
Federated Naming Service
Programming Guide

Sun Microsystems, Inc.
2550 Garcia Avenue

Mountain View, CA 94043-1100
U.S.A.

Part No: 802-5887
August 1997

Copyright 1997 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, California 94303-4900 U.S.A. All rights reserved.
This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and
decompilation. No part of this product or document may be reproduced in any form by any means without prior written authorization of
Sun and its licensors, if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.
Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered
trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.
Sun, Sun Microsystems, the Sun logo, SunSoft, SunDocs, SunExpress, and Solaris are trademarks, registered trademarks, or service marks
of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered
trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an
architecture developed by Sun Microsystems, Inc.
The OPEN LOOK and SunTM Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun
acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the
computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s
licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license agreements.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227–14(g)(2)(6/87) and
FAR 52.227–19(6/87), or DFAR 252.227–7015(b)(6/95) and DFAR 227.7202–3(a).
DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY
INVALID.

Copyright 1997 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, Californie 94303-4900 Etats-Unis. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la
distribution, et la décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque
moyen que ce soit, sans l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et
qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.
Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.
Sun, Sun Microsystems, le logo Sun, SunSoft, SunDocs, SunExpress, et Solaris sont des marques de fabrique ou des marques déposées, ou
marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence
et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits
portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.
L’interface d’utilisation graphique OPEN LOOK et SunTM a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés.
Sun reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou
graphique pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox,
cette licence couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre
se conforment aux licences écrites de Sun.
CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y
COMPRIS DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE
UTILISATION PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE
GARANTIE NE S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

Please
Recycle

Contents

Preface vii

1. Introduction to the Federated Naming Service (FNS) 1

What is Federated Naming? 1

What Is XFN? 2

Why FNS? 2

FNS Policies 2

What FNS Policies Do Not Specify 4

What FNS Enterprise Policies Arrange 4

Initial Context Bindings 6

Examples of Composite Names 9

XFN Overview 11

XFN References 11

XFN Contexts 11

XFN Attributes 12

XFN Compound Names 12

XFN Composite Names 13

XFN Links 13

XFN Initial Context 14

API Usage Model 14

Contents iii

FNS and Applications 15

Application Interaction with XFN 15

2. Interfaces for Writing XFN Applications 19

XFN Interface Overview 19

Interface Conventions 20

Usage 20

Abstract Data Types 20

Memory–Management Policies 21

The Base Context Interface 21

Names in Context Operations 22

Requirements for Supporting the Context Operations 22

Status Objects 23

Getting Context Handles 23

Lookup and List Contexts 24

Updating Bindings 26

Managing Contexts 28

Base Attribute Interface 30

XFN Attribute Model 31

Relationship to Naming Operations 31

Status Objects 32

Single-Attribute Operations 32

Multiple-Attribute Operations 35

Extended Attribute Interface (Preliminary Specification) 37

Attribute Search Interface 37

Object Creation with Attributes 40

Status Objects and Status Codes 41

Parameters Used in the Interface 45

Composite Names 46

iv Federated Naming Service Programming Guide ♦ August 1997

References and Addresses 46

Identifiers 46

Strings 47

Attributes and Attribute Values 47

Attribute Sets 47

Attribute-Modification Lists 48

Parameters Used in Extended Search (Preliminary Specification) 48

Search Control 48

Search Filter 49

Parsing Compound Names 55

Syntax Attributes 55

XFN Standard Syntax Model 55

Compound Names 58

3. XFN Programming Examples 59

Namespace Browser Example 59

Compiling and Executing Browser Example 65

Commands 66

Sample Output 66

Printer Programming Example 68

Client 68

Server 70

A. XFN Composite Names 73

Syntax 73

Composite Name and Naming System Boundaries 75

Strong Separation 76

Weak Separation 76

Composite Name Resolution 77

Explicit NNSPs: Junctions 77

Contents v

Implicit NNSPs 78

Coexistence of Explicit and Implicit NNSPs 79

XFN Links 79

Composite Name Encoding 79

Backus-Naur Form (BNF) 80

Decomposing the Composite Name String 82

Composing the Composite Name String 83

B. XFN Composite Names Syntax 85

XFN Composite Name Encoding 85

XFN Backus-Naur Form (BNF) 86

XFN Decomposing the Composite Name String 87

XFN Composing the Composite Name String 89

Glossary 91

Index 95

vi Federated Naming Service Programming Guide ♦ August 1997

Preface

The Federated Naming Service (FNS) is new to the SolarisTM product family. FNS is a
set of application programming interfaces and policies that allow applications to use
a common set of names and policies over different name services.

FNS is not a replacement for NIS+, the network name service included in the Solaris
software environment. Rather, FNS is implemented on top of NIS+ and allows you to
use a set of common names with desktop applications. SunSoft.’s implementation of
FNS conforms to the X/OpenTM federated naming (XFN) specification.

Who Should Use This Book
The primary audience of Federated Naming Service Guide is software developers who
write distributed applications. Use of this guide assumes basic competence in
programming, a working familiarity with the C programming language, and a
working familiarity with the UNIX® operating system. Developers should read all
four parts of this manual.

System and network administrators should look at Solaris Naming Setup and
Configuration Guide for FNS setup and configuration information. Information on
FNS administratiuon is in Solaris Naming Administration Guide. This manual does
not cover NIS+ or the Domain Name System (DNS) except as they relate to FNS.

How This Book Is Organized
Chapter 1 is a high-level overview of FNS and the problems it addresses.

Preface vii

Chapter 2 describes the client programming interfaces for X/Open Federated
Naming (XFN).

Chapter 3 presents three self-contained executable programs: a namespace browser, a
printer client and server, and a tool to populate attributes of users.

Appendixes
Appendix A describes the XFN composite name string syntax and the resolution
techniques for composite names.

Appendix B gives supplemental information about composite name syntax.

Related Books
With the exception of the XFN specification, the following books do not specifically
cover FNS but they provide a good background on how name services work in
client-server computing:

� Raman Khanna. Distributed Computing—Implementation and Strategy. Prentice
Hall, 1993

� Sape J. Mullender (editor) . Distributed Systems. ACM Press, 1990

� P. Albitz and C. Liu. DNS and BIND. O‘Reilly, 1992

� Managing the X.500 Client Toolkit. SunSoft Inc., 1995

� X/Open Preliminary Specifications, Federated Naming: The XFN Specifications. X/
Open Document #P403, ISBN: 1-85912-045-8. X/Open, July 1994

You may also want to reference the following AnswerBook® on-line documentation:

� Solaris 2.5 Reference Manual AnswerBook

� Solaris 2.6 Software Developer AnswerBook Vol 1

� Solaris 2.6 Software Developer AnswerBook Vol 2

� Solaris 2.6 System Administrator AnswerBook Vol 1

� Solaris 2.6 System Administrator AnswerBook Vol 2

viii Federated Naming Service Programming Guide ♦ August 1997

Ordering Sun Documents
The SunDocsSM program provides more than 250 manuals from Sun Microsystems,
Inc. If you live in the United States, Canada, Europe, or Japan, you can purchase
documentation sets or individual manuals using this program.

� For a list of documents and how to order them, see the catalog section of
SunExpressTM Internet site at http://www.sun.com/sunexpress .

What Typographic Changes and
Symbols Mean
The following table describes the typographic changes used in this book.

TABLE P–1 Typographic Conventions

Typeface or
Symbol

Meaning Example

AaBbCc123 The names of commands,
files, and directories;
on-screen computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% You have mail.

AaBbCc123 What you type, contrasted
with on-screen computer
output

machine_name% su

Password:

AaBbCc123 Command-line placeholder:

replace with a real name or
value

To delete a file, type rm filename.

AaBbCc123 Book titles, new words or
terms, or words to be
emphasized

Read Chapter 6 in User’s Guide. These
are called class options.

You must be root to do this.

ix

Shell Prompts in Command Examples
The following table shows the default system prompt and superuser prompt for the
C shell, Bourne shell, and Korn shell.

TABLE P–2 Shell Prompts

Shell Prompt

C shell prompt machine_name%

C shell superuser prompt machine_name#

Bourne shell and Korn shell prompt $

Bourne shell and Korn shell superuser prompt #

x Federated Naming Service Programming Guide ♦ August 1997

CHAPTER 1

Introduction to the Federated Naming
Service (FNS)

This chapter is an overview of the Federated Naming Service (FNS).

What is Federated Naming?
Federated Naming Service provides a method for hooking up, or federating, multiple
naming services under a single, simple uniform interface for the basic naming and
directory operations. The service supports resolution of composite names—names
that span multiple naming systems—through the naming interface. Each member of
a federation has autonomy in its choice of naming conventions, administrative
interfaces, and its particular set of operations, other than name resolution.

In the Solaris environment, the FNS implementation consists of a set of
enterprise-level naming services with specific policies and conventions for naming
organizations, users, hosts, sites, and services, as well as support for global naming
services such as DNS and X.500. More specifically, FNS has support for:

� Enterprise-level naming services: NIS+, NIS and files

� Global-level naming services: DNS, and X.500 (over LDAP or DAP). See Solaris
Naming Administration Guide for information on DNS Text records and X.500
attribute syntax for XFN references

� Application-specific namespaces: file naming, printer naming

� Generic application namespaces for other applications

1

What Is XFN?
XFN stands for X/Open Federated Naming. XFN is a standard that is actively
supported by organizations such as SunSoft, IBM, Hewlett-Packard, DEC, Siemens,
and OSF. The programming interfaces and policies that FNS supports are specified
by XFN. An overview of XFN concepts is presented later in this chapter; Chapter 2
describes the XFN programming interface in detail.

FNS is compliant with the X/Open CAE Specification for Federated Naming (July 1995).
Applications that use FNS are portable across platforms because the interface
exported by FNS is XFN, a public, open interface endorsed by other vendors and X/
Open. X/Open Co. Ltd. is part of the Open Group, which is an international
standards organization committed to defining computing standards that are
endorsed and adhered to by major computer vendors.

Why FNS?
FNS is useful for the following reasons:

� A single uniform naming interface is provided to clients for accessing different
naming services. As a consequence, the addition of new naming services does not
require changes to applications or to existing member naming services.
Furthermore, application developers need to learn and use only one naming
interface.

� Names can be composed in a uniform way, and the resulting composite names can
have any number of components. This allows the composite namespace to serve
the needs of many diversed applications.

� Coherent naming is encouraged through the use of shared contexts and shared
names. This reduces duplication of effort in individual applications when
supplying similar functionality.

FNS Policies
FNS provides applications with a set of policies on how namespaces are arranged
and used. These policies specify:

� The namespaces for enterprise objects: organizations, hosts, users, sites, and
services. (These naming services support contexts that allow other objects to be
named relative to these objects.)

� The relationships between the organization, host, user, site, and service
namespaces, and the names used to refer to these namespaces

� The syntax of names in these namespaces

2 Federated Naming Service Programming Guide ♦ August 1997

� How to federate the enterprise namespace so that it is accessible in the global
namespace

� Names and bindings present in the initial context of every process

Table 1–1 is a summary of FNS policy for arranging the enterprise namespace and
Figure 1–1 shows that FNS policies provides a common framework for the three
levels of service: global, enterprise, and application.

TABLE 1–1 Policies for the Federated Enterprise Namespace

Namespace
Identifiers

Name Service
Type

Subordinate
Context

Parent Context Namespace
Organization

Syntax

orgunit

_orgunit

Organizational
unit

Site, user,
host, file
system,
service

Enterprise root Hierarchical NIS+ domain name
Dot-separated,
right-to-left

site

_site

Site Service, file
system

Enterprise root,
organizational
unit

Hierarchical Dot-separated,
right-to-left

user

_user

User Service, file
system

Enterprise root,
organizational
unit

Flat Solaris login name

host

_host

Host Service, file
system

Enterprise root,
organizational
unit

Flat Solaris host name

service

_service

Service Application-
specific

Enterprise root,
organizational
unit, site, user,
host

Hierarchical / separated,
left-to-right

fs

_fs

File system None Enterprise root,
organizational
unit, site, user,
host

Hierarchical / separated,
left-to-right

printer Printer None Service Hierarchical / separated,
left-to-right

Introduction to the Federated Naming Service (FNS) 3

What FNS Policies Do Not Specify
The FNS policies do not specify the specific names used within naming services. In
addition, naming within the application is the responsibility of individual
applications or groups of related applications. They also do not specify the attributes
to use after the object has been named.

Global

Enterprise

Application

Figure 1–1 Different Levels of Naming Services

What FNS Enterprise Policies Arrange
The FNS enterprise policies deal with the arrangement of objects within the
enterprise namespace. The policies are summarized in Table 1–1.

� Organization – Entities such as departments, centers, and divisions. Sites, hosts,
users, and services can be named relative to an organization. The XFN term for
organization is organizational unit.

4 Federated Naming Service Programming Guide ♦ August 1997

� Site – Physical locations, such as buildings, machines in buildings, and conference
rooms within buildings. Sites can have files and services associated with them.

� Host – Computers. Hosts can have files and services associated with them.

� User – Human users. Users can have files and services associated with them.

� Service – Services such as printers, faxes, mail, and electronic calendars.

� File – Files within a file system.

org

service

application
specific

application
specific

application
specific

application
specific

user

file

file service

site

service

file

host

file

service

Figure 1–2 What FNS Policies Arrange

The namespace of an enterprise is structured around the hierarchical structure of
organizational units of an enterprise. Names of sites, hosts, users, files, and services
can be named relative to names of organizational units by composing the
organizational unit name with the appropriate namespace identifier and object name.

In Figure 1–3, a user, jsmith in the engineering organization of an enterprise, is
named using the name orgunit/desktop.sw.eng/user/jsmith

Introduction to the Federated Naming Service (FNS) 5

orgunit site

eng corp east west

sw hw chelmsford

desktop b21

service host user service

jsmithjoe rlee
printer

laser colorscarabease abc

user host

Figure 1–3 Example of an Enterprise Namespace

Initial Context Bindings
Resolution of a name in XFN always begins with some context. XFN defines an initial
context as a starting point for name resolution. The initial context contains bindings
that allow the client application to (eventually) name any object in the enterprise
namespace. Figure 1–4 shows the same naming system as the one shown in Figure
1–3, except that the initial context bindings are shaded and shown in italics.

6 Federated Naming Service Programming Guide ♦ August 1997

thisens
myens

orgunit site

org site

eng corp east west

sw hw chelmsford

desktop
thisorgunit
myorgunit b21

user host service host user service

jsmith

joe rlee myself
printer

laser color

scarab

ease abc thishost

user

Bound in
the initial context

host

Figure 1–4 Example of Enterprise Bindings in the Initial Context

The initial context has a flat namespace for namespace identifiers. The bindings of
these namespace identifiers are summarized in Table 1–2. The categories of bindings
are:

� User-related bindings

� Host-related bindings

� “Shorthand” bindings

In Table 1–2, the user to which the bindings are related is denoted by U, and the host
to which the bindings are related is denoted by H. Not all of these names need to
appear in all initial contexts. For example, when a program is invoked by the
superuser, none of the user-related bindings appears in the initial context.

Introduction to the Federated Naming Service (FNS) 7

TABLE 1–2 Initial Context Bindings for Naming Within the Enterprise

Namespace

Identifier

Binding

myself

_myself

thisuser

U’s user context

myens

_myens

The enterprise root of U

myorgunit

_myorgunit

U’s distinguished organizational unit context. For NIS+, the
distinguished organizational unit is U’s NIS+ home domain. For NIS
and files, it is the current domain and system, respectively.

thishost

_thishost

H’s host context

thisens

_thisens

The enterprise root of H

thisorgunit

_thisorgunit

H’s distinguished organizational unit context. For NIS+, the
distinguished organizational unit is H’s NIS+ home domain. For NIS
and files, it is the current domain and system, respectively.

user

_user

The context in which users in the same organizational unit as H are
named

host

_host

The context in which hosts in the same organizational unit as H are
named

org

orgunit

_orgunit

The root context of the organizational unit namespace in H’s enterprise.
For NIS+, this corresponds to the NIS+ root domain. For NIS and files,
it is the current domain and system, respectively.

site

_site

The root context of the site namespace at the top organizational unit if
the site namespace has been configured

8 Federated Naming Service Programming Guide ♦ August 1997

TABLE 1–2 Initial Context Bindings for Naming Within the Enterprise (continued)

Namespace

Identifier

Binding

...

/...

Global context for resolving DNS or X.500 names

_dns Global context for resolving DNS names

_x500 Global context for resolving X.500 names

Examples of Composite Names
This section shows examples of names that follow FNS policies. The specific choices
of organization names, site names, user names, host names, file names, and service
names (such as “calendar” and “printer”) are illustrative only; these names are not
specified by FNS policy.

Composing Names Relative to Organizations
The naming systems to be found under an organization are: user , host , service ,
fs , and site .

org/csl.parc/site/videoconference.northwing

names a conference room videoconference located in the north wing of the site
associated with the organization csl.parc .

org/csl.parc/user/mjones

names a user mjones in the organization csl.parc .

org/csl.parc/host/inmail

names a machine inmail belonging to the organization csl.parc .

Introduction to the Federated Naming Service (FNS) 9

org/csl.parc/fs/pub/blue-and-whites/CSL92-124

names a file pub/blue-and-whites/CSL92-124 belonging to the organization
csl.parc .

org/csl.parc/service/calendar

names the calendar service for the organization csl.parc . This service might
manage the meeting schedules for the organization.

Composing Names Relative to Users
The naming systems associated with users are service and fs .

user/jsmith/service/calendar

names the calendar service of the user jsmith .

user/jsmith/fs/bin/games/riddles

names the file bin/games/riddles under the home directory of the user jsmith .

Composing Names Relative to Hosts
The naming systems associated with hosts are service and fs .

host/mailhop/service/mailbox

names the mailbox service associated with the machine mailhop .

host/mailhop/fs/pub/saf/archives.91

names the directory pub/saf/archives.91 found under the root directory of the
file system exported by the machine mailhop .

Composing Names Relative to Sites
The naming systems associated with sites are service and fs .

10 Federated Naming Service Programming Guide ♦ August 1997

site/B5.MountainView/service/printer/speedy

names a printer speedy in the B5.MountainView site.

site/B5.MountainView/fs/usr/dist

names a file directory usr/dist available in the B5.MountainView site.

XFN Overview
The following gives an overview of the main concepts in XFN and they are used in
defining a federated naming system.

XFN References
An XFN name is bound to a reference, which is the information on how to reach an
object. It contains a list of addresses, which identify communication endpoints on
how to reach the object. Multiple addresses identify multiple communication
endpoints for a single conceptual object or service. For example, a list of addresses
might be required because the object is distributed or because the object can be
accessed through more than one communication mechanism.

XFN Contexts
An XFN context is an object that exports the XFN base context programming
interface. A context contains a list of atomic names bound to references, as shown in
Figure 1–5. An atomic name can have zero or more attributes. Contexts are at the
heart of the lookup and binding operations, described extensively in Chapter 2.

Name A

A Context

Ref

Name B Ref

Name C Ref

Attr

Attr

Attr

Attr

Attr

Attr

Figure 1–5 An XFN Context

Introduction to the Federated Naming Service (FNS) 11

XFN Attributes
In addition to references, there can be zero or more attributes associated with each
named object, as shown in Figure 1–5. Each attribute has a unique attribute identifier,
an attribute syntax, and a set of zero or more distinct attribute values.

