
SWIFT Integration Projects

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 820–7113
December 2008

Copyright 2008 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In particular, and without
limitation, these intellectual property rights may include one or more U.S. patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights – Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions
of the FAR and its supplements.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other
countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, the Solaris logo, the Java Coffee Cup logo, docs.sun.com, Java, and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and SunTM Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts
of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to
the Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN LOOK GUIs and otherwise comply with Sun's written license
agreements.

Products covered by and information contained in this publication are controlled by U.S. Export Control laws and may be subject to the export or import laws in
other countries. Nuclear, missile, chemical or biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export
or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied persons and specially
designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2008 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Sun Microsystems, Inc. détient les droits de propriété intellectuelle relatifs à la technologie incorporée dans le produit qui est décrit dans ce document. En particulier,
et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plusieurs brevets américains ou des applications de brevet en attente aux Etats-Unis
et dans d'autres pays.

Cette distribution peut comprendre des composants développés par des tierces personnes.

Certaines composants de ce produit peuvent être dérivées du logiciel Berkeley BSD, licenciés par l'Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d'autres pays; elle est licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, le logo Solaris, le logo Java Coffee Cup, docs.sun.com, Java et Solaris sont des marques de fabrique ou des marques déposées de
Sun Microsystems, Inc. aux Etats-Unis et dans d'autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques
déposées de SPARC International, Inc. aux Etats-Unis et dans d'autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par
Sun Microsystems, Inc.

L'interface d'utilisation graphique OPEN LOOK et Sun a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît les efforts de
pionniers de Xerox pour la recherche et le développement du concept des interfaces d'utilisation visuelle ou graphique pour l'industrie de l'informatique. Sun détient
une licence non exclusive de Xerox sur l'interface d'utilisation graphique Xerox, cette licence couvrant également les licenciés de Sun qui mettent en place l'interface
d'utilisation graphique OPEN LOOK et qui, en outre, se conforment aux licences écrites de Sun.

Les produits qui font l'objet de cette publication et les informations qu'il contient sont régis par la legislation américaine en matière de contrôle des exportations et
peuvent être soumis au droit d'autres pays dans le domaine des exportations et importations. Les utilisations finales, ou utilisateurs finaux, pour des armes nucléaires,
des missiles, des armes chimiques ou biologiques ou pour le nucléaire maritime, directement ou indirectement, sont strictement interdites. Les exportations ou
réexportations vers des pays sous embargo des Etats-Unis, ou vers des entités figurant sur les listes d'exclusion d'exportation américaines, y compris, mais de manière
non exclusive, la liste de personnes qui font objet d'un ordre de ne pas participer, d'une façon directe ou indirecte, aux exportations des produits ou des services qui
sont régis par la legislation américaine en matière de contrôle des exportations et la liste de ressortissants spécifiquement designés, sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE "EN L'ETAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES OU TACITES
SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT TOUTE GARANTIE
IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE UTILISATION PARTICULIERE OU A L'ABSENCE DE CONTREFACON.

090629@22510

Contents

SWIFT Integration Projects ..7
Overview of SWIFT Message Libraries ..7
2008 Library Features ...8
Library Versions and Access ...8
What’s New in Java CAPS 6 Update 1 ..8
Installing the SWIFT Message Library ...9
SWIFT OTD Library System Requirements ...9
Installing the SWIFT OTD Libraries ..9

Installing the eWay on a Java CAPS Supported System ...9
Increasing the Heap Size ... 11

Increasing the heap size from the Enterprise Designer ... 11
Using the SWIFT OTD Library ... 13
SWIFT Message Type OTDs .. 13

SWIFT Message Structure .. 13
OTD and Collaboration Locations in Enterprise Designer .. 14

SWIFT Message Type Reference ... 14
Category 1 Messages .. 15
Category 2 Messages .. 16
Category 3 Messages .. 17
Category 4 Messages .. 18
Category 5 Messages .. 19
Category 6 Messages .. 22
Category 7 Messages .. 23
Category 8 Messages .. 25
Category 9 Messages .. 26
Validation Collaborations .. 27
SWIFT Generic Library ... 29
SWIFT Message Library JAR Files ... 29

3

Using Message Validation Features .. 29
Basic Validation Features .. 29
Library Methods ... 31

Message Validation Rules ... 33
Message Format Validation Rules (MFVR) .. 34
MFVR Validation Methods .. 34
MFVR Errors .. 35

In Collaboration Validation Methods ... 35
validate() ... 36

SWIFT Projects .. 40
Importing a Sample Project .. 41
SWIFT Projects and the Enterprise Designer .. 42

SWIFT Sample prjSwift_JCD_MFVROnly Project ... 42
SWIFT Sample prjSwift_JCD_MFVRAndBICPlusIBAN Project ... 43
SWIFT Sample prjSwift_JCD_BICPlusIBANOnly Project .. 44
SWIFT MX Validation Sample .. 46
SWIFT Correlation Repository Sample .. 48
SWIFT Sample eInsight™ Project ... 53
Using eGate With eInsight .. 54
Using a Business Process ... 55
Configuring the Modeling Elements ... 56
Creating a Connectivity Map .. 58
Binding the eWay Components ... 60
Creating an Environment ... 61
Configuring the eWays .. 62
Configuring the Integration Server .. 62
Creating the Deployment Profile ... 63
Creating and Starting the Domain ... 64
Building and Deploying the Project ... 64
Running the Sample ... 65

Updating BICDirService .. 65
Source of Information ... 65
BICDirService Method Operation ... 66

Updating BICPlusIBAN ... 68
BICPlusIBAN Validation Method Definitions ... 69

Error Message Information .. 69

Contents

SWIFT Integration Projects • December 20084

Error Messages ... 70
Message Examples ... 71

Using SWIFT FIN-Based Funds OTDs .. 73
SWIFT OTD Library Funds Features .. 73

Using SWIFT OTD Library Java Classes .. 74
Relation to OTD Message Types .. 75
SWIFT OTD Library Javadoc ... 75

OTD Library Java Classes ... 76

Contents

5

6

SWIFT Integration Projects

The following sections provide installation, library, and validation features for SWIFT
messages. The following topics are covered:

■ “Overview of SWIFT Message Libraries” on page 7
■ “Installing the SWIFT Message Library” on page 9
■ “Using the SWIFT OTD Library” on page 13
■ “Using Message Validation Features” on page 29
■ “SWIFT Projects” on page 40
■ “Using SWIFT FIN-Based Funds OTDs” on page 73
■ “Using SWIFT OTD Library Java Classes” on page 74

Overview of SWIFT Message Libraries
This topic provides information on installing the SWIFT message library as well as instructions
on using the library message validation features and some associated sample projects.

The Society for Worldwide Interbank Financial Telecommunication (SWIFT) Message Library
contains template messages for use with the Sun Java Composite Application Platform Suite.
These messages correspond to the SWIFT user-to-user message types employed by its SWIFT
network. The library provides an individual object type definition for each SWIFT message
type, as defined in the SWIFT standards documentation.

Each SWIFT message library represents a corresponding SWIFT message type. See the
complete list of these libraries below. You can use these libraries to transport SWIFT message
data with the Sun Java Composite Application Platform Suite.

This topic explains how to use these libraries with the Sun Java Composite Application Platform
Suite, as well as the features available with them.

7

2008 Library Features
The new SWIFT Message Libraries (2008 version) allow you to use the following features:

■ “SWIFT OTD Library Funds Features” on page 73
■ “Message Format Validation Rules (MFVR)” on page 34
■ “In Collaboration Validation Methods” on page 35

Library Versions and Access
SWIFT periodically revises their message types, adding to or subtracting from the total set of
Message Types, and modifying the definitions of individual message types. New sets are
identified with the year they are issued, such as 2001, 2002, 2003, 2005, 2006, 2007 or 2008.

Sun releases a new SWIFT Message Library corresponding to each revised set of SWIFT
message types. The current release includes templates supporting the 2001 through 2008
message type sets.

You must install each year’s version via a separate sar file. However, the MT Funds, Validation,
and BICDirService (see “SWIFT Message Library JAR Files” on page 29) features can only be
used with the 2003, 2005, 2006, 2007, and 2008 Libraries.

What’s New in Java CAPS 6 Update 1
The Sun SeeBeyond SWIFT OTD Library for this release includes the following changes and
new features:

■ Includes three new sample projects – prjSWIFT_JCD_MFVROnly,
prjSwift_JCD_BICPlusIBANOnly, and prjSwift_JCD_MFVRAndBICPlusIBAN –to replace
the prjSwift_JCD sample project.

■ Includes new BICPlusIBAN Validation Sample files.
■ Includes new validation collaborations.
■ Includes the SWIFT MX Validation Sample which demonstrates how different types of

”Generic Validations” are done on MX messages.
■ Includes the SWIFT Correlation Repository (SCR) Sample which is used to visualize SWIFT

workflows.
■ Includes Sample BIC files.
■ MPR methods are no longer supported or deprecated.

2008 Library Features

SWIFT Integration Projects • December 20088

Installing the SWIFT Message Library
This section lists supported operating systems and system requirements, and explains how to
install the SWIFT OTD Library.

■ “SWIFT OTD Library System Requirements” on page 9
■ “Installing the SWIFT OTD Libraries” on page 9
■ “Increasing the Heap Size” on page 11

Note – See the Sun Java Composite Application Platform Suite Installation Guide for
complete eGate installation instructions.

SWIFT OTD Library System Requirements
The SWIFT OTD Library Readme contains the latest information on:

■ Supported Operating Systems
■ System Requirements
■ External System Requirements

The SWIFT OTD Library Readme is uploaded with the product’s documentation file
(SwiftOTDLibraryDocs.sar) and can be accessed from the Documentation tab of the Sun Java
Composite Application Platform Suite Installer. Refer to the SWIFT OTD Library Readme for
the latest requirements before installing the SWIFT OTD Library.

Installing the SWIFT OTD Libraries
The Sun Java Composite Application Platform Suite Installer, a web-based application, is used
to select and upload eWays and add-on files during the installation process. The following
section describes how to install the SWIFT OTD Libraries.

Note – When the Repository is running on a UNIX operating system, the eWays are loaded from
the Suite Installer, running on a Windows platform, connected to the Repository server using
Internet Explorer.

Installing the eWay on a Java CAPS Supported System
Follow the directions for installing the Sun Java Composite Application Platform Suite in the
Sun Java Composite Application Platform Suite Installation Guide. After you have installed
eGateTM or eInsightTM, do the following:

Installing the SWIFT OTD Libraries

SWIFT Integration Projects 9

1. From the Sun Java Composite Application Platform Suite Installer’s Select Sun Java
Composite Application Platform Suite Products to Install table (Administration tab),
expand the eWay and OTD options.

2. Select the products you require for your Sun Java Composite Application Platform Suite and
include the following:
■ FileeWay (the File eWay is used by most sample Projects)
■ BatcheWay (the Batch eWay is required to run the MX validation sample project)
■ SwiftOTDLibrary: Common file used by all of the SWIFT OTD Libraries. Always install

this file. Each of the OTD Libraries is dependent on this file.
■ SwiftOTDLibrary2008: Installs the 2008 SWIFT OTD Library.
■ SwiftOTDLibrary2007: Installs the 2007 SWIFT OTD Library.
■ SwiftOTDLibrary2006: Installs the 2006 SWIFT OTD Library.
■ SwiftOTDLibrary2005: Installs the 2005 SWIFT OTD Library.
■ SwiftOTDLibrary2003: Install the 2003 SWIFT OTD Library.
■ SwiftOTDLibrary2002: Install the 2002 SWIFT OTD Library.
■ SwiftOTDLibrary2001: Install the 2001 SWIFT OTD Library.

3. To upload the SWIFT OTD Library User’s Guide, Help file, Javadoc, Readme, and sample
Projects, select the following:

4. SwiftOTDLibraryDocs
5. From the Selecting Files to Install box, locate and select your first product’s SAR file. Once

you have selected the SAR file, click Next. Your next selected product appears. Follow this
procedure for each of your selected products. The Installation Status window appears and
installation begins after the last SAR file has been selected.

6. Once your product’s installation is finished, continue installing the Sun Java Composite
Application Platform Suite as instructed in the Sun Java Composite Application Platform
Suite Installation Guide.

Note – The MT Funds and Validation features can only be used with the 2003 and 2005 OTD
libraries (see “Using Message Validation Features” on page 29).

Adding a Product to an Existing Suite Installation
If you are adding a library to an existing Sun Java Composite Application Platform Suite
installation, do the following:

1. Complete steps 1 through 4 above.
2. Open the Enterprise Designer and select Update Center from the Tools menu. The Update

Center Wizard appears.
3. For Step 1 of the wizard, simply click Next.

Installing the SWIFT OTD Libraries

SWIFT Integration Projects • December 200810

4. For Step 2 of the wizard, click the Add All button to move all installable files to the Include
in Install field, then click Next.

5. For Step 3 of the wizard, wait for the modules to download, then click Next.

6. The wizard’s Step 4 window displays the installed modules. Review the installed modules
and click Finish.

7. When prompted, restart the IDE (Integrated Development Environment) to complete the
installation.

After Installation
Once you install the eWay, it must then be incorporated into a Project before it can perform its
intended functions. See the eGate Integrator User’s Guide for more information on
incorporating the eWay into an eGate Project.

