
Using the JMS Binding
Component

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 820–6325–10
December 2008

Copyright 2008 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In particular, and without
limitation, these intellectual property rights may include one or more U.S. patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights – Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions
of the FAR and its supplements.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other
countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, the Solaris logo, the Java Coffee Cup logo, docs.sun.com, Java, and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. or its subsidiaries in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of
SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and SunTM Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts
of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to
the Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN LOOK GUIs and otherwise comply with Sun's written license
agreements.

Products covered by and information contained in this publication are controlled by U.S. Export Control laws and may be subject to the export or import laws in
other countries. Nuclear, missile, chemical or biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export
or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied persons and specially
designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

081223@21808

Contents

1 Using the JMS Binding Component .. 5
JMS Binding Component Overview ..5
JMS Binding Component Features ..7
JMS Binding Component Scenarios ..7

Outbound Scenario ...7
Inbound Scenario ..8
XA Scenario ...9
Outbound InOut Exchange Scenario .. 10
Inbound InOut Exchange Scenario ... 11
On Demand Receive Scenario .. 12

Creating JMS-Based Concrete WSDL Documents ... 13
▼ To Create a JMS-Based Concrete WSDL Document from the New WSDL Document

Wizard ... 14
▼ To Create a JMS-Based Concrete WSDL Document from the New File Wizard 14

Request Connection Configuration .. 15
Request Consumer Configuration ... 16
Request Publisher Configuration ... 17
Response Destination Configuration .. 19
Response Consumer Configuration .. 20
Response Publisher Configuration .. 21
Advanced Configuration ... 22

Connecting to the JMS Server .. 24
Specifying the Protocol, Server, and Port .. 24
Connecting to the JMS Server by Using JNDI .. 25

Configuring Redelivery Handling ... 27
Configuring Redelivery Handling from the Wizard .. 28
Configuring Redelivery Handling by Editing the WSDL Document 29

Using the Normalized Message Properties ... 30
Inbound Normalized Message Properties ... 30

3

Outbound Normalized Message Properties ... 33
General Normalized Message Properties .. 37

JMS WSDL Extensibility Elements ... 40
JMS Connectivity Elements .. 41
JMS Binding Elements ... 42

JMS Binding Component Clustering .. 49
JMS High Availability .. 49
JMS Load Balancing ... 50
JMS Performance ... 50

Index ..53

Contents

Using the JMS Binding Component • December 20084

Using the JMS Binding Component

The topics listed here provide information about how to use the Java Message Service (JMS)
Binding Component.

If you have any questions or problems, see the Java CAPS web site at
http://goldstar.stc.com/support.

What You Need to Know
■ “JMS Binding Component Overview” on page 5
■ “JMS Binding Component Features” on page 7
■ “JMS Binding Component Scenarios” on page 7

What You Need to Do
■ “Creating JMS-Based Concrete WSDL Documents” on page 13
■ “Connecting to the JMS Server” on page 24
■ “Configuring Redelivery Handling” on page 27
■ “Using the Normalized Message Properties” on page 30
■ “JMS WSDL Extensibility Elements” on page 40
■ “JMS Binding Component Clustering” on page 49

JMS Binding Component Overview
The JMS Binding Component includes NetBeans design-time components and a Java Business
Integration (JBI) runtime.

The design-time component is a NetBeans module that plugs into the NetBeans project system.
The runtime portion provides interfaces for accepting messages from the JBI runtime, or using
interfaces provided by JBI for communicating with the JBI runtime.

The flexible and extensible architecture of JBI enables components such as the JMS Binding
Component to use a messaging model that separates service consumers from service providers.
This messaging model is defined using Web Services Description Language (WSDL), which

1C H A P T E R 1

5

http://goldstar.stc.com/support

describes the operations exposed by the binding component. WSDL is also used to define
transport-level bindings for the abstract service operations. During design time, you configure
the JMS Binding Component by using the JMS WSDL extensibility elements.

The JBI specification also includes a model that describes the exchange of messages between
message consumers and message providers.

In an outbound message flow, the JMS Binding Component acts as a service provider. The JMS
Binding Component receives a normalized message from the Normalized Message Router
(NMR), converts that message to a JMS message, and then sends the message to a JMS
destination.

In an inbound message flow, the JMS Binding Component acts as a proxy consumer. The JMS
Binding Component converts the JMS message that it receives from a JMS service to a
normalized message, and then sends the normalized message as part of the message exchange to
another component as a service request.

The following diagram illustrates the relationship between the JMS Binding Component in the
JBI Runtime Environment, the design-time (NetBeans) and other JBI system management
components.

NetBeans
Design
Time

JBI System
Management

JBI Runtime Environment

Installation

Deployment

Management

Monitoring

Service
Engine

JBI Normalized Message Router

Service
Engine

Service
Engine

Binding
Component

Binding
Component

JMS Binding
Component

JMS Binding Component Overview

Using the JMS Binding Component • December 20086

JMS Binding Component Features
The features of the JMS Binding Component include:

■ Sending inbound and outbound JMS messages (text, binary, xml)
■ Auto acknowledgement of received inbound JMS messages
■ Receiving batch inbound JMS messages
■ Receiving inbound JMS messages through a selection filter
■ Mapping inbound JMS properties to NMR message parts
■ Mapping NMR message parts to outbound JMS properties
■ Normalizing and denormalizing JMS messages and WSDL message parts
■ Invoking request/response operations
■ JNDI lookups of connection factories
■ sync and cc concurrency modes

JMS Binding Component Scenarios
The following scenarios show how the JMS Binding Component can consume messages and
provide messages.

■ “Outbound Scenario” on page 7
■ “Inbound Scenario” on page 8
■ “XA Scenario” on page 9
■ “Outbound InOut Exchange Scenario” on page 10
■ “Inbound InOut Exchange Scenario” on page 11
■ “On Demand Receive Scenario” on page 12

Outbound Scenario
The following diagram illustrates an outbound scenario.

JMS Binding Component Scenarios

Chapter 1 • Using the JMS Binding Component 7

The HTTP Binding Component consumes an external web service client message. The HTTP
Binding Component sends an InOnly message exchange to the BPEL Service Engine. The BPEL
Service Engine performs a simple translation of the input message to an output message. The
BPEL Service Engine sends the message exchange to the JMS Binding Component.

The JMS Binding Component converts the normalized message in the InOnly message
exchange to a JMS text message. The JMS Binding Component sends the text message to a
configured JMS topic.

Inbound Scenario
The following diagram illustrates an outbound scenario.

Topic

JBI Runtime Environment

BPEL Service
Engine

HTTP Binding
Component

External
Client

JMS Binding
Component

JMS

In Only

In Only

JBI Normalized Message Router

JMS Binding Component Scenarios

Using the JMS Binding Component • December 20088

The JMS Binding Component receives a JMS message from a JMS topic. The JMS Binding
Component normalizes the JMS message to an InOnly message exchange. The JMS Binding
Component sends the message exchange to the BPEL Service Engine.

The BPEL Service Engine invokes the HTTP Binding Component to send a message to a web
service.

XA Scenario
The following diagram illustrates an XA scenario.

Topic

JBI Runtime Environment

BPEL Service
Engine

HTTP Binding
Component

External
Web Service

JMS Binding
Component

JMS

Out In

In Only

JBI Normalized Message Router

In

JMS Binding Component Scenarios

Chapter 1 • Using the JMS Binding Component 9

The inbound JMS Binding Component receives a text message from JMS queue 1. The JMS
Binding Component starts an XA transaction and enlists its XAResource. The JMS Binding
Component normalizes the JMS message and sends the message as a transacted InOnly

message exchange. The message exchange contains the transactional context as a property
keyed by MessageExchange.JTA_TRANSACTION_PROPERTY_NAME.

The XSLT Service Engine propagates the transaction in the InOnly message exchange that it
creates and sends it to the outbound JMS Binding Component. The outbound JMS Binding
Component denormalizes the message exchange to a JMS message and sends the JMS message
to JMS queue 2, as part of the XA transaction created by the inbound JMS Binding Component.

Upon completion of both InOnly message exchanges, the inbound JMS Binding Component
commits the XA transaction (thereby committing both the JMS receive and the JMS send).