XFN defines operations for examining and modifying the values of attributes
associated, as well as searching for objects using their associated attributes.

XFN Compound Names
An XFN compound name is a sequence of one or more atomic names. An atomic
name in one context object can be bound to a reference to another context object of
the same type, called a subcontext. Objects in the subcontext are named using a
compound name. Compound names are resolved by looking up each successive
atomic name in each successive context.

A familiar analogy for UNIX users is the file naming model, where directories are
analogous to contexts, and path names serve as compound names. Furthermore,
contexts can be arranged in a “tree” structure, just as directories are, with the
compound names forming a hierarchical namespace.

� UNIX example: usr/local/bin . UNIX atomic names are ordered from left to
right and are delimited by slash (/) characters. The name usr is bound to a
context in which local is bound. The name local is bound to a context in which
bin is bound.

� DNS example: sales .Wiz.COM. DNS atomic names are ordered from right to left,
and are delimited by dot (.) characters. The domain name COMis bound to a
context in which Wiz is bound. Wiz is bound to a context in which sales is
bound.

� X.500 example: c=us/o=wiz/ou=sales . An X.500 atomic name contains an
attribute type and an attribute value. Atomic names are known as relative
distinguished names in X.500. In this string representation, X.500 atomic names are
ordered from left to right, and are delimited by slash (/) characters. An attribute
type is separated from an attribute value by an equal sign (=) character.
Abbreviations are defined for commonly used attribute types (for example, “c”
represents country name). The country name US is bound to a context in which
wiz is bound. The organization name wiz is bound to a context in which the
organizational unit name sales is bound.

Figure 1–6 shows an example of a hierarchical naming system with compound names.

12 Federated Naming Service Programming Guide ♦ August 1997

COM

Context 1

Ref

B Ref

C Ref

wiz

Context 2

Ref

Y Ref

Z Ref

Compound Names: wiz.COM, Y.COM, Z.COM

Figure 1–6 Hierarchical Naming System With Compound Names

XFN Composite Names
An XFN composite name is a name that spans multiple naming systems. It consists
of an ordered list of zero or more components. Each component is a name from the
namespace of a single naming system. Composite name resolution is the process of
resolving a name that spans multiple naming systems. Appendix A, and Appendix
B, supply more detail about composite names.

Components are slash-separated (/) and ordered from left to right, according to XFN
composite name syntax. For example, the composite name

sales.Wiz.COM/usr/local/bin

has two components, a DNS name (sales.Wiz.COM) and a UNIX path name
(usr/local/bin).

Figure 1–7 shows an example of a federated naming system with composite names.
The position of the name within a context has no inherent significance in this
illustration.

XFN Links
An XFN link is a special form of reference that is bound to an atomic name in a
context. Instead of an address, a link contains a composite name. Many naming
systems support a native notion of link that can be used within the naming system
itself. XFN does not specify whether there is any relationship between such native
links and XFN links.

Introduction to the Federated Naming Service (FNS) 13

“XFN Links” on page 79 describes links in detail.

Context 1

Name Ref

COM

Context 2

Context 3

Naming System

Composite name: sales.wiz.com, usr/local/bin

wiz

sales

Context 1

usr

Another Naming System

Context 2

Context 3

local

bin

Figure 1–7 Federated Naming System With Composite Names

XFN Initial Context
Every XFN name is interpreted relative to some context, and every XFN naming
operation is performed on a context object. The initial context object provides a
starting point for the resolution of composite names. The XFN interface provides a
function that allows the client to obtain an initial context.

The policies described in Solaris Naming Administration Guide specify a set of names
that the client can expect to find in this context and the semantics of their bindings.
This provides the initial pathway to other XFN contexts.

API Usage Model
Many clients of the XFN interface are only interested in lookups. Their usage of the
interface amounts to:

� Obtaining the initial context

� Looking up one or more names relative to the initial context

After the client obtains a desired reference from the lookup operation, it constructs a
client-side representation of the object from the reference. This need not be code
within the application layer but can be code inside the service layer. For example,
RPC services can provide clients with a means of constructing client-side handles

14 Federated Naming Service Programming Guide ♦ August 1997

from a composite name for the service or from a reference containing an RPC
address for the service. After receiving this handle, the client performs all further
operations on the object or service by supplying the handle.

This is the basic model of how the XFN interface is expected to be used. The FNS
policies described earlier further encourage a bind/lookup model for how services
and clients can rendezvous through the use of the naming service.

FNS and Applications
Applications that are aware of FNS can expect the namespace to be arranged
according to the FNS policies, and applications that bind names in the FNS
namespace are expected to follow these policies.

Applications use FNS in the following ways:

1. Applications can use FNS through existing interfaces. A significant proportion of FNS
use is through existing application programming interfaces. For example, consider
a UNIX application that obtains a file name that it later supplies to the UNIX
open() function. With FNS support for resolution of file names, the application
need not be aware that the strings it deals with are composite names rather than
the traditional local path names. Many applications can thereby support the use
of composite names without modification.

2. Applications can be direct clients of the XFN interface and policies. Application-level
utilities, such as the file system, the printing service, and the desktop tools
(calendar manager, file manager) are examples of clients that use the XFN
interface directly.

3. Systems can export the XFN interface. Naming systems, such as DNS and X.500, and
naming systems embedded in other services, like the file system and printing
service, in combination with XFN, are examples of naming systems that export
the XFN interface.

This book addresses the needs of applications that use the XFN interface. Some
examples of these applications are given in the next chapter.

Application Interaction with XFN
The way that client applications interact with XFN to access different naming
systems is illustrated in a series of figures. Figure 1–8 shows an application that uses
the XFN API and library.

Introduction to the Federated Naming Service (FNS) 15

Client Application

XFN API

XFN Client
Library

Figure 1–8 Client Application Interaction With XFN

Figure 1–9 shows the details beneath the API. A naming service that is federated is
accessed through the XFN client library and a context shared object module. This
module translates the XFN calls into naming service–specific calls.

Client Application

XFN API

XFN
Client Library

 Context
Implementation

Name Service Interface

Library

Protocol

Server

Figure 1–9 Details Beneath XFN API

X.500, DNS, and NIS+ are the naming services that have been federated in the
example shown in Figure 1–10.

As resolution of a composite name proceeds, it can cause these different modules to
be linked in, depending on the types of contexts referenced in the name.

16 Federated Naming Service Programming Guide ♦ August 1997

Client Application

XFN API

XFN Client Library

libresolv

DNS server

Resolver API

RFC 1035

DUA

DSA

XDS API

X.500 DAP

libnsl/nis

NIS+ server

NIS+ API

NIS+ protocol

Composite names

Context shared object
modules for specific
name services

Figure 1–10 XFN Implementation Examples

Introduction to the Federated Naming Service (FNS) 17

18 Federated Naming Service Programming Guide ♦ August 1997

CHAPTER 2

Interfaces for Writing XFN Applications

This chapter describes the client programming interfaces for XFN. Additional
information on the XFN interfaces is available in the man pages.

� “Interface Conventions” on page 20

� “Usage” on page 20

� “Abstract Data Types” on page 20

� “Memory–Management Policies” on page 21

� “The Base Context Interface” on page 21

� “Base Attribute Interface” on page 30

� “Status Objects and Status Codes” on page 41

� “Parameters Used in the Interface” on page 45

� “Parsing Compound Names” on page 55

XFN Interface Overview
The XFN client interface consists of the base context interface, the base attribute
interface, the extended attribute interface, and some supporting interfaces.

The base context interface provides the basic operations for naming, such as binding
a name to a reference, looking up the reference bound to a name, and unbinding a
name.

The base attribute interface provides operations to examine and modify attributes
associated with named objects.

The extended attribute interface provides operations to search and create objects in
the namespace with attributes.

19

The supporting interfaces contain:

� Operations on the status object and status codes used in the context and attribute
operations

� Abstract data types that represent objects passed to and returned from the context
and attribute operations, such as composite names, references, and attributes

� A standard model and operations for parsing compound names whose syntax is
specific to a naming system. These are of interest primarily to service
implementers

� Operations for manipulating objects that are used to specify the criteria of
extended search operations

“API Usage Model” on page 14 summarizes how an application typically uses the
programming interface.

Interface Conventions
The XFN interface is presented in ISO standard C, which is equivalent to ANSI
standard C. The symbols defined by the interface are prefixed by fn or FN, for
federated naming.

� The FN_ prefix is used for both data types and predefined constants.

In addition, data types have a _t suffix, such as FN_ref_t . Predefined constants
appear in all–uppercase characters, such as FN_ID_STRING.

� The fn_ prefix is used for function names. Names of functions in the base context
interface have the prefix fn_ctx_ , such as fn_ctx_lookup . Names of functions
in the base attribute interface have the prefix fn_attr_ , such as fn_attr_get .

Usage
Include the XFN header file in your code.

#include <xfn/xfn.h>

Include the XFN library when you compile.

cc -o program_name file1.c file2.c -lxfn

Abstract Data Types
Except for FN_attrvalue_t and FN_identifier_t , the types defined in the
interface hide their actual data representation from the client. The client performs
every operation on an object of one of these types through a well-defined interface
for that data type.

20 Federated Naming Service Programming Guide ♦ August 1997

When the client accesses these objects, the client refers to the objects solely through a
handle to an object. Operations are provided to create objects of each type and to
destroy them. The creation operation returns a handle to the new object. The destroy
operation releases all resources associated with the object.

The only information about this handle revealed to the client is that it is a pointer
type. The client cannot assume what this handle points to. In particular, the handle
might not point directly to the memory containing the object’s actual state.

The value 0 is defined for all pointer types. The functions that return handles in the
interface return the value 0 as an indication of failure. The values 0 and NULL are
equivalent.

Memory–Management Policies
The following memory–management policies are used for all client interfaces
described in this chapter:

� When a function returns a non-const pointer to an object, the client “owns” the
object. The client can alter the object and is responsible for freeing the space
allocated to it when the object is no longer required.

� When a function returns a const pointer to an object, the service “owns” the
object. The client must neither modify the object in any way, nor free the space
allocated to it. If the client needs to control a copy, it must make one for itself.

� When a function takes a non-const parameter that is passed by reference, the
service “borrows” the object during the function’s execution. It can modify the
object during this period, but it does not retain any reference to the object beyond
this period.

� When a function takes a const parameter that is passed by reference, the service
reads but does not modify the object. The service does not keep any reference to
the object beyond the period of the function’s execution.

The Base Context Interface
This section describes the operations in the base context interface. The interfaces to
the objects used in the operations are described in “Parameters Used in the Interface”
on page 45.

� “Names in Context Operations” on page 22

� “Requirements for Supporting the Context Operations” on page 22

� “Status Objects” on page 23

� “Getting Context Handles” on page 23

Interfaces for Writing XFN Applications 21

� “Lookup and List Contexts” on page 24

� “Updating Bindings” on page 26

� “Managing Contexts” on page 28

Names in Context Operations
In most of the operations of the base context interface, the caller supplies a context
and a composite name argument. The supplied composite name is always
interpreted relative to the supplied context.

The operation might eventually be effected on a different context called the
operation’s target context. Each operation has an initial resolution phase that conveys
the operation to its target context, following which the operation is applied. The
effect (but not necessarily the implementation) is that of:

� Doing a lookup on that portion of the name that represents the target context

� Invoking the operation on the target context

The contexts involved only in the resolution phase are called intermediate contexts.
Normal resolution of names in context operations always follows XFN links, which
are defined in “XFN Links” on page 79.

Requirements for Supporting the Context
Operations
The lookup operation fn_ctx_lookup() must be supported by all contexts. When
contexts do not support other operations, they can return an
FN_E_OPERATION_NOT_SUPPORTEDstatus code (see coded in Table 2–3).

XFN contexts are required to support the resolution phase of every operation in the
base context and attribute interface when involved in the operation as intermediate
contexts. That is, each intermediate context must participate in the process of
conveying the operation to the target context, even if it does not support that
operation itself. For example, not all contexts need to allow binding and listing
names. However, all contexts must fully support the resolution phase of these
operations.

Composite names are passed to an XFN context implementation in a structural form
as an ordered sequence of components. When resolving a name, the context
implementation is responsible for:

� Determining which set of leading components it must resolve

� Resolving that portion to a reference

� Returning a status object containing this reference and the portion of the name
unresolved

22 Federated Naming Service Programming Guide ♦ August 1997

Composite name resolution is further discussed in “Composite Name Resolution” on
page 77.

Status Objects
In each context operation, the caller supplies an FN_status_t parameter. The called
function sets this status object as described in “Status Objects and Status Codes” on
page 41. All status objects are handled in this way for each operation in the base
context interface (this is not restated in the individual operation descriptions).

Getting Context Handles
All operations on a context require a context handle. There are several ways of
obtaining a context handle. If you have a reference, you can use it to construct a
context handle. Otherwise, to get a handle to the initial context, you must call
fn_ctx_handle_from_initial() .

fn_ctx_handle_from_initial
fn_ctx_handle_from_ref

Construct Handle to Initial Context
This operation returns a handle to the callers initial context. On successful return, the
context handle points to a context containing the bindings described in “Initial
Context Bindings” on page 6.

FN_ctx_t *fn_ctx_handle_from_initial(
unsigned int authoritative,
FN_status_t * status);

authoritative specifies whether the handle to the Initial Context returned should
be authoritative, with respect to information the context obtains from the naming
service. When the flag is non-zero, subsequent operations on this context handle can
access the most authoritative information. When authoritative is zero, the handle to
the Initial Context returned need not be authoritative. Authoritativeness is
determined by specific naming services. In some, the authoritative source is a single
“master” servers, while in others, the authoritative source is a quorum of servers.

Interfaces for Writing XFN Applications 23

Construct Context Handle From Reference
This operation returns a handle to an FN_ctx_t object given a reference, ref, for that
context.

FN_ctx_t *fn_ctx_handle_from_ref(
const FN_ref_t * ref,
unsigned int authoritative,
FN_status_t * status);

authoritative specifies whether the handle to the context returned should be
authoritative, with respect to information the context obtains from the naming
service. When the flag is non-zero, subsequent operations on this context handle can
access the most authoritative information. When authoritative is zero, the handle to
the context returned need not be authoritative. Authoritativeness is determined by
specific naming services. In some, the authoritative source is a single “master” server,
while in others, the authoritative source is a quorum of servers.

Lookup and List Contexts

fn_ctx_lookup
fn_ctx_list_names
fn_namelist_next
fn_namelist_destroy
fn_ctx_list_bindings
fn_bindinglist_next
fn_bindlist_destroy
fn_ctx_lookup_link

Lookup
This operation returns the reference bound to name relative to the context ctx.

FN_ref_t *fn_ctx_lookup(
FN_ctx_t * ctx,
const FN_composite_name_t * name,
FN_status_t * status);

24 Federated Naming Service Programming Guide ♦ August 1997

List Names
This set of operations is used to list the set of names bound in the context named
name relative to the context ctx. The name must name a context. If the intent is to list
the contents of ctx, name should be an empty composite name.

FN_nameslist_t* fn_ctx_list_names(
FN_ctx_t * ctx,
const FN_composite_name_t * name,
FN_status_t * status);

FN_string_t *fn_namelist_next(
FN_namelist_t * nl,
FN_status_t * status);

void fn_namelist_destroy(
FN_namelist_t * nl);

The call to fn_ctx_list_names() initiates the enumeration process for the target
context. It returns an FN_nameslist_t object that you can use for the enumeration.

The operation fn_namelist_next() returns the next name in the enumeration
identified by nl and updates nl to indicate the state of the enumeration marker.
Successive calls to fn_namelist_next() using nl return successive names and
further update the state of the enumeration. fn_namelist_next() returns a NULL
pointer when the enumeration has been completed.

fn_namelist_destroy() is used to release resources used during the
enumeration. This call can be invoked at any time to terminate the enumeration.

The names enumerated using the list names operations are not in any order. There is
no guaranteed relation between the order in which names are added to a context and
the order in which names are obtained by enumeration. There is no guarantee that
any two enumerations will return the names in the same order.

When a name is added to or removed from the context, this might not necessarily
invalidate the enumeration handle that the client holds for that context. If the
enumeration handle remains valid, the update might or might not be visible to the
client.

List Bindings
This set of operations is used to list the set of names and bindings in the context
named by name, relative to the context ctx. The name must name a context. If the
intent is to list the contents of ctx, name should be an empty composite name.

Interfaces for Writing XFN Applications 25

FN_bindinglist_t* fn_ctx_list_bindings(
FN_ctx_t * ctx,

const FN_composite_name_t * name,
FN_status_t * status);FN_string_t *fn_bindinglist_next(

FN_bindinglist_t * bl,
FN_ref_t ** ref,
FN_status_t * status);

void fn_bindinglist_destroy(
FN_bindinglist_t * bl);

The semantics of these operations are similar to those for listing names. In addition
to a name string being returned, fn_bindinglist_next() also returns the
reference of the binding for each member of the enumeration.

Lookup Link
This operation returns the XFN link bound to name. The terminal atomic part of name
must be bound to an XFN link.

FN_ref_t *fn_ctx_lookup_link(
FN_ctx_t * ctx,
const FN_composite_name_t * name,
FN_status_t * status);

The normal fn_ctx_lookup() operation follows all XFN links encountered,
including any that are bound to the terminal atomic part of name. This operation
differs from the normal lookup in that when the terminal atomic part of name is an
XFN link, this last link is not followed, and the operation returns the link.

Updating Bindings

fn_ctx_bind
fn_ctx_unbind
fn_ctx_rename

Bindings can be added, overwritten, removed, or renamed.

Bind
This operation binds the supplied reference ref to the supplied composite name name,
taken relative to ctx. The binding is made in the target context—that named by all

26 Federated Naming Service Programming Guide ♦ August 1997

but the terminal atomic part of name. The operation binds the terminal atomic name
to the supplied reference in the target context. The target context must already exist.

int fn_ctx_bind(
FN_ctx_t * ctx,
const FN_composite_name_t * name,
const FN_ref_t * ref,
unsigned int exclusive,
FN_status_t * status);

The value of exclusive determines what happens if the terminal atomic part of the
name is already bound in the target context. If exclusive is nonzero and name is
already bound, the operation fails. If exclusive is zero, the new binding replaces
any existing binding.

The value of ref cannot be NULL. If you want to reserve a name using the
fn_ctx_bind() operation, bind a reference containing no address. This reference
can be naming service-specific or it can be the conventional NULL reference.

Unbind
This operation removes the terminal atomic name in name from the target
context—that named by all but the terminal atomic part of name.

int fn_ctx_unbind(
FN_ctx_t * ctx,
const FN_composite_name_t * name,
FN_status_t * status);

This operation is successful even if the terminal atomic name was not bound in
target context, but fails if any of the intermediate names are not bound.
fn_ctx_unbind() operations are idempotent.

Rename
This operation binds the reference currently bound to oldname, resolved relative to ctx
to newname, and unbinds oldname. The newname is resolved relative to the target
context—that named by all but the terminal atomic part of oldname.

