Contents

Preface xi

1. Software Installation 1
 Preparing the System for Use 1
 Deciding What Configuration You Need 2
 Deciding on the Installation Method 2
 Arrange for Software Installation 2
 Software Installation 2
 How to Turn the Power On 2
 Automatic Installation 4
 Interactive Installation 6
 Installing Software Packages 7
 Package Descriptions 9
 Software Reinstallation 10
 For Automatic Installation 10
 For Interactive Installation 10
 Serial Port Configuration 11

2. System Power 13
 Suspending Your System 14
What to Consider Before Suspending 14
How to Suspend 14
 Suspend Method 1 — Keyboard 15
 Suspend Method 2 — Keyboard 16
 Workspace Utilities Suspend 16
 Shell Command Suspend 16
Halting the Operating System 17
 Changing the System Configuration 17
 Shutting the System Down 18
 Rebooting after a Configuration Change 18
How To Turn the Power Back On 18
Troubleshooting 19
 What To Do if Power-On Does Not Succeed 19
 If the Power Key Does Not Suspend the System 20
 Recovering from a Hung System 20
 What To Do If Suspend Does Not Succeed 21

3. Using Power Management Software on SPARCstation Voyager Systems 23
Starting dtpower 23
 ▼ To start dtpower from the Command Line 24
 ▼ To start dtpower from the OpenWindows Menus 24
The dtpower Icon 24
The dtpower Main Window 26
The Devices Panel 27
 ▼ To Set an Idle Time for Your Screen 27
 ▼ To Set an Idle Time for Your Hard Disk 28
The System Panel 30
 ▼ To Set an Idle Time for AutoShutdown of the System 30
Exiting dtpower 32
▼ To exit dtpower 33

4. Using a Networked SPARCstation Voyager Disconnected from the Network 35
Preparing the System 35
Using the SPARCstation Voyager in Nomadic Mode 36
 Basic Considerations for Disconnected Operation 36
Modem Connections 38
 Point-to-Point Protocol (PPP) 38
Terminal Emulators 38
 Tip and the Sun PCMCIA Fax/Data Modem 39

5. Configuring for Disconnected Operation 41
Installation 41
Name Service Configuration 41
 Default 42
 Configuring /etc/nsswitch 42
Network Configuration 44
 Hostname to IP Address Mapping 44
 IP Forwarding and Network Routing 45
NFS Mount Configuration 46
 Using the Automounter 46
 Using the Soft Mount Option 47
User Configuration 47
 Creating a Local Home Environment 48
 Managing Two Home Directories 48
 Define the PATH Environment 48
 Define the MANPATH Environment 49
Sendmail Configuration 49
 Remote Mail Host 49
 Configuring the Remote Mail Host 50
 Mail Aliases 50
 Queue Limits 51

6. Configuring for Point-to-Point Protocol Connections 53
 Configuring PPP 53
 Configuring the UUCP Dialing Facility 54
 Initiating a Connection to the Remote PPP Server 56
 Terminating the Connection 58
 Automatic Connections 58
 Boot Issues 59
 Other Issues 59
 Additional Information 60
Figures

FIGURE 1-1 Power Key Location: Sun Compact 1 Keyboard 3
FIGURE 1-2 Power Key Location: Sun Type 5 Keyboard 4
FIGURE 2-1 Power Key Location — Sun Compact 1 Keyboard 15
FIGURE 2-2 Suspend Confirmation 15
FIGURE 2-3 Power Switch Location 19
FIGURE 2-4 Suspend Failed Example 21
FIGURE 2-5 Power Off Failure Window 22
FIGURE 3-1 dt:power: Main Window for the SPARCstation Voyager 26
FIGURE 3-2 Setting a Screen Idle Time for a SPARCstation Voyager 28
FIGURE 3-3 Setting a Hard Disk Idle Time for a SPARCstation Voyager 29
FIGURE 3-4 Setting the AutoShutdown Timing for a SPARCstation Voyager 32
FIGURE 5-1 Internet Host Table 44
Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TABLE 1-1</td>
<td>Packages Installed with Auto Install</td>
<td>5</td>
</tr>
<tr>
<td>TABLE 1-2</td>
<td>Recommended Disk Partitioning</td>
<td>6</td>
</tr>
<tr>
<td>TABLE 1-3</td>
<td>SPARCstation Voyager Packages</td>
<td>9</td>
</tr>
<tr>
<td>TABLE 6-1</td>
<td>Systems File Elements</td>
<td>55</td>
</tr>
</tbody>
</table>
Preface

This book, *Platform Notes: SPARCstation Voyager Software Guide*, explains how to use the SPARCstation™ Voyager™ computer with software provided with the Solaris 2.6 release that is specific to this computer. This book is intended for the user of a SPARCstation Voyager and for a system and network administrator supporting users of that workstation.

Who Should Use This Book

If you are a SPARCstation Voyager user, the manuals provided with your workstation contain comparable information about using software with your system. Refer to this manual to find how to use your system with the latest release of Solaris software.

If you are an administrator supporting users of the SPARCstation Voyager, this manual provides you with software information you may need, even if you do not have a SPARCstation Voyager and its documentation set at hand.

How This Book Is Organized

Chapter 1, “Software Installation,” is an overview of how to install Solaris software on a SPARCstation Voyager system.

Chapter 2, “System Power,” describes how to start up the system and how to halt or suspend use of the machine in a ways that makes it easy to resume your work later.
Chapter 3, “Using Power Management Software on SPARCstation Voyager Systems,” describes how to use Power Management software that provides special features for the SPARCstation Voyager.

Chapter 4, “Using a Networked SPARCstation Voyager Disconnected from the Network,” describes how a SPARCstation Voyager user can operate nomadically.

Chapter 5, “Configuring for Disconnected Operation,” describes how an administrator can prepare a network for remote use of a SPARCstation Voyager system.

Chapter 6, “Configuring for Point-to-Point Protocol Connections,” describes how to set up a PPP connection to link a SPARCstation Voyager system to a network.

Using UNIX Commands

This document may not contain information on basic UNIX® commands and procedures such as shutting down the system, booting the system, and configuring devices.

See one or more of the following for this information:

- Solaris 2.x Handbook for SMCC Peripherals
- AnswerBook™ online documentation for the Solaris™ 2.x software environment
- Other software documentation that you received with your system
Typographic Conventions

<table>
<thead>
<tr>
<th>Typeface or Symbol</th>
<th>Meaning</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>AaBbCc123</td>
<td>The names of commands, files, and directories; on-screen computer output.</td>
<td>Edit your .login file. Use ls -a to list all files. % You have mail.</td>
</tr>
<tr>
<td>AaBbCc123</td>
<td>What you type, when contrasted with on-screen computer output.</td>
<td>% su</td>
</tr>
<tr>
<td>AaBbCc123</td>
<td>Book titles, new words or terms, words to be emphasized. Command-line variable; replace with a real name or value.</td>
<td>Read Chapter 6 in the User’s Guide. These are called class options. You must be root to do this. To delete a file, type rm filename.</td>
</tr>
</tbody>
</table>

Shell Prompts

<table>
<thead>
<tr>
<th>Shell</th>
<th>Prompt</th>
</tr>
</thead>
<tbody>
<tr>
<td>C shell</td>
<td>machine_name%</td>
</tr>
<tr>
<td>C shell superuser</td>
<td>machine_name#</td>
</tr>
<tr>
<td>Bourne shell and Korn shell</td>
<td>$</td>
</tr>
<tr>
<td>Bourne shell and Korn shell</td>
<td>#</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Ordering Sun Documents

SunDocs℠ is a distribution program for Sun Microsystems technical documentation. Contact SunExpress for easy ordering and quick delivery. You can find a listing of available Sun documentation on the World Wide Web.

TABLE P-3 SunExpress Contact Information

<table>
<thead>
<tr>
<th>Country</th>
<th>Telephone</th>
<th>Fax</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belgium</td>
<td>02-720-09-09</td>
<td>02-725-88-50</td>
</tr>
<tr>
<td>Canada</td>
<td>1-800-873-7869</td>
<td>1-800-944-0661</td>
</tr>
<tr>
<td>France</td>
<td>8000-90-61-57</td>
<td>8000-90-61-58</td>
</tr>
<tr>
<td>Germany</td>
<td>01-30-81-61-91</td>
<td>01-30-81-61-92</td>
</tr>
<tr>
<td>Holland</td>
<td>06-022-34-45</td>
<td>06-022-34-46</td>
</tr>
<tr>
<td>Japan</td>
<td>0120-33-9096</td>
<td>0120-33-9097</td>
</tr>
<tr>
<td>Luxembourg</td>
<td>32-2-720-09-09</td>
<td>32-2-725-88-50</td>
</tr>
<tr>
<td>Sweden</td>
<td>020-79-57-26</td>
<td>020-79-57-27</td>
</tr>
<tr>
<td>Switzerland</td>
<td>0800-55-19-26</td>
<td>0800-55-19-27</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>0800-89-88-88</td>
<td>0800-89-88-87</td>
</tr>
<tr>
<td>United States</td>
<td>1-800-873-7869</td>
<td>1-800-944-0661</td>
</tr>
</tbody>
</table>

Sun Welcomes Your Comments

Please use the Reader Comment Card that accompanies this document. We are interested in improving our documentation and welcome your comments and suggestions.