The JMS Client Trigger and JMS Client Verifier are external JMS clients used to initiate the
message exchanges and to verify the result. Once the transaction is committed, the JMS Client
Verifier receives the expected JMS message sent by the outbound JMS Binding Component.

Outbound InOut Exchange Scenario
In this use case, the JMS Binding Component receives an InOut exchange from its consuming
partner (for example, the BPEL Service Engine).

Queue 1 Queue 2

JBI Runtime Environment

XSLT Service
Engine

JMS
Client Trigger

JMS
Client Verifier

JMS Binding
Component

JMS

In/Out In Only

In OnlyIn Only

JBI Normalized Message Router

XA Receive XA Send

JMS Binding Component Scenarios

Using the JMS Binding Component • December 200810

It denormalizes the message found in the "In" portion of the InOut message exchange to a JMS
message. It then creates a temporary queue or topic, "Q-temp", and sets the JMS message
property, called JMSReplyTo, with this temporary queue or topic. It sends the JMS message to
the request queue "Q-in". It waits to receive the reply (a JMS message) from the temporary
queue or topic.

When it receives the reply message from the temporary queue or topic, it normalizes the JMS
message and sets it as the message in the "Out" portion of the InOut message exchange.

It then sends the InOut message exchange to the consuming partner. Finally, it waits for the
message exchange status from the consuming partner to complete the InOut message exchange.

Inbound InOut Exchange Scenario
In this use case, the JMS Binding Component is an external proxy consumer for an external
service consumer.

It receives a JMS message from input queue "Q-in". It creates an InOut message exchange. It
normalizes the JMS message and sets it as the message in the "In" portion of the InOut message
exchange. It then sends the InOut exchange to its providing partner (for example, the BPEL
Service Engine). It then waits for the reply from its providing partner for the InOut exchange via
the NMR.

Upon receiving the reply, it denormalizes the message found in the "Out" portion of the InOut
exchange to a JMS message.

It then extracts the topic or queue, "Q-temp", found in the JMS request message's JMSReplyTo
property and sends the JMS reply message to this reply queue or topic.

Q-temp

Q-in

JBI Runtime Environment

BPEL Service
Engine

JMS

JMS Binding
ComponentOutIn

HTTP/
SOAP Binding

Component
OutInClient

Reply

Request

S
en

dJMS
Message

JMSReplyTo

R
ec

ei
ve

JMS Binding Component Scenarios

Chapter 1 • Using the JMS Binding Component 11

Finally, upon successfully sending the JMS reply message to the JMSReplyTo queue or topic, it
sends back a DONE response on the InOut message exchange to the providing partner.

On Demand Receive Scenario
The HTTP Binding Component consumes a request message from an external web service
client. The HTTP Binding Component sends an InOnly message exchange to the BPEL Service
Engine. The BPEL Service Engine performs a simple translation of the input message to an
output message. The BPEL Service Engine sends the message exchange to the JMS Binding
Component.

The JMS Binding Component converts the normalized message in the InOnly message
exchange to a JMS text message. The JMS Binding Component sends the text message to a
configured JMS topic or queue.

The JMS Binding Component receives a JMS reply message from the JMS topic or queue. The
JMS Binding Component normalizes the JMS message to an InOnly message exchange. The
JMS Binding Component sends the message exchange to the BPEL Service Engine.

The BPEL Service Engine invokes the HTTP Binding Component to send a message to the
external web service client.

Q-temp

Q-in

JBI Runtime Environment

BPEL Service
Engine

JMS

JMS Binding
ComponentOutIn

S
en

d
JMS

Message

JMSReplyTo

R
ec

ei
ve

JMS Binding Component Scenarios

Using the JMS Binding Component • December 200812

Creating JMS-Based Concrete WSDL Documents
You can use a wizard to create a concrete WSDL document that contains JMS binding and
service information.

In the initial part of the wizard, you must select one of the following types:

■ Receive. Choose this type for scenarios in which the JMS Binding Component receives a
message from a JMS destination and invokes a JBI service with the message.

■ Receive with Reply. Choose this type for scenarios in which the JMS Binding Component
receives a message from a JMS destination, invokes a JBI service, and sends the response
from the service back over JMS.

■ Send. Choose this type for scenarios in which a JBI service invokes the JMS Binding
Component to send a message to a JMS destination.

■ Send and Wait for Reply. Choose this type for scenarios in which a JBI service invokes the
JMS Binding Component to send a message to a JMS destination and receive the response
over JMS.

■ On Demand Receive. Choose this type for scenarios in which a JBI service invokes the JMS
Binding Component to read a message from a JMS destination.

The configuration steps that appear next depend on the type that you selected.

■ “Request Connection Configuration” on page 15
■ “Request Consumer Configuration” on page 16
■ “Request Publisher Configuration” on page 17
■ “Response Destination Configuration” on page 19

JBI Runtime Environment

BPEL Service
Engine

In/OutIn Out

JMS Binding
Component

HTTP Binding
Component

OutIn

JBI Normalized Message Router

Topic /
Queue

External
Client

Request Reply

Creating JMS-Based Concrete WSDL Documents

Chapter 1 • Using the JMS Binding Component 13

■ “Response Consumer Configuration” on page 20
■ “Response Publisher Configuration” on page 21
■ “Advanced Configuration” on page 22

▼ To Create a JMS-Based Concrete WSDL Document from
the New WSDL Document Wizard

In the Projects window of the NetBeans IDE, right-click the project node and choose New ⇒
WSDL Document.

Set the WSDL Type option to Concrete WSDL Document.

Set the Binding drop-down list to JMS.

Set the Type drop-down list to the appropriate type of JMS-based WSDL document.

Click Next.

Complete the configuration steps that appear next. For a description of each step, see the
following topics.

▼ To Create a JMS-Based Concrete WSDL Document from
the New File Wizard

In the Projects window of the NetBeans IDE, right-click the project node and choose New ⇒
Other.

In the Categories list, select ESB.

In the File Types list, select Binding.

Click Next.

Set the Binding drop-down list to JMS.

Set the Type drop-down list to the appropriate type of JMS-based WSDL document.

Click Next.

1

2

3

4

5

6

1

2

3

4

5

6

7

Creating JMS-Based Concrete WSDL Documents

Using the JMS Binding Component • December 200814

Complete the configuration steps that appear next. For a description of each step, see the
following topics.

Request Connection Configuration
When you are creating a JMS-based concrete WSDL document, the Request Connection
Configuration step appears for all of the possible types.

The JMS Connection section enables you to specify information for connecting to the JMS
server.
■ Connection URL. The URL for connecting to the JMS server.

For more information, see “Connecting to the JMS Server” on page 24.
■ User Name. The user name for connecting to the JMS server.
■ Password. The password for connecting to the JMS server.

The Payload Processing section enables you to define the type of JMS messages being created
and sent to the JMS destination.
■ Message Type. Specifies whether the message payload is treated as text data, binary data,

XML data, or encoded data.

8

Creating JMS-Based Concrete WSDL Documents

Chapter 1 • Using the JMS Binding Component 15

■ XSD Element/Type. This field is enabled when the message type is XML data or encoded
data. Click the ellipsis points (...) and select a user-defined XSD element.

■ Encoded Type. This field is enabled when the message type is encoded data.
■ Forward as Attachment. If you want to send the message data as an attachment, then select

this check box.
For binary data, the data is sent as an attachment by default.
For XML data, sending the data as an attachment prevents the JMS Binding Component
from parsing the XML. If the XML is large, then this approach can improve performance.

Request Consumer Configuration
When you are creating a JMS-based concrete WSDL document, the Request Consumer
Configuration step appears when you select the Receive type.

The Destination Properties section enables you to specify the JMS destination from which
messages are received.

Creating JMS-Based Concrete WSDL Documents

Using the JMS Binding Component • December 200816

■ Destination. The name of the destination.
■ Destination Type. Indicates whether the destination is a queue or a topic.
■ Subscription Durability. This field is enabled when the destination is a topic. Indicates

whether the subscriber is durable or nondurable. Durable subscribers can survive any
disconnection from the JMS server.

■ Subscription Name. For a durable subscriber, indicates the name that is used to denote the
durable subscription.

■ Client ID. This field is enabled when the destination is a topic. Defines a unique client ID.
■ XA Transaction. If you want to configure a two-phase commit scenario, then select this

check box.

