
Sun Microsystems
2550 Garcia Avenue

Mountain View, CA 94043
U.S.A. 415-960-1300

Solaris Internationalization
Guide for Developers

Please
Recycle

Copyright 1997 Sun Microsystems, Inc. 2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.
No part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors,
if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in
the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, SunSoft, SunDocs, SunExpress, JumpStart, and Solaris are trademarks, registered trademarks, or service
marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered
trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture
developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges
the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun
holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement
OPEN LOOK GUIs and otherwise comply with Sun’s written license agreements.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87) and
FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a).

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-
INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 1997 Sun Microsystems, Inc., 2550 Garcia Avenue, Mountain View, Californie 94043-1100 Etats-Unis. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie
relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, SunSoft, SunDocs, SunExpress, JumpStart, et Solaris sont des marques de fabrique ou des marques
déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous
licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les
produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun
reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique
pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence
couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux
licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE "EN L’ETAT" ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS
DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

Contents iii

Contents

Preface xv

Who Should Use This Book xv

Organization and Summary of this Book xvi

Related Books xvi

Ordering Sun Documents xvii

Typographic Conventions xviii

Shell Prompts in Command Examples xviii

1. Solaris Internationalization Overview 1

New Internationalization Features in Solaris 2.6 1

Internationalization and Localization 2

Basic Steps in Internationalization 2

What Is a Locale? 3

Full vs. Partial Locales 3

Locales in Solaris 4

Locale Categories 4

Using Locale Categories for Localization 5

Time Formats 5

Date Formats 6

iv Solaris Internationalization Guide for Developers • August 1997

Numbers 7

Currency 8

Word and Letter Differences 9

Codesets for x86 11

Keyboard Differences 12

Other Differences 12

Punctuation 12

Symbols 12

Measurements 13

Gender 13

Titles and Addresses 13

Paper Sizes 13

Creating Worldwide Software: The Book 14

Overview 14

2. Contents of the Base Solaris Product 17

Summary of the Base Product 17

Core Set of Locales 18

Extended Set of Locales 19

New Unicode Locale: en_US.UTF-8 20

New User Locales in Base Solaris 20

Multiple Key Compose Sequences for New Locales 21

Keyboard Mapping for Greek and Russian Scripts 22

New Keyboard Support in Solaris 2.6 22

Changing Between Keyboards on SPARC 22

Changing Between Keyboards on x86 23

New Locales in the Base Installation 24

Using Jumpstart 24

Contents v

3. Contents of the Localized Solaris 2.6 Products 25

The European Localized Solaris 2.6 Product 25

Font Formats 29

The Asian Localized Solaris 2.6 Products 30

Korean 31

Chinese: Simplified and Traditional 32

Japanese 34

4. Overview of UTF-8 41

The Universal Transformation Format 41

System Environment 42

Code Conversions 47

Script Selection and Input Modes 50

Printing 61

Programming Environment 62

FontSet Used with UTF-8 62

5. Installation 65

Adding Packages 65

Installing Software From a Mounted CD 67

Installing Software From a Remote Package Server 67

Installing the Localization Product 68

European Package 69

French Files 69

German Files 70

Italian Files 71

Spanish Files 72

Swedish Files 73

Eastern European Files 73

vi Solaris Internationalization Guide for Developers • August 1997

Detailed Descriptions of European Files 74

European Codesets 79

European Font Packages 79

Asian Packages 80

Description of General Packages 84

Asian Localization Packages Disk Space 100

6. Internationalization Framework in Solaris 2.6 101

Codeset Independence Support 101

The CSI Approach 102

CSI-enabled Commands 102

Solaris 2.6 CSI-enabled Libraries 103

Locale Database 104

Process Code Format 104

Dynamically Linked Applications 104

libw and libintl 106

ctype Macros 107

Internationalization APIs in libc 107

genmsg Utility 112

7. Writing Internationalized Code 115

Linking 115

Text and Codesets 115

Call setlocale() 115

Make Software 8-bit Clean 116

Watch for Sign Extension Problems 117

Use ctype Library Routines 119

Formats 119

Time and Date Formats 120

Contents vii

Currency and Number Formats 121

Collation 122

Replace strcmp() with strcoll() 122

Messaging for Program Translation 124

Messaging Using catgets() 125

Locating Message Catalogs 125

Using catgets() 127

Create the Source Message Catalog 128

Translate the Source Message Catalog 131

Generate the Binary Message Catalogs 131

Messaging Using gettext() 132

Locating Message Catalogs 133

Surround Strings with gettext() 134

Create the Source Message Catalog 135

Create the Binary Message Catalog 136

Problem Areas 136

Other Programming Languages 141

Summary 142

8. X/DPS 143

Localization Resource Category 144

Information on Language Interpreters 144

9. Desktop Environments 145

Overview 145

Locales 147

Integrating Fonts 147

Input Methods 147

Internationalization and CDE 148

viii Solaris Internationalization Guide for Developers • August 1997

Matching Fonts to Character Sets 148

Storage of Localized Text 148

Xlib Dependencies 149

Message Guidelines 149

Internationalization and Distributed Networks 149

Mail Interchange 150

OpenWindows 150

10. Printing 151

Localization Printing Support Under Solaris 2.6 151

European Printing Support 151

Asian Printing Support 152

Index 155

Figures ix

Figures

FIGURE 4-1 English Input Mode 50

FIGURE 4-2 Cyrillic Input Mode 58

FIGURE 4-3 Russian Keyboard Layout 59

FIGURE 4-4 Greek Input Mode 59

FIGURE 4-5 Greek Keyboard Layout (European Keyboard) 60

FIGURE 4-6 Greek Keyboard Layout (UNIX Keyboard) 60

x Solaris Internationalization Guide for Developers • August 1997

Tables xi

Tables

TABLE P-1 Typographic Conventions xviii

TABLE P-2 Shell Prompts xviii

TABLE 1-1 International Time Formats 5

TABLE 1-2 International Date Formats 6

TABLE 1-3 International Numeric Conventions 7

TABLE 1-4 International Monetary Conventions 8

TABLE 1-5 Common International Page Sizes 13

TABLE 2-1 Core Set of Locales in SUNWploc and SUNWplow 18

TABLE 2-2 Extended Set of Locales in SUNWploc1 and SUNWplow1 19

TABLE 2-3 New User Locales Included in Solaris 2.6 20

TABLE 2-4 Layouts for Type 4 Keyboards 23

TABLE 2-5 New Locales Offered in Installation 24

TABLE 3-1 European 2.6 Locales 25

TABLE 3-2 New Eastern European Locales in Solaris 2.6 27

TABLE 3-3 iconv Support for Major Codesets 28

TABLE 3-4 Summary of Asian Locales 31

TABLE 3-5 Codeset Conversions Supported for Korean ko , ko.UTF-8 32

TABLE 3-6 Codeset Conversions for Simplified Chinese 33

TABLE 3-7 Codeset Conversions for Traditional Chinese 33

xii Solaris Internationalization Guide for Developers • August 1997

TABLE 3-8 Japanese Input Systems 34

TABLE 3-9 Japanese TrueType Fonts 35

TABLE 3-10 Japanese F3 Fonts 35

TABLE 3-11 Japanese Bitmap Fonts 35

TABLE 3-12 iconv Conversion Support 36

TABLE 3-13 Japanese-specific Commands 37

TABLE 4-1 STREAMS Modules Supported by en_US.UTF-8 43

TABLE 4-2 Available Code Conversions in en_US.UTF-8 48

TABLE 4-3 Common Latin-1 Compose Sequences 50

TABLE 4-4 Common Latin-2 Compose Sequences 54

TABLE 4-5 Common Latin-4 Compose Sequences 56

TABLE 4-6 Common Latin-5 Compose Sequences 58

TABLE 5-1 Pan-European Files for Localization and Windowing 69

TABLE 5-2 French Files for Localization and Windowing 69

TABLE 5-3 German Files for Localization and Windowing 70

TABLE 5-4 Italian Files for Localization and Windowing 71

TABLE 5-5 Spanish Files for Localization and Windowing 72

TABLE 5-6 Swedish Files for Localization and Windowing 73

TABLE 5-7 European Files for Localization and Windowing 73

TABLE 5-8 European Package Descriptions 74

TABLE 5-9 Font Packages in Solaris 2.6 79

TABLE 5-10 Asian Package for Localization and Windowing 80

TABLE 5-11 Korean Package for Localization and Windowing 81

TABLE 5-12 Chinese Package for Localization and Windowing 82

TABLE 5-13 Japanese Package for Localization and Windowing 83

TABLE 5-14 Packages 84

TABLE 5-15 Korean Package 85

TABLE 5-16 Chinese Package 86

Tables xiii

TABLE 5-17 Japanese Package 87

TABLE 5-18 ko Locale 90

TABLE 5-19 ko.UTF-8 Locale 91

TABLE 5-20 zh Locale 92

TABLE 5-21 zh_TW Locale 92

TABLE 5-22 zh_TW.BIG5 Locale 93

TABLE 5-23 ja/ja_JP.PCK Common Packages 94

TABLE 5-24 ja Locale 95

TABLE 5-25 ja_JP.PCK Locale 96

TABLE 5-26 CDE Packages 97

TABLE 5-27 Approximate Disk Space in Megabytes (MB) Required for Software Groups (SPARC) 100

TABLE 5-28 Approximate Disk Space in MB Required for Software Groups (x86) 100

TABLE 6-1 CSI-enabled Commands in Solaris 2.6 103

TABLE 6-2 Stub Entry Points in libw and libintl 106

TABLE 6-3 internationalization APIs in libc 108

TABLE 7-1 Library Routines for Codeset Independence 119

TABLE 10-1 prolog.ps Fonts 152

TABLE 10-2 Japanese Printer Support 153

xiv Solaris Internationalization Guide for Developers • August 1997

Preface xv

Preface

The Solaris Internationalization Guide for Developers describes new internationalization
features in Solaris 2.6. It contains important information on how to use Solaris 2.6 to
build global software products that support various languages and cultural
conventions.

Specifically, this guide contains:

■ Guidelines and tips for developers on how to use Solaris 2.6 to write applications
for international markets.

■ An overall view of internationalization topics that apply to various layers within
the Solaris environment.

■ Pointers to more detailed documentation.

Where appropriate, this guide points you to other books in the documentation set
that contain additional or more detailed information on internationalization features
in this release.

Who Should Use This Book
This book is intended for software developers who want to design global products
and applications for the Solaris 2.6 environment. Readers will find the latest Sun-
specific information pertaining to this release.

This book assumes knowledge of the C programming language, and a few chapters
discuss X11® window system toolkits.

All operating system information pertains to SunOS™ 5.6. The hardware platforms
covered are SPARC® and Intel x86. For the most part, support for these architectures
should be identical, but a note appears when this is not the case.

xvi Solaris Internationalization Guide for Developers • August 1997

Organization and Summary of this Book
The chapters in this book are organized as follows:

■ Chapter 1, “Solaris Internationalization Overview,” provides an overview of the
localized products available on the base Solaris release, the European localized
release, and the Asian localized releases.

■ Chapter 2, “Contents of the Base Solaris Product,” describes the contenst of the
Solaris 2.6 base product.

■ Chapter 3, “The European Localized Solaris 2.6 Product,” describes Codeset
Independence (CSI) support for Extended Unix Code (EUC) and non-EUC
codesets.

■ Chapter 4, “Overview of UTF-8,” covers the system environment, code
conversions, script selection, printing, and the programming environment.

■ Chapter 5, “Installation,” describes the procedures for installing the localization
packages.

■ Chapter 6, “Internationalization Framework in Solaris 2.6,” contains details
about the internationalization features incorporated into this release.

■ Chapter 7, “Writing Internationalized Code,” is a detailed look at the procedures
in creating a localized version: codesets, formats, collation, and messaging.

■ Chapter 8, “X/DPS,” covers the X Windows system’s extension with the X
Display PostScript system.

■ Chapter 9, “Desktop Environments,” covers the Solaris desktop environments:
the Common Desktop Environment (CDE) and OpenWindows. The section on
CDE has an overview of the application internationalization process, including
locale management, localized resources, font management, localized text tasks,
interclient communication, and internationalized functions.

■ Chapter 10, “Printing,” covers printing support under Solaris 2.6, with specific
information for European and the Asian printing.

Related Books
Tuthill, Bill and David Smallberg. Creating Worldwide Software: Solaris International
Developer’s Guide, 2nd edition. Mountain View, California, Sun Microsystems Press,
1997. Available through books@sun.com and www.sun.com/books/ . The book
offers a general overview of the internationalization process under the Solaris
operating system.

Common Desktop Environment: Internationalization Programmer’s Guide. Mountain
View, California, SunSoft Press, 1996. The CDE documentation set can be ordered by
title through SunExpress. The CDE programmer’s guide is also part of the CDE

xvii

Developer’s AnswerBook set that is shipped on the Solaris documentation CD.
Available through the SunDocs program (see page xvii). Contains information on
locale management, font management, distributed networks, User Interface
Language (UIL), Xt, and Xlib dependencies. See Chapter 9, “Desktop
Environments,” for a summary of contents.

OSF/Motif Programmer’s Guide, Release 1.2. Englewood Cliffs, New Jersey, Prentice-
Hall, 1993. The Open Software Foundation’s (OSF) Guide describes how to use OSF/
Motif application programming interface to create Motif applications. It presents an
overview of Motif widget set architecture, explains the Motif toolkit, and gives
models and examples of Motif applications.

OSF/Motif Programmer’s Reference, Release 1.2. Englewood Cliffs, New Jersey, Prentice-
Hall, 1992. The Open Software Foundation’s (OSF) Reference is the collection of
reference pages to OSF/Motif commands, functions, toolkit, window manager, user
interface language commands, and functions.

PostScript Language Reference Manual, Second Edition. Adobe Systems Inc., Addison-
Wesley, 1990. The standard reference work for PostScriptTM covers the fundamentals
of PostScript as a device-independent printing language.

PostScript Language Reference Manual Supplement. Adobe Systems Inc., 1994.

Programming the Display PostScript System with X. Reading, Mass., Adobe Systems
Inc., Addison-Wesley, 1993. For application developers working with X Windows
and Display PostScript to produce information for the screen display and the printer
output.

OLIT Reference Manual. Sun Microsystems, 1994.

XView Developer’s Notes. O’Reilly & Associates, 1992.

Ordering Sun Documents
The SunDocs program provides more than 250 manuals from Sun Microsystems, Inc.
If you live in the United States, Canada, Europe, or Japan, you can purchase
documentation sets or individual manuals from SunDocs.

For a list of documents and how to order them, see the catalog section of the
SunExpress™ Internet site at http://www.sun.com/sunexpress .

xviii Solaris Internationalization Guide for Developers • August 1997

Typographic Conventions
TABLE P-1 describes the typographic conventions used in this book.

Shell Prompts in Command Examples
TABLE P-2 shows the default system prompt and superuser prompt for the C shell,
Bourne shell, and Korn shell.

TABLE P-1 Typographic Conventions

Typeface or
Symbol Meaning Example

AaBbCc123 The names of commands, files,
and directories; on-screen
computer output

Edit your .login file.
Use ls -a to list all files.
machine_name% You have mail.

AaBbCc123 What you type, contrasted with
on-screen computer output

 machine_name% su
 Password:

AaBbCc123 Command-line placeholder:
replace with a real name or
value

To delete a file, type rm filename.

AaBbCc123 Book titles, new words or terms,
or words to be emphasized

Read Chapter 6 in User’s Guide.
These are called class options.
You must be root to do this.

TABLE P-2 Shell Prompts

Shell Prompt

C shell prompt machine_name%

C shell superuser prompt machine_name#

Bourne shell and Korn shell prompt $

Bourne shell and Korn shell superuser prompt #

1

CHAPTER 1

Solaris Internationalization
Overview

Solaris 2.6 includes full Unicode 2.0 support, as defined in ISO-10646, in selected
locales. Solaris 2.6 is a major release for Sun’s international markets. It includes a
number of new features for Asian customers and significantly expands language
support for Eastern Europe and the Baltic States.

New Internationalization Features in
Solaris 2.6
■ Unicode 2.0 support

■ Unicode 2.0 supported through UTF-8 in English and Korean locales
■ UTF-8 locales support multi-script input and output for all European locales

and Korean
■ Codeset Independence
■ Expanded language coverage

■ Ten new locales added for Eastern Europe, Russia, Greece, Turkey, and the
Baltic States

■ Additional input methods provided for the Japanese locale (Wnn6 and ATOK8)
■ Easy-to-use font administration tool for adding and managing fonts

■ Improved PC data interoperability
■ Popular Asian PC file encoding (PC-Kanji and Big5)
■ TrueType font support in all versions and TrueType fonts included in Asian

versions
■ Utilities provided for easy two-way conversion of PC files to UNIX encoding

2 Solaris Internationalization Guide for Developers • August 1997

Internationalization and Localization
Internationalization is the process of making software portable between languages
or regions, while localization is the process of adapting software for specific
languages or regions. International software can be developed using interfaces that
modify program behavior at run time in accordance with specific cultural
requirements. Localization involves establishing on-line information to support a
language or region, called a locale.

Unlike software that must be completely rewritten before it can work with different
native languages and customs, internationalized software does not require rewriting.
It can be ported from one locale to another without change. The Solaris system is
internationalized, providing the infrastructure and interfaces you need to create
internationalized software. Chapter 3, “Contents of the Localized Solaris 2.6
Products” and Chapter 4, “Overview of UTF-8” describe what facilities are available
and how to use them.

Internationalization and localization are different procedures.

■ Internationalization is the process of making software that is independent of any
locale. It can then be easily adapted to specific locales.

The following localized products are available in Solaris 2.6:

■ English Solaris
■ European Solaris (German, French, Spanish, Swedish, Italian)
■ Simplified Chinese Solaris for the People’s Republic of China
■ Traditional Chinese Solaris for Taiwan
■ Japanese Solaris
■ Korean Solaris

Basic Steps in Internationalization
An internationalized application’s executable image is portable between languages
and regions. To internationalize software, you should:

■ Use the interfaces described in this book to create software whose environment
can be modified dynamically without the necessity of recompiling the software.

■ Separate software into executable and messages. The messages include all
printable and displayable messages that the user sees. Keep the message strings
in a message database.

Message strings are translated for a language and a region. A locale includes the
message strings and methods to specify sorting, and so forth.

Chapter 1 Solaris Internationalization Overview 3

Locales are not the same as a language. A language may contain various regions: for
example, French is spoken in France and Canada, but each country has different
ways of displaying monetary and time information.

To use a localized version of a product, the user sets the environment variables
(described at “Locale Categories” on page 4). The product then displays the user
messages in their translated form. Date, time, currency, and other information is
formatted and displayed according to locale-specific conventions.

What Is a Locale?
The key concept for application programs is that of a program’s locale. The locale is
an explicit model and definition of a native-language environment. The notion of a
locale is explicitly defined and included in the library definitions of the ANSI C
Language standard.

The locale consists of a number of categories for which there are language-
dependent formatting or other specifications. A program’s locale defines its
codesets, date and time formatting conventions, monetary conventions, decimal
formatting conventions, and collation order.

A locale name is comprised of language, territory, and possibly codeset, although
territory is dropped when not needed. Codeset is usually assumed. For example,
German is de , an abbreviation for Deutsch, while Swiss German is de_CH, CH being
an abbreviation for Confederation Helvetica.

Generally the locale name is specified by the LANG environment variable. Locale
categories are subordinate to LANG, but may be set separately, in which case they
override LANG. If LC_ALL is set, it overrides not only LANG, but all the separate
locale categories as well.

Full vs. Partial Locales
A full Solaris locale has all of the listed functions and the localized system messages
in that language. The German de locale is a full locale. A German user will see all
system messages in German.

Partial locales have the listed functions but they don’t provide localized messages.
For example, the Russian ru locale can process input, output, sorting, and so on, but
it does not have localized messages in Russian. For this reason it is a partial locale.

4 Solaris Internationalization Guide for Developers • August 1997

Some partial locales do use English messages because there may be a full locale with
the localized messages. For example, the de_AT is a partial locale for Austria.
Austrians speaks German, but use a different currency. The Austrian locale is a
subset of the German de locale. It displays messages in German and currency in
Austrian schillings instead of German marks.

Locales in Solaris
Different cultures use different conventions for writing the date, the time, numbers,
currency, delimiting words and phrases, and quoting material.

A locale defines the behavior of a program at runtime according to a language or
cultural region’s conventions. Throughout the system, a locale will determine the
behavior of the following:

■ Encoding and processing of text data
■ Identifying the language and encoding of resource files and their text values
■ Rendering and layout of text strings
■ Interchanging text that is used for interclient text communication
■ Selecting the input method (that is, which codeset will be generated) and the

processing of text data
■ Encoding and decoding for interclient text communication
■ Font and icon files that are culturally specific
■ Actions and file types
■ User Interface Definition (UID) files
■ Date and time formats
■ Numeric formats
■ Monetary formats
■ Collation order
■ Format for informative and diagnostic messages and interactive responses

The CDE separates language and culture-dependent information from the
application and saves it outside the application.

By separating the language and culture-dependent information from the application,
the developer does not need to translate, rewrite, or recompile the application for
each market. The only requirement to enter a new market is to localize the external
information to the local language and customs.

Locale Categories
The locale categories are as follows:

Chapter 1 Solaris Internationalization Overview 5

■ LC_CTYPE
A category which controls the behavior of character handling functions.

■ LC_TIME
This category specifies date and time formats, including month names, days of
the week, and common full and abbreviated representations.

■ LC_MONETARY
This category specifies monetary formats. Few SunOS system commands or
library routines actually use this category.

■ LC_NUMERIC
This category specifies the decimal separator (or radix character) and the
thousands separator.

■ LC_COLLATE
This category specifies the sorting order for a locale, and string conversions
required to attain this ordering.

■ LC_MESSAGES
This category specifies the language in which the localized messages will be
written.

Using Locale Categories for Localization
The localization of a product should be done in consultation with native users in
that target language or region. Certain styles and information styles and formats
may seem perfectly obvious and universal to the developer, but to the user, these
will either look awkward, wrong, or possibly offensive. The following pages
describe the elements which Solaris allows you to control and specify so that you
can successfully internationalize your product.

Time Formats
TABLE 1-1 shows some of the ways to write 11:59 p.m.

TABLE 1-1 International Time Formats

Locale Format

Canadian 23:59

Finnish 23.59

6 Solaris Internationalization Guide for Developers • August 1997

Time is represented by both a 12-hour clock and a 24-hour clock—sometimes known
as “railroad time.” The hour and minute separator can be either a colon (:) or a
period (.).

Time zone splits occur between and within countries. Although a time zone can be
described in terms of how many hours it is ahead of or behind Greenwich Mean
Time (GMT), this number is not always an integer. For example, Newfoundland is in
a time zone that is half an hour different from the adjacent time zone.

Daylight Savings Time (DST) starts and ends on different dates that can vary from
country to country.

Date Formats
TABLE 1-2 shows some of the date formats used around the world. Note that even
within a country, there may be variations.

German 23.59 Uhr

Norwegian Kl 23.59

U.K. 11.59 PM

TABLE 1-2 International Date Formats

Locale Convention Example

Canadian (English) yyyy- mm- dd 1989-08-13

Canadian (French) yyyy- mm- dd 1989-08-13

Danish dd/ mm/ yy 13/08/89

Finnish dd. mm. yyyy 13.08.1989

French dd/ mm/ yy 13/08/89

German dd. mm. yy 13.08.89

Italian dd. mm. yy 13.08.89

Norwegian dd. mm. yy 13.08.89

Spanish dd- mm- yy 13-08-89

TABLE 1-1 International Time Formats (Continued)

Locale Format

Chapter 1 Solaris Internationalization Overview 7

Numbers

Decimal and Thousands Separators

The United Kingdom and the United States are two of the few places in the world
that use a period to indicate the decimal place. Many other countries use a comma
instead. The decimal separator is also called the radix character. Likewise, while the
U.K. and U.S. use a comma to separate thousands groups, many other countries use
a period for this instead, and some countries separate thousands groups with a thin
space. TABLE 1-3 shows some commonly used numeric formats.

Swedish yyyy- mm- dd 1989-08-13

UK-English dd/ mm/ yy 13/08/89

US-English mm- dd- yy 08-13-89

TABLE 1-3 International Numeric Conventions

Locale Large Number

Canadian (French) 4 294 967 295,00

Canadian (English) 4 294 967 295,00

Danish 4.294.967.295,00

Finnish 4.294.967.295,00

French 4.294.967.295,00

German 4 294 967 295,00

Italian 4.294.967.295,00

Norwegian 4.294.967.295,00

Spanish 4.294.967.295,00

Swedish 4.294.967.295,00

UK-English 4,294,967,295.00

US-English 4,294,967,295.00

TABLE 1-2 International Date Formats (Continued)

Locale Convention Example

8 Solaris Internationalization Guide for Developers • August 1997

Data files containing locale-specific formats will be misinterpreted when transferred
to a system in a different locale. For example, a file containing numbers in a French
format will not be useful to a U.K.-specific program.

List Separators

There are no particular locale conventions that specify how to separate numbers in a
list. They are sometimes comma-delimited in the UK and the US, but often spaces
and semicolons are used.

Currency
Currency units and presentation order vary greatly around the world. TABLE 1-4
shows monetary formats in some countries.

Note that local and international symbols for currency can differ. For example, the
designation for the French franc is “F” in France but this is often written as “FRF’’
internationally to distinguish it from other francs, such as the Swiss franc or the
Polynesian francs.

TABLE 1-4 International Monetary Conventions

Locale Currency Example

Canadian (English) Dollar ($) $1 234.56

Canadian (French) Dollar ($) 1 234.56$

Danish Kroner (kr) kr.1.234,56

Finnish Markka (mk) 1.234 mk

French Franc (F) F1.234,56

German Deutsche Mark (DM) 1,234.56DM

Italian Lira (L) L1.234,56

Japanese Yen (¥) ¥1,234

Norwegian Krone (kr) kr 1.234,56

Spanish Peseta (Pts) 1.234,56Pts

Swedish Krona (Kr) 1234.56KR

UK-English Pound (£) £1,234.56

US-English Dollar ($) $1,234.56

Chapter 1 Solaris Internationalization Overview 9

Be aware also that a converted currency amount may take up more or less space than
the original amount. To illustrate: $1,000 can become L1.307.000.

Word and Letter Differences

Word Delimiters

Usually, words are separated by a space character. In Japanese and Thai, however,
there is often no delimiter between words.

Word Order

The order of words in phrases and sentences varies between languages. For instance,
the order of the words “cat” and “black” in “a black cat” is reversed in the
equivalent Spanish phrase, “uno gato negro.” And in French, the negatives “ne” and
“pas” surround the word they negate, as in the phrase “I do not speak,” which in
French is “Je ne parle pas.”

Sort Order

Sorting order for particular characters is not the same in all languages. For example,
the character “ö” sorts with the ordinary “o” in Germany, but sorts separately in
Sweden, where it is the last letter of the alphabet.

Character Sets

Number of Characters

While the English alphabet contains only 26 characters, some languages contain
many more characters. Japanese, for example, can contain over 40,000 characters;
Chinese even more.

10 Solaris Internationalization Guide for Developers • August 1997

Western European Alphabets

The alphabets of most western European countries are similar to the standard 26-
character alphabet used in English-speaking countries, but there are often some
additional basic characters, some marked (or accented) characters, and some
ligatures.

Japanese Text

Japanese text is composed of three different scripts mixed together: Kanji ideographs
derived from Chinese, and two phonetic scripts (or syllabaries), Hiragana and
Katakana.

Although each character in Hiragana has an equivalent in Katakana, Hiragana is the
most common script, with cursive rather than block-like letter forms. Kanji
characters are used to write root words. Katakana is mostly used to represent
“foreign” words—words “imported” from languages other than Japanese.

There are tens of thousands of Kanji characters, but the number commonly used has
been declining steadily over the years. Now only about 3500 are frequently used,
although the average Japanese writer has a vocabulary of merely 2000 Kanji
characters. Nonetheless, computer systems must support more than 7000 because
that is what the Japan Industry Standard (JIS) requires. In addition, there are about
170 Hiragana and Katakana characters. On average 55% of Japanese text is Hiragana,
35% Kanji, and 10% Katakana. Arabic numerals and Roman letters are also present
in Japanese text.

Although it is possible to avoid the use of Kanji completely, most Japanese readers
find text containing Kanji easier to understand.

Korean Text

Korean is similar to Japanese in that Chinese-based ideograms, called Hanja, are
mixed together with a phonetic alphabet, Hangul. Hanja is used mostly to avoid
confusion when Hangul would be ambiguous.

Hangul characters are formed by combining 10 basic vowels and 14 consonants, 2 to
5 of which compose one syllable. Hangul characters are often arranged in a square
like the four on a pair of dice, so that the group takes up the same space as a Hanja
character.

Korean text requires over 6000 Hanja characters, plus about 96 Hangul characters.

Chapter 1 Solaris Internationalization Overview 11

Chinese Text

Chinese usually consists entirely of characters from the ideographic script called
Hanzi. In the People’s Republic of China (PRC) there are about 7000 commonly used
Hanzi characters, although emerging standards number Hanzi in the tens of
thousands. In the Republic of China (ROC or Taiwan) current standards require
more than 13,000 characters; 6000 others have been recently standardized but are
considered rare.

