Platform Notes: Using luxadm Software

Solaris™ 2.6 Hardware: 5/98
Contents

1. Using the luxadm Command 1
 Addressing 2
 Addressing a StorEdge A5000 Disk Array 2
 Addressing a SPARCstorage Array 3
 Addressing a SPARCstorage RSM Tray 4
 Subcommand Support Matrix 5

2. luxadm Subcommands 7
 Disk LEDs 7
 Displaying the Current State of a Disk LED 7
 Setting a Disk LED to the Blink Mode 8
 Turning Off a Disk LED 9
 Turning On a Disk LED 10
 Displaying 10
 Probing for StorEdge A5000 Disk Arrays 10
 Displaying Enclosure or Device Specific Data 12
 Displaying inquiry Information 15
 Downloading 17
 Downloading Firmware 17
3. **Hot-Plugging in the StorEdge A5000 Disk Array** 39

 Adding a Disk Drive 40

 Unix File System (UFS) 41

 Sun Enterprise Volume Manager 42

 Replacing a Disk Drive 43

 Identifying the Faulty Disk Drive 43

 UNIX File System (UFS) 43

 Restoring the UFS File System 47

 Sun Enterprise Volume Manager 48

 Removing a Disk Drive 53

 Unix File System (UFS) 53

 Sun Enterprise Volume Manager 56

A. **Expert Mode Subcommands** 59

Index 61
Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1</td>
<td>Addressing a StorEdge A5000 by Enclosure Name</td>
<td>3</td>
</tr>
<tr>
<td>1-2</td>
<td>Subcommand Support Matrix</td>
<td>5</td>
</tr>
<tr>
<td>2-1</td>
<td>led Options and Arguments</td>
<td>8</td>
</tr>
<tr>
<td>2-2</td>
<td>led_blink Options and Arguments</td>
<td>8</td>
</tr>
<tr>
<td>2-3</td>
<td>led_off Options and Arguments</td>
<td>9</td>
</tr>
<tr>
<td>2-4</td>
<td>led_on Options and Arguments</td>
<td>10</td>
</tr>
<tr>
<td>2-5</td>
<td>probe Options</td>
<td>11</td>
</tr>
<tr>
<td>2-6</td>
<td>display Options and Arguments</td>
<td>12</td>
</tr>
<tr>
<td>2-7</td>
<td>inquiry Options and Arguments</td>
<td>15</td>
</tr>
<tr>
<td>2-8</td>
<td>download Options and Arguments</td>
<td>18</td>
</tr>
<tr>
<td>2-9</td>
<td>download Options and Arguments</td>
<td>18</td>
</tr>
<tr>
<td>2-10</td>
<td>fc_s_download Options and Arguments</td>
<td>19</td>
</tr>
<tr>
<td>2-11</td>
<td>fcal_s_download Options</td>
<td>20</td>
</tr>
<tr>
<td>2-12</td>
<td>env_display Options and Arguments</td>
<td>21</td>
</tr>
<tr>
<td>2-13</td>
<td>alarm_off Options and Arguments</td>
<td>22</td>
</tr>
<tr>
<td>2-14</td>
<td>alarm_on Options and Arguments</td>
<td>23</td>
</tr>
<tr>
<td>2-15</td>
<td>alarm_set Options and Arguments</td>
<td>23</td>
</tr>
<tr>
<td>2-16</td>
<td>enclosure_name Options and Arguments</td>
<td>24</td>
</tr>
<tr>
<td>2-17</td>
<td>perf_statistics Options and Arguments</td>
<td>25</td>
</tr>
</tbody>
</table>
TABLE 2-18 power_off Options and Arguments 25
TABLE 2-19 power_on Options and Arguments 26
TABLE 2-20 release Options and Arguments 27
TABLE 2-21 reserve Options and Arguments 27
TABLE 2-22 set_boot_dev Options and Arguments 28
TABLE 2-23 start Options and Arguments 28
TABLE 2-24 stop Options and Arguments 29
TABLE 2-25 fast_write Options and Arguments 30
TABLE 2-26 nvram_data Options and Arguments 31
TABLE 2-27 purge Options and Arguments 31
TABLE 2-28 sync_cache Options and Arguments 32
TABLE 2-29 remove_device Options and Arguments 34
TABLE 2-30 insert_device Options and Arguments 36
TABLE 2-31 replace_device Options and Arguments 37
TABLE A-1 Expert Mode Subcommands 59
Preface

Platform Notes: Using luxadm Software contains information about the luxadm administrative program for the Sun™ StorEdge™A5000 and SPARCstorage™ disk arrays. These instructions are designed for an experienced system administrator.

Note – The Sun StorEdge A5000 disk array was formerly named the Sun Enterprise Network Array™.

Using UNIX Commands

This document does not contain information on basic UNIX® commands and procedures such as shutting down the system, booting the system, and configuring devices.

See one or more of the following for this information:

■ Solaris 2.x Handbook for SMCC Peripherals
■ AnswerBook™ online documentation for the Solaris™ 2.x software environment
■ Other software documentation that you received with your system
Typographic Conventions

TABLE P-1 Typographic Conventions

<table>
<thead>
<tr>
<th>Typeface or Symbol</th>
<th>Meaning</th>
<th>Examples</th>
</tr>
</thead>
</table>
| AaBbCc123 | The names of commands, files, and directories; on-screen computer output. | Edit your .login file.
Use `ls -a` to list all files.
% You have mail. |
| AaBbCc123 | What you type, when contrasted with on-screen computer output. | % su
Password: |
| AaBbCc123 | Book titles, new words or terms, words to be emphasized. Command-line variable; replace with a real name or value. | Read Chapter 6 in the User's Guide.
These are called *class* options.
You *must* be root to do this.
To delete a file, type `rm` *filename*. |

Shell Prompts

TABLE P-2 Shell Prompts

<table>
<thead>
<tr>
<th>Shell</th>
<th>Prompt</th>
</tr>
</thead>
<tbody>
<tr>
<td>C shell</td>
<td>machine_name%</td>
</tr>
<tr>
<td>C shell superuser</td>
<td>machine_name#</td>
</tr>
<tr>
<td>Bourne shell and Korn shell</td>
<td>$</td>
</tr>
<tr>
<td>Bourne shell and Korn shell superuser</td>
<td>#</td>
</tr>
</tbody>
</table>
Related Documentation

TABLE P-3 Related Documentation

<table>
<thead>
<tr>
<th>Title</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sun StorEdge A5000 Installation and Service Manual</td>
<td>802-7573</td>
</tr>
</tbody>
</table>

Ordering Sun Documents

SunDocs℠ is a distribution program for Sun Microsystems technical documentation. Contact SunExpress for easy ordering and quick delivery. You can find a listing of available Sun documentation on the World Wide Web.

TABLE P-4 SunExpress Contact Information

<table>
<thead>
<tr>
<th>Country</th>
<th>Telephone</th>
<th>Fax</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belgium</td>
<td>02-720-09-09</td>
<td>02-725-88-50</td>
</tr>
<tr>
<td>Canada</td>
<td>1-800-873-7869</td>
<td>1-800-944-0661</td>
</tr>
<tr>
<td>France</td>
<td>0800-90-61-57</td>
<td>0800-90-61-58</td>
</tr>
<tr>
<td>Germany</td>
<td>01-30-81-61-91</td>
<td>01-30-81-61-92</td>
</tr>
<tr>
<td>Holland</td>
<td>06-022-34-45</td>
<td>06-022-34-46</td>
</tr>
<tr>
<td>Japan</td>
<td>0120-33-9096</td>
<td>0120-33-9097</td>
</tr>
<tr>
<td>Luxembourg</td>
<td>32-2-720-09-09</td>
<td>32-2-725-88-50</td>
</tr>
<tr>
<td>Sweden</td>
<td>020-79-57-26</td>
<td>020-79-57-27</td>
</tr>
<tr>
<td>Switzerland</td>
<td>0800-55-19-26</td>
<td>0800-55-19-27</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>0800-89-88-88</td>
<td>0800-89-88-87</td>
</tr>
<tr>
<td>United States</td>
<td>1-800-873-7869</td>
<td>1-800-944-0661</td>
</tr>
</tbody>
</table>

Sun Documentation on the Web

The docs.sun.com web site enables you to access Sun technical documentation on the World Wide Web. You can browse the docs.sun.com archive or search for a specific book title or subject at http://docs.sun.com.

Sun Welcomes Your Comments

We are interested in improving our documentation and welcome your comments and suggestions. You can email your comments to us at smcc-docs@sun.com. Please include the part number of your document in the subject line of your email.
Using the `luxadm` Command

The `luxadm` program is an administrative command that manages both the StorEdge A5000 and SPARCstorage Array subsystems. `luxadm` performs a variety of control and query tasks, depending on the command line arguments and options used.

The command line must contain a subcommand.

```
luxadm [options] subcommand [options] {enclosure[,dev]... | pathname...}
```

You may also enter options, usually at least one enclosure name or pathname, and other parameters depending on the subcommand. You specify a device by entering a physical path name, or a logical path name. See “Addressing” on page 2”.

You only need to enter as many characters as are required to uniquely identify a subcommand. For example, to run the `display` subcommand on an enclosure named `box1`, you could enter:

```
#luxadm disp box1
```
Addressing

Addressing a StorEdge A5000 Disk Array

Pathname

Either a complete physical path name or a complete logical path name may be entered to specify the device or controller. A typical physical path name for a StorEdge A5000 device is:

```
/devices/sbus@1f,0/SUNW,socal@1,0/sf@0,0/
ssd@w2200002037000f96,0:a,raw
```

or

```
/devices/io-unit@f,e0200000/sbi@0,0/SUNW,socal@2,0/sf@0,0/
ssd@34,0:a,raw
```

For all StorEdge A5000 disk array interface boards (IBs) on the system, a logical link to the physical paths is kept in the directory `/dev/es`. An example of a logical link is `/dev/es/ses0`.

Enclosure

For the StorEdge A5000 disk array, the WWN may be used in place of the pathname to select a device or interface board. The WWN is a unique 16 digit hexadecimal value that specifies either the port used to access the device or the device itself. A typical WWN value is: 2200002037000f96.