Increasing the Heap Size
Because of the size of the SWIFT OTD Library, the Heap Size may need to be increased before
using the library. If the heap size is not increased, you may receive an OutOfMemoryError
message, when you try to activate a SWIFT OTD Project.

If you receive this message during Project activation, you must increase the heap size before you
can activate any SWIFT OTD Projects. This action resets the Enterprise Designer’s maximum
memory size.

Increasing the heap size from the Enterprise Designer
1. From the Enterprise Designer’s Tools menu select Options. The Options Setup dialog box

appears (see “Increasing the heap size from the Enterprise Designer” on page 11).

2. Increase the configured heap size for the Enterprise Designer to 768 MB as displayed in
“Increasing the heap size from the Enterprise Designer” on page 11. Click OK.

Increasing the Heap Size

SWIFT Integration Projects 11

3. Close and restart the Enterprise Designer to allow your changes to take effect.

Increasing the heap size from the heapSize.bat file
If an OutOfMemoryError message occurs while you are trying to open the Enterprise Designer,
the heap size settings may be changed before starting the Enterprise Designer. You can increase
the heap size values found in the heapSize.bat file.

1. Go to the following directory and file:

<eGate Install Directory>/edesigner/bin/heapSize.bat

2. From the BAT file code, change the following heap size value to read as follows:
■ set eDesigner_heap_size=768

3. Save the file and start the Enterprise Designer.

Increasing the heap size from the Logical Host
1. Start the Logical Host.

2. Go to the Logical Host directory and double-click the start_domain1.bat file.

3. Open an internet browser and enter http://<host_name>:18000. The Integration Server
Administration window will open.

4. Login to the Integration Server Administration application.

5. On the right side of the window, select the JVM Settings tab.

6. Select the JVM Options link.

7. Change the default Heap Size from —Xmx512m to —Xmx768m.

8. Save the new settings and restart the Logical Host.

Increasing the Heap Size

SWIFT Integration Projects • December 200812

Using the SWIFT OTD Library
This section explains, lists, and provides a cross-reference for, the SWIFT OTD Library message
types.

■ “SWIFT Message Type OTDs” on page 13
■ “SWIFT Message Type Reference” on page 14

SWIFT Message Type OTDs
This section provides a general overview of the SWIFT message types and their OTDs.

SWIFT Message Structure
Messages used by the SWIFT network have a maximum of five components (see “SWIFT
Message Structure” on page 13), as follows:

■ Basic header block
■ Application header block
■ User header block (optional)
■ Text block
■ Trailer block

Each field component in the text block is preceded by a field tag. There are no field tags in the
header and trailer blocks. The one exception to this format is MT 121, EDIFACT FINPAY,
which has a single text field with no field tag identifier.

Information about a field common to all message types in which that field is used is found in the
Standards - General Field Definitions volume of the SWIFT User Handbook. Information about
a field specific to its use with a particular message type is found in the field specifications section
of the Standards volume of the SWIFT User Handbook for that message type.

SWIFT Message Type OTDs

SWIFT Integration Projects 13

OTD and Collaboration Locations in Enterprise
Designer
You can find the SWIFT OTDs, including the MT Fund OTDs and Generic OTD, in the
Enterprise Designer’s Project Explorer tree. This figure also shows the location of the Java-based
Validation Collaboration Definitions.

The Validation Collaborations directory contains the Collaboration Definitions that enable
the validation features of the SWIFT OTD Library. See “SWIFT Message Library JAR Files” on
page 29 for details.

The Category 5 directory contains the SWIFT MT Funds message template OTDs in the
library. See “Parse Debug Level Message Example” on page 71 for details.

The bic.jar file allows you to update the BICDirService feature. See “SWIFT Message Library
JAR Files” on page 29 for details.

SWIFT Message Type Reference
SWIFT groups message types into the following categories:

Customer Payments and Cheques

■ See “Category 1 Messages” on page 15.

Financial Institution Transfers

■ See “Category 2 Messages” on page 16.

Treasury Markets: Foreign Exchange and Derivatives

■ See “Category 3 Messages” on page 17.

Collections and Cash Letters

■ See “Category 4 Messages” on page 18.

Securities Markets

■ See “Category 5 Messages” on page 19.

Treasury Markets: Precious Metals and Syndications

■ See “Category 6 Messages” on page 22.

Documentary Credits and Guarantees

■ See “Category 7 Messages” on page 23.

SWIFT Message Type Reference

SWIFT Integration Projects • December 200814

Travellers Cheques

■ See “Category 8 Messages” on page 25.

Cash Management and Customer Status

■ See “Category 9 Messages” on page 26.

The remainder of this section discusses these categories and the message types within each
category.

The 2001, 2002, 2003, 2005, 2006, 2007 and 2008 versions of the SWIFT OTD Library are
provided with the SWIFT OTD Library. You must install each version via a separate sar file.
However, the MT Funds, Validation, and BICDirService features can only be used with 2003,
2005, 2006, 2007, and 2008 OTDs (see “SWIFT Message Library JAR Files” on page 29).

For explanations of the 2001, 2002, 2003, 2004, 2006, 2007, and 2008 versions, see the SWIFT
Web site at http://www.swift.com.

Category 1 Messages
The table below lists the Category 1 message types, Customer Payments and Cheques, with the
type designation MT 1xx.

TABLE 1 Customer Payments and Cheques

SWIFT Message Type Description

MT 101 Request for Transfer

MT 102 Multiple Customer Credit Transfer

MT 102+(STP) Multiple Customer Credit Transfer (STP)

MT 103 Single Customer Credit Transfer

MT 103+ (REMIT) Single Customer Credit Transfer (REMIT)

MT 103+ (STP) Single Customer Credit Transfer (STP)

MT 104 Direct Debit and Request for Debit Transfer Message (STP)

MT 105 EDIFACT Envelope

MT 106 EDIFACT Envelope

MT 107 General Direct Debit Message

MT 110 Advice of Cheque(s)

SWIFT Message Type Reference

SWIFT Integration Projects 15

http://www.swift.com

TABLE 1 Customer Payments and Cheques (Continued)
SWIFT Message Type Description

MT 111 Request for Stop Payment of a Cheque

MT 112 Status of a Request for Stop Payment of a Cheque

MT 121 Multiple Interbank Funds Transfer (EDIFACT FINPAY Message)

MT 190 Advice of Charges, Interest and Other Adjustments

MT 191 Request for Payment of Charges, Interest and Other Expenses

MT 192 Request for Cancellation

MT 195 Queries

MT 196 Answers

MT 198 Proprietary Message

MT 199 Free Format Message

Category 2 Messages
The table below lists the Category 2 message types, Financial Institution Transfers, with the type
designation MT 2xx.

TABLE 2 Financial Institution Transfers

SWIFT Message Type Description

MT 200 Financial Institution Transfer for its Own Account

MT 201 Multiple Financial Institution Transfer for its Own Account

MT 202 General Financial Institution Transfer

MT 203 Multiple General Financial Institution Transfer

MT 204 Financial Markets Direct Debit Message

MT 205 Financial Institution Transfer Execution

MT 206 Cheque Truncation Message

MT 207 Request for Financial Institution Transfer

MT 210 Notice to Receive

SWIFT Message Type Reference

SWIFT Integration Projects • December 200816

TABLE 2 Financial Institution Transfers (Continued)
SWIFT Message Type Description

MT 256 Advice of Non-Payment of Cheques

MT 290 Advice of Charges, Interest and Other Adjustments

MT 291 Request for Payment of Charges, Interest and Other Expenses

MT 292 Request for Cancellation

MT 295 Queries

MT 296 Answers

MT 298 Proprietary Message

MT 299 Free Format Message

Category 3 Messages
The table below lists the Category 3 message types, Treasury Markets, Foreign Exchange,
Money Markets, and Derivatives, with the type designation MT 3xx.

TABLE 3 Treasury Markets, Foreign Exchange, Money Markets, and Derivatives

SWIFT Message
Type Description

MT 300 Foreign Exchange Confirmation

MT 303 Forex/Currency Option Allocation Instruction

MT 304 Advice/Instruction of a Third Party Deal

MT 305 Foreign Currency Option Confirmation

MT 306 Foreign Currency Option Confirmation

MT 307 Advice/Instruction of a Third Party FX Deal

MT 308 Instruction for Gross/Net Settlement of Third Party FX Deals

MT 320 Fixed Loan/Deposit Confirmation

MT 321 Instruction to Settle a Third Party Loan/Deposit

MT 330 Call/Notice Loan/Deposit Confirmation

MT 340 Forward Rate Agreement Confirmation

SWIFT Message Type Reference

SWIFT Integration Projects 17

TABLE 3 Treasury Markets, Foreign Exchange, Money Markets, and Derivatives (Continued)
SWIFT Message
Type Description

MT 341 Forward Rate Agreement Settlement Confirmation

MT 350 Advice of Loan/Deposit Interest Payment

MT 360 Single Currency Interest Rate Derivative Confirmation

MT 361 Cross Currency Interest Rate Swap Confirmation

MT 362 Interest Rate Reset/Advice of Payment

MT 364 Single Currency Interest Rate Derivative Termination/Recouponing Confirmation

MT 365 Single Currency Interest Rate Swap Termination/Recouponing Confirmation

MT 380 Foreign Exchange Order

MT 381 Foreign Exchange Order Confirmation

MT 390 Advice of Charges, Interest and Other Adjustments

MT 391 Request for Payment of Charges, Interest and Other Expenses

MT 392 Request for Cancellation

MT 395 Queries

MT 396 Answers

MT 398 Proprietary Message

MT 399 Free Format Message

Category 4 Messages
The table below lists the Category 4 message types, Collections and Cash Letters, with the type
designation MT 4xx.

TABLE 4 Collections and Cash Letters

SWIFT Message Type Description

MT 400 Advice of Payment

MT 405 Clean Collection

MT 410 Acknowledgment

SWIFT Message Type Reference

SWIFT Integration Projects • December 200818

TABLE 4 Collections and Cash Letters (Continued)
SWIFT Message Type Description

MT 412 Advice of Acceptance

MT 416 Advice of Non-Payment/Non-Acceptance

MT 420 Tracer

MT 422 Advice of Fate and Request for Instructions

MT 430 Amendment of Instructions

MT 450 Cash Letter Credit Advice

MT 455 Cash Letter Credit Adjustment Advice

MT 456 Advice of Dishonor

MT 490 Advice of Charges, Interest and Other Adjustments

MT 491 Request for Payment of Charges, Interest and Other Expenses

MT 492 Request for Cancellation

MT 495 Queries

MT 496 Answers

MT 498 Proprietary Message

MT 499 Free Format Message

Category 5 Messages
The table below lists the Category 5 message types, Securities Markets, with the type designation
MT 5xx.

TABLE 5 Securities Markets

SWIFT Message Type Description

MT 500 Instruction to Register

MT 501 Confirmation of Registration or Modification

MT 502 Order to Buy or Sell

MT 502 (FUNDS) Order to Buy or Sell (FUNDS)

SWIFT Message Type Reference

SWIFT Integration Projects 19

TABLE 5 Securities Markets (Continued)
SWIFT Message Type Description

MT 503 Collateral Claim

MT 504 Collateral Proposal

MT 505 Collateral Substitution

MT 506 Collateral and Exposure Statement

MT 507 Collateral Status and Processing Advice

MT 508 Intra-Position Advice

MT 509 Trade Status Message

MT 509 (FUNDS) Trade Status Message (FUNDS)

MT 510 Registration Status and Processing Advice

MT 513 Client Advice of Execution

MT 514 Trade Allocation Instruction

MT 515 Client Confirmation of Purchase or Sale

MT 515 (FUNDS) Client Confirmation of Purchase or Sale (FUNDS)

MT 516 Securities Loan Confirmation

MT 517 Trade Confirmation Affirmation

MT 518 Market-Side Securities Trade Confirmation

MT 519 Modification of Client Details

MT 524 Intra-Position Instruction

MT 526 General Securities Lending/Borrowing Message

MT 527 Triparty Collateral Instruction

MT 528 ETC Client-Side Settlement Instruction

MT 529 ETC Market-Side Settlement Instruction

MT 530 Transaction Processing Command

MT 535 Statement of Holdings

MT 535 (FUNDS) Statement of Holdings (FUNDS)

MT 536 Statement of Transactions

MT 537 Statement of Pending Transactions

SWIFT Message Type Reference

SWIFT Integration Projects • December 200820

TABLE 5 Securities Markets (Continued)
SWIFT Message Type Description

MT 538 Statement of Intra-Position Advice

MT 540 Receive Free

MT 541 Receive Against Payment

MT 542 Deliver Free

MT 543 Deliver Against Payment

MT 544 Receive Free Confirmation

MT 545 Receive Against Payment Confirmation

MT 546 Deliver Free Confirmation

MT 547 Deliver Against Payment Confirmation

MT 548 Settlement Status and Processing Advice

MT 549 Request for Statement/Status Advice

MT 558 Triparty Collateral Status and Processing Advice

MT 559 Paying Agent’s Claim

MT 564 Corporate Action Notification

MT 565 Corporate Action Instruction

MT 566 Corporate Action Confirmation

MT 567 Corporate Action Status and Processing Advice

MT 568 Corporate Action Narrative

MT 569 Triparty Collateral and Exposure Statement

MT 574 (IRSLST) IRS 1441 NRA (Beneficial Owners’ List)

MT 574 (W8BENO) IRS 1441 NRA (Beneficial Owner Withholding Statement)

MT 575 Report of Combined Activity

MT 576 Statement of Open Orders

MT 577 Statement of Numbers

MT 578 Statement of Allegement

MT 579 Certificate Numbers

MT 581 Collateral Adjustment Message

SWIFT Message Type Reference

SWIFT Integration Projects 21

TABLE 5 Securities Markets (Continued)
SWIFT Message Type Description

MT 582 Reimbursement Claim or Advice

MT 584 Statement of ETC Pending Trades

MT 586 Statement of Settlement Allegements

MT 587 Depositary Receipt Instruction

MT 588 Depositary Receipt Confirmation

MT 589 Depositary Receipt Status and Processing Advice

MT 590 Advice of Charges, Interest and Other Adjustments

MT 591 Request for Payment of Charges, Interest and Other Expenses

MT 592 Request for Cancellation

MT 595 Queries

MT 596 Answers

MT 598 Proprietary Message

MT 599 Free Format Message

Category 6 Messages
The table below lists the Category 6 message types, Treasury Markets, Precious Metals, with the
type designation MT 6xx.