For more information, see “XA Scenario” on page 9.

The JMS Consumer Properties section enables you to configure properties that apply only to
consumer message flows.

■ Delivery Mode. Specifies the concurrency mode.
■ Concurrency. Indicates the maximum number of concurrent receivers.
■ Enable Batch. If you want to receive messages in a batch, then select the Enable Batch check

box and specify the size.
■ Message Selector. Enables you to filter messages. A message selector consists of a boolean

expression, such as Age > 30.
■ Redelivery. Enables you to specify what actions to take when a message is repeatedly

redelivered. For example, you could place the message in a dead letter queue.

For more information, see “Configuring Redelivery Handling” on page 27.

Request Publisher Configuration
When you are creating a JMS-based concrete WSDL document, the Request Publisher
Configuration step appears when you select the Send type.

Creating JMS-Based Concrete WSDL Documents

Chapter 1 • Using the JMS Binding Component 17

The Destination Properties section enables you to specify the JMS destination to which
messages are sent.

■ Destination. The name of the destination.
■ Destination Type. Indicates whether the destination is a queue or a topic.
■ XA Transaction. If you want to configure a two-phase commit scenario, then select this

check box.

For more information, see “XA Scenario” on page 9.

The JMS Publisher Properties section enables you to configure properties that apply only to
provider message flows.

■ Delivery Mode. Indicates whether the message is persistent or nonpersistent. Persistent
messages can survive the failure of the JMS server.

■ Time To Live. Indicates how long the message is retained (in milliseconds).
■ Priority. Defines the message priority. The valid values are 0 through 9, where 0 is the lowest

priority and 9 is the highest priority. The default value is 4.

Creating JMS-Based Concrete WSDL Documents

Using the JMS Binding Component • December 200818

Response Destination Configuration
When you are creating a JMS-based concrete WSDL document, the Response Destination
Configuration step appears when you select the Receive with Reply type or the Send and Wait
for Reply type.

The Destination Properties section enables you to specify the JMS destination to which
messages are sent.

■ Destination. The name of the destination.
■ Destination Type. Indicates whether the destination is a queue or a topic.
■ Subscription Durability. This field is enabled when the destination is a topic. Indicates

whether the subscriber is durable or nondurable. Durable subscribers can survive any
disconnection from the JMS server.

■ Subscription Name. For a durable subscriber, indicates the name that is used to denote the
durable subscription.

■ Client ID. This field is enabled when the destination is a topic. Defines a unique client ID.

Creating JMS-Based Concrete WSDL Documents

Chapter 1 • Using the JMS Binding Component 19

■ XA Transaction. If you want to configure a two-phase commit scenario, then select this
check box.

For more information, see “XA Scenario” on page 9.

The Payload Processing section enables you to define the type of JMS messages being created
and sent to the JMS destination.

■ Message Type. Specifies whether the message payload is treated as text data, binary data,
XML data, or encoded data.

■ XSD Element/Type. This field is enabled when the message type is XML data or encoded
data. Click the ellipsis points (...) and select a user-defined XSD element.

■ Encoded Type. This field is enabled when the message type is encoded data.

Response Consumer Configuration
When you are creating a JMS-based concrete WSDL document, the Response Consumer
Configuration step appears when you select the Receive with Reply type.

Creating JMS-Based Concrete WSDL Documents

Using the JMS Binding Component • December 200820

The JMS Consumer Properties section enables you to configure properties that apply only to
consumer message flows.

■ Delivery Mode. Specifies the concurrency mode.
■ Concurrency. Indicates the maximum number of concurrent receivers.
■ Enable Batch. If you want to receive messages in a batch, then select the Enable Batch check

box and specify the size.
■ Message Selector. Enables you to filter messages. A message selector consists of a boolean

expression, such as Age > 30.
■ Redelivery. Enables you to specify what actions to take when a message is repeatedly

redelivered. For example, you could place the message in a dead letter queue.
For more information, see “Configuring Redelivery Handling” on page 27.

Response Publisher Configuration
When you are creating a JMS-based concrete WSDL document, the Response Publisher
Configuration step appears when you select the Send and Wait for Reply type.

Creating JMS-Based Concrete WSDL Documents

Chapter 1 • Using the JMS Binding Component 21

The JMS Publisher Properties section enables you to configure properties that apply only to
provider message flows.

■ Delivery Mode. Indicates whether the message is persistent or nonpersistent. Persistent
messages can survive the failure of the JMS server.

■ Time To Live. Indicates how long the message is retained (in milliseconds).
■ Timeout. The timeout in milliseconds on a message consumer receive for a reply message.
■ Priority. Defines the message priority. The valid values are 0 through 9, where 0 is the lowest

priority and 9 is the highest priority. The default value is 4.

Advanced Configuration
When you are creating a JMS-based concrete WSDL document, the Advanced Configuration
step appears for all of the possible types.

Creating JMS-Based Concrete WSDL Documents

Using the JMS Binding Component • December 200822

You can specify any option supported by JMSJCA in the Advanced Configuration step. For
example:

JMSJCA.NoXA=false

If you set the connection URL to jndi:// in the Request Connection Configuration step, then
you specify the JNDI options in the Advanced Configuration step. For example:

JMSJCA.UnifiedCF=JNDI-name
JMSJCA.TopicCF=JNDI-name
JMSJCA.QueueCF=JNDI-name
java.naming.factory.initial=com.sonicsw.jndi.mfcontext.MFContextFactory

java.naming.provider.url=tcp://localhost:2506

java.naming.security.principal=Administrator

java.naming.security.credentials=Administrator

com.sonicsw.jndi.mfcontext.domain=Domain1

com.sonicsw.jndi.mfcontext.idleTimeout=60000

For more information about using the jndi approach, see “Connecting to the JMS Server” on
page 24.

Creating JMS-Based Concrete WSDL Documents

Chapter 1 • Using the JMS Binding Component 23

Connecting to the JMS Server
You use a connection URL to specify the information for connecting to the JMS server.

For any JMS server that is supported by JMSJCA, you can specify the protocol, server, and port
in the connection URL. The JMS Binding Component uses the information in the connection
URL to create a new JMS connection factory.

Note – JMSJCA is a library that abstracts the differences between JMS servers and provides a
single interface to the JMS servers. JMSJCA is shipped as part of the JMS Binding Component.
For a list of supported JMS servers, go to https://jmsjca.dev.java.net.

You can connect to any JMS server by using the Java Naming and Directory InterfaceTM (JNDI)
to locate an existing JMS connection factory.

A connection factory is a Java class supplied by the JMS provider. For example:

com.stc.jmsjca.core.JConnectionFactoryXA

■ “Specifying the Protocol, Server, and Port” on page 24
■ “Connecting to the JMS Server by Using JNDI” on page 25

Specifying the Protocol, Server, and Port
For any JMS server that is supported by JMSJCA, you can specify the protocol, server, and port
in the connection URL. The JMS Binding Component uses the information in the connection
URL to create a new JMS connection factory.

The following connection URL includes a protocol, server, and port for Sun JavaTM System
Message Queue:

mq://localhost:7676

The following connection URL includes a protocol, server, and port for Sun JMS IQ Manager:

stcms://localhost:18007

When you use a wizard to create a JMS-based concrete WSDL document, you set the
connection URL in the Request Connection Configuration step of the wizard. For more
information, see “Creating JMS-Based Concrete WSDL Documents” on page 13.

When you finish the wizard, the appropriate WSDL code is generated. The connection URL
appears in the address element. For example:

Connecting to the JMS Server

Using the JMS Binding Component • December 200824

https://jmsjca.dev.java.net

<port name="newWSDL_InPort" binding="tns:JMSInBinding">
<jms:address connectionURL="mq://localhost:7676" username="admin" password="admin">
<jms:jmsjcaOptions><![CDATA[]]></jms:jmsjcaOptions>

</jms:address>

</port>

Connecting to the JMS Server by Using JNDI
You can connect to any JMS server by using the Java Naming and Directory InterfaceTM (JNDI)
to locate an existing JMS connection factory.

Depending on where the connection factory is bound, the connection URL can begin with the
string lookup or the string jndi.

The appropriate JNDI provider jar files must be in the runtime classpath. With the GlassFish
application server, you copy these jar files to the lib directory. In addition, JMS provider client
jar files are needed in the runtime classpath.

