
Understanding Sun Master Index
Processing (Repository)

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 820–2667–15
December 2008

Copyright 2008 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In particular, and without
limitation, these intellectual property rights may include one or more U.S. patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights – Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions
of the FAR and its supplements.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other
countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, the Solaris logo, the Java Coffee Cup logo, docs.sun.com, Java, and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. or its subsidiaries in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of
SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and SunTM Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts
of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to
the Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN LOOK GUIs and otherwise comply with Sun's written license
agreements.

Products covered by and information contained in this publication are controlled by U.S. Export Control laws and may be subject to the export or import laws in
other countries. Nuclear, missile, chemical or biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export
or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied persons and specially
designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

081219@21808

Contents

Understanding Sun Master Index Processing (Repository) ... 5
Related Topics ...5
About Sun Master Index (Repository) ...6
Understanding Master Index Operational Processes (Repository) ...6

Learning About Master Index Message Processing (Repository) ...6
Master Index Inbound Message Processing Logic (Repository) .. 13
Master Index Custom Decision Point Logic (Repository) .. 19
Master Index Primary Function Processing Logic (Repository) .. 22

The Master Index Database Structure (Repository) .. 37
About the Master Index Database (Repository) ... 38
Master Index Database Table Details (Repository) ... 40
Sample Master Index Database Model (Repository) ... 58

Working with the Master Index Java API (Repository) .. 61
Master Index Java Class Types (Repository) ... 62
Dynamic Master Index Object Classes (Repository) ... 63
Master Index Parent Object Classes (Repository) .. 63
Master Index Child Object Classes (Repository) ... 76
Dynamic Master Index OTD Methods (Repository) ... 81
Dynamic Master Index OTD Methods (Repository) ... 82
Dynamic Business Process Methods (Repository) .. 100
Master Index Helper Classes (Repository) .. 101
SystemObjectName Master Index Class (Repository) ... 101
Master Index Parent Beans (Repository) .. 106
Master Index Child Beans (Repository) .. 115
DestinationEO Master Index Class (Repository) ... 120
SearchObjectNameResult Master Index Class (Repository) ... 121
SourceEO Master Index Class (Repository) ... 123
SystemObjectNamePK Master Index Class (Repository) .. 123

3

Master Index Match Types and Field Names (Repository) .. 126
Master Index Match and Standardization Types (Repository) .. 126
Sun Match Engine Match Types (Repository) .. 126

Contents

Understanding Sun Master Index Processing (Repository) • December 20084

Understanding Sun Master Index Processing
(Repository)

The topics listed here provide conceptual information about standard processing logic for a
master index application, the flow of data through a master index application, the database
structure, and the dynamic Java API.

Note that Java CAPS includes two versions of Sun Master Index. Sun Master Index (Repository)
is installed in the Java CAPS repository and provides all the functionality of previous versions in
the new Java CAPS environment. Sun Master Index is a service-enabled version of the master
index that is installed directly into NetBeans. It includes all of the features of Sun Master Index
(Repository) plus several new features, like data als

nalysis, data cleansing, data loading, and an improved Data Manager GUI. Both products are
components of the Sun Master Data Management (MDM) Suite. This document relates to Sun
Master Index (Repository) only.

■ Understanding Master Index Operational Processes (Repository)
■ The Master Index Database Structure (Repository)
■ Working with the Master Index Java API (Repository)
■ Master Index Match Types and Field Names (Repository)

Related Topics
Several topics provide information and instructions for implementing and using a
Repository-based master index application. For a complete list of topics related to working with
Sun Master Index (Repository), see “Related Topics” in Developing Sun Master Indexes
(Repository).

5

About Sun Master Index (Repository)
Sun Master Index provides a flexible framework that allows you to create matching and
indexing applications called enterprise-wide master index applications. It is an application
building tool to help you design, configure, and create a master index application that will
uniquely identify and cross-reference the business objects stored in your system databases.
Business objects can be any type of entity for which you store information, such as customers,
patients, vendors, businesses, inventory, and so on.

When you create a master index application, custom database scripts and a custom Java API are
automatically generated based on the information you specify in the wizard and the
configuration files. Both the database scripts and API are derived from the object structure you
define. For example, if you create a master index application with an Address object, the
database scripts will define a table named SBYN_ADDRESS and one named
SBYN_ADDRESSSBR. The Java API will include a class named AddressObject that includes
“get” methods for each field you defined for the Address object.

Understanding Master Index Operational Processes
(Repository)

Master index applications created by Sun Master Index use a custom Java API library to
transform and route data into and out of the master index database. In order to customize the
way the Java methods transform the data, it is helpful to understand the logic of the primary
processing functions and how messages are typically processed through the master index
system.

The following topics describe and illustrate the processing flow of messages to and from the
master index application, providing background information to help design and create custom
processing rules for your implementation.

■ “Learning About Master Index Message Processing (Repository)” on page 6
■ “Master Index Inbound Message Processing Logic (Repository)” on page 13
■ “Master Index Custom Decision Point Logic (Repository)” on page 19
■ “Master Index Primary Function Processing Logic (Repository)” on page 22

Learning About Master Index Message Processing
(Repository)
This section provides a summary of how inbound and outbound messages can be processed in a
master index application. A master index application cross-references records stored in various
computer systems of an organization and identifies records that might represent or do
represent the same object. The master index application uses Java CAPS components to

About Sun Master Index (Repository)

Understanding Sun Master Index Processing (Repository) • December 20086

connect to and share data with these external systems. The following topics provide
information about inbound and outbound message processing.

■ “Master Index Inbound Message Processing (Repository)” on page 7
■ “Master Index Outbound Message Processing (Repository)” on page 9

Figure 1 illustrates the flow of information through a master index application that includes a
JMS Topic to which updates to the index are published.

Master Index Inbound Message Processing (Repository)
An inbound message refers to the transmission of data from external systems to the master
index database. These messages can be sent into the database through a number of Services.
Inbound messages can be stored in journal files and tracked in the log files. The steps below
describe how inbound messages are processed.

1. Messages are created in an external system, and the enveloped message is transmitted to the
Enterprise Service Bus through that system’s eWay.

2. The Enterprise Service Bus identifies the message and the appropriate Service to which the
message should be sent. The message is then routed to the appropriate Service for
processing.

FIGURE 1 Master Index Processing Flow

Understanding Master Index Operational Processes (Repository)

Understanding Sun Master Index Processing (Repository) 7

3. The message is modified into the appropriate format for the master index database, and
validations are performed against the data elements of the message to ensure accurate
delivery. The message is validated using the Java code in the Service’s Collaboration and
other information stored in the master index configuration files.

4. If the message was successfully transmitted to the database, the appropriate changes to the
database are processed.

5. After the master index application processes the message, an enterprise-wide universal
identifier (EUID) is returned (for either a new or updated record). That EUID can be sent
back out through a different Service to the external system. Alternatively, the entire updated
message can be published using the outbound OTD (see “Master Index Outbound Message
Processing (Repository)” on page 9).

Figure 2 below illustrates the flow of a message inbound to an Sun Master Index application.

About Inbound Messages

The format of inbound messages is defined by the inbound OTD, located in the client project
for each external system. The inbound messages can either conform to the required format for
the master index application or they can be mapped to the correct format in the Collaboration.
The required format depends on how the object structure of the master index application is
defined (in the Object Definition file in the master index project).

In addition to the objects and fields defined in the Object Definition file, you can include
standard master index application fields. For example, you must include the system and local
ID fields and you can also include transaction information, such as the date and time of the
transaction, the transaction type, user ID, and so on. If you want to use transaction information
from the source systems, be sure to include the fields in the OTD.

FIGURE 2 Inbound Message Processing Data Flow

Understanding Master Index Operational Processes (Repository)

Understanding Sun Master Index Processing (Repository) • December 20088

Transaction fields include the following:

■ MessageId
■ EventTypeCode
■ UserId
■ AssigningSystem
■ Source
■ Department
■ TerminalId
■ DateOfEvent
■ TimeOfEvent

If you do not send these fields into the master index application, default values are used (for
example, the date and time fields default to the date and time the transaction is processed by
the master index application). The inbound OTD also includes the standard Java methods
marshal, unmarshal, marshalToString, unmarshalFromString, marshalToBytes,
unmarshalFromBytes, and reset. For information about the default OTD for Sun Master
Patient Index, see Understanding Sun Master Patient Index Configuration.

Master Index Outbound Message Processing (Repository)
An outbound message refers to the transmission of data from the master index database to any
external system. Messages can be transmitted from the master index application in two ways.
The first way is by transmitting the output of executeMatch (an EUID). This is described
in“Master Index Inbound Message Processing (Repository)” on page 7 and is only used for
messages received from external systems.

The second way is by publishing updates from the master index application to a JMS Topic,
which allows you to publish complete, updated single best records (SBRs) to any system
subscribing to that topic. When updates are made to the database from either external systems
or the Enterprise Data Manager, the master index application generates outbound messages in
the format of the outbound OTD.

Note – A Sun master index application only publishes the outbound message to JMS Topics and
not to JMS Queues.

This section describes how the second type of outbound message is processed. A JMS Topic
must be defined in the Connectivity Maps for the master index server project and the
appropriate client projects for this type of processing to occur.

Understanding Master Index Operational Processes (Repository)

Understanding Sun Master Index Processing (Repository) 9

http://docs.sun.com/doc/820-3493

1. When a message is received from an external system or data is entered through the
Enterprise Data Manager (EDM), the master index application processes the information
and generates an XML message, which is then sent to the JMS Topic that is configured to
publish messages from the master index application.

2. Messages published by the JMS Topic are processed through a Service whose Collaboration
uses the master index outbound OTD. This Service modifies the message into the
appropriate format.

3. The Enterprise Service Bus identifies the message and the external systems to which it
should be sent and then routes the message for processing by an external system eWay.

Note – Outbound messages are stored and tracked in the Enterprise Service Bus journal and
log files.

Figure 3 below illustrates the flow of data for a message outbound from a master index
application.

About Outbound Messages

When you generate the master index application, an outbound OTD is created, the structure of
which is based on the object definition. This OTD is used to publish changes in the master index
database to external systems using a JMS Topic. The output of the executeMatch process is an
EUID of the new or updated record. You can use this EUID to obtain additional information
and configure a Collaboration and Service to output the data, or you can process all updates in
the master index application through a JMS Topic using the outbound OTD.

FIGURE 3 Outbound Message Processing Data Flow

Understanding Master Index Operational Processes (Repository)

Understanding Sun Master Index Processing (Repository) • December 200810

Outbound OTD Structure

The outbound OTD is named after the master index application (for example, OUTCompany
or OUTPerson). This OTD contains eight primary nodes: Event, ID, SBR, and the standard Java
methods marshal, unmarshal, marshalToString, unmarshalFromString, marshalToBytes,
unmarshalFromBytes, and reset. The Event field is populated with the type of transaction that
created the outbound message, and the ID field is populated with the unique identification code
of that transaction. The SBR node is the portion of the OTD created from the Object Definition
file. In the sample, the outbound OTD publishes messages in XML format. Table 1 describes the
components of the SBR portion of the outbound OTD.

TABLE 1 Outbound OTD SBR Nodes

Node Description

EUID The EUID of the record that was inserted or modified.

Status The status of the record.

CreateFunction The date the record was first created.

CreateUser The logon ID of the user who created the record.

UpdateSystem The processing code of the external system from which the updates to an existing
record originated.

ChildType The name of the parent object.

CreateSystem The processing code of the external system from which the record originated.

UpdateDateTime The date and time the record was last updated.

CreateDateTime The date and time the record was created.

UpdateFunction The type of function that caused the record to be modified.

RevisionNumber The revision number of the record.

UpdateUser The logon ID of the user who last updated the record.

SystemObject The object’s local identifier in a specified system. This field has three sub-fields:

LID: The local ID assigned to the person in the system of origin.

System: The processing code of the system of origin.

Status: The status of the local ID in the enterprise record.

Object_Name The fields in this node are defined by the object structure (as defined in the Object
Definition file). It is named by the parent object and contains all fields and child
objects defined in the structure. This section varies depending on the
customizations made to the object structure.

Understanding Master Index Operational Processes (Repository)

Understanding Sun Master Index Processing (Repository) 11

Outbound Message Trigger Events

When outbound messaging is enabled, the following transactions automatically generate an
outbound message that is sent to the JMS Topic (if a JMS Topic has been incorporated into the
master index project).
■ Activating a system record
■ Activating an enterprise record
■ Adding a system record
■ Creating an enterprise record
■ Deactivating a system record
■ Deactivating an enterprise record
■ Merging an enterprise record
■ Merging a system record
■ Transferring a system record
■ Unmerging an enterprise record
■ Unmerging a system record
■ Updating an enterprise record
■ Updating a system record

Sample Outbound Message

The following text is a sample outbound message for a master index application based on a
master person index. Your outbound messages might appear differently depending on how you
configure the client project connectivity components.

<?xml version="1.0" encoding="UTF-8"?>
<OutMsg Event="UPD" ID="00000000000000044005">
<SBR EUID="1000008001" Status="active" CreateFunction="Add" ChildType="Person"
CreateSystem="System" UpdateFunction="Update" RevisionNumber="5" CreateUser="eview"
UpdateSystem="System" UpdateDateTime="12/16/2003 17:40:44"
CreateDateTime="12/16/2003 17:36:58" UpdateUser="eview">
<SystemObject SystemCode="CBMC" LID="434900094" Status="active">
</SystemObject>

<Person PersonId="00000000000000017000" PersonCatCode="PT" LastName="WRAND"
FirstName="ELIZABETH" MiddleName="SU" Suffix="" Title="PHD" DOB="12/12/1972 00:00:00"
Death="" Gender="F" MStatus="M" SSN="555665555" Race="B" Ethnic="23" Religion="AG"
Language="ENGL" SpouseName="MARCUS" MotherName="TONIA" MotherMN="FLEMING"
FatherName="JOSHUA" Maiden="TERI" PobCity="KINGSTON" PobState="" PobCountry="JAMAICA"
VIPFlag="N" VetStatus="N" FnamePhoneticCode="E421" LnamePhoneticCode="RAN"
MnamePhoneticCode="S250" MotherMNPhoneticCode="FLANANG" MaidenPhoneticCode="TAR"
SpousePhoneticCode="M622" MotherPhoneticCode="T500" FatherPhoneticCode="J200"
DriversLicense="CT111333111" DriversLicenseSt="CT" Dod="" DeathCertificate=""
Nationality="USA" Citizenship="USA" PensionNo="" PensionExpDate="" RepatriationNo=""
DistrictOfResidence="" LgaCode="" MilitaryBranch="NONE" MilitaryRank="NONE"
MilitaryStatus="NONE" StdLastName="WRAND" StdMiddleName="SUSAN">
<Phone PhoneId="00000000000000011001" PhoneType="CC" Phone="9895558768" PhoneExt="">

Understanding Master Index Operational Processes (Repository)

Understanding Sun Master Index Processing (Repository) • December 200812

</Phone>

<Phone PhoneId="00000000000000011000" PhoneType="CH" Phone="9895554687" PhoneExt="">
</Phone>

<Address AddressId="00000000000000011001" AddressType="H" AddressLine1="1220 BLOSSOM

STREET" AddressLine2="UNIT 12" AddressLine3="" AddressLine4="" City="SHEFFIELD"
StateCode="CT" PostalCode="09877" PostalCodeExt="" County="CAPEBURR"
CountryCode="UNST" HouseNumber="1220" StreetDir="" StreetName="BLOSSOM"
StreetNamePhoneticCode="BLASAN" StreetType="St">
</Address>

</Person>

</SBR>

</OutMsg>

Master Index Inbound Message Processing Logic
(Repository)
When records are transmitted to the master index application, one of the “execute match”
methods is usually called and a series of processes are performed to ensure that accurate and
current data is maintained in the database. The execute match methods include executeMatch,
executeMatchUpdate, executeMatchDupRecalc, and executeMatchUpdateDupRecalc. The
EDM uses executeMatchGui. For more information about how these methods differ, refer to
the Javadocs.

You can define these processes in the Collaboration using the functions defined in the
customized method OTD. The steps performed by the standard executeMatch method are
outlined below, and the diagrams on the following pages illustrate the message processing flow.
The processing steps performed in your environment might vary from this depending on how
you customize the Collaboration and Connectivity Map.

The steps outlined below refer to the following parameters in the Threshold file. They are
described in “Threshold Configuration (Repository)” in Understanding Sun Master Index
Configuration Options (Repository)).

■ OneExactMatch parameter
■ SameSystemMatch parameter
■ MatchThreshold parameter
■ DuplicateThreshold parameter
■ Update mode

Understanding Master Index Operational Processes (Repository)

Understanding Sun Master Index Processing (Repository) 13

http://developers.sun.com/docs/javacaps/reference/820-2719/sbevwstcfg.html
http://developers.sun.com/docs/javacaps/reference/820-2719/sbevwstcfg.html

Note – There are several decision points in the match process that can be defined by custom
logic using custom plug-ins. These decision points are not listed in the below steps, which
describe the default processing logic.“Master Index Custom Decision Point Logic
(Repository)” on page 19 provides the same steps as below with the decision points
included.

1. When a message is received by the master index application, a search is performed for
any existing records with the same local ID and system as those contained in the
message. This search only includes records with a status of A, meaning only active
records are included. If a matching record is found, an existing EUID is returned.

2. If an existing record is found with the same system and local ID as the incoming
message, it is assumed that the two records represent the same object. Using the EUID of
the existing record, the master index application performs an update of the record’s
information in the database.
■ If the update does not make any changes to the object’s information, no further

processing is required and the existing EUID is returned.
■ If there are changes to the object’s information, the updated record is inserted into

the database and the changes are recorded in the sbyn_transaction table.
■ If there are changes to key fields (that is, fields used for matching or for the blocking

query) and the update mode is set to pessimistic, potential duplicates are reevaluated
for the updated record.

3. If no records are found that match the record’s system and local identifier, a second
search is performed using the blocking query. A search is performed on each of the
defined query blocks to retrieve a candidate pool of potential matches.

Each record returned from the search is weighted using the fields defined for matching
in the inbound message.

4. After the search is performed, the number of resulting records is calculated.
■ If a record or records are returned from the search with a matching probability

weight above the match threshold, the master index application performs exact
match processing (see Step 5).

■ If no matching records are found, the inbound message is treated as a new record. A
new EUID is generated and a new record is inserted into the database.

5. If records were found within the high match probability range, exact match processing is
performed as follows:
■ If only one record is returned from this search with a matching probability that is

equal to or greater than the match threshold, additional checking is performed to
verify whether the records originated from the same system (see Step 6).

