
Java CAPS Management and
Monitoring APIs

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 820–3388–10
June 2008

Copyright 2008 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In particular, and without
limitation, these intellectual property rights may include one or more U.S. patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights – Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions
of the FAR and its supplements.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other
countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, the Solaris logo, the Java Coffee Cup logo, docs.sun.com, Java, and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. or its subsidiaries in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of
SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and SunTM Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts
of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to
the Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN LOOK GUIs and otherwise comply with Sun's written license
agreements.

Products covered by and information contained in this publication are controlled by U.S. Export Control laws and may be subject to the export or import laws in
other countries. Nuclear, missile, chemical or biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export
or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied persons and specially
designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

081030@21288

Contents

Java CAPS Management and Monitoring APIs ... 5
Java CAPS Management Client ..7

JavaDocs ...8
Targets ..8

Getting Started Using APIs ...9
▼ To Start Using APIs to Create Applications ...9

Connecting to the Server Through APIs .. 10
Connection Type Definition .. 12
CAPSManagementClientFactory Definition ... 12

The Alert Management API ... 14
Support for Databases ... 14
AlertConfigurationService ... 14
AlertNotificationService ... 21

Services — JavaCAPSManagementAPI .. 23
Administration Service ... 24
Runtime Management Service ... 25
Configuration Service .. 28
Deployment Service ... 28
Installation Service ... 29
Performance Measurement Service ... 30
Alert Management Service .. 32
Alert Administration Service .. 32
Alert Notification Service .. 33
Alert Configuration Service .. 34
JMS Management Service ... 36
Log Management Service .. 38
BPEL Management Service ... 39
Master Data Management (MDM) Service .. 40

3

Sun Adapters Management Service ... 41
Target Option Behavior for the Management Client .. 42

Writing Java Code to Access APIs Using Java Code Samples .. 42
Setting Up Databases .. 43

▼ To Set Up a Database Using Enterprise Manager .. 43
▼ To Set Up a Database Using a Scripting Utility .. 44

Using Oracle and Other Databases for Alert Persistence ... 45
▼ To Set Up an Oracle Database for Alert Persistence .. 45

Oracle Script Examples ... 48
Setting Up Scripting Engines ... 50

Downloading, Installing, and Setting Up A Scripting Environment 50
Setting Up a Scripting Environment to Invoke Java CAPS Management and Monitoring
APIs .. 51

▼ To Modify the Environment Variables in env.bat ... 51
Using a Scripting Language to Exercise the Java CAPS Management and Monitoring
APIs .. 52
Exercising the Administration Service .. 52
Exercising the Configuration Service .. 53
Exercising the Deployment Service ... 54
Exercising the Installation Service ... 54
Exercising the Runtime Management Service .. 55
Exercising the JMS Management Service .. 56
Exercising the BPEL Management Service ... 57
Exercising the HTTP Administration Service .. 57
Exercising the Notification Service .. 58
JRuby Integrated into NetBeans IDE ... 58

Contents

Java CAPS Management and Monitoring APIs • June 20084

Java CAPS Management and Monitoring APIs

This topic provides information on common management and monitoring tasks. The
management and monitoring APIs are not installed during the JavaTM Composite Application
Platform Suite (Java CAPS) installation; they are packaged as EM_API_KIT.zip. This ZIP file is
on ESB_API_Kit.zip. You need to extract EM_API_KIT.zip to your root Java CAPS 6
installation directory. If you extract the file to another directory you need to set the
JAVA_HOME, JAVA_CAPS, and the ENGINE_HOME environment variables in env.bat. For
information on how to do this, see “To Modify the Environment Variables in env.bat” on
page 51. Also included with the ZIP file are JavaDocs, Java samples, and Groovy scripting
samples that demonstrate how to use the APIs.

If you have any questions or problems, see the Java CAPS Support web site at
http://goldstar.stc.com/support.

Tip – To access all the Java CAPS documentation in HTML format on the Sun Developer
Network (SDN) web site, go to http://developers.sun.com/docs/javacaps/.

You can also access the Java CAPS documentation on the SDN web site by clicking the HELP
tab in Enterprise Manager.

The HELP tab in the Java CAPS Uploader opens the “Installing Java CAPS Components Using
the Java CAPS Uploader” topic.

What You Need to Know

■ “Java CAPS Management Client” on page 7
■ “Getting Started Using APIs” on page 9
■ “Connecting to the Server Through APIs” on page 10
■ “The Alert Management API” on page 14
■ “Services — JavaCAPSManagementAPI” on page 23
■ “Writing Java Code to Access APIs Using Java Code Samples” on page 42
■ “Setting Up Databases” on page 43

5

http://goldstar.stc.com/support
http://developers.sun.com/docs/javacaps/

■ “Using Oracle and Other Databases for Alert Persistence” on page 45
■ “Setting Up Scripting Engines” on page 50

You expose management and monitoring using:

■ A common API
The client API kit is installable from the Java Composite Application Platform Suite (Java
CAPS) Installer and is packaged along with the Groovy scripting engine, Groovy libraries,
and samples.

■ JSR 223 Scripting
All management capabilities are exercisable from any language that supports JSR 223
scripting for the Java platform. Currently this includes 25 different scripting languages,
including Groovy, JRuby, Jython, JACL, etc.

■ Sun Java System Application Server Admin Console
All JBI administration use-cases are built into the Sun Java System Application Server
Admin Console. This enables administrators to administer their domain runtimes and
components remotely using a browser.

■ Command-line interface
The AS Admin command-line interface that comes with the Sun Java System Application
Server enables you to manager your application server environment. All JBI administration
use-cases have been integrated into the AS Admin command-line interface. In addition, the
command-line interface that used to manage non-JBI components is also available for you
to use.

■ Ant
asant enables you to run ant scripts on the Sun Java System Application Server. All JBI
administration use-cases have been integrated into the Sun Java System Application Server's
asant, and are available to exercise though any ant scripting that is available to you.

■ Java CAPS Enterprise Manager
Use Enterprise Manager to remotely to administer your non-JBI based components.

■ NetBeans Administration plugins
The JBI Manager that comes with NetBeans IDE enables developers to manage the JBI
runtimes component containers and composite applications. The Composite Application
Project System (CASA) enables developers to deploy and manage lifecycle operations
during development.

Java CAPS Management and Monitoring APIs

Java CAPS Management and Monitoring APIs • June 20086

Java CAPS Management Client
This topic introduces you to the Java CAPS Management Client and the clients that use the API
set with JBI based Java CAPS runtime and Non-JBI based Java CAPS runtime.
■ Scripting client — Use any JSR 223 scripting client, such as Groovy, JRuby, Jython, or JACL.

See “Setting Up Scripting Engines” on page 50 for additional information.

Note – Groovy samples are included with the Java CAPS Release 6 delivery.

■ CLI client — Exercise the APIs using your own Command-line Interface client that you
built using predefined functioning code, preferably Java.

■ Other Web/GUI clients — Exercise the APIs using your custom Web/GUI client.

Examples of Typical Client Usage

try {

// Get the Management Client

ManagementClient client = ManagementClientFactory.getInstance

("localhost", 4848, "admin", "adminadmin");

// Get the Administration Service

AdministrationService administrationService =

client.getService(AdministrationService.class);

// ... Use the Administration Service ...

// Get the Configuration Service

ConfigurationService configurationService =

client.getService(ConfigurationService.class);

// ... Use the Configuration Service ...

// Get the Deployment Service

DeploymentService deploymentService =

client.getService(DeploymentService.class);

// ... Use the Deployment Service ...

// Get the Installation Service

InstallationService installationService =

client.getService(InstallationService.class);

// ... Use the Installation Service ...

// Get the Runtime Management Service

RuntimeManagementService runtimeManagementService =

client.getService(RuntimeManagementService.class);

// ... Use the Runtime Management Service ...

Java CAPS Management Client

Java CAPS Management and Monitoring APIs 7

// Get the JMS Management Service

JmsManagementService jmsManagementService =

client.getService(JmsManagementService.class);

// ... Use the JMS Management Service ...

// Get the Alert Management Service

AlertManagementService alertManagementService =

client.getService(AlertManagementService.class);

// ... Use the Alert Management Service ...

// Get the Log Management Service

LogManagementService logManagementService =

client.getService(LogManagementService.class);

// ... Use the Log Management Service ...

} catch (ManagementRemoteException exception) {

// Format the exception and print it.

String formattedExceptionResult=

ManagementRemoteExceptionProcessor.processTaskException(exception);

System.out.println(formattedExceptionResult);

}

JavaDocs
The JavaDocs contain a complete list of all the classes in the API. They are included with the
Java CAPS delivery as zipped files.

Targets
A target provides the scope of an administrative operation. Directing a command at multiple
targets effectively increases the scope of that command. If multiple targets are specified, the
success or failure of each target is reported separately. In other words the result of the operation
on all targets is not “rolled up” into a summary status. The following table describes the scope of
each target type.

Note – Two of the target option names are constant: “domain” and “server.” They represent an
instance of an operator and are replaceable with a name specific to the current template.

Java CAPS Management Client

Java CAPS Management and Monitoring APIs • June 20088

TABLE 1 Target Operations

Target Name Scope

domain Command is executed against the domain itself. For JBI purposes, this is
equivalent to add-to-repository activity.

server Command is executed against embedded DAS server instance.

cluster name Command is executed against all instances in a cluster.

instance name Command is executed against a single standalone instance.

cluster instance name Command is executed against the specific instance in a cluster.

Note – The samples that are pertinent to this topic, such as
AdministrationServiceSample.groovy, are included with the delivery as zipped files.

Getting Started Using APIs
The Java Composite Application Platform Suite (Java CAPS) APIs are available for users and
developers to create applications and web pages.

▼ To Start Using APIs to Create Applications
The following task includes everything a you need to create an application using the Java CAPS
APIs. If you are connecting using the Sun Java System Application Server (SJSAS) that you
installed during the Java CAPS Installation you do not need any additional JAR files in your
working directory. However, if you are connecting remotely, you need the following JAR files in
your working directory:

■ When connecting through just the RMI protocol using the JSR-160 MX URL you need these
JAR files:

%CAPS_MANAGEMENT_HOME%\api\caps.management.client.jar;

%SJSAS_HOME%\jbi\lib\jbi-admin-common.jar;

%SJSAS_HOME%\lib\javaee.jar;

■ When connecting through the HTTP/HTTPS protocols, you need these JAR files:

%CAPS_MANAGEMENT_HOME%\api\caps.management.client.jar;

%SJSAS_HOME%\jbi\lib\jbi-admin-common.jar;

%SJSAS_HOME%\lib\javaee.jar;

%SJSAS_HOME%\lib\appserv-deployment-client.jar;

%SJSAS_HOME%\lib\appserv-ext.jar;

Getting Started Using APIs

Java CAPS Management and Monitoring APIs 9

%SJSAS_HOME%\lib\appserv-rt.jar;

%SJSAS_HOME%\lib\jmxremote_optional.jar

Use this example to connect to the JMX URL
String hostName = "localhost";
int jrmpPortNumber = 8686;

String userName = "admin", password = "adminadmin";
boolean isRemoteConnection = true;

String jrmpURLString = "service:jmx:rmi:///jndi/rmi://" + hostName

+ ":" + jrmpPortNumber + "/jmxrmi";
CAPSManagementClient managementClient =

CAPSManagementClientFactory.getInstance(jrmpURLString,

userName, password, isRemoteConnection);

Get the service you need to write your application, for example the AdministrationService.
// get services

CAPSAdministrationService administrationService =

managementClient.getService(CAPSAdministrationService.class);

After creating the application, for example JBIRuntime, invoke the application.
// use the service,

System.out.println("The JBI Runtime is

"+(administrationService.isJBIRuntimeEnabled()?
"Enabled." : "NOT Enabled."));

Connecting to the Server Through APIs
Java CAPS currently provides seven options for you to connect to the Sun Java System
Application Server using APIs.