Using the lookupApproach
To access a connection factory that is bound in the JNDI space of the GlassFish application
server itself, use the lookup approach.

This scenario can occur when a managed connection factory has been created. Managed
connection factories provide additional services on top of a connection factory. The additional
services include connection pooling. The managed connection factory creates a connection
factory wrapper.

Set the connection URL to lookup://JNDI-name, where JNDI-name is the JNDI name to which
the connection factory is bound. For example:

lookup://jms/tx/default

When you use a wizard to create a JMS-based concrete WSDL document, you set the
connection URL in the Request Connection Configuration step of the wizard. For more
information, see “Creating JMS-Based Concrete WSDL Documents” on page 13.

When you finish the wizard, the appropriate WSDL code is generated. The connection URL
appears in the address element. For example:

<port name="newWSDL_InPort" binding="tns:JMSInBinding">
<jms:address connectionURL="lookup://jms/tx/default">
<jms:jmsjcaOptions><![CDATA[]]></jms:jmsjcaOptions>

</jms:address>

</port>

At runtime, the JMS Binding Component uses the JNDI name to obtain the connection factory.

Connecting to the JMS Server

Chapter 1 • Using the JMS Binding Component 25

Using the jndiApproach
Use the jndi approach for either of the following scenarios:

■ To look up a connection factory in an external JNDI provider (for example, file or LDAP).
■ To look up a connection factory in a JNDI provider in the JMS server itself.

Set the connection URL to jndi:// and specify the JNDI options.

When you use a wizard to create a JMS-based concrete WSDL document, you set the
connection URL in the Request Connection Configuration step of the wizard. You then specify
the JNDI options in the Advanced Configuration step of the wizard. For more information, see
“Creating JMS-Based Concrete WSDL Documents” on page 13.

The following table describes the available JNDI options.

JNDI Option Description

JMSJCA.UnifiedCF The JNDI name of the connection factory. Use this option only in
outbound scenarios.

JMSJCA.TopicCF The JNDI name of topic connection factory. You can use this
option in inbound or outbound scenarios.

JMSJCA.QueueCF The JNDI name of queue connection factory. You can use this
option in inbound or outbound scenarios.

java.naming.factory.initial The fully qualified class name of the factory class that will create
the initial context. An initial context is the starting point for
naming operations. For more information, see the Java API
documentation for
javax.naming.Context.INITIAL_CONTEXT_FACTORY.

java.naming.provider.url The configuration information for the service provider to use.
The value should contain a URL string. For more information, see
the Java API documentation for
javax.naming.Context.PROVIDER_URL.

java.naming.security.principal The identity of the principal for authenticating the caller to the
service. For more information, see the Java API documentation
for javax.naming.Context.SECURITY_PRINCIPAL.

java.naming.security.credentials The credentials of the principal for authenticating the caller to the
service. For more information, see the Java API documentation
for javax.naming.Context.SECURITY_CREDENTIALS.

The destinationType and transaction attributes in the WSDL document determine what
type of connection factory is being looked up. For example, if the destinationType attribute is
Queue and the transaction attribute is XATransaction, then the connection factory must be of
type javax.jms.XAQueueConnectionFactory.

Connecting to the JMS Server

Using the JMS Binding Component • December 200826

The following code shows an example of specifying the JNDI options. In this scenario, the
connection factory is bound in the JMS server itself.

JMSJCA.UnifiedCF=connectionfactories/xaconnectionfactory

JMSJCA.TopicCF=connectionfactories/xatopicconnectionfactory

JMSJCA.QueueCF=connectionfactories/xaqueueconnectionfactory

java.naming.factory.initial=com.stc.jms.jndispi.InitialContextFactory

java.naming.provider.url=stcms://localhost:18007

java.naming.security.principal=Administrator

java.naming.security.credentials=STC

When you finish the wizard, the appropriate WSDL code is generated. The connection URL
appears in the address element. The JNDI options appear in the jmsjcaOptions element. For
example:

<port name="newWSDL_InPort" binding="tns:JMSInBinding">
<jms:address connectionURL="jndi://">
<jms:jmsjcaOptions>

<![CDATA[JMSJCA.UnifiedCF=connectionfactories/xaconnectionfactory

JMSJCA.TopicCF=connectionfactories/xatopicconnectionfactory

JMSJCA.QueueCF=connectionfactories/xaqueueconnectionfactory

java.naming.factory.initial=com.stc.jms.jndispi.InitialContextFactory

java.naming.provider.url=stcms://localhost:18007

java.naming.security.principal=Administrator

java.naming.security.credentials=STC]]>

</jms:jmsjcaOptions>

</jms:address>

</port>

At runtime, the JMS Binding Component uses the JNDI options to obtain the connection
factory.

Configuring Redelivery Handling
A JMS message is typically redelivered because of an error in the processing of the message. The
error may be transient or permanent.

If the error is transient, the message will eventually go through. If the error is permanent,
moving messages to a different destination may be a better approach. If the message is not
valuable, deleting the message is another option.

Delaying delivery of a redelivered message is useful to save CPU cycles instead of letting the
message "spin" rapidly.

You can configure redelivery handling by using either of the following approaches:
■ “Configuring Redelivery Handling from the Wizard” on page 28

Configuring Redelivery Handling

Chapter 1 • Using the JMS Binding Component 27

■ “Configuring Redelivery Handling by Editing the WSDL Document” on page 29

Configuring Redelivery Handling from the Wizard
You can use a wizard to create a concrete WSDL document that contains JMS binding and
service information. The wizard is described in “Creating JMS-Based Concrete WSDL
Documents” on page 13.

You can configure redelivery handling from the following wizard steps:

■ Request Consumer Configuration
■ Response Consumer Configuration

Click the Details button, which appears to the right of the Redelivery field. The Redelivery
Information dialog box appears.

The Redelivery Information dialog box contains the following fields:

■ Delay. An entry consists of two numbers, separated by a colon (:). The first number is the
number of times that the message has been delivered. The second number is how many
milliseconds to wait before resending the message.
Assume that the entry is 5:1000. When a message is received for the fifth time, the message
is delayed for one second. If you specify more than one entry, then you must separate the
entries with a semicolon (;). For example:

5:1000; 10:5000

■ Termination. If you want to move the message to another destination, then select the Move
option and set the remaining fields in the dialog box.

Configuring Redelivery Handling

Using the JMS Binding Component • December 200828

If you want to delete the message, then select the Delete option and set the Move/Delete
After field.

■ Move/Delete After. The number of times after which the message is moved or deleted.
■ Move to Queue/Topic. Indicates whether the message should be moved to a queue or topic.
■ Move to Destination Name. Indicates the name of the destination where the message should

be moved. The string can include the dollar sign ($) character, which is replaced with the
original destination name.

Configuring Redelivery Handling by Editing the WSDL
Document
You can configure redelivery handling by entering a specially formatted string in a WSDL
document.

The string specifies what actions to take when the message is repeatedly redelivered. The string
has the following format:

format := entry[; entry]*

entry := index ":" action

index := number (denotes the n-th time a message is seen)

action := number (denotes delay in milliseconds) | "delete" | "move"(args)
move := "queue"|"topic" | "same" ":" destname

destname := any string, may include "$", which is replaced with the original

destination name

Redelivery Handling Example 1

Assume that the string is set as follows:

redeliveryHandling="5:1000; 10:5000"

This example causes no delay up to the 5th delivery. When the message is seen for the 5th, 6th,
7th, 8th, and 9th time, a 1000–millisecond delay is invoked. For each time the message is seen
thereafter, a 5000–millisecond delay is invoked.

Redelivery Handling Example 2

Assume that the string is set as follows:

redeliveryHandling="5:1000; 10:5000; 50:move(queue:mydlq)"

This example causes no delay up to the 5th delivery. When the message is seen for the 5th, 6th,
7th, 8th, and 9th time, a 1000–millisecond delay is invoked. When the message is invoked for
the 10th, 11th, ..., and 49th time, a 5000–millisecond delay is invoked. When the message is seen
for the 50th time, the message is moved to a queue called mydlq.