Interfaces for Writing XFN Applications 27

int fn_ctx_rename(
FN_ctx_t * ctx,
const FN_composite_name_t * oldname,
const FN_composite_name_t * newname,
unsigned int exclusive,
FN_status_t * status);

If exclusive is zero, this operation overwrites any old binding of newname. If
exclusive is nonzero, the operation fails if newname is already bound.

The only restriction that XFN places on newname is that it be resolved relative to the
target context. For example, in some implementations, newname might be restricted to
be a name in the same naming system as the terminal component of oldname. In
another implementation, newname might be restricted to an atomic name.

Managing Contexts

fn_ctx_create_subcontext
fn_ctx_destroy_subcontext
fn_ctx_get_ref
fn_ctx_get_syntax_attrs
fn_ctx_handle_destroy
fn_ctx_equivalent_name

Contexts can be created, destroyed,and referenced.

Create Subcontext
This operation creates a new context of the same type as the target context—that
named by all but the terminal atomic part of name—and binds it to the composite
name name resolved relative to the context ctx, and returns a reference to the newly
created context.

FN_ref_t *fn_ctx_create_subcontext(
FN_ctx_t * ctx,
const FN_composite_name_t * name,
FN_status_t * status);

As with the bind operation, the target context must already exist. The new context is
created and bound in the target context using the terminal atomic name in name. The
operation fails if the terminal atomic name already exists in the target context.

The new subcontext exports the context interface and is created in the same naming
system as the target context. XFN does not specify any further properties of the new

28 Federated Naming Service Programming Guide ♦ August 1997

subcontext. Other properties of the subcontext are determined by the target context
and its naming system.

Destroy Subcontext
This operation destroys the subcontext named by name, interpreted relative to ctx,
and unbinds the name.

int fn_ctx_destroy_subcontext(
FN_ctx_t * ctx,
const FN_composite_name_t * name,
FN_status_t * status);

As with the unbind operation, the operation succeeds if the terminal atomic name is
not bound in the target context—that named by all but the terminal atomic part of
name.

Some aspects of this operation are determined by the target context and its naming
system. For example, XFN does not specify what happens if the named subcontext is
not empty when the operation is invoked.

Get Reference to Context
This operation returns a reference to the supplied context object.

FN_ref_t *fn_ctx_get_ref(
const FN_ctx_t * ctx,
FN_status_t * status);

Get Syntax Attributes of Context
This operation returns the syntax attributes associated with the context named by
name, relative to the context ctx.

FN_attrset_t *fn_ctx_get_syntax_attrs(
FN_ctx_t * ctx,
const FN_composite_name_t * name,
FN_status_t * status);

Interfaces for Writing XFN Applications 29

This operation is different from other XFN attribute operations in that these syntax
attributes could be obtained directly from the context. Attributes obtained through
other XFN attribute operations might not be associated with the context; they might
be associated with the reference of the context, rather than with the context itself (see
“Relationship to Naming Operations” on page 31).

Destroy Context Handler
This operation destroys the context handle ctx and allows the implementation to free
resources associated with the context handle. This operation does not affect the state
of the context itself.

void fn_ctx_handle_destroy(FN_ctx_t * ctx);

Construct an Equivalent Name (Preliminary Specification)
Given the name of an object name relative to the context ctx, the operation returns an
equivalent name for that object, relative to the same context ctx, that has leading_name
as its initial atomic name. Two names are said to be equivalent if they have prefixes
that resolve to the same context, and the parts of the names immediately following
the prefixes are identical. For example, for user jsmith, the names
“myself/service/calendar ” is equivalent to
“user/jsmith/service/calendar ” when resolved relative to the Initial Context.

FN_composite_name_t *fn_ctx_equivalent_name(
FN_ctx_t * ctx,
const FN_composite_name_t * name,
const FN_string_t * leading_name,
FN_status_t * status);

If an equivalent name cannot be constructed, the value 0 is returned and the status
argument set appropriately.

Base Attribute Interface
This section describes the operations in the base attribute interface. The interfaces to
the objects used in operations in this interface are described in “Parameters Used in
the Interface” on page 45.

� “XFN Attribute Model” on page 31

30 Federated Naming Service Programming Guide ♦ August 1997

� “Relationship to Naming Operations” on page 31

� “Status Objects” on page 32

� “Single-Attribute Operations” on page 32

� “Multiple-Attribute Operations” on page 35

XFN Attribute Model
In the XFN attribute model, a set of zero or more attributes can be associated with a
named object. Each attribute in the set has a unique attribute identifier, an attribute
syntax, and a set of zero or more distinct attribute values. Each attribute value has an
opaque data type. The attribute identifier serves as a name for the attribute. The
attribute syntax indicates how the attribute values are encoded.

The operations in the base attribute interface can be used to examine and modify the
settings of attributes associated with existing named objects. These objects can be
contexts or other types of objects. The attribute operations do not create names or
remove names in contexts.

The range of support for attribute operations can vary widely. Some naming systems
might not support any attribute operations. Other naming systems might support
only read operations or operations on attributes whose identifiers are in some fixed
set. A naming system might limit attributes to have single values or might require at
least one value. Some naming systems might associate attributes only with context
objects, while others might allow associating attributes with noncontext objects.

Typically, attributes of an object are manipulated through operations that operate on
a single attribute, such as reading or updating a single attribute. Moreover, the client
is typically expected to be able to read all attribute values of a single attribute in one
call. However, sometimes there is a requirement to manipulate several attributes of a
single object or to obtain individual attribute values of a single attribute from the
name service. To address these requirements, two kinds of attribute operations are
defined:

� Single-attribute operations

� Multiple-value and multiple-attribute operations

Relationship to Naming Operations
An XFN attribute operation might not be equivalently expressed as an independent
fn_ctx_lookup() operation followed by an attribute operation in which the caller
supplies the resulting reference and an empty name.

This is because some attribute models associate attributes with a named object in the
context in which the object is named. In others, an object’s attributes are stored in the
object itself. XFN accommodates both these models.

Interfaces for Writing XFN Applications 31

Note - Invoking an attribute operation using the target context and the terminal
atomic name accesses either the attributes that are associated with the terminal name
or the object named by the terminal name—this is dependent upon the underlying
attribute model. This document uses the term “attributes associated with a named
object” to refer to all of these cases.

XFN does not provide any guarantee about the validity of the relationship between
the attributes and the reference associated with a given name. Some naming systems
might store the reference bound to a name in one or more attributes associated with a
name. Attribute operations might affect the information used to construct a reference.

To avoid undefined results, programmers must use the operations in the context
interface and not the attribute operations when manipulating references.
Applications should avoid using specific knowledge about how an XFN context
implementation over a particular naming system constructs references.

Status Objects
In each attribute operation, the caller supplies an FN_status_t parameter. The
called function sets this status object as described in “Status Objects and Status
Codes” on page 41. All status objects are handled in this manner for each operation
in the base attribute interface; this will not be restated in the individual operation
descriptions.

Single-Attribute Operations

fn_attr_get
fn_attr_modify
fn_attr_get_values
fn_valuelist_next
fn_valuelist_destroy

Each of these operations takes as arguments a context and composite name relative
to this context and manipulates the attributes associated with the named object. Each
operation sets a status object to describe the status of the operation.

32 Federated Naming Service Programming Guide ♦ August 1997

Get Attribute
This operation returns the identifier, syntax, and values of a specified attribute,
attribute_id, for the object named name relative to the context ctx. If name is empty, the
attribute associated with ctx is returned.

FN_attribute_t *fn_attr_get(
FN_ctx_t * ctx,
const FN_composite_name_t * name,
const FN_identifier_t * attribute_id,
unsigned int follow_link,
FN_status_t * status);

fn_attr_get_values() and its related functions are for getting individual values
of an attribute and should be used if the combined size of all the values is expected
to be too large to be returned in a single invocation of fn_attr_get() .

Modify Attribute
This operation modifies according to mod_op the attribute attr associated with the
object named name, relative to ctx. If name is empty, the attribute associated with ctx
is modified.

int fn_attr_modify(
FN_ctx_t * ctx,
const FN_composite_name_t * name,
unsigned int mod_op,
const FN_attribute_t * attr,
FN_status_t * status);

TABLE 2–1 XFN Attribute-Modification Operations

Operation Code Meaning

FN_ATTR_OP_ADD() Add an attribute with given attribute identifier and set of values. If
an attribute with this identifier already exists, replace the set of
values with those in the given set. The set of values can be empty if
the target naming system permits.

FN_ATTR_OP_ADD_EXCLUSIVE() Add an attribute with the given attribute identifier and set of
values. The operation fails if an attribute with this identifier already
exists. The set of values can be empty if the target naming system
permits.

Interfaces for Writing XFN Applications 33

TABLE 2–1 XFN Attribute-Modification Operations (continued)

Operation Code Meaning

FN_ATTR_OP_ADD_VALUES () Add the given values to those of the given attribute (resulting in
the attribute having the union of its prior value set with the given
set). Create the attribute if it does not already exist. The set of
values can be empty if the target naming system permits.

FN_ATTR_OP_REMOVE () Remove the attribute with the given attribute identifier and all its
values. The operation succeeds even if the attribute does not exist.
The values of the attribute supplied with this operation are ignored.

FN_ATTR_OP_REMOVE_VALUES() Remove the given values from those of the given attribute
(resulting in the attribute having the set difference of its prior value
set and the given set). This succeeds even if some of the given
values are not in the set of values that the attribute has. In naming
systems that require an attribute to have at least one value,
removing the last value removes the attribute as well.

Get Attribute Values
This set of operations allows the caller to obtain attribute values associated
individually with a single attribute.

FN_valuelist_t *fn_attr_get_values(
FN_ctx_t * ctx,
const FN_composite_name_t * name,
const FN_identifier_t * attribute_id,
unsigned int follow_link,
FN_status_t * status);

FN_attrvalue_t *fn_valuelist_next(
FN_valuelist_t, * vl
FN_identifier_t ** attr_syntax,
FN_status_t * status);

void fn_valuelist_destroy(
FN_valuelist_t * vl);

This set of operations is used to obtain the set of values of a single attribute,
identified by attribute_id, associated with name, relative to ctx. If name is empty, the
attribute associated with ctx is obtained.

This interface should be used instead of fn_attr_get() if the combined size of all
the values is expected to be too large to be returned by fn_attr_get() .

34 Federated Naming Service Programming Guide ♦ August 1997

The operation fn_attr_get_values() initiates the enumeration process. It
returns a handle to an FN_valuelist_t object that can be used for subsequent
fn_valuelist_next() calls to enumerate the values requested.

The operation fn_valuelist_next() returns the next attribute value in the
enumeration and updates vl to indicate the state of the enumeration.

The operation fn_valuelist_destroy() frees the resources associated with the
enumeration. This operation can be invoked at any time to terminate the
enumeration.

Multiple-Attribute Operations

fn_attr_get_ids
fn_attr_multiget
fn_multigetlist_next
fn_multigetlist_destroy
fn_attr_multi_modify

These operations allow the caller to specify an operation that handles on multiple
attributes using one or more calls.

The failure semantics can vary widely across naming systems. In some systems the
single function call can contain multiple individual naming system operations, with
no guarantees of atomicity.

Get Attribute Identifiers
This operation gets a list of all the attribute identifiers that are associated with the
object named name relative to the context ctx. If name is empty, the attribute
identifiers associated with ctx are returned.

FN_attrset_t *fn_attr_get_ids(
FN_ctx_t * ctx,
const FN_composite_name_t * name,
unsigned int follow_link,
FN_status_t * status);

Get Multiple Attributes
Get one or more attributes associated with the object named name relative to the
context ctx. If name is empty, the attributes associated with ctx are returned.

Interfaces for Writing XFN Applications 35

FN_multigetlist_t *fn_attr_multiget(
FN_ctx_t * ctx,

const FN_composite_name_t * name,
const FN_attrset_t * attr_ids,
unsigned int follow_link,
FN_status_t * status);

FN_attribute_t *fn_multigetlist_next(
FN_multigetlist_t * ml,
FN_status_t * status);

void fn_multigetlist_destroy(
FN_multigetlist_t * ml);

The attributes returned are those specified in attr_ids. If the value of attr_ids is 0, all
attributes associated with the named object are returned. Any attribute values in
attr_ids provided by the caller are ignored; only the identifiers are relevant for this
operation. Each attribute (identifier, syntax, and values) is returned one at a time
using an enumeration scheme similar to that for listing a context.
fn_attr_multi_get() initiates the enumeration process. It returns a handle to an
FN_multigetlist_t object that can be used for subsequent
fn_multigetlist_next() calls to enumerate the attributes requested.

The operation fn_multigetlist_next() returns the next attribute (identifier,
syntax, and values) in the enumeration and updates ml to indicate the state of the
enumeration. Successive calls to fn_multigetlist_next() using ml return
successive attributes in the enumeration and further update the state of the
enumeration.

The operation fn_multigetlist_destroy() frees the resources used during the
enumeration. This operation can be invoked at any time to terminate the
enumeration.

Implementations are not required to return all attributes requested by attr_ids. Some
might choose to return only the attributes found successfully; such implementations
might not necessarily return identifiers for attributes that could not be read.

Modify Multiple Attributes
Modify the attributes associated with the object named name, relative to ctx.

int fn_attr_multi_modify(
FN_ctx_t * ctx,
const FN_composite_name_t * name,
const FN_attrmodlist_t * mods,
unsigned int follow_link,
FN_attrmodlist_t **unexecuted_mods,

(continued)

36 Federated Naming Service Programming Guide ♦ August 1997

(Continuation)

FN_status_t * status);

In the mods parameter, the caller specifies a sequence of modifications that are to be
performed in order on the attributes. Each modification in the sequence specifies a
modification operation code (shown in Table 2–1) and an attribute on which to
operate.

If all the modifications were performed successfully, unexecuted_mods is a NULL
pointer. If an error is encountered while performing the list of modifications, status
indicates the type of error and unexecuted_mods is set to point to a list of unexecuted
modifications. The contents of unexecuted_mods do not share any state with mods;
items in unexecuted_mods are copies of items in mods and appear in the same order in
which they were originally supplied in mods. The first operation in unexecuted_mods
is the first one that failed, and the code in status applies to this modification
operation in particular. If status indicates a failure and a NULL pointer is returned in
unexecuted_mods, that means no modifications were executed.

Extended Attribute Interface
(Preliminary Specification)

fn_attr_search
fn_searchlist_next
fn_searchlist_destroy
fn_attr_ext_search
fn_ext_searchlist_next
fn_ext_searchlist_destroy

The XFN extended attribute interface consists of operations that perform searching
and creation of objects in the namespace with attributes. The operations in this
interface are considered “preliminary,” in that they are not yet standard and might
change in the next revision of the specification.

Attribute Search Interface
The search interface contains several operations: a basic search operation, which
performs associative lookup in a single context, and an extended search operation

Interfaces for Writing XFN Applications 37

that allows the search criteria to be specified using an expression . It also allows the
scope of the search to encompass a wider scope than only a single context.

Basic Search
This set of operations is used to enumerate names of objects bound in the target
context named name relative to the context ctx with attributes whose values match all
those specified by match_attrs. Using return_ref specifies whether to return the
references of named objects in the search, while return_attr_ids specifies the attributes
to be returned in the search.

FN_searchlist_t *fn_attr_search(
FN_ctx_t * ctx,
const FN_composite_name_t * name,
const FN_attrset_t * match_attrs,
unsigned int return_ref,
const FN_attrset_t * return_attr_ids,
FN_status_t * status);

FN_string_t *fn_searchlist_next(
FN_searchlist_t * sl,
FN_ref_t ** returned_ref,
FN_attrset_t ** returned_attrs,
FN_status_t * status);

void fn_searchlist_destroy(
FN_searchlist_t * sl);

The call to fn_attr_search() initiates the search in the target context. It returns a
handle to an FN_searchlist_t object that is used to enumerate the names of the
objects whose attributes match match_attrs.

fn_searchlist_next() returns the next name in the enumeration identified by sl.
The reference of the name, if requested, is returned in returned_ref. The attributes
specified by return_attr_ids are returned in returned_attrs. Successive calls to
fn_searchlist_next() using sl return successive names, and optionally,
references and attributes in the enumeration and further update the state of the
enumeration.

fn_searchlist_destroy() releases resources used during the enumeration. It
can be called at any time to terminate the enumeration.

Extended Search
This set of operations is used to list names of objects whose attributes satisfy the filter
expression filter. The control argument encapsulates the option settings for the search.

38 Federated Naming Service Programming Guide ♦ August 1997

FN_ext_searchlist_t *fn_attr_ext_search(
FN_ctx_t * ctx,
const FN_composite_name_t * name,,
const FN_search_control_t * control
FN_status_t * status);

FN_composite_name_t *fn_ext_searchlist_next(
FN_ext_searchlist_t * esl,
FN_ref_t ** returned_ref,
FN_attrset_t ** returned_attrs,
FN_status_t * status);

void fn_ext_searchlist_destroy(
FN_ext_searchlist_t * esl);

These options are:

1. The scope of the search. This can be any of the following:

� Search the named object

� sSearch the context named by name

� Search the entire subtree rooted at the context named by name

� Ssearch the context implementation-defined subtree rooted at the context
named by name.

2. Whether XFN links are followed during the search

3. A limit on the number of names returned

4. Whether the reference associated with the named object is returned

5. Which attributes associated with the named object are returned

The filter expression is evaluated against the attributes of the objects bound in the
scope of the search. The filter evaluates to either true or false.

The call to fn_attr_ext_search() initiates the search and, if successful, returns a
handle to an FN_ext_searchlist_t object, esl, that is used to enumerate the
names of the objects that satisfy the filter.

fn_ext_searchlist_next() returns the next name, and optionally, its reference
and attributes, in the enumeration identified by esl. The name returned is a composite
name, to be resolved relative to the starting context for the search. The starting
context is the context named name relative to ctx, unless the scope of the search is only
the named object. If the scope of the search is only the named object, the teriminal
atomic name is returned. Successive calls to fn_ext_searchlist_next() using
esl return successive names, and optionally, references and attributes, in the
enumeration and further update the state of the enumeration.

fn_ext_searchlist_destroy() releases resources used during the search and
enumeration. It can be called at any time to terminate the enumeration.

Interfaces for Writing XFN Applications 39

Object Creation with Attributes

fn_attr_bind
fn_attr_create_subcontext

At times it is useful or necessary to associate attributes with an object at the time the
object is created. The XFN extended attribute interface contains functions that
provide these capabilities. The two functions in this interface, fn_attr_bind() and
fn_attr_create_subcontext() , are analogous to their counterparts in the base
context interface, fn_ctx_bind() and fn_ctx_create_subcontext() ,
respectively, except that the versions in the extended attribute interface allow an
extra parameter for specifying attributes to be associated with the new binding.

Bind with Attributes
This operation binds the supplied reference ref to the supplied composite name name
relative to ctx, and associates the attributes specified in attrs with the named object.
The binding is made in the target context—that context named by all but the
terminal atomic part of name. The operation binds the terminal atomic part of name
to the supplied reference in the target context. The target context must already exist.

int fn_attr_bind(
FN_ctx_t * ctx,
const FN_composite_name_t * name,
const FN_ref_t * ref,
unsigned int exclusive,
FN_status_t * status);

The value of exclusive determines what happens if the terminal atomic part of the
name is already bound in the target context. If exclusive is non-zero and name is
already bound, the operation fails. If exclusive is zero, the new binding replaces
any existing binding, and attrs, if not NULL, replaces any existing attributes
associated with the named object.