CAPSManagementClientFactory Client Usage

Option 1: host, port, userName, password

/** Only relevant piece of code is shown */

ManagementClient client = CAPSManagementClientFactory.getInstance("127.0.0.1",
4848,

"admin",
"adminadmin");

// ... Invoke operations on the returned CAPSManagementClient object ...

Option 2: host, port, userName, password, connectionType

/** Only relevant piece of code is shown */

ManagementClient client = CAPSManagementClientFactory.getInstance("127.0.0.1",
4848,

1

2

3

Connecting to the Server Through APIs

Java CAPS Management and Monitoring APIs • June 200810

"admin",
"adminadmin",
ConnectionType.HTTP);

// ... Invoke operations on the returned CAPSManagementClient object ...

Option 3: url, userName, password, isRemoteConnection

/** Only relevant piece of code is shown */

ManagementClient client = CAPSManagementClientFactory.getInstance(

"service:jmx:rmi:///jndi/rmi://localhost:22287/management/rmi-jmx- connector",
"admin", "adminadmin", false);

// ... Invoke operations on the returned CAPSManagementClient object ...

Option 4: MBeanServerConnection

/** Only relevant piece of code is shown */

MBeanServerConnection connection = ... // Get the MBeanServerConnection

ManagementClient client = CAPSManagementClientFactory.getInstance(connection);

// ... Invoke operations on the returned CAPSManagementClient object ...

Option 5: MBeanServerConnection, isRemoteConnection (true/false)

/** Only relevant piece of code is shown */

MBeanServerConnection connection = ... // Get the MBeanServerConnection

ManagementClient client = CAPSManagementClientFactory.getInstance(connection, true);

// ... Invoke operations on the returned CAPSManagementClient object ...

Option 6: host, port, userName, password, connectionType,
promtUserForMasterPassword(true/false)

/** Only relevant piece of code is shown */

ManagementClient client =

CAPSManagementClientFactory.getInstance("127.0.0.1",
8686,

"admin",
"adminadmin",
ConnectionType.JRMP,

false);

// ... Invoke operations on the returned CAPSManagementClient object ...

Option 7: hostName, portNumber, userName, password, connectionType,
keyStoreFileLocation, masterPassword, promptForMasterPassword (true/false)

/** Only relevant piece of code is shown */

ManagementClient client =

CAPSManagementClientFactory.getInstance

Connecting to the Server Through APIs

Java CAPS Management and Monitoring APIs 11

("127.0.0.1",
8686,

"admin",
"adminadmin",
ConnectionType.JRMP,

"C:/CAPS6/Glassfish/
domains/domain1/

config/keystore.jks",
"changeit",
true);

// ... Invoke operations on the returned CAPSManagementClient object ...

Connection Type Definition
public enum ConnectionType {

HTTP("s1ashttp"),
HTTPS("s1ashttps"),
JRMP("jmxrmi"),
IIOP("iiop");

// ... Implementation ...

/** @return the protocol */

public String getProtocol();

/** @return the protocol description */

public String getDescription();

}

CAPSManagementClientFactory Definition
/** Only relevant piece of code is shown */

public class CAPSManagementClientFactory {

// Option 1 - host, port, userName, password

public static CAPSManagementClient getInstance(String hostName, int portNumber,

String userName, String password) throws ManagementRemoteException {

// ... Implementation ...

}

// Option 2 - host, port, userName, password, connectionType

public static CAPSManagementClient getInstance(String hostName, int portNumber,

String userName, String password, ConnectionType connectionType)

throws ManagementRemoteException {

// ... Implementation ...

Connecting to the Server Through APIs

Java CAPS Management and Monitoring APIs • June 200812

}

// Option 3 - url, userName, password, isRemoteConnection

public static CAPSManagementClient getInstance(String url, String userName,

String password, boolean isRemoteConnection) throws

ManagementRemoteException {

// ... Implementation ...

}

// Option 4 - MBeanServerConnection

public static CAPSManagementClient getInstance(MBeanServerConnection connection)

throws ManagementRemoteException {

// ... Implementation ...

}

// Option 5 - MBeanServerConnection, isRemoteConnection

public static CAPSManagementClient getInstance(MBeanServerConnection connection,

boolean isRemoteConnection) throws ManagementRemoteException {

// ... Implementation ...

}

// Option 6 - host, port, userName, password, connectionType,

promtUserForMasterPassword(true/false)

public static CAPSManagementClient getInstance(String hostName, int portNumber,

String userName, String password, ConnectionType connectionType,

boolean promptForPasswordFlag) throws ManagementRemoteException {

// ... Implementation ...

}

// Option 7 - hostName, portNumber, userName, password, connectionType,

keyStoreFileLocation,

// masterPassword, promptForMasterPassword (true/false)

public static CAPSManagementClient getInstance(String hostName, int portNumber,

String userName, String password, ConnectionType connectionType,

String trustStoreFilePath, String trustStorePassword,

boolean promptForPasswordFlag) throws ManagementRemoteException {

// ... Implementation ...

}

}

Connecting to the Server Through APIs

Java CAPS Management and Monitoring APIs 13

Note – The Java CAPS Management API samples that are pertinent to this topic, such as
AdministrationServiceSample.groovy, are included with the delivery as zipped files.

The Alert Management API
With releases 6 the capabilities of the Alert Management Service have been increased to provide
more control for the user. The service is now divided into three services:

■ Alert Administration Service enables monitoring and control of the alerts stored in the
event database in Enterprise Manager

■ Alert Configuration Service on the Sun Java System Application Server (SJSAS) provides
more control over the persistence of alerts generated in the event management component.

■ Alert Notification Service on SJSAS provides more control over the type of alerts that are
delivered to a scripting client from the event management component

Caution – Persistence on and journaling off means that the removal of events are completed
upon delivery to all current clients.

Persistence on and journaling on means there is no removal of the events. Remember, if the
removable policy is enabled, the events will removed.

Support for Databases
The Alert Management API supports five databases:

■ Derby, which is delivered with the Sun Java System Application Server installation
■ Oracle
■ Sybase
■ DB2
■ PointBase

Note – You must start your database prior to using the Java CAPS APIs.

AlertConfigurationService
The AlertConfigurationService enables the Enterpriser Manager and other management clients
to manage and control the delivery reliability of alerts from applications or JBI based

The Alert Management API

Java CAPS Management and Monitoring APIs • June 200814

components to their clients. Enterprise Manager always receives alerts when it is started, while
all other clients are required to register in order to receive alerts. The configuration to manage
includes the enabling and disabling of the persistence of alerts in the database as well as the
policy to manage the deletion of alerts.

Note – Users of earlier releases of Java CAPS must enable persistence and journaling to obtain
the functionality to which they are accustomed.

Persisted Alerts Removal Policy

The composite removal policy is defined by controlling three items:

■ Alerts Count
The maximum number of alerts that can be persisted. When this policy is enforced, the
oldest-generated alerts are removed.

■ Alerts Age
The maximum amount of time, that is, “age,” that an alert can be persisted.

■ Alerts Level
Every generated alert has one priority level, from low to high, associated with it:
■ INFO
■ WARNING
■ MINOR
■ MAJOR
■ CRITICAL
■ FATAL

All the alerts that have a lower priority up to the defined level are removed.

The implementation is based upon a “first come first served” policy, as described in the Alert
Configuration Service API. The policy is a combination of all the defined policy items, an “and”
condition, and is applied even if the result of the executed policy item nullifies the execution of
the next policy item.

By default, persistence is set to “not enabled.” If you change the persistence default to “enabled”
but journaling is not “on,” you do not need to set the policy. However, if journaling is set to “on,”
you can set the policy for Alerts Count, Alerts Age, and Alerts Level.

Alert Configuration Service API

* Enable alerts persistence in the alerts database.

* enabling it allow for reliable alerts delivery in

* case of delivery channel failure or Application

* server restart.

The Alert Management API

Java CAPS Management and Monitoring APIs 15

*

* @param enableJournaling

* true - will prevent the system from

* removing alerts after they

* are delivered. The alert stay

* in the database until the

* user removes them.

* false - The system will remove the alert

* upon acknowledgment from

* the reliable client in case one was

* setup or upon send the alert to

* all the non reliable client/s.

* @throws ManagementRemoteException if JMX related exception is

* thrown or the list of target name is null or empty.

*/

public void enableAlertsPersistence(Boolean enableJournaling) throws

* ManagementRemoteException;

/**

* Disable alerts persistence in the alerts database.

*

* @throws ManagementRemoteException if JMX related exception is

* thrown or the list of target name is null or empty.

*/

public void disableAlertsPersistence() throws ManagementRemoteException;

/**

* @return the last setting of alert persistence enabling operation.

* true if enable otherwise false.

* @throws ManagementRemoteException if JMX related exception.

*/

public Boolean isAlertsPersistenceEnabled()throws

* ManagementRemoteException;

/**

* @return the last setting of alert journal enabling operation.

* true if enable otherwise false.

* @throws ManagementRemoteException if JMX related exception.

*/

public Boolean isAlertsJournalEnabled()throws ManagementRemoteException;

/**

* set the JNDI name of the data source database to be used

* for persistence. if not provided at least once the persistence

* will be disabled even if enableAlertsPersistence was set to true.

*

* @param jndiName - of the data source to be used in conjunction with

The Alert Management API

Java CAPS Management and Monitoring APIs • June 200816

* enableAlertsPersistence set to true

* @throws ManagementRemoteException if JMX related exception is

* thrown orjndiName parameter is null or empty.

*/

public void setPersistenceDataSourceJndiName(String jndiName) throws

* ManagementRemoteException;

/**

* @return the last set JNDI name for the alert persistence data source.

* @throws ManagementRemoteException

*/

public String getPersistenceDataSourceJndiName() throws ManagementRemoteException;

/**

* set the database type to be used for persistence.

* Derby is the assumed default database. If different database is

* used this method should be called prior to enabling the persistence.

*

* @param dbtype - one of the predefined typed defined in {@link

* com.sun.caps.management.api.alerts.AlertPersistenceDBType}

* @throws ManagementRemoteException if JMX related exception is thrown.

*/

public void setPersistenceDataBaseType(AlertPersistenceDBType dbtype) throws

* ManagementRemoteException;

/**

* @return The return value represent the last set DB type

* {@link com.sun.caps.management.api.alerts.AlertPersistenceDBType}

* for each.