If a character is not a root character, it usually consists of two or more parts, two
being most common. In two-part characters, one part generally represents meaning,
and the other represents pronunciation. Occasionally both parts represent meaning.
The radical is the most important element, and characters are traditionally arranged
by radical, of which there are several hundred. The same sound can be represented
by many different characters, which are not interchangeable in usage.

Some characters are more appropriate than others in a given context—the
appropriate one is distinguished phonetically by the use of tones. By contrast,
spoken Japanese and Korean lack tones.

There are several phonetic systems for representing Chinese. In mainland China the
most common is pinyin, which uses roman characters and is widely employed in the
West for place names such as Beijing. The Wade-Giles system is an older phonetic
system, formerly used for place names such as Peking. In Taiwan zhuyin (or
bopomofo), an extensive phonetic alphabet with unique letter forms, is often used
instead.

Commercial applications, particularly those that deal with people’s names, need to
consider the impact of codeset expansion. Many people in the ROC have names
containing characters that do not exist in any standard codeset. Space needs to be
provided in unassigned codesets to deal with this issue.

Codesets for x86
The default codeset on the Solaris system for x86 is ISO-8859-1. IBM DOS 437
codeset is provided as an option in text mode; however, it is provided only at
internationalization level 1. That is, if you choose to download IBM DOS 437 codeset
by typing:

loadfont -c 437
pcmapkeys -f /usr/share/lib/keyboards/437/en_US

there will be no support for nonstandard U.S. date, time, currency, numbers, units,
and collation. There will be no support for non-English message and text
presentation, and no multibyte character support. Therefore, non-Microsoft-
Windows users should use IBM DOS 437 codeset only in the default C locale.

12 Solaris Internationalization Guide for Developers • August 1997

■ You must be in the text mode to download the IBM codeset, not the graphics
mode.

■ If you are not using the standard U.S. PC keyboard, replace en_US with the
keyboard map related to your keyboard.

■ To download the default codeset in text mode, type:
■ loadfont -c 8859

pcmapkeys -f /usr/share/lib/keyboards/8859/en_US
■ See the loadfont (1) and pcmapkeys (1) manual pages.

Keyboard Differences
Not all characters on the US keyboard appear on other keyboards. Similarly, other
keyboards often contain many characters not visible on the US keyboard. However,
the Compose key can be used to produce any character in the ISO Latin-1 codeset on
any keyboard that supports it.

Other Differences

Punctuation
Both the position and the type of punctuation symbols can vary between languages.
In Spanish, “¿” and “¡” appear at the beginnings of sentences, while in Finnish
colons (:) can occur inside words.

Symbols
Commonly used symbols in one culture often have no meaning in another culture.
For example, because the common U.S. rural mailbox does not exist in other
countries, it would not make a universal email icon.

Chapter 1 Solaris Internationalization Overview 13

Measurements
While most countries now use the metric system of measurement, the United States,
parts of Canada, and the United Kingdom (albeit unofficially) still use the imperial
system. The symbols for feet (‘) and inches (“) are not understood in all countries.

Gender
The spelling of adjectives, articles, and nouns are gender-dependent in some
languages. In French, for example, “un petit gamin” and “une petite gamine” both
mean “a cute kid.” The first expression, however, refers to a boy, and the second
expression, to a girl. Also, neuter objects in English (“a computer” for example) have
gender in other languages (“un ordinateur” is a masculine noun in French).

Titles and Addresses
Mr., Miss, Mrs., and Ms. are common titles in the US but are not used in many other
countries.

Address formats differ from country to country. In many countries, the postal code
includes letters as well as numbers.

Paper Sizes
Within each country a small number of paper sizes are commonly used, normally
with one of those sizes being much more common than the others. Most countries
follow ISO Standard 216 “Writing paper and certain classes of printed matter—
Trimmed sizes—A and B series.”

Internationalized applications should not make assumptions about the page sizes
available to them. The Solaris system provides no support for tracking output page
size; this is the responsibility of the application program itself.

TABLE 1-5 Common International Page Sizes

Paper Type Dimensions Countries

ISO A4 21.0 cm by 29.7 cm Everywhere except US

ISO A5 14.8 cm by 21.0 cm Everywhere except US

JIS B4 25.9 cm by 36.65 cm Japan

14 Solaris Internationalization Guide for Developers • August 1997

Standard paper trays distributed with LaserWriter and LaserWriter II printers
support U.S. letter, U.S. legal, and A4 paper sizes. The SPARCprinterTM paper tray
supports all these sizes, in addition to B5.

Creating Worldwide Software: The Book
The book Creating Worldwide Software, 2nd edition, by Bill Tuthill and David
Smallberg (Sun Microsystems Press, 1997), is a guide to localizing for the Solaris
platform. The book is recommended for developers who work with the Solaris
system See “Related Books” on page xvi for a full citation.

Overview
The book Creating Worldwide Software is for developers and managers who develop
products for the worldwide UNIX platform, especially for the Sun Solaris system.

■ Chapter 1, “Winning in Global Markets,” briefly shows the market potential of
internationalizing your products and defines the steps of internationalization and
localization.

■ Chapter 2, “Understanding Linguistic and Cultural Differences,” shows
through examples how an item will appear in various cultures.

■ Chapter 3, “Encoding Character Sets,” describes how to encode character sets in
any language.

■ Chapter 4, “Establishing Your Locale Environment,“ looks at how a user selects
a locale. It leads you through the steps of creating a specific locale for your
product, including formats for time, date, money, and so on.

■ Chapter 5, “Messaging for Program Translation,” explains how to prepare your
product to handle localized messages. It discusses how to create and install your
translated message catalogs.

■ Chapter 6, “Displaying Localized Text,” discusses font, user interface, and
printing issues.

■ Chapter 7, “Handling Language Input,” discusses the various input methods for
various languages.

JIS B5 18.36 cm by 25.9 cm Japan

US Letter 8.5 inch by 11 inches US and Canada

US Legal 8.5 inch by 14 inches US and Canada

TABLE 1-5 Common International Page Sizes (Continued)

Paper Type Dimensions Countries

Chapter 1 Solaris Internationalization Overview 15

■ Chapter 8, “Working with CDE,” explains the CDE environment and your
localization.

■ Chapter 9, “Motif Programming,” discusses how to write applications under
Motif and CDE.

■ Chapter 10, “X11 Programming,” discusses internationalization with X11.
■ Chapter 11, “Communicating Network Data,” discusses issues in sharing and

distributing data across networks.
■ Chapter 12, “Writing International Documentation,” includes guidelines for

writing manuals and documentation to be translated.
■ Chapter 13, “Product Localization,” discusses business issues.
■ Chapter 14, “Standards Organizations,” is a summary of the international

standards organizations.
■ Chapter 15, “Internationalization Checklist,” has a checklist for

internationalization.
■ Appendix A, “Languages, Territories, and Locale Names,” lists the standard

names for languages, locales, and so on.
■ Appendix B, “Locale Summaries and Keyboard Layouts,” lists many locale-

specific information and keyboard layouts.
■ Appendix C, “OpenWindows and DevGuide,” explains how internationalization

works with OpenWindows.
■ Appendix D, “XView Programming,” discusses internationalization with XView.
■ Appendix E, “OLIT Programming,” discusses internationalization with OPEN

LOOK Intrinsics Toolkit (OLIT).
■ Appendix F, “Example Program,” offers a complete source code for an

internationalized Motif application.
■ Appendix G, “Annotated Bibliography,” is a summary of additional suggested

books.
■ Appendix H, “Glossary,” is a list of key terms.

16 Solaris Internationalization Guide for Developers • August 1997

17

CHAPTER 2

Contents of the Base Solaris Product

Summary of the Base Product
The base English Solaris 2.6 product includes a number of partial European locales
as well as the en_US.UTF-8 locale.

Solaris 2.6 includes the en_US.UTF-8 locale, which looks the same as English. For
the European locales, it can handle different sets of languages in a single application.

The File System Safe Universal Transformation Format, or UTF-8 , is an encoding
defined by X/Open as a multi-byte representation of Unicode. The en_US.UTF-8
locale is the first locale that uses UTF-8 as the codeset to support multiple scripts in
the Solaris system. UTF-8 is a variant of UNICODE 2.0. UTF-8 provides input and
output support for all Solaris single-byte locales.

The partial locales provide the basic mechanism for entering, displaying, and
printing local languages. Messages appear in English.

The partial locales can be split into two groups: the core set and the extended set.
The core set is packaged in SUNWploc (operating system locale) and SUNWplow
(window system locale). Since these packages are part of the end user cluster, they
are installed automatically. The extended set of locales is packaged in SUNWploc1
(operating system locale) and SUNWplow1 (Window system locale). SUNwpldte has
CDE support for the Eastern European locales.

SUNWploc1 and SUNWplow1 are available on the entire cluster only. SUNWploc1 and
SUNWplow1 need to be added to your system before you can use the locales in the
second group.

18 Solaris Internationalization Guide for Developers • August 1997

Core Set of Locales
The core set of locales are installed automatically. The core sets are listed in
TABLE 2-1.

TABLE 2-1 Core Set of Locales in SUNWploc and SUNWplow

Locale Language Country Encoding

de German Germany iso-8859-1

en_AU English Australia iso-8859-1

en_CA English Canada iso-8859-1

en_UK English United Kingdom iso-8859-1

en_US English United States iso-8859-1

en_US.UTF-8 English United States UTF-8

es Spanish Spain iso-8859-1

es_AR Spanish Argentina iso-8859-1

es_BO Spanish Bolivia iso-8859-1

es_CL Spanish Chile iso-8859-1

es_CO Spanish Columbia iso-8859-1

es_CR Spanish Costa Rica iso-8859-1

es_EC Spanish Ecuador iso-8859-1

es_GT Spanish Guatemala iso-8859-1

es_MX Spanish Mexico iso-8859-1

es_NI Spanish Nicaragua iso-8859-1

es_PA Spanish Panama iso-8859-1

es_PE Spanish Peru iso-8859-1

es_PY Spanish Paraguay iso-8859-1

es_SV Spanish El Salvador iso-8859-1

es_UY Spanish Uruguay iso-8859-1

es_VE Spanish Venezuela iso-8859-1

fr French France iso-8859-1

it Italian Italy iso-8859-1

sv Swedish Sweden iso-8859-1

Chapter 2 Contents of the Base Solaris Product 19

Extended Set of Locales
The extended set of locales is not installed automatically. If you want to use locales
listed in TABLE 2-2, you need to install these manually.

TABLE 2-2 Extended Set of Locales in SUNWploc1 and SUNWplow1

Locale Language Country Encoding

cz Czech Czechoslovakia iso-8859-2

da Danish Denmark iso-8859-1

de_AT German Austria iso-8859-1

de_CH German Switzerland iso-8859-1

el Greek Greece iso-8859-7

en_IE English Ireland iso-8859-1

en_NZ English New Zealand iso-8859-1

et Estonian Estonia iso-8859-1

fr_BE French Belgium iso-8859-1

fr_CA French Canada iso-8859-1

fr_CH French Switzerland iso-8859-1

hu Hungarian Hungary iso-8859-2

lt Lithuanian Lithuania iso-8859-4

lv Latvian Latvia iso-8859-4

nl Dutch Netherlands iso-8859-1

nl_BE Dutch Belgium iso-8859-1

no Norwegian Norway iso-8859-1

pl Polish Poland iso-8859-2

pt Portuguese Portugal iso-8859-1

pt_BR Portuguese Brazil iso-8859-1

ru Russian Russia iso-8859-5

su Finnish Finland iso-8859-1

tr Turkish Turkey iso-8859-9

20 Solaris Internationalization Guide for Developers • August 1997

New Unicode Locale: en_US.UTF-8
The en_US.UTF-8 locale enables programming that can input and output scripts in
multiple single-byte languages. This is the first locale with this capability in the
Solaris operating environment. For more detailed information, see Chapter 6,
“Internationalization Framework in Solaris 2.6.”

This locale uses UTF-8 (Universal Character Set Transformation Format for 8 bits)
encoding, which was developed by the X/Open-Uniforum Joint Internationalization
Working Group (XoJIG). This standard has been adopted by the Unicode
Consortium, the International Standards Organization, and the International
Electrotechnical Commission as a part of Unicode 2.0 and ISO/IEC 10646-1. The
en_US.UTF-8 locale supports the CDE environment only, including the Motif and
CDE libraries. This locale is part of the developer cluster.

The locale supports computation for every code point value, which is defined in
Unicode 2.0 and ISO/IEC 10646-1. In Solaris 2.6, language script support is limited
to pan-European locales. Input method support has been enabled for the following
langauge scripts only. Due to limited font resources, Solaris 2.6 software includes
only character glyphs from the following codesets:

■ ISO 8859-1 (most Western European languages, such as English, French, Spanish,
and German)

■ ISO 8859-2 (most Central European languages, such as Czech, Polish, and
Hungarian)

■ ISO 8859-4 (Scandinavian and Baltic languages)
■ ISO 8859-5 (Russian)
■ ISO 8859-7 (Greek)
■ ISO 8859-9 (Turkish)

New User Locales in Base Solaris
The base English Solaris 2.6 includes the following new locale support:

TABLE 2-3 New User Locales Included in Solaris 2.6

Country Locale-Name ISO codeset

Austria de_AT (German Partial Locale) 8859-1

Estonia et 8859-1

Czech cz 8859-2

Chapter 2 Contents of the Base Solaris Product 21

These locales are supported through the SUNWploc1 (for operating system support),
SUNWplow1 (for OpenWindows support), and SUNWpldte (for locales support)
packages, which are part of the entire cluster. The fonts for these packages have the
format SUNiXxf .

■ i X represents the ISO 8859 codeset.
■ xf indicates whether the font is optional or required.

SUNWi1rf contains the required font and SUNWi1of contains the optional font for
an ISO 8859-1 codeset locale. These packages are in different clusters; install the
entire cluster or selectively add the appropriate packages. After the packages have
been installed, users can login through dtlogin to either OpenWindows or CDE
and use the characters associated with their locale.

Multiple Key Compose Sequences for
New Locales
The Solaris 2.6 operating environment supports compose sequences to create the
diacritical marks used in writing the scripts covered in the following codesets:

■ ISO 8859-2 (Latin2) Czech, Polish, and Hungarian
■ ISO 8859-4 (Latin4) Latvian and Lithuanian
■ ISO 8859-9 (Latin5) Turkish

These are the new diacritic characters which can be created with the following keys
and the Compose key.

■ diaeresis = citation (“) (for example, Compose + A + “ = Ä)
■ caron = v (for example, Compose + E + v = E caron)
■ breve = u
■ ogonek = a

Hungary hu 8859-2

Poland pl 8859-2

Latvia lv 8859-4

Lithuania lt 8859-4

Russia ru 8859-5

Greece el 8859-7

Turkey tr 8859-9

TABLE 2-3 New User Locales Included in Solaris 2.6 (Continued)

Country Locale-Name ISO codeset

22 Solaris Internationalization Guide for Developers • August 1997

■ doubleacute = > greater
■ degree symbol = O + 0 (oh plus zero)
■ currency symbol = 0 + x (zero plus x)

Keyboard Mapping for Greek and Russian Scripts
The Solaris 2.6 operating environment supports new keyboard mapping for Greek
and Russian, which allows Greek or Russian script input with the appropriate Sun
keyboard.

■ ISO 8859-5 Russian
■ ISO 8859-7 Greek

New Keyboard Support in Solaris 2.6
The folowing locales have keyboard layouts for sparc (X-server) and X86 (Xserver
PLUS console):

■ Czech
■ Hungary
■ Poland
■ Latvia
■ Lithuania
■ Russia
■ Greece
■ Turkey

[X-server is CDE and OW, console is command line]

Changing Between Keyboards on SPARC
Support for changing layouts in Solaris is achieved only by using the dip-switch
settings under the keyboard. The keyboard layout determined by the dip switches. A
list of keyboard layouts and corresponding defined dip-switch settings is at
/usr/openwin/share/etc/keytables/keytable.map .

Chapter 2 Contents of the Base Solaris Product 23

The following table is for a type 4 keyboard (1=switch up 0=switch down).

Changing the layout from US/UK to Czech is done by changing the dip-switch
settings to the setting defined in the file (the file defines them in hex - this needs to
be converted into binary as it was done above) and then re-booting.

Russian and Greek keyboard support can be toggled on and off using the Sparc
Compose key (Ctrl+Shift+F1 on x86).

Changing Between Keyboards on x86
On x86, a keyboard is selected during the kdmconfig part of install. To change this
at any time after installation, use kdmconfig :

1. Exit CDE/OW to command line

2. Type kdmconfig -u (in other words, kdmconfig unconfigure)

3. Type kdmconfig to run the program

4. Follow instructions to get a new keyboard layout

There are no ‘utilities’ for either Sparc or x86 (apart from standard Unix tools such as
xmodmap, pcmapkeys) bundled by ELC into Solaris 2.6 for switching keyboards.

TABLE 2-4 Layouts for Type 4 Keyboards

Dip Switch in Hex Keyboard Setting in Binary

51 Hungary5.kt 110011

52 Poland5.kt 110100

53 Czech5.k 110101

54 Russia5.kt 110110

55 Latvia5.k 110111

56 Turkey5.kt 111000

57 Greece5.kt 111001

58 Lithuania5.kt 111011

24 Solaris Internationalization Guide for Developers • August 1997

New Locales in the Base Installation
The installation window in the base Solaris 2.6 offers several English language
locales. To use 8-bit characters, install one of the en_XX options. The locale used in
the installation becomes the default system locale.

Using Jumpstart
To enable JumpstartTM for the new 8-bit locales, add the line locale xx
(substituting the appropriate 8-bit locale for xx, for example, en_US) to the
Jumpstart profile file. For complete instructions, see Chapter 4 of Automating Solaris
Installation, available from SunSoft Press. Current Jumpstart users should set the
default locale to bypass the language prompt during installation.

How to Use iconv Command

The iconv command converts the characters or sequences of characters in file from
one codeset to another and writes the results to standard output. If there is no
conversion for a particular character, it is converted into an underscore ‘_’ in the
target codeset. See the iconv man page for more information.

The following options are supported:

■ -f fromcode Symbol of the input codeset.
■ -t tocode Symbol of the output codeset.

To convert a mail file from one encoding into another, use the iconv command:

TABLE 2-5 New Locales Offered in Installation

Locale Name Language/Territory Codeset

C American English 7-bit

en_AU Australian English 8-bit

en_CA Canadian English 8-bit

en_UK UK English 8-bit

en_US American English 8-bit

example% iconv -f from_codeset -t to_codeset mail.codeset > mail.codeset

25

CHAPTER 3

Contents of the Localized Solaris 2.6
Products

The European Localized Solaris 2.6
Product
European Solaris is available in three localized versions: French, German, and
European. All three versions of Solaris share the same software media, which
includes a fully localized CDE environment, error messages, and online
documentation in six languages—French, German, Spanish, Swedish, Italian, and
English. The difference is in the printed documentation. The French and German
Solaris include localized printed documentation, while the printed documentation
for the European version is in English only.

TABLE 3-1 shows a list of locales in the European product. This includes both full and
partial locales.

TABLE 3-1 European 2.6 Locales

Locale Name Language/Territory

C POSIX English (7 bit)

cz Czech Republic

da Denmark

de Germany

de_AT Austria

de_CH Switzerland

26 Solaris Internationalization Guide for Developers • August 1997

el Greece

en_AU Australia

en_CA Canada

en_IE Ireland

en_NZ New Zealand

en_UK United Kingdom

en_US U.S.A.

es Spanish

es_AR Argentina

es_BO Bolivia

es_CL Chile

es_CO Colombia

es_CR Costa Rica

es_EC Ecuador

es_GT Guatemala

es_MX Mexico

es_NI Nicaragua

es_PA Panama

es_PE Peru

es_PY Paraguay

es_SV El Salvador

es_UY Uruguay

es_VE Venezuela

et Estonia

fr France

fr_BE Belgium (French)

fr_CA Canada (French)

fr_CH Switzerland (French)

hu Hungary

it Italy

TABLE 3-1 European 2.6 Locales (Continued)

Locale Name Language/Territory

Chapter 3 Contents of the Localized Solaris 2.6 Products 27

All of these locales are also present in the base Solaris 2.6 release. However, only the
European product contains the localized messages.

As mentioned, the locales include partial locales. These are based on core locales for
the main language. For example, the fr_CA (French Canadian) is based on the fr
(French) locale. These partial locales utilize the messages that are delivered into its
parent locale (French for fr_CA). If a locale hasn’t been fully localized, then it may
contain only English messages.

A number of Eastern European locales have also been added into Solaris 2.6.
Previously Sun locales were based on ISO-8859-1. The Eastern European locales are
based on other ISO standards, as shown in TABLE 3-2.

Locales that are not listed are still based on ISO-8859-1.

lt Lithuania

lv Latvia

nl Netherlands

nl_BE Netherlands/Belgium

no Norway

pl Poland

pt Portugal

pt_BR Portuguese Brazil

ru Russian

su Finland

sv Sweden

TABLE 3-2 New Eastern European Locales in Solaris 2.6

Locale Name Language/Territory ISO

de_AT German (Austrian) 8859-1

et Estonian 8859-1

cz Czech 8859-2

hu Hungarian 8859-2

pl Polish 8859-2

lv Latvian 8859-4

TABLE 3-1 European 2.6 Locales (Continued)

Locale Name Language/Territory

28 Solaris Internationalization Guide for Developers • August 1997

All of the locales support character input and output. There is also iconv support
for many of the major codesets. (For more on iconv , see the man pages.) The iconv
modules are available on the end-user cluster of the Euro product and on the entire
cluster of other products, including the base product. See TABLE 3-3 for details.

lt Lithuanian 8859-4

ru Russian 8859-5

el Greek 8859-7

tr Turkish 8859-9

TABLE 3-3 iconv Support for Major Codesets

Code Symbol Target Code Symbol Comment

ISO 8859-2 iso2 MS 1250 win2 Windows Latin 2

ISO 8859-2 iso2 MS 852 dos2 MS-DOS Latin 2

ISO 8859-2 iso2 Mazovia maz Mazovia

ISO 8859-2 iso2 DHN dhn Dom Handlowy Nauki

MS 1250 win2 ISO 8859-2 iso2 ISO Latin 2

MS 1250 win2 MS 852 dos2 MS-DOS Latin 2

MS 1250 win2 Mazovia maz Mazovia

MS 1250 win2 DHN dhn Dom Handlowy Naduki

MS 852 dos2 ISO 8859-2 iso2 ISO Latin 2

MS 852 dos2 MS 1250 win2 Windows Latin 2

MS 852 dos2 Mazovia maz Mazovia

MS 852 dos2 DHN dhn Dom Handlowy Nauki

Mazovia maz ISO 8859-2 iso2 ISO Latin 2

Mazovia maz MS 1250 win2 Windows Latin 2

Mazovia maz MS 852 dos2 MS-DOS Latin 2

Mazovia maz DHN dhn Dom Handlowy Nauki

DHN dhn ISO 8859-2 iso2 ISO Latin 2

DHN dhn MS 1250 win2 Windows Latin 2

DHN dhn MS 852 dos2 MS-DOS latin 2

DHN dhn Mazovia maz Mazovia

TABLE 3-2 New Eastern European Locales in Solaris 2.6 (Continued)

Locale Name Language/Territory ISO

Chapter 3 Contents of the Localized Solaris 2.6 Products 29

Font Formats
There are many different font formats. The extension lets you determine the font
type.

■ PostScript Type 1 Fonts
PostScript Type 1 fonts, which are also known as Adobe Type Manager (ATM)
fonts, Type 1, and outline fonts, contains information in outline form that allows a
PostScript printer or ATM to generate fonts of any size. Most of these fonts also
contain hinting information which allows fonts to be rendered more readable at a
low resolution or a small type size.

ISO 8859-5 iso5 KOI8-R koi8 KOI8-R

ISO 8859-5 iso5 PC Cyrillic alt Alternative PC Cyrillic

ISO 8859-5 iso5 MS 1251 win5 Window Cyrillic

ISO 8859-5 iso5 Mac Cyrillic mac Macintosh Cyrillic

KOI8-R koi8 ISO 8859-5 iso5 ISO 8859-5 Cyrillic

KOI8-R koi8 PC Cyrillic alt Alternative PC Cyrillic

KOI8-R koi8 MS 1251 win5 Windows Cyrillic

KOI8-R koi8 Mac Cyrillic mac Macintosh Cyrillic

PC Cyrillic alt ISO 8859-5 iso5 ISO 8859-5 Cyrillic

PC Cyrillic alt KOI8-R koi8 KOI8-R

PC Cyrillic alt MS 1251 win5 Windows Cyrillic

PC Cyrillic alt Mac Cyrillic mac Macintosh Cyrillic

MS 1251 win5 ISO 8859-5 iso5 ISO 8859-5 Cyrillic

MS 1251 win5 KOI8-R koi8 KOI8-R

MS 1251 win5 PC Cyrillic alt Alternative PC Cyrillic

MS 1251 win5 Mac Cyrillic mac Macintosh Cyrillic

Mac Cyrillic mac ISO 8859-5 iso5 ISO 8859-5 Cyrillic

Mac Cyrillic mac KOI8-R koi8 KOI8-R

Mac Cyrillic mac PC Cyrillic alt Alternative PC Cyrillic

Mac Cyrillic mac MS 1251 win5 Windows Cyrillic

TABLE 3-3 iconv Support for Major Codesets (Continued)

Code Symbol Target Code Symbol Comment

30 Solaris Internationalization Guide for Developers • August 1997

■ Bitmap Fonts
Bitmap fonts contain a picture of the font at a specific size that has been
optimized to look good at that specific size. If the font is scaled larger or smaller,
the quality may degrade. On the other hand, bitmap fonts display quickly.

Location of Fonts on the System

Fonts are located at:

/usr/openwin/lib/locale/iso_8859_x/X11/fonts/X11/Type1/afm

or

/usr/openwin/lib/locale/iso_8859_x/X11/fonts/X11/75dpi

Adding and Removing Font Packages

To manually add font packages to the system:

1. Always add the required font packages before the optional font packages.

2. When you are removing font packages from the system, remove the optional font
packages first.

You must follow this procedure in adding or removing fonts. The class action scripts
in the font packages depend on this for proper function. The new optional font
packages contain scripts that concatenate information onto the required font
packages that are already resident on the system. If the required font packages are
not there, problems may occur.

The Asian Localized Solaris 2.6 Products
In contrast to the European locales, which are all packaged on one CD, there are four
separate Asian products on separate CDs: Japanese, Korean, Traditional Chinese,
and Simplified Chinese.

Chapter 3 Contents of the Localized Solaris 2.6 Products 31

The following table shows the Asian locales supported by these Asian products.

Korean
In December 1995, the Korean government announced a new standard Korean
codeset, KSC-5700, which is based on ISO-10646-1/Unicode 2.0. The new standard
codeset replaces KSC 5601, which was based on ISO-2022.

The ISO-10646 character set uses 2 (UCS-2; Universal Character Set two-byte form)
or 4 (UCS-4) bytes to represent each character.

The ISO-10646 character set cannot be used directly on IBM-PC-based operating
systems. For example, the kernel and many other modules of the Solaris operating
environment interpret certain byte values as control instructions, such as a null
character (0x00) in any string. The ISO-10646 character set can be encoded with any
bit combinations in the first or subsequent bytes. The ISO-10646 characters cannot be
freely transmitted through the Solaris system with the above limitations. In order to
establish a migration path, the ISO-10646 character set defines the UCS
Transformation Format (UTF), which recodes the ISO-10646 characters without using
C0 controls (0x00..0x1F), C1 controls (0x80..0x9F), space (0x20), and DEL (0x7F).

The ko.UTF-8 is a new Solaris locale to support KSC-5700, the new Korean standard
codeset. It supports all characters in the previous KSC 5601 and all 11,172 Korean
characters. Korean UTF-8 supports only the Korean language-related ISO-10646
characters and fonts. Because ISO-10646 covers all characters in the world, it is
necessary to supply all of the various input methods and fonts so that you may

TABLE 3-4 Summary of Asian Locales

CD Set Locale Name Description
Supported
Character Set

Korean ko
ko.UTF-8

Korean
Korean (UTF-8 locale)

KS C 5601-1992
KS C 5700-1995

Simplified
Chinese

zh Simplified Chinese (Mainland China) GB 2312-1980

Traditional
Chinese

zh_TW
zh_TW.BIG5

Traditional Chinese (Taiwan)
Traditional Chinese (BIG5 locale)

CNS 11643
BIG5

Japanese ja
ja_JP.PCK

Japanese JIS x 0201-1976
JIS x 0208-1990
JIS x 0212-1990

32 Solaris Internationalization Guide for Developers • August 1997

input and output any character in any language. Before Universal UTF/UCS
becomes available, Korean UTF-8 supports only the ISO-10646 code subset that is
related to Korean characters and all other characters in the previous Korean standard
codeset as well as Extended ASCII.

TABLE 3-5 lists the Korean codesets.

Chinese: Simplified and Traditional
Chinese is written in two standards: Simplified and Traditional.

The People’s Republic of China (P.R.C.) uses Simplified Chinese. In five-year steps,
Chinese characters, which are often composed of an elaborate number of marks, are
being simplified to make it quicker to write and easier to develop technology. The
number of characters is also being reduced.