Create Subcontext with Attributes
This operation creates a new XFN context of the same type as the target
context—that named by all but the terminal atomic component of name—and binds
it to the supplied composite name name. In addition, attributes given in attrs are
associated with the newly created context. The target context must already exist. The
new context is created and bound in the target context using the terminal atomic
name in name. The operation returns a reference to the newly created context.

40 Federated Naming Service Programming Guide ♦ August 1997

FN_ref_t *fn_attr_create_subcontext(
FN_ctx_t * ctx,
const FN_composite_name_t * name,
const FN_attrset_t * attrs,
FN_status_t * status);

Status Objects and Status Codes
The result statuses of operations in the context interface and the attribute interface
are encapsulated in FN_status_t objects. The FN_status_t object contains
information about how the operation completed: whether an error occurred in
performing the operation, the nature of the error, and information that helps locate
where the error occurred. If the error occurred while resolving an XFN link, the
status object contains additional information about that error.

The status object contains several items of information as shown in Table 2–2.

TABLE 2–2 Status Object

Information Type Description

Primary status code An unsigned int code describing the disposition of the operation.

Resolved name In the case of a failure during the resolution phase of the operation, this is the
leading portion of the name that was resolved successfully. Resolution might have
been successful beyond this point, but the error can not be pinpointed further.

Resolved reference The reference to which the resolved name is bound.

Remaining name The remaining unresolved portion of the name.

Diagnostic message Any diagnostic message returned by the context implementation.

Link status code If an error occurs while resolving an XFN link, the primary status code has the value
FN_E_LINK_ERROR, and this code describes the error that occurred while resolving
the XFN link.

Resolved link name In the case of a link error, this contains the resolved portion of the name in the XFN
link.

Interfaces for Writing XFN Applications 41

TABLE 2–2 Status Object (continued)

Information Type Description

Resolved link reference In the case of a link error, this contains the reference to which the resolved link name
is bound.

Remaining link name In the case of a link error, this contains the remaining resolved portion of the name
in the XFN link.

Link diagnostic
message

Any diagnostic message related to the resolution of the link.

Both the primary status code and the link status code are values of type
unsigned int that are drawn from the same set of meaningful values. XFN
reserves the values 0 through 127 for standard meanings. Currently, values and
interpretations for the codes in Table 2–3 are determined by XFN.

TABLE 2–3 Status Codes

Code Meaning

FN_SUCCESS The operation succeeded.

FN_E_ATTR_IN_USE When an attribute is being modified using the operation
FN_ATTR_OP_ADD_EXCLUSIVEand an attribute with the same
identifier already exists, the operation fails with
FN_E_ATTR_IN_USE.

FN_E_ATTR_NO_PERMISSION The caller did not have permission to perform the attempted
attribute operation.

FN_E_ATTR_VALUE_REQUIRED The operation attempted to create an attribute without a value, and
the specific naming system does not allow this.

FN_E_AUTHENTICATION_FAILURE The identity of the client principal could not be verified.

FN_E_COMMUNICATION_FAILURE An error occurred in communicating with one of the contexts
involved in the operation.

FN_E_CONFIGURATION_ERROR A problem was detected that indicated an error in the installation
of the XFN interfaces.

FN_E_CONTINUE The operation should be continued using the remaining name and
the resolved reference returned in the status.

42 Federated Naming Service Programming Guide ♦ August 1997

TABLE 2–3 Status Codes (continued)

Code Meaning

FN_E_CTX_NO_PERMISSION The client did not have permission to perform the operation.

FN_E_CTX_NOT_EMPTY Applies only to fn_ctx_destroy_subcontext() . The naming
system required that the context be empty before its destruction,
and it was not empty.

FN_E_CTX_UNAVAILABLE Service could not be obtained from one of the contexts involved in
the operation. This might be because the naming system is busy or
is not providing service. In some implementations this might not be
distinguished from a communication failure.

FN_E_ILLEGAL_NAME The name supplied to the operation was not a well-formed
composite name, or one of the component names was not well
formed according to the syntax of the naming systems involved in
its resolution.

FN_E_INCOMPATIBLE_CODE_SETS The operation involved character strings of incompatible code sets
or the supplied code set is not supported by the implementation.

FN_E_INCOMPATIBLE_LOCALES The operation involved character strings of incompatible language
or territory locale information, or the specified locale is not
supported by the implementation.

FN_E_INSUFFICIENT_RESOURCES Either the client or one of the involved contexts could not obtain
sufficient resources (on memory, file descriptors, communication
ports, stable media space, for example) to complete the operation
successfully.

FN_E_INVALID_ATTR_IDENTIFIER The attribute identifier was not in a format acceptable to the
naming system, or its contents were not valid for the format
specified for the identifier.

FN_E_INVALID_ATTR_VALUE One of the values supplied was not in the appropriate form for the
given attribute.

FN_E_INVALID_ENUM_HANDLE The enumeration handle supplied was invalid, either because it
was from another enumeration, because an update operation
occurred during the enumeration, or for some other reason.

FN_E_INVALID_SYNTAX_ATTRS The syntax attributes supplied are invalid or insufficient to fully
specify the syntax.

FN_E_LINK_ERROR An error occurred while resolving an XFN link encountered during
resolution of the supplied name.

Interfaces for Writing XFN Applications 43

TABLE 2–3 Status Codes (continued)

Code Meaning

FN_E_LINK_LOOP_LIMIT A nonterminating loop (cycle) in the resolution is suspected. This
arises due to XFN links encountered during the resolution of a
supplied composite name. This code indicates either the definite
detection of such a cycle, or that resolution exceeded an
implementation-defined limit on the number of XFN links allowed
for a single operation invoked by the caller (and thus a cycle is
suspected).

FN_E_MALFORMED_LINK A malformed link reference was encountered. For
fn_ctx_lookup_link() , the name supplied resolved to a
reference that was not a link.

FN_E_MALFORMED_REFERENCE A context object could not be constructed from the supplied
reference because the reference was not properly formed.

FN_E_NAME_IN_USE (Only for operations that bind names.) The supplied name was
already in use.

FN_E_NAME_NOT_FOUND Resolution of the supplied composite name proceeded to a context
in which the next atomic component of the name was not bound.

FN_E_NO_EQUIVALENT_NAME No equivalent name can be constructed, either because there is no
meaningful equivalence between name and leading_name, or the
system does not support constructing the requested equivalent
name, for implementation-specific reasons.

FN_E_NO_SUCH_ATTRIBUTE The object does not have an attribute with the given identifier.

FN_E_NO_SUPPORTED_ADDRESS A context object could not be constructed from a particular
reference. The reference contained no address type over which the
context interface was supported.

FN_E_NOT_A_CONTEXT Either one of the intermediate atomic names did not name a
context, and resolution could not proceed beyond this point, or the
operation required that the caller supply the name of a context, and
the name did not resolve to a reference for a context.

FN_E_OPERATION_NOT_SUPPORTED The operation attempted is not supported.

FN_E_PARTIAL_RESULT The operation attempted is returning a partial result.

FN_E_SEARCH_INVALID_FILTER The filter expression had a syntax error or some other problem.

44 Federated Naming Service Programming Guide ♦ August 1997

TABLE 2–3 Status Codes (continued)

Code Meaning

FN_E_SEARCH_INVALID_OP An operator in the filter expression is not supported or, if the
operator is an extended operator, the number of types of arguments
supplied does not match the signature of the operation.

FN_E_SEARCH_INVALID_OPTION A supplied search control option could not be supported.

FN_E_SYNTAX_NOT_SUPPORTED The syntax type specified is not supported.

FN_E_TOO_MANY_ATTR_VALUES The operation attempted to associate more values with an attribute
than the naming system supported.

FN_E_UNSPECIFIED_ERROR An error occurred that could not be classified by any of the other
error codes.

Parameters Used in the Interface
� “Composite Names” on page 46

� “References and Addresses” on page 46

� “Identifiers” on page 46

� “Strings” on page 47

� “Attributes and Attribute Values” on page 47

� “Attribute Sets” on page 47

� “Attribute-Modification Lists” on page 48

This section gives an overview of the types of parameters that are passed and
returned by operations in the base context and attribute interfaces. Manipulation of
these objects using their corresponding interfaces does not affect their representation
in the underlying naming system.

Changes to objects in the underlying naming system can only be effected through the
use of the interfaces described in “The Base Context Interface” on page 21 and “Base
Attribute Interface” on page 30.

Interfaces for Writing XFN Applications 45

Composite Names
A composite name is represented by an object of type FN_composite_name_t . A
composite name is a sequence of components, where each component is a string (of
type FN_string_t) intended to contain a name from a single naming system. (See
“Syntax” on page 73 for a description of composite name syntax and structure.)
Operations are provided to iterate over this sequence, modify it, and compare two
composite names.

References and Addresses
A reference is represented by the type FN_ref_t . An object of this type contains a
reference type and a list of addresses. The ordering in this list at the time of binding
might not be preserved when the reference is returned upon lookup.

The reference type is represented by an object of type FN_identifier_t . The
reference type is intended to identify the class of object referenced, but XFN does not
dictate its precise use.

Each address in a reference is represented by an object of type FN_ref_addr_t . An
address consists of an opaque data buffer and a type field, again of type
FN_identifier_t . The address type is intended to identify the mechanism that
should be used to reach the object using that address.

Multiple addresses in a single reference are intended to identify multiple
communication endpoints for the same conceptual object. Multiple addresses can
arise for various reasons; for example, because the object offers interfaces over more
than one communication mechanism.

The client process must interpret the contents of the opaque buffers based on the
type of the address and on the type of the reference. However, this interpretation is
intended to occur below the application layer.

Most application developers should not be required to manipulate the contents of
either address or reference objects themselves. These interfaces are generally used
within service libraries.

Identifiers
Identifiers are used to identify reference types and address types in the reference and
to identify attributes and their syntax in the attribute operations.

The FN_identifier_t type is used to represent an identifier. It consists of an
unsigned integer, which determines the format of identifier, and the actual identifier,
which is expressed as a sequence of octets.

XFN defines a small number of standard forms for identifiers, as shown in Table 2–4.

46 Federated Naming Service Programming Guide ♦ August 1997

TABLE 2–4 XFN Identifier Formats

Identifier Format Description

FN_ID_STRING The identifier is an ASCII string (ISO 646).

FN_ID_DCE_UUID The identifier is an OSF DCE UUID in string representation.
See the X/Open DCE RPC (ISBN 1-872630-95-2).

FN_ID_ISO_OID_STRING The identifier is an ISO OID in ASN.1 dot-separated integer
list string format. See the ISO ASN.1 (ISO 8824).

Strings
The FN_string_t type represents character strings in the XFN interface. It provides
a layer of insulation from specific string representations. The FN_string_t
operations contain operations for string comparison, substring searches, and
manipulation. The FN_string_t type supports multiple code sets. In Solaris 2.5,
FNS supports ISO 646.

Attributes and Attribute Values
An attribute is represented by the FN_attribute_t type, and contains:

� An attribute identifier (of type FN_identifier_t)

� A syntax (of type FN_identifier_t)

� A set of distinct values (each value is a sequence of octets of type
FN_attrvalue_t)

Various operations allow the construction, destruction, and manipulation of an
attribute.

Attribute Sets
An attribute set is a set of attribute objects with distinct attribute identifiers.
Attribute sets are represented by the FN_attrset_t type.

There are operations to allow the construction, destruction, and manipulation of an
attribute set.

Interfaces for Writing XFN Applications 47

Attribute-Modification Lists
Use an attribute-modification list to specify multiple modification operations to be
performed on the attributes associated with a single named object.

An attribute-modification list is represented by the FN_attrmodlist_t type. It
consists of an ordered list of attribute-modification specifiers. Each specifier contains
an operation and an attribute object. The attribute’s identifier indicates the attribute
that is to be operated upon. How the attribute’s values are used depends on the
operation.

The operation specifier is one of the values described in Table 2–1. The operations
should be done in the order in which they appear in the list.

Parameters Used in Extended Search
(Preliminary Specification)
The types of objects used to specify the scope and details of an extended search
operation:

� the search control operations (FN_search_control_t)

� the search filter expression (FN_search_filter_t)

Search Control
The FN_search_control_t object encapsulates the different options that the
application can specify in controlling the scope and the return values of the extended
search operation, fn_attr_ext_search() .

These options are:

� Scope of search. This determines which contexts and objects will be searched. The
default is FN_SEARCH_ONE_CONTEXT.

TABLE 2–5 Different Scopes for Searching

Scope Meaning

FN_SEARCH_NAMED_OBJECT Search just the given named object.

FN_SEARCH_ONE_CONTEXT Search just the given context.

48 Federated Naming Service Programming Guide ♦ August 1997

TABLE 2–5 Different Scopes for Searching (continued)

Scope Meaning

FN_SEARCH_SUBTREE Search given context and all its subcontexts.

FN_SEARCH_CONSTRAINED_SUBTREE Search given context and its subcontexts as
constrained by the context-specific policy in
place at the named context.

� fFollow links during search. This determines whether links encountered during
the search will be followed. The initial resolution phase of the operation (the
resolution up to the target context) always follow links. This option controls the
following of links after reaching the target context.

The default is to not follow links.

� Maximum names returned. This specifies the maximum number of names to be
returned before terminating the search. A value of 0 indicates that the search is
terminated only when all the context and objects specified by the scope have been
searched.

The default is to return all named objects found.

� Return reference. This determines whether the reference of the object is returned.

The default is to not return the reference.

� Return attributes. This determines which attributes associated with the named
object, if any, are returned.

The default is to not return any attributes.

Search Filter
The fn_attr_ext_search() operation allows the search for named objects whose
attributes satisfy a given filter expression. The filter is expressed in terms of logical
expressions involving attribute identifiers and their values of named objects
examined during the search. The filter is created from an expression string and a list
of arguments that replace substitution tokens within the expression string.

BNF of Filter Expression

<FilterExpr> ::= [<Expr>]
<Expr> ::= <Expr> "or" <Expr>

(continued)

Interfaces for Writing XFN Applications 49

(Continuation)

| <Expr> "and" <Expr>
| "not" <Expr>
| "(" <Expr> ")"
| <Attribute> [<Rel_Op> <Value>]
| <Ext>

<Rel_Op> ::= "==" | "!=" | "<" | "<=" | ">" | ">=" | "~="
<Attribute> ::= "%a"
<Value> ::= <Integer>

| "%v"
| <Wildcarded_string>

<Wildcarded_string> ::= "*"
| <String>
| {<String> "*"}+ [<String>]
| {"*" <String>}+ ["*"]

<String> ::= "‘" { <Char> } * "‘"
| "%s"

<Char> ::= <PCS> // See BNF in Section 4.1.2 for PCS definition
| Characters in the repertoire of a string representation

<Identifier> ::= "%i"
<Ext> ::= <Ext_Op> "(" [Arg_List] ")"
<Ext_Op> ::= <String> | <Identifier>
<Arg_List> ::= <Arg> | <Arg> "," <Arg_List>
<Arg> ::= <Value> | <Attribute> | <Identifier>

Specification of Filter Expression

The arguments to fn_search_filter_create() are a return status, an expression
string, and a list of arguments. The string contains the filter expression with
substitution tokens for the attributes, attribute values, strings and identifiers that are
part of the expression. The remaining list of arguments contains the attributes and
values in the order of appearance of their corresponding substitution tokens in the
expression. The arguments are of types FN_attribute_t* , FN_attrvalue_t* ,
FN_string_t* or FN_identifier_t* .

Except when attributes appear as arguments in specially defined extended
operations, any attribute values in an FN_attribute_t type of argument are
ignored; only the attribute identifier and attribute syntax are relevant. The argument
type expected by each substitution token is listed in Table 2–6.

TABLE 2–6 Substitute Tokens in Search Filter Expressions

Token Argument Type

%a FN_attribute_t*

%v FN_attrvalue_t*

50 Federated Naming Service Programming Guide ♦ August 1997

TABLE 2–6 Substitute Tokens in Search Filter Expressions (continued)

Token Argument Type

%s FN_string_t*

%i FN_identifier_t*

Substitute Tokens in Search Filter Expressions

Precedence
The following precedence relations hold in the absence of parentheses, in the order
of lowest to highest:

� or

� and

� not

� relational operators

These Boolean and relational operators are left associative.

Relational Operators
Table 2–7 contains descriptions of the relational operators. Comparisons and ordering
are specific to the syntax or rules of the supplied attribute.

Locale (code set, language or territory) mismatches that occur during string
comparisons and ordering operations are resolved in an implementation-dependent
way. Relational operations that have ordering semantics may be used for strings of
locales in which ordering is meaningful, but is not of general use in internationalized
environments.

An attribute that occurs in the absence of any relational operator tests for the
presence of the attribute.

Interfaces for Writing XFN Applications 51

TABLE 2–7 Relational Operators in Search Filter Expressions

Operator Meaning

== The sub-expression is TRUE if at least one value of the specified
attribute is equal to the supplied value.

!= The sub-expression is TRUE if no values of the specified attribute equal
the supplied value.

>= The sub-expression is TRUE if at least one value of the attribute is
greater than or equal to the supplied value.

> The sub-expression is TRUE if at least one value of the attribute is
greater then the supplied value.

<= The sub-expression is TRUE if at least one value of the attribute is less
than or equal to the supplied value.

< The sub-expression is TRUE if at least one value of the attribute is less
than the supplied value.

~= The sub-expression is TRUE if at least one value of the specified
attribute matches the supplied value according to some context-specific
approximate matching criterion. This criterion must subsume strict
equality.

Wildcarded Strings
A wildcarded string consists of a sequence of alternating wildcard specifiers and
strings. The sequence can start with either a wildcard specifier or a string, and end
with either a wildcard specifier or a string.

The wildcard specifier is denoted by the asterisk character (*) and means 0 or more
occurrences of any character.

Wildcarded strings can be used to specify substring matches. Table 2–8 contains
examples of wildcarded strings and their meaning.

52 Federated Naming Service Programming Guide ♦ August 1997

TABLE 2–8 Examples of Wildcarded Strings

Wildcarded String Meaning

* Any string

‘tom’ The string tom

‘harv’* Any string starting with harv

*’ing’ Any string ending with ing

‘a’*’b’ Any string starting with a and ending with b

‘a*b’ The string a*b

‘jo’*’ph’*’ne’*’er’ Any string starting with jo , and containing the substring
ph , and which contains the substring ne in the portion of
the string following ph , and which ends with er

%s* Any string starting with the supplied string

‘bix’*%s Any string starting with bix and ending with the supplied
string

Extended Operations
In addition to the relational operators, extended operators can be specified. All
extended operators return either TRUE or FALSE. A filter expression can contain
both relational and extended operations.

Extended operators are specified using an identifier (FN_identifier_t) or a string.
If the operator is specified using a string, the string is used to construct an identifier
of format FN_ID_STRING. Identifiers of extended operators and signatures of the
corresponding extended operations, as well as their suggested semantics, are
registered with X/Open.