Understanding Master Index Operational Processes (Repository)

Understanding Sun Master Index Processing (Repository) • December 200814

■ If more than one record is returned with a matching probability that is equal to or
greater than the match threshold and exact matching is set to false, then the record
with the highest matching probability is checked against the incoming message to see
if they originated from the same system (see Step 6).

■ If more than one record is returned with a matching probability that is equal to or
greater than the match threshold and exact matching is true, a new EUID is
generated and a new record is inserted into the database.

■ If no record is returned from the database search, or if none of the matching records
have a weight in the exact match range, a new EUID is generated and a new record is
inserted into the database.

Note – Exact matching is determined by the OneExactMatch parameter, and the
match threshold is defined by the MatchThreshold parameter. For more information
about these parameters, see “Threshold Configuration (Repository)” in
Understanding Sun Master Index Configuration Options (Repository).

6. When records are checked for same system entries, the master index application tries to
retrieve an existing local ID using the system of the new record and the EUID of the
record that has the highest match weight.
■ If a local ID is found and same system matching is set to true, a new record is inserted

and the two records are considered to be potential duplicates. These records are
marked as same system potential duplicates.

■ If a local ID is found and same system matching is set to false, it is assumed that the
two records represent the same object. Using the EUID of the existing record, the
master index application performs an update, following the process described in Step
2 above.

■ If no local ID is found, it is assumed that the two records represent the same object
and an assumed match occurs. Using the EUID of the existing record, the master
index application performs an update, following the process described in Step 2
above.

7. If a new record is inserted, all records that were returned from the blocking query are
weighed against the new record using the matching algorithm. If a record is updated and
the update mode is pessimistic, the same occurs for the updated record. If the matching
probability weight of a record is greater than or equal to the potential duplicate
threshold, the record is flagged as a potential duplicate (for more information about
thresholds and the update mode, see “Threshold Configuration (Repository)” in
Understanding Sun Master Index Configuration Options (Repository)).

The following flow charts provide a visual representation of the processes performed in the
default configuration. Figure 4 and Figure 5 represent the primary flow of information. Figure 6
expands on update procedures illustrated in Figure 4 and Figure 5.

Understanding Master Index Operational Processes (Repository)

Understanding Sun Master Index Processing (Repository) 15

http://developers.sun.com/docs/javacaps/reference/820-2719/sbevwstcfg.html
http://developers.sun.com/docs/javacaps/reference/820-2719/sbevwstcfg.html
http://developers.sun.com/docs/javacaps/reference/820-2719/sbevwstcfg.html
http://developers.sun.com/docs/javacaps/reference/820-2719/sbevwstcfg.html

Understanding Master Index Operational Processes (Repository)

Understanding Sun Master Index Processing (Repository) • December 200816

FIGURE 4 Inbound Message Processing

Understanding Master Index Operational Processes (Repository)

Understanding Sun Master Index Processing (Repository) 17

FIGURE 5 Inbound Message Processing (continued)

Understanding Master Index Operational Processes (Repository)

Understanding Sun Master Index Processing (Repository) • December 200818

Master Index Custom Decision Point Logic
(Repository)
You can customize the way the execute match methods process inbound messages by defining
custom plug-ins that include decision-point methods. There are several decision points in the
match process that can be defined by custom logic using custom plug-ins. This topic describes
the standard inbound processing logic as described in “Master Index Inbound Message
Processing Logic (Repository)” on page 13, but also includes how the decision-point methods
alter the process. If no custom logic is defined, the decisions default to false, and processing is
identical to that described in “Master Index Inbound Message Processing Logic (Repository)”
on page 13.

FIGURE 6 Record Update Expansion

Understanding Master Index Operational Processes (Repository)

Understanding Sun Master Index Processing (Repository) 19

For more information about the methods and plug-ins, see “Master Index Match Processing
Logic Plug-ins (Repository)” in Developing Sun Master Indexes (Repository). For detailed
information about the methods, see the Javadocs provided with Sun Master Index. The methods
are contained in the ExecuteMatchLogics class in the package com.stc.eindex.master.

1. When a message is received by the master index application, a search is performed for any
existing records with the same local ID and system as those contained in the message. This
search only includes records with a status of A, meaning only active records are included. If
a matching record is found, an existing EUID is returned.

2. If an existing record is found with the same system and local ID as the incoming message, it
is assumed that the two records represent the same entity. Using the EUID of the existing
record, the master index application performs an update of the record’s information in the
database.
Custom plug-in decision point: If disallowUpdate is set to true, the update is not allowed
and a MatchResult object is returned with a result code of 12. If disallowUpdate is set to
false and rejectUpdate is set to true, the update is not allowed and a MatchResult object is
returned with a result code of 13.
■ If the update does not make any changes to the object’s information, no further

processing is required and the existing EUID is returned.
■ If there are changes to the object’s information, the updated record is inserted into

database, and the changes are recorded in the sbyn_transaction table.
■ If there are changes to key fields (that is, fields used for matching or for the blocking

query) and the update mode is set to pessimistic, potential duplicates are reevaluated for
the updated record.

3. If no records are found that match the record’s system and local identifier, a second search is
performed using the blocking query. A search is performed on each of the defined query
blocks to retrieve a candidate pool of potential matches.
Custom plug-in decision point: If bypassMatching is set to true, the search steps are
bypassed and, if disallowAdd is set to false, a new record is added. If disallowAdd is set to
true, the record is not added and a MatchResult object is returned with a result code of 11.
Each record returned from the search is weighted using the fields defined for matching in
the inbound message.

4. After the search is performed, the number of resulting records is calculated.
■ If a record or records are returned from the search with a matching probability weight

above the match threshold, the master index application performs exact match
processing (see Step 5).

■ If no matching records are found, the inbound message is treated as a new record. A new
EUID is generated and a new record is inserted into the database.

5. If records were found within the high match probability range, exact match processing is
performed as follows:

Understanding Master Index Operational Processes (Repository)

Understanding Sun Master Index Processing (Repository) • December 200820

■ If only one record is returned from this search with a matching probability that is equal
to or greater than the match threshold, additional checking is performed to verify
whether the records originated from the same system (see Step 6).

■ If more than one record is returned with a matching probability that is equal to or
greater than the match threshold and exact matching is set to false, then the record with
the highest matching probability is checked against the incoming message to see if they
originated from the same system (see Step 6).

■ If more than one record is returned with a matching probability that is equal to or
greater than the match threshold and exact matching is true, a new EUID is generated
and a new record is inserted into the database.
Custom plug-in decision point: If disallowAdd is set to true, the new record is not
inserted and a MatchResult object is returned with a result code of 11.

■ If no record is returned from the database search, or if none of the matching records
have a weight in the exact match range, a new EUID is generated and a new record is
inserted into the database.
Custom plug-in decision point: If disallowAdd is set to true, the new record is not
inserted and a MatchResult object is returned with a result code of 11.

6. When records are checked for same system entries, the master index application tries to
retrieve an existing local ID using the system of the new record and the EUID of the record
that has the highest match weight.
■ If a local ID is found and same system matching is set to true, a new record is inserted

and the two records are considered to be potential duplicates. These records are marked
as same system potential duplicates.
Custom plug-in decision point: If disallowAdd is set to true, the new record is not
inserted and a MatchResult object is returned with a result code of 11.

■ If a local ID is found and same system matching is set to false, it is assumed that the two
records represent the same entity. Using the EUID of the existing record, the master
index application performs an update, following the process described in Step 2 above.
Custom plug-in decision point: If rejectAssumedMatch is set to true and disallowAdd

is set to false, a new record is added; if disallowAdd is set to true, the new record is not
inserted and a MatchResult object is returned with a result code of 11. If
rejectAssumedMatch and disallowUpdate are set to false, the existing record is
updated; if disallowUpdate is set to true, the update is not performed and a
MatchResult object is returned with a result code of 13.

■ If no local ID is found, it is assumed that the two records represent the same entity and
an assumed match occurs. Using the EUID of the existing record, the master index
application performs an update, following the process described in Step 2 above.
Custom plug-in decision point: If rejectAssumedMatch is set to true and disallowAdd

is set to false, a new record is added; if disallowAdd is set to true, the new record is not
inserted and a MatchResult object is returned with a result code of 11. If

Understanding Master Index Operational Processes (Repository)

Understanding Sun Master Index Processing (Repository) 21

rejectAssumedMatch and disallowUpdate are set to false, the existing record is
updated; if disallowUpdate is set to true, the update is not performed and a
MatchResult object is returned with a result code of 13.

7. If a new record is inserted, all records that were returned from the blocking query are
weighed against the new record using the matching algorithm. If a record is updated and the
update mode is pessimistic, the same occurs for the updated record. If the matching
probability weight of a record is greater than or equal to the potential duplicate threshold,
the record is flagged as a potential duplicate (for more information about thresholds, see
“Threshold Configuration (Repository)” in Understanding Sun Master Index Configuration
Options (Repository)).

Master Index Primary Function Processing Logic
(Repository)
The primary functions of a master index application can be performed from the Enterprise
Data Manager or can be called from the Collaborations in the master index project. Whether
potential duplicates are evaluated after a call to any of these functions is dependent on the
update mode settings. Potential duplicates are only processed against the single best record
(SBR) and not the system records. These functions are all located in the MasterController
class, and are fully described in the Sun Master Index Javadocs. In the following diagrams,
significant fields for potential duplicate processing include fields defined for matching and
fields included in the blocking query used for matching. In all of the methods described below,
an entry is made in the transaction history table (sbyn_transaction).

The following topics describe the logic for each primary master index function:

■ “activateEnterpriseObject” on page 23
■ “activateSystemObject” on page 23
■ “addSystemObject” on page 24
■ “createEnterpriseObject” on page 24
■ “deactivateEnterpriseObject” on page 24
■ “deactivateSystemObject” on page 24
■ “deleteSystemObject” on page 25
■ “mergeEnterpriseObject” on page 26
■ “mergeSystemObject” on page 27
■ “transferSystemObject” on page 29
■ “undoAssumedMatch” on page 30
■ “unmergeEnterpriseObject” on page 31
■ “unmergeSystemObject” on page 32
■ “updateEnterpriseDupRecalc” on page 34
■ “updateEnterpriseObject” on page 35
■ “updateSystemObject” on page 36

Understanding Master Index Operational Processes (Repository)

Understanding Sun Master Index Processing (Repository) • December 200822

http://developers.sun.com/docs/javacaps/reference/820-2719/sbevwstcfg.html
http://developers.sun.com/docs/javacaps/reference/820-2719/sbevwstcfg.html

activateEnterpriseObject
This method reactivates an enterprise record. The EDM calls this method when you select an
EUID and then click Activate EUID=EUID_number, (where EUID_number is the EUID of the
enterprise record to reactivate). Since all potential duplicates were deleted when the EUID was
originally deactivated, potential duplicates are always recalculated, regardless of the update
mode. Figure 7 illustrates the processing steps.

activateSystemObject
This method reactivates a system record. The EDM calls this method when you select a system
from the enterprise record tree and then click Activate system-ID (where system is the system
code and ID is the local ID number for the system record to reactivate). If the update mode is set
to “pessimistic”, the application checks whether any key fields were updated in the SBR. If key
fields were updated, potential duplicates are recalculated for the enterprise record. Figure 8
illustrates the processing steps.

FIGURE 7 activateEnterpriseObject Processing

FIGURE 8 activateSystemObject Processing

Understanding Master Index Operational Processes (Repository)

Understanding Sun Master Index Processing (Repository) 23

addSystemObject
This method adds a system record to an enterprise record. The EDM calls this method when
you add a system record to an existing enterprise record. If the update mode is set to
“pessimistic”, the application checks whether any key fields were updated in the SBR. If key
fields were updated and the update mode is set to pessimistic, potential duplicates are
recalculated for the enterprise record. Figure 9 illustrates the processing steps.

createEnterpriseObject
There are two createEnterpriseObject methods, both of which add a new enterprise record
to the database and bypass any potential duplicate processing. One method takes only one
system record as a parameter and the other takes an array of system records. These methods
cannot be called from the EDM and are designed for use in Collaborations.

deactivateEnterpriseObject
This method deactivates an enterprise record specified by its EUID. The EDM calls this method
when you select an enterprise record and then click Deactivate EUID=EUID_number (where
EUID_number is the EUID of the enterprise record to deactivate). When an enterprise record is
deactivated, all potential duplicate listings for that record are deleted.

deactivateSystemObject
This method deactivates a system record in an enterprise record. The EDM calls this method
when you select a system from the enterprise record tree and then click Deactivate system-ID
(where system is the system code and ID is the local ID number for the system record to
deactivate). If the enterprise record containing this system record has no active system records
remaining, the enterprise record is deactivated and all potential duplicate listings are deleted.
(Note that if the system record is reactivated, then the enterprise record is recreated.) If the
enterprise record has active system records after the transaction and the update mode is set to
“pessimistic”, the application checks whether any key fields were updated in the SBR. If key
fields were updated, potential duplicates are recalculated for the enterprise record. Figure 10
illustrates the processing steps.

FIGURE 9 addSystemObject Processing

Understanding Master Index Operational Processes (Repository)

Understanding Sun Master Index Processing (Repository) • December 200824

deleteSystemObject
Unlike deactivateSystemObject, this method permanently removes a system record from an
enterprise record. This method cannot be called from the EDM. If the enterprise record
containing the deleted system record has no active system records remaining, the enterprise
record is deactivated (even if the enterprise record does have deactivated system records). If the
enterprise record has no remaining system records after the system object is deleted, the
enterprise record is also deleted. In both cases, any potential duplicate listings for that
enterprise record are removed. If the enterprise record has active system records after the
transaction and the update mode is set to “pessimistic”, the application checks whether any key
fields were updated in the SBR. If key fields were updated, potential duplicates are recalculated
for the enterprise record. Figure 11 illustrates the processing steps.

FIGURE 10 deactivateSystemObject Processing

Understanding Master Index Operational Processes (Repository)

Understanding Sun Master Index Processing (Repository) 25

mergeEnterpriseObject
There are four mergeEnterpriseObject methods that merge two enterprise records (see the
Javadocs for more information about each). The EDM calls a merge method twice during a
merge transaction. When you first click the EUID Merge arrow, the method is called with the
calculateOnly parameter set to true in order to display the merge result record for you to view.
When you confirm the merge, the EDM calls this method with the calculateOnly parameter set
to false in order to commit the changes to the database and recalculate potential duplicates if
needed. The method called by the EDM checks the SBRs of the records involved in the merge
against their corresponding SBRs in the database. If the SBRs differ, the merge is not performed
since that means the records were changed by someone else during the merge process.

When this method is called with calculateOnly set to false, the application changes the status of
the merged enterprise record to merged and deletes all potential duplicate listings for the
merged enterprise record. If the update mode is set to pessimistic, the application checks
whether any key fields were updated in the SBR of the surviving enterprise record. If key fields

FIGURE 11 deleteSystemObject Processing

Understanding Master Index Operational Processes (Repository)

Understanding Sun Master Index Processing (Repository) • December 200826

were updated, potential duplicates are recalculated for the enterprise record. Figure 12
illustrates the processing steps, and includes the check for SBR differences, which only occurs in
two of the merge methods.

mergeSystemObject
There are four methods that merge two system records that are either from the same enterprise
record or from two different enterprise records (for more information about each method, see
the Javadocs provided with Sun Master Index). The system records must originate from the
same external system. The EDM calls this method twice during a system record merge
transaction. When you first click the LID Merge arrow, the method is called with the
calculateOnly parameter set to true in order to display the merge result record for you to view.
When you confirm the merge, the EDM calls this method with the calculateOnly parameter set
to false in order to commit the changes to the database and recalculate potential duplicates if
needed. Two of the merge methods compare the SBRs of the records with their corresponding
SBRs in the database to ensure that no updates were made to the records before finalizing the
merge.

When this method is called with calculateOnly set to “false”, the application changes the status
of the merged system record to “merged”. If the system records were merged within the same
enterprise record and the update mode is set to “pessimistic”, the application checks whether
any key fields were updated in the SBR. If key fields were updated, potential duplicates are
recalculated for the enterprise record.

FIGURE 12 mergeEnterpriseObject Processing

Understanding Master Index Operational Processes (Repository)

Understanding Sun Master Index Processing (Repository) 27

If the system records originated from two different enterprise records and the enterprise record
that contained the unkept the system record no longer has any active system records but does
contain inactive system records, that enterprise record is deactivated and all associated
potential duplicate listings are deleted. (Note that if the system records are unmerged, the
enterprise record is reactivated.) If the enterprise record that contained the unkept system
record no longer has any system records, that enterprise record is deleted along with any
potential duplicate listings.

If both enterprise records are still active and the update mode is set to pessimistic, the
application checks whether any key fields were updated in the SBR for each enterprise record. If
key fields were updated, potential duplicates are recalculated for each enterprise record.
Figure 13 illustrates the processing steps, and includes the check for SBR differences, which only
occurs in two of the merge methods.

Understanding Master Index Operational Processes (Repository)

Understanding Sun Master Index Processing (Repository) • December 200828

transferSystemObject
This method transfers a system record from one enterprise record to another. This method is
not called from the EDM. If the enterprise record from which the system record was transferred
no longer has any active system records (but still contains deactivated system records), that
enterprise record is deactivated and any associated potential duplicate listings are removed. If
the enterprise record from which the system record was transferred no longer has any system
records, that enterprise record is deleted along with all associated potential duplicate listings. If
both enterprise records are still active and the update mode is set to pessimistic, the application

FIGURE 13 mergeSystemObject Processing

Understanding Master Index Operational Processes (Repository)

Understanding Sun Master Index Processing (Repository) 29

checks whether any key fields were updated in the SBR for each enterprise record. If key fields
were updated, potential duplicates are recalculated for each enterprise record. Figure 14
illustrates the processing steps.

undoAssumedMatch
This method reverses an assumed match made by the master index application, using the
information from the system record that created the assumed match to create a new enterprise
record. The EDM calls this method when you confirm the transaction after selecting Undo
Assumed Match. Potential duplicates are calculated for the new record regardless of the update
mode. If the update mode is set to pessimistic, the application checks whether any key fields

FIGURE 14 transferSystemObject Processing

Understanding Master Index Operational Processes (Repository)

Understanding Sun Master Index Processing (Repository) • December 200830

were updated in the SBR of the original enterprise record. If key fields were updated, potential
duplicates are recalculated for the enterprise record. Figure 15 illustrates the processing steps.

unmergeEnterpriseObject
There are two methods that unmerge two enterprise records that were previously merged. One
method unmerges the record without checking to make sure the SBR of the active record was
not changed by another process before finalizing the merge and one method performs the SBR
check (see the Javadocs provided with Sun Master Index for more information). The EDM calls
this method twice during an unmerge transaction. When you first click Unmerge, the method is
called with the calculateOnly parameter set to true in order to display the unmerge result
records for you to view. When you confirm the unmerge, the EDM calls this method with the
calculateOnly parameter set to false in order to commit the changes to the database and
recalculate potential duplicates.