Or you can specify the name of the StorEdge A5000 enclosure and an identifier for the particular device in the enclosure. A device in a StorEdge A5000 enclosure is identified as follows:

```
BOX_NAME,[f|r]slot_number
```
where:

TABLE 1-1 Addressing a StorEdge A5000 by Enclosure Name

<table>
<thead>
<tr>
<th>Options/Arguments</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOX_NAME</td>
<td>is the name of the StorEdge A5000 enclosure, as specified by the enclosure_name subcommand</td>
</tr>
<tr>
<td>f or r</td>
<td>specifies the front or rear slots in the StorEdge A5000 enclosure</td>
</tr>
<tr>
<td>slot_number</td>
<td>is the slot number in the StorEdge A5000 enclosure, 0-6 or 0-10</td>
</tr>
</tbody>
</table>

When addressing the StorEdge A5000 subsystem the pathname or enclosure name specifies the StorEdge A5000 IB.

Addressing a SPARCstorage Array

When addressing the SPARCstorage Array, the pathname specifies the SPARCstorage Array controller or a disk in the SPARCstorage Array. The controller name is specified by its physical name, for example

```
/devices/.../SUNW,soc@3,0/SUNW,pln@axxxxxx,xxxxxxxxx:ctlr
```

or by a name of the form cN, where N is the logical controller number. luxadm uses the cN name to find an entry in the /dev/rdsk directory of a disk that is attached to the SPARCstorage Array controller. The /dev/rdsk entry is then used to determine the physical name of the SPARCstorage Array controller. A disk in the SPARCstorage Array is specified by its logical or physical device name, for example,

```
/dev/rdsk/clt0d0s2
```

or

```
/devices/.../SUNW,soc@3,0/SUNW,pln@axxxxxx,xxxxxxxxx/ssd@0,0:c,raw
```

See the disks(1M) and devlinks(1M) manpages for more information on logical names for disks and subsystems.
Addressing a SPARCstorage RSM Tray

When addressing the SPARCstorage RSM tray, the pathname specifies the controller or a disk in the SPARCstorage RSM tray. The controller name is specified by its physical name, for example:

```
/devices/sbus@1f,0/QLGC,isp@1,10000/sd@88,0:c,raw
```

or by a name of the form cN, where N is the logical controller number. luxadm uses the cN name to find an entry in the /dev/rdsk directory of a disk that is attached to the SPARCstorage Array controller. The /dev/rdsk entry is then used to determine the physical name of the controller. A disk in the SPARCstorage RSM tray is specified by its logical or physical device name, for example,

```
/dev/rdsk/c2t8d0s2
```

See the disks(1M) and devlinks(1M) manpages for more information on logical names for disks and subsystems.
Subcommand Support Matrix

The following table lists the `luxadm` subcommands that are supported on the StorEdge A5000, the SPARCstorage Array, and SPARCstorage RSM trays. Subcommands that are preceded by `-e` are expert mode subcommands and should only be used by qualified system personnel.

<table>
<thead>
<tr>
<th>Subcommand</th>
<th>StorEdge A5000</th>
<th>SPARCstorage Array</th>
<th>Sparcstorage RSM</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>alarm_off</td>
<td>—</td>
<td>yes</td>
<td>yes</td>
<td>page 22</td>
</tr>
<tr>
<td>alarm_on</td>
<td>—</td>
<td>yes</td>
<td>yes</td>
<td>page 23</td>
</tr>
<tr>
<td>alarm_set</td>
<td>—</td>
<td>yes</td>
<td>yes</td>
<td>page 23</td>
</tr>
<tr>
<td>-e bus_getstate</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>page 59</td>
</tr>
<tr>
<td>-e bus_quiesce</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>page 59</td>
</tr>
<tr>
<td>-e bus_reset</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>page 59</td>
</tr>
<tr>
<td>-e bus_resetall</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>page 59</td>
</tr>
<tr>
<td>-e bus_unquiesce</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>page 59</td>
</tr>
<tr>
<td>-e dev_getstate</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>page 59</td>
</tr>
<tr>
<td>-e dev_reset</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>page 59</td>
</tr>
<tr>
<td>display</td>
<td>yes</td>
<td>yes</td>
<td>—</td>
<td>page 12</td>
</tr>
<tr>
<td>download</td>
<td>yes</td>
<td>yes</td>
<td>—</td>
<td>page 18</td>
</tr>
<tr>
<td>enclosure_name</td>
<td>yes</td>
<td>—</td>
<td>—</td>
<td>page 24</td>
</tr>
<tr>
<td>env_display</td>
<td>—</td>
<td>—</td>
<td>yes</td>
<td>page 21</td>
</tr>
<tr>
<td>fast_write</td>
<td>—</td>
<td>yes</td>
<td>—</td>
<td>page 30</td>
</tr>
<tr>
<td>fc_s_download</td>
<td>—</td>
<td>yes</td>
<td>—</td>
<td>page 19</td>
</tr>
<tr>
<td>fcal_s_download</td>
<td>yes</td>
<td>—</td>
<td>—</td>
<td>page 20</td>
</tr>
<tr>
<td>-e forcelip</td>
<td>yes</td>
<td>—</td>
<td>—</td>
<td>page 59</td>
</tr>
<tr>
<td>inquiry</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>page 15</td>
</tr>
<tr>
<td>insert_device</td>
<td>yes</td>
<td>—</td>
<td>yes</td>
<td>page 36</td>
</tr>
<tr>
<td>led</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>page 8</td>
</tr>
<tr>
<td>led_blink</td>
<td>yes</td>
<td>—</td>
<td>—</td>
<td>page 8</td>
</tr>
<tr>
<td>Subcommand</td>
<td>StorEdge A5000</td>
<td>SPARCstorage Array</td>
<td>Sparcstorage RSM</td>
<td>page</td>
</tr>
<tr>
<td>----------------</td>
<td>----------------</td>
<td>--------------------</td>
<td>-----------------</td>
<td>------</td>
</tr>
<tr>
<td>led_off</td>
<td>yes</td>
<td>yes</td>
<td>—</td>
<td>page 9</td>
</tr>
<tr>
<td>led_on</td>
<td>—</td>
<td>yes</td>
<td>yes</td>
<td>page 10</td>
</tr>
<tr>
<td>nvram_data</td>
<td>—</td>
<td>yes</td>
<td>—</td>
<td>page 31</td>
</tr>
<tr>
<td>-e offline</td>
<td>yes</td>
<td>yes</td>
<td>—</td>
<td>page 59</td>
</tr>
<tr>
<td>-e online</td>
<td>yes</td>
<td>yes</td>
<td>—</td>
<td>page 59</td>
</tr>
<tr>
<td>perf_statistics</td>
<td>—</td>
<td>yes</td>
<td>—</td>
<td>page 25</td>
</tr>
<tr>
<td>power_off</td>
<td>yes</td>
<td>yes</td>
<td>—</td>
<td>page 25</td>
</tr>
<tr>
<td>power_on</td>
<td>yes</td>
<td>—</td>
<td>—</td>
<td>page 26</td>
</tr>
<tr>
<td>probe</td>
<td>yes</td>
<td>—</td>
<td>—</td>
<td>page 11</td>
</tr>
<tr>
<td>purge</td>
<td>—</td>
<td>yes</td>
<td>—</td>
<td>page 31</td>
</tr>
<tr>
<td>-e rdls</td>
<td>yes</td>
<td>—</td>
<td>—</td>
<td>page 59</td>
</tr>
<tr>
<td>release</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>page 27</td>
</tr>
<tr>
<td>remove_device</td>
<td>yes</td>
<td>—</td>
<td>yes</td>
<td>page 34</td>
</tr>
<tr>
<td>replace_device</td>
<td>—</td>
<td>—</td>
<td>yes</td>
<td>page 37</td>
</tr>
<tr>
<td>reserve</td>
<td>yes</td>
<td>yes</td>
<td>—</td>
<td>page 27</td>
</tr>
<tr>
<td>set_boot_dev</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>page 28</td>
</tr>
<tr>
<td>start</td>
<td>—</td>
<td>yes</td>
<td>—</td>
<td>page 28</td>
</tr>
<tr>
<td>stop</td>
<td>—</td>
<td>yes</td>
<td>—</td>
<td>page 29</td>
</tr>
<tr>
<td>sync_cache</td>
<td>—</td>
<td>yes</td>
<td>—</td>
<td>page 32</td>
</tr>
</tbody>
</table>
luxadm Subcommands

This chapter discusses the luxadm subcommands and is divided into the following sections:

- Disk LEDs—page 7
- Displaying—page 10
- Downloading—page 17
- Enclosure Services Card—page 21
- Enclosure and Disk Operations—page 24
- NVRAM—page 30
- Removing, Inserting, and Replacing—page 33

Disk LEDs

Displaying the Current State of a Disk LED

Use the led subcommand to display the current state of the yellow LED associated with a specific disk.

```
luxadm [-v] led { enclosure, dev... | pathname...}
```

<table>
<thead>
<tr>
<th>StorEdge A5000</th>
<th>SPARCstorage Array</th>
<th>SPARCstorage RSM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supported</td>
<td>Supported</td>
<td>Supported</td>
</tr>
</tbody>
</table>
Example:

```
# luxadm led /devices/sbus@3,0/SUNW,socal@0,0/sf@0,0/
  ssd@w21000020370412ec,0:c,raw
LED state is OFF for device in location: front,slot 0
#
```

Setting a Disk LED to the Blink Mode

Use the `led_blink` subcommand to start blinking (flashing) the yellow LED associated with a specific disk. The `led_blink` subcommand only applies to subsystems that support this functionality.

