Contents

Preface ... vii

1. Introduction to Desktop KornShell 1
 Using Desktop KornShell to Create Motif Applications ... 1
 Resources .. 2
 Unsupported Resources 3
 dtksh app-defaults File 4
 Variable Values .. 5
 Return Values ... 6
 Immediate Return Value 7
 Initializing the Xt Intrinsics 8
 Creating Widgets ... 8
 Using a Callback ... 10
 Registering a Callback 10
 Passing Data to a Callback 10
2. A Sample Script ... 13
 Writing the Script ... 13
 Adding a Callback ... 15

3. Advanced Topics ... 17
 Using Context Variables 17
 Event Handler Context Variables 17
 Translation Context Variables 18
 Workspace Callback Context Variables 18
 Input Context Variables 18
 Accessing Event Subfields 20
 Responding to a Window Manager Close Notice 21
 Responding to a Session Manager Save State Notice 21
 Cooperating with Workspace Manager 25
 Creating Localized Shell Scripts 25
 Using dtksh to Access X Drawing Functions 26
 Setting Widget Translations 27

4. A Complex Script ... 29
 Using script_find ... 29
 Analyzing script_find 32
 Functions and Callbacks 32
 Main Script ... 34

A. dtksh Commands ... 41
 Built-in Xlib Commands 42
 Built-in Xt Intrinsic Commands 44
<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Built-in Motif Commands</td>
<td>48</td>
</tr>
<tr>
<td>Built-in Common Desktop Environment Application Help Commands</td>
<td>60</td>
</tr>
<tr>
<td>Built-in Localization Commands</td>
<td>61</td>
</tr>
<tr>
<td>Built-in libDt Session Management Commands</td>
<td>62</td>
</tr>
<tr>
<td>Built-in libDt Workspace Management Commands</td>
<td>63</td>
</tr>
<tr>
<td>Built-in libDt Action Commands</td>
<td>64</td>
</tr>
<tr>
<td>Built-in libDt Data-Typing Commands</td>
<td>65</td>
</tr>
<tr>
<td>Miscellaneous Built-in libDt Commands</td>
<td>67</td>
</tr>
<tr>
<td>Built-in Desktop Services Message Set Commands</td>
<td>67</td>
</tr>
</tbody>
</table>

B. dtksh Convenience Functions |

<p>| dtkshAddButtons | 78 |
| DtkshSetReturnKeyControls | 79 |
| DtkshUnder, DtkshOver, DtkshRightOf, and DtkshLeftOf | 80 |
| DtkshFloatRight, DtkshFloatLeft, DtkshFloatTop, and DtkshFloatBottom | 81 |
| DtkshAnchorRight, DtkshAnchorLeft, DtkshAnchorTop, and DtkshAnchorBottom | 82 |
| DtkshSpanWidth and DtkshSpanHeight | 83 |
| DtkshDisplayInformationDialog, DtkshDisplayQuestionDialog, DtkshDisplayWarningDialog, DtkshDisplayWorkingDialog, and DtkshDisplayErrorDialog | 84 |
| DtkshDisplayQuickHelpDialog and DtkshDisplayHelpDialog | 85 |</p>
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. The script_find Script</td>
<td>87</td>
</tr>
<tr>
<td>Listing for script_find</td>
<td>87</td>
</tr>
<tr>
<td>Find.sticky</td>
<td>95</td>
</tr>
<tr>
<td>Find.help</td>
<td>95</td>
</tr>
<tr>
<td>Index</td>
<td>97</td>
</tr>
</tbody>
</table>
Preface

The Desktop KornShell User’s Guide provides the information you need to create Motif applications with KornShell (kshell) scripts. In addition to the basic information you’ll need to get started, several example scripts of increasing complexity are described. Throughout this guide the term dtksh means the Desktop KornShell.

Who Should Use This Guide

This guide is intended for programmers who want a quick and easy means of creating Motif applications, but don’t have the time, knowledge, or inclination to use the C programming language. A good understanding of kshell programming, Motif, the Xt Intrinsics, and, to a lesser extent, Xlib is needed. An understanding of C would also be helpful.

How This Guide Is Organized

Chapter 1, “Introduction to Desktop KornShell,” describes the basic information you need to begin writing Motif applications in dtksh scripts.

Chapter 2, “A Sample Script,” describes two simple dtksh scripts. The first script creates a push button widget within a bulletin board widget. The second script expands the first by adding a callback for the push button.

Chapter 3, “Advanced Topics,” describes more advanced topics pertaining to dtksh scripts.
Chapter 4, “A Complex Script,” describes a much more complex script than either of the ones described in Chapter 2. This script creates a graphic interface to the find command.

Appendix A, “dtksh Commands,” lists all the dtksh commands.

Appendix B, “dtksh Convenience Functions,” contains man pages for commands or functions that are not documented elsewhere.

Appendix C, “The script_find Script,” contains the complete listing of the complex script described in Chapter 4.

Related Books

The following books provide information on kshell programming, Motif, the Xt Intrinsics, and Xlib:

- Mastering OSF/Motif Widgets (Second Edition), by Donald L. McMinds, published by Addison-Wesley, Reading, MA 01867

What Typographic Changes and Symbols Mean

The following table describes the type changes and symbols used in this book.

Table P-1 Typographic Conventions

<table>
<thead>
<tr>
<th>Typeface or Symbol</th>
<th>Meaning</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>AaBbCc123</td>
<td>The names of commands, files, and directories; onscreen computer output</td>
<td>Edit your <code>.login</code> file. Use <code>ls -a</code> to list all files. <code>system% You have mail.</code></td>
</tr>
<tr>
<td>AaBbCc123</td>
<td>Command-line placeholder: replace with a real name or value</td>
<td>To delete a file, type <code>rm filename</code></td>
</tr>
<tr>
<td>AaBbCc123</td>
<td>Book titles, new words or terms, or words to be emphasized</td>
<td>Read Chapter 6 in User's Guide. These are called <code>class</code> options. You must be root to do this.</td>
</tr>
</tbody>
</table>
Table P-1 Typographic Conventions

<table>
<thead>
<tr>
<th>Typeface or Symbol</th>
<th>Meaning</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code samples may display the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>%</td>
<td>UNIX C shell prompt</td>
<td>system%</td>
</tr>
<tr>
<td>$</td>
<td>UNIX Bourne and Korn shell prompt</td>
<td>system$</td>
</tr>
<tr>
<td>#</td>
<td>Superuser prompt, all shells</td>
<td>system#</td>
</tr>
</tbody>
</table>
Introduction to Desktop KornShell

Desktop KornShell (dtksh) provides kshell scripts with the means for easily accessing most of the existing Xt and Motif™ functions. dtksh is based on ksh-93, which provides a powerful set of tools and commands for the shell programmer, and which supports the standard set of kshell programming commands.

dtksh supports all the features and commands provided by ksh-93. In addition, dtksh supports a large selection of the libDt functions, most of the widget-related Motif functions, a large subset of the Xt Intrinsics functions, and a small subset of the Xlib functions. All the supported functions are listed in Appendix A.

Using Desktop KornShell to Create Motif Applications

This section describes how to use dtksh to create Motif applications. To successfully use dtksh, you should have experience with Xlib, the Xt Intrinsics, the Motif widgets, and KornShell programming. It is also helpful to know the C programming language. If you are not familiar with any of these, you should refer to the appropriate documentation. Even if you are familiar with these systems, you should have access to the applicable man pages for reference.

In addition, your system should have these libraries:

- libDtHelp
- libDtSvc
- libX11
Resources

Resources are widget variables that you use to define attributes such as size, location, or color. Each widget usually has a combination of its own resources, plus resources it inherits from higher level widgets. Xt Intrinsics and Motif resource names consist of a prefix (XtN or XmN) followed by the base name. The first letter of the base name is always lowercase, and the first letter of subsequent words within the base name is always uppercase. The convention for resource names in dtksh scripts is to delete the prefix and use the base name. Thus, the resource XmNtopShadowColor becomes topShadowColor.

Some Xt and Motif commands allow the shell script to pass in a variable number of parameters, representing resource-value pairs. This is similar to the argument list passed to the corresponding Xt or Motif C function. Examples include any of the commands used to create a widget, plus the XtSetValues command. In dtksh, resources are specified by a string with the following syntax:

```
resource:value
```

where `resource` is the name of the resource and `value` is the value assigned to the resource. dtksh automatically converts the `value` string to an appropriate internal representation. For example:

```bash
XtSetValues $WIDGET height:100 width:200 resizePolicy:RESIZE_ANY
XmCreateLabel LABEL $PARENT myLabel labelString:”Close Dialog”
```

When you retrieve widget resource values using XtGetValues, the return value is placed in an environment variable. Thus, unlike the Xt Intrinsics, the dtksh version of XtGetValues uses a name:(environment) variable pair, rather than a name:value pair. For example:

```bash
XtGetValues $WIDGET height:HEIGHT resizePolicy:POLICY
                   sensitive:SENSITIVE
echo $HEIGHT
echo $POLICY
echo $SENSITIVE
```

The preceding dtksh segment might produce this output:
Certain types of resource values, including string tables and bit masks, have special representation. For example, the List widget allows a string table to be specified for both the items and selectedItems resources. In dtksh, a string table is represented as a comma-separated list of strings, which is similar to how Motif treats them. When a resource that returns a string table is queried using XtGetValues, the resulting value is a comma-separated set of strings.

A resource that expects a bit mask value to be passed to it expects the mask to be specified as a string composed of the various mask values separated by the | (bar) character. When a resource that returns a bit mask is queried, the return value is a string representing the enabled bits, separated by the | character. For example, you could use the following command to set the mwmFunctions resource for the VendorShell widget class:

```
XtSetValues mwmFunctions: MWM_FUNC_ALL|MWM_FUNC_RESIZE
```

Unsupported Resources

dtksh supports most of the Motif resources. The following lists unsupported resources. Resources with an * (asterisk) can be specified at widget creation time by using XtSetValues, but can’t be retrieved using XtGetValues.

- All widget and gadget Classes:
 - Any fontlist resource *
 - Any pixmap resource *
- Composite:
 - insertPosition
 - children
- Core:
 - accelerators
 - translations *
 - colormap
- XmText:
 - selectionArray
 - selectionArrayCount
- ApplicationShell:
 - argv
• WMShell:
 • iconWindow
 • windowGroup
• Shell:
 • createPopupChildrenProc
• XmSelectionBox:
 • textAccelerators
• Manager, Primitive, and Gadget Subclasses:
 • userData
• XmFileSelectionBox:
 • dirSearchProc
 • fileSearchProc
 • qualifySearchDataProc

dtksh app-defaults File

The dtksh app-defaults file, named Dtksh, is found in a location based on the following path description:

`/usr/dt/app-defaults/<LANG>`

The only information contained in this app-defaults file is the inclusion of the standard Dt base app-defaults file. The following is a listing of the dtksh app-defaults file:

```c
#include "Dt"
```

The file Dt is also located in `/usr/dt/app-defaults/<LANG>` and is shown in the following listing.

```c
*foregroundThreshold:70

###
#
#    Help system specific resources
#
###

#
#    Display Area Colors
#
#    These resources set the colors for the display area (where actual help text is displayed). The resources are complex because they have to override the standard color resources
```
Variable Values

This section describes the types of values for some of the variables in a dtksh app-defaults file.

Defined Values

The C bindings of the interfaces to X, Xt and Motif include many nonstring values that are defined in header files. The general format of such values consists of an Xt or Xm prefix followed by a descriptive name. For example, one of the constraint values for a child of a form widget is XmATTACH_FORM. Equivalent values are specified in dtksh by dropping the prefix, just as in a Motif defaults file:

- XmDIALOG_COMMAND_TEXT becomes DIALOG_COMMAND_TEXT
- XtATTACH_FORM becomes ATTACH_FORM
Boolean Values

You can specify a Boolean value as a parameter to a dtksh command using the words True or False; case is not significant. A Boolean result is returned as either True or False, using all lowercase letters.

Return Values

Graphical commands in dtksh fall into one of four categories, based on the definition of the corresponding C function:

1. The function is void and returns no values. Example: XMapWidget()
2. The function is void, but returns one or more values through reference parameters. Example: XmGetColors()
3. The function returns a non-Boolean value. Example: XtCreateManagedWidget()
4. The function returns a Boolean value. Example: XtIsSensitive()

Category 1

A dtksh category 1 command follows the calling sequence of its corresponding C function. The number and order of parameters can be determined by looking at the standard documentation for the function. Example:
XMapWidget $FORM

Category 2

A dtksh category 2 command also generally follows the calling sequence of its corresponding C function. It returns a value in an environment variable, instead of passing a pointer to a return variable. Example:
XmGetColors $FORM $BG FOREGROUND TOPSHADOW BOTTOMSHADOW SELECT
echo "Foreground color = "$FOREGROUND
Category 3

A `dtksh` category 3 command differs slightly from its corresponding C function. Where the C function returns its value as the value of the procedure call, a `dtksh` command requires an additional parameter. This parameter is the name of an environment variable into which the return value is to be placed. It is always the first parameter. Example:

```
XmTextGetString TEXT_VALUE $TEXT_WIDGET
echo "The value of the text field is "$TEXT_VALUE
```

Category 4

A `dtksh` category 4 command returns a value that can be used in a conditional expression just as in C. If the C function also returns values through reference variables (as in category 2), the `dtksh` command also uses variable names for the corresponding parameters. Example:

```
if XmIsTraversable $PUSH_BUTTON; then
  echo "The pushbutton is traversable"
else
  echo "The pushbutton is not traversable"
fi
```

Generally, the order and type of parameters passed to a command matches those passed to the corresponding C function, except as noted for category 3 commands.

Immediate Return Value

Many of the category 3 commands return a single value using an environment variable specified as the first parameter to the command (for these special commands, the first parameter has the name `variable`). If this return value is immediately used in an expression, the special environment variable "-" may be used in place of a variable name. When `dtksh` encounters "-" as the name of the environment variable in which the return value is to be returned, it instead returns the result as the value of the command. This allows the shell script to embed the command call in another command call. This feature only works for commands that return a single value, and the value is returned in the first parameter. For example:

```
XtDisplay DISPLAY $FORM
XSync $DISPLAY true
```
can be replaced by the equivalent statement:

```c
XSync $(XtDisplay "-" $FORM) true
```

The reference to $DISPLAY is replaced with the value returned by the call to XtDisplay.

This capability is available for all category 3 commands except those that create a widget, those that return more than a single value, and those whose first parameter is not a named variable. Commands that do not accept "-" as the environment variable name include the following:

- `XtInitialize()`
- `XtCreateApplicationShell()`
- `XtCreatePopupShell()`
- `XtCreateManagedWidget()`
- `XtCreateWidget()`
- All commands of the form: `XmCreate...()`
- Most commands of the form: `tt_...()`

Initializing the Xt Intrinsics

A dtksh script must first initialize the Xt Intrinsics before it can call any of the Xlib, X, Motif, or libDt commands. You accomplish this by invoking the `XtInitialize` command, which returns an application shell widget. As is true for all dtksh commands that return a widget ID, `XtInitialize` returns the widget ID in the environment variable that is the first argument. For example, in:

```c
XtInitialize TOLEVEL myShellName Dtksh $0 "$@
```

the widget ID is returned in the environment variable TOLEVEL.

dtksh provides a default app-defaults file, which is used if the call to `XtInitialize` specifies an application class name of Dtksh. This app-defaults file contains the standard set of Dt application default values, so dtksh applications have a consistent look with other Dt applications.

Creating Widgets

There are several commands you can use to create widgets:
XtCreateWidget Creates an unmanaged widget.
XtCreateManagedWidget Creates a managed widget.
XtCreateApplicationShell Creates an application shell.
XtCreatePopupShell Creates a pop-up shell.
XmCreate<widgettypes> Creates an unmanaged widget.

There is a specific format for each of these commands that you must follow. For example, suppose you want to create an unmanaged push button widget as a child of the top-level widget. You can use either XtCreateWidget or XmCreatePushButton. The formats for these commands are:

- XtCreateWidget variable name widgetclass $parent [resource:value ...]
- XmCreatePushButton variable $parent name [resource:value ...]

The actual commands to create a push button widget are:

XtCreateWidget BUTTON button XmPushButton $TOPLEVEL
XmCreatePushButton BUTTON $TOPLEVEL button

Each of the preceding commands do exactly the same thing: create an unmanaged push button. Note that no resource values are set. Suppose that you want the background color of the push button to be red, and the foreground color to be black. You can set the values of these resources this way:

XtCreateWidget BUTTON button XmPushButton $TOPLEVEL \
background:Red \
foreground:Black
XmCreatePushButton BUTTON $TOPLEVEL button\
background:Red \
foreground:Black

All of the C functions that create a widget return a widget ID, or ID. The corresponding dtksh commands set an environment variable equal to the widget ID. These are category 3 commands, so the first argument is the name of the environment variable in which to return the widget ID. The widget ID is an ASCII string used by dtksh to access the actual widget pointer. Either of the following commands could be used to create a new form widget; however, in each case the widget ID for the new form widget is returned in the environment variable FORM:

- XtCreateManagedWidget FORM name XmForm $PARENT
- XmCreateForm FORM $PARENT name
After either of these commands, you can use $FORM to reference the new form widget. For example, you could use this command to create a label widget within the new form widget:

```c
XmCreateLabel LABEL $FORM name
labelString:"Hi Mom" 
CH_FORM 
leftAttachment:ATTACH_FORM
```

Note – There is a special widget ID called NULL, provided for cases where a shell script may need to specify a NULL widget. For example, to disable the defaultButton resource for a form widget, use the command

```c
XtSetValues $FORM defaultButton:NULL
```

Using a Callback

A callback is a function or procedure that is executed when an event or combination of events occurs. For example, a callback is used to achieve the desired result when a push button is “pressed.” It is easy for a dtksh shell script to assign a command to be activated whenever a particular callback is invoked for a widget. The command could be as simple as a string of commands blocked together, or the name of the shell function to invoke.