Simplified Chinese Solaris uses the EUC scheme to support the PRC Chinese
national standard character set GB2312-80.

TABLE 3-5 Codeset Conversions Supported for Korean ko , ko.UTF-8

Code Symbol TargetCode Symbol

UTF-8 ko_KR-UTF-8 Wansung ko_KR-euc

UTF-8 ko_KR-UTF-8 Johap ko_KR-johap92

UTF-8 ko_KR-UTF-8 Packed ko_KR-johap

UTF-8 ko_KR-UTF-8 ISO-2022-KR ko_KR-iso2022-7

Wansung ko_KR-euc UTF-8 ko_KR-UTF-8

Johap ko_KR-johap92 UTF-8 ko_KR-UTF-8

Packed ko_KR-johap UTF-8 ko_KR-UTF-8

ISO-2022-KR ko_KR-iso2022-7 UTF-8 ko_KR-UTF-8

Wansung ko_KR-euc Johap ko_KR-johap92

Wansung ko_KR-euc Packed ko_KR-johap

Wansung ko_KR-euc N-Byte ko_KR-nbyte

Wansung ko_KR-euc ISO-2022-KR ko_KR-iso2022-7

Johap ko_KR-johap92 Wansung ko_KR-euc

Packed ko_KR-johap Wansung ko_KR-euc

N-Byte ko_KR-nbyte Wansung ko_KR-euc

ISO-2022-KR ko_KR-iso2022-7 Wansung ko_KR-euc

Chapter 3 Contents of the Localized Solaris 2.6 Products 33

The Republic of China (R.O.C.) in Taiwan continues to use Traditional Chinese.
Taiwan has a significant computer industry. They are the world leaders in
production of laptops. The Taiwanese computer industry uses two mechanisms to
produce Traditional Chinese: CNS-11643 and Big-5 encoding. The CNS-11643 codeset
is used by the R.O.C. government. The Big-5 codeset is used by industry and private
users, especially PC users.

Traditional Chinese Solaris currently uses the EUC scheme to support the
government‘s CNS-11643 codeset. Since many PC applications handle only Big-5
code, there is a significant market demand to support Big-5 code in Traditional
Chinese Solaris. Therefore, Solaris 2.6 supports the Big-5 locale. The Big-5 locale
allows users to exchange Big-5 encoded files between PC and Solaris 2.6 without
conversion procedures. The official name of the Big-5 locale is zh_TW.BIG5 .

TABLE 3-6 shows the supported codeset conversions for Simplified Chinese.

TABLE 3-7 shows the supported codeset conversions for Traditional Chinese.

TABLE 3-6 Codeset Conversions for Simplified Chinese

Code Symbol TargetCode Symbol

GB2312-80 zh_CN.euc ISO 2022-7 zh_CN.iso2022-7

ISO 2022-7 zh_CN.iso2022-7 GB2312-80 zh_CN.euc

GB2312-80 zh_CN.euc ISO 2022-CN zh_CN.iso2022-CN

ISO-2022-CN zh_CN.iso2022-CN GB2312-80 zh_CN.euc

UTF-8 UTF-8 GB2312-80 zh_CN.euc

GB2312-80 zh_CN.euc UTF-8 UTF-8

TABLE 3-7 Codeset Conversions for Traditional Chinese

Code Symbol TargetCode Symbol

CNS 11643 zh_TW-euc Big-5 zh_TW-big5

CNS 11643 zh_TW-euc ISO 2022-7 zh_TW-iso2022-7

Big-5 zh_TW-big5 CNS 11643 zh_TW-euc

Big-5 zh_TW-big5 ISO 2022-7 zh_TW-iso2022-7

ISO 2022-7 zh_TW-iso2022-7 CNS 11643 zh_TW-euc

ISO 2022-7 zh_TW-iso2022-7 Big-5 zh_TW-big5

CNS 11643 zh_TW-eu ISO 2022-CN-
EXT

zh_TW-iso2022-CN-
EXT

ISO 2022-CN-EXT zh_TW-iso2022-CN-EXT CNS 11643 zh_TW-euc

34 Solaris Internationalization Guide for Developers • August 1997

Japanese
Three Japanese input systems are available for Japanese Solaris 2.6. They can be used
in the ja and ja_JP.PCK locale. However, some maintenance utilities do not
support the PCK codeset.

Big-5 zh_TW-big5 ISO 2022-CN zh_TW-iso2022-CN

ISO 2022-CN zh_TW-iso2022-CN Big zh_TW-big5

UTF-8 UTF-8 CNS 11643 zh_TW-euc

CNS 11643 zh_TW-euc UTF-8 UTF-8

UTF-8 UTF-8 Big-5 zh_TW-big5

Big-5 zh_TW-big5 UTF-8 UTF-8

UTF-8 UTF-8 ISO 2022-7 zh_TW-iso2022-7

ISO 2022-7 zh_TW-iso2022-7 UTF-8 UTF-8

ISO 2022-CN-EXT zh_TW-iso2022-CN-EX Big-5 zh_TW-big5

Big-5 zh_TW-big5 ISO 2022-CN-
EXT

zh_TW-iso2022-CN-
EXT

TABLE 3-8 Japanese Input Systems

Type Description

Wnn6 Wnn6 consists of the Kana-Kanji conversion server (jserver), interface
module for htt (X Input Method Server) called xjsi.so, utilities, dictionaries,
and configuration files. Wnn6 is co-packaged with Japanese Solaris 2.6.
Wnn6 for Solaris 2.3/2.4 is distributed by OMRON SOFTWARE. Wnn6 for
Solaris 2.5/2.5.1 is included in Update CD of Solaris and distributed by
Nihon SMCC.

ATOK8 ATOK8 consists of atok8 X Input Method Server, utilities, and dictionaries.
SunSoft had been releasing ATOK7 from Japanese Solaris 2.1 until 2.5.1.
ATOK8 replaces ATOK7. ATOK is a popular Japanese input facility for the
Japanese PC market. It is distributed by JUSTSYSTEM. ATOK8 has been co-
packaged since Japanese Solaris 2.5.

cs00 cs00 consists of Kana-Kanji conversion server (cs00), interface module for
htt (X Input Method Server) called xci.so , utilities, and dictionaries. cs00
is the only set of these three systems that has been bundled. It has been
included since Japanese Solaris 2.1.

TABLE 3-7 Codeset Conversions for Traditional Chinese (Continued)

Code Symbol TargetCode Symbol

Chapter 3 Contents of the Localized Solaris 2.6 Products 35

Note – The F3 fonts and F3 bitmap fonts (Morisawa fonts) will be supported only
up to and including the next Solaris release.

TABLE 3-9 Japanese TrueType Fonts

Full Family Name Subfamily Format Vendor Encoding

hg gothic b R TrueType RICOH JISX0208.1983,
JISX0201.1976

hg mincho l R TrueType RICOH JISX0208.1983,
JISX0201.1976

heiseimin R TrueType RICOH JISX0212.1990

TABLE 3-10 Japanese F3 Fonts

Full Family Name Subfamily Format Vendor Encoding

ryumin light kl R F3 MORISAWA JISX0208.1983,
JISX0201.1976

gothic medium
bbb

R F3 MORISAWA JISX0208.1989,
JISX0201.1976

TABLE 3-11 Japanese Bitmap Fonts

Full Family Name Subfamily Format Vendor Encoding

gothic R, B PCF(12,14,16,20,24 JISX0208.1983,
JISX0201.1976

minchou R PCF(12,14,16,20,24) JISX0208.1983,
JISX0201.1976

hg gothic b R PCF(12,14,16,18,20,24) RICOH JISX0208.1983,
JISX0201.1976

hg mincho l R PCF(12,14,16,18,20,2) RICOH JISX0208.1983,
JISX0201.1976

ryumin light
kl

R PCF(10,12,14,16,18,20,22) MORIS
AWA

JISX0208.1983,
JISX0201.1976

gothic
medium bbb

R PCF(10,12,14,16,18,20,22) MORIS
AWA

JISX0208.1983,
JISX0201.1976

heiseimin R PCF(12,14,16,18,20,24) RICOH JISX0212.1990

36 Solaris Internationalization Guide for Developers • August 1997

Japanese Locales

Japanese Solaris 2.6 supports two locales. The ja locale is based on Japanese EUC.
The ja_JP.PCK locale is based on PC-Kanji code. See the eucJP(5) or PCK(5) man
page for more details.

Japanese Messages and man Pages

Some messages and manual pages have been translated into Japanese in Japanese
Solaris 2.6.

Japanese Character Code Converter for iconv

The following table shows supported conversion with iconv(1) and iconv(3) .
See the iconv_ja(5) man page for details.

TABLE 3-12 iconv Conversion Support

Source Code Target Code

eucJP PCK

eucJP JIS7

eucJP SJIS

eucJP UTF-8

eucJP jis

eucJP ibmj

SJIS eucJP

SJIS ISO-2022-JP

SJIS UTF-8

SJIS jis

SJIS ibmj

PCK eucJP

PCK UTF-8

PCK ISO-2022-JP

PCK jis

PCK ibmj

ISO-2022-JP eucJP

Chapter 3 Contents of the Localized Solaris 2.6 Products 37

Japanese-specific Commands

The following commands are for handling Japanese data in Japanese Solaris 2.6. See
the jistoeuc(1) , euctoibmj(1) , jtty(1) , jtops(1) , or kanji(1) man pages
for more details.

ISO-2022-JP PCK

ISO-2022-JP SJIS

UTF-8 eucJP

UTF-8 SJIS

UTF-8 PCK

JIS7 eucJP

jis eucJP

jis PCK

jis SJIS

ibmj eucJP

ibmj PCK

ibmj SJIS

TABLE 3-13 Japanese-specific Commands

Command Comments

jistoeuc Converts JIS to Japanese EUC

jistosj Converts JIS to PC Kanji

euctojis Converts Japanese EUC to JIS

euctosj Converts Japanese EUC to PC Kanji

sjtojis Converts PC Kanji to JIS

sjtoeuc Converts PC Kanji to Japanese EUC

euctoibmj Converts Japanese EUC to IBM-Japanese

ibmjtoeuc Converts IBM-Japanese to Japanese EUC

TABLE 3-12 iconv Conversion Support (Continued)

Source Code Target Code

38 Solaris Internationalization Guide for Developers • August 1997

We recommend using iconv code conversion module instead of jistoeuc(1) or
euctoibmj(1) converters. These last two converters are provided to allow
backward compatibility.

Japanese Character Code Converter for TTY STREAMS

These are TTY STREAMS modules that are used to input and output Japanese
characters on terminals. Usually setterm(1) organizes these modules/command
properly for the user environment. tty(1) controls the behavior of those STREAMS
modules.

Japanese-specific Printer Support

Japanese Solaris 2.6 supports the following Japanese-specific printers:

■ Epson VP-5085 (based on ESC/P)
■ NEC PC-PR201 (based on 201PL)
■ Canon LASERSHOT (based on LIPS)
■ Japanese PostScript Printer

JLE Binary Compatibility Package

Japanese Solaris 2.6 also provides Japanese Solaris1.1.x binary-compatibility
packages the same as the base products.

User-Defined Character (UDC) Support

Several of the font tools available in the Solaris package are:

■ The User-Defined Character (UDC) font editor handles both outline (Type1) and
bitmap (PCF) fonts: /usr/dt/bin/sdtudctool

■ OpenWindows font editor for bitmap font: /usr/openwin/bin/fontedit
■ OpenWindows Type3 font editor: /usr/openwin/bin/type3creator

jtty Sets Japanese terminal characteristics

jtops PostScript filter for printing Japanese character
codeset

kanji Shows the list of Kanji codes with numbers of
EUC, ja_JP.PCK , JIS and JIS kuten code

TABLE 3-13 Japanese-specific Commands (Continued)

Command Comments

Chapter 3 Contents of the Localized Solaris 2.6 Products 39

Note – fontedit , type3creator , and fontmanager will be supported only up to
and including the next Solaris release.

40 Solaris Internationalization Guide for Developers • August 1997

41

CHAPTER 4

Overview of UTF-8

The Universal Transformation Format
The File System Safe Universal Transformation Format, or UTF-8, is an encoding
defined by X/Open-Uniforum Joint Internationalization Working Group (XoJIG) of
X/Open as a multi-byte representation of Unicode. The en_US.UTF-8 locale is the
first locale that uses UTF-8 as the codeset to support multi-scripts in the Solaris
system.

The locale supports computation for every code point value defined at Unicode 2.0/
ISO/IEC 10646-1. However, due to the limited set of font resources and the fact that
few users intend to use all of the code point values, users of the en_US.UTF-8
locale will see only character glyphs from the following scripts:

■ ISO 8859-1 (Latin-1)
■ ISO 8859-2 (Latin-2)
■ ISO 8859-4 (Latin-4)
■ ISO 8859-5 (Latin/Cyrillic)
■ ISO 8859-7 (Latin/Greek)
■ ISO 8859-9 (Latin-5)

Also, since this locale is primarily for developers, it belongs to the developer ’s
cluster of Solaris 2.6. Therefore, when you install Solaris 2.6, you should choose the
developer’s cluster to install the locale on your system. For more information, see
Chapter 5, “Installation.”

Note – Motif and the CDE libraries have support for the en_UTF-8 locale.
OpenWindows, XView, and OPENLOOK do not support en_UTF-8.

42 Solaris Internationalization Guide for Developers • August 1997

System Environment

Locale Environment Variable

To use the en_US.UTF-8 locale environment, make sure the locale is installed on
your system, then choose the locale as follows.

In a TTY environment, choose the locale by setting the LANG environment variable to
en_US.UTF-8 , as in the following C-shell example:

Make sure other categories are not set (or are set to en_US.UTF-8) since the LANG
environment variable has a lower priority than other environment variables such as
LC_ALL, LC_COLLATE, LC_CTYPE, LC_MESSAGES, LC_NUMERIC, LC_MONETARY and
LC_TIME at setting the locale. See the setlocale(3C) man page for more details
about the hierarchy of environment variables.

To check current locale settings in various categories, use the locale(1) utility as
shown below:

You can also start the en_US.UTF-8 environment from the CDE desktop at the CDE
login screen’s Options -> Language menu and choosing en_US.UTF-8 .

TTY Environment Setup

To ensure correct text edit operation by a terminal or by a terminal emulator such as
dtterm(1) , users should push certain locale-specific STREAMS modules onto their
Streams.

For more information on STREAMS modules and streams in general, see the
STREAMS Programming Guide.

system% setenv LANG en_US.UTF-8

system% locale
LANG=en_US.UTF-8
LC_CTYPE="en_US.UTF-8"
LC_NUMERIC="en_US.UTF-8"
LC_TIME="en_US.UTF-8"
LC_COLLATE="en_US.UTF-8"
LC_MONETARY="en_US.UTF-8"
LC_MESSAGES="en_US.UTF-8"
LC_ALL=

Chapter 4 Overview of UTF-8 43

The following table shows STREAMS modules supported by the en_US.UTF-8
locale in the terminal environment:

Loading a STREAMS Module at Kernel

To load a STREAMS module at kernel, first become superuser:

Use modinfo(1M) to be certain that your system has not already loaded the
STREAMS module:

If the STREAMS module, such as eucu8 , is already installed, the output will look as
follows:

TABLE 4-1 STREAMS Modules Supported by en_US.UTF-8

STREAMS Module Description

/usr/kernel/strmod/eucu8 UTF-8 STREAMS module for tail side

/usr/kernel/strmod/u8euc UTF-8 STREAMS module for head side

/usr/kernel/strmod/u8lat1 Code conversion STREAMS module between UTF-8
and ISO 8859-1

Western European
/usr/kernel/strmod/u8lat2

Code conversion STREAMS module between UTF-8
and ISO 8859-2

Eastern European
/usr/kernel/strmod/u8koi8

Code conversion STREAMS module between UTF-8
and KOI8-R (Cyrillic)

system% su
Password:
system#

system# modinfo | grep modulename

system# modinfo | grep eucu8
89 ff798000 4b13 18 1 eucu8 (eucu8 module)
system#

44 Solaris Internationalization Guide for Developers • August 1997

If the module is already installed, you don’t need to load it. However, if the module
has not yet been loaded, use modload(1M) as follows:

The STREAMS module is installed at the kernel, and you can now push it onto a
Stream.

To unload a module from the kernel, use modunload(1M) , as shown below. In this
example, the eucu8 module is being unloaded.

dtterm and Terminals Capable of Input and Output UTF-8

The dtterm(1) and any terminal that supports input and output of UTF-8 codeset
should have following STREAMS configuration:

head <-> u8euc <-> ttcompat <-> ldterm <-> eucu8 <-> pseudo-TTY

In this example, u8euc and eucu8 are the modules supported by the en_US.UTF-8
locale.

To set up the above STREAMS configuration, use strchg(1) , as shown below:

system# modload /usr/kernel/strmod/ modulename

system# modinfo | grep eucu8
89 ff798000 4b13 18 1 eucu8 (eucu8 module)
system# modunload -i 89

system% cat > /tmp/mystreams
u8euc
ttcompat
ldterm
eucu8
ptem
^D
system% strchg -f /tmp/mystreams

Chapter 4 Overview of UTF-8 45

When using strchg(1) , be sure you are either superuser or the owner of the
device. To see the current configuration of the STREAMS, use strconf(1) as
shown below:

To revert to the original configuration, set the STREAMS configuration again as
shown below:

Terminal Support for Latin-1, Latin-2, or KOI8-R

For terminals that support only Latin-1 (ISO 8859-1), Latin-2 (ISO 8859-2), or KOI8-R,
you should have the following STREAMS configuration:

head <-> u8euc <-> ttcompat <-> ldterm <-> eucu8 <-> u8lat1 <-> TTY

Note – This configuration is only for terminals that support Latin-1.
For Latin-2 terminals, replace the STREAMS module u8lat1 with u8lat2 .
For KOI8-R terminals, replace the module with u8koi8 .

system% strconf
u8euc
ttcompat
ldterm
eucu8
ptem
pts
system%

system% cat > /tmp/orgstreams
ttcompat
ldterm
ptem
^D
system% strchg -f /tmp/orgstreams

46 Solaris Internationalization Guide for Developers • August 1997

To set up the STREAMS configuration shown above, use strchg(1) , as follows:

Be sure that you are either superuser or the owner of the device when you use
strchg(1) . To see the current configuration, use strconf(1) , as follows:

To revert to the original configuration, set the STREAMS configuration as follows:

Setting Terminal Options

To set up UTF-8 text edit behavior on TTY, you must first set some terminal options
using stty(1) , as follows:

system% cat > /tmp/mystreams
u8euc
ttcompat
ldterm
eucu8
u8lat1
ptem
^D
system% strchg -f /tmp/mystreams

system% strconf
u8euc
ttcompat
ldterm
eucu8
u8lat1
ptem
pts
system%

system% cat > /tmp/orgstreams
ttcompat
ldterm
ptem
^D
system% strchg -f /tmp/orgstreams

system% /bin/stty cs8 -istrip defeucw

Chapter 4 Overview of UTF-8 47

Note – Since /usr/ucb/stty is not yet internationalized, you should use
/bin/stty instead.

You can also query the current settings using stty(1) with the -a option, as shown
below:

Saving the Settings in ~/.cshrc

Assuming the necessary STREAMS modules are already loaded with the kernel, you
can save the following lines in your .cshrc file (C shell example) for convenience:

With these lines in your.cshrc file, you do not have to type all of the commands
each time. Note that the second _EOF should be in the first column of the file. You
can also create a file called mystreams and save it so the .cshrc references to
mystreams instead of creating it whenever you start a C shell.

Code Conversions
The en_US.UTF-8 locale supports various code conversions among major codesets
of several countries through iconv(1) and iconv(3) .

system% /bin/stty -a

setenv LANG en_US.UTF-8
if ($?USER != 0 && $?prompt != 0) then

 cat >! /tmp/mystreams$$ << _EOF
 u8euc
 ttcompat
 ldtterm
 eucu8
 ptem

_EOF
 /bin/strchg -f /tmp/mystream$$
 /bin/rm -f /tmp/mystream$$
 /bin/stty cs8 -istrip defeucw

endif

48 Solaris Internationalization Guide for Developers • August 1997

The available fromcode and tocode names that can be applied to iconv(1) and
iconv_open(3) are shown in TABLE 4-2:

TABLE 4-2 Available Code Conversions in en_US.UTF-8

From Code To Code Description

646 UTF-8 ISO 646 (US-ASCII) to UTF-8

UTF-8 8859-1 UTF-8 to ISO 8859-1

UTF-8 8859-2 UTF-8 to ISO 8859-2

UTF-8 8859-3 UTF-8 to ISO 8859-3

UTF-8 8859-4 UTF-8 to ISO 8859-4

UTF-8 8859-5 UTF-8 to ISO 8859-5 (Cyrillic)

UTF-8 8859-6 UTF-8 to ISO 8859-6 (Arabic)

UTF-8 8859-7 UTF-8 to ISO 8859-7 (Greek)

UTF-8 8859-8 UTF-8 to ISO 8859-8 (Hebrew)

UTF-8 8859-9 UTF-8 to ISO 8859-9

UTF-8 8859-10 UTF-8 to ISO 8859-10

8859-1 UTF-8 ISO 8859-1 to UTF-8

8859-2 UTF-8 ISO 8859-2 to UTF-8

8859-3 UTF-8 ISO 8859-3 to UTF-8

8859-4 UTF-8 ISO 8859-4 to UTF-8

8859-5 UTF-8 ISO 8859-5 (Cyrillic) to UTF-8

8859-6 UTF-8 ISO 8859-6 (Arabic) to UTF-8

8859-7 UTF-8 ISO 8859-7 (Greek) to UTF-8

8859-8 UTF-8 ISO 8859-8 (Hebrew) to UTF-8

8859-9 UTF-8 ISO 8859-9 to UTF-8

8859-10 UTF-8 ISO 8859-10 to UTF-8

UTF-8 KOI8-R UTF-8 to KOI8-R (Cyrillic

KOI8-R UTF-8 KOI8-R (Cyrillic) to UTF-8

UTF-8 UCS-2 UTF-8 to UCS-2

UCS-2 UTF-8 UCS-2 to UTF-8

UTF-8 UCS-4 UTF-8 to UCS-4

UCS-4 UTF-8 UCS-4 to UTF-8

UTF-8 UTF-7 UTF-8 to UTF-7

Chapter 4 Overview of UTF-8 49

For more details on iconv code conversion, see the iconv(1) , iconv_open(3) ,
iconv(3) , and iconv_close(3) man pages. For more information on available
code conversions, see iconv_en_US.UTF-8(5) .

UTF-7 UTF-8 UTF-7 to UTF-8

UTF-8 UTF-16 UTF-8 to UTF-16

UTF-16 UTF-8 UTF-16 to UTF-8

UTF-8 eucJP UTF-8 to Japanese EUC

UTF-8 PCK UTF-8 to Japanese PC Kanji (a.k.a. SJIS)

eucJP UTF-8 Japanese EUC to UTF-8

PCK UTF-8 Japanese PC Kanji (a.k.a. SJIS) to UTF-8

UTF-8 ko_KR-euc UTF-8 to Korean EUC

UTF-8 ko_KR-johap UTF-8 to Korean Johap (KS C 5601-1987

UTF-8 ko_KR-johap92 UTF-8 to Korean Johap (KS C 5601-1992)

UTF-8 ko_KR-iso2022-7 UTF-8 to ISO-2022-KR

ko_KR-euc UTF-8 Korean EUC to UTF-8

ko_KR-johap UTF-8 Korean Johap (KS C 5601-1987) to UTF-8

ko_KR-johap92 UTF-8 Korean Johap (KS C 5601-1992) to UTF-8

ko_KR-iso2022-7 UTF-8 ISO-2022-KR to UTF-8

UTF-8 gb2312 UTF-8 to Chinese/PRC EUC (GB 2312-1980

UTF-8 iso2022 UTF-8 to ISO-2022-CN

gb2312 UTF-8 Chinese/PRC EUC (GB 2312-1980) to UTF-8

iso2022 UTF-8 ISO-2022-CN to UTF-8

UTF-8 zh_TW-euc UTF-8 to Chinese/Taiwan EUC (CNS 11643-1992)

UTF-8 zh_TW-big5 UTF-8 to Chinese/Taiwan Big5

UTF-8 zh_TW-iso2022-7 UTF-8 to ISO-2022-TW

zh_TW-euc UTF-8 Chinese/Taiwan EUC (CNS 11643-1992) to UTF-8

zh_TW-big5 UTF-8 Chinese/Taiwan Big5 to UTF-8

zh_TW-iso2022-7 UTF-8 ISO-2022-TW to UTF-8

TABLE 4-2 Available Code Conversions in en_US.UTF-8 (Continued)

From Code To Code Description

50 Solaris Internationalization Guide for Developers • August 1997

Script Selection and Input Modes
The en_US.UTF-8 locale supports multiple scripts. This section contains details
about each of the input modes: English, Cyrillic, and Greek.

English Input Mode

The English input mode encompasses not only the English alphabet but also
characters with diacritical marks (for example, á, è, î, õ, and ü) and special characters
(such as ¡, £, ¢, §, ¿).

The English input mode is the default mode for any application. The input mode is
displayed at the bottom left corner of the GUI application, as shown in FIGURE 4-1:

FIGURE 4-1 English Input Mode

To insert characters with diacritical marks or special characters from Latin-1, Latin-2,
Latin-4, and Latin-5, you must type a compose sequence, as shown in the following
examples:

■ For Ä, press and release Compose, then A, and then "
■ For ¿, press and release Compose, then +, and then -

The following tables are the most commonly used compose sequences in Latin-1,
Latin-2, Latin-4, and Latin-5 script input.

TABLE 4-3 Common Latin-1 Compose Sequences

Press and
Release

Then Press
and Release

Then Press
and Release Result

Compose [spacebar] [spacebar] Non-breaking space

Compose s 1 Superscripted 1

Compose s 2 Superscripted 2

Compose s 3 Superscripted 3

Compose ! ! Inverted exclamation mark

Compose x o Currency symbol ‘¤’

Compose p ! Paragraph symbol ‘¶’

Chapter 4 Overview of UTF-8 51

Compose / u mu ’u’

Compose ' apostrophe ’'’

Compose ' acute accent ’´’

Compose , , cedilla ’¸’

Compose " " dieresis ’¨’

Compose - ^ macron ’¯’

Compose o o degree ’˚’

Compose x x multiplication sign ’x’

Compose + - plus-minus ’¿’

Compose - - soft hyphen ’–’

Compose - : division sign ’/’

Compose - a ordinal (feminine) a ’ã’

Compose a - ordinal (feminine) a ’ã’

Compose - o ordinal (masculine) o ’õ’

Compose o - ordinal (masculine) o ’õ’

Compose - , not sign ’¬’

Compose . . middle dot ’·’

Compose 1 2 vulgar fraction 1/2

Compose 1 4 vulgar fraction 1/4

Compose 3 4 vulgar fraction 3/4

Compose < < left double angle quotation
mark ’«’

Compose > > right double angle
quotation mark ’»’

Compose ? ? inverted question mark ’¿’

Compose A ` A grave ’À’

Compose A ' A acute ’Á’

Compose A * A ring above ’Å’

Compose A " A dieresis ’Ä’

Compose A ^ A circumflex ’Â’

Compose A ~ A tilde ’Ã’

TABLE 4-3 Common Latin-1 Compose Sequences (Continued)

Press and
Release

Then Press
and Release

Then Press
and Release Result

52 Solaris Internationalization Guide for Developers • August 1997

Compose A E AE diphthong ’Æ’

Compose C , C cedilla ’Ç’

Compose C o copyright sign ’©’

Compose D - Capital eth ‘D’

Compose E ` E grave ’È’

Compose E ' E acute ’É’

Compose E " E dieresis ’Ë’

Compose E ^ E circumflex ’Ê’

Compose I ` I grave ’Ì’

Compose I ' I acute ’Í’

Compose I " I dieresis ’Ï’

Compose I ^ I circumflex ’Î’

Compose L - pound sign ’£’

Compose N ~ N tilde ’Ñ’

Compose O ` O grave ’Ò’

Compose O ' O acute ’Ó’

Compose O / O slash ’Ø’

Compose O " O dieresis ’Ö’

Compose O ^ O circumflex ’Ô’

Compose O ~ O tilde ’Õ’

Compose R O registered mark ’®’

Compose T H Thorn ’P’

Compose U ` U grave ’Ù’

Compose U ' U acute ’Ú’

Compose U " U dieresis ’Ü’

Compose U ^ U circumflex ’Û’

Compose Y ' Y acute ’Y’

Compose Y - yen sign ’¥’

Compose a ` a grave ’à’

TABLE 4-3 Common Latin-1 Compose Sequences (Continued)

Press and
Release

Then Press
and Release

Then Press
and Release Result

Chapter 4 Overview of UTF-8 53

Compose a ' a acute ’á’

Compose a * a ring above ’å’

Compose a " a dieresis ’ä’

Compose a ^ a circumflex ’â’

Compose a ~ a tilde ’ã’

Compose a ^ a circumflex ’â’

Compose a e ae diphthong ’æ’

Compose c , c cedilla ’ç’

Compose c / cent sign ’¢’

Compose c o copyright sign ’©’

Compose d - eth ’d’

Compose e ` e grave ’è’

Compose e ' e acute ’é’

Compose e " e dieresis ’ë’

Compose e ^ e circumflex ’ê’

Compose i ` i grave ’ì’

Compose i ' i acute ’í’

Compose i " i dieresis ’ï’

Compose i ^ i circumflex ’î’

Compose n ~ n tilde ’ñ’

Compose o ` o grave ’ò’

Compose o ' o acute ’ó’

Compose o / o slash ’ø’

Compose o " o dieresis ’ö’

Compose o ^ o circumflex ’ô’

Compose o ~ o tilde ’õ’

Compose s s German double s ’ß’

Compose t h thorn ’p’

Compose u ` u grave ’ù’

TABLE 4-3 Common Latin-1 Compose Sequences (Continued)

Press and
Release

Then Press
and Release

Then Press
and Release Result

54 Solaris Internationalization Guide for Developers • August 1997

TABLE 4-4 contains the Latin-2 compose sequences.