<table>
<thead>
<tr>
<th>StorEdge A5000</th>
<th>SPARCstorage Array</th>
<th>SPARCstorage RSM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supported</td>
<td>Not Supported</td>
<td>Not Supported</td>
</tr>
</tbody>
</table>

```
luxadm [ -v ] led_blink { enclosure,dev... | pathname...}  
```

TABLE 2-1 led Options and Arguments

<table>
<thead>
<tr>
<th>Option/Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>enclosure</code></td>
<td>is the enclosure name of a StorEdge A5000 disk array.</td>
</tr>
<tr>
<td><code>dev</code></td>
<td>is the name of a specific disk in an enclosure.</td>
</tr>
<tr>
<td><code>pathname</code></td>
<td>is the physical or logical path name of a specific disk in an array.</td>
</tr>
</tbody>
</table>

1 See “Addressing” on page 2.

TABLE 2-2 led_blink Options and Arguments

<table>
<thead>
<tr>
<th>Option/Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>enclosure</code></td>
<td>is the enclosure name of a StorEdge A5000 disk array.</td>
</tr>
<tr>
<td><code>dev</code></td>
<td>is the name of a specific disk in an enclosure.</td>
</tr>
<tr>
<td><code>pathname</code></td>
<td>is the physical or logical path name of a specific disk in an array.</td>
</tr>
</tbody>
</table>

1 See “Addressing” on page 2.
Example:

```bash
# luxadm led_blink /devices/sbus@3,0/SUNW,socal@0,0/sf@0,0/
#   ssd@w21000020370412ec,0:c,raw
LED state is BLINKING for device in location: front,slot 0
#
```

Turning Off a Disk LED

Use the `led_off` subcommand to turn off the yellow LED associated with a specific disk.

TABLE 2-3 led_off Options and Arguments

<table>
<thead>
<tr>
<th>Option/Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enclosure</td>
<td>is the enclosure name of a StorEdge A5000 disk array¹.</td>
</tr>
<tr>
<td>dev</td>
<td>is the name of a specific disk in an enclosure¹.</td>
</tr>
<tr>
<td>pathname</td>
<td>is the physical or logical path name of a specific disk in an array¹.</td>
</tr>
</tbody>
</table>

¹ See “Addressing” on page 2.

Note – On a StorEdge A5000 disk array this may or may not cause the yellow LED to turn off or stop blinking depending on the state of the StorEdge A5000 disk array. Refer to *StorEdge A5000 Installation and Service Manual* for details.

Example:

```bash
# luxadm led_off /devices/sbus@3,0/SUNW,socal@0,0/sf@0,0/
#   ssd@w21000020370412ec,0:c,raw
LED state is OFF for device in location: front,slot 0
#
```
Turning On a Disk LED

Use the `led_on` subcommand to turn on the yellow LED associated with a specific disk.

```
luxadm [ -v ] led_on pathname
```

TABLE 2-4 led_on Options and Arguments

<table>
<thead>
<tr>
<th>Option/Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>dev</code></td>
<td>is the name of a specific disk in an enclosure.</td>
</tr>
<tr>
<td><code>pathname</code></td>
<td>is the physical or logical path name of a specific disk in an array.</td>
</tr>
</tbody>
</table>

1 See “Addressing” on page 2.

Displaying

Probing for StorEdge A5000 Disk Arrays

Use the `probe` subcommand to display information about all attached StorEdge A5000 disk arrays. Information displayed includes the logical pathnames, the WWNs, and the enclosure names.

```
luxadm [ -v ] probe [-p]
```
TABLE 2-5 **probe** Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-p</code></td>
<td>also displays the physical pathname.</td>
</tr>
</tbody>
</table>

Example:

```
# luxadm probe
Found
SENA Name:macs1  Node WWN:1234123412341234
  Logical Path:/dev/es/ses0
  Logical Path:/dev/es/ses1
#
```

Example:

```
# luxadm probe -p
Found
SENA  Name:macs1  Node WWN:508002000000598
  Logical Path:/dev/es/ses0
  Physical Path:/devices/sbus@1f,0/SUNW,socal@0,0/sf@1,0/ses@w508002000000599,0:0
  Logical Path:/dev/es/ses1
  Physical Path:/devices/sbus@1f,0/SUNW,socal@0,0/sf@1,0/ses@w50800200000059a,0:0
  Logical Path:/dev/es/ses2
  Physical Path:/devices/sbus@1f,0/SUNW,socal@0,0/sf@1,0/ses@w50800200000059b,0:0
  Logical Path:/dev/es/ses3
  Physical Path:/devices/sbus@1f,0/SUNW,socal@0,0/sf@1,0/ses@w50800200000059a,0:0
#
```
Displaying Enclosure or Device Specific Data

Use the display subcommand to display enclosure specific or device specific data.

Enclosure data consists of enclosure environmental sense information and status for all subsystem devices including disks. Device data consists of inquiry, capacity, and configuration information.

<table>
<thead>
<tr>
<th>StorEdge A5000</th>
<th>SPARCstorage Array</th>
<th>SPARCstorage RSM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supported</td>
<td>Supported</td>
<td>Not Supported</td>
</tr>
</tbody>
</table>

```
luxadm [ -v ] display enclosure[,dev]... | pathname...
```

TABLE 2-6 display Options and Arguments

<table>
<thead>
<tr>
<th>Option/Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-v</td>
<td>mode sense data is also displayed</td>
</tr>
<tr>
<td>enclosure</td>
<td>is the enclosure name of a StorEdge A5000.</td>
</tr>
<tr>
<td>dev</td>
<td>is the name of a specific disk in an enclosure.</td>
</tr>
<tr>
<td>pathname</td>
<td>is the physical or logical path name of a StorEdge A5000, SPARCstorage Array, or a specific disk in an array.</td>
</tr>
<tr>
<td>-p</td>
<td>displays performance information for the specified device or subsystem</td>
</tr>
<tr>
<td>-r</td>
<td>displays error information for the specified device or subsystem</td>
</tr>
</tbody>
</table>

1See “Addressing” on page 2.
Example:

```
# luxadm display macs1
(luxadm version: 1.36 98/03/10)

SENA

DISK STATUS

<table>
<thead>
<tr>
<th>SLOT</th>
<th>FRONT DISKS</th>
<th>(Node WWN)</th>
<th>REAR DISKS</th>
<th>(Node WWN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>On (O.K.)</td>
<td>2000002037049dfa</td>
<td>Not Installed</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>On (O.K.)</td>
<td>2000002037070608</td>
<td>On (O.K.)</td>
<td>200000203704a9e1</td>
</tr>
<tr>
<td>2</td>
<td>On (O.K.)</td>
<td>2000002037049f31</td>
<td>On (O.K.)</td>
<td>200000203704a252</td>
</tr>
<tr>
<td>3</td>
<td>On (O.K.)</td>
<td>200000203704a9de</td>
<td>On (O.K.)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>On (O.K.)</td>
<td>200000203704a9de</td>
<td>On (O.K.)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>On (O.K.)</td>
<td>200000203704a9de</td>
<td>On (O.K.)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>On (O.K.)</td>
<td>200000203704a9de</td>
<td>On (O.K.)</td>
<td></td>
</tr>
</tbody>
</table>

SUBSYSTEM STATUS

FW Revision:1.05  Box ID:0  Node WWN:5080020000000598  Enclosure Name:macs1
Power Supplies (0,2 in front, 1 in rear)
0 O.K.(rev.-02) 1 O.K.(rev.-02) 2 O.K.(rev.-02)
F ans (0 in front, 1 in rear)
0 O.K.(rev.-05) 1 O.K.(rev.-00)
ESI Interface board(IB) (A top, B bottom)
A: O.K.(rev.-04)
GBIC module (1 on left, 0 on right in IB)
0 O.K.(rev.-05) 1 O.K.(rev.-05): Not Installed

B: O.K.(rev.-04)
GBIC module (1 on left, 0 on right in IB)
0 O.K.(rev.-05) 1 O.K.(rev.-05): Not Installed

Disk backplane (0 in front, 1 in rear)
Front Backplane: O.K.(rev.-05)
Temperature sensors (on front backplane)
0:42°C 1:42°C 2:40°C 3:39°C 4:40°C 5:42°C
6:43°C (All temperatures are NORMAL.)
Rear Backplane: O.K.(rev.-05)
Temperature sensors (on rear backplane)
6:42°C (All temperatures are NORMAL.)

Interconnect assembly
O.K.(rev.-03)
Loop configuration
Loop A is configured as a single loop.
Loop B is configured as a single loop.
Language USA English
```
Example:

```bash
# luxadm display -r macs1

(luxadm version: 1.36 98/03/10)

SENA
Information for FC Loop on port 0 of FC100/S Host Adapter
at path: /devices/sbus@1f,0/SUNW,socal0,0:0

<table>
<thead>
<tr>
<th>Version</th>
<th>Resets</th>
<th>Req_Q_Intrpts</th>
<th>Qfulls</th>
<th>Requests</th>
<th>Sol_Resps</th>
<th>Unsol_Resps</th>
<th>Lips</th>
<th>Els_sent</th>
<th>Els_rcvd</th>
<th>Abts</th>
<th>Abts_ok</th>
<th>Offlines</th>
<th>Onlines</th>
<th>Online_loops</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>18</td>
<td>18</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
</tbody>
</table>

Information from sf driver:

<table>
<thead>
<tr>
<th>Version</th>
<th>Lip_count</th>
<th>Lip_fail</th>
<th>Alloc_fail</th>
<th>#_cmds</th>
<th>Throttle_limit</th>
<th>Pool_size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1024</td>
<td>1</td>
</tr>
</tbody>
</table>

TARGET ERROR INFORMATION:

<table>
<thead>
<tr>
<th>AL_PA</th>
<th>Els_fail</th>
<th>Timouts</th>
<th>Abts_fail</th>
<th>Tsk_m_fail</th>
<th>Data_ro_mis</th>
<th>Dl_len_mis</th>
<th>Logouts</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>d2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ef</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>e8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>e4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>e2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>e1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>e0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>dc</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>b5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>cc</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>cb</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ca</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>c9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>c7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>c6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
```
Displaying inquiry Information

Use the inquiry subcommand to display inquiry information for a specific disk.

```
luxadm [-v] inquiry { enclosure[,dev]... | pathname...}
```

<table>
<thead>
<tr>
<th>StorEdge A5000</th>
<th>SPARCstorage Array</th>
<th>SPARCstorage RSM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supported</td>
<td>Supported</td>
<td>Supported</td>
</tr>
</tbody>
</table>

TABLE 2-7 inquiry Options and Arguments

<table>
<thead>
<tr>
<th>Option/Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enclosure</td>
<td>is the enclosure name of a StorEdge A5000.</td>
</tr>
<tr>
<td>dev</td>
<td>is the name of a specific disk in an enclosure.</td>
</tr>
<tr>
<td>pathname</td>
<td>is the physical or logical path name of a StorEdge A5000, SPARCstorage Array, or a specific disk in an array.</td>
</tr>
</tbody>
</table>

1See “Addressing” on page 2.
Example:

```bash
# luxadm inquiry macs1
INQUIRY:
  Physical path:
    /devices/sbus@1f,0/SUNW,socal@0,0/sf@1,0/ses@w5080020000000599,0:0
Vendor:       SUN
Product:      SENA
Revision:     1.05
Device type:  0xd (SES device)
Removable media: no
Medium Changer Element: no
ISO version:  0
ECMA version: 0
ANSI version: 3 (Device complies to SCSI-3)
Terminate task: no
Response data format: 2
Additional length: 0x7b
Command queueing: no

VENDOR-SPECIFIC PARAMETERS

<table>
<thead>
<tr>
<th>Byte#</th>
<th>Hex Value</th>
<th>ASCII</th>
</tr>
</thead>
<tbody>
<tr>
<td>51</td>
<td>00 00 00 00</td>
<td>.......</td>
</tr>
<tr>
<td>95</td>
<td>6d 61 63 73 31 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 macs1...........</td>
<td></td>
</tr>
<tr>
<td></td>
<td>00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00</td>
<td>.................</td>
</tr>
</tbody>
</table>
```

Downloading

Downloading Firmware

Use the `download` subcommand to download a prom image to the FEPROMs on a StorEdge A5000 disk array IB or on a SPARCstorage Array controller board.