TABLE 6 Treasury Markets, Precious Metals

SWIFT Message
Type Description

MT 600 Precious Metal Trade Confirmation

MT 601 Precious Metal Option Confirmation

MT 604 Precious Metal Transfer/Delivery Order

MT 605 Precious Metal Notice to Receive

MT 606 Precious Metal Debit Advice

MT 607 Precious Metal Credit Advice

SWIFT Message Type Reference

SWIFT Integration Projects • December 200822

TABLE 6 Treasury Markets, Precious Metals (Continued)
SWIFT Message
Type Description

MT 608 Statement of a Metal Account

MT 609 Statement of Metal Contracts

MT 620 Metal Fixed Loan/Deposit Confirmation

MT 643 Notice of Drawdown/Renewal

MT 644 Advice of Rate and Amount Fixing

MT 645 Notice of Fee Due

MT 646 Payment of Principal and/or Interest

MT 649 General Syndicated Facility Message

MT 690 Advice of Charges, Interest and Other Adjustments

MT 691 Request for Payment of Charges, Interest and Other Expenses

MT 692 Request for Cancellation

MT 695 Queries

MT 696 Answers

MT 698 Proprietary Message

MT 699 Free Format Message

Category 7 Messages
The table below lists the Category 7 message types, Treasury Markets, Syndication, with the
type designation MT 7xx.

TABLE 7 Treasury Markets, Syndication

SWIFT Message Type Description

MT 700 Issue of a Documentary Credit

MT 701 Issue of a Documentary Credit

MT 705 Pre-Advice of a Documentary Credit

MT 707 Amendment to a Documentary Credit

SWIFT Message Type Reference

SWIFT Integration Projects 23

TABLE 7 Treasury Markets, Syndication (Continued)
SWIFT Message Type Description

MT 710 Advice of a Third Bank’s Documentary Credit

MT 711 Advice of a Third Bank’s Documentary Credit

MT 720 Transfer of a Documentary Credit

MT 721 Transfer of a Documentary Credit

MT 730 Acknowledgment

MT 732 Advice of Discharge

MT 734 Advice of Refusal

MT 740 Authorization to Reimburse

MT 742 Reimbursement Claim

MT 747 Amendment to an Authorization to Reimburse

MT 750 Advice of Discrepancy

MT 752 Authorization to Pay, Accept or Negotiate

MT 754 Advice of Payment/Acceptance/Negotiation

MT 756 Advice of Reimbursement or Payment

MT 760 Guarantee

MT 767 Guarantee Amendment

MT 768 Acknowledgment of a Guarantee Message

MT 769 Advice of Reduction or Release

MT 790 Advice of Charges, Interest and Other Adjustments

MT 791 Request for Payment of Charges, Interest and Other Expenses

MT 792 Request for Cancellation

MT 795 Queries

MT 796 Answers

MT 798 Proprietary Message

MT 799 Free Format Message

SWIFT Message Type Reference

SWIFT Integration Projects • December 200824

Category 8 Messages
The table below lists the Category 8 message types, Travellers Cheques, with the type
designation MT 8xx.

TABLE 8 Travellers Cheques

SWIFT Message
Type Description

MT 800 T/C Sales and Settlement Advice [Single]

MT 801 T/C Multiple Sales Advice

MT 802 T/C Settlement Advice

MT 810 T/C Refund Request

MT 812 T/C Refund Authorization

MT 813 T/C Refund Confirmation

MT 820 Request for T/C Stock

MT 821 T/C Inventory Addition

MT 822 Trust Receipt Acknowledgment

MT 823 T/C Inventory Transfer

MT 824 T/C Inventory Destruction/Cancellation Notice

MT 890 Advice of Charges, Interest and Other Adjustments

MT 891 Request for Payment of Charges, Interest and Other Expenses

MT 892 Request for Cancellation

MT 895 Queries

MT 896 Answers

MT 898 Proprietary Message

MT 899 Free Format Message

SWIFT Message Type Reference

SWIFT Integration Projects 25

Category 9 Messages
The table below lists the Category 9 message types, Cash Management and Customer Status,
with the type designation MT 9xx.

TABLE 9 Cash Management and Customer Status

SWIFT Message Type Description

MT 900 Confirmation of Debit

MT 910 Confirmation of Credit

MT 920 Request Message

MT 935 Rate Change Advice

MT 940 Customer Statement Message

MT 941 Balance Report

MT 942 Interim Transaction Report

MT 950 Statement Message

MT 970 Netting Statement

MT 971 Netting Balance Report

MT 972 Netting Interim Statement

MT 973 Netting Request Message

MT 985 Status Inquiry

MT 986 Status Report

MT 990 Advice of Charges, Interest and Other Adjustments

MT 991 Request for Payment of Charges, Interest and Other Expenses

MT 992 Request for Cancellation

MT 995 Queries

MT 996 Answers

MT 998 Proprietary Message

MT 999 Free Format Message

SWIFT Message Type Reference

SWIFT Integration Projects • December 200826

Validation Collaborations
The table below lists the Validation Collaboration. Validation Collaboration Definitions are
provided for many key SWIFT message types.

TABLE 10 Common Group Messages

Validation Collaborations Validates OTD/Message Type

ValidateMt_101 MT_101 - Request for Transfer

ValidateMt_103_STP MT_103_STP - Single Customer Credit Transfer

ValidateMt_202 MT_202 - General Financial Institution Transfer

ValidateMt_300 MT_300 - Foreign Exchange Confirmation

ValidateMt_500 MT_500 — Instruction to Register

ValidateMT_502 MT_502 — Order to Buy or Sell

ValidateMt_502_FUNDS MT_502_FUNDS - Order to Buy or Sell (FUNDS)

ValidateMt_508 MT_508 — Intra-Position Advice

ValidateMt_509 MT_509 — Trade Status Mesage

ValidateMt_513 MT_513 — Client Advice Execution

ValidateMt_515 MT_515 — Client Confirmation of Purchase or Sell

ValidateMt_515_FUNDS MT_515_FUNDS - Client Confirmation of Purchase or Sale (FUNDS)

ValidateMt_517 MT_517 — Trade Confirmation Affirmation

ValidateMt_518 MT_518 — Market Side Security Trade

ValidateMt_527 MT_527 — Tri-party Collateral Instruction

ValidateMt_535 MT_535 - Statement of Holdings

ValidateMt_536 MT_536 - Statement of Transactions

ValidateMt_537 MT_537 - Statement of Pending Transactions

ValidateMt_538 MT_538 — Statement of Intra-Position Advices

ValidateMt_540 MT_540 - Receive Free

ValidateMt_541 MT_541 - Receive Against Payment

ValidateMt_542 MT_542 - Deliver Free

ValidateMt_543 MT_543 - Deliver Against Payment

SWIFT Message Type Reference

SWIFT Integration Projects 27

TABLE 10 Common Group Messages (Continued)
Validation Collaborations Validates OTD/Message Type

ValidateMt_544 MT_544 - Receive Free Confirmation

ValidateMt_545 MT_545 - Receive Against Payment Confirmation

ValidateMt_546 MT_546 - Deliver Free Confirmation

ValidateMt_547 MT_547 - Deliver Against Payment Confirmation

ValidateMt_548 MT_548 - Statement Status and Processing Advice

ValidateMt_558 MT_558 — Tri-party Collateral Status and Processing Advice

ValidateMt_559 MT_559 — Paying Agent's Claim

ValidateMt_564 MT_564 — Corporate Action Notification

ValidateMt_565 MT_565 — Corporate Action Instruction

ValidateMt_566 MT_566 — Corporate Action Confirmation

ValidateMt_567 MT_567 — Corporate Action Status and Processing Advice

ValidateMt_568 MT_568 — Corporate Action Narrative

ValidateMt_576 MT_576 — Tri-party Collateral and Exposure Statement

ValidateMt_578 MT_578 — Statement Allegement

ValidateMt_586 MT_586 — Statement of Settlement Allegement

ValidateMt_590 MT_590 — Advice of Charges, Interest and Other Adjustment

ValidateMt_595 MT_595 — Queries

ValidateMt_596 MT_596 — Answers

ValidateMt_598 MT_598 — Property Message

ValidateMt_900 MT_900 - Confirmation of Debit

ValidateMt_910 MT_910 - Confirmation of Credit

ValidateMt_940 MT_940 - Customer Statement Message

ValidateMt_950 MT_950 - Statement Message

For information about the Validation Collaborations, see “Using Message Validation Features”
on page 29

SWIFT Message Type Reference

SWIFT Integration Projects • December 200828

SWIFT Generic Library
The SWIFT OTD Libraries for 2008 include a Generic OTD used to route SWIFT messages.
The Generic OTD can be used to parse any valid SWIFT message, allowing you to unmarshal
and read the message headers to determine the message type, while leaving the message data as
a String. Messages can then be routed to the appropriate OTD for that message type.

SWIFT Message Library JAR Files
The SWIFT Message Library include two JAR files, bic.jar, and SwiftOTDLibrary.jar, that are
visible from the Project Explorer’s Swift directory. These JAR files provide the classes and
methods that support the Validation Collaborations.

Using Message Validation Features
This section explains how to use specialized message validation features and Projects available
with the SWIFT OTD Library.

■ “Message Validation Rules” on page 33
■ “In Collaboration Validation Methods” on page 35

Basic Validation Features
The SWIFT OTD Library accomplishes validation operations via Java-based Collaboration
Definitions packaged with the library. These Collaboration Definitions have the following
validation features provided to enhance their use:

■ Message Format Validation Rules (MFVRs): Set of functions that accurately test the
semantic validity of a given subset of the SWIFT messages.

■ BICDirService (Bank Identifier Code Directory Service) Lookup: A set of methods that
provide search and validation functionality for SWIFT”s BIC codes and ISO currency and
country codes. The information used to look up and validate is provided by SWIFT.

■ BICPlusIBAN Validation: A set of methods that provide search and validation
functionality for SWIFT”s BIC and IBAN codes. The SWIFT OTD Library implements the
suggested validation rules provided by SWIFT. Please see BICPlusIBAN Directory
Technical Specifications from SWIFT for more information.

These validation features share the following use characteristics:

■ Each available method and function is fully incorporated into and used by the appropriate
SWIFT message OTD.

Using Message Validation Features

SWIFT Integration Projects 29

■ You can modify the validation rules for your system if desired. Customize the
Collaboration’s validation rules by checking the Collaboration out (from Version Control)
and modify the Validation Collaboration code. The sample implementation and
instructions are provided in the Validation Collaboration as Java comments.

■ Validation methods and functions have no dependencies outside SWIFT data files and the
individual OTD.

Installing the OTD library allows eGate and any eWay you use with the library to provide full
support for these features. The rest of this section provides a summary of how these features
operate with the SWIFT OTD Library.

Validation Components
In addition to components described under “Basic Validation Features” on page 29, the SWIFT
OTD Library also contains the following basic components:
■ SWIFT OTDs (2001, 2002, 2003, 2005, 2006, 2007, and 2008): OTDs in the SWIFT OTD

Library that represent standard SWIFT message types. See “Increasing the heap size from
the heapSize.bat file” on page 12 for details. The validation features are only available with
the 2003, 2005, 2006, 2007, and 2008 OTD libraries.

■ MT Funds OTDs: Specialized OTDs that allow you to automate the specialized funds
operations. This category contains FIN-based OTDs.

■ Validation Collaboration Definitions: Validation eGate components provided for each
SWIFT message type. See “Validation Collaboration Definitions” on page 30 for details.

■ Sample Projects: Sample Projects have been provided as examples of validation
implementation. See “SWIFT Projects” on page 40 for details.

Validation Methods
The SWIFT OTD Library now provides two additional OTD API methods, validate() and
validateMFVR(), that can be invoked by a Collaboration to validate SWIFT 2003, 2005, 2006,
2007 and 2008 OTDs directly in the Collaboration. (see “In Collaboration Validation Methods”
on page 35). This is an alternative to using the Validation Collaboration Definitions.

Validation Collaboration Definitions
Validation Collaboration Definitions are provided for many key SWIFT message types. These
Collaboration Definitions, when combined with eGate Services, become Java-based
Collaborations that verify the syntax of the SWIFT messages.

This verification is done by parsing the data into a structure that conforms to the SWIFT
standard specifications. The validation functions use these Collaborations to access specific
data that is then verified according the algorithms of the MFVR specifications.

For lists of these Collaboration Definitions, see “Message Validation Rules” on page 33.