Configuring Redelivery Handling

Chapter 1 • Using the JMS Binding Component 29

Assume that the messages are received from Queue1 and the string is set as follows:

redeliveryHandling="5:1000; 10:5000; 50:move(queue:dlq$oops)"

In thise case, the messages are moved to the destination dlqQueue1oops. The dollar sign ($)
character denotes the original destination name. Instead of queue, you can specify topic or
same. The value same denotes a queue if the message was received from a queue, or can denote a
topic if the message was received from a topic.

Using the Normalized Message Properties
This topic describes the normalized message properties for the JMS Binding Component.

The normalized message properties enable you to do the following:

■ Override the JMS settings in the WSDL document
■ Specify JMS user properties

The normalized message properties are divided into the following categories:

■ “Inbound Normalized Message Properties” on page 30
■ “Outbound Normalized Message Properties” on page 33
■ “General Normalized Message Properties” on page 37

Inbound Normalized Message Properties
This category of normalized message properties applies to inbound-only scenarios.

You can access these properties from the left and right panes of the BPEL Mapper. In the
following screen capture, the nodes in the right pane are expanded to show the properties.

Using the Normalized Message Properties

Using the JMS Binding Component • December 200830

These properties are read only. You cannot modify the values.

Connection URL Property
(org.glassfish.openesb.jms.inbound.connectionurl)
This property enables you to specify the URL for connecting to the JMS server.

This property is applicable to the following binding types:

■ Receive
■ Receive with Reply
■ Send and Wait for Reply
■ On Demand Receive

For more information, see “Connecting to the JMS Server” on page 24.

Using the Normalized Message Properties

Chapter 1 • Using the JMS Binding Component 31

User Name Property (org.glassfish.openesb.jms.inbound.username)
This property enables you to specify the user name for connecting to the JMS server.

This property is applicable to the following binding types:

■ Receive
■ Receive with Reply
■ Send and Wait for Reply
■ On Demand Receive

Message Selector Property
(org.glassfish.openesb.jms.inbound.messageselector)
This property enables you to filter messages. A message selector consists of a boolean
expression, such as Age > 30.

This property is applicable to the following binding types:

■ Receive
■ Receive with Reply
■ On Demand Receive

Destination Property (org.glassfish.openesb.jms.inbound.destination)
This property enables you to specify the name of the JMS destination from which messages are
received.

This property is applicable to the following binding types:

■ Receive
■ Receive with Reply
■ Send and Wait for Reply
■ On Demand Receive

Destination Type Property
(org.glassfish.openesb.jms.inbound.destinationtype)
This property enables you to indicate whether the JMS destination is a queue or a topic. The
valid values are Queue and Topic.

This property is applicable to the following binding types:

■ Receive
■ Receive with Reply
■ Send and Wait for Reply
■ On Demand Receive

Using the Normalized Message Properties

Using the JMS Binding Component • December 200832

Forward As Attachment Property
(org.glassfish.openesb.jms.inbound.forwardasattachment)
This property enables you to send the message data as an attachment. The valid values are true
and false.

For binary data, the data is sent as an attachment by default.

For XML data, sending the data as an attachment prevents the JMS Binding Component from
parsing the XML. If the XML is large, then this approach can improve performance.

This property is applicable to the following binding types:

■ Receive
■ Receive with Reply
■ Send and Wait for Reply
■ On Demand Receive

Outbound Normalized Message Properties
This category of normalized message properties applies to outbound-only scenarios.

You can access these properties from the left and right panes of the BPEL Mapper. In the
following screen capture, the nodes in the right pane are expanded to show the properties.

Using the Normalized Message Properties

Chapter 1 • Using the JMS Binding Component 33

Connection URL Property
(org.glassfish.openesb.jms.outbound.connectionurl)
This property enables you to specify the URL for connecting to the JMS server.

This property is applicable to the following binding types:
■ Receive with Reply
■ Send
■ Send and Wait for Reply
■ On Demand Receive

For more information, see “Connecting to the JMS Server” on page 24.

User Name Property (org.glassfish.openesb.jms.outbound.username)
This property enables you to specify the user name for connecting to the JMS server.

This property is applicable to the following binding types:
■ Receive with Reply

Using the Normalized Message Properties

Using the JMS Binding Component • December 200834

■ Send
■ Send and Wait for Reply
■ On Demand Receive

Password Property (org.glassfish.openesb.jms.outbound.password)
This property enables you to specify the password for connecting to the JMS server.

This property is applicable to the following binding types:

■ Receive with Reply
■ Send
■ Send and Wait for Reply
■ On Demand Receive

Destination Property
(org.glassfish.openesb.jms.outbound.destination)
This property enables you to specify the name of the JMS destination to which messages are
sent.

This property is applicable to the following binding types:

■ Send
■ Send and Wait for Reply
■ On Demand Receive

Destination Type Property
(org.glassfish.openesb.jms.outbound.destinationtype)
This property enables you to indicate whether the JMS destination is a queue or a topic. The
valid values are Queue and Topic.

This property is applicable to the following binding types:

■ Send
■ Send and Wait for Reply
■ On Demand Receive

XA Transaction Property
(org.glassfish.openesb.jms.outbound.xatransaction)
This property enables you to define the transaction type for the JMS protocol based operation.
The valid values are NoTransaction and XATransaction.

This property is applicable to the following binding types:

■ Receive with Reply

Using the Normalized Message Properties

Chapter 1 • Using the JMS Binding Component 35

■ Send
■ On Demand Receive

Delivery Mode Property
(org.glassfish.openesb.jms.outbound.deliverymode)
This property enables you to specify the message delivery mode to use when sending a message.
The valid values are PERSISTENT and NON_PERSISTENT.

This property is applicable to the following binding types:

■ Receive with Reply
■ Send
■ Send and Wait for Reply

Timeout Property (org.glassfish.openesb.jms.outbound.timeOut)
This property enables you to specify the timeout in milliseconds on a message consumer receive
for a reply message.

This property is applicable to the following binding types:

■ Send and Wait for Reply
■ On Demand Receive

Client ID (org.glassfish.openesb.jms.outbound.clientid)
This property defines a unique client ID.

This property is applicable to the On Demand Receive binding type.

Message Selector Property
(org.glassfish.openesb.jms.outbound.messageselector)
This property enables you to filter messages. A message selector consists of a boolean
expression, such as Age > 30.

This property is applicable to the On Demand Receive binding type.

Subscription Durability Property
(org.glassfish.openesb.jms.outbound.subscriptiondurability)
This property enables you to configure the durability of the topic subscriber. Durable
subscribers can survive any disconnection from the JMS server.

The valid values are Durable and NonDurable.

This property is applicable to the On Demand Receive binding type.

Using the Normalized Message Properties

Using the JMS Binding Component • December 200836

Subscription Name Property
(org.glassfish.openesb.jms.outbound.subscriptionname)
For durable subscriptions, this property enables you to specify the name of the durable
subscription.

This property is applicable to the On Demand Receive binding type.

Forward As Attachment Property
(org.glassfish.openesb.jms.outbound.forwardasattachment)
This property enables you to send the message data as an attachment. The valid values are true
and false.

For binary data, the data is sent as an attachment by default.

For XML data, sending the data as an attachment prevents the JMS Binding Component from
parsing the XML. If the XML is large, then this approach can improve performance.

This property is applicable to the following binding types:

■ Send and Wait for Reply
■ On Demand Receive

General Normalized Message Properties
This category of normalized message properties applies to both inbound and outbound
scenarios.

You can access these properties from the left and right panes of the BPEL Mapper. In the
following screen capture, the nodes in the right pane are expanded to show the properties.

Using the Normalized Message Properties

Chapter 1 • Using the JMS Binding Component 37

Time To Live Property (org.glassfish.openesb.jms.timetolive)
This property indicates how long the message is retained (in milliseconds).

This property is applicable to the following binding types:

■ Receive with Reply
■ Send
■ Send and Wait for Reply

Priority Property (org.glassfish.openesb.jms.priority)
This property enables you to specify the message priority for a message producer. The valid
values are 0 through 9, where 0 is the lowest priority and 9 is the highest priority. The default
value is 4.

This property is applicable to the following binding types:

■ Receive with Reply
■ Send
■ Send and Wait for Reply

Using the Normalized Message Properties

Using the JMS Binding Component • December 200838

Message Type Property (org.glassfish.openesb.jms.messagetype)
This property enables you to specify whether the messages are text, bytes, XML, or encoded
data.

