
Configuring Java CAPS for SSL Support

Part No: 820–3503–11
June 2010

Copyright © 2008, 2010, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual
property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software,
unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related software documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following
notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are
“commercial computer software” or “commercial technical data” pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable
Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently
dangerous applications, including applications which may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any
liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. Intel and Intel Xeon are
trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. UNIX is a registered trademark licensed through X/Open Company, Ltd.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and
its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation
and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

100624@24378

Contents

1 Configuring Java CAPS for SSL Support ... 5
Secure Sockets Layer (SSL) Overview ..5

Public Keys, Private Keys, and Certificates ..6
Keytool Program ...8
OpenSSL Project ...8
SSL and Adapters ..9
KeyStores and TrustStores .. 10
Generating a KeyStore and TrustStore .. 11

Configuring a Sun JMS IQ Manager to Use SSL .. 14
Configuring the Message Server URL .. 15
External JMS Clients .. 16
Changing the Self-Signed Server Certificate ... 16

Configuring the Repository to Use SSL .. 18
Generating a Key Pair and a Self-Signed Certificate .. 18
Obtaining a Signed Certificate ... 19
Importing the Certificate .. 20
Configuring the server.xml File .. 20
Testing the New SSL Connection ... 21

Configuring Enterprise Manager to Use SSL ... 22
Creating the Keystore and Trust Store .. 22
Importing the Domain Certificate ... 23
Enabling Security on the Application Server .. 25
Logging In to Enterprise Manager ... 25

Using SSL With the WebSphere MQ Adapter ... 26
Creating a Certification Authority ... 26

Using the OpenSSL Utility for the LDAP and HTTPS Adapters ... 29
Creating a Sample CA Certificate .. 29
Signing Certificates With Your Own CA .. 31

3

Windows OpenSSL.cnf File Example .. 33

Index ..37

Contents

Configuring Java CAPS for SSL Support • June 20104

Configuring Java CAPS for SSL Support

The topics listed here provide information about how to configure the Sun JavaTM Composite
Application Platform Suite (Java CAPS) for Secure Sockets Layer (SSL) support.

If you have any questions or problems, see the Java CAPS web site at http://
goldstar.stc.com/support.

■ “Secure Sockets Layer (SSL) Overview” on page 5
■ “Configuring a Sun JMS IQ Manager to Use SSL” on page 14
■ “Configuring the Repository to Use SSL” on page 18
■ “Configuring Enterprise Manager to Use SSL” on page 22
■ “Using SSL With the WebSphere MQ Adapter” on page 26
■ “Using the OpenSSL Utility for the LDAP and HTTPS Adapters” on page 29

Secure Sockets Layer (SSL) Overview
You can use the Secure Sockets Layer (SSL) protocol to protect communication between clients
and servers over the Internet.

SSL provides such features as server authentication, client authentication, and data encryption.
Authentication confirms the identity of a server or client. Encryption converts data into an
unreadable form before the data is sent.

The scheme of a URL that uses SSL is https. For example:

https://www.onlinebooks.com/creditcardinfo.html

The latest version of SSL is called Transport Layer Security (TLS). The Internet Engineering
Task Force (IETF) maintains the TLS standard.

1C H A P T E R 1

5

http://goldstar.stc.com/support
http://goldstar.stc.com/support

Public Keys, Private Keys, and Certificates
When performing authentication, SSL uses a technique called public-key cryptography.

Public-key cryptography is based on the concept of a key pair, which consists of a public key and
a private key. Data that has been encrypted with a public key can be decrypted only with the
corresponding private key. Conversely, data that has been encrypted with a private key can be
decrypted only with the corresponding public key.

SPML
 Gateway

Identity
Manager

WS-SPML

WS-SPML
RACF

TN3270

SAP

SPML Enabled
External System

Identity
Manager

SPML
Provisioning

Code

WS-SPML
Scripts

Java

SPML Gateway

Screen Scraper
Adapter

Database
Adapter

C/C++ API
Adapter

Secure Sockets Layer (SSL) Overview

Configuring Java CAPS for SSL Support • June 20106

The owner of the key pair makes the public key available to anyone, but keeps the private key
secret.

A certificate verifies that an entity is the owner of a particular public key.

Certificates that follow the X.509 standard contain a data section and a signature section. The
data section includes such information as:
■ The Distinguished Name of the entity that owns the public key
■ The Distinguished Name of the entity that issued the certificate
■ The period of time during which the certificate is valid
■ The public key itself

EncryptionPublic Key

Private Key Decryption

Secure Sockets Layer (SSL) Overview

Chapter 1 • Configuring Java CAPS for SSL Support 7

You can obtain a certificate from a Certificate Authority (CA) such as VeriSign. Alternately, you
can create a self-signed certificate, in which the owner and the issuer are the same.

An organization that issues certificates can establish a hierarchy of CAs. The root CA has a
self-signed certificate. Each subordinate CA has a certificate that is signed by the next highest
CA in the hierarchy. A certificate chain is the certificate of a particular CA, plus the certificates
of any higher CAs up through the root CA.

Keytool Program
The keytool program is a security tool included in the bin directory of the Java SDK.

This tool manages a type of database called a keystore. Keystores contain two types of entries:

■ A key entry consists of a private key and the certificate chain for the associated public key.
■ A trusted certificate entry is a public key certificate that belongs to another entity and that the

owner of the keystore has determined to be trustworthy.

Each entry in the keystore is identified by a unique alias. When you add an entity to the
keystore, you must specify an alias.

The available commands of the keytool program include the following:

■ The genkey command generates a key pair. If you specify a keystore that does not exist, then
the keystore is created.

■ The certreq command generates a Certificate Signing Request (CSR).
■ The import command adds a certificate to a keystore. If you specify a keystore that does not

exist, then the keystore is created.
■ The export command exports a certificate to a file.
■ The list command prints the contents of a keystore entry.

For more information about the keytool program, go to http://java.sun.com/j2se/1.5.0/docs/
tooldocs/index.html.

OpenSSL Project
The OpenSSL Project is an effort to develop an open-source toolkit that implements the SSL
and TLS protocols, as well as a cryptographic library.

The toolkit includes the openssl command-line tool, which enables you to use various
functions of the cryptographic library.

The available commands of the openssl tool include the following:

Secure Sockets Layer (SSL) Overview

Configuring Java CAPS for SSL Support • June 20108

http://java.sun.com/j2se/1.5.0/docs/tooldocs/index.html
http://java.sun.com/j2se/1.5.0/docs/tooldocs/index.html

■ The pkcs12 command parses or generates a PKCS #12 file.
■ The req command creates and processes certificate requests in PKCS #10 format.

You can download the current version of OpenSSL at http://www.openssl.org.

SSL and Adapters
The use of SSL with HTTP, LDAP, and WebSphere MQ enables data exchanges that are secure
from unauthorized interception from hackers or other entities. The adapter's SSL feature
provides a secure communications channel for the data exchanges.