* @throws ManagementRemoteException if JMX related exception is thrown. */

public AlertPersistenceDBType getPersistenceDataBaseType() throws

ManagementRemoteException;

/**

* Set the maximum time a persisted alert will be stored in the alert database

* before it will be deleted as part of the removal policy

* @param timeToLive - maximum time in millisecond.

*

* @throws ManagementRemoteException if JMX related exception is thrown.

*/

public void setPersistedAlertsMaxAge(Long timeToLive) throws

ManagementRemoteException;

/**

* return the last setting for the allowed persisted alert age.

* A value of 0 current time which could cause all persisted alerts to be deleted.

The Alert Management API

Java CAPS Management and Monitoring APIs 17

* A negative value this policy element is ignored.

* @return the returned value representing as time in milliseconds set for each.

* @throws ManagementRemoteException if JMX related exception is thrown.

*/

public Long getPersistedAlertsMaxAge() throws ManagementRemoteException;

/**

* set the maximum number of alerts allowed to be persisted before it will be

* deleted as part of the removal policy

* @param size - Maximum number of alerts.

* @throws ManagementRemoteException if JMX related exception is thrown.

*/

public void setPersistedAlertsMaxCount(Long size) throws ManagementRemoteException;

/**

* return the last setting for the maximum of alerts allowed to be persisted.

* A value of 0 mean no alerts persisted. It behave as if the user

* set enableAlertsPersistence to false

*

* A negative value this policy element is ignored.

* @return the returned value represent the maximum number of alerts allowed to be

* persisted on each target.

* @throws ManagementRemoteException if JMX related exception is thrown.

*/

public Long getPersistedAlertsMaxCount() throws ManagementRemoteException;

/**

* The priority based alert level that will be part of the removal policy.

* the priorities are as follows (from low to high):

* INFO,WARNING,MINOR,MAJOR,CRITICAL,FATAL.

* all alerts from the provided level and below will be candidates for removal.

*

* @param level - an AlertLevelType representing the level.

* @throws ManagementRemoteException if JMX related exception is thrown.

*/

public void setPersistedAlertsLevel(AlertLevelType level) throws

ManagementRemoteException;

/**

* @return the returned value represent the last setting for the level of alerts

* that allowed to be removed from persistence for each target.

* @throws ManagementRemoteException if JMX related exception is thrown.

*/

public AlertLevelType getPersistedAlertsLevel() throws ManagementRemoteException;

/**

* set the effective policy for the removal of persisted alerts.

* @param policyList - an array of AlertRemovalPolicyType where the priority

The Alert Management API

Java CAPS Management and Monitoring APIs • June 200818

* of the given policy is defined by its position in the list.

* i.e the lower the index that policy will be applied first.

* possible values are:

* ALERTS_AGE,ALERTS_COUNT,ALERTS_LEVEL.

*

* null value or empty array indicate no policy will be

* enforced.

* @throws ManagementRemoteException if JMX related exception is thrown.

*/

public void setPersistedAlertsRemovelPolicy(AlertRemovalPolicyType[] policyList)

* throws ManagementRemoteException;

/**

* @return the return value representing an array the last setting the policy used

* when persisted alerts are to be removed. An empty array mean no policy

* is enforced.

* @throws ManagementRemoteException if JMX related exception is thrown.

*/

public String[] getPersistedAlertsRemovalPolicy() throws ManagementRemoteException;

/**

* enable or disable the ability to use removal policy.

* @param enableExecuation - true the current setting is enforced. False the

* current policy is ignored.

* @throws ManagementRemoteException if JMX related exception is thrown.

*/

public void enablePersistedAlertsPolicyExecution(Boolean enableExecution) throws

* ManagementRemoteException;

/**

* @return the returned value represent the last setting that enable/disable the

* removal policy

* @throws ManagementRemoteException

*/

public Boolean isPersistedAlertsPolicyExecutionEnabled()throws

* ManagementRemoteException;

/**

* set how often the persisted alerts removal policy will be executed.

* @param excutionInterval - The interval is defined in milliseconds.

* @throws ManagementRemoteException if JMX related exception is thrown.

*/

public void setPersistedAlertsRemovelPolicyExecInterval(Long excutionInterval)

* throws ManagementRemoteException;

The Alert Management API

Java CAPS Management and Monitoring APIs 19

/**

* @return the returned value representing The last interval setting of

* the persisted alerts removal policy will be executed.

* @throws ManagementRemoteException if JMX related exception is thrown.

*/

public Long getPersistedAlertsRemovelPolicyExecInterval() throws

* ManagementRemoteException;

/**

* Set the persisted alerts table name.

* Note: if the same database is used across the whole enterprise. it

* must be unique for each domain used.

* @param tableName - the table name to be used for the stored alerts

* @throws ManagementRemoteException

*/

public void setAlertTableName(String tableName) throws ManagementRemoteException;

/**

* @return The current assign persisted alerts table name.

* @throws ManagementRemoteException

*/

public String getAlertTableName() throws ManagementRemoteException;

/**

*

* @return return the total number of alerts currently persisted. This value

* is volatile and may V between two sequential calls to this method.

* @throws ManagementRemoteException

*/

public Integer getPersistedAlertsCount() throws ManagementRemoteException;

/**

* the API allows the caller to set all the parameters defined in the other API in

* this interface. All the setting are applied prior to enabling the persistence.

* @param enableJournaling

* true - will prevent the system from removing alerts after

* they are delivered. The alert stay in the database

* until the user remove them.

* false - The system will remove the alert upon acknowledgment

* from the reliable client in case one was setup or

* upon send the alert to all the non reliable client/s.

* @param jndiName - JNDI name of the data source database to be used for

* persistence.

* @param dbtype - one of the predefined typed defined in

* {@link com.sun.caps.management.api.alerts.

* AlertPersistenceDBType}

* @param timeToLive - maximum time in millisecond.

The Alert Management API

Java CAPS Management and Monitoring APIs • June 200820

* @param maxCount - Maximum number of alerts.

* @param level - an AlertLevelType representing the level.

* @param policyList - an array of AlertRemovalPolicyType where the priority

* of the given policy is defined by its position in the list.

* i.e the lower the index that policy will be applied first.

* possible values are:

* ALERTS_AGE,ALERTS_COUNT,ALERTS_LEVEL.

* @param enablePolicyExecution - true the current setting is enforced. False the

* current policy is ignored.

* @param interval The interval the policy will be executed (is defined in

* milliseconds).

* @param inMemoryCacheSize - The interval is defined in milliseconds.

* @throws ManagementRemoteException if JMX related exception is thrown or

* the list of target names is null or empty.

*/

public void enableAlertsPersistence(Boolean enableJournaling,String jndiName,

AlertPersistenceDBType dbtype,Long timeToLive,

Long maxCount,AlertLevelType level,

AlertRemovalPolicyType[] policyList,

Boolean enablePolicyExecution,Long interval,

Integer inMemoryCacheSize) throws

* ManagementRemoteException;

AlertNotificationService
The Alert Notification Service notifies the client, such as Groovy, of an event. However, for the
client to receive notifications it must subscribe using the Alert Notification Service API. There is
a noticeable change between prior releases and Release 6 regarding reliable and non-reliable
clients. With Release 5.1.x, the client was reliable, meaning that no events could be removed
until their delivery was confirmed. With Release 6, a client can be non-reliable, which means
there is no guarantee the client will receive every event. In Release 6, the last client set as
“reliable” makes all clients before it unreliable.

Alerts Notification Service API

/**

* request to the event management system to get an events that satisfy the

* filter provided. The method will validate the call-back object for the

* call-back method name and parameter (see below for more information).

* This method allow the caller to register multiple time with diffrent

* filtering,target and call-back parameters.

*

* @param filter - the filter that will be applied to the events prior to

* forwarding them to this client. the valid keys for the map

* are defined in {@link com.sun.caps.management.api.alerts.

The Alert Management API

Java CAPS Management and Monitoring APIs 21

* AlertNotificationFilterElementType}.

* For the ALERTSEVERITY type the valid value are define in

* {@link com.sun.caps.management.api.alerts.AlertLevelType#}.

*

* @param targetNames - the server instances that is subscription will initially be

* filtered on. if targetNames is/are defined it/they have

* precedence over the servername element in the filter

* mentioned above.

*

* @param CallbackObject an instance of the client object that contain the

* call back method to be called when event received

* from the server.

* @param methodName the method name to be invoke when event received from the

* server.

* IMPORTANT: THE METHOD MUST HAVE ONE PARAMETER OF TYPE

* {@link com.sun.caps.management.api.alerts.Alert"} ALERT.

*

* @param requireReliableDelivery - true mean this client request that all events

* should be delivered to him reliably otherwise the client

* may miss event.

* IMPORTANT: THE SYSTEM ALLOW ONLY ONE RELIABLE CLIENT. THE LAST CLIENT

* TO SET IT TO TRUE TAKES OVER THE RELIABLE DELIVERY. IT

* WILL AFFECT ALL THE SUBSCRIPTIONS DONE BY THE CLIENT IN

* THE CURRENT APPLICATION SESSION.

*

* @param exceptionCallBack an instance of the client object that contain the call

* back method to be called when an connectivity exception

* is generated by this service.

*

* @param exceptionMethodName the method name to be invoke when an exception is

* generated by this service.

* IMPORTANT: THE METHOD MUST HAVE ONE PARAMETER OF TYPE

* {@link java.lang.Exception} EXCEPTION.

*

* NOTE: the exception call be should be the same for all subscriptions

* calls otherwise the last the exception call back

* defined by the last subscription will be used.

*

* @return Unique identification string that need to be used in the un-subscribe

* operation.

*

* @throws ManagementRemoteException

* 1. if fail to communicate with the event management system

* 2. unable to invoke call back method because of invalid parameter.

*/

public String subscribe(Map filter,String[] targetName,Object CallbackObject,String

* methodName, Boolean requireReliableDelivery,Object exceptionCallBack,

String exceptionMethodName) throws ManagementRemoteException;

The Alert Management API

Java CAPS Management and Monitoring APIs • June 200822

/**

* request the event management system to stop forwarding events to this client

* based on the subscription the caller made using the subscribe method.

* once all the caller unsubscribe all the IDs any events that are waiting

* to be delivered to this client will be discarded.

*

* @param - subscriptionIDs A list of IDs return by the subscribe call/s that the

* caller wish to unsubscribe from.

*

* @throws ManagementRemoteException if fail to communicate with the Domain server.

*/

public void unsubscribe(String[] subscriptionIDs) throws ManagementRemoteException;

/**

* utility method that returns the parameters the client used to subscribe for

* alerts for the given subscription ID.

*

* @param - subscriptionIDs list return by the subscribe call/s.

*

* return a map keyed IDs on the provided as a parameter and values as

* SubcriptionInformationinstances.

* @see com.sun.caps.management.api.alerts.SubcriptionInformation

* @throws ManagementRemoteException if fail to communicate with the Domain server.