Using Message Validation Features

SWIFT Integration Projects • December 200830

Validation Operation
You can combine the library’s validation features in any way desired, to meet your specific
needs. The SWIFT OTD Library packages a prebuilt implementation that takes SWIFT
messages from a JMS Queue or Topic and validates them individually, then writes the results to
a specified JMS Queue or Topic. One set contains valid messages, and the other contains the
invalid ones, along with messages indicating the errors generated.

Validation Project examples

The validation Collaboration Definitions are part of the OTD Library and packaged with
validation Project examples you can import into eGate.

Basic validation steps

Each validation Collaboration Definition has only the applicable tests for a specific
OTD/message type, but they all operate according to the same general format, as follows:

■ The Service first tests a message to make sure it is syntactically correct, by parsing it into the
OTD.

■ If the message fails, the message and its parser error are sent to an error Queue. If the
message is valid, all applicable MFVR functions are applied to the message.

■ Any and all errors produced from these tests are accumulated, and the combined errors, as
well as the message, are written to an error Queue for later processing. As long as no error is
fatal, all applicable tests are applied.

■ Again any and all errors produced from these tests are accumulated, and the combined
errors and message are written to the error Queue for later processing.

■ If no errors are found in a message, it is sent to a Queue for valid messages.

For an explanation of using these Collaboration Definitions and the validation Project
examples, see “SWIFT Projects” on page 40.

Library Methods
The SWIFT OTD Library provides a set of run-time methods that allow you to manipulate
OTD data in a variety of ways. The following methods are the most frequently used with
validation operations:

■ set(): Allows you to set data on a parent node using a byte array or a string as a parameter.
■ value(): Lets you get the string value of data in a node at any tree level.
■ getLastSuccessInfo(): Returns a string that represents information about the last node in

the tree that was successfully parsed.

Using Message Validation Features

SWIFT Integration Projects 31

■ command(): Allows you to pass flags as parameters, which set levels that determine the
quantity of debug information you receive (see “Setting the Debug Level” on page 70 for
details).

■ marshalToString() and unmarshalFromString(): Returns string data from or accepts
string data to a desired node.

In addition, the library has methods that allow you to perform basic but necessary operations
with the OTDs. See Table 11.

TABLE 11 Basic OTD Methods

Method Description

add() Adds a repetition to a given child node.

append() Adds given data at the end of existing data.

copy() Copies given data at a specified point.

count() Gives the count of node repetitions.

delete() Erases data at a specified point.

get() Retrieves data from a node.

has() Checks whether a specified child node is present.

insert() Inserts given data at a specified point.

length() Returns the length of data contained in an object.

marshal() Serializes internal data into an output stream.

remove() Removes a given child node repetition.

reset() Clears out any data held by an OTD.

size() Returns the current number of repetitions for the current child node.

unmarshal() Parses given input data into an internal data tree.

To help in your use of the SWIFT OTD Library and its features, the library includes a Javadoc.
You can see this document for complete details on all of these methods. See Table 13 for more
information on this document and how to use it.

Using Message Validation Features

SWIFT Integration Projects • December 200832

Message Validation Rules
Validation Collaborations are provided for the following SWIFT Message types and their
corresponding OTDs in the library:

MFVR
■ MT 101: Request for Transfer
■ MT 103+ (STP): Single Customer Credit Transfer
■ MT 202: General Financial Institution Transfer
■ MT 300: Foreign Exchange Confirmation
■ MT 500: Instruction to Register
■ MT 502: Order to Buy or Sell
■ MT 502 (FUNDS): Order to Buy or Sell
■ MT 508: Intra-Position Advice
■ MT 509; Trade Status Message
■ MT 513: Client Advice Execution
■ MT 515: Client Confirmation of Purchase or Sell
■ MT 515 (FUNDS): Client Confirmation of Purchase or Sale
■ MT 517: Trade Confirmation Affirmation
■ MT 518: Market Side Security Trade
■ MT 527: Tri-party Collateral Instruction
■ MT 535: Statement of Holdings
■ MT 536: Statement of Transactions
■ MT 537: Statement of Pending Transactions
■ MT 538: Statement of Intra-Position Advices
■ MT 540: Receive Free
■ MT 541: Receive Against Payment Instruction
■ MT 542: Deliver Free
■ MT 543: Deliver Against Payment Instruction
■ MT 544: Receive Free Confirmation
■ MT 545: Receive Against Payment Confirmation
■ MT 546: Deliver Free Confirmation
■ MT 547: Deliver Against Payment Confirmation
■ MT 548: Settlement Status and Processing Advice
■ MT 558: Tri-party Collateral Status and Processing Advice
■ MT 559: Paying Agent's Claim
■ MT 564: Corporate Action Notification
■ MT 565: Corporate Action Instruction
■ MT 566: Corporate Action Confirmation
■ MT 567: Corporate Action Status and Processing Advice
■ MT 568: Corporate Action Narrative
■ MT 576: Tri-party Collateral and Exposure Statement
■ MT 578: Statement Allegement
■ MT 586: Statement of Settlement Allegement

Message Validation Rules

SWIFT Integration Projects 33

■ MT 590: Advice of Charges, Interest and Other Adjustment
■ MT 595: Queries
■ MT 596: Answers
■ MT 598: Property Message
■ MT 900: Confirmation of Debit
■ MT 910: Confirmation of Credit
■ MT 940: Customer Statement Message
■ MT 950: Statement Message

Message Format Validation Rules (MFVR)
The MFVR support for the SWIFT OTD Library is a set of functions collectively known as the
message format validation rules methods. These functions accurately test the semantic validity
of a given subset of the SWIFT messages. Validation is performed according to standards
provided in SWIFT’s publication, the Message Format Validation Rules Guide (current version).

There is one validation method for each MFVR message type and its corresponding OTD. Each
method is called on a particular OTD and is used to validate the data of a given instance of that
message type. Because business practices vary greatly between organizations, these functions
can be modified as needed.

For examples of how the MFVR validation process works, you can import the sample validation
Projects. For details, see “SWIFT Projects” on page 40.

SWIFT’s MFVR validation rules are known as semantic verification rules (SVRs) or semantic
rules, as opposed to the syntactic rules, which verify the syntax of the fields only. Syntactic
verification is built into each OTD.

SWIFT defines a total of 299 SVRs that are validated by the FIN network engine. SWIFT
Alliance Access or IBM’s Merva products do not implement these rules, mainly because there is
no functional model, and the implementation work is mostly manual. Each message type has to
be validated against a subset of these rules.

In addition this set of 299 SVRs, SWIFT has defined a new series of rules to help enable
straight-through processing (STP) in the securities industry. The OTD methods that validate
for MFVR compliance also validate for compliance with STP rules.

MFVR Validation Methods
The MFVR methods adhere to SWIFT’s current Message Format Validation Rules Guide,
including those in any updates section in the back of the manual. The methods implement all of
the “special functions” as defined in the guide, which are required by the validation rules.

The SVR methods also implement the semantic validation “rules” or functionality used in the
validation functions, as defined by the current Message Format Validation Rules Guide.

Message Validation Rules

SWIFT Integration Projects • December 200834

Using this semantic validation, eGate can verify the contents of each message before it is sent
into the FIN network, saving time and usage fees.

MFVR Errors
These errors result from the application of the Semantic Validation Rules. Multiple errors are
possible, and they are given in the order in which they occurred and with the sequences, fields,
or subfields used to determine them.

For example, an MFVR failure on a 535 Collaboration OTD appears as follows:

MFVR MT535 Error

SVR Rule 103 - Error code: D031001 = Since field :94a:: is present

in Sequence B, then fields :93B::AGGR and :94a::SAFE are not

allowed in any occurrence of Subsequence B1a.mt_535.Mt_535.Data[1].

SubSafekeepingAccount mt_535.Mt_535.Data[1].SubSafekeepingAccount[0].

SubSeqB1[0].SubSeqB1a.Balance

SVR Rule 104 - Error code: D04-1001 = Since field :93B::

AGGR is present in Subsequence B1a,then

:field 94a::SAFE must be present in the same Subsequence B1a.

mt_535.Mt_535.Data[1].SubSafekeepingAccount[0].SubSeqB1[0].

SubSeqB1a.Balance

For more information on error messages, see “Error Message Information” on page 69.

In Collaboration Validation Methods
As an alternative to using the Validation Collaborations, the 5.1 version of the SWIFT OTD
Library offers two validation methods, validate(), and validateMFVR(), that can be invoked by
a Collaboration to validate SWIFT 2003, 2005, 2006, 2007, and 2008 OTDs directly in the
Collaboration.

For example, if you have an OTD for message MT 541, you can call the OTD’s validateMFVR()
method from the Collaboration, and the Collaboration validates the message’s MFVRs.

The validation methods are available for the same SWIFT message OTDs listed under “Message
Validation Rules” on page 33. You can see (or select) these validation methods by right-clicking
the SWIFT message OTD from the Collaboration Editor’s Business Rules Designer and clicking
Select method to call on the shortcut menu.

These methods are described in detail as follows:

In Collaboration Validation Methods

SWIFT Integration Projects 35

validate()

Description
Validates applicable MFVR rules against the OTD instance. Throws a
MessageValidationException if the OTD is invalid in regard to applicable MFVR rules. Error
message detail can be obtained by calling MessageValidationException.getErrorMessage().

If the OTD does not have applicable MFVR rules, the method call returns without throwing a
MessageValidationException.

Syntax
public void validate()

Parameters
None.

Return Values
None.

Throws
com.stc.swift.validation.MessageValidationException: A

MessageValidationException is thrown when the OTD is invalid in regard

to applicable MFVR rules.

validateMFVR()

Description
Validate applicable MFVR rules against the OTD instance. Throws MFVRException if the
OTD is invalid in regard to applicable MFVR rules. Error message detail can be obtained by
calling MFVRException.getErrorMessage().

If the OTD does not have applicable MFVR rules the method call always returns without
throwing an MFVRException.

Syntax
public void validateMFVR()

Parameters
None.

In Collaboration Validation Methods

SWIFT Integration Projects • December 200836

Return Values

None.

Throws
com.stc.swift.validation.MFVRException

: The MFVRException is thrown when the OTD

is invalid in regard to applicable MFVR rules.

Calling the Validation Methods in your Collaboration
The validation methods are available at the OTD level, and can be called after the OTD is
populated with it’s values. This usually occurs after a message is unmarshaled in the OTD.

The following fragment of code demonstrates the use of the validate method within a
Collaboration. In this example, validate() is called and either “message OK’ or the exception
error String is written to the log.

import com.stc.swift.validation.MFVRException;

import com.stc.swift.validation.SVRException;

import com.stc.swift.validation.ValidatingSWIFTMTOTD;

import com.stc.swift.validation.bic.BICDir;

import com.stc.swift.validation.BICPlusIBAN.*;

import com.stc.swift.validation.MessageValidationException;

import com.stc.swift.otd.v2008.std.mt_541.Mt_541;

import java.util.*;

public class ValidateMt_541_Modified

{

public boolean receive(com.stc.connectors.jms.Message input,

xsd.ValidationReplyMessage.Result output, com.stc.connectors.jms.JMS

invalidMessages, com.stc.connectors.jms.JMS validMessages,

com.stc.swift.otd.v2008.std.mt_541.Mt_541 mt_541_1)

throws Throwable

{

com.stc.connectors.jms.Message result = validMessages.createMessage();

result.setTextMessage(input.getTextMessage());

String errors = null;

String msg = "";
try {

mt_541_1.unmarshal((com.stc.otd.runtime.OtdInputStream)

new com.stc.otd.runtime.provider.SimpleOtdInputStreamImpl(

new java.io.ByteArrayInputStream(input.getTextMessage().getBytes())));

} catch (Exception ex) {

errors = ex.getMessage();

In Collaboration Validation Methods

SWIFT Integration Projects 37

errors += "\r\n";
errors += "Last successful parse: " + mt_541_1.getLastSuccessInfo();

result.storeUserProperty("ValidationErrors", errors);

invalidMessages.send(result);

output.setErrorMessages(errors);

output.setIsError(true);

output.setSwiftMessage(input.getTextMessage());

return false;

}

logger.info("Unmarshalled MT541 message.");

logger.info("MFVR validation to follow");

// Call Default Validation logic for validation against applicable MFVRs

try {

mt_541_1.validate();

} catch (MessageValidationException mve) {

errors = mve.getErrorMessage();

msg = mve.getMessage();

}

logger.info("Completed MFVR validation");

logger.info("BICPlusIBAN validation to follow");

if (errors == null) {

logger.info("No MFVR Exception");

} else {

logger.info("Found MFVR Exception");

logger.info("Errors: " + errors);

logger.info("msg: " + msg);

}

// End of "Default Validation" invoking

//

// Call BICPlusIBAN validation

String BICPlusIBANresult = "";
String bicCode = mt_541_1.getBasicHeader().getLTAddress().substring(0, 8);

String ibanCode = "DE615088005034573201";
BICPlusIBANDir.setBIC_Code(bicCode);

BICPlusIBANDir.setIBAN_Code(ibanCode);

BICPlusIBANresult = "\n\n\n*** Validating BICPlusIBAN ***\n";
BICPlusIBANresult = BICPlusIBANresult +

" BIC - " + BICPlusIBANDir.getBIC_code() + "\n";
BICPlusIBANresult = BICPlusIBANresult +