FIGURE 15 undoAssumedMatch Processing

Understanding Master Index Operational Processes (Repository)

Understanding Sun Master Index Processing (Repository) 31

When this method is called with calculateOnly set to false, the application changes the status of
the merged enterprise record back to active and recalculates potential duplicate listings for the
record. If the update mode is set to “pessimistic”, the application checks whether any key fields
were updated in the SBR of the enterprise record that was still active after the merge. If key fields
were updated, potential duplicates are recalculated for that enterprise record. Figure 16
illustrates the processing steps and includes the check for SBR updates.

unmergeSystemObject
There are two methods that unmerge two system records that had previously been merged. One
method unmerges the record without checking to make sure the SBR of the active record was
not changed by another process before finalizing the merge and one method performs the SBR
check (see the Javadocs provided with Sun Master Index for more information). The EDM calls
this method twice during a system record unmerge transaction. When you first click Unmerge,
the method is called with the calculateOnly parameter set to true in order to display the
unmerge result record for you to view. When you confirm the unmerge, the EDM calls this
method with the calculateOnly parameter set to false in order to commit the changes to the
database and recalculate potential duplicates if needed.

FIGURE 16 unmergeEnterpriseObject Processing

Understanding Master Index Operational Processes (Repository)

Understanding Sun Master Index Processing (Repository) • December 200832

When this method is called with calculateOnly set to false, the application changes the status of
the merged system record back to active. If the source enterprise record (the record that
contained the merge result system record after the merge) has more than one active system
record after the unmerge and the update mode is set to pessimistic, the application checks
whether any key fields were updated in that record. If key fields were updated, potential
duplicates are recalculated for the source enterprise record.

If the source enterprise record has only one active system, potential duplicate processing is
performed regardless of the update mode and of whether there were any changes to key fields. If
the update mode is set to pessimistic, the application checks whether any key fields were
updated in the SBR for destination enterprise record. If key fields were updated, potential
duplicates are recalculated for each enterprise record. Figure 17 illustrates the processing steps,
assuming the system record unmerge involves two enterprise records and including the check
for SBR updates.

Understanding Master Index Operational Processes (Repository)

Understanding Sun Master Index Processing (Repository) 33

updateEnterpriseDupRecalc
This method updates the database to reflect new values for an enterprise record. It processes
records in the same manner as updateEnterpriseObject, but provides an override flag for the
update mode that allows you to defer potential duplicate processing. The EDM does not call this
method. If the enterprise record is deactivated during the update, potential duplicates are
deleted for that record. If the enterprise record was changed during the transaction but is still
active and the performPessimistic parameter is set to true, the application checks whether any
key fields were updated in the SBR of the enterprise record. If key fields were updated, potential
duplicates are recalculated. Figure 18 illustrates the processing steps.

FIGURE 17 unmergeSystemObject Processing

Understanding Master Index Operational Processes (Repository)

Understanding Sun Master Index Processing (Repository) • December 200834

updateEnterpriseObject
This method updates the database to reflect new values for an enterprise record, and is called
from the EDM when you commit changes to an existing record. If the enterprise record is
deactivated during the update, potential duplicates are deleted for that record. If the enterprise
record is still active, was changed during the transaction, and the update mode is set to
pessimistic, the application checks whether any key fields were updated in the SBR of the
enterprise record. If key fields were updated, potential duplicates are recalculated. Figure 19
illustrates the processing steps.

FIGURE 18 updateEnterpriseDupRecalc Processing

Understanding Master Index Operational Processes (Repository)

Understanding Sun Master Index Processing (Repository) 35

updateSystemObject
There are two methods that update the database to reflect new values for a system record. One
method updates the record without checking that there were no concurrent changes to the
record, and the other method compares the SBR of the associated enterprise object in the
transaction with that in the database to be sure there were no concurrent changes (see the
Javadocs for more information). The EDM calls the method that checks for SBR changes when
you commit changes to an existing system record.

If the enterprise record is deactivated during the update, potential duplicates are deleted for that
record. If the enterprise record was changed during the transaction, the enterprise record is still
active, and the update mode is set to pessimistic, the application checks whether any key fields
were updated in the SBR of the enterprise record. If key fields were updated, potential duplicates
are recalculated. Figure 20 illustrates the processing steps and includes the check for SBR
changes though it only occurs with one of the methods.

FIGURE 19 updateEnterpriseObject Processing

Understanding Master Index Operational Processes (Repository)

Understanding Sun Master Index Processing (Repository) • December 200836

The Master Index Database Structure (Repository)
The following topics provide information about the master index database, including
descriptions of each table and a sample entity relationship diagram. All information in these
topics pertains to the default version of the database. Your implementation might vary
depending on the customization made to the Object Definition and to the scripts used to create
the master index database.

■ “About the Master Index Database (Repository)” on page 38
■ “Master Index Database Table Details (Repository)” on page 40
■ “Sample Master Index Database Model (Repository)” on page 58

FIGURE 20 updateSystemObject Processing

The Master Index Database Structure (Repository)

Understanding Sun Master Index Processing (Repository) 37

About the Master Index Database (Repository)
The master index database stores information about the entities being indexed, such as people
or businesses. The database stores records from local systems in their original form and also
stores a record for each object that is considered to be the single best record (SBR).

The structure of the database tables that store object information is dependent on the
information specified in the Object Definition file created by the wizard. Sun Master Index
generates a script to create the tables and fields in the database based on the information in the
Object Definition file. If you update the Object Definition file, regenerating the application
updates the database scripts accordingly. This allows you to define the database as you define
the object structure.

While most of the structures created in the database are based on information in the Object
Definition file, some of the tables, such as sbyn_seq_table and sbyn_common_detail, are
standard for all implementations. The database includes tables that store information about the
objects defined for the master index application as well as tables that store common
maintenance information, transactional information, and external system information. The
database includes the tables listed in Table 2.

TABLE 2 Master Index Database Tables

Table Name Description

SBYN_OBJECT_NAME Stores information for the parent objects associated with local system
records. This database table is named by the parent object name. For
example, a table storing company objects is named sbyn_company; a
table storing person objects is named sbyn_person. Only one table
stores parent object information for system records.

SBYN_OBJECT_NAMESBR Stores information for the parent objects associated with single best
records. This database table is named by the parent object name
followed by “SBR”. For example, a table storing company objects is
named sbyn_companysbr; a table storing person objects is named
sbyn_personsbr. Only one table stores parent object information for
SBRs.

SBYN_CHILD_OBJECT Stores information for child objects associated with local system
records. These database tables are named by their object name. For
example, a table storing address objects is named sbyn_address; a table
storing comment objects is named sbyn_comment. One database table
is created for each child object defined in the object structure.

The Master Index Database Structure (Repository)

Understanding Sun Master Index Processing (Repository) • December 200838

TABLE 2 Master Index Database Tables (Continued)
Table Name Description

SBYN_CHILD_OBJECTSBR Stores information for child objects associated with a single best
record. These database tables are named by their object name followed
by “SBR”. For example, a table storing address objects is named
sbyn_addresssbr; a table storing comment objects is named
sbyn_commentsbr. One SBR database table is created for each child
object defined in the object structure.

SBYN_APPL Lists the applications with which each item in stc_common_header is
associated.

SBYN_ASSUMEDMATCH Stores information about records that were automatically matched by
the master index application.

SBYN_AUDIT Stores audit information about each time object information is
accessed from the EDM.

Note – If audit logging is enabled, this table can grow very large and
might require periodic archiving.

SBYN_COMMON_DETAIL Contains all of the processing codes associated with the items listed in
sbyn_common_header.

SBYN_COMMON_HEADER Contains a list of the different types of processing codes used by the
master index application. These types are also associated with the
drop-down lists you can specify for the EDM.

SBYN_ENTERPRISE Stores the local ID and system pairs, along with their associated EUID.

SBYN_MERGE Stores information about all merge and unmerge transactions
processed from either external systems or the EDM.

SBYN_OVERWRITE Stores information about fields that are locked for updates in an SBR.

SBYN_POTENTIALDUPLICATES Stores a list of potential duplicate records and flags potential duplicate
pairs that have been resolved.

SBYN_SEQ_TABLE Stores the sequential codes that are used in other tables in the database,
such as EUIDs, transaction numbers, and so on.

SBYN_SYSTEMOBJECT Stores information about the system objects in the database, including
the local ID and system, create date and user, status, and so on.

SBYN_SYSTEMS Stores a list of systems in your organization, along with defining
information.

SBYN_SYSTEMSBR Stores transaction information about an SBR, such as the create or
update date, status, and so on.

SBYN_TRANSACTION Stores a history of changes to each record stored in the database.

The Master Index Database Structure (Repository)

Understanding Sun Master Index Processing (Repository) 39

TABLE 2 Master Index Database Tables (Continued)
Table Name Description

SBYN_USER_CODE Like the sbyn_common_detail table, this table stores processing codes
and drop-down list values. This table contains additional validation
information that allows you to validate information in a dependent
field (for example, to validate cities against the entered postal code).

Master Index Database Table Details (Repository)
The tables in the following topics describe each column in the default database tables.

■ “SBYN_OBJECT_NAME” on page 41
■ “SBYN_OBJECT_NAMESBR” on page 41
■ “SBYN_CHILD_OBJECT” on page 42
■ “SBYN_CHILD_OBJECTSBR” on page 43
■ “SBYN_APPL” on page 43
■ “SBYN_ASSUMEDMATCH” on page 44
■ “SBYN_AUDIT” on page 45
■ “SBYN_COMMON_DETAIL” on page 46
■ “SBYN_COMMON_HEADER” on page 46
■ “SBYN_ENTERPRISE” on page 47
■ “SBYN_MERGE” on page 48
■ “SBYN_OVERWRITE” on page 48
■ “SBYN_POTENTIALDUPLICATES” on page 49
■ “SBYN_SEQ_TABLE” on page 51
■ “SBYN_SYSTEMOBJECT” on page 52
■ “SBYN_SYSTEMS” on page 53
■ “SBYN_SYSTEMSBR” on page 55
■ “SBYN_TRANSACTION” on page 56
■ “SBYN_USER_CODE” on page 57

The columns are identical for Oracle and SQL Server databases, but the data types differ in some
cases. Table 3 lists the data type differences, and the differences are noted in the Data Type
column for each table in this section.

TABLE 3 Oracle and SQL Server Data Type Differences

Oracle Data Type SQL Server Data Type

BLOB Varbinary(MAX)

DATE DateTime

INTEGER Int

The Master Index Database Structure (Repository)

Understanding Sun Master Index Processing (Repository) • December 200840

TABLE 3 Oracle and SQL Server Data Type Differences (Continued)
Oracle Data Type SQL Server Data Type

LONG Varchar(MAX)

NUMBER Numeric

TIMESTAMP DateTime

VARCHAR2 Varchar

SBYN_OBJECT_NAME
This table stores the parent object in each system record received by the master index
application. It is linked to the tables that store each child object in the system record by the
object_nameid column (where object_name is the name of the parent object). This table
contains the columns listed below regardless of the design of the object structure, and also
contains a column for each field you defined for the parent object in the Object Definition file.
Columns to store standardized or phonetic versions of certain fields are automatically added
when you specify certain match types in the wizard.

The differences in data types between Oracle and SQL Server are noted in Table 4. The Oracle
type is on the first line, and the SQL Server type is on the second.

TABLE 4 SBYN_OBJECT_NAME Table Description

Column Name Data Type Column Description

SYSTEMCODE VARCHAR2(20)

Varchar(20)

The system code for the system record.

LID VARCHAR2(25)

Varchar(25)

A local identification code assigned by the specified
system.

OBJECT_NAMEID VARCHAR2(20)

Varchar(20)

A unique ID for the parent object in a system record.
This is named according to the parent object. For
example, if the parent object is “Company”, the name
of this column is “companyid”; if the parent object is
“Person”, the name of this column is “personid”.

FIELD_NAME Varies The name of each field in the parent object. A
database column is created for each field, and the data
type depends on the type specified in the Object
Definition file.

SBYN_OBJECT_NAMESBR
This table stores the parent object of the SBR for each enterprise object in the master index
database. It is linked to the tables that store each child object in the SBR by the object_nameid
column (where object_name is the name of the parent object). This table contains the columns

The Master Index Database Structure (Repository)

Understanding Sun Master Index Processing (Repository) 41

listed below regardless of the design of the object structure, and also contains a column for each
field defined for the parent object in the Object Definition file. In addition, columns to store
standardized or phonetic versions of certain fields are automatically added when you specify
certain match types in the wizard.

The differences in data types between Oracle and SQL Server are noted in Table 5. The Oracle
type is on the first line, and the SQL Server type is on the second.

TABLE 5 SBYN_OBJECT_NAMESBR Table Description

Column Name Data Type Column Description

EUID VARCHAR2(20)

Varchar(20)

The enterprise unique identifier assigned by the
master index application.

OBJECT_NAMEID VARCHAR2(20)

Varchar(20)

A unique ID for the parent object in a system record.
This is named according to the parent object. For
example, if the parent object is “Company”, the name
of this column is “companyid”; if the parent object is
“Person”, the name of this column is “personid”.

FIELD_NAME Varies The name of each field in the parent object. A
database column is created for each field, and the data
type depends on the type specified in the Object
Definition file.

SBYN_CHILD_OBJECT
The sbyn_child_object tables (where child_object is the name of a child object in the object
structure) store information about the child objects associated with a system record in the
master index application. All tables storing child object information for system records contain
the columns listed below. The remaining columns are defined by the fields you specify for each
child object in the object structure, including any standardized or phonetic fields.

The differences in data types between Oracle and SQL Server are noted in Table 6. The Oracle
type is on the first line, and the SQL Server type is on the second.

TABLE 6 SBYN_CHILD_OBJECT and SBYN_CHILD_OBJECTSBR Table Description

Column Name Data Type Column Description

OBJECT_NAMEID VARCHAR2(20)

Varchar(20)

The unique ID for the parent object associated with
the child object in the system record.

CHILD_OBJECTID VARCHAR2(20)

Varchar(20)

The unique ID for each record in the table. This
column cannot be null.

The Master Index Database Structure (Repository)

Understanding Sun Master Index Processing (Repository) • December 200842

TABLE 6 SBYN_CHILD_OBJECT and SBYN_CHILD_OBJECTSBR Table Description (Continued)
Column Name Data Type Column Description

FIELD_NAME Varies The name of each field in the child object. A database
column is created for each field, and the data type
depends on the type specified in the Object
Definition file.

SBYN_CHILD_OBJECTSBR
The sbyn_child_objectsbr tables (where child_object is the name of a child object in the object
structure) store information about the child objects associated with an SBR in the master index
application. All tables storing child object information for SBRs contain the columns listed
below. The remaining columns are defined by the fields you specify for each child object in the
Object Definition file, including any standardized or phonetic fields.

The differences in data types between Oracle and SQL Server are noted in Table 7. The Oracle
type is on the first line, and the SQL Server type is on the second.

TABLE 7 SBYN_CHILD_OBJECT and SBYN_CHILD_OBJECTSBR Table Description

Column Name Data Type Column Description

OBJECT_NAMEID VARCHAR2(20)

Varchar(20)

The unique ID for the parent object associated with
the child object in the SBR.

CHILD_OBJECTID VARCHAR2(20)

Varchar(20)

The unique ID for each record in the table. This
column cannot be null.

FIELD_NAME Varies The name of each field in the child object. A database
column is created for each field, and the data type
depends on the type specified in the Object
Definition file.

SBYN_APPL
This table stores information about the applications used in the master index system. The
differences in data types between Oracle and SQL Server are noted in Table 8. The Oracle type is
on the first line, and the SQL Server type is on the second.

TABLE 8 SBYN_APPL Table Description

Column Name Data Type Description

APPL_ID NUMBER(10)

Numeric(10, 0)

The unique sequence number code for the listed
application.

The Master Index Database Structure (Repository)

Understanding Sun Master Index Processing (Repository) 43

TABLE 8 SBYN_APPL Table Description (Continued)
Column Name Data Type Description

CODE VARCHAR2(8)

Varchar(8)

A unique code for the application.

DESCR VARCHAR2(30)

Varchar(30)

A brief description of the application.

READ_ONLY CHAR(1) An indicator of whether the current entry can be
modified. If the value of this column is “Y”, the entry
cannot be modified.

CREATE_DATE DATE

datetime

The date the application entry was created.

CREATE_USERID VARCHAR2(20)

Varchar(20)

The logon ID of the user who created the application
entry.

SBYN_ASSUMEDMATCH
This table maintains a record of each assumed match transaction that occurs in the master
index application, allowing you to review these transactions and, if necessary, reverse an
assumed match. This table can grow quite large over time and might require periodic archiving.
The differences in data types between Oracle and SQL Server are noted in Table 9. The Oracle
type is on the first line, and the SQL Server type is on the second.

TABLE 9 SBYN_ASSUMEDMATCH Table Description

Column Name Data Type Description

ASSUMEDMATCHID VARCHAR2(20)

Varchar(20)

The unique ID for the assumed match transaction.

EUID VARCHAR2(20)

Varchar(20)

The EUID into which the incoming record was
merged.

SYSTEMCODE VARCHAR2(20)

Varchar(20)

The system code for the source system (that is, the
system from which the incoming record originated).

LID VARCHAR2(25)

Varchar(25)

The local ID of the record in the source system.

WEIGHT VARCHAR2(20)

Varchar(20)

The matching weight between the incoming record
and the EUID record into which it was merged.

The Master Index Database Structure (Repository)

Understanding Sun Master Index Processing (Repository) • December 200844

TABLE 9 SBYN_ASSUMEDMATCH Table Description (Continued)
Column Name Data Type Description

TRANSACTION NUMBER VARCHAR2(20)

Varchar(20)

The transaction number associated with the assumed
match.

SBYN_AUDIT
This table maintains a log of each instance in which any of the master index database tables are
accessed through the EDM. This includes each time a record appears on a search results page, a
comparison page, the View/Edit page, and so on. This log is only maintained if the EDM is
configured for it. This table can grow very large over time and might require periodic archiving.
The differences in data types between Oracle and SQL Server are noted in Table 10. The Oracle
type is on the first line, and the SQL Server type is on the second.

TABLE 10 SBYN_AUDIT Table Description

Column Name Data Type Description

AUDIT_ID VARCHAR2(20)

Varchar(20)

The unique identification code for the audit record.
This column cannot be null.

PRIMARY_OBJECT_TYPE VARCHAR2(20)

Varchar(20)

The name of the parent object as defined in the
Object Definition file.

EUID VARCHAR2(15)

Varchar(15)

The EUID whose information was accessed during
an EDM transaction.

EUID_AUX VARCHAR2(15)

Varchar(15)

The second EUID whose information was accessed
during an EDM transaction. A second EUID appears
when viewing information about merge and
unmerge transactions, comparisons, and so on.

FUNCTION (Oracle)

OPERATION (SQL Server)

VARCHAR2(32)

Varchar(32)

The type of transaction that caused the audit record
to be written. This column cannot be null.

DETAIL VARCHAR2(120)

Varchar(120)

A brief description of the transaction that caused the
audit record to be written.

CREATE_DATE DATE

datetime

The date the transaction that created the audit record
was performed. This column cannot be null.

CREATE_BY VARCHAR2(20)

Varchar(20)

The user ID of the person who performed the
transaction that caused the audit log. This column
cannot be null.

The Master Index Database Structure (Repository)

Understanding Sun Master Index Processing (Repository) 45

SBYN_COMMON_DETAIL
This table stores the processing codes and descriptions for all of the common maintenance data
elements. This is the detail table for sbyn_common_header. Each data element in
sbyn_common_detail is associated with a data type in sbyn_common_header by the
common_header_id column. None of the columns in this table can be null. The differences in
data types between Oracle and SQL Server are noted in Table 11. The Oracle type is on the first
line, and the SQL Server type is on the second.

TABLE 11 SBYN_COMMON_DETAIL Table Description

Column Name Data Type Description

COMMON_DETAIL_ID NUMBER(10)

numeric(10, 0)

The unique identification code of the common table
data element.

COMMON_HEADER_ID NUMBER(10)

numeric(10, 0)

The unique identification code of the common table
data type associated with the data element (as stored
in the common_header_id column of the
sbyn_common_header table).

CODE VARCHAR2(20)

Varchar(20)

The processing code for the common table data
element.

DESCR VARCHAR2(50)

Varchar(50)

A description of the common table data element.

READ_ONLY CHAR(1) An indicator of whether the common table data
element can be modified.

CREATE_DATE DATE

datetime

The date the data element record was created.

CREATE_USERID VARCHAR2(20)

Varchar(20)

The user ID of the person who created the data
element record.

SBYN_COMMON_HEADER
This table stores a description of each type of common maintenance data and is the header table
for sbyn_common_detail. Together, these tables store the processing codes and drop-down
menu descriptions for each common table data type. For a person index, common table data
types might include Religion, Language, Marital Status, and so on. For a business index,
common table data types might include Address Type, Phone Type, and so on. None of the
columns in this table can be null.

The differences in data types between Oracle and SQL Server are noted in Table 12. The Oracle
type is on the first line, and the SQL Server type is on the second.

The Master Index Database Structure (Repository)

Understanding Sun Master Index Processing (Repository) • December 200846

TABLE 12 SBYN_COMMON_HEADER Table Description

Column Name Data Type Description

COMMON_HEADER_ID VARCHAR2(10)

Varchar(10)

The unique identification code of the common table
data type.

APPL_ID VARCHAR2(10)

Varchar(10)

The application ID from sbyn_appl that corresponds
to the application for which the common table data
type is used.

CODE VARCHAR2(8)

Varchar(8)

A unique processing code for the common table data
type.

DESCR VARCHAR2(50)

Varchar(50)

A description of the common table data type.

READ_ONLY CHAR(1) An indicator of whether an entry in the table is
read-only (if this column is set to “Y”, the entry is
read-only).

MAX_INPUT_LEN NUMBER(10)

numeric(10, 0)

The maximum number of characters allowed in the
code column for the common table data type.

TYP_TABLE_CODE VARCHAR2(3)

Varchar(3)

This column is not currently used.

CREATE_DATE DATE

datetime

The date the common table data type record was
created.

CREATE_USERID VARCHAR2(20)

Varchar(20)

The user ID of the person who created the common
table data type record.

SBYN_ENTERPRISE
This table stores a list of all the system and local ID pairs assigned to the enterprise records in
the database, along with the associated EUID for each pair. This table is linked to
sbyn_systemobject by the systemcode and lid columns, and is linked to sbyn_systemsbr by the
euid column. This table maintains links between the SBR and its associated system objects.
None of the columns in this table can be null.

The differences in data types between Oracle and SQL Server are noted in Table 13. The Oracle
type is on the first line, and the SQL Server type is on the second.

The Master Index Database Structure (Repository)

Understanding Sun Master Index Processing (Repository) 47

TABLE 13 SBYN_ENTERPRISE Table Description

Column Name Data Type Description

SYSTEMCODE VARCHAR2(20)

Varchar(20)

The processing code of the system associated with the
local ID.

LID VARCHAR2(25)

Varchar(25)

The local ID associated with the system and EUID.

EUID VARCHAR2(20)

Varchar(20)

The EUID associated with the local ID and system.

SBYN_MERGE
This table maintains a record of each merge transaction that occurs in the master index
application, both through the EDM and from external systems. It also records any unmerges
that occur. The differences in data types between Oracle and SQL Server are noted in Table 14.
The Oracle type is on the first line, and the SQL Server type is on the second.

TABLE 14 SBYN_MERGE Table Description

Column Name Data Type Description

MERGE_ID VARCHAR2(20)

Varchar(20)

The unique, sequential identification code of merge
record. This column cannot be null.

KEPT_EUID VARCHAR2(20)

Varchar(20)

The EUID of the record that was retained after the
merge transaction. This column cannot be null.

MERGED_EUID VARCHAR2(20)

Varchar(20)

The EUID of the record that was not retained after
the merge transaction.

MERGE_TRANSACTIONNUM VARCHAR2(20)

Varchar(20)

The transaction number associated with the merge
transaction. This column cannot be null.

UNMERGE_TRANSACTIONNUMVARCHAR2(20)

Varchar(20)

The transaction number associated with the unmerge
transaction.

SBYN_OVERWRITE
This table stores information about the fields that are locked for updates in the SBRs. It stores
the EUID of the SBR, the ePath to the field, and the current locked value of the field. The
differences in data types between Oracle and SQL Server are noted in Table 15. The Oracle type
is on the first line, and the SQL Server type is on the second.

The Master Index Database Structure (Repository)

Understanding Sun Master Index Processing (Repository) • December 200848

TABLE 15 SBYN_OVERWRITE Table Description

Column Name Data Type Description

EUID VARCHAR2(20)

Varchar(20)

The EUID of an SBR containing fields for which the
overwrite lock is set.

PATH VARCHAR2(200)

Varchar(20)

The ePath to a field that is locked in an SBR from the
EDM.

TYPE VARCHAR2(20)

Varchar(20)

The data type of a field that is locked in an SBR.

INTEGERDATA NUMBER(38)

numeric(38, 0)

The data that is locked for overwrite in an integer
field.

BOOLEANDATA NUMBER(38)

numeric(38, 0)

The data that is locked for overwrite in a boolean
field.

STRINGDATA VARCHAR2(200)

Varchar(200)

The data that is locked for overwrite in a string field.

BYTEDATA CHAR(2) The data that is locked for overwrite in a byte field.

LONGDATA LONG

varchar(MAX)

The data that is locked for overwrite in a long integer
field.

DATEDATA DATE

datetime

The data that is locked for overwrite in a date field.

FLOATDATA NUMBER(38,4)

numeric(38, 4)

The data that is locked for overwrite in a floating
decimal field.

TIMESTAMPDATA DATE

datetime

The data that is locked for overwrite in a timestamp
field.

SBYN_POTENTIALDUPLICATES
This table maintains a list of all records that are potential duplicates of one another. It also
maintains a record of whether a potential duplicate pair has been resolved or permanently
resolved. The differences in data types between Oracle and SQL Server are noted in Table 16.
The Oracle type is on the first line, and the SQL Server type is on the second.

The Master Index Database Structure (Repository)

Understanding Sun Master Index Processing (Repository) 49

TABLE 16 SBYN_POTENTIALDUPLICATES Table Description

Column Name Data Type Description

POTENTIALDUPLICATEID VARCHAR2(20)

Varchar(20)

The unique identification number of the potential
duplicate transaction.

WEIGHT VARCHAR2(20)

Varchar(20)

The matching weight of the potential duplicate pair.

TYPE VARCHAR2(15)

Varchar(15)

This column is reserved for future use.

DESCRIPTION VARCHAR2(120)

Varchar(120)

A description of what caused the potential duplicate
flag.

STATUS VARCHAR2(15)

Varchar(15)

The status of the potential duplicate pair. The
possible values are:
■ U – Unresolved
■ R – Resolved
■ A – Resolved permanently

HIGHMATCHFLAG VARCHAR2(15)

Varchar(15)

This column is reserved for future use.

RESOLVEDUSER VARCHAR2(30)

Varchar(30)

The user ID of the person who resolved the potential
duplicate status.

RESOLVEDDATE DATE

datetime

The date the potential duplicate status was resolved.

RESOLVEDCOMMENT VARCHAR2(120)

Varchar(120)

Comments regarding the resolution of the duplicate
status. This is not currently used.

EUID2 VARCHAR2(20)

Varchar(20)

The EUID of the second record in the potential
duplicate pair.

TRANSACTIONNUMBER VARCHAR2(20)

Varchar(20)

The transaction number associated with the
transaction that produced the potential duplicate
flag.

EUID1 VARCHAR2(20)

Varchar(20)

The EUID of the first record in the potential
duplicate pair.

The Master Index Database Structure (Repository)

Understanding Sun Master Index Processing (Repository) • December 200850

SBYN_SEQ_TABLE
This table controls and maintains a record of the sequential identification numbers used in
various tables in the database, ensuring that each number is unique and assigned in order.
Several of the ID numbers maintained in this table are determined by the object structure. The
numbers are assigned sequentially, but are cached in chunks of 1000 numbers for optimization
(so the application does not need to query the sbyn_seq_table table for each transaction). The
chunk size for the EUID sequence is configurable. If the server is reset before all allocated
numbers are used, the unused numbers are discarded and never used, and numbering is
restarted at the beginning of the next 1000-number chunk.

The differences in data types between Oracle and SQL Server are noted in Table 17. The Oracle
type is on the first line, and the SQL Server type is on the second.

TABLE 17 SBYN_SEQ_TABLE Table Description

Column Name Data Type Description

SEQ_NAME VARCHAR2(20)

Varchar(20)

The name of the object for which the sequential ID is
stored.

SEQ_COUNT NUMBER(38)

numeric(38, 0)

The current value of the sequence. The next record
will be assigned the current value plus one.

The default sequence numbers are listed in Table 18.

TABLE 18 Default Sequence Numbers

Sequence Name Description

EUID The sequence number that determines how EUIDs are assigned to new
records. The chunk size for the EUID sequence number is configurable in
the Threshold file.

POTENTIALDUPLICATE The sequence number assigned each potential duplicate transaction record
in sbyn_potentialduplicates (column name “potentialduplicateid”).

TRANSACTIONNUMBER The sequence number assigned to each transaction in the master index
application. This number is stored in sbyn_transaction (column name
“transactionnumber”).

ASSUMEDMATCH The sequence number assigned to each assumed match transaction record
in sbyn_assumedmatch (column name “assumedmatchid”).

AUDIT The sequence number assigned to each audit log record in sbyn_audit
(column name “audit_id”).

The Master Index Database Structure (Repository)

Understanding Sun Master Index Processing (Repository) 51

TABLE 18 Default Sequence Numbers (Continued)
Sequence Name Description

MERGE The sequence number assigned to each merge transaction in sbyn_merge
(column name “merge_id”).

SBYN_APPL The sequence number assigned to each application listed in sbyn_appl
(column name “appl_id”)

SBYN_COMMON_HEADER The sequence number assigned to each common table data type listed in
sbyn_common_header (column name “common_header_id”).

SBYN_COMMON_DETAIL The sequence number assigned to each common table data element listed in
sbyn_common_detail (column name “common_detail_id”).

OBJECT_NAME Each parent and child object system record table is assigned a sequential ID.
The column names are named after the object (for example, sbyn_address
has a sequential column named “addressid”). The parent object ID is
included in each child object table.

OBJECT_NAMESBR Each parent and child object SBR table is assigned a sequential ID. The
column names are named after the object (for example, sbyn_addresssbr has
a sequential column named “addressid”). The parent object ID is included
in each child object SBR table.

SBYN_SYSTEMOBJECT
This table stores information about the system records in the database, including their local ID
and source system pairs. It also stores transactional information, such as the create or update
date and function. The differences in data types between Oracle and SQL Server are noted in
Table 19. The Oracle type is on the first line, and the SQL Server type is on the second.

TABLE 19 SBYN_SYSTEMOBJECT Table Description

Column Name Data Type Description

SYSTEMCODE VARCHAR2(20)

Varchar(20)

The processing code of the system associated with the
local ID. This column cannot be null.

LID VARCHAR2(25)

Varchar(25)

The local ID associated with the system and EUID
(the associated EUID is found in sbyn_enterprise).
This column cannot be null.

CHILDTYPE VARCHAR2(20)

Varchar(20)

The type of object being processed (currently only
the name of the parent object). This column is
reserved for future use.

CREATEUSER VARCHAR2(30)

Varchar(30)

The user ID of the person who created the system
record.

The Master Index Database Structure (Repository)

Understanding Sun Master Index Processing (Repository) • December 200852

TABLE 19 SBYN_SYSTEMOBJECT Table Description (Continued)
Column Name Data Type Description

CREATEFUNCTION VARCHAR2(20)

Varchar(20)

The type of transaction that created the system
record.

CREATEDATE DATE

datetime

The date the system record was created.

UPDATEUSER VARCHAR2(30)

Varchar(30)

The user ID of the person who last updated the
system record.

UPDATEFUNCTION VARCHAR2(20)

Varchar(20)

The type of transaction that last updated the system
record.

UPDATEDATE DATE

datetime

The date the system record was last updated.

STATUS VARCHAR2(15)

Varchar(15)

The status of the system record. The status can be one
of these values:
■ active
■ inactive
■ merged

SBYN_SYSTEMS
This table stores information about each system integrated into the master index environment,
including the system’s processing code and name, a brief description, the format of the local
IDs, and whether any of the system information should be masked. The differences in data types
between Oracle and SQL Server are noted in Table 20. The Oracle type is on the first line, and
the SQL Server type is on the second.

TABLE 20 SBYN_SYSTEMS Table Description

Column Name Data Type Description

SYSTEMCODE VARCHAR2(20)

Varchar(20)

The unique processing code of the system.

DESCRIPTION VARCHAR2(120)

Varchar(120)

A brief description of the system, or the system name.
This is the value that appears in the tree view panes of
the EDM for each system and local ID pair.

STATUS CHAR(1) The status of the system in the master index
application. “A” indicates active and “D” indicates
deactivated.

The Master Index Database Structure (Repository)

Understanding Sun Master Index Processing (Repository) 53

TABLE 20 SBYN_SYSTEMS Table Description (Continued)
Column Name Data Type Description

ID_LENGTH NUMBER

numeric(38, 0)

The length of the local identifiers assigned by the
system. This length does not include any additional
characters added by the input mask.

FORMAT VARCHAR2(60)

Varchar(60)

The required data pattern for the local IDs assigned
by the system. For more information about possible
values and using Java patterns, see “Patterns” in the
class list for java.util.regex in the Javadocs
provided with the JavaTM 2 Platform, Standard
Edition (J2SETM platform). Note that the data pattern
is also limited by the input mask described below. All
regex patterns are supported if there is no input
mask.

INPUT_MASK VARCHAR2(60)

Varchar(60)

A mask used by the EDM to add punctuation to the
local ID. For example, the input mask
DD-DDD-DDD inserts a hyphen after the second
and fifth characters in an 8-digit ID. These character
types can be used.
■ D – Numeric character
■ L – Alphabetic character
■ A – Alphanumeric character

VALUE_MASK VARCHAR2(60)

Varchar(60)

A mask used to strip any extra characters that were
added by the input mask for database storage. The
value mask is the same as the input mask, but with an
“x” in place of each punctuation mark. Using the
input mask described above, the value mask is
DDxDDDxDDD. This strips the hyphens before
storing the ID.

CREATE_DATE DATE

datetime

The date the system information was inserted into
the database.

CREATE_USERID VARCHAR2(20)

Varchar(20)

The logon ID of the user who inserted the system
information into the database.

UPDATE_DATE DATE

datetime

The most recent date the system’s information was
updated.

UPDATE_USERID VARCHAR2(20)

Varchar(20)

The logon ID of the user who last updated the
system’s information.

The Master Index Database Structure (Repository)

Understanding Sun Master Index Processing (Repository) • December 200854

SBYN_SYSTEMSBR
This table stores transactional information about the system records for the SBR, such as the
create or update date and function. The sbyn_systemsbr table is indirectly linked to the
sbyn_systemobjects table through sbyn_enterprise. The differences in data types between
Oracle and SQL Server are noted in Table 21. The Oracle type is on the first line, and the SQL
Server type is on the second.

TABLE 21 SBYN_SYSTEMSBR Table Description

Column Name Data Type Description

EUID VARCHAR2(20)

Varchar(20)

The EUID associated with system record (the
associated system and local ID are found in
sbyn_enterprise). This column cannot be null.

CHILDTYPE VARCHAR2(20)

Varchar(20)

The type of object being processed (currently only
the name of the parent object). This column is
reserved for future use.

CREATESYSTEM VARCHAR2(20)

Varchar(20)

The system in which the system record was created.

CREATEUSER VARCHAR2(30)

Varchar(30)

The user ID of the person who created the system
record.

CREATEFUNCTION VARCHAR2(20)

Varchar(20)

The type of transaction that created the system
record.

CREATEDATE DATE

datetime

The date the system object was created.

UPDATEUSER VARCHAR2(30)

Varchar(30)

The user ID of the person who last updated the
system record.

UPDATEFUNCTION VARCHAR2(20)

Varchar(20)

The type of transaction that last updated the system
record.

UPDATEDATE DATE

datetime

The date the system object was last updated.

STATUS VARCHAR2(15)

Varchar(15)

The status of the enterprise record. The status can be
one of these values:
■ active
■ inactive
■ merged

The Master Index Database Structure (Repository)

Understanding Sun Master Index Processing (Repository) 55

TABLE 21 SBYN_SYSTEMSBR Table Description (Continued)
Column Name Data Type Description

REVISIONNUMBER NUMBER(38)

numeric(38, 0)

The revision number of the SBR. This is used for
version control.

SBYN_TRANSACTION
This table stores a history of changes made to each record in the master index application,
allowing you to view a transaction history and to undo certain actions, such as merging two
object records. The differences in data types between Oracle and SQL Server are noted in
Table 22. The Oracle type is on the first line and the SQL Server type is on the second. This table
also includes one column that has a different name for Oracle and for SQL Server.

