Platform Notes: Using luxadm
Software

Solaris 2.6

Sun™ Enterprise Network Array™
SPARCstorage™ Array
SPARCstorage RSM
Copyright 1997 Sun Microsystems, Inc., 2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.

Portions of this product may be derived from the UNIX® system, licensed from Novell, Inc., and from the Berkeley BSD system, licensed from the University of California. UNIX is a registered trademark in the United States and other countries and is exclusively licensed by X/Open Company Ltd. Third-party software, including font technology in this product, is protected by copyright and licensed from Sun’s suppliers.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87) and FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a).

Sun, Sun Microsystems, the Sun logo, SunSoft, SunDocs, SunExpress, Sun Enterprise Network Array, SPARCstorage, Online: DiskSuite, and Solaris are trademarks, registered trademarks, or service marks of Sun Microsystems, Inc. in the United States and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the United States and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK® and Sun™ Graphical User Interfaces were developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license agreements.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.
Contents

Preface xi

1. Using the luxadm Command 1
 The luxadm Command 1
 Synopsis 1
 Addressing 2
 Addressing a Sun Enterprise Network Array 2
 Addressing a SPARCstorage Array 3
 Addressing a SPARCstorage RSM Tray 4
 Subcommand Support Matrix 5

2. luxadm Subcommands 7
 Disk LEDs 7
 Displaying the Current State of a Disk LED 7
 Setting a Disk LED to the Blink Mode 8
 Turning Off a Disk LED 9
 Turning On a Disk LED 10
 Displaying 11
 Probing for Sun Enterprise Network Arrays 11
 Displaying Enclosure or Device Specific Data 12
Displaying inquiry Information 14

Downloading 16
 Downloading Firmware 16
 Changing a SPARCstorage Array World Wide Name 17
 Downloading fc0de in a SPARCstorage Array 18
 Downloading fc0de in a Sun Enterprise Network Array 19

Enclosure Services Card 21
 Displaying Environmental Information 21
 Disabling the Alarm 22
 Enabling the Alarm 22
 Setting the Alarm 23

Enclosure and Disk Operations 24
 Renaming a Sun Enterprise Network Array 24
 Collecting Performance Statistics 24
 Powering Off an Enclosure or Disk Drive 25
 Powering On Enclosures or Disk Drives 26
 Releasing Disks 26
 Reserving Disks 27
 Setting the Boot Device Variable 28
 Starting Disks 28
 Stopping Disks 29

NVRAM 30
 Enabling and Disabling Fast Writes 30
 Displaying Fast Write Data 30
 Purging Fast Write Data from NVRAM 31
 Flushing NVRAM 32

Remove, Insert, Replace 33
Removing Devices 33
Inserting Devices 35
Replacing Devices 36

3. Hotplugging in the Sun Enterprise Network Array 39
 Hotplugging Sun Enterprise Network Arrays 39
 Hotplugging Disks 39
 Overview 40
 Adding a Disk Drive 40
 Replacing a Disk Drive 43
 Removing a Disk Drive 54

A. Expert Mode Subcommands 61
Tables

TABLE 1-1 Addressing a Sun Enterprise Network Array by Enclosure Name 3
TABLE 1-2 Subcommand Support Matrix 5
TABLE 2-1 led Options and Arguments 7
TABLE 2-2 led_blink Options and Arguments 8
TABLE 2-3 led_off Options and Arguments 9
TABLE 2-4 led_on Options and Arguments 10
TABLE 2-5 probe Options 11
TABLE 2-6 display Options and Arguments 12
TABLE 2-7 inquiry Options and Arguments 15
TABLE 2-8 download Options and Arguments 17
TABLE 2-9 download Options and Arguments 18
TABLE 2-10 fc_s_download Options 19
TABLE 2-11 fcal_s_download Options 20
TABLE 2-12 env_display Options and Arguments 21
TABLE 2-13 alarm_off Options and Arguments 22
TABLE 2-14 alarm_on Options and Arguments 23
TABLE 2-15 alarm_set Options and Arguments 23
TABLE 2-16 enclosure_name Options and Arguments 24
TABLE 2-17 perf_statistics Options and Arguments 25
TABLE 2-18 power_off Options and Arguments 26
TABLE 2-19 power_on Options and Arguments 26
TABLE 2-20 release Options and Arguments 27
TABLE 2-21 reserve Options and Arguments 27
TABLE 2-22 set_boot_dev Options and Arguments 28
TABLE 2-23 start Options and Arguments 28
TABLE 2-24 stop Options and Arguments 29
TABLE 2-25 fast_write Options and Arguments 30
TABLE 2-26 nvram_data Options and Arguments 31
TABLE 2-27 purge Options and Arguments 31
TABLE 2-28 sync_cache Options and Arguments 32
TABLE 2-29 remove_device Options and Arguments 34
TABLE 2-30 insert_device Options and Arguments 36
TABLE 2-31 replace_device Options and Arguments 37
Preface

Platform Notes: Using luxadm Software contains information about the luxadm administrative program for the Sun™ Enterprise Network Array™ and the SPARCstorage™ Array. These instructions are designed for an experienced system administrator.

Using UNIX Commands

This document does not contain information on basic UNIX® commands and procedures such as shutting down the system or booting the system.

See one or more of the following for this information:

- Solaris 2.x Handbook for SMCC Peripherals
- AnswerBook™ online documentation for the Solaris™ 2.x software environment
- Other software documentation that you received with your system
Typographic Conventions

TABLE P-1 Typographic Conventions

<table>
<thead>
<tr>
<th>Typeface or Symbol</th>
<th>Meaning</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>AaBbCc123</td>
<td>The names of commands, files, and directories; on-screen computer output.</td>
<td>Edit your .login file.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Use ls -a to list all files.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% You have mail.</td>
</tr>
<tr>
<td>AaBbCc123</td>
<td>What you type, when contrasted with on-screen computer output.</td>
<td>% su</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Password:</td>
</tr>
<tr>
<td>AaBbCc123</td>
<td>Book titles, new words or terms, words to be emphasized. Command-line variable; replace with a real name or value.</td>
<td>Read Chapter 6 in the User's Guide.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>These are called class options.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>You must be root to do this.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>To delete a file, type rm filename.</td>
</tr>
</tbody>
</table>

Ordering Sun Documents

SunDocs™ is a distribution program for Sun Microsystems technical documentation. Contact SunExpress for easy ordering and quick delivery. You can find a listing of available Sun documentation on the World Wide Web.

TABLE P-2 SunExpress Contact Information

<table>
<thead>
<tr>
<th>Country</th>
<th>Telephone</th>
<th>Fax</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belgium</td>
<td>02-720-09-09</td>
<td>02-725-88-50</td>
</tr>
<tr>
<td>Canada</td>
<td>1-800-873-7869</td>
<td>1-800-944-0661</td>
</tr>
<tr>
<td>France</td>
<td>0800-90-61-57</td>
<td>0800-90-61-58</td>
</tr>
<tr>
<td>Germany</td>
<td>01-30-81-61-91</td>
<td>01-30-81-61-92</td>
</tr>
<tr>
<td>Holland</td>
<td>06-022-34-45</td>
<td>06-022-34-46</td>
</tr>
<tr>
<td>Japan</td>
<td>0120-33-9096</td>
<td>0120-33-9097</td>
</tr>
</tbody>
</table>
Sun Welcomes Your Comments

Please use the Reader Comment Card that accompanies this document. We are interested in improving our documentation and welcome your comments and suggestions.

If a card is not available, you can email or fax your comments to us. Please include the part number of your document in the subject line of your email or fax message.

- Email: smcc-docs@sun.com
- Fax: SMCC Document Feedback
 1-415-786-6443

World Wide Web: http://www.sun.com/sunexpress/

<table>
<thead>
<tr>
<th>TABLE P-2</th>
<th>SunExpress Contact Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luxembourg</td>
<td>32-2-720-09-09 32-2-725-88-50</td>
</tr>
<tr>
<td>Sweden</td>
<td>020-79-57-26 020-79-57-27</td>
</tr>
<tr>
<td>Switzerland</td>
<td>0800-55-19-26 0800-55-19-27</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>0800-89-88-88 0800-89-88-87</td>
</tr>
<tr>
<td>United States</td>
<td>1-800-873-7869 1-800-944-0661</td>
</tr>
</tbody>
</table>
Using the luxadm Command

The luxadm Command

The luxadm program is an administrative command that manages both the Sun Enterprise Network Array and SPARCstorage Array subsystems. luxadm performs a variety of control and query tasks, depending on the command line arguments and options used.

Synopsis

The command line must contain a subcommand.

```
luxadm [options] subcommand [options] { enclosure[, dev]... | pathname...}
```

You may also enter options, usually at least one enclosure name or pathname, and other parameters depending on the subcommand. You specify a device by entering a physical path name, or a logical path name. See “Addressing”.

You only need to enter as many characters as are required to uniquely identify a subcommand. For example, to run the display subcommand on an enclosure named box1, you could enter:

```
#luxadm disp box1
```
Addressing

Addressing a Sun Enterprise Network Array

Pathname

Either a complete physical path name or a complete logical path name may be entered to specify the device or controller. A typical physical path name for a Sun Enterprise Network Array device is:

```
/devices/sbus@1f,0/SUNW,socal@1,0/sf@0,0/
ssd@w2200002037000f96,0:a,raw
```

or

```
/devices/io-unit@f,e0200000/sbi@0,0/SUNW,socal@2,0/sf@0,0/
ssd@34,0:a,raw
```

For all Sun Enterprise Network Array IBs (Interface Boards) on the system, a logical link to the physical paths is kept in the directory /dev/es. An example of a logical link is /dev/es/ses0.

Enclosure

For the Sun Enterprise Network Array subsystem, the WWN may be used in place of the pathname to select a device or the Sun Enterprise Network Array subsystem Interface Board. The WWN is a unique 16 digit hexadecimal value that specifies either the port used to access the device or the device itself. A typical WWN value is: 2200002037000f96.

Or you can specify the name of the Sun Enterprise Network Array enclosure and an identifier for the particular device in the enclosure. A device in a Sun Enterprise Network Array enclosure is identified as follows:

```
BOX_NAME,[f|r]slot_number
```
where:

TABLE 1-1 Addressing a Sun Enterprise Network Array by Enclosure Name

<table>
<thead>
<tr>
<th>Options/Arguments</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOX_NAME</td>
<td>is the name of the Sun Enterprise Network Array enclosure, as specified by the enclosure_name subcommand</td>
</tr>
<tr>
<td>f or r</td>
<td>specifies the front or rear slots in the Sun Enterprise Network Array enclosure</td>
</tr>
<tr>
<td>slot_number</td>
<td>is the slot number in the Sun Enterprise Network Array enclosure, 0-6 or 0-10</td>
</tr>
</tbody>
</table>

When addressing the Sun Enterprise Network Array subsystem the pathname or enclosure name specifies the Sun Enterprise Network Array Interface Board (IB).