If a card is not available, you can email or fax your comments to us. Please include the part number of your document in the subject line of your email or fax message.

- **Email:** smcc-docs@sun.com
- **Fax:** SMCC Document Feedback
 1-415-786-6443
Software Installation

Preparing the System for Use

Before you turn the system on for the first time, prepare to install Solaris®, the software that ships with the system.

Note – These instructions apply to installing (or reinstalling) the Solaris version that originally came with your SPARCstation Voyager machine. For installing or upgrading to a later version of Solaris, follow the general installation instructions for that later Solaris release. For those releases, use this chapter only as a guide to selecting the combination of software that will be useful on this machine.

A new mode of operation is possible on the SPARCstation Voyager. You can configure it to run alternately connected to and disconnected from the network in nomadic mode. If you want to use this mode, read Chapter 4, “Using a Networked SPARCstation Voyager Disconnected from the Network” and Chapter 5, “Configuring for Disconnected Operation” in this book. The two chapters describe additional steps to take after you install Solaris that will enable nomadic operation.

After you decide whether you want to enhance your machine with the nomadic configuration, you need to decide what configuration to select when the Solaris installation program prompts you.
Deciding What Configuration You Need

- Standalone networked preinstalled system.
 Standalone means you have an internal disk with software. Networked means you can communicate with other machines over a LAN. Choose this Solaris option if you want to configure for the nomadic mode.
- Single system — a standalone non-networked preinstalled system.

Deciding on the Installation Method

- **Automatic Installation.**
 It is recommended that you use Automatic Installation. This method ensures that all the files you will need for networked or nomadic operation are copied to your system.
- **Interactive Installation.**
 If, for any reason, the Auto Install failed or you want to custom install the operating system, use Interactive Installation.

Arrange for Software Installation

Provide your system administrator with the installation instructions and compact disc or discs that come with your software. Your system administrator will normally perform the rest of the procedures in this chapter.

Software Installation

Software installation consists of the following steps:

- **Power on**
- **Automatic or Interactive Solaris installation**
- **Installation of SPARCstation Voyager Software Packages**

How to Turn the Power On

Turning on your system for the first time is different from what will probably become your normal procedure. You must be ready to install software and configure your machine.
1. Plug the power cord into the AC input connector in the power supply and to the wall socket.
 See the SPARCstation Voyager User’s Guide for information on the different ways to configure your SPARCstation Voyager’s power source.

2. Connect a CD player to your system.

3. Insert the Solaris CD-ROM into the CD-ROM caddy and insert the caddy into the CD player.

4. Turn on the power to any external devices (for example, the Desktop Storage Module).
 Refer to the documentation that comes with your drive(s); for example, the Desktop Storage Module Installation Guide.

![Power Key Location: Sun Compact 1 Keyboard]

FIGURE 1-1 Power Key Location: Sun Compact 1 Keyboard
5. **Turn on the power to the system unit.**

Press the power key on the keyboard. For the power key location, see FIGURE 1-1 on page 3 or FIGURE 1-2.

If your SPARCstation Voyager system is operating properly, your monitor displays a banner screen within 15 seconds after the system is turned on.

If you are doing an interactive installation, press Stop-a and follow the instructions under “Interactive Installation” on page 6.

If you are doing an automatic installation, you don’t have to do anything else now. At this point, the installation process begins.

Automatic Installation

All the files you will need for networked or nomadic operation are copied to your system. TABLE 1-1 lists the packages that are installed. This procedure assumes that your network has been set up as described in the *Solaris Advanced Installation Guide*.
After the software is installed, you will be prompted to create a root password. After creating the root password, start OpenWindows. To start OpenWindows, enter the following command:

```
# /usr/openwin/bin/openwin
```

<table>
<thead>
<tr>
<th>Package or Cluster</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUNWCreq</td>
<td>Solaris required packages</td>
</tr>
<tr>
<td>SUNWaudio</td>
<td>Audio Applications</td>
</tr>
<tr>
<td>SUNWbmnur</td>
<td>Networking UUCP Utilities (Root)—support needed for PPP</td>
</tr>
<tr>
<td>SUNWbnuu</td>
<td>Networking UUCP Utilities (Usr)—support needed for PPP</td>
</tr>
<tr>
<td>SUNWlpri</td>
<td>LP Print Service (Root)</td>
</tr>
<tr>
<td>SUNWlpui</td>
<td>LP Print Service (Usr)</td>
</tr>
<tr>
<td>SUNWlittk</td>
<td>Tooltalk</td>
</tr>
<tr>
<td>SUNWxilrt</td>
<td>XIL Runtime Environment</td>
</tr>
<tr>
<td>SUNWxildg</td>
<td>XIL Loadable Pipeline Libraries</td>
</tr>
<tr>
<td>SUNWxiler</td>
<td>XIL English Localization</td>
</tr>
<tr>
<td>SUNWxilow</td>
<td>XIL Deskset Loadable Pipeline Drivers</td>
</tr>
<tr>
<td>SUNWxwcft</td>
<td>XWindows Common Fonts</td>
</tr>
<tr>
<td>SUNWxwoft</td>
<td>XWindows Optional Fonts</td>
</tr>
<tr>
<td>SUNWxwpft</td>
<td>XWindows Platform Software</td>
</tr>
<tr>
<td>SUNWlibms</td>
<td>SPARCompilers Bundled libms</td>
</tr>
<tr>
<td>SUNWowrqd</td>
<td>OpenWindows Required Core Package</td>
</tr>
<tr>
<td>SUNWowoft</td>
<td>OpenWindows Optional Fonts</td>
</tr>
<tr>
<td>SUNWowbcp</td>
<td>OpenWindows Binary Compatibility</td>
</tr>
<tr>
<td>SUNWolaud</td>
<td>Open Windows Audio Tool</td>
</tr>
<tr>
<td>SUNWoldcv</td>
<td>Open Windows Document Viewer</td>
</tr>
<tr>
<td>SUNWoldst</td>
<td>Open WindowsDesktop Tools</td>
</tr>
<tr>
<td>SUNWoldte</td>
<td>Open WindowsDesktop Environment</td>
</tr>
<tr>
<td>SUNWolimt</td>
<td>Open Windows Imagetool</td>
</tr>
<tr>
<td>SUNWolrte</td>
<td>Open Windows Run Time Environment</td>
</tr>
<tr>
<td>SUNWinst</td>
<td>Install Software</td>
</tr>
</tbody>
</table>
Interactive Installation

Use this method of installation if Automatic Installation failed or if you want to use Interactive Installation. We recommend that you use the following procedure:

1. **Use the Custom Install method.**

 See the *Solaris Advanced Installation Guide* for details. Quick install may be the easiest option, but the system requires some custom handling to use the SPARCstation Voyager Support Software.

2. **Use the following disk partitioning.**

 TABLE 1-2 Recommended Disk Partitioning

<table>
<thead>
<tr>
<th>Mount Point</th>
<th>Size (MBytes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>/</td>
<td>292</td>
</tr>
<tr>
<td>swap</td>
<td>32</td>
</tr>
</tbody>
</table>
3. Install the packages you desire.
 Make sure you install all the packages listed in TABLE 1-1 for full functionality of your machine.

Installing Software Packages

After installing Solaris, you will be logged in as root and OpenWindows will be running. Now you can install the SPARCstation Voyager packages that are on the SPARC Vendors’ Additions CD using the following procedure.

Note – The instructions in this chapter are only for reinstalling the Solaris version that was originally supplied with the SPARCstation Voyager hardware. If you have upgraded this machine to use Solaris 2.6, you do not need to install software specific to this machine from another CD.

1. Make sure that File Manager is running.
2. Insert the SPARC Vendors’ Solaris Additions CD into the CD caddy.
3. Insert the caddy into the compact disc player.
 If there is a CD in the player, type eject in a shell window to remove the CD. The File Manager CD Window is displayed in less than a minute. The content of the CD is displayed in the window.
4. In the File Manager window, double-click on the SMCC folder.
 This folder opens showing you the contents of the SMCC directory.
5. Open a command window and (if you are not already superuser) become superuser using the su command.

```
example% su
Password: enter superuser password
example#
```
6. Enter the following commands at the # prompt:

```
example# cd /cdrom/sol_2_4_hw1194_smcc
example# swmtool -d 'pwd' -c .swm
```

The Software Manager window is displayed. The display shows Voyager Software 1.0.

7. **Double click on the icon for the Voyager Software 1.0 cluster.**

The SPARCstation Voyager clusters and packages are listed.

8. **Click once on the icon for the Voyager Software User Cluster.**

 This highlights the item indicating that it is selected.