In a StorEdge A5000 disk array, when the download is complete, the disk array will be reset and the downloaded code will be executed.

In a SPARCstorage Array, when the download is complete, you must reset the SPARCstorage Array to execute the downloaded code.

<table>
<thead>
<tr>
<th>StorEdge A5000</th>
<th>SPARCstorage Array</th>
<th>SPARCstorage RSM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supported</td>
<td>Supported</td>
<td>Not Supported</td>
</tr>
</tbody>
</table>

```
luxadm [ -v ] download [-s] [-f filename-path ]
```

Caution – When using the `-s` option the download modifies the FEPROM in the StorEdge A5000 disk array and should be used with caution.

Note – The `-s` option does not apply to the SPARCstorage Array controller as it always writes the downloaded firmware into the FEPROM.
Changing a SPARCstorage Array World Wide Name

Use the download subcommand to change the World Wide Name of a SPARCstorage Array controller board.

<table>
<thead>
<tr>
<th>StorEdge A5000</th>
<th>SPARCstorage Array</th>
<th>SPARCstorage RSM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Supported</td>
<td>Supported</td>
<td>Not Supported</td>
</tr>
</tbody>
</table>

```
luxadm [ -v ] download [-w WWN] pathname
```

TABLE 2-9 download Options and Arguments

<table>
<thead>
<tr>
<th>Option/Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pathname</td>
<td>is a SPARCstorage Array controller</td>
</tr>
<tr>
<td>~w WWN</td>
<td>changes the World Wide Name for the SPARCstorage Array. WWN is a twelve-digit hex number; leading zeros are required. The new SPARCstorage Array controller’s image will have the least significant 6 bytes of the 8-byte World Wide Name modified to WWN.</td>
</tr>
</tbody>
</table>
Downloading fcode to a FC25/S Host Adapters

Use the `fc_s_download` subcommand to download new fcode into all the FC25/S Sbus Cards. (This is the 25 MHz host adapter card which connects to SPARCstorage Arrays.)

The `fc_s_download` subcommand is interactive and expects user confirmation before downloading the fcode.

The version of the FC/S Sbus Cards fcode that was released with this version of the Operating System is kept in the directory `usr/lib/firmware/fc_s` and is named `fc_s_fcode`.

Caution – Ensure that you download the `usr/lib/firmware/fc_s/fc_s_fcode` file.

Note – The `fc_s_download` subcommand should be used only in single user mode; otherwise the FC/S card could be reset.

```
luxadm [ -v ] fc_s_download [-F] [-f fcode-file]
```

<table>
<thead>
<tr>
<th>StorEdge A5000</th>
<th>SPARCstorage Array</th>
<th>SPARCstorage RSM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Supported</td>
<td>Supported</td>
<td>Not Supported</td>
</tr>
</tbody>
</table>

TABLE 2-10
fc_s_download Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-F</code></td>
<td>Forcibly downloads the fcode. The subcommand still expects user confirmation before the download.</td>
</tr>
<tr>
<td><code>-f fcode-file</code></td>
<td>is the name of the file that has the new fcode. When the <code>fc_s_download</code> subcommand is invoked without the <code>-f fcode-file</code> option, the current version of the fcode in each FC/S Sbus card is printed.</td>
</tr>
</tbody>
</table>
Downloading fcode to FC100 Host Adapters

Use the `fcal_s_download` subcommand to download new fcode into all the FC100/S Sbus or FC100/P PCI host adapters or to display the current version of the fcode in each host adapter. (This is the 100MHz host adapter card which connects to StorEdge A5000 disk arrays.)

When downloading new fcode, the `fcal_s_download` subcommand is interactive and expects user confirmation before downloading the fcode.

Caution – Ensure that you download the `/usr/lib/firmware/fc_s/fcal_s_fcode` file.

Caution – Do not attempt to download fcode to a FC100/S Sbus Card that is in your boot path. Boot from another device, such as a CDROM, and then download the fcode.

<table>
<thead>
<tr>
<th>StorEdge A5000</th>
<th>SPARCstorage Array</th>
<th>SPARCstorage RSM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supported</td>
<td>Not Supported</td>
<td>Not Supported</td>
</tr>
</tbody>
</table>

```
luxadm [ -v ] fcal_s_download [ -f fcode-file ]
```

TABLE 2-11 fcal_s_download Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-f fcode-file</code></td>
<td><code>fcode-file</code> is the name of the file that has the new fcode. If you invoke the <code>fcal_s_download</code> subcommand without the <code>[-f fcode-file]</code> option, the current version of the fcode in each FC100/S Sbus card is displayed. The version of the FC100/S Sbus Cards fcode released with this operating system is kept in the directory <code>/usr/lib/firmware/fc_s</code> and is named <code>fcal_s_fcode</code>.</td>
</tr>
</tbody>
</table>
Enclosure Services Card

The `env_display` and `alarm` subcommands apply only to an Enclosure Services Card (SES) in a RSM tray in a SPARCstorage Array. The RSM tray is addressed by using the logical or physical path of the SES device or by specifying the controller followed by the tray number. The controller is addressed by `cN` or the physical path to the controller in the SSA.

Displaying Environmental Information

Use the `env_display` subcommand to display the environmental information for a SPARCstorage Array.

<table>
<thead>
<tr>
<th>StorEdge A5000</th>
<th>SPARCstorage Array</th>
<th>SPARCstorage RSM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Supported</td>
<td>Supported</td>
<td>Supported</td>
</tr>
</tbody>
</table>

```
luxadm [ -v ] env_display { pathname | controller tray-number }
```

TABLE 2-12 env_display Options and Arguments

<table>
<thead>
<tr>
<th>Option/Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>pathname</code></td>
<td>is the path to an SES device.</td>
</tr>
<tr>
<td><code>controller</code></td>
<td>is the path to a SPARCstorage Array controller.</td>
</tr>
<tr>
<td><code>tray-number</code></td>
<td>is an RSM tray number. <code>tray-number</code> is only valid for an RSM tray in a SPARCstorage Array.</td>
</tr>
</tbody>
</table>

1See “Addressing a SPARCstorage Array” on page 3.
Disabling the Alarm

Use the `alarm_off` subcommand to disable the audible alarm for this enclosure. When invoked without an option, the current state of audible alarm is printed.

<table>
<thead>
<tr>
<th>StorEdge A5000</th>
<th>SPARCstorage Array</th>
<th>SPARCstorage RSM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Supported</td>
<td>Supported</td>
<td>Supported</td>
</tr>
</tbody>
</table>

```
lxadm [ -v ] alarm_off { pathname | controller tray-number }
```

TABLE 2-13 alarm_off Options and Arguments

<table>
<thead>
<tr>
<th>Option/Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pathname</td>
<td>is the path to an SES device¹.</td>
</tr>
<tr>
<td>controller</td>
<td>is the path to a SPARCstorage Array controller ¹.</td>
</tr>
<tr>
<td>tray-number</td>
<td>is an RSM tray number. <code>tray-number</code> is only valid for an RSM tray in a SPARCstorage Array.</td>
</tr>
</tbody>
</table>

¹ See “Addressing a SPARCstorage Array” on page 3.

Enabling the Alarm

Use the `alarm_on` subcommand to enable the audible alarm for this enclosure. When invoked without an option, the current state of audible alarm is printed.

<table>
<thead>
<tr>
<th>StorEdge A5000</th>
<th>SPARCstorage Array</th>
<th>SPARCstorage RSM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Supported</td>
<td>Supported</td>
<td>Supported</td>
</tr>
</tbody>
</table>

```
lxadm [ -v ] alarm_on { pathname | controller tray-number }
```
Setting the Alarm

Use the `alarm_set` subcommand to set the duration of the audible alarm to a specified number of seconds.