The following diagram illustrates the use of SSL with the LDAP Adapter.

LDAP Adapter

SSL Communication Channel

Response

POST/GET

Hacker

Man-in-Middle Attack:
Cannot break secured channel

Web Server

TrustStore KeyStore

Private

Key

Trusted CA
Certificates

Certificate &
CA Certificate

Chain

Secure Sockets Layer (SSL) Overview

Chapter 1 • Configuring Java CAPS for SSL Support 9

http://www.openssl.org

This SSL feature is supported through the use of Java Secure Socket Extension (JSSE) version
1.0.3.

Currently, the JSSE reference implementation is used. JSSE is a provider-based architecture,
which means there is a set of standard interfaces for cryptographic algorithms, hashing
algorithms, secured-socket-layered URL stream handlers, and so on.

Because the user is interacting with JSSE through these interfaces, the different components can
be mixed and matched as long as the implementation is programmed under the published
interfaces. However, some implementations might not support a particular algorithm.

The JSSE 1.0.3 API can support SSL versions 2.0 and 3.0 and TLS version 1.0. These security
protocols encapsulate a normal bidirectional stream socket. The JSSE 1.0.3 API adds
transparent support for authentication, encryption, and integrity protection. The JSSE
reference implementation implements SSL version 3.0 and TLS version 1.0.

The following options available for setting up SSL connectivity with a web server:
■ Server-side Authentication. The majority of e-commerce web sites are configured for

server-side authentication. The adapter requests a certificate from the web server and
authenticates the web server by verifying that the certificate can be trusted. Essentially, the
adapter performs this operation by looking into its TrustStore for a CA certificate with a
public key that can validate the signature on the certificate received from the web server.

■ Dual Authentication. This option requires authentication from both the adapter and web
server. The server side (web server) of the authentication process is the same as that
described previously. In addition, the web server requests a certificate from the adapter. The
adapter sends its certificate to the web server. The server authenticates the adapter by
looking into its TrustStore for a matching trusted CA certificate. The communication
channel is established by the process of both parties requesting certificate information.

KeyStores and TrustStores
The JSSE makes use of files called KeyStores and TrustStores. The KeyStore is used by the
adapter for client authentication, while the TrustStore is used to authenticate a server in SSL
authentication.
■ A KeyStore consists of a database containing a private key and an associated certificate, or an

associated certificate chain. The certificate chain consists of the client certificate and one or
more certification authority (CA) certificates.

■ A TrustStore contains only the certificates trusted by the client (a “trust” store). These
certificates are CA root certificates, that is, self-signed certificates. The installation of the
Logical Host includes a TrustStore file named cacerts.jks in the location:

<c:\JavaCAPS>\appserver\domains\<MyDomain>\config

where <c:\JavaCAPS> is the directory where Java CAPS is installed and <MyDomain> is the
name of your domain. This file is recommended as the TrustStore for the Sun Adapters.

Secure Sockets Layer (SSL) Overview

Configuring Java CAPS for SSL Support • June 201010

Both KeyStores and TrustStores are managed by means of a utility called keytool, which is a
part of the Java SDK installation.

Generating a KeyStore and TrustStore
The following sections explain how to create both a KeyStore and a TrustStore (or import a
certificate into an existing TrustStore such as the default Logical Host TrustStore in the
location:

<c:\JavaCAPS>\appserver\domains\<MyDomain>\config\cacerts.jks

where <c:\JavaCAPS> is the directory where Java CAPS is installed and <MyDomain> is the name
of your domain. The primary tool used is keytool, but openssl is also used as a reference for
generating pkcs12 KeyStores.

For more information on openssl and available downloads, visit the following web site:

http://www.openssl.org.

Creating a KeyStore in JKS Format
This section explains how to create a KeyStore using the JKS format as the database format for
both the private key, and the associated certificate or certificate chain. By default, as specified in
the java.security file, keytool uses JKS as the format of the key and certificate databases
(KeyStore and TrustStores). A CA must sign the certificate signing request (CSR). The CA is
therefore trusted by the server-side application to which the Adapter is connected.

Note – It is recommended to use the default KeyStore

<c:\JavaCAPS>\appserver\domains\<MyDomain>\config\keystore.jks

where <c:\JavaCAPS> is the directory where Java CAPS is installed and <MyDomain> is the name
of your domain.

▼ To Generate a KeyStore

Perform the following command.
keytool -keystore clientkeystore -genkey -alias client

Once prompted, enter the information required to generate a CSR. A sample key generation
section follows.
Enter keystore password: javacaps

What is your first and last name?

[Unknown]: development.sun.com

1

2

Secure Sockets Layer (SSL) Overview

Chapter 1 • Configuring Java CAPS for SSL Support 11

http://www.openssl.org

What is the name of your organizational unit?

[Unknown]: Development

what is the name of your organization?

[Unknown]: Sun

What is the name of your City or Locality?

[Unknown]: Monrovia

What is the name of your State or Province?

[Unknown]: California

What is the two-letter country code for this unit?

[Unknown]: US

Is<CN=development.sun.com, OU=Development, O=Sun, L=Monrovia, ST=California,

C=US> correct?

[no]: yes

Enter key password for <client>

(RETURN if same as keystore password):

If the KeyStore password is specified, then the password must be provided for the adapter.

Press RETURN when prompted for the key password (this action makes the key password the
same as the KeyStore password).
This operation creates a KeyStore file clientkeystore in the current working directory. You
must specify a fully qualified domain for the “first and last name” question. The reason for this
use is that some CAs such as VeriSign expect this properties to be a fully qualified domain
name.

There are CAs that do not require the fully qualified domain, but it is recommended to use the
fully qualified domain name for the sake of portability. All the other information given must be
valid. If the information cannot be validated, a CA such as VeriSign does not sign a generated
CSR for this entry.

This KeyStore contains an entry with an alias of client. This entry consists of the generated
private key and information needed for generating a CSR as follows:
keytool -keystore clientkeystore -certreq -alias client -keyalg rsa -file client.csr

This command generates a certificate signing request which can be provided to a CA for a
certificate request. The file client.csr contains the CSR in PEM format.

Some CA (one trusted by the web server to which the adapter is connecting) must sign the CSR.
The CA generates a certificate for the corresponding CSR and signs the certificate with its
private key. For more information, visit the following web sites:

http://www.thawte.com

or

http://www.verisign.com

If the certificate is chained with the CA’s certificate, perform step 4; otherwise, perform step 5 in
the following list:

3

Secure Sockets Layer (SSL) Overview

Configuring Java CAPS for SSL Support • June 201012

http://www.thawte.com
http://www.verisign.com

Perform the following command.
keytool -import -keystore clientkeystore -file client.cer -alias client

The command imports the certificate and assumes the client certificate is in the file client.cer
and the CA’s certificate is in the file CARoot.cer.