Addressing a SPARCstorage Array

When addressing the SPARCstorage Array, the pathname specifies the SPARCstorage Array controller or a disk in the SPARCstorage Array. The controller name is specified by its physical name, for example

```
/devices/.../.../SUNW,soc@3,0/SUNW,pln@axxxxxxx,xxxxxxxx:ctlr
```

or by a name of the form `cN`, where `N` is the logical controller number. `luxadm` uses the `cN` name to find an entry in the `/dev/rdsk` directory of a disk that is attached to the SPARCstorage Array controller. The `/dev/rdsk` entry is then used to determine the physical name of the SPARCstorage Array controller. A disk in the SPARCstorage Array is specified by its logical or physical device name, for example,

```
/dev/rdsk/clt0d0s2
```
or

```
/devices/.../.../SUNW,soc@3,0/SUNW,pln@axxxxxxx,xxxxxxxx:ssd@0,0:c,raw
```

See the disks(1M) and devlinks(1M) manpages for more information on logical names for disks and subsystems.
Addressing a SPARCstorage RSM Tray

When addressing the SPARCstorage RSM tray, the pathname specifies the controller or a disk in the SPARCstorage RSM tray. The controller name is specified by its physical name, for example

\[
\text{/devices/sbus@1f,0/QLGC,isp@1,10000/sd@8,0:c,raw}
\]

or by a name of the form \(cN\), where \(N\) is the logical controller number. luxadm uses the \(cN\) name to find an entry in the \(/dev/rdsk\) directory of a disk that is attached to the SPARCstorage Array controller. The \(/dev/rdsk\) entry is then used to determine the physical name of the controller. A disk in the SPARCstorage RSM tray is specified by its logical or physical device name, for example,

\[
\text{/dev/rdsk/c2t8d0s2}
\]

See the \(\text{disks}(1M)\) and \(\text{devlinks}(1M)\) manpages for more information on logical names for disks and subsystems.
Subcommand Support Matrix

The following table lists the `luxadm` subcommands that are supported on the Sun Enterprise Network Array, the SPARCstorage Array, and SPARCstorage RSM trays. Subcommands that are preceded by `-e` are expert mode subcommands and should only be used by qualified system personnel.

<table>
<thead>
<tr>
<th>Subcommand</th>
<th>Sun Enterprise Network Array</th>
<th>SPARCstorage Array</th>
<th>Sparcstorage RSM</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>alarm_off</td>
<td>—</td>
<td>yes</td>
<td>yes</td>
<td>page 22</td>
</tr>
<tr>
<td>alarm_on</td>
<td>—</td>
<td>yes</td>
<td>yes</td>
<td>page 23</td>
</tr>
<tr>
<td>alarm_set</td>
<td>—</td>
<td>yes</td>
<td>yes</td>
<td>page 23</td>
</tr>
<tr>
<td><code>-e</code> bus_getstate</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>page 61</td>
</tr>
<tr>
<td><code>-e</code> bus_quiesce</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>page 61</td>
</tr>
<tr>
<td><code>-e</code> bus_reset</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>page 61</td>
</tr>
<tr>
<td><code>-e</code> bus_resethall</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>page 61</td>
</tr>
<tr>
<td><code>-e</code> bus_unquiesce</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>page 61</td>
</tr>
<tr>
<td><code>-e</code> dev_getstate</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>page 61</td>
</tr>
<tr>
<td><code>-e</code> dev_resethall</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>page 61</td>
</tr>
<tr>
<td>display</td>
<td>yes</td>
<td>yes</td>
<td>—</td>
<td>page 61</td>
</tr>
<tr>
<td>download</td>
<td>yes</td>
<td>yes</td>
<td>—</td>
<td>page 12</td>
</tr>
<tr>
<td>enclosure_name</td>
<td>yes</td>
<td>—</td>
<td>—</td>
<td>page 24</td>
</tr>
<tr>
<td>env_display</td>
<td>—</td>
<td>—</td>
<td>yes</td>
<td>page 21</td>
</tr>
<tr>
<td>fast_write</td>
<td>—</td>
<td>yes</td>
<td>—</td>
<td>page 30</td>
</tr>
<tr>
<td>fc_s_download</td>
<td>—</td>
<td>yes</td>
<td>—</td>
<td>page 19</td>
</tr>
<tr>
<td>fcal_s_download</td>
<td>yes</td>
<td>—</td>
<td>—</td>
<td>page 20</td>
</tr>
<tr>
<td><code>-e</code> forcelpip</td>
<td>yes</td>
<td>—</td>
<td>—</td>
<td>page 61</td>
</tr>
<tr>
<td>inquiry</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>page 15</td>
</tr>
<tr>
<td>insert_device</td>
<td>yes</td>
<td>—</td>
<td>yes</td>
<td>page 36</td>
</tr>
<tr>
<td>led</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>page 7</td>
</tr>
<tr>
<td>led_blink</td>
<td>yes</td>
<td>—</td>
<td>—</td>
<td>page 8</td>
</tr>
</tbody>
</table>
TABLE 1-2 Subcommand Support Matrix

<table>
<thead>
<tr>
<th>Subcommand</th>
<th>Sun Enterprise Network Array</th>
<th>SPARCstorage Array</th>
<th>Sparcstorage RSM</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>led_off</td>
<td>yes</td>
<td>yes</td>
<td>—</td>
<td>page 9</td>
</tr>
<tr>
<td>led_on</td>
<td>—</td>
<td>yes</td>
<td>yes</td>
<td>page 10</td>
</tr>
<tr>
<td>nvram_data</td>
<td>—</td>
<td>yes</td>
<td>—</td>
<td>page 31</td>
</tr>
<tr>
<td>-e offline</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>page 61</td>
</tr>
<tr>
<td>-e online</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>page 61</td>
</tr>
<tr>
<td>perf_statistics</td>
<td>—</td>
<td>yes</td>
<td>—</td>
<td>page 25</td>
</tr>
<tr>
<td>power_off</td>
<td>yes</td>
<td>yes</td>
<td>—</td>
<td>page 26</td>
</tr>
<tr>
<td>power_on</td>
<td>yes</td>
<td>—</td>
<td>—</td>
<td>page 26</td>
</tr>
<tr>
<td>probe</td>
<td>yes</td>
<td>—</td>
<td>—</td>
<td>page 11</td>
</tr>
<tr>
<td>purge</td>
<td>—</td>
<td>yes</td>
<td>—</td>
<td>page 31</td>
</tr>
<tr>
<td>-e rdls</td>
<td>yes</td>
<td>—</td>
<td>—</td>
<td>page 61</td>
</tr>
<tr>
<td>release</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>page 27</td>
</tr>
<tr>
<td>remove_device</td>
<td>yes</td>
<td>—</td>
<td>yes</td>
<td>page 34</td>
</tr>
<tr>
<td>replace_device</td>
<td>—</td>
<td>—</td>
<td>yes</td>
<td>page 37</td>
</tr>
<tr>
<td>reserve</td>
<td>yes</td>
<td>yes</td>
<td>—</td>
<td>page 27</td>
</tr>
<tr>
<td>set_boot_dev</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>page 28</td>
</tr>
<tr>
<td>start</td>
<td>—</td>
<td>yes</td>
<td>—</td>
<td>page 28</td>
</tr>
<tr>
<td>stop</td>
<td>—</td>
<td>yes</td>
<td>—</td>
<td>page 29</td>
</tr>
<tr>
<td>sync_cache</td>
<td>—</td>
<td>yes</td>
<td>—</td>
<td>page 32</td>
</tr>
</tbody>
</table>
luxadm Subcommands

Disk LEDs

Displaying the Current State of a Disk LED

Use the `led` subcommand to display the current state of the yellow LED associated with a specific disk.

```
luxadm [-v] led { enclosure, dev... | pathname...}
```

<table>
<thead>
<tr>
<th>Sun Enterprise Network Array</th>
<th>SPARCstorage Array</th>
<th>SPARCstorage RSM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supported</td>
<td>Supported</td>
<td>Supported</td>
</tr>
</tbody>
</table>

TABLE 2-1 led Options and Arguments

<table>
<thead>
<tr>
<th>Option/Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enclosure</td>
<td>is the enclosure name of a Sun Enterprise Network Array(^1).</td>
</tr>
<tr>
<td>dev</td>
<td>is the name of a specific disk in an enclosure(^1).</td>
</tr>
<tr>
<td>pathname</td>
<td>is the physical or logical path name of a specific disk in an array(^1).</td>
</tr>
</tbody>
</table>

\(^1\)See “Addressing” on page 2.
Example:

```bash
# luxadm led /devices/sbus@3,0/SUNW,socal@0,0/sf@0,0/
ssd@w21000020370412ec,0:c,raw
LED state is OFF for device in location: front, slot 0
#
```

Setting a Disk LED to the Blink Mode

Use the `led_blink` subcommand to start blinking (flashing) the yellow LED associated with a specific disk. The `led_blink` subcommand only applies to subsystems that support this functionality.

<table>
<thead>
<tr>
<th>Sun Enterprise Network Array</th>
<th>SPARCstorage Array</th>
<th>SPARCstorage RSM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supported</td>
<td>Not Supported</td>
<td>Not Supported</td>
</tr>
</tbody>
</table>

```bash
luxadm [-v] led_blink { enclosure, dev... | pathname...}
```

TABLE 2-2 led_blink Options and Arguments

<table>
<thead>
<tr>
<th>Option/Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>enclosure</code></td>
<td>is the enclosure name of a Sun Enterprise Network Array1.</td>
</tr>
<tr>
<td><code>dev</code></td>
<td>is the name of a specific disk in an enclosure1.</td>
</tr>
<tr>
<td><code>pathname</code></td>
<td>is the physical or logical path name of a specific disk in an array1.</td>
</tr>
</tbody>
</table>

1 See “Addressing” on page 2.

Example:

```bash
# luxadm led_blink /devices/sbus@3,0/SUNW,socal@0,0/sf@0,0/
ssd@w21000020370412ec,0:c,raw
LED state is BLINKING for device in location: front, slot 0
#
```
Turning Off a Disk LED

Use the `led_off` subcommand to turn off the yellow LED associated with a specific disk.

```
luxadm [ -v ] led_off { enclosure, dev... | pathname... }
```

<table>
<thead>
<tr>
<th>Option/Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>enclosure</code></td>
<td>is the enclosure name of a Sun Enterprise Network Array.</td>
</tr>
<tr>
<td><code>dev</code></td>
<td>is the name of a specific disk in an enclosure.</td>
</tr>
<tr>
<td><code>pathname</code></td>
<td>is the physical or logical path name of a specific disk in an array.</td>
</tr>
</tbody>
</table>

1 See “Addressing” on page 2.

Note – On a Sun Enterprise Network Array this may or may not cause the yellow LED to turn off or stop blinking depending on the state of the Sun Enterprise Network Array. Refer to *Sun Enterprise Network Array Installation and Service Manual* for details.