Use the following command:

```bash
luxadm [ -v ] alarm_set { pathname | controller tray-number } [seconds]
```

<table>
<thead>
<tr>
<th>StorEdge A5000</th>
<th>SPARCstorage Array</th>
<th>SPARCstorage RSM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Supported</td>
<td>Supported</td>
<td>Supported</td>
</tr>
</tbody>
</table>

TABLE 2-15 alarm_set Options and Arguments

<table>
<thead>
<tr>
<th>Option/Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pathname</td>
<td>is the path to an SES device¹.</td>
</tr>
<tr>
<td>controller</td>
<td>is the path to a SPARCstorage Array controller.¹</td>
</tr>
<tr>
<td>tray-number</td>
<td>is an RSM tray number. tray-number is only valid for an RSM tray in a SPARCstorage Array.</td>
</tr>
<tr>
<td>seconds</td>
<td>is the number of seconds.</td>
</tr>
</tbody>
</table>

¹ See “Addressing a SPARCstorage Array” on page 3.
Enclosure and Disk Operations

Renaming a StorEdge A5000 Disk Array

Use the `enclosure_name new_name` subcommand to change the enclosure name of one or more StorEdge A5000 disk arrays. The new name must be 16 or less characters. The only allowed characters are alphabetic or numeric digits.

```plaintext
Renaming a StorEdge A5000 Disk Array
```

<table>
<thead>
<tr>
<th>StorEdge A5000</th>
<th>SPARCstorage Array</th>
<th>SPARCstorage RSM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supported</td>
<td>Not Supported</td>
<td>Not Supported</td>
</tr>
</tbody>
</table>

```plaintext
```luxadm [ -v ] enclosure_name #### enclosure... | pathname...
```

**TABLE 2-16 enclosure_name Options and Arguments**

<table>
<thead>
<tr>
<th>Option/Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>####</td>
<td>is the new enclosure name.</td>
</tr>
<tr>
<td>enclosure</td>
<td>is the enclosure name of a StorEdge A5000.</td>
</tr>
<tr>
<td>pathname</td>
<td>is the physical or logical path name of a StorEdge A5000.</td>
</tr>
</tbody>
</table>

1 See “Addressing a StorEdge A5000 Disk Array” on page 2.

Collecting Performance Statistics

Use the `perf_statistics` subcommand to enable or disable the accumulation of performance statistics for a specific SPARCstorage Array controller.

**Note** – The accumulation of performance statistics must be enabled before using the `display -p` subcommand.

<table>
<thead>
<tr>
<th>StorEdge A5000</th>
<th>SPARCstorage Array</th>
<th>SPARCstorage RSM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Supported</td>
<td>Supported</td>
<td>Not Supported</td>
</tr>
</tbody>
</table>
Powering Off an Enclosure or Disk Drive

Use the `power_off` subcommand to set an enclosure to the power-save mode.

**Note** – StorEdge A5000 disk drives are not available when in the power-save mode.

When an Enclosure Services card in a SPARCstorage Array is addressed, the RSM tray is powered off.

When a disk drive in a StorEdge A5000 is addressed, the drive is set to the drive off/unmated state. When set to the drive off/unmated state, the drive is spun down (stopped) and put in the bypass mode.

<table>
<thead>
<tr>
<th>StorEdge A5000</th>
<th>SPARCstorage Array</th>
<th>SPARCstorage RSM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supported</td>
<td>Supported</td>
<td>Not Supported</td>
</tr>
</tbody>
</table>

**TABLE 2-17**  
**perf_statistics** Options and Arguments

<table>
<thead>
<tr>
<th>Option/Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>pathname</code></td>
<td>is a SPARCstorage Array controller(^1).</td>
</tr>
<tr>
<td><code>-e</code></td>
<td>Enable the accumulation of performance statistics.</td>
</tr>
</tbody>
</table>

\(^1\) See “Addressing a SPARCstorage Array” on page 3.

| luxadm \[ -v \] perf_statistics \[ -e \] pathname |

**TABLE 2-18**  
**power_off** Options and Arguments

<table>
<thead>
<tr>
<th>Option/Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>enclosure</code></td>
<td>is the enclosure name of a StorEdge A5000(^1).</td>
</tr>
<tr>
<td><code>dev</code></td>
<td>is the name of a specific disk in an enclosure(^1).</td>
</tr>
<tr>
<td><code>pathname</code></td>
<td>is the physical or logical path name of a StorEdge A5000, SPARCstorage Array, or a specific disk in an array(^1).</td>
</tr>
</tbody>
</table>

\(^1\) See “Addressing” on page 2.
Powering On Enclosures or Disk Drives

Use the power_on subcommand to set a drive to its normal power on state. If you specify a StorEdge A5000 disk drive, the power_on subcommand sets the specified disks to the normal start-up state.

<table>
<thead>
<tr>
<th>StorEdge A5000</th>
<th>SPARCstorage Array</th>
<th>SPARCstorage RSM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supported</td>
<td>Not Supported</td>
<td>Not Supported</td>
</tr>
</tbody>
</table>

```
 luxadm [-v] power_on { enclosure[,dev]... | pathname...}
```

**TABLE 2-19 power_on Options and Arguments**

<table>
<thead>
<tr>
<th>Option/Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enclosure</td>
<td>is the enclosure name of a StorEdge A5000.</td>
</tr>
<tr>
<td>dev</td>
<td>is the name of a specific disk in an enclosure.</td>
</tr>
<tr>
<td>pathname</td>
<td>is the physical or logical path name of a StorEdge A5000 or a specific disk in an array.</td>
</tr>
</tbody>
</table>

1 See “Addressing a StorEdge A5000 Disk Array” on page 2.

Releasing Disks

Use the release subcommand to release one or more disk drives from reservation.

<table>
<thead>
<tr>
<th>StorEdge A5000</th>
<th>SPARCstorage Array</th>
<th>SPARCstorage RSM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supported</td>
<td>Supported</td>
<td>Supported</td>
</tr>
</tbody>
</table>

```
 luxadm [-v] release { pathname...}
```
Reserving Disks

Use the `reserve` subcommand to reserve the specified disk(s) for exclusive use by the host from which the subcommand was issued.

```
luxadm [-v] reserve { pathname... }
```

<table>
<thead>
<tr>
<th>Option/Argument</th>
<th>Description</th>
<th>StorEdge A5000</th>
<th>SPARCstorage Array</th>
<th>SPARCstorage RSM</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>enclosure</code></td>
<td>is the enclosure name of a StorEdge A5000(^1).</td>
<td>Supported</td>
<td>Supported</td>
<td>Supported</td>
</tr>
<tr>
<td><code>dev</code></td>
<td>is the name of a specific disk in an enclosure(^1).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>pathname</code></td>
<td>is the physical or logical path name of a StorEdge A5000, SPARCstorage Array, or a specific disk in an array(^1).</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^1\) See “Addressing” on page 2.
Setting the Boot Device Variable

Use the `set_boot_dev` subcommand to set the boot-device variable in the system PROM to physical device name. The `set_boot_device` subcommand normally runs interactively; it requests confirmation for setting the default boot-device in the PROM.

```
luxadm [-v] set_boot_dev [-y] pathname
```

**TABLE 2-22** `set_boot_dev` Options and Arguments

<table>
<thead>
<tr>
<th>Option/Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>pathname</code></td>
<td>is a block special device or a mount-point¹.</td>
</tr>
<tr>
<td><code>-y</code></td>
<td>runs non-interactively; no confirmation is requested or required.</td>
</tr>
</tbody>
</table>

¹ See “Addressing” on page 2.

Starting Disks

Use the `start` subcommand to spin up one or more disks.

```
luxadm [-v] start [-t tray number] pathname
```

**TABLE 2-23** `start` Options and Arguments

<table>
<thead>
<tr>
<th>Option/Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-t tray-number</code></td>
<td>is the tray number.</td>
</tr>
<tr>
<td><code>pathname</code></td>
<td>is the physical or logical path name of a SPARCstorage Array, or a specific disk in an array¹.</td>
</tr>
</tbody>
</table>

¹ See “Addressing” on page 2.
Stopping Disks

Use the `stop` subcommand to spin down one or more disks.

<table>
<thead>
<tr>
<th>StorEdge A5000</th>
<th>SPARCstorage Array</th>
<th>SPARCstorage RSM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Supported</td>
<td>Supported</td>
<td>Not Supported</td>
</tr>
</tbody>
</table>

```
luxadm [-v] stop [-t tray-number] pathname
```

**TABLE 2-24**  
**stop** Options and Arguments

<table>
<thead>
<tr>
<th>Option/Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-t tray-number</code></td>
<td>is the tray number.</td>
</tr>
</tbody>
</table>
| `pathname`        | is the physical or logical path name of a SPARCstorage Array, or a specific disk in an array.  

1 See “Addressing” on page 2.
NVRAM

Enabling and Disabling Fast Writes

Use the `fast_write` subcommand to enable or disable the use of the NVRAM to enhance the performance of writes in the SPARCstorage Array.

```
luxadm [-v] fast_write [-s] -c pathname
```

<table>
<thead>
<tr>
<th>StorEdge A5000</th>
<th>SPARCstorage Array</th>
<th>SPARCstorage RSM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Supported</td>
<td>Supported</td>
<td>Not Supported</td>
</tr>
</tbody>
</table>

**TABLE 2-25 fast_write Options and Arguments**

<table>
<thead>
<tr>
<th>Option/Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>pathname</code></td>
<td>pathname is a SPARCstorage Array controller or an individual disk.</td>
</tr>
<tr>
<td><code>-c</code></td>
<td>enables fast writes for synchronous writes only.</td>
</tr>
<tr>
<td><code>-e</code></td>
<td>causes the SPARCstorage Array to save the change so it will persist across power-cycles.</td>
</tr>
<tr>
<td><code>-d</code></td>
<td>disables fast writes.</td>
</tr>
<tr>
<td><code>-e</code></td>
<td>enables fast writes.</td>
</tr>
</tbody>
</table>

1 See “Addressing a SPARCstorage Array” on page 3.

Displaying Fast Write Data

Use the `nvram_data` subcommand to display the amount of fast write data in the NVRAM for a specific disk. This command can only be used for an individual disk.

<table>
<thead>
<tr>
<th>StorEdge A5000</th>
<th>SPARCstorage Array</th>
<th>SPARCstorage RSM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Supported</td>
<td>Supported</td>
<td>Not Supported</td>
</tr>
</tbody>
</table>
Purging Fast Write Data from NVRAM

Caution – The `purge` subcommand should be used with caution, usually only when a drive has failed.

Use the `purge` subcommand to purge any fast write data from NVRAM for one or more disks.

### TABLE 2-26 `nvram_data` Options and Arguments

<table>
<thead>
<tr>
<th>Option/Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>pathname</code></td>
<td><code>pathname</code> is a SPARCstorage Array controller or an individual disk.</td>
</tr>
</tbody>
</table>

1 See “Addressing a SPARCstorage Array” on page 3.

```bash
luxadm [-v] nvram_data pathname
```

### TABLE 2-27 `purge` Options and Arguments

<table>
<thead>
<tr>
<th>Option/Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>pathname</code></td>
<td><code>pathname</code> is a SPARCstorage Array controller or an individual disk. If you specify a SPARCstorage Array controller, fast write data for all disks associated with that controller will be purged.</td>
</tr>
</tbody>
</table>

1 See “Addressing a SPARCstorage Array” on page 3.
Flushing NVRAM

Use the `sync_cache` subcommand to flush all outstanding writes for one or more disks from NVRAM to the media.