Registering a Callback

An application registers a callback with a widget to specify a condition in which it is interested and to specify what action should occur when that condition occurs. The callback is registered using `XtAddCallback`. The action can be any valid dtksh command. For example:

```c
XtAddCallback $WIDGET activateCallback "ActivateProc"
XtAddCallback $WIDGET activateCallback 
  "XtSetSensitive $BUTTON false"
```

Passing Data to a Callback

A callback needs to be passed context information, so it can determine what condition led to its call. For a C procedure, this information is typically passed in a `callData` structure. For example, a scale widget invoking a `valueChangedCallback` passes an instance of the following structure in `callData`:
typedef struct {
 int reason;
 XEvent event;
 int value;
} XmScaleCallbackStruct;

The C application's callback then does something like:

```c
if (scaleCallData->reason == XmCR_VALUE_CHANGED)
{
    eventType = scaleCallData->event->type;
    display = scaleCallData->event->xany.display;
}
```

Similarly, when a callback is invoked in dtksh, the following special environment variable is set up before the callback command executes:

```
CB_WIDGET
```

This is set to the widget ID for the widget that is invoking the callback.

```
CB_CALL_DATA
```

This is set to the address of the callData structure passed by the widget to the callback.

The CB_CALL_DATA environment variable represents a pointer to a structure, and access to its fields uses a syntax similar to that of C. Nested environment variables are defined, named the same as the fields of the structure (but all in uppercase), and a dot is used to indicate containment of an element in a structure. Thus, the previous C code to access the callData provided by the scale widget translates to:

```bash
if [ "$CB_CALL_DATA.REASON" = "CR_VALUE_CHANGED" ]; then
    eventType=${CB_CALL_DATA.EVENT.TYPE}
    display=${CB_CALL_DATA.EVENT.XANY.DISPLAY}
fi
```

The same is true of the event structure within the callData structure.

For most callback structures, the shell script is able to reference any of the fields defined for the particular callback structure, using the technique described earlier. In most cases, the shell script is not able to alter the values of the fields within these structures. The exception to this is the XmTextVerifyCallbackStruct, which is available during the losingFocusCallback, the modifyVerifyCallback and the motionVerifyCallback for the text widget. dtksh supports the
modification of certain fields within this structure, to the extent that it is supported by Motif. The following fields within the callback structure are capable of being modified:

- CB_CALL_DATA.DOIT
- CB_CALL_DATA.STARTPOS
- CB_CALL_DATA.TEXT.PTR
- CB_CALL_DATA.TEXT.LENGTH
- CB_CALL_DATA.TEXT.FORMAT

This is an example of how one of these fields can be modified:

- CB_CALL_DATA.DOIT="false"
- CB_CALL_DATA.TEXT.PTR="*"
- CB_CALL_DATA.TEXT.LENGTH=1
This chapter shows you how to use what you learned about dtksh in Chapter 1. The two simple scripts described here should give you a good start at writing your own scripts.

Writing the Script

This script creates a bulletin board widget within which a push button widget is placed. The script is kept simple by not including any callbacks. The second script includes a callback.

Here’s the first script:

```bash
#!/usr/dt/bin/dtksh
XtInitialize TOPLEVEL dttest1 Dtksh $0
XtSetValues $TOPLEVEL title:"dttest1"
XtCreateManagedWidget BBOARD bboard XmBulletinBoard $TOPLEVEL \
    resizePolicy:RESIZE_NONE height:150 width:250\ 
    background:SkyBlue
XtCreateManagedWidget BUTTON pushbutton XmPushButton $BBOARD \ 
    background:goldenrod \ 
    foreground:MidnightBlue \ 
    labelString:"Push Here" \ 
    height:30 width:100 x:75 y:60 shadowThickness:3
XtRealizeWidget $TOPLEVEL
XtMainLoop
```
Figure 2-1 shows the window that the first script produces.

![Window from script dttest](image)

Figure 2-1 Window from script dttest

The first line of the script:

```bash
#!/usr/dt/bin/dtksh
```

tells the operating system that this script should be executed using `/usr/dt/bin/dtksh` rather than the standard shell.

The next line initializes the Xt Intrinsics.

```bash
XtInitialize TOLEVEL dttest1 Dtksh $0
```

The name of the top-level widget is saved in the environment variable `$TOLEVEL`, the shell widget name is `dttest1`, the application class name is `Dtksh`, and the application name is given by the `dtksh` variable `$0`.

The next line sets the title resource to the name of the script.

```bash
XtSetValues $TOLEVEL title:"dttest1"
```

Notice that there is no space between the colon after the resource name (title) and its value. An error message appears if you have a space between them.

The next four lines create a bulletin board widget and set some of its resources.

```bash
XtCreateManagedWidget BBOARD bboard XmBulletinBoard $TOLEVEL \
   resizePolicy:RESIZE_NONE \n   background:SkyBlue\n   height:150 width:250
```

The bulletin board widget’s ID is saved in the environment variable `$BBOARD`. The widget’s name is `bboard`. This name is used by the Xt Intrinsics to set the values of resources that might be named in an external resource file. The widget class is `XmBulletinBoard`. The bulletin board’s parent widget is the widget ID contained in the environment variable `$TOLEVEL`. This is the topl-
evel widget created by the initialization command in the first line. The \ (backslash) at the end of the line tells dtksh that this command continues on the next line.

The next six lines create a push button widget as a child of the bulletin board, and set some of the push button’s resources.

XtCreateManagedWidget BUTTON pushbutton XmPushButton $BBOARD \ background:goldenrod \ foreground:MidnightBlue \ labelString: ”Push Here” \ height:30 width:100 x:75 y:60 \ shadowThickness:3

This is basically the same procedure used to create the bulletin board, except that the variable, name, class, and parent are different.

The next line causes the toplevel widget and all its children to be realized.

XtRealizeWidget $TOPLEVEL

Finally, the XtMainLoop command initiates a loop processing of events for the widgets.

XtMainLoop

In this script, all that happens is the window appears on the display. It stays there until you terminate the script, either by choosing Close on the Window Manager menu or by pressing CTRL C in the terminal window from which you executed the script.

Adding a Callback

To provide a function for the push button so that when it is pressed a message appears in the terminal window and the script terminates, you have to add a callback. Also, you must tell the push button about the existence of this callback. The following is the script with the new code added:

#!/usr/dt/bin/dtksh

activateCB() {
 echo “Pushbutton activated; normal termination.”
 exit 0
}

XtInitialize TOLEVEL dttest2 Dtksh $0
XtSetValues $TOPOLEVEL title:”dttest2”
XtCreateManagedWidget BBOARD bboard XmBulletinBoard $TOPOLEVEL \
 resizePolicy:RESIZE_NONE \
 background:SkyBlue \
 height:150 width:250
XtCreateManagedWidget BUTTON pushbutton XmPushButton $BBOARD \
 background:goldenrod \
 foreground:MidnightBlue \
 labelString:”Push Here”\
 height:30 width:100 x:75 y:60 shadowThickness:3

XtAddCallback $BUTTON activateCallback activateCB
XtRealizeWidget $TOPOLEVEL
XtMainLoop

The callback is the function activateCB(). You typically add the callback to
the push button after it (the push button) has been created:
XtAddCallback $BUTTON activateCallback activateCB

Now the pushbutton knows about the callback. When you click the push
button, the function activateCB() is executed, and the message
“Pushbutton activated; normal termination.” appears in the
terminal window from which you executed the script. The script is terminated
by the call to the function exit 0.
Now that you have the basic information about dt.ksh, this chapter introduces you to more advanced topics.

Using Context Variables

dt.ksh has a number of variables that provide context to certain aspects of an application.

EventHandler Context Variables

An application registers event handlers with a widget to specify an action to occur when one of the specified events occurs. The action can be any arbitrary dt.ksh command line. For example:

```
XtAddEventHandler $W "Button2MotionMask" false "ActivateProc"
XtAddEventHandler $W "ButtonPressMask|ButtonReleaseMask"
    false "echo action"
```

Two environment variables are defined to provide context to the event handler:

- **EH_WIDGET** Set to the ID of the widget for which the event handler is registered.
- **EH_EVENT** Set to the address of the XEvent which triggered the event handler.

Access to the fields within the XEvent structure is shown in the following example:
if [${EH_EVENT.TYPE} = "ButtonPress"]; then
echo "X = "${EH_EVENT.XBUTTON.X}
echo "Y = "${EH_EVENT.XBUTTON.Y}
elif [${EH_EVENT.TYPE} = "KeyPress"]; then
echo "X = "${EH_EVENT.XKEY.X}
echo "Y = "${EH_EVENT.XKEY.Y}
fi

Translation Context Variables

The Xt Intrinsics provides for event translations to be registered for a widget. Context for event translation is provided in the same way it is provided for event handlers. The two variables defined for translation commands are:

TRANSLATION_WIDGET Set to the widget handle for the widget for which the translation is registered.

TRANSLATION_EVENT Set to the address of the XEvent that triggered the translation.

Dot-notation provides access to the fields of the event:

echo "Event type = "${TRANSLATION_EVENT.TYPE}
echo "Display = "${TRANSLATION_EVENT.XANY.DISPLAY}

Workspace Callback Context Variables

An application has the ability to register a callback function that is invoked whenever the user changes to a new workspace. When the callback is invoked, two special environment variables are set, and can be accessed by the shell callback code:

CB_WIDGET Set to the ID for the widget that is invoking the callback.

CB_CALL_DATA Set to the X atom that uniquely identifies the new workspace. This can be converted to its string representation, using the XmGetAtomName command.

Input Context Variables

The Xt Intrinsics provides the XtAddInput facility, which allows an application to register interest in any data available from a particular file descriptor. When programming in C, the application provides a handler
function, which is invoked when input is available. It is up to the handler to read the data from the input source and to handle character escaping and line continuations.

dtksh also supports the XtAddInput facility, but takes it a step further and makes it easier for shell programmers to use. By default, when a shell script registers interest in a file descriptor, dtksh invokes the shell script's input handler only when a complete line of text has been received. A complete line of text is defined as a line terminated either by an unescaped newline character or by the end of the file. The input handler is also called if no data is available and the end of the file has been reached. The handler can then use XtRemoveInput to remove the input source and to close the file descriptor. The advantage of this default behavior is that input handlers need not be concerned with escape processing or with handling line continuations. The disadvantage is that it assumes that all of the input is line-oriented and contains no binary information.

dtksh also supports a “raw” input mode if the input source contains binary information or if the input handler wants to read the data from the input source directly. In raw mode, dtksh does not read any of the data from the input source. Whenever dtksh is notified that input is available on the input source, it invokes the shell script's input handler. It is then the handler's responsibility to read the incoming data, perform any required buffering and escape processing, and detect when the end of the file has been reached (so that the input source can be removed and the file descriptor closed). This mode seldom needs to be used by a dtksh script.

Whether the input handler has been configured to operate in the default mode or in raw mode, dtksh sets up several environment variables before calling the shell script's input handler. These environment variables provide the input handler with everything needed to handle the incoming data. The environment variables are:

- **INPUT_LINE**: If operating in the default mode, this variable contains the next complete line of input available from the input source. If INPUT_EOF is true, then there is no data in this buffer. If operating in raw mode, then this variable always contains an empty string.

- **INPUT_EOF**: If operating in the default mode, this variable is set to false anytime INPUT_LINE contains data, and it is set to true when the end of file is reached. When the end of file is reached, the shell script's input handler should
unregister the input source and close the file descriptor. If operating in raw mode, this variable is always set to false.

INPUT_SOURCE

This indicates the file descriptor for which input is available. If operating in raw mode, this file descriptor is used to obtain the pending input. The file descriptor is also used to close the input source, when no longer needed.

INPUT_ID

This indicates the ID returned by XtAddInput, when the input source was originally registered. This information is needed to remove the input source with XtRemoveInput.

Accessing Event Subfields

The XEvent structure has many different configurations, based on the event's type. dtksh provides access only to the most frequently used XEvents. Any of the other standard XEvents can be accessed using the event type XANY, followed by any of the subfields defined by the XANY event structure, which includes the following subfields:

- `${TRANSLATION_EVENT.XANY.TYPE}`
- `${TRANSLATION_EVENT.XANY.SERIAL}`
- `${TRANSLATION_EVENT.XANY.SEND_EVENT}`
- `${TRANSLATION_EVENT.XANY.DISPLAY}`
- `${TRANSLATION_EVENT.XANY.WINDOW}`

TEXT supports full access to all of the event fields for the following event types:

- XANY
- XBUTTON
- XEXPOSE
- XNOEXPOSE
- XGRAPHICSEXPOSE
- XKEY
- XMOTION

The following examples show how the subfields for the preceding event types can be accessed:

- `${TRANSLATION_EVENT.XBUTTON.X}`
- `${CB_CALL_DATA.EVENT.XKEY.STATE}`
Responding to a Window Manager Close Notice

When the user selects Close from the Window Manager menu for an application, the application is terminated unless it has arranged to “catch” the Close notification. If the application does not catch the notification, then multiple windows managed by the application all disappear and application data may be left in an undesirable state. To avoid this, \texttt{dtksh} provides for catching and handling the Close notification. The application must:

- Define a procedure to handle the Close notification
- Request notification when Close is selected
- Override the response, so the application is not shut down

The following code illustrates this processing.

```
# This is the `callback' invoked when the user selects
# the `Close' menu item
WMCallback()
{
    echo "User has selected the Close menu item"
}
# Create the toplevel application shell
XtInitialize TOPLEVEL test Dtksh $0 "$@"
XtDisplay DISPLAY $TOPLEVEL

# Request notification when the user selects the `Close'
# menu item
XmInternAtom DELETE_ATOM $DISPLAY "WM_DELETE_WINDOW" false
XmAddWMProtocolCallback $TOPLEVEL $DELETE_ATOM WMCallback

# Ask Motif to not automatically close down your
# application window
XtSetValues $TOPLEVEL deleteResponse:DO NOTHING
```

Responding to a Session Manager Save State Notice

Session Manager allows applications to save their current state when the user terminates the current session, so that when the user later restarts the session, an application can return to the state it was in. In \texttt{dtksh}, this is accomplished...
by setting up a handler in a similar way of handling a Close notification. If a handler is not set up, the application has to be restarted manually in the new session, and the application does not retain any state.