9. **Click the Begin Installation button.**

 A pop-up window titled “Software Manager: Command Input/Output” is displayed that shows all package installation messages. If anything goes wrong, it will ask you a question in this window. The installation process should take about 4 to 5 minutes. You will hear some disk and speaker noise. When the installation is complete, the message “Re-initialize list of install software” is displayed at the bottom of the window. It then displays “Click select on software to mark for installation.”

10. **Quit Software Manager.**

11. **Exit OpenWindows.**

 When you start Openwindows again, the special keys daemon will automatically start. This daemon recognizes the power key and the brightness keys on the keyboard.

Note – If you do not exit OpenWindows, you can start the daemon with the command `/usr/openwin/bin/speckeysd`.
Package Descriptions

TABLE 1-3 lists the packages that support SPARCstation Voyager. All of the packages except for SUNWdiagv are included in the Voyager Software User Cluster. If you have a problem with your workstation, you can use the SUNWdiagv package to isolate the problem. This package is not automatically installed on your workstation.

<table>
<thead>
<tr>
<th>Package Name</th>
<th>Size (blocks)</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUNWbtryh</td>
<td>2</td>
<td>Battery Module Header File</td>
<td>This package contains the battery module header file.</td>
</tr>
<tr>
<td>SUNWbttry</td>
<td>15</td>
<td>Battery Streams Module</td>
<td>This package contains the interface software for the battery.</td>
</tr>
<tr>
<td>SUNWcpr</td>
<td>562</td>
<td>Suspend, Resume Package</td>
<td>This package contains the software that suspends operation of the workstation by saving the system state to nonvolatile storage. This software also resumes operation of the workstation by restoring the previous system state.</td>
</tr>
<tr>
<td>SUNWdiagv</td>
<td>200</td>
<td>SPARCstation Voyager Online Diagnostic Test</td>
<td>This package contains the SPARCstation Voyager-specific SunDiag tests.</td>
</tr>
<tr>
<td>SUNWird</td>
<td>31</td>
<td>Infrared Device Driver</td>
<td>This package contains the driver for the infrared communications devices that allows the workstation to interface with other infrared devices.</td>
</tr>
<tr>
<td>SUNWirdh</td>
<td>2</td>
<td>Infrared Device Header File</td>
<td>This package contains the infrared device header files.</td>
</tr>
<tr>
<td>SUNWpmc</td>
<td>14</td>
<td>Power Management Chip Driver</td>
<td>This package contains the interface software for the power management chip that handles power management for internal devices.</td>
</tr>
<tr>
<td>SUNWpmch</td>
<td>2</td>
<td>Power Management Chip Driver Header Files</td>
<td>This package contains the header files for the Power Management Chip Driver.</td>
</tr>
<tr>
<td>SUNWpcmci</td>
<td>346</td>
<td>PCMCIA Kernel Software</td>
<td>This package contains the PCMCIA kernel nexus and adapter driver.</td>
</tr>
<tr>
<td>SUNWpcmcu</td>
<td>34</td>
<td>PCMCIAPCMCIA User Software</td>
<td>This package contains the PCMCIA user daemon.</td>
</tr>
<tr>
<td>SUNWpcmnn</td>
<td>36</td>
<td>PCMCIA Man Pages</td>
<td>This package contains the PCMCIA man pages.</td>
</tr>
<tr>
<td>SUNWpcmem</td>
<td>128</td>
<td>PCMCIA Memory Card Driver</td>
<td>PCMCIA memory card driver support.</td>
</tr>
</tbody>
</table>
Software Reinstallation

You can reinstall with either automatic or interactive installation.

For Automatic Installation

1. Get your machine ready by inserting the Solaris CD-ROM into the CD-ROM caddy and insert the caddy into the CD player.

2. As superuser, in a shell, enter the following commands.

   ```
   # touch /autoinstall
   # sync
   # reboot
   ```

3. Follow the instruction under “Automatic Installation” on page 4.

For Interactive Installation

Follow the instructions under “Interactive Installation” on page 6.
Serial Port Configuration

External devices must be connected to serial port A on the back panel of the SPARCstation Voyager system unit. Although the SPARCstation Voyager unit contains a serial port B, the port is a dedicated battery communications channel, not available for other configuration purposes.
CHAPTER 2

System Power

Your SPARCstation Voyager has a new timesaving feature for turning the power off and on. The new feature, Suspend-Resume, is provided with your system.

Without Suspend-Resume, you must exit your applications, halt your operating system, and turn off the power. When you turn the power on again, the system must go through the normal boot sequence, taking at least a few minutes, before you can restart your applications and bring up your files.

With the SPARCstation Voyager, when you Suspend, you save all the activities current on your workstation and turn the power off in one command. When you Resume, the power comes on and the system displays your work at exactly the point where you left it, in a very short time.

Suspend-Resume works with Power Manager to suspend your system automatically. For information on how to set Power Manager for your individual needs, refer to Installing and Using Power Management, shipped with your system.

Unlike other systems, SPARCstation Voyager consumes no power during suspension. You can leave the system suspended for an indefinite length of time without fearing that your data will be lost.

Note – If you are turning your system on for the first time, be sure to read “Preparing the System for Use” on page 1 in Chapter 1, “Software Installation.”

This chapter tells you:
■ When and how to use suspend and resume to turn the power off
■ When and how to halt the operating system and turn the power off
■ How to turn the power back on
■ Troubleshooting
Suspending Your System

Usually Suspend is the best way to shut the power off. SPARCstation Voyager’s Suspend and Resume feature is perfect for when you want to:

- Transport the system
- Change the power source to a battery or power supply
- Unplug the system unit power cord
- Shut the system off to conserve energy

If you need to shut the power off for other reasons, see “Halting the Operating System” on page 17.

What to Consider Before Suspending

A few considerations apply to Suspending the system. You must wait for the following operations to complete before you initiate Suspend:

- Audio activity
- Floppy disk activity
- Print jobs
- Tape activity

As always, saving everything before you Suspend is a good practice.

How to Suspend

Suspend and a subsequent Resume typically require less than a minute.

Note – When you Resume, the Lockscreen utility is in effect for security. You need to type your password to gain access to the system.

You can perform Suspend from several methods.
Suspend Method 1 — Keyboard

1. Press the power key on the keyboard.
 The pop-up confirmation window appears. See FIGURE 2-2.

Please confirm suspension of system state.

 [Suspend] [Cancel]

2. Select Suspend.
 Selecting Suspend will cause your computer to save your session to disk so that
 when you Resume, the system displays your work as you left it.

3. Turn off the power to all external units.
 External units may include external drive units, printers, or other serial or parallel
 devices. See the manual supplied with the external device for instructions.
Suspend Method 2 — Keyboard

1. Press shift and the power key on the keyboard.
 See FIGURE 2-1 for the location of the power key.
 A sequence begins (Suspend) in which the system state is saved to disk before the power goes off. When you press the power key again (Resume), the resulting display will be as you left it when you turned the power off.

2. Turn off the power to all external units.
 External units may include external drive units, printers, or other serial or parallel devices. See the manual supplied with the external device for instructions.

Workspace Utilities Suspend

You can Suspend your system using the Workspace Utilities menu. To pull up the Workspace Utilities menu:

1. Place your cursor in the workspace and hold down the menu button.
 The Workspace menu will appear.

2. Select Utilities with the menu button.

3. Select the Suspend menu option.
 The Suspend confirmation window will pop up. See FIGURE 2-2.

4. Select Suspend.
 The system state is saved to disk. It will resume as you left it when you press the power key again.

5. Turn off the power to all external units.
 External units may include external drive units, printers, or other serial or parallel devices. See the manual supplied with the external device for instructions.

Shell Command Suspend

You can use a shell command to Suspend. The window system does not have to be running for the shell command Suspend to work.

1. At the prompt, type:

```
tempest% /usr/openwin/bin/sys-suspend
```
The Suspend confirmation window will appear. See FIGURE 2-2.
If the window system is not running, the command will execute without the confirmation window.

2. **Select Suspend.**
 The computer will save your activities to disk. When you press the power key again, the display will appear just as you left it.

3. **Turn off the power to all external units.**
 External units may include external drive units, printers, or other serial or parallel devices. See the manual supplied with the external device for instructions.

Halting the Operating System

Caution – You must halt the operating system in an orderly manner. Do not turn off the system by disconnecting the AC plug or pulling the battery out. Doing so can cause damage to your operating system. *Any data you have not saved will be lost.*

Sometimes you must halt the operating system and turn the system off.

You *must* halt the operating system and turn off the power to:

- Change the system configuration
- Remove or install a part, such as a memory card, *inside* the system unit
- Remove or install an *external* drive unit or monitor
- Install a PCMCIA card in a slot previously occupied by a PCMCIA card of a different type
- Install, reinstall, or upgrade the operating system
- When your system is hung (frozen), you will not be able to halt the operating system. You must turn the power off.

Changing the System Configuration

When you change the system configuration, for example, to add or remove an internal part such as a memory card or an external part such as a CD ROM or replace a PCMCIA card with one of a different type, you must halt the operating system and turn the power off. A configuration change requires you to reboot the system after adding or removing items. You will need to use the boot -r command to reconfigure the system.
Shutting the System Down

To halt the system, you must first become superuser.