Note – Composes sequences defined in TABLE 4-3 are not included in TABLE 4-4.

Compose u ' u acute ’ú’

Compose u " u dieresis ’ü’

Compose u ^ u circumflex ’û’

Compose y ' y acute ’y’

Compose y " y dieresis ’ÿ’

Compose | | broken bar ’|’

TABLE 4-4 Common Latin-2 Compose Sequences

Press and
Release

Then Press
and Release

Then Press
and Release Result

Compose a ' ogonek á

Compose u ' ' breve ü

Compose v ' ' caron

Compose " ' ' double acute ¨

Compose A a A ogonek a

Compose A u A breve

Compose C ' C acute

Compose C v C caron

Compose D v D caron

Compose - D D stroke

Compose E v E caron

Compose E a E ogonek

Compose L ' L acute

Compose L - L stroke

Compose L > L caron

Compose N ' N acute

TABLE 4-3 Common Latin-1 Compose Sequences (Continued)

Press and
Release

Then Press
and Release

Then Press
and Release Result

Chapter 4 Overview of UTF-8 55

Compose N v N caron

Compose O > O double acute

Compose S ' S acute

Compose S v S caron

Compose S , S cedilla

Compose R ' R acute

Compose R v R caron

Compose T v T caron

Compose T , T cedilla

Compose U * U ring above

Compose U > U double acute

Compose Z ' Z acute

Compose Z v Z caron

Compose Z . Z dot above

Compose a a a ogonek

Compose a u a breve

Compose c ' c acute

Compose c v c caron

Compose d v d caron

Compose - d d stroke

Compose e v e caron

Compose e a e ogonek

Compose l ' l acute

Compose l - l stroke

Compose l > l caron

Compose n ' n acute

Compose n v n caron

Compose o > o double acute

Compose s ' s acute

TABLE 4-4 Common Latin-2 Compose Sequences (Continued)

Press and
Release

Then Press
and Release

Then Press
and Release Result

56 Solaris Internationalization Guide for Developers • August 1997

TABLE 4-5 contains the Latin-4 compose sequences.

Note – Compose sequences defined in TABLE 4-3 or TABLE 4-4 are not included in this
table.

Compose s v s caron

Compose s , s cedilla

Compose r ' r acute

Compose r v r caron

Compose t v t caron

Compose t , t cedilla

Compose u * u ring above

Compose u > u double acute

Compose z ' z acute

Compose z v z caron

Compose z . z dot above

TABLE 4-5 Common Latin-4 Compose Sequences

Press and
Release

Then Press
and Release

Then Press
and Release Result

Compose k k kra

Compose A _ A macron

Compose E _ E macron

Compose E . E dot above

Compose G , G cedilla

Compose I _ I macron

Compose I ~ I tilde

Compose I a I ogonek

Compose K , K cedilla

Compose L , L cedilla

TABLE 4-4 Common Latin-2 Compose Sequences (Continued)

Press and
Release

Then Press
and Release

Then Press
and Release Result

Chapter 4 Overview of UTF-8 57

Note – Compose sequences defined in TABLE 4-3, TABLE 4-4, or TABLE 4-6 are not

Compose N , N cedilla

Compose O _ O macron

Compose R , R cedilla

Compose T | T stroke

Compose U ~ U tilde

Compose U a U ogonek

Compose U _ U macron

Compose N N Eng

Compose a _ a macron

Compose e _ e macron

Compose e . e dot above

Compose g , g cedilla

Compose i _ i macron

Compose i ~ i tilde

Compose i a i ogonek

Compose k , k cedilla

Compose l , l cedilla

Compose n , n cedilla

Compose o _ o macron

Compose r , r cedilla

Compose t | t stroke

Compose u ~ u tilde

Compose u a u ogonek

Compose u _ u macron

Compose n n eng

TABLE 4-5 Common Latin-4 Compose Sequences (Continued)

Press and
Release

Then Press
and Release

Then Press
and Release Result

58 Solaris Internationalization Guide for Developers • August 1997

included in this table.

Cyrillic Input Mode

To switch to Cyrillic input mode from English input mode, press Compose c c. If you
are currently in Greek input mode, first return to English input mode, then switch to
Cyrillic mode.

The input mode is displayed at the bottom left corner of your GUI application, as
shown FIGURE 4-2:

FIGURE 4-2 Cyrillic Input Mode

After you switch to Cyrillic input mode, you cannot enter English text. To switch
back to English input mode, type Control-Space. The Russian keyboard layout
appears in FIGURE 4-3:

TABLE 4-6 Common Latin-5 Compose Sequences

Press and
Release

Then Press
and Release

Then Press
and Release Result

Compose G u G breve

Compose I . I dot above

Compose g u g breve

Compose i . i dotless

Chapter 4 Overview of UTF-8 59

FIGURE 4-3 Russian Keyboard Layout

Greek Input Mode

To switch to Greek input mode from English input mode, press Compose g g. If you
are currently in Cyrillic input mode, first return to English input mode and then
switch to Greek mode.

The input mode is displayed at the left bottom corner of your GUI application is
shown in FIGURE 4-4:

FIGURE 4-4 Greek Input Mode

After you switch to Greek input mode, you cannot enter English text. To switch back
to English input mode, type Control-Space. The Greek keyboard layouts appear in
FIGURE 4-5 and FIGURE 4-6:

60 Solaris Internationalization Guide for Developers • August 1997

FIGURE 4-5 Greek Keyboard Layout (European Keyboard)

FIGURE 4-6 Greek Keyboard Layout (UNIX Keyboard)

Chapter 4 Overview of UTF-8 61

Printing
The en_US.UTF-8 locale provides a printing utility, xutops(1) . This utility can
print flat text files written in UTF-8 using X11 bitmap fonts available on the system.
Because the output from the utility is standard PostScript, the output can be sent to
any PostScript printer.

To use the utility, type the following:

You can also use the utility as a filter since the utility accepts stdin stream:

You can also set the utility as a printing filter for a line printer. For example, the
following command sequence tells the printer service LP that the printer lp1
accepts only xutops format files. This command line also installs the printer lp1 on
port/dev/ttya . See the lpadmin(1M) man page for more details.

Using lpfilter(1M) , you can add the utility as a filter as follows:

The command tells LP that a converter (in this case, xutops) is available through
the filter description file named pathname. Pathname can be as follows:

The filter converts default type file input to PostScript output using
/usr/openwin/bin/xutops .

system% xutops filename | lp

system% lpr filename | xutops | lp

system# lpadmin -p lp1 -v /dev/ttya -I XUTOPS
system# accept lp1
system# enable lp1

system# lpfilter -f filtername -F pathname

Input types: simple
Output types: XUTOPS
Command: /usr/openwin/bin/xutops

62 Solaris Internationalization Guide for Developers • August 1997

To print a UTF-8 text file, use the following command:

For more details on xutops(1) , refer to xutops(1) and xutops(5) man pages.

Programming Environment
Appropriately internationalized applications should automatically enable the
en_US.UTF-8 locale, but proper FontSet/XmFontList definitions in the application’s
resource file are required.

For information on internationalized applications, see Creating Worldwide Software:
Solaris International Developer’s Guide, 2nd edition.

FontSet Used with UTF-8
The en_US.UTF-8 locale in Solaris 2.6 supports fonts for the following charsets:

■ ISO 8859-1
■ ISO 8859-2
■ ISO 8859-4
■ ISO 8859-5
■ ISO 8859-7
■ ISO 8859-9

Because Solaris 2.6 supports the CDE desktop environment, each charset has
guaranteed sets of fonts.

The following list shows the Latin-1 fonts that are supported in Solaris 2.6:

■ -dt-interface system-medium-r-normal-xxs sans-10-100-72-72-p-59-iso8859-1
■ -dt-interface system-medium-r-normal-xs sans-12-120-72-72-p-71-iso8859-1
■ -dt-interface system-medium-r-normal-s sans-14-140-72-72-p-82-iso8859-1
■ -dt-interface system-medium-r-normal-m sans-17-170-72-72-p-97-iso8859-1
■ -dt-interface system-medium-r-normal-l sans-18-180-72-72-p-106-iso8859-1
■ -dt-interface system-medium-r-normal-xl sans-20-200-72-72-p-114-iso8859-1
■ -dt-interface system-medium-r-normal-xxl sans-24-240-72-72-p-137-iso8859-1

For information on CDE common font aliases, including -dt-interface user-*
and -dt-application-* aliases, see Common Desktop Environment:
Internationalization Programmer’s Guide.

system% lp -T XUTOPS UTF-8-file

Chapter 4 Overview of UTF-8 63

A fontset for an application should have a collection of fonts that contains each of
the above charsets, as in the following example:

fs = XCreateFontSet(display,
"-dt-interface system-medium-r-normal-s*-*-*-*-*-*-*-*-iso8859-1,
-dt-interface system-medium-r-normal-s*-*-*-*-*-*-*-*-iso8859-2,
-dt-interface system-medium-r-normal-s*-*-*-*-*-*-*-*-iso8859-4,
-dt-interface system-medium-r-normal-s*-*-*-*-*-*-*-*-iso8859-5,
-dt-interface system-medium-r-normal-s*-*-*-*-*-*-*-*-iso8859-7,
-dt-interface system-medium-r-normal-s*-*-*-*-*-*-*-*-iso8859-9",
&missing_ptr, &missing_count, &def_string);

64 Solaris Internationalization Guide for Developers • August 1997

65

CHAPTER 5

Installation

Solaris 2.6 allows you to install more than one locale on a machine. This allows the
developer to test different locales or the user to work in different locales for different
projects. This chapter describes how to add additional locales on the machine.

Adding Packages
This section describes how to install packages with the pkgadd command.

▼ How to Add Packages to a Standalone System
1. Log in as superuser.

2. Remove any packages with the same name as the ones you are adding

This ensures that the system keeps a proper record of software that has been added
and removed. There may be times when you want to maintain multiple versions of
the same application on the system. For strategies on how to do this, see “Guidelines
for Removing Packages,” and for task information, see “How to Remove a Package.”
Both of these can be found in the System Administration Guide.

66 Solaris Internationalization Guide for Developers • August 1997

3. Add one or more software packages to the system.

In this command,

If pkgadd encounters a problem during installation of the package, it displays a
message related to the problem, followed by this prompt:

Respond with yes , no , or quit . If more than one package has been specified, type
no to stop the installation of the package being installed. pkgadd continues to install
the other packages. Type quit to stop the installation.

4. Verify that the package has been installed successfully, using the pkgchk
command.

If pkgchk determines there are no errors, it returns a list of installed files.
Otherwise, it reports the error.

pkgadd -a admin-file -d device-name pkgid...

-a admin-file (Optional) Specifies an administration file that pkgadd should
consult during the installation. (For details about using an
administration file, see the System Administration Guide).

-d device-name Specifies the absolute path to the software packages. Device-name
can be a path to a device, a directory, or a spool directory. If you do
not specify the path where the package resides, the pkgadd
command checks the default spool directory (/var/spool/pkg). If
the package is not there, the package installation fails.

pkgid (Optional) Is the name of one or more packages (separated by
spaces) to be installed. If omitted, the pkgadd command installs all
available packages.

Do you want to continue with this installation?

pkgchk -v pkgid

Chapter 5 Installation 67

Installing Software From a Mounted CD
The following example shows a command to install the SUNWaudio package from a
mounted Solaris 2.x CD. The example also shows use of the pkgchk command to
verify that the packages files were installed properly.

Installing Software From a Remote Package
Server
If the packages you want to install are available from a remote system, you can
mount the directory containing the packages (in package format) manually and
install packages on the local system. The following example shows the commands to
do this. In this example, assume the remote system named package-server has
software packages in the /latest-packages directory. The mount command
mounts the packages locally on /mnt , and the pkgadd command installs the
SUNWaudio package.

pkgadd -d /cdrom/cdrom0/s0/Solaris_2.6/Product SUNWaudio
.
.
.
Installation of SUNWaudio> complete.
pkgchk -v SUNWaudio
/usr
/usr/bin
/usr/bin/audioconvert
/usr/bin/audioplay
/usr/bin/audiorecord

mount -F nfs -o ro package-server:/latest-packages /mnt
pkgadd -d /mnt SUNWaudio
.
.
.
Installation of SUNWaudio> was successful.

68 Solaris Internationalization Guide for Developers • August 1997

If the automounter is running at your site, you do not need to mount the remote
package server manually. Instead, use the automounter path (in this case, /net/
package-server/latest-packages) as the argument to the -d option.

The following example is similar to the previous one, except it uses the -a option
and specifies an administration file named noask-pkgadd . In this example, assume
the noask-pkgadd administration file is in the default location, /var/sadm/
install/admin .

Installing the Localization Product
The following describes the list of common packages for the operating system
localization and the window system localization.

pkgadd -d /net/package-server/latest-packages SUNWaudio
.
.
.
Installation of SUNWaudio> was successful.

pkgadd -a noask-pkgadd -d /net/package-server/latest-packages SUNWaudio
.
.
.
Installation of SUNWaudio> was successful.

Chapter 5 Installation 69

European Package

French Files

TABLE 5-1 Pan-European Files for Localization and Windowing

Locale
OS Common
Packages

Win Common
Packages OS Packages Desktop Packages

All Euro SUNWploc
SUNWploc1
SUNWenise
SUNWeuise

SUNWplow
SUNWplow1
SUNWpldte

TABLE 5-2 French Files for Localization and Windowing

Locale
OS Common
Packages

Win Common
Packages OS Packages Desktop Packages

fr SUNWfros SUNWfoaud
SUNWfobk
SUNWfodcv
SUNWfodem
SUNWfodst
SUNWfodte
SUNWfoimt
SUNWforte
SUNWfrbas
SUNWfrdst
SUNWfrdte
SUNWfrhe
SUNWfrhed
SUNWfrim
SUNWfris
SUNWfrwm
SUNWftltk
SUNWfwacx
SUNWfxplt

70 Solaris Internationalization Guide for Developers • August 1997

German Files

TABLE 5-3 German Files for Localization and Windowing

Locale
OS Common
Packages

Win Common
Packages OS Packages Desktop Packages

de SUNWdeos SUNWdoaud
SUNWdobk
SUNWdodcv
SUNWdodem
SUNWdodst
SUNWdodte
SUNWdoimt
SUNWdorte
SUNWdebas
SUNWdedst
SUNWdedte
SUNWdehe
SUNWdehed
SUNWdeim
SUNWdeis
SUNWdewm
SUNWdtltk
SUNWdwacx
SUNWdxplt

Chapter 5 Installation 71

Italian Files

TABLE 5-4 Italian Files for Localization and Windowing

Locale
OS Common
Packages

Win Common
Packages OS Packages Desktop Packages

it SUNWitos SUNWioaud
SUNWiobk
SUNWiodcv
SUNWiodem
SUNWiodst
SUNWiodte
SUNWioimt
SUNWiorte
SUNWitbas
SUNWitdst
SUNWitdte
SUNWithe
SUNWithed
SUNWitim
SUNWitis
SUNWitwm
SUNWitltk
SUNWiwacx
SUNWixplt

72 Solaris Internationalization Guide for Developers • August 1997

Spanish Files

TABLE 5-5 Spanish Files for Localization and Windowing

Locale
OS Common
Packages

Win Common
Packages OS Packages Desktop Packages

es SUNWesos SUNWeoaud
SUNWeobk
SUNWeodcv
SUNWeodem
SUNWeodst
SUNWeodte
SUNWeoimt
SUNWeorte
SUNWesbas
SUNWesdst
SUNWesdte
SUNWeshe
SUNWeshed
SUNWesim
SUNWesis
SUNWeswm
SUNWetltk
SUNWewacx
SUNWexplt

Chapter 5 Installation 73

Swedish Files

Eastern European Files

TABLE 5-6 Swedish Files for Localization and Windowing

Locale
OS Common
Packages

Win Common
Packages OS Packages Desktop Packages

sv SUNWsvos SUNWsoaud
SUNWsobk
SUNWsodcv
SUNWsodem
SUNWsodst
SUNWsodte
SUNWsoimt
SUNWsorte
SUNWsvbas
SUNWsvdst
SUNWsvdte
SUNWsvhe
SUNWsvhed
SUNWsvim
SUNWsvis
SUNWsvwm
SUNWstltk
SUNWswacx
SUNWsxplt

TABLE 5-7 European Files for Localization and Windowing

Locale
OS Common
Packages

Win Common
Packages OS Packages Desktop Packages

Font
packages for
the Eastern
European
locales

SUNWi2of
SUNWi2rf
SUNWi4of
SUNWi4rf
SUNWi5of
SUNWi5rf
SUNWi7of
SUNWi7rf
SUNWi9of
SUNWi9rf

74 Solaris Internationalization Guide for Developers • August 1997

Detailed Descriptions of European Files

TABLE 5-8 European Package Descriptions

Package Name Package Description

SUNWi1of ISO-8859-1 (Latin-1) Optional Fonts

SUNWi1of ISO-8859-1 (Latin-1) Optional Fonts

SUNWi2of X11 fonts for ISO-8859-2 character set (optional fonts)

SUNWi2rf X11 fonts for ISO-8859-2 character set (required fonts)

SUNWi4of X11 fonts for ISO-8859-4 character set (optional fonts)

SUNWi4rf X11 fonts for ISO-8859-4 character set (required fonts)

SUNWi5of X11 fonts for ISO-8859-5 character set (optional fonts)

SUNWi5rf X11 fonts for ISO-8859-5 character set (required fonts)

SUNWi7of X11 fonts for ISO-8859-7 character set (optional fonts)

SUNWi7rf X11 fonts for ISO-8859-7 character set (required fonts)

SUNWi9of X11 fonts for ISO-8859-9 character set (optional fonts)

SUNWi9rf X11 fonts for ISO-8859-9 character set (required fonts)

SUNWioaud Italian OPEN LOOK (R) Audio applications

SUNWiobk Italian OpenWindows online handbooks

SUNWiodcv Italian OPEN LOOK (R) document and help viewer applications

SUNWiodem Italian OPEN LOOK (R) demo programs

SUNWiodst Italian OPEN LOOK (R) deskset tools

SUNWiodte Italian OPEN LOOK (R) desktop environment

SUNWioimt Italian OPEN LOOK (R) imagetool

SUNWiorte Italian OPEN LOOK (R) toolkits runtime environment

SUNWislcc XSH4 conversion for Eastern European locales

SUNWisolc XSH4 conversion for ISO Latin character sets

SUNWitbas Base L10N it CDE functionality to run a CDE application

SUNWitdst Italian CDE Desktop Applications messages

SUNWitdte Italian CDE Desktop Environment

SUNWithe Italian CDE Help Runtime Environment

SUNWithed Italian CDE Help Developer Environment

Chapter 5 Installation 75

SUNWithev Italian CDE Online Help

SUNWitim Italian CDE Imageviewer

SUNWitis Italian install software localization

SUNWitltk Italian ToolTalk binaries and shared libraries

SUNWitos Italian OS localization

SUNWitpmw Italian (EUC) Localizations for Power Management OW Utilities

SUNWitreg Italian Solaris User Registration prompts at desktop login for user
registration

SUNWitwm Italian CDE Desktop Window Manages Messages

SUNWiwacx Italian OPEN LOOK (R) AccessX

SUNWiwbcp Italian OpenWindows Binary Compatibility Package

SUNWixplt Italian X Windows platform software

SUNWeoaud Spanish OPEN LOOK (R) Audio applications

SUNWeobk Spanish OpenWindows online handbooks

SUNWeodcv Spanish OPEN LOOK (R) document and help viewer applications

SUNWeodem Spanish OPEN LOOK (R) demo programs

SUNWeodst Spanish OPEN LOOK (R) deskset tools

SUNWeodte Spanish OPEN LOOK (R) desktop environment

SUNWeoimt Spanish OPEN LOOK (R) imagetool

SUNWeorte Spanish OPEN LOOK (R) toolkits runtime environment

SUNWesbas Base L10N fr CDE functionality to run a CDE application

SUNWesdst Spanish CDE Desktop Applications

SUNWesdte Spanish CDE Desktop Environment

SUNWeshe Spanish CDE Help Runtime Environment

SUNWeshed Spanish CDE Help Developer Environment

SUNWeshev Spanish CDE Online Help

SUNWesim Spanish CDE Desktop apps

SUNWesis Spanish install software localization

SUNWesos Spanish OS localization

SUNWespmw Spanish (EUC) Localizations for Power Management OW Utilities

TABLE 5-8 European Package Descriptions (Continued)

Package Name Package Description

76 Solaris Internationalization Guide for Developers • August 1997

SUNWesreg Solaris User Registration prompts at desktop login for user registration

SUNWeswm Spanish CDE Desktop Window Manages Messages

SUNWetltk Spanish ToolTalk binaries and shared libraries

SUNWenise English partial locales enabling during install

SUNWeuise European partial locales enabling during install

SUNWewacx Spanish OPEN LOOK (R) AccessX

SUNWexplt Spanish X Windows platform software

SUNWfbcp French OS Binary Compatibility Package

SUNWfoaud French French OPEN LOOK (R) Audio applications

SUNWfobk French OpenWindows online handbooks

SUNWfodcv French OPEN LOOK (R) document and help viewer applications

SUNWfodem French OPEN LOOK (R) demo programs

SUNWfodst French OPEN LOOK (R) deskset tools

SUNWfodte French OPEN LOOK (R) desktop environment

SUNWfoimt French OPEN LOOK (R) imagetool

SUNWforte French OPEN LOOK (R) toolkits runtime environment

SUNWfrbas Base L10N fr CDE functionality to run a CDE application

SUNWfrdst French CDE Desktop Applications

SUNWfrdte french CDE Desktop Environment

SUNWfrhe French CDE Help Runtime Environment

SUNWfrhed French CDE Help Developer Environment

SUNWfrhev French CDE Online Help

SUNWfrim French CDE ImageViewer

SUNWfris French install software localization

SUNWfros French OS localization

SUNWfrpmw French (EUC) Localizations for Power Management OW Utilities

SUNWfrwm French CDE Desktop Window Manages Messages

SUNWftltk French ToolTalk binaries and shared libraries

SUNWfwacx French OPEN LOOK (R) AccessX

TABLE 5-8 European Package Descriptions (Continued)

Package Name Package Description

Chapter 5 Installation 77

SUNWfwbcp French OpenWindows Binary Compatibility Package

SUNWfxplt French X Windows platform software

SUNWsoaud Swedish OPEN LOOK (R) Audio applications

SUNWsobk Swedish OpenWindows online handbooks

SUNWsodcv Swedish OPEN LOOK (R) document and help viewer applications

SUNWsodem Swedish OPEN LOOK (R) demo programs

SUNWsodst Swedish OPEN LOOK (R) deskset tools

SUNWsodte Swedish OPEN LOOK (R) desktop environment

SUNWsoimt Swedish OPEN LOOK (R) imagetool

SUNWsorte Swedish OPEN LOOK (R) toolkits runtime environment

SUNWstltk Swedish ToolTalk binaries and shared libraries

SUNWsvbas Base Swedish CDE functionality messages

SUNWsvdst Swedish CDE Desktop Applications messages

SUNWsvdte Swedish CDE Desktop Environment messages

SUNWsvhe Swedish CDE Help Runtime Environment

SUNWsvhed Swedish CDE Help Developer Environment messages

SUNWsvhev Swedish CDE Online Help

SUNWsvim Swedish CDE Image editor messages

SUNWsvis Swedish install software localization

SUNWsvos Swedish OS localization

SUNWsvpmw Swedish (EUC) Localizations for Power Management OW Utilities

SUNWsvreg Swedish Solaris User Registration prompts at desktop login for user
registration

SUNWsvwm Swedish CDE Desktop Window Manages Messages

SUNWswacx Swedish OPEN LOOK (R) AccessX

SUNWsxplt Swedish X Windows platform software

SUNWdbcp German OS Binary Compatibility Package

SUNWdebas Base L10N German CDE functionality to run a CDE application

SUNWdedst German CDE Desktop Applications

SUNWdedte German CDE Desktop Login Environment

TABLE 5-8 European Package Descriptions (Continued)

Package Name Package Description

78 Solaris Internationalization Guide for Developers • August 1997

SUNWdehe German CDE Help Runtime Environment

SUNWdehed German CDE Help Developer Environment

SUNWdehev German CDE Online Help

SUNWdeim German CDE Imageviewer

SUNWdeis German install software localization

SUNWdeos German message files for the OS-Networking consolidation

SUNWdepmw German (EUC) Localizations for Power Management OW Utilities

SUNWdereg German Solaris User Registration prompts at desktop login for user
registration

SUNWdewm German CDE Desktop Window Manages Messages

SUNWdoaud German OPEN LOOK (R) Audio applications

SUNWdobk German OpenWindows online handbooks

SUNWdodcv German OPEN LOOK (R) document and help viewer applications

SUNWdodem German OPEN LOOK (R) demo programs

SUNWdodst German OPEN LOOK (R) deskset tools

SUNWdodte German OPEN LOOK (R) desktop environment

SUNWdoimt German OPEN LOOK (R) imagetool

SUNWdorte German OPEN LOOK (R) toolkits runtime environment

SUNWdwacx German OPEN LOOK (R) AccessX

SUNWdwbcp German OpenWindows Binary Compatibility Package

SUNWpldte CDE Eastern European locale support

SUNWploc European Partial Locales

SUNWploc1 Supplementary Partial Locales

SUNWplow OpenWindows enabling for Partial Locales

SUNWplow1 OpenWindows enabling for Supplementary Partial Locales

TABLE 5-8 European Package Descriptions (Continued)

Package Name Package Description

Chapter 5 Installation 79

European Codesets
In Solaris 2.6 several fonts will display characters which are encoded in the
following codesets:

■ Latin-1
■ Latin-2
■ Latin-4
■ Cyrillic
■ Greek
■ Latin-5

European Font Packages
There are a number of font packages in Solaris 2.6.

SUNWfrreg
SUNWitreg
SUNWsvreg
SUNWesreg
SUNWdereg

Localised e-reg software messages in the End-User cluster and above

SUNWfrpmw
SUNWitpmw
SUNWsvpmw
SUNWespmw
SUNWdepmw

Localised Power Management software in the End-User cluster and
above

SUNWfwbcp
SUNWiwbcp
SUNWswbcp
SUNWewbcp
SUNWdwbcp

Localised Binary Compatibility Packages

TABLE 5-9 Font Packages in Solaris 2.6

Font Package Description

SUNWi2of Latin-2 Optional fonts

SUNWi2rf Latin-2 Required fonts

SUNWi4of Latin-4 Optional fonts

TABLE 5-8 European Package Descriptions (Continued)

Package Name Package Description

80 Solaris Internationalization Guide for Developers • August 1997

■ All required font packages are in the developer cluster.

■ All fonts (both required and optional) are in the entire cluster.

Asian Packages
The remainder of this chapter covers the Asian packages.