TABLE 22 SBYN_TRANSACTION Table Description

Column Name Data Type Description

TRANSACTIONNUMBER VARCHAR2(20)

Varchar(20)

The unique number of the transaction.

LID1 VARCHAR2(25)

Varchar(25)

This column is reserved for future use.

LID2 VARCHAR2(25)

Varchar(25)

The local ID of the second system record involved in
the transaction.

EUID1 VARCHAR2(20)

Varchar(20)

This column is reserved for future use.

EUID2 VARCHAR2(20)

Varchar(20)

The EUID of the second object record involved in the
transaction.

FUNCTION (Oracle)

OPERATION (SQL Server)

VARCHAR2(20)

Varchar(20)

The type of transaction that occurred, such as update,
add, merge, and so on.

SYSTEMUSER VARCHAR2(30)

Varchar(30)

The logon ID of the user who performed the
transaction.

TIMESTAMP TIMESTAMP

datetime

The date and time the transaction occurred.

DELTA BLOB

varbinary(MAX)

A list of the changes that occurred to system records
as a result of the transaction.

The Master Index Database Structure (Repository)

Understanding Sun Master Index Processing (Repository) • December 200856

TABLE 22 SBYN_TRANSACTION Table Description (Continued)
Column Name Data Type Description

SYSTEMCODE VARCHAR2(20)

Varchar(20)

The processing code of the source system in which
the transaction originated.

LID VARCHAR2(25)

Varchar(25)

The local ID of the system record involved in the
transaction.

EUID VARCHAR2(20)

Varchar(20)

The EUID of the enterprise record involved in the
transaction.

SBYN_USER_CODE
This table is similar to the sbyn_common_header and sbyn_common_detail tables in that it
stores processing codes and drop-down list values. This table is used when the value of one field
is dependent on the value of another. For example, if you store credit card information, you
could list each credit card type and specify a required format for the credit card number field.
The data stored in this table includes the processing code, a brief description, and the format of
the dependent fields.

The differences in data types between Oracle and SQL Server are noted in Table 23. The Oracle
type is on the first line, and the SQL Server type is on the second.

TABLE 23 SBYN_USER_CODE Table Description

Column Name Data Type Description

CODE_LIST VARCHAR2(20)

Varchar(20)

The code list name of the user code type (using the
credit card example above, this might be similar to
“CREDCARD”). This column links the values for
each list.

CODE VARCHAR2(20)

Varchar(20)

The processing code of each user code element.

DESCRIPTION VARCHAR2(50)

Varchar(50)

A brief description or name for the user code. This is
the value that appears in the drop-down list.

FORMAT VARCHAR2(60)

Varchar(60)

The required data pattern for the field that is
constrained by the user code. For more information
about possible values and using Java patterns, see
“Patterns” in the class list for java.util.regex in the
Javadocs provided with the J2SE platform. Note that
the data pattern is also limited by the input mask
described below. All regex patterns are supported if
there is no input mask.

The Master Index Database Structure (Repository)

Understanding Sun Master Index Processing (Repository) 57

TABLE 23 SBYN_USER_CODE Table Description (Continued)
Column Name Data Type Description

INPUT_MASK VARCHAR2(60)

Varchar(60)

A mask used by the EDM to add punctuation to the
constrained field. For example, the input mask
DD-DDD-DDD inserts a hyphen after the second
and fifth characters in an 8-digit ID. These character
types can be used.
■ D – Numeric character
■ L – Alphabetic character
■ A – Alphanumeric character

VALUE_MASK VARCHAR2(60)

Varchar(60)

A mask used to strip any extra characters that were
added by the input mask for database storage. The
value mask is the same as the input mask, but with an
“x” in place of each punctuation mark. Using the
input mask described above, the value mask is
DDxDDDxDDD. This strips the hyphens before
storing the ID.

Sample Master Index Database Model (Repository)
The diagrams on the following pages illustrate the table structure and relationships for a sample
Oracle database designed for storing information about companies. The diagrams display
attributes for each database column, such as the field name, data type, whether the field can be
null, and primary keys. They also show directional relationships between tables and the keys by
which the tables are related. This diagram is very similar to SQL Server, with the exception of a
few column name changes and some different data types as noted in the tables above.

The Master Index Database Structure (Repository)

Understanding Sun Master Index Processing (Repository) • December 200858

The Master Index Database Structure (Repository)

Understanding Sun Master Index Processing (Repository) 59

The Master Index Database Structure (Repository)

Understanding Sun Master Index Processing (Repository) • December 200860

Working with the Master Index Java API (Repository)
Sun Master Index provides several Java classes and methods to use to transform and process
data in a master index project. The master index API is specifically designed to help you
maintain the integrity of the data in the database by providing specific methods for updating,
adding, and merging records in the database.

Working with the Master Index Java API (Repository)

Understanding Sun Master Index Processing (Repository) 61

The following topics provide information about the master index API and describe the dynamic
API:

■ “Master Index Java Class Types (Repository)” on page 62
■ “Dynamic Master Index Object Classes (Repository)” on page 63
■ “Master Index Parent Object Classes (Repository)” on page 63
■ “Master Index Child Object Classes (Repository)” on page 76
■ “Dynamic Master Index OTD Methods (Repository)” on page 81
■ “Dynamic Master Index OTD Methods (Repository)” on page 82
■ “Dynamic Business Process Methods (Repository)” on page 100
■ “Master Index Helper Classes (Repository)” on page 101
■ “SystemObjectName Master Index Class (Repository)” on page 101
■ “Master Index Parent Beans (Repository)” on page 106
■ “Master Index Child Beans (Repository)” on page 115
■ “DestinationEO Master Index Class (Repository)” on page 120
■ “SearchObjectNameResult Master Index Class (Repository)” on page 121
■ “SourceEO Master Index Class (Repository)” on page 123
■ “SystemObjectNamePK Master Index Class (Repository)” on page 123

Master Index Java Class Types (Repository)
Sun Master Index provides a set of static API classes that can be used with any object structure
and any Sun master index application. Sun Master Index also generates several dynamic API
classes that are specific to the object structure of each master index application. The dynamic
classes contain similar methods, but the number and names of methods change depending on
the object structure. In addition, several methods are generated in an OTD for use in external
system Collaborations and another set of methods is generated for use within an Business
Process. For detailed information about the static classes and methods, see the Javadocs.

The following topics provide additional information about the different types of Java classes:

■ “Static Master Index Java Classes (Repository)” on page 62
■ “Dynamic Master Index Object Classes (Repository)” on page 63

Static Master Index Java Classes (Repository)
Static classes provide the methods you need to perform basic data cleansing functions against
incoming data, such as performing searches, reviewing potential duplicates, adding and
updating records, and merging and unmerging records. The primary class containing these
functions is the MasterController class, which includes the executeMatch method. Several
classes support the MasterController class by defining additional objects and functions.
Documentation for the static methods is provided in Javadoc format. The static classes are listed
and described in the Javadocs provided with Sun Master Index.

Working with the Master Index Java API (Repository)

Understanding Sun Master Index Processing (Repository) • December 200862

Dynamic Master Index Object Classes (Repository)
When you generate a master index project, several dynamic methods are created that are
specific to the object structure defined for the master index application. This includes classes
that define each object in the object structure and that allow you to work with the data in each
object. If the object structure is modified, regenerating the project updates the dynamic
methods for the new structure.

Dynamic OTD Methods
When you generate a master index project, a method OTD is created that contains Java
methods to help you define how records are processed into the master index database from
external systems. Like the dynamic object classes, these methods are based on the object
structure. They rely on the dynamic object classes to create the objects in the master index
application and to define and retrieve field values for those objects. Regenerating the master
index application updates the methods to reflect any changes to the object structure.

Dynamic Business Process Methods
When you generate a master index project, several methods are listed under the method OTD
folder that are designed for use within a Business Process. These methods are a subset of the
master index API that can be used to query a master index database using a web-based interface.
As with the dynamic OTD methods, the Business Process methods are also based on the defined
object structure. Regenerating a project updates these methods to reflect any changes to the
object structure.

Dynamic Master Index Object Classes (Repository)
Several dynamic classes are generated for each master index application for use in
Collaborations. One class is created for each parent and child object defined in the object
structure.

The following topics list and describe the dynamic object classes:
■ “Master Index Parent Object Classes (Repository)” on page 63
■ “Master Index Child Object Classes (Repository)” on page 76

Master Index Parent Object Classes (Repository)
A Java class is created to represent the parent object defined in the object definition of the
master index application. The methods in this class provide the ability to create a parent object
and to set or retrieve the field values for that object.

The name of the parent object class is the same as the name of each parent object, with the word
“Object” appended. For example, if the parent object in your object structure is “Person”, the
name of the parent class is “PersonObject”. The methods in this class include a constructor

Working with the Master Index Java API (Repository)

Understanding Sun Master Index Processing (Repository) 63

method for the parent object, and get and set methods for each field defined for the parent
object. Most methods are named based on the name of the parent object and the fields and child
objects defined for that object. In the following methods described for the parent object,
ObjectName indicates the name of the parent object, Child indicates the name of a child object,
and Field indicates the name of a field defined for the parent object.

Definition
class ObjectNameObject

Methods

■ “ObjectNameObject” on page 64 ■ “getSecondaryObject” on page 70

■ “addChild” on page 65 ■ “isAdded” on page 71

■ “addSecondaryObject” on page 66 ■ “isRemoved” on page 71

■ “copy” on page 66 ■ “isUpdated” on page 72

■ “dropSecondaryObject” on page 67 ■ “setObjectNameId” on page 72

■ “getObjectNameId” on page 67 ■ “setField” on page 73

■ “getChild” on page 68 ■ “setAddFlag” on page 73

■ “getField” on page 68 ■ “setRemoveFlag” on page 74

■ “getChildTags” on page 69 ■ “setUpdateFlag” on page 75

■ “getMetaData” on page 70 ■ “structCopy” on page 75

ObjectNameObject

Description

This is the user-defined object name class for the parent object. You can instantiate this class to
create a new instance of the parent object class.

Syntax

new ObjectNameObject()

Parameters

None.

Working with the Master Index Java API (Repository)

Understanding Sun Master Index Processing (Repository) • December 200864

Returns

An instance of the parent object.

Throws

ObjectException

addChild

Description

This method associates a new child object with the parent object. The new child object is of the
type specified in the method name. For example, to associate a new address object with a parent
object, call addAddress.

Syntax

void addChild(ChildObject child)

Note – The type of object passed as a parameter depends on the child object to associate with the
parent object. For example, the syntax for associating an address object is as follows:

void addAddress(AddressObject address)

Parameters

Name Type Description

child ChildObject A child object to associate with the parent object. The
name and type of the parameter is specified by the
child object name.

Returns

None.

Throws

ObjectException

Working with the Master Index Java API (Repository)

Understanding Sun Master Index Processing (Repository) 65

addSecondaryObject

Description

This method associates a new child object with the parent object. The object node passed as the
parameter defines the child object type.

Syntax
void addSecondaryObject(ObjectNode obj)

Parameters

Name Type Description

obj ObjectNode An ObjectNode representing the child object to
associate with the parent object.

Returns

None.

Throws

SystemObjectException

copy

Description

This method copies the structure and field values of the specified object node.

Syntax
ObjectNode copy()

Parameters

None.

Returns

A copy of the object node.

Working with the Master Index Java API (Repository)

Understanding Sun Master Index Processing (Repository) • December 200866

Throws

ObjectException

dropSecondaryObject

Description

This method removes a child object associated with the parent object (in the memory copy of
the object). The object node passed in as the parameter defines the child object type. Use this
method to remove a child object before it has been committed to the database. This method is
similar to ObjectNode.removeChild. Use ObjectNode.deleteChild to remove the child object
permanently from the database.

Syntax
void dropSecondaryObject(ObjectNode obj)

Parameters

Name Type Description

obj ObjectNode An ObjectNode representing the child object to drop
from the parent object.

Returns

None.

Throws

SystemObjectException

getObjectNameId

Description

This method retrieves the unique identification code (primary key) of the object, as assigned by
the master index application.

Syntax
String getObjectNameId()

Working with the Master Index Java API (Repository)

Understanding Sun Master Index Processing (Repository) 67

Parameters
None.

Returns
A string containing the unique ID of the parent object.

Throws
ObjectException

getChild

Description
This method retrieves all child objects associated with the parent object that are of the type
specified in the method name. For example, to retrieve all address objects associated with a
parent object, call getAddress.

Syntax
Collection getChild()

Parameters
None.

Returns
A collection of child objects of the type specified in the method name.

Throws
None.

getField

Description
This method retrieves the value of the field specified in the method name. Each getter method is
named according to the fields defined for the parent object. For example, if the parent object
contains a field named FirstName, the getter method for this field is named getFirstName.

Syntax
String getField()

Working with the Master Index Java API (Repository)

Understanding Sun Master Index Processing (Repository) • December 200868

Note – The syntax for the getter methods depends on the type of data specified for the field in the
object structure. For example, the getter method for a date field would have the following
syntax:

Date getField

Parameters

None.

Returns

The value of the specified field. The type of data returned depends on the data type defined in
the object definition.

Throws

ObjectException

getChildTags

Description

This method retrieves a list of the names of all child object types defined for the object structure.

Syntax
ArrayList getChildTags()

Parameters

None.

Returns

An array of child object names.

Throws

None.

Working with the Master Index Java API (Repository)

Understanding Sun Master Index Processing (Repository) 69

getMetaData

Description
This method retrieves the metadata for the parent object.

Syntax
AttributeMetaData getMetaData()

Parameters
None.

Returns
An AttributeMetaData object containing the parent object’s metadata.

Throws
None.

getSecondaryObject

Description
This method retrieves all child objects that are associated with the parent object and are of the
specified type.

Syntax
Collection getSecondaryObject(String type)

Parameters

Name Type Description

type String The child type of the objects to retrieve.

Returns
A collection of child objects of the specified type.

Throws
SystemObjectException

Working with the Master Index Java API (Repository)

Understanding Sun Master Index Processing (Repository) • December 200870

isAdded

Description

This method retrieves the value of the “add flag” for the parent object. The add flag indicates
whether the object will be added.

Syntax
String isAdded()

Parameters

None.

Returns

A Boolean value indicating whether the add flag is set to true or false.

Throws

ObjectException

isRemoved

Description

This method retrieves the value of the “remove flag” for the parent object. The remove flag
indicates whether the object will be removed.

Syntax
String isRemoved()

Parameters

None.

Returns

A Boolean value indicating whether the remove flag is set to true or false.

Throws

ObjectException

Working with the Master Index Java API (Repository)

Understanding Sun Master Index Processing (Repository) 71

isUpdated

Description

This method retrieves the value of the “update flag” for the parent object. The update flag
indicates whether the object will be updated.

Syntax
String isUpdated()

Parameters

None.

Returns

A Boolean value indicating whether the update flag is set to true or false.

Throws

ObjectException

setObjectNameId

Description

This method sets the value of the ObjectNameId field in the parent object.

Syntax
void setObjectNameId(Object value)

Parameters

Name Type Description

value Object An object containing the value of the ObjectNameId
field.

Returns

None.

Working with the Master Index Java API (Repository)

Understanding Sun Master Index Processing (Repository) • December 200872

Throws

ObjectException

setField

Description

This method sets the value of the field specified in the method name. Each setter method is
named according to the fields defined for the parent object. For example, if the parent object
contains a field named “DateOfBirth”, the setter method for this field is named
setDateOfBirth. A setter method is created for each field in the parent object, including any
fields containing standardized or phonetic data.

Syntax
void setField(Object value)

Parameters

Name Type Description

value Object An object containing the value of the field specified
by the method name.

Returns

None.

Throws

ObjectException

setAddFlag

Description

This method sets the “add flag” of the parent object. The add flag indicates whether the object
will be added.

Syntax
void setAddFlag(boolean flag)

Working with the Master Index Java API (Repository)

Understanding Sun Master Index Processing (Repository) 73

Parameters

Name Type Description

flag Boolean An indicator of whether the add flag is set to true or
false.

Returns

None.

Throws

None.

setRemoveFlag

Description

This method sets the “remove flag” of the parent object. The remove flag indicates whether the
object will be removed.

Syntax
void setRemoveFlag(boolean e)

Parameters

Name Type Description

e Boolean An indicator of whether the remove flag is set to true
or false.

Returns

None.

Throws

None.

Working with the Master Index Java API (Repository)

Understanding Sun Master Index Processing (Repository) • December 200874

setUpdateFlag

Description

This method sets the “update flag” of the parent object. The update flag indicates whether the
object will be updated.

Syntax
void setUpdateFlag(boolean flag)

Parameters

Name Type Description

flag Boolean An indicator of whether the update flag is set to true
or false.

Returns

None.

Throws

None.

structCopy

Description

This method copies the structure of the specified object node.

Syntax
ObjectNode structCopy()

Parameters

None.

Returns

A copy of the structure of the object node.

Working with the Master Index Java API (Repository)

Understanding Sun Master Index Processing (Repository) 75

Throws

ObjectException

Master Index Child Object Classes (Repository)
One Java class is created for each child object defined in the object definition of the master index
application. If the object definition contains three child objects, three child object classes are
created. The methods in these classes provide the ability to create the child objects and to set or
retrieve the field values for those objects.

The name of each child object class is the same as the name of the child object, with the word
“Object” appended. For example, if a child object in your object structure is named “Address”,
the name of the corresponding child class is AddressObject. The methods in these classes
include a constructor method for the child object, and get and set methods for each field defined
for the child object. Most methods are named based on the name of the child object and the
fields defined for that object. In the methods listed below, Child indicates the name of the child
object and Field indicates the name of each field defined for that object.

Definition
class ChildObject

Methods

■ “ChildObject” on page 76 ■ “getParentTag” on page 79

■ “copy” on page 77 ■ “setChildId” on page 80

■ “getChildId” on page 77 ■ “setField” on page 80

■ “getField” on page 78 ■ “structCopy” on page 81

■ “getMetaData” on page 79

ChildObject

Description

This method represents the child object class. This class can be instantiated to create a new
instance of a child object class.

Syntax
new ChildObject()

Working with the Master Index Java API (Repository)

Understanding Sun Master Index Processing (Repository) • December 200876

Parameters

None.

Returns

An instance of the child object.

Throws

ObjectException

copy

Description

This method copies the structure and field values of the specified object node.

Syntax
ObjectNode copy()

Parameters

None.

Returns

A copy of the object node.

Throws

ObjectException

getChildId

Description

This method retrieves the unique identification code (primary key) of the object, as assigned by
the master index application.

Syntax
String getChildId()

Working with the Master Index Java API (Repository)

Understanding Sun Master Index Processing (Repository) 77

Parameters

None.