Example:

```
# luxadm led_off /devices/sbus@3,0/SUNW,socal@0,0/sf@0,0/ssd@w21000020370412ec,0:c,raw
LED state is OFF for device in location: front, slot 0
```

Turning On a Disk LED

Use the `led_on` subcommand to turn on the yellow LED associated with a specific disk.

```
luxadm [-v] led_on pathname
```

<table>
<thead>
<tr>
<th>Sun Enterprise Network Array</th>
<th>SPARCstorage Array</th>
<th>SPARCstorage RSM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Supported</td>
<td>Supported</td>
<td>Supported</td>
</tr>
</tbody>
</table>

TABLE 2-4 led_on Options and Arguments

<table>
<thead>
<tr>
<th>Option/Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>dev</code></td>
<td>is the name of a specific disk in an enclosure(^1).</td>
</tr>
<tr>
<td><code>pathname</code></td>
<td>is the physical or logical path name of a specific disk in an array(^1).</td>
</tr>
</tbody>
</table>

\(^1\) See “Addressing” on page 2.
Displaying

Probing for Sun Enterprise Network Arrays

Use the `probe` subcommand to display information about all attached Sun Enterprise Network Array. Information displayed includes the logical pathnames, the WWNs, and the enclosure names.

<table>
<thead>
<tr>
<th>Sun Enterprise Network Array</th>
<th>SPARCstorage Array</th>
<th>SPARCstorage RSM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supported</td>
<td>Not Supported</td>
<td>Not Supported</td>
</tr>
</tbody>
</table>

```
luxadm [-v] probe [-p]
```

TABLE 2-5 probe Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-p</code></td>
<td>also displays the physical pathname.</td>
</tr>
</tbody>
</table>

Example:

```
# luxadm probe
Found
SENA Name: dogbert   Node WWN: 1234123412341234
   Logical Path:/dev/es/ses0
   Logical Path:/dev/es/ses1
#
```
Example:

```
# luxadm probe -p
Found
SEN A Name: dogbert  Node WWN: 1234123412341234
   Logical Path:/dev/es/ses0
   Physical Path:/devices/sbus@3,0/SUNW,socal@0,0/sf@0,0/
        ses@w1234123412341235,0:0
   Logical Path:/dev/es/ses1
   Physical Path:/devices/sbus@3,0/SUNW,socal@0,0/sf@0,0/
        ses@w1234123412341236,0:0
```

Displaying Enclosure or Device Specific Data

Use the `display` subcommand to display enclosure specific or device specific data.

Enclosure data consists of enclosure environmental sense information and status for all subsystem devices including disks.

Device data consists of inquiry, capacity, and configuration information.

<table>
<thead>
<tr>
<th>Sun Enterprise Network Array</th>
<th>SPARCstorage Array</th>
<th>SPARCstorage RSM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supported</td>
<td>Supported</td>
<td>Not Supported</td>
</tr>
</tbody>
</table>

```
luxadm [ -v ] display enclosure[,...] | pathname...
```

TABLE 2-6 display Options and Arguments

<table>
<thead>
<tr>
<th>Option/Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-v</td>
<td>mode sense data is also displayed</td>
</tr>
<tr>
<td>enclosure</td>
<td>is the enclosure name of a Sun Enterprise Network Array.</td>
</tr>
<tr>
<td>dev</td>
<td>is the name of a specific disk in an enclosure.</td>
</tr>
<tr>
<td>pathname</td>
<td>is the physical or logical path name of a Sun Enterprise Network Array, SPARCstorage Array, or a specific disk in an array.</td>
</tr>
</tbody>
</table>
Example:

```bash
# luxadm display dogbert

(luxadm version: 1.23 97/05/22)

SEN

<table>
<thead>
<tr>
<th>SLOT</th>
<th>FRONT DISKS (Node WWN)</th>
<th>REAR DISKS (Node WWN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>On (O.K.) 20000020370412ec</td>
<td>On (O.K.) 200000203704141d</td>
</tr>
<tr>
<td>1</td>
<td>On (O.K.) 20000020370412e7</td>
<td>On (O.K.) 2000002037041375</td>
</tr>
<tr>
<td>2</td>
<td>On (O.K.) 2000002037041397</td>
<td>On (O.K.) 20000020370412be</td>
</tr>
<tr>
<td>3</td>
<td>On (O.K.) 200000203704139f</td>
<td>On (O.K.) 2000002037041433</td>
</tr>
<tr>
<td>4</td>
<td>On (O.K.) 2000002037041418</td>
<td>On (O.K.) 2000002037041348</td>
</tr>
<tr>
<td>5</td>
<td>On (O.K.) 200000203704140f</td>
<td>On (O.K.) 2000002037041333</td>
</tr>
<tr>
<td>6</td>
<td>On (O.K.) 200000203704143d</td>
<td>On (O.K.) 2000002037041382</td>
</tr>
</tbody>
</table>

SUBSYSTEM STATUS

Revision Level: 0.16 Node WWN: 1234123412341234Enclosure Name: dogbert

Power Supplies (0,2 in front, 1 in rear)
0 O.K.(REV 0) 1 O.K.(REV 0) 2 O.K.(REV 0)

Fans (0 in front, 1 in rear)
0 O.K.(REV 0) 1 O.K.(REV 0)

ESI Interface board(IB) (A top, B bottom)
A: O.K. (mmma)
GBIC module (1 on left, 0 on right in IB)
0 Not Installed 1 O.K.(MODn)

B: Not Installed

Disk backplane (0 in front, 1 in rear)

Temperature sensors (on front backplane)
0:42°C 1:42°C 2:40°C 3:39°C 4:40°C 5:40°C
6:42°C (All temperatures are NORMAL.)

Temperature sensors (on rear backplane)
0:43°C 1:42°C 2:42°C 3:40°C 4:42°C 5:42°C
6:43°C (All temperatures are NORMAL.)

Loop configuration The loop is configured as a single loop.

Language USA English

#
Example:

```
luxadm display -r dogbert

(luxadm version: 1.23 97/05/22)

SENA
Information for FC Loop on port 0 of SOC+ Host Adapter
at path: /devices/sbus@3,0/SUNW,socal@0,0:0

Version Resets Req_Q_Intrpts Qfulls Requests Sol_Resps Unsol_Resps Lips
 1 2 0 0 0 0 0

Els_sent Els_rcvd Abts Abts_ok Offlines Onlines Online_loops
 0 0 0 0 0 0 1

Information from sf driver:
Version Lip_count Lip_fail Alloc_fail #_cmds Throttle_limit Pool_size
 1 0 0 0 0 1024 1

TARGET ERROR INFORMATION:
AL_PA Els_fail Timouts Abts_fail Tsk_m_fail Data_ro_mis Dl_len_mis Logouts
 9e 0 0 0 0 0 0
 b2 0 0 0 0 0 0
 b1 0 0 0 0 0 0
 ae 0 0 0 0 0 0
 ad 0 0 0 0 0 0
 ac 0 0 0 0 0 0
 ab 0 0 0 0 0 0
 aa 0 0 0 0 0 0
 1 0 0 0 0 0 0
 75 0 0 0 0 0 0
 98 0 0 0 0 0 0
 97 0 0 0 0 0 0
 90 0 0 0 0 0 0
 8f 0 0 0 0 0 0
 88 0 0 0 0 0 0
 84 0 0 0 0 0 0
 82 0 0 0 0 0 0
```

Displaying inquiry Information

Use the inquiry subcommand to display inquiry information for a specific disk.

<table>
<thead>
<tr>
<th>Sun Enterprise Network Array</th>
<th>SPARCstorage Array</th>
<th>SPARCstorage RSM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supported</td>
<td>Supported</td>
<td>Supported</td>
</tr>
</tbody>
</table>

14 Platform Notes: Using luxadm Software • August 1997
luxadm [ -v ] inquiry { enclosure[,dev]... | pathname...}

**Example:**

```bash
luxadm inquiry dogbert
```

**TABLE 2-7** inquiry Options and Arguments

<table>
<thead>
<tr>
<th>Option/Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enclosure</td>
<td>is the enclosure name of a Sun Enterprise Network Array¹.</td>
</tr>
<tr>
<td>dev</td>
<td>is the name of a specific disk in an enclosure¹.</td>
</tr>
<tr>
<td>pathname</td>
<td>is the physical or logical path name of a Sun Enterprise Network Array, SPARCstorage Array, or a specific disk in an array.¹</td>
</tr>
</tbody>
</table>

¹See “Addressing” on page 2.

Example:

```bash
luxadm inquiry dogbert
INQUIRY:
 Physical path:
 /devices/sbus@3,0/SUNW,socal@0,0/sf@0,0/ses@w1234123412341235,0:0
Vendor: SUN
Product: SENA
Revision: 0.16
Device type: 0xd (Enclosure services device)
Removable media: no
Medium Changer Element: no
ISO version: 0
ECMA version: 0
ANSI version: 3 (Device complies to SCSI-3)
Terminate task: no
Response data format: 2
Additional length: 0x7b
Command queueing: no

VENDOR-SPECIFIC PARAMETERS

<table>
<thead>
<tr>
<th>Byte#</th>
<th>Hex Value</th>
<th>ASCII</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>12 34 12 34 12 34 00 00 00 00 00 00 00 00</td>
<td>.4.4.4.4.......</td>
</tr>
<tr>
<td>95</td>
<td>64 6f 67 62 65 72 74 00 00 00 00 00 00 00 00</td>
<td>dogbert.......</td>
</tr>
<tr>
<td></td>
<td>00 00 00 00 00 00 00 00 00 00 00 00 00 00 00</td>
<td>................</td>
</tr>
</tbody>
</table>

#
Downloading

Downloading Firmware

Use the `download` subcommand to download a prom image to the FEPROMs on a Sun Enterprise Network Array Interface Board or on a SPARCstorage Array controller board.

In a Sun Enterprise Network Array, when the download is complete, the Sun Enterprise Network Array subsystem will be reset and the downloaded code will be executed.

In a SPARCstorage Array, when the download is complete, you must reset the SPARCstorage Array to execute the downloaded code.

