WebLogic Server Components

»
2 Sun

microsystems

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
US.A.

Part No: 820-5892
June 2008

Copyright 2008 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In particular, and without
limitation, these intellectual property rights may include one or more U.S. patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions
of the FAR and its supplements.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other
countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, the Solaris logo, the Java Coffee Cup logo, docs.sun.com, Java, and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. or its subsidiaries in the U.S. and other countries. AIl SPARC trademarks are used under license and are trademarks or registered trademarks of
SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts
of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to
the Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN LOOK GUIs and otherwise comply with Sun's written license
agreements.

Products covered by and information contained in this publication are controlled by U.S. Export Control laws and may be subject to the export or import laws in
other countries. Nuclear, missile, chemical or biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export
or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied persons and specially
designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “ASIS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

081219@21808

Contents

WebLogic Server COMPONENLScooveiieeiereirieiieesese et ssssesssses e sesessssssssss et sesssssssssssssesesanns 5
WebLogic Server COmpPOnents OVEIVIEWcccoveueurerururieirireieieissaeeseesessssssessssssssssesssssssssessssssenns 5

WebLogic Server Components Task Overview

Java Naming and Directory Interface (JNDI)ccocoeerireirninininieinisieeee st seeeaees
The WebLOGic NaMING SEIVICEcucuuevuieeuiiriieieiriieieieiseieitesesesetseee et ssssesesss s sssssssesaees 6
SAMPLE COAE ittt ettt 7
Viewing the WebLogic JNDITTEEc.ceeueureururenieririieeireeieeeetsieie ettt ssessssessesseassesasaes 8

Java MesSaging SErVICE (JIMIS) ...ovvvviriieueuririreririreeieeietsestses ettt tsas s tess st sas e esssssssesesessasenensans 8

Enterprise JavaBeans (EJBS)ccccrerieeririeirieieineeieieie et tseesessesess sttt eseseessseseaes 10
SESSION BEAIS ...cuivieiieiiieteeiec ettt ettt ettt sttt b et et be et ne e eaan 11
BTy BEANS oottt ettt ettt

Message Driven Beans

XA TIANSACHIONS wvivvivicviitieticieeeteceeete et e e ete et e ete et e eteessesseeseebeessessesssesseeseessensesssensesssessesssensensesssesenns

L K R 4 CHAPTER 1

WebLogic Server Components

The following sections provide instructions on how to work with WebLogic Server
Components. If you have any questions or problems, see the Java CAPS web site at
http://goldstar.stc.com/support.

This chapter covers the following topics:

= “WebLogic Server Components Overview” on page 5

= “WebLogic Server Components Task Overview” on page 5
“Java Naming and Directory Interface (JNDI)” on page 6
“Java Messaging Service (JMS)” on page 8

“Enterprise JavaBeans (EJBs)” on page 10

= “XA Transactions” on page 12

WebLogic Server Components Overview

This task provides an overview of the various Sun Microsystem Java 2 Enterprise Edition (J2EE)
Applications and WebLogic Server technologies employed in the WebLogic Server.

WebLogic Server Components Task Overview

The tasks included in this section allows you to perform the following,

= “Java Naming and Directory Interface (JNDI)” on page 6
= “Java Messaging Service (JMS)” on page 8

= “Enterprise JavaBeans (EJBs)” on page 10

= “XA Transactions” on page 12

http://goldstar.stc.com/support

Java Naming and Directory Interface (JNDI)

Java Naming and Directory Interface (JNDI)

The JNDI service is a set of APIs published by Sun that interface to a directory to locate named
objects. APIs allow Java programs to store and lookup objects using multiple naming services in
a standard manner. The naming service may be either LDAP, a file system, or a RMI registry.
Each naming service has a corresponding provider implementation that can be used with JNDL
The ability for INDI to plug-in any implementation for any naming service (or span across
naming services with a federated naming service) easily provides another level of programming
abstraction. This level of abstraction allows Java code using JNDI to be portable against any
naming service. For example, no code changes should be needed by the Java client code to run
against an RMI registry or an LDAP server.

The WebLogic Naming Service

Any J2EE compliant application server, such as the WebLogic Server, has a JNDI subsystem.
The JNDI subsystem is used in an Application Server as a directory for such objects as resource
managers and Enterprise JavaBeans (EJBs). Objects managed by the WebLogic container have
default environments for getting the JNDI Initial Context loaded when they use the default
InitialContext() constructor. For a Collaboration using a WebLogic EJB Object Type Definition
(OTD) to find the home interface of an EJB, the JNDI properties must be configured and
associated with the OTD. However, for other external clients, accessing the WebLogic naming
service requires a Java client program that sets up the appropriate JNDI environment when
creating the JNDI Initial Context.

There are essentially two environments that have to be configured,
Context.PROVIDER_URL and Context.INITIAL_ CONTEXT_FACTORY.