This property is applicable to the following binding types:
■ Receive with Reply
■ Send
■ Send and Wait for Reply

Correlation ID Property (org.glassfish.openesb.jms.correlationid)
This property enables you to reference the message part that contains the value for the
JMSCorrelationID header.

You can use a JMS correlation ID to associate a reply message with the corresponding request
message.

This property is applicable to the following binding types:

■ Receive with Reply
■ Send
■ Send and Wait for Reply

Reply To Destination Property
(org.glassfish.openesb.jms.replytodestination)
This property enables you to specify the name of the JMS destination to which messages should
be replied.

This property is applicable to the following binding types:

■ Receive with Reply
■ Send
■ Send and Wait for Reply

Reply To Destination Type Property
(org.glassfish.openesb.jms.replytodestinationtype)
This property enables you to indicate whether the JMS destination is a queue or a topic. The
valid values are Queue and Topic.

This property is applicable to the following binding types:

■ Receive with Reply
■ Send
■ Send and Wait for Reply

Using the Normalized Message Properties

Chapter 1 • Using the JMS Binding Component 39

User Properties Property (org.glassfish.openesb.jms.userproperties)
This property enables you to configure JMS properties, which are custom headers.

This property is the only normalized message property that you cannot configure in the BPEL
Mapper. Instead, you must go to the Source view and manually enter a copy statement. Add a
period and the property name to org.glassfish.openesb.jms.userproperties. For
example:

<copy>

<from>$SoapInboundOperationIn.part1/ns0:StockSymbol</from>

<to variable="JMSOutOperationIn"
sxnmp:nmProperty="org.glassfish.openesb.jms.userproperties.StockSymbol"/>

</copy>

The default property type is string. If you want to specify a type other than string, then you
must enter an additional copy statement for the type. For example:

<copy>

<from>$SoapInboundOperationIn.part1/ns0:StockPrice</from>

<to variable="JMSOutOperationIn"
sxnmp:nmProperty="org.glassfish.openesb.jms.userproperties.StockPrice"/>

</copy>

<copy>

<from>’float’</from>

<to variable="JMSOutOperationIn"
sxnmp:nmProperty="org.glassfish.openesb.jms.userproperties.StockPrice.type"/>

</copy>

This property is applicable to all of the binding types.

JMS WSDL Extensibility Elements
The JMS WSDL extensibility elements enable you to configure JMS connectivity and binding
information for the JMS Binding Component.

■ “JMS Connectivity Elements” on page 41
■ “JMS address Element” on page 41
■ “JMS jmsjcaOptions Element” on page 41

■ “JMS Binding Elements” on page 42
■ “JMS binding Element” on page 42
■ “JMS operation Element” on page 42
■ “JMS message Element” on page 45
■ “JMS properties and property Elements” on page 47
■ “JMS mapmessage and mappart Elements” on page 48

JMS WSDL Extensibility Elements

Using the JMS Binding Component • December 200840

JMS Connectivity Elements
JMS connectivity elements consist of the address element and the jmsjcaOptions element.

JMS address Element
The JMS address extensibility element specifies the JMS server connectivity information.

The connectionURL attribute is required. The other attributes are optional.

All of the attributes apply to both providers and consumers.

Attribute Description Example

connectionURL A URL that specifies the connectivity information to connect to the
JMS server.

mq://localhost:7676

username Specifies the username used for connecting to the JMS server.

password Specifies the password used for connecting to the JMS server.

The following example illustrates the JMS address extensibility element.

<port binding="y:binding" name="jmsOutOnlyTestEndpoint">
<jms:address connectionURL="mq://localhost:7676"

username="admin" password="admin"/>
</port>

JMS jmsjcaOptions Element
The JMS jmsjcaOptions extensibility element can specify any option supported by JMSJCA.

Note – JMSJCA is a library that abstracts the differences between JMS servers and provides a
single interface to the JMS servers. JMSJCA is shipped as part of the JMS Binding Component.
For a list of supported JMS servers, go to https://jmsjca.dev.java.net.

The following example illustrates the JMS jmsjcaOptions extensibility element.

<port name="newWSDL_InPort" binding="tns:JMSInBinding">
<jms:address connectionURL="jndi://">
<jms:jmsjcaOptions>

<![CDATA[JMSJCA.UnifiedCF=connectionfactories/xaconnectionfactory

JMSJCA.TopicCF=connectionfactories/xatopicconnectionfactory

JMSJCA.QueueCF=connectionfactories/xaqueueconnectionfactory

java.naming.factory.initial=com.stc.jms.jndispi.InitialContextFactory

JMS WSDL Extensibility Elements

Chapter 1 • Using the JMS Binding Component 41

https://jmsjca.dev.java.net

java.naming.provider.url=stcms://localhost:18007

java.naming.security.principal=Administrator

java.naming.security.credentials=STC]]>

</jms:jmsjcaOptions>

</jms:address>

</port>

JMS Binding Elements
The JMS extensibility elements for binding abstract WSDL messages to JMS messages fall into
several sections.

JMS binding Element
The JMS binding extensibility element indicates a binding that is of interest to the JMS Binding
Component. This element is an empty element that serves as a marker enabling the JMS
Binding Component to gather JMS "binding" information described by the other JMS
extensibility elements.

The JMS binding extensibility element must be specified in the WSDL to define a JMS
protocol-based binding.

The following example illustrates the JMS binding extensibility element.

<binding name="bindingJMSOneWayOut"
type="tns:portTypeOneWayOut">

<jms:binding></jms:binding>

...

</binding>

JMS operation Element
The JMS operation extensibility element indicates an operation binding that is of interest to
the JMS Binding Component. This element has attributes and child elements that are used to
define JMS message delivery options for the JMS Binding Component.

The destination and destinationType attributes are required. The other attributes are
optional.

The following attributes apply to both providers and consumers: destination,
destinationType, and transaction.

The following attributes apply to providers only: deliveryMode, timeToLive, priority,
disableMessageID, disableMessageTimeStamp, timeout, and clientID.

The following attributes apply to consumers only: messageSelector,
subscriptionDurability, subscriptionName, batchSize, maxConcurrentConsumers, and
redeliveryHandling.

JMS WSDL Extensibility Elements

Using the JMS Binding Component • December 200842

Attribute Description Example

destination Defines the destination where
messages are sent or received.

InvoiceTopic

destinationType Specifies the destination type. The
valid values are Queue and Topic.

Topic

transaction Defines the transaction type for the
JMS protocol based operation. The
valid values are NoTransaction and
XATransaction.

XA in-out operations are supported
with inbound message flows (when the
JMS Binding Component acts as a
consumer of messages). They are not
supported with outbound message
flows (when the JMS Binding
Component acts as a provider of
messages).

The JMS Binding Component
generates a deployment error,
indicating that this type of operation is
not supported, when the transaction
attribute is set to XATransaction for
in-out operations with a provisioning
endpoint.

deliveryMode The message delivery mode to use
when sending a message. The valid
values are PERSISTENT and
NON_PERSISTENT. The default value is
NON_PERSISTENT.

timeToLive The time in milliseconds (from the
dispatched time) that a produced
message should be retained by the
message system.

120000

priority Defines the message priority for a
message producer. The valid values are
0 through 9, where 0 is lowest priority
and 9 is highest priority. The default
value is 4.

4

JMS WSDL Extensibility Elements

Chapter 1 • Using the JMS Binding Component 43

Attribute Description Example

disableMessageID Indicates whether message IDs are
disabled for a message producer. The
valid values are true and false. The
default value is false.

Sun Java System Message Queue
ignores the disableMessageID
attribute when it is a provider of
messages.

disableMessageTimeStamp Indicates whether message timestamps
are disabled for a message producer.
The valid values are true and false.
The default value is false.

timeout The timeout in milliseconds on a
message consumer receive for a reply
message. This attribute applies only to
the provider request reply.

120000

clientID Defines a unique client ID. The
durableName will be used as the
clientID if a durable subscriber is
used but not set.

ClientID123

messageSelector Enables you to filter messages. A
message selector consists of a boolean
expression, such as Age > 30.