The extended operations shown in Table 2–9 are currently defined:

Interfaces for Writing XFN Applications 53

TABLE 2–9 Extended Operations

‘name’(<Wildcarded String>) The identifier for this operation is
name(FN_ID_STRING) . The argument to this
operation is a wildcarded string. The operation
returns TRUE if the name of the object matches
the supplied wildcarded string.

‘reftype’(%i) The identifier for this operation is reftype
(FN_ID_STRING) . The argument to this
operation is an identifier. The operation returns
TRUE if the reference type of the object is equal to
the supplied identifier.

‘addrtype’(%i) The identifier for this operation is
addrtype(FN_ID_STRING) . The argument to
this operation is an identifier.

The operation returns TRUE if any of the address types in the reference of the object
is equal to the supplied identifier. Support and exact semantics of extended
operations are context-specific. If a context does not support an extended operation,
or if the filter expression supplies the extended operation with either an incorrect
number or type of arguments, the error FN_E_SEARCH_INVALID_OPis returned.
FN_E_OPERATION_NOT_SUPPORTEDis returned when fn_attr_ext_search() is
not supported.

Table 2–10 contains examples of filter expressions that contain extended operations.

TABLE 2–10 Extended Operations in Search Filter Expressions

Expression Meaning

‘name’(‘bill’*) Evaluates to TRUE if the name of the object starts
with bill .

%i(%a, %v) Evaluates to result of applying the specified
operation to the supplied arguments.

(%a == %v) and ‘name’(‘joe’*) Evaluates to TRUE if the specified attribute has
the given value and if the name of the object
starts with joe .

54 Federated Naming Service Programming Guide ♦ August 1997

Parsing Compound Names
� “Syntax Attributes” on page 55

� “XFN Standard Syntax Model” on page 55

Because most applications treat names as opaque data, most clients of the XFN
interface do not need to parse compound names from specific naming systems.
When an application (such as a browser) needs to do this, however, it can use the
FN_compound_name_t object.

Syntax Attributes
Each context has an associated set of syntax-related attributes. The attribute
fn_syntax_type (FN_ID_STRING format) identifies the naming syntax supported
by the context. The value “standard” (ASCII attribute syntax) in the
fn_syntax_type attribute specifies that the context supports the XFN standard
syntax model that is by default supported by the FN_compound_name_t object.

Implementations can choose to support other syntax types in addition to or in place
of the XFN standard syntax model, in which case the value of the fn_syntax_type
attribute is set to an implementation-specific string and different or additional syntax
attributes are in the set.

Syntax attributes of a context can be generated automatically by a context, in
response to fn_ctx_get_syntax_attrs() , or can be created and updated using
the attribute operations. This is implementation dependent.

XFN Standard Syntax Model
Each naming system in an XFN federation has a naming convention. XFN defines a
standard model of expressing compound name syntax that covers a large number of
specific name syntaxes. This model is expressed in terms of syntax properties of the
naming convention and it uses XFN attributes to describe properties of the syntax.

Unless otherwise qualified, the syntax attributes described in this section have
attribute identifiers that use the FN_ID_STRING format. This does not specify or
restrict the use of other formats for identifiers of additional syntax attributes
supported by specific implementations.

In the XFN standard syntax model, these attributes are interpreted according to the
following rules:

1. In a string without quotes or escapes, any instance of the separator string delimits
two atomic names.

Interfaces for Writing XFN Applications 55

2. A separator, quotation mark, or escape string is escaped if preceded immediately
(on the left) by the escape string.

3. A non-escaped begin-quote that precedes a component must be matched by a
non-escaped end-quote at the end of the component. Quotes embedded in
nonquoted names are treated as simple characters and do not need to be matched.
An unmatched quotation fails with the status code FN_E_ILLEGAL_NAME.

4. If there are multiple values for begin-quote and end-quote, a specific begin-quote
value must be matched with its corresponding end-quote value.

5. When the separator appears between a (nonescaped) begin-quote and the
end-quote, it is ignored.

6. When the separator is escaped, it is not treated as a separator. An escaped
begin-quote or end-quote string is not treated as a quotation mark. An escaped
escape string is not treated as an escape string.

7. A non-escaped escape string appearing within quotes is interpreted as an escape
string. This can be used to embed an end-quote within a quoted string.

8. An escape string that precedes a character other than an escape string, a
begin-quote or an end-quote is consumed (in other words, escaping a non-meta
characater returns the non-meta character itself).

After constructing a compound name from a string, the resulting component atoms
have one level of escape strings and quotations interpreted and consumed.

Code set mismatches that occur during the construction of the compound name’s
string form are resolved in an implementation-dependent way. When an
implementation discovers that a compound name has components with incompatible
code sets, it returns the error code FN_E_INCOMPATIBLE_CODE_SETS. When an
implementation discovers that a compound name has components with incompatible
language or territory locale information, it returns the error code
FN_E_INCOMPATIBLE_LOCALES.

Table 2–11 lists all the XFN standard syntax model attributes.

TABLE 2–11 XFN Syntax Attributes

Attribute Identifier Attribute Value

fn_syntax_type Its value is the ASCII string ”standard” if the context supports
the XFN standard syntax model. Its value is an
implementation-specific value if another syntax model is
supported.

fn_synt

ax_direction

Its value is an ASCII string, one of “left-to-right,” “right-to-left,”
or “flat.” This determines whether the order of components in a
compound name string goes from left-to-right, right-to-left, or
whether the namespace is flat (that is, not hierarchical, with all
names atomic).

56 Federated Naming Service Programming Guide ♦ August 1997

TABLE 2–11 XFN Syntax Attributes (continued)

Attribute Identifier Attribute Value

fn_std_syntax_separator Its value is the separator string for this name syntax. This
attribute is required unless the fn_syntax_direction is flat.

fn_std_syntax_escape If present, its value is the escape string for this name syntax.

fn_std_syntax_case_insensitive If present, it indicates that names differing only in case are
considered identical. If this attribute is absent, it indicates that
case is significant. If a value is present, it is ignored.

fn_std_syntax_begin_quote1 If present, its value is one of the begin-quote strings for this
syntax. If fn_std_syntax_end_quote1 is absent but
fn_std_syntax_begin_quote1 is present, the quote-string
specified in fn_std_syntax_begin_quote1 is used as both
the begin and end quote-strings. If
fn_std_syntax_end_quote1 is present but
fn_std_syntax_begin_quote1 is absent, the quote-string
specified in fn_std_syntax_end_quote1 is used as both the
begin and end-quote-strings.

fn_std_syntax_end_quote1 If present, its value is the end-quote string for this syntax. If
fn_std_syntax_end_quote1 is absent but
fn_std_syntax_begin_quote1 is present, the quote-string
specified in fn_std_syntax_begin_quote1 is used as both
the begin and end quote-strings. If
fn_std_syntax_end_quote1 is present but
fn_std_syntax_begin_quote1 is absent, the quote-string
specified in fn_std_syntax_end_quote1 is used as both the
begin and end-quote-strings.

fn_std_syntax_begin_quote2 If present, its value is one of the begin-quote strings for this
syntax. If fn_std_syntax_end_quote2 is absent but
fn_std_syntax_begin_quote2 is present, the quote-string
specified in fn_std_syntax_begin_quote2 is used as both
the begin and end quote-strings. If
fn_std_syntax_end_quote2 is present but
fn_std_syntax_begin_quote2 is absent, the quote-string
specified in fn_std_syntax_end_quote2 is used as both the
begin and end-quote-strings.

Interfaces for Writing XFN Applications 57

TABLE 2–11 XFN Syntax Attributes (continued)

Attribute Identifier Attribute Value

fn_std_syntax_end_quote2 If present, its value is the end-quote string for this syntax. If
fn_std_syntax_end_quote2 is absent but
fn_std_syntax_begin_quote2 is present, the quote-string
specified in fn_std_syntax_begin_quote2 is used as both
the begin and end quote-strings. If
fn_std_syntax_end_quote2 is present but
fn_std_syntax_begin_quote2 is absent, the quote-string
specified in fn_std_syntax_end_quote2 is used as both the
begin and end-quote-strings.

fn_std_syntax_ava_separator If present, its value is the attribute-value assertion separator
string for this syntax.

fn_std_syntax_typeval_separator If present, its value is the attribute type-value separator string
for this syntax.

fn_std_syntax_locales If present, its value identifies the code sets of the string
representation for this syntax. Its value consists of a structure
containing an array of code sets supported by the context; the
first member of the array is the preferred code set of the
context. The values for the code sets are defined in the X/Open
code set registry currently defined in DCE RFC 40.1. If this
attribute is not present, or if the value is empty, the default code
set is ISO 646 (same encoding as ASCII).

Compound Names
The FN_compound_name_t type is used to represent a compound name.

The FN_compound_name_t object has associated operations for applications to
process compound names that conform to the XFN standard syntax model of
expressing compound name syntax. Operations are provided to iterate over the list of
atomic components of the name, modify the list, and compare two compound names.

An FN_compound_name_t object is constructed using the operation
fn_compound_name_from_attrset() , with arguments consisting of a string
name and an attribute set that contains the attribute “fn_syuntax_type” with the
value “standard.”

58 Federated Naming Service Programming Guide ♦ August 1997

CHAPTER 3

XFN Programming Examples

This chapter presents self-contained executable programs for the following programs:

� A namespace browser

� A printer client and server

� A tool to populate attributes of users.

Namespace Browser Example
Figure 3–1 illustrates the XFN APIs that are used by the browser application.

59

Start

FN_ctx_t

Namespace Browser Application

FN_string_t

fn_ctx_list_names() fn_ctx_lookup()

fn_ctx_handle_from_initial()

fn_ctx_handle_from_ref()

FN_ref_t

Figure 3–1 Diagram of fnbrowse Program

The first example is a browser that lists all names that it finds in the namespace.
When the program is invoked, the browser is set at the initial context or the
composite name given on the command line.

See “Commands” on page 66 and “Sample Output” on page 66.

CODE EXAMPLE 3–1 fnbrowse Source

/*
* fnbrowse.c -- FNS namespace browser.
*
* To keep this example program relatively short,
* limited error checking is done.
*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <xfn/xfn.h>

#define LINELEN 128 /* maximum length of input line */

typedef enum {CMD_DOWN, CMD_UP, CMD_LIST, CMD_SHOW, CMD_QUIT} command;

static FN_status_t *status;
static unsigned int auth = 0; /* non-authoritative */

/* Lookup a context named relative to the initial context. */
FN_ctx_t *lookup(const FN_composite_name_t *name);

/* Set the browser’s focus to the given context. */

(continued)

60 Federated Naming Service Programming Guide ♦ August 1997

(Continuation)

void browse(FN_ctx_t *ctx);

/* Set the browser’s focus to a subcontext of the given context. */
void cmd_down(FN_ctx_t *ctx, const FN_composite_name_t *child);

/* Print the names bound within a context. */
void cmd_list(FN_ctx_t *ctx);

/*
* Print a description of the reference bound to "child" in the
* given context or, if "child" is the empty string, the reference
* of the context itself.
*/

void cmd_show(FN_ctx_t *ctx, const FN_composite_name_t *child);

/*
* Read and parse the next command typed by the user. If the
* command has an argument, set *argp to point to the argument.
*/

command read_command(FN_string_t **argp);

/* Print an error message, and the description associated
* with "status". */

void error(const char *msg);

int
main(int argc, char *argv[])
{

unsigned char *target;

switch (argc) {
case 1:

target = (unsigned char *)"";
break;

case 2:
target = (unsigned char *)argv[1];
break;

default:
fprintf(stderr, "Usage: %s [<composite_name>]\n",

argv[0]);
return (1);

}

status = fn_status_create();

browse(lookup(fn_composite_name_from_str(target)));
return (0);

}

FN_ctx_t *
lookup(const FN_composite_name_t *name)
{

(continued)

XFN Programming Examples 61

(Continuation)

FN_ctx_t *ctx;
FN_ref_t *ref;

ctx = fn_ctx_handle_from_initial(auth, status);
if (ctx == NULL) {

error("Could not construct initial context");
exit(1);

}
if (fn_composite_name_is_empty(name)) {

return (ctx);
}

ref = fn_ctx_lookup(ctx, name, status);
fn_ctx_handle_destroy(ctx);
if (ref == NULL) {

error("Lookup failed");
exit(1);

}
ctx = fn_ctx_handle_from_ref(ref, auth, status);

fn_ref_destroy(ref);
if (ctx == NULL) {

error("Could not construct context handle");
exit(1);

}
return (ctx);

}

void
browse(FN_ctx_t *ctx)
{

FN_string_t *arg;
FN_composite_name_t *child;

while (1) {
switch (read_command(&arg)) {
case CMD_DOWN:

child = fn_composite_name_from_string(arg);
fn_string_destroy(arg);
cmd_down(ctx, child);
fn_composite_name_destroy(child);
break;

case CMD_UP:
return;

case CMD_LIST:
cmd_list(ctx);
break;

case CMD_SHOW:
child = fn_composite_name_from_string(arg);
fn_string_destroy(arg);
cmd_show(ctx, child);
fn_composite_name_destroy(child);
break;

case CMD_QUIT:
exit(0);

(continued)

62 Federated Naming Service Programming Guide ♦ August 1997

(Continuation)

}
}

}

void
cmd_down(FN_ctx_t *ctx, const FN_composite_name_t *child)
{

FN_ref_t *ref;
FN_ctx_t *subctx;

ref = fn_ctx_lookup(ctx, child, status);
if (ref == NULL) {

error("Lookup failed");
return;

}
subctx = fn_ctx_handle_from_ref(ref, auth, status);
fn_ref_destroy(ref);
if (subctx == NULL) {

error("Could not construct context handle");
return;

}
browse(subctx);

fn_ctx_handle_destroy(subctx);
}

void
cmd_list(FN_ctx_t *ctx)
{

FN_string_t *empty_string = fn_string_create();
FN_composite_name_t *empty_name;
FN_namelist_t *children;
FN_string_t *child;
unsigned intstatcode;

int has_children = 0;

empty_name = fn_composite_name_from_string(empty_string);
fn_string_destroy(empty_string);

children = fn_ctx_list_names(ctx, empty_name, status);
fn_composite_name_destroy(empty_name);

if (children == NULL) {
error("Could not list names");
return;

}
while ((child = fn_namelist_next(children, status))

!= NULL) {
has_children = 1;
printf("%s ", fn_string_str(child, &statcode));
fn_string_destroy(child);

}
if (has_children) {

(continued)

XFN Programming Examples 63

(Continuation)

printf("\n");
}
fn_namelist_destroy(children);

}

void
cmd_show(FN_ctx_t *ctx, const FN_composite_name_t *child)
{

FN_string_t *desc;
FN_ref_t *ref;
unsigned int statcode;

ref = fn_ctx_lookup(ctx, child, status);
if (ref == NULL) {

error("Lookup failed");
return;

}

desc = fn_ref_description(ref, 2, NULL);
fn_ref_destroy(ref);
if (desc != NULL) {

printf("%s", fn_string_str(desc, &statcode));
fn_string_destroy(desc);

} else {
printf("[No description]\n");

}
}

command
read_command(FN_string_t **argp)
{

char buf[LINELEN + 1];
char *cmd;
char *child;

while (printf("\n> "), fflush(stdout), gets(buf) != NULL) {
cmd = strtok(buf, " \t");
if (cmd == NULL) {

continue;
}
if (strcmp(cmd, "down") == 0) {

child = strtok(NULL, " \t");
if (child != NULL) {

*argp =
fn_string_from_str((unsigned char *)child);

return (CMD_DOWN);
}

}
if (strcmp(cmd, "up") == 0) {

return (CMD_UP);
}
if (strcmp(cmd, "list") == 0) {

(continued)

64 Federated Naming Service Programming Guide ♦ August 1997

(Continuation)

return (CMD_LIST);
}

if (strcmp(cmd, "show") == 0) {
child = strtok(NULL, " \t");
*argp = (child != NULL)

? fn_string_from_str((unsigned char *)child)
: fn_string_create();

return (CMD_SHOW);
}
if (strcmp(cmd, "quit") == 0) {

return (CMD_QUIT);
}
fprintf(stderr, "Valid commands are: "

"down <child>, up, list, show [<child>], quit\n");
}
return (CMD_QUIT); /* EOF */

}

void
error(const char *msg)
{

FN_string_t *reason;
unsigned int statcode;

fprintf(stderr, "%s", msg);
reason = fn_status_description(status, 0, NULL);
if (reason != NULL) {

fprintf(stderr, ": %s",
(const char *)fn_string_str(reason, &statcode));

fn_string_destroy(reason);
}

fprintf(stderr, "\n");
}

Compiling and Executing Browser Example
To compile Code Example 3–1, type:

% cc -o fnbrowse fnbrowse.c -lxfn

To browse the namespace starting from the initial context, the program is invoked as:

% fnbrowse

Or to browse a composite name and its descendents, type:

% fnbrowse composite_name

XFN Programming Examples 65

Commands
The commands supported by the fnbrowse program are summarized in Table 3–1.

TABLE 3–1 Namespace Browser Commands

Command Usage

down child Sets the browser at the subcontext of the child

up Sets the browser at one level higher than the current context

list Lists the names bound within the current context

show Prints the reference of the current context

show child Prints the reference of the current context’s child

quit Exits the browser

Sample Output
Sample output for navigating the entire namespace is displayed here.

Note the following:

� The first list command shows the initial context bindings.

� The fnbrowse program lists all names it finds in the namespace, including names
with underscores. These names are explained in “Initial Context Bindings” on
page 6.

� The three dots (...) represent the global namespace.

% fnbrowse
> list
_myorgunit ... _myself thishost myself _orgunit _host
_thisens myens thisens org orgunit thisuser _thishost
myorgunit _user thisorgunit host _thisorgunit _myens user

Navigating the namespace is accomplished with the up and down commands. In the
following output, the down command brings the focus of the browser to the

66 Federated Naming Service Programming Guide ♦ August 1997

enterprise root of the namespace, thisens (can also be myens). The show command
displays information about the reference and address type for thisens .

> down thisens
> show
Reference type: onc_fn_enterprise
Address type: on_fn_nisplus

length: 20
context type: enterprise root
representation: normal
version: 0
internal name: eng.wiz.com

> up
> down thisorgunit

Continuing with the example, this list command shows the contexts for
thisorgunit .

> list
service _fs _host _service _site site _user host fs user

> down usr
Lookup failed: Name Not Found: ’usr’

> down service
> list
printer

> down printer

The list command shows the printer names that are bound in the printer
context. The show command displays the reference for the child, colorful .

> list
celeste _default color colorful quartz nuttree puffin

> show colorful
printer
Reference type: onc_printers
Address type: onc_printers_bsdaddr

length: 12
data: 0x00 0x00 0x00 0x08 0x62 0x6c 0x61 0x63 0x6b 0x63

....blackc 0x61 0x74 at
> down colorful
Could not construct context handle: No Supported Address
> quit
%

XFN Programming Examples 67

Printer Programming Example
Printer client and server software can take advantage of FNS to advertise and to
browse the printers available with respect to organizations, sites, users, and hosts.
The APIs used by the server and the client are XFN APIs, thereby ensuring that the
application is portable across the different naming services used for storing printer
bindings.

The programming example in this section shows how printer clients and servers
obtain and store printer bindings. Users can then make use of the FNS commands,
fnlist and fnlookup , to browse the printer context.