SUNWi4rf Latin-4 Required fonts

SUNWi5of Cyrillic Optional fonts

SUNWi5rf Cyrillic Required fonts

SUNWi7of Greek Optional fonts

SUNWi7rf Greek Required fonts

SUNWi9of Latin-5 Optional fonts

SUNWi9rf Latin-5 Required fonts

TABLE 5-10 Asian Package for Localization and Windowing

Locale
OS Common
Packages

Win Common
Packages OS Packages Desktop Packages

All
(ja/ko/zh/
zh_TW)

SUNWale
SUNWaled

SUWNxi18n
SUNWxim

TABLE 5-9 Font Packages in Solaris 2.6

Font Package Description

Chapter 5 Installation 81

1. Denotes that the package is not delivered for x86.

TABLE 5-11 Korean Package for Localization and Windowing

Locale
OS Common
Packages

Win Common
Packages OS Packages Desktop Packages

All
(ja/ko/zh/
zh_TW)

SUNWale
SUNWaled

SUWNxi18n
SUNWxim

ko (Korean) SUNWkler
SUNWkleu
SUNWkbcp1

SUNWkoaud
SUNWkodcv
SUNWkodem
SUNWkodst
SUNWkodte
SUNWkoimt
SUNWkoman
SUNWkorte
SUNWktltk
SUNWkxman
SUNWkxoft
SUNWkxplt
SUNWkxfnt
SUNWkwbcp1

SUNWkepmw
SUNWkervl
SUNWkexir
SUNWkkcsr

ko.UTF-8
(Korean)

SUNWkiu8
SUNWkuleu

SUNWkcoft
SUNWkuodf
SUNWkupmw
SUNWkuxft
SUNWkuxpl

82 Solaris Internationalization Guide for Developers • August 1997

1. Denotes that the package is not delivered for SPARC.

TABLE 5-12 Chinese Package for Localization and Windowing

Locale
OS Common
Packages

Win Common
Packages OS Packages Desktop Packages

zh (PRC) SUNWcleu
SUNWcbcp1

SUNWcoaud
SUNWcodcv
SUNWcodem
SUNWcodst
SUNWcodte
SUNWcoimt
SUNWcoman
SUNWcorte
SUNWctltk
SUNWcxman
SUNWcxoft
SUNWcxplt
SUNWcxfnt
SUNWcwbcp1

SUNWcepmw
SUNWcervl
SUNWcexir
SUNWckcsr

zh_TW
(Taiwan)

SUNWhler
SUNWhleu
SUNWhbcp1

SUNWhkccd1

SUNWhoaud
SUNWhodcv
SUNWhodem
SUNWhodst
SUNWhodte
SUNWhoimt
SUNWhoman
SUNWhorte
SUNWhtltk
SUNWhxman
SUNWhxoft
SUNWhxplt
SUNWhxfnt
SUNWhwbcp1

SUNWhepmw
SUNWhervl
SUNWhexir
SUNWhkcsr

zh_TW.BIG 5
(Taiwan)

SUNW5leu SUNW5odte
SUNW5pmw
SUNW5xfnt
SUNW5xoft
SUNW5xplt

Chapter 5 Installation 83

TABLE 5-13 Japanese Package for Localization and Windowing

Locale
OS Common
Packages

Win Common
Packages OS Packages Desktop Packages

ja/ja_JP.PCK
common

SUNWjfpr
SUNWjfpu
SUNWjc0d
SUNWjc0r
SUNWjc0u
SUNWjwncr
SUNWjwncu
SUNWjwnsr
SUNWjwnsu
SUNWjiu8
SUNWjman
SUNWjxf3
SUNWjxfa
SUNWxgljf

JSat8xw
SUNWjc0w
SUNWjwncx
SUNWjwndt
SUNWjreg
SUNWjxcft
SUNWjxfnt
SUNWjxoft
SUNWjfxmn
SUNWjbdf
SUNWjcs3f

ja packages
(Japanese)

SUNWjbcp
SUNWjrdm
SUNWjeman
SUNWjeudc
SUNWjexir
SUNWjmfrn
SUNWjoaud
SUNWjodcv
SUNWjodst
SUNWjodte
SUNWjoimt
SUNWjorte
SUNWjxgld
SUNWjxgle
SUNWjtltk
SUNWjwbcp
SUNWjwbk
SUNWjxplt
SUNWjkcsr
SUNWjoumn
SUNWjxumn
SUNWjxpmn
SUNWjervl
SUNWjffb
SUNWjleo
SUNWjodem
SUNWjsadl
SUNWjsxgl
SUNWjwacx
SUNWjexfa

SUNWjadis
SUNWjadma
SUNWjepmw

84 Solaris Internationalization Guide for Developers • August 1997

Description of General Packages

ja_JP.PCK
pkgs
(Japanese)

SUNWjpwnu
SUNWjprdm
SUNWjpman
SUNWjpadi
SUNWjppmw
SUNWjpudc
SUNWjpxir
SUNWjpmfr
SUNWjptlt
SUNWjpxge
SUNWjpxpl
SUNWudct
SUNWjpkcs
SUNWjptlm
SUNWjpxpm
SUNWjpxum
SUNWjprvl
SUNWjpffb
SUNWjpleo
SUNWjpsal
SUNWjpsxg
SUNWjpacx
SUNWjpxfa

SUNWjpxgd
SUNWjpadm
SUNWjpadi

TABLE 5-14 Packages

Package Name Package Description

SUNWale
SUNWaled

Asian Language Environment Common Files
Asian Language Environment Common Man Pages

SUNWxi18n
SUNWxim

X Windows Internationalization Common Package
X Windows X Input Method Server Package

TABLE 5-13 Japanese Package for Localization and Windowing (Continued)

Locale
OS Common
Packages

Win Common
Packages OS Packages Desktop Packages

Chapter 5 Installation 85

Description of Korean Package

TABLE 5-15 Korean Package

Package Name Package Description

SUNWkbcp
SUNWkler
SUNWkleu

Korean Language Environment Binary Compatibility Package
Korean Language Environment root files
Korean Language Environment user files

SUNWkoaud
SUNWkodcv
SUNWkodem
SUNWkodst
SUNWkodte
SUNWkoimt
SUNWkoman
SUNWkorte
SUNWktltk
SUNWkxman
SUNWkxoft
SUNWkxplt
SUNWkxfnt
SUNWkwbcp
SUNWkepmw
SUNWkkcsr
SUNWkervl
SUNWkexir

Korean OpenLook Audio Applications Package
Korean OpenLook Document and Help Viewer Applications Package
Korean OpenLook Demo Programs Package
Korean OpenLook Deskset Tools Package
Korean Core OpenLook Desktop Package
Korean OpenLook Imagetool Package
Korean OpenLook Toolkit/Desktop Users Man Pages Package
Korean OpenLook Toolkits Runtime Environment Package
Korean ToolTalk Runtime Package
Korean X Windows Online User Man Pages Package
Korean X Windows Optional Fonts Package
Korean X Windows Platform Software Package
Korean X Windows Platform required Font Package
Korean OpenWindows Binary Compatibility Package
Korean (EUC) Power Management OW Utilities
Korean Localizations for Kodak Color Management System Runtime
Korean Localizations for SunVideoTM Runtime Support Software
Korean Localizations for XIL Runtime Environment

SUNWkiu8
SUNWkuleu
SUNWkcoft
SUNWkuodf
SUNWkupmw
SUNWkuxft
SUNWkuxpl

Korean UTF-8 iconv modules for UTF-8
Korean UTF-8 Language Environment user files
Korean/Korean UTF-8 common optional font package
Korean UTF-8 Core OPENLOOK Desktop Package
Korean UTF-8 Power Management OW Utilities
Korean UTF-8 X Windows Platform Required Fonts
Korean UTF-8 X Windows Platform Software Package

86 Solaris Internationalization Guide for Developers • August 1997

Description of Chinese Package

TABLE 5-16 Chinese Package

Package Name Package Description

SUNWcbcp
SUNWcleu

Chinese/PRC Language Environment Binary Compatibility Package
Chinese/PRC Language Environment user files

SUNWcoaud
SUNWcodcv
SUNWcodem
SUNWcodst
SUNWcodte
SUNWcoimt
SUNWcoman
SUNWcorte
SUNWctltk
SUNWcwbcp
SUNWcxman
SUNWcxoft
SUNWcxplt
SUNWcxfnt
SUNWcepmw
SUNWckcsr
SUNWcervl
SUNWcexir

Chinese/PRC OpenLook Audio Applications Package
Chinese/PRC OpenLook Doc and Help Viewer Applications Package
Chinese/PRC OpenLook Demo Programs Package
Chinese/PRC OpenLook Deskset Tools Package
Chinese/PRC Core OpenLook Desktop Package
Chinese/PRC OpenLook Imagetool Package
Chinese/PRC OpenLook Toolkit/Desktop Users Man Pages Package
Chinese/PRC OpenLook Toolkits Runtime Environment Package
Chinese/PRC ToolTalk Runtime Package
Chinese/PRC OpenWindows Binary Compatibility Package
Chinese/PRC X Windows Online User Man Pages Package
Chinese/PRC X Windows Optional Fonts Package
Chinese/PRC X Windows Platform Software Package
Chinese/PRC X Windows Platform required Font Package
Chinese/PRC Power Management OW Utilities
Chinese/PRC for Kodak Color Management System Runtime
Chinese/PRC Localizations for SunVideo Runtime Support Software
Chinese/PRC Localizations for XIL Runtime Environment

Chapter 5 Installation 87

Description of Japanese Package

SUNWhbcp
SUNWhler
SUNWhleu
SUNWhkccd
SUNWhuccd

Chinese/Taiwan Language Environment Binary Compatibility Package
Chinese/Taiwan Language Environment root files
Chinese/Taiwan Language Environment user files
Chinese/Taiwan Kernel based Chinese Console Display package
Chinese/Taiwan User based Chinese Console Display package

SUNWhoaud
SUNWhodcv
SUNWhodem
SUNWhodst
SUNWhodte
SUNWhoimt
SUNWhoman
SUNWhorte
SUNWhtltk
SUNWhwbcp
SUNWhxman
SUNWhxoft
SUNWhxplt
SUNWhxfnt
SUNWhepmw
SUNWhkcsr
SUNWhervl
SUNWhexir

Chinese/Taiwan OpenLook Audio Applications Package
Chinese/Taiwan OpenLook Doc and Help Viewer Applications Package
Chinese/Taiwan OpenLook Demo Programs Package
Chinese/Taiwan OpenLook Deskset Tools Package
Chinese/Taiwan Core OpenLook Desktop Package
Chinese/Taiwan OpenLook Imagetool Package
Chinese/Taiwan OpenLook Toolkit/Desktop Users Man Pages Package
Chinese/Taiwan OpenLook Toolkits Runtime Environment Package
Chinese/Taiwan ToolTalk Runtime Package
Chinese/Taiwan OpenWindows Binary Compatibility Package
Chinese/Taiwan X Windows Online User Man Pages Package
Chinese/Taiwan X Windows Optional Fonts Package
Chinese/Taiwan X Windows Platform Software Package
Chinese/Taiwan X Windows Platform required Font Package
Chinese/Taiwan Power Management OW Utilities
Chinese/Taiwan Localize for Kodak Color Management System Runtime
Chinese/Taiwan Localizations for SunVideo Runtime Support Software
Chinese/Taiwan Localizations for XIL Runtime Environment

SUNW5leu
SUNW5odte
SUNW5pmw
SUNW5xfnt
SUNW5xoft
SUNW5xplt

Chinese/Taiwan BIG5 Language Environment user files
Chinese/Taiwan BIG5 Core OPENLOOK Desktop Package
Chinese/Taiwan BIG5 Power Management OW Utilities
Chinese/Taiwan BIG5 X Windows Platform required Fonts Package
Chinese/Taiwan BIG5 X Windows Optional Fonts Package
Chinese/Taiwan BIG5 X Windows Platform Software Package

TABLE 5-17 Japanese Package

Package Name Package Description

SUNWjfpr
SUNWjfpu

Japanese Feature Package root files
Japanese Feature Package usr files

SUNWjeuc Japanese (EUC) Feature Package usr files

SUNWjpck Japanese (PCK) Feature Package usr files

TABLE 5-16 Chinese Package (Continued)

Package Name Package Description

88 Solaris Internationalization Guide for Developers • August 1997

JSat8xw
SUNWjc0d
SUNWjc0r
SUNWjc0u
SUNWjc0w
SUNWjdbas
SUNWjdhev
SUNWjdhj
SUNWjwncr
SUNWjwncu
SUNWjwncx
SUNWjwndt
SUNWjwnsr
SUNWjwnsu
SUNWjreg
SUNWjxcft
SUNWjxfnt

Japanese Input System - ATOK8
Japanese cs00 user dictionary maintenance tool for CDE Motif
Japanese Kana-Kanji Conversion Server cs00 Root Files
Japanese Kana-Kanji Conversion Server cs00 User Files
Japanese cs00 user dictionary maintenance tool for OPEN LOOK
Japanese CDE base
Japanese CDE HELP VOLUMES
Japanese HotJava Browser for Solaris
Wnn6 Client Root Files
Wnn6 Client Usr Files (common)
Wnn6 Client X Window System Files
Wnn6 Client User Files for CDE
Wnn6 Server Root Files
Wnn6 Server Usr Files
Japanese Solaris User Registration
Japanese X Window System common (not required) fonts
Japanese X Window System required fonts

SUNWjadis
SUNWjadma
SUNWjbcp
SUNWjebas
SUNWjddst
SUNWjddte
SUNWjdhe
SUNWjehev
SUNWjdim
SUNWjdrme
SUNWjdwm
SUNWjepmw
SUNWjeudc
SUNWjexir
SUNWjmfrn
SUNWjoaud
SUNWjodcv
SUNWjodst
SUNWjodte
SUNWjoimt
SUNWjorte
SUNWjrdm
SUNWjxgld
SUNWjpxgd
SUNWjxgle
SUNWjtltk
SUNWjwbcp
SUNWjwbk
SUNWjxplt

Japanese (EUC) admintool and install software
Japanese (EUC) System administration applications
Japanese SunOS 4.x Binary Compatibility
Japanese (EUC) CDE base
Japanese (EUC) CDE DESKTOP APPS
Japanese (EUC) CDE DESKTOP LOGIN ENVIRONMENT
Japanese (EUC) CDE HELP RUNTIME
Japanese (EUC) CDE HELP VOLUMES
Japanese (EUC) Solaris CDE Image Viewer
Japanese (EUC) CDE README FILES
Japanese (EUC) CDE DESKTOP WINDOW MANAGER
Japanese (EUC) Power Management OW Utilities
Japanese (EUC) User Defined Character tool for Solaris CDE
Japanese (EUC) XIL Runtime Environment
Japanese (EUC) Motif RunTime Kit
Japanese (EUC) OPEN LOOK Audio applications
Japanese(EUC) OPEN LOOK document and help viewer applications
Japanese (EUC) OPEN LOOK deskset tools
Japanese (EUC) OPEN LOOK Desktop Environment
Japanese (EUC) OPEN LOOK imagetool
Japanese (EUC) OPEN LOOK toolkits runtime environment
Japanese (EUC) On-Line Open Issues ReadMe
Japanese (EUC) XGL Generic Loadable Libraries
Japanese (PCK) XGL Generic Loadable Libraries
Japanese (EUC) XGL Runtime Environment
Japanese (EUC) ToolTalk runtime
Japanese (EUC) OpenWindows binary compatibility
Japanese (EUC) OpenWindows online handbooks
Japanese (EUC) X Window System platform software

TABLE 5-17 Japanese Package (Continued)

Package Name Package Description

Chapter 5 Installation 89

SUNWjpadm
SUNWjpadi
SUNWjpbas
SUNWjpdst
SUNWjpdte
SUNWjphe
SUNWjphev
SUNWjpim
SUNWjprme
SUNWjpwm
SUNWjppmw
SUNWjpudc
SUNWjpwnu
SUNWjpxir
SUNWjpmfr
SUNWjprdm
SUNWjptlt
SUNWjpxge
SUNWjpxpl
SUNWudct

Japanese (PCK) System administration applications
Japanese (PCK) admintool and install software
Japanese (PCK) CDE base
Japanese (PCK) CDE DESKTOP APPS
Japanese (PCK) CDE DESKTOP LOGIN ENVIRONMEN
Japanese (PCK) CDE HELP RUNTIME
Japanese (PCK) CDE HELP VOLUMES
Japanese (PCK) Solaris CDE Image Viewer
Japanese (PCK) CDE README FILES
Japanese (PCK) CDE DESKTOP WINDOW MANAGER
Japanese (PCK) Power Management OW Utilities
Japanese (PCK) User Defined Character tool for Solaris CDE
Wnn6 Client Usr Files (PCK)
Japanese (PCK) XIL Runtime Environment
Japanese (PCK) Motif RunTime Kit
Japanese (PCK) On-Line Open Issues ReadMe
Japanese (PCK) ToolTalk runtime
Japanese (PCK) XGL Runtime Environment
Japanese (PCK) X Window System platform software
User Defined Character tool for Solaris CDE environment

SUNWjdab
SUNWjfxmn
SUNWjiu8
SUNWjman
SUNWjxoft

Japanese CDE DTBUILDER
Japanese Feature English Man Pages for X Window System
Japanese iconv modules for UTF-8
Japanese Feature Package Man Pages (English)
Japanese X Window System optional fonts

SUNWjeab
SUNWjdhed
SUNWjedev
SUNWjeman
SUNWjkcsr
SUNWjoumn
SUNWjxumn
SUNWjxpmn

Japanese (EUC) CDE DTBUILDER
Japanese (EUC) CDE HELP DEVELOPER ENVIRONMENT
Japanese (EUC) Development Environment Package
Japanese (EUC) Feature Package Man Pages
Japanese (EUC) KCMS Runtime Environment
Japanese (EUC) OPEN LOOK toolkit/desktop users man pages
Japanese (EUC) X Window System online user man pages
Japanese (EUC) X Window System online programmers man pages

SUNWjpab
SUNWjphed
SUNWjpman
SUNWjpkcs
SUNWjptlm
SUNWjpxpm
SUNWjpxum

Japanese (PCK) CDE DTBUILDER
Japanese (PCK) CDE HELP DEVELOPER ENVIRONMENT
Japanese (PCK) Feature Package Man Pages
Japanese (PCK) KCMS Runtime Environment
Japanese (PCK) ToolTalk manual pages
Japanese (PCK) X Window System online programmers man pages
Japanese (PCK) X Window System online user man pages

TABLE 5-17 Japanese Package (Continued)

Package Name Package Description

90 Solaris Internationalization Guide for Developers • August 1997

TABLE 5-18 and TABLE 5-19 show which Korean files will be installed for each type of
installation: core, end user, developer, or the entire installation.

SUNWjbdf
SUNWjcs3f
SUNWjxf3
SUNWjxfa
SUNWxgljf

Japanese BDF font source
Japanese JIS X0212 Type1 fonts for printing
Japanese X Window System hinted F3 fonts
Japanese X Window System Font Administrator
Japanese XGL Stroke Font

SUNWjervl
SUNWjffb
SUNWjleo
SUNWjodem
SUNWjsadl
SUNWjsxgl
SUNWjwacx
SUNWjexfa

Japanese (EUC) SunVideo Runtime Support Software
Japanese (EUC) Creator Graphics (FFB) XGL Support
Japanese (EUC) ZX XGL support
Japanese (EUC) OPEN LOOK demo programs
Japanese (EUC) Solstice Admintool launch
Japanese (EUC) SX XGL Support
Japanese (EUC) AccessX client program
Japanese (EUC) X Window System Font Administor

SUNWjprvl
SUNWjpffb
SUNWjpleo
SUNWjpsal
SUNWjpsxg
SUNWjpacx
SUNWjpxfa

Japanese (PCK) SunVideo Runtime Support Software
Japanese (PCK) Creator Graphics (FFB) XGL Support
Japanese (PCK) ZX XGL support
Japanese (PCK) Solstice Admintool launcher
Japanese (PCK) SX XGL Support
Japanese (PCK) AccessX client program
Japanese (PCK) X Window System Font Administrator

TABLE 5-18 ko Locale

Package Name Core End User Developer Entire

SUNWale
SUNWaled

X X X
X

X
X

SUNWxi18n
SUNWxim

X
X

X
X

X
X

SUNWkler
SUNWkleu
SUNWkbcp

X
X

X
X
X

X
X
X

X
X
X

TABLE 5-17 Japanese Package (Continued)

Package Name Package Description

Chapter 5 Installation 91

SUNWkoaud
SUNWkodcv
SUNWkodem
SUNWkodst
SUNWkodte
SUNWkoimt
SUNWkoman
SUNWkorte
SUNWktltk
SUNWkwbcp
SUNWkxman
SUNWkxoft
SUNWkxplt
SUNWkxfnt
SUNWkepmw
SUNWkkcsr
SUNWkervl
SUNWkexir

X
X

X
X
X

X
X
X

X
X
X

X

X
X

X
X
X

X
X
X
X
X
X
X
X
X

X

X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X

TABLE 5-19 ko.UTF-8 Locale

Package Name Core End User Developer Entire

SUNWale
SUNWaled

X X X
X

X
X

SUNWxi18n
SUNWxim

X
X

X
X

X
X

SUNWkiu8
SUNWkuleu

X
X

X
X

X
X

X
X

SUNWkcoft
SUNWkuodf
SUNWkuxft
SUNWkupmw
SUNWkuxpl

X
X

X
X

X
X
X
X
X

X
X
X
X
X

TABLE 5-18 ko Locale (Continued)

Package Name Core End User Developer Entire

92 Solaris Internationalization Guide for Developers • August 1997

TABLE 5-20, TABLE 5-21, and TABLE 5-22 shows which Chinese files will be installed for
each type of installation: core, end user, developer, or the entire installation.

TABLE 5-20 zh Locale

Package Name Core End User Developer Entire

SUNWale
SUNWaled

X X X
X

X
X

SUNWxi18n
SUNWxim

X
X

X
X

X
X

SUNWcleu
SUNWcbcp

X X
X

X
X

X
X

SUNWcoaud
SUNWcodcv
SUNWcodem
SUNWcodst
SUNWcodte
SUNWcoimt
SUNWcoman
SUNWcorte
SUNWctltk
SUNWcwbcp
SUNWcxman
SUNWcxoft
SUNWcxplt
SUNWcxfnt
SUNWcepmw
SUNWckcsr
SUNWcervl
SUNWcexir

X
X

X
X
X

X
X
X

X
X
X

X

X
X

X
X
X
X
X
X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X

TABLE 5-21 zh_TW Locale

Package Name Core End User Developer Entire

SUNWale
SUNWaled

X X X
X

X
X

Chapter 5 Installation 93

TABLE 5-23, TABLE 5-24, and TABLE 5-25 shows which Japanese files will be installed for

SUNWxi18n
SUNWxim

X
X

X
X

X
X

SUNWhler
SUNWhleu
SUNWhbcp
SUNWhuccd
SUNWhkccd

X
X

X

X
X
X
X
X

X
X
X
X
X

X
X
X
X
X

SUNWhoaud
SUNWhodcv
SUNWhodem
SUNWhodst
SUNWhodte
SUNWhoimt
SUNWhoman
SUNWhorte
SUNWhtltk
SUNWhwbcp
SUNWhxman
SUNWhxoft
SUNWhxplt
SUNWhxfnt
SUNWhepmw
SUNWhkcsr
SUNWhervl
SUNWhexir

X
X

X
X
X

X
X
X

X
X
X

X

X
X

X
X
X
X
X
X
X
X
X
X
X
X
X

X

X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X

TABLE 5-22 zh_TW.BIG5 Locale

Package Name Core End User Developer Entire

SUNWale
SUNWaled

X X X
X

X
X

SUNWxi18n
SUNWxim

X
X

X
X

X
X

SUNWhleu
SUNW5leu

X
X

X
X

X
X

X
X

SUNW5odte
SUNW5pmw
SUNW5xoft
SUNW5xfnt
SUNW5xplt

X
X

X
X

X
X
X
X
X

X
X
X
X
X

TABLE 5-21 zh_TW Locale (Continued)

Package Name Core End User Developer Entire

94 Solaris Internationalization Guide for Developers • August 1997

each type of installation: core, end user, developer, or the entire installation.

TABLE 5-23 ja/ja_JP.PCK Common Packages

Package Name Core End User Developer Entire

SUNWjfpr X X X X

SUNWjfpu X X X X

JSat8xw X X X

SUNWjpadi X X X

SUNWjpadm X X X

SUNWjc0d X X X

SUNWjc0r X X X

SUNWjc0u X X X

SUNWjc0w X X X

SUNWjwncr X X X

SUNWjwncu X X X

SUNWjwncx X X X

SUNWjwndt X X X

SUNWjwnsr X X X

SUNWjwnsu X X X

SUNWjreg X X X

SUNWjxcft X X X

SUNWjxfnt X X X

SUNWudct X X X

SUNWjfxmn X X

SUNWjiu8 X X

SUNWjman X X

SUNWjxoft X X

SUNWjbdf X

SUNWjcs3f X

SUNWjxf3 X

SUNWjxfa X

SUNWxgljf X

Chapter 5 Installation 95

TABLE 5-24 ja Locale

Package Name Core End User Developer Entire

SUNWjeuc X X X X

SUNWjepmw X X X

SUNWjeudc X X X

SUNWjewnu X X X

SUNWjexir X X X

SUNWjadis X X X

SUNWjadma X X X

SUNWjbcp X X X

SUNWjmfrn X X X

SUNWjoaud X X X

SUNWjodcv X X X

SUNWjodst X X X

SUNWjodte X X X

SUNWjoimt X X X

SUNWjorte X X X

SUNWjrdm X X X

SUNWjtltk X X X

SUNWjwbcp X X X

SUNWjwbk X X X

SUNWjxgld X X X

SUNWjxgle X X X

SUNWjxplt X X X

SUNWjedev X X

SUNWjeman X X

SUNWjkcsr X X

SUNWjoumn X X

SUNWjtlmn X X

SUNWjxpmn X X

96 Solaris Internationalization Guide for Developers • August 1997

SUNWjxumn X X

SUNWjervl X

SUNWjexfa X

SUNWjffb X

SUNWjleo X

SUNWjodem X

SUNWjsadl X

SUNWjsxgl X

SUNWjwacx X

TABLE 5-25 ja_JP.PCK Locale

Package Name Core End User Developer Entire

SUNWjpck X X X X

SUNWjppmw X X X

SUNWjpudc X X X

SUNWjpwnu X X X

SUNWjpxir X X X

SUNWjpmfr X X X

SUNWjprdm X X X

SUNWjptlt X X X

SUNWjpxgd X X X

SUNWjpxge X X X

SUNWjpxpl X X X

SUNWjpman X X

SUNWjpkcs X X

SUNWjptlm X X

SUNWjpxpm X X

SUNWjprvl X

SUNWjpxum X X

TABLE 5-24 ja Locale (Continued)

Package Name Core End User Developer Entire

Chapter 5 Installation 97

TABLE 5-26 lists the CDE localization packages.

SUNWjpffb X

SUNWjpleo X

SUNWjpsal X

SUNWjpsxg X

SUNWjpxfa X

SUNWjpacx X

TABLE 5-26 CDE Packages

Locale CDE Package CDE mininum CDE End User CDE-Developers

zh_TW (Taiwan) SUNWhdab
SUNWhdbas
SUNWhddst
SUNWhddte
SUNWhdhe
SUNWhdhev
SUNWhdicn
SUNWhdim
SUNWhdwm
SUNWhreg

SUNWhdbas
SUNWhddte
SUNWhdicn

SUNWhdwm
SUNWhdhe
SUNWhddst
SUNWhdhev
SUNWhdim
SUNWhreg

SUNWhdab

zh_TW.BIG5
(Taiwan)

SUNW5dab
SUNW5dbas
SUNW5ddst
SUNW5ddte
SUNW5dhe
SUNW5dicn
SUNW5dim
SUNW5dwm
SUNWhreg

SUNW5dbas
SUNW5ddte
SUNW5dicn

SUNW5dwm
SUNW5dhe
SUNW5ddst
SUNW5dim
SUNWhreg

SUNW5dab

zh (Chinese) SUNWcdab
SUNWcdbas
SUNWcddst
SUNWcddte
SUNWcdhe
SUNWcdhev
SUNWcdicn
SUNWcdim
SUNWcdwm
SUNWcreg

SUNWcdbas
SUNWcddte
SUNWcdicn
SUNWcdft

SUNWcdwm
SUNWcdhe
SUNWcddst
SUNWcdhev
SUNWcdim
SUNWcreg

SUNWcdab

TABLE 5-25 ja_JP.PCK Locale (Continued)

Package Name Core End User Developer Entire

98 Solaris Internationalization Guide for Developers • August 1997

ko (Korean) SUNWkdab
SUNWkdbas
SUNWkddst
SUNWkddte
SUNWkdhe
SUNWkdhev
SUNWkdicn
SUNWkdim
SUNWkdwm
SUNWkdft
SUNWkreg

SUNWkdbas
SUNWkddte
SUNWkdicn
SUNWkdft

SUNWkdwm
SUNWkdhe
SUNWkddst
SUNWkdhev
SUNWkdim
SUNWkreg

SUNWkdab

ko.UTF-8
(Korean)

SUNWkudab
SUNWkudbs
SUNWkudda
SUNWkuddt
SUNWkudhr
SUNWkudhv
SUNWkudic
SUNWkudim
SUNWkudwm
SUNWkudft
SUNWkreg

SUNWkudbs
SUNWkuddt
SUNWkudic
SUNWkudft

SUNWkudwm
SUNWkudhr
SUNWkudda
SUNWkudhv
SUNWkudim
SUNWkreg

SUNWkudab

TABLE 5-26 CDE Packages (Continued)

Locale CDE Package CDE mininum CDE End User CDE-Developers

Chapter 5 Installation 99

ja/ja_JP.PCK
common

SUNWjdbas

SUNWjdhev
SUNWjdab

SUNWjdbas SUNWjdhev SUNWjdab

ja package SUNWjebas
SUNWjddte

SUNWjddst
SUNWjdwm
SUNWjdhe
SUNWjehev
SUNWjdim
SUNWjdrme
SUNWjdhed
SUNWjeab

SUNWjebas
SUNWjddte

SUNWjddst
SUNWjdwm

SUNWjdhe
SUNWjehev
SUNWjdim
SUNWjdrme

SUNWjdhed
SUNWjeab

ja_JP.PCK SUNWjpbas
SUNWjpdte
SUNWjpdst
SUNWjpwm
SUNWjphe
SUNWjphev
SUNWjpim
SUNWjprme
SUNWjpab
SUNWjphed

SUNWjpbas
SUNWjpdte

SUNWjpdst
SUNWjpwm
SUNWjphe
SUNWjphev
SUNWjpim
SUNWjprme

SUNWjpab
SUNWjphed

TABLE 5-26 CDE Packages (Continued)

Locale CDE Package CDE mininum CDE End User CDE-Developers

100 Solaris Internationalization Guide for Developers • August 1997

Asian Localization Packages Disk Space
The following tables display how much hard disk space will be taken by the various
packages.