<table>
<thead>
<tr>
<th>Sun Enterprise Network Array</th>
<th>SPARCstorage Array</th>
<th>SPARCstorage RSM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supported</td>
<td>Supported</td>
<td>Not Supported</td>
</tr>
</tbody>
</table>

```
luxadm [-v ] download [-s] [-f filename-path ]
```

Caution – When using the `-s` option the download modifies the FEPROM in the Sun Enterprise Network Array and should be used with CAUTION.
Note – The -s option does not apply to the SPARCstorage Array controller as it always writes the downloaded firmware into the FEPROM.

<table>
<thead>
<tr>
<th>Option/Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-s</td>
<td>saves the downloaded firmware in the FEPROM in a Sun Enterprise Network Array. If -s is not specified the downloaded firmware will not be saved across power cycles.</td>
</tr>
<tr>
<td>-f filename</td>
<td>downloads the prom image in filename. If you do not specify a filename, the default prom image will be used.</td>
</tr>
<tr>
<td>-w WWN</td>
<td>This option is for the SPARCstorage Array only. See “Changing a SPARCstorage Array World Wide Name” on page 17.</td>
</tr>
</tbody>
</table>

The default prom image in a Sun Enterprise Network Array is in the directory /usr/lib/locale/C/LC_MESSAGES and is named ibfirmware.

The default prom image in a SPARCstorage Array is in the directory /usr/lib/firmware/ssa and is named ssafirmware.

TABLE 2-8 download Options and Arguments

Changing a SPARCstorage Array World Wide Name

Use the download subcommand to change the World Wide Name of a SPARCstorage Array controller board.

```
luxadm [ -v ] download [-w WWN] pathname
```
TABLE 2-9 download Options and Arguments

<table>
<thead>
<tr>
<th>Option/Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pathname</td>
<td>is a SPARCstorage Array controller</td>
</tr>
<tr>
<td>-w \textit{WWN}</td>
<td>changes the SPARCstorage Array’s World Wide Name. \textit{WWN} is a twelve-digit hex number; leading zeros are required. The new SPARCstorage Array controller’s image will have the least significant 6 bytes of the 8-byte World Wide Name modified to \textit{WWN}.</td>
</tr>
</tbody>
</table>

Downloading fcode in a SPARCstorage Array

Use the \texttt{fc_s_download} subcommand to download new fcode into all the FC/S Sbus Cards.

The \texttt{fc_s_download} subcommand is interactive and expects user confirmation before downloading the fcode.

The version of the FC/S Sbus Cards fcode that was released with this version of the Operating System is kept in the directory \texttt{usr/lib/firmware/fc_s} and is named \texttt{fc_s_fcode}.

\textbf{Caution} – Ensure that you download the \texttt{usr/lib/firmware/fc_s/fc_s_fcode} file.

\textbf{Note} – The \texttt{fc_s_download} subcommand should be used only in single user mode; otherwise the FC/S card could be reset.

\begin{tabular}{|l|l|l|}
\hline
\textbf{Sun Enterprise Network Array} & \textbf{SPARCstorage Array} & \textbf{SPARCstorage RSM} \\
\hline
Not Supported & Supported & Not Supported \\
\hline
\end{tabular}

\texttt{luxadm \ [-v] fc_s_download \ [-F] \ [-f fcode_file]}
Use the `fcal_s_download` subcommand to download new fcode into ALL the FC100/S Sbus Cards or to display the current version of the fcode in each FC100/S Sbus card. When downloading new fcode, the `fcal_s_download` subcommand is interactive and expects user confirmation before downloading the fcode.

Caution – Ensure that you download the `/usr/lib/firmware/fc_s/fcal_s_fcode` file.

Caution – Do not attempt to download fcode to a FC100/S Sbus Card that is in your boot path.

TABLE 2-10 `fc_s_download` Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-F</code></td>
<td>Forcibly downloads the fcode. The subcommand still expects user confirmation before the download.</td>
</tr>
<tr>
<td><code>-f fcode-file</code></td>
<td>is the name of the file that has the new fcode. When the <code>fc_s_download</code> subcommand is invoked without the <code>-f fcode-file</code> option, the current version of the fcode in each FC/ S Sbus card is printed.</td>
</tr>
</tbody>
</table>

```bash
luxadm [ -v ] fcal_s_download [ -f fcode-file ]
```
TABLE 2-11 \(fcal_s_download \) Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-f\ fcode-file)</td>
<td>fcode-file is the name of the file that has the new fcode. If you invokes the fcal_s_download subcommand without the ([-f\ fcode-file] option, the current version of the fcode in each FC100/S Sbus card is displayed. The version of the FC100/S Sbus Cards fcode released with this operating system is kept in the directory (\text{usr/lib/firmware/fc_s}) and is named fcal_s_fcode.</td>
</tr>
</tbody>
</table>
Enclosure Services Card

The `env_display` and `alarm` subcommands apply only to an Enclosure Services Card (SES) in a RSM tray in a SPARCstorage Array. The RSM tray is addressed by using the logical or physical path of the SES device or by specifying the controller followed by the tray number. The controller is addressed by `cN` or the physical path to the SSA's controller.

Displaying Environmental Information

Use the `env_display` subcommand to display the environmental information for a SPARCstorage Array.

<table>
<thead>
<tr>
<th>Sun Enterprise Network Array</th>
<th>SPARCstorage Array</th>
<th>SPARCstorage RSM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Supported</td>
<td>Supported</td>
<td>Supported</td>
</tr>
</tbody>
</table>

```
luxadm \[ -v \] env_display \{ pathname | controller tray-number \}
```

TABLE 2-12 env_display Options and Arguments

<table>
<thead>
<tr>
<th>Option/Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>pathname</code></td>
<td>is the path to an SES device(^1).</td>
</tr>
<tr>
<td><code>controller</code></td>
<td>is the path to a SPARCstorage Array controller (^1).</td>
</tr>
<tr>
<td><code>tray-number</code></td>
<td>is an RSM tray number. <code>tray-number</code> is only valid for an RSM tray in a SPARCstorage Array.</td>
</tr>
</tbody>
</table>

\(^1\)See “Addressing a SPARCstorage Array” on page 3.
Disabling the Alarm

Use the `alarm_off` subcommand to disable the audible alarm for this enclosure. When invoked without an option, the current state of audible alarm is printed.

<table>
<thead>
<tr>
<th>Sun Enterprise Network Array</th>
<th>SPARCstorage Array</th>
<th>SPARCstorage RSM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Supported</td>
<td>Supported</td>
<td>Supported</td>
</tr>
</tbody>
</table>

```bash
luxadm [-v] alarm_off { pathname | controller tray-number }
```

TABLE 2-13 alarm_off Options and Arguments

<table>
<thead>
<tr>
<th>Option/Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>pathname</code></td>
<td>is the path to an SES device.</td>
</tr>
<tr>
<td><code>controller</code></td>
<td>is the path to a SPARCstorage Array controller.</td>
</tr>
<tr>
<td><code>tray-number</code></td>
<td>is an RSM tray number. <code>tray-number</code> is only valid for an RSM tray in a SPARCstorage Array.</td>
</tr>
</tbody>
</table>

1 See “Addressing a SPARCstorage Array” on page 3.

Enabling the Alarm

Use the `alarm_on` subcommand to enable the audible alarm for this enclosure. When invoked without an option, the current state of audible alarm is printed.

<table>
<thead>
<tr>
<th>Sun Enterprise Network Array</th>
<th>SPARCstorage Array</th>
<th>SPARCstorage RSM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Supported</td>
<td>Supported</td>
<td>Supported</td>
</tr>
</tbody>
</table>

```bash
luxadm [-v] alarm_on { pathname | controller tray-number }
```
TABLE 2-14 alarm_on Options and Arguments

<table>
<thead>
<tr>
<th>Option/Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pathname</td>
<td>is the path to an SES device(^1).</td>
</tr>
<tr>
<td>controller</td>
<td>is the path to a SPARCstorage Array controller (^1).</td>
</tr>
<tr>
<td>tray-number</td>
<td>is an RSM tray number. (\text{tray-number}) is only valid for an RSM tray in a SPARCstorage Array.</td>
</tr>
</tbody>
</table>

\(^1\) See “Addressing a SPARCstorage Array” on page 3.

Setting the Alarm

Use the `alarm_set` subcommand to set the duration of the audible alarm to a specified number of seconds.

<table>
<thead>
<tr>
<th>Sun Enterprise Network Array</th>
<th>SPARCstorage Array</th>
<th>SPARCstorage RSM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Supported</td>
<td>Supported</td>
<td>Supported</td>
</tr>
</tbody>
</table>

```
luxadm [ -v ] alarm_set / pathname | controller \(\text{tray-number}\) \} \{seconds\}
```

TABLE 2-15 alarm_set Options and Arguments

<table>
<thead>
<tr>
<th>Option/Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pathname</td>
<td>is the path to an SES device(^1).</td>
</tr>
<tr>
<td>controller</td>
<td>is the path to a SPARCstorage Array controller (^1).</td>
</tr>
<tr>
<td>tray-number</td>
<td>is an RSM tray number. (\text{tray-number}) is only valid for an RSM tray in a SPARCstorage Array.</td>
</tr>
<tr>
<td>seconds</td>
<td>is the number of seconds.</td>
</tr>
</tbody>
</table>

\(^1\) See “Addressing a SPARCstorage Array” on page 3.
Enclosure and Disk Operations

Renaming a Sun Enterprise Network Array

Use the `enclosure_name new_name` subcommand to change the enclosure name of one or more Sun Enterprise Network Arrays. The new name must be 16 or less characters. The only allowed characters are alphabetic or numeric digits.

<table>
<thead>
<tr>
<th>Sun Enterprise Network Array</th>
<th>SPARCstorage Array</th>
<th>SPARCstorage RSM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supported</td>
<td>Not Supported</td>
<td>Not Supported</td>
</tr>
</tbody>
</table>

```
luxadm [-v] enclosure_name ### enclosure... | pathname...
```

<table>
<thead>
<tr>
<th>Option/Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>###</td>
<td>is the new enclosure name.</td>
</tr>
<tr>
<td>enclosure</td>
<td>is the enclosure name of a Sun Enterprise Network Array¹.</td>
</tr>
<tr>
<td>pathname</td>
<td>is the physical or logical path name of a Sun Enterprise Network Array¹.</td>
</tr>
</tbody>
</table>

¹ See “Addressing a Sun Enterprise Network Array” on page 2.

Collecting Performance Statistics

Use the `perf_statistics` subcommand to enable or disable the accumulation of performance statistics for a specific SPARCstorage Array controller.
Note – The accumulation of performance statistics must be enabled before using the `display -p` subcommand.