For example, use fnlist to look at the user printer context for jsmith :

% fnlist user/jsmith/service/printer
celeste
lp
_default
myprinter

Similarly, you can look at the organization’s printers:

% fnlist org/wiz.com/service/printer
sales_printer
mktg_printer
eng_printer

Alternatively, you can type:

% fnlist thisorgunit/service/printer

You can look at the printers at a specific site, for example, the printers in the MTVsite:

% fnlist thisorgunit/site/MTV/service/printer
b1_printer
b2_printer

Client
The scenario for Code Example 3–2 is a user who would like to print to a printer
named colorful in his organization’s context,
thisorgunit/service/printer/colorful . The example printer client
illustrates how the bindings for a specific printer are obtained.

68 Federated Naming Service Programming Guide ♦ August 1997

The variable printer_binding contains the reference (the binding information) of the
named printer. Using the binding information, the printer client can connect to the
server and send the printer request. Note that the fn_ctx_lookup() function can
be replaced by fn_ctx_list_name() or fn_ctx_list_bindings() to list all
the names and their bindings.

CODE EXAMPLE 3–2 Print Client source

#include <stdio.h>
#include <xfn/xfn.h>
#include <string.h>
#include <stdlib.h>

/*
* Routine to obtain the address of a specific printe.
* This routine takes the printer name and the address type
* as the input arguments and returns the address
* of the requested printer.
*/

char *
get_address_of_printer(const char *printer_name,

const char *address_type)
{

FN_composite_name_t *printer_name_comp;
FN_status_t *status = fn_status_create();

FN_ctx_t *initial_context;
FN_ref_t *printer_ref;
const FN_identifier_t *addr_id;
const FN_ref_addr_t *address;

char *addr_data; /* Return value */

void *ip;
size_t address_type_len, addr_len;

/* Convert the printer name to a composite name */
printer_name_comp = fn_composite_name_from_string(

(const unsigned char *)printer_name);

/* Get the initial context */
initial_context = fn_ctx_handle_from_initial(0, status);

/* Check status for any error messages */
if (!fn_status_is_success(status)){

fprintf(stderr,
"Unable to obtain the initial context\n");

return (0);
}

/* Perform a lookup for the printer name */
printer_ref = fn_ctx_lookup(initial_context,

printer_name_comp, status);

/* Check status for any error messages */
if (!fn_status_is_success(status)){

fprintf(stderr, "Lookup failed on: %s\n",

(continued)

XFN Programming Examples 69

(Continuation)

printer_name);
return (0);

}

fn_ctx_handle_destroy(initial_context);
fn_composite_name_destroy(printer_name_comp);
address_type_len = strlen(address_type);

/* Obtain the requested address from the address type */
for (address = fn_ref_first(printer_ref, &ip);

address != NULL;
address = fn_ref_next(printer_ref, &ip)) {

addr_id = fn_ref_addr_type(address);
if (addr_id->length == address_type_len &&

strncmp(address_type,
(char *)addr_id->contents,
address_type_len) == 0)
break;

}
if (address == NULL)

return (0);
addr_len = fn_ref_addr_length(address);

addr_data = (char *)(malloc(addr_len + 1));
strncpy(addr_data,(char*)(fn_ref_addr_data(address)),

addr_len);
addr_data[addr_len] = ’\0’;

fn_ref_destroy(printer_ref);
return (addr_data);

}

Calling the Printer Client Function

The following code could be used to call the get_address_of_printer() routine
shown above.

char* printer_server;
printer_server = get_address_of_printer

"thisorgunit/service/printer/colorful",

"onc_bsdaddr");

Server
Using the XFN APIs, print servers can advertise their services. Code Example 3–3
illustrates a host, labpc , that would like to advertise the binding for the color
printer colorful . The FNS name for this printer is
thisorgunit/service/printer/colorful .

70 Federated Naming Service Programming Guide ♦ August 1997

The main tasks are to obtain the composite name for the printer name, to generate
the binding (reference) for the printer, and to bind the name and references to the
FNS namespace.

CODE EXAMPLE 3–3 Print Server Source

#include <stdio.h>
#include <xfn/xfn.h>
#include <string.h>
/*

* Routine to export the printer binding to the FNS name space.
* This routine takes the printer name along with its
* reference type, address type, and address. Returns the status.
*/

int
export_printer_to_fns(const char *printer_name,

const char *reference_type,
const char *address_type,
const char *address_data)

{
int return_status;
FN_composite_name_t *printer_name_comp;
FN_identifier_t ref_id, addr_id;
FN_status_t *status;
FN_ref_t *printer_ref;
FN_ref_addr_t *address;
FN_ctx_t *initial_context;

/* Obtain the initial context */
status = fn_status_create();
initial_context = fn_ctx_handle_from_initial(0, status);
/* Check status for any error messages */
if ((return_status = fn_status_code(status)) != FN_SUCCESS) {

fprintf(stderr, "Unable to obtain the initial context\n");
return (return_status);

}
/* Construct the composite name for the printer name */
printer_name_comp = fn_composite_name_from_string(

(unsigned char *)printer_name);

/* Construct the printer address */
addr_id.format = FN_ID_STRING;
addr_id.length = strlen(address_type);
addr_id.contents = (void *) address_type;
address = fn_ref_addr_create(&addr_id,

strlen(address_data), (const void *) address_data);

/* Construct the printer reference */
ref_id.format = FN_ID_STRING;

ref_id.length = strlen(reference_type);
ref_id.contents = (void *) reference_type;
printer_ref = fn_ref_create(&ref_id);

/* Add the printer address to the printer reference */
fn_ref_append_addr(printer_ref, address);

(continued)

XFN Programming Examples 71

(Continuation)

/* Bind the reference to the context */
fn_ctx_bind(initial_context, printer_name_comp, printer_ref, 0,

status);
/* Check the error status and return */

return_status = fn_status_code(status);

fn_composite_name_destroy(printer_name_comp);
fn_ref_addr_destroy(address);
fn_ref_destroy(printer_ref);
fn_status_destroy(status);
fn_ctx_handle_destroy(initial_context);

return (return_status);
}

Calling the Printer Server Function
The following code could be used to call the export_printer_to_fns() routine
shown above.

export_printer_to_fns
"thisorgunit/service/printer/colorful",

"onc_printers",
"onc_bsdaddr",
"labpc");

72 Federated Naming Service Programming Guide ♦ August 1997

APPENDIX A

XFN Composite Names

This appendix describes XFN composite names in detail.

� “Syntax” on page 73

� “Composite Name and Naming System Boundaries” on page 75

� “Strong Separation” on page 76

� “Weak Separation” on page 76

� “Composite Name Resolution” on page 77

� “Explicit NNSPs: Junctions” on page 77

� “Implicit NNSPs” on page 78

� “XFN Links” on page 79

� “Composite Name Encoding” on page 79

� “Backus-Naur Form (BNF)” on page 80

� “Decomposing the Composite Name String” on page 82

� “Composing the Composite Name String” on page 83

Syntax
The standard string form for XFN composite names is the concatenation of the
components of a composite name from left to right, with the XFN component
separator character (/) separating each component. Components can be quoted using
either double-quote ("") or single-quote (’’) pairs. You can use a backslash character
(\) to excape the XFN component separator or quote characters if the intention is for
these characters not to behave as separators or quotes. Note that quotation marks
and escape characters are interpreted as such only when they appear in places that

73

need quotes or escapes. For example, a quote appearing in an unquoted component
is not interpreted as a quote.

XFN defines an abstract data type, FN_composite_name_t , for representing the
structural form of a composite name. XFN also defines the syntax of how component
string names are composed into an XFN composite name and the corresponding
rules for converting an XFN composite name to its structural form from its string
form, and vice versa. The XFN client interface includes operations that perform these
conversions.

Table A–1 contains some examples of how the string form of XFN composite names
are decomposed into components according to the syntax of XFN composite names.
See also “Composite Name Encoding” on page 79 for more information.

TABLE A–1 String and Structural Forms of XFN Composite Names

String form Components in FN_composite_name_t

a a

a/b/c a, b, c

a/ a, ""

/a "", a

a// a, "", ""

a//b a, "", b

"" ""

/ "", ""

// "", "", ""

"a/b/c"/d a/b/c, d

"a.b.c"/d a.b.c, d

a.b.c/d a.b.c, d

a"b/c a"b, c

74 Federated Naming Service Programming Guide ♦ August 1997

TABLE A–1 String and Structural Forms of XFN Composite Names (continued)

String form Components in FN_composite_name_t

a’b/c a’b, c

"a/b/c illegal name

\"a/b/c "a, b, c

a\b\c/d a\b\c, d

a\b\/c a\b/c

"a\"b"/c a"b, c

’"a/b/c"’ "a/b/c"

’a\/b’/c a\/b, c

a\\b/c a\b, c

a/\"b a, "b

Composite Name and Naming System
Boundaries
There might not be a one-to-one correspondence between component separators and
naming system boundaries if a composite name contains names from naming
systems that use the same character as the XFN component separator to separate
their atomic names. Consequently, a component of a composite name might represent
an atomic name from a hierarchical naming system that uses the XFN component
separator or a compound name. Strong separation and weak separation refer to how a
context considers the XFN component separator as a naming system boundary.

XFN Composite Names 75

Strong Separation
An XFN context that treats the XFN component separator as a naming system
boundary supports strong separation. An XFN component separator that appears
within a component to be resolved by the context must be escaped or quoted.

Support for strong separation is a property of a context. A context that supports
strong separation expects to receive the name that it is going to resolve entirely in
one component of the composite name structure. When a composite name is
supplied to such a context, it consumes the leading component of the name; any
remaining components are left to be resolved by subordinate naming systems.

An XFN context with a name syntax that is either flat or hierarchical, and does not
use the XFN component separator as its atomic separator, supports strong separation.
Examples of naming systems that support strong separation are DNS and NIS+, both
of which have right-to-left dot-separated names. The following are examples of
names with DNS and NIS+ components, respectively.

.../ wiz.com /orgunit/ppt
orgunit/ accountspayable.finance /user/jsmith

Weak Separation
An XFN context that does not always treat the XFN component separator as a
naming system boundary supports weak separation. This arises when the component
naming system associated with the context uses the same character as the XFN
component separator as its atomic component separator. The context allows its
atomic separator to appear unescaped and unquoted in its compound names when
they occur in composite names. This means that an XFN component separator might
not necessarily signify a naming system boundary.

Support for weak separation is a property of a context. A context that supports weak
separation expects to receive its atomic names in separate components of the
composite name structure. When a composite name is supplied to a context that
supports weak separation, the context consumes the leading components of the name
(and treats them as atomic components); any remaining components are resolved by
subordinate naming systems. The number of components consumed is determined
either syntactically or dynamically.

CDS names and X.500 names are examples of names that use the XFN component
separator as their atomic name separator. X.500 supports weak separation using a
syntactic method (by scanning for typed names) while CDS supports weak
separation by determining the naming system boundary dynamically.

The following example shows a composite name with an X.500 component.

.../ c=us / o=wiz.com /orgunit/ppt

76 Federated Naming Service Programming Guide ♦ August 1997

Note - An XFN context that supports weak separation using only syntax-specific
discovery of its naming system boundary might not always be federated with
arbitrary subordinate naming systems. If the subordinate naming system has a
naming syntax that is indistinguishable from that of the superior naming system, the
superior naming system is not able to identify the naming system boundary.

Naming systems that use the same character as the XFN component separator as
their atomic separator, and which cannot support weak separation because it cannot
use a syntactic or dynamic method to determine the naming system boundary, must
provide context implementations that support strong separation. This means that
occurrences of atomic separators must be quoted or escaped when they appear in
compound names within composite names.

Composite Name Resolution
Composite name resolution combines resolution in each component naming system
and resolution across federated naming system boundaries. There are several
techniques for resolving an XFN composite name in the underlying federation of
naming systems.

This section describes two implementation techniques for composite name resolution
across a naming system boundary. One technique uses an explicit next naming
system pointer (NNSP) to resolve across a naming system boundary, while the other
uses an implicit NNSP.

An NNSP is the XFN reference of an XFN context in which composite name
components from subordinate naming systems are to be resolved. NNSPs are entities
that “tie” naming systems together into a federated system. NNSPs can be bound to
names, in which case they are explicit NNSPs or junctions. NNSPs can also be
nameless, in which case they are implicit NNSPs.

Explicit NNSPs: Junctions
A junction is an atomic name that is bound to an NNSP. It is a terminal name in the
superior naming system. There is no limit to the number of junctions bound in a
single context, except that imposed by the context. A context can reserve certain
names for use as junctions or have other policies for selecting names for use as
junctions. The conventions used for identifying junctions and their references are
context-specific.

Composite name resolution involving junctions proceeds as follows, depending on
whether the context supports strong or weak separation.

XFN Composite Names 77

A context that supports strong separation and junctions consumes the first
component of the composite name supplied to it. The last atomic name of the first
component must be a junction. Any remaining components are resolved in the
context named by the junction.

A context that supports weak separation and junctions resolves a composite name by
consuming leading components until a junction is reached, at which point resolution
of any remaining components is continued in the context resolved by the junction.
Determination of whether a component is a junction can be done statically, using a
syntactic policy, or dynamically during resolution.

Implicit NNSPs
When a context does not want to use part of its namespace for junctions, it uses
implicit NNSPs for federating subordinate naming systems. An implicit NNSP is
named using the XFN component separator. For example, the name wiz.com/
names the implicit NNSP of wiz.com . Each context can have one implicit NNSP.

Composite name resolution involving implicit NNSPs proceeds as follows,
depending on whether the context supports strong or weak separation.

A context that supports strong separation and resolves composite names using an
implicit NNSP consumes the first component of the composite name supplied to it.
Any remaining components are resolved in the context pointed to by the implicit
NNSP of the first component.

A context that supports weak separation and implicit NNSPs in its implementation
needs to distinguish the use of the XFN component separator character as an XFN
component separator or an atomic separator. This means that such a context needs to
know when to exit the current (native) naming system and follow the NNSP. This
can be achieved using a static, syntactic policy or a dynamic, resolution-based policy.

With the syntactic policy, a context syntactically discovers where the boundary
between its naming system and the subordinate naming system lies. This can impose
certain restrictions on the syntax of subordinate naming systems. Subordinate
naming systems must not permit, as valid top-level names, that are syntactically
indistinguishable from names allowed in the superior naming system. For example,
assume the superior naming system has a name syntax whose distinguishing feature
is that each atomic part must have an equal sign (=). The superior naming system
might impose as a policy that subordinate naming systems must not have top-level
names with an equal sign in them. Resolution in the superior naming system
continues until all leading components of the supplied composite name fitting the
syntactic rule are consumed. Any remaining components are resolved in the context
of the NNSP of the last component fitting the syntactic rule.

If a context is not able to syntactically differentiate between atomic components and
composite name components, or does not want to impose any syntactic restrictions,
it might be able to determine the naming system boundary at runtime, during

78 Federated Naming Service Programming Guide ♦ August 1997

resolution. The policy is to continue resolution in the current naming system until
resolution fails, at which point the implicit NNSP associated with the last context at
which resolution succeeded is used to continue the resolution. A conflict arises if the
same atomic name is bound both in the last context and the context pointed to by the
last context’s implicit NNSP. In this case, the binding in the last context takes
precedence. This way of supporting weak separation requires the context to have the
capability of returning remaining unresolved parts of a given name.

Coexistence of Explicit and Implicit NNSPs
Naming systems that implement either technique can coexist in a federation. A
naming system that supports composite name resolution using junctions can be
federated with one that supports implicit NNSPs, and vice versa.

XFN Links
An XFN link affects name resolution in the following way. Suppose lname is a link
bound to the atomic name aname in the context ctx. If at some point resolution of a
composite name cname reaches the context ctx and the next atomic name is aname,
resolution of aname results in the resolution of the link name lname. This is termed
“following the link.” If the first component of the link lname is the atomic name “. ”,
the remaining components of lname are resolved relative to ctx; otherwise, lname is
resolved from the initial context. The resolution of any remaining portion of the
name cname proceeds from the reference that results by resolving lname.

The link name can itself cause resolution to resolve through other links. This gives
rise to the possibility of a cycle of links whose resolution could not terminate
normally. As a simple means to avoid such nonterminating resolutions,
implementations can define limits on the number of XFN links that can may be
resolved in any single operation invoked by the caller.

Composite Name Encoding
All XFN implementations are required to support the ISO 646 portable representation
(same encoding as ASCII) for XFN composite names. All other representations are
optional.

All characters of the string form of an XFN composite name use a single encoding.
Characters with different encodings cannot exist in the same name string. This does
not preclude component names of a composite name in its structural form from
having different encodings. Code set mismatches that occur during the process of

XFN Composite Names 79

converting a composite name structure to its string form are resolved in an
implementation-dependent way. Strings with code sets that are determined by the
implementation to be compatible are converted without loss of information into a
single representation, which is also determined by the implementation. When an
implementation discovers that a composite name has components with incompatible
code sets, it returns the error code FN_E_INCOMPATIBLE_CODE_SETS.

Backus-Naur Form (BNF)
The following defines the standard string form of XFN composite names in
Backus-Naur Form (BNF). All the characters of the string representation of one name
must uniformly use the same encoding and locale information. The notations used
are as shown in Table A–2:

TABLE A–2 Backus-Naur Notation

Symbol Meaning

::= Is defined to be

| Alternatively

<text> Nonterminal element

‘’ ‘’ Literal expression

* The preceding syntactic unit can appear 0 or more times.

+ The preceding syntactic unit can appear 1 or more times.

{} The enclosed syntactic units are grouped as a single syntactic unit
(can be nested).

The XFN composite name syntax in BNF is shown in Table A–3:

80 Federated Naming Service Programming Guide ♦ August 1997

TABLE A–3 XFN Composite Name Syntax Using BNF

XFN Composite Name BNF Syntax

NULL ::= // Empty set

<PCS> ::= // Portable Character Set
The set consists of the glyphs:
//!"#$%&’()*+,\0123456789:;<=>?
//@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_’
//abcdefghijklmnopqrstuvwxyz{|}~

<CharSet> ::= <PCS>
| Characters from the repertoire of a string representation

<EscapeChar> ::= \

<ComponentSep>::= /

<Quote1>::= "

<Quote2> ::= ‘

<MetaChar> ::= <EscapeChar> | <ComponentSep>

<SimpleChar> ::= // any character from <CharSet> with <MetaChar>, <Quote1>,
// and <Quote2> excluded. An<EscapeChar> <MetaChar>, or
// <EscapeChar> <Quote1>, or <EscapeChar> <Quote2> is equivalent to
// <SimpleChar>.

<Component> ::= <SimpleChar>*
| <SimpleChar>+ {<Quote1> | <Quote2> | <SimpleChar>}*
| <Quote1> <CharSet>* {<EscapeChar> <Quote1>}* <Quote1>
// <CharSet> must not contain unescaped <Quote1>
// (note that <Quote2> can appear unescaped)

| <Quote2> <CharSet>* {<EscapeChar> <Quote2>}* <Quote2>
// <CharSet> must not contain unescaped <Quote2>
// (note that <Quote1> can appear unescaped)

<CompositeName> ::= NULL
| <Component> {<ComponentSep> <Component>}*

XFN Composite Names 81

Decomposing the Composite Name String
The function fn_composite_name_from_string() returns an XFN composite
name in its structural form, FN_composite_name_t , given the composite name’s
string representation. The syntax rules used by
fn_composite_name_from_string() are as follows:

� An XFN composite name is decomposed into an ordered set of components
(<Component>).