*/

public Map getSubscriptionInformation(String[] subscriptionIDs);

Services — JavaCAPSManagementAPI
Currently there are ten Java CAPS Management Client API services:

■ Administration
■ Runtime Management
■ Configuration
■ Deployment
■ Installation
■ Performance Measurement
■ Alert Management
■ Alert Administration
■ Alert Notification
■ Alert Configuration
■ JMS Management
■ Log Management
■ BPEL Management
■ Data Management (MDM)
■ Sun Adapters Management

Services — JavaCAPSManagementAPI

Java CAPS Management and Monitoring APIs 23

■ Target Option Behavior for the Management Client

There is also a Target option. It's behavior for the Java CAPS Management Client is also part of
Services. Depending upon the values you specify, this option causes the install and deploy
commands to behave differently. For details, see “Target Option Behavior for the Management
Client” on page 42.

Note – The sample files for the services (for example: AdministrationServiceSample.groovy)
and the Target option behavior are zipped, and are included with the Java CAPS 6 delivery.

Administration Service
The Administration Service enables

■ Descriptors of component containers, shared libraries, service assemblies, and service units
■ Consuming and provisioning endpoints exposed by all component containers
■ Operations to retrieve the WSDL and XSD resources associated with each endpoint

TABLE 2 Administration Service Method Names and Descriptions

API Method Name Description

getComponentInstallationDescriptor Retrieves the jbi.xml deployment descriptor for the
component.

getSharedLibraryInstallationDescriptor Retrieves the jbi.xml deployment descriptor for the
shared library.

getServiceAssemblyDeploymentDescriptor Retrieves the jbi.xml deployment descriptor for the
service assembly.

getServiceUnitDeploymentDescriptor Retrieves the jbi.xml deployment descriptor for the
service unit.

isJBIRuntimeEnabled Checks to see if the JBI Runtime is enabled.

isServiceEngine Checks for the ServiceEngine.

isBindingComponent Checks for the BindingComponent.

getConsumingEndpoints Retrieves the list of consuming endpoints for a
component.

getProvisioningEndpoints Retrieves the list of provisioning endpoints for a
component.

getWSDLDefinition Retrieves the primary WSDL associated with the
specified endpoint.

Services — JavaCAPSManagementAPI

Java CAPS Management and Monitoring APIs • June 200824

TABLE 2 Administration Service Method Names and Descriptions (Continued)
API Method Name Description

getWSDLImportedResource Retrieves the WSDL or XSD associated with the
specified endpoint and targetNamespace.

isClassicEnterpirseManagerUp Checks to see if the Enterprise Manager server for non
JBI based components is running.

Runtime Management Service
The Runtime Management Service:

■ Enables lifecycle operations, such as start, stop, and shutdown
■ Enables lifecycle operations, such as enable and disable, for Java EE applications
■ Provides operations to list component containers, shared libraries, and applications for both

JBI and Java EE

TABLE 3 Runtime Management Service Method Names and Descriptions

API Method Name Description

isTargetUp Checks to see if the target (server, cluster) is up or
down.

listServiceEngines Lists the service engines.

listBindingComponents Lists the binding components.

listSharedLibraries Lists the shared libraries.

listServiceAssemblies Lists the service assemblies.

showServiceEngine Shows the service engine conforming to various
options.

showBindingComponent Shows the binding component conforming to various
options.

showSharedLibrary Shows the shared library conforming to various
options.

showServiceAssembly Shows the service assembly conforming to various
options.

listComponents Retrieves a list of components.

getState Retrieves the state of the runtime component (such as
UP/DOWN/UNKNOWN/etc.).

Services — JavaCAPSManagementAPI

Java CAPS Management and Monitoring APIs 25

TABLE 3 Runtime Management Service Method Names and Descriptions (Continued)
API Method Name Description

getProperties Retrieves a list of the component's properties.

startComponent Starts the component.

stopComponent Stops the component.

restartComponent Restarts the component.

shutdownComponent Shuts down the component.

startServiceAssembly Starts service assembly.

stopServiceAssembly Stops the service assembly.

shutdownServiceAssembly Shuts down the service assembly.

listCompositeApplications Retrieves a list of composite applications.

getRuntimeComponentProperties Obtains a list of the runtime unit's properties.

getRuntimeComponentStatus Obtains the state of the runtime component, that is,
UP/DOWN/UNKNOWN/etc.

startRuntimeComponent Starts the runtime component.

restartRuntimeComponent Restarts the runtime component.

stopRuntimecomponent Stops the runtime component.

listTargets Returns all deployable targets in this domain. All
groups and all servers (servers that are not part of any
groups).

listLifecycleModules Lists the lifecycle modules.

listExtensionModules Lists the extension modules.

listSystemConnectors Lists the system connectors modules.

listAppclientModules Returns all deployed modules of specified type and on
specified target.

listConnectorModules Returns an array of deployed connectors.

listEjbModules Returns all deployed modules of specified type and on
specified target.

listWebModules Returns all deployed modules of specified type and on
specified target.

listJavaEEApplications Returns a list of deployed JavaEE Applications. These
are the applications that are deployed to a domain, and
are registered under.

Services — JavaCAPSManagementAPI

Java CAPS Management and Monitoring APIs • June 200826

TABLE 3 Runtime Management Service Method Names and Descriptions (Continued)
API Method Name Description

enableJavaEEApplication Enables an application or module on the specified
target. In case of a cluster, the application references of
the server instances in that cluster are also enabled.

enableAppclientModule Enables an application or module on the specified
target. In case of a cluster, the application references of
the server instances in that cluster are also enabled.

enableConnectorModule Enables an application or module on the specified
target. In case of a cluster, the application references of
the server instances in that cluster are also enabled.

enableEjbModule Enables an application or module on the specified
target. In case of a cluster, the application references of
the server instances in that cluster are also enabled.

enableWebModule Enables an application or module on the specified
target. In case of a cluster, the application references of
the server instances in that cluster are also enabled.

disableJavaEEApplication Disables an application or module on the specified
target. In case of a cluster, the application references of
the server instances in that cluster are also disabled.

disableAppclientModule Disables an application or module on the specified
target. In case of a cluster, the application references of
the server instances in that cluster are also disabled.

disableConnectorModule Disables an application or module on the specified
target. In case of a cluster, the application references of
the server instances in that cluster are also disabled.

disableEjbModule Disables an application or module on the specified
target. In case of a cluster, the application references of
the server instances in that cluster are also disabled.

disableWebModule Disables an application or module on the specified
target. In case of a cluster, the application references of
the server instances in that cluster are also disabled.

isJavaEEComponentEnabled Returns the status of the application as in
configuration. If the specified target is
null/blank/"domain", only the enabled flag of the
actual application is used. Otherwise, the enabled flag
of the application reference is used to determine the
enabled status.

Services — JavaCAPSManagementAPI

Java CAPS Management and Monitoring APIs 27

Configuration Service
The Configuration Service enables you:

■ To configure component containers, the JBI runtime, etc.
■ To configure logging for component containers and the JBI runtime
■ To manage application configurations and manage application variables
■ To verify application configurations before deployment

TABLE 4 Configuration Service Method Names and Descriptions

API Method Name Description

getRuntimeLoggerLevels Retrieves all the runtime loggers and their levels.

getRuntimeLoggerLevel Looks up the level of one runtime logger.

setRuntimeLoggerLevel Sets the log level for a given runtime logger.

getComponentLoggerLevels Retrieves the component custom loggers and their
levels.

setComponentLoggerLevel Sets the component log level for a given custom logger

getComponentExtensionMBeanObjectNames Retrieves the extension MBean object names.

getComponentConfiguration Retrieves the component configuration.

setComponentConfiguration Sets the component configuration.

getRuntimeConfigurationMetaData Returns the runtime configuration metadata
associated with the specified property. The metadata
contain name-value pairs like default, descriptionID,
descriptorType, displayName, displayNameId, isStatic,
name, resourceBundleName, tooltip, tooltipId, etc.

setRuntimeConfiguration Sets the runtime configuration.

getRuntimeConfiguration Retrieves the runtime configuration.

getDefaultRuntimeConfiguration Retrieves the default runtime configuration.

isServerRestartRequired Checks if the server needs to be restarted to apply the
changes made to some of the configuration
parameters.

Deployment Service
The Deployment Service enables you to deploy and un-deploy:

■ JBI Service Assemblies

Services — JavaCAPSManagementAPI

Java CAPS Management and Monitoring APIs • June 200828

■ Java EE artifacts, such as enterprise archives (EAR files), EJB modules, web archives (WAR
files), and Java EE connectors, application clients, etc.

TABLE 5 Deployment Service Method Names and Descriptions

API Method Name Description

deployServiceAssembly Deploys the service assembly.

deployServiceAssemblyFromDomain Deploys the service assembly from the domain target.

undeployServiceAssembly Undeploys the service assembly.

deployJavaEEComponent Deploys a component to the given array of targets
which can be domains, clusters, or standalone
instances. Since there are restrictions around how
clusters and standalone instances share deployments,
the component bits are deployed only to the first target
in the list and then application references are created
for the rest of the targets in the array specified.

undeployJavaEEComponent Undeploys a component to the given array of targets
which can be domains, clusters, or standalone
instances. Since there are restrictions around how
clusters and standalone instances share deployments,
the application references are removed for all the
targets except for the first one in the array. After this,
the component bits are undeployed from the first
target in the array.

Installation Service
The Installation Service enables you to:

■ To install and uninstall JBI component containers and shared libraries
■ To upgrade component containers without undeploying existing artifacts

TABLE 6 Installation Service Method Names and Descriptions

API Method Name Description

installComponent Installs the component (service engine, binding
component).

uninstallComponent Un-installs the component (service engine, binding
component).

installSharedLibrary Installs the shared library.

uninstallSharedLibrary Un-installs the shared library.

Services — JavaCAPSManagementAPI

Java CAPS Management and Monitoring APIs 29

TABLE 6 Installation Service Method Names and Descriptions (Continued)
API Method Name Description

installComponentFromDomain Installs the component (service engine, binding
component) from the domain target.

installSharedLibraryFromDomain Installs the shared library from domain target.

upgradeComponent Upgrades the component (service engine, binding
component). Upgrades a component in a way that
actually involves the component. During the upgrade
processing, the component's implementation of the
new upgrade SPI is invoked to give the component the
opportunity to perform any special processing
necessary to complete the upgrade. Components
which do not provide an implementation of the
upgrade SPI can still be updated using the
updateComponent API. Also, in the upgrade
implementation, changes in the component's
installation descriptor are allowed, with the exception
of the component name (for obvious reasons). This
allows new shared library dependencies, changes to the
class names of the component's SPI implementations,
and changes to the component's class loading
preferences (class path and class loading order). These
changes are allowed regardless of whether or not the
component provides an implementation of the new
upgrade SPI.

Performance Measurement Service
The Performance Measurement Service attempts to address performance characterization for
developers and administrators.