Returns

A string containing the unique ID of the child object.

Throws

ObjectException

getField

Description

This method retrieves the value of the field specified in the method name. Each getter method is
named according to the fields defined for the child object. For example, if the child object
contains a field named “TelephoneNumber”, the getter method for this field is named
getTelephoneNumber. A getter method is created for each field in the object, including fields
that store standardized or phonetic data.

Syntax
String getField()

Note – The syntax for the getter methods depends on the type of data specified for the field in the
object structure. For example, the getter method for a date field would have the following
syntax:

Date getField

Parameters

None.

Returns

The value of the specified field. The type of data returned depends on the data type defined in
the object definition.

Throws

ObjectException

Working with the Master Index Java API (Repository)

Understanding Sun Master Index Processing (Repository) • December 200878

getMetaData

Description

This method retrieves the metadata for the child object.

Syntax
AttributeMetaData getMetaData()

Parameters

None.

Returns

An AttributeMetaData object containing the child object’s metadata.

Throws

None.

getParentTag

Description

This method retrieves the name of the parent object of the child object.

Syntax
String getParentTag()

Parameters

None.

Returns

A string containing the name of the parent object.

Throws

None.

Working with the Master Index Java API (Repository)

Understanding Sun Master Index Processing (Repository) 79

setChildId

Description

This method sets the value of the ChildId field in the child object.

Syntax

void setChildId(Object value)

Parameters

Name Type Description

value Object An object containing the value of the ChildId field.

Returns

None.

Throws

ObjectException

setField

Description

This method sets the value of the field specified in the method name. Each setter method is
named according to the fields defined for the parent object. For example, if the parent object
contains a field named “CompanyName”, the setter method for this field is named
setCompanyName.

Syntax

void setField(Object value)

Working with the Master Index Java API (Repository)

Understanding Sun Master Index Processing (Repository) • December 200880

Parameters

Name Type Description

value Object An object containing the value of the field specified
by the method name.

Returns

None.

Throws

ObjectException

structCopy

Description

This method copies the structure of the specified object node.

Syntax
ObjectNode structCopy()

Parameters

None.

Returns

A copy of the structure of the object node.

Throws

ObjectException

Dynamic Master Index OTD Methods (Repository)
A set of Java methods are created in an OTD for use in the master index Collaborations. These
methods wrap static Java API methods, allowing them to work with the dynamic object classes.
Many OTD methods return objects of the dynamic object type, or they use these objects as
parameters. In the following methods described for the OTD methods, ObjectName indicates
the name of the parent object.

Working with the Master Index Java API (Repository)

Understanding Sun Master Index Processing (Repository) 81

■ “activateEnterpriseRecord” on page 82 ■ “getSBR” on page 91

■ “activateSystemRecord” on page 83 ■ “getSystemRecord” on page 92

■ “addSystemRecord” on page 83 ■ “getSystemRecordsByEUID” on page 92

■ “deactivateEnterpriseRecord” on page 84 ■ “getSystemRecordsByEUIDStatus” on page 93

■ “deactivateSystemRecord” on page 85 ■ “lookupLIDs” on page 94

■ “executeMatch” on page 85 ■ “mergeEnterpriseRecord” on page 95

■ “executeMatchUpdate” on page 86 ■ “mergeSystemRecord” on page 95

■ “findMasterController” on page 87 ■ “searchBlock” on page 96

■ “getEnterpriseRecordByEUID” on page 88 ■ “searchExact” on page 97

■ “getEnterpriseRecordByLID” on page 88 ■ “searchPhonetic” on page 97

■ “getEUID” on page 89 ■ “transferSystemRecord” on page 98

■ “getLIDs” on page 90 ■ “updateEnterpriseRecord” on page 99

■ “getLIDsByStatus” on page 90 ■ “updateSystemRecord” on page 99

Dynamic Master Index OTD Methods (Repository)
The following topics list and describe the dynamic OTD methods.

activateEnterpriseRecord

Description

This method changes the status of a deactivated enterprise object back to active.

Syntax
void activateEnterpriseRecord(String euid)

Parameters

Name Type Description

euid String The EUID of the enterprise object to activate.

Working with the Master Index Java API (Repository)

Understanding Sun Master Index Processing (Repository) • December 200882

Returns

None.

Throws
■ RemoteException

■ ProcessingException

■ UserException

activateSystemRecord

Description

This method changes the status of a deactivated system object back to active.

Syntax
void activateSystemRecord(String systemCode, String localId)

Parameters

Name Type Description

systemCode String The processing code of the system associated with the
system record to be activated.

localID String The local identifier associated with the system record
to be activated.

Returns

None.

Throws
■ RemoteException

■ ProcessingException

■ UserException

addSystemRecord

Description

This method adds the system object to the enterprise object associated with the specified EUID.

Working with the Master Index Java API (Repository)

Understanding Sun Master Index Processing (Repository) 83

Syntax
void addSystemRecord(String euid, SystemObjectBean systemObject)

Parameters

Name Type Description

euid String The EUID of the enterprise object to which you want
to add the system object.

systemObject SystemObjectBean The Bean for the system object to be added to the
enterprise object.

Returns

None.

Throws
■ RemoteException

■ ProcessingException

■ UserException

deactivateEnterpriseRecord

Description

This method changes the status of an active enterprise object to inactive.

Syntax
void deactivateEnterpriseRecord(String euid)

Parameters

Name Type Description

euid String The EUID of the enterprise object to deactivate.

Returns

None.

Working with the Master Index Java API (Repository)

Understanding Sun Master Index Processing (Repository) • December 200884

Throws
■ RemoteException

■ ProcessingException

■ UserException

deactivateSystemRecord

Description

This method changes the status of an active system object to inactive.

Syntax
void deactivateSystemRecord(String systemCode, String localId)

Parameters

Name Type Description

systemCode String The system code of the system object to deactivate.

localid String The local ID of the system object to deactivate.

Returns

None.

Throws
■ RemoteException

■ ProcessingException

■ UserException

executeMatch
executeMatch is one of two methods you can call to process an incoming system object based
on the configuration defined for the Manager Service and associated runtime components (the
second method is “executeMatchUpdate” on page 86). This process searches for possible
matches in the database and contains the logic to add a new record or update existing records in
the database. One of the two execute match methods should be used for inserting or updating a
record in the database.

The following runtime components configure executeMatch.

Working with the Master Index Java API (Repository)

Understanding Sun Master Index Processing (Repository) 85

■ The Query Builder defines the blocking queries used for matching.
■ The Threshold file (master.xml) specifies which blocking query to use and specifies

matching parameters, including duplicate and match thresholds.
■ The pass controller and block picker classes specify how the blocking query is executed.

Note – If executeMatch determines that an existing system record will be updated by the
incoming record, it replaces the entire existing record with the information in the new
record. This could result in loss of data; for example, if the incoming record does not include
all address information, existing address information could be lost. To avoid this, use the
executeMatchUpdate method instead.

Syntax
MatchColResult executeMatch(SystemObjectBean systemObject)

Parameters

Name Type Description

systemObject SystemObjectBean The Bean for the system object to be added to or
updated in the enterprise object.

Returns

A match result object containing the results of the matching process.

Throws
■ RemoteException

■ ProcessingException

■ UserException

executeMatchUpdate
Like “executeMatch” on page 85, executeMatchUpdate processes the system object based on
the configuration defined for the Manager Service and associated runtime components. It is
configured by the same runtime components as executeMatch. One of these two execute match
methods should be used for inserting or updating a record in the database.

The primary difference between these two methods is that when executeMatchUpdate finds
that an incoming record matches an existing record, only the changed data is updated. With
executeMatch, the entire existing record is replaced by the incoming record. The
executeMatchUpdate method differs from executeMatch in the following ways:

Working with the Master Index Java API (Repository)

Understanding Sun Master Index Processing (Repository) • December 200886

■ If a partial record is received, executeMatchUpdate only updates fields whose values are
different in the incoming record. Unless the clearFieldIndicator field is used, empty or
null fields in the incoming record do not update existing values.

■ The clearFieldIndicator field can be used to null out specific fields.
■ Child objects in the existing record are not deleted if they are not present in the incoming

record.
■ Child objects in the existing record are updated if the same key field value is found in both

the incoming and existing records.
■ To allow a child object to be removed from the parent object when using

executeMatchUpdate, a new “delete” method is added to each child object bean.

Syntax
MatchColResult executeMatchUpdate(SystemObjectbean systemObject)

Parameters

Name Type Description

systemObject SystemObjectBean The Bean for the system object to be added to or
updated in the enterprise object.

Returns
A match result object containing the results of the matching process.

Throws
■ RemoteException

■ ProcessingException

■ UserException

findMasterController
This method obtains a handle to the MasterController class, providing access to all of the
methods of that class. For more information about the available methods in this class, see the
Javadoc provided with Sun Master Index.

Syntax
MasterController findMasterController()

Parameters
None.

Working with the Master Index Java API (Repository)

Understanding Sun Master Index Processing (Repository) 87

Returns
A handle to the com.stc.eindex.ejb.master.MasterController class.

Throws
None.

getEnterpriseRecordByEUID

Description
This method returns the enterprise object associated with the specified EUID.

Syntax
EnterpriseObjectName getEnterpriseRecordByEUID(String euid)

Parameters

Name Type Description

euid String The EUID of the enterprise object you want to
retrieve.

Returns
An enterprise object associated with the specified EUID or null if the enterprise object is not
found.

Throws
■ RemoteException

■ ProcessingException

■ UserException

getEnterpriseRecordByLID

Description
This method returns the enterprise object associated with the specified system code and local ID
pair.

Syntax
EnterpriseObjectName getEnterpriseRecordByLID(String system, String localid)

Working with the Master Index Java API (Repository)

Understanding Sun Master Index Processing (Repository) • December 200888

Parameters

Name Type Description

system String The system code of a system associated with the
enterprise object to find.

localid String A local ID associated with the specified system.

Returns

An enterprise object or null if the enterprise object is not found.

Throws
■ RemoteException

■ ProcessingException

■ UserException

getEUID

Description

This method returns the EUID of the enterprise object associated with the specified system code
and local ID.

Syntax
String getEUID(String system, String localid)

Parameters

Name Type Description

system String A known system code for the enterprise object.

localid String The local ID corresponding with the given system.

Returns

A string containing an EUID or null if the EUID is not found.

Working with the Master Index Java API (Repository)

Understanding Sun Master Index Processing (Repository) 89

Throws
■ RemoteException

■ ProcessingException

■ UserException

getLIDs

Description

This method retrieves the local ID and system pairs associated with the given EUID.

Syntax
SystemObjectNamePK[] getLIDs(String euid)

Parameters

Name Type Description

euid String The EUID of the enterprise object whose local ID and
system pairs you want to retrieve.

Returns

An array of system object keys (SystemObjectNamePK objects) or null if no results are found.

Throws
■ RemoteException

■ ProcessingException

■ UserException

getLIDsByStatus

Description

This method retrieves the local ID and system pairs that are of the specified status and that are
associated with the given EUID.

Syntax
SystemObjectNamePK[] getLIDsByStatus(String euid, String status)

Working with the Master Index Java API (Repository)

Understanding Sun Master Index Processing (Repository) • December 200890

Parameters

Name Type Description

euid String The EUID of the enterprise object whose local ID and
system pairs to retrieve.

status String The status of the local ID and system pairs you want
to retrieve.

Returns

An array of system object keys (SystemObjectNamePK objects) or null if no system object keys
are found.

Throws
■ RemoteException

■ ProcessingException

■ UserException

getSBR

Description

This method retrieves the single best record (SBR) associated with the specified EUID.

Syntax
SBRObjectName getSBR(String euid)

Parameters

Name Type Description

euid String The EUID of the enterprise object whose SBR you
want to retrieve.

Returns

An SBR object or null if no SBR associated with the specified EUID is found.

Working with the Master Index Java API (Repository)

Understanding Sun Master Index Processing (Repository) 91

Throws
■ RemoteException

■ ProcessingException

■ UserException

getSystemRecord

Description

This method retrieves the system object associated with the given system code and local ID pair.

Syntax
SystemObjectName getSystemRecord(String system, String localid)

Parameters

Name Type Description

system String The system code of the system object to retrieve.

localid String The local ID of the system object to retrieve.

Returns

A system object containing the results of the search or null if no system objects are found.

Throws
■ RemoteException

■ ProcessingException

■ UserException

getSystemRecordsByEUID

Description

This method returns the active system objects associated with the specified EUID.

Syntax
SystemObjectName[] getSystemRecordsByEUID(String euid)

Working with the Master Index Java API (Repository)

Understanding Sun Master Index Processing (Repository) • December 200892

Parameters

Name Type Description

euid String The EUID of the enterprise object whose system
objects you want to retrieve.

Returns

An array of system objects associated with the specified EUID.

Throws
■ RemoteException

■ ProcessingException

■ UserException

getSystemRecordsByEUIDStatus

Description

This method returns the system objects of the specified status that are associated with the given
EUID.

Syntax
SystemObjectName[] getSystemRecordsByEUIDStatus(String euid, String status)

Parameters

Name Type Description

euid String The EUID of the enterprise object whose system
objects you want to retrieve.

status String The status of the system objects you want to retrieve.

Returns

An array of system objects associated with the specified EUID and status, or null if no system
objects are found.

Working with the Master Index Java API (Repository)

Understanding Sun Master Index Processing (Repository) 93

Throws
■ RemoteException

■ ProcessingException

■ UserException

lookupLIDs

Description

This method first looks up the EUID associated with the specified source system and source
local ID. It then retrieves the local ID and system pairs of the specified status that are associated
with that EUID and are from the specified destination system. Note that both systems must be
of the specified status or an error will occur.

Syntax
SystemObjectNamePK[] lookupLIDs(String sourceSystem, String sourceLID,

String destSystem, String status)

Parameters

Name Type Description

sourceSystem String The system code of the known system and local ID
pair.

sourceLID String The local ID of the known system and local ID pair.

destSystem String The system of origin for the local ID and system pairs
you want to retrieve.

status String The status of the local ID and system pairs to retrieve.

Returns

An array of system object keys (SystemObjectNamePK objects).

Throws
■ RemoteException

■ ProcessingException

■ UserException

Working with the Master Index Java API (Repository)

Understanding Sun Master Index Processing (Repository) • December 200894

mergeEnterpriseRecord

Description

This method merges two enterprise objects, specified by their EUIDs.

Syntax
MergeObjectNameResult mergeEnterpriseRecord(String fromEUID, String toEUID,

boolean calculateOnly)

Parameters

Name Type Description

fromEUID String The EUID of the enterprise object that will not
survive the merge.

toEUID String The EUID of the enterprise object that will survive
the merge.

calculateOnly boolean An indicator of whether to commit changes to the
database or to simply compute the merge results.
Specify false to commit the changes.

Returns

A merge result object containing the results of the merge.

Throws
■ RemoteException

■ ProcessingException

■ UserException

mergeSystemRecord

Description

This method merges two system objects, specified by their local IDs, from the specified system.
The system objects can belong to a single enterprise object or to two different enterprise objects.

Syntax
MergeObjectNameResult mergeSystemRecord(String sourceSystem, String sourceLID,

String destLID, boolean calculateOnly)

Working with the Master Index Java API (Repository)

Understanding Sun Master Index Processing (Repository) 95

Parameters

Name Type Description

sourceSystem String The processing code of the system to which the two
system objects belong.

sourceLID String The local ID of the system object that will not survive
the merge.

destLID String The local ID of the system object that will survive the
merge.

calculateOnly boolean An indicator of whether to commit changes to the
database or to simply compute the merge results.
Specify false to commit the changes.

Returns
A merge result object containing the results of the merge.

Throws
■ RemoteException

■ ProcessingException

■ UserException

searchBlock

Description
This method performs a blocking query against the database using the blocking query specified
in the Threshold file and the criteria contained in the specified object bean.

Syntax
SearchObjectNameResult searchBlock(ObjectNameBean searchCriteria)

Parameters

Name Type Description

searchCriteria ObjectNameBean The search criteria for the blocking query.

Returns
The results of the search.

Working with the Master Index Java API (Repository)

Understanding Sun Master Index Processing (Repository) • December 200896

Throws
■ RemoteException

■ ProcessingException

■ UserException

searchExact

Description

This method performs an exact match search using the criteria specified in the object bean.
Only records that exactly match the search criteria are returned in the search results object.

Syntax
SearchObjectNameResult searchExact(ObjectNameBean searchCriteria)

Parameters

Name Type Description

searchCriteria ObjectNameBean The search criteria for the exact match search.

Returns

The results of the search stored in a SearchObjectNameResult object.

Throws
■ RemoteException

■ ProcessingException

■ UserException

searchPhonetic

Description

This method performs a search using phonetic values for some of the criteria specified in the
object bean. This type of search allows for typographical errors and misspellings.

Syntax
SearchObjectNameResult searchPhonetic(ObjectNameBean searchCriteria)

Working with the Master Index Java API (Repository)

Understanding Sun Master Index Processing (Repository) 97

Parameters

Name Type Description

searchCriteria ObjectNameBean The search criteria for the phonetic search.

Returns

The results of the search.

Throws
■ RemoteException

■ ProcessingException

■ UserException

transferSystemRecord

Description

This method transfers a system record from one enterprise record to another enterprise record.

Syntax
void transferSystemRecord(String toEUID, String systemCode, String localID)

Parameters

Name Type Description

toEUID String The EUID of the enterprise record to which the
system record will be transferred.

systemCode String The processing code of the system record to transfer.

localID String The local ID of the system record to transfer.

Returns

None.

Throws
■ RemoteException

■ ProcessingException

■ UserException

Working with the Master Index Java API (Repository)

Understanding Sun Master Index Processing (Repository) • December 200898

updateEnterpriseRecord

Description

This method updates the fields in an existing enterprise object with the values specified in the
fields the enterprise object passed in as a parameter. When updating an enterprise object,
attempting to change a field that is not updateable will cause an exception. This method does
not update the SBR; the survivor calculator updates the SBR once the changes are made to the
associated system records.

Syntax
void updateEnterpriseRecord(EnterpriseObjectName enterpriseObject)

Parameters

Name Type Description

enterpriseObject EnterpriseObjectName The enterprise object containing the values that will
update the existing enterprise object.

Returns

None.

Throws
■ RemoteException

■ ProcessingException

■ UserException

updateSystemRecord

Description

This method updates the existing system object in the database with the given system object.

Syntax
void updateSystemRecord(SystemObjectName systemObject)

Working with the Master Index Java API (Repository)

Understanding Sun Master Index Processing (Repository) 99

Parameters

Name Type Description

systemObject SystemObjectName The system object to be updated to the enterprise
object.