```
luxadm [-v] sync_cache pathname
```

<table>
<thead>
<tr>
<th>StorEdge A5000</th>
<th>SPARCstorage Array</th>
<th>SPARCstorage RSM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Supported</td>
<td>Supported</td>
<td>Not Supported</td>
</tr>
</tbody>
</table>

**TABLE 2-28**  
sync_cache Options and Arguments

<table>
<thead>
<tr>
<th>Option/Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pathname</td>
<td>is a SPARCstorage Array controller or an individual disk. If you specify a SPARCstorage Array controller, outstanding writes for all disks associated with that controller will be flushed.</td>
</tr>
</tbody>
</table>

1 See “Addressing a SPARCstorage Array” on page 3.
Removing, Inserting, and Replacing

This section discusses how to remove, insert, and replace disk drives, enclosures, or a chain of enclosures. For more detailed instructions on performing these operations with a StorEdge A5000 disk array, see Chapter 3 and refer to the Sun StorEdge A5000 Installation and Service Manual, part number 802-7573.

Removing Devices

Use the remove_device subcommand to hot remove a disk drive, enclosure, or a chain of enclosures. This subcommand interactively guides you through the hot removal of one or more devices.

In the StorEdge A5000 disk array, the remove_device subcommand:

- Checks whether the device is busy and if so warns you.
- Offlines the device (this fails if the disk is open).
- Informs you when device(s) can be safely removed.
- Informs you which device to remove by blinking the activity LED on the enclosure.
- Requests confirmation that the list(s) is/are as expected.
- Removes the logical device(s) names for the device that was removed.

In the SPARCstorage RSM, the remove_device subcommand:

- Takes the device offline.
- Quiesces the bus for buses that support quiescing.
- Informs you that the device can be safely replaced.
- Requests confirmation that the device has been replaced.
- Unquiesces the bus for buses that support quiescing.
- Brings the (now removed) device back online
- Removes the logical device name for the device that was removed.

<table>
<thead>
<tr>
<th>StorEdge A5000</th>
<th>SPARCstorage Array</th>
<th>SPARCstorage RSM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supported</td>
<td>Not Supported</td>
<td>Supported</td>
</tr>
</tbody>
</table>

luxadm [-v] remove_device [-F] { enclosure, dev... | pathname... }
TABLE 2-29  remove_device Options and Arguments

<table>
<thead>
<tr>
<th>Option/Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-F</td>
<td>force the hot-plugging operation on one or more devices even if those devices are being used by the host (and are, therefore, busy). <strong>Caution</strong>—Removing devices which are in use will cause unpredictable results. You should attempt to hot-plug normally (without -F) first, only resorting to this option when you are sure of the consequences of overriding normal hot-plugging checks.</td>
</tr>
</tbody>
</table>

enclosure is the enclosure name of a StorEdge A5000 disk array\(^1\).

dev is the name of a specific disk in an enclosure\(^1\).

pathname is the physical or logical path name of a StorEdge A5000 or a specific disk in an array\(^1\).

\(^1\) See “Addressing a StorEdge A5000 Disk Array” on page 2.

Example:

```
luxadm remove_device macs1,f1

WARNING!!! Please ensure that no filesystems are mounted on these device(s).
All data on these devices should have been backed up.

The list of devices which will be removed is:

1: Box Name "macs1" frontslot 1

Please enter 'q' to Quit OR <Return> to Continue:

stopping: Drive in "macs1" front slot 1....Done
offlining: Drive in "macs1" front slot 1....Done

Hit <Return> after removing the device(s).
```
You must physically remove the device at this time. After you hit a key, the following is displayed:

```
Drive in Box Name "macs1" front slot 1
 Removing Logical Nodes:
 Removing c2t1d0s0
 Removing c2t1d0s1
 Removing c2t1d0s2
 Removing c2t1d0s3
 Removing c2t1d0s4
 Removing c2t1d0s5
 Removing c2t1d0s6
 Removing c2t1d0s7
```

### Inserting Devices

Use the `insert_device` subcommand for hot insertion of a new disk drive, enclosure, or chain of enclosures. If you specify more than one enclosure, you can perform concurrent hot insertions on multiple busses.

The `insert_device` subcommand interactively guides you through the hot insertion of one or more devices. In the StorEdge A5000 disk array the `insert_device` subcommand:

- Informs you when the device(s) can be safely inserted.
- Requests confirmation that the list(s) is/are as expected.
- Creates the logical device names for the new devices.
- Displays the logical path name for the devices.

In the SPARCstorage RSM the `insert_device` subcommand:

- Quiesces the bus for buses that support quiescing
- Informs you that the device can be safely inserted
- Requests confirmation that the device has been inserted
- Unquiesces the bus for buses that support quiescing
- Creates the logical device name for the new device.

<table>
<thead>
<tr>
<th>StorEdge A5000</th>
<th>SPARCstorage Array</th>
<th>SPARCstorage RSM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supported</td>
<td>Not Supported</td>
<td>Supported</td>
</tr>
</tbody>
</table>
Example:

```
luxadm insert_device, macs1,f1

The list of devices which will be inserted is:
 1: Box Name "macs1" front slot 1

Please enter 'q' to Quit or <Return> to Continue:

Hit <Return> after inserting the device(s).
```

You must physically install the disk drive at this time. After hitting any key, the following is displayed:

```
Drive in Box Name "macs1" front slot 1
Logical Nodes under /dev/dsk and /dev/rdsk :
 c2t1d0s0
 c2t1d0s1
 c2t1d0s2
 c2t1d0s3
 c2t1d0s4
 c2t1d0s5
 c2t1d0s6
 c2t1d0s7
#
```
Replacing Devices

Use the `replace_device` subcommand to hot replace a device.

The `replace_device` subcommand interactively guides you through the hot insertion of one or more devices. The `replace_device` subcommand:

- Takes the device offline.
- Quiesces the bus for buses that support quiescing.
- Informs you that the device can be safely replaced.
- Requests confirmation that the device has been replaced.
- Unquiesces the bus for buses that support quiescing.
- Brings the device back online.

### TABLE 2-31  replace_device Options and Arguments

<table>
<thead>
<tr>
<th>Option/Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-F</code></td>
<td>force the hot-plugging operation on one or more devices even if those devices are being used by the host (and are, therefore, busy). <strong>Caution</strong>—Replacing devices which are in use will cause unpredictable results. You should attempt to hot-plug normally (without <code>-F</code>) first, only resorting to this option when you are sure of the consequences of overriding normal hot-plugging checks.</td>
</tr>
<tr>
<td><code>pathname</code></td>
<td><code>pathname</code> is a SPARCstorage Array controller or an individual disk(^1).</td>
</tr>
</tbody>
</table>

\(^1\) See “Addressing a SPARCstorage RSM Tray” on page 4.
Hot-Plugging in the StorEdge A5000 Disk Array

This chapter discusses hot-plugging StorEdge A5000 disk arrays and disk drives. It is divided into the following sections:

- Adding a Disk Drive—page 40
- Replacing a Disk Drive—page 43
- Removing a Disk Drive—page 53

Refer to the Sun StorEdge A5000 Installation and Service Manual, part number 802-7573, for details on removing disk drives.

**Note** – The procedure for hot-plugging an entire StorEdge A5000 disk array is very similar to the procedure for removing and replacing an individual disk drive. Instead of specifying an `enclosure,dev` you only need to specify the `enclosure` in the appropriate procedure.

Hot-plug reconfiguration or hot-plug operations cannot be performed on an active disk drive. All disk access activity must be stopped prior to a disk drive being removed or replaced.

**Caution** – As with other high-RAS products, disk drives should not be pulled out randomly. The StorEdge A5000 disk array design provides support to replace failed drives in redundant (mirrored or RAID) configurations. If the drive is active, you must stop that activity before removing it. This can be done without bringing down the operating system or powering down the unit. The StorEdge A5000 disk array fully supports hot-plugging, but there are software considerations that must be taken into account. Follow the procedures in this section when removing, replacing, and adding disk drives.
Adding a Disk Drive

This section contains information on how to configure your system when you add a disk drive while the power is on and the operating system is running.

The way you add a disk drive depends on the application you are using. Each application requires that you decide where to install the new disk drive, add the drive, and then reconfigure the operating environment.

In all cases, you must select a slot, install the disk drive, and configure the Solaris environment to recognize the drive. Then you must configure your application to accept the new disk drive.

**Caution** – These procedures should be performed only by a qualified system administrator. Performing hot-plug operations on an active disk drive may result in data loss and/or data corruption.

A new device entry needs to be created for the drive in the `/devices` and `/dev/dsk` and `/dev/rdsk` hierarchy. The new drive is assigned a name associated with the slot into which the drive was installed.

1. Select any available slot in the StorEdge A5000 disk array for the new disk drive.
   For reference when you configure the software environment, make a note of which enclosure and slot you chose.

2. Use the `luxadm insert_device` command to add the new device.
   This command is interactive. You will be guided through the procedure for inserting a new device or chain of devices.

```bash
luxadm insert_device macs1,f1

The list of devices which will be inserted is:
 1: Box Name "macs1" front slot 1

Please enter 'q' to Quit or <Return> to Continue:

Hit <Return> after inserting the device(s).```
3. You must physically insert the disk drive at this time. After the drive is installed, hit Return. The following is displayed:

```
Drive in Box Name "macs1" front slot 1
Logical Nodes under /dev/dsk and /dev/rdsk:
c2t1d0s0
c2t1d0s1
c2t1d0s2
c2t1d0s3
c2t1d0s4
c2t1d0s5
c2t1d0s6
c2t1d0s7
```

The new disk drive is now available for use as a block or character device. Refer to the `sd(7)` man pages for further details.

Unix File System (UFS)

Use the following procedure to configure a slice (single physical partition) on a disk to be used with a UFS file system. For instructions about adding a file system to a Volume Manager logical disk, refer to the documentation that came with your application.

1. **Verify that the device label meets your requirements.**

 You can use the `prtvtoc` command to inspect the label for your disk. To modify the label, use the `format` command. Refer to the `prtvtoc(1M)` and `format(1M)` man pages for more information.

2. **Once you have selected a disk slice for your UFS file system, create a file system on the slice:**

   ```
   # newfs /dev/rdsk/cwtxdysz
   ```

 Refer to the `newfs(1M)` man page for more information.

3. **If necessary, create a mountpoint for the new file system:**

   ```
   # mkdir mount_point
   ```
where: `mount_point` is a fully qualified pathname. Refer to the `mount(1M)` man page for more information.