TABLE 5-27 Approximate Disk Space in Megabytes (MB) Required for Software Groups
(SPARC)

Software Group ko zh zh_TW ja ja_JP.PCK
ja and
ja_JP.PCK

Core System
Support

107 105 109 56 57 57

End User
System Support

224 196 190 346 339 354

Developer
System Support

405 307 524 617 608 632

Entire
Distribution

481 385 726 798 790 813

TABLE 5-28 Approximate Disk Space in MB Required for Software Groups (x86)

Software Group ko zh zh_TW ja ja_JP.PCK
a and
ja_JP.PCK

Core System
Support

104 105 109 64 64 64

End User
System Support

183 183 217 339 339 347

Developer
System Support

356 289 597 598 606 622

Entire
Distribution

415 349 765 763 763 778

101

CHAPTER 6

Internationalization Framework in
Solaris 2.6

Solaris 2.6 contains several new internationalization features discussed in this
chapter, such as:

■ Codeset Independence support
■ Locale database
■ Process code format (wide character expression)
■ libw and libintl
■ ctype macros
■ genmsg utility

This chapter also contains information useful for developing internationalized
applications, such as:

■ Dynamically linked applications
■ Solaris 2.6 internationalized APIs

Codeset Independence Support
Before the release of the Solaris 2.6 operating system, the Sun OS and the Solaris
internationalization framework supported only Extended UNIX Code (EUC)
representation. This prevented support of new encodings that didn’t fit the EUC
model, such as PC-Kanji in Japan and Big-5 in Taiwan.

Because a large part of the computer market demands non-EUC codeset support,
Solaris 2.6 provides a solid framework to enable both EUC and non-EUC codeset
support. This support is called Codeset Independence, or CSI.

102 Solaris Internationalization Guide for Developers • August 1997

The goal of CSI is to remove EUC dependencies on specific codesets or encoding
methods from Solaris OS libraries and commands. The CSI architecture allows the
Solaris operating environment to support any UNIX file system safe encoding. CSI
supports a number of new codesets, such as UTF-8, PC-Kanji1, and Big-5.

The CSI Approach
Codeset Independence allows application and platform software developers to keep
their code independent of encoding, such as UTF-8, and also provides the ability to
adopt any new encoding without having to modify the source code. This
architecture approach differs from Java internationalization in that Java requires
applications to be Unicode-dependent and also requires code conversions
throughout the application.

Many existing internationalized applications (for example, Motif) automatically
inherit CSI support from the underlying system. These applications work in the new
locales without modification. OPEN LOOK applications, however, that are XView/
OLIT based, don’t work in the new locales because XView is codeset-dependent.

CSI is inherently independent from any codesets. However, the following
assumptions on file code encodings (codesets) still apply to Solaris 2.6:

■ File code is a superset of ASCII.

Unicode (16-bits fixed width) cannot be supported as file code.
■ NULL (0x00) is not part of multibyte characters for support of null-terminated

multibyte character strings.
■ Slash / (0x2f) is not part of multibyte characters for support of the UNIX path

names.
■ Only stateless file code encodings are supported.

CSI-enabled Commands
TABLE 6-1 contains CSI-enabled commands in Solaris 2.6. These commands are
marked with CSI capabilities on their man page.

1. Japanese Solaris 2.5.1 supports PC Kanji (also known as Shift-JIS).

Chapter 6 Internationalization Framework in Solaris 2.6 103

All commands are in the /usr/bin directory, unless otherwise noted.

Solaris 2.6 CSI-enabled Libraries
Nearly all functions in Solaris 2.6 libc (/usr/lib/libc.so) are CSI-enabled.
However, the following functions in libc are not CSI-enabled because they are EUC
dependent functions:

■ csetcol() csetlen() euccol()
■ euclen() eucscol() getwidth()

TABLE 6-1 CSI-enabled Commands in Solaris 2.6

/usr/lib/diffh
/usr/sbin/accept
/usr/sbin/reject
/usr/ucb/lpr
/usr/xpg4/bin/awk
/usr/xpg4/bin/cp
/usr/xpg4/bin/date
/usr/xpg4/bin/du
/usr/xpg4/bin/ed
/usr/xpg4/bin/edit
/usr/xpg4/bin/egrep
/usr/xpg4/bin/env
/usr/xpg4/bin/ex
/usr/xpg4/bin/expr
/usr/xpg4/bin/fgrep
/usr/xpg4/bin/grep
/usr/xpg4/bin/ln
/usr/xpg4/bin/ls
/usr/xpg4/bin/more
/usr/xpg4/bin/mv
/usr/xpg4/bin/nice
/usr/xpg4/bin/nohup
/usr/xpg4/bin/od
/usr/xpg4/bin/pr
/usr/xpg4/bin/rm
/usr/xpg4/bin/sed
/usr/xpg4/bin/sort
/usr/xpg4/bin/tail
/usr/xpg4/bin/tr
/usr/xpg4/bin/vedit
/usr/xpg4/bin/vi
/usr/xpg4/bin/view

acctcom
apropos
batch
bdiff
cancel
cat
catman
chgrp
chmod
chown
cmp
col
comm
compress
cpio
csh
csplit
cut
diff
diff3
disable
echo
expand
file
find
fold
ftp

gencat
getopt
getoptcvt
head
join
jsh
kill
ksh
lp
man
mkdir
msgfmt
news
nroff
pack
paste
pcat
pg
printf
priocntl
ps
pwd
rcp
red
remsh
rksh
rmdir
rsh

script
sdiff
settime
sh
split
strconf
strings
sum
tabs
tar
tee
touch
tty
uncompress
unexpand
uniq
unpack
wc
whatis
write
xargs
zcat

104 Solaris Internationalization Guide for Developers • August 1997

Also the following macros are not CSI-enabled because they are EUC dependent:

■ csetno() wcsetno()

Solaris 2.6 libgen (/usr/ccs/lib/libgen.a) are internationalized, but not CSI
enabled.

Solaris 2.6 libcurses (/usr/ccs/lib/libcurses.a) are internationalized, but
not CSI enabled.

Locale Database
The locale database format and structure in Solaris 2.6 have changed from previous
Solaris releases. The locale database is private and subject to change in a future
release. Therefore, when developing an internationalized application, do not directly
access the locale database. Instead you should use the Solaris internationalization
APIs.

Note – When using Solaris 2.6, use the locale databases that are included with
Solaris 2.6. Do not use locales from previous Solaris versions.

Process Code Format
The process code format in Solaris 2.6 is private and subject to change in a future
release. Therefore, when developing an international application, do not assume the
process code format will be the same. Instead you should use the Solaris
internationalization APIs which are described in TABLE 6-3 on page 108.

Dynamically Linked Applications
Solaris 2.6 users can choose how to link applications with the system libraries, such
as libc , by using dynamic linking or static linking. However, any application that
requires internationalization features in the system libraries must be dynamically

Chapter 6 Internationalization Framework in Solaris 2.6 105

linked. If the application has been statically linked, the operation to set the locale to
other than C and POSIX using the setlocale function will fail. Statically linked
applications can be operated only in C and POSIX locales.

By default, the linker program tries to link the application dynamically. If the
command line options to the linker and the compiler include -Bstatic or -dn
specifications, your application may be statically linked. You can check whether an
existing application is dynamically linked using the /usr/bin/ldd command.

For example, if you type:

the command displays the following message:

The message indicates the /sbin/sh command is not a dynamically linked
program. Also, if you type:

the command displays the following message:

This message indicates the /usr/bin/ls command has been dynamically linked
with two libraries, libc.so.1 and libdl.so.1 .

To summarize, if the message from the ldd command to the application does not
contain a libc.so.1 entry, it indicates that the application has been statically
linked with libc . In that case, you need to change the command line options to the
linker so that dynamic linking is used instead, then re-link the application.

% /usr/bin/ldd /sbin/sh

% ldd: /sbin/sh: file is not a dynamic executable or shared object

% /usr/bin/ldd /usr/bin/ls

% libc.so.1 => /usr/lib/libc.so.1
% libdl.so.1 => /usr/lib/libdl.so.1

106 Solaris Internationalization Guide for Developers • August 1997

libw and libintl
In the Solaris 2.6 release, the implementation of libw and libintl has been moved
to libc . The shared objects libw .so .1 and libintl.so.1 are provided as filters on
libc.so.1 , and the archives libw.a and libintl.a are provided as links to an
empty archive.

The shared objects insure runtime compatibility for existing applications, and,
together with the archives, provide compilation environment compatibility for
building applications. However, it is no longer necessary to build applications
against libw or libintl .

For more information on filters see the Linker and Libraries Guide.

TABLE 6-2 shows the stub entry points in libw and libintl :

TABLE 6-2 Stub Entry Points in libw and libintl

libw fgetwc fgetws fputwc fputws getwc

getwchar getws isenglish isideogram isnumber

isphonogram isspecial iswalnum iswalpha iswcntrl

iswctype iswdigit iswgraph iswlower iswprint

iswpunct iswspace iswupper iswxdigit putwc

putwchar putws strtows towlower towupper

ungetwc watoll wcscat wcschr wcscmp

wcscoll wcscpy wcscspn wcsftime wcslen

wcsncat wcsncmp wcsncpy wcspbrk wcsrchr

wcsspn wcstod wcstok wcstol wcstoul

wcswcs wcswidth wcsxfrm wctype wcwidth

wscasecmp wscat wschr wscmp wscol

wscoll wscpy wscspn wsdup wslen

wsncasecmp wsncat wsncmp wsncpy wspbrk

wsprintf wsrchr wsscanf wsspn wstod

wstok wstol wstoll wstostr wsxfrm

libintl bindtextdomain dcgettext dgettext gettext textdomain

Chapter 6 Internationalization Framework in Solaris 2.6 107

ctype Macros
Character classification and character transformation macros are defined in
/usr/include/ctype.h . Solaris 2.6 provides a new set of ctype macros. The new
macros support character classification and transformation semantics defined by
XPG4. To access the new set of macros, one of the following conditions must be met:

■ _XPG4_CHAR_CLASS is defined,
■ _XOPEN_SOURCE and _XOPEN_VERSION=4are defined, or
■ _XOPEN_SOURCE and _XOPEN_SOURCE_EXTENDED=1 are defined

This means that all XPG4 and XPG4.2 applications will automatically have the new
macros. Since _XOPEN_SOURCE, _XOPEN_VERSION, and
_XOPEN_SOURCE_EXTENDED will bring in extra XPG4 related features in addition to
new ctype macros, non-XPG4 or XPG4.2 applications should use
__XPG4_CHAR_CLASS__.

There are corresponding ctype functions. The Solaris 2.6 functions also support XPG4
semantics.

Refer to the ctype man page for details.

Internationalization APIs in libc
Solaris 2.6 offers two sets of APIs:

■ multibye (file codes)
■ wide characters (process code)

Applications do their processing in wide character codes.

When a program takes input from a file, convert your file’s multibyte data into wide
character process code with the mbtwoc and mbtowcs APIs. To convert the file
output data from wide character format into multibyte format, use the wcstombs
and wctomb APIs.

108 Solaris Internationalization Guide for Developers • August 1997

TABLE 6-3 shows a list of internationalization APIs included in Solaris 2.6.

TABLE 6-3 internationalization APIs in libc

API Type Library Routine Description

Messaging
Functions

catclose() Close a message catalog.

catgets() Read a program message.

catopen() Open a message catalog.

dgettext() Get a message from a message catalog
with domain specified.

dcgettext() Get a message from a message catalog
with domain and Category specified.

textdomain() Set and query the current domain.

bindtextdomain() Bind the path for a message domain.

Code conversion

iconv() Convert codes.

iconv_close() Deallocate the conversion descriptor.

iconv_open() Allocate the conversion descriptor.

Regular
expression

regcomp() Compile the regular expression.

regexec() Execute the regular expression matching.

regerror() Provide a mapping from error codes to
error message.

regfree() Free memory allocated by regcomp().

Wide character
class

wctype() Define character class.

Locale related setlocale() Modify and query a program’s locale.

nl_langinfo() Get language and cultural information of
current locale.

localeconv() Get monetary and numeric formatting
information of current locale.

Character
classification

isalpha() Is character an alphabetic character?

isupper() Is character uppercase?

Chapter 6 Internationalization Framework in Solaris 2.6 109

islower() Is character lowercase?

isdigit() Is character a digit?

isxdigit() Is character a hex digit?

isalnum() Is character an alphabetic character or
digit?

isspace() Is character a space?

ispunct() Is character a punctuation mark?

isprint() Is character printable?

iscntrl() Is character a control character?

isascii() Is character an ASCII character?

isgraph() Is character a visible character?

isphonogram() Is wide character a phonogram?

isideogram() Is wide character an ideogram?

isenglish() Is wide char in English alphabet from a
supplementary codeset?

isnumber() Is wide character a digit from a
supplementary codeset?

isspecial() Is special wide character from a
supplementary codeset?

iswalpha() Is wide character an alphabetic
character?

iswupper() Is wide character uppercase?

iswlower() Is wide character lowercase?

iswdigit() Is wide character a digit?

iswxdigit() Is wide character a hex digit?

iswalnum() Is wide character an alphabetic character
or digit?

iswspace() Is wide character white space?

iswpunct() Is wide character a punctuation mark?

iswprint() Is wide character a printable character?

iswgraph() Is wide character a visible character?

iswcntrl() Is wide character a control character?

iswascii() Is wide character an ASCII character?

TABLE 6-3 internationalization APIs in libc (Continued)

API Type Library Routine Description

110 Solaris Internationalization Guide for Developers • August 1997

Character
transformation

toupper() Convert a lowercase character to
uppercase.

tolower() Convert an uppercase character to
lowercase.

towupper() Convert a lowercase wide character to
uppercase.

towlower() Convert an uppercase wide character to
lowercase.

Character collation strcoll() Collate character strings.

strxfrm() Transform character strings for
comparison.

wcscoll() Collate wide char strings.

wcsxfrm() Transform wide char strings for
comparison.

Monetary handling strfmon() Convert monetary value to string
representation.

Date and Time
handling

getdate() Convert user format date and time.

strftime() Convert date and time to string
representation.

strptime() Date and time conversion.

Multibyte handling mblen() Get length of multibyte character.

mbtowc() Convert multibyte to wide character.

mbstowcs() Convert multibyte string to wide
character string.

Wide Characters wcscat() Concatenate wide char strings.

wcsncat() Concatenate wide char strings to length
n.

wsdup() Duplicate wide char string.

wcscmp() Compare wide char strings.

wcsncmp() Compare wide char strings to length n.

wcscpy() Copy wide char strings.

wcsncpy() Copy wide char strings to length n.

wcschr() Find character in wide char string.

TABLE 6-3 internationalization APIs in libc (Continued)

API Type Library Routine Description

Chapter 6 Internationalization Framework in Solaris 2.6 111

wcsrchr() Find character in wide char string from
right.

wcslen() Get length of wide char string.

wscol() Return display width of wide char
string.

wcsspn() Return span of one wide char string in
another.

wcscspn() Return span of one wide char string not
in another.

wcspbrk() Return pointer to one wide char string in
another.

wcstok() Move token through wide char string.

wcswcs() Find string in wide character string.

wcstombs() Convert wide character string to
multibyte string.

wctomb() Convert wide character to multibyte
character.

wcwidth() Determine number of column positions
of a wide character.

wcswidth() Determine number of column positions
of a wide char string.

Wide Formatting wsprintf() Generate wide char string according to
format.

wsscanf() Interpret wide char string according to
format.

Wide Numbers wcstol() Convert wide char string to long integer.

wcstoul() Convert wide char string to unsigned
long integer.

wcstod() Convert wide char string to double
precision.

Wide Strings wscasecmp() Compare wide char strings, ignores case
differences.

wsncasecmp() Compare wide char strings to length n
(ignores case).

Wide Standard I/O fgetwc() Get multibyte char from stream, convert
to wide char.

TABLE 6-3 internationalization APIs in libc (Continued)

API Type Library Routine Description

112 Solaris Internationalization Guide for Developers • August 1997

genmsg Utility
The new genmsg utility can be used with the catgets() family of functions to
create internationalized source message catalogs. The utility examines a source
program file for calls to functions in catgets and builds a source message catalog

getwchar() Get multibyte char from stdin, convert to
wide char.

fgetws() Get multibyte string from stream,
convert to wide char.

getws() Get multibyte string from stdin, convert
to wide char.

fputwc() Convert wide char to multibyte char,
puts to stream.

putwchar() Convert wide char to multibyte char,
puts to stdin.

fputws() Convert wide char to multibyte string,
puts to stream.

putws() Convert wide char to multibyte string,
puts to stdin.

ungetwc() Push a wide char back into input stream.

TABLE 6-3 internationalization APIs in libc (Continued)

API Type Library Routine Description

Chapter 6 Internationalization Framework in Solaris 2.6 113

from the information it finds. For example:

In the above example, genmsg is run on the source file example.c , which produces
a source message catalog named example.c.msg . The -c option with the
argument NOTE causes genmsg to include comments in the catalog. If a comment in
the source program contains the string specified, the comment will appear in the
message catalog after the next string extracted from a call to catgets() .

You can use genmsg to number the messages in a message set automatically.

For more information, see the genmsg man page.

Note – The material in this section is used with permission from Creating Worldwide
Software: Solaris International Developer’s Guide, 2nd edition by Bill Tuthill and David
A. Smallberg, published by Sun Microsystems Press/Prentice Hall. (c)1997 Sun
Microsystems, Inc.

% cat example.c
...
/* NOTE: %s is a file name */
printf(catgets(catd, 5, 1, "%s cannot be opened."));
/* NOTE: "Read" is a past participle, not a present

tense verb */
printf(catgets(catd, 5, 1, "Read"));
...

% genmsg -c NOTE example.c
The following file(s) have been created.

new msg file = "example.c.msg"
% cat example.c.msg
$quote "
$set 5
1 "%s cannot be opened"

/* NOTE: %s is a file name */
2 "Read"

/* NOTE: "Read" is a past participle, not a present
tense verb */

114 Solaris Internationalization Guide for Developers • August 1997

115

CHAPTER 7

Writing Internationalized Code

This chapter describes some specific steps that you should take to internationalize
applications. The material is divided into four main topics: text and codesets,
formatting and collation, user messages, and nonglobal locales.

Linking
Some internationalization components depend on dynamic linking to function
correctly. The default when compiling and linking in the Solaris environment is
dynamic linking. Take care not to specify static linking.

Text and Codesets

Call setlocale()

The SunOS system supports the POSIX/ANSI C function setlocale() , which
initializes language and cultural conventions. Most applications should set the locale
category LC_CTYPE except those not concerned with character interpretation, such
as block I/O to disk or network. To control the dynamic handling of different
codesets in an application, add these lines to your code:

#include <locale.h>
main() {
 (void) setlocale(LC_CTYPE, "");
}

116 Solaris Internationalization Guide for Developers • August 1997

Among other things, this ensures that European accented characters such as ö are
correctly identified with an isalpha() library call. Note that the empty string
argument indicates that the application should set its codeset according to the
environment variable LC_ALL, LC_CTYPE, or LANG—in that order of precedence.
If none of these environment variables is set, the default locale is C, which results in
old-style UNIX behavior.

LC_CTYPE affects the behavior of various ctype (3) library routines. The LC_CTYPE
locale category may also affect other functions, including wide-character handling.

In most cases library packages should rely on the programmer to call setlocale()
inside the application. Applications that fail to call setlocale() would simply fail
to get international features.

To set all the above locale categories at the same time, use the LC_ALL argument to
setlocale() instead of just LC_CTYPE. In practice, most applications should set
the LC_ALL category once and for all.

Make Software 8-bit Clean
Programs shouldn’t alter the most significant bit of a char . The computer industry
used this bit for parity many years ago, but it didn’t work out well—data got
corrupted because software ignored the parity bit. Now standards committees have
decided to define 8-bit codesets, which means you have to clean up your code now.
Here are some problems to look for.

Code that explicitly uses the most significant bit for its own purposes is said to be
“dirty”. There may be valid reasons for altering the most significant bit, but dirty
code often involves setting and clearing private flags:

#define INVERSE 0x80 /* bad practice */
char c;
c |= INVERSE;

Find another way to encode this information. A trick used several times in the
operating system was to extend this data type to be unsigned short or unsigned
int , and later set the top bit of the new data type.

Code that assumes characters are only seven bits long is dirty. Here’s an example of
masking off the most significant bit on the assumption it’s just the parity bit:

c = *(string+i) & 0x7F;/* bad practice */

A useful exercise is to search your code for constants like “0x80”, “0x7f”, “0200”,
“0177”, “127”, and “128”. These constants often highlight problematic code
immediately, if such bit patterns are used in conjunction with character handling.

Code that assumes a particular character range, such as:

Chapter 7 Writing Internationalized Code 117

if (c >= ’a’ && c <= ’z’)/* bad practice */

must be corrected to:

if (islower(c))

Use codeset independent routines found in <ctype.h> such as isalpha() ,
isprint() , and so on. Software should have been using these functions all along,
as they were always needed for portability to IBM’s EBCDIC codeset. The SunOS
system also provides wide-character equivalents such as iswalpha() and
iswprint() .

Fix code that assumes characters fall in the range 0–127 by extending the range of
such tables:

static int hashtable[127]; /* bad practice */

For example, the above declaration would be better coded as follows:

#include <limits.h>
static int hashtable[UCHAR_MAX];

UCHAR_MAX is defined in <limits.h> on all ANSI C conforming systems.

Watch for Sign Extension Problems
One issue that is sometimes invisible to the programmer is the way the C compilers
default to using signed for all fundamental data types. This can sometimes cause
substantial problems in both application and library code.

Code that casts char to other lengths may be dirty. Because the char data type is
signed in SunOS, when a char variable holds an 8-bit character that has the most
significant bit set, sign extension takes place during assignment. Needless to say, a
negative integer might cause problems later on:

int i;
char c = 0xa0;
i = c; /* i is now negative */

Do not pass raw characters to functions that require short , int , or long
arguments. This is bad practice because of the sign extension problem. For example,
the following code is incorrect, as it produces a negative integer index into the C
library __ctype table. This is because the functions are actually macros that
generate stubs of in-line code, which assume the argument is an integer, and
propagate the sign bit accordingly.

char ch;
isascii(ch);

The code above could be written like this:

118 Solaris Internationalization Guide for Developers • August 1997

unsigned char ch;
isascii(ch);

Watch for the use of unadorned char s. Unfortunately they have probably been used
extensively throughout most code. It is therefore a nontrivial task to change all char
data to unsigned char , especially as this might garner some lint or compiler
warnings.

So,

char ch;
ch = 0xA0;

is better written as:

unsigned char ch;
ch = 0xA0;

On the other hand,

char *cp;
while (isspace(*cp)) {

is written as:

char *cp;
while (isspace((unsigned char)*cp)) {

Although all this may sound like a lot of work, in many cases existing code executes
correctly in 8-bit mode without any changes to the code. You are primarily looking
for lazy coding habits that assume ASCII is the only form of character encoding
available. When you fix problems, they are usually easy to test using the Compose
key of the Type-4, Type-5, PC-AT101, and PC-AT102 keyboard.

Note that the C compiler does not support 8-bit or multi-byte characters in object
names—that is, names of routines, variables, and so forth—although it does allow
you to initialize 8-bit or multi-byte data in strings.

Chapter 7 Writing Internationalized Code 119

Use ctype Library Routines
As mentioned previously, text processing software must avoid hard-coded character
ranges. Upper- and lower-case letters, punctuation marks, numeric digits, and
spaces should be defined using library routines under <ctype.h> , rather than with
hard-coded character ranges:

Formats
Many different formats are employed throughout the world to represent date, time,
currency, numbers, and units. These formats should not be hard-wired into your
code. Instead, programs should call setlocale() , then the various locale specific
format routines, leaving format design to localization work for each country or
language.

TABLE 7-1 Library Routines for Codeset Independence

Routine Character

isalpha(c) Letter

isupper(c) Capital letter

islower(c) Lower case letter

isdigit(c) Digit from 0–9

isxdigit(c) Hexadecimal digit from 0–f

isalnum(c
)

Alphanumeric (letter or digit)

isspace(c) White space character

ispunct(c) Punctuation mark

isprint(c) Printable character

iscntrl(c) Control character

isascii(c) 7-bit character

isgraph(c) Visible graphics character

120 Solaris Internationalization Guide for Developers • August 1997

Time and Date Formats
The secret to producing time and date formats valid in many locales is the
strftime() library routine. First set the program clock by calling time() , then
populate a tm structure by calling localtime() . Pass this structure to
strftime() , along with a format for date and time, plus a holding buffer:

Recommended formats are %c for the local short form of date and time, or %C for the
local long form. Also, %x produces the local date form (numeric), and %X yields the
local time form. If you try out the program above, your results will look something
like this:

Unfortunately many often-used combinations of date and time are missing from the
standard. Neither short nor long form of the local date is available, and there is no
abbreviation for time without seconds or time zone.

#include <locale.h>
#include <libintl.h>
#include <stdio.h>
#include <time.h>
main()
{
 time_t clock, time();
 struct tm *tm, *localtime();
 char buf[128];

 setlocale(LC_ALL, "");
 clock = time((time_t *)0);
 tm = localtime(&clock);
 strftime(buf, sizeof(buf), "%c", tm);
 printf("%s\n", buf);
}

% setenv LC_TIME de
% a.out
Mo, 16. Mär 1992, 19:19:19 Uhr PST
% setenv LC_TIME fr
% a.out
lun, 16 mar 1992, 19:19:20 PST

Chapter 7 Writing Internationalized Code 121

Currency and Number Formats
Use localeconv (3) function to obtain currency formats. It reads formatting
conventions of the current locale to populate an lconv structure, then returns a
pointer to the filled-in object.

The only way to properly represent monetary amounts using the facilities of
Standard C is to laboriously build a string using information extracted from an
lconv structure returned by localeconv() . Fortunately, XPG4 standardizes a
function analogous to strftime() , named strfmon() , whose behavior depends
on the LC_MONETARY category. This program uses strfmon() to format monetary
amounts.

As with strftime() , the formatted string is placed in a buffer. The %n format item
formats the amount in the locale’s national format, and %i uses the international
currency code specified in ISO 4217.

The behavior of the %f format item for scanf() and printf() is affected by the
LC_NUMERIC category. Swedish uses a comma (,) as the radix character and a period
(.) as the thousands separator, so scanf() expects a comma where an English
speaker would use a period. Be careful here: scanf() in the Swedish locale (or any
similar locale) will stop reading upon encountering a period, just as it would stop at
a comma in the C locale.

#include <locale.h>
#include <monetary.h>
#include <stdio.h>
int main()
{
 double cost;
 char buffer[100];
 setlocale(LC_ALL, "");
 scanf("%lf", &cost);
 strfmon(buffer, sizeof(buffer), "%n\t%i", cost, cost;
 printf("%s\n", buffer);
}

% echo 12345.678 | env LANG=en_US a.out
$12,345.68 USD12,345.68
% echo 12345.678 | env LANG=sv a.out
12.346 kr 12.346 SEK

122 Solaris Internationalization Guide for Developers • August 1997

Note – The material in this section is used with permission from Creating Worldwide
Software: Solaris International Developer’s Guide, 2nd edition by Bill Tuthill and David
A. Smallberg, published by Sun Microsystems Press/Prentice Hall. 1997.

Collation
For string collation, sort orders may vary for different languages. Programs should
use the strcoll() or strxfrm() library routine to perform string comparisons,
which use locale-specific collation order.

Replace strcmp() with strcoll()

Alphabetic ordering varies from one language to another. For example, in Spanish ñ
immediately follows n, and digraphs ch and ll immediately follow c and l,
respectively. In German the ligature ß is collated as if it were ss. Swedish has
additional unique characters following z. Danish and Norwegian have additional
characters æ, ø following z.

The traditional library routine for comparing strings, strcmp() , remains
unchanged. Because it uses ASCII order, strcmp() places “a” after “Z” even in
English. This ordering is often unacceptable.

By contrast, the new library routines strcoll() and strxfrm() can produce any
sort order you want. Use strcoll() to compare strings, or strxfrm() to
transform strings to ones that collate correctly.

Fortunately strcoll() t akes the same parameters and returns the same values as
strcmp() . Unfortunately strcoll() does a lot more work, and is consequently
slower. To speed up applications that compare strings frequently, use strxfrm() to
store transformed strings into arrays that collate more efficiently.

This program reads standard input, builds a binary tree in the correct order using
strcoll() to compare strings, then prints out the binary tree. This code may be
used for tasks such as listing files in a subwindow.

#include <locale.h>

#include <stdio.h>

#include <string.h>

Chapter 7 Writing Internationalized Code 123

struct tnode { /* node of binary tree */

char *line;

int count;

struct tnode *left, *right;

};

main() /* collate: sort a list of lines using strcoll() */

{

 struct tnode *root, *tree();

 char line[BUFSIZ];

 root = NULL;

 (void)setlocale(LC_ALL, "");

 while (fgets(line, BUFSIZ, stdin))

 root = tree(root, line);

 treeprint(root);

}

struct tnode *

tree(p, line) /* install line at or below tree pointer */

struct tnode *p;

char *line;

{

 char *cp, *malloc(), *strcpy();

 int cond;

 if (p == NULL) {

 p = (struct tnode *)malloc(sizeof(struct tnode));

 if ((cp = malloc(strlen(line)+1)) != NULL)

 strcpy(cp, line);

 p->line = cp;

 p->count = 1;

 p->left = p->right = NULL;

 }

 else if ((cond = strcoll(line, p->line)) == 0)

 p->count++;

 else if (cond < 0)

 p->left = tree(p->left, line);

 else /* cond > 0 */

 p->right = tree(p->right, line);

 return(p);

}

treeprint(p) /* print tree recursively starting at p */

struct tnode *p;

{

 if (p != NULL) {

 treeprint(p->left);

124 Solaris Internationalization Guide for Developers • August 1997

Messaging for Program Translation
One of the most critical tasks in software internationalization is providing messages
that can be translated easily. Messages are what users see first: help text, button
labels, menu items, usage summaries, error diagnostics, and so forth.