" IBAN - " + BICPlusIBANDir.getIBAN_code() + "\n";
BICPlusIBANresult = BICPlusIBANresult +

"\n a) Deriving the BIC from the IBAN...\n";
ArrayList bicList = BICPlusIBANDir.deriveBICfromIBAN();

if (bicList == null) {

BICPlusIBANresult = BICPlusIBANresult +

" ==> Unable to derive BIC data from given IBAN.\n";
if (errors != null) {

errors = errors + "\n\nUnable to derive BIC data from given IBAN.\n";

In Collaboration Validation Methods

SWIFT Integration Projects • December 200838

} else {

errors = errors + "\n\nUnable to derive BIC data from given IBAN.\n";
}

} else {

BICPlusIBANresult = BICPlusIBANresult +

" ==> BIC CODE and BRANCH CODE = " + (String) bicList.get(0) + ".\n";
BICPlusIBANresult = BICPlusIBANresult +

" ==> IBAN BIC CODE and BRANCH CODE = " + (String) bicList.get(1) + ".\n";
BICPlusIBANresult = BICPlusIBANresult +

" ==> ROUTING BIC CODE and BRANCH CODE = " + (String) bicList.get(2) + ".\n";
}

BICPlusIBANresult = BICPlusIBANresult + "\n b) Validating the Bank ID...\n";
if (BICPlusIBANDir.validateBankID()) {

BICPlusIBANresult = BICPlusIBANresult +

" ==> Valid Bank ID found in BI file.\n";
} else {

BICPlusIBANresult = BICPlusIBANresult +

" ==> No valid Bank ID found in BI file.\n";
if (errors != null) {

errors = errors + "No valid Bank ID found in BI file.\n";
} else {

errors = errors + "No valid Bank ID found in BI file.\n";
}

}

BICPlusIBANresult = BICPlusIBANresult + "\n c) Validating the BIC...\n";
if (BICPlusIBANDir.validateBIC()) {

BICPlusIBANresult = BICPlusIBANresult +

" ==> Valid BIC data found in BI file.\n";
} else {

BICPlusIBANresult = BICPlusIBANresult +

" ==> No valid BIC data found in BI file.\n";
if (errors != null) {

errors = errors + "No valid BIC data found in BI file.\n";
} else {

errors = errors + "No valid BIC data found in BI file.\n";
}

}

BICPlusIBANresult = BICPlusIBANresult +

"\n d) Validating the BIC/IBAN Combination...\n";
if (BICPlusIBANDir.validateBICIBANCombo()) {

BICPlusIBANresult = BICPlusIBANresult +

" ==> BIC and IBAN codes are belong to the same institution.\n\n\n";
} else {

BICPlusIBANresult = BICPlusIBANresult +

" ==> BIC and IBAN codes are NOT belong to the same institution.\n\n\n";
if (errors != null) {

errors = errors + "BIC and IBAN codes are NOT belong

to the same institution.\n\n\n";

In Collaboration Validation Methods

SWIFT Integration Projects 39

} else {

errors = errors + "BIC and IBAN codes are NOT belong

to the same institution.\n\n\n";
}

}

logger.info(BICPlusIBANresult);

//

if (errors != null) {

// errors = errors + BICPlusIBANresult;

result.storeUserProperty("ValidationErrors", errors);

invalidMessages.send(result);

output.setErrorMessages(errors);

output.setIsError(true);

output.setSwiftMessage(input.getTextMessage());

return false;

}

// passed validation

String currMsg = result.getTextMessage();

currMsg = currMsg + BICPlusIBANresult;

result.setTextMessage(currMsg);

validMessages.send(result);

output.setErrorMessages("");

output.setIsError(false);

output.setSwiftMessage(input.getTextMessage());

return true;

}

To select a validation method from the Collaboration Editor’s Business Rules Designer,
right-click the SWIFT message OTD and select Select method to call from the shortcut menu.

SWIFT Projects
Four sample Projects are packaged with the 2008 SWIFT OTD Library:
■ prjSwift_JCD_MFVROnly: Demonstrates how to use the SWIFT OTDs using a Java-based

Collaboration for the MFVR validation.
■ prjSwift_JCD_BICPlusIBANOnly: Demonstrates how to use the SWIFT OTDs using a

Java-based Collaboration for the BICPlusIBAN validation.
■ prjSwift_JCD_MFVRAndBICPlusIBAN: Demonstrates how to use the SWIFT OTDs

using a Java-based Collaboration for the MFVR and BICPlusIBAN validations.
■ prjSwift_MXValidations_Sample: Demonstrates what types of ”Generic Validations” are

done on MX messages and how the sample is run.
■ SCRProject_Sample: Used to visualize SWIFT workflows.
■ prjSwift_BP_Sample: Demonstrates how to use the SWIFT OTDs with an eInsight

Business Process for the business logic.

SWIFT Projects

SWIFT Integration Projects • December 200840

These sample Projects are uploaded with the SWIFT OTD Library documentation SAR file, and
downloaded from the Sun Composite Application Platform Suite Installer. They demonstrate
the MFVR validation operation.

In addition to the sample Projects, the sample Project file also includes sample data files for both
the JCD and eInsightTM sample Projects.

Note – You must update the BICDir files before the sample Projects can be run. The BICDir files
are required for the BIC validations in the sample projects java collaborations. For more
information, refer to “Updating BICDirService” on page 65.

Importing a Sample Project
The SWIFT sample Projects are bundled into a single zip file named
SWIFT_OTD_Library_Sample.zip. This file is uploaded with the eWay’s documentation SAR
file, SwiftOTDLibraryDocs.sar, and is available for download from the Sun Java Composite
Application Platform Suite Installer’s Documentation tab. See “Installing the SWIFT OTD
Libraries” on page 9 for directions on uploading the SwiftOTDLibraryDocs.sar file.

To import a sample eWay Project to the Enterprise Designer do the following:

1. The sample files are uploaded with the eWay’s documentation SAR file and downloaded
from the Sun Java Composite Application Platform Suite Installer’s Documentation tab. The
SWIFT_OTD_Library_Sample.zip file contains the various sample Project ZIP files.
Extract the samples to a local file.

2. Save all unsaved work before importing a Project.
3. From the Enterprise Designer’s Project Explorer pane, right-click the Repository and select

Import from the shortcut menu. The Import Manager appears.
4. Browse to the directory that contains the sample Project zip file. Select the sample file and

click Import. After the sample Project is successfully imported, click Close.
5. Before an imported sample Project can be run you must do the following:
6.

■ Create an Environment (see “Creating an Environment” on page 61)
■ Create a Deployment Profile (see “Creating the Deployment Profile” on page 63)
■ Create and start a domain (see “Creating and Starting the Domain” on page 64)
■ Build and deploy the Project (see “Building and Deploying the Project” on page 64)

Importing a Sample Project

SWIFT Integration Projects 41

SWIFT Projects and the Enterprise Designer
A Project contains all of the eGate components that you designate to perform one or more
desired processes in eGate.
■ Connectivity Map Editor: contains the eGate business logic components, such as

Collaborations, Topics, Queues, and eWays, that you include in the structure of the Project.
■ OTD Editor: contains the source files used to create Object Type Definitions (OTDs) to use

with a Project.
■ Business Process Designer and Editor: allows you to create and/or modify Business Rules

to implement the business logic of your Project’s eInsight Business Processes.
■ Java Collaboration Editor: allows you to create and/or modify Business Rules to implement

the business logic of your Project’s Java Collaboration Definitions.

SWIFT Sample prjSwift_JCD_MFVROnly Project
The SWIFT Sample Project (prjSwift_JCD_MFVROnly) demonstrates the validation features
of the SWIFT OTD Library for MFVR only. Specifically, this Project employs the Java-based
Validation Collaborations and their definitions.

The Project uses a common process infrastructure to identify and isolate invalid messages. The
process keeps these messages readily available for further use. It also passes valid messages on to
their destinations. .

Project Walkthrough
The flow of the Project is as follows:
■ The inbound File eWay subscribes to an external ”input” directory. The eWay accepts an

MT_541 message and publishes it to the Service1 Collaboration.
■ The CopyCollab1 service (CopyCollaboration) unmarshals the message, copies all of the

data fields (to demonstrate how to copy the data fields), marshals the message to a String and
publishes the message to a JMS Queue.

■ The ValidateMT_541 Collaboration accepts the message from the JMS Queue, validates the
message, and publishes it to the ValidMessage Queue if the message is valid, or to the
InvalidMessages if the message is not valid.

■ The PrintValidMessages Collaboration accepts the valid messages, prints out the message
and sends the message to the outbound File eWay.

■ The PrintInvalidMessages Collaboration accepts the invalid messages, prints that the
message is invalid and lists any errors. It then sends that message to the outbound File eWay.

■ The outbound File eWay publishes the messages to an external folder as either
Swift2008_JCD_MFVROnly_Valid_output1.dat or
Swift2008_JCD_MFVROnly_Invalid_output1.dat.

SWIFT Projects and the Enterprise Designer

SWIFT Integration Projects • December 200842

You must name the source (input) and destination (output) file directories in the setting
property settings for the Project’s File eWays. See the File eWay Intelligent Adapter User’s Guide
for details.

SWIFT Sample prjSwift_JCD_MFVROnly Project Data
Sample valid and invalid input messages are provided with the downloaded sample, as well as
examples of valid and invalid output messages. These are located in the SWIFT sample project
folder as follows:

■ input_Swift2008JCD_MFVROnly_Validmt541.txt.~in: sample valid message input file
■ input_Swift2008JCD_MFVROnly_Invalidmt541.txt.~in: sample invalid message input

file
■ Swift2008_JCD_MFVROnly_Valid_output1.dat: example of sample valid message output
■ Swift2008_JCD_MFVROnly_Invalid_output1.dat: example of sample invalid message

output

Also, see “Validation Operation” on page 31 for a more detailed explanation of the validation
operation.

SWIFT Sample prjSwift_JCD_MFVRAndBICPlusIBAN
Project
The SWIFT Sample Project (prjSwift_JCD_MFVRAndBICPlusIBAN) demonstrates the
validation features of the SWIFT OTD Library for the combination of MFVR and BIC/IBAN.
Specifically, this Project employs the Java-based Validation Collaborations and their
definitions.

The Project uses a common process infrastructure to identify and isolate invalid messages. The
process keeps these messages readily available for further use. It also passes valid messages on to
their destinations. .

Project Walkthrough
The flow of the Project is as follows:

■ The inbound File eWay subscribes to an external ”input” directory. The eWay accepts an
MT_541 message and publishes it to the Service1 Collaboration.

■ The CopyCollab1 service (CopyCollaboration) unmarshals the message, copies all of the
data fields (to demonstrate how to copy the data fields), marshals the message to a String and
publishes the message to a JMS Queue.

SWIFT Projects and the Enterprise Designer

SWIFT Integration Projects 43

■ The ValidateMT_541_Modified Collaboration accepts the message from the JMS Queue,
validates the messages for MFVR and then for BICPlusIBAN, and publishes it to the
ValidMessage Queue if the message is valid, or to the InvalidMessages if the message is not
valid.

■ The PrintValidMessages Collaboration accepts the valid messages, prints out the message
and sends the message to the outbound File eWay.

■ The PrintInvalidMessages Collaboration accepts the invalid messages, prints that the
message is invalid and lists any errors. It then sends that message to the outbound File eWay.

■ The outbound File eWay publishes the messages to an external folder as either
Swift2008_JCD_MFVRAndBICPlusIBAN_Valid_output1.dat or
Swift2008_JCD_MFVRAndBICPlusIBAN_Invalid_output1.dat.

You must name the source (input) and destination (output) file directories in the setting
property settings for the Project’s File eWays. See the File eWay Intelligent Adapter User’s Guide
for details.

SWIFT Sample prjSwift_JCD_MFVRAndBICPlusIBAN Project Data
Sample valid and invalid input messages are provided with the downloaded sample, as well as
examples of valid and invalid output messages. These are located in the SWIFT sample project
folder as follows:

■ input_Swift2008JCD_MFVR_BICPlusIBAN_Validmt541.txt.~in: sample valid message
input file

■ input_Swift2008JCD_MFVR_BICPlusIBAN_Invalidmt541.txt.~in: sample invalid
message input file

■ Swift2008_JCD_MFVRAndBICPlusIBAN_Valid_output1.dat: example of sample valid
message output

■ Swift2008_JCD_MFVRAndBICPlusIBAN_Invalid_output1.dat: example of sample
invalid message output

Also, see “Validation Operation” on page 31 for a more detailed explanation of the validation
operation.

SWIFT Sample prjSwift_JCD_BICPlusIBANOnly Project
The SWIFT Sample Project (prjSwift_JCD_BICPlusIBANOnly) demonstrates the validation
features of the SWIFT OTD Library for BIC and IBAN only. Specifically, this Project employs
the Java-based Validation Collaborations and their definitions.

The Project uses a common process infrastructure to identify and isolate invalid messages. The
process keeps these messages readily available for further use. It also passes valid messages on to
their destinations. .

SWIFT Projects and the Enterprise Designer

SWIFT Integration Projects • December 200844

Project Walkthrough
The flow of the Project is as follows:

■ The inbound File eWay subscribes to an external ”input” directory. The eWay accepts an
MT_541 message and publishes it to the Service1 Collaboration.

■ The CopyCollab1 service (CopyCollaboration) unmarshals the message, copies all of the
data fields (to demonstrate how to copy the data fields), marshals the message to a String and
publishes the message to a JMS Queue.