� Each component represents a compound name, or a single atomic name of a
compound name if the compound name’s syntax uses the XFN component
separator (/) as a separator for its atomic parts and the compound name is not
quoted.

The following are the rules for parsing a composite name.

1. Any <ComponentSep> character that is neither escaped nor enclosed in quoted
strings is considered to be a component separator.

2. Any string enclosed by component separators is a component (<Component>).

3. A composite name is parsed and decomposed into components from left to right:

a. The first component is the string preceding the first occurrence of a component
separator.

b. Empty components are processed as follows:

i. A leading component separator (the composite name begins with a
component separator) means a leading null component.

ii. A trailing component separator (the composite name ends with a
component separator) means a trailing null component.

c. Two consecutive component separators mean a null component.

d. The name string that immediately follows the last component separator of the
composite name is the final component.

4. A component string is evaluated from left to right and converted into its standard
form according to the following rules:

a. A component string is considered to be quoted if it is enclosed in a pair of
matching unescaped quote characters (either a <Quote1> or a <Quote2> pair).
The quoted string must represent the full component; that is, a begin quote
must immediately be preceded by a component separator or no character, and
the end quote must immediately be followed by a component separator or no
character.

b. If a component does not contain a valid begin quote (a <Quote1> or <Quote2>
immediately preceded by either a component separator or no character), any
occurrence of <Quote1> or <Quote2> within that component is treated just as
any other <SimpleChar>.

82 Federated Naming Service Programming Guide ♦ August 1997

c. An unmatched begin quote (missing or misplaced end quote) fails with an
FN_E_ILLEGAL_NAMEstatus.

d. Quotes are considered to be escaped in quoted strings if a matching quote
character is preceded immediately by the unescaped <EscapeChar>.

e. Quoted components are resolved by eliminating the quote characters from the
component name and substituting possibly escaped quotes by simple quote
characters. <MetaChar>s and the nonmatching quote characters enclosed in
quoted strings are treated just as any other <SimpleChar>.

f. Any of the defined metacharacters (<ComponentSep> and <EscapeChar>) is
considered to be escaped in an unquoted component name string if preceded
immediately by the unescaped <EscapeChar> (for instance, the sequence
<EscapeChar> <EscapeChar> <ComponentSep> denotes an escaped <EscapeChar>
but an unescaped <ComponentSep>).

g. <Quote1> and <Quote2> are considered to be escaped in an unquoted
component if and only if <EscapeChar> is preceded by a component separator
(that is, sequences <ComponentSep> <EscapeChar> <Quote1> or <ComponentSep>
<EscapeChar> <Quote2>). Other occurrences of <Quote1> and <Quote2> in an
unquoted component are treated just as any other <SimpleChar>.

h. Any occurrence of escaped <MetaChar>, escaped <Quote1>, or escaped
<Quote2> in unquoted components is substituted by the corresponding
unescaped character.

i. No substitution is done for <EscapeChar> <SimpleChar>. <EscapeChar>
<SimpleChar> maps to <EscapeChar> <SimpleChar>.

Composing the Composite Name String
The function fn_string_from_composite_name() returns the string
representation of an XFN composite name given its structural form
(FN_composite_name_t). The following are the rules used by
fn_string_from_composite_name() .

1. The components are added to the composite name string in left to right order
(that is, rightmost is the tail).

2. Successive components are separated by the component separator
(<ComponentSep>).

3. Empty components are handled in the following way:

a. A leading empty component is represented by a leading <ComponentSep>.

b. A trailing empty component is represented by a trailing <ComponentSep>.

c. An empty component occurring within a composite name is represented by
two consecutive <ComponentSep>s.

4. A composite name denoting a single non-empty component does not contain any
unescaped component separator.

5. Any occurrence of <ComponentSep> in a component is escaped by inserting
<EscapeChar> immediately preceding <ComponentSep>.

XFN Composite Names 83

6. If the first character of a component is either <Quote1> or <Quote2>, it will be
escaped by inserting <EscapeChar> immediately preceding the quote.

7. Any occurrence of <EscapeChar> before <ComponentSep> in a component is
escaped by inserting <EscapeChar> immediately preceding the <EscapeChar>.

8. Any occurrence of <EscapeChar> as the first character of a component with
<Quote1> or <Quote2> as the second character in a component is escaped by
inserting <EscapeChar> immediately preceding the <EscapeChar>. Subsequent
<EscapeChar> occurring before any matching quote character is also escaped by
inserting <EscapeChar> immediately preceding the <EscapeChar>.

84 Federated Naming Service Programming Guide ♦ August 1997

APPENDIX B

XFN Composite Names Syntax

This appendix provides supplemental information about XFN composite name
syntax.

� “XFN Composite Name Encoding” on page 85

� “XFN Backus-Naur Form (BNF)” on page 86

� “XFN Decomposing the Composite Name String” on page 87

� “XFN Composing the Composite Name String” on page 89

XFN Composite Name Encoding
All XFN implementations are required to support the ISO 646 portable representation
(same encoding as ASCII) for XFN composite names. All other representations are
optional.

All characters of the string form of an XFN composite name use a single encoding.
There cannot be characters with different encodings in the same name string. This
does not preclude component names of a composite name in its structural form from
having different encodings. Code set mismatches that occur during the process of
converting a composite name structure to its string form are resolved in an
implementation-dependent way. Strings with code sets that are determined by the
implementation to be compatible are converted without loss of information into a
single representation, which is also determined by the implementation. When an
implementation discovers that a composite name has components with incompatible
code sets, it returns the error code FN_E_INCOMPATIBLE_CODE_SETS.

85

XFN Backus-Naur Form (BNF)
The following defines the standard string form of XFN composite names in
Backus-Naur Form (BNF). All the characters of the string representation of one name
must uniformly use the same encoding and locale information. The notations used
are shown in Table B–1:

TABLE B–1 Backus-Naur Notation

Symbol Meaning

::= Is defined to be

| Alternatively

<text> Nonterminal element

‘’ ‘’ Literal expression

* The preceding syntactic unit can appear 0 or more times.

+ The preceding syntactic unit can appear 1 or more times.

{} The enclosed syntactic units are grouped as a single syntactic unit
(can be nested).

The XFN composite name syntax in BNF is shown in Table B–2:

TABLE B–2 XFN Composite Name Syntax Using BNF

XFN Composite Name BNF Syntax

NULL ::= // Empty set

<PCS> ::= // Portable Character Set.
The set consists of the glyphs:
//!"#$%&’()*+,\0123456789:;<=>?
//@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_’
//abcdefghijklmnopqrstuvwxyz{|}~

86 Federated Naming Service Programming Guide ♦ August 1997

TABLE B–2 XFN Composite Name Syntax Using BNF (continued)

XFN Composite Name BNF Syntax

<CharSet> ::= <PCS>
| Characters from the repertoire of a string representation

<EscapeChar> ::= \

<ComponentSep>::= /

<Quote1>::= "

<Quote2> ::= ‘

<MetaChar> ::= <EscapeChar> | <ComponentSep>

<SimpleChar> ::= // any character from <CharSet> with <MetaChar>, <Quote1>,
// and <Quote2> excluded. An<EscapeChar> <MetaChar>, or
// <EscapeChar> <Quote1>, or <EscapeChar> <Quote2> is equivalent to
// <SimpleChar>.

<Component> ::= <SimpleChar>*
| <SimpleChar>+ {<Quote1> | <Quote2> | <SimpleChar>}*
| <Quote1> <CharSet>* {<EscapeChar> <Quote1>}* <Quote1>
// <CharSet> must not contain unescaped <Quote1>
// (note that <Quote2> can appear unescaped)

| <Quote2> <CharSet>* {<EscapeChar> <Quote2>}* <Quote2>
// <CharSet> must not contain unescaped <Quote2>
// (note that <Quote1> can appear unescaped)

<CompositeName> ::= NULL
| <Component> {<ComponentSep> <Component>}*

XFN Decomposing the Composite
Name String
The function fn_composite_name_from_string() returns an XFN composite
name in its structural form, FN_composite_name_t , given the composite name’s
string representation. The syntax rules used by
fn_composite_name_from_string() are as follows:

XFN Composite Names Syntax 87

� An XFN composite name is decomposed into an ordered set of components
(<Component>).

� Each component represents a compound name, or a single atomic name of a
compound name if the compound name’s syntax uses the XFN component
separator (/) as a separator for its atomic parts and the compound name is not
quoted.

The following are the rules for parsing a composite name:

1. Any <ComponentSep> character that is neither escaped nor enclosed in quoted
strings is considered to be a component separator.

2. Any string enclosed by component separators is a component (<Component>).

3. A composite name is parsed and decomposed into components from left to right:

a. The first component is the string preceding the first occurrence of a component
separator.

b. Empty components are processed as follows:

i. A leading component separator (the composite name begins with a
component separator) means a leading null component.

ii. A trailing component separator (the composite name ends with a
component separator) means a trailing null component.

c. Two consecutive component separators mean a null component.

d. The name string that immediately follows the last component separator of the
composite name is the final component.

4. A component string is evaluated from left to right and converted into its standard
form, according to the following rules:

a. A component string is considered to be quoted if it is enclosed in a pair of
matching unescaped quote characters (either a <Quote1> or a <Quote2> pair).
The quoted string must represent the full component; that is, a begin quote
must immediately be preceded by a component separator or no character, and
the end quote must immediately be followed by a component separator or no
character.

b. If a component does not contain a valid begin quote (a <Quote1> or <Quote2>
immediately preceded by either a component separator or no character), any
occurrence of <Quote1> or <Quote2> within that component is treated just as
any other <SimpleChar>.

c. An unmatched begin quote (missing or misplaced end quote) fails with an
FN_E_ILLEGAL_NAMEstatus.

d. Quotes are considered to be escaped in quoted strings if a matching quote
character is preceded immediately by the unescaped <EscapeChar>.

e. Quoted components are resolved by eliminating the quote characters from the
component name and substituting possibly escaped quotes by simple quote

88 Federated Naming Service Programming Guide ♦ August 1997

characters. <MetaChar>s and the nonmatching quote characters enclosed in
quoted strings are treated just as any other <SimpleChar>.

f. Any of the defined metacharacters (<ComponentSep> and <EscapeChar >) is
considered to be escaped in an unquoted component name string if preceded
immediately by the unescaped <EscapeChar> (for instance, the sequence
<EscapeChar> EscapeChar>ComponentSep> denotes an escaped <EscapeChar> but
an unescaped <ComponentSep>).

g. <Quote1> and <Quote2> are considered to be escaped in an unquoted
component if and only if EscapeChar> is preceded by a component separator
(that is, sequences <ComponentSep> <EscapeChar> <Quote1> or <ComponentSep>
<EscapeChar> <Quote2>). Other occurrences of <Quote1> and <Quote2> in an
unquoted component are treated just as any other <SimpleChar>.

h. Any occurrence of escaped <MetaChar>, escaped <Quote1>, or escaped
<Quote2> in unquoted components is substituted by the corresponding
unescaped character.

i. No substitution is done for <EscapeChar> SimpleChar>. <EscapeChar>
SimpleChar> maps to <EscapeChar> <SimpleChar>.

XFN Composing the Composite Name
String
The function fn_string_from_composite_name() returns the string
representation of an XFN composite name given its structural form
(FN_composite_name_t). The following are the rules used by
fn_string_from_composite_name() .

1. The components are added to the composite name string in left to right order
(that is, rightmost is the tail).

2. Successive components are separated by the component separator
(<ComponentSep>).

3. Empty components are handled in the following way:

a. A leading empty component is represented by a leading <ComponentSep>.

b. A trailing empty component is represented by a trailing <ComponentSep>.

c. An empty component occurring within a composite name is represented by
two consecutive <ComponentSep>s.

4. A composite name denoting a single non-empty component does not contain any
unescaped component separator.

5. Any occurrence of <ComponentSep> in a component is escaped by inserting
<EscapeChar> immediately preceding <ComponentSep>.

XFN Composite Names Syntax 89

6. If the first character of a component is either <Quote1> or <Quote2>, it will be
escaped by inserting <EscapeChar> immediately preceding the quote.

7. Any occurrence of <EscapeChar> before <ComponentSep> in a component is
escaped by inserting <EscapeChar> immediately preceding the <EscapeChar>.

8. Any occurrence of <EscapeChar> as the first character of a component with
<Quote1> or <Quote2> as the second character in a component is escaped by
inserting <EscapeChar> immediately preceding the <EscapeChar>. Subsequent
<EscapeChar> occurring before any matching quote character is also escaped by
inserting <EscapeChar> immediately preceding the EscapeChar>.

90 Federated Naming Service Programming Guide ♦ August 1997

Glossary

application-level
name service

Application-level name services are incorporated in applications
offering services such as files, mail, and printing. Application-level
name services are bound below enterprise-level name services. The
enterprise-level name services provide contexts in which contexts of
application-level name services can be bound.

atomic name An indivisible component of a name as defined by the naming
convention.

attribute Each named object is associated with a set of zero or more attributes.
Each attribute in the set has a unique attribute identifier, an
attribute syntax, and a set of zero or more distinct attribute values.

binding The association of an atomic name with an object reference. For
simplicity, an object reference and the object it refers to are used
interchangeably in this guide.

BNF Backus-Naur Form.

composite name A name that spans multiple naming systems. It consists of an
ordered list of zero or more components. Each component is a name
from the namespace of a single naming system. Composite name
resolution is the process of resolving a name that spans multiple
naming systems.

compound name A sequence of atomic names composed according to the naming
convention of a naming system.

context An object whose state is a set of bindings with distinct atomic
names. Every context has an associated naming convention. A
context provides a lookup (resolution) operation, which returns the
reference, and may provide operations such as binding names,
unbinding names, and listing bound names.

Glossary-91

DNS Domain Name System. A system that provides the naming policy
and mechanisms for mapping domain and machine names to
addresses on the Internet.

enterprise-level
name service

A name service that names objects within an enterprise. The types
of objects named are organizational units, sites, users, hosts, and
files. Enterprise-level name services are bound below global name
services. Global name services provide contexts in which the root
contexts of enterprise-level naming systems can be bound.

enterprise root The root context of an enterprise. A context for naming objects
found at the root of the enterprise namespace.

federated naming
service

The service offered by a federated naming system.

federated naming
system

An aggregation of autonomous naming systems that cooperate to
support name resolution of composite names through a standard
interface. Each member of a federation has autonomy in its choice
of operations other than name resolution.

federated
namespace

The set of all possible names generated according to the policies
that govern the relationships among member naming systems and
their respective namespaces.

generic context A context for binding names used in applications.

global context A context for naming objects that have global names (currently, DNS
and X.500 are the only global naming systems specified by XFN).

global name service A name service that has worldwide scope, such as Internet DNS
and X.500. The types of entities named at this global level are
typically countries, states, provinces, cities, companies, universities,
institutions, and government departments and ministries. Each of
these entities can be an enterprise.

host context A context for naming objects related to a computer.

implicit naming
system pointer

An unnamed reference that points to a context in another naming
system.

initial context Every XFN name is interpreted relative to some context, and every
XFN naming operation is performed on a context object. The XFN
interface provides a function that allows the client to obtain an
initial context object that provides a starting point for resolution of
composite names.

Glossary-92 Federated Naming Service Programming Guide ♦ August 1997

junction A name in one namespace bound to a context in the next naming
system.

naming convention Every name is generated by a set of syntactic rules called a naming
convention.

namespace The set of all names in a naming system.

namespace identifier A special atomic name used to refer to the root of a namespace.

name service The service offered by a naming system. It is accessed through its
interface.

naming system A connected set of contexts of the same type (having the same
naming convention) and providing the same set of operations with
identical semantics. In the UNIX operating system, for example, the
set of directories in a given file system (and the naming operations
on directories) constitutes a naming system.

next naming system
pointer (NNSP)

Reference to a context in which composite names from subordinate
naming systems are resolved.

organizational units An enterprise is organized into organizational units such as centers,
laboratories, departments, divisions, and so on. An organizational
unit is a subunit of an enterprise.

organizational unit
context

A context for naming objects related to an organizational unit
within an enterprise.

parent context A context in which this context and its siblings are bound.

reference The thing bound to a name. It contains addresses identifying the
communication endpoints of the object.

root context A context for naming the objects found in the root of the namespace.

service context A context for naming objects that provide services.

site context A context for naming objects related to a physical site.

strong separation The case where the XFN context treats the XFN component
separator as the naming system boundary.

subcontext A context bound within another context.

Glossary-93

user context A context for naming objects related to a human user.

weak separation The case where the XFN context does not treat the XFN component
separator as the naming system boundary.

XFN link A special form of reference that has a composite name as an
address. Like any other type of reference, an XFN link is bound to
an atomic name in a context.

X.500 A global-level directory service defined by an Open Systems
Interconnection (OSI) standard.