To set up a handler to save the current state, the application must:

- Define functions to save the state at the end of the session and to restore it on startup
- Register interest in the Session Manager notification
- Register the function to save the state
- At startup, determine whether the saved state should be restored

The following code illustrates this process.

```bash
#!/usr/dt/bin/dtksh
# Function invoked when the session is being ended by the user
SessionCallback()
{
    # Get the name of the file into which we should save our
    # session information
    if DtSessionSavePath $TOPLEVEL PATH SAVEFILE; then
        exec 9>$PATH
    fi

    # Save off whether we are currently in an iconified state
    if DtShellIsIconified $TOPLEVEL; then
        print -u9 'Iconified'
    else
        print -u9 'Deiconified'
    fi

    # Save off the list of workspaces we currently reside in
    if DtWsmGetWorkspacesOccupied $(XtDisplay "-" $TOPLEVEL) \
        $(XtWindow "-" $TOPLEVEL) \
        CURRENT_WS_LIST;
    then
        # Map the comma-separated list of atoms into
        # their string representation
        oldIFS=$IFS
        IFS=",,"
        for item in $CURRENT_WS_LIST;
        do
            XmGetAtomName NAME $(XtDisplay "-" $TOPLEVEL) \
                $(XtWindow "$" $TOPLEVEL) \
                $item
            print -u9 $NAME
        done
        IFS=$oldIFS
    fi
```
fi
exec 9<&-

Let the session manager know how to invoke us when
the session is restored
DtSetStartupCommand $TOPLEVEL \
"/usr/dt/contrib/dtksh/SessionTest $SAVEFILE"
else
 echo "DtSessionSavePath FAILED!!"
 exit -3
fi
}

Function invoked during a restore session; restores the
application to its previous state
RestoreSession()
{
 # Retrieve the path where our session file resides
 if DtSessionRestorePath $TOPLEVEL PATH $1; then
 exec 9<$PATH
 read -u9 ICONIFY
 # Extract and restore our iconified state
 case $ICONIFY in
 Iconified) DtSetIconifyHint $TOPLEVEL True;;
 *) DtSetIconifyHint $TOPLEVEL False;
 esac

 # Extract the list of workspaces we belong in, convert
 # them to atoms, and ask the Workspace Manager to relocate
 # us to those workspaces
 WS_LIST=""
 while read -u9 NAME
do
 XmInternAtom ATOM $(XtDisplay "-" $TOPLEVEL) \$NAME False
 if [${#WS_LIST} -gt 0]; then
 WS_LIST=${WS_LIST},${ATOM}
 else
 WS_LIST=$ATOM
 fi
 done

 DtWsmSetWorkspacesOccupied $(XtDisplay "-" $TOPLEVEL) \$(XtWindow "-" $TOPLEVEL) $WS_LIST
}

Advanced Topics
exec 9<&-
else
echo "DtSessionRestorePath FAILED!!"
exit -3
fi
}

Create the Main UI

XtInitialize TOPLEVEL wmProtTest Dtksh $0 "$0"
XtCreateManagedWidget DA da XmDrawingArea TOPLEVEL
 height:200 width:200
XmInternAtom SAVE_SESSION_ATOM $(XtDisplay "-" $TOPLEVEL) "WM_SAVE_YOURSELF" False

If a command-line argument was supplied, then treat it as the
name of the session file
if (($# > 0))
then
 # Restore to the state specified in the passed-in session file
 XtSetValues TOPLEVEL mappedWhenManaged:False
 XtRealizeWidget TOPLEVEL
 XSync $(XtDisplay "-" $TOPLEVEL) False
 RestoreSession $1
 XtSetValues TOPLEVEL mappedWhenManaged:True
 XtPopup TOPLEVEL GrabNone
else
 # This is not a session restore, so come up in the default state
 XtRealizeWidget TOPLEVEL
 XSync $(XtDisplay "-" $TOPLEVEL) False
fi

Register the fact that we are interested in participating in
session management
XmAddWMProtocols TOPLEVEL $SAVE_SESSION_ATOM
XmAddWMProtocolCallback TOPLEVEL $SAVE_SESSION_ATOM \
 SessionCallback

XtMainLoop
Cooperating with Workspace Manager

dtksh provides access to all of the major Workspace Manager functions of the Dt libraries, including functions for querying and setting the set of workspaces with which an application is associated; for querying the list of all workspaces; for querying and setting the current workspace; and for requesting that an application be notified any time the user changes to a different workspace.

From a user's perspective, workspaces are identified by a set of names, but from the Workspace Manager's standpoint, workspaces are identified by X atoms. Whenever the shell script asks for a list of workspace identifiers, a string of X atoms is returned. If more than one X atom is present, then the list is comma-separated. The Workspace Manager expects that the shell script uses the same format when passing workspace identifiers back to it. During a given session, it is safe for the shell script to work with the X atoms, since they remain constant over the lifetime of the session. However, as was shown in the Session Manager shell script example in the previous section, if the shell script is going to save and restore workspace identifiers, the identifiers must be converted from their X atom representation to a string before they are saved. Then, when the session is restored, the shell script needs to remap the names into X atoms before passing the information on to the Workspace Manager. Mapping between X atoms and strings, and between strings and X atoms, is accomplished using the following two commands:

- `XmInternAtom ATOM $DISPLAY $WORKSPACE_NAME false`
- `XmGetAtomName NAME $DISPLAY $ATOM`

Specific dtksh commands for dealing with workspace management are documented in “Built-in libDt Session Management Commands” in Appendix A.

Creating Localized Shell Scripts

dtksh scripts are internationalized and then localized in a process similar to C applications. All strings that may be presented to the user are identified in the script. A post-processor extracts the strings from the script and, from them, builds a catalogue, which can then be translated to any desired locale. When the script executes, the current locale determines which message catalog is searched for strings to display. When a string is to be presented, it is identified
by a message-set ID (corresponding to the catalog) and a message number within the set. These values determine what text the user sees. The following code illustrates the process:

```bash
# Attempt to open our message catalog
catopen MSG_CAT_ID "myCatalog.cat"

# The localized button label is in set 1, and is message # 2
XtCreatePushButton OK $PARENT ok \
   labelString:$(catgets $MSG_CAT_ID 1 2 "OK")

# The localized button label is in set 1, and is message #3
XtCreatePushButton CANCEL $PARENT cancel \
   labelString:$(catgets $MSG_CAT_ID 1 3 "Cancel")

# Close the message catalog, when no longer needed
catclose $MSG_CAT_ID
```

It is important to note that the file descriptor returned by `catopen` must be closed using `catclose` and not by using the ksh `exec` command.

Using dtksh to Access X Drawing Functions

dtksh commands include standard Xlib drawing functions to draw lines, points, segments, rectangles, arcs, and polygons. In the standard C programming environment, these functions take a graphics context (GC) as an argument, in addition to the drawing data. In dtksh drawing functions, a collection of GC options are specified in the parameter list to the command.

By default, the drawing commands create a GC that is used for that specific command and then discarded. If the script specifies the `-gc` option, the name of a graphics context object can be passed to the command. This GC is used in interpreting the command, and the variable is updated with any modifications to the GC performed by the command.

```
-gc <GC>
```

<GC> is the name of an environment variable which has not yet been initialized or which has been left holding a graphic context by a previous drawing command. If this option is specified, then it must be the first GC option specified.

```
-foreground <color>
```

The foreground color, which may be either the name of a color or a pixel number.
- `background <color>` The background color, which may be either the name of a color or a pixel number.

- `font ` The name of the font to be used.

- `line_width <number>` The line width to be used during drawing.

- `function <drawing function>` The drawing function, which can be xor, or, clear, and, copy, noop, nor, nand, set, invert, equiv, andReverse, orReverse, or copyInverted.

- `line_style <style>` The line style, which can be any of the following: LineSolid, LineDoubleDash, or LineOnOffDash.

Setting Widget Translations

dtksh provides mechanisms for augmenting, overriding, and removing widget translations, much as in the C programming environment. In C, an application installs a set of translation action procedures, which can then be attached to specific sequences of events (translations are composed of an event sequence and the associated action procedure). Translations within dtksh are handled in a similar fashion, except only a single action procedure is available. This action procedure, named `ksh_eval`, interprets any parameters passed to it as dtksh commands and evaluates them when the translation is triggered. The following shell script segment gives an example of how translations can be used:

```sh
BtmDownProcedure() {
    echo "Button Down event occurred in button "$1
}

XtCreateManagedWidget BUTTON1 button1 XmPushButton $PARENT \
    labelString:"Button 1" \
    translations: '#augment
        <EnterNotify>: ksh_eval("echo Button1 entered")
        <Btn1Down>: ksh_eval("BtmDownProcedure 1")'

XtCreateManagedWidget BUTTON2 button2 XmPushButton $PARENT \
    labelString:"Button 2"

XtOverrideTranslations $BUTTON2 \    
    '#override
        <Btn1Down>: ksh_eval("BtmDownProcedure 2")'
```
This chapter describes a much more complex script than that described in Chapter 2. Because of its length, the entire script is listed in Appendix C. Remember that this guide is not a tutorial on KornShell programming. If you are not familiar with KornShell programming, you should obtain a book on the subject and have it handy for reference.

Using script_find

The script, script_find, demonstrates how you can use dtksh to provide a graphical interface to the find command. script_find produces a window within which you can specify parameters for the find command. To fully understand the script, you should be familiar with the find command and you should have its man page available. A number of the toggle button menu choices in the window produced by script_find require some knowledge of the find command.

The script’s window allows you to specify a search directory and a file name. Other options allow you to place restrictions on the type of file system to search and the file type on which to match. Figure 4-1 shows the script’s window.
Enter the search directory and file name you’re looking for in the text fields at the top of the window. In addition, select any applicable choice (or choices) from the five toggle buttons. You can further restrict the search with the option menus. When you have made all the necessary selections, click OK. If all is well, a window appears shortly thereafter and displays the results of the `find` operation. An error dialog appears if you don’t specify a search directory or file name, or if the specified search directory is invalid. For example, suppose you want to find a file called `two_letter_calls`, and you think it resides somewhere in the directory `/users/dlm`. When you enter the directory in the Search Directory text field, you inadvertently type `/users/dln` instead of `/users/dlm`. When you click OK or Apply, `script_find` can’t find the directory `/users/dln`, so it creates the error dialog to notify you of this.
When you correct the mistake, `script_find` then executes properly and creates a `dtterm` window within which it displays the complete path of the file you requested, providing that the file is found.

If `script_find` cannot find the file in the specified directory, nothing appears in the `dtterm` window.
Analyzing script_find

The structure of script_find is similar to a C program: some functions and callbacks appear first, followed by the main script.

The first two lines of the script are important, and should be included in every dtksh script you write:

```
#!/usr/dt/bin/dtksh
./usr/dt/lib/dtksh/DtFunc.dtsh
```

The first line executes the dtksh system and the second loads the dtksh convenience functions. The second line wasn’t used in the scripts described in Chapter 2 because those scripts did not use any dtksh convenience functions.

Functions and Callbacks

script_find has the following functions and callbacks:

- `PostErrorDialog()`
- `OkCallback()`
- `LoadStickyValues()`
- `EvalCmd()`
- `RetrieveAndSaveCurrentValues()`

PostErrorDialog()

This function is called when an error is detected, such as when the user enters an invalid directory. The function calls the convenience function `DtkshDisplayErrorDialog()` which displays a dialog box whose title is Find Error and whose message is contained in the variable $1, which is passed from the calling location.

```
dialogPostErrorDialog()
{
    DtDisplayErrorDialog “Find Error” “$1” \
    DIALOG_PRIMARY_APPLICATION_MODAL
}
```

The last parameter, `DIALOG_PRIMARY_APPLICATION_MODAL`, tells dtksh to create a dialog that must be responded to before any other interaction can occur.
OkCallback()

OkCallback() is called when either the OK or Apply button on the main script_find window is pressed. If the OK button is pressed, the script_find window is unmanaged. For either Apply or OK, the input search directory is validated; if it is invalid, then OkCallback() calls PostErrorDialog(). If it is valid, checks are made on the status of the toggle buttons on the script_find window and corresponding adjustments are made to the variable $CMD. This variable contains the entire command that is ultimately executed.

LoadStickyValues()

This function is called from the main program after the window has been created and managed. It loads all the values from the most recent execution of the script. These values are saved in a file called Find.sticky by the function RetrieveAndSaveCurrentValues().

EvalCmd()

EvalCmd() is used by LoadStickyValues() to evaluate each line in Find.sticky as a dtksh command. The following is a list of a Find.sticky file:

XmTextSetString $SD "/users/dlm"
XmTextFieldSetInsertionPosition $SD 10
XmTextSetString $FNP "two_letter_calls"
XmTextFieldSetInsertionPosition $FNP 16
XtSetValues $FSTYPE menuHistory:$NODIR
XtSetValues $FILETYPE menuHistory:$NOTYPE
XmToggleButtonSetState $T2 true false
XmToggleButtonSetState $T4 true false

RetrieveAndSaveCurrentValues()

RetrieveAndSaveCurrentValues() retrieves the current settings and values of the widgets in the script_find window and saves them in the file Find.sticky. Find.sticky is then used by LoadStickyValues() the next time the script is executed.
Main Script

The remainder of the script is the equivalent of Main() in a C program. It initializes the Xt Intrinsics and creates all the widgets used in the script_find window. The set -f in the first line tells dtksh to suppress expansion of wildcard characters in path names. This is necessary so that the find command can perform this expansion.

The script_find window (see Figure 4-4) consists of a Form widget with four areas. The areas are marked by Separator widgets, and each area has several widgets, all of which are children of the Form.

![Figure 4-4 Widgets in script_find window](image)

The widgets are created in sequence by area, from top to bottom.

Initialize

Initialize is accomplished by the Xt Intrinsics function XtInitialize:

XtInitialize TOLEVEL find Dtksh $0 "$@:-"
This creates a top-level shell that serves as the parent of a Form widget, which is created next.

Create a Form Widget

A Form widget is used as the main parent widget. Form is a Manager widget that allows you to place constraints on its children. Most of the widgets in the main script_find window are children of the Form. The description of the creation of the rest of the widgets is separated into the four areas of the window (see Figure 4-4).

First Area

The first area consists of two Label widgets, two TextField widgets, and a Separator widget that separates the first and second areas.

![Figure 4-5 First area of script_find Window](image)

The following code segment creates and positions the first Label widget and positions it within the Form using the DtkshAnchorTop and DtkshAnchorLeft convenience functions:

```c
XtCreateManagedWidget SDLABEL sdlabel XmLabel $FORM
    labelString:“Search Directory:”
    $(DtkshAnchorTop 12)
    $(DtkshAnchorLeft 10)
```

The following code segment creates and positions the first TextField widget. Note that it is positioned in relation to both the Form and the Label widget.

```c
XtCreateManagedWidget SD sd XmText $FORM
    columns:30
    value:“.“
    $(DtkshAnchorTop 6)
    $(DtkshRightOf $SDLABEL 10)
    $(DtkshAnchorRight 10)
```
The remaining Label widget and TextField widget are created in the same manner.

The Separator widget is created as a child of the Form widget and positioned under the second TextField widget.

XtCreateManagedWidget SEP sep XmSeparator $FORM \\
 separatorType:SINGLE_DASHED_LINE \\
 $(DtkshUnder $FNP 10) \\
 $(DtkshSpanWidth)

Second Area

The second area consists of a RowColumn widget, five ToggleButton gadgets, and another Separator widget.

![Second Area of script_find Window](image)

A gadget is a widget that relies on its parent for many of its attributes, thus saving memory resources.

The RowColumn widget is created as a child of the Form widget, and positioned directly under the Separator widget created in the first area.

XtCreateManagedWidget RC rc XmRowColumn $FORM \\
 orientation:HORIZONTAL \\
 numColumns:3 \\
 packing:PACK_COLUMN \\
 $(DtkshUnder $SEP 10) \\
 $(DtkshSpanWidth 10 10) \\
 navigationType:EXCLUSIVE_TAB_GROUP
The five ToggleButton gadgets are created as children of the RowColumn using the convenience function DtkshAddButtons:

```
DtkshAddButtons -w $RC XmToggleButtonGadget \
  T1 "Cross Mount Points" ""
  T2 "Print Matching Filenames" ""
  T3 "Search Hidden Subdirectories" ""
  T4 "Follow Symbolic Links" ""
  T5 "Descend Subdirectories First" ""
```

Another Separator is then created to separate the second and third areas. Note that this Separator widget ID is called SEP2.

```
XtCreateManagedWidget SEP2 sep XmSeparator $FORM \
  separatorType:SINGLE_DASHED_LINE \n  $(DtkshUnder $RC 10) \n  $(DtkshSpanWidth)
```

Third Area

The third area consists of two option menus and another Separator widget.

![Third area of script_find Window](image)

Figure 4-7 Third area of script_find Window

The Option Menus are pull-down menus. When the user clicks the option menu button, a menu pane with a number of choices appears. The user drags the pointer to the appropriate choice and releases the mouse button. The menu pane disappears and the option menu button label displays the new choice.

The first option menu menu pane consists of a number of push button gadgets, representing various restrictions that can be imposed upon the `find` command:

```
XmCreatePulldownMenu PANE $FORM pane
DtkshAddButtons -w $PANE XmPushButtonGadget \
  NODIR "no restrictions" ""
  NFS   "nfs"             ""
  CDFS  "cdfs"            ""
```
Next, the Option Menu button itself is created and managed, with the menu pane just created ($PANE) identified as a subMenuId:

```
XmCreateOptionMenu FSTYPE $FORM fstype \n   labelString:"Restrict Search To File System Type:" \n   menuHistory:$NODIR \n   submenuId:$PANE \n   $(DtkshUnder $SEP2 20) \n   $(DtkshSpanWidth 10 10) \n   navigationType:EXCLUSIVE_TAB_GROUP
XtManageChild $FSTYPE
```

The second option menu button is created in the same manner. It provides further restrictions on the `find` command.

The third separator is created in the same manner as the other separators.

Fourth Area

The fourth area consists of four push button widgets, all children of the Form widget.

The four push buttons are used as follows:

- **OK** executes the `find` command with the parameters input in the `script_find` window and removes the `script_find` window.
- **Apply** executes the `find` command with the parameters input in the `script_find` window but does not remove the `script_find` window.
- **Close** terminates `script_find` without executing the `find` command.
- **Help** creates a dialog box with information on the use of `script_find`.