■ The ValidateMT_541_Modified Collaboration accepts the message from the JMS Queue,
validates the messages for BICPlusIBAN only, and publishes it to the ValidMessage Queue if
the message is valid, or to the InvalidMessages if the message is not valid.

■ The PrintValidMessages Collaboration accepts the valid messages, prints out the message
and sends the message to the outbound File eWay.

■ The PrintInvalidMessages Collaboration accepts the invalid messages, prints that the
message is invalid and lists any errors. It then sends that message to the outbound File eWay.

■ The outbound File eWay publishes the messages to an external folder as either
Swift2008_JCD_BICPlusIBANOnly_Valid_output1.dat or
Swift2008_JCD_BICPlusIBANOnly_Invalid_output1.dat.

You must name the source (input) and destination (output) file directories in the setting
property settings for the Project’s File eWays. See the File eWay Intelligent Adapter User’s Guide
for details.

SWIFT Sample prjSwift_JCD_MFVRAndBICPlusIBAN Project Data
Sample valid and invalid input messages are provided with the downloaded sample, as well as
examples of valid and invalid output messages. These are located in the SWIFT sample project
folder as follows:

■ input_Swift2008JCD_BICPlusIBANOnly_Validmt541.txt.~in: sample valid message
input file

■ input_Swift2008JCD_BICPlusIBANOnly_Invalidmt541.txt.~in: sample invalid message
input file

■ Swift2008_JCD_BICPlusIBANOnly_Valid_output1.dat: example of sample valid
message output

■ Swift2008_JCD_BICPlusIBANOnly_Invalid_output1.dat: example of sample invalid
message output

Also, see “Validation Operation” on page 31 for a more detailed explanation of the validation
operation.

SWIFT Projects and the Enterprise Designer

SWIFT Integration Projects 45

SWIFT MX Validation Sample
The SWIFT MX Validation sample demonstrates what types of ”Generic Validations” are done
on MX messages and how they are applicable. The sample zip file contains the following
directory structure:

■ Input Data — MXSample_input.xml.fin – Sample MX message to be read by inbound File
eWay.

■ jcdSchemaValidation.java – Java collaboration to validate MX messages against relevant
XSD schema.

■ jcdGenericValidation.java – Java collaboration to validate MX messages against Extended
Validation Rules.

■ Output Data – MX_GenericValidationLog_output1.dat – This is a log file for validation
results from the jcdGenericValidation java collaboration.

■ Sample Project – SwiftMXSample.zip: This is the sample project.
■ XSD Data — XSD Schema file () to be validated against the MX input message:

RedepmptionBuldOrderV02.xsd and swift.if.ia_setr.001.001.02.xsd.

Note – The Batch eWay is required when running the SWIFt MX Validation sample.

Sample Project
The Project's flow is represented in the Connectivity Map as follows:

Inbound File eWay –> Schema Validation —> JMS Queue —> Generic Validation —> Batch
eWay, Outbound File eWay. These are explained further below.

Descriptions of components
■ Inbound File eWay – The File eWay is used to read MX messages to be validated.
■ Schema Validation – Each MX message has a corresponding XSD Schema file. You must use

the XSD OTD Wizard to build an XSD OTD based on the schema file. In this collaboration,
the logic is to unmarshal the inbound message to the XSD OTD and then to marshal the
OTD to String and send the payload to JMS Queue. This process is to ensure the MX
message is well-formed and is validated against the XSD schema. For a different MX
message type, build the XSD OTD and create this simple collaboration.

SWIFT Projects and the Enterprise Designer

SWIFT Integration Projects • December 200846

Note – The sample project chooses the ”RedemptionBulkOrderV02”message and schema to
demo the usage. The RedemptionBulkOrderV02 schema is obtained from the SWIFTNet
Funds ver3.0 CD, which also contains all element types to be validated in the Generic
Validation collaboration.

■ JMS Queue – JMS Queue to hold schema validated messages.
■ Generic Validation Collaboration – This collaboration contains a set of generic validatio

rules, which SWIFt recommends must be applied to an MX message. You can reuse this
collaboration to validate all MX Message types. The generic validation rules validate the
following identifiers and codes in a MX message:
■ Verifying BIC (datatype: BICIdentifier), against existence in the BIC directory (ISO

9362)
■ Verifying BEI (datatype: BEIIdentifier), against existence in the BEI list on SWIFTNet
■ Verifying ActiveCurrencyAndAmount (datatype: ActiveCurrencyAndAmount), against

existence in Currency Code and number of valid decimal digits (ISO 4217)
■ Verifying Country Code (datatype: CountryCode), against existence in Country Code

list (ISO 3166)
■ Verifying IBAN Identifier (datatype: IBANIdentifier), against IBAN structure as

provided by ISO 13616
■ Verifying BICOrBEI (datatype: AnyBICIdentifier), against existence in the BIC list on

SWIFTNet
■ Verifying ActiveCurrency (datatype: ActiveCurrencyCode), against existence in

Currency Code list on SWIFTNet
■ Verifying ActiveOrHistoricCurrency (datatype: ActiveOrHistoricCurrencyCode),

against existence in Currency Code list on SWIFTNet
■ Batch eWay – The Batch (Local File) eWay is used to read XSD files for Generic

Validation. Place all XSD schema files in one directory and make sure the name of the
XSD file matches the target namespace specified in the MX message. For example, in the
sample input file, there is:
xmlns:Doc=”urn:swift:xsd:swift.if.ia$setr.001.001.02
Therefore the matching schema file name must be swift.if.ia_setr.001.001.02.
Please rename the $ character to _, because the $ character is not considered a valid file
name pattern in Java.
In Java CAPS, you must open the BAtch eWay configuration in the connectivity map
(and under the Target Location node) and make sure the directory name for the XSD
files are set to Target Directory Name field.

■ Outbound File eWay – The File eWay is used to log validatino results and error messages
in Generic Validation.

SWIFT Projects and the Enterprise Designer

SWIFT Integration Projects 47

Note – You can place all XSD schema files in one directory. In Connectivity Map, set the
directory name in the Target Directory Name, under Target Location section in Batch
Local File configuration window. In Generic Validation, the collaboration will read the
input message and locate the associated schema file name, in the directory name
specified in Batch eWay. Make sure the schema file name does not contain any illegal
character $. This $ character should be replaced with _ character in file name. For
example, schema file name swift.if.ia$setr.001.001.02 should be renamed to
swift.if.ia_setr.001.001.02and placed in the target directory.

Running the MX Sample Project
To run the MX Sample Project, complete the following steps.

1. Import the SWIFT OTD Library SAR file.

2. Import the sample project.

3. In eDesigner, under Sun SeeBeyond > OTD Library > Swift, right-click on bic.jar and
update CT, CU, and FI bic data files.

4. In the Connectivity Map, make sure the directory name and the file name in both the File
eWay and Batch eWay are valid.

5. In the Environment, make sure the directory name for the File eWay is valid.

6. Under the project, create a new Deployment Profile and map all components.

7. Build and Deploy the project.

8. Send the input file to the inbound File eWay and watch for the outbound file.

Note – You must build your own XSD OTD and Schema Validation collaboration, based on
different MX message types to be validated. You can always reuse the Generic Validation
collaboration for all MX messages.

SWIFT Correlation Repository Sample
The SWIFT Correlation Repository (SCR) is a Java CAPS utility used to visualize SWIFT
workflows. In addition, the SCR:

■ Reconciles Messages into Transaction Processes
■ Provides Message Browsing and Message Monitoring
■ Offers services for Duplicate Checking and validation of MX and MT messages
■ Allows for Message Repair and Resubmit

SWIFT Projects and the Enterprise Designer

SWIFT Integration Projects • December 200848

Prerequisites
The following prerequisites are needed in order to run the SRC project:

■ Windows Operating System
■ Java CAPS 5.1.3, with the following modules:

■ eGate
■ eVision
■ Oracle eWay
■ File eWay

■ SWIFTOTDLibrary.sar
■ Oracle 9.2
■ Internet Explorer

Installation steps
1. Ensure all prerequisites are installed.

2. Install Hotfix 109645 for the Enterprise Designer.

3. Install the database schema from the SCR_CreateUser.sql and SCR_CreateTable.sql files
(located in the SCR_Create_Cleanup zip file).

4. Extract the contents of the SampleSCR.zip file into your local drive.

5. Import the SampleSCR.zip file into Enterprise Designer.

6. Set the environment variables (as shown in the figure below).

7. Create a deployment profile in the SCR project.

8. Create a deployment profile in the TesterGatekeeper project.

9. Deploy both the SCR and TesterGatekeeper deployment profiles.

SWIFT Projects and the Enterprise Designer

SWIFT Integration Projects 49

Preparing an SCR flow
The SCR Workflow follows the tasks, procedural steps, required input and output information,
for each step in the business process. The SCR workflow is used to view, manage, and enforce
the consistent handling of work. The following figure is an example of a design of an SCR flow.

Designing an SCR flow
1. Start the Enterprise Designer.

2. Open the imported SCR project.

3. Choose both a short name and a long name for the flow (example: t2 :: Target2).

4. Choose a string name for each event / message / direction (as shown in the SCR flow
example above: TO_SWIFT_INIT).

5. Add the flow name as a new choice in the viewer by navigating to the Viewer on the SCR
page, then to the 1TrxList, and then to the pgTrxList.

a. On the Properties tab, select SelDomain.

b. Right-click the highlighted area on the design canvas, and select Edit Options. The Edit
Options window opens.

c. Add new flow elements to the properties of the control SelDomain. This project already
ahs defualted values entered (t2 :: Target2).

SWIFT Projects and the Enterprise Designer

SWIFT Integration Projects • December 200850

Linking the Domain Name and Direction to a Color
You can link the name of a Domain to specific pointer directions and colors within the
monitoring application.

1. Link the domain name and the direction to a color by opening the SCR.properties file
located in c:\SampleSCR\properties.

2. A list of available directions and colors are listed in the SCR properties file. Possible Colored
Directions (CD) for message lists include:
■ DEFAULT
■ LGREY, RGREY
■ LBLUE, RBLUE
■ LGREEN, RGREEN
■ LORANGE, RORANGE
■ LRED, RRED

3. Link the Domain to a specific pointer directin and color by using the following Syntax:
CD_<Direction String> = <Colored Directions>.

Using the SCR for Monitoring Flows
Applications that send events to the SCR must do two things:

1. Create a message following the input format shown below. Do not use the field whose usage
is indicated as “Gatekeeper only”.

2. Send the message to either:
■ A file in the c:\SampleSCR\In location, with a .txt extension and a name starting with

Loader.
■ A JMS message to the JMS queue, qSCRInEnv, in SCR/Loader.

SWIFT Projects and the Enterprise Designer

SWIFT Integration Projects 51

Using the Viewer for Monitoring Transactions

1. Use an Internet browser and navigate to the URL http://localhost:18001/scr. The
Select Transaction window opens.

2. Use one of the following criteria for monitoring transactions:
■ Select the 10 most recently updated transactions from the drop-down list.
■ Use the domain selector to restrict the transaction list.
■ Search for a transaction with a specific ID.
■ Search for a transaction that contains a message with a specific ID.

3. Click the Search button.

Using the SCR as Gatekeeper
Applications sending events to the SCR as Gatekeeper must do two things:

1. Create a message following the input format (as shown in the previous section)

2. Send the message to the JMS queue “qGKeeperIn” in SCR/Gatekeeper. Make sure to add a
JMS topic to the message. A code sample is shown below.

com.stc.connectors.jms.Message outMsg =

jmsPublish.createTextMessage();

outMsg.storeUserProperty("SCRDestination", "DEST1");

outMsg.setTextMessage(input.getText());

jmsPublish.send(outMsg);

3. Subscribe to the JMS queue ”qGKeeperOut” in SCR/Gatekeeper.

4. Subscribe to the JMS topic that you used to publish the message.

Note – A complete test setup is located in the project TesterGatekeeper.

SWIFT Projects and the Enterprise Designer

SWIFT Integration Projects • December 200852

Using the Viewer to Repair Messages

1. Use an Internet browser and navigate to the URL http://localhost:18001/scr. The
Select Transaction window opens.

2. Select the 10 most recently updated transactions from the drop-down list. Messages that
have been held for review and resubmittion (e.g. messages that are duplicates, incorrect, or
awaiting approval) are displayed.

3. Select the message you wish to examine and click the Repair button. The Message Repair
window opens, displaying detailed information regarding the message.

4. You can resolve the message in the following ways:
■ Correct the message error and click the Resubmit button.
■ Examine a message that requires approval and click the Approve button.
■ Delete the message by clicking the Delete button

SWIFT Sample eInsightTM Project
The SWIFT eInsight Sample Project (prjSwift_BP_Sample), an eInsight Project, uses an
eInsight Business Process Service instead of the Java-based Collaborations used in the JCD
sample. Before using this Project, you must first import it into eGate. See “Importing a Sample
Project” on page 41 for details on how to import a Project.

The SWIFT eInsight Sample project demonstrates the use of SWIFT OTDs in a Business
Process, and provides an example of how to use the marshal() and unmarshal() operations
included as part of every SWIFT OTD. This Project contains one Business Process.

Project Walkthrough
Figure 1 displays the Project’s Connectivity Map, which represents the flow of the Project as
follows:

FIGURE 1 SWIFT eInsight Sample Project - Connectivity Map

SWIFT Projects and the Enterprise Designer

SWIFT Integration Projects 53

■ The Business Process (see Figure 2) begins with a File.read() operation. This operation
subscribes to an external “input” directory and picks up a file that contains a valid SWIFT
MT 541 message.