1. **Type su.**

   ```bash
tempest% su
   ```

 The system will ask you for a password.

2. **Type your superuser password.**

 A screen will appear with a # sign.

3. **Type init 0.**

   ```bash
   # init 0
   screen messages
   ok
   ```

 After the ok prompt appears, you can turn the system off. Press Shift and the power key to turn the system off.

Rebooting after a Configuration Change

After you add a device to your SPARCstation Voyager, you must reboot in a particular way. After the system comes up, type boot -r to reconfigure the system.

How To Turn the Power Back On

Note – If you are powering on your system for the first time, follow the instructions in How to Turn the Power On on page 2.

1. Turn on the power for any external devices.
2. **Press the power key on the keyboard.**
 If you used any of the Suspend methods to turn the system off, your system will Resume with the Lockscreen utility. After you type your password, the system will Resume at the point that you left it.
 If you halted the system, it will boot.

Troubleshooting

What To Do if Power-On Does Not Succeed

If you do not see the banner screen within 10 to 15 seconds after you turn on the power:

1. Check the power LED at the front of the system to see if it is lit.
2. Make sure the AC power cord is securely attached to both the power supply and the AC wall outlet.
3. Be sure the AC wall outlet has power.
4. Check to see that the keyboard cables are firmly connected.
5. **Try pressing the power key again.**
 You should hear a beep as the machine comes on.
6. **If the machine does not come on, try pressing the power switch on the system’s rear panel.**
 See FIGURE 2-3.

![Power Switch Location](image)

FIGURE 2-3 Power Switch Location

If the power still does not come on, call your Sun sales office for a service provider.
If the Power Key Does Not Suspend the System

Use a shell to check that the key processing daemon is present.

Type:

```
% ps -eaf | grep speckeysd
```

If the resulting output does not list /usr/openwin/bin/speckeysd, you should start it.

In a shell, type:

```
% /usr/openwin/bin/speckeysd
```

Recovering from a Hung System

If your system does not respond to the mouse or keyboard, perform the following steps:

1. **If your system is on a network, wait a few minutes before taking any action.**
 A slow response may be due to network problems or delays. Check with the person in charge of your network. If the response is not due to the network, go to the next step.

2. **Press Stop-a.**
 Hold both keys down at the same time.

 Note – If you use a Wyse® WY-50™, DEC VT100™, or compatible terminal as the console with your SPARCstation Voyager system unit, press Break instead of Stop-a.

 Pressing Stop-a (or Break) puts the system into the monitor command mode (indicated by the ok prompt).

3. **Type sync.**
 Your file system will be saved.

 `ok sync`
4. When Stop-a (or Break) is not effective, turn the power off using the power switch on the back panel of the system.

See FIGURE 2-3. The system power will turn off without the Suspend sequence. When you turn the system on again, the boot sequence will begin. Your work will not be saved.

What To Do If Suspend Does Not Succeed

If Suspend does not succeed, an alert window will pop up and more information about the failure will be displayed in the console window.

![Suspend Failed Example](image.png)

1. Select Cancel.
 If you have not already saved your work, do so now.

2. Look in the Console window in the Workspace for more information.
 You may be able to take corrective action.

3. Try Suspend again.
 - If Suspend succeeds, the system will save your activities and the system will power off.
 - If Suspend does not succeed, the alert will pop up again.

Caution – Save your work if you have not already done so.

 Your work will not be saved. When you power on again, the system will reboot.

 If, when you select a menu Power Off option, it fails, an alert appears with information about the power-off failure.
1. Select Continue.

2. Save your work if you haven’t already done so.

3. Turn the power off after halting the system.

 See “Changing the System Configuration” on page 17 and steps 2 through 4 of “Recovering from a Hung System” on page 20.
Using Power Management Software on SPARCstation Voyager Systems

This chapter explains how to use the `dtpower` program to activate or turn off power management features, and to specify when you want the screen, hard disk, or the SPARCstation Voyager system to shut down automatically to reduce energy use.

This tool can be used with the OpenWindows™ and Common Desktop Environment (CDE) desktops.

Note – If you are not using a SPARCstation Voyager, `dtpower` will operate in different ways. Refer to *Using Power Management* (rather than this book) for an explanation of using Power Management features on sun4m and sun4u desktop machines.

The `dtpower` program is integrated into the whole Power Management system for this nomadic computer. For example, if a SPARCstation Voyager is operating only on battery power, the system will automatically suspend when it is about to exhaust the battery charge, regardless of what you have specified with the `dtpower` command.

A command line interface is also provided for a system administrator to change a workstation’s system default settings. For information on using the `pmconfig` program and the `power.conf` file, go to the *Using Power Management* manual.

To start using `dtpower`, go to the next section (“Starting `dtpower`”) in this chapter.

Starting `dtpower`

Note – In CDE, the Power Management icon should appear on the default desktop.
Start \texttt{dtpower} by using one of the following methods.

\textbf{▼ To start \texttt{dtpower} from the Command Line}

1. Become superuser by typing:

\begin{verbatim}
example% su
Password: root_password
\end{verbatim}

You must become superuser before you can modify any settings in the Power Management software.

2. Start \texttt{dtpower} by typing:

\begin{verbatim}
example% /usr/openwin/bin/dtpower &
\end{verbatim}

\textbf{▼ To start \texttt{dtpower} from the OpenWindows Menus}

- Select Power Manager from the Workspace menu under the Programs option if you are using the default OpenWindows menu.

For more information on the Workspace menu, refer to the \textit{Solaris User’s Guide}.

\section*{The \texttt{dtpower} Icon}

If you have already run the \texttt{dtpower} program, its icon may be displayed in one of the following ways:

- This \texttt{dtpower} icon appears when the SPARCstation Voyager is connected to a wall outlet (that is, operating on AC).
One of these two dtpower icons appears when the SPARCstation Voyager is operating from a battery. The first indicates how many minutes of operation remain before recharging is needed. The second indicates that the battery is charging.

- 44 mins
- charging
The **dtpower** Main Window

When you start up **dtpower** (or double-click on the **dtpower** icon), the main window is displayed, as shown in FIGURE 3-1.

![FIGURE 3-1 dtpower Main Window for the SPARCstation Voyager](image)

In this window you can see the current settings for Power Management features. You also can change the settings, as described in the procedures in this chapter. FIGURE 3-1 indicates the default settings for Power Management on a SPARCstation Voyager.

The buttons at the bottom of this window have the following effects:
- **Apply** puts into effect all the settings currently displayed in the window.
- **Reset** changes all the settings back to the state they were when Apply was previously selected (or to the your machine’s default values if this is the first time `dtpower` has been run). Reset, however, will not return to earlier values if you have already selected Apply.
- **Quit** dismisses the `dtpower` window; no icon remains on the screen. Any setting that were not put into effect with the Apply button will be lost.
- **Help** displays a separate window of information about using the `dtpower` window.

To reduce this main window to an icon again, select Close from the window bar.

The Devices Panel

You can use the Devices panel of the `dtpower` window to specify whether you want the screen or hard disk to turn off after a specified number of minutes of idle time for each device.

▼ **To Set an Idle Time for Your Screen**

1. **Drag the Screen slider of the Devices panel** ([FIGURE 3-2](#)) **to set the length of idle time in minutes before your screen will automatically power off.**

 You can deactivate automatic control of power for your screen by dragging the screen slider to the far right position, which is labeled “Never.”

 Also, you can set the time by typing the number of minutes directly into the box to the right of the slider.

2. **Click Apply at the bottom of the window.**
In FIGURE 3-2, the previous setting (“Never”) has been changed to 30 minutes. Your screen will now automatically power off after 30 minutes of inactivity (that is, no keystrokes or mouse activity).

![FIGURE 3-2 Setting a Screen Idle Time for a SPARCstation Voyager](image)

If you have not selected Apply yet, you can return to the previous settings by selecting Reset at the bottom of the window.

▼ To Set an Idle Time for Your Hard Disk

1. Drag the Hard Disk slider of the Devices panel (FIGURE 3-3) to set the length of idle time in minutes before your hard disk will automatically power off.

You can deactivate automatic control of power for your hard disk by dragging the hard disk slider to the far right position, which is labeled “Never.”
Also, you can set the time by typing the number of minutes directly into the box to the right of the slider.

2. Click Apply at the bottom of the window.

In FIGURE 3-3, the previous setting ("Never") has been changed to 60 minutes. This hard disk will automatically power off after 60 minutes of inactivity (that is, no keystrokes or mouse activity).

FIGURE 3-3 Setting a Hard Disk Idle Time for a SPARCstation Voyager

If you have not selected Apply yet, you can return to the previous settings by selecting Reset at the bottom of the window.
The System Panel

On the System panel you can specify the conditions when your system will shut down automatically while idle.

Note – Be sure you have read all cautions on using Power Management software in the *Using Power Management* manual and in release notes before changing the AutoShutdown settings.

AutoShutdown uses the Suspend feature to automatically power off your system. When the system powers up again, it will resume in the same state as when it was suspended.