Perform the following command to import the CA’s certificate into the KeyStore for chaining
with the client’s certificate.
keytool -import -keystore clientkeystore -file CARoot.cer -alias theCARoot

Perform the following command to import the client’s certificate signed by the CA whose
certificate was imported in the preceding step.
keytool -import -keystore clientkeystore -file client.cer -alias client

The generated file clientkeystore contains the client’s private key and the associated certificate
chain used for client authentication and signing. The KeyStore and/or clientkeystore, can then
be used as the adapter’s KeyStore.

Creating a KeyStore in PKCS12 Format
This section explains how to create a PKCS12 KeyStore to work with JSSE. In a real working
environment, a customer could already have an existing private key and certificate (signed by a
known CA). In this case, JKS format cannot be used, because it does not allow the user to
import/export the private key through keytool. It is necessary to generate a PKCS12 database
consisting of the private key and its certificate.

The generated PKCS12 database can then be used as the Adapter’s KeyStore. The keytool utility
is currently lacking the ability to write to a PKCS12 database. However, it can read from a
PKCS12 database.

Note – There are additional third-party tools available for generating PKCS12 certificates, if you
want to use a different tool.

For the following example, openssl is used to generate the PKCS12 KeyStore:

cat mykey.pem.txt mycertificate.pem.txt>mykeycertificate.pem.txt

The existing key is in the file mykey.pem.txt in PEM format. The certificate is in
mycertificate.pem.txt, which is also in PEM format. A text file must be created which contains
the key followed by the certificate as follows:

openssl pkcs12 -export -in mykeycertificate.pem.txt -out mykeystore.pkcs12

-name myAlias -noiter -nomaciter

4

5

6

Secure Sockets Layer (SSL) Overview

Chapter 1 • Configuring Java CAPS for SSL Support 13

This command prompts the user for a password. The password is required. The KeyStore fails
to work with JSSE without a password. This password must also be supplied as the password for
the Adapter’s KeyStore password.

This command also uses the openssl pkcs12 command to generate a PKCS12 KeyStore with the
private key and certificate. The generated KeyStore is mykeystore.pkcs12 with an entry
specified by the myAlias alias. This entry contains the private key and the certificate provided
by the -in argument. The noiter and nomaciter options must be specified to allow the
generated KeyStore to be recognized properly by JSSE.

Creating a TrustStore
For demonstration purposes, suppose you have the following CAs that you trust: firstCA.cert,
secondCA.cert, thirdCA.cert, located in the directory C:\cascerts. You can create a new
TrustStore consisting of these three trusted certificates.

▼ To Create a New TrustStore

Perform the following command.
keytool -import -file C:\cascerts\firstCA.cert -alias firstCA -keystore myTrustStore

Enter this command two more times, but for the second and third entries, substitute secondCA
and thirdCA for firstCA. Each of these command entries has the following purposes:

■ The first entry creates a KeyStore file named myTrustStore in the current working directory
and imports the firstCA certificate into the TrustStore with an alias of firstCA. The format
of myTrustStore is JKS.

■ For the second entry, substitute secondCA to import the secondCA certificate into the
TrustStore, myTrustStore.

■ For the third entry, substitute thirdCA to import the thirdCA certificate into the
TrustStore.

Once completed, myTrustStore is available to be used as the TrustStore for the adapter.

Configuring a Sun JMS IQ Manager to Use SSL
Sun JMS IQ Manager provides a self-signed server certificate.

You can set the authentication mode to Authenticate or TrustAll.
■ If the mode is Authenticate, then clients authenticate the server certificate that the message

server sends. The clients need to use their trust store.
■ If the mode is TrustAll, then clients always trust the message server that they connect to.

The clients do not need to use their trust store.

1

2

Configuring a Sun JMS IQ Manager to Use SSL

Configuring Java CAPS for SSL Support • June 201014

The default mode is TrustAll.

You can replace the Sun JMS IQ Manager’s self-signed server certificate with your own server
certificate.

Configuring the Message Server URL
You can configure SSL for the Sun JMS IQ Manager by editing an Environment property.

▼ To Configure the Message Server URL

In the Services window of the NetBeans IDE, expand the CAPS Environment in which the JMS IQ
Manager is located.

Right-click the JMS IQ Manager and choose Properties.

The Properties dialog box appears.

Ensure that the Sun JMS IQ Manager URL property begins with stcmss and includes the SSL port
number of the JMS IQ Manager. For example:
stcmss://localhost:18008

If you want clients to authenticate the server certificate that the message server sends, then
append the string com.stc.jms.ssl.authenticationmode=Authenticate to the Sun JMS IQ
Manager URL property. For example:
stcmss://localhost:18008?com.stc.jms.ssl.authenticationmode=Authenticate

1

2

3

4

Configuring a Sun JMS IQ Manager to Use SSL

Chapter 1 • Configuring Java CAPS for SSL Support 15

If you want clients to always trust the message server that they connect to, then append the
string com.stc.jms.ssl.authenticationmode=TrustAll to the Sun JMS IQ Manager URL
property. For example:
stcmss://localhost:18008?com.stc.jms.ssl.authenticationmode=TrustAll

Click OK.

External JMS Clients
By default, JMS clients that are deployed inside the Sun JavaTM System Application Server use
the default keystore and trust store.

External JMS clients must set the following properties in the connection factory:
■ com.stc.jms.ssl.authenticationmode

■ javax.net.ssl.trustStore

Enterprise Service Bus API Kit for JMS IQ Manager (Java Edition) describes how to instantiate
connection factories and set the properties.

Changing the Self-Signed Server Certificate
You can replace the Sun JMS IQ Manager’s self-signed server certificate with your own server
certificate.

This procedure makes the following assumptions:
■ You have a server certificate in PEM format. The file name is mycacert.pem. The common

name of the owner and issuer is mycertuserid. The password is mycertpassword.
■ You have a private key in PEM format. The file name is mycakey.pem.

▼ To Change the Self-Signed Server Certificate

Import your server certificate into the default trust store of the Sun Java System Application
Server. The trust store is located in the
JavaCAPS-install-dir/appserver/domains/domain-name/config directory.
keytool -import -alias stcmscert -file mycacert.pem -keystore cacerts.jks

For the -alias option, you can use any value.

Convert your server certificate and private key from PEM format to PKCS #12 format. You can use
the pkcs12 command of the openssl command-line tool to export a file that contains both the
server certificate and the private key.
openssl pkcs12 -export -in mycacert.pem -inkey mycakey.pem -out mycert.p12

-name "stcmscert"

5

6

1

2

Configuring a Sun JMS IQ Manager to Use SSL

Configuring Java CAPS for SSL Support • June 201016

Make the following changes to the files:

a. Change the name of the server certificate file from mycacert.pem to stcmscert.pem.

b. Change the name of the private key file from mycakey.pem to stcmskey.pem.

c. (UNIX only) Copy the stcmscert.pem file to a new file called stcmscert.cer.

d. (Windows only) Change the name of the PKCS #12 file from mycert.p12 to stcmscert.cer.