Note – In the method OTD, “Object” in the parameter
name is changed to the name of the parent object. For
example, if the parent object is “Person”, the name of
this parameter will appear as “systemPerson”.

Returns

None.

Throws
■ RemoteException

■ ProcessingException

■ UserException

Dynamic Business Process Methods (Repository)
A set of Java methods are created in the master index application for use in Business Processes.
These methods include a subset of the dynamic OTD methods, which are documented above.
Many of these methods return objects of the dynamic object type or they use these objects as
parameters. In the descriptions for these methods, ObjectName indicates the name of the parent
object.

The following methods are available for Business Processes. They are described in the previous
section, “Dynamic Master Index OTD Methods (Repository)” on page 81.

■ “executeMatch” on page 85 ■ “getSBR” on page 91

■ “executeMatchUpdate” on page 86 ■ “getSystemRecordsByEUID” on page 92

■ “getEnterpriseRecordByEUID” on page 88 ■ “getSystemRecordsByEUIDStatus” on page 93

■ “getEnterpriseRecordByLID” on page 88 ■ “lookupLIDs” on page 94

■ “getEUID” on page 89 ■ “searchBlock” on page 96

■ “getLIDs” on page 90 ■ “searchExact” on page 97

Working with the Master Index Java API (Repository)

Understanding Sun Master Index Processing (Repository) • December 2008100

■ “getLIDsByStatus” on page 90 ■ “searchPhonetic” on page 97

Master Index Helper Classes (Repository)
Helper classes include objects that can be passed as parameters to an OTD method or a Business
Process method. They also include the methods that you can access through the
systemObjectName variable in client Collaborations or Business Processes (where ObjectName
is the name of a parent object. The helper classes include:

■ “SystemObjectName Master Index Class (Repository)” on page 101
■ “Master Index Parent Beans (Repository)” on page 106
■ “Master Index Child Beans (Repository)” on page 115
■ “DestinationEO Master Index Class (Repository)” on page 120
■ “SearchObjectNameResult Master Index Class (Repository)” on page 121
■ “SourceEO Master Index Class (Repository)” on page 123
■ “SystemObjectNamePK Master Index Class (Repository)” on page 123

SystemObjectName Master Index Class (Repository)
In order to run executeMatch or executeMatchUpdate in a Java Collaboration or Business
Process, you must define a variable of the class type SystemObjectName, where ObjectName is
the name of a parent object. This class is passed as a parameter to the execute match methods.
The class contains a constructor method and several get and set methods for system fields. It
also includes one field that specifies the value of the clear field character (for more information,
see “ClearFieldIndicator Field” on page 102). In the methods described in this section,
ObjectName indicates the name of the parent object, Child indicates the name of a child object,
and Field indicates the name of a field defined for the parent object.

Definition
class SystemObjectName

Fields
■ “ClearFieldIndicator Field” on page 102

Methods

■ “SystemObjectName” on page 102 ■ “setClearFieldIndicator” on page 104

Working with the Master Index Java API (Repository)

Understanding Sun Master Index Processing (Repository) 101

■ “getClearFieldIndicator” on page ■ “setField” on page 105

■ “getField” on page 103 ■ “setObjectName” on page 106

■ “getObjectName” on page 104

Inherited Methods

The following methods are inherited from java.lang.Object.

■ equals
■ hashcode
■ notify
■ notifyAll
■ toString
■ wait()
■ wait(long arg)
■ wait(long timeout, int nanos)

ClearFieldIndicator Field
The ClearFieldIndicator field allows you to specify whether to treat a field in the parent
object as null when performing an update from an external system. When an update is
performed in the master index application, empty fields typically do not overwrite the value of
an existing field. You can specify to nullify a field that already has an existing value in the master
index application by entering an indicator in that field. This indicator is specified by the
ClearFieldIndicator field. By default, the ClearFieldIndicator field is set to double-quotes
(“”), so if a field is set to double-quotes, that field will be blanked out. If you do not want to use
this feature, set the clear field indicator to null.

SystemObjectName

Description

This method is the user-defined system class for the parent object. You can instantiate this class
to create a new instance of the system class.

Syntax
new SystemObjectName()

Parameters

None.

Working with the Master Index Java API (Repository)

Understanding Sun Master Index Processing (Repository) • December 2008102

Returns

An instance of the SystemObjectName class.

Throws

ObjectException

getClearFieldIndicator

Description

This method retrieves the value of the ClearFieldIndicator field.

Syntax
Object getClearFieldIndicator()

Parameters

None.

Returns

An object containing the value of the ClearFieldIndicator field.

Throws

None.

getField

Description

This method retrieves the value of the specified system field. There are getter methods for the
following fields: LocalId, SystemCode, Status, CreateDateTime, CreateFunction, and
CreateUser.

Syntax
String getField()

or

Date getField()

Working with the Master Index Java API (Repository)

Understanding Sun Master Index Processing (Repository) 103

Parameters

None.

Returns

The value of the specified field. The type of value returned depends on the field from which the
value was retrieved.

Throws

ObjectException

getObjectName

Description

This method retrieves the parent object Java Bean for the system record.

Syntax
ObjectNameBean getObjectName()

Parameters

None.

Returns

A Java Bean containing the parent object.

Throws

None.

setClearFieldIndicator

Description

This method sets the value of the clear field character (in the ClearFieldIndicator field). By
default, this is set to double quotes (“”).

Syntax
void setClearFieldIndicator(String value)

Working with the Master Index Java API (Repository)

Understanding Sun Master Index Processing (Repository) • December 2008104

Parameters

Name Type Description

value String The value that should be entered into a field to
indicate that any existing values should be replaced
with null.

Returns

None.

Throws

None.

setField

Description

This method sets the value of the specified system field. There are setter methods for the
following fields: LocalId, SystemCode, Status, CreateDateTime, CreateFunction, and
CreateUser.

Syntax
void setField(value)

Parameters

Name Type Description

value varies The value to set in the specified field. The type of
value depends on the field into which the value is
being set.

Returns

None.

Throws

ObjectException

Working with the Master Index Java API (Repository)

Understanding Sun Master Index Processing (Repository) 105

setObjectName

Description

This method sets the parent object Java Bean for the system record.

Syntax
void setObjectName(ObjectNameBean object)

Parameters

Name Type Description

object ObjectNameBean The Java Bean for the parent object.

Returns

None.

Throws

ObjectException

Master Index Parent Beans (Repository)
A Java Bean is created to represent each parent object defined in the object definition of the
master index application. The methods in these classes provide the ability to create a parent
object Bean and to set or retrieve the field values for that object Bean.

The name of each parent object Bean class is the same as the name of each parent object, with
the word “Bean” appended. For example, if a parent object in your object structure is “Person”,
the name of the associated parent Bean class is “PersonBean”. The methods in this class include
a constructor method for the parent object Bean, and get and set methods for each field defined
for the parent object. Most methods are named based on the name of the parent object and the
fields and child objects defined for that object. In the methods described in this section,
ObjectName indicates the name of the parent object, Child indicates the name of a child object,
and Field indicates the name of a field defined for the parent object.

Definition
final class ObjectNameBean

Working with the Master Index Java API (Repository)

Understanding Sun Master Index Processing (Repository) • December 2008106

Methods

■ “ObjectNameBean” on page 107 ■ “getField” on page 111

■ “countChild” on page 108 ■ “getObjectNameId” on page 112

■ “countChildren” on page 108 ■ “setChild” on page 113

■ “countChildren” on page 109 ■ “setChild” on page 113

■ “deleteChild” on page 109 ■ “setField” on page 114

■ “getChild” on page 110 ■ “setObjectNameId” on page 114

■ “getChild” on page 111

Inherited Methods

The following methods are inherited from java.lang.Object.

■ equals
■ hashcode
■ notify
■ notifyAll
■ toString
■ wait()
■ wait(long arg)
■ wait(long timeout, int nanos)

ObjectNameBean

Description

This method is the user-defined object Bean class. You can instantiate this class to create a new
instance of the parent object Bean class.

Syntax
new ObjectNameBean()

Parameters

None.

Returns

An instance of the parent object Bean.

Working with the Master Index Java API (Repository)

Understanding Sun Master Index Processing (Repository) 107

Throws

ObjectException

countChild

Description

This method returns the total number of child objects contained in a system object. The type of
child object is specified by the method name (such as Phone or Address).

Syntax
int countChild()

Parameters

None.

Returns

An integer indicating the number of child objects in a collection.

Throws

None.

countChildren

Description

This method returns a count of the total number of child objects belonging to a system object.

Syntax
int countChildren()

Parameters

None.

Returns

An integer representing the total number of child objects.

Working with the Master Index Java API (Repository)

Understanding Sun Master Index Processing (Repository) • December 2008108

Throws

None.

countChildren

Description

This method returns a count of the total number of child objects of a specific type that belong to
a system object.

Syntax
int countChildren(String type)

Parameters

Name Type Description

type String The type of child object to count, such as Phone or
Address.

Returns

An integer representing the total number of child objects of the specified type.

Throws

None.

deleteChild

Description

This method removes the specified child object from the system object. The type of child object
to remove is specified by the name of the method, and the specific child object to remove is
specified by its unique identification code assigned by the master index application.

Syntax
void deleteChild(String ChildId)

Working with the Master Index Java API (Repository)

Understanding Sun Master Index Processing (Repository) 109

Parameters

Name Type Description

ChildId String The unique identification code of the child object to
delete.

Returns

None.

Throws

ObjectException

getChild

Description

This method retrieves an array of child object Beans. Each getter method is named according to
the child objects defined for the parent object. For example, if the parent object contains a child
object named “Address”, the getter method for this field is named getAddress. A getter method
is created for each child object in the parent object.

Syntax
ChildBean[] getChild()

Parameters

None.

Returns

An array of Java Beans containing the type of child objects specified by the method name.

Throws

None.

Working with the Master Index Java API (Repository)

Understanding Sun Master Index Processing (Repository) • December 2008110

getChild

Description

This method retrieves a child object Bean based on its index in a list of child objects. Each getter
method is named according to the child objects defined for the parent object. For example, if the
parent object contains a child object named “Address”, the getter method for this field is named
getAddress. A getter method is created for each child object in the parent object.

Syntax
ChildBean getChild(int i)

Parameters

Name Type Description

i int The index of the child object to retrieve from a list of
child objects.

Returns

A Java Bean containing the child object specified by the index value. The method name
indicates the type of child object returned.

Throws

ObjectException

getField

Description

This method retrieves the value of the field specified in the method name. Each getter method is
named according to the fields defined for the parent object. For example, if the parent object
contains a field named “FirstName”, the getter method for this field is named getFirstName.

Syntax
String getField()

Working with the Master Index Java API (Repository)

Understanding Sun Master Index Processing (Repository) 111

Note – The syntax for the getter methods depends on the type of data specified for the field in the
object structure. For example, the getter method for a date field would have the following
syntax:

Date getField

Parameters

None.

Returns

The value of the specified field. The type of data returned depends on the data type defined in
the object definition.

Throws

ObjectException

getObjectNameId

Description

This method retrieves the unique identification code (primary key) of the object, as assigned by
the master index application.

Syntax
String getObjectNameId()

Parameters

None.

Returns

A string containing the unique ID of the parent object.

Throws

ObjectException

Working with the Master Index Java API (Repository)

Understanding Sun Master Index Processing (Repository) • December 2008112

setChild

Description

This method adds a child object to the system object.

Syntax
void setChild(int index, ChildBean child)

Parameters

Name Type Description

index integer The index number for the new child object.

child ChildBean The Java Bean containing the child object to add.

Returns

None.

Throws

None.

setChild

Description

This method adds an array of child objects of one type to the system object.

Syntax
void setChild(ChildBean[] children)

Parameters

Name Type Description

children ChildBean[] The array of child objects to add.

Returns

None.

Working with the Master Index Java API (Repository)

Understanding Sun Master Index Processing (Repository) 113

Throws
None.

setField

Description
This method sets the value of the field specified in the method name. Each setter method is
named according to the fields defined for the parent object. For example, if the parent object
contains a field named “DateOfBirth”, the setter method for this field is named
setDateOfBirth. A setter method is created for each field in the parent object, including any
fields containing standardized or phonetic data.

Syntax
void setField(value)

Parameters

Name Type Description

value varies The value of the field specified by the method name.
The type of value depends on the field being
populated.

Returns
None.

Throws
ObjectException

setObjectNameId

Description
This method sets the value of the ObjectNameId field in the parent object.

Note – This ID is set internally by the master index application. Do not set this field manually.

Syntax
void setObjectNameId(String value)

Working with the Master Index Java API (Repository)

Understanding Sun Master Index Processing (Repository) • December 2008114

Parameters

Name Type Description

value String The value of the ObjectNameId field.

Returns

None.

Throws

ObjectException

Master Index Child Beans (Repository)
A Java Bean is created to represent each child object defined in the object definition of the
master index application. The methods in these classes provide the ability to create a child
object Bean and to set or retrieve the field values for that object Bean.

The name of each child object Bean class is the same as the name of each child object, with the
word “Bean” appended. For example, if a child object in your object structure is named
“Address”, the name of the corresponding child class is AddressBean. The methods in this class
include a constructor method for the child object Bean, and get and set methods for each field
defined for the child object. Most methods have dynamic names based on the name of the child
object and the fields defined for that object. In the following methods, Child indicates the name
of a child object and Field indicates the name of a field defined for the child object.

Definition
final class ChildBean

Methods

■ “ChildBean” on page 116 ■ “getChildId” on page 118

■ “delete” on page 116 ■ “setField” on page 118

■ “getField” on page 117 ■ “setChildId” on page 119

Working with the Master Index Java API (Repository)

Understanding Sun Master Index Processing (Repository) 115

Inherited Methods
The following methods are inherited from java.lang.Object.
■ equals
■ hashcode
■ notify
■ notifyAll
■ toString
■ wait()
■ wait(long arg)
■ wait(long timeout, int nanos)

ChildBean

Description
This method is the user-defined object Bean class. You can instantiate this class to create a new
instance of the child object Bean class.

Syntax
new ChildBean()

Parameters
None.

Returns
An instance of the child object Bean.

Throws
ObjectException

delete

Description
This method removes the child object from the object being processed. This is used with the
executeMatchUpdate function to update a system object by deleting one of the child objects
from the object being processed.

Syntax
void delete()

Working with the Master Index Java API (Repository)

Understanding Sun Master Index Processing (Repository) • December 2008116

Parameters

None.

Returns

None.

Throws

ObjectException

getField

Description

This method retrieves the value of the field specified in the method name. Each getter method is
named according to the fields defined for the child object. For example, if the child object
contains a field named “ZipCode”, the getter method for this field is named getZipCode.

Syntax
String getField()

Note – The syntax for the getter methods depends on the type of data specified for the field in the
object structure. For example, the getter method for a date field would have the following
syntax:

Date getField

Parameters

None.

Returns

The value of the specified field. The type of data returned depends on the data type defined in
the object definition.

Throws

ObjectException

Working with the Master Index Java API (Repository)

Understanding Sun Master Index Processing (Repository) 117

getChildId

Description

This method retrieves the unique identification code (primary key) of the object, as assigned by
the master index application.

Syntax

String getChildId()

Parameters

None.

Returns

A string containing the unique ID of the child object.

Throws

ObjectException

setField

Description

This method sets the value of the field specified in the method name. Each setter method is
named according to the fields defined for the child object. For example, if the child object
contains a field named “Address”, the setter method for this field is named setAddress. A setter
method is created for each field in the child object, including any fields containing standardized
or phonetic data.

Syntax

void setField(value)

Working with the Master Index Java API (Repository)

Understanding Sun Master Index Processing (Repository) • December 2008118

Parameters

Name Type Description

value varies The value of the field specified by the method name.
The type of value depends on the data type of the field
being populated.

Returns

None.

Throws

ObjectException

setChildId

Description

This method sets the value of the ChildId field in the child object.

Note – This ID is set internally by the master index application. Do not set this field manually.

Syntax
void setChildId(String value)

Parameters

Name Type Description

value String The value of the ChildId field.

Returns

None.

Throws

ObjectException

Working with the Master Index Java API (Repository)

Understanding Sun Master Index Processing (Repository) 119

DestinationEO Master Index Class (Repository)
This class represents an enterprise object involved in a merge. This is the enterprise object
whose EUID was kept in the final merge result record. A DestinationEO object is used when
unmerging two enterprise objects.

Definition
class DestinationEO

Methods

■ “getEnterpriseObjectName” on page 120

getEnterpriseObjectName

Description

This method retrieves the surviving enterprise object from a merge transaction in order to allow
the records to be unmerged.

Syntax
EnterpriseObjectName getEnterpriseObjectName()

where ObjectName is the name of the parent object.

Parameters

None.

Returns

The surviving enterprise object from a merge transaction.

Throws

ObjectException

Working with the Master Index Java API (Repository)

Understanding Sun Master Index Processing (Repository) • December 2008120

SearchObjectNameResult Master Index Class
(Repository)
This class represents the results of a search. A SearchObjectNameResult object (where
ObjectName is the name of the parent object) is returned as a result of a call to “searchBlock” on
page 96, “searchExact” on page 97, or “searchPhonetic” on page 97.“searchBlock” on page 96

Definition
class SearchObjectNameResult

Methods

■ “getEUID” on page 121

■ “getComparisonScore” on page 122

■ “getObjectName” on page 122

getEUID

Description

This method retrieves the EUID of a search result record.

Syntax
String getEUID()

Parameters

None.

Returns

A string containing an EUID.

Throws

None.

Working with the Master Index Java API (Repository)

Understanding Sun Master Index Processing (Repository) 121

getComparisonScore

Description

This method retrieves the weight that indicates how closely a search result record matched the
search criteria.

Syntax
Float getComparisonScore()

Parameters

None.

Returns

A comparison weight.

Throws

None.

getObjectName

Description

This method retrieves an object bean for a search result record.

Syntax
ObjectNameBean getObjectName()

where ObjectName is the name of the parent object.

Parameters

None.

Returns

An object bean.

Throws

None.

Working with the Master Index Java API (Repository)

Understanding Sun Master Index Processing (Repository) • December 2008122

SourceEO Master Index Class (Repository)
This class represents an enterprise object involved in a merge. This is the enterprise object
whose EUID was not kept in the final merge result record. A SourceEO object is used when
unmerging two enterprise objects.

Definition
class SourceEO

Methods

■ “getEnterpriseObjectName” on page 123

getEnterpriseObjectName

Description

This method retrieves the non-surviving enterprise object from a merge transaction in order to
allow the records to be unmerged.

Syntax
EnterpriseObjectName getEnterpriseObjectName()

where ObjectName is the name of the parent object.

Parameters

None.

Returns

The non-surviving enterprise object from a merge transaction.

Throws

None.