■ The File.read() operation publishes the message to the input of the mt_541.unmarshal()
operation. This operation basically unmarshals the MT 541 message into a Java data
structure that represents the message. This structure is the output of the
mt_541.unmarshal() operation.

■ The Business Process continues by publishing this output to the input of the
mt_541.marshal() operation. The mt_541.marshal() operation transforms the OTD data
structure back into a String.

■ Finally, this String is published as input to the File.write() operation, which writes out the
String to an external directory.

The Business Process itself is relatively simple, but it identifies how the operations of the SWIFT
OTDs can be used in a Business Process.

Configuration of the Connectivity Map is simply the configuration of the Inbound and
Outbound File eWay (see Figure 1). The configuration of the Inbound File eWay determines
where the SWIFT MT 541 message is located. The configuration of the Outbound File eWay
states where the output of the Business Process goes.

Note – You must have the eInsight.sar file installed to use the features available with this Project.
See the Sun Java Composite Application Platform Suite Installation Guide for complete
installation procedures.

SWIFT eInsight Sample Project Data
A sample messages, as well as an example of a valid output message are located in the
Swift_eInsight_Sample_Data folder (downloaded with the sample) as:

■ input_BP_Validmt541.txt.~in: sample valid message input file
■ Swift_Valid_BP_Output1.dat: example of sample valid message output

Using eGate With eInsight
You can set up and deploy eGate components using eInsight. Once you have associated the
desired component (for example, a Service in this Project) with a Business Process, the eInsight
engine can automatically invoke that component during run time, using a Business Process
Execution Language (BPEL) interface.

The following eGate components are able to interface with eInsight:

■ Java Messaging Service (JMS)

SWIFT Projects and the Enterprise Designer

SWIFT Integration Projects • December 200854

■ Object Type Definitions (OTDs)
■ eWays
■ eGate Services

Using the eGate Enterprise Designer and its eInsight Editor, you can add an operation to a
Business Process, then associate that process with an eGate component, for example, a Service.
In the Enterprise Designer, associate the Business Process and the Service icons using
drag-and-drop procedures.

See the eInsight Business Process Manager User’s Guide for details.

SWIFT OTD Library With eInsight
You can add SWIFT OTD Library objects to an eInsight Business Process during the system
design phase. To create this association, select the desired operation, for example marshal or
unmarshal, under the OTD in the Project Explorer, and drag it onto the eInsight Business
Process Editor.

At run time, the eInsight Engine is able to invoke each of the steps in order of set up in the
Business Process. Using the engine’s BPEL interface, eInsight in turn invokes the SWIFT OTD
Library operations, as well as any eWays in the Business Process.

Table 12 shows the eInsight Business Process operations available to the SWIFT OTD Library,
as well as a description of these operations.

TABLE 12 Available eInsight SWIFT OTD Business Process Operations

eInsight Business Process Operation Description

unmarshal Parses the SWIFT message/OTD for validation.

marshal Readies the SWIFT message for writing, along with any errors.

The Enterprise Designer’s Project Explorer should have the SWIFT OTD Library Business
Process operations exposed under the OTD icon.

Using a Business Process
Once you have designed your Business Process for this sample, you can use the eInsight
Business Process Designer and Editor to create it. Figure 2 displays the Business Process
operations as created by the Business Process Editor.

SWIFT Projects and the Enterprise Designer

SWIFT Integration Projects 55

Configuring the Modeling Elements
Business Rules are defined and configured between the Business Process Activities located on
the modeling canvas. The sample Project contains the Business Rules that govern each of the
Activities listed in a Business Process flow.

Each of the icons located on the links between Activities represent a Business Rule. The
Business Rules found in the sample Project include:

■ “Copying the Output File” on page 56“Copying the Output File” on page 56
■ “Unmarshaling and Marshaling the Data” on page 57
■ “Returning the Value” on page 58

Double-click one of the icons to open the Business Rule Designer pane.

Note – A detailed description of the steps required to configure modeling elements is found in
the Sun SeeBeyond eInsight Business Process Manager User’s Guide.

Copying the Output File
The FileClient.receive.Output container copies the output file containing the message to be
used. The Business Process copies the message content to the input container,
mt_541.unmarshal.Input, to be unmarshaled. See Figure 3.

FIGURE 2 Sample Project Business Process

SWIFT Projects and the Enterprise Designer

SWIFT Integration Projects • December 200856

Unmarshaling and Marshaling the Data
The Business Process unmarshals the data and marshals the data, using the mt_541.unmarshal
and mt_541.marshal operations. The Business Process then writes the results to the
FileClient.write.Output container. See Figure 4.

FIGURE 3 Copying the Output File

FIGURE 4 Unmarshaling and Marshaling the Data

SWIFT Projects and the Enterprise Designer

SWIFT Integration Projects 57

Returning the Value
The OTD output container writes the resulting value to a text file using the
FileClient.write.Input container. See Figure 5.

Creating a Connectivity Map
The Enterprise Designer’s Connectivity Map Editor provides a canvas for assembling and
configuring a Project’s components. Connectivity Maps are used with both Java Collaboration
(JCD) and eInsight (BP) Project implementations. The following sample demonstrates how the
prjSwift_BP_Sample is created.

1. From the Enterprise Designer’s Project Explorer, right-click the prjSwift_BP_Sample
Project and select New > Connectivity Map from the shortcut menu.

2. The New Connectivity Map appears and a node for the Connectivity Map is added under
the Project on the Project Explorer tree labeled CMap1. Rename the Connectivity Map
cmSwift_BP.

Selecting the External Applications
In the Connectivity Map, the eWays are associated with External Systems. For example, to
establish a connection to an external file, you must first select File as an External System to use
in your Connectivity Map (see Figure 6).

FIGURE 5 Returning the Requested Value

SWIFT Projects and the Enterprise Designer

SWIFT Integration Projects • December 200858

1. Click the External Application icon on the Connectivity Map toolbar,

2. Select the external systems necessary to create your Project (for this sample, File. Icons
representing the selected external systems are added to the Connectivity Map toolbar.

Populating the Connectivity Map
The icons in the toolbar represent the available components used to populate the Connectivity
Map canvas. Add the Project components to the Connectivity Map by dragging the icons from
the toolbar to the canvas.

1. For this sample, drag the following components onto the Connectivity Map canvas as
displayed in “Populating the Connectivity Map” on page 59:

2. File External System (2)

3. Service (A service is a container for Collaborations, Business Processes, eTL processes, and
so forth)

FIGURE 6 Connectivity Map - External Applications

SWIFT Projects and the Enterprise Designer

SWIFT Integration Projects 59

4. Rename the File1 External Application to eaFileIn by right-clicking the object, selecting
Rename from the shortcut menu, and typing in the new name. In the same way, rename the
other Connectivity Map components as follows:

5. File2 to eaFileOut
6. cm_Swift_BP_Service1 to BusinessProcess1.
7. Save your current changes to the Repository.

Binding the eWay Components
Once the Connectivity Map has been populated, components are associated and bindings are
created in the Connectivity Map.

1. Drag and drop the BP1 Business Process, under prjSwift_BP_Sample, from the Project
Explorer tree to the Service (BusinessProcess1). If the Business Process was successfully
associated, the Service’s icon changes to a Business Process icon (see “Binding the eWay
Components” on page 60).

2. Double-click the BusinessProcess1 Service. The BusinessProcess1 binding dialog box
appears using the BP1 Rule.

3. From the BusinessProcess1 binding dialog box, map FileSender (under Implemented
Services) to the eaFileIn (File) External Application. To do this, click on FileSender in the
BusinessProcess1 binding dialog box, and drag the cursor to the output node of the eaFileIn
External Application in the Connectivity Map. A link named
eaFileIn|eaFileIn_BusinessProcess1 is now visible.

SWIFT Projects and the Enterprise Designer

SWIFT Integration Projects • December 200860

4. From the BusinessProcess1 binding dialog box, map FileReceiver (under Invoked Services)
to the input node of the eaFileOut External Application (see “Binding the eWay
Components” on page 60).

5. Minimize the BusinessProcess1 binding dialog box and save your current changes to the
Repository.

Creating an Environment
Environments include the external systems, Logical Hosts, integration servers and message
servers used by a Project and contain the configuration information for these components.
Environments are created using the Enterprise Designer’s Environment Editor. The following
example uses the prjSwift_BP_Sample Project.

1. From the Enterprise Designer’s Enterprise Explorer, click the Environment Explorer tab.
2. Right-click the Repository and select New Environment. A new Environment is added to

the Environment Explorer tree.
3. Rename the new Environment to envSwift_BP_Sample.
4. Right-click envSwift_BP_Sample and select New File External System. Name the External

System esFile. Click OK. esFile is added to the Environment Editor.
5. Right-click envSwift_BP_Sample and select New Logical Host. The LogicalHost1 box is

added to the Environment and LogicalHost1 is added to the Environment Editor tree.
6. Right-click LogicalHost1 and select New > Sun SeeBeyond Integration Server. A new

Integration Server (IntegrationSvr1) is added to the Environment Explorer tree under
LogicalHost1 (see “Creating an Environment” on page 61).

7. For the prjSwift_JCD_Sample only, the Environment must also include a JMS IQManager.
To add an IQ Manager, right-click LogicalHost1 and select New > SeeBeyond JMS
IQManager. A new JMS IQ Manager (SBJmsIQMgr1) is added to the Environment
Explorer tree under LogicalHost1.

SWIFT Projects and the Enterprise Designer

SWIFT Integration Projects 61

8. Save your current changes to the Repository.

Configuring the eWays
The sample Projects contains two component File eWays (inbound and outbound) represented
in the Connectivity Map as a node between an File External Application and a Collaboration.
The existing Connectivity Map property settings are sufficient for the sample, but the
Environment property settings must be configured for your system as follows:

1. From the Environment Explorer tree, right-click the File External System (esFile in this
sample), and select Properties. The Properties Editor opens to the File eWay Environment
configuration.

2. From the Properties Editor, modify the Directory settings (Parameter Settings > Directory)
for both the Inbound and Outbound File eWays, to correspond with inbound and outbound
directories you created on your system. Click OK to accept the settings.

For more information on configuring the File eWay properties for your system, see the Sun
SeeBeyond eWayTM File Adapter User’s Guide.

Configuring the Integration Server
You must set your Sun SeeBeyond Integration Server Password property before deploying your
Project.

1. From the Environment Explorer, right-click IntegrationSvr1 under your Logical Host, and
select Properties from the shortcut menu. The Integration Server Properties Editor appears.

2. Click the Password property field under Sun SeeBeyond Integration Server
Configuration. An ellipsis appears in the property field.

3. Click the ellipsis. The Password Settings dialog box appears. Enter STC as the Specific
Value and as the Confirm Password, and click OK.

SWIFT Projects and the Enterprise Designer

SWIFT Integration Projects • December 200862

4. Click OK to accept the new property and close the Properties Editor.

For more information on deploying a Project see the Sun SeeBeyond JavaTM Composite
Application Platform Suite Deployment Guide.

Creating the Deployment Profile
A Deployment Profile is used to assign Business Processes, Collaborations, and message
destinations to the integration server and message server. Deployment Profiles are created
using the Deployment Editor.

1. From the Project Explorer, right-click the Project (prjSwift_BP_Sample) and select New >
Deployment Profile.

2. Enter a name for the Deployment Profile (for example, dpSwift_BP_Sample). Make sure
that the selected Environment is envSwift_BP_Sample. Click OK.

3. Click the Automap icon as displayed in “Creating the Deployment Profile” on page 63.

The Project’s components are automatically mapped to their system window as seen in
“Creating the Deployment Profile” on page 63.

4. Save your changes to the Repository.

SWIFT Projects and the Enterprise Designer

SWIFT Integration Projects 63

Creating and Starting the Domain
To deploy your Project, you must first create a domain. A domain is an instance of a Logical
Host.

Create and Start the Domain

1. Navigate to your <JavaCAPS51>\logicalhost directory (where <JavaCAPS51> is the
location of your Sun Java Composite Application Platform Suite installation.

2. Double-click the domainmgr.bat file. The Domain Manager appears.
3. If you have already created a domain, select your domain in the Domain Manager and click

the Start an Existing Domain button. Once your domain is started, a green check mark
indicates that the domain is running.

4. If there are no existing domains, a dialog box indicates that you can create a domain now.
Click Yes. The Create Domain dialog box appears.

5. Make any necessary changes to the Create Domain dialog box and click Create. The new
domain is added to the Domain Manager. Select the domain and click the Start an Existing
Domain button. Once your domain is started, a green check mark indicates that the domain
is running.

6. For more information about creating and managing domains see the Sun SeeBeyond eGate
Integrator System Administration Guide.

Building and Deploying the Project
The Build process compiles and validates the Project’s Java files and creates the Project EAR file.

Build the Project
1. From the Deployment Editor toolbar, click the Build icon.
2. If there are any validation errors, a Validation Errors pane will appear at the bottom of the

Deployment Editor and displays information regarding the errors. Make any necessary
corrections and click Build again.