For WebLogic, the Context PROVIDER_URL environment is
t3://<wlserverhost>:<port>/

where,

= <wlserverhost> is the hostname on which the WebLogic Server instance is running

m <port> is the port at which the Webserver instance is listening for connections
For example,
t3://localhost:7001/

The initial context factory class for the WebLogic JNDI is

weblogic.jndi.WLInitial ContextFactory. This class should be supplied to the
Context.INITIAL_CONTEXT FACTORY environment property when constructing the
initial context. The overloaded Initial Context(Map) constructor must be used in this case.

6 WebLogic Server Components - June 2008

Java Naming and Directory Interface (JNDI)

Sample Code

The following code is an example of creating an initial context to WebLogic JNDI from a
stand-alone client:

HashMap env = new HashMap();

env.put (Context.PROVIDER_URL, "t3://localhost:7001/");
env.put (Context.INITIAL_CONTEXT_FACTORY,
"weblogic.jndi.WLInitialContextFactory");

Context initContext = new InitialContext (env);

Once an initial context is created, sub-contexts can be created, objects can be bound, and
objects can be retrieved using the initial context. For example the following segment of code
retrieves a Topic object:

Topic topic

=(Topic)initContext.lookup("sbyn.inTopicToSunMicrosystemsTopic");

Here's an example of how to bind a Sun Microsystems Queue object:
Queue queue = null;

try {

queue = new STCQueue("inQueueToSunMicrosystemsQueue");
initContext.bind ("sbyn.ToSunMicrosystemsQueue", queue);
}

catch (NameAlreadyBoundException ex)

{

try

{

if (queue != null)

initContext.rebind ("sbyn.ToSunMicrosystemsQueue", queue);

Chapter 1 « WebLogic Server Components 7

Java Messaging Service (JMS)

}

catch (Exception ex)

{

throw ex;
}
}

Viewing the WebLogic JNDI Tree

For information, see “To View the JNDI Tree Structure” in Configuring WebLogic for
Asynchronous Communications.

Java Messaging Service (JMS)

The Java Messaging Service is a messaging oriented middleware API designed by Sun. The
client makes use of these APIs, allowing portability with any JMS implementation. JMS allows
clients to be de-coupled from one another. The clients do not communicate with each other
directly, but rather by sending messages to each other through middleware. Each client in a JMS
environment connects to a messaging server. The messaging server facilitates the flow of
messages among all clients. The messaging server guarantees that all messages arrive at the
appropriate destinations. The messaging server also guarantees quality of services as
transactions (local or XA), persistence, durability, and others.

Clients send messages to or receive messages from Topics or Queues (see Figure 1-1 and
Figure 1-2). The difference between a Topic and a Queue is that all subscribers to a Topic
receive the same message when the message is published and only one subscriber to a Queue
receives a message when the message is sent.

8 WebLogic Server Components - June 2008

Java Messaging Service (JMS)

Subscriber

Message

Message
A7

Message
A7

Publisher Subscriber

Subscriber

FIGURE 1-1 Topic - The Publish-Subscribe Model

Figure 1-1 shows multiple subscribers receiving the same messages when the publisher
publishes the message to a Topic. This is the pubsub (publish-subscribe) model.

Chapter 1 - WebLogic Server Components 9

Enterprise JavaBeans (EJBs)

Receiver

Message
A
L~

Sender Receiver

Receiver

FIGURE1-2 Queue - The Point-to-Point Model

The Point-to-Point model (Figure 1-2), on the other hand, allows for only one receiver to get
the message when a sender sends a message to a Queue.

Enterprise JavaBeans (EJBs)

10

Enterprise JavaBeans are reusable software programs that you can develop and assemble easily
to create sophisticated applications. Developers use EJBs to design and develop customized,
reusable business logic. E]Bs are the units of work that an application server is responsible for
and exposes to the external world. The WebLogic Application Server provides the architecture
for writing business logic components, allowing Web servers to easily access data.

There are three types of Enterprise JavaBeans:

m Session Beans
= Entity Beans

® Message Driven Beans

WebLogic Server Components - June 2008

Enterprise JavaBeans (EJBs)

Note - Do not use the WebLogic adapter to directly invoke an EJB 3.0 bean. Instead, wrap the
EJB 3.0 in an EJB 2.x wrapper and then invoke the EJB 2.x bean. This workaround is a
consequence of the EJB 3.0 specification itself (namely, that EJB 3.0 does not guarantee
support across vendors).

Session Beans

Session Beans are business process objects that perform actions. An action may be opening an
account, transferring funds, or performing a calculation. Session Beans consist of the remote,
home, and bean classes. A client gets a reference to the Session Bean's home interface in order to
create the Session Bean remote object, which is essentially the bean's factory. The Session Bean
is exposed to the client with the remote interface. The client uses the remote interface to invoke
the bean's methods. The actual implementation of the Session Bean is done with the bean class.