Copy the stcmscert.pem, stcmskey.pem, and stcmscert.cer files into the
JavaCAPS-install-dir/appserver/addons/stcms/templates directory.

If you already created an instance, then you must also copy the stcmscert.pem, stcmskey.pem,
and stcmscert.cer files into the
JavaCAPS-install-dir/appserver/domains/domain-name/addons/stcms/instance-name/config

directory.

Open the stcms.default.Properties file in the
JavaCAPS-install-dir/appserver/addons/stcms/templates directory.

Add the STCMS.SSL.UserId and STCMS.SSL.Password properties.
STCMS.SSL.UserId=mycertuserid

STCMS.SSL.Password=mycertpassword

(Windows only) Set the value of the STCMS.SSL.CertificateFileStore.Option property.

■ If you want the JMS IQ Manager to install the certificate automatically, then set the value to
On.

■ If you want to install the certificate by using the certmgr tool or Internet Explorer, then set
the value to Off.

If you already created an instance, then copy the stcms.default.Properties file into the
JavaCAPS-install-dir/appserver/domains/domain-name/addons/stcms/instance-name/config

directory.

If the domain is running, then restart the domain.

3

4

5

6

7

8

9

10

Configuring a Sun JMS IQ Manager to Use SSL

Chapter 1 • Configuring Java CAPS for SSL Support 17

Configuring the Repository to Use SSL
The HTTPS service of the Repository will not run unless a server certificate has been installed.
Use the following procedure to set up a server certificate that can be used by the Repository to
enable SSL.

Note – If you configure the Repository to use SSL, then NetBeans IDE users cannot connect to
the Repository.

To enable the Repository to use SSL, perform the tasks in the following sections:

■ “Generating a Key Pair and a Self-Signed Certificate” on page 18
■ “Obtaining a Signed Certificate” on page 19
■ “Importing the Certificate” on page 20
■ “Configuring the server.xml File” on page 20
■ “Testing the New SSL Connection” on page 21

Note – The instructions in this topic use port number 8443 as the SSL port. The instructions in
“Configuring Enterprise Manager to Use SSL” on page 22 also use port number 8443 as the SSL
port. If you are configuring the Repository and Enterprise Manager on the same computer, then
ensure that the port numbers are different.

Generating a Key Pair and a Self-Signed Certificate
The genkey command of the keytool program enables you to generate a key pair.

▼ To Generate a Key Pair and a Self-Signed Certificate

Navigate to the JAVA_HOME/bindirectory, where JAVA_HOME is the installation directory of the
Java SDK.

Enter the following command:
keytool -genkey -keyalg RSA -alias CAPS -keystore keystore_filename

When prompted, enter your keystore password.

When prompted, enter the Distinguished Name information.

a. What is your first and last name?

1

2

3

4

Configuring the Repository to Use SSL

Configuring Java CAPS for SSL Support • June 201018

Caution – When prompted for your first and last name, make sure you enter the machine
hostname.

b. What is the name of your organizational unit?

c. What is the name of your organization?

d. What is the name of your City or Locality?

e. What is the name of your State or Province?

f. What is the two-letter country code for this unit?

g. Is CN=first_and_last_name, OU=organizational_unit, O=organization_name,
L=city_or_locality, ST=state_or_province, C=two_letter_country_code correct?

When prompted, enter a password for the keystore entry. If the password is same as the
keystore password, press Return.

Note – If you want to use a keystore, it is recommended to use the sbyn.keystore file in the
JavaCAPS-install-dir/repository/repository/server directory.

Obtaining a Signed Certificate
You must obtain either a digitally signed certificate from a certificate authority or a self-signed
certificate from a local keystore.

▼ To Obtain a Digitally Signed Certificate from a Certificate Authority

Enter the following command to generate a Certificate Signing Request (CSR):
keytool -certreq -alias CAPS -keyalg RSA -file csr_filename -keystore

keystore_filename

Send the CSR for signing.

Store the signed certificate in a file.

Note – If you want to use a keystore, it is recommended to use the sbyn.keystore file in the
JavaCAPS-install-dir/repository/repository/server directory.

5

1

2

3

Configuring the Repository to Use SSL

Chapter 1 • Configuring Java CAPS for SSL Support 19

▼ To Obtain a Self-Signed Certificate from a Local Keystore

Enter the following command to generate a self-signed certificate:
keytool -export -alias CAPS -keystore keystore_filename -rfc -file

self_signed_cert_filename

Importing the Certificate
If you are using a self-signed certificate or a certificate signed by a CA that your browser does
not recognize, a dialog box will appear the first time you try to access the server. You can then
choose to trust the certificate for this session only or permanently.

▼ To Import the Certificate

Enter the following command to install the certificate:
keytool -import -trustcacerts -alias CAPS -file ca-certificate-filename

-keystore keystore_filename

Note – You must have the required permissions to modify the
JAVA_HOME/jre/lib/security/cacerts file. You must import your certificate into the
cacerts file also.

If you want to use a keystore, it is recommended to use the sbyn.keystore file in the
JavaCAPS-install-dir/repository/repository/server directory.

Configuring the server.xml File
You now edit the server.xml file in the Repository to enable SSL support.

▼ To Configure the server.xml File

If the Repository is running, then shut down the Repository.

Using a text editor, open the server.xmlfile in the
JavaCAPS-install-dir/repository/repository/server/conf directory.

Within the <Service> element, comment out the first <Connector> element.

●

●

1

2

3

Configuring the Repository to Use SSL

Configuring Java CAPS for SSL Support • June 201020

Comment in the second <Connector> element.
<!-- Define an SSL Coyote HTTP/1.1 Connector on port 8443 -->

<Connector className="org.apache.coyote.tomcat4.CoyoteConnector"
port="8443" minProcessors="5" maxProcessors="75"
enableLookups="true"
acceptCount="100" debug="0" scheme="https" secure="true"
useURIValidationHack="false" disableUploadTimeout="true">

<Factory

className="org.apache.coyote.tomcat4.CoyoteServerSocketFactory"
clientAuth="false" protocol="TLS"
keystoreFile="sbyn.keystore" keystorePass="changeit" />

</Connector>

Save the server.xmlfile.

Start the Repository.

Testing the New SSL Connection
This procedure verifies that SSL support has been correctly installed.

▼ To Test the New SSL Connection

Load the default Repository server introduction page with the following URL:
https://localhost:8443/

The https portion indicates that the browser should use the SSL protocol.

The port 8443 is where the SSL Connector was created in “Configuring the server.xml File” on
page 20.