■ JBI Framework
■ StartTime
■ StartupTime
■ Component count
■ Endpoint count
■ ServiceAssembly count

■ Normalized Message Router (NMR)
■ Time spent in each component
■ Time spent in DeliveryChannel
■ Time spent in NMR
■ Per Component/Endpoint
■ Queried by Component/Endpoint

Services — JavaCAPSManagementAPI

Java CAPS Management and Monitoring APIs • June 200830

■ Component Endpoints
■ UpTime
■ Total sent/received requests, such as “in” messages
■ Total sent/received replies, such as “out” messages
■ Total sent/received faults
■ Total completed exchanges, such as consumed/provided
■ Total active exchanges, such as consumed/provided
■ Total error exchanges, such as consumed/provided
■ Response Time
■ Status Time
■ Active MessageIds
■ Waiting MessageIds

TABLE 7 Performance Measurement Service Method Names and Descriptions

API Method Name Description

clearPeformaceInstrumentationMeasurement Resets the performance measurements on the
endpoint.

getPerformanceInstrumentationEnabled Retrieves the performance measurement enabling
flag.

getPerformanceInstrumentationMeasurement Retrieves the performance measurement data for the
specified endpoint.

getPerformanceMeasurementCategories Retrieves the performance statistics categories. Each
item in the array is the key to the composite
performance data, which also indicates the type of
measurement, such as normalization.

setPerformanceInstrumentationEnabled Sets the performance measurement enabling flag.

getFrameworkStatisticsAsTabularData This method is used to provide JBIFramework
statistics in the given target. Data is displayed in
tabular format.

getFrameworkStatistics This method is used to provide JBIFramework
statistics in the given target.

getComponentStatistics This method is used to provide statistics for the given
component in the given target.

getComponentStatisticsAsTabularData This method is used to provide statistics for the given
component in the given target. Data is displayed in
tabular format.

getEndpointStatisticsAsTabularData This method is used to provide statistic information
about the given endpoint in the given target. Data is
displayed in tabular format.

Services — JavaCAPSManagementAPI

Java CAPS Management and Monitoring APIs 31

TABLE 7 Performance Measurement Service Method Names and Descriptions (Continued)
API Method Name Description

getEndpointStatistics This method is used to provide statistic information
about the given endpoint in the given target.

getNMRStatisticsAsTabularData This method is used to provide statistics about the
message service in the given target. Data is displayed
in tabular format.

getNMRStatistics This method is used to provide statistics about the
message service in the given target.

getServiceAssemblyStatisticsAsTabularData This method is used to provide statistics about a
Service Assembly in the given target. Data is displayed
in tabular format.

getServiceAssemblyStatistics This method is used to provide statistics about a
Service Assembly in the given target.

enableMessageExchangeMonitoring This method is used to enable monitoring of timing
information about message exchanges.

disableMessageExchangeMonitoring This method is used to disable monitoring of timing
information about message exchanges.

Alert Management Service

TABLE 8 Alert Management Service Method Names and Descriptions

API Method Name Description

getAlertAdministrationService Creates and returns Alert Administration Service.

getAlertConfigurationService Creates and returns Alert Configuration Service.

getAlertNotificationService Creates and returns Alert Notification Service.

Alert Administration Service

TABLE 9 Alert Administration Service Method Names and Descriptions

API Method Name Description

getAlerts Retrieves all alerts.

getAlertFieldNames Retrieves a list of AlertInstance DB fieldNames.

Services — JavaCAPSManagementAPI

Java CAPS Management and Monitoring APIs • June 200832

TABLE 9 Alert Administration Service Method Names and Descriptions (Continued)
API Method Name Description

update Updates the field's value based on criteria.

delete Deletes the alert object from persistence storage.

observe Sets the list of AlertInstance's observationState to
observed.

resolved Sets AlertInstance's observationState to resolved based
on a criteria.

reset Sets the list of AlertInstance's observationState to its
initial state, which is unobserved.

UpdateComment Updates the comment field of the alert.

resetAll Sets the observationState to its initial state for all the
table entries.

resolveAll Sets Alert observationState to resolved state for all the
table entries.

observeAll Sets Alert observationState to observed state for all the
table entries.

Alert Notification Service

TABLE 10 Alert Notification Service Method Names and Descriptions

API Method Name Description

subscribe Requests the event management system to get an
event that satisfies the filter provided. The method will
validate the call-back object for the call-back method
name and parameter (see below for more
information). This method enables the caller to
register multiple times with different filtering, target,
and call-back parameters.

unsubscribe Requests the event management system to stop
forwarding events to this client based on the
subscription the caller made using the subscribe
method. Once all the callers unsubscribe all the IDs,
any events that are waiting to be delivered to this client
are discarded.

Services — JavaCAPSManagementAPI

Java CAPS Management and Monitoring APIs 33

TABLE 10 Alert Notification Service Method Names and Descriptions (Continued)
API Method Name Description

getSubscriptionInformation Utility method that returns the parameters the client
used to subscribe for alerts for the given subscription
ID.

Alert Configuration Service

TABLE 11 Alert Configuration Service Method Names and Descriptions

API Method Name Descriptions

enableAlertsPersistence Enables alerts persistence in the alerts database.
Enabling provides reliable alerts delivery in case of
delivery channel failure or application server restart.

disableAlertsPersistence Disables alerts persistence in the alerts database.

isAlertsPersistenceEnabled Returns the last setting of the alert persistence
enabling operation. True if enabled, otherwise false.

isAlertsJournalEnabled Returns the last setting of the alert journal enabling
operation. True if enabled, otherwise false.

setPersistenceDataSourceJndiName Sets the JNDI name of the data source database to be
used for persistence. If not provided at least once the
persistence will be disabled even if
enableAlertsPersistence is set to true.

getPersistenceDataSourceJndiName Returns the last set JNDI name for the alert
persistence data source.

setPersistenceDataBaseType Sets the database type to be used for persistence.
Derby is the assumed default database. If a different
database is used, this method should be called prior to
enabling the persistence.

getPersistenceDataBaseType The return value represents the last set DB type.

setPersistedAlertsMaxAge Sets the maximum time a persisted alert is stored in
the alert database before it is deleted as part of the
removal policy.

getPersistedAlertsMaxAge Returns the last setting for the allowed persisted alert
age. A value of 0 current time could cause all persisted
alerts to be deleted. When a negative value is used this
policy element is ignored.

Services — JavaCAPSManagementAPI

Java CAPS Management and Monitoring APIs • June 200834

TABLE 11 Alert Configuration Service Method Names and Descriptions (Continued)
API Method Name Descriptions

setPersistedAlertsMaxCount Sets the maximum number of alerts allowed to be
persisted before an alert is deleted as part of the
removal policy in effect. If persistence is on and the
count set to zero, it negates journaling being on.

getPersistedAlertsMaxCount Returns the last setting for the maximum of alerts
allowed to be persisted. A value of 0 means no alerts
are persisted.

setPersistedAlertsLevel The priority based alert level that is part of the
removal policy. The priorities are as follows (from low
to high): INFO, WARNING, MINOR, MAJOR,
CRITICAL, and FATAL. All alerts from the provided
level and below will be candidates for removal.

getPersistedAlertsLevel The returned value represents the last setting for the
level of alerts that are allowed to be removed from
persistence for each target.

setPersistedAlertsRemovelPolicy Sets the effective policy for the removal of persisted
alerts.

getPersistedAlertsRemovalPolicy Returns the return value representing an array of the
last setting the policy used when persisted alerts are to
be removed. An empty array means no policy is
enforced.

enablePersistedAlertsPolicyExecution Enables or disables the ability to use the removal
policy.

isPersistedAlertsPolicyExecutionEnabled The returned value represents the last setting that
enables/disables the persisted alerts removal policy.

setPersistedAlertsRemovelPolicyExecInterval Sets how often the persisted alerts removal policy is
executed.

getPersistedAlertsRemovelPolicyExecInterval Returns the returned value representing The last
interval setting of the persisted alerts removal policy is
executed.

setInMemoryAlertsCacheMaxSize Sets the maximum number of alerts that can be cached
in memory prior to being delivered to the registered
listeners.

getInMemoryAlertsCacheMaxSize Returns the returned value representing the last
setting of the maximum size of memory in the alerts
cache.

setAlertTableName Sets the persisted alerts table name.

Services — JavaCAPSManagementAPI

Java CAPS Management and Monitoring APIs 35

TABLE 11 Alert Configuration Service Method Names and Descriptions (Continued)
API Method Name Descriptions

getPersistedAlertsCount Returns the total number of alerts currently persisted.
This value is volatile and could change.

enableAlertsPersistence This API enables the caller to set all the parameters
defined in the other APIs in this interface. All the
settings are applied prior to enabling the persistence.

JMS Management Service

TABLE 12 JMS Management Service Method Names and Descriptions

API Method Name Description

getServerProperties Returns the server properties.

isServerReady Checks if the message server is ready.

getXids Returns a list of transactions on the message server.

rollbackXid Rolls back a specified transaction on the message
server.

getTopicProperties Retrieves the specified topic properties.

getTopics Retrieves the list of topics on the message server.

getTopicsWithHeaders Returns a list of topics with header properties on the
message server.

getTemporaryTopics Retrieves a list of temporary topics.

createTopic Creates a new specified topic with the specified name
on the message server.

deleteTopic Deletes a specified topic on the message server.

getTopicMessage Returns a message body of a specified message of a
specified topic.

getTopicMsgProperties Returns the specified topic message properties.

getTopicMsgPropertiesList Returns a list of messages with the properties for the
given start message index.

getSubscribers Returns a list of subscribers for a specified topic.

changeTopicTextMessage Changes the content of a specified text message of a
specified topic.

Services — JavaCAPSManagementAPI

Java CAPS Management and Monitoring APIs • June 200836

TABLE 12 JMS Management Service Method Names and Descriptions (Continued)
API Method Name Description

changeTopicBytesMessage Changes the content of a specified bytes message of a
specified topic.

deleteTopicMessage Deletes a specified message from a specified topic.

getTopicMessageType Returns the message type of a specified message from
a specified topic.

suspendTopic Suspends a specified topic.

resumeTopic Resumes the suspended topic.

submitNewMessage Submits a new message to a specified topic or queue
on the message server.

createTopicDurableSubscriber Creates a new specified topic durable subscriber for a
specified topic on the message server.

unsubscribeDurableSubscriber Unsubscribes a specified durable subscription on the
message server.

republishTopicMessage Resends a specified journalled message to a specified
queue on the message server.

getTopicStatistics Returns the statistics of a specified topic on the
message server.

getQeueueProperties Retrieves the queue properties.

getQueues Retrieves the list of queues on the message server.

getQueuesWithHeaders Returns a list of queues with header properties on the
message server.

getTemporaryQueues Retrieves the list of temporary queues.

createQueue Creates a new queue with the specified name on the
message server.

deleteQueue Deletes a specified queue on the message server.

getQueueMsgProperties Returns the specified topic message properties.

getQueueMsgPropertiesList Returns a list of messages with its properties for the
given start message index.

getQueueMessage Returns a message body of a specified message of a
queue.

getReceivers Returns a list of receivers for a specified queue.

Services — JavaCAPSManagementAPI

Java CAPS Management and Monitoring APIs 37

TABLE 12 JMS Management Service Method Names and Descriptions (Continued)
API Method Name Description

changeQueueTextMessage Changes the content of a specified text message of a
queue.

changeQueueBytesMessage Changes the content of a specified bytes message of a
specified queue.

deleteQueueMessage Deletes a specified message from a specified queue.

getQueueMessageType Returns the message type of a specified message of the
queue.

suspendQueue Suspends a specified queue.

resumeQueue Resumes the suspended queue.

resendQueueMessage Republishes a specified journalled message to a
specified topic on the message server.

getQueueStatistics Returns the statistics of a specified queue on the
message server.