JMSCorrelationID='88888888'
AND JMSType='SUN'

subscriptionDurability Determines the durability of the topic
subscriber. The valid values are
Durable and NonDurable. The default
value is NonDurable.

subscriptionName The name that is used to denote the
durable subscription. This attribute is
used only with a durable subscriber
(the destination is a topic and the
subscriptionDurability attribute is
set to Durable).

SunStockSubscriptionName

batchSize If defined with a positive integer, this
attribute specifies that the messages
received will be in a batch. The number
of messages in the batch could be less
than or equal to the specified size.

20

JMS WSDL Extensibility Elements

Using the JMS Binding Component • December 200844

Attribute Description Example

maxConcurrentConsumers If defined with a positive integer and
the destination type is Queue, this
attribute specifies the maximum
number of concurrent receivers that
can process messages. The default
value is 15 if the destination type is
Queue.

15

concurrencyMode Specifies the concurrency mode. The
valid values are sync and cc. There is
no concurrent processing for topics in
sync mode.

redeliveryHandling Specifies what actions to take if an
error occurs in processing the JMS
message received from the JMS
destination.

For more information, see
“Configuring Redelivery Handling” on
page 27.

5:1000; 10:5000

The following example illustrates the JMS operation extensibility element.

...

<operation name="Operation1">
<jms:operation destination="MyTopic"

destinationType="Topic"
messageSelector="JMSType=’FOO.Type’"/>

...

</operation>

...

JMS message Element
The messageType and use attributes are required. The other attributes are optional.

Attribute Description Example

messageType Defines the type of JMS messages being
created and sent to the JMS destination.
The valid values are TextMessage and
MapMessage.

JMS WSDL Extensibility Elements

Chapter 1 • Using the JMS Binding Component 45

Attribute Description Example

parts If the messageTypeattribute is set to
TextMessage, then this attribute defines
the parts from the WSDL message that
comprise the text payload. Each part in
the list is delimited by a space.

msgPart1,msgPart2

use Defines the use type that affects how the
message is interpreted. This attribute is
currently supported as a string literal.

literal

encodingStyle This attribute is reserved for future use.

correlationIdPart References the message part that
contains the value for the
JMSCorrelationID header.

partCorrelationID

deliveryMode Defines the static value for the
JMSDeliveryMode header.

NON_PERSISTENT

deliveryModePart References the message part that
contains the value for the
JMSDeliveryMode header.

partDeliveryMode

priority Defines the static value for the
JMSPriority header.

5

priorityPart References the message part that
contains the value for the JMSPriority
header.

partPriority

type Defines the static value for the JMSType
header.

MyMessageType

typePart References the message part that
contains the value for the JMSType
header.

partType

The following example illustrates the JMS message extensibility element.

...

<jms:binding></jms:binding>

<operation name="operationOneWayOut">
<jms:operation destination="MyTopic"

destinationType="Topic"
messageSelector="JMSType=’FOO.Type’"/>

<input name="input">
<!—jms:message defines the WSDL message to/from jms message mappings -->

<jms:message messageType="MapMessage"
use="literal"

JMS WSDL Extensibility Elements

Using the JMS Binding Component • December 200846

correlationIdPart=”msgPart1”

deliveryModePart=”msgPart2”

priorityPart=”msgPart3”

typePart=”msgPart4”

messageIDPart=”msgPart5”

timestampPart=”msgPart6”>

<jms:mapmessage>

<jms:mappart part="partBoolean"
type="boolean"
name="BooleanMapEntry">

</jms:mappart>

<jms:mappart part="partChar"
type="char"
name="CharMapEntry">

</jms:mappart>

</jms:mapmessage >

</jms:message>

</input>

</jms:operation>

</operation>

</jms:binding>

...

JMS properties and property Elements
The JMS properties extensibility element is a collection of property elements. It is an optional
child element of the JMS message extensibility element.

Each property element defines a mapping of a JMS message user property, either to or from a
WSDL message part.

The JMS property element includes the following attributes, all of which are required.

Attribute Description Example

name The name of the JMS property that is
mapped to the message part.

JMSProp1

part The name of the message part to which
the JMS property is mapped.

msgPart1

propertyType The type of the JMS property. The
valid values are boolean, short, int,
long, float, double, or string.

string

The following example illustrates the JMS properties and property extensibility elements.

JMS WSDL Extensibility Elements

Chapter 1 • Using the JMS Binding Component 47

...

<jms:message messageType="TextMessage" textPart="partBody">
<jms:properties>

<jms:property part="partPropString"
propertyType="string"
name="AppStringProperty">

</jms:property>

</jms:properties>

</jms:message>

...

JMS mapmessage and mappart Elements
When the exchange involves a JMS MapMessage type, the JMS mapmessage extensibility element
is used to define the mapping of the JMS MapMessage to the WSDL message parts and vice versa.

This element is a child element the JMS message extensibility element. The mapmessage
element is a collection of one or more mappart elements.

The JMS mappart element contains the following attributes, all of which are required.

Element Name Description Example

name The name of the mapmessage property
that is mapped to the message part.

JMSProp1

part The name of the message part that is
mapped to the mapmessage property.

msgPart1

type The Java type of the JMS mapmessage
property.

string

The following example illustrates the JMS mapmessage and mappart extensibility elements.

...

<jms:message messageType="MapMessage">
<jms:mapmessage>

<jms:mappart part="partBoolean"
type="boolean"
name="BooleanMapEntry">

</jms:mappart>

<jms:mappart part="partChar"
type="char"
name="CharMapEntry">

</jms:mappart>

</jms:mapmessage>

</jms:message>

...

JMS WSDL Extensibility Elements

Using the JMS Binding Component • December 200848

JMS Binding Component Clustering
Mission-critical enterprise systems need to be fast, reliable, and scalable. In a world of JMS
systems that require near-zero downtime, the messaging architecture must support the
clustering of JMS resources such as queues and topics, while accounting for the load-balancing
of distributed JMS message traffic.

The JBI Runtime Environment supports clusters of JMS Binding Components and JMS
brokers. The clustering of JMS binding components requires deploying one instance of a JMS
binding component to each JBI runtime in a clustered JBI Runtime Environment. The
availability and method of configuring a cluster of JMS brokers depends on on the JMS
provider. The Enterprise Edition of Sun Java System Message Queue supports clustering of JMS
brokers.

Note – Clustering is supported for queues only. Clustering is not supported for topics.

Clustering and the JMS Binding Component is described in the following categories:
■ “JMS High Availability” on page 49
■ “JMS Load Balancing” on page 50
■ “JMS Performance” on page 50

JMS High Availability
High availability (or failover) clusters are designed to improve availability of services by
removing any single points of failure. Nodes in the cluster also provide failover and redundancy
capabilities. If one node in a cluster fails, then another node ensures that there is no loss of
availability of the service. A logical front-end is responsible for configuring two or more nodes
to act as redundant services.

To achieve high availability of JMS services, the JMS Binding Component is available in every
instance of JBI runtime. Each instance of JBI runtime is also associated with one application
server running in a clustered environment. The deployment of a service assembly is replicated
to each JMS Binding Component instance. As a result, multiple consumers or producers are
created on connections established by the JMS Binding Component instances to the same JMS
broker. The JMS broker can be a standalone broker or a broker in a high-performance cluster of
brokers.

Because JMS Binding Component instances are replicated, a crash to one instance does not
result in a loss of service. The JMS message acknowledgement protocol guarantees at least once
delivery of messages (no loss of messages). In conjunction with XA, exactly once semantics can
be achieved. A crash to the JMS Binding Component during message delivery results in the JMS
broker detecting a connection loss (lacking of message acknowledgement) and redelivering the

JMS Binding Component Clustering

Chapter 1 • Using the JMS Binding Component 49

message to the next available JMS Binding Component receiving from the same queue. With
XA, a crash that leaves behind any in-doubt transactions can be recovered when the JMS
Binding Component performs XA recovery in coordination with the JBI runtime and the
transaction manager. Therefore, the combination of JMS acknowledgement protocol and XA
protocol can support failover and recovery.

JMS Load Balancing
Load balancing clusters are designed to distribute the workload across multiple nodes in the
cluster. The clusters accomplish this by having one logical front-end to the cluster that
distributes any requests for work to any node in the cluster. The main purpose of this type of
cluster is to provide improved performance, although they often include some high-availability
features.