<table>
<thead>
<tr>
<th>Sun Enterprise Network Array</th>
<th>SPARCstorage Array</th>
<th>SPARCstorage RSM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Supported</td>
<td>Supported</td>
<td>Not Supported</td>
</tr>
</tbody>
</table>

```
luxadm [-v] perf_statistics [-e] pathname
```

TABLE 2-17 `perf_statistics` Options and Arguments

<table>
<thead>
<tr>
<th>Option/Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>pathname</code></td>
<td>is a SPARCstorage Array controller¹.</td>
</tr>
<tr>
<td><code>-e</code></td>
<td>Enable the accumulation of performance statistics.</td>
</tr>
</tbody>
</table>

¹ See “Addressing a SPARCstorage Array” on page 3.

Powering Off an Enclosure or Disk Drive

Use the `power_off` subcommand to set an enclosure to the power-save mode.

Note – The Sun Enterprise Network Array disk drives are not available when in the power-save mode.

When an Enclosure Services card in a SPARCstorage Array is addressed, the RSM tray is powered off.

When a disk drive in a Sun Enterprise Network Array is addressed, the drive is set to the drive off/unmated state. When set to the drive off/unmated state, the drive is spun down (stopped) and put in the bypass mode.

```
luxadm [-v] power_off { enclosure[,dev]... | pathname...)
```
Powering On Enclosures or Disk Drives

Use the power_on subcommand to set a drive to its normal power on state. If you specify a Sun Enterprise Network Array disk drive, the power_on subcommand sets the specified disks to the normal start-up state.

<table>
<thead>
<tr>
<th>Sun Enterprise Network Array</th>
<th>SPARCstorage Array</th>
<th>SPARCstorage RSM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supported</td>
<td>Not Supported</td>
<td>Not Supported</td>
</tr>
</tbody>
</table>

```
luxadm [-v] power_on { enclosure[, dev]... | pathname...}
```

Releasing Disks

Use the release subcommand to release one or more disk drives from reservation.

<table>
<thead>
<tr>
<th>Sun Enterprise Network Array</th>
<th>SPARCstorage Array</th>
<th>SPARCstorage RSM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supported</td>
<td>Supported</td>
<td>Supported</td>
</tr>
</tbody>
</table>
Reserving Disks

Use the `reserve` subcommand to reserve the specified disk(s) for exclusive use by the host from which the subcommand was issued.

Luxadm Subcommands	Chapter 2	27

TABLE 2-20 release Options and Arguments

<table>
<thead>
<tr>
<th>Option/Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>enclosure</code></td>
<td>is the enclosure name of a Sun Enterprise Network Array.</td>
</tr>
<tr>
<td><code>dev</code></td>
<td>is the name of a specific disk in an enclosure.</td>
</tr>
<tr>
<td><code>pathname</code></td>
<td>is the physical or logical path name of a Sun Enterprise Network Array, SPARCstorage Array, or a specific disk in an array.</td>
</tr>
</tbody>
</table>

1 See “Addressing” on page 2.

TABLE 2-21 reserve Options and Arguments

<table>
<thead>
<tr>
<th>Option/Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>enclosure</code></td>
<td>is the enclosure name of a Sun Enterprise Network Array.</td>
</tr>
<tr>
<td><code>dev</code></td>
<td>is the name of a specific disk in an enclosure.</td>
</tr>
<tr>
<td><code>pathname</code></td>
<td>is the physical or logical path name of a Sun Enterprise Network Array, SPARCstorage Array, or a specific disk in an array.</td>
</tr>
</tbody>
</table>

1 See “Addressing” on page 2.
Setting the Boot Device Variable

Use the set_boot_dev subcommand to set the boot-device variable in the system PROM to physical device name. The set_boot_device subcommand normally runs interactively; it requests confirmation for setting the default boot-device in the PROM.

```
luxadm [-v] set_boot_dev [-y] pathname
```

TABLE 2-22 set_boot_dev Options and Arguments

<table>
<thead>
<tr>
<th>Option/Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pathname</td>
<td>is a block special device or a mount-point (^1).</td>
</tr>
<tr>
<td>-y</td>
<td>runs non-interactively; no confirmation is requested or required.</td>
</tr>
</tbody>
</table>

\(^1\) See “Addressing” on page 2.

Starting Disks

Use the start subcommand to spin up one or more disks.

```
luxadm [-v] start [-t tray number] pathname
```

TABLE 2-23 start Options and Arguments

<table>
<thead>
<tr>
<th>Option/Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-t tray-number</td>
<td>is the tray number.</td>
</tr>
<tr>
<td>pathname</td>
<td>is the physical or logical path name of a SPARCstorage Array, or a specific disk in an array (^1).</td>
</tr>
</tbody>
</table>

\(^1\) See “Addressing” on page 2.
Stopping Disks

Use the `stop` subcommand to spin down one or more disks.

<table>
<thead>
<tr>
<th>Sun Enterprise Network Array</th>
<th>SPARCstorage Array</th>
<th>SPARCstorage RSM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Supported</td>
<td>Supported</td>
<td>Not Supported</td>
</tr>
</tbody>
</table>

```
luxadm [-v] stop [-t tray-number] pathname
```

TABLE 2-24
stop Options and Arguments

<table>
<thead>
<tr>
<th>Option/Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-t tray-number</code></td>
<td>is the tray number.</td>
</tr>
<tr>
<td><code>pathname</code></td>
<td>is the physical or logical path name of a SPARCstorage Array, or a specific disk in an array.</td>
</tr>
</tbody>
</table>

1 See “Addressing” on page 2.
NVRAM

Enabling and Disabling Fast Writes

Use the `fast_write` subcommand to enable or disable the use of the NVRAM to enhance the performance of writes in the SPARCstorage Array.

<table>
<thead>
<tr>
<th>Sun Enterprise Network Array</th>
<th>SPARCstorage Array</th>
<th>SPARCstorage RSM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Supported</td>
<td>Supported</td>
<td>Not Supported</td>
</tr>
</tbody>
</table>

```
luxadm [ -v ] fast_write [-s] -c pathname
```

TABLE 2-25 fast_write Options and Arguments

<table>
<thead>
<tr>
<th>Option/Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>pathname</code></td>
<td>pathname is a SPARCstorage Array controller or an individual disk.</td>
</tr>
<tr>
<td><code>-e</code></td>
<td>causes the SPARCstorage Array to save the change so it will persist across power-cycles.</td>
</tr>
<tr>
<td><code>-c</code></td>
<td>enables fast writes for synchronous writes only.</td>
</tr>
<tr>
<td><code>-e</code></td>
<td>enables fast writes.</td>
</tr>
<tr>
<td><code>-d</code></td>
<td>disables fast writes.</td>
</tr>
</tbody>
</table>

1 See “Addressing a SPARCstorage Array” on page 3.

Displaying Fast Write Data

Use the `nvram_data` subcommand to display the amount of fast write data in the NVRAM for a specific disk. This command can only be used for an individual disk.

<table>
<thead>
<tr>
<th>Sun Enterprise Network Array</th>
<th>SPARCstorage Array</th>
<th>SPARCstorage RSM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Supported</td>
<td>Supported</td>
<td>Not Supported</td>
</tr>
</tbody>
</table>
Purging Fast Write Data from NVRAM

Caution – The `purge` subcommand should be used with caution, usually only when a drive has failed.

Use the `purge` subcommand to purge any fast write data from NVRAM for one or more disks.

TABLE 2-26 `nvram_data` Options and Arguments

<table>
<thead>
<tr>
<th>Option/Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>pathname</code></td>
<td><code>pathname</code> is a SPARCstorage Array controller or an individual disk.</td>
</tr>
</tbody>
</table>

1 See “Addressing a SPARCstorage Array” on page 3.

TABLE 2-27 `purge` Options and Arguments

<table>
<thead>
<tr>
<th>Option/Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>pathname</code></td>
<td><code>pathname</code> is a SPARCstorage Array controller or an individual disk. If you specify a SPARCstorage Array controller, fast write data for all disks associated with that controller will be purged.</td>
</tr>
</tbody>
</table>

1 See “Addressing a SPARCstorage Array” on page 3.
Flushing NVRAM

Use the `sync_cache` subcommand to flush all outstanding writes for one or more disks from NVRAM to the media.

luxadm [-v] sync_cache pathname

<table>
<thead>
<tr>
<th>Sun Enterprise Network Array</th>
<th>SPARCstorage Array</th>
<th>SPARCstorage RSM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Supported</td>
<td>Supported</td>
<td>Not Supported</td>
</tr>
</tbody>
</table>

TABLE 2-28 sync_cache Options and Arguments

<table>
<thead>
<tr>
<th>Option/Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pathname</td>
<td>is a SPARCstorage Array controller or an individual disk. If you specify a SPARCstorage Array controller, outstanding writes for all disks associated with that controller will be flushed.</td>
</tr>
</tbody>
</table>

1 See “Addressing a SPARCstorage Array” on page 3.
Remove, Insert, Replace

Removing Devices

Use the remove_device subcommand to hot remove a device or a chain of devices.

The remove_device subcommand interactively guides you through the hot removal of one or more devices. In the Sun Enterprise Network Array the remove_device subcommand:

- Checks whether the device is busy and if so warns you.
- Offlines the device (this fails if the disk is open).
- Informs you when device(s) can be safely removed.
- Informs you which device to remove by blinking the activity LED on the enclosure.
- Requests confirmation that the list(s) is/are as expected.
- Removes the logical device(s) names for the device that was removed.

In the SPARCstorage RSM the remove_device subcommand:

- Takes the device offline.
- Quiesces the bus for buses that support quiescing.
- Informs you that the device can be safely replaced.
- Requests confirmation that the device has been replaced.
- Unquiesces the bus for buses that support quiescing.
- Brings the (now removed) device back online
- Removes the logical device name for the device that was removeda.

<table>
<thead>
<tr>
<th>Sun Enterprise Network Array</th>
<th>SPARCstorage Array</th>
<th>SPARCstorage RSM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supported</td>
<td>Not Supported</td>
<td>Supported</td>
</tr>
</tbody>
</table>

```
luxadm [-v] remove_device { enclosure, dev... | pathname... }
```
TABLE 2-29 remove_device Options and Arguments

<table>
<thead>
<tr>
<th>Option/Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enclosure</td>
<td>is the enclosure name of a Sun Enterprise Network Array(^1).</td>
</tr>
<tr>
<td>dev</td>
<td>is the name of a specific disk in an enclosure(^1).</td>
</tr>
<tr>
<td>pathname</td>
<td>is the physical or logical path name of a Sun Enterprise Network Array or a specific disk in an array(^1).</td>
</tr>
</tbody>
</table>

\(^1\) See “Addressing a Sun Enterprise Network Array” on page 2.