Glossary-94 Federated Naming Service Programming Guide ♦ August 1997

Index

Special Characters
" (quotation marks)

BNF notation, 80, 86
XFN composite name syntax, 74
XFN standard syntax model, 56

’ (single quote) in XFN composite name
syntax, 74

* in BNF notation, 80, 86
+ in BNF notation, 80, 86
. (dots)

... namespace identifier, 9
/... namespace identifier, 9

/ (slashes)
/... namespace identifier, 9
XFN component separator, 56, 74, 75

::= in BNF notation, 80, 86
{} (curly braces) in BNF notation, 80, 86
| (pipe) in BNF notation, 80, 86

Numbers
0 value, 21

A
abstract data types, 20
addresses

multiple, 11
references, 11
XFN interface parameters, 46

administration
FNS on NIS+

FNS context management, 28, 29
API usage model, 14

application programming
namespace browser example, 60

code, 60
commands, 66
diagram, 60
sample output, 66

printer example, 68
client, 68
server, 70

XFN composite names, 79
naming system boundaries and

component separators, 75, 77
resolution, 77, 79
syntax, 74, 75

XFN interfaces, 19
abstract data types, 20
base attribute interface, 30, 37, 41
base context interface, 21, 30
conventions, 20
memory management policies, 21
overview, 19, 21
parameters, 45, 54
parsing compound names, 55
status codes, 41, 45
status objects, 23, 32, 41
usage, 20

applications
API usage model, 14
FNS implementation, 15
FNS interaction, 15, 17
name services, 2, 4

architectural model, 14
attributes, 12

Index-95

composite names, 13, 14
compound names, 12, 13
contexts, 11
initial context, 14
references, 11
XFN links, 13

as XFN component escape character, 74
ASCII string XFN identifier format, 47
asterisk (*) in BNF notation, 80, 86
atomic names

in compound names, 12
in contexts, 11

attribute operations
attribute-modification operations, 33, 34
get attribute, 33
get attribute identifiers, 35
get attribute values, 34
get multiple attributes, 35, 36
modify attribute, 33
modify multiple attributes, 36
multiple-attribute operations, 35, 37, 41
relationship to naming operations, 31, 32
single-attribute operations, 32, 35
status objects, 32
XFN attribute model, 31

attribute-modification lists, 48
attributes

adding attributes or values, 33
base attribute interface, 30, 37, 41

attribute-modification operations, 33,
34

multiple-attribute operations, 35, 37,
41

relationship to naming operations, 31,
32

single-attribute operations, 32, 35
status objects, 32
supporting interfaces, 19, 20
XFN attribute model, 31

described, 12
getting, 33

identifiers, 35
multiple attributes, 35, 36
syntax attributes of context, 29
values, 34

sets, 47
syntax attributes, 55, 56

getting, 29

XFN interface parameters, 47
XFN model, 31

B
backslash () as XFN component escape

character, 74
Backus-Naur Form (BNF), 80, 81, 87, 86
base attribute interface, 30, 37, 41

abstract data types, 20
attribute-modification operations, 33, 34
conventions, 20
memory management policies, 21
multiple-attribute operations, 35, 37, 41
parameters, 45, 54

attribute modification lists, 48
attribute sets, 47
attributes and attribute values, 47
composite names, 46
identifiers, 46
references and addresses, 46
strings, 47

parsing compound names, 55
syntax attributes, 55, 56
XFN standard syntax model, 55, 56

relationship to naming operations, 31, 32
single-attribute operations, 32, 35
status objects, 32
supporting interfaces, 19, 20
usage, 20
XFN attribute model, 31

base context interface, 21, 30
abstract data types, 20
context handles, 23, 24
conventions, 20
lookup and list contexts, 24, 26
managing contexts, 28, 29
memory management policies, 21
names in context operations, 22
other context operations, 29, 30

Index-96 Federated Naming Service Programming Guide ♦ August 1997

parameters, 45, 54
attribute modification lists, 48
attribute sets, 47
attributes and attribute values, 47
composite names, 46
identifiers, 46
references and addresses, 46
strings, 47

parsing compound names, 55
syntax attributes, 55, 56
XFN standard syntax model, 55, 56

requirements for operations, 22, 23
status objects, 23
supporting interfaces, 19, 20
updating bindings, 26, 28
usage, 20

begin quote (") in XFN standard syntax
model, 56

bind/lookup model, 15
bindings

adding, 26
initial context bindings for enterprise

naming, 6
example, 7
table, 8, 9

listing names and bindings in contexts, 25
removing

terminal atomic name, 27
renaming, 27
updating, 26, 28

BNF (Backus-Naur Form), 80, 81, 87, 86
boundaries (naming system) and component

separators, 75, 77
strong separation, 76
weak separation, 76, 77

browsing
namespace browser programming

example, 60
code, 60
commands, 66
diagram, 60
sample output, 66

C
client programming interfaces, 19

abstract data types, 20

base attribute interface, 30, 37, 41
attribute-modification operations, 33,

34
multiple-attribute operations, 35, 37,

41
relationship to naming operations, 31,

32
single-attribute operations, 32, 35
status objects, 32
XFN attribute model, 31

base context interface, 21, 30
context handles, 23, 24
lookup and list contexts, 24, 26
managing contexts, 28, 29
names in context operations, 22
other context operations, 29, 30
requirements for operations, 22, 23
status objects, 23
updating bindings, 26, 28

conventions, 20
memory management policies, 21
overview, 19, 21
parameters, 45, 54

attribute modification lists, 48
attribute sets, 47
attributes and attribute values, 47
composite names, 46
identifiers, 46
references and addresses, 46
strings, 47

parsing compound names, 55
syntax attributes, 55, 56
XFN standard syntax model, 55, 56

status codes, 41, 45
status objects, 41

base attribute interface, 32
base context interface, 23

supporting interfaces, 19, 20
usage, 20

codes
attribute-modification operation, 33, 34
link status, 41
status, 41, 45

commands
fnbrowse program, 66
XFN interface function names, 20

component separator (/)

Index-97

naming system boundaries and, 75, 77
strong separation, 76
weak separation, 76, 77

XFN composite name syntax, 74, 75
XFN standard syntax model, 56

composing XFN composite name strings, 83,
84, 89, 90

composite names
applications’ use of FNS, 15
defined, 1, 13
examples

hosts, 10
illustration, 14
organizations, 9
sites, 10
user, 10

host naming systems, 10
organization naming systems, 9
parsing XFN composite names, 82, 83, 87,

89
resolution, 77, 79

coexistence of explicit and implicit
NNSPs, 79

explicit NNSPs, 77, 78
implicit NNSPs, 78, 79
XFN links, 79

site naming systems, 10
user naming systems, 10
XFN composite names, 79

naming system boundaries and
component separators, 75, 77

resolution, 77, 79
syntax, 74, 75, 84, 85, 90

XFN context implementation, 22
XFN interface parameters, 46
XFN syntax, 74, 75, 84, 85, 90

Backus-Naur Form (BNF), 81, 87, 86,
87

composing the composite name
string, 83, 84, 89, 90

decomposing the composite name
string, 82, 83, 87, 89

encoding, 79, 80, 85
string and structural forms, 74, 75

compound names, 12, 13
described, 12
hierarchical naming system examples, 12,

13

parsing, 55
syntax attributes, 55, 56
XFN standard syntax model, 55, 56

const parameters, 21
const pointers, 21
constants, XFN interface conventions, 20
context operations

bind, 26
construct context handle from

reference, 24
construct handle to initial context, 23
context handles, 23, 24
create subcontext, 28, 29
destroy context handle, 30
destroy subcontext, 29
get reference to context, 29
get syntax attributes of context, 29
list bindings, 25
list names, 25
lookup, 24
lookup link, 26
managing contexts, 28, 29
names in, 22
rename, 27
requirements, 22, 23
status objects, 23
unbind, 27
updating bindings, 26, 28

context shared object modules, 16
contexts

base context interface, 21, 30
context handles, 23, 24
lookup and list contexts, 24, 26
managing contexts, 28, 29
names in context operations, 22
other context operations, 29, 30
requirements for operations, 22, 23
status objects, 23
supporting interfaces, 19, 20
updating bindings, 26, 28

creating subcontexts, 28, 29
defined, 11
destroying

handles, 30
subcontexts, 29

Index-98 Federated Naming Service Programming Guide ♦ August 1997

getting
handles, 23, 24
references, 29
syntax attributes, 29

initial context
bindings for enterprise naming, 6
described, 14

managing and examining, 28, 29
syntax-related attributes, 55
tree structure, 12, 13
XFN contexts, 11

curly braces in BNF notation, 80, 86

D
data types

abstract data types, 20
XFN interface conventions, 20

decomposing XFN composite name
strings, 82, 83, 87, 89

deleting, see removing,
destroying

context handles, 30
subcontexts, 29

DNS, see Domain Name System (DNS),
Domain Name System (DNS)

hierarchical naming system, 12
dots (.)

... namespace identifier, 9
/... namespace identifier, 9

double quotes
BNF notation, 80, 86
XFN composite name syntax, 74
XFN standard syntax model, 56

E
encoding for XFN composite names, 79, 80, 85
end quote (") in XFN standard syntax

model, 56
enterprise level of service, 2, 4
enterprise namespace policies

arrangement of objects, 4
illustrated, 4
initial context bindings, 6

example, 7
table, 8, 9

namespace structure
example, 6

table of policies, 3, 9
erasing, see removing,
error messages

status codes, 42, 43, 45
examining, see displaying,
explicit NNSPs, 77, 78
exporting the FNS interface, 15

F
federated enterprise namespace policies, see

enterprise namespace
policies,

federated global namespace policies, see global
namespace policies,

Federated Naming Service
API usage model, 14
application view, 15, 17
architectural model, 14
described, vii, 1
need for, 2
XFN compliance, vii, 2

files and file systems
enterprise namespace policies, 3
as enterprise policy entities, 5

fnbrowse program example, 60
code, 60
commands, 66
diagram, 60
sample output, 66

FNS, see Federated Naming Service,
FN_ prefix, 20
fn_ prefix, 20
fn_attr_get() function, 33, 34
fn_attr_get_ids() function, 35
fn_attr_get_values() function, 33 to 35
fn_attr_modify() function, 33
fn_attr_multiget() function, 36
fn_attr_multi_modify() function, 36
FN_ATTR_OP_ADD operation code, 33
FN_ATTR_OP_ADD_EXCLUSIVE operation

code, 33
FN_ATTR_OP_ADD_VALUES operation

code, 34
FN_ATTR_OP_REMOVE operation code, 34

Index-99

FN_ATTR_OP_REMOVE_VALUES operation
code, 34

fn_composite_name_from_string()
function, 82, 83, 87, 89

fn_ctx_bind() function, 26
fn_ctx_bindinglist_destroy() function, 26
fn_ctx_bindinglist_next() function, 26
fn_ctx_create_subcontext() function, 28, 29
fn_ctx_destroy_subcontext() function, 29
fn_ctx_get_ref() function, 29
fn_ctx_get_syntax_attrs() function, 29
fn_ctx_handle_destroy() function, 30
fn_ctx_handle_from_initial() function

getting context handles, 23
fn_ctx_handle_from_ref() function, 24
fn_ctx_listbindings() function, 26
fn_ctx_list_names() function, 25
fn_ctx_lookup() function

support required, 22
using, 24

fn_ctx_lookup_link() function, 26
fn_ctx_namelist_destroy() function, 25
fn_ctx_namelist_next() function, 25
fn_ctx_rename() function, 27
fn_ctx_unbind() function, 27
FN_E_ATTR_NO_PERMISSION status

code, 42
FN_E_ATTR_VALUE_REQUIRED status

code, 42
FN_E_AUTHENTICATION_FAILURE status

code, 42
FN_E_COMMUNICATION_FAILURE status

code, 42
FN_E_CONFIGURATION_ERROR status

code, 42
FN_E_CONTINUE status code, 42
FN_E_CTX_NOT_EMPTY status code, 43
FN_E_CTX_NO_PERMISSION status code, 43
FN_E_CTX_UNAVAILABLE status code, 43
FN_E_ILLEGAL_NAME status code, 43, 56
FN_E_INCOMPATIBLE_CODE_SETS status

code, 43, 56
FN_E_INSUFFICIENT_RESOURCES status

code, 43
FN_E_INVALID_ATTR_VALUE status

code, 43
FN_E_INVALID_ENUM_HANDLE status

code, 43

FN_E_INVALID_SYNTAX_ATTRS status
code, 43

FN_E_LINK_ERROR status code, 41, 43
FN_E_LINK_LOOP_LIMIT status code, 44
FN_E_MALFORMED_LINK status code, 44
FN_E_MALFORMED_REFERENCE status

code, 44
FN_E_NAME_IN_USE status code, 44
FN_E_NAME_NOT_FOUND status code, 44
FN_E_NOT_A_CLIENT status code, 44
FN_E_NO_SUCH_ATTRIBUTE status code, 44
FN_E_NO_SUPPORTED_ADDRESS status

code, 44
FN_E_OPERATION_NOT_SUPPORTED status

code, 22, 44
FN_E_PARTIAL_RESULT status code, 44
FN_E_SYNTAX_NOT_SUPPORTED status

code, 45
FN_E_TOO_MANY_ATTR_VALUES status

code, 45
FN_E_UNSPECIFIED_ERROR status code, 45
FN_ID_DCE_UUID XFN identifier format, 47
FN_ID_ISO_OID_STRING XFN identifier

format, 47
FN_ID_STRING XFN identifier format, 47
fn_multigetlist_destroy() function, 36
fn_multigetlist_next() function, 36
FN_status_t parameter, 23
fn_std_syntax_ava_separator XFN syntax

attribute, 58
fn_std_syntax_begin_quote XFN syntax

attribute, 57
fn_std_syntax_case_insensitive XFN syntax

attribute, 57
fn_std_syntax_code_sets XFN syntax

attribute, 58
fn_std_syntax_end_quote XFN syntax

attribute, 57, 58
fn_std_syntax_escape XFN syntax attribute, 57
fn_std_syntax_separator XFN syntax

attribute, 57
fn_std_syntax_typeval_separator XFN syntax

attribute, 58
fn_string_from_composite_name()

function, 83, 84, 89, 90
FN_SUCCESS status code, 42
fn_syntax_direction XFN syntax attribute, 56

Index-100 Federated Naming Service Programming Guide ♦ August 1997

fn_syntax_type XFN syntax attribute, 56
fn_valuelist_destroy() function, 34, 35
fn_valuelist_next() function, 34, 35
fs or _fs namespace identifier

FNS policy, 3
functions

XFN interface conventions, 20

G
getting

attribute identifiers, 35
attribute values, 34
attributes, 33
context handles, 23, 24
multiple attributes, 35, 36
reference to context, 29
syntax attributes of context, 29

global level of service, 2, 4
global namespace policies

illustrated, 4

H
handles

context handles
destroying, 30
getting, 23, 24

overview, 21
hierarchical naming system

compound name examples, 12, 13
enterprise namespace structure, 5

host or _host namespace identifier
FNS policy, 3
initial context binding, 8

hosts
as enterprise policy entities, 5
composite name examples, 10
enterprise namespace policies, 3

I
identifiers

namespace
enterprise level, 8, 9

XFN interface parameters, 46
implicit NNSPs, 78, 79
initial context

bindings for enterprise naming, 6
example, 7
table, 8, 9

described, 14
handle construction operation, 23

interfaces for programming, see client
programming interfaces,

Internet DNS, see domain name system
(DNS),

ISO OID XFN identifier formats, 47

J
junctions, 77, 78

L
links (XFN)

composite name resolution, 79
described, 13
lookup operation, 26
status object information, 41
XFN header file, 20
XFN library, 20

listing
names and bindings in contexts, 25
names bound in contexts, 25
namespace browser programming

example, 60
code, 60
commands, 66
diagram, 60
sample output, 66

lookup model, 14
lookup operations

contexts, 24
XFN links, 26

M
managing, see administration,
memory management policies for client

interfaces, 21
messages, see error messages,
modules, context shared object, 16
multiple addresses, 11
multiple attributes

getting, 35, 36

Index-101

getting identifiers, 35
modifying, 36

myens or _myens namespace identifier
initial context binding, 8

myorgunit or _myorgunit namespace identifier
initial context binding, 8

myself or _myself namespace identifier
initial context binding, 8

N
name resolution

context operation support
requirements, 22, 23

status object information, 41
XFN composite names, 77, 79

coexistence of explicit and implicit
NNSPs, 79

explicit NNSPs, 77, 78
implicit NNSPs, 78, 79
XFN links, 79

namespace browser programming example, 60
code, 60
commands, 66
diagram, 60
sample output, 66

namespace identifiers
enterprise level

initial context bindings, 8, 9
namespace policies, see policies,
naming

context operation names, 22
XFN attribute operations and, 31, 32
XFN interface conventions, 20

naming system boundaries and component
separators, 75, 77

strong separation, 76
weak separation, 76, 77

navigating, see browsing,
next naming system pointers (NNSPs)

XFN composite name resolution
coexistence of explicit and implicit

NNSPs, 79
explicit NNSPs, 77, 78
implicit NNSPs, 78, 79

NNSPs, see next naming system pointers
(NNSPs),

O
operations, see attribute operations,
org namespace identifier

initial context binding, 8
organizational units

composite name examples, 9
described, 5
enterprise namespace policies, 3

orgunit or _orgunit namespace identifier
FNS policy, 3
initial context binding, 8

OSF DCE UUID XFN identifier format, 47

P
parsing

compound names, 55
syntax attributes, 55, 56
XFN standard syntax model, 55, 56

XFN composite names, 82, 83, 87, 89
periods, see dots (.),
pipe character (|) in BNF notation, 80, 86
plus sign (+) in BNF notation, 80, 86
pointer types, 21
policies

enterprise namespace
arrangement of objects, 4
illustrated, 4
initial context bindings, 6
table of policies, 3, 9

global namespace
illustrated, 4

information not specified, 4
information specified, 2
levels of services, 4
overview, 5

predefined constants, 20
primary status code, 41
printer namespace identifier

FNS policy, 3
printers

enterprise namespace policies, 3
programming example, 68

client, 68
server, 70

programming, see application programming,

Index-102 Federated Naming Service Programming Guide ♦ August 1997

Q
quotation marks

BNF notation, 80, 86
XFN composite name syntax, 74
XFN standard syntax model, 56

R
RAM, memory-management policies for client

interfaces, 21
references

defined, 11
getting for contexts, 29
handle construction operation, 24
status object information, 41
XFN interface parameters, 46

relative distinguished names, 12
removing

bindings, 27
destroying

context handles, 30
subcontexts, 29

renaming bindings, 27
resolution, see name resolution,

S
separator character (/)

naming system boundaries and, 75, 77
strong separation, 76
weak separation, 76, 77

XFN composite name syntax, 74, 75
XFN standard syntax model, 56

servers
print server programming example, 70

service or _service namespace identifier
FNS policy, 3

services
as enterprise policy entities, 5
enterprise namespace policies, 3
levels, 4

sets of attributes, 47
single quote in XFN composite name

syntax, 74
site or _site namespace identifier

FNS policy, 3
initial context binding, 8

sites

composite name examples, 11
enterprise namespace policies, 3
as enterprise policy entities, 5

slash (/)
/... namespace identifier, 9
XFN component separator, 56, 74, 75

Solaris
FNS implementation

applications, 15
status codes, 41, 45

link status, 41
status objects, 41

base attribute interface, 32
base context interface, 23

strings
composing XFN composite name

strings, 83, 85, 89, 91
decomposing XFN composite name

strings, 82, 83, 87, 89
XFN composite name syntax, 74, 75
XFN identifier formats, 47, 49
XFN interface parameters, 47
XFN standard syntax model, 56

subcontexts, see subordinate contexts,
subordinate contexts

creating, 28, 29
destroying, 29

T
_t suffix, 20
thisens or _thisens namespace identifier

initial context binding, 8
thishost or _thishost namespace identifier

initial context binding, 8
thisorgunit or _thisorgunit namespace

identifier
initial context binding, 8

thisuser namespace identifier
initial context binding, 8

troubleshooting
status codes, 42, 43, 45

U
UNIX hierarchical naming system, 12
updating

Index-103

bindings, 26, 28
user or _user namespace identifier

FNS policy, 3
initial context binding, 8

users
as enterprise policy entities, 5
composite name examples, 10
enterprise namespace policies, 3

V
viewing, see displaying,

X
X.500 global directory service

hierarchical naming system, 12
X/Open Federated Naming

attribute model, 31
client programming interfaces, 19

abstract data types, 20
base attribute interface, 30, 37, 41
base context interface, 21, 30
conventions, 20
memory management policies, 21
overview, 19, 21
parameters, 45, 54
parsing compound names, 55
status codes, 41, 45
status objects, 23, 32, 41
supporting interfaces, 19, 20
usage, 20

component separator and naming system
boundaries, 75, 77

strong separation, 76
weak separation, 76, 77

composite names, 79
naming system boundaries and

component separators, 75, 77
resolution, 77, 79
syntax, 74, 75, 84, 85, 90

compound-name syntax model, 55, 56
contexts, 11
described, 2
FNS conformity, vii, 2
identifier formats, 47, 49
links

composite name resolution, 79
described, 13
lookup operation, 26
status object information, 41
XFN header file, 20
XFN library, 20

XFN, see X/Open Federated Naming,

Index-104 Federated Naming Service Programming Guide ♦ August 1997