The first time that you load this application, the New Site Certificate dialog box appears. Select
Next to move through the series of New Site Certificate dialog boxes. Select Finish when you
reach the last dialog box.

Note – You should still have the option to use HTTP to connect to the NetBeans IDE. System
administrators should not block the HTTP port.

4

5

6

1

2

Configuring the Repository to Use SSL

Chapter 1 • Configuring Java CAPS for SSL Support 21

Configuring Enterprise Manager to Use SSL
To enable Enterprise Manager to use SSL, perform the tasks in the following sections:

■ “Creating the Keystore and Trust Store” on page 22
■ “Importing the Domain Certificate” on page 23
■ “Enabling Security on the Application Server” on page 25
■ “Logging In to Enterprise Manager” on page 25

Note – The instructions in this topic use port number 8443 as the SSL port. The instructions in
“Configuring the Repository to Use SSL” on page 18 also use port number 8443 as the SSL port.
If you are configuring the Repository and Enterprise Manager on the same computer, then
ensure that the port numbers are different.

Creating the Keystore and Trust Store
The first task involves creating a keystore and a trust store on the computer where the
Enterprise Manager server is installed.

For basic information about keystores and trust stores, see “Secure Sockets Layer (SSL)
Overview” on page 5.

The examples in this topic show passwords being entered on the command line. You can omit
these passwords, and be prompted to enter them.

▼ To Create the Keystore and Trust Store

Go to the computer where the Enterprise Manager server is installed.

If the Enterprise Manager server is running, then shut down the Enterprise Manager server.

Set the path variable to include the JavaTM Runtime Environment (JRETM) software used by the
Enterprise Manager server. For example:
set PATH="C:\Program Files\Java\jdk1.6.0_06\jre\bin";%PATH%

Create a directory for the keystore and trust store. For example:
C:\JavaCAPS6\keystore

Navigate to the directory that you created, and use the keytoolprogram to create a certificate
in a new keystore.
keytool -genkey -alias mykey -keyalg RSA -keypass changeit -keystore keystore.jks

-storepass changeit

1

2

3

4

5

Configuring Enterprise Manager to Use SSL

Configuring Java CAPS for SSL Support • June 201022

When you are prompted to enter your first and last name, do not enter your first and last name.
Instead, enter the fully qualified computer name. For example:

What is your first and last name?

[Unknown]: example.company.com

What is the name of your organizational unit?

[Unknown]: Development

What is the name of your organization?

[Unknown]: Sun Microsystems

What is the name of your City or Locality?

[Unknown]: Monrovia

What is the name of your State or Province?

[Unknown]: California

What is the two-letter country code for this unit?

[Unknown]: US

Is CN=example.company.com, OU=Development, O=Sun Microsystems, L=Monrovia,

ST=California, C=US correct?

[no]: yes

Export the certificate to a file.
keytool -export -alias mykey -file mykey.cer -keystore keystore.jks -storepass changeit

The certificate is stored in the file that you specified.

Import the certificate into a new trust store.
keytool -import -v -trustcacerts -alias mykey -keypass changeit -file mykey.cer

-keystore cacerts.jks -storepass changeit

The trust store is created. The trust store includes the imported certificate.

Importing the Domain Certificate
After you perform the steps in “Creating the Keystore and Trust Store” on page 22, you must
import the certificate of the application server domain into the trust store.

In addition, you must perform the following edits to files on the Enterprise Manager server:

■ Enable the SSL connector in the server.xml configuration file. A connector represents an
endpoint by which requests are received and responses are returned.

■ Add an option to the startserver batch file.

The examples in this topic show passwords being entered on the command line. You can omit
these passwords, and be prompted to enter them.

6

7

Configuring Enterprise Manager to Use SSL

Chapter 1 • Configuring Java CAPS for SSL Support 23

▼ To Import the Domain Certificate

Go to the computer where the application server is installed.

Navigate to the JavaCAPS-install-dir/appserver/domains/domain-name/config directory.

Export the domain certificate to a file.
keytool -export -alias s1as -file ascert.cer -keystore keystore.jks -storepass changeit

The certificate is stored in the file that you specified.

Copy the file to the directory that you created in “Creating the Keystore and Trust Store”on
page 22.

Import the domain certificate into the trust store that you created in “Creating the Keystore and
Trust Store”on page 22.
keytool -import -v -trustcacerts -alias s1as -keypass changeit -file ascert.cer

-keystore cacerts.jks -storepass changeit

The certificate is added to the trust store.

Using a text editor, open the server.xmlfile in the
JavaCAPS-install-dir/emanager/server/conf directory.

Within the <Service> element, comment out the first <Connector> element.

Comment in the second <Connector> element. Add the keystoreFile and keystorePass

attributes.

Set the value of the keystoreFile attribute to the fully qualified name of the keystore that you
created in “Creating the Keystore and Trust Store” on page 22. Set the value of the
keystorePass attribute to the corresponding password.
<Connector port="8443"

maxThreads="150" minSpareThreads="25" maxSpareThreads="75"
enableLookups="false" disableUploadTimeout="true"
keystoreFile="C:\JavaCAPS6\keystore\keystore.jks"
keystorePass="changeit"
acceptCount="100" debug="0" scheme="https" secure="true"
clientAuth="false" sslProtocol="TLS" />

Save the server.xmlfile.

Using a text editor, open the startserverbatch file in the JavaCAPS-install-dir/emanager
directory.

1

2

3

4

5

6

7

8

9

10

Configuring Enterprise Manager to Use SSL

Configuring Java CAPS for SSL Support • June 201024

Add the javax.net.ssl.trustStore option. Set the value to the fully qualified name of the
trust store that you created in “Creating the Keystore and Trust Store”on page 22.
set JAVA_OPTS=-Xmx512m -Djavax.net.ssl.trustStore=C:\JavaCAPS\keystore\cacerts.jks

Save the startserverbatch file.

Enabling Security on the Application Server
In the final configuration task, you enable security for one of the default HTTP listeners on the
Sun JavaTM System Application Server. The listener is called admin-listener.

▼ To Enable Security on the Application Server

Log in to the Admin Console.

In the left pane, expand the Configurations node, the HTTP Service node, and the HTTP
Listeners node.

In the left pane, select the admin-listener node.

Click the SSL tab.

In the Certificate NickName field, type s1as.

Click Save.

Click the Edit HTTP Listener tab.

Select the Enable check box to the right of the Security label.

Click Save.

Stop and restart the application server.

Logging In to Enterprise Manager
When Enterprise Manager has been configured to use SSL, the URL that you use to log in has a
different scheme and port number.

For detailed information about Enterprise Manager user names and passwords, see Managing
Java CAPS Users.

11

12

1

2

3

4

5

6

7

8

9

10

Configuring Enterprise Manager to Use SSL

Chapter 1 • Configuring Java CAPS for SSL Support 25

▼ To Log In to Enterprise Manager

Start the Enterprise Manager server.

In a supported browser, enter the following URL:
https://hostname:portnumber

The scheme must be https. The port number must be the value used in the <Connector>
element in the server.xml file. For example:

https://example.company.com:8443/

The Enterprise Manager Security Gateway screen appears.

In the User ID field, enter an Enterprise Manager user name.

In the Password field, enter the corresponding password.

Click Login.
Enterprise Manager appears.

Using SSL With the WebSphere MQ Adapter
Perform the following tasks:

■ “To Create a Certification Authority” on page 26
■ “To Issue a Certificate to a Queue Manager” on page 27
■ “To Issue a Certificate to Java CAPS” on page 28

Creating a Certification Authority
The following steps describe how to create a Certification Authority (CA) using the
command-line utilities supplied with WebSphere MQ.

▼ To Create a Certification Authority

Create a key repository for the CA.

Create a directory and in that directory, create a key repository file by entering the text shown
below:
C:\> mkdir \myCAdir

C:\> cd \myCAdir

C:\myCAdir> runmqckm -keydb -create -db myCA.kdb -type cms

1

2

3

4

5

1

2

Using SSL With the WebSphere MQ Adapter

Configuring Java CAPS for SSL Support • June 201026

When prompted to create a password, type the password you want to use for the CA’s key
repository.

Create a self-signed CA certificate, which will be used to identify your CA:
C:\myCAdir> runmqckm -cert -create -db myCA.kdb -type cms -label "myCAcertificate"
-dn "CN=myCAName,O=myOrganisation,OU=myDepartment,L=myLocation,C=IN" -expire 1000

-size 1024

Extract the CA certficate into a file called myCAcertfile.cer, which you will later transfer to the
key repositories of the queue manager and client application:
C:\myCAdir> runmqckm -cert -extract -db myCA.kdb -type cms -label "myCAcertificate"
-target myCAcertfile.cer -format ascii

▼ To Issue a Certificate to a Queue Manager
Each queue manager in your infrastructure should have its own certificate, with an appropriate
Distinguished Name (DN). The DN should be unique within the WebSphere MQ network.

Create the queue manager’s key repository
C:\myCAdir> mkdir \REPOS

C:\myCAdir> cd \REPOS

Issue the following command to create a key database for the queue manager:
C:\REPOS> runmqckm -keydb -create -db myqmgr.kdb -type cms -stash

When prompted to create a password, type the password you want to use for the queue
manager’s key repository.

The -stash option is important, as it causes a stash file to be created. This file is called
myqmgr.sth. It allows the queue manager to open the key repository without requesting a
password from the user.

Generate a certificate request file for the queue manager, along with a private key:
C:\REPOS> runmqckm -certreq -create -db myqmgr.kdb -type cms

-dn "CN=QMNAME,O=SUN,OU=BI,L=BLR,C=IN" -label "ibmwebspheremqmyqmgr" -file myqmgr.req

The label (as specified with the -label parameter) must be of the form ibmwebspheremqmyqmgr,
all in lower case. This is important, as otherwise the queue manager will fail to find the
certificate.

Transfer the certificate request file, myqmgr.req , to the directory where the CA files are located.
Then change to the following directory:
C:\REPOS> copy myqmgr.req \myCAdir

C:\REPOS> cd \myCAdir

3

4

1

2

3

4

Using SSL With the WebSphere MQ Adapter

Chapter 1 • Configuring Java CAPS for SSL Support 27

Sign the queue manager’s certificate by running the following command:
C:\myCAdir> runmqckm -cert -sign -db myCA.kdb -label "myCAcertificate" -expire 365

-format ascii -file myqmgr.req -target myqmgr.cer

When prompted for the password, supply the CA key repository’s password. Refer to the first
step in “To Create a Certification Authority” on page 26.

Transfer the signed certificate (myqmgr.cer) and the public certificate of the CA
(myCAcertfile.cer) back to C:\REPOS
C:\myCAdir> copy myqmgr.cer \REPOS

C:\myCAdir> copy myCAcertfile.cer \REPOS

C:\myCAdir> cd \REPOS

Add the public certificate of the CA to the key repository of the queue manager:
C:\REPOS> runmqckm -cert -add -db myqmgr.kdb -type cms -file myCAcertfile.cer

-label "theCAcert"

When prompted for a password, supply the queue manager key repository’s password.

Receive the certificate (now signed by the CA) into the queue manager’s key repository:
C:\REPOS> runmqckm -cert -receive -db myqmgr.kdb -type cms -file myqmgr.cer

When prompted for a password, supply the queue manager key repository’s password. Refer to
step 1 (above).

▼ To Issue a Certificate to Java CAPS

Create a certificate request to the application server domain default keystore.jks.
<JavaCAPS>\appserver\domains\<domain_name>\config> runmqckm -certreq -create

-db keystore.jks -type jks -dn "CN=Client Identifier,O=SUN,OU=BI,L=BLR,C=IN"
-label "ibmwebspheremqmyuserid" -file myappj.req

When prompted to create a password, type the default password changeit for the application
server. The certificate label chosen was ibmwebspheremqmyuserid.

Transfer the certificate request file (myappj.req) to the directory where the CA files are located,
then change to this directory:
<JavaCAPS>\appserver\domains\<domain_name>\config> copy myappj.req C:\myCAdir

<JavaCAPS>\appserver\domains\<domain_name>\config> cd C:\myCAdir

Sign the application’s certificate by running the following:
C:\myCAdir> runmqckm -cert -sign -db myCA.kdb -label "myCAcertificate" -expire 365

-format ascii -file myappj.req -target myappj.cer

When prompted for a password, supply the CA key repository’s password. Refer to the first step
in “To Create a Certification Authority” on page 26.

5

6

7

8

1

2

3

Using SSL With the WebSphere MQ Adapter

Configuring Java CAPS for SSL Support • June 201028

Transfer the signed certificate (myappj.cer) and the public certificate of the CA
(myCAcertfile.cer) back to C:\MYAPPJ:
C:\myCAdir> copy myappj.cer <JavaCAPS>\appserver\domains\<domain_name>\config\

C:\myCAdir> copy myCAcertfile.cer<JavaCAPS>\appserver\domains\<domain_name>\config

C:\myCAdir> cd <JavaCAPS>\appserver\domains\<domain_name>\config

Add the CA certificate to the Java CAPS keystore.
<JavaCAPS>\appserver\domains\<domain_name>\config> runmqckm -cert -add

-db keystore.jks -type jks -file myCAcertfile.cer -label "theCAcertificate"

When prompted for a password, supply the Java CAPS keystore password as changeit.

Receive the certificate (now signed by the CA) into the Java CAPS keystore:
<JavaCAPS>\appserver\domains\<domain_name>\config> runmqckm -cert -receive

-db keystore.jks -type jks -file myappj.cer

When prompted for a password, supply the Java CAPS keystore password as changeit.

Add the CA certificate to truststore:
<JavaCAPS>\appserver\domains\<domain_name>\config> runmqckm -cert -add

-db cacerts.jks -type jks -file myCAcertfile.cer -label "theCAcertificate"

Using the OpenSSL Utility for the LDAP and HTTPS Adapters
The OpenSSL utility is a free implementation of cryptographic, hashing, and public key
algorithms such as 3DES, SHA1, and RSA respectively. This utility has many options including
certificate signing, which keytool does not provide. You can download OpenSSL from the
following Web site:

http://www.openssl.org

Follow the build and installation instruction for OpenSSL.

Creating a Sample CA Certificate
The sample given in this section demonstrates the use of the OpenSSL utility to create a CA.
This generated CA is then used to sign a CSR (see “Signing Certificates With Your Own CA” on
page 31), whether it is generated from keytool or OpenSSL.

▼ To Create a Sample CA Certificate
For testing purposes, a sample CA can be generated. To avoid spending additional funds to
have a commercial CA sign test certificates, a sample is generated and used to sign the test
certificate.

4

5

6

7

Using the OpenSSL Utility for the LDAP and HTTPS Adapters

Chapter 1 • Configuring Java CAPS for SSL Support 29

http://www.openssl.org

Perform the following operations from the command line:
openssl req -config c:\openssl\bin\openssl.cnf

-new -x509 -keyout ca-key.pem.txt -out ca-certificate.pem.txt -days 365

Using properties from c:\openssl\bin\openssl.cnf

Loading ’screen’ into random state: done

Generating a 1024 bit RSA private key

.................++++++

.....................++++++

writing new private key to ’ca-key.pem.txt’
Enter PEM pass phrase:

Verifying password: Enter PEM pass phrase:

You are about to be asked to enter information that will be

incorporated into your certificate request.

What you are about to enter is what is called a Distinguished Name

or a DN.

There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter ’.’, the field will be left blank.

Country Name (2 letter code) []:US

State or Province Name (full name) []:California

Locality Name (eg, city) []:Monrovia

Organization Name (eg, company) []:Sun

Organizational Unit Name (eg, section) []:Development

Common Name (eg, your websites domain name) []

:development.sun.com

Email Address []:development@sun.com

You are prompted for password information.

Enter a password and remember this password for signing certificates with the CA’s private key.

This command creates a private key and the corresponding certificate for the CA. The
certificate is valid for 365 days starting from the date and time it was created.

The properties file C:\openssl\bin\openssl.cnf is needed for the req command. The default
config.cnf file is in the OpenSSL package under the apps sub-directory.

Note – To use this file in Windows, you must change the paths to use double back-slashes. See
“Windows OpenSSL.cnf File Example” on page 33 for a complete Config.cnf file example,
which is known to work in a Windows environment.

1

2

Using the OpenSSL Utility for the LDAP and HTTPS Adapters

Configuring Java CAPS for SSL Support • June 201030

Signing Certificates With Your Own CA
The example in this section shows how to create a Certificate Signing Request with keytool and
generate a signed certificate for the Certificate Signing Request with the CA created in the
previous section. The steps shown in this section, for generating a KeyStore and a Certificate
Signing Request, were already explained under “Creating a KeyStore in JKS Format” on page 11.

Note – No details are given here for the keytool commands. See “Creating a KeyStore in JKS
Format” on page 11 for more information.

▼ To Create a CSR with keytool and Generate a Signed Certificate for the
Certificate Signing Request

Perform the following operations from the command line.
keytool –keystore clientkeystore –genkey –alias client

Enter keystore password: javacaps

What is your first and last name?

[Unknown]: development.sun.com

What is the name of your organizational unit?

[Unknown]: Development

What is the name of your organization?

[Unknown]: Sun

What is the name of your City or Locality?

[Unknown]: Monrovia

What is the name of your State or Province?

[Unknown]: California

What is the two-letter country code for this unit?

[Unknown]: US

Is <CN=development.sun.com, OU=Development, O=Sun, L=Monrovia, ST=California,

C=US> correct?

[no]: yes

Enter key password for <client>

(RETURN if same as keystore password):

Generate the Certificate Signing Request.
keytool –keystore clientkeystore –certreq –alias client –keyalg rsa

–file client.csr

Generate a signed certificate for the associated Certificate Signing Request.
openssl x509 -req -CA

ca-certificate.pem.txt -CAkey ca-key.pem.txt

-in client.csr -out client.cer -days 365 -CAcreateserial

1

2

3

Using the OpenSSL Utility for the LDAP and HTTPS Adapters

Chapter 1 • Configuring Java CAPS for SSL Support 31

Use the keytool to import the CA certificate into the client keystore.
keytool -import -keystore clientkeystore -file ca-certificate.pem.txt

-alias theCARoot

Enter keystore password: javacaps

Owner: EmailAddress=development@sun.com, CN=development.sun.com, OU=Development,

O=Sun, L=Monrovia, ST=California, C=US

Issuer: EmailAddress=development@sun.com, CN=development.sun.com,

OU=Development, O=Sun, L=Monrovia, ST=California, C=US

Serial number: 0

Valid from: Tue May 08 15:09:07 PDT 2007 until: Wed May 08

15:09:07 PDT 2008

Certificate fingerprints:

MD5: 60:73:83:A0:7C:33:28:C3:D3:A4:35:A2:1E:34:87:F0

SHA1: C6:D0:C7:93:8E:A4:08:F8:38:BB:D4:11:03:C9:E6:CB:9C:D0:72:D0

Trust this certificate? [no]: yes

Certificate was added to keystore

Use the keytool to import the signed certificate for the associated client alias in the keystore.
keytool –import –keystore clientkeystore –file client.cer –alias client

Enter keystore password: javacaps

Certificate reply was installed in keystore

Caution – The following error will be generated if there is no certificate chain in the client
certificate.

keytool -import -keystore clientkeystore -file client.cer -alias client

Enter keystore password: javacaps

keytool error: java.lang.Exception: Failed to establish chain from reply

This error is because the CA’s certificate was not imported into the KeyStore first. You must
import the CA's certificate (step 4), then import the client.cer file itself to form a certificate
chain (step 5).

Now that we have a private key and an associating certificate chain in the KeyStore
clientkeystore, we can use it as a KeyStore for client (adapter) authentication. The only
warning is that the CA certificate must be imported into the trusted certificate store of the web
server to which you will be connecting. Moreover, the web server must be configured for client
authentication (httpd.conf for Apache, for example).

4

5

Using the OpenSSL Utility for the LDAP and HTTPS Adapters

Configuring Java CAPS for SSL Support • June 201032

Windows OpenSSL.cnf File Example
This section contains the contents of the openssl.cnf file that can be used on Windows. Be
sure to make the appropriate changes to the directories.

#

SSLeay example properties file.

This is mostly being used for generation of certificate requests.

#

RANDFILE = .rnd

##

[ca]

default_ca = CA_default # The default ca section

##

[CA_default]

dir = G:\\openssl\\\bin\\demoCA # Where everything is kept

certs = $dir\\certs # Where the issued certs are kept

crl_dir = $dir\\crl # Where the issued crl are kept

database = $dir\\index.txt # database index file.

new_certs_dir = $dir\\newcerts # default place for new certs.

certificate = $dir\\cacert.pem # The CA certificate

serial = $dir\\serial # The current serial number

crl = $dir\\crl.pem # The current CRL

private_key = $dir\\private\\cakey.pem # The private key

RANDFILE = $dir\\private\\private.rnd # private random number file

x509_extensions = x509v3_extensions # The extentions to add to the cert

default_days = 365 # how long to certify for

default_crl_days = 30 # how long before next CRL

default_md = md5 # which md to use.

preserve = no # keep passed DN ordering

A few difference way of specifying how similar the request should look

For type CA, the listed attributes must be the same, and the optional

and supplied fields are just that :-)

policy = policy_match

For the CA policy

[policy_match]

countryName = match

stateOrProvinceName = match

organizationName = match

organizationalUnitName = optional

Using the OpenSSL Utility for the LDAP and HTTPS Adapters

Chapter 1 • Configuring Java CAPS for SSL Support 33

commonName = supplied

emailAddress = optional

For the ’anything’ policy

At this point in time, you must list all acceptable ’object’
types.

[policy_anything]

countryName = optional

stateOrProvinceName = optional

localityName = optional

organizationName = optional

organizationalUnitName = optional

commonName = supplied

emailAddress = optional

##

[req]

default_bits = 1024

default_keyfile = privkey.pem

distinguished_name = req_distinguished_name

attributes = req_attributes

[req_distinguished_name]

countryName = Country Name (2 letter code)

countryName_min = 2

countryName_max = 2

stateOrProvinceName = State or Province Name (full name)

localityName = Locality Name (eg, city)

0.organizationName = Organization Name (eg, company)

organizationalUnitName = Organizational Unit Name (eg, section)

commonName = Common Name (eg, your website’s domain name)

commonName_max = 64

emailAddress = Email Address

emailAddress_max = 40

[req_attributes]

challengePassword = A challenge password

challengePassword_min = 4

challengePassword_max = 20

[x509v3_extensions]

Using the OpenSSL Utility for the LDAP and HTTPS Adapters

Configuring Java CAPS for SSL Support • June 201034

Note – The following copyright notices apply: Copyright © 2004-2008 The OpenSSL Project. All
rights reserved.Copyright © 2005-2008 World Wide Web Consortium, (Massachusetts
Institute of Technology, Institut National de Recherche en Informatique et en Automatique,
Keio University). All Rights Reserved. http://www.w3.org/Consortium/Legal/

Using the OpenSSL Utility for the LDAP and HTTPS Adapters

Chapter 1 • Configuring Java CAPS for SSL Support 35

36

Index

A
adapters

HTTPS, 29-35
LDAP, 29-35
WebSphere MQ, 26-29

admin-listener, 25
alias, defined, 8
authentication, defined, 5
authentication mode, 14

C
cacerts.jks file, 10, 16
certificate

defined, 7
importing, 20, 23-25
obtaining, 19-20
self signed, 16-17

Certificate Authority (CA), 8
certificate chain, defined, 8
Certificate Signing Request (CSR), 8

E
encryption, defined, 5
Enterprise Manager, 22-26

H
HTTPS Adapter, 29-35

https scheme, 5

I
Internet Engineering Task Force, 5

J
JMS clients, external, 16

K
keystore

defined, 8, 10
generating, 11, 13

keystore.jks file, 11
keytool program, 8

L
LDAP Adapter, 29-35

O
openssl.cnf file, example, 33-35
OpenSSL Project, 8-9
openssl tool, 8

37

P
passwords, keystore, 18
PEM format, 16
PKCS #12 format, 16
public-key cryptography, 6-8

R
Repository, 18-21

S
sbyn.keystore file, 19
self-signed certificate, defined, 8
server.xml file

Enterprise Manager, 23
Repository, 20-21

SSL
Enterprise Manager, 22-26
overview, 5-14
Repository, 18-21
Sun JMS IQ Manager, 14-17

startserver file, 23
stash file, 27
stcms.default.Properties file, 17
Sun JMS IQ Manager, 14-17

T
TLS, 5
trust store

defined, 10
generating, 14

W
WebSphere MQ Adapter, 26-29

X
X.509 standard, 7

Index

Configuring Java CAPS for SSL Support • June 201038

	Configuring Java CAPS for SSL Support
	Configuring Java CAPS for SSL Support
	Secure Sockets Layer (SSL) Overview
	Public Keys, Private Keys, and Certificates
	Keytool Program
	OpenSSL Project
	SSL and Adapters
	KeyStores and TrustStores
	Generating a KeyStore and TrustStore
	Creating a KeyStore in JKS Format
	To Generate a KeyStore

	Creating a KeyStore in PKCS12 Format
	Creating a TrustStore
	To Create a New TrustStore

	Configuring a Sun JMS IQ Manager to Use SSL
	Configuring the Message Server URL
	To Configure the Message Server URL

	External JMS Clients
	Changing the Self-Signed Server Certificate
	To Change the Self-Signed Server Certificate

	Configuring the Repository to Use SSL
	Generating a Key Pair and a Self-Signed Certificate
	To Generate a Key Pair and a Self-Signed Certificate

	Obtaining a Signed Certificate
	To Obtain a Digitally Signed Certificate from a Certificate Authority
	To Obtain a Self-Signed Certificate from a Local Keystore

	Importing the Certificate
	To Import the Certificate

	Configuring the server.xml File
	To Configure the server.xml File

	Testing the New SSL Connection
	To Test the New SSL Connection

	Configuring Enterprise Manager to Use SSL
	Creating the Keystore and Trust Store
	To Create the Keystore and Trust Store

	Importing the Domain Certificate
	To Import the Domain Certificate

	Enabling Security on the Application Server
	To Enable Security on the Application Server

	Logging In to Enterprise Manager
	To Log In to Enterprise Manager

	Using SSL With the WebSphere MQ Adapter
	Creating a Certification Authority
	To Create a Certification Authority
	To Issue a Certificate to a Queue Manager
	To Issue a Certificate to Java CAPS

	Using the OpenSSL Utility for the LDAP and HTTPS Adapters
	Creating a Sample CA Certificate
	To Create a Sample CA Certificate

	Signing Certificates With Your Own CA
	To Create a CSR with keytool and Generate a Signed Certificate for the Certificate Signing Request

	Windows OpenSSL.cnf File Example

	Index