The push buttons are created and positioned in much the same manner as any of the other widgets, although they are each labeled differently. The following code segment shows how the OK push button is created:

```
XtCreateManagedWidget OK ok XmPushButton $FORM \n   labelString:"Ok" \n   $(DtkshUnder $SEP3 10) \n```
$(DtkshFloatLeft 4) \ 
$(DtkshFloatRight 24) \ 
$(DtkshAnchorBottom 10)

XtAddCallback $OK activateCallback “OkCallback”

**Set Operating Parameters**

XtSetValues is used to set some initial operating parameters:

```c
XtSetValues $FORM
 initialFocus:$SD
 defaultButton:$OK
 cancelButton:$CLOSE
 navigationType:EXCLUSIVE_TAB_GROUP
```

- Initial focus is set to the first TextField widget in the first area.
- Default button is set to the OK push button in the fourth area.
- Cancel button is set to the Close button in the fourth area.
- Navigation type is set to EXCLUSIVE_TAB_GROUP.

The following line configures the TextField widgets so that pressing the return key does not activate the default button within the Form. See the description of EXCLUSIVE_TAB_GROUP in Appendix B for more information on its use.

DtkshSetReturnKeyControls $SD $FNP $FORM $OK

**Realize and Loop**

The last three lines of the script load the previous values of the script_find window, realize the top-level widget, and then enter a loop waiting for user input.

```c
LoadStickyValues

XtRealizeWidget $TOPELEVEL
XtMainLoop
```
This appendix contains a list of the commands supported by dtksh. Many of these commands are almost identical to their Motif, Xt Intrinsics, or Xlib counterparts. Commands that return a value must have the return variable as an environment variable that is the first parameter in the call. Some commands have more differences.

The following subsections give a synopsis of each of the dtksh commands. In general, parameter ordering and types are the same as for corresponding C procedures; exceptions are noted. For more detail on the functionality and parameters of a command, see the standard documentation for the corresponding Xlib, Xt Intrinsics, or Motif procedure.

In the command definitions, parameters named var, var2, var3, and so on, indicate that the shell script should supply the name of an environment variable into which some value will be returned. The word variable indicates an environment variable that accepts a return value.

Commands that return a Boolean value (which can be used directly as part of an if statement), are noted as such.

Parameters enclosed within [] are optional.
Built-in Xlib Commands

XBell display volume
XClearArea display drawable [optional GC arguments] x y width height exposures
XClearWindow display drawable
XCopyArea display src dest srcX srcY width height destX destY [optional GC arguments]
XDefineCursor display window cursor
XDrawArc display drawable [optional GC arguments] x y width height angle1 angle2
XDrawLine display drawable [optional GC arguments] x1 y1 x2 y2
XDrawLines display drawable [-coordinateMode] [optional GC arguments] x1 y1 x2 y2 [x3 y3 ...]
   where coordinateMode is either CoordModeOrigin or CoordModePrevious.
XDrawPoint display drawable [optional GC arguments] x y
XDrawPoints display drawable [-coordinateMode] [optional GC arguments] x1 y1 x2 y2 x3 y3 ...
   where coordinateMode is either CoordModeOrigin or CoordModePrevious.
XDrawRectangle display drawable [optional GC arguments] x y width height
XDrawSegments display drawable [optional GC arguments] x1 y1 x2 y2 x3 y3 x4 y4 ...
XDrawString display drawable [optional GC arguments] x y string
XDrawImageString display drawable [optional GC arguments] x y string
XFillArc display drawable [optional GC arguments] x y width height angle1 angle2
XFillPolygon display drawable [-shape] [-coordinateMode] [optional GC arguments] x1 y1 x2 y2 ...
where \textit{shape} is either \texttt{Complex}, \texttt{Convex}, or \texttt{Nonconvex}, and \textit{coordinateMode} is either \texttt{CoordModeOrigin} or \texttt{CoordModePrevious}.

\texttt{XFillRectangle} \texttt{display} \texttt{drawable} [optional GC arguments] \texttt{x y width height}

\texttt{XFlush} \texttt{display}

\texttt{XHeightOfScreen} \texttt{variable} \texttt{screen}

\texttt{XRaiseWindow} \texttt{display} \texttt{window}

\texttt{XRootWindowOfScreen} \texttt{variable} \texttt{screen}

\texttt{XSync} \texttt{display} \texttt{discard}

where \texttt{discard} is either \texttt{true} or \texttt{false}.

\texttt{XTextWidth} \texttt{variable} \texttt{fontName} \texttt{string}

\underline{Note} – The \texttt{XTextWidth} command is different from the corresponding \texttt{Xlib} procedure because it takes the name of a font instead of a pointer to a font structure.

\texttt{XUndefineCursor} \texttt{display} \texttt{window}

\texttt{XWidthOfScreen} \texttt{variable} \texttt{screen}
**Built-in Xt Intrinsic Commands**

All the Xt Intrinsics commands used to create a new widget require that you specify a widget class for the new widget. The widget (or gadget) class name is the standard class name provided by Motif. For example, the class name for a Motif push button widget is `XmPushButton`, while the class name for the Motif label gadget is `XmLabelGadget`.

*XtAddCallback* `widgetHandle callbackName ksh-command`

where `callbackName` is one of the standard Motif or Xt callback names, with the `Xt` or `Xm` prefix dropped. For example, `activateCallback`.

*XtAddEventHandler* `widgetHandle eventMask nonMaskableFlag ksh-command`

where `eventMask` is of the form `mask | mask | mask` and the `mask` components are any of the standard set of X event masks, and `nonMaskableFlag` is either `true` or `false`.

*XtAddInput* `variable [-r] fileDescriptor ksh-command`

Registers the indicated file descriptor with the X Toolkit as an alternate input source. It is the responsibility of the shell script’s input handler to unregister the input source when it is no longer needed and to close the file descriptor.

If the `-r` option is specified (`raw` mode), then `dtksh` does not automatically read any of the data available from the input source; it will be up to the specified kshell command to read all data. If the `-r` option is not specified, then the command specified in `ksh-command` is invoked only when a full line is read (that is, a line terminated by either an unescaped newline character or the end of the file) or when the end of the file is reached. The raw mode is useful for handlers that expect to process nontextual data, or for handlers that do not want `dtksh` automatically reading in a line of data. When the end of file is detected, it is the shell script’s input handler’s responsibility to use `XtRemoveInput` to remove the input source and to close the file descriptor, if necessary.

In all cases, several environment variables are set up, which can be used by the handler. These include:

```
INPUT_LINE Empty if in raw mode; otherwise, it contains the next line to be processed.
```
INPUT_EOF
Set to true if end-of-file is reached; otherwise, set to false.

INPUT_SOURCE
File descriptor associated with this input source.

INPUT_ID
The ID associated with this input handler; returned by XtAddInput().

XtAddTimeout variable interval ksh-command

XtAddWorkProc variable ksh-command

In dtksh, the kshell command is typically a kshell function name. Like regular work procedures, this function is expected to return a value that indicates whether the work procedure wants to be called again, or whether it has completed its work and can be automatically unregistered. If the dtksh function returns 0, then the work procedure remains registered; any other value causes the work procedure to be automatically unregistered.

XtAugmentTranslations widgetHandle translations

XtCreateApplicationShell variable applicationName widgetClass [resource:value ...]

XtCallCallbacks widgetHandle callbackName

where callbackName is one of the standard Motif or Xt callback names, with the Xt or Xm prefix dropped; for example, activateCallback.

XtClass variable widgetHandle

Returns the name of the widget class associated with the passed-in widget handle.

XtCreateManagedWidget variable widgetName widgetClass parentWidgetHandle [resource:value ...]

XtCreatePopUpShell variable widgetName widgetClass parentWidgetHandle [resource:value ...]

XtCreateWidget variable widgetName widgetClass parentWidgetHandle [resource:value ...]

XtDestroyWidget widgetHandle [widgetHandle ...]

XtDisplay variable widgetHandle
XtDisplayOfObject variable widgetHandle

XtGetValues widgetHandle resource:var1 [resource:var2 ...]

XtHasCallbacks variable widgetHandle callbackName

where callbackName is one of the standard Motif or Xt callback names, with the Xt or Xm prefix dropped; for example, activateCallback.

variable is set to one of the strings CallbackNoList, CallbackHasNone, or CallbackHasSome.

XtInitialize variable shellName applicationClassName applicationName [arguments]

Using Dtksh as the applicationClassName causes the application to use the default dtksh app-defaults file. The arguments parameter is used to reference any command-line arguments that might have been specified by the user of the shell script; these are typically referred to using the shell syntax of "$@".

Returns a value which can be used in a conditional statement.

XtIsManaged widgetHandle

Returns a value which can be used in a conditional statement.

XtIsSubclass widgetHandle widgetClass

where widgetClass is the name of a widget class. Returns a value which can be used in a conditional statement.

XtNameToWidget variable referenceWidget name

XtIsRealized widgetHandle

Returns a value which can be used in a conditional statement.

XtIsSensitive widgetHandle

Returns a value which can be used in a conditional statement.

XtIsShell widgetHandle

Returns a value which can be used in a conditional statement.

XtLastTimestampProcessed variable display
XtMainLoop

XtManageChild widgetHandle

XtManageChildren widgetHandle [widgetHandle ...]

XtMapWidget widgetHandle

XtOverrideTranslations widgetHandle translations

XtParent variable widgetHandle

XtPopdown widgetHandle

XtPopup widgetHandle grabType

   where grabType is one of the strings GrabNone, GrabNonexclusive or GrabExclusive.

XtRealizeWidget widgetHandle

XtRemoveAllCallbacks widgetHandle callbackName

   where callbackName is one of the standard Motif or Xt callback names, with
   the Xt or Xm prefix dropped; for example, activateCallback

XtRemoveCallback widgetHandle callbackName ksh-command

   where callbackName is one of the standard Motif or Xt callback names, with
   the Xt or Xm prefix dropped; for example, activateCallback. As is true
   with traditional Xt callbacks, when a callback is removed, the same kshell
   command string must be specified as was specified when the callback was
   originally registered.

XtRemoveEventHandler widgetHandle eventMask nonMaskableFlag

   ksh-command

   where eventMask is of the form mask | mask | mask and the mask components
   are any of the standard set of X event masks; that is, ButtonPressMask
   where nonMaskableFlag is either true or false.

   As is true with traditional Xt event handlers, when an event handler is
   removed, the same eventMask, nonMaskableFlag setting, and kshell command
   string must be specified as was specified when the event handler was
   originally registered.
XtRemoveInput inputId

where inputId is the handle that was returned in the specified environment variable when the alternate input source was registered using the XtAddInput command.

XtRemoveTimeOut timeoutId

where timeoutId is the handle that was returned in the specified environment variable when the timeout was registered using the XtAddTimeOut command.

XtRemoveWorkProc workprocID

where workprocID is the handle that was returned in the specified environment variable when the work procedure was registered using the XtAddWorkProc command.

XtScreen variable widgetHandle

XtSetSensitive widgetHandle state

where state is either true or false.

XtSetValues widgetHandle resource:value [resource:value ...]

XtUninstallTranslations widgetHandle

XtUnmanageChild widgetHandle

XtUnmanageChildren widgetHandle [widgetHandle ...]

XtUnmapWidget widgetHandle

XtUnrealizeWidget widgetHandle

XtWindow variable widgetHandle

**Built-in Motif Commands**

XmAddWMProtocolCallback widgetHandle protocolAtom ksh-command

where protocolAtom is typically obtained using the XmInternAtom command.
XmAddWMProtocols widgetHandle protocolAtom [protocolAtom ...]

where protocolAtom is typically obtained using the XmInternAtom command.

XmCommandAppendValue widgetHandle string

XmCommandError widgetHandle errorString

XmCommandGetChild variable widgetHandle childType

where childType is one of the strings DIALOG_COMMAND_TEXT, DIALOG_PROMPT_LABEL, DIALOG_HISTORY_LIST, or DIALOG_WORK_AREA.

XmCommandSetValue widgetHandle commandString

XmCreateArrowButton variable parentWidgetHandle name [resource:value ...

XmCreateArrowButtonGadget variable parentWidgetHandle name [resource:value ...

XmCreateBulletinBoard variable parentWidgetHandle name [resource:value ...

XmCreateBulletinBoardDialog variable parentWidgetHandle name [resource:value ...

XmCreateCascadeButton variable parentWidgetHandle name [resource:value ...

XmCreateCascadeButtonGadget variable parentWidgetHandle name [resource:value ...

XmCreateCommand variable parentWidgetHandle name [resource:value ...

XmCreateDialogShell variable parentWidgetHandle name [resource:value ...

XmCreateDrawingArea variable parentWidgetHandle name [resource:value ...

XmCreateDrawnButton variable parentWidgetHandle name [resource:value ...

XmCreateErrorDialog variable parentWidgetHandle name [resource:value ...

XmCreateFileSelectionBox variable parentWidgetHandle name [resource:value ...

XmCreateFileSelectionDialog variable parentWidgetHandle name [resource:value ...]
XmCreateForm variable parentWidgetHandle name [resource:value ...]
XmCreateFormDialog variable parentWidgetHandle name [resource:value ...]
XmCreateFrame variable parentWidgetHandle name [resource:value ...]
XmCreateInformationDialog variable parentWidgetHandle name [resource:value ...]
XmCreateLabel variable parentWidgetHandle name [resource:value ...]
XmCreateLabelGadget variable parentWidgetHandle name [resource:value ...]
XmCreateList variable parentWidgetHandle name [resource:value ...]
XmCreateMainWindow variable parentWidgetHandle name [resource:value ...]
XmCreateMenuBar variable parentWidgetHandle name [resource:value ...]
XmCreateMenuShell variable parentWidgetHandle name [resource:value ...]
XmCreateMessageBox variable parentWidgetHandle name [resource:value ...]
XmCreateMessageDialog variable parentWidgetHandle name [resource:value ...]
XmCreateOptionMenu variable parentWidgetHandle name [resource:value ...]
XmCreatePanedWindow variable parentWidgetHandle name [resource:value ...]
XmCreatePopupMenu variable parentWidgetHandle name [resource:value ...]
XmCreatePromptDialog variable parentWidgetHandle name [resource:value ...]
XmCreatePulldownMenu variable parentWidgetHandle name [resource:value ...]
XmCreatePushButton variable parentWidgetHandle name [resource:value ...]
XmCreatePushButtonGadget variable parentWidgetHandle name [resource:value ...]
XmCreateQuestionDialog variable parentWidgetHandle name [resource:value ...]
XmCreateRadioBox variable parentWidgetHandle name [resource:value ...]
XmCreateRowColumn variable parentWidgetHandle name [resource:value ...]
XmCreateScale variable parentWidgetHandle name [resource: value ...]
XmCreateScrollBar variable parentWidgetHandle name [resource: value ...]
XmCreateScrolledList variable parentWidgetHandle name [resource: value ...]
XmCreateScrolledText variable parentWidgetHandle name [resource: value ...]
XmCreateScrolledWindow variable parentWidgetHandle name [resource: value ...]
XmCreateSelectionBox variable parentWidgetHandle name [resource: value ...]
XmCreateSelectionDialog variable parentWidgetHandle name [resource: value ...]
XmCreateSeparator variable parentWidgetHandle name [resource: value ...]
XmCreateSeparatorGadget variable parentWidgetHandle name [resource: value ...]
XmCreateText variable parentWidgetHandle name [resource: value ...]
XmCreateTextField variable parentWidgetHandle name [resource: value ...]
XmCreateToggleButton variable parentWidgetHandle name [resource: value ...]
XmCreateToggleButtonGadget variable parentWidgetHandle name [resource: value ...]
XmCreateWarningDialog variable parentWidgetHandle name [resource: value ...]
XmCreateWorkArea variable parentWidgetHandle name [resource: value ...]
XmCreateWorkingDialog variable parentWidgetHandle name [resource: value ...]
XmFileSelectionDoSearch widgetHandle directoryMask
XmFileSelectionBoxGetChild variable widgetHandle childType

where childType is one of the strings DIALOG_APPLY_BUTTON, DIALOGCANCEL_BUTTON, DIALOGDEFAULT_BUTTON, DIALOG_DIR_LIST, DIALOG_DIR_LIST_LABEL, DIALOG_FILTER_LABEL, DIALOG_FILTER_TEXT,
DIALOG_HELP_BUTTON, DIALOG_LIST, DIALOG_LIST_LABEL, DIALOG_OK_BUTTON, DIALOG_SEPARATOR, DIALOG_SELECTION_LABEL, DIALOG_TEXT, or DIALOG_WORK_AREA.

XmGetAtomName variable display atom

XmGetColors widgetHandle background variable var2 var3 var4

The XmGetColors command differs from the C procedure in that it takes a widgetHandle instead of a screen pointer and a colormap.

XmGetFocusWidget variable widgetHandle

XmGetPostedFromWidget variable widgetHandle

XmGetTabGroup variable widgetHandle

XmGetTearOffControl variable widgetHandle

XmGetVisibility variable widgetHandle

XmInternAtom variable display atomString onlyIfExistsFlag

where onlyIfExistsFlag can be set to either true or false.

XmIsTraversable widgetHandle

Returns a value which can be used in a conditional statement.

XmListAddItem widgetHandle position itemString

The order of the parameters for the XmListAddItem command is not identical to its corresponding C programming counterpart.

XmListAddItems widgetHandle position itemString [itemString ...]

The order of the parameters for the XmListAddItems command is not identical to its corresponding C programming counterpart.

XmListAddItemsUnselected widgetHandle position itemString [itemString ...]

The order of the parameters for the XmListAddItemsUnselected command is not identical to its corresponding C programming counterpart.
XmListAddItemUnselected widgetHandle position itemString

The ordering of the parameters to the XmListAddItemUnselected command are not identical to its corresponding C programming counterpart.

XmListDeleteAllItems widgetHandle

XmListDeleteItem widgetHandle itemString

XmListDeleteItems widgetHandle itemString [itemString ...]

XmListDeleteItemsPos widgetHandle itemCount position

XmListDeletePos widgetHandle position

XmListDeletePositions widgetHandle position [position ...]

XmListDeselectAllItems widgetHandle

XmListDeselectItem widgetHandle itemString

XmListDeselectPos widgetHandle position

XmListGetSelectedPos variable widgetHandle

Returns a comma-separated list of indices in variable. Returns a value which can be used in a conditional statement.

XmListGetKbdItemPos variable widgetHandle

XmListGetMatchPos variable widgetHandle itemString

Returns a comma-separated list of indices in variable. Returns a value which can be used in a conditional statement.

XmListItemExists widgetHandle itemString

Returns a value which can be used in a conditional statement.

XmListItemPos variable widgetHandle itemString

XmListPosSelected widgetHandle position

Returns a value which can be used in a conditional statement.
XmListPosToBounds \texttt{widgetHandle position variable var2 var3 var4}

Returns a value which can be used in a conditional statement.

XmListReplaceItemsPos \texttt{widgetHandle position itemString [itemString ...]}

The order of the parameters for the \texttt{XmListReplaceItemsPos} command is not identical to its corresponding C programming counterpart.

XmListReplaceItemsPosUnselected \texttt{widgetHandle position itemString [itemString ...]}

The order of the parameters for the \texttt{XmListReplaceItemsPosUnselected} command is not identical to its corresponding C programming counterpart.

XmListSelectItem \texttt{widgetHandle itemString notifyFlag}

where \texttt{notifyFlag} can be set to either \texttt{true} or \texttt{false}.

XmListSelectPos \texttt{widgetHandle position notifyFlag}

where \texttt{notifyFlag} can be set to either \texttt{true} or \texttt{false}.

XmListSetAddMode \texttt{widgetHandle state}

where \texttt{state} can be set to either \texttt{true} or \texttt{false}.

XmListSetBottomItem \texttt{widgetHandle itemString}

XmListSetBottomPos \texttt{widgetHandle position}

XmListSetHorizPos \texttt{widgetHandle position}

XmListSetItem \texttt{widgetHandle itemString}

XmListSetKbdItemPos \texttt{widgetHandle position}

Returns a value which can be used in a conditional statement.

XmListSetPos \texttt{widgetHandle position}

XmListUpdateSelectedList \texttt{widgetHandle}

XmMainWindowSep1 \texttt{variable widgetHandle}

XmMainWindowSep2 \texttt{variable widgetHandle}
XmMainWindowSep3 variable widgetHandle

XmMainWindowSetAreas widgetHandle menuWidgetHandle
commandWidgetHandle
horizontalScrollbarWidgetHandle
verticalScrollbarWidgetHandle
workRegionWidgetHandle

XmMenuPosition widgetHandle eventHandle

where eventHandle refers to an X event, which has typically been obtained by accessing the CB_CALL_DATA.EVENT, EH_EVENT or TRANSLATION_EVENT environment variables.

XmMessageBoxGetChild variable widgetHandle childType

where childType is one of the strings DIALOG_CANCEL_BUTTON, DIALOG_DEFAULT_BUTTON, DIALOG_HELP_BUTTON, DIALOG_MESSAGE_LABEL, DIALOG_OK_BUTTON, DIALOG_SEPARATOR, or DIALOG_SYMBOL_LABEL.

XmOptionButtonGadget variable widgetHandle

XmOptionLabelGadget variable widgetHandle

XmProcessTraversal widgetHandle direction

where direction is one of the strings TRAVERSE_CURRENT, TRAVERSE_DOWN, TRAVERSE_HOME, TRAVERSE_LEFT, TRAVERSE_NEXT, TRAVERSE_NEXT_TAB_GROUP, TRAVERSE_PREV, TRAVERSE_PREV_TAB_GROUP, TRAVERSE_RIGHT, or TRAVERSE_UP.

Returns a value which can be used in a conditional statement.

XmRemoveWMProtocolCallback widgetHandle protocolAtom kshell-command

where protocolAtom is typically obtained using the XmInternAtom command.

As is true with traditional Window Manager callbacks, when a callback is removed, the same kshell command string must be specified, as was specified when the callback was originally registered.
XmRemoveWMProtocols widgetHandle protocolAtom [protocolAtom ...]

where protocolAtom is typically obtained using the XmInternAtom command.

XmScaleGetValue widgetHandle variable

XmScaleSetValue widgetHandle value

XmScrollBarGetValues widgetHandle variable var2 var3 var4

XmScrollBarSetValues widgetHandle value sliderSize increment pageIncrement notifyFlag

where notifyFlag can be set to either true or false.

XmScrollVisible widgetHandle widgetHandle leftRightMargin topBottomMargin

XmSelectionBoxGetChild variable widgetHandle childType

where childType is one of the strings DIALOGCANCELBUTTON, DIALOGDEFAULTBUTTON, DIALOGHELP_BUTTON, DIALOGAPPLY_BUTTON, DIALOG_LIST, DIALOG_LISTLABEL, DIALOGOK_BUTTON, DIALOG_SELECTION_LABEL, DIALOG_SEPARATOR, DIALOG_TEXT, or DIALOG_WORK_AREA.

XmTextClearSelection widgetHandle time

where time is typically either obtained from within an X Event or is queried by a call to the XtLastTimestampProcessed command.

XmTextCopy widgetHandle time

where time is typically either obtained from within an X Event or is queried by a call to the XtLastTimestampProcessed command.

Returns a value which can be used in a conditional statement.

XmTextCut widgetHandle time

where time is typically either obtained from within an X Event or is queried by a call to the XtLastTimestampProcessed command.

Returns a value which can be used in a conditional statement.

XmTextDisableRedisplay widgetHandle
XmTextEnableDisplay widgetHandle

XmTextFindString widgetHandle startPosition string direction variable
    where direction is one of the strings TEXT_FORWARD or TEXT_BACKWARD.
    Returns a value which can be used in a conditional statement.

XmTextGetBaseline variable widgetHandle

XmTextGetEditable widgetHandle
    Returns a value which can be used in a conditional statement.

XmTextGetInsertionPosition variable widgetHandle

XmTextGetLastPosition variable widgetHandle

XmTextGetMaxLength variable widgetHandle

XmTextGetSelection variable widgetHandle

XmTextGetSelectionPosition widgetHandle variable var2
    Returns a value which can be used in a conditional statement.

XmTextGetString variable widgetHandle

XmTextGetTopCharacter variable widgetHandle

XmTextInsert widgetHandle position string

XmTextPaste widgetHandle
    Returns a value which can be used in a conditional statement.

XmTextPosToXY widgetHandle position variable var2
    Returns a value which can be used in a conditional statement.

XmTextRemove widgetHandle
    Returns a value which can be used in a conditional statement.

XmTextReplace widgetHandle fromPosition toPosition string

XmTextScroll widgetHandle lines
XmTextSetAddMode widgetHandle state

where state can be set to either true or false.

XmTextSetEditable widgetHandle editableFlag

where editableFlag can be set to either true or false.

XmTextSetHighlight widgetHandle leftPosition rightPosition mode

where mode is one of the strings HIGHLIGHT_NORMAL, HIGHLIGHT_SELECTED or HIGHLIGHT_SECONDARY_SELECTED.

XmTextSetInsertionPosition widgetHandle position

XmTextSetMaxLength widgetHandle maxLength

XmTextSetSelection widgetHandle firstPosition lastPosition time

where time is typically either obtained from within an X Event or is queried by a call to the XtLastTimestampProcessed command.

XmTextSetString widgetHandle string

XmTextSetTopCharacter widgetHandle topCharacterPosition

XmTextShowPosition widgetHandle position

XmTextXYToPos variable widgetHandle x y

XmTextFieldClearSelection widgetHandle time

where time is typically either obtained from within an X Event or is queried by a call to the XtLastTimestampProcessed command.

XmTextFieldGetBaseline variable widgetHandle

XmTextFieldGetEditable widgetHandle

Returns a value which can be used in a conditional statement.

XmTextFieldGetInsertionPosition variable widgetHandle

XmTextFieldGetLastPosition variable widgetHandle

XmTextFieldGetMaxLength variable widgetHandle

XmTextFieldGetSelection variable widgetHandle
XmTextFieldGetSelectionPosition widgetHandle variable var2
Returns a value which can be used in a conditional statement.

XmTextFieldGetString variable widgetHandle

XmTextFieldInsert widgetHandle position string

XmTextFieldPosToXY widgetHandle position variable var2
Returns a value which can be used in a conditional statement.

XmTextFieldRemove widgetHandle
Returns a value which can be used in a conditional statement.

XmTextFieldReplace widgetHandle fromPosition toPosition string

XmTextFieldSetEditable widgetHandle editableFlag
where editableFlag can be set to either true or false.

XmTextFieldSetHighlight widgetHandle leftPosition rightPosition mode
where mode is one of the strings HIGHLIGHT_NORMAL, HIGHLIGHT_SELECTED, or HIGHLIGHT_SECONDARY_SELECTED.

XmTextFieldSetInsertionPosition widgetHandle position

XmTextFieldSetMaxLength widgetHandle maxLength

XmTextFieldSetSelection widgetHandle firstPosition lastPosition time
where time is typically either obtained from within an X Event or is queried by a call to the XtLastTimeStampProcessed command.

XmTextFieldSetString widgetHandle string

XmTextFieldShowPosition widgetHandle position

XmTextFieldXYToPos variable widgetHandle x y

XmTextFieldCopy widgetHandle time
where time is typically either obtained from within an X Event or is queried by a call to the XtLastTimestampProcessed command.

Returns a value which can be used in a conditional statement.
XmTextFieldCut widgetHandle time

where time is typically either obtained from within an X Event or is queried by a call to the XtLastTimestampProcessed command.

Returns a value which can be used in a conditional statement.

XmTextFieldPaste widgetHandle

Returns a value which can be used in a conditional statement.

XmTextFieldSetAddMode widgetHandle state

where state can be set to either true or false.

XmToggleButtonGadgetGetState widgetHandle

Returns a value which can be used in a conditional statement.

XmToggleButtonGadgetsetState widgetHandle state notifyFlag

where state can be set to either true or false, and where notifyFlag can be set to either true or false.

XmToggleButtonGetState widgetHandle

Returns a value which can be used in a conditional statement.

XmToggleButtonsetState widgetHandle state notifyFlag

where state can be set to either true or false, and where notifyFlag can be set to either true or false.

XmUpdateDisplay widgetHandle

**Built-in Common Desktop Environment Application Help Commands**

DtCreateQuickHelpDialog variable parentWidgetHandle name [resource:value ...]

DtCreateHelpDialog variable parentWidgetHandle name [resource:value ...]
DtHelpQuickDialogGetChild variable widgetHandle childType

where childType is one of the strings HELP_QUICK_OK_BUTTON, HELP_QUICK_PRINT_BUTTON, HELP_QUICK_HELP_BUTTON, HELP_QUICK_SEPARATOR, HELP_QUICK_MORE_BUTTON, or HELP_QUICK_BACK_BUTTON.

DtHelpReturnSelectedWidgetId variable widgetHandle var2

var2 is set to the widgetHandle for the selected widget.

DtHelpSetCatalogName catalogName

**Built-in Localization Commands**

catopen variable catalogName

Opens the indicated message catalog and returns the catalog ID in the environment variable specified by variable. If a shell script needs to close the file descriptor associated with a message catalog, then the catalog ID must be closed using the catclose command.

catgets variable catalogId setNumber messageNumber defaultMessageString

Attempts to extract the requested message string from the message catalog associated with the catalogId parameter. If the message string cannot be located, then the default message string is returned. In either case, the returned message string is placed into the environment variable indicated by variable.

catclose catalogId

Closes the message catalog associated with the indicated catalogId.
Built-in libDt Session Management Commands

DtSessionRestorePath  widgetHandle variable sessionFile

Given the file name for the session file (excluding any path information), this command returns the full path for the session file in the environment variable `sessionFile`.

Returns 0 if successful, 1 if unsuccessful.

DtSessionSavePath  widgetHandle variable var2

The full path name for the session file is returned in the environment variable `var2`. The file name portion of the session file (excluding any path information) is returned in the environment variable indicated by `var2`.

Returns 0 if successful, 1 if unsuccessful.

 DtShellIsIconified  widgetHandle

Allows a shell script to query the iconified state of a shell window. Returns 0 if successful, 1 if unsuccessful.

DtSetStartupCommand  widgetHandle commandString

Part of the session management process is telling the Session Manager how to restart your application the next time the user reopens the session. This command passes the specified command string to the Session Manager. The widget handle should refer to an application shell.

DtSetIconifyHint  widgetHandle iconifyHint

where `iconifyHint` can be set to either true or false.

Allows the initial iconified state for a shell window to be set. This command only works if the window associated with the widget has been realized but not yet displayed.
**Built-in libDt Workspace Management Commands**

**DtWsmAddCurrentWorkspaceCallback**

`variable widgetHandle ksh-command`

Evaluates the specified kshell command whenever the user changes workspaces. The handle associated with this callback is returned in the environment variable indicated by `variable`. The widget indicated by `widgetHandle` should be a shell widget.

**DtWsmRemoveWorkspaceCallback**

`callbackHandle`

Removes a workspace notification callback. When removing a workspace callback, you must pass in the callback handle that was returned when you registered the callback with `DtWsmAddCurrentWorkspaceCallback`.

**DtWsmGetCurrentWorkspace**

`display rootWindow variable`

Returns the X atom that represents the user’s current workspace in the environment variable indicated by `variable`. Use the `XmGetAtomName` command to map the X atom into its string representation.

**DtWsmSetCurrentWorkspace**

`widgetHandle workspaceNameAtom`

Changes the user’s current workspace to the workspace indicated by `workspaceNameAtom`.

Returns 0 if successful, 1 if unsuccessful.

**DtWsmGetWorkspaceList**

`display rootWindow variable`

Returns a string of comma-separated X atoms, representing the current set of workspaces defined for the user, in the environment variable indicated by `variable`.

Returns 0 if successful, 1 if unsuccessful.

**DtWsmGetWorkspacesOccupied**

`display window variable`

Returns a string of comma-separated X atoms, representing the current set of workspaces occupied by the indicated shell window in the environment variable indicated by `variable`.

Returns 0 if successful, 1 if unsuccessful.
DtWsmSetWorkspacesOccupied display window workspaceList

Moves the indicated shell window to the set of workspaces indicated by the string workspaceList, which must be a comma-separated list of X atoms.

DtWsmAddWorkspaceFunctions display window

Forces the Window Manager menu to include the functions used to move the window to other workspaces. This command only works if the window is in the withdrawn state.

DtWsmRemoveWorkspaceFunctions display window

Forces the Window Manager menu to not display the functions used to move the window to other workspaces; this prevents the window from being moved to any other workspaces. This command only works if the window is in the withdrawn state.

DtWsmOccupyAllWorkspaces display window

Requests that a window occupy all workspaces, including new workspaces, as they are created.

DtWsmGetCurrentBackdropWindows display rootWindow variable

Returns a string of comma-separated window IDs, representing the set of root backdrop windows.

**Built-in libDt Action Commands**

The set of commands in this section provide you with the tools for loading the action databases, querying information about actions defined in the databases, and requesting that an action be initiated.

DtDbLoad

Reads in the action and data-types databases. If called multiple times, then the old databases are freed before the new ones are read. This command must be called before any of the other libDt action commands, or any of the libDt data typing commands. The shell script should also use the DtDbReloadNotify command, so that the shell script can be notified if new databases must be loaded.
DtDbReloadNotify *ksh-command*

Requests notification whenever the action or data-types databases need to be reloaded. The specified kshell command is executed when the notification is received. Typically, the kshell command includes a call to the DtDbLoad command.

DtActionExists *actionName*

Tests to see if an action exists in the database with the name specified by the *actionName* parameter. Returns a value which can be used in a conditional statement.

DtActionLabel *variable actionName*

Returns the localizable LABEL attribute associated with the indicated action. If the action does not exist, then an empty string is returned.

DtActionDescription *variable actionName*

Returns the value of the DESCRIPTION attribute associated with the indicated action. An empty string is returned if the action is not defined, or if the DESCRIPTION attribute was not specified.

**Built-in libDt Data-Typing Commands**

DtLoadDataTypes

Loads the data-typing databases and should be invoked before any of the other data-typing commands.

DtDtsFileToDataType *variable filePath*

Returns the name of the data type associated with the file indicated by the *filePath* argument in the *variable* argument. The *variable* argument is set to an empty string if the file cannot be typed.

DtDtsFileToAttributeValue *variable filePath attrName*

Returns the string representing the value of the specified attribute for the data type associated with the indicated file. If the attribute is not defined, or if the file could not be typed, then the *variable* argument is set to an empty string.
DtDtsFileToAttributeList variable filePath

Returns the space-separated list of attribute names defined for the data type associated with the indicated file. A shell script can then query the individual values for the attributes, using the DtDtsFileToAttributeValue command. The variable argument is set to an empty string if the file cannot be typed. This command differs from its corresponding C programming counterpart, in that it only returns the names of the defined attributes and not their values.

DtDtsDataTypeToAttributeValue variable dataType attrName optName

Returns the string representing the value of the specified attribute for the indicated data type. If the attribute is not defined, or if the indicated data type does not exist, then the variable argument is set to an empty string.

DtDtsDataTypeToAttributeList variable dataType optName

Returns the space-separated list of attribute names defined for the indicated data type. A shell script can then query the individual values for the attributes, using the DtDtsDataTypeToAttributeValue command. The variable argument is set to an empty string if the data type is not defined. This command differs from its corresponding C programming counterpart, in that it only returns the names of the defined attributes and not their values.

DtDtsFindAttribute variable name value

Returns a space-separated list of datatype names whose attribute indicated by the name argument has the value indicated by the value argument. If an error occurs, the variable argument is set to an empty string.

DtDtsDataTypeNames variable

Returns a space-separated list representing all the data types currently defined in the data-types database. If an error occurs, then the variable argument is set to an empty string.

DtDtsSetDataType variable filePath dataType override

Sets a data type for the specified directory. The variable argument is set to the resultant saved data type for the directory.
DtDtsDataTypeIsAction `dataType`

Determines whether a particular data type represents an action entry. Returns a value which can be used in a conditional statement.

**Miscellaneous Built-in `libDt` Commands**

**DtGetHourGlassCursor `variable display`**

Returns the X cursor ID associated with the standard `Dt` hourglass cursor.

**DtTurnOnHourGlass `widgetHandle`**

Turns on the standard `Dt` hourglass cursor for the indicated widget.

**DtTurnOffHourGlass `widgetHandle`**

Turns off the standard `Dt` hourglass cursor for the indicated widget.

**Built-in Desktop Services Message Set Commands**

The following set of commands implements the minimum subset of the Desktop Services Message Set required to allow a shell script to participate in the Desktop Services protocol. Many of the ToolTalk commands differ slightly from their associated C programming call. For ToolTalk commands that typically return a pointer, a C application validates that pointer by calling the `tt_ptr_error()` function; this function call returns a `Tt_status` value, which indicates whether the pointer was valid, and if not, why it was not valid. Because of the kshell code’s design, the string pointer that the shell script sees is not typically the same as the string pointer returned by the underlying C code. Typically, during shell programming, this is not a problem because the important information is the string value, not the string pointer.

To allow shell scripts to get the status of a pointer, any of the commands that normally return a pointer also return the associated `Tt_status` value for the pointer automatically. This saves the shell script from needing to make an additional call to check the validity of the original pointer. In the case of a pointer error occurring, `dtksh` returns an empty string for the pointer value and sets the `Tt_status` code accordingly.

The `Tt_status` value is returned in the `status` argument. The `Tt_status` value is a string representing the error and can assume any of the following values:
TT_OK
TT_WRN_NOTFOUND
TT_WRN_STALE_OBJID
TT_WRN_STOPPED
TT_WRNSAME_OBJID
TT_WRN_START_MESSAGE
TT_ERR_CLASS
TT_ERR_DBAVAIL
TT_ERR_DBEXIST
TT_ERR_FILE
TT_ERR_INVALID
TT_ERR_MODE
TT_ERR_ACCESS
TT_ERR_NOMP
TT_ERR_NOTHANDLER
TT_ERR_NUM
TT_ERR_OBJID
TT_ERR_OP
TT_ERR_ETYPE
TT_ERR_ADDRESS
TT_ERR_PATH
TT_ERR_POINTER
TT_ERR_PROCID
TT_ERR_PROPLN
TT_ERR_PROPNAME
TT_ERR_PTYPE
TT_ERR_DISPOSITION
TT_ERR_SCOPE
TT_ERR_SESSION
TT_ERR_VTYPE
TT_ERR_NO_VALUE
TT_ERR_INTERNAL
TT_ERR_READONLY
TT_ERR_NO_MATCH
TT_ERR_UNIMP
TT_ERR_OVERFLOW
TT_ERR_PTEPE_START
TT_ERR_CATEGORY
TT_ERR_DBUPDATE
TT_ERR_DBFULL
<table>
<thead>
<tr>
<th>Error Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TT_ERR_DBCONSIST</td>
<td>Internal database consistency error</td>
</tr>
<tr>
<td>TT_ERR_STATE</td>
<td>State error</td>
</tr>
<tr>
<td>TT_ERR_NOMEM</td>
<td>No memory error</td>
</tr>
<tr>
<td>TT_ERR_SLOTNAME</td>
<td>Slot name error</td>
</tr>
<tr>
<td>TT_ERR_XDR</td>
<td>XDR error</td>
</tr>
<tr>
<td>TT_DESKTOP_EPERM</td>
<td>Desktop error - permission error</td>
</tr>
<tr>
<td>TT_DESKTOP_ENOENT</td>
<td>Desktop error - no such entry</td>
</tr>
<tr>
<td>TT_DESKTOP_EINTR</td>
<td>Desktop error - interrupt error</td>
</tr>
<tr>
<td>TT_DESKTOP_EIO</td>
<td>Desktop error - I/O error</td>
</tr>
<tr>
<td>TT_DESKTOP_EAGAIN</td>
<td>Desktop error - resource already allocated</td>
</tr>
<tr>
<td>TT_DESKTOP_ENOMEM</td>
<td>Desktop error - memory error</td>
</tr>
<tr>
<td>TT_DESKTOP_EACCES</td>
<td>Desktop error - access error</td>
</tr>
<tr>
<td>TT_DESKTOP_EFAULT</td>
<td>Desktop error - fault error</td>
</tr>
<tr>
<td>TT_DESKTOP_EEXIST</td>
<td>Desktop error - entry already exists</td>
</tr>
<tr>
<td>TT_DESKTOP_ENODEV</td>
<td>Desktop error - no such device</td>
</tr>
<tr>
<td>TT_DESKTOP_ENOTDIR</td>
<td>Desktop error - not a directory</td>
</tr>
<tr>
<td>TT_DESKTOP_EISDIR</td>
<td>Desktop error - is a directory</td>
</tr>
<tr>
<td>TT_DESKTOP_EINVAL</td>
<td>Desktop error - invalid value</td>
</tr>
<tr>
<td>TT_DESKTOP_ENFILE</td>
<td>Desktop error - file already exists</td>
</tr>
<tr>
<td>TT_DESKTOP_EMFILE</td>
<td>Desktop error - file already open</td>
</tr>
<tr>
<td>TT_DESKTOP_ETXBSY</td>
<td>Desktop error - file lock busy</td>
</tr>
<tr>
<td>TT_DESKTOP_EFBIG</td>
<td>Desktop error - file too big</td>
</tr>
<tr>
<td>TT_DESKTOP_ENOSPC</td>
<td>Desktop error - no space left on device</td>
</tr>
<tr>
<td>TT_DESKTOP_EROFS</td>
<td>Desktop error - read-only file system</td>
</tr>
<tr>
<td>TT_DESKTOP_EMLINK</td>
<td>Desktop error - hard link limit exceeded</td>
</tr>
<tr>
<td>TT_DESKTOP_EPIPE</td>
<td>Desktop error - pipeline error</td>
</tr>
<tr>
<td>TT_DESKTOP_ENOMSG</td>
<td>Desktop error - no message available</td>
</tr>
<tr>
<td>TT_DESKTOP_EDEADLK</td>
<td>Desktop error - deadlock detected</td>
</tr>
<tr>
<td>TT_DESKTOP_ECANCELED</td>
<td>Desktop error - canceled operation</td>
</tr>
<tr>
<td>TT_DESKTOP_ENOTSUP</td>
<td>Desktop error - operation not supported</td>
</tr>
<tr>
<td>TT_DESKTOP_ENODATA</td>
<td>Desktop error - end of file reached</td>
</tr>
<tr>
<td>TT_DESKTOP_EPROTO</td>
<td>Desktop error - protocol error</td>
</tr>
<tr>
<td>TT_DESKTOP_ENOTEMPTY</td>
<td>Desktop error - file not empty</td>
</tr>
<tr>
<td>TT_DESKTOP_ETIMEDOUT</td>
<td>Desktop error - timeout error</td>
</tr>
<tr>
<td>TT_DESKTOP_EALREADY</td>
<td>Desktop error - file already ready</td>
</tr>
<tr>
<td>TT_DESKTOP_UNMODIFIED</td>
<td>Desktop error - file not modified</td>
</tr>
<tr>
<td>TT_MEDIA_ERR_SIZE</td>
<td>Media error - file size error</td>
</tr>
<tr>
<td>TT_MEDIA_ERR_FORMAT</td>
<td>Media error - file format error</td>
</tr>
</tbody>
</table>
Some of the commands take a message scope as a parameter. The scope indicates which clients have the potential of receiving the outgoing message. For these commands, the scope parameter can be set to any of the following values:

- `TT_SCOPE_NONE`
- `TT_SESSION`
- `TT_FILE`
- `TT_BOTH`
- `TT_FILE_IN_SESSION`

**tt_file_netfile** variable status filename

Converts the indicated filename, assumed to be a valid file name on the local host, to its corresponding netfilename format. A netfilename can be passed to other hosts on a network and then converted back to a path relative to the other host, using the **tt_netfile_file** command.

**tt_netfile_file** variable status netfilename

Converts the indicated netfilename to a path name that is valid on the local host.

**tt_host_file_netfile** variable status host filename

Converts the indicated file, assumed to be resident on the specified host, into its corresponding netfilename format.

**tt_host_netfile_file** variable status host netfilename

Converts the indicated netfilename into a valid path on the indicated host.

**tttdt_open** variable status var2 toolname vendor version sendStarted

Opens a ToolTalk communications endpoint. It returns in the variable argument the procID associated with this connection. It returns the file descriptor associated with this connection in var2; this file descriptor can be used to register an alternate Xt input handler. The sendStarted argument is a value and if set to true, causes a Started message to be automatically sent.

Any procIDs returned by **tttdt_open** contain embedded spaces. To prevent kshell from interpreting the procID as a multiple parameter (versus a single parameter with embedded spaces), you should always enclose any references to the environment variable containing the procID within double
For the ToolTalk messages to be received and processed, the shell script must register an Xt input handler for the file descriptor returned by the call to `ttdt_open`. The Xt input handler is registered using the `XtAddInput` command, and the handler must be registered as a raw input handler. The input handler that the shell script registers should invoke `tttk_Xt_input_handler` to get the message received and processed. The following code block demonstrates how this is done:

```plaintext
ttdt_open PROC_ID STATUS FID "Tool" "HP" "1.0" True XtAddInput INPUT_ID -r $FID "ProcessTTInput \"$PROC_ID\""

ProcessTTInput()
{
 tttk_Xt_input_handler $1 $INPUT_SOURCE $INPUT_ID
}
```

Refer to the description of the `XtAddInput` command for more details about alternate Xt input handlers.

Note that the `"` (backslash and double quotation mark) characters before and after the reference to the procID environment variable are necessary, because the value contained in the procID environment variable contains embedded spaces and could be misinterpreted unless escaped as shown.

`ttdt_close STATUS procID newProcId sendStopped`

Closes the indicated communications connection and optionally sends a Stopped notice, if the `sendStopped` argument is set to `true`.

Because the procID returned by the call to `ttdt_open` contains embedded spaces, it is necessary to enclose any references to the procID environment variable within double quotation marks:

```plaintext
ttdt_close STATUS "$PROC_ID" "$NEW_PROC_ID" False
```

`ttdt_session_join variable status sessId shellWidgetHandle join`

Joins the session indicated by the `sessId` argument as a good desktop citizen, by registering patterns and default callbacks for many standard desktop message interfaces. If the `sessId` argument does not specify a value (that is, it
is an empty string), then the default session is joined. If the
shellWidgetHandle argument specifies a widget handle (that is, it is not an
empty string), then it should refer to a mappedWhenManaged
applicationShellWidget. The join argument is a Boolean and should be
set to true or false. This command returns an opaque pattern handle in the
variable argument; when no longer needed, this handle can be destroyed
using the ttdt_session_quit command.

ttdt_session_quit status sessId sessPatterns quit

Destroys the message patterns specified by the sessPatterns argument and, if
the quit argument is set to true, quits the session indicated by the sessId
argument or quits the default session if sessId is empty.

ttdt_file_join variable status pathName scope join ksh-command

Registers interest in the deleted, modified, reverted, moved, and saved
messages for the indicated file in the indicated scope. An opaque pattern
handle is returned in the variable argument. When no longer interested in
monitoring messages for the indicated file, this should be destroyed by
calling ttdt_file_quit.

The requested ksh-command is evaluated anytime one of the messages is
received for the indicated file. When this kshell command is evaluated, the
following environment variables are defined and provide additional
information about the received message:

DT_TT_MSG Contains the opaque handle for the incoming message

DT_TT_OP Contains the string representing the operation to be
performed; that is, TTDT_DELETED,
TTDT_MODIFIED, TTDT_REVERTED, TTDT_MOVED
or TTDT_SAVED.

DT_TT_PATHNAME Contains the pathname for the file to which this
message pertains.

DT_TTSAME_EUID_EGID Set to True if the message was sent by an
application operating with the same effective
user ID (euid) and effective group ID (egid) as
this process.
DT_TT_SAME_PROCID

Set to True if the message was sent by an application with the same procID (as returned by `ttdt_open`).

When the callback completes, it must indicate whether the passed-in message was “consumed” (replied-to, failed, or rejected). If the callback returns the message (as passed-in in the `DT_TT_MSG` environment variable), then it is assumed that the message was not consumed. If the message was consumed, then the callback should return 0, or one of the values returned by the `tt_error_pointer` command. The callback can return its value in the following fashion:

```
return $DT_TT_MSG (or) return 0
```

`ttdt_file_quit status patterns quit`

Destroys the message patterns specified by the `patterns` argument and unregisters interest in the path name that was passed to the `ttdt_file_join` command, if `quit` is set to `true`. The `patterns` argument should be the value that was returned by the call to the `ttdt_file_join` command.

`ttdt_file_event status op patterns send`

Creates, and optionally sends, a ToolTalk notice announcing an event pertaining to a file. The file is indicated by the path name that was passed to the `ttdt_file_join` command when `patterns` was created. The `op` argument indicates what should be announced for the indicated file, and it can be set to `TTDT_MODIFIED`, `TTDT_SAVED`, or `TTDT_REVERTED`. If `op` is set to `TTDT_MODIFIED`, then this command registers to handle `Get_Modified`, `Save` and `Revert` messages in the scope specified when the `patterns` were created. If `op` is set to `TTDT_SAVED` or `TTDT_REVERTED`, this command unregisters from handling `Get_Modified`, `Save`, and `Revert` messages for this file. If the `send` argument is set to `true`, then the indicated message is sent.

`ttdt_Get_Modified pathName scope timeout`

Sends a `Get_Modified` request in the indicated scope and waits for a reply or for the specified timeout (in milliseconds) to elapse. A `Get_Modified` request asks other ToolTalk clients if they have any changes pending on `pathname` that they intend to make persistent. Returns a value which can be used in a conditional statement. A value of `true` is returned if an affirmative reply is received within the specified timeout; otherwise, `false` is returned.
tttdt_Save status pathName scope timeout

Sends a Save request in the indicated scope and waits for a reply or for the indicated timeout (in milliseconds) to elapse. A Save request asks the handling ToolTalk client to save any changes pending for the file specified in the pathName argument. A status of TT_OK is returned if an affirmative reply is received before the timeout elapses. Otherwise, one of the standard Tt_status error values is returned.

tttdt_Revert status pathName scope timeout

Sends a Revert request in the indicated scope and waits for a reply or for the indicated timeout (in milliseconds) to elapse. A Revert request asks the handling ToolTalk client to discard any changes pending for the file specified in the pathName argument. A status of TT_OK is returned if an affirmative reply is received before the timeout elapses. Otherwise, one of the standard Tt_status error values is returned.

The following commands are typically used by the callback registered with the tttdt_file_join command. They serve as the mechanism for consuming and destroying a message. A message is consumed by either rejecting, failing, or replying to it. tt_error_pointer can be used by the callback to obtain a return pointer for indicating an error condition.

tt_error_pointer variable ttStatus

Returns a “magic value,” which is used by ToolTalk to represent an invalid pointer. The magic value returned depends upon the ttStatus value passed-in. Any of the valid Tt_status values may be specified.

tttk_message_destroy status msg

Destroys any patterns that may have been stored on the message indicated by the msg argument, and then destroys the message.

tttk_message_reject status msg msgStatus msgStatusString destroy

Sets the status and the status string for the indicated request message, and then rejects the message. It then destroys the passed-in message, if the destroy argument is set to True. This command is one way in which the callback specified with the tttdt_file_join command can consume a message. It is typically safe to destroy the message, using tttk_message_destroy, after rejecting the message.
tttk_message_fail status msg msgStatus msgStatusString destroy

Sets the status and the status string for the indicated request message, and then fails the message. It then destroys the passed-in message, if the destroy argument is set to True. This command is one way in which the callback specified with the ttdt_file_join command can consume a message. It is typically safe to destroy the message, using tttk_message_destroy, after failing the message.

tt_message_reply status msg

Informs the ToolTalk service that the shell script has handled the message and filled in all return values. The ToolTalk service then sends the reply back to the sending process, filling in the state as TT_HANDLED. After replying to a message, it is typically safe to destroy the message, using the tttk_message_destroy command.
The `dtksh` utility includes a file of convenience functions. This file is itself a shell script containing shell functions that may be useful to a shell programmer. The shell functions perform operations that `dtksh` programmers frequently have to do for themselves. These include functions for quickly creating certain kinds of dialogs (help, error, warning, and so on), a function for easily creating a collection of buttons, and functions that make it easier to configure the constraint resources for a child of a form widget. It is not a requirement that shell script writers use these convenience functions; they are supplied to make it easier for developers to write shorter and more readable shell scripts.

Before a shell script can access these functions, it must first include the file containing the convenience functions. The convenience functions are located in the file `/usr/dt/scripts/DtFuncs.sh`. Use the following notation to include them in a shell script:

```
. /usr/dt/lib/dtksh/DtFuncs.dtsh
```
DtkshAddButtons

DtkshAddButtons adds one or more buttons of the same kind into a composite widget. It is most often used to add a collection of buttons into a menupane or menubar.

Usage:
DtkshAddButtons parent widgetClass label1 callback1
   [label2 callback2 ...]
DtkshAddButtons [-w] parent widgetClass variable1 label1 callback1 \
   [variable2 label2 callback2 ...]

The -w option indicates that the convenience function should return the widget handle for each of the buttons it creates. The widget handle is returned in the specified environment variable. The widgetClass parameter can be set to any of the following, but it defaults to XmPushButtonGadget if nothing is specified.

- XmPushButton
- XmPushButtonGadget
- XmToggleButton
- XmToggleButtonGadget
- XmCascadeButton
- XmCascadeButtonGadget

Examples:
DtkshAddButtons $MENU XmPushButtonGadget Open do_Open Save do_Save
   Quit exit
DtkshAddButtons -w $MENU XmPushButtonGadget B1 Open do_Open B2 Save do_Save
DtkshSetReturnKeyControls

DtkshSetReturnKeyControls configures a text widget within a form widget so that the Return key does not activate the default button within the form, but instead moves the focus to the next text widget within the form. This is useful if you have a window that contains a series of text widgets, and the default button should not be activated until the user presses the Return key while the focus is in the last text widget.

Usage:
DtkshSetReturnKeyControls textWidget nextTextWidget formWidget defaultButton

The textWidget parameter specifies the widget to be configured to catch the Return key and force the focus to move to the next text widget (as indicated by the nextTextWidget parameter). The formWidget parameter specifies the form containing the default button and should be the parent of the two text widgets. The defaultButton parameter indicates which component is to be treated as the default button within the form widget.

Examples:
DtkshSetReturnKeyControls $TEXT1 $TEXT2 $FORM $OK
DtkshSetReturnKeyControls $TEXT2 $TEXT3 $FORM $OK
DtkshUnder, DtkshOver, DtkshRightOf, and DtkshLeftOf

These convenience functions simplify the specification of certain classes of form constraints. They provide a way of attaching a component to one edge of another component. They are used when constructing the resource list for a widget. This behavior is accomplished using the ATTACH_WIDGET constraint.

Usage:
DtkshUnder widgetId [offset]
DtkshOver widgetId [offset]
DtkshRightOf widgetId [offset]
DtkshLeftOf widgetId [offset]

The widgetId parameter specifies the widget to which the current component is to be attached. The offset value is optional and defaults to 0 if not specified.

Example:
XtCreateManagedWidget BUTTON4 button4 XmPushButton $FORM |
   labelString:"Exit" |
   $(DtkshUnder $BUTTON2) |
   $(DtkshRightOf $BUTTON3)
DtkshFloatRight, DtkshFloatLeft, DtkshFloatTop, and DtkshFloatBottom

These convenience functions simplify the specification of certain classes of form constraints. They provide a way of positioning a component, independent of the other components within the form. As the form grows or shrinks, the component maintains its relative position within the form. The component may still grow or shrink, depending upon the other form constraints specified for the component. This behavior is accomplished using the ATTACH_POSITION constraint.

Usage:

DtkshFloatRight [position]
DtkshFloatLeft [position]
DtkshFloatTop [position]
DtkshFloatBottom [position]

The optional position parameter specifies the relative position to which the indicated edge of the component is positioned. The position value is optional and defaults to 0 if one is not specified.

Example:

XtCreateManagedWidget BUTTON1 button1 XmPushButton $FORM \ labelString:"Ok" \ $(DtkshUnder $SEPARATOR) \ $(DtkshFloatLeft 10) \ $(DtkshFloatRight 40)
DtkshAnchorRight, DtkshAnchorLeft, DtkshAnchorTop, and DtkshAnchorBottom

These convenience functions simplify the specification of certain classes of form constraints. They provide a way of attaching a component to one of the edges of a form widget in such a way that, as the form grows or shrinks, the component's position does not change. However, depending upon the other form constraints set on this component, it may still grow or shrink in size. This behavior is accomplished using the ATTACH_FORM constraint.

Usage:

DtkshAnchorRight [offset]
DtkshAnchorLeft [offset]
DtkshAnchorTop [offset]
DtkshAnchorBottom [offset]

The optional offset parameter specifies how far from the edge of the form widget the component should be positioned. If an offset is not specified, then 0 is used.

Example:

XtCreateManagedWidget BUTTON1 button1 XmPushButton $FORM \ labelString:"Ok" \ $(DtkshUnder $SEPARATOR) \ $(DtkshAnchorLeft 10) \ $(DtkshAnchorBottom 10)
DtkshSpanWidth and DtkshSpanHeight

These convenience functions simplify the specification of certain classes of form constraints. They provide a way of configuring a component so that it spans either the full height or width of the form widget. This behavior is accomplished by attaching two edges of the component (top and bottom for DtSpanHeight, and left and right for DtSpanWidth) to the form widget. The component typically resizes whenever the form widget is resized. The ATTACH_FORM constraint is used for all attachments.

Usage:

DtkshSpanWidth [leftOffset rightOffset]
DtkshSpanHeight [topOffset bottomOffset]

The optional offset parameters specify how far from the edges of the form widget the component should be positioned. If an offset is not specified, then 0 is used.

Example:

XtCreateManagedWidget SEP sep XmSeparator $FORM \ 
$(DtkshSpanWidth 1 1)
DtkshDisplayInformationDialog, DtkshDisplayQuestionDialog, DtkDisplayWarningDialog, DtkshDisplayWorkingDialog, and DtkshDisplayErrorDialog

These convenience functions create a single instance of each of the Motif feedback dialogs. If an instance of the requested type of dialog already exists, then it is reused. The parent of the dialog is obtained from the environment variable $TOPLEVEL, which should be set by the calling shell script, and then should not be changed. The handle for the requested dialog is returned in one of the following environment variables:

- _DTKSH_ERROR_DIALOG_HANDLE
- _DTKSH_QUESTION_DIALOG_HANDLE
- _DTKSH_WORKING_DIALOG_HANDLE
- _DTKSH_WARNING_DIALOG_HANDLE
- _DTKSH_INFORMATION_DIALOG_HANDLE

Note – If you are attaching your own callbacks to the dialog buttons, do not destroy the dialog when you are done with it. Unmanage the dialog, so that it can be used again at a later time. If it is necessary to destroy the dialog, then be sure to clear the associated environment variable so the convenience function does not attempt to reuse the dialog.

Usage:

DtkshDisplay<name>Dialog title message [okCallback closeCallback helpCallback dialogStyle]

The Ok button is always managed, and by default unmanages the dialog. The Cancel and Help buttons are only managed when a callback is supplied for them. The dialogStyle parameter accepts any of the standard resource settings supported by the associated bulletin board resource.

Example:

DtkshDisplayErrorDialog "Read Error" "Unable to read the file" "OkCallback" \  "CancelCallback" "" DIALOG_PRIMARY_APPLICATION_MODAL
DtkshDisplayQuickHelpDialog and DtkshDisplayHelpDialog

These convenience functions create a single instance of each of the help dialogs. If an instance of the requested type of help dialog already exists, then it is reused. The parent of the dialog is obtained from the environment variable $TOPLEVEL, which should be set by the calling shell script, and then should not be changed. The handle for the requested dialog is returned in one of the following environment variables:

- _DTKSH_HELP_DIALOG_HANDLE
- _DTKSH_QUICK_HELP_DIALOG_HANDLE

**Note** – If it is necessary to destroy a help dialog, then be sure to clear the associated environment variable so that the convenience function does not attempt to reuse the dialog.

**Usage:**

DtkshDisplayHelpDialog title helpType helpInformation [locationId]

The meaning of the parameters is dependent upon the value specified for the helpType parameter. Their meanings are:

- helpType = HELP_TYPE_TOPIC
  - helpInformation = help volume name
  - locationId = help topic location ID

- helpType = HELP_TYPE_STRING
  - helpInformation = help string
  - locationId = <not used>

- helpType = HELP_TYPE_DYNAMIC_STRING
  - helpInformation = help string
  - locationId = <not used>

- helpType = HELP_TYPE_MAN_PAGE
  - helpInformation = manual page name
  - locationId = <not used>

- helpType = HELP_TYPE_FILE
  - helpInformation = help file name
  - locationId = <not used>
Example:

DtkshDisplayHelpDialog "Help On Dtksh" HELP_TYPE_FILE "helpFileName"
This appendix contains the complete listing of script_find described in Chapter 4, “A Complex Script.” The script executes a second script called Find.sticky, which is listed after script_find. There is also a file called Find.help, which is a text file accessed when the user clicks the Help button on the main script window. See Chapter 4 for more information on this script.