Entity Beans

Entity Beans are data objects that represent the real-life objects on which Session Beans perform
actions. Objects may include items such as accounts, employees, or inventory. An Entity Bean,
like a Session Bean, consists of the remote, home, and bean classes. The client references the
Entity Bean's home interface in order to create the Entity Bean remote object (essentially the
bean's factory). The Entity Bean is exposed to the client with the remote interface, which the
client uses to invoke the bean's methods. The implementation of the Entity Bean is done with
the bean class.

Message Driven Beans

Message Driven Beans (MDBs) are messaging objects designed to route messages from clients
to other Enterprise Java Beans. In the WebLogic adapter, MDBs are only supported with
asynchronous communication with JMS. However, Message Driven Beans deal with
asynchronous subscription/publication of JMS messages in a different manner than Entity and
Session Beans (EJB 2.0 specification). Message Driven Beans are often compared to a Stateless
Session Bean in that it does not have any state context. A Message Driven Bean differs from
Session and Entity Beans in that it has no local/ remote or localhome/home interfaces. An MDB
is not exposed to a client at all. The MDB simply subscribes to a Topic or a Queue, receives
messages from the container through the Topic or Queue, and then process the messages it
receives from the container.

An MDB implements two interfaces:

= javax.ejb.MessageBean
= javax.jms.MessageListener

Chapter 1 « WebLogic Server Components 1

XATransactions

Minimally, the MDB must implement the setMessageDrivenContext, ejbCreate, and
ejpbRemove methods from the javax.ejb.MessageBean interface. In addition, the MDB must
implement the onMessage method of the javax.jms.MessageListener interface. The container
calls the onMessage method, passing in a javax.jms.Message, when a message is available for the
MDB.

XA Transactions

12

XA is a two-phase commit protocol that is natively supported by many databases and
transaction monitors. It ensures data integrity by coordinating single transactions accessing
multiple relational databases. XA guarantees that transactional updates are committed in all of
the participating databases, or are fully rolled back out of all of the databases, reverting to the
state prior to the start of the transaction.

The X/Open XA specification defines the interactions between the Transaction Manager (TM)
and the Resource Manager. The Transaction Manager, also known as the XA Coordinator,
manages the XA or global transactions. The Resource Manager manages a particular resource
such as a database or a JMS system. In addition, an XA Resource exposes a set of methods or
functions for managing the resource.

In order to be involved in an XA transaction, the XA Resource must make itself known to the
Transaction Manager. This process is called enlistment. Once an XA Resource is enlisted, the
Transaction Manager ensures that the XA Resource takes part in a transaction and makes the
appropriate method calls on the XA Resource during the lifetime of the transaction. For an XA
transaction to complete, all the Resource Managers participate in a two-phase commit (2pc). A
commit in an XA transaction is called a two-phase commit because there are two passes made
in the committing process. In the first pass, the Transaction Manager asks each of the Resource
Managers (through the enlisted XA Resource) whether they will encounter any problems
committing the transaction. If any Resource Manager objects to committing the transaction,
then all work done by any party on any resource involved in the XA transaction must all be
rolled back. The Transaction Manager calls the rollback() method on each of the enlisted XA
Resources. However, if no resource Managers object to committing, then the second pass
involves the Transaction Manager actually calling commit() on each of the enlisted XA
Resources. This process guarantees the ACID (atomicity, consistency, isolation, and durability)
properties of a transaction that can span multiple resources.

Both Sun Microsystems JMS and BEA WebLogic Server implement the X/Open XA interface
specifications. Because both systems support XA, the EJBs running inside the WebLogic
container can subscribe or publish messages to Sun Microsystems JMS in XA mode. When
running in XA mode, the EJBs subscribing or publishing to Sun Microsystems JMS can also
participate in a global transaction involving other EJBs. For the example, EJBs running in XA
mode, Container Managed Transactions (CMTs) are used. In other words, we define the
transactional attributes of the EJBs through their deployment descriptors and allow the
container to transparently handle the XA transactions on behalf of the EJBs. The WebLogic

WebLogic Server Components - June 2008

XATransactions

Transaction Manager coordinates the XA transactions. The Sun Microsystems JMS XA
Resource is enlisted to a transaction so that the WebLogic Transaction Manager is aware of the
Sun Microsystems JMS XA Resource involved in the XA transaction. The WebLogic container
interacts closely with the Transaction Manager in CMT such that transactions are almost
transparent to an EJB developer.

Chapter 1 « WebLogic Server Components 13

14

	WebLogic Server Components
	WebLogic Server Components
	WebLogic Server Components Overview
	WebLogic Server Components Task Overview
	Java Naming and Directory Interface (JNDI)
	The WebLogic Naming Service
	Sample Code
	Viewing the WebLogic JNDI Tree

	Java Messaging Service (JMS)
	Enterprise JavaBeans (EJBs)
	Session Beans
	Entity Beans
	Message Driven Beans

	XA Transactions