Using the System panel of the *dtpower* window, you can activate or deactivate the AutoShutdown feature, and specify the following times:

- The number of minutes of idle time before AutoShutdown attempts to suspend the system.
- The Start and Finish times of the period each day when AutoShutdown can occur. (When the Start and Finish times are identical, AutoShutdown can occur at any time.)

▼ To Set an Idle Time for AutoShutdown of the System

1. **Start** *dtpower* as superuser (see “Starting *dtpower*” on page 23).

2. **Drag the Suspend slider to the number of minutes of idle time you want before the system will power down automatically.**

 If you want to completely deactivate the AutoShutdown feature, select the Never setting at the far right of the slider.

 Also, you can type the number of minutes directly in the numerical box to the right of the slider.

3. **Select the Start time of the period each day when you want AutoShutdown of the system to be able to take place.**

 You can select the time (in 15-minute increments) through a menu that drops down from the button closest to the Start label.

 Also, you can type the Start time directly into the numerical box.
4. Click on AM or PM for the Start time.

5. Select the Finish time of the period each day when you want AutoShutdown of the system to be able to take place.

 You can select the time (in 15-minute increments) through a menu that drops down from the button closest to the Finish label. The last setting on this menu is All Day, which means AutoShutdown can occur at any time of day.

 Also, you can type the Finish time directly into the numerical box. You can specify an “All Day” setting this way by entering a Finish time that is identical to the Start time.

6. Click on AM or PM for the Finish time.

7. Click the Apply button at the bottom of the screen when the settings you want are all displayed.

 If you want to reject the displayed settings, select Reset and the currently active settings (that is, whatever settings were last put into effect by selecting Apply) will be displayed in the window.
In FIGURE 3-4, the System panel is set for AutoShutdown of the system after 60 minutes of idle time between 7:30 pm and 9:00 am.

![dtpower](image)

FIGURE 3-4 Setting the AutoShutdown Timing for a SPARCstation Voyager

Exiting dtpower

Make sure you have clicked Apply if you want to activate any new settings you have made in this window.
▼ To exit dtpower

- Click Quit at the bottom of the dtpower window.

This causes the window to disappear without a dtpower icon remaining on the screen.
Using a Networked SPARCstation Voyager Disconnected from the Network

Your SPARCstation Voyager is designed to be easily transportable. Unlike a deskbound machine, the SPARCstation Voyager can be Suspended and disconnected from the network, to Resume and operate as a single system without rebooting. It can be Suspended again, transported, and Resumed back on the network.

To use your SPARCstation Voyager in nomadic mode, you must first perform a few procedures to configure the system.

Preparing the System

- For configuration instructions, see Chapter 5, “Configuring for Disconnected Operation.”
- For disconnected operation instructions, see “Basic Considerations for Disconnected Operation” on page 36.
- For PPP configuration instructions, see “Point-to-Point Protocol (PPP)” on page 38 and see Chapter 6, “Configuring for Point-to-Point Protocol Connections.”
- For other modem instructions, see “Terminal Emulators” on page 38.
Using the SPARCstation Voyager in Nomadic Mode

Once you have configured it, you can disconnect your SPARCstation Voyager by simply unplugging the Ethernet cable. You can avoid reconfiguring and rebooting, as you would in a deskbound system, by configuring the Solaris 2, Edition II (or later) operating system environment in nomadic mode. Refer to Chapter 6, “Configuring for Point-to-Point Protocol Connections” for a detailed discussion of the procedures you need to perform after you install the operating system.

The nomadic operating mode allows SPARCstation Voyager to be connected to an IP network that provides ONC+ (NFS, NIS, NIS+, etc.) and Internet services (mail, ftp, rlogin, etc.), and also to be disconnected from the network and operated for extended periods of time with no network connection.

It is not possible to achieve this kind of connection flexibility without some constraints, but they are minimal.

- The system will not be able to access all the data kept in distributed NIS/NIS+ databases
- The system will not be able to provide ONC+ or Internet services to other machines, even when connected to a network.

Basic Considerations for Disconnected Operation

After you have made your SPARCstation Voyager disconnectable, you have to use it a little differently.

Creating and using a local home directory on your SPARCstation Voyager can make using your system in nomadic mode easier. Refer to “Creating a Local Home Environment” on page 48 of Chapter 5, “Configuring for Disconnected Operation for instructions.

Always start OpenWindows from a shell whose current working directory is contained on the local SPARCstation Voyager file system, such as your local home directory. Otherwise, when SPARCstation Voyager is disconnected, OpenWindows stops functioning.

When you operate a SPARCstation Voyager disconnected from the network, remote services are not available. NIS and NIS+ databases, such as hosts, and NFS mounted directories cannot be accessed. Refer to the /etc/nsswitch.conf figure in “Name Service Configuration” in Chapter 5, “Configuring for Disconnected Operation” for a complete list.
Before you disconnect the system from the network:

1. cd out of all NFS mounted directories.

2. Terminate any remote login sessions such as rlogin, telnet, or ftp.

3. Terminate any remote clients that display windows on the local Xsun (X11) server.

4. Wait about five minutes for the automounter to unmount all directories you cd’d out of in step 1. Or, as root, type `umountall -F nfs`.

If you cannot follow the above disconnection guidelines (you are late for a meeting and you want to pull the plug, for example), the system will continue to operate. Minor inconveniences may occur.

For example, it is possible to be in a working directory that is contained on a remote file system or to execute a command, such as ls or cd, that accesses a remote file system. If this happens, the command you executed will appear to stop and not return, and probably the shell that you executed it in will not process further commands.

If you do not want to wait for the system to notice the error and recover by itself (it could take a long time), you can terminate the command (by typing Control-c, for example) or change the working directory back to the home directory. If necessary, quit the window in which the command or shell is running.

Any client/server application with a remote component will not continue to work when the network is disconnected. Those that are stopped may fail when the network is reconnected, or if they are “touched,” although it is usually safe to iconize them.

Any remote login sessions in effect at the time of disconnection will stop processing commands. You can leave them alone or terminate them. Few sessions will persist over long periods of disconnection.

While all OpenWindows deskset applications will survive across network transitions from connected to disconnected states, some of them may not operate as well while disconnected.

Occasionally, other problems occur if the Ethernet interface (le0) is not left UP at disconnection. If the interface is DOWN, you cannot open calendar manager, nor can you invoke admintool. The solution to these problems is to bring the interface UP, using ifconfig. See the man page for information on how to manipulate the state of the interface.
Modem Connections

You can attach a PCMCIA or an external modem to SPARCstation Voyager and use it to create a data connection to another computer that can be accessed through a terminal emulator program such as tip or cu, or by using the PPP serial line networking facility.

Point-to-Point Protocol (PPP)

The Point-to-Point Protocol (PPP) provides IP networking capability over serial line interfaces like those provided by modems.

You can think of PPP as a slow speed analog of Ethernet. Just as two computers can be “networked” by an Ethernet cable, they can be “networked” by modems and PPP.

In both cases the machines communicate with each other using peer-to-peer or client/server applications that run over high level protocols such as TCP/IP. PPP and high speed, full duplex modems allow sophisticated services and applications, such as NFS, rlogin, ftp, and remote X11 clients, to run over public switched telephone networks (PSTN).

You activate a PPP connection when you execute any command that causes a message to be put onto the network. Typically this happens when you cd to a remote directory in an NFS file system, rlogin to a remote machine, copy a remote file (either by rcp or ftp), or do any other operation that involves a remote system.

Refer to Chapter 6, “Configuring for Point-to-Point Protocol Connections” for more information about PPP configuration.

Terminal Emulators

A terminal emulator is a software representation of a physical terminal, such as a Wyse or Televideo terminal, that allows the SPARCstation Voyager to connect to a remote machine in the same way as a real terminal connects. As with a real terminal, you will only be able to log in to a remote computer and interact with it through a (typically) 25 line by 80 character interface, and you won’t be able to display graphics or use any of the OpenWindows graphical user interface tools. Solaris 2 includes two terminal emulators, tip and cu. See the respective man pages for
further information on how to use these emulators. There are also public domain and third party terminal emulators that will work on Solaris. Some of these have more features than tip and cu and may be easier for novice Solaris users to operate.

Tip and the Sun PCMCIA Fax/Data Modem

tip has been configured to work with the optional Sun PCMCIA modem. To use tip with your Sun PCMCIA modem, you can connect to the modem by typing the device name.

For a modem in Slot 1:

```
% tip pm1
```

For a modem in Slot 2:

```
% tip pm2
```

After you type one of these commands, you are connected to your modem.

After you connect, you can type “at” commands. Refer to PCMCIA 2.0 Fax/Data Modem User’s Manual for detailed “at” commands.
Configuring for Disconnected Operation

The following chapter describes the installation and configuration procedures that allow your SPARCstation Voyager to operate in nomadic mode. The procedures assume a reasonably high level of Solaris system administration familiarity. If you do not feel comfortable with the commands and procedures, consider seeking the help or advice of a Solaris system administrator.

