
Importing an SNA Custom
Handshake Class

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 820–3498–05
June 2008

Copyright 2008 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In particular, and without
limitation, these intellectual property rights may include one or more U.S. patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights – Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions
of the FAR and its supplements.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other
countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, the Solaris logo, the Java Coffee Cup logo, docs.sun.com, Java, and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and SunTM Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts
of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to
the Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN LOOK GUIs and otherwise comply with Sun's written license
agreements.

Products covered by and information contained in this publication are controlled by U.S. Export Control laws and may be subject to the export or import laws in
other countries. Nuclear, missile, chemical or biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export
or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied persons and specially
designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

080916@20795

Contents

1 Importing an SNA Custom Handshake Class .. 5
To Import an SNA Custom Handshake Class ...5

Steps when Building your own Class: ...8
Deploying an SNA Custom Handshake Class .. 12

Sample Code for Inbound Mode: ... 12
Sample Code for Outbound Mode: .. 14

3

4

Importing an SNA Custom Handshake Class

This page provides links to conceptual information on how to import an SNA Custom
Handshake Classs.

■ “To Import an SNA Custom Handshake Class” on page 5
■ “Deploying an SNA Custom Handshake Class” on page 12

To Import an SNA Custom Handshake Class
To import an SNA custom handshake class, follow the instructions below:

1. On the Enterprise Designer’s Inbound SNA Connectivity Map, double-click the SNA
Adapter icon.

The SNA Adapter Properties window appears, displaying the default properties for the
Inbound Adapter.

1C H A P T E R 1

5

2. Edit the Custom Handshake Class Name property in the Inbound Properties window. For
the sample code provided with the Adapter, enter
com.stc.connector.snalu62.api.SNACustomerHandshakeImplSampleAccept.

3. On the Enterprise Designer’s Outbound SNA Connectivity Map, double-click the SNA
Adapter icon.

To Import an SNA Custom Handshake Class

Importing an SNA Custom Handshake Class • June 20086

The SNA Adapter Properties window appears, displaying the default properties for the
Oubound Adapter.

4. Edit the Custom Handshake Class Name property in the Outbound Properties window. For
the sample code provided with the Adapter, enter
com.stc.connector.snalu62.api.SNACustomerHandshakeImplSampleInitialize.

5. Redeploy your project.

To Import an SNA Custom Handshake Class

Chapter 1 • Importing an SNA Custom Handshake Class 7

Steps when Building your own Class:
1. Prepare a JAR file that includes your built class.

2. From the Project Explorer, right-click the sample Project and select Import > File from the
shortcut menu.

The Import Files window appears.

To Import an SNA Custom Handshake Class

Importing an SNA Custom Handshake Class • June 20088

3. Locate your JAR file and click Select. Your selected JAR file appears in the Selected Import
Files pane at the bottom of the Import Files window.

4. Click Import. Your selected JAR file appears in your sample Project’s folder in the left pane
of the Enterprise Designer.

5. Click the Import JAR file button on the Business Rules toolbar in the right pane of
Enterprise Designer.

To Import an SNA Custom Handshake Class

Chapter 1 • Importing an SNA Custom Handshake Class 9

The Add/Remove JAR Files window appears.

6. Locate your JAR file and click Add. Your selected JAR file appears in the Imported JAR Files
pane.

7. Click Close. Your selected JAR file appears under your sample Project’s Collaboration in the
left pane of the Enterprise Designer.

To Import an SNA Custom Handshake Class

Importing an SNA Custom Handshake Class • June 200810

Note – If you make any changes to the class, repeat steps 2 through 7.

The Java Collaboration can handle the SNA connection completely using the sample Class
(com.stc.connector.snalu62.api.SNACustomerHandshakeImplSampleDummy). This class has
been implemented in the SNA Adapter. The sample code for this custom class is as follows:

package com.stc.connector.snalu62.api;

import com.stc.connector.logging.LogFactory;

import com.stc.connector.logging.Logger;

import com.stc.connector.snalu62.exception.SNAApplicationException;

/**

* This is a sample class to implement the interface SNACustomerHandshake.

* It implements a dummy handshake. That is, the method startConversation()

does not perform a function.

* No SNA conversation is established inside this implementation class.

You should establish the SNA conversation manually

(e.g. in the java Collaboration).

*/

public class SNACustomerHandshakeImplSampleDummy implements SNACustomerHandshake {

public static final String version = "cvs $Revision: 1.1.2.2 $

$Date: 2005/11/10 21:40:15 $";
private Logger logger = LogFactory.getLogger

("STC.eWay.SNALU62." + getClass().getName());

/**

* Constructor

*

*/

public SNACustomerHandshakeImplSampleDummy() {

super();

}

/**

* @see com.stc.connector.snalu62.api.SNACustomerHandshake#startConversation

(com.stc.connector.snalu62.api.SNACPICCalls)

*/

public void startConversation(SNACPICCalls cpic) throws SNAApplicationException {

logger.info("SNACustomerHandshakeImplSampleDummy.startConversation():
Done nothing here.");

}

}

To Import an SNA Custom Handshake Class

Chapter 1 • Importing an SNA Custom Handshake Class 11

Deploying an SNA Custom Handshake Class
To further utilize the capabilities of the SNA Adapter, this sectoin provides guidelines for
implementing a custom handshake class in a deployed Project. After the default Collaboration
is generated, you can then modify the Collaboration to suit your application’s needs. While you
will need to write your own code for both Inbound and Outbound SNA modes, the following
code is also provided as the source for the class that is implemented in the SNA adapter.

