , 298, 306,

329
xil_cis_reset() , 295, 313
xil_cis_seek() , 302, 313
xil_cis_set_attribute() , 350
xil_cis_set_autorecover() , 311
xil_cis_set_keep_frames() , 309
xil_cis_set_max_frames() , 307
xil_cis_set_name() , 312
xil_cis_sync() , 491
xil_close() , 34
xil_color_convert() , 53, 180
xil_color_correct() , 54, 181, 184
xil_colorcube_create() , 166
xil_colorspace_create() , 54, 183
xil_colorspace_destroy() , 184
xil_colorspace_get_by_

name() , 179
xil_colorspace_get_name() , 185
xil_colorspace_get_type() , 185
xil_colorspace_set_name() , 185
xil_colorspacelist_create() , 54,

184
xil_colorspacelist_

destroy() , 184
xil_colorspacelist_get_by_

name() , 185

Index 601

xil_colorspacelist_get_
name() , 185

xil_colorspacelist_set_
name() , 185

xil_compress() , 296, 306
xil_convolve() , 260
xil_copy() , 59, 154, 484
xil_copy_pattern() , 289
xil_copy_with_planemask() , 155

xil_create() , 20, 41, 63, 102
xil_create_child() , 56
xil_create_double_buffered_

window() , 157
xil_create_from_device() , 45, 124,

130
xil_create_from_type() , 59, 63
xil_create_from_window() , 29, 45,

117, 157, 332
xil_create_temporary() , 63
xil_create_temporary_from_

type() , 63
XIL_DEBUG environment variable, 486
xil_decompress() , 299, 300, 306, 315,

336, 342, 412
xil_default_error_handler() , 203
xil_destroy() , 35
xil_device_create() , 121

xil_device_destroy() , 125

xil_device_set_value() , 122

xil_dilate() , 266
xil_dithermask_create() , 174
xil_dithermask_create_

copy() , 177
xil_dithermask_destroy() , 177
xil_dithermask_get_by_

name() , 175, 334
xil_dithermask_get_height() , 177
xil_dithermask_get_name() , 177
xil_dithermask_get_nbands() , 177
xil_dithermask_get_values() , 177
xil_dithermask_get_width() , 177

xil_dithermask_set_name() , 177
xil_divide() , 206
xil_divide_by_const() , 211
xil_divide_into_const() , 211
xil_edge_detection() , 264
xil_erode() , 266
xil_error_diffusion() , 170, 177
xil_error_get_category() , 192
xil_error_get_category_

string() , 193
xil_error_get_id() , 192
xil_error_get_location() , 194
xil_error_get_object() , 194
xil_error_get_primary() , 194
xil_error_get_string() , 192
xil_export() , 43, 81, 103
xil_export() , 42
xil_extrema() , 146, 246
xil_fill() , 253
xil_get_active_buffer() , 158
xil_get_by_name() , 61
xil_get_child_offsets , 59
xil_get_datatype() , 42
xil_get_device_attribute() , 125,

132, 133, 134
xil_get_exported() , 43
xil_get_height() , 41
xil_get_imagetype() , 59
xil_get_info() , 105
xil_get_info() , 41, 42
xil_get_memory_storage() , 42, 43,

76, 113, 116
xil_get_name() , 61
xil_get_nbands , 41
xil_get_origin() , 48
xil_get_origin_x() , 48
xil_get_origin_y() , 48
xil_get_parent() , 56
xil_get_pixel() , 288
xil_get_readable() , 60

602 XIL Programmer’s Guide—August 1997

xil_get_roi() , 50, 51
xil_get_size() , 41
xil_get_storage_movement() , 80
xil_get_storage_with_copy() , 41,

87, 114 to 115
xil_get_synchronize() , 60, 492
xil_get_tile_storage() , 42, 92, 97,

108 to 109, 115 to 116
xil_get_tilesize() , 90, 97
xil_get_width() , 41
xil_get_writable() , 60
xil_histogram() , 250
xil_histogram_create() , 248
xil_histogram_create_copy() , 252
xil_histogram_destroy() , 252
xil_histogram_get_by_name() , 252
xil_histogram_get_info() , 251
xil_histogram_get_limits() , 251
xil_histogram_get_name() , 252
xil_histogram_get_nbands() , 251
xil_histogram_get_nbins() , 251
xil_histogram_get_values() , 250
xil_histogram_set_name() , 251
xil_imagetype_get_by_name() , 60
xil_imagetype_get_datatype() , 59
xil_imagetype_get_height() , 59
xil_imagetype_get_info() , 60, 331
xil_imagetype_get_name() , 60
xil_imagetype_get_nbands() , 59
xil_imagetype_get_size() , 59
xil_imagetype_get_width() , 59
xil_imagetype_set_name() , 60
xil_import() , 27, 43, 104
xil_install_error_handler() , 200
xil_interpolation_table_

create() , 220
xil_interpolation_table_create_

copy() , 225
xil_interpolation_table_

destroy() , 226

xil_interpolation_table_get_
data() , 225

xil_interpolation_table_get_
kernel_size() , 225

xil_interpolation_table_get_
subsamples() , 225

xil_interpolation_table_get_
values() , 225

xil_kernel_create() , 171
xil_kernel_create_copy() , 262
xil_kernel_create_

separable() , 262
xil_kernel_destroy() , 261
xil_kernel_get_by_name() , 171, 262
xil_kernel_get_height() , 262
xil_kernel_get_key_x() , 262
xil_kernel_get_key_y() , 262
xil_kernel_get_name() , 262
xil_kernel_get_values() , 262
xil_kernel_get_width() , 262
xil_kernel_set_name() , 262
xil_lookup() , 276, 484
xil_lookup_convert() , 278
xil_lookup_create() , 165, 272, 340
xil_lookup_create_

combined() , 274
xil_lookup_create_copy() , 278
xil_lookup_destroy() , 277
xil_lookup_get_band_

lookup() , 278
xil_lookup_get_by_name() , 279, 334
xil_lookup_get_colorcube() , 170
xil_lookup_get_colorcube_

info() , 170
xil_lookup_get_input_

datatype() , 278
xil_lookup_get_input_

nbands() , 278
xil_lookup_get_name() , 279
xil_lookup_get_num_

entries() , 278, 335

Index 603

xil_lookup_get_offset() , 278
xil_lookup_get_output_

datatype() , 278
xil_lookup_get_output_

nbands() , 278
xil_lookup_get_values() , 278, 335
xil_lookup_get_version() , 278
xil_lookup_set_name() , 279
xil_lookup_set_offset() , 278, 335
xil_lookup_set_values() , 278
xil_max() , 208
xil_min() , 208
xil_multiply() , 206
xil_multiply_const() , 211, 484
xil_nearest_color() , 164, 177, 342
xil_not() , 209
xil_object_get_error_

string() , 195
xil_object_get_type() , 196
xil_open() , 16
xil_or() , 208
xil_or_const() , 212
xil_ordered_dither() , 174, 177, 337
xil_paint() , 287
xil_remove_error_handler() , 202
xil_rescale() , 158, 484
xil_roi_add_image , 51
xil_roi_add_rect() , 51
xil_roi_add_region() , 51
xil_roi_create() , 50
xil_roi_create_copy() , 50
xil_roi_destroy() , 50
xil_roi_get_as_image() , 51
xil_roi_get_as_region , 51
xil_roi_get_by_name() , 52
xil_roi_get_name() , 52
xil_roi_intersect() , 50
xil_roi_set_name() , 52
xil_roi_subtract_rect() , 51
xil_roi_translate() , 51

xil_roi_unite() , 50
xil_rotate() , 233
xil_scale() , 228, 484
xil_sel_create() , 268
xil_sel_create_copy() , 271
xil_sel_destroy() , 270
xil_sel_get_by_name() , 269
xil_sel_get_height() , 271
xil_sel_get_key_x() , 271
xil_sel_get_key_y() , 271
xil_sel_get_name() , 269
xil_sel_get_values() , 271
xil_sel_get_width() , 271
xil_sel_set_name() , 269
xil_set_active_buffer() , 158
xil_set_colorspace() , 179, 180
xil_set_data_supply_

routine() , 44
xil_set_device_attribute() , 124,

131
xil_set_memory_storage() , 42, 76,

113
xil_set_memory_storage() , 43
xil_set_name() , 61
xil_set_origin() , 48
xil_set_pixel() , 288
xil_set_roi() , 51
xil_set_storage_movement() , 80
xil_set_storage_with_copy() , 41,