Example:

```bash
# luxadm remove_device macs3,r1

WARNING!!! Please ensure that no filesystems are mounted on these device(s).
All data on these devices should have been backed up.

The list of devices which will be removed is:

1: Box Name "macs3" rear slot 1

Please enter 'q' to Quit OR <Return> to Continue:

offlining: Drive in "macs3" rear slot 1

Hit any key after inserting/removing drives:
```
You must physically remove the device at this time. After you hit a key, the following is displayed:

```bash
Drive in Box Name "macs3" rear slot 1
   Removing Logical Nodes:
      Removing /dev/dsk/c1t81d0s0
      Removing /dev/rdsk/c1t81d0s0
      Removing /dev/dsk/c1t81d0s1
      Removing /dev/rdsk/c1t81d0s1
      Removing /dev/dsk/c1t81d0s2
      Removing /dev/rdsk/c1t81d0s2
      Removing /dev/dsk/c1t81d0s3
      Removing /dev/rdsk/c1t81d0s3
      Removing /dev/dsk/c1t81d0s4
      Removing /dev/rdsk/c1t81d0s4
      Removing /dev/dsk/c1t81d0s5
      Removing /dev/rdsk/c1t81d0s5
      Removing /dev/dsk/c1t81d0s6
      Removing /dev/rdsk/c1t81d0s6
      Removing /dev/dsk/c1t81d0s7
      Removing /dev/rdsk/c1t81d0s7
```

Inserting Devices

Use the `insert_device` subcommand for hot insertion of a new device or a chain of new devices. If you specify more than one enclosure, you can perform concurrent hot insertions on multiple busses.

The `insert_device` subcommand interactively guides you through the hot insertion of one or more devices. In the Sun Enterprise Network Array the `insert_device` subcommand:

- Informs you when the device(s) can be safely inserted.
- Requests confirmation that the list(s) is/are as expected.
- Creates the logical device names for the new devices.
- Displays the logical path name for the devices.

In the SPARCstorage RSM the `insert_device` subcommand:

- Quiesces the bus for buses that support quiescing
- Informs you that the device can be safely inserted
- Requests confirmation that the device has been inserted
- Unquiesces the bus for buses that support quiescing
■ Creates the logical device name for the new device.

<table>
<thead>
<tr>
<th>Sun Enterprise Network Array</th>
<th>SPARCstorage Array</th>
<th>SPARCstorage RSM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supported</td>
<td>Not Supported</td>
<td>Supported</td>
</tr>
</tbody>
</table>

```bash
luxadm [ -v ] insert_device enclosure,dev...
```

TABLE 2-30 insert_device Options and Arguments

<table>
<thead>
<tr>
<th>Option/Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enclosure</td>
<td>is the enclosure name of a Sun Enterprise Network Array¹.</td>
</tr>
<tr>
<td>dev</td>
<td>is the name of a specific disk in an enclosure¹.</td>
</tr>
</tbody>
</table>

¹ See “Addressing a Sun Enterprise Network Array” on page 2.

Example:

```bash
# luxadm insert_device
Please hit <enter> when you have finished adding the device(s):
```

You must physically install the disk drive at this time. After hitting any key, the following is displayed:

```
Waiting for Loop Initialization to complete...
New Logical Nodes under /dev/es:
New Logical Nodes under /dev/dsk and /dev/rdsk :
c1t8d0s0
c1t8d0s1
c1t8d0s2
c1t8d0s3
c1t8d0s4
c1t8d0s5
c1t8d0s6
c1t8d0s7
#
```

Replacing Devices

Use the `replace_device` subcommand to hot replace a device.
The `replace_device` subcommand interactively guides you through the hot insertion of one or more devices. The `replace_device` subcommand:

- Takes the device offline.
- Quiesces the bus for buses that support quiescing.
- Informs you that the device can be safely replaced.
- Requests confirmation that the device has been replaced.
- Unquiesces the bus for buses that support quiescing.
- Brings the device back online.

```
luxadm [ -v ] replace_device pathname
```

<table>
<thead>
<tr>
<th>Sun Enterprise Network Array</th>
<th>SPARCstorage Array</th>
<th>SPARCstorage RSM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Supported</td>
<td>Not Supported</td>
<td>Supported</td>
</tr>
</tbody>
</table>

TABLE 2-31 replace_device Options and Arguments

<table>
<thead>
<tr>
<th>Option/Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>pathname</code></td>
<td><code>pathname</code> is a SPARCstorage Array controller or an individual disk1.</td>
</tr>
</tbody>
</table>

1 See “Addressing a SPARCstorage RSM Tray” on page 4.
Hotplugging in the Sun Enterprise Network Array

Hotplugging Sun Enterprise Network Arrays

The procedure for hotplugging whole Sun Enterprise Network Array enclosures is very similar to the procedure for removing and replacing individual disk drives. Instead of specifying an `enclosure,dev` you only need to specify the `enclosure`.

For hotplugging Sun Enterprise Network Arrays, use the procedures in “Adding a Disk Drive” on page 40, “Replacing a Disk Drive” on page 43, and “Removing a Disk Drive” on page 54 except do not specify a device (`dev`). You only need to specify the `enclosure`.

Hotplugging Disks

Caution – As with other high-RAS products, drives should not be pulled out randomly. The Sun Enterprise Network Array design provides support to replace failed drives in redundant (mirrored or RAID) configurations. If the drive is active, you must stop that activity before removing it. This can be done without bringing down the operating system or powering down the unit. The Sun Enterprise Network
Array hardware fully supports hot-plugging, but there are software considerations that must be taken into account. Follow the procedures in this section when removing, replacing, and adding drives.

Overview

Hot-plug reconfiguration or hot-plug operations cannot be performed on an active disk drive. All disk access activity must be stopped prior to a disk drive being removed or replaced.

In general, hot-plug reconfiguration operations involve three stages:

1. Preparing for hot-plug reconfiguration
2. Adding, replacing, or removing a disk drive
3. Reconfiguring the operating environment.

Three specific cases exist where the hot-plug feature is useful.

- Adding a disk drive to a system to increase storage capacity
- Replacing a faulty disk drive while the system is running:
- Removing a drive from a system that no longer needs it

Adding a Disk Drive

This section contains information on how to configure your system when you add a disk drive while the power is on and the operating system is running.

The way you add a disk drive depends on the application you are using. Each application requires that you decide where to install the new disk drive, add the drive, and then reconfigure the operating environment. Each application is different.

In all cases, you must select a slot, install the disk drive, and configure the Solaris environment to recognize the drive. Then you must configure your application to accept the new disk drive.

Caution – These procedures should be performed only by a qualified system administrator. Performing hot-plug operations on an active disk drive may result in data loss and/or data corruption.
Selecting a Slot for the New Disk Drive

Select any available slot in the Sun Enterprise Network Array for the new disk drive. For reference when you configure the software environment, make a note of which enclosure and slot you chose.

Configuring the Solaris Environment

A new device entry needs to be created for the drive in the /devices and /dev/dsk and /dev/rdsk hierarchy. The new drive is assigned a name associated with the slot into which the drive was installed.

1. **Use the `luxadm insert_device` command to add the new device.**
 This command is interactive. You will be guided through the procedure for inserting a new device or chain of devices.

   ```
   # luxadm insert_device
   Please hit <enter> when you have finished adding the device(s):
   #
   ```

2. **You must physically insert the disk drive at this time. After the drive is installed, hit Return. The following is displayed:**

   ```
   Waiting for Loop Initialization to complete...
   New Logical Nodes under /dev/es:
   New Logical Nodes under /dev/dsk and /dev/rdsk:
   clt3d0s0
   clt3d0s1
   clt3d0s2
   clt3d0s3
   clt3d0s4
   clt3d0s5
   clt3d0s6
   clt3d0s7
   #
   ```

 The new disk drive is now available for use as a block or character device. Refer to the `sd(7)` man pages for further details.
Configuring the New Disk Drive for a Unix File System (UFS)

Use the following procedure to configure a slice (single physical partition) on a disk to be used with a UFS file system. For instructions about adding a file system to a Volume Manager logical disk, refer to the documentation that came with your application.

1. **Verify that the device label meets your requirements.**
 You can use the *prtvtoc* command to inspect the label for your disk. To modify the label, use the *format* command. Refer to the *prtvtoc(1M)* and *format(1M)* man pages for more information.

2. **Once you have selected a disk slice for your UFS file system, create a file system on the slice:**

   ```
   # newfs /dev/rdsk/cwtxdysz
   ```

 Refer to the *newfs(1M)* man page for more information.

3. **If necessary, create a mountpoint for the new file system:**

   ```
   # mkdir mount_point
   ```

 where: *mount_point* is a fully qualified pathname. Refer to the *mount(1M)* man page for more information.

4. **After the file system and mountpoint have been created, modify the /etc/vfstab file to reflect the new file system.**

 See the *vfstab(4)* man page for more details.

5. **Mount the new file system using the *mount* command:**

   ```
   # mount mount_point
   ```

 where: *mount_point* is the directory you created.

 The file system is ready to be used.
Adding the New Device to a Sun Enterprise Volume Manager Disk Group

Use the following procedure to configure the new device to be used with a new or existing Volume Manager disk group.

1. Configure the Volume Manager to recognize the disk drive.

```
# vxdctl enable
```

2. Add the new disk to a new or existing Volume Manager disk group:

```
# vxdiskadd cwtxdysz
```

where: cwtxdysz is the new disk.

Refer to the `vxdiskadd(1M)` man page for further details.

The disk is now ready for use with Volume Manager: as part of a new volume, added to an existing volume as a plex, or to increase an existing volume. Refer to your Sun Enterprise Volume Manager User's Guide for more information.

Replaces a Disk Drive

This chapter contains information on configuring your system to replace a disk drive while the power is on and the operating system is running.

The way you replace a faulty disk drive depends on the application you are using. Each application is different, but requires that you

1. Determine which disk drive is failing or has failed
2. Remove the disk
3. Add the replacement drive
4. Reconfigure the operating environment.

In all cases you must stop any activity on the disk; physically remove the old drive and install the new one; and configure the Solaris environment to recognize the drive. Then you must configure your application to accept the new disk drive.
Caution – These procedures should be performed only by a qualified system administrator. Performing hot-plug operations on an active disk drive may result in data loss and/or data corruption.

Identifying the Faulty Disk Drive

Different applications provide various levels of error logging. In general, you can find messages about failing or failed disks in your system console window. The information is also logged in the `/usr/adm/messages` file(s). See the documentation that came with your application for more information.

UNIX File System (UFS)

The following procedure describes how to unconfigure a disk being used by one or more UFS file systems.

Caution – These procedures should be performed only by a qualified system administrator. Performing hot-plug operations on an active disk drive can result in data loss.