Log Management Service

TABLE 13 Log Management Service Method Names and Descriptions

API Method Name Description

getLogString Reads the page, filter, and search log. Returns only the
lines prepared as a single String without any other
metadata.

getLog Reads, filters, and searches a page of lines from the log;
the lines are returned in a Map.

getLogAsString Logs, filters, and searches a page of lines from the log;
the lines are prepared as one string.

listLoggerNames Lists the names of loggers registered with the target.

listLoggerObjectNames List the names of loggers registered with the target.

isLoggerRegistered Asks if the logger instance is registered with the target
server instance.

registerLogger Registers a logger instance with the target server
instance.

unregisterLogger Unregisters a logger instance with the target server
instance.

Services — JavaCAPSManagementAPI

Java CAPS Management and Monitoring APIs • June 200838

TABLE 13 Log Management Service Method Names and Descriptions (Continued)
API Method Name Description

setLogFile Set the logger file name.

getLogFile Obtains the logger file name.

BPEL Management Service
The BPEL Management Service supports two types of API method names:

■ Java CAPS (non-JBI based components)
■ Java CAPS (JBI based components)

Note – These APIs are in addition to the APIs exposed for BPEL from the configuration service.

TABLE 14 BPEL Management Service API Method Names and Descriptions (non-JBI Based Components)

API Method Name Description

getBPELInstances Obtains BPEL instances given optional BPEL process
QName and/or an optional BPStatus or an optional
instance ID. If instanceId is present, the BPEL process
QName and BPStatus are ignored. The maximum
instances to return is 1000, user specifies a lower
number for maxRecords to limit the number of the
instances returned. If the
BPInstanceQueryResult.overflow is true, it indicates
the number of qualifying instances is larger than 1000,
no instances are returned in the result list, user should
specify a maxRecords (<= 1000) and sortColumn and
order.

getBPELInstanceActivityStatus Obtains the list of ActivityStatus of a BPEL instance.

getBPELProcessIds Obtains the list of BPEL process QName as String
within a service unit.

getBPELInstanceFault Obtains the fault detail of a faulted BPEL instance.

getInvokerInstance Obtains the list of an invoker (parent) BPEL
instance(s) that invoked a specific bpel instance

getInvokeeInstance Obtains the list of invokee (sub) BPEL instance(s) that
a specific BPEL instance invoked.

isMonitoringEnabled Asks if Monitoring is enabled.

isPersistenceEnabled Asks if Persistence is enabled.

Services — JavaCAPSManagementAPI

Java CAPS Management and Monitoring APIs 39

TABLE 14 BPEL Management Service API Method Names and Descriptions (non-JBI Based
Components) (Continued)

API Method Name Description

resumeInstance Resumes a Business Process Instance for a given
Business Process Instance.

terminateInstance Terminates a Business Process Instance for a given
Business Process Instance

suspendInstance Suspends a Business Process Instance for a given
Business Process Instance

getBPELInstanceFault Obtains the fault detail of a faulted BPEL instance.

suspendAllInstance Suspends all instances of a BPEL process.

resumeAllInstance Resumes all instances of a BPEL process.

terminateAllInstance Terminates all instances of a BPEL process.

changeVariableValue Changes the BPEL variable value. Note that, only the
leaf node can be changed.

getVariableValue Obtains the BPEL variable value. The content of the
BPEL variable is returned.

listBPELVaraibles Obtains the BPEL variable information for a BPEL
instance.

TABLE 15 BPEL Management Service API Method Names and Descriptions (JBI Based Components)

API Method Name Description

setBusinessProcessInstanceVariableValue Sets the value for the property using XPath on a Part
given a business process instance, container, part, the
XPath expression, and value.

Master Data Management (MDM) Service
This API service provides the capability to integrate and manage data and applications in a
complex and distributed enterprise business environment, including the following data
management products:

■ Master Index Studio (formerly eView Studio and Single Patient View)
■ Data Integrator (formerly eTL Integrator)
■ Data Quality
■ Data Services
■ Data Migrator

Services — JavaCAPSManagementAPI

Java CAPS Management and Monitoring APIs • June 200840

TABLE 16 Master Index Management (MDM) Service API Method Names and Descriptions

API Method Name Description

listApplicationNames Returns a list of MDM Applications that are currently
deployed.

getApplicationStatus Returns the status of MDM Applications.

getDatabaseStatus Returns the status of the Database connection.

getWebModuleStatus Returns the status of the MDM Web Application
Module.

Sun Adapters Management Service

TABLE 17 Sun Adapters Management Service API Method Names and Descriptions

API Method Name Description

start Starts the component; the semantics of this operation
is left to the implementation.

restart Restarts the component; the semantics of this
operation is left to the implementation.

stop Stops the component; the semantics of this operation
is left to the implementation.

getStatus Returns the status.

getProperties Returns the properties.

isStartable Determines whether a "start" button would be
presented to the user.

isRestartable Determines whether a "restart" button would be
presented to the user.

isStoppable Determines whether a "stop" button would be
presented to the user.

getType Returns the type of the adapter—monitored
component.

getConfiguration Returns the adapter—monitored component's
configuration.

getState Returns the state of the adapter—monitored
component.

Services — JavaCAPSManagementAPI

Java CAPS Management and Monitoring APIs 41

TABLE 17 Sun Adapters Management Service API Method Names and Descriptions (Continued)
API Method Name Description

getTargetState Returns the target state of the adapter—monitored
component. This is the state that the adapter
component is or was changing to. This status may be
different from that returned by getState().

getRAConfiguration Returns the adapter's metadata details.

Target Option Behavior for the Management Client
The --target option causes the install and deploy commands to behave differently. Depending
upon the option value specified, these differences can be radical.

Note – Two of the target option names are constant: “server” and “domain.” They represent an
instance of an operator and are replaceable with a name specific to the current template.

TABLE 18 Target Option Value and Behavior

Option Value Behavior

server The command is executed against the embedded
domain administration server (DAS) instance.

domain When the target option is the literal string domain, the
component is executed against the domain itself, but
not to any instances or clusters running on the
domain. This option value is only applicable for install
or deploy commands.

cluster name When a cluster name is specified, the command is
executed against all instances in the specified cluster.

instance name When an instance name is specified, the command is
executed against the specific instance specified.

Writing Java Code to Access APIs Using Java Code Samples
Use the Java code samples to write your own Java Code to access the APIs. The samples are
included with the software delivery as zipped files.

When the Alert Management Subsystem receives alerts it sends them to subscribers, such as
Enterprise Manager or Groovy. There are two ways the process works.

■ When persistence is not turned on alerts are sent directly to all subscribers that use the client
API. If there are no subscribers the alerts are dropped.

Writing Java Code to Access APIs Using Java Code Samples

Java CAPS Management and Monitoring APIs • June 200842

■ When persistence is turned on alerts are sent to a database. If there are no subscribers the
alerts are persisted in the database until subscribers are ready to consume them. Optionally,
you can enable journaling, which ensures that the alerts are never deleted.

Setting Up Databases
Derby is the database that ships with Java CAPS. However, you can set up and use another
database. But remember, you are limited to using a database that Java CAPS supports.
■ Derby
■ Oracle
■ Sybase
■ DB2
■ PointBase

As an option to the following procedure, you could replace steps 4-6 by using the Alert
Configuration Management API to write a groovy script or small Java utility. For an example of
this see the JavaCAPS6/ESB_API_KIT/samples directory, if JavaCAPS6 is the directory where
you extracted EM_API_KIT.zip.

Caution – Remember that the last command you script or program and then execute should be
enabling persistence in the specified database. Examples of methods from the Alert
Configuration Service API are setPersistenceDataSourceJndiName,
getPersistenceDataSourceJndiName, setPersistenceDataBaseType,
getPersistenceDataBaseType, and optionally setAlertTableName.

In case the database has a limit to the table name, for example Oracle is limited to 30 characters,
the auto-generated table may exceed that limit. Use the Alert Configuration API
(SetAlertTableName) to set the table name. Keep in mind that each domain must have unique
table name to prevent events from one domain appearing in another domain.

▼ To Set Up a Database Using Enterprise Manager
Start the domain you want to use.

Use the Sun Java System Application Server Admin Console or AS Admin command-line utility
to set up a connection pool and resource.

Note – Record the name you assign to the resource name.

For detailed instructions on how to perform this task see Admin Console online help.

Start the selected database.

1

2

3

Setting Up Databases

Java CAPS Management and Monitoring APIs 43

Start Enterprise Manager and add the domain you started in step 1.

Launch the Alert Configuration screen (for information see Monitoring Java EE Components).

a. Select the database type that matches the database you selected.

b. Enter the JNDI name.

Note – This is the resource name you created in step 2.

Enable persistence and journaling, and then click Save to commit the changes.

Note – When you enable persistence you do not have to enable journaling; that is, journaling is
optional when persistence is enabled.

▼ To Set Up a Database Using a Scripting Utility
Start the domain you want to use.

Use the Sun Java System Application Server Admin Console or AS Admin command-line utility
to set up a connection pool and resource.

Note – Record the name you assign to the resource name.

For detailed instructions on how to perform this task see Admin Console online help.

Start the selected database.

Write a scripting utility to call the appropriate APIs.
setPersistenceDataSourceJndiName

setPersistenceDataBaseType(AlertPersistenceDBType dbtype)

(Optional) setAlertTableName(String tableName)

enableAlertsPersistence(Boolean enableJournaling)

Or, optionally, to execute all of the above APIs, use:

enableAlertsPersistence(Boolean enableJournaling,String jndiName,

AlertPersistenceDBType dbtype,Long timeToLive,

Long maxCount,AlertLevelType level,

4

5

6

1

2

3

4

Setting Up Databases

Java CAPS Management and Monitoring APIs • June 200844

http://developers.sun.com/docs/javacaps/monitoring/mj2eecomp.mj2eecomp.html

AlertRemovalPolicyType[] policyList,

Boolean enablePolicyExecution,Long interval,

Integer inMemoryCacheSize) throws

* ManagementRemoteException;

Note – The order here is not set and can be altered except for enabling persistence, which must
be last.

Using Oracle and Other Databases for Alert Persistence
Oracle, and the other supported databases besides Derby, are also capable performing alert
persistence. However, there a number of changes you must perform to get it to work.

Note – If you plan to use Oracle instead of Derby for alert persistence, make sure you read this
topic.

▼ To Set Up an Oracle Database for Alert Persistence
Modify the eventmanagement.properties file under
appserver/domains/domain1/jbi/config.

a. Modify the DatabaseType to ORACLE.

b. Change the AlertTablename to EMHOSTNAMEVistastccom8080.

Note – This step is required as the default name,
EVENTMANAGEMENTHOSTNAMEistastccom8080, exceeded Oracle's 30-character limit for table
names.

c. Change the DBJndiName to OracleXPDB.

Note – You create this in the Admin Console; this is noted in step 2.

d. Change PersistenceEnbled to true.

e. Using Enterprise Manager, set the values for DatabaseType, DBJndiName, and
PersistenceEnabled in the normal Alert Management Config Agent.