4. **After the file system and mountpoint have been created, modify the `/etc/vfstab` file to reflect the new file system.**

 See the `vfstab(4)` man page for more details.

5. **Mount the new file system using the `mount` command:**

   ```
   # mount mount_point
   ```

 where: `mount_point` is the directory you created.

 The file system is ready to be used.

Sun Enterprise Volume Manager

Use the following procedure to configure the new device to be used with a new or existing Volume Manager disk group.

1. **Configure the Volume Manager to recognize the disk drive.**

   ```
   # vxdctl enable
   ```

2. **Add the new disk to a new or existing Volume Manager disk group:**

   ```
   # vxdiskadd cwtxdysz
   ```

 where: `cwtxdysz` is the new disk.

 Refer to the `vxdiskadd(1M)` man page for further details.

 The disk is now ready for use with Volume Manager: as part of a new volume, added to an existing volume as a plex, or to increase an existing volume. Refer to your *Sun Enterprise Volume Manager User’s Guide* for more information.
Replacing a Disk Drive

This section contains information on configuring your system to replace a disk drive while the power is on and the operating system is running.

The way you replace a faulty disk drive depends on the application you are using. Each application is different, but requires that you
1. Determine which disk drive is failing or has failed
2. Remove the disk
3. Add the replacement drive
4. Reconfigure the operating environment.

In all cases you must stop any activity on the disk; physically remove the old drive and install the new one; and configure the Solaris environment to recognize the drive. Then you must configure your application to accept the new disk drive.

Caution – These procedures should be performed only by a qualified system administrator. Performing hot-plug operations on an active disk drive may result in data loss and/or data corruption.

Identifying the Faulty Disk Drive

Different applications provide various levels of error logging. In general, you can find messages about failing or failed disks in your system console window. The information is also logged in the /usr/adm/messages file(s). See the documentation that came with your application for more information.

UNIX File System (UFS)

The following procedure describes how to unconfigure a disk being used by one or more UFS file systems.

Caution – These procedures should be performed only by a qualified system administrator. Performing hot-plug operations on an active disk drive can result in data loss.
Preparing to Replace the Disk Drive

1. Stop any application processes on the file systems to be unconfigured.

2. Back up your system.

3. Determine what file system(s) are on the disk:

   ```bash
   # mount | grep c2t1d0
   ``

   For example, if the device to be removed is c2t1d0, enter the following:

   ```bash
 # mount | grep c2t3d0
 /export/home (/dev/dsk/c2t1d0s7): 98892 blocks 142713 files
 /export/home2 (/dev/dsk/c2t1d0s5): 153424 blocks 112107 files
 ``

4. Determine and save the partition table for the disk.

 If the replacement disk is the same type as the faulty disk, you can use the `format` command to save the partition table of the disk. Use the `save` command in `format` to save a copy of the partition table to the `/etc/format.dat` file. This will allow you to configure the replacement disk so that its layout matches the current disk.

 Refer to the `format(1M)` man page for more information.

5. Unmount any file systems on the disk.

 Note – If the file system(s) are on a disk that is failing or has failed, the `umount` operation may not complete. A large number of error messages may be displayed in the system console and in the `/var` directory during the `umount` operation. If the `umount` operation does not complete, you may have to reboot the system.

 For each file system from Step 3 returned, type:

   ```bash
   # umount filesystem
   ``

   where `filesystem` is the first field for each line returned in Step 3.

   For example:

   ```bash
 # umount /export/home
 # umount /export/home2
   ```
6. Using the `df` command, verify that the file system has been unmounted.

Removing the Disk Drive

1. Use the `luxadm remove_device` command to remove the disk.

   The `luxadm remove_device` command is interactive. You will be guided through the procedure for removing a device or chain of devices.

   ```bash
 # luxadm remove_device /dev/rdsk/c2t1d0s5

 WARNING!!! Please ensure that no filesystems are mounted on these device(s).
 All data on these devices should have been backed up.

 The list of devices which will be removed is:
 1: Box Name "macs1" front slot 1

 Please enter 'q' to Quit or <Return> to Continue:

 stopping: Drive in "macs1" front slot 1....Done
 offlining: Drive in "macs1" front slot 1....Done

 Hit <Return> after removing the device(s).
 #
   ```

2. You must physically remove the disk drive at this time. After the drive is removed, hit any key. The following is displayed:
Note – The yellow LED on the designated disk drive(s) should be flashing.

---

Installing the New Disk Drive

1. Use the `luxadm insert_device` command to add the new device.
   This command is interactive. You will be guided through the procedure for inserting a new device or chain of devices.

   ```
 # luxadm insert_device, macs1,f1

 The list of devices which will be inserted is:
 1: Box Name "macs1" front slot 1

 Please enter 'q' to Quit or <Return> to Continue:

 Hit <Return> after inserting the device(s).
   ```
2. You must physically insert the disk drive at this time. After the drive is installed, hit Return. The following is displayed:

```
Drive in Box Name "macs1" front slot 1
Logical Nodes under /dev/dsk and /dev/rdsk :
c2t1d0s0
c2t1d0s1
c2t1d0s2
c2t1d0s3
c2t1d0s4
c2t1d0s5
c2t1d0s6
c2t1d0s7
#
```

The new disk drive is now available for use as a block or character device. Refer to the `sd(7)` man pages for further details.

**Restoring the UFS File System**

Use the following procedure to configure a slice on a disk to be used with the UFS file system.

1. **Verify that the device label meets your requirements.**

   You can use the `prtvtoc` command to inspect the label for your disk. To modify the label, use the `format` command. See the `prtvtoc(1M)` and `format(1M)` man pages for more information.

2. **Verify that the device's partition table satisfies the requirements of the file system(s) you intend to re-create.**

   You can use the `prtvtoc` command to inspect the label for your device. If you need to modify the label, use the `format` command. Refer to the `prtvtoc(1M)` and `format(1M)` man pages for more information.

   For example:

   ```
 # prtvtoc /dev/rdsk/cwtxdysz
   ```

   If you have saved a disk partition table using the `format` utility and the replacement disk type matches the old disk type, then you can use the `format` utility's partition section to configure the partition table of the replacement disk. See the `select` and `label` commands in the partition section.
If the replacement disk is of a different type than the disk it replaced, you can use the partition size information from the previous disk to set the partition table for the replacement disk. Refer to the `prtvtoc(1M)` and `format(1M)` man pages for more information.

3. Once you have selected a disk slice for your UFS file system, create a file system on the slice:

   ```
 # newfs /dev/rdsk/cwtxdysz
   ```

4. Mount the new file system using the `mount` command:

   ```
 # mount mount_point
   ```

   where: `mount_point` is the directory on which the faulty disk was mounted.

   The new disk is ready to be used. You can now restore data from your backups.

---

### Sun Enterprise Volume Manager

The following procedure assumes that all user- and application-level processes on all volumes, plexes, and/or subdisks that are located on the drive to be removed have been terminated.

---

**Caution** – These procedures should be performed only by a qualified system administrator. Performing hot-plug operations on an active disk drive may result in data loss.

---

### Preparing to Replace the Disk Drive

1. **Back up your system.**

   Refer to the documentation that came with your system for backup details.

2. **Identify the disk media name for the disk you intend to replace.**

   ```
 # vxdisk list | grep cwtxdysz
   ```
For example, if the disk to be removed is `c2t1d0`, enter:

```
vxdisk list | grep c0t1d0
```

| c2t1d0s2 | sliced | disk01 | rootdg | online |

The disk media name is the third field in the output above: `disk01`.

You can use the `vxdiskadm` utility to prepare the disk for replacement.

3. **Type `vxdiskadm` in a shell.**

   For example:

   ```
 # vxdiskadm
   ```

   This operation is interactive and requires user confirmation of the operation.

4. **Select the “Remove a disk for replacement” option.**

   When prompted for a disk name to replace, type the disk media name from Step 2.

   `vxdiskadm` marks the disk for replacement and saves the subdisk information to be rebuilt on the replacement disk.

   Redundant data is automatically recovered after the replacement disk has been reattached to Volume Manager. Non-redundant data is identified as unusable and must be recreated from backups.

   Refer to the `vxdiskadm(1M)` man page for further details.

5. **Quit the `vxdiskadm` utility.**
Removing the Disk Drive

1. **Use the `luxadm remove_device` command to remove the disk.**
   The `luxadm remove_device` command is interactive. You will be guided through the procedure for removing a device or chain of devices.

   ```
 # luxadm remove_device macs1,f1

 WARNING!!! Please ensure that no filesystems are mounted on these device(s).
 All data on these devices should have been backed up.

 The list of devices which will be removed is:
 1: Box Name "macs3" rear slot 1

 Please enter 'q' to Quit OR <Return> to Continue:

 stopping: Drive in "macs1" front slot 1....Done
 offlining: Drive in "macs1" front slot 1....Done

 Hit <Return> after removing the device(s).

 Drive in Box Name "macs1" front slot 1
 Removing Logical Nodes:
 Removing c2t18d0s0
 Removing c2t18d0s1
 Removing c2t18d0s2
 Removing c2t18d0s3
 Removing c2t18d0s4
 Removing c2t18d0s5
 Removing c2t18d0s6
 Removing c2t18d0s7
 #
   ```

2. **You must physically remove the disk drive at this time. After the drive is removed, hit any key. The following is displayed:**

   **Note** – The yellow LED on the designated disk drive(s) should be flashing.
Installing the Disk Drive

1. **Use the luxadm insert_device command to add the new device.**
   This command is interactive. You will be guided through the procedure for inserting a new device or chain of devices.

   ```
 # luxadm insert_device macs1,f1
 The list of devices which will be inserted is:
 1: Box Name "macs1" front slot 1
 Please enter 'q' to Quit or <Return> to Continue:
 Hit <Return> after inserting the device(s).
   ```

2. You must physically insert the disk drive at this time. After the drive is installed, hit Return. The following is displayed:

   ```
 Drive in Box Name "macs1" front slot 1
 Logical Nodes under /dev/dsk and /dev/rdsk :
 c2t1d0s0
 c2t1d0s1
 c2t1d0s2
 c2t1d0s3
 c2t1d0s4
 c2t1d0s5
 c2t1d0s6
 c2t1d0s7
 #
   ```

   The new disk drive is now available for use as a block or character device. Refer to the `sd(7)` man pages for further details.
Recreating a Volume Manager Configuration on the New Drive

To recreate the replaced disk on the new drive:

1. **Configure the Volume Manager to recognize the disk drive.**

   ```bash
 # vxdctl enable
 ``

2. **Use the `vxdiskadm` utility to replace the failed disk.**

 Select the “Replace a failed or removed disk” option.