Preparing to Replace the Disk Drive

1. Stop any application processes on the file systems to be unconfigured.
2. Back up your system.
3. Determine what file system(s) are on the disk:

```
# mount | grep c.ntxdysz
```

For example, if the device to be removed is `c1t3d0`, enter the following:

```
# mount | grep c1t3d0
/export/home (/dev/dsk/c1t3d0s7): 98892 blocks 142713 files
/export/home2 (/dev/dsk/c1t3d0s5): 153424 blocks 112107 files
```

4. Determine and save the partition table for the disk.
If the replacement disk is the same type as the faulty disk, you can use the `format` command to save the partition table of the disk. Use the `save` command in `format` to save a copy of the partition table to the `/etc/format.dat` file. This will allow you to configure the replacement disk so that its layout matches the current disk.

Refer to the `format(1M)` man page for more information.

5. Unmount any file systems on the disk.

Note — If the file system(s) are on a disk that is failing or has failed, the `umount` operation may not complete. A large number of error messages may be displayed in the system console and in the `/var` directory during the `umount` operation. If the `umount` operation does not complete, you may have to reboot the system.

For each file system from Step 3 returned, type:

```
# umount filesystem
```

where `filesystem` is the first field for each line returned in Step 3.

For example:

```
# umount /export/home
# umount /export/home2
```

6. Using the `df` command, verify that the file system has been unmounted.
Removing the Disk Drive

1. Use the `luxadm remove_device` command to remove the disk.

 The `luxadm remove_device` command is interactive. You will be guided through the procedure for removing a device or chain of devices.

   ```bash
   # luxadm remove_device /dev/rdsk/c1t3d0
   ``

   **WARNING!!!** Please ensure that no file systems are mounted on these device(s).
   All data on these devices should have been backed up.

   The list of devices which will be removed is:

   1: Box Name "macs3" rear slot 1

   Please enter 'q' to Quit OR <Return> to Continue:

   offlining: Drive in "macs3" rear slot 1

   Hit any key after inserting/removing drives:

2. You must physically remove the disk drive at this time. After the drive is removed, hit any key. The following is displayed:
Note – The yellow LED on the designated disk drive(s) should be flashing.

<table>
<thead>
<tr>
<th>Drive in Box Name &quot;macs3&quot; rear slot 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Removing Logical Nodes:</td>
</tr>
<tr>
<td>Removing /dev/dsk/clt3d0s0</td>
</tr>
<tr>
<td>Removing /dev/rdsk/clt3d0s0</td>
</tr>
<tr>
<td>Removing /dev/dsk/clt3d0s1</td>
</tr>
<tr>
<td>Removing /dev/rdsk/clt3d0s1</td>
</tr>
<tr>
<td>Removing /dev/dsk/clt3d0s2</td>
</tr>
<tr>
<td>Removing /dev/rdsk/clt3d0s2</td>
</tr>
<tr>
<td>Removing /dev/dsk/clt3d0s3</td>
</tr>
<tr>
<td>Removing /dev/rdsk/clt3d0s3</td>
</tr>
<tr>
<td>Removing /dev/dsk/clt3d0s4</td>
</tr>
<tr>
<td>Removing /dev/rdsk/clt3d0s4</td>
</tr>
<tr>
<td>Removing /dev/dsk/clt3d0s5</td>
</tr>
<tr>
<td>Removing /dev/rdsk/clt3d0s5</td>
</tr>
<tr>
<td>Removing /dev/dsk/clt3d0s6</td>
</tr>
<tr>
<td>Removing /dev/rdsk/clt3d0s6</td>
</tr>
<tr>
<td>Removing /dev/dsk/clt3d0s7</td>
</tr>
<tr>
<td>Removing /dev/rdsk/clt3d0s7</td>
</tr>
</tbody>
</table>

# luxadm insert_device
Please hit <enter> when you have finished adding the device(s):

---

Installing the New Disk Drive

1. Use the luxadm insert_device command to add the new device.
   This command is interactive. You will be guided through the procedure for inserting a new device or chain of devices.

   # luxadm insert_device
   Please hit <enter> when you have finished adding the device(s):
2. You must physically insert the disk drive at this time. After the drive is installed, hit Return. The following is displayed:

```
Waiting for Loop Initialization to complete...
New Logical Nodes under /dev/es:
New Logical Nodes under /dev/dsk and /dev/rdsk :
 c1t3d0s0
c1t3d0s1
 c1t3d0s2
 c1t3d0s3
 c1t3d0s4
 c1t3d0s5
 c1t3d0s6
 c1t3d0s7
#
```

The new disk drive is now available for use as a block or character device. Refer to the `sd(7)` man pages for further details.

**Restoring the UFS File System**

Use the following procedure to configure a slice on a disk to be used with the UFS file system.

1. **Verify that the device label meets your requirements.**

   You can use the `prtvtoc` command to inspect the label for your disk. To modify the label, use the `format` command. See the `prtvtoc(1M)` and `format(1M)` man pages for more information.

2. **Verify that the device's partition table satisfies the requirements of the file system(s) you intend to re-create.**

   You can use the `prtvtoc` command to inspect the label for your device. If you need to modify the label, use the `format` command. Refer to the `prtvtoc(1M)` and `format(1M)` man pages for more information.

   For example:

   ```
 # prtvtoc /dev/rdsk/cwtxdysz
   ```

   If you have saved a disk partition table using the format utility and the replacement disk type matches the old disk type, then you can use the format utility's `partition` section to configure the partition table of the replacement disk. See the `select` and `label` commands in the partition section.
If the replacement disk is of a different type than the disk it replaced, you can use the partition size information from the previous disk to set the partition table for the replacement disk. Refer to the `prtvtoc(1M)` and `format(1M)` man pages for more information.

3. Once you have selected a disk slice for your UFS file system, create a file system on the slice:

   ```
 # newfs /dev/rdsk/cwtxdysz
   ```

4. Mount the new file system using the `mount` command:

   ```
 # mount mount_point
   ```

   where: `mount_point` is the directory on which the faulty disk was mounted.

   The new disk is ready to be used. You can now restore data from your backups.

Sun Enterprise Volume Manager

The following procedure assumes that all user- and application-level processes on all volumes, plexes, and/or subdisks that are located on the drive to be removed have been terminated.

---

**Caution** – These procedures should be performed only by a qualified system administrator. Performing hot-plug operations on an active disk drive may result in data loss.

---

*Preparing to Replace the Disk Drive*

1. **Back up your system.**

   Refer to the documentation that came with your system for backup details.

2. **Identify the disk media name for the disk you intend to replace.**

   ```
 # vxdisk list | grep cwtxdysz
   ```
For example, if the disk to be removed is `c0t3d0`, enter:

```bash
vxdisk list | grep c0t3d0
```

```
c0t3d0s2 sliced disk01 rootdg online
```

The disk media name is the third field in the output above: `disk01`.

You can use the `vxdiskadm` utility to prepare the disk for replacement.

3. **Type `vxdiskadm` in a shell.**

   For example:

   ```bash
 # vxdiskadm
   ```

   This operation is interactive and requires user confirmation of the operation.

4. **Select the “Remove a disk for replacement” option.**

   When prompted for a disk name to replace, type the disk media name from Step 2.

   `vxdiskadm` marks the disk for replacement and saves the subdisk information to be rebuilt on the replacement disk.

   Redundant data is automatically recovered after the replacement disk has been reattached to Volume Manager. Non-redundant data is identified as unusable and must be recreated from backups.

   Refer to the `vxdiskadm(1M)` man page for further details.

5. **Quit the `vxdiskadm` utility.**
Removing the Disk Drive

1. **Use the `luxadm remove_device` command to remove the disk.**
   The `luxadm remove_device` command is interactive. You will be guided through the procedure for removing a device or chain of devices.

```
luxadm remove_device /dev/rdsk/c1t3d0

WARNING!!! Please ensure that no filesystems are mounted on these device(s).
All data on these devices should have been backed up.

The list of devices which will be removed is:

1: Box Name "macs3" rear slot 1

Please enter 'q' to Quit OR <Return> to Continue:

offlining: Drive in "macs3" rear slot 1

Hit any key after inserting/removing drives:
```

2. You must physically remove the disk drive at this time. After the drive is removed, hit any key. The following is displayed:
Note – The yellow LED on the designated disk drive(s) should be flashing.

```
Drive in Box Name "macs3" rear slot 1
Removing Logical Nodes:
 Removing /dev/dsk/clt3d0s0
 Removing /dev/rdsk/clt3d0s0
 Removing /dev/dsk/clt3d0s1
 Removing /dev/rdsk/clt3d0s1
 Removing /dev/dsk/clt3d0s2
 Removing /dev/rdsk/clt3d0s2
 Removing /dev/dsk/clt3d0s3
 Removing /dev/rdsk/clt3d0s3
 Removing /dev/dsk/clt3d0s4
 Removing /dev/rdsk/clt3d0s4
 Removing /dev/dsk/clt3d0s5
 Removing /dev/rdsk/clt3d0s5
 Removing /dev/dsk/clt3d0s6
 Removing /dev/rdsk/clt3d0s6
 Removing /dev/dsk/clt3d0s7
 Removing /dev/rdsk/clt3d0s7
```

**Installing the Disk Drive**

1. Use the `luxadm insert_device` command to add the new device.

   This command is interactive. You will be guided through the procedure for inserting a new device or chain of devices.