Installation

When you install the Solaris software, be sure to specify that your system is a standalone networked system. This installation configuration allows you maximum flexibility, providing the capability to operate your system connected to a network or disconnected as a standalone single system.

During the install process, select “Yes” when asked “Will this system be connected to a network?” Later in the install process, if the Custom Install Configuration screen is displayed, be sure that the system type is “Standalone.” If the Custom Install Configuration screen does not appear, your system will be configured as standalone.

Name Service Configuration

A name service fulfills requests for global objects such as name to IP address mappings, mail aliases, and password entries. NIS, NIS+, and DNS are the most common name services for standalone networked systems. For a non-networked
standalone single system, a set of files in the /etc directory constitute the files name service. Solaris 2 provides a configuration file, /etc/nsswitch.conf, that directs name service accesses to the desired target name service.

Default

The install process determines the appropriate name service configuration and generates a corresponding /etc/nsswitch.conf file. For a standalone networked system, /etc/nsswitch.conf is a copy of /etc/nsswitch.nis for an NIS environment or /etc/nsswitch.nisplus for an NIS+ environment.

This default configuration will work satisfactorily as long as your SPARCstation Voyager is connected to a network. However, when it is disconnected, access to a name service will cause requesting processes to wait for a predetermined timeout period (30 seconds for NIS and 10 seconds for NIS+) while the name service client component tries to connect to the remote and inaccessible server. Since some processes generate several accesses to a name service, the aggregate wait time can be significant.

For example, if you use ls to display a long list of the contents of a local directory that contains four files owned by someone else (whose user name is not in your local /etc/passwd file), you will wait two minutes (4 files * 1 non-local name per file * 30 seconds per NIS lookup of a non-local name) for the command to finish.

Configuring /etc/nsswitch

By editing the /etc/nsswitch.conf file, you can avoid or minimize the occurrence of timeout delays.

If your facility does not make extensive use of the networked name services, configure your system to use the files name service by copying /etc/nsswitch.files to /etc/nsswitch.conf.
If your facility makes use of the networked name service, create a hybrid configuration file, such as the following one:

```bash
# /etc/nsswitch.conf
# An example file that could be copied to /etc/nsswitch.conf
# This file configures the system to use the NIS name service sparingly, and thus allows the system to operate even when NIS isn’t available.

passwd: files
group: files
hosts: filesnis
networks: files
protocols: files
rpc: files
ethers: files
netmasks: files
bootparams: files
publickey: files
netgroup: files
automount: filesnis
aliases: files
services: files
sendmailvars: files
```

This configuration instructs the system to use the NIS name service only when a host name is not found in /etc/inet/hosts or when the automounter cannot find an automount map file in the /etc directory. All other name service lookups are satisfied by the files name service, as defined by the corresponding files in the /etc directory.

You may find that you can configure /etc/nsswitch.conf in a better way for your specific site’s network configuration. Feel free to experiment with the contents of /etc/nsswitch.conf or add entries to the specific service files on your system until it meets your needs.

Note – If you are running NIS, you can prevent timeouts from occurring by stopping and starting NIS binding services (i.e. ypbind) when you disconnect and reconnect the SPARCstation Voyager from and to the network. However, the user is the one who must stop and start the binding services at each disconnection and reconnection. The process may not be worth the trouble.
Network Configuration

Installing your system as a standalone networked system assures that most network configuration has been done by the install process. You can improve the ability of the SPARCstation Voyager to operate in nomadic mode by adding frequently accessed remote host names to the local hosts database and by preventing your machine from acting as a router.

Hostname to IP Address Mapping

Because the system won’t always have access to the NIS/NIS+/DNS databases, hostname to IP address mapping, requested by programs such as sendmail and PPP (aspppd), may fail when the system is disconnected, if the local /etc/inet/hosts file does not contain a requested entry. Adding frequently accessed remote host names to the /etc/inet/hosts file will minimize such failures.

```
# Internet host table
#
127.0.0.1 localhost loghost
224.0.0.0 multicast-ip
#
# This machine
#
192.9.10.5 voyager
#
# Frequently accessed hosts
#
192.9.11.113 sparc treker
192.9.11.126 par helion
192.9.20.30 datehost
192.9.60.81 appl server
192.9.7.81 cosmos mailhost
```

You may prefer to use admintool to edit the /etc/inet/hosts file.

You don’t have to put more than a dozen or so map entries in the /etc/hosts file. After initially populating the file with entries that you think you’ll then add entries as you discover them (usually because a command gives a message such as “unknown host zargon”).
IP Forwarding and Network Routing

If you plan to use PPP to create a wide area network connection over telephone lines, it may be necessary to disable IP forwarding. IP forwarding is enabled at boot time when the system detects more than one interface (i.e. Ethernet and PPP). In this case, the system will also be configured as a router. This is undesirable because other routers on the network will attempt to route network traffic through your system. In addition to the performance impact on your system and the network, it is possible to cause network routing failures that are difficult to detect and correct.

To avoid this, establish an /etc/defaultrouter file that contains the name of one of the routers serving your network or subnetwork. You can determine a candidate router by inspecting the route table with the netstat command while your system is connected to the network.

```
# netstat -r
Routing Table:
   Destination     Gateway       Flags Ref Use Interface
-------------------- ------------------ ----- ---- ------ ---------
   -
 localhost localhost UH 020 lo0
 slivanethr17a-11UG000
 singleethr17a-11UG000
 mtnviewethr17a-11UG09
 net-eng-bbfddi17b-11UG03961
 net15-067-nethr17a-11UG000
 net17-007-ngoldigger-engUG01291
 net19-174-nfddi17b-11UG000
 net17-083-nshunt-116UG000
 net21-244-nethr17a-11UG000
 net18-148-nethr17a-11UG000
 milpitasethr17a-11UG042
 net11-144-nvoyagerU237881e0
 224.0.0.0.nvoyagerU401e0
```

Since most routes in the above example are directed through gateway ethr17a-11, choose ethr17a-11 as your default router by creating an /etc/defaultrouter file with that name in it. The file should contain only the name of the selected default router, as in:

```
ethr17a-11
```
Note that when you configure your system to use a default router, you sacrifice the dynamic routing capability that Solaris provides. If you don’t want to do this, edit the /etc/init.d/inetinit file. Change the test for “routerhood” to always fail: in /etc/init.d/inetinit, change

```bash
if [ $numifs -gt 2 -o $numptptifs -gt 0 -o -f /etc/gateways ]; then

```
to:

```bash
if [ '/bin/false' ]; then# Never be a router

```

Note – The disadvantage of this method is that your system can receive Routing Information Packets (RIP) across a PPP connection, which limits the available bandwidth.

NFS Mount Configuration

The NFS and mount protocols allow your machine to access remote networked file systems in the same way that you access local file systems. If you attempt to access a remote file when your SPARCstation Voyager is not connected to a network, however, your machine may appear to stop.

Using the Automounter

To minimize remote access attempts, always use the automounter (automountd). Mounting NFS files exclusively with the automounter insures that remote files are mounted properly and that they are *unmounted when not in use* (typically five minutes after the last access).

Do not mount file systems with the `mount` command or by including a mount request in the `/etc/vfstab` file.
Using the Soft Mount Option

NFS mounts are hard by default, which means that if the file system server fails to respond, the client (i.e. the SPARCstation Voyager) continues to retry the request until it receives a response or until the retry limit (10,000 is the default) is exceeded. If your system is disconnected, then a process that is using a remote file system will appear to stop until the retry limit is reached. You can avoid this problem by declaring that file systems are to be soft mounted. Specify the soft option in the /etc/auto_master file, as follows:

```bash
# master map for automounter
#
+auto_master
/net-hosts -nosuid,soft
/homeauto_home-soft
```

If you experience reliability problems traceable to soft mounts, you can consider not specifying the soft option. However you may become more prone to system stoppages if you accidently access a remote file while disconnected. To minimize this problem, be sure you specify the mount option intr so that you can interrupt mount operations. Refer to the mount_nfs man page for more information about NFS mount options.

Note – Even if you specify soft mounts, when you are disconnected, an NFS mount request may still take a very long time to fail if you have specified replicated mount paths in the automounter configuration file. If the hosts associated with those mount paths are not defined in the /etc/inet/hosts file, even more time elapses. To avoid this problem do not specify replicated mount paths.

User Configuration

While disconnected, do not access remote file systems: they are not available. This means that you should have a local home directory. You also need a local /etc/passwd entry so you can log in to the machine when disconnected.
Creating a Local Home Environment

To create a local home environment, use either admintool or useradd to specify a local /etc/passwd entry and a local home directory (/export/home/username is recommended).

If your site does not export a network /etc/passwd map through one of the name services, the /etc/passwd entry and home directory will be the only one associated with your username. This is the simplest user configuration.

However, if there is an entry for you in a network /etc/passwd database (i.e. one managed by NIS or NIS+), specify the same user and group id numbers (UID and GID respectively) for the local /etc/passwd entry as are specified in the network database, but specify a different path name for the home directory.