This chapter shows you how to write an application that produces internationalized
messages. Your program consults an external catalog of messages to determine what
strings to present to the user. You provide one message catalog for each locale you
support, but you have only one version of the program.

The ease of message localization can vary greatly. In a well-designed application,
nontechnical people can translate message files into their native languages. In a
noninternationalized application, engineers fluent in a language must translate
every explicit string that will be seen by a user, then recompile the code. In an
internationalized application, a lookup function retrieves any such string from a
message catalog: a database of text strings that is easy to compose, translate, and
access. Because the contents of a message catalog are separate from application
code, text can be selected by locale at runtime without altering the code itself.

Two similar (but incompatible) methods for international messaging in Solaris are
catgets() from the XPG4 standard and gettext() from the POSIX.1b and
UniForum proposals. The primary difference between them is the way that messages
in the catalog are indexed: in essence, you pass catgets() a message number, but
you pass gettext() a string.

If there are two messaging schemes to choose between, which should you use? Each
has its strengths and weaknesses, and adherents to argue for it. There’s a lot to be
said for standardization, though. X/Open considered both and chose catgets() .
For maximal portability of your application to other platforms, then, we recommend
that you use that scheme.

This section presents the issues involved with messaging:

■ Messaging using catgets() . For the steps involved in enabling messaging using
the XPG4 scheme, see “Messaging Using catgets()” on page 125.

■ Messaging using gettext() . For the steps involved in enabling messaging using
the nonstandard scheme, see “Messaging Using gettext()” on page 132.

 while (p->count--)

 printf("%s", p->line);

 treeprint(p->right);

 }

}

Chapter 7 Writing Internationalized Code 125

■ Problem areas. Some common pitfalls are discussed in“Problem Areas” on
page 136.

■ Messaging in languages other than C. If you are writing applications in a
language other than C, you can still create and access message catalogs. See
“Other Programming Languages” on page 141.

Messaging Using catgets()

When creating internationalized applications, developers usually write text strings
(error messages, text for buttons and menus, and so forth) in their native language,
for later translation into other languages. Solaris lets you use any language as native.

Here are the steps to internationalize and localize text handling:

1. Change source code to #include <nl_types.h> , then call catopen() to open
a message catalog and call catgets() to retrieve strings from the catalog.

2. Extract native language text strings from the catgets() calls and store them in a
source message catalog. You must assign each message a unique number that will
appear in both the source catalog and any catgets() call that refers to that
message.

3. Translate the strings in the source message catalog into a target language.

4. Transform the translated source message catalog into a binary message catalog,
using the gencat (1) utility. Install the binary catalog.

Locating Message Catalogs
After you have established the locale, you will want to open the appropriate
message catalog immediately, so that any startup problems that produce error
messages will do so in the proper language. Use catopen() for this:

The catopen() function looks for the message catalog according to these rules:

#include <locale.h>
#include <nl_types.h>
nl_catd catd;
int main()
{
 (void) setlocale(LC_ALL,"");
 catd = catopen("demo", NL_CAT_LOCALE);
 ...
}

126 Solaris Internationalization Guide for Developers • August 1997

1. The locale used is the value of LC_MESSAGES as established by setlocale() .
(The only other choice for catopen ()’s second argument is 0, meaning that locale
used is the value of the LANG environment variable.)

2. The first argument and the NLSPATH environment variable are used to locate the
catalog. (If the first argument contains / , then LC_MESSAGES and NLSPATH are
ignored; instead, the first argument is the absolute path name of the catalog. You
almost never want to do this.)

The NLSPATH variable is a colon-separated list of filename patterns, for instance:

In these patterns, catopen() replaces %N with its first argument, and %L with the
prevailing locale. If the locale is set to French, for example, then catopen() uses the
file named /usr/lib/locale/fr/LC_MESSAGES/demo.cat if it exists. Failing
that, it will try /tmp/demo.fr.cat . The first pattern in this example is the same
one that catopen() uses if NLSPATH is not set. The second pattern is one a
developer might use while testing an application’s messaging ability.

Although you need not name a message file after its application, this convention is
recommended. It simplifies maintenance to have catopen ()’s first argument be the
same as the application name.

The header <nl_types.h> defines the (integral) type nl_catd . The return value of
catopen() , a catalog descriptor, should be stored in a variable of this type, since it
will be passed to every catgets() call that looks up messages in the selected
catalog. Because you use this variable throughout a program, declare catd globally.

If catopen() fails, it returns (nl_catd)-1 . Of course, a good application should
test for this and note the error. However, you can safely pass this failure value in
calls to catgets() , which will simply return the default strings you provide
instead of the localized strings.

An open catalog consumes system resources: a file descriptor and some memory for
indexes into the catalog. When your program exits, these resources are automatically
released. If you want to release them explicitly, call catclose() :

/usr/lib/locale/%L/LC_MESSAGES/%N.cat:/tmp/%N.%L.cat

catclose(catd);

Chapter 7 Writing Internationalized Code 127

Using catgets()

To retrieve strings from a message catalog, you call catgets() , passing it the
catalog descriptor returned by catopen() , an index into the catalog to select the
message string, and a default string to use instead if there’s a problem. The index is
the most troublesome part of the catgets() interface.

In essence, to use catgets() , you must assign a number to each message your
program will produce. This requirement alone accounts for the most noticeable
change in appearance between a noninternationalized and an internationalized
version of a program. It can also lead to a maintenance headache if these numbers
are not well managed. The only support the XPG4 messaging scheme gives you is
the ability to partition your messages into sets. You may, for example, decide that the
button label “Edit” is message number 37 of set number 4. How many sets you use,
and what you use them for, is up to you. On some projects, each developer uses a
different set number; on others, each subsystem of an application is given its own set
number.

Here is an example of how to use catgets() :

If all is well, catgets() will retrieve message number 27 of set number 3 from the
message catalog referred to by catd , returning a char * value pointing to the
message. If there is no message 27 in set 3, or if there is no set 3, or if catd is - 1,
then catgets() returns its last argument, the default string. The intent is that
message 27 of set 3 in the catalog is a translation of “Invoice\n”; if the translation is
unavailable, the program will use the English “Invoice\n”, since that’s better than
nothing.

 /* Assume catd is the return value of catopen() */
 printf(catgets(catd, 3, 27, "Invoice\n"));

128 Solaris Internationalization Guide for Developers • August 1997

Although not true for Solaris, on some platforms catgets() returns a pointer to
storage that may be overwritten on each call. This implies that for maximal
portability, use or copy the value returned by one call of catgets() before you call
it again:

Create the Source Message Catalog
Once you know what your messages are, create a source message catalog for your
native language. Suppose the following program fragment shows all the messages
some program will produce:

char buffer[100];
char *p, *q;
 /*
 * This is not portable:
 */
printf("%s %s", catgets(catd, 1, 1, "Name"),
 catgets(catd, 1, 2, "Age"));
 /*
 * This is not portable either:
 */
p = catgets(catd, 1, 1, "Name");
q = catgets(catd, 1, 2, "Age");
printf("%s %s", p, q);
 /*
 * This is portable, provided buffer is big enough:
 */
strcpy(buffer, catgets(catd, 1, 1, "Name"));
printf("%s %s", buffer, catgets(catd, 1, 2, "Age"));

printf(catgets(catd, 1, 1, "Hello"));
printf(catgets(catd, 3, 4, "Age: %d\n"), age);
makeButton(catgets(catd, 1, 4, "Quit"));

Chapter 7 Writing Internationalized Code 129

XPG4 specifies a format for source message catalogs. For this program, here is a
possible English source message catalog:

After each $set line, list the messages in that set in increasing order of message
number. The set groups themselves must also be in ascending order of set number.
The header <limits.h> defines NL_SETMAX, the maximum set number allowed;
NL_MSGMAX, the maximum message number; and NL_TEXTMAX, the maximum
number of bytes in a message text. The gencat(1) manual page specifies the syntax
of a source message catalog.

Notice that the English message texts in the source catalog are the same as the
default strings in the catgets() calls in the program. This is almost always the
case, of course: if the English message catalog could not be located, then the default
messages would be the same as if the catalog had been successfully opened.

Whoever will be translating the messages in your catalog will probably not know
the context in which those messages will appear. Usually, the translators will not be
programmers, although you can expect that they will have some training in
recognizing some common characteristics of message strings. For example, you can
assume that in the following, the translators know that %s represents some string:

However, you cannot assume the translator will know that the %s above will be
replaced by a file name. In some languages, this may be significant, since the word
for “opened” may be translated differently, depending on whether the element that

$ This line starts with "$ ", so it is a comment
$ We will use " as a delimiter for strings
$quote "
$ Notice that message numbers need not be in a contiguous range
$set 1
1 "Hello"
4 "Quit"
$ Notice that set numbers need not be in a contiguous range
$set 3
4 "Age: %d\n"

1 "%s cannot be opened."

130 Solaris Internationalization Guide for Developers • August 1997

can’t be opened is a file, a window, or a network connection. To enable good
translations, you should include comments in your message catalogs for any strings
that might cause difficulty:

The genmsg(1) utility for creating source message catalogs became available in
Solaris 2.6. This utility examines a source program file for calls to catgets() and
builds a source message catalog from the information it finds. Here is an example:

Running genmsg on the program source file named example.c produced a source
message catalog named example.c.msg . By specifying the -c option with an
argument of our choosing (we chose the string NOTE), we caused genmsg to include
comments in the catalog. If a comment in the source program contains the string we
specified, that comment will appear in the message catalog after the next string
extracted from a call to catgets() .

You can use genmsg to automatically number the messages within a message set.
Refer to the genmsg(1) manual page for more information.

1 "%s cannot be opened."
$ %s is a file name

2 "Read"
$ This is a past participle, not a present tense verb

% cat example.c
 ...
 /* NOTE: %s is a file name */
 printf(catgets(catd, 5, 1, "%s cannot be opened."));
 /* NOTE: "Read" is a past participle, not a
 present tense verb */
 printf(catgets(catd, 5, 1, "Read"));
 ...
% genmsg -c NOTE example.c
The following file(s) have been created.
 new msg file = "example.c.msg"
% cat example.c.msg
$quote "
$set 5
1 "%s cannot be opened"
 /* NOTE: %s is a file name */
2 "Read"
 /* NOTE: "Read" is a past participle, not a
 present tense verb */

Chapter 7 Writing Internationalized Code 131

Translate the Source Message Catalog
For each language your application will support, you must have strings in the
source message catalog translated to that language. For test purposes, you could
change the message texts to a made-up language. Here’s an example:

These “translations” are readable by a tester who knows only English. The translated
strings are longer than the English strings to simulate translation to a language
where strings may be of a different length than in English. This lets you test to be
sure that tables align, that button labels won’t exceed the size of the button, and so
forth. Another test file could be English with all the vowels deleted, to see if layouts
are affected by shorter strings.

The genmsg(1) utility has options that cause it to automatically transform message
strings as it produces a message catalog.

Generate the Binary Message Catalogs
For each translated source catalog, generate a binary message catalog. The binary
catalog is the one your application will consult at runtime. Use the XPG4 gencat
utility to generate the binary catalog. If your Korean source message catalog is
named demo.ko.msg , you would say:

The second argument is the source catalog, and the first is the binary catalog that
will be created. Having successfully produced the binary catalog, you can install it in
its final destination (/usr/lib/locale/ko/LC_MESSAGES/demo.cat).

While testing your application, you may not want to install the catalog in its
production location; indeed, you may not have the permissions to do so. You can
leave the binary catalog wherever you like, since you can set your NLSPATH so that

$quote "
$set 1
1 "XxxHelloyyY"
4 "XxxQuityyY"
$set 3
4 "XxxAge: %dyyY\n"

% gencat demo.ko.cat demo.ko.msg

132 Solaris Internationalization Guide for Developers • August 1997

your application can find the catalog. Someone who knows only English and wants
to test the demo application in Italian might first “translate” the English source
message catalog as in the previous section, and then do the following:

Italian locale rules will be used for date formats, collation, and so forth. However,
the messages will still be readable by the Italian-illiterate tester, since they will be in
English surrounded with “Xxx” and “yyY,” rather than in Italian.

If your application does not seem to be correctly finding the translated messages, as
evidenced by your seeing the default strings or the wrong translated strings,
consider the following common oversights:

■ Did you establish the locale before you called catopen() ?
■ Are your NLSPATH environment variable and the arguments to catopen()

correct? (For example, if the first argument to catopen() is "demo.cat" and
NLSPATH is ./locale/%L/LC_MESSAGES/%N.cat , then catopen() will look
for demo.cat.cat .)

■ Are your catgets() calls referring to the right set and message numbers? If you
added, deleted, or changed message numbers in your catgets() calls but failed
to revise, regenerate, and reinstall your message catalog, the numbers may be out
of sync.

Messaging Using gettext()

Where catgets() uses numbers to index message catalogs, gettext() uses
strings; that is the main difference in their approaches to the messaging problem.

The steps for text handling using gettext() are similar to those for catgets() :

1. Change source code to #include <libintl.h> , then call textdomain() to
open the message catalog and call gettext() to retrieve strings from the catalog.
In releases of Solaris prior to 2.6, the object program must be linked with the
-lintl flag.

2. Use the xgettext (1) utility to extract native language text strings from the
gettext() calls and store them in a source message catalog.

3. Translate the strings in the source message catalog into a target language.

4. Transform the translated source message catalog into a binary message catalog,
using the msgfmt (1) utility. Install the binary catalog.

% gencat demo.it.cat demo.it.msg
% env LANG=it NLSPATH=/tmp/%N.%L.cat demo

Chapter 7 Writing Internationalized Code 133

Locating Message Catalogs
Use textdomain() to open a message catalog. The pathname of gettext()
message catalogs must end with locale/LC_MESSAGES/domain.mo , where locale is the
current locale—the value of LC_MESSAGES as established by setlocale() —and
domain is the argument you pass to textdomain() .

Unless you call bindtextdomain() to change the domain, the complete path is
/usr/lib/locale/ locale/LC_MESSAGES/domain.mo . In fact, this is where Solaris
system messages for libraries and utilities that use gettext() reside.

This program fragment opens a message catalog named /usr/lib/locale/ locale/
LC_MESSAGES/demo.mo:

Many applications do not require root permission for installation and thus cannot
place their messages in /usr/lib/locale . Moreover, most applications need
messages in their own directory hierarchy to simplify export across a network. So,
most applications should use the Solaris routine bindtextdomain() to associate a
path name with a message domain. Here’s a sample invocation:

If you compile the program with TEST defined, then the catalog will be found in
/tmp/ locale/LC_MESSAGES/demo.mo; if TEST is undefined, the catalog will be
found in $APPLICATIONHOME/locale/LC_MESSAGES/demo.mo.

#include <locale.h>
#include <libintl.h>
int main()
{

setlocale(LC_ALL,"");
 textdomain("demo");
 ...
}

 char *path;
#ifdef TEST
 path = "/tmp";
#else
 path = getenv("APPLICATIONHOME");
#endif
 bindtextdomain("demo", path);
 textdomain("demo");

134 Solaris Internationalization Guide for Developers • August 1997

Surround Strings with gettext()

Although it is not portable, gettext() is much easier to use than catgets() . All
you really have to do is go through your programs, enclosing literal strings inside
gettext() calls. Here is demo.c , a short example:

The first gettext() looks in the catalog /tmp/ locale/LC_MESSAGES/demo.mo for
the translated string corresponding to the English string "Hello\n" . It returns a
pointer to the translated string if it finds it; otherwise, it returns the index string
"Hello\n" . You compile the program with

In the above example, demo.c -o demo is for Solaris 2.6 or later and demo.c -o
demo -lintl is for versions of Solaris prior to 2.6.

You can partition your messages among different domains. When you call
textdomain() , you establish the domain used by all calls to gettext() until you
next call textdomain() . If you want to change domain for just the next call of
gettext() , use dgettext() instead. This would be appropriate for a library
product, as it is the best way to ensure a known domain. (Library calling sequence
cannot be guaranteed, since different domains may be mixed together at random.)
The library developer chooses the domain name.

#include <stdio.h>
#include <locale.h>
#include <libintl.h>
int main() /* demo.c */
{
 (void) setlocale(LC_ALL, "");
 bindtextdomain("demo", "/tmp");
 textdomain("demo");
 printf(gettext("Hello\n"));
 printf(gettext("Goodbye\n"));
 return 0;
}

% cc demo.c -o demo

% cc demo.c -o demo -lintl

Chapter 7 Writing Internationalized Code 135

The following two examples retrieve the same strings but have different effects on
the text domain. The first example does not change the current text domain. The
second example changes the current text domain to library_error_strings ,
then retrieves the alternate language string of wrongbutton .

Create the Source Message Catalog
After writing an application, create a text domain by extracting gettext() strings
and placing them in a file with the alternate language equivalent.

Once you have enclosed all user-visible strings inside gettext() wrappers, you
can run the xgettext command on your C source files to create a message file. This
produces a readable .po file (the portable object) for editing by translators. For test
purposes, you can use xgettext ’s -m option to simulate a translation by adding a
prefix string to each message.

The domain " domainname" line states that all following target strings until another
domain directive belong to the domainname domain. Each msgid line contains the
index string passed to gettext() and is followed by a msgstr line containing the
translated string. The manual page for msgfmt (1) specifies the syntax of the .po file.

If you anticipate translators having difficulty translating a message, comment it,
using lines starting with #. An effective way to do this is to place comments for the
translator into your application source code, then use the -c tag option of
xgettext (1) to place these comments into the .po file.

message = dgettext("library_error_strings", "wrongbutton");

or

textdomain("library_error_strings");
message = gettext("wrongbutton");

% xgettext -m TRNSLT: demo.c
% cat messages.po
domain "demo"
msgid "Hello\n"
msgstr "TRNSLT:Hello\n"
msgid "Goodbye\n"
msgstr "TRNSLT:Goodbye\n"

136 Solaris Internationalization Guide for Developers • August 1997

Create the Binary Message Catalog
Run msgfmt on the .po source file to produce a binary .mo file (the message object),
which should be installed under the LC_MESSAGESdirectory. Here’s a sample
interaction on demo.c :

Problem Areas

Don’t Overdo Messaging

You should not blindly wrap every string literal in your program in a call to
catgets() or gettext() . In general, you only need to message those strings that
users see. Do not message strings containing system commands or file names, such
as "sort" or "/dev/tty". Be careful when messaging strings inside sprintf() ,
which is often used to build up path names or command lines. You probably don’t
need to message strings used only for debugging. Because integers and decimal
numbers are not strings, they don’t need messaging, either.

Be Aware of Programming Language Restrictions

Not every context allows you to replace a string literal with a call to a function.
Converting the noninternationalized declaration

to

% msgfmt demo.po
% su
Password:
mv demo.mo /usr/lib/locale/test/LC_MESSAGES

static char *greeting = "Hello";

static char *greeting = catgets(catd,1,1,"Hello");

Chapter 7 Writing Internationalized Code 137

produces an illegal C declaration. One way to fix it is:

If this were a C++ program instead of a C program, the declaration with
initialization would be legal. However, you must control the order of initialization of
static objects so that greeting is not initialized until after the locale has been
established and the message catalog opened.

Prepare for Variations in Text Length and Height

If strings must be stored in an array, be sure to declare arrays large enough to hold
any possible translation. Messages in German are often longer than in English;
messages in Chinese may be shorter, even accounting for multibyte encoding. A
good rule of thumb is that a string might double in length, although very short
strings might be even longer in translation (for example, English “Edit” is German
“Bearbeiten”). Use strncpy() to avoid overrunning an array:

Displayed characters in translated messages may be of different length and height
than the original messages. East Asian language ideographs are usually taller and
wider than Roman characters.

Window system resource files specify height and width of elements such as panel
buttons. The AppBuilder and DevGuide tools employ these facilities. In some cases,
it’s best to use implicit object positioning, letting the window system decide where
to place things. See Chapter 9 for more details.

Avoid Compound Messages

Creating easily translated messages is an art form that involves more than just
inserting catgets() calls around strings. Remember that word order varies from
language to language, so complex messages can be very difficult to translate
properly. A common-sense guideline is to avoid compound messages with more
than two %s parts whenever possible.

static char *greeting;
int main()
{
 /* establish locale and open catalog, and then: */
 greeting = catgets(catd,1,1,"Hello");

strncpy(msg, catgets(catd,1,1,"Hello"), sizeof(msg));

138 Solaris Internationalization Guide for Developers • August 1997

There are two approaches to messaging: static and dynamic. Static messaging
involves looking up strings in a message catalog, with no reordering taking place.
Dynamic messaging also involves looking up strings in a message catalog, but those
strings are reordered and assembled at runtime. International standards provide an
ordering extension to printf() for implementing dynamic messaging.

The advantage of static messaging is simplicity. Use it whenever possible. However,
avoid splitting strings across two printf() statements, which makes messages
difficult to translate. Remember that the ANSI/ISO C preprocessor will paste
together two consecutive string literals into one long literal:

Translation problems can arise with compound messages, especially when more
than one sentence could be produced at runtime. Here is some code that would be
difficult to translate:

 /* bad */
 printf(catgets(catd,1,1,"This is a very, very, very, very
"));
 printf(catgets(catd,1,2,"long string that I want to
display");
 /* good */
 printf(catgets(catd,1,1,"This is a very, very, very, very "
 "long string that I want to display"));

/* poor practice: multipart compound message */
printf("%s: Unable to %s %d data %s%s - %s",
func, (alloc_flg ? "allocate" : "free"),
count, (file_flg ? "file" : "structure"),
(count == 1 ? "" : "s"), perror("."));

Chapter 7 Writing Internationalized Code 139

Quite apart from being poor programming practice, this fragment of code would be
much clearer to the reader and much easier to translate if it were split into separate
print statements inside an if-else block that would select the correct message at
runtime:

The issue of making the objects plural is not addressed in this example because, in
many languages, pluralization involves more than adding “s” to the end of a word.

Use Dynamic Messaging With Care

Dynamic messaging is used when the exact content or order of a message is not
known until runtime. Unless done carefully, dynamic messaging causes translation
problems. If the positional dependence of keywords is hardcoded into a program,
code needs to be changed before messages can be successfully translated. Obviously,
this defeats the purpose of internationalization.

XPG4 defines an extension to the printf() family that permits changing the order
of parameter insertion. Solaris also supports this extension. For example, the
conversion format %1$s inserts parameter one as a string, and %2$s inserts
parameter two. The entire format string is parameter zero.

Here’s a small example of how these extensions can be used. This printf statement
has position-dependent keywords because the verb must come before the object.

if (alloc_flg)
if (file_flg)

printf("Unable to allocate %d file\n", count);
else

printf("Unable to allocate %d structure\n", count);
else

if (file_flg)
printf("Unable to free %d file\n", count);

else
printf("Unable to free %d structure\n", count);

/* poor practice: position-dependent keywords */
printf("Unable to %s the %s.\n",
(lock_flg ? "lock" : "find"),
(type_flg ? "page" : "record"));

140 Solaris Internationalization Guide for Developers • August 1997

This could produce any of four messages in English:

Here are those four messages translated into German. Note that the verb (“sperren”
or “finden”) must follow, not precede, the object (“Seite” or “Rekord”).

German syntax requires different word order, so the program’s keywords must be
reversed. Here is that printf statement written for dynamic messaging:

The German message catalog would then appear as follows:

This example might not work on other vendors’ systems because of multiple
catgets() calls within one expression.

Consider carefully the effects of dynamic messaging. You might have to reposition
parameters during translation. Often this fact isn’t recognized until translation
actually begins, by which time it’s already too late—the software would have to be
laboriously rereleased.

Unable to lock the page.
Unable to find the page.
Unable to lock the record.
Unable to find the record.

Das Programm kann die Seite nicht sperren.
Das Programm kann die Seite nicht finden.
Das Programm kann den Rekord nicht sperren.
Das Programm kann den Rekord nicht finden.

printf(catgets(catd,1,1,"Unable to %s the %s\n"),
 (lock_flg ? catgets(catd,1,2,"lock") :
 catgets(catd,1,3,"find")),
 (type_flg ? catgets(catd,1,4,"page") :
 catgets(catd,1,5,"record")));

1 "Das Programm kann %2$s nicht %1$s.\n"
2 "sperren"
3 "finden"
4 "die Seite"
5 "den Rekord"

Chapter 7 Writing Internationalized Code 141

Manage Message Indices

When you use the catgets() messaging scheme, you must ensure that you don’t
assign the same set number/message number combination to different messages.
This can be a problem in a multiperson project. Here are some guidelines for
managing the message numbers.

■ Use a different message set number for each subsystem or for each developer.
This localizes potential conflicts, making them easier to find and fix.

■ Do not change a message number after it has been assigned to a message. If a
message is deleted, do not reuse its number. This makes successive versions of a
message catalog more consistent. Suppose that a localizer has already translated a
source message catalog. If a new version of that catalog arrives for translation,
much less work needs to be done if unchanged messages can be quickly
identified.

■ Use a tool to assign message numbers. An automated process is less likely to
assign duplicate numbers than a manual one. The genmsg(1) tool that became
available in Solaris 2.6 has an option that automatically numbers those messages
in each set that have not already been assigned numbers.

■ Appoint a central numbering authority. Making one entity responsible for
managing message numbers helps ensure that consistent procedures are followed.

Other Programming Languages
The Desktop Korn Shell, dtksh , in CDE has built-in catopen , catgets , and
catclose commands. Here is an example:

Using the LANG and NLSPATH environment variables and the name demo (which will
be substituted for %N in NLSPATH), catopen opens the message catalog and sets
CATD to the catalog ID. The calls to catgets look for message 7 of set 3, returning
Hello there if it can’t find it. The message is stored in the variable msg1 in the
first call and written to standard output in the second. The catclose command
releases the resources acquired by catopen .

Solaris provides a gettext(1) command to retrieve translated messages from a
catalog for use in shell programming. This command reads the TEXTDOMAIN
environment variable for the domain name and the TEXTDOMAINDIR environment
variable for the path name to the message database.

catopen CATD demo
catgets msg1 $CATD 3 7 ’Hello there’
catgets - $CATD 3 7 ’Hello there’
catclose $CATD

142 Solaris Internationalization Guide for Developers • August 1997

Summary
To internationalize and localize text handling in an application, follow these steps:

1. Decide whether you will use the standard catgets() scheme or the nonstandard
gettext() scheme.

2. Open the message catalog after establishing the locale.

3. Call catgets() or gettext() to retrieve strings from the catalog.

4. Extract native language text strings to form the source message catalog. Comment
those strings that may cause translation difficulty.

5. Translate the strings in the source message catalog into a target language.

6. Transform each translated source message catalog into a binary message catalog.

7. Install the binary message catalogs when you install the application.

Note – The material in this section is used with permission from Creating Worldwide
Software: Solaris International Developer’s Guide, 2nd edition by Bill Tuthill and David
A. Smallberg, published by Sun Microsystems Press/Prentice Hall. 1997.

143

CHAPTER 8

X/DPS

The X Window System has been extended with the X Display PostScript system
(often described as X/DPS). It uses application-callable libraries on the client side
and corresponding extensions on the X server side.

Internationalization and localization issues using Adobe’s PostScriptTM are
documented in several books from Adobe:

■ PostScript Language Reference Manual, Second Edition. Adobe Systems Inc., Addison
Wesley, 1990.

■ PostScript Language Reference Manual Supplement. Adobe Systems Inc., December
1994.

■ Programming the Display PostScript System with X. Adobe Systems Inc., Addison
Wesley, 1993.

This set of books is essential for successfully developing PostScript applications.

The PostScript Language Reference Manual (Second Edition) is the standard reference
work for PostScript. It is the definitive documentation of every operator, Display
PostScript (DPS), Level 1, and Level 2. The book covers the fundamentals of
PostScript as a device-independent printing language. The special capabilities for
handling fonts and characters in PostScript are covered. The book’s appendix E also
covers standard character sets and encoding vectors. It discusses the organization of
fonts that are built into interpreters or supplied from other sources.

Programming the Display PostScript Dystem with X is for application developers who
are working with X Windows and Display PostScript. The book documents how to
write applications that use Display PostScript to produce information for the screen
display and the printer output. It describes coding techniques in detail.

144 Solaris Internationalization Guide for Developers • August 1997

Localization Resource Category
The localization resource category specifies which natural language (for
example, English or Japanese) is supported. This category is made up of dictionaries
that contain the keys Language , Country , CharSet , and others. These keys are in
the %Console% device parameter set.

<</Language/EN /Country/US /CharSet/ISO-646-ISV>>

<</Language/JA /Country null /CharSet/JIS-...>>

In the example with Japanese, the null value shows that no dialect was selected for
Japanese.