```
luxadm insert_device
Please hit <enter> when you have finished adding device(s):
```
2. You must physically insert the disk drive at this time. After the drive is installed, hit Return. The following is displayed:

```
Waiting for Loop Initialization to complete...
New Logical Nodes under /dev/es:
New Logical Nodes under /dev/dsk and /dev/rdsk:
 c1t3d0s0
 c1t3d0s1
 c1t3d0s2
 c1t3d0s3
 c1t3d0s4
 c1t3d0s5
 c1t3d0s6
 c1t3d0s7
#
```

The new disk drive is now available for use as a block or character device. Refer to the `sd(7)` man pages for further details.

**Recreating a Volume Manager Configuration on the New Drive**

To recreate the replaced disk on the new drive:

1. **Configure the Volume Manager to recognize the disk drive.**
   
   ```
 # vxdctl enable
   ```

2. **Use the vxdiskadm utility to replace the failed disk.**
   
   Select the “Replace a failed or removed disk” option.

   This operation requires user confirmation. When prompted for a disk name to replace, use the disk media name from Step 2 of “Preparing to Replace the Disk Drive” on page 49.

   *vxdiskadm* supplies a list of available disks to be used as replacements.

3. **Select the replacement drive.**

   *vxdiskadm* automatically configures the replacement drive to match the failed drive.

   Redundant data is recovered automatically. Space for non-redundant data is created and identified. Non-redundant data must be recovered from backing store.

   See the `vxdiskadm` man pages for further details.
You have now completed the replacement of the failed drive.

Removing a Disk Drive

This chapter contains information on how to configure your system to remove a disk drive while the power is on and the operating system is running. Use the procedures in this chapter if you do not intend to replace the disk drive.

The way in which you prepare to remove a disk drive depends on the application you are using. Each application is different, but requires that you

1. Select the disk drive
2. Remove the disk
3. Reconfigure the operating environment.

In all cases you must select the disk and stop any activity or applications on it, unmount it, physically remove the drive, and configure the Solaris environment to recognize that the drive is no longer there. Then you must configure your application to operate without this device in place.

Caution – These procedures should be performed only by a qualified system administrator. Performing hot-plug operations on an active disk drive may result in data loss and/or data corruption.

Unix File System (UFS)

The following procedure describes how to unconfigure a disk being used by one or more UFS file systems.

Caution – These procedures should be performed only by a qualified system administrator. Performing hot-plug operations on an active disk drive may result in data loss.

1. Stop any application processes on the file systems to be unconfigured.
2. Back up your system.
3. Determine what file system(s) are on the disk:

```bash
mount | grep c/wxt/dyzsz
```
For example, if the device to be removed is `c1t3d0`, enter the following:

```
mount | grep c1t3d0
/export/home (/dev/dsk/c1t3d0s7): 98892 blocks 142713 files
/export/home2 (/dev/dsk/c1t3d0s5): 153424 blocks 112107 files
```

4. Unmount any file systems on the disk.

**Note** – If the file system(s) are on a disk that is failing or has failed, the `umount` operation may not complete. A large number of error messages may be displayed in the system console and in the `/var` directory during the `umount` operation. If the `umount` operation does not complete, you may have to restart the system.

For each file system returned, type:

```
umount filesystem
```

where: `filesystem` is the first field for each line returned in Step 3.

For example:

```
umount /export/home
umount /export/home2
```
Removing the Disk Drive

1. Use the luxadm remove_device command to remove the disk.
The luxadm remove_device command is interactive. You will be guided through the procedure for removing a device or chain of devices.

   # luxadm remove_device /dev/rdsk/c1t3d0

   WARNING!!! Please ensure that no filesystems are mounted on these device(s).
   All data on these devices should have been backed up.

   The list of devices which will be removed is:
   1: Box Name "macs3" rear slot 1
   Please enter 'q' to Quit OR <Return> to Continue:
   offlineing: Drive in "macs3" rear slot 1
   Hit any key after inserting/removing drives:

2. You must physically remove the disk drive at this time. After the drive is removed, hit any key. The following is displayed:
Note – The yellow LED on the designated disk drive(s) should be flashing.

Drive in Box Name "macs3" rear slot 1
Removing Logical Nodes:
Removing /dev/dsk/clt3d0s0
Removing /dev/rdsk/clt3d0s0
Removing /dev/dsk/clt3d0s1
Removing /dev/rdsk/clt3d0s1
Removing /dev/dsk/clt3d0s2
Removing /dev/rdsk/clt3d0s2
Removing /dev/dsk/clt3d0s3
Removing /dev/rdsk/clt3d0s3
Removing /dev/dsk/clt3d0s4
Removing /dev/rdsk/clt3d0s4
Removing /dev/dsk/clt3d0s5
Removing /dev/rdsk/clt3d0s5
Removing /dev/dsk/clt3d0s6
Removing /dev/rdsk/clt3d0s6
Removing /dev/dsk/clt3d0s7
Removing /dev/rdsk/clt3d0s7

Sun Enterprise Volume Manager

The following procedure assumes that all user- and application-level processes on all volumes, plexes, and/or subdisks that are located on the drive to be removed have been terminated.

Caution – These procedures should be performed only by a qualified system administrator. Performing hot-plug operations on an active disk drive may result in data loss.

Preparing to Remove the Disk Drive

1. Back up your system.

2. Identify the disk media name for the disk you intend to remove.

   # vxdisk list | grep cwtx dysz
For example, if the disk to be removed is `c0t3d0`, enter:

```
vxdisk list | grep c0t3d0
```

```
c0t3d0s2 sliced disk01 rootdg online
```

The disk media name is the third field in the output above: `disk01`.

You can use the `vxdiskadm` utility to prepare the disk for removal.

3. **Type `vxdiskadm` in a shell.**

   For example:

   ```
 # vxdiskadm
   ```

   This operation is interactive and requires user confirmation of the operation.

4. **Select the “Remove a disk” option.**

   When prompted for a disk name to remove, type the disk media name from Step 2. `vxdiskadm` marks the disk to be removed.

   Refer to the `vxdiskadm(1M)` man page for further details.
Removing the Disk Drive

1. Use the luxadm remove_device command to remove the disk.

The luxadm remove_device command is interactive. You will be guided through the procedure for removing a device or chain of devices.

```
luxadm remove_device /dev/rdsk/c1t3d0

WARNING!!! Please ensure that no filesystems are mounted on these device(s).
All data on these devices should have been backed up.

The list of devices which will be removed is:

1: Box Name "macs3" rear slot 1

Please enter 'q' to Quit OR <Return> to Continue:

offlining: Drive in "macs3" rear slot 1

Hit any key after inserting/removing drives:
```

2. You must physically remove the disk drive at this time. After the drive is removed, hit any key. The following is displayed:
Note – The yellow LED on the designated disk drive(s) should be flashing.

<table>
<thead>
<tr>
<th>Drive in Box Name &quot;macs3&quot; rear slot 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Removing Logical Nodes:</td>
</tr>
<tr>
<td>Removing /dev/dsk/clt3d0s0</td>
</tr>
<tr>
<td>Removing /dev/rdsk/clt3d0s0</td>
</tr>
<tr>
<td>Removing /dev/dsk/clt3d0s1</td>
</tr>
<tr>
<td>Removing /dev/rdsk/clt3d0s1</td>
</tr>
<tr>
<td>Removing /dev/dsk/clt3d0s2</td>
</tr>
<tr>
<td>Removing /dev/rdsk/clt3d0s2</td>
</tr>
<tr>
<td>Removing /dev/dsk/clt3d0s3</td>
</tr>
<tr>
<td>Removing /dev/rdsk/clt3d0s3</td>
</tr>
<tr>
<td>Removing /dev/dsk/clt3d0s4</td>
</tr>
<tr>
<td>Removing /dev/rdsk/clt3d0s4</td>
</tr>
<tr>
<td>Removing /dev/dsk/clt3d0s5</td>
</tr>
<tr>
<td>Removing /dev/rdsk/clt3d0s5</td>
</tr>
<tr>
<td>Removing /dev/dsk/clt3d0s6</td>
</tr>
<tr>
<td>Removing /dev/rdsk/clt3d0s6</td>
</tr>
<tr>
<td>Removing /dev/dsk/clt3d0s7</td>
</tr>
<tr>
<td>Removing /dev/rdsk/clt3d0s7</td>
</tr>
</tbody>
</table>

#
Expert Mode Subcommands

**Caution** – The expert mode subcommands should only be used by qualified personnel who are knowledgeable about the systems they are managing.

The command line must contain the `luxadm -e` (expert mode) option and a subcommand.

```
luxadm [options] subcommand pathname
```

### TABLE A-1  Expert Mode Subcommands

<table>
<thead>
<tr>
<th>Subcommand</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>bus_getstate</code></td>
<td>Gets and displays the state of the specified bus or the bus controlling the specified device.</td>
</tr>
<tr>
<td><code>bus_quiesce</code></td>
<td>Quiences the specified bus or the bus controlling the specified device.</td>
</tr>
<tr>
<td><code>bus_reset</code></td>
<td>Resets the specified bus or the bus controlling the specified device.</td>
</tr>
<tr>
<td><code>bus_resetall</code></td>
<td>Resets the specified bus or the bus controlling the specified device, and all devices on that bus.</td>
</tr>
<tr>
<td><code>bus_unquiesce</code></td>
<td>Unquiences the specified bus or the bus controlling the specified device.</td>
</tr>
<tr>
<td><code>dev_getstate</code></td>
<td>Gets and displays the state of the specified device.</td>
</tr>
<tr>
<td><code>dev_reset</code></td>
<td>Resets the specified device.</td>
</tr>
<tr>
<td><code>forcelip</code></td>
<td>Forcing the link to reinitialize using the Loop Initialize Primitive (LIP) sequence. The forcelip subcommand is supported on the Sun Enterprise Network Array only.</td>
</tr>
<tr>
<td>Subcommand</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
</tr>
<tr>
<td>offline</td>
<td>Takes the specified device offline.</td>
</tr>
<tr>
<td>online</td>
<td>Puts the specified device online.</td>
</tr>
<tr>
<td>rdls</td>
<td>Reads the link error status block from a specified device. The <code>rdls</code> subcommand also displays the link error status information for the Host Adapter associated with the specified device, if available. The <code>rdls</code> subcommand is supported on the Sun Enterprise Network Array only.</td>
</tr>
</tbody>
</table>
Index

A
addressing
  SPARCstorage Arrays, 3
  SPARCstorage RSM trays, 4
  Sun Enterprise Network Arrays, 2
alarm_off subcommand, 22
alarm_on subcommand, 22
alarm_set subcommand, 23

closure data, 12
environmental information, Enclosure Services Card, 21
fast write data, 30
inquiry data, 14
download subcommand, 16, 17
downloading
  fcode, 18, 19
  firmware, 16

B
boot device, 28
bus_getstate subcommand, 61
bus_quiesce subcommand, 61
bus_reset subcommand, 61
bus_resetall subcommand, 61
bus_unquiesce subcommand, 61

C
changing the WWN in a SPARCstorage Array, 17

dev_getstate subcommand, 61
dev_reset subcommand, 61
display subcommand, 12
displaying
  device data, 12

F
fast_write subcommand, 30
fc_s_download subcommand, 18
fcal_s_download subcommand, 19
fcode, downloading, 18, 19
firmware, downloading, 16
foecelip subcommand, 61
Hotplugging, 39

renaming a Sun Enterprise Network Array, 24
replace_device subcommand, 36
reserve subcommand, 27

inquiry subcommand, 14
insert_device subcommand, 35

set_boot_device subcommand, 28
start subcommand, 28
stop subcommand, 29
sync_cache subcommand, 32

led_blink subcommand, 8
led_off subcommand, 9
led_on subcommand, 10

WWN, changing in a SPARCstorage Array, 17

NVRA
   displaying fast write data, 30
   enabling/disabling fast writes, 30
   flushing outstanding write data, 32
   purging fast write data, 31
   nvram_data subcommand, 30

offlive subcommand, 62
online subcommand, 62

perf_statistics subcommand, 24
power_off subcommand, 25
power_on subcommand, 26
probe subcommand, 11
purge subcommand, 31

rdls subcommand, 62
release subcommand, 26
remove_device subcommand, 33