1

Using Oracle and Other Databases for Alert Persistence

Java CAPS Management and Monitoring APIs 45

Note – The database scripts should probably be run before enabling persistence. The table
name must be changed in the file manually.

Create the JDBC connection pool and resource in the Sun Java System Application Server Admin
Console.

a. Add the location of classes12.zip to the classpath, JVM Settings→Path
Settings→Classpath Suffix, and then restart the domain.

Note – This is needed to get the datasource for Oracle.

b. Create the Connection Pool for Oracle.

i. Enter a name, such as OracleXPPool, but this name can be your choice.

ii. Select javax.sql.DataSource for the Resource Type.

iii. Select Oracle for the Database Vendor.

iv. Set the appropriate properties:

User: eventdb_user

DatabaseName: orcl

Note – This and other database specific configurations may change depending on how
you configured the Oracle database.

Password: eventdb_user

ServerName: hostname

Note – This is the server where the database is running.

PortNumber: 1521

URL: jdbc:oracle:thin:@hostname:1521:orcl

2

Using Oracle and Other Databases for Alert Persistence

Java CAPS Management and Monitoring APIs • June 200846

Caution – This URL may actually override the other settings; it should match the other
settings.

v. Create the JDBC Resource.

Enter a JNDI Name, for example OracleXPDB.

Note – This should match what is set in the Alert Management Config
Agent/eventmanagement.properties file mentioned above.

Select the appropriate Pool Name; in our example we used OracleXPPool.

Create the user, tables, etc. needed for alert persistence and journaling manually.

Note – This is automatically done for Derby.

There are database scripts that are packaged in the jbi_rt.jar file under appserver/jbi/lib.
However there are some errors, so you need to be correct these scripts manually.

■ The example scripts have been modified to work with an Oracle 10 GB database; see “Oracle
Script Examples” on page 48.

■ Run the create_event_store_user.sql and create_event_store_schema.sql scripts, in
that order, with the system (admin) user.

■ Corrections made in this example:
■ Set the absolute path to tablespace data files (database installation dependent)
■ Modify the command to match Business Process persistence
■ Comment out the second data file
■ Move the comments
■ Fix the table name references to match user schema and table name, which were set

above in eventmanagement.properties

■ Fix the column reference; that is, change the second column name from
event_timestamp to timestamp

■ Change the datatype from timestamp to decimal
■ Fix the reference for sequence

3

Using Oracle and Other Databases for Alert Persistence

Java CAPS Management and Monitoring APIs 47

Oracle Script Examples
truncate_event_store_schema.sql

TRUNCATE TABLE eventdb_user.EMHostNameVistastccom8080;

create_event_store_schema.sql

create table eventdb_user.EMHostNameVistastccom8080(

id NUMBER CONSTRAINT ID_PK PRIMARY KEY,

timeStamp decimal,

physicalHostName varchar(256),

environmentName varchar(256),

logicalHostName varchar(256),

serverType varchar(256),

serverName varchar(256),

componentType varchar(256),

componentProjectPathName varchar(1024),

componentName varchar(256),

eventType varchar(256),

severity integer,

operationalState int,

messageCode varchar(256),

messageDetail varchar(4000),

observationalState int,

deploymentName varchar(256));

);

-- INSERT statement need to use it to insure autoincrement functionality

CREATE SEQUENCE eventdb_user.autoincrement_id;

create index eventTime on eventdb_user.EMHostNameVistastccom8080(timeStamp);

create_event_store_user.sql

--Create a tablespace named EVENTDB_USER_DB. Change this value if a different

name is desired.

--Specify the name and the location of the file where the data related to

the tablespace

--created above will be stored. The location is by default the location determined by

--the database server/instance on which this script is run

--For example, for Windows c:\MyDatafiles\EVENTDB_USER_DB.dat, for Unix

/dev/home1/EVENTDB_USER_DB.dat

--Note that the name of the actual file need not be EVENTDB_USER_DB.dat

--Specify the size constraints

-- Window and Oracle 9i there is a limitation on file size, it is 2 GB.

This by default creats 4GB, add more files if you need more than 4 GB.

--- provide abosolute path if you preference is not default location

’C:\OracleDirectory\EVENTDB_USER_DB.dat’ SIZE 2000M,

Using Oracle and Other Databases for Alert Persistence

Java CAPS Management and Monitoring APIs • June 200848

CREATE TABLESPACE EM_EVENTSTORE_DB

DATAFILE

’C:\oracle\product\10.2.0\oradata\orcl\EVENTDB_USER_DB.dat’ SIZE 512M REUSE

AUTOEXTEND ON NEXT 2048M MAXSIZE UNLIMITED;

-- ’C:\oracle\product\10.2.0\oradata\orcl\EVENTDB_USER_DB1.dat’ SIZE 512M

REUSE AUTOEXTEND ON NEXT 2048M MAXSIZE UNLIMITED --- provide abosolute path

if you preference is not defaultlocation ’C:\OracleDirectory\EVENTDB_USER_DB1.dat’

SIZE 2000M

-- when TABLESPACE is created with these options performance is degrading

gradually as more and more records added to schema EXTENT MANAGEMENT LOCAL SEGMENT

SPACE MANAGEMENT AUTO

--Create a new user EVENTDB_USER. Change the name if so desired. Password will

be same as

--the user name by default. This username and password will be used to create the

--connection pool on the application server. Also specify the tablespace

and the quota on

--the tablespace the user has. Note that if you used a different tablespace

name above,

--you will have to specify that tablespace name here.

CREATE USER EVENTDB_USER IDENTIFIED BY EVENTDB_USER

DEFAULT TABLESPACE EM_EVENTSTORE_DB

QUOTA UNLIMITED ON EM_EVENTSTORE_DB

TEMPORARY TABLESPACE temp

QUOTA 0M ON system;

--Modify the user name if the default user name was changed

GRANT CREATE session to EVENTDB_USER;

GRANT CREATE table to EVENTDB_USER;

GRANT CREATE procedure to EVENTDB_USER;

drop_event_store_schema.sql

DROP TABLE eventdb_user.EMHostNameVistastccom8080;

drop sequence eventdb_user.autoincrement_id;

drop_event_store_user.sql

--Drop the user that was created earlier. Note that if you chose a

different name for the

--user while creating the user, you will have to specify that name here.

DROP USER EVENTDB_USER CASCADE;

Using Oracle and Other Databases for Alert Persistence

Java CAPS Management and Monitoring APIs 49

--Drop the tablespace that was created earlier. Note that if you chose a

different name for

--the tablespace while creating the user, you will have to specify that name here.

DROP TABLESPACE EM_EVENTSTORE_DB INCLUDING CONTENTS AND DATAFILES CASCADE CONSTRAINTS;

--Manually delete the datafiles that were created. If you used the defaults

while creating

--the datafiles, the names would be EVENTDB_USER_DB1.dat’and ’EVENTDB_USER_DB2.dat’

Setting Up Scripting Engines
The Java CAPS Management and Monitoring API should be callable from any JSR-223
Scripting Environment. This section documents how to set up these scripting engines like
Groovy, JRuby, Jython (Java Python), JACL (Java TCL) or one of the 25 other JSR-223 scripting
engines capable of calling the Java CAPS Management and Monitoring APIs that are currently
available . You can use these instructions to setup your own environment to invoke these APIs
from the JSR-223 Scripting Environment of your choice.

Downloading, Installing, and Setting Up A Scripting
Environment
For the purposes of this topic, we will focus on four scripting engines:

■ Groovy: The Java CAPS Management and Monitoring API has been tested and works with
Groovy 1.0, Groovy 1.1 beta 1, and with the latest Groovy 1.1 beta 2. Use the installation
instructions that are available to install the engine, and ensure that it runs properly.
Download Groovy from http://groovy.codehaus.org/.

■ JRuby: The Java CAPS Management and Monitoring API has been tested and works with
JRuby 1.0 and with the latest JRuby 1.0.1. Use the installation instructions that are available
to install the engine, and ensure that it runs properly. Download JRuby from
http://jruby.codehaus.org/.

■ Jython (Java Python): The Java CAPS Management and Monitoring API has been tested and
works with Jython 2.2 RC1 and with the latest Jython 2.2. Use the installation instructions
that are available to install the engine, and ensure that it runs properly. Download Jython
from http://www.jython.org/Project/index.html.

■ JACL (Java TCL): The Java CAPS Management and Monitoring API has been tested and
works with the latest JACL 1.4.0. Use the installation instructions that are available to install
the engine, and ensure that it runs properly. You may have to modify jaclsh.bat in the bin
folder as described in the readme.txt file that is included with the download. My
bin/jaclsh.bat looks like this after modification. Download JACL from
http://tcljava.sourceforge.net/docs/website/index.html.

Setting Up Scripting Engines

Java CAPS Management and Monitoring APIs • June 200850

Note – The sample files for the services (for example: AdministrationServiceSample.groovy)
and the Target option behavior are zipped, and are included with the Java CAPS 6 delivery.

Setting Up a Scripting Environment to Invoke Java
CAPS Management and Monitoring APIs
There are two files that are necessary before you set up your scripting environment to invoke
Java CAPS Management and Monitoring APIs:

■ env.bat

■ caps.management.client.jar

Note – These files are included with the Java CAPS delivery.

After downloading env.bat and caps.management.client.jar, modify the environment
variables in env.bat.

To modify environment variables, click “To Modify the Environment Variables in env.bat” on
page 51.

▼ To Modify the Environment Variables in env.bat
Set the JAVA_HOME variable to the JDK/JRE Home folder where your JDK or JRE is installed.

For example: set JAVA_HOME=C:\java\jdk1.6.0.

Set the SJSAS_HOME variable to the SJSAS Home folder where your Sun Java System
Application Server is installed.

For example: set SJSAS_HOME=C:\CAPS6\SJSAS.

Set the CAPS_MANAGEMENT_HOME variable to the folder where you saved the Java CAPS
Management and Monitoring API Java archive file locally.

For example: set CAPS_MANAGEMENT_HOME=C:\scripting\engines\common.

Set the ENGINE_HOME variable to your Scripting Engine Home folder where your scripting
engine is installed.

For example: set ENGINE_HOME=C:\scripting\engines\groovy\groovy-1.1-beta-2.

1

2

3

4

Setting Up Scripting Engines

Java CAPS Management and Monitoring APIs 51

Note – You are now ready to run the scripting samples.

Using a Scripting Language to Exercise the Java CAPS
Management and Monitoring APIs
Before running the scripting samples, it is assumed that you installed one of the scripting
engines.

■ Groovy (located at C:\scripting\engines\groovy\groovy-1.1-beta-2)
■ JRuby (located at C:\scripting\engines\jruby\jruby-1.0.1)
■ Jython (located at C:\scripting\engines\jython\jython2.2)
■ JACL (located at C:\scripting\engines\jacl\jacl140)

It is also assumed that the Sun Java System Application Server is running with the following
settings:

Host HTTP Administration Port Admin UserName Admin Password

localhost 4848 admin adminadmin

Tip – If your environment is different, change the following steps or the scripts according to your
environment or installation.

Currently Sun supports these services:

■ Administration Service
■ Configuration Service
■ Deployment Service
■ Installation Service
■ Runtime Management Service

Additional services will be supported in the future.