87, 107 to 108
xil_set_storage_with_copy() , 43
xil_set_synchronize() , 60, 491
xil_set_tile_storage() , 42, 98, 106

to 107
xil_set_tilesize() , 98
xil_set_value() , 288, 485
xil_soft_fill() , 255
xil_squeeze_range() , 279
xil_state_get_default_

tilesize() , 97

604 XIL Programmer’s Guide—August 1997

xil_state_get_default_tiling_
mode() , 97

xil_state_get_interpolation_
tables() , 225

xil_state_get_synchronize() , 492
xil_state_set_default_

tilesize() , 98
xil_state_set_default_tiling_

mode() , 86, 89, 99
xil_state_set_interpolation_

tables() , 223
xil_state_set_synchronize() , 492
xil_storage_create() , 67, 77
xil_storage_destroy() , 77
xil_storage_get_band_

stride() , 78
xil_storage_get_by_name() , 79
xil_storage_get_

coordinates() , 97
xil_storage_get_data() , 78, 94
xil_storage_get_image() , 78
xil_storage_get_name() , 79
xil_storage_get_offset() , 72, 78
xil_storage_get_pixel_

stride() , 78
xil_storage_get_scanline_

stride() , 78
xil_storage_is_type() , 92
xil_storage_set_band_

stride() , 77
xil_storage_set_

coordinates() , 98
xil_storage_set_data() , 77
xil_storage_set_data_

release() , 77
xil_storage_set_name() , 79
xil_storage_set_offset() , 72, 77
xil_storage_set_pixel_

stride() , 77
xil_storage_set_scanline_

stride() , 77
XIL_STRIPPING , 86, 98

xil_subsample_adaptive() , 230
xil_subsample_binary_to_

gray() , 231
xil_subtract() , 206
xil_subtract_const() , 211
xil_subtract_from_const() , 211
xil_swap_buffers() , 158
xil_sync , 491
xil_tablewarp() , xxxvii, 239
xil_tablewarp_horizontal() , 239
xil_tablewarp_vertical() , 239
xil_threshold() , 252, 485
XIL_TILING , 86, 89, 98
xil_to_xgl() , 539
xil_toss() , 492
xil_translate() , 226, 485
xil_transpose() , 241, 483
XIL_WHOLE_IMAGE, 86, 97, 98
xil_xor() , 208
xil_xor_const() , 212
XilCellEncodingType

enumeration, 449
XilCellUserData structure, 448
XilCis object, 291, 295, 320
XilColorspace object, 179
XilColorspaceList object, 184
XilDataType enumeration, 20, 103
XilDataType enumeration, 41
XilDevice object , 120
XilDitherMask object, 175
XilEdgeCondition enumeration, 260
XilError object, 190
XilErrorCategory enumeration, 192
XilFlipType enumeration, 242
XilH261MVSearchRange structure, 394
XilHistogram object, 247
XILHOME, 11
XilImage object, 21
XilImageType object, 331
XilIndexList structure, 339, 454

Index 605

XilInterpolationTable object, 220
XilJpegBandHTable structure, 351, 373
XilJpegBandQTable structure, 352
XilJpegHTable structure, 357, 375
XilJpegHTableType enumeration, 352
XilJpegHTableValue structure, 358,

375
XilJpegLLBandPtTransform

structure, 378
XilJpegLLBandSelector

structure, 376
XilJpegLLBandSelectorType

enumeration, 377
XilJpegQTable structure, 363
XilKernel object, 259
XilLookup object, 143, 272, 274
XilMpeg1FrameType enumeration, 430
XilMpeg1Pattern structure, 420
XilMpeg1PelAspectRatio

enumeration, 422
XilMpeg1PictureRate

enumeration, 424
XilMpeg1TimeCode structure, 426, 433
XilObjectType enumeration, 197
XilRoi object, 49
XilSel object, 268
XilStorage object, 67, 68
XilSystemState object, 16
XilVersionNumber data type, 340
XOR of images, 208
XResizeWindow() , 118

Z
zooming images, 227

606 XIL Programmer’s Guide—August 1997