Specify the same UID and GID so that your files are accessible to you whether or not you are logged into the SPARCstation Voyager or another machine and whether or not you are working in a local or remote directory.

Do not specify the same path for the local home directory as for the home directory in the network version of /etc/passwd because the network path is not accessible when the machine is disconnected.

Managing Two Home Directories

When there are two home directories, always work in the local home directory on the SPARCstation Voyager. You may use the network home directory as a backup location. If that is not possible or desirable, you will have to take precautions to insure that the two copies of the home directory do not get out of synchronization.

Define the PATH Environment

Define the PATH environment variable so that it does not contain references to non-local (i.e. NFS mounted) directories.

To assure that commonly accessed application programs and tools are always available, install them in local directories designated by the PATH variable.

You can initiate infrequently referenced remote programs by specifying the full path name for the command.

You can access remote programs you use more frequently by creating symbolic links to them in local directories specified in the PATH variable, or by creating shell aliases for them.
Define the MANPATH Environment

A MANPATH environment variable, if present, should avoid references to non-local directories.

Sendmail Configuration

Edit the sendmail files if you use more than one kind of mail user interface: only if you are not exclusively using a nomadic mail tool.

Sendmail is the back end to most of the mail user interface programs such as mailtool and mailx and is responsible for sending mail to remote hosts using the Simple Mail Transport Protocol (SMTP).

Sendmail is not affected when the network is disconnected. Most local mail processing can still be accomplished. The front end mail user interface programs will still operate and can still read, delete, copy and move mail messages in the system’s inbox (/var/mail/username) as well as in any local mail folders. You cannot, of course, send mail or receive it from remote systems.

With minor changes to a few files, outgoing mail can be composed and sent from a user interface program, and sendmail will queue the mail until the network connection is established or until a queue timeout period (the default is three days) is exceeded, but only if the full address of the recipient can be determined (either because the original mail contains the full address or because it contains a mail alias that can be expanded to the full address).

Remote Mail Host

A remote mail host is another host through which sendmail routes all outgoing mail. When your system is connected to the network, mail will take an extra hop to the mail host before it is delivered. When your system is disconnected, a remote mail host provides automatic queueing of new mail messages until the network is reconnected. This means you can still compose and “send” mail messages when disconnected. The messages will be delivered to the remote mail host shortly after reconnection.
Configuring the Remote Mail Host

To configure a remote mail host, in /etc/inet/hosts, append the word `mailhost` to an entry that specifies a permanently networked host. The mail host can be any host that is always available to the core network that the SPARCstation Voyager is usually connected to. See the last line in FIGURE 5-1 on page 44 for an example specification of a mail host.

Mail Aliases

Sendmail uses the name service aliases map to expand a mail alias into a fully specified address. If mail is sent to a `username`, but that name cannot be found in the aliases database, the mail is delivered to the local machine if `username` can be found in the /etc/passwd file, or it is returned to the sender with a “User Unknown” error message.

When disconnected from the network, or when the alias map is only present in the files name service (as recommended earlier), you must specify mail recipient names to assure delivery. For convenience, you may enter aliases for the people or mail lists you frequently send mail to in the /etc/mail/aliases file.

<table>
<thead>
<tr>
<th>Name</th>
<th>Alias</th>
</tr>
</thead>
<tbody>
<tr>
<td>amy</td>
<td>amy@travails</td>
</tr>
<tr>
<td>andrew</td>
<td>andrew@telco.com</td>
</tr>
<tr>
<td>bob</td>
<td>bob.roberts@therally</td>
</tr>
<tr>
<td>clark</td>
<td>clark@phonebooth</td>
</tr>
<tr>
<td>deskset</td>
<td>deskset@thehouse</td>
</tr>
<tr>
<td>jim</td>
<td>jim@cosmos</td>
</tr>
<tr>
<td>lyn</td>
<td>lynda@flanders</td>
</tr>
<tr>
<td>melissa</td>
<td>mfields@home</td>
</tr>
<tr>
<td>nomadics</td>
<td>nomadics@server.Corp</td>
</tr>
<tr>
<td>our-staff</td>
<td>myboss@hismachine</td>
</tr>
<tr>
<td>susan</td>
<td>susan@ct.amber.com</td>
</tr>
<tr>
<td>trish</td>
<td>trussell@bambus.COM</td>
</tr>
</tbody>
</table>

It is not necessary to remember, or otherwise determine, the fully specified name for people (or mail lists) who are not listed in the /etc/mail/aliases file. You can send mail to them by addressing it to `user@mailhost` where mailhost is the name of the mail host you defined earlier (e.g. `user@cosmos`).

Note – Do not use the actual word `mailhost` in the host part of the address since that can cause your mail to be misdirected.
You may address your mail to user@domain if your site uses DNS (e.g. jsmith@eng or jsmith@some.com).

Sometimes when an alias cannot be expanded, the mail is delivered to the local machine. This usually occurs because the cache in sendmail becomes unsynchronized with the actual configuration of the system. It may not happen very often or even at all, but occasionally it is a good idea to inspect the /var/mail directory for lost mail.

Queue Limits

As stated earlier, the default maximum time that an undelivered mail message is queued is three days. If your system is disconnected for longer than three days, mail will be returned to the sender. You can change the maximum queue time by changing the following lines in the /etc/mail/sendmail.cf file from:

```
# return queued mail after this long
OT3d
```

to:

```
# return queued mail after this long
OT999d
```

In this example, mail will be queued for 999 days before being returned to the sender. See the sendmail man page for a more complete explanation of the values for the queued mail timeout parameter.
CHAPTER 6

Configuring for Point-to-Point Protocol Connections

The following sections provide the information you need to set up your SPARCstation Voyager so that you can use PPP to create a network connection when you are not able to connect it to an Ethernet. It is assumed that you are familiar with basic system administration procedures and that you can use an editor to modify the configuration files. If you feel uncomfortable doing this, contact a system administrator for advice.

Configuring PPP

The Solaris PPP daemon, aspppd, is started automatically at boot time if the /etc/asppp.cf is present. The file contains the configuration parameters for the PPP system. You will need to edit or create this file before you can use PPP.

The following procedure, with minor changes, will create a configuration file that should work in most cases.

1. Obtain the following information:

 a. An IP address/name that can be used for PPP. If your SPARCstation Voyager is connected to the Ethernet, then this will be a second, and different, IP address from the Ethernet IP address.

 In the following example we use “voyager.”

 b. The IP address/name for the remote PPP server you will be connecting to.

 In the following example, we use “PPPserver.”
2. Add lines similar to the following to the /etc/inet/hosts file:

<table>
<thead>
<tr>
<th>IP Address</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.11.117.26</td>
<td>voyager</td>
</tr>
<tr>
<td>192.26.32.114</td>
<td>PPPserver</td>
</tr>
</tbody>
</table>

Be sure you use the actual names and addresses you obtained in step 1.

3. Add lines similar to the following lines to the /etc/asppp.cf file:

```
ifconfig ipdptp0 plumb voyager PPPserver private up
path
    interface ipdptp0
    peer_system_name PPPserver
    inactivity_timeout 300
    debug_level 5
```

Again, use the actual names you obtained in step 1.

You can leave out the `inactivity_timeout` line if you want to use the default timeout of 120 seconds. The above specifies a timeout of 300 seconds. You can also leave out the `debug_level` line, or change its value depending on the how much information you want reported in the `/var/adm/log/asppp.log` file.

See the PPP man page, aspppd, the ifconfig man page, and the relevant chapters in SunOS 5.3 Administering TCP/IP and PPP for a more thorough discussion of the contents of the /etc/asppp.cf file.

Configuring the UUCP Dialing Facility

Solaris PPP uses the UUCP dialing facility to create a connection with the remote dial-in PPP server. Parameters specific to the modem and the remote server are defined in the UUCP configuration files, `/etc/uucp/System`, `/etc/uucp/Devices`, and `/etc/uucp/Dialers`. You will have to add entries to these files to describe the Sun PCMCIA modem, to specify the phone number for the PPP server, and to specify the login name and password that your SPARCstation Voyager will use to connect to the server.

It is not possible to provide a detailed procedure for editing the UUCP configuration files that will work in all cases. However, the following procedure is similar to what you need to do if you are using the Sun PCMCIA modem and connecting to a PPP server that is running the Solaris 2 PPP software.
1. Obtain the following information:

 a. The peer system name for the remote PPP server.
 In the following example we use “PPPserver.”

 b. The phone number for the PPP server.
 In the following example, we use “5551212.”

 c. The login name that you can use.
 In the following example, we use “voyager.”

 d. The password associated with the above login name.
 In the following example, we use “Secret!”

2. Add a single line similar to the following to the /etc/uucp/Systems file:

 PPPserver Any PCMCIA 38400 5551212 "" P_ZERO "" \r\n\c login: voyager ssword: Secret!

Be sure you enter the line as one line (i.e., the above line contains 83? 84? characters).