Exercising the Administration Service
Before you can exercise the Administration Service, you must have the following installed,
and/or deployed, in your environment:

■ A binding component named sun-http-binding
■ A shared library named sun-wsdl-library

Setting Up Scripting Engines

Java CAPS Management and Monitoring APIs • June 200852

■ A service assembly named SynchronousSampleApplication, which contains a service unit
named SynchronousSampleApplication-SynchronousSample

Tip – You must create the SynchronousSampleApplication from NetBeans, deploy it, and
start it before you run the Administration Service scripts.

Note – Change the script as you see fit to run in your environment.

Exercising the Administration Service in Groovy
The Groovy script for executing the Administration Service is attached in
AdministrationServiceTest.groovy. Modify the script to suit your needs before executing it
in your environment/installation.

cd C:\JavaCAPS6\managementapi

env.bat

cd scripting\groovy\scripts\

groovy ServiceTest\AdministrationServiceTest.groovy

If you are comfortable with the Swing-based groovyConsole, use it to load and execute the
script file.

cd C:\scripting\groovy\scripts\

env.bat

groovyConsole

Exercising the Configuration Service
Before you can exercise the Configuration Service, you must have the following installed in
your environment:

■ A binding component named sun-http-binding
■ A service engine named sun-bpel-engine

Note – Change the script as you see fit to run in your environment.

Exercising the Configuration Service in Groovy
The Groovy script for executing the Configuration Service is attached in
AdministrationServiceTest.groovy. Modify the script to suit your needs before executing it
in your environment/installation.

Setting Up Scripting Engines

Java CAPS Management and Monitoring APIs 53

cd C:\JavaCAPS6\managementapi

env.bat

cd scripting\groovy\scripts\

groovy ServiceTest\ConfigurationServiceTest.groovy

If you are comfortable with the Swing-based groovyConsole, use it to load and execute the
script file.

cd C:\scripting\groovy\scripts\

env.bat

groovyConsole

Exercising the Deployment Service
The deployment service tries to deploy a Service Assembly named
SynchronousSampleApplication. Before you run the Deployment Service scripts, from
NetBeans you must first create a SynchronousSampleApplication, deploy it, and start it. Change
the script as you see fit to run in your environment.

Exercising the Deployment Service in Groovy
The Groovy script for executing the Deployment Service is attached in
DeploymentServiceTest.groovy. Modify the script to suit your needs before executing it in
your environment/installation.

cd C:\JavaCAPS6\managementapi

env.bat

cd scripting\groovy\scripts\

groovy ServiceTest\DeploymentServiceTest.groovy

If you are comfortable with the Swing-based groovyConsole, use it to load and execute the
script file.

cd C:\scripting\groovy\scripts\

env.bat

groovyConsole

Exercising the Installation Service
Before you can exercise the Installation Service, you must have aspectserviceengine.jar
installed in your environment.

Setting Up Scripting Engines

Java CAPS Management and Monitoring APIs • June 200854

Caution – Read the following carefully.

1. A service engine named sun-aspect-engine attempts to stop, shutdown, and uninstall itself.

2. The service engine then attempts to install sun-aspect-engine from the attached
aspectserviceengine.jar.

3. Before you run the Installation Service sample scripts, install aspectserviceengine.jar in
your environment and start it.

4. Change the script as you see fit to run in your environment.

Exercising the Installation Service in Groovy
The Groovy script for executing the Installation Service is attached in
InstallationServiceTest.groovy. Modify the script to suit your needs before executing it in
your environment/installation.

cd C:\JavaCAPS6\managementapi

env.bat

cd scripting\groovy\scripts\

groovy ServiceTest\InstallationServiceTest.groovy

If you are comfortable with the Swing-based groovyConsole, use it to load and execute the
script file.

cd C:\scripting\groovy\scripts\

env.bat

groovyConsole

Exercising the Runtime Management Service
Before you can exercise the Runtime Management Service, you must have the following
installed and deployed in your environment:

■ A service engine named sun-bpel-engine
■ A service assembly named SynchronousSampleApplication, which you created from

NetBeans.

Note – Change the script as you see fit to run in your environment.

Setting Up Scripting Engines

Java CAPS Management and Monitoring APIs 55

Exercising the Runtime Management Service in Groovy
The Groovy script for executing the Runtime Management Service is attached in
RuntimeManagmentServiceTest.groovy. Modify the script to suit your needs before executing
it in your environment/installation.

cd C:\JavaCAPS6\managementapi

env.bat

cd scripting\groovy\scripts\

groovy ServiceTest\RuntimeManagementServiceTest.groovy

If you are comfortable with the Swing-based groovyConsole, use it to load and execute the
script file.

cd C:\scripting\groovy\scripts\

env.bat

groovyConsole

Exercising the JMS Management Service
Before you can exercise the JMS Management Service, you must have first installed the Sun JMS
IQ Manager from the Java CAPS 6 Installer and deployed it in your environment:

Note – The Java CAPS Installer, by default, allows you to install Sun JMS IQ Manager during the
installation process. However, you can install Sun JMS IQ Manager at any time after you have
installed Java CAPS 6.

Exercising the JMS Management Service in Groovy
The Groovy script for executing the JMS Management Service is attached in
JMSManagmentServiceTest.groovy. Modify the script to suit your needs before executing it in
your environment/installation.

cd C:\JavaCAPS6\managementapi

env.bat

cd scripting\groovy\scripts\

groovy ServiceTest\JMSManagementServiceTest.groovy

If you are comfortable with the Swing-based groovyConsole, use it to load and execute the
script file.

cd C:\scripting\groovy\scripts\

env.bat

groovyConsole

Setting Up Scripting Engines

Java CAPS Management and Monitoring APIs • June 200856

Exercising the BPEL Management Service
Before you can exercise the BPEL Management Service, you must ensure:
■ That monitoring is enabled for your BPEL Service Engine
■ That a service engine named sun-bpel-engine has been installed and deployed in your

environment

Note – Change the script as you see fit to run in your environment.

Exercising the BPEL Management Service in Groovy
The Groovy script for executing the BPEL Management Service is attached in
BPELManagmentServiceTest.groovy. Modify the script to suit your needs before executing it
in your environment/installation.

cd C:\JavaCAPS6\managementapi

env.bat

cd scripting\groovy\scripts\

groovy ServiceTest\BPELManagementServiceTest.groovy

If you are comfortable with the Swing-based groovyConsole, use it to load and execute the
script file.

cd C:\scripting\groovy\scripts\

env.bat

groovyConsole

Exercising the HTTP Administration Service
Before you can exercise the HTTP Administration Service, you must have the following
installed and deployed in your environment:
■ A binding component named sun-http-binding
■ A Service Assembly with some HTTP consuming endpoint(s)

Note – Change the script as you see fit to run in your environment.

Exercising the HTTP Administration Service in Groovy
The Groovy script for executing the HTTP Administration Service is attached in
HTTPAdiministrationServiceTest.groovy. Modify the script to suit your needs before
executing it in your environment/installation.

Setting Up Scripting Engines

Java CAPS Management and Monitoring APIs 57

cd C:\JavaCAPS6\managementapi

env.bat

cd scripting\groovy\scripts\

groovy ServiceTest\HTTPAdministrationServiceTest.groovy

If you are comfortable with the Swing-based groovyConsole, use it to load and execute the
script file.

cd C:\scripting\groovy\scripts\

env.bat

groovyConsole

Exercising the Notification Service
For Notification Service test, there are no prerequisites except that the AppServer is up and
running. When any lifecycle changes happen in the JBI runtime, the Notification Service sends
these notifications to all subscribed clients.

Note – Change the script as you see fit to run in your environment.

Exercising the Notification Service in Groovy
The Groovy script for executing the Notification Service is attached in
NotificationServiceTest.groovy. Modify the script to suit your needs before executing it in
your environment/installation.

cd C:\JavaCAPS6\managementapi

env.bat

cd scripting\groovy\scripts\

groovy ServiceTest\NotificationServiceTest.groovy

If you are comfortable with the Swing-based groovyConsole, use it to load and execute the
script file.

cd C:\scripting\groovy\scripts\

env.bat

groovyConsole

JRuby Integrated into NetBeans IDE
If you have the latest version of NetBeans IDE 6.0, you can create your own JRuby Project, and
execute the JRuby samples (they have “rb” extensions) from within the NetBeans IDE.

Setting Up Scripting Engines

Java CAPS Management and Monitoring APIs • June 200858

Note – Java CAPS 6 delivered with NetBeans IDE 6.1 ML.

▼ To Create a JRuby Project

Create a new JRuby project.

Copy the JRuby scripting files into the project.

Right-click and open the Project Properties tab and provide the appropriate jar files for the
project to use.

Start the Sun Java System Application Server.

Open a script file in NetBeans, right-click on the source, and then click Run File to run the script.

1

2

3

4

5

Setting Up Scripting Engines

Java CAPS Management and Monitoring APIs 59

60

	Java CAPS Management and Monitoring APIs
	Java CAPS Management and Monitoring APIs
	Java CAPS Management Client
	JavaDocs
	Targets

	Getting Started Using APIs
	To Start Using APIs to Create Applications

	Connecting to the Server Through APIs
	Connection Type Definition
	CAPSManagementClientFactory Definition

	The Alert Management API
	Support for Databases
	AlertConfigurationService
	AlertNotificationService

	Services — JavaCAPSManagementAPI
	Administration Service
	Runtime Management Service
	Configuration Service
	Deployment Service
	Installation Service
	Performance Measurement Service
	Alert Management Service
	Alert Administration Service
	Alert Notification Service
	Alert Configuration Service
	JMS Management Service
	Log Management Service
	BPEL Management Service
	Master Data Management (MDM) Service
	Sun Adapters Management Service
	Target Option Behavior for the Management Client

	Writing Java Code to Access APIs Using Java Code Samples
	Setting Up Databases
	To Set Up a Database Using Enterprise Manager
	To Set Up a Database Using a Scripting Utility

	Using Oracle and Other Databases for Alert Persistence
	To Set Up an Oracle Database for Alert Persistence
	Oracle Script Examples

	Setting Up Scripting Engines
	Downloading, Installing, and Setting Up A Scripting Environment
	Setting Up a Scripting Environment to Invoke Java CAPS Management and Monitoring APIs
	To Modify the Environment Variables in env.bat
	Using a Scripting Language to Exercise the Java CAPS Management and Monitoring APIs
	Exercising the Administration Service
	Exercising the Administration Service in Groovy

	Exercising the Configuration Service
	Exercising the Configuration Service in Groovy

	Exercising the Deployment Service
	Exercising the Deployment Service in Groovy

	Exercising the Installation Service
	Exercising the Installation Service in Groovy

	Exercising the Runtime Management Service
	Exercising the Runtime Management Service in Groovy

	Exercising the JMS Management Service
	Exercising the JMS Management Service in Groovy

	Exercising the BPEL Management Service
	Exercising the BPEL Management Service in Groovy

	Exercising the HTTP Administration Service
	Exercising the HTTP Administration Service in Groovy

	Exercising the Notification Service
	Exercising the Notification Service in Groovy

	JRuby Integrated into NetBeans IDE
	To Create a JRuby Project