Unique names should be used for each item in the localization resource
category.

Information on Language Interpreters
Page Description Language (PDL) interpreters can be assigned to a PostScript
product. An application or printer driver uses the PDL resource category to see
which PDL interpreter has been assigned.

Control languages can also be assigned. An application or printer driver can use
ControlLanguage to see which control languages are available on a PostScript
product.

The PDL and ControlLanguage resource categories have been available since
version 2015.

The PDL and ControlLanguage resource categories are made up of key/value
pairs. See the Adobe PostScript documentation for more information.

145

CHAPTER 9

Desktop Environments

The Common Desktop Environment (CDE) is the standard GUI desktop interface for
Solaris 2.6. Not only is it the user’s main interface to the system, it is also the
interface in which many of the user’s locale settings are apparent. The German user
sees a German interface; the French user sees a French interface.

The Common Desktop Environment: Internationalization Programmer’s Guide provides
information for internationalizing the desktop to enable applications to support
various languages and cultural conventions in a consistent user interface.

Overview
The following is a synopsis of the Common Desktop Environment: Internationalization
Programmer’s Guide.

■ Chapter 1, “Introduction to Localization,” contains an overview of
internationalization and localization within CDE and Solaris, including locales,
fonts, drawing, inputting (including preedit area, offthespot, overthespot, and
root), interclient communications standards (ICCC), and extracting visual text. A
discussion of internationalization standards is also included.

■ Chapter 2, “Internationalization and the Common Desktop Environment,”
explains topics which developers need to consider when internationalizing their
applications. This includes locale management, localized resources, font
management, drawing localized text, inputting localized text, extracting localized
text, message guidelines, message extraction functions, localized resources, and
operating system internationalized functions.

■ Chapter 3, “Internationalization and Distributed Networks,” discusses the
handling of encoded characters across distributed networks. Basic principles and
examples for interclient interoperability are provided. Since the user will work
not only in multiple languages, but also perhaps across various borders, this
chapter discusses the principles of interclient interoperability in international

146 Solaris Internationalization Guide for Developers • August 1997

environments. The chapter discusses interchange concept, simple text basic
interchange, mail basic interchange, encodings and codesets, and ISO EUC
codesets.

■ Chapter 4, “Motif Dependencies,” covers internationalized applications, locale
management, font management, drawing localized text, inputting localized text,
the internationalized User Interface Language (UIL), and localized applications.

■ Chapter 5, “Xt and Xlib Dependencies,” discusses locale management, font
management, font set matrix, drawing localized text, inputting localized text,
interclient communications conventions for localized text, messages, charset and
font set encoding, and registry information.

■ Appendix A, “Message Guidelines” contains tips and suggestions for writing
messages.

CDE is fully internationalized so that any application can run using any locale that
has been installed in the system. By keeping the language- and culture-dependent
information separate from the application source code, the application does not need
to be rewritten or recompiled to be marketed in different countries. Instead, the
external information only has to be localized to match the target language and
customs.

The application interface has been standardized to allow functionality in any locale,
including East Asia. Solaris 2.6 complies with the Portable Operating Systems
Interface for Computer Environments (POSIX and X/Open specifications, which are
also referred to as XPG4).

It is important that each layer within the desktop use the proper internationalization
interface standards which are described in the following sources:

■ X Window System, The Complete Reference to Xlib, Xprotocol, ICCM, XLFD-X Version,
Release 5, Digital Press, 1992.

■ IEEE Std. 1003.1-1990. Information Technology-Portable Operating System Interface
(POSIX)-Part 1: System Application Program Interface (API). ISO/IEC 9945-1:1990.

■ OSFTM Motif 1.2 Programmer’ Reference, Revision 1.2, Open Software Foundation,
Prentice Hall, 1992.

■ X/Open CAE Specification Commands and Utilities, Issue 4, X/Open Company Ltd.,
1992.

Common Desktop Environment: Programmer’s Guide, Addison Wesley, 1995. The Solaris
2.6 updated version is supplied online with the CDE AnswerBooks. See “Related
Books” on page xvi for more information.

Chapter 9 Desktop Environments 147

Locales
Most single-display clients operate in a single locale. This is set with the
environment variable, usually $LANG or a set of LC_ environment variables
including $LC_CTYPE.

The LC_CTYPE category of the locale is used by the environment to identify the
locale-specific features used at runtime. The fonts and input methods are determined
by the LC_CTYPE category.

Programs that are enabled for internationalization are expected to call the
XtSetLanguageProc() function (which calls setlocale() by default) to set the
locale.

Integrating Fonts
Your application may be used by someone sitting at an X terminal or by someone at
a remote workstation across a network. In these situations, the fonts available to the
user’s X display from the X window server might be different than your
application’s defaults, and some fonts may not be available.

The standard interface font names defined by CDE are guaranteed to be available on
all CDE-compliant systems. These names do not specify actual fonts. Instead, they
are aliases that each system vendor maps to its best available fonts. If you use only
these font names in your application, you can be sure of getting the closest matching
font on any CDE-compliant system.

See Solaris Common Desktop Environment: Programmer’s Guide, Chapter 2 “Integrating
Fonts,” and also the CDE man pages DtStdInterfaceFontNames (5) and
DtStdAppFontNames (5) for additional information.

Input Methods
CDE provides the ability to enter localized input for an internationalized application
that is using Xm Toolkit. The XmText[Field] widgets are enabled to interface with
input methods from each locale. Input methods are internationalized because other
languages write their text from right-to-left, top-to-bottom, and so forth. Within the
same application, you can use several fonts that use different input methods.

148 Solaris Internationalization Guide for Developers • August 1997

The preedit area displays the string that is being preedited. This can be done in four
modes: OffTheSpot, OverTheSpot (default), Root, and None. In OffTheSpot mode,
the location is just below the MainWindow area at the right of the status area. In
OverTheSpot mode, the preedit area is at the cursor point. In Root mode, the preedit
and status areas are separate from the client’s window.

Internationalization and CDE
Multiple environments may exist within a common open system to support various
languages. Each of these is called a locale. A locale specifies the language, fonts, and
customs to display data. CDE is fully internationalized so that any application can
run in any locale. Any application should be code-set-independent and include
support for any multibyte codeset .

All components are shipped as a single, worldwide executable. These support the
USA, Europe (Western and Eastern), Japan, Korea, Taiwan, and China.

Matching Fonts to Character Sets
Various sets of fonts are used to render a locale’s characters, various sets of fonts are
used. The specific font charset depends on the locale. This information should be in
a locale specific app-defaults file. It will contain font sets, fonts, and font lists.

XmFontSet specifies the locale-dependent fonts. The resource name is *fontSet .
Fonts should not be specified specifically. The resource name for XFontStruc is
*font . Font lists contain lists of fonts and font sets. XFontList specifies the fonts.

Storage of Localized Text
Text strings in each language should be stored outside of the application and in
directories which are identified by locale names. These strings are stored in three
types of files: resource files, message catalogs, and private files.

Resource files and message catalogs are both files that deliver text strings. Resource
files are compiled when they are loaded and message catalogs are precompiled and
ready to be accessed. Any application should be code-set-independent and include
support for any multibyte codeset . Private files may be databases of information that
may include some text strings. Ideally, text strings should be in resource files or
message catalogs. If text strings are supplied in a private file, then a tool should also
be developed to extract and replace text strings.

Chapter 9 Desktop Environments 149

Xlib Dependencies
X locale supports one or more of the locales defined by the host environment. Direct
XlibTM conforms to the American National Standards Institute (ANSI) C library and
the locale announcement method is the setlocale() function. This function
configures the locale operation of both the host C library and Xlib. The operation of
Xlib is governed by the LC_CTYPE category; this is called the current locale. The
XSupportsLocale() function is used to determine whether the current locale is
supported by X.

Message Guidelines
Message guidelines should be developed and used to create a consistent format and
style for text. Use clear and simple English so that all users, including those whose
command of English is minimal, can understand every message. The book Common
Desktop Environment: Internationalization Programmer’s Guide ends with a number of
guidelines for producing clear, concise, translatable messages. Messages should
explain the problem and suggest how to perform the action successfully. Comments
to the translators should also be included, that explain concepts, variables, and so
forth. The book includes several lists of suggestions for the format style of the
message catalogs and the style of the messages themselves.

Before sending out the message catalogs to be translated, it is useful to have the
message catalogs translated from English into international English, that is, into a
simplified English that can be easily translated into other languages. This speeds up
the translation process, reduces the translator queries, and saves costs.

Internationalization and Distributed
Networks
This section of the book covers the exchange of information between applications on
different hosts. The transfer of data has to consider several parameters:

■ The sender’s and receiver’s codeset
■ Whether the protocol is 7-bit or 8-bit
■ The type of interchange encoding allowed by the protocol

If the remote host uses the same codeset as the local host, and if the protocol allows
8-bit data, no conversion is needed. If the protocol allows only 7-bit data, the 8-bit
code points must be mapped onto 7-bit ASCII values. There are various strategies
for conversion.

150 Solaris Internationalization Guide for Developers • August 1997

If the remote host’s codeset is different from that of the local host, the following two
cases may apply. The conversion depends on the specific protocol. If the protocol
allows 8-bit data, the protocol will need to specify which side does the conversion. If
the protocol allows only 7-bit data, a 7-bit interchange encoding is needed along
with an identifying character repertoire.

Mail Interchange
With the rise of the Internet and the ease of communicating with people around the
world, an email message can be viewed on many platforms and dozens of locales.
Standards for email interchange, however, are restricted by desktop machines for
which the default email standard is Simple Mail Transfer Protocol (SMTP), which
supports only 7-bit transmission channels.

The sending agent converts the body of the message into a standard format and
labels it as body. The receiving agent looks at the body and if it supports the
character encoding, it converts the body into the local character set.

Due to the fact that dtmail now uses the Language Conversion Library (LCL),
dtmail now has the capacity to support multibyte characters in both the subject
line, the mail body, and in attachments. There is also the ability for dtmail to have
characters of different encodings within the same mail, for example, SJIS and EUC
encodings for the Japanese (ja) locale.

OpenWindows
Solaris 2.6 does not have any changes in OpenWindows with regard to
internationalization. Applications that were developed for previous versions of
Solaris will run in Solaris 2.6 without any changes.

The XView toolkit is not codeset independent. Applications that use the XView
toolkit are not supported in non-EUC locales, such as ja_JP.PCK , en_US.UTF-8 ,
or ko.UTF-8 .

For information on international XView, see the internationalization portions of the
XView Developer’s Notes.

For information on international OLIT, see the internationalization chapter of the
OLIT Reference Manual.

151

CHAPTER 10

Printing

Localization Printing Support Under
Solaris 2.6
Solaris provides support for PostScript printers. Custom print filters are available to
convert localized text to PostScript. See mp(1) and postprint (1) man pages for
further details. The ability to download fonts onto a printer is also present.

For more details see the download(1) man pages. This support is configured for
PostScript printers.

No internationalization-specific changes were made to printing with Solaris 2.6.
Look for printing information in the AnswerBook; the System Administration Guide
has several chapters that discuss printing.

European Printing Support
For European non-iso-8859-1 locales, such as Greek and Russian, prolog.ps files
are supplied. The files are located in /usr/openwin/lib/ locale/print .

When you print in one of these locales, the files are automatically downloaded to the
printer. These fonts are PostScript Type1. They include Times, Helvetica, and
Courier.

These are in normal, bold, italic, and bold-italic styles.

152 Solaris Internationalization Guide for Developers • August 1997

This allows printing on PostScript printers from both CDE and OpenWindows
desktops. From a command line, use /usr/openwin/bin/mp <filename> | lp in
each non-iso8859-1 locale.

For the Eastern European locales such as Russian, non iso-8859-1 encoded,
prolog.ps files are supplied. The files are located in:

/usr/openwin/lib/ locale/locale/ directories/print/prolog.ps

for each relevant locale. At directories, insert of the following

/iso8859-10/
/iso8859-2/
/iso8859-4/
/iso8859-5/
/iso8859-7/
/iso8859-9/

The files are downloaded automatically when you print in one of the Eastern
European locales. A minimum set of fonts allow printing.

The fonts in the prolog.ps files are:

Asian Printing Support
The xetops and xutops utilities convert Asian text into a bitmapped graphics
printed image. This allows you to print Asian characters on a PostScript-based
printer.

TABLE 10-1 prolog.ps Fonts

/LC_Courier
/LC_Courier-Italic
/LC_Courier-Bold
/LC_Courier-BoldOblique

CourierCyr AliasFont
CourierCyr Inclined AliasFont
CourierCyr Bold AliasFont
CourierCyr BoldInclined AliasFont

/LC_Times-Roman
/LC_Times-Italic
/LC_Times-Bold
/LC_Times-BoldOblique

TimesNewRomanCyr
TimesNewRomanCyr-Inclined Aliasfont
TimesNewRomanCyr-Bold AliasFont
TimesNewRomanCyr-BoldIncl AliasFont

/LC_Helvetica
/LC_Helvetica-Italic
/LC_Helvetica-Bold
/LC_Helvetica-BoldOblique

LucidaSansCyr AliasFont
LucidaSansCyr ItalicFont
LucidaSansCyr-Bold AliasFont
LucidaSansCyr-BoldItalic AliasFont

Chapter 10 Printing 153

A typical command line for printing such a file would be as follows:

or

Japanese Solaris 2.6 supports the following Japanese-specific printers:

■ Japanese PostScript printer
■ Epson VP-5085 (based on ESC/P)
■ NEC PC-PR201 (based on 201PL)
■ Canon LASERSHOT (based on LIPS)

Japanese texts can be printed with these printers through the LP print service.
TABLE 10-2 shows the relation between these printers and used components. See JFP
User’s Guide for further details.

Use the following to set up a Japanese PostScript printer.

In the following example, the PostScript printer name is lw . The /dev/lp1 is the
device that is associated with the printer. For more information, see the lpadmin
man page.

system% pr <filename> | xetops |lp

system% pr <filename> | xutops |lp (for the ko.UTF-8 locale)

TABLE 10-2 Japanese Printer Support

Printer terminfo(-T) interface(-i) content(-I) filter

Japanese PS PS jstandard postscript jpostprint

Epson VP-5085 epson-vp5085 jstandard None jprconv

NEC PC-PR201 nec-pr201 jstandard None jprconv

Canon LASERSHOT canon-ls-a408 jstandard None jprconv

lpadmin -p lw -v /dev/lp1 -T PS -I postscript
lpadmin -p lw -i /usr/lib/lp/model/jstandard
cd /etc/lp/fd
lpfilter -x -f postprint
lpfilter -f jpostprint -F jpostprint.fd
accept lw
enable lw
/etc/init.d/lp stop
/etc/init.d/lp start

154 Solaris Internationalization Guide for Developers • August 1997

You will be able to print with the following operation:

Note – These features are supported only on Japanese Solaris. Supported input
codesets are Japanese EUC (Default) and PCK. The locale setting of Command line
in jpostprint.fd (or jprconv.fd) should be changed to ja_JP.PCK , if you
want PCK.

% lp -d lw Japanese Text File

Index 155

Index

SYMBOLS
.cshrc , 47
/bin/stty directory, 46
/sbin/sh command, 105
/usr/bin/ldd command, 105
/usr/ucb/stty directory, 47

NUMERICS
8-bit clean software, 116

A
adding packages, 65
addresses, formats, 13
Adobe Type Manager (ATM) fonts, 29
alphabets, 9, 10
APIs, 108 to 112

using to develop applications, 104
applications

developing, 104
FontSet/XmFontList definitions, 62
internationalizing, 62
linking to system libraries, 104 to 105
XPG4, 107

architectures (SPARC and x86), xv
Asian

packages, 80
printing support, 152

ATM fonts, 29

ATOK8, 34

B
base Solaris 2.6, 17 to 20

locales supported, 20
Big-5, 33

codeset, 101
/bin/stty directory, 46
binary message catalog, 131
bindtextdomain , 133
bitmap

font editor, 38
fonts, 30

books@sun.com , xvi
bopomofo in Chinese, 11
breve, 21

C
caron, 21
catalog

binary messages, 131
source messages, 128

catalog descriptor, 126
catclose() , 126
catgets() , 112, 125
catopen() , 125
CD

installing software from, 67

156 Solaris Internationalization Guide for Developers • August 1997

CDE, 145
en_US.UTF-8 locale support of, 20
input methods, 147
localization packages, 97
using fonts for locales, 21

Central European languages, character support, 20
character classification macros, 107
character support, 20
character transformation macros, 107
characters

number, 9
Chinese

package files, 86
Chinese Solaris, simplified, 2
Chinese Solaris, traditional, 2
Chinese text

bopomofo, 11
Hanzi, 11
linguistic introduction, 11
pinyin, 11
zhuyin, 11

CNS-11643, 33
code conversion STREAMS modules, 43
code conversions, 47 to 49
codeset

Big-5, 101
character support, 20
Extended UNIX Code (EUC), 101
Shift-JIS, 101

Codeset Independence, 1, 102
collation and formats, 119, 122
command examples, xviii
command names, xviii
command-line placeholder, xviii
commands

CSI-capable, 102
Japanese, 37

Common Desktop Environment (book), xvi
Common Desktop Environment Internationalization

Programmer’s Guide, 145
Compose c c sequence, 58
Compose g g sequence, 59
compose sequences

Latin-1, 50 to 54
Latin-2, 54 to 56
Latin-4, 56 to 57

Latin-5, 58
compose sequences, for new locales, 21
compound messages, 137
conversion

multibyte and wide character process code, 107
conversions, 47 to 49
converting characters, 24
core locales, 18
creating

message catalogs, 112
Creating Worldwide Software, xvi, 14
cs00 , 34
CSI, See Codeset Independence
CSI-capable commands, 102
CSI-enabled libraries, 103
ctype

library routines, 119
macros, 107

currency
formats of, 121
presentation order of, 8
sizes of, 9
symbols of, 8
units of, 8

currency symbol, 22
Cyrillic input mode, 58
Czech

character support, 20
keyboards, 21

D
date and time formats, 120
date formats, 6
Daylight Savings Time (DST), 6
decimal places, 7
degree symbol, 22
delimiters

numeric, 8
thousands, 7
word, 9

descriptions of European package files, 74
desktop environments, 145
desktop layers, 146

Index 157

deutsche mark, 8
developer’s cluster, in Solaris 2.6, 20, 41
developing international applications, 104
dgettext , 134
diacritical marks, 21

in English input mode, 50
diaeresis, 21
directories, xviii
disk space

Asian packages, 100
documentation, ordering, xvii
dollar, 8
doubleacute, 22
DST (Daylight Savings Time), 6
dtlogin command, 21
dtmail , 150
dtterm , 44
dynamic linking, 104 to 105
dynamic messaging, 139

E
Eastern European package files, 73
en_US.UTF-8 , 20

code conversions, 47
fontset definitions, 62 to 63
overview, 17, 41 to 60
printing utility, 61 to 62

en_US.UTF-8 locale, 17
English

character support, 20
input mode, 50
language locales, 24
Solaris, 2

English Solaris 2.6, See base Solaris 2.6
environment

LANG, 116
LC_COLLATE, 122
LC_MONETARY, 121
LC_TIME, 120

EUC, See Extended Unix Code
European Codesets, 79
European font packages, 79
European printing support, 151

European Solaris, 2
extended locales, 19
Extended UNIX Code (EUC), 101

F
file code, 102
file names, xviii
font editor

bitmap, 38
Type1, 38
Type3, 38

fonts
across different platforms, 147
adding or removing, 30
formats, 29
location, 30
packages for Europe, 79
SUNiXxf format for new locales, 21
X11 bitmaps, 61

FontSet definitions, 62 to 63
FontSet/XmFontList definitions, 62
formats

addresses, 13
and collation, 122
currency, 8, 121
dates, 6, 120
monetary, 121
numeric, 7
set with setlocale() , 119
sort orders, 122
string collation, 122
time, 5, 120

franc, 8
French package files, 69

G
GB2312-80, 32
gender in language, 13
genmsg utility, 112 to 113, 130, 131
German

character support, 20
package files, 70

gettext() , 132

158 Solaris Internationalization Guide for Developers • August 1997

insertion, 134
surround strings, 134

GMT offset, 6
Greek

character support, 20
input mode, 59 to 60
keyboards, 22

Greenwich Mean Time offset, 6

H
Hangul in Korean, 10
Hanja in Korean, 10
Hanzi in Chinese, 11
head side module, 43
Hiragana in Japanese, 10
Hungarian

character support, 20
keyboards, 21

I
IBM DOS 437, 11
iconv , 28

command, 47
how to use, 24
Japanese character code conversion, 36

imperial system, 13
input modes

Cyrillic, 58
English, 50
Greek, 59 to 60

installation, 65 to 68
internationalization, 2

ISO Latin-1, 3
Java, 102

internationalization APIs, 108 to 112
internationalizing applications, 62
introduction, xv
ISO 8859, 41
ISO 8859-n character support, 20
ISO Latin-1, 3
ISO/IEC 10646-1, 41
ISO-10646, 1

Italian package files, 71

J
ja , 34
ja_JP.PCK , 34
Japanese

package files, 87
Solaris, 2

Japanese text
Hiragana, 10
Kanji, 10
Katakana, 10
linguistic introduction, 10

Japanese-specific commands, 37
Japanese-specific printer support, 38
Java internationalization, 102
JLE Binary, 38
Jumpstart, 24

K
Kanji in Japanese, 10
Katakana in Japanese, 10
key compose sequences, 21
keyboard layouts

Greek, 60
Russian, 59

keyboards, 12
Changing keyboards on x86, 23
Changing on SPARC, 22
Czech, 21
Greek, 22, 60
Hungarian, 21
Latvian, 21
Lithuanian, 21
Polish, 21
Russian, 22
Support in Solaris 2.6, 22
Turkish, 21

Korean package files, 85
Korean Solaris, 2
Korean text

Hangul, 10
Hanja, 10

Index 159

linguistic introduction, 10
krona, 8
krone, 8
kroner, 8
KSC-5700, 31

L
LANG, 42
LANG environment

default behavior, 116
LANG environment variable, 42, 147
Language Conversion Library, 150
Latin-1 compose sequences, 50 to 54
Latin-2 compose sequences, 54 to 56
Latin-4 compose sequences, 56 to 57
Latin-5 compose sequences, 58
Latin-n terminals, 45
Latvian keyboards, 21
LC_COLLATE, 5
LC_COLLATE environment , 122
LC_CTYPE, 5
LC_MESSAGES, 5
LC_MONETARY, 5
LC_MONETARY environment, 121
LC_NUMERIC, 5
LC_TIME, 5
LC_TIME environment, 120
LCL, 150
libc , 104 to 105, 107
libintl , 106
libraries, linking applications to, 104 to 105
library routines

ctype , 119
libw , 106
linking, 115
linking applications, 104 to 105
lira, 8
list separators, 8
Lithuanian keyboards, 21
loading

STREAMS modules, 43 to 44
locale utility, 42

locale(1) , 42
locales, 2, 4, 20

categories of, 4
compose sequences, 21
core, 17, 18
database, 101, 104
en_US.UTF-8 , 17, 20
English, 24
environment variables, 42, 147
extended, 17, 19
font format, 21
full, 3
localized text handling, 125
operating system, 17
partial, 3, 17
what is..., 3
window system, 17

localization resource category, 144
lpadmin command, 61
lpfilter command, 61
lpr command, 61

M
macros

ctype , 107
mail interchange, 150
markka, 8
mbtowcs , 107
mbtwoc , 107
message catalogs, creating, 112
message files, creating, 136
messages

compound, 137
creating message database, 135, 136
dynamic, 139
location of database, 125, 133
static, 138
text length and height variability, 137
window system resource files, 137

metric system, 13
modinfo command, 43
modload command, 44
monetary formats, 121
mp(1) , 151

160 Solaris Internationalization Guide for Developers • August 1997

multibyte file code, 107
multi-byte Unicode representation, 17, 41
mystreams file, 47

N
NULL (0x00), 102
number of characters, 9
numeric conventions, 7

O
ogonek, 21
OLIT Reference Manual, xvii
on-screen computer output, xviii
OpenWindows

changes, 150
font editor, 38
using fonts for locales, 21

operating system locale, 17
order for sorting, 9
ordering documentation, xvii
OSF/Motif Programmer’s Guide, xvii
OSF/Motif Programmer’s Reference, xvii
outline fonts, 29

P
packages

adding, 65
Page Description Language (PDL) interpreters, 144
page sizes, 13
paper sizes, 13
paper trim size, 14
partial locales, 17
PDL interpreters, 144
peseta, 8
pinyin in Chinese, 11
pkgadd command, 66
pkgchk command, 66
Polish

character suppport, 20
keyboards, 21

POSIX, 146
postprint(1) , 151
PostScript, 29, 143

output, 61
support under Solaris, 151
Type 1 fonts, 29

PostScript Language Reference Manual, xvii, 143
PostScript Language Reference Manual

Supplement, xvii, 143
pound, 8
printing, 61 to 62
printing support

Asian, 152
European, 151
Japanese, 38

process code format, 104
Programming the Display PostScript System with

X, xvii, 143
prompts, See shell prompts
punctuation, 12

R
radix characters, 7
remote package server

installing software from, 67 to 68
Russian

character support, 20
keyboard layout, 59
keyboards, 22

S
saving

STREAMS modules settings, 47
/sbin/sh command, 105
Scandinavian and Baltic language character

support, 20
script selection, 50 to 60
scripts, in multiple languages, 20
separators

list, 8
thousands, 7
word, 9

Index 161

setenv command, 42
setlocale man page, 42
setlocale() , 115
setting

terminal options, 46
setup

TTY environment, 42
shell prompts, xviii
Shift-JIS codeset, 101
shortcuts. See compose sequences
sign extension problems, 117
Simple Mail Transfer Protocol, 150
single-display clients, 147
Slash (0x2f), 102
Smallberg, David, xvi, 14
SMTP, 150
software developers, xv
Solaris

Asian, 30
Austrian, 27
base product, 17 to 20
Chinese, 32
contents, 25
Czech, 27
Eastern European, 2
English, 2, 25
Estonian, 27
European, 25
French, 2, 25
German, 2, 25
Greek, 27
Hungarian, 27
Italian, 2, 25
Japanese, 2, 34
Japanese printing support, 153
Korean, 2, 31
Latvian, 27
Lithuanian, 27
localized products in, 2
Polish, 27
PostScript support, 151
Russian, 27
Simplified Chinese, 2
Spanish, 2, 25
Swedish, 2, 25
Turkish, 27

sort order, 9

source message catalog, 128
Spanish

character support, 20
package files, 72

SPARC architecture, xv
SPARC keyboards, 22
standalone system

adding packages to, 65 to 66
standards

interface, 146
internationalization, 146

stateless file code encodings, 102
static linking, 105
static messaging, 138
strchg command, 44, 46
strcmp() , 122
strcoll() , 122
strconf command, 46
STREAMS modules

loading, 43 to 44
saving settings, 47

string collation, 124
strxfrm() , 122
stty command, 47
stub entry points, in libw and libintl , 106
su command, 43
SunDocs program, xvii
SunOS 5.6, xv
SUNWpldte , 21
SUNWploc, 17
SUNWploc1, 17, 21
SUNWplow, 17
SUNWplow1, 17, 21
Swedish package files, 73
symbols, 12
system libraries

linking applications to, 104 to 105

T
tail side module, 43
terminal options, setting, 46
terminal support for Latin-1, Latin-2, or KOI8-R, 45
terminals

162 Solaris Internationalization Guide for Developers • August 1997

Latin-n, 45
Latin-n terminals, 45

text
height, 137
length, 137

textdomain()
environment variable, 141
opens message catalogs, 133

thousands separators, 7
time and date formats, 120
time formats, 5
time zones, 6
titles, xviii
titles in language, 13
TrueType fonts, 1
TTY environment setup, 42
TTY STREAMS, 38
Turkish

character support, 20
keyboards, 21

Tuthill, Bill, xvi, 14
Type 1 fonts, 29
Type3 font editor, 38

U
u8lat1 STREAMS module, 45
u8lat2 STREAMS module, 45
UDC support, 38
Unicode 2.0, 1 to 17

support, 1
UniForum standards, 124
Universal Character Set Transformation Format for

8 bits encoding, See UTF-8 encoding
user type, xviii
User-Defined Character support, 38
/usr/bin/ldd command, 105
/usr/ucb/stty directory, 47
UTF-8 encoding, 20
utilities

genmsg, 112 to 113
locale , 42
printing, 61 to 62

W
wcstombs , 107
wctomb , 107
Western European alphabets, 10
Western European languages, character

support, 20
wide character

expression, 101
process code, 107

window system locale, 17
Wnn6, 34
words

delimiters, 9
order of, 9, 11

writing internationalized code, 115

X
X Display PostScript, 143
X Window System, 143
X/DPS, 143
X/Open-Uniforum Joint Internationalization

Working Group, 20
X11 bitmap fonts, 61
x86

architecture, xv
keyboards, 23

xetops , 152
XFontStruc , 148
Xlib dependencies, 149
XmFontSet , 148
XoJIG, 20, 41
XPG4 applications, 107
xutops , 152
xutops utility, 61 to 62
XView Developer’s Notes, xvii
XView toolkit, 150

Y
yen, 8

Index 163

Z
zhuyin in Chinese, 11

164 Solaris Internationalization Guide for Developers • August 1997