SystemObjectNamePK Master Index Class (Repository)
This class represents the primary keys in a system object, which include the processing code for
the originating system and the local ID of the object in that system. The class is named for the
primary object. For example, if the primary object is named “Person”, this class is named

Working with the Master Index Java API (Repository)

Understanding Sun Master Index Processing (Repository) 123

SystemPersonPK. If the primary object is named “Company”, this class is named
SystemCompanyPK. The methods in these classes provide the ability to create an instance of the
class and to retrieve the system processing code and the local ID.

Definition
class SystemObjectNamePK

where ObjectName is the name of the parent object.

Methods

■ “SystemObjectNamePK” on page 124

■ “getLocalId” on page 125

■ “getSystemCode” on page 125

SystemObjectNamePK

Description

This method is the user-defined system primary key object. This object contains a system code
and a local ID. Use this constructor method to create a new instance of a system primary key
object.

Syntax
new SystemObjectNamePK()

where ObjectName is the name of the parent object.

Parameters

None.

Returns

An instance of the system primary key object.

Throws

None.

Working with the Master Index Java API (Repository)

Understanding Sun Master Index Processing (Repository) • December 2008124

getLocalId

Description

This method retrieves the local identifier from a system primary key object.

Syntax
String getLocalId()

Parameters

None.

Returns

A string containing a local identifier.

Throws

None.

getSystemCode

Description

This method retrieves the system’s processing code from a system primary key object.

Syntax
String getSystemCode()

Parameters

None.

Returns

A string containing the processing code for a system.

Throws

None.

Working with the Master Index Java API (Repository)

Understanding Sun Master Index Processing (Repository) 125

Master Index Match Types and Field Names (Repository)
You can select a Match Type for each field defined in the Sun Master Index wizard. Each match
type defines a different type of standardization, normalization, phonetic encoding, and
matching logic in the Match Field file. The following topics describe each match type and how
each affects the logic in the Match Field file.
■ “Master Index Match and Standardization Types (Repository)” on page 126
■ “Sun Match Engine Match Types (Repository)” on page 126

Master Index Match and Standardization Types
(Repository)
For each field that will be used for matching in the master index application, you can select a
match type in the wizard. When you select a match type for a field, Sun Master Index
automatically adds that field to the match string in the Match Field file and, in many cases,
generates additional fields in the object definition that are not visible on the wizard. These fields
are used for searching and matching and they should not be modified.

If new fields are generated, they are automatically incorporated into the configuration files and
the database script that creates the master index tables. These fields store standardized,
normalized, or phonetic versions of the field, depending on the type of matching you choose. In
addition, these fields are assigned a match type in the match string in the Match Field file. They
might also be defined for standardization in the Match Field file, in which case they will also be
assigned a standardization type.

Note – The match types specified in the Match Field file for the fields in the match string are not
always the same as the match types you specify in the wizard. Information about match types is
provided in the following sections. For more information, see Understanding the Sun Match
Engine.

Sun Match Engine Match Types (Repository)
The Sun Master Index wizard match types fall into four primary categories.

■ “Person Match Types” on page 127
■ “BusinessName Match Types” on page 127
■ “Address Match Types” on page 128
■ “Miscellaneous Match Types” on page 129

The actual standardization and match types entered into the Match Field file vary for each
match type you select in the wizard. The match and standardization types for each type of field

Master Index Match Types and Field Names (Repository)

Understanding Sun Master Index Processing (Repository) • December 2008126

are listed in the following descriptions. The match types entered into the Match Field file
correspond to the match types defined in the match configuration file, MatchConfigFile.cfg.

Person Match Types
The Person match types include PersonLastName and PersonFirstName. These match types are
used to normalize and phonetically encode name fields for person matching. For each field with
one of these match types, the wizard adds two fields to the object structure for phonetic and
standardized versions. If you specify a field with a person match type for blocking in the wizard,
the phonetic version of the name is automatically added to the blocking query. The following
fields are created when you specify one of the Person match types for a field (field_name refers
to the name of the field specified for Person matching).

■ field_name_Std – This field contains the normalized version of the name.
■ field_name_Phon – This field contains the phonetic version of the name.

The corresponding standardization and match types in the Match Field file are listed in
Table 24.

TABLE 24 Person Name Standardization and Match Types

eView Wizard Match Type Match Field File Standardization Type Match Field File Match Type

PersonLastName PersonName LastName

PersonFirstName PersonName FirstName

BusinessName Match Types
The BusinessName match type is designed to help parse, normalize, and phonetically encode a
business name. BusinessName matching adds several fields to the object structure and to the
match string. If you specify a business name field for blocking, each parsed business name field
is added to the blocking query. The corresponding standardization type in the Match Field file
for all fields selected for BusinessName matching is also BusinessName. The actual match type
assigned to each field varies depending on the type of information in each field.

Table 25 lists the fields created when you select the BusinessName match type for a field along
with their corresponding match types in the Match Field file (field_name refers to the name of
the field selected for BusinessName matching).

Note – Only specify this type of matching for one business name field; otherwise, the wizard will
create duplicate entries in the object structure. If more than one field contains the business
name, you can add those fields to the standardization structure in the Match Field file after the
wizard creates the configuration files.

Master Index Match Types and Field Names (Repository)

Understanding Sun Master Index Processing (Repository) 127

TABLE 25 BusinessName Match Types

Field Name Description
Added to the
Match String? Match Field File Match Type

field_name_Name The parsed and normalized
version of the business name.

Yes PrimaryName

field_name_NamePhon The phonetic version of the
business name.

No

field_name_OrgType The parsed organization type of
the business name.

Yes OrgTypeKeyword

field_name_AssocType The association type for the
business.

Yes AssocTypeKeyword

field_name_Industry The name of the industry for the
business.

Yes IndustryTypeKeyword

field_name_Sector The name of the industry sector
(industries are a subset of
sectors).

Yes IndustrySectorList

field_name_Alias An alias for the business name. No

field_name_Url The business’ web site URL. Yes Url

Address Match Types
The Address match type is designed to help parse, normalize, and phonetically encode an
address for matching or standardizing address information. Address matching adds several
fields to the object structure and to the match string. If you specify an address field for blocking,
the parsed fields are added to the blocking query. The corresponding standardization type for
fields selected for Address matching is Address. The actual match type assigned to each field
varies depending on the type of information in each field.

The fields created when you select the Address match type for a field are listed below along with
their corresponding match types in the Match Field file (field_name refers to the name of the
field selected for Address matching).

Note – Only specify this type of matching for one street address field; otherwise, the wizard will
create duplicate entries in the object structure. If more than one field contains the street address,
you can define the additional fields in the standardization structure in the Match Field file after
the wizard creates the configuration files.

Master Index Match Types and Field Names (Repository)

Understanding Sun Master Index Processing (Repository) • December 2008128

TABLE 26 Address Match Types

Field Name Description
Added to Match
String? Match Field File Match Type

field_name_HouseNo The parsed street number of the
address.

Yes HouseNumber

field_name_StDir The parsed and normalized
street direction of the address.

Yes StreetDir

field_name_StName The parsed and normalized
street name of the address.

Yes StreetName

field_name_StPhon The phonetic version of the
street name.

No

field_name_StType The parsed and normalized
street type of the address, such as
Boulevard, Street, Drive, and so
on.

Yes StreetType

If you want to search on street addresses but do not want to use these fields for matching, select
the Address match type for only one street address field in the wizard. When the wizard is
complete, you can remove the address fields from the match string in the Match Field file.

Miscellaneous Match Types
Several additional match types are defined in the wizard for the Sun Match Engine. These match
types are used to indicate matching on a string, date, or number fields other than those
described above or to indicate matching on a field that contains a single character (such as the
gender field, which might accept “F” for female or “M” for male). These match types do not
define standardization for the specified field and do not add any fields to the object structure. If
you specify one of these match types for a field in the wizard, the field is added to the match
string with a match type of String, Date, Number, or Char.

Master Index Match Types and Field Names (Repository)

Understanding Sun Master Index Processing (Repository) 129

130

	Understanding Sun Master Index Processing (Repository)
	Understanding Sun Master Index Processing (Repository)
	Related Topics
	About Sun Master Index (Repository)
	Understanding Master Index Operational Processes (Repository)
	Learning About Master Index Message Processing (Repository)
	Master Index Inbound Message Processing (Repository)
	About Inbound Messages

	Master Index Outbound Message Processing (Repository)
	About Outbound Messages
	Outbound OTD Structure
	Outbound Message Trigger Events
	Sample Outbound Message

	Master Index Inbound Message Processing Logic (Repository)
	Master Index Custom Decision Point Logic (Repository)
	Master Index Primary Function Processing Logic (Repository)
	activateEnterpriseObject
	activateSystemObject
	addSystemObject
	createEnterpriseObject
	deactivateEnterpriseObject
	deactivateSystemObject
	deleteSystemObject
	mergeEnterpriseObject
	mergeSystemObject
	transferSystemObject
	undoAssumedMatch
	unmergeEnterpriseObject
	unmergeSystemObject
	updateEnterpriseDupRecalc
	updateEnterpriseObject
	updateSystemObject

	The Master Index Database Structure (Repository)
	About the Master Index Database (Repository)
	Master Index Database Table Details (Repository)
	SBYN_OBJECT_NAME
	SBYN_OBJECT_NAMESBR
	SBYN_CHILD_OBJECT
	SBYN_CHILD_OBJECTSBR
	SBYN_APPL
	SBYN_ASSUMEDMATCH
	SBYN_AUDIT
	SBYN_COMMON_DETAIL
	SBYN_COMMON_HEADER
	SBYN_ENTERPRISE
	SBYN_MERGE
	SBYN_OVERWRITE
	SBYN_POTENTIALDUPLICATES
	SBYN_SEQ_TABLE
	SBYN_SYSTEMOBJECT
	SBYN_SYSTEMS
	SBYN_SYSTEMSBR
	SBYN_TRANSACTION
	SBYN_USER_CODE

	Sample Master Index Database Model (Repository)

	Working with the Master Index Java API (Repository)
	Master Index Java Class Types (Repository)
	Static Master Index Java Classes (Repository)
	Dynamic Master Index Object Classes (Repository)
	Dynamic OTD Methods
	Dynamic Business Process Methods

	Dynamic Master Index Object Classes (Repository)
	Master Index Parent Object Classes (Repository)
	Definition
	Methods
	ObjectNameObject
	Description
	Syntax
	Parameters
	Returns
	Throws

	addChild
	Description
	Syntax
	Parameters
	Returns
	Throws

	addSecondaryObject
	Description
	Syntax
	Parameters
	Returns
	Throws

	copy
	Description
	Syntax
	Parameters
	Returns
	Throws

	dropSecondaryObject
	Description
	Syntax
	Parameters
	Returns
	Throws

	getObjectNameId
	Description
	Syntax
	Parameters
	Returns
	Throws

	getChild
	Description
	Syntax
	Parameters
	Returns
	Throws

	getField
	Description
	Syntax
	Parameters
	Returns
	Throws

	getChildTags
	Description
	Syntax
	Parameters
	Returns
	Throws

	getMetaData
	Description
	Syntax
	Parameters
	Returns
	Throws

	getSecondaryObject
	Description
	Syntax
	Parameters
	Returns
	Throws

	isAdded
	Description
	Syntax
	Parameters
	Returns
	Throws

	isRemoved
	Description
	Syntax
	Parameters
	Returns
	Throws

	isUpdated
	Description
	Syntax
	Parameters
	Returns
	Throws

	setObjectNameId
	Description
	Syntax
	Parameters
	Returns
	Throws

	setField
	Description
	Syntax
	Parameters
	Returns
	Throws

	setAddFlag
	Description
	Syntax
	Parameters
	Returns
	Throws

	setRemoveFlag
	Description
	Syntax
	Parameters
	Returns
	Throws

	setUpdateFlag
	Description
	Syntax
	Parameters
	Returns
	Throws

	structCopy
	Description
	Syntax
	Parameters
	Returns
	Throws

	Master Index Child Object Classes (Repository)
	Definition
	Methods

	ChildObject
	Description
	Syntax
	Parameters
	Returns
	Throws

	copy
	Description
	Syntax
	Parameters
	Returns
	Throws

	getChildId
	Description
	Syntax
	Parameters
	Returns
	Throws

	getField
	Description
	Syntax
	Parameters
	Returns
	Throws

	getMetaData
	Description
	Syntax
	Parameters
	Returns
	Throws

	getParentTag
	Description
	Syntax
	Parameters
	Returns
	Throws

	setChildId
	Description
	Syntax
	Parameters
	Returns
	Throws

	setField
	Description
	Syntax
	Parameters
	Returns
	Throws

	structCopy
	Description
	Syntax
	Parameters
	Returns
	Throws

	Dynamic Master Index OTD Methods (Repository)
	Dynamic Master Index OTD Methods (Repository)
	activateEnterpriseRecord
	Description
	Syntax
	Parameters
	Returns
	Throws

	activateSystemRecord
	Description
	Syntax
	Parameters
	Returns
	Throws

	addSystemRecord
	Description
	Syntax
	Parameters
	Returns
	Throws

	deactivateEnterpriseRecord
	Description
	Syntax
	Parameters
	Returns
	Throws

	deactivateSystemRecord
	Description
	Syntax
	Parameters
	Returns
	Throws

	executeMatch
	Syntax
	Parameters
	Returns
	Throws

	executeMatchUpdate
	Syntax
	Parameters
	Returns
	Throws

	findMasterController
	Syntax
	Parameters
	Returns
	Throws

	getEnterpriseRecordByEUID
	Description
	Syntax
	Parameters
	Returns
	Throws

	getEnterpriseRecordByLID
	Description
	Syntax
	Parameters
	Returns
	Throws

	getEUID
	Description
	Syntax
	Parameters
	Returns
	Throws

	getLIDs
	Description
	Syntax
	Parameters
	Returns
	Throws

	getLIDsByStatus
	Description
	Syntax
	Parameters
	Returns
	Throws

	getSBR
	Description
	Syntax
	Parameters
	Returns
	Throws

	getSystemRecord
	Description
	Syntax
	Parameters
	Returns
	Throws

	getSystemRecordsByEUID
	Description
	Syntax
	Parameters
	Returns
	Throws

	getSystemRecordsByEUIDStatus
	Description
	Syntax
	Parameters
	Returns
	Throws

	lookupLIDs
	Description
	Syntax
	Parameters
	Returns
	Throws

	mergeEnterpriseRecord
	Description
	Syntax
	Parameters
	Returns
	Throws

	mergeSystemRecord
	Description
	Syntax
	Parameters
	Returns
	Throws

	searchBlock
	Description
	Syntax
	Parameters
	Returns
	Throws

	searchExact
	Description
	Syntax
	Parameters
	Returns
	Throws

	searchPhonetic
	Description
	Syntax
	Parameters
	Returns
	Throws

	transferSystemRecord
	Description
	Syntax
	Parameters
	Returns
	Throws

	updateEnterpriseRecord
	Description
	Syntax
	Parameters
	Returns
	Throws

	updateSystemRecord
	Description
	Syntax
	Parameters
	Returns
	Throws

	Dynamic Business Process Methods (Repository)
	Master Index Helper Classes (Repository)
	SystemObjectName Master Index Class (Repository)
	Definition
	Fields
	Methods
	Inherited Methods

	ClearFieldIndicator Field
	SystemObjectName
	Description
	Syntax
	Parameters
	Returns
	Throws

	getClearFieldIndicator
	Description
	Syntax
	Parameters
	Returns
	Throws

	getField
	Description
	Syntax
	Parameters
	Returns
	Throws

	getObjectName
	Description
	Syntax
	Parameters
	Returns
	Throws

	setClearFieldIndicator
	Description
	Syntax
	Parameters
	Returns
	Throws

	setField
	Description
	Syntax
	Parameters
	Returns
	Throws

	setObjectName
	Description
	Syntax
	Parameters
	Returns
	Throws

	Master Index Parent Beans (Repository)
	Definition
	Methods
	Inherited Methods

	ObjectNameBean
	Description
	Syntax
	Parameters
	Returns
	Throws

	countChild
	Description
	Syntax
	Parameters
	Returns
	Throws

	countChildren
	Description
	Syntax
	Parameters
	Returns
	Throws

	countChildren
	Description
	Syntax
	Parameters
	Returns
	Throws

	deleteChild
	Description
	Syntax
	Parameters
	Returns
	Throws

	getChild
	Description
	Syntax
	Parameters
	Returns
	Throws

	getChild
	Description
	Syntax
	Parameters
	Returns
	Throws

	getField
	Description
	Syntax
	Parameters
	Returns
	Throws

	getObjectNameId
	Description
	Syntax
	Parameters
	Returns
	Throws

	setChild
	Description
	Syntax
	Parameters
	Returns
	Throws

	setChild
	Description
	Syntax
	Parameters
	Returns
	Throws

	setField
	Description
	Syntax
	Parameters
	Returns
	Throws

	setObjectNameId
	Description
	Syntax
	Parameters
	Returns
	Throws

	Master Index Child Beans (Repository)
	Definition
	Methods
	Inherited Methods

	ChildBean
	Description
	Syntax
	Parameters
	Returns
	Throws

	delete
	Description
	Syntax
	Parameters
	Returns
	Throws

	getField
	Description
	Syntax
	Parameters
	Returns
	Throws

	getChildId
	Description
	Syntax
	Parameters
	Returns
	Throws

	setField
	Description
	Syntax
	Parameters
	Returns
	Throws

	setChildId
	Description
	Syntax
	Parameters
	Returns
	Throws

	DestinationEO Master Index Class (Repository)
	Definition
	Methods

	getEnterpriseObjectName
	Description
	Syntax
	Parameters
	Returns
	Throws

	SearchObjectNameResult Master Index Class (Repository)
	Definition
	Methods

	getEUID
	Description
	Syntax
	Parameters
	Returns
	Throws

	getComparisonScore
	Description
	Syntax
	Parameters
	Returns
	Throws

	getObjectName
	Description
	Syntax
	Parameters
	Returns
	Throws

	SourceEO Master Index Class (Repository)
	Definition
	Methods

	getEnterpriseObjectName
	Description
	Syntax
	Parameters
	Returns
	Throws

	SystemObjectNamePK Master Index Class (Repository)
	Definition
	Methods

	SystemObjectNamePK
	Description
	Syntax
	Parameters
	Returns
	Throws

	getLocalId
	Description
	Syntax
	Parameters
	Returns
	Throws

	getSystemCode
	Description
	Syntax
	Parameters
	Returns
	Throws

	Master Index Match Types and Field Names (Repository)
	Master Index Match and Standardization Types (Repository)
	Sun Match Engine Match Types (Repository)
	Person Match Types
	BusinessName Match Types
	Address Match Types
	Miscellaneous Match Types