```
#!/usr/dt/bin/dtksh
set -u

. /usr/dt/lib/dtksh/DtFuncs.dtsh

This sample shell script provides a graphical interface to the
'find' command. Each time it is executed, it will attempt to
restore the dialog to the last set of values entered by the user.
When the 'find' command is initiated, the output will be displayed
in a dtterm window.
#
#
Post an# error dialog. The main application window is disabled
until the error dialog is unposted. The message to be displayed
in the # error dialog is passed in as $1
#
PostErrorDialog()
{

```
DtDisplayErrorDialog "Find Error" "$1" \
DIALOG_PRIMARY_APPLICATION_MODAL
}

# This is both the 'Ok' and the 'Apply' callback; in the case of the # 'Ok' callback, it unposts the main application window, and then # exits, if the dialog contains valid information. For both 'Ok' and # 'Apply', the set of search directories is first validated; if any # of the paths are not valid, then an error dialog is posted. # Otherwise, the 'find' process is started in a terminal window. #
OkCallback()
{
    RetrieveAndSaveCurrentValues
    if [ "$SD_VAL" = "" ]; then
        PostErrorDialog "You must specify a directory to search"
    else
        for i in $SD_VAL; do
            if [ ! -d $i ]; then
                MSG="The following search directory does not exist: $i"
                PostErrorDialog "$MSG"
                return 1
            fi
        done
        if [ $CB_WIDGET = $OK ]; then
            XtPopdown $TOPLEVEL
        fi
        CMD="/bin/find $SD_VAL"
        if [ ! "$FNP_VAL" = "" ]; then
            CMD=$CMD "-name $FNP_VAL"
        fi
        if ! $(XmToggleButtonGetState $T1); then
            CMD=$CMD "-xdev"
        fi
        if $(XmToggleButtonGetState $T3); then
            CMD=$CMD "-hidden"
        fi
        if $(XmToggleButtonGetState $T4); then
            CMD=$CMD "$FNP_VAL"
        fi
        if ! $(XmToggleButtonGetState $T5); then
            CMD=$CMD "-name $FNP_VAL"
        fi
        if ! $(XmToggleButtonGetState $T6); then
            CMD=$CMD "$FNP_VAL"
        fi
        if ! $(XmToggleButtonGetState $T7); then
            CMD=$CMD "$FNP_VAL"
        fi
        if ! $(XmToggleButtonGetState $T8); then
            CMD=$CMD "$FNP_VAL"
        fi
        if ! $(XmToggleButtonGetState $T9); then
            CMD=$CMD "$FNP_VAL"
        fi
        if ! $(XmToggleButtonGetState $T10); then
            CMD=$CMD "$FNP_VAL"
        fi
        if ! $(XmToggleButtonGetState $T11); then
            CMD=$CMD "$FNP_VAL"
        fi
        if ! $(XmToggleButtonGetState $T12); then
            CMD=$CMD "$FNP_VAL"
        fi
        if ! $(XmToggleButtonGetState $T13); then
            CMD=$CMD "$FNP_VAL"
        fi
        if ! $(XmToggleButtonGetState $T14); then
            CMD=$CMD "$FNP_VAL"
        fi
        if ! $(XmToggleButtonGetState $T15); then
            CMD=$CMD "$FNP_VAL"
        fi
        if ! $(XmToggleButtonGetState $T16); then
            CMD=$CMD "$FNP_VAL"
        fi
        if ! $(XmToggleButtonGetState $T17); then
            CMD=$CMD "$FNP_VAL"
        fi
        if ! $(XmToggleButtonGetState $T18); then
            CMD=$CMD "$FNP_VAL"
        fi
        if ! $(XmToggleButtonGetState $T19); then
            CMD=$CMD "$FNP_VAL"
        fi
        if ! $(XmToggleButtonGetState $T20); then
            CMD=$CMD "$FNP_VAL"
        fi
        if ! $(XmToggleButtonGetState $T21); then
            CMD=$CMD "$FNP_VAL"
        fi
        if ! $(XmToggleButtonGetState $T22); then
            CMD=$CMD "$FNP_VAL"
        fi
        if ! $(XmToggleButtonGetState $T23); then
            CMD=$CMD "$FNP_VAL"
        fi
        if ! $(XmToggleButtonGetState $T24); then
            CMD=$CMD "$FNP_VAL"
        fi
        if ! $(XmToggleButtonGetState $T25); then
            CMD=$CMD "$FNP_VAL"
        fi
        if ! $(XmToggleButtonGetState $T26); then
            CMD=$CMD "$FNP_VAL"
        fi
        if ! $(XmToggleButtonGetState $T27); then
            CMD=$CMD "$FNP_VAL"
        fi
        if ! $(XmToggleButtonGetState $T28); then
            CMD=$CMD "$FNP_VAL"
        fi
        if ! $(XmToggleButtonGetState $T29); then
            CMD=$CMD "$FNP_VAL"
        fi
        if ! $(XmToggleButtonGetState $T30); then
            CMD=$CMD "$FNP_VAL"
        fi
        if ! $(XmToggleButtonGetState $T31); then
            CMD=$CMD "$FNP_VAL"
        fi
        if ! $(XmToggleButtonGetState $T32); then
            CMD=$CMD "$FNP_VAL"
        fi
        if ! $(XmToggleButtonGetState $T33); then
            CMD=$CMD "$FNP_VAL"
        fi
        if ! $(XmToggleButtonGetState $T34); then
            CMD=$CMD "$FNP_VAL"
        fi
        if ! $(XmToggleButtonGetState $T35); then
            CMD=$CMD "$FNP_VAL"
        fi
        if ! $(XmToggleButtonGetState $T36); then
            CMD=$CMD "$FNP_VAL"
        fi
        if ! $(XmToggleButtonGetState $T37); then
            CMD=$CMD "$FNP_VAL"
        fi
        if ! $(XmToggleButtonGetState $T38); then
            CMD=$CMD "$FNP_VAL"
        fi
        if ! $(XmToggleButtonGetState $T39); then
            CMD=$CMD "$FNP_VAL"
        fi
        if ! $(XmToggleButtonGetState $T40); then
            CMD=$CMD "$FNP_VAL"
        fi
        if ! $(XmToggleButtonGetState $T41); then
            CMD=$CMD "$FNP_VAL"
        fi
        if ! $(XmToggleButtonGetState $T42); then
            CMD=$CMD "$FNP_VAL"
        fi
        if ! $(XmToggleButtonGetState $T43); then
            CMD=$CMD "$FNP_VAL"
        fi
        if ! $(XmToggleButtonGetState $T44); then
            CMD=$CMD "$FNP_VAL"
        fi
        if ! $(XmToggleButtonGetState $T45); then
            CMD=$CMD "$FNP_VAL"
        fi
        if ! $(XmToggleButtonGetState $T46); then
            CMD=$CMD "$FNP_VAL"
        fi
        if ! $(XmToggleButtonGetState $T47); then
            CMD=$CMD "$FNP_VAL"
        fi
        if ! $(XmToggleButtonGetState $T48); then
            CMD=$CMD "$FNP_VAL"
        fi
        if ! $(XmToggleButtonGetState $T49); then
            CMD=$CMD "$FNP_VAL"
        fi
        if ! $(XmToggleButtonGetState $T50); then
            CMD=$CMD "$FNP_VAL"
        fi
        if ! $(XmToggleButtonGetState $T51); then
            CMD=$CMD "$FNP_VAL"
        fi
        if ! $(XmToggleButtonGetState $T52); then
            CMD=$CMD "$FNP_VAL"
        fi
        if ! $(XmToggleButtonGetState $T53); then
            CMD=$CMD "$FNP_VAL"
        fi
        if ! $(XmToggleButtonGetState $T54); then
            CMD=$CMD "$FNP_VAL"
        fi
        if ! $(XmToggleButtonGetState $T55); then
            CMD=$CMD "$FNP_VAL"
        fi
        if ! $(XmToggleButtonGetState $T56); then
            CMD=$CMD "$FNP_VAL"
        fi
        if ! $(XmToggleButtonGetState $T57); then
            CMD=$CMD "$FNP_VAL"
        fi
        if ! $(XmToggleButtonGetState $T58); then
            CMD=$CMD "$FNP_VAL"
        fi
        if ! $(XmToggleButtonGetState $T59); then
            CMD=$CMD "$FNP_VAL"
        fi
        if ! $(XmToggleButtonGetState $T60); then
            CMD=$CMD "$FNP_VAL"
        fi
        if ! $(XmToggleButtonGetState $T61); then
            CMD=$CMD "$FNP_VAL"
        fi
        if ! $(XmToggleButtonGetState $T62); then
            CMD=$CMD "$FNP_VAL"
        fi
        if ! $(XmToggleButtonGetState $T63); then
            CMD=$CMD "$FNP_VAL"
        fi
        if ! $(XmToggleButtonGetState $T64); then
            CMD=$CMD "$FNP_VAL"
        fi
        if ! $(XmToggleButtonGetState $T65); then
            CMD=$CMD "$FNP_VAL"
        fi
        if ! $(XmToggleButtonGetState $T66); then
            CMD=$CMD "$FNP_VAL"
        fi
        if ! $(XmToggleButtonGetState $T67); then
            CMD=$CMD "$FNP_Val"
CMD="CMD" -follow"
fi

if $(XmToggleButtonGetState $T5); then
  CMD="CMD" -depth"
fi

case $FSTYPE_VAL in
  $NFS)  CMD=CMD" -fsonly nfs" ;;
  $CDFS) CMD=CMD" -fsonly cdfs" ;;
  $HFS)  CMD=CMD" -fsonly hfs" ;;
  *) ;;
esac

case $FILETYPE_VAL in
  $REGULAR)   CMD=CMD" -type f" ;;
  $DIRECTORY) CMD=CMD" -type d" ;;
  $BLOCK)     CMD=CMD" -type b" ;;
  $CHAR)      CMD=CMD" -type c" ;;
  $FIFO)      CMD=CMD" -type p" ;;
  $SYMLINK)   CMD=CMD" -type l" ;;
  $SOCKET)    CMD=CMD" -type s" ;;
  $NET)       CMD=CMD" -type n" ;;
  $MOUNT)     CMD=CMD" -type M" ;;
  $HIDDEN)    CMD=CMD" -type H" ;;
  *) ;;
esac

if $(XmToggleButtonGetState $T2); then
  CMD="CMD" -print"
fi

/usr/dt/bin/dtterm -title "Find A File" -e /usr/dt/bin/dtexec
  -open -1 $CMD &

if [ $CB_WIDGET = $OK ] ; then
  exit 0
fi
fi
}

# # This function attempt to load in the previous dialog values.  # Each line read from the file is then interpreted as a ksh command.  #
LoadStickyValues()
{
    if [ -r "./Find.sticky" ]; then
        exec 6< "./Find.sticky"
        XtAddInput FID 6 "EvalCmd"
    fi
}

EvalCmd()
{
    if [ ${#INPUT_LINE} -gt 0 ]; then
        eval "INPUT_LINE"
    fi

    if [ "INPUT_EOF" = 'true' ]; then
        XtRemoveInput $INPUT_ID
        eval exec INPUT_SOURCE<&-
    fi
}

RetrieveAndSaveCurrentValues()
{
    XmTextGetString SD_VAL $SD
    XmTextGetString FNP_VAL $FNP
    XtGetValues $FSTYPE menuHistory:FSTYPE_VAL
    XtGetValues $FILETYPE menuHistory:FILETYPE_VAL

    exec 3> "./Find.sticky"
    if [ ! "$SD_VAL" = "" ]; then
        print -u 3 "XmTextSetString \$SD \"$SD_VAL\""
        print -u 3 "XmTextFieldSetInsertionPosition \$SD ${#SD_VAL}"
    fi
    if [ ! "$FNP_VAL" = "" ]; then
        print -u 3 "XmTextSetString \$FNP \"$FNP_VAL\""
    fi
}
print -u 3 "XmTextFieldSetInsertionPosition \$FNP \${#FNP_VAL}"
fi

case $FSTYPE_VAL in
  $NFS)  FST="\$NFS" ;;
  $CDFS) FST="\$CDFS" ;;
  $HFS)  FST="\$HFS" ;;
  *)     FST="\$NODIR" ;;
esac
print -u 3 "XtSetValues \$FSTYPE menuHistory:\$FST"

case $FILETYPE_VAL in
  $REGULAR)   FT="\$REGULAR" ;;
  $DIRECTORY) FT="\$DIRECTORY" ;;
  $BLOCK)     FT="\$BLOCK" ;;
  $CHAR)      FT="\$CHAR" ;;
  $FIFO)      FT="\$FIFO" ;;
  $SYMLINK)   FT="\$SYMLINK" ;;
  $SOCKET)    FT="\$SOCKET" ;;
  $NET)       FT="\$NET" ;;
  $MOUNT)     FT="\$MOUNT" ;;
  $HIDDEN)    FT="\$HIDDEN" ;;
  *)          FT="\$NOTYPE" ;;
esac
print -u 3 "XtSetValues \$FILETYPE menuHistory:\$FT"

if $(XmToggleButtonGetState $T1); then
  print -u 3 "XmToggleButtonSetState \$T1 true false"
fi

if $(XmToggleButtonGetState $T2); then
  print -u 3 "XmToggleButtonSetState \$T2 true false"
fi

if $(XmToggleButtonGetState $T3); then
  print -u 3 "XmToggleButtonSetState \$T3 true false"
fi

if $(XmToggleButtonGetState $T4); then
  print -u 3 "XmToggleButtonSetState \$T4 true false"
fi

if $(XmToggleButtonGetState $T5); then
  print -u 3 "XmToggleButtonSetState \$T5 true false"
fi
exec 3<&-
}

################ Create the Main UI ####################

set -f
XtInitialize TOplevel find Dtksh $0 ""$(@:-)"
XtSetValues $TOplevel title:"Find Files"

XtCreateManagedWidget FORM form XmForm $TOplevel

XtCreateManagedWidget SDLABEL sdlablabel XmLabel $FORM \
 labelString:"Search Directory:" \
 $(DtkshAnchorTop 12) \
 $(DtkshAnchorLeft 10)

XtCreateManagedWidget SD sd XmText $FORM \
columns:30 \
value:"." \
 $(DtkshAnchorTop 6) \
 $(DtkshRightOf $SDLABEL 10) \
 $(DtkshAnchorRight 10) \
 navigationType:EXCLUSIVE_TAB_GROUP
XmTextFieldSetInsertionPosition $SD 1

XtCreateManagedWidget FNPLABEL fnpabel XmLabel $FORM \
 labelString:"Filename Pattern:" \
 $(DtkshUnder $SDLABEL 24) \
 $(DtkshAnchorLeft 10)

XtCreateManagedWidget FNP fnp XmText $FORM \
columns:30 \
 $(DtkshUnder $SD 8) \
 $(DtkshRightOf $FNPLABEL 10) \
 $(DtkshAnchorRight 10) \
 navigationType:EXCLUSIVE_TAB_GROUP

XtCreateManagedWidget SEP sep XmSeparator $FORM \
 separatorType:SINGLE_DASHED_LINE \
 $(DtkshUnder $FNP 10) \
 $(DtkshSpanWidth)

XtCreateManagedWidget RC rc XmRowColumn $FORM \
 orientation:HORIZONTAL \

numColumns:3 \ 
packaging:PACK_COLUMN \ 
$(DtkshUnder $SEP 10) \ 
$(DtkshSpanWidth 10 10) \ 
navigationType:EXCLUSIVE_TAB_GROUP

DtkshAddButtons -w $RC XmToggleButtonGadget \ 
 T1 "Cross Mount Points" "" \ 
 T2 "Print Matching Filenames" "" \ 
 T3 "Search Hidden Subdirectories" "" \ 
 T4 "Follow Symbolic Links" "" \ 
 T5 "Descend Subdirectories First" ""

XtCreateManagedWidget SEP2 sep XmSeparator $FORM \ 
separatorType:SINGLE_DASHED_LINE \ 
$(DtkshUnder $RC 10) \ 
$(DtkshSpanWidth)

XmCreatePulldownMenu PANE $FORM pane 
DtkshAddButtons -w $PANE XmPushButtonGadget \ 
 NODIR "no restrictions" "" \ 
 NFS "nfs" "" \ 
 CDFS "cdfs" "" \ 
 HFS "hfs" ""

XmCreateOptionMenu FSTYPE $FORM fstype \ 
 labelString:"Restrict Search To File System Type:" \ 
 menuHistory:$NODIR \ 
 subMenuId:$PANE \ 
$(DtkshUnder $SEP2 20) \ 
$(DtkshSpanWidth 10 10) \ 
navigationType:EXCLUSIVE_TAB_GROUP 

XtManageChild $FSTYPE

XmCreatePulldownMenu PANE2 $FORM pane2 
DtkshAddButtons -w $PANE2 XmPushButtonGadget \ 
 NOTYPE "no restrictions" "" \ 
 REGULAR "regular" "" \ 
 DIRECTORY "directory" "" \ 
 BLOCK "block special" "" \ 
 CHAR "character special" "" \ 
 FIFO "fifo" "" \ 
 SYMLINK "symbolic link" "" \ 
 SOCKET "socket" "" \ 
 NET "network special" "" \ 
 MOUNT "mount point" ""
HIDDEN "hidden directory" ""

XmCreateOptionMenu FILETYPE $FORM filetype \
    labelString:"Match Only Files Of Type:" \n    menuHistory:$NOTYPE \n    subMenuId:$PANE2 \n    $(DtkshUnder $FSTYPE 10) \n    $(DtkshSpanWidth 10 10) \n    navigationType:EXCLUSIVE_TAB_GROUP
XtManageChild $FILETYPE
XtSetValues $FILETYPE spacing:90

XtCreateManagedWidget SEP3 sep3 XmSeparator $FORM \n    $(DtkshUnder $FILETYPE 10) \n    $(DtkshSpanWidth)

XtCreateManagedWidget OK ok XmPushButton $FORM \n    labelString:"Ok" \n    $(DtkshUnder $SEP3 10) \n    $(DtkshFloatLeft 4) \n    $(DtkshFloatRight 24) \n    $(DtkshAnchorBottom 10)
XtAddCallback $OK activateCallback "OkCallback"

XtCreateManagedWidget APPLY apply XmPushButton $FORM \n    labelString:"Apply" \n    $(DtkshUnder $SEP3 10) \n    $(DtkshFloatLeft 28) \n    $(DtkshFloatRight 48) \n    $(DtkshAnchorBottom 10)
XtAddCallback $APPLY activateCallback "OkCallback"

XtCreateManagedWidget CLOSE close XmPushButton $FORM \n    labelString:"Close" \n    $(DtkshUnder $SEP3 10) \n    $(DtkshFloatLeft 52) \n    $(DtkshFloatRight 72) \n    $(DtkshAnchorBottom 10)
XtAddCallback $CLOSE activateCallback "exit 1"

XtCreateManagedWidget HELP help XmPushButton $FORM \n    labelString:"Help" \n    $(DtkshUnder $SEP3 10) \n    $(DtFloatLeft 76) \n    $(DtkshFloatRight 96) \n    $(DtkshAnchorBottom 10)
The following script, `Find.sticky`, is executed by `script_find`. `Find.sticky` remembers the file and directory names used in the most recent execution of `script_find`.

```
XmTextSetString $SD "~/users/dlm"
XmTextFieldSetInsertionPosition $SD 10
XmTextSetString $FNP "elmbug"
XmTextFieldSetInsertionPosition $FNP 6
XtSetValues $FSTYPE menuHistory:$NODIR
XtSetValues $FILETYPE menuHistory:$DIRECTORY
XmToggleButtonSetState $T1 true false
XmToggleButtonSetState $T2 true false
```

`Find.help` is a text file that is displayed on screen when the user clicks the Help button in the main `script_find` window.

This dialog presents a graphical interface to the UNIX `find` command. The only required field is the name of the directory to be searched; all other fields are optional. Once the fields have been set to the desired values, you can use the 'Ok' or 'Apply' button to initiate the find operation. The results of the find operation are displayed in a dtterm terminal window.
Index

A
action commands, 64
app-defaults file, 4
application help commands, 60
applications, Motif, 1

B
Boolean Values, 6
bulletin board, 14

callback, 10, 15
  pass data to, 10
  register, 10
  script_find, 32
  workspace, 18
category 1, 6
category 2, 6
category 3, 7
category 4, 7
CB_CALL_DATA, 11
command
  CDE application help, 60
commands, 41
  action, 64
  data-typing, 65
  libDt, 67
  libdt, 65
  libDt session management, 62
  localization, 61
  message set, 67
  Motif, 48
  workspace management, 63
  Xt Intrinsics, 44
convenience functions, 77
create form widget, 35
create menu, 37
create separator widget, 36
create widget, 8

D
data-typing commands, 65
Defined Values, 5
drawing functions, 26
DtDisplayWarningDialog, 84
dtksh
  definition, 1
relationship to ksh-93, 1
Dtksh, app-defaults file, 4
DtkshAddButtons, 37, 78
DtkshAnchorBottom, 82
DtkshAnchorLeft, 82
DtkshAnchorRight, 82
DtkshAnchorTop, 82
DtkshDisplayErrorDialog, 32, 84
DtkshDisplayHelpDialog, 85
DtkshDisplayInformationDialog, 84
DtkshDisplayQuestionDialog, 84
DtkshDisplayQuickHelpDialog, 85
DtkshDisplayWorkingDialog, 84
DtkshFloatBottom, 81
DtkshFloatLeft, 81
DtkshFloatRight, 81
DtkshFloatTop, 81
DtkshLeftOf, 80
DtkshOver, 80
DtkshRightOf, 80
DtkshSetReturnKeyControls, 79
DtkshSpanHeight, 83
DtkshSpanWidth, 83
DtkshUnder, 80

E
event handler, 17
event subfield, 20

F
Find.sticky, 95
functions
  supported, 1

H
handle, 9

I
immediate return value, 7
initialize, 14
initialize Xt Intrinsics, 8
input context variable, 18
input mode, 19

K
ksh-93, 1

L
libDt commands, 65, 67
libDt session management commands, 62
libraries, required, 1
localization commands, 61
localized script, 25

M
menu, create, 37
message set commands, 67
Motif applications, 1
Motif commands, 48
mwmFunctions, 3

P
parameters, variable number, 2
pushbutton, 15

R
register callback, 10
required linbraries, 1
resource
  unsupported, 3
resources, 2
return value
  category 1, 6
  category 2, 6
  category 3, 7
  category 4, 7
  immediate, 7
Return Values, 6
s
sample script, 13
script
  localized, 25
  sample, 13
  writing, 13
script, complex, 29
script_find, 29, 87
session manager save state notice, 21
supported functions, 1
toplevel widget, 14
topShadowColor, 2
translation, 18, 27
u
unsupported resources, 3
v
variable values, 5
VendorShell, 3
w
widget
  bulletin board, 14
  create, 8
  form, 35
  handle, 9
  pushbutton, 15
  separator, 36
  toplevel, 14
  translations, 27
window manager close notice, 21
workspace callback, 18
workspace management, 25
workspace management commands, 63
x
XmCreateForm, 9
XmCreateLabel, 10
XmCreateOptionMenu, 38
XmCreatePulldownMenu, 37
XmCreatePushButton, 9
XmNtopShadowColor, 2
XmTextFieldSetInsertionPosition, 33, 36
XmTextSetString, 33
XmToggleButtonSetState, 33
Xt Intrinsics
  initialize, 8
Xt Intrinsics commands, 44
XtAddCallback, 10, 39, 44
XtAddEventHandler, 44
XtAddInput, 18, 19, 44
XtCreateApplicationShell, 9
XtCreateManagedWidget, 9, 13, 35, 36, 37, 38, 45
XtCreatePopupShell, 9
XtCreateWidget, 9
XtDisplay, 45
XtGetValues, 2, 3
XtInitialize, 8, 13, 34
XtMainLoop, 13, 15, 39
XtManageChild, 38
XtRealizeWidget, 13, 39
XtrealizeWidget, 15
XtRemoveInput, 19
XtSetValues, 3, 13, 33, 39