 This operation requires user confirmation. When prompted for a disk name to replace, use the disk media name from Step 2 of “Preparing to Replace the Disk Drive” on page 48.

 `vxdiskadm` supplies a list of available disks to be used as replacements.

3. **Select the replacement drive.**

 `vxdiskadm` automatically configures the replacement drive to match the failed drive.

 Redundant data is recovered automatically. Space for non-redundant data is created and identified. Non-redundant data must be recovered from backing store.

 See the `vxdiskadm` man pages for further details.

 You have now completed the replacement of the failed drive.
Removing a Disk Drive

This section contains information on how to configure your system to remove a disk drive while the power is on and the operating system is running. Use the procedures in this chapter if you do not intend to replace the disk drive.

The way in which you prepare to remove a disk drive depends on the application you are using. Each application is different, but requires that you

1. Select the disk drive
2. Remove the disk
3. Reconfigure the operating environment.

In all cases you must select the disk and stop any activity or applications on it, unmount it, physically remove the drive, and configure the Solaris environment to recognize that the drive is no longer there. Then you must configure your application to operate without this device in place.

Caution – These procedures should be performed only by a qualified system administrator. Performing hot-plug operations on an active disk drive may result in data loss and/or data corruption.

Unix File System (UFS)

The following procedure describes how to unconfigure a disk being used by one or more UFS file systems.

Caution – These procedures should be performed only by a qualified system administrator. Performing hot-plug operations on an active disk drive may result in data loss.

1. Stop any application processes on the file systems to be unconfigured.
2. Back up your system.
3. Determine what file system(s) are on the disk:

 # mount | grep cwx dys
For example, if the device to be removed is c2t1d0, enter the following:

```
# mount | grep c2t1d0
/export/home (/dev/dsk/c2t1d0s7 ): 98892 blocks 142713 files
/export/home2 (/dev/dsk/c2t1d0s5 ): 153424 blocks 112107 files
```

4. Unmount any file systems on the disk.

Note — If the file system(s) are on a disk that is failing or has failed, the `umount` operation may not complete. A large number of error messages may be displayed in the system console and in the `/var` directory during the `umount` operation. If the `umount` operation does not complete, you may have to restart the system.

For each file system returned, type:

```
# umount filesystem
```

where: filesystem is the first field for each line returned in Step 3.

For example:

```
# umount /export/home
# umount /export/home2
```
Removing the Disk Drive

1. **Use the `luxadm remove_device` command to remove the disk.**

 The `luxadm remove_device` command is interactive. You will be guided through the procedure for removing a device or chain of devices.

   ```bash
   # luxadm remove_device /dev/rdsk/c2t1d0s2
   
   WARNING!!! Please ensure that no filesystems are mounted on these device(s).
   All data on these devices should have been backed up.
   
   The list of devices which will be removed is:
   1: Box Name "macs1" front slot 1
   
   Please enter 'q' to Quit or <Return> to Continue:
   
   stopping:  Drive in "macs1" front slot 1....Done
   offlining: Drive in "macs1" front slot 1....Done
   
   Hit <Return> after removing the device(s).
   
   Drive in Box Name "macs1" front slot 1
   Removing Logical Nodes:
   Removing c2t1d0s0
   Removing c2t1d0s1
   Removing c2t1d0s2
   Removing c2t1d0s3
   Removing c2t1d0s4
   Removing c2t1d0s5
   Removing c2t1d0s6
   Removing c2t1d0s7
   #
   
   WARNING!!! Please ensure that no filesystems are mounted on these device(s).
   All data on these devices should have been backed up.

2. **You must physically remove the disk drive at this time. After the drive is removed, hit any key. The following is displayed:**

   **Note** – The yellow LED on the designated disk drive(s) should be flashing.
Sun Enterprise Volume Manager

The following procedure assumes that all user- and application-level processes on all volumes, plexes, and/or subdisks that are located on the drive to be removed have been terminated.

**Caution** – These procedures should be performed only by a qualified system administrator. Performing hot-plug operations on an active disk drive may result in data loss.

Preparing to Remove the Disk Drive

1. **Back up your system.**

2. **Identify the disk media name for the disk you intend to remove.**

   ```
 # vxdisk list | grep ctwxdysz
   ```

   For example, if the disk to be removed is c2t1d0, enter:

   ```
 # vxdisk list | grep c2t1d0
 c2t1d0s2 sliced disk01 rootdg online
   ```

   The disk media name is the third field in the output above: disk01.

   You can use the `vxdiskadm` utility to prepare the disk for removal.

3. **Type `vxdiskadm` in a shell.**

   For example:

   ```
 # vxdiskadm
   ```

   This operation is interactive and requires user confirmation of the operation.

4. **Select the “Remove a disk” option.**

   When prompted for a disk name to remove, type the disk media name from Step 2.

   `vxdiskadm` marks the disk to be removed.

   Refer to the `vxdiskadm(1M)` man page for further details.
Removing the Disk Drive

1. Use the `luxadm remove_device` command to remove the disk.
   The `luxadm remove_device` command is interactive. You will be guided through the procedure for removing a device or chain of devices.

   ```
 # luxadm remove_device /dev/rdsk/c2t1d0s2

 WARNING!!! Please ensure that no filesystems are mounted on these device(s).
 All data on these devices should have been backed up.

 The list of devices which will be removed is:
 1: Box Name "macs1" front slot 1

 Please enter 'q' to Quit or <Return> to Continue:

 stopping: Drive in "macs1" front slot 1....Done
 offlining: Drive in "macs1" front slot 1....Done

 Hit <Return> after removing the device(s).

 Drive in Box Name "macs1" front slot 1
 Removing Logical Nodes:
 Removing c2t1d0s0
 Removing c2t1d0s1
 Removing c2t1d0s2
 Removing c2t1d0s3
 Removing c2t1d0s4
 Removing c2t1d0s5
 Removing c2t1d0s6
 Removing c2t1d0s7
 #
   ```

2. You must physically remove the disk drive at this time. After the drive is removed, hit any key. The following is displayed:

   Note – The yellow LED on the designated disk drive(s) should be flashing.
Expert Mode Subcommands

**Caution** – The expert mode subcommands should only be used by qualified personnel who are knowledgeable about the systems they are managing.

The command line must contain the `luxadm -e` (expert mode) option and a subcommand.

```
luxadm [options] subcommand pathname
```

<table>
<thead>
<tr>
<th>Subcommand</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bus_getstate</td>
<td>Gets and displays the state of the specified bus or the bus controlling the specified device.</td>
</tr>
<tr>
<td>bus_quiesce</td>
<td>Quiesces the specified bus or the bus controlling the specified device.</td>
</tr>
<tr>
<td>bus_reset</td>
<td>Resets the specified bus or the bus controlling the specified device.</td>
</tr>
<tr>
<td>bus_resetall</td>
<td>Resets the specified bus or the bus controlling the specified device, and all devices on that bus.</td>
</tr>
<tr>
<td>bus_unquiesce</td>
<td>Unquiesces the specified bus or the bus controlling the specified device.</td>
</tr>
<tr>
<td>dev_getstate</td>
<td>Gets and displays the state of the specified device.</td>
</tr>
<tr>
<td>dev_reset</td>
<td>Resets the specified device.</td>
</tr>
<tr>
<td>forcelip</td>
<td>Forces the link to reinitialize using the Loop Initialize Primitive (LIP) sequence. The forcelip subcommand is supported on the Sun Enterprise Network Array only.</td>
</tr>
<tr>
<td>Subcommand</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>---------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>offline</td>
<td>Takes the specified device offline.</td>
</tr>
<tr>
<td>online</td>
<td>Puts the specified device online.</td>
</tr>
<tr>
<td>rdls</td>
<td>Reads the link error status block from a specified device. The <code>rdls</code> subcommand also displays the link error status information for the Host Adapter associated with the specified device, if available. The <code>rdls</code> subcommand is supported on the Sun Enterprise Network Array only.</td>
</tr>
</tbody>
</table>
Index

**A**
addressing
- SPARCstorage Arrays, 3
- SPARCstorage RSM trays, 4
- StorEdge A5000, 2
- alarm_off subcommand, 22
- alarm_on subcommand, 22
- alarm_set subcommand, 23

**B**
boot device, 28
- bus_getstate subcommand, 59
- bus_quiesce subcommand, 59
- bus_reset subcommand, 59
- bus_resetall subcommand, 59
- bus_unquiesce subcommand, 59

**C**
changing the WWN in a SPARCstorage Array, 18

**D**
dev_getstate subcommand, 59
- dev_reset subcommand, 59
- display subcommand, 12
- displaying
  - device data, 12

**E**
Enclosure Services Card subcommands
- alarm_off, 22
- alarm_set, 23
- env_display, 21
- enclosure_name subcommand, 24
- env_display subcommand, 21

**F**
fast_write subcommand, 30
- fc_s_download subcommand, 19
- fcal_s_download subcommand, 20
- fcode, downloading, 19, 20
- firmware, downloading, 17
- foecelip subcommand, 59
H
hot-plugging, 39

I
inquiry subcommand, 15
insert_device subcommand, 35

L
led_blink subcommand, 8
led_off subcommand, 9
led_on subcommand, 10

N
NVRAM
displaying fast write data, 30
enabling/disabling fast writes, 30
flushing outstanding write data, 32
purging fast write data, 31
nvram_data subcommand, 30

O
offline subcommand, 60
online subcommand, 60

P
perf_statistics subcommand, 24
power_off subcommand, 25
power_on subcommand, 26
probe subcommand, 10
purge subcommand, 31

R
rdls subcommand, 60
release subcommand, 26
remove_device subcommand, 33

renaming a StorEdge A5000, 24
replace_device subcommand, 37
reserve subcommand, 27

S
set_boot_device subcommand, 28
start subcommand, 28
stop subcommand, 29
sync_cache subcommand, 32

W
WWN, changing in a SPARCstorage Array, 18