JMS supports load balancing by allowing multiple receivers on a queue. Replication of deployed
service assemblies results in multiple JMS Binding Component instances receiving from the
same queue. Messages are delivered in a point-to-point fashion, with only one receiver getting
one message at a time. The JMS broker balances the load by delivering messages from the queue
to any available receivers on that queue. The algorithm used for load balancing depends on the
JMS provider.

Note – Load balancing is only valid if queues are used, not topics.

JMS Performance
High-performance clusters are a special type of load balancing cluster. A logical front-end to the
cluster partitions the work into tiny chunks and distribute each chunk to nodes in the cluster.
When the work is done, the logical front-end reassembles the result and then returns the
completed result to the client of the cluster.

Replication of a JMS Binding Component results in multiple receivers on a queue in a clustered
or nonclustered broker setup. Load is distributed across the JBI instances as a result of having
multiple receivers on one or more queues.

To achieve even higher performance, the JMS brokers should be clustered. Broker clusters
enable a message server to scale its operations with the volume of message traffic by distributing
client connections among multiple brokers. For Sun Java System Message Queue, in a clustered
broker environment, each broker within a cluster is directly connected to all the others. Each
client (JMS Binding Component consumer or producer) has a single home broker with which it
communicates directly, sending and receiving messages as if that broker were the only one on
the server.

JMS Binding Component Clustering

Using the JMS Binding Component • December 200850

Behind the scenes, the home broker works with the other brokers in the cluster to share the load
of providing delivery services for all connected clients. One broker within the cluster can be
designated as the master broker. The master broker maintains a configuration change record in
which changes to the cluster’s persistent entities (destinations and durable subscriptions) are
recorded. This record is used to propagate such change information to brokers that were offline
at the time the changes occurred.

For detailed information about clustering for Sun Java System Message Queue, see the Sun Java
System Message Queue documentation.

The following diagram illustrates how a cluster of JBI/JMS Binding Components and a cluster
of Sun Java System Message Queue brokers appears.

JMS Binding Component Clustering

Chapter 1 • Using the JMS Binding Component 51

JBI Runtime
Environment

Instance #1
JMS Binding
Component

SA

JBI Runtime
Environment

Instance #3
JMS Binding
Component

SA

JBI Runtime
Environment

Instance #2
JMS Binding
Component

SA

Broker Instance 1

Queue

Broker Instance 3
(Master Broker)

Queue

Broker Instance 2

Queue

Configuration
Change
Record

JMS Binding Component Clustering

Using the JMS Binding Component • December 200852

Index

A
address element, 41

B
batch size, 44
binding element, 42

C
client ID, 36, 44
clustering, 49-51
concurrency mode, 45
connection factory, 24
connection URL, 24, 31, 41
correlation ID, 39, 46

D
delivery mode, 36, 43
destination, 32, 35, 43
destination type, 32, 35, 43
disable message ID, 44
disable message timestamp, 44

E
elements

address, 41

elements (Continued)
binding, 42
jmsjcaOptions, 41-42
mapmessage, 48
message, 45-47
operation, 42-45
properties, 47-48

F
features, 7
Forward as Attachment, 16, 33

H
high availability, 49-50

I
inbound InOut exchange scenario, 11-12
inbound scenario, 8-9
initial context factory, 26

J
JMS server, connecting to, 24-27
JMSJCA, 24, 41
jmsjcaOptions element, 41-42

53

JNDI
specifying options, 23
using to connect, 25-27

L
LDAP, 26
load balancing, 50

M
managed connection factory, 25
mapmessage element, 48
maximum concurrent consumers, 45
message element, 45-47
message selector, 32, 36, 44
message type, 39, 45

N
normalized message properties

general, 37-40
inbound, 30-33
outbound, 33-37

O
on demand receive scenario, 12
operation element, 42-45
outbound InOut exchange scenario, 10-11
outbound scenario, 7-8

P
performance, 16, 33, 37, 50-51
priority, 38, 43
properties element, 47-48
provider URL, 26

R
redelivery handling, 27-30, 45

S
scenarios

inbound, 8-9
inbound InOut exchange, 11-12
on demand receive, 12
outbound, 7-8
outbound InOut exchange, 10-11
XA, 9-10

security credentials, 26
security principal, 26
subscription durability, 36, 44
subscription name, 37, 44
Sun Java System Message Queue, 24
Sun JMS IQ Manager, 24

T
time to live, 38, 43
timeout, 36, 44

U
user properties, 40

W
wizard

New File, 14-15
New WSDL Document, 14

WSDL documents, creating, 13-23

X
XA scenario, 9-10

Index

Using the JMS Binding Component • December 200854

	Using the JMS Binding Component
	Using the JMS Binding Component
	JMS Binding Component Overview
	JMS Binding Component Features
	JMS Binding Component Scenarios
	Outbound Scenario
	Inbound Scenario
	XA Scenario
	Outbound InOut Exchange Scenario
	Inbound InOut Exchange Scenario
	On Demand Receive Scenario

	Creating JMS-Based Concrete WSDL Documents
	To Create a JMS-Based Concrete WSDL Document from the New WSDL Document Wizard
	To Create a JMS-Based Concrete WSDL Document from the New File Wizard
	Request Connection Configuration
	Request Consumer Configuration
	Request Publisher Configuration
	Response Destination Configuration
	Response Consumer Configuration
	Response Publisher Configuration
	Advanced Configuration

	Connecting to the JMS Server
	Specifying the Protocol, Server, and Port
	Connecting to the JMS Server by Using JNDI
	Using the lookup Approach
	Using the jndi Approach

	Configuring Redelivery Handling
	Configuring Redelivery Handling from the Wizard
	Configuring Redelivery Handling by Editing the WSDL Document

	Using the Normalized Message Properties
	Inbound Normalized Message Properties
	Connection URL Property (org.glassfish.openesb.jms.inbound.connectionurl)
	User Name Property (org.glassfish.openesb.jms.inbound.username)
	Message Selector Property (org.glassfish.openesb.jms.inbound.messageselector)
	Destination Property (org.glassfish.openesb.jms.inbound.destination)
	Destination Type Property (org.glassfish.openesb.jms.inbound.destinationtype)
	Forward As Attachment Property (org.glassfish.openesb.jms.inbound.forwardasattachment)

	Outbound Normalized Message Properties
	Connection URL Property (org.glassfish.openesb.jms.outbound.connectionurl)
	User Name Property (org.glassfish.openesb.jms.outbound.username)
	Password Property (org.glassfish.openesb.jms.outbound.password)
	Destination Property (org.glassfish.openesb.jms.outbound.destination)
	Destination Type Property (org.glassfish.openesb.jms.outbound.destinationtype)
	XA Transaction Property (org.glassfish.openesb.jms.outbound.xatransaction)
	Delivery Mode Property (org.glassfish.openesb.jms.outbound.deliverymode)
	Timeout Property (org.glassfish.openesb.jms.outbound.timeOut)
	Client ID (org.glassfish.openesb.jms.outbound.clientid)
	Message Selector Property (org.glassfish.openesb.jms.outbound.messageselector)
	Subscription Durability Property (org.glassfish.openesb.jms.outbound.subscriptiondurability)
	Subscription Name Property (org.glassfish.openesb.jms.outbound.subscriptionname)
	Forward As Attachment Property (org.glassfish.openesb.jms.outbound.forwardasattachment)

	General Normalized Message Properties
	Time To Live Property (org.glassfish.openesb.jms.timetolive)
	Priority Property (org.glassfish.openesb.jms.priority)
	Message Type Property (org.glassfish.openesb.jms.messagetype)
	Correlation ID Property (org.glassfish.openesb.jms.correlationid)
	Reply To Destination Property (org.glassfish.openesb.jms.replytodestination)
	Reply To Destination Type Property (org.glassfish.openesb.jms.replytodestinationtype)
	User Properties Property (org.glassfish.openesb.jms.userproperties)

	JMS WSDL Extensibility Elements
	JMS Connectivity Elements
	JMS address Element
	JMS jmsjcaOptions Element

	JMS Binding Elements
	JMS binding Element
	JMS operation Element
	JMS message Element
	JMS properties and property Elements
	JMS mapmessage and mappart Elements

	JMS Binding Component Clustering
	JMS High Availability
	JMS Load Balancing
	JMS Performance

	Index