Sample Code for Inbound Mode:
package com.stc.connector.snalu62.api;

import com.stc.connector.logging.LogFactory;

import com.stc.connector.logging.Logger;

import com.stc.connector.snalu62.exception.SNAApplicationException;

/*

* This is a sample class to implement the interface SNACustomerHandshake.

* It implements a simple Accept_Conversation scenario for windows platform.

*/

public class SNACustomerHandshakeImplSampleAccept implements SNACustomerHandshake {

public static final String version = "cvs $Revision: 1.1.2.1.2.2 $

$Date: 2005/11/10 21:40:15 $";
private Logger logger = LogFactory.getLogger("STC.eWay.SNALU62.

" + getClass().getName());

private String logMsg;

/**

* Constructor

*

*/

public SNACustomerHandshakeImplSampleAccept() {

super();

}

/**

* @see com.stc.connector.snalu62.api.SNACustomerHandshake#startConversation

(com.stc.connector.snalu62.api.SNACPICCalls)

*/

public void startConversation(SNACPICCalls cpic) throws SNAApplicationException {

try {

//do whatever checking logics before/after the following CPIC call

on your desires

cpic.cmsltp();

//do whatever checking logics before/after the following CPIC call

Deploying an SNA Custom Handshake Class

Importing an SNA Custom Handshake Class • June 200812

on your desires

cpic.cmaccp();

if (!cpic.getConversationAttributes().returnCodeIs(0) && // 0: CM_OK

!cpic.getConversationAttributes().returnCodeIs(35))

{ //35: CM_OPERATION_INCOMPLETE

logMsg = "SNACustomerHandshakeImplSampleAccept.startConversation():
The return code is <"

+ cpic.getConversationAttributes().getReturnCode()

+ ">.";
logger.error(logMsg);

throw new SNAApplicationException(logMsg);

}

if (cpic.getConversationAttributes().returnCodeIs(35))

{ //35: CM_OPERATION_INCOMPLETE

logger.info("SNACustomerHandshakeImplSampleAccept.startConversation():
About to call cmwait ...");

//do whatever checking logics before/after the following CPIC call

on your desires

cpic.cmwait();

}

if (!cpic.getConversationAttributes().returnCodeIs(0) ||

!cpic.getConversationAttributes().convReturnCodeIs(0)) { // 0: CM_OK

logMsg = "SNACustomerHandshakeImplSampleAccept.startConversation():
The return_Code is <"

+ cpic.getConversationAttributes().getReturnCode()

+ "> and the conversation_Return_Code is <"
+ cpic.getConversationAttributes().getConvReturnCode()

+ ">. SNA conversation is not established.";
logger.error(logMsg);

throw new SNAApplicationException(logMsg);

}

//do whatever other logics on your desires here

//...

} catch (Exception e) {

logMsg = "SNACustomerHandshakeImplSampleAccept.startConversation():
Failed. Got exception ["

+ e.toString()

+ "].";
logger.error(logMsg, e);

throw new SNAApplicationException(logMsg, e);

}

}

}

Deploying an SNA Custom Handshake Class

Chapter 1 • Importing an SNA Custom Handshake Class 13

Sample Code for Outbound Mode:
package com.stc.connector.snalu62.api;

import com.stc.connector.logging.LogFactory;

import com.stc.connector.logging.Logger;

import com.stc.connector.snalu62.exception.SNAApplicationException;

/**

* This is a sample class to implement the interface SNACustomerHandshake.

* It implements a simple Initialize_Conversation scenario for windows platform.

*/

public class SNACustomerHandshakeImplSampleInitialize implements SNACustomerHandshake {

public static final String version = "cvs $Revision:

1.1.2.1.2.2 $ $Date: 2005/11/10 21:40:15 $";
private Logger logger = LogFactory.getLogger("STC.eWay.SNALU62." + getClass().

getName());

private String logMsg;

/**

* Constructor

*

*/

public SNACustomerHandshakeImplSampleInitialize() {

super();

}

/**

* @see com.stc.connector.snalu62.api.SNACustomerHandshake#startConversation

(com.stc.connector.snalu62.api.SNACPICCalls)

*/

public void startConversation(SNACPICCalls cpic) throws SNAApplicationException {

try {

//do whatever checking logics before/after the following CPIC call on your

desires

cpic.cminit();

//do whatever checking logics before/after the following CPIC call

on your desires

cpic.cmssl();

//do whatever checking logics before/after the following CPIC call on your

desires

cpic.cmallc();

if (!cpic.getConversationAttributes().returnCodeIs(0)) { // 0: CM_OK

logMsg = "SNACustomerHandshakeImplSampleInitialize.
startConversation(): The return_Code is <"

Deploying an SNA Custom Handshake Class

Importing an SNA Custom Handshake Class • June 200814

+ cpic.getConversationAttributes().getReturnCode()

+ ">. SNA conversation is not established.";
logger.error(logMsg);

throw new SNAApplicationException(logMsg);

}

//do whatever other logics on your desires here

//...

} catch (Exception e) {

logMsg = "SNACustomerHandshakeImplSampleInitialize.startConversation():
Failed. Got exception ["

+ e.toString()

+ "].";
logger.error(logMsg, e);

throw new SNAApplicationException(logMsg, e);

}

}

}

Deploying an SNA Custom Handshake Class

Chapter 1 • Importing an SNA Custom Handshake Class 15

16

	Importing an SNA Custom Handshake Class
	Importing an SNA Custom Handshake Class
	To Import an SNA Custom Handshake Class
	Steps when Building your own Class:

	Deploying an SNA Custom Handshake Class
	Sample Code for Inbound Mode:
	Sample Code for Outbound Mode:

