
Designing with Communication
Adapters

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 820–4391
June 2008

Copyright 2008 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In particular, and without
limitation, these intellectual property rights may include one or more U.S. patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights – Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions
of the FAR and its supplements.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other
countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, the Solaris logo, the Java Coffee Cup logo, docs.sun.com, Java, and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and SunTM Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts
of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to
the Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN LOOK GUIs and otherwise comply with Sun's written license
agreements.

Products covered by and information contained in this publication are controlled by U.S. Export Control laws and may be subject to the export or import laws in
other countries. Nuclear, missile, chemical or biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export
or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied persons and specially
designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

080906@20795

Contents

1 Designing with Communication Adapters .. 5
Adding the DLL file to the Path for the COM/DCOM Application Server Process5

▼ To Add the DLL file to the Path for the Application Server Process ...5
Installing the MSMQ DLL and JNI Files ..6

▼ To Download the MSMQ DLLs and Runtime JNI ..6
▼ To Add the Runtime JNI File ...6
▼ To Add the DLL Files to the Environment Path ..7

Enabling Rollback When an MSMQ Message Fails ..7
Streaming Data Between Components with the Batch Adapter ...8

Introduction to Data Streaming ..8
Overcoming Large-file Limitations ..9
Using Data Streaming ..9
Stream-adapter Interfaces ... 15

3

4

Designing with Communication Adapters

The following sections provide conceptual and reference information for Java CAPS
Communication Adapters. If you have any questions or problems, see the Java CAPS web site at
http://goldstar.stc.com/support.

■ “Adding the DLL file to the Path for the COM/DCOM Application Server Process” on
page 5

■ “Installing the MSMQ DLL and JNI Files” on page 6
■ “Streaming Data Between Components with the Batch Adapter” on page 8

Adding the DLL file to the Path for the COM/DCOM Application
Server Process

The runtime JNI bridge DLL file, comewayruntime.dll, must be added to the PATH for the App
Server process before running a COM/DCOM Project. To make sure that the correct file is
added to the proper PATH location, complete the following steps before launching your Project:

▼ To Add the DLL file to the Path for the Application
Server Process

Download the runtime JNI bridge DLL file, comewayruntime.dll, to a temporary directory.

Copy comewayruntime.dll to the following location:
C:\winnt\system32

or

C:Windows\system32 (for Windows XP)

An alternative to this procedure is to add the JNI bridge DLL file to the library path using the
Integration Server Administration console and specifying the location of the downloaded

1C H A P T E R 1

1

2

5

http://goldstar.stc.com/support

comewayruntime.dll in the library path. For more information about the Integration Server
Administration Configuration Agent, see the Enterprise Service Bus Administration Guide.

Installing the MSMQ DLL and JNI Files
The MSMQ adapter installation includes two additional components (as well as the Enterprise
Manager Plug-In), as seen in the following figure , that must be downloaded and installed for
the MSMQ adapter:

■ MSMQ adapter - Runtime win32 bridge DLLS Zip: This file contains a number of required
DDL files that must be copied to the Windows Environment Variable Path.

■ MSMQ adapter - Runtime JNI: This file must be downloaded using the Sun JavaTM

Composite Application Platform Suite Installer.

▼ To Download the MSMQ DLLs and Runtime JNI
From the Sun Java Composite Application Platform Suite Installer, click the DOWNLOADS tab.
The MSMQ DLLs and Runtime JNI Component list are available from the Repository Downloads
list.

Download both files to a local directory. For directions on adding the msmqjni.jar file to the
Windows Environment path, see “To Add the Runtime JNI File”on page 6. For directions on
adding the DLL files to the PATH for the App Server process, see “To Add the DLL Files to the
Environment Path”on page 7.

▼ To Add the Runtime JNI File
Prior to creating your MSMQ adapter Project, copy the Runtime JNI (msmqjni.jar), downloaded
from the Suite Installer, to the following locations:

JavaCAPS6\netbeans\lib\ext
JavaCAPS6\appserver\is\lib

where JavaCAPS6 is the directory in which Sun Java Composite Application Platform Suite is
installed.

These file must be copied manually.

1

2

●

Installing the MSMQ DLL and JNI Files

Designing with Communication Adapters • June 20086

Note – You need to copy the msmqjni.jar file to the \compile\lib\ext folder before deploying
and running command line codegen. You also need to copy the msmqjni.jar file to the
c:\Sun\ApplicationServer\lib folder before deploying and running via the Sun Java System
Application Server Enterprise Edition 8.1.

▼ To Add the DLL Files to the Environment Path
The Runtime win32 bridge DLL files must be added to a directory that is included in the
Windows Environment System Variable Path before running an MSMQ Project. To make sure
that the correct file is added to the proper path location, do the following:

Locate the msmqruntimejni.zip file that you downloaded to a local folder.

Extract the ZIP file to a directory that is part of the Windows Environment path.

Enabling Rollback When an MSMQ Message Fails

▼ To Roll back an Outbound MSMQ Message
In order to roll back an outbound MSMQ message when a failure occurs in the Java
Collaboration Definition (for example, failure to insert a duplicate row into a database table that
is defined to have unique keys), do the following:

Select Manual as the MSMQ Connection Mode in the outbound MSMQ adapter Connectivity
Map properties .

Use the following JCD code:
try {

MSMQClient_1.getEwayConfiguration().setOutMSMQName("public");

MSMQClient_1.getEwayConfiguration().setOutMSMQShareMode("DENY_RECEIVE_SHARE");

MSMQClient_1.getEwayConfiguration().setOutMSMQReceiveActionCode

("ACTION_PEEK_CURRENT");

MSMQClient_1.connect();

MSMQClient_1.getMSMQMessage();

TestDB_1.getTEST1().insert();

TestDB_1.getTEST1().setTESTSTRING("From JCD");

TestDB_1.getTEST1().insertRow();

MSMQClient_1.getEwayConfiguration().setOutMSMQReceiveActionCode

("ACTION_RECEIVE");

MSMQClient_1.getMSMQMessage();

MSMQClient_1.disconnect();

1

2

1

2

Installing the MSMQ DLL and JNI Files

Chapter 1 • Designing with Communication Adapters 7

} catch (Exception Catch) {

MSMQClient_1.disconnect();

}

The key code items are highlighted in bold. You must also use a try/catch block to catch the
exception (for this example, the error is a failed insert to database).

Open the queue with the following settings:

■ MSMQ Share Mode– DENY_RECEIVE_SHARE: This locks the queue so that other
applications cannot open the queue in Receive mode. Until your application closes the
queue, no other application can open the queue to receive the message.

■ MSMQ Receive Action Code– ACTION_PEEK_CURRENT: This opens the queue so you
can “peek” (view) the message.

Next, try a database update on the message you received from the queue. If this fails, move on
to step 7 (close the queue instance). If that succeeds, change the adapter configuration
properties to receive messages programmatically in this manner .

Next, receive the message. This removes the message from queue.

Disconnect from the queue.

Finally, close the queue using MSMQClient_1.disconnect(). This closes the current queue
instance and unlocks the queue.

Streaming Data Between Components with the Batch Adapter
Components in the Batch Adapter implement a feature for data streaming. This topic explains
data streaming, how it works, and how to use it with the adapter and Sun Enterprise Service
Bus.

■ “Introduction to Data Streaming” on page 8
■ “Overcoming Large-file Limitations” on page 9
■ “Using Data Streaming” on page 9
■ “Stream-adapter Interfaces” on page 15

Introduction to Data Streaming
Data streaming provides a means for interconnecting any two components of the adapter by
means of a data stream channel. This channel provides an alternate way of transferring the data
between the Batch Adapter components. Streaming is available between BatchLocalFile and
BatchFTP, or BatchLocalFile and BatchRecord.

3

4

5

6

7

Streaming Data Between Components with the Batch Adapter

Designing with Communication Adapters • June 20088

Each OTD component in the adapter has a Payload node. This node represents the in-memory
data and is used when the data is known to be relatively small in size or has already been loaded
into memory. The node can represent, for example, the buffer in the record-processing OTD, as
it is being built or parsed, or the contents of a file read into memory.

Instead of moving the data all at once between components in Java CAPS’s memory, you can use
a data-stream channel to provide for streaming the data between them a little at a time, outside
of Java CAPS.

Data streaming was designed primarily to handle large files, but you can use it for smaller data
sizes as well.

Use the Netbeans IDE’s Collaboration Rules Editor to set up data-streaming operations. The
rest of this section explains the data streaming feature and how to set it up.

Note – Payload-based and streaming-based transfers are mutually exclusive. You can use one or
the other but not both for the same data.

Overcoming Large-file Limitations
The primary advantage of using data streaming is that it helps to overcome the limitations of
dealing with large files. For example, if you have a 1-gigabyte file that contains a large number of
records, you need a large amount of resources to load the payload into memory just to parse it.

Streaming allows you to read from the file, little by little, using a data-streaming mechanism.
This way, you do not need to load the file into the Java CAPS system’s memory. Using streaming
is not as fast as using in-memory operations, but it is far less resource-intensive.

Using Data Streaming
Each data-streaming transfer involves two OTDs in a Collaboration as follows:

■ One provides the stream adapter.
■ The other consumes the stream adapter to perform the data transfer.

Caution – Implementing InputStream must support skip() with negative numbers as an
argument.

This section explains how the two data-streaming OTDs operate to effect the transfer of data.

Streaming Data Between Components with the Batch Adapter

Chapter 1 • Designing with Communication Adapters 9

Data-streaming Operation
Each of the OTDs in the Batch Adapter exposes stream adapter nodes that enable any OTD to
participate in data-streaming transfers. The nodes are named InputStreamAdapter and
OutputStreamAdapter. You can associate the stream adapters by using the drag-and-drop
features of the Java CAPS IDE.

The InputStreamAdapter (highlighted) and OutputStreamAdapter nodes in the OTD are
used for data streaming. This feature operates as follows:

■ Stream-adapter consumers: The FTP and the record-processing OTDs can only consume
stream adapters. Therefore, their stream-adapter nodes are write-only. Their node values
can be set (modified).

■ Stream-adapter provider: The local file OTD can only provide stream adapters, so its
stream-adapter nodes are read-only. Its node value can only be retrieved.

The local file OTD is always the stream provider, and the FTP and record-processing OTDs are
the consumers.

Data Streaming Versus Payload Data Transfer
Use of the InputStreamAdapter and OutputStreamAdapter nodes is an alternative to using
the Payload node as follows:

■ Use these stream adapter nodes to transfer data if you want data streaming.
■ Use the Payload node for a data transfer without data streaming (payload data transfer).

All operations that, in payload data transfer, read from the Payload node require the
InputStreamAdapter node when you are setting up data streaming. Using the same logic, all
operations that, in payload data transfer, write to the Payload node require
OutputStreamAdapter node for data streaming.

Do not confuse the stream adapter nodes with the get() and put() methods on the OTDs. For
example, the BatchFTP OTD’s client interface get() method writes to the Payload node during
a payload transfer, so it requires an OutputStreamAdapter node to write to for data streaming.
In contrast, the record-processing OTD’s get() method reads from the Payload node during a
payload transfer, so for data streaming, get() requires an inputStreamAdapter node to read
from.

Data Streaming Scenarios
The four typical data-streaming scenarios are:

■ Transfer data from a local file system (BatchLocalFile) to a record-processing (BatchRecord)
setup. This scenario uses the InputStreamAdapter OTD node (see “Data Streaming
Scenarios” on page 10).

Streaming Data Between Components with the Batch Adapter

Designing with Communication Adapters • June 200810

■ Transfer data from a record-processing (BatchRecord) setup to a local file system
(BatchLocalFile) using the OutputStreamAdapter OTD node (see “Data Streaming
Scenarios” on page 10).

Streaming Data Between Components with the Batch Adapter

Chapter 1 • Designing with Communication Adapters 11

■ Transfer data from a local file system (BatchLocalFile) to a remote FTP (BatchFTP) setup.
This scenario uses the InputStreamAdapter OTD node (see “Data Streaming Scenarios” on
page 10).

Streaming Data Between Components with the Batch Adapter

Designing with Communication Adapters • June 200812

■ Transfer data from a remote FTP server (BatchFTP) to a local file system (BatchLocalFile)
using the OutputStreamAdapter OTD node (see “Data Streaming Scenarios” on page 10).

Streaming Data Between Components with the Batch Adapter

Chapter 1 • Designing with Communication Adapters 13

Consuming-stream Adapters
This section explains how to use consuming-stream adapters.

▼ To Obtain a Stream

Use the requestXXStream()method to obtain the corresponding XX stream.

▼ To Use a Stream

Perform the transfer using the methods provided by the stream.

●

●

Streaming Data Between Components with the Batch Adapter

Designing with Communication Adapters • June 200814

▼ To Dispose of a Stream

Release any references to the stream.

Release the stream (XX) using the releaseXXStream()method. Some of the OTDs support
post-transfer commands. The Success parameter indicates whether these commands are
executed. Do not close the stream.

Stream-adapter Interfaces
This section provides the Batch Adapter’s OTD stream-adapter Java interfaces. This
information is only for advanced users familiar with Java programming, who want to provide
custom OTD implementations for stream-adapter consumers or providers.

Inbound Transfers
The following Java programming-language interface provides support for inbound transfers
from an external system:

public interface com.stc.adapters.common.adapter.streaming.InputStreamAdapter {

public java.io.InputStream requestInputStream() throws StreamingException;

public void releaseInputStream(boolean success) throwsStreamingException;

}

Outbound Transfers
The following Java interface provides support for outbound transfers to an external system:

public interface com.stc.adapters.common.adapter.streaming.OutputStreamAdapter {

public java.io.OutputStream requestOutputStream() throws StreamingException;

public void releaseOutputStream(boolean success) throws StreamingException;

}

1

2

Streaming Data Between Components with the Batch Adapter

Chapter 1 • Designing with Communication Adapters 15

16

	Designing with Communication Adapters
	Designing with Communication Adapters
	Adding the DLL file to the Path for the COM/DCOM Application Server Process
	To Add the DLL file to the Path for the Application Server Process

	Installing the MSMQ DLL and JNI Files
	To Download the MSMQ DLLs and Runtime JNI
	To Add the Runtime JNI File
	To Add the DLL Files to the Environment Path
	Enabling Rollback When an MSMQ Message Fails
	 To Roll back an Outbound MSMQ Message

	Streaming Data Between Components with the Batch Adapter
	Introduction to Data Streaming
	Overcoming Large-file Limitations
	Using Data Streaming
	Data-streaming Operation
	Data Streaming Versus Payload Data Transfer
	Data Streaming Scenarios
	Consuming-stream Adapters
	To Obtain a Stream
	To Use a Stream
	To Dispose of a Stream

	Stream-adapter Interfaces
	Inbound Transfers
	Outbound Transfers