TABLE 6-1 Systems File Elements

<table>
<thead>
<tr>
<th>Element</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPPserver</td>
<td>This is the peer system name. It is the same name you assigned to the peer_system_name keyword when you created the /etc/asppp.cf file.</td>
</tr>
<tr>
<td>Any</td>
<td>The number can be dialed at any time.</td>
</tr>
<tr>
<td>PCMCIA</td>
<td>Use the PCMCIA device.</td>
</tr>
<tr>
<td>38400</td>
<td>The modem/computer speed.</td>
</tr>
<tr>
<td>5551212</td>
<td>The phone number for the PPP server.</td>
</tr>
<tr>
<td>P_ZERO</td>
<td>No parity.</td>
</tr>
<tr>
<td>\r\n\c</td>
<td>Send a carriage return and line feed character to the remote system.</td>
</tr>
<tr>
<td>login:</td>
<td>Expect to see a string ending in "login:" sent by the remote system.</td>
</tr>
</tbody>
</table>
3. Add the following line to the `/etc/uucp/Devices` file:

```
PCMCIA cua/0 - 38400 sun-pcmcia
```

The line specifies that the PCMCIA device is plugged into socket 1, runs at 38400 bps between the computer and the modem, and is a Sun PCMCIA modem. If you want to plug the Sun modem into socket 2, change “cua/0” to “cua/1.”

4. Add the following single line to the `/etc/uucp/Dialers` file:

```
sun-pcmcia =,-, "\dA\pT%F2\r\c OK\r \EATDT\T\r\c CONNECT\s14400/ARQ STTY=crtsets
```

Be sure the line is entered as a single line consisted of 82 characters. This line describes the “AT” commands that are sent to the Sun PCMCIA modem to initialize it for PPP operation and to dial the phone number for the remote PPP server.

For a more detailed explanation of the contents of the UUCP configuration files, see Appendix A of *SunOS 5.3 Administering TCP/IP and PPP*.

Table 6-1 Systems File Elements

<table>
<thead>
<tr>
<th>Element</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>voyager</td>
<td>The login name you use to log into the remote server. It is sent to the remote server.</td>
</tr>
<tr>
<td>ssword:</td>
<td>Expect to receive a string ending in "ssword:".</td>
</tr>
<tr>
<td>Secret!</td>
<td>The password associated with the login name. It is sent to the remote system.</td>
</tr>
</tbody>
</table>

Initiating a Connection to the Remote PPP Server

Before a connection can be established, you must bring up the PPP interface specified in the `/etc/asppp.cf` file (ipdptp0) and establish a default route to the remote server. The default route allows you to communicate with other hosts on the network connected to the remote PPP server.
1. Bring up the interface with the ifconfig command.

```
ifconfig ipdptp0 up
```

2. Establish a default route with the route command:

```
route add default PPPserver 1
```

In the command, `PPPserver` should be replaced by the actual name of the remote PPP server you are connecting to. This is the same name that was used as the second address in the ifconfig command added to the `/etc/asppp.cf` file.

3. Initiate a connection with the ping command:

```
ping PPPserver 120
```

Again, `PPPserver` is an example name and should be replaced with the actual name of your PPP server. The above command specifies a timeout limit of 120 seconds. If the ping command succeeds, it will return the result:

```
PPPserver is alive
```

If the ping command fails, it will return the result:

```
no answer from PPPserver
```

To determine how the connection is working, watch the log file with the command `tail -f /var/adm/log/asppp.log`. If the ping command failed, it means that the ipdptp0 interface is not configured properly or is not up, the route table is not configured properly, or that the UUCP files are not configured properly. If, after checking the status of the interface with the ifconfig command and checking the route table with the netstat command, you believe your UUCP files may be configured incorrectly, inspect the `/var/adm/log/asppp.log` file for clues. You may also find it beneficial to seek the advice of a system administrator familiar with the Solaris 2 PPP system.
Terminating the Connection

Normally the PPP connection will terminate automatically when the PPP daemon notices the line has been idle for a period longer than the period specified by the `inactivity_timeout` keyword in the `/etc/asppp.cf` file. If you want to terminate the connection earlier, you must send the SIGHUP signal to the aspppd daemon.

1. Find the process id for aspppd with the `ps` and `grep` commands.

   ```bash
   ps -e | grep aspppd
   ```

 A result similar to the following will appear:

   ```plaintext
   73? 0:02 aspppd
   ```

 The 73 is the process id number of aspppd.

2. Send the SIGHUP signal with the `kill` command.

   ```bash
   kill -HUP 73
   ```

 The PPP connection is terminated.

Automatic Connections

Solaris 2 PPP will automatically connect to the PPP server whenever a process on the SPARCstation Voyager generates an IP datagram for delivery to a host on the remote network. The first access can take several minutes to complete because PPP dials the remote system, logs in, and sets up the correct routing configuration. To avoid additional delays due to a command “backing off” because it does not receive an immediate reply from the remote end of the connection, establish the connection first by executing a simple command such as ping.
If you do not want connections to occur spontaneously, you must turn off the PPP interface by marking it down with the `ifconfig` command.

```
ifconfig ipdptp down
```

Remember to turn on the interface when you want connections to start again.

```
ifconfig ipdptp up
```

Boot Issues

After configuration, PPP will be enabled automatically when the system boots. If you use the NIS name service, PPP will attempt to dial the remote PPP server when the NIS daemon, ypbind, is started. If you do not want PPP to allow automatic connections, change the `ifconfig` line in the `/etc/asppp.cf` file so the interface is marked down. In the earlier example, the line would appear as:

```
ifconfig ipdptp0 plumb Gypsy PPPserver private down
```

After boot, it is necessary to reestablish the default route, using the `route` command.

```
route add default PPPserver 1
```

Other Issues

If you want to connect your SPARCstation Voyager to Ethernet, mark the PPP interface down and remove the default route before you plug in the Ethernet cable. Otherwise, your SPARCstation Voyager may act as a router.

```
ifconfig ipdptp down
route delete default PPPserver
```
Remember to replace the name “PPPserver” with the name of your PPP server.

Additional Information

For more detailed information about PPP, refer to *SunOS 5.3 Administering TCP/IP and PPP* and the aspppd man page. Refer to the relevant man pages for more information on the commands used to administer the PPP interface and the system routing table.
Index

A
Apply button, 26
AutoShutdown, 30

B
battery icon, 25

C
CDE, 23
Common Desktop Environment, 23
configuration
changing, 17
rebooting
boot -r, 18

D
defaults, 23
Devices panel, 27
disconnected mode, 1
Disconnected operation, 41
dtpower command, 24

E
exiting dtpower, 32

F
fax modem
installing, 39

H
halting the operating system
when to use, 17
hard disk idle time (for SPARCstation Voyager), 28
Help button, 27
hung system
recovering from, 20

I
icons, 25
installation
Additions CD, 7
automatic, 2, 4, 10
disk partitioning, 6
interactive, 2, 4, 6
reinstall, 10
SPARC Vendors’ Additions, 7
steps, 2
Voyager Software User Cluster, 8

M
modem
PCMCIA fax modem
N
nomadic, 1
 operation, 36
nomadic mode, 35
 configuration, network, 44
 configuration, user
 home directory, 47
 configuration, usr
 passwd, local, 47
 disconnect operations, 37
 disconnected from the network, 36
 hosts file, 44
 installation
 configuration, 41
 mail aliases, 50
name service, 41, 42
NFS mount configuration
 automounter, 46
 vfstab, 46
 nsswitch, configuring, 42
PPP, 45
 defaultrouter file, 45
 quick disconnection, 37
 sendmail, 49
 standalone networked, 41

O
OpenWindows, 23

P
PCMCIA
 modem
 PPP, 38
 modem, installing, 39
 using tip, 39
Point-to-Point Protocol, 53
 activating, 38
power
 unsuccessful power on, 19
power off
 halting the operating system, 17
 Suspend, 14
power on
 key
 power key, 4, 15
 power key, 3
 Resume, 13, 19
 unsuccessful, 19
PPP
 boot, 59
 configuration, 53
 connection, automatic, 58
 connection, initiating, 56
 connection, terminating, 58
 hosts file
 asppp.cf file, 54
 router, 59
 see Point-to-Point Protocol, 38
 systems files, table, 55
 UUCP, 54

Q
Quit button, 27, 32

R
Reset button, 27
Resume
 power on, 13, 19
 security
 Lockscreen, 14

S
screen idle time, 27
serial port A, 11
serial port B, 11
serial port configuration, 11
shutdown, automatic, 30
software
 reinstallation, 10
 software installation
solaris, 1
Solaris
 Auto Install packages, 5
 CD-ROM, 3
SPARCstation Voyager systems, 23
standalone
 networked, 2
 non-networked, 2
Suspend
 keyboard methods, 16
 power off, 13
 shell command, 16
 troubleshooting, 21
 when to use
 activities, 14
 workspace utilities, 16
system configuration
 changing, 17
System panel, 30

T
terminal emulators
 with the PCMCIA modem, 38
tip
 using tip with PCMCIA, 39
 troubleshooting, 19

U
using Power Management, 23

V
Voyager, SPARCstations and Power
 Management, 23