3. After the Build has succeeded you are ready to deploy your Project.

Deploy the Project

1. From the Deployment Editor toolbar, click the Deploy icon. Click Yes when the Deploy
prompt appears.

2. A message appears when the project is successfully deployed.

SWIFT Projects and the Enterprise Designer

SWIFT Integration Projects • December 200864

Note – Projects can also be deployed from the Enterprise Manager. For more information
about using the Enterprise Manager to deploy, monitor, and manage your projects, see the
Sun SeeBeyond eGateTM Integrator System Administration Guide.

Running the Sample
To run your deployed sample Project do the following

1. From your configured input directory, paste (or rename) the sample input file to trigger the
eWay.

2. From your output directory, verify the output data.

Updating BICDirService
The BICDirService feature is a database service. The data files used to populate BICDirService
must be updated periodically from SWIFT’s source CD-ROM issued once every four months.

Source of Information
The Java constructor for the BICDir class loads the required data from the following
SWIFT-supplied files:

■ FI.dat
■ CU.dat
■ CT.dat

The constructor takes an argument from the directory that contains these two files. It then
opens each file and loads the appropriate fields into a searchable structure. For more details on
these files, see the current SWIFT BIC Database Plus Technical Specifications document for
actual file layout and positioning information.

The data used to look up and validate comes from SWIFT’s own BIC bank files containing its
BIC codes and its currency and country codes. When necessary, SWIFT updates these files with
a new version of its lookup tables, to keep them current. You can upload these files to eGate and
control when updates to the system occur and access these files via SWIFT’s update CD-ROM.

Update Operation
The BICDirService feature allows multiple simultaneous objects to access its methods with
near-local object response times.

Updating BICDirService

SWIFT Integration Projects 65

The SWIFT standards are not always sufficiently complete to enable STP. Currently a message
can pass network validation but fail at the receiving end because of incompatible definitions or
codes, or missing data. The result is expense to manually repair or follow up on these messages
and possible retransmission of the message.

The SWIFT OTD Library’s BICDirService ensures that valid, up-to-date BIC, country, and
currency codes are present in eGate-processed messages. This feature increases the likelihood
that a given message can flow “straight through”.

You must update the BICDirService information before running components that utilize this
feature.

To update BIC information:

1. Go to the bic.jar file in the Enterprise Designer’s Project Explorer. The file is located
under Sun SeeBeyond > OTD Library > Swift.

2. Right-click the bic.jar icon.
3. Select the Update BIC Files option from the shortcut menu.
4. In the resulting Open dialog box, navigate to the location of the CU.dat file on the SWIFT

update CD-ROM.
5. Select the file and upload it.
6. Select Update BIC Files again.
7. Navigate to the location of the FI.dat file.
8. Select the file and upload it.

This procedure updates the BICDirService feature.

BICDirService Method Operation
The BICDirService methods are static methods of a single Java class, the BICDir class. There is
one method per each required lookup and validation. The BICDir methods are not dependent
on any module other than SWIFT data files.

Lookup Method Definitions
The BICDir class has the following lookup methods:

■ Look up BIC by Institution Name: Takes a string and returns a byte array of BICs (one
element is possible). The signature is:

BIC[] getBIC(institutionName*);

■ Look up BIC by Institution Name, City and Country: Takes three strings, an institution
name, city, and country, and returns a byte array of BICs (one element is possible). The
signature is:

Updating BICDirService

SWIFT Integration Projects • December 200866

BIC[] getBIC(institutionName*, city*, country*);

■ Look up Institution Name by BIC: Takes a BIC string, either a BIC 8 or BIC11, and returns
a byte array of institution names (one element is possible). The signature is:

institutionName[] getInstitutionName(BIC);

■ Look up Currency Code by Country Code: Takes a string, a country code, and returns the
currency code. The signature is:

currencyCode getCurrencyCode(countryCode);

■ Look up Country Code by Currency Code: Takes a string, a currency code, and returns the
country code. The signature is:

countryCode getCountryCode(currencyCode);

Validation Method Definitions
The BICDir class has the following validation methods:

■ Validate BIC: Takes a string, either a BIC 8 or BIC11, and returns true or false. The
signature is:

boolean validateBIC(BIC);

■ Validate Currency Code: Takes a string, a currency code, and returns true or false. The
signature is:

boolean validateCurrencyCode(currencyCode);

■ Validate Country Code: Takes a string, a country code, and returns true or false. The
signature is:

boolean validateCountryCode(countryCode);

BICDir Exceptions
The purpose of the exceptions is to give you some indication of what error has occurred and
how to rectify it.

Error message framework

These error messages are implemented using the log4j framework.
STC.OTD.SWIFT.BICDirService is used as the logging category.

Updating BICDirService

SWIFT Integration Projects 67

Error message general form

The message of BICDir exception takes the following general form:

“BICDirService Error [”XX“]– “ error-message

Where:

■ “”: Marks static text.
■ XX: Stands for a unique number assigned to each error message.
■ error-message: A descriptive narrative derived from the condition that caused the error,

and a possible solution to rectify it.

Updating BICPlusIBAN
The data files used to populate BICPlusIBAN directory must be obtained from SWIFT directly.
The sample BICPlusIBAN directory from SWIFT OTD Library is only the test data files to be
used with the sample project. They are not intended to be used in a production environment.

The Java constructor for the BICPlusIBAN class loads the required data from the following
SWIFT-supplied files:

■ BI.TXT

■ IS.TXT

The constructor takes an argument from the directory that contains these two files. It then
opens each file and loads the appropriate fields into a searchable structure. For more details on
these files, see the current SWIFT BICPlusIBAN Directory Technical Specifications document
for actual file layout and positioning information.

The BI data contains the BICPlusIBAN information. The IS data provides IBAN structure
information. The SWIFT OTD Library takes these data together to execute the validation rules.
These base files and update delta files should be obtained directly from SWIFT.

To update BICPlusIBAN information:

1. Go to the BICPlusIBAN.jar file in the Enterprise Designer’s Project Explorer. The file is
located under Sun SeeBeyond > OTD Library > Swift.

2. Right-click the BICPlusIBAN.jar icon.
3. Select the Update BICPlusIBAN Files option from the shortcut menu.
4. In the resulting Open dialog box, navigate to the location of the BI.TXT file on the SWIFT

update CD-ROM.
5. Select the file and upload it.
6. Select Update BICPlusIBAN Files again.

Updating BICPlusIBAN

SWIFT Integration Projects • December 200868

7. Navigate to the location of the IS.TXT file.

8. Select the file and upload it.

This procedure updates the BICPlusIBAN directory feature.

BICPlusIBAN Validation Method Definitions
The SWIFT OTD Library provides the following validation methods for BICPlusIBAN:

■ Deriving the BIC from the IBAN: This validation method is used to derive the BIC from
the IBAN. This can be useful in situations where the IBAN is present but the BIC is missing
in a SEPA payment instruction. The method takes no arguments, and will return an array
list of BIC code and BRANCH code. The signature is:

ArrayList deriveBICfromIBAN()

■ Validating the Bank ID: This validation method is used to validate that the Bank ID
contained in an IBAN is a valid Bank ID. This can be useful in situations where the ordering
customer has constructed the IBAN. However, the validation does not guarantee that the
IBAN itself is valid. The method takes no arguments, and will return a boolean result. The
signature is:

boolean validateBankID()

■ Validating the BIC: This validation method is used to validate that the BIC is a valid BIC.
This can for example be useful in situations when the ordering customer attempted to derive
the BIC itself from financial institution's name and address. The method takes no
arguments, and will return a boolean result. The signature is:

boolean validateBIC()

■ Validating the BIC/IBAN combination: This validation method is used to validate that the
BIC and the IBAN belong to one and the same institution. The method takes no arguments,
and will return a boolean result. The signature is:

boolean validateBICIBANCombo()

Error Message Information
This section explains the SWIFT OTD Library validation error files and messages.

Error Message Information

SWIFT Integration Projects 69

Error Messages
There are separate error messages and reporting mechanisms for each type of validation
performed by a Service. You can control the amount of debugging information in the error
messages you receive by using the debug flags as parameters when you call the command()
method. The library’s error parser provides the following debug levels:

■ Regular Information: Gives general information, and if an error occurs, the path to the
node or piece of data that caused the error.

■ Debug: Gives all of the node information generated by the parse, that is, each field and
subfield.

■ Parser Debug: Combines the debug level with information regarding just what the parser is
matching, and the data being used. In general, you only need to use this level for situations
where the error cannot be determined using the other levels because of the quantity of data.
This level gives the exact location and nature of the failure.

Error message file output appears at the end of any message that generates an error.

Setting the Debug Level
The available debug level flags are:

■ A or a: Enables the abbreviation of path names. This reduces the path output when you are
printing to a Regular Information set.

■ D or d: Enables Debug (mid-level) debugging. If enabled, this generates more debug data
than the Regular Information level, but less than the Parser Debug level.

■ I or i: Enables Regular Information level debugging.
■ L or l: Enables saving and display of the last successfully parsed node. When a parse has

failed, this information is the last item printed by the current root node.
■ P or p: Enables the Parser Debug-level information. If enabled, this generates the maximum

information about what the internal parser is doing.

Using the Debug Level flags, you can configure the debugging information you receive by
setting the appropriate debug parameter in the OTD’s command() method. For example, to set
the error message level to the Regular Information level (I flag), with abbreviations turned on
(A flag), you would set command() with the parameters A and I. You can do this from the
Collaboration Editor’s Business Rules Designer as displayed below.

Error Message Information

SWIFT Integration Projects • December 200870

This produces the following Java code (this example uses the mt_202 Validation Collaboration:

mt_202_1.command("AI");

Calling command() enables any of the debug functions presented as a parameter. For more
information, see the SWIFT OTD Library Javadoc.

Message Examples
An example of a regular information-level parse error (cannot find a required field) is:

at 0: com.stc.swift.runtime.SwiftUnmarshalException: mt_103.Mt_103: 0:

Failed to parse required child(Data).

An example of a parse error with the debug level enabled (cannot find a required field) is:

at 146: null: com.stc.swift.runtime.SwiftUnmarshalException:

mt_543.Mt_543.Data.GeneralInformation.FunctionOfTheMessage: 146:

Failed to parse required child(String2).

Given this path to the data, you can determine where in the message the parser failed by looking
at:

■ The SWIFT User Handbook
■ Structure of the OTD in the Enterprise Designer’s OTD Editor
■ Javadoc for the OTD

See “MFVR Errors” on page 35 for MFVR-specific error information. For more detailed error
information, see “Error Message Information” on page 69.

Parse Debug Level Message Example
The following example shows error message output at the parse debug level:

FIGURE 7 Setting the debug level using the Business Rules Designer

Error Message Information

SWIFT Integration Projects 71

[main] PARSE - Swift: matchDelimSkip("{1:") --> true.

[main] PARSE - Swift: getData("F|A|L") --> "F".
[main] DEBUG - Swift: mt_502.Mt_502.BasicHeader.AppIdentifier: 3: Mapped data("F").
[main] DEBUG - Swift: mt_502.Mt_502.BasicHeader.AppIdentifier: 3: Mapped rep[0].

[main] PARSE - Swift: getData(charSet, 2, 2) --> "01".
[main] DEBUG - Swift: mt_502.Mt_502.BasicHeader.ServiceIdentifier: 4:

The following is the last field successfully parsed the 4th 22a:

[main] PARSE - Swift: matchDelimSkip("22H::") --> true.

[main] PARSE - Swift: getData(charSet, 4, 4) --> "PAYM".
[main] DEBUG - Swift: mt_502.Mt_502.Data.OrderDetails.Indicator.IndicatorH.String3:

218: Mapped data("PAYM").
[main] PARSE - Swift: matchDelimSkip("//") --> true.

[main] DEBUG - Swift: mt_502.Mt_502.Data.OrderDetails.Indicator.IndicatorH.String3:

218: Mapped rep[0].

[main] PARSE - Swift: getData(charSet, 4, 4) --> "APMT".
[main] DEBUG - Swift: mt_502.Mt_502.Data.OrderDetails.Indicator.IndicatorH.String5:

224: Mapped data("APMT").
[main] DEBUG - Swift: mt_502.Mt_502.Data.OrderDetails.Indicator.IndicatorH.String5:

224: Mapped rep[0].

[main] PARSE - Swift: matchDelimSkip("
:") --> true.

[main] DEBUG - Swift: mt_502.Mt_502.Data.OrderDetails.Indicator.IndicatorH: 213:

Mapped rep[0].

The message goes on for several more lines, not indicating any error. Then the parser is looking
for any more 22a’s, F or H, and does not find one. See the following example:

[main] DEBUG - Swift: mt_502.Mt_502.Data.OrderDetails.Indicator[3]: 159: Mapped rep[3].

[main] PARSE - Swift: matchDelimSkip("22F::") --> false.

[main] PARSE - Swift: mt_502.Mt_502.Data.OrderDetails.Indicator.IndicatorF: 231:

Failed to find BeginDelimiter("22F::").
[main] PARSE - Swift: matchDelimSkip("22H::") --> false.

[main] PARSE - Swift: mt_502.Mt_502.Data.OrderDetails.Indicator.IndicatorH: 231:

Failed to find BeginDelimiter("22H::").

The parser then looks for a 98a either option A|B|C as follows:

[main] PARSE - Swift: matchDelimSkip("98A::") --> false.

[main] PARSE - Swift: mt_502.Mt_502.Data.OrderDetails.DateTime[0].DateTimeA: 231:

Failed to find BeginDelimiter("98A::").
[main] PARSE - Swift: matchDelimSkip("98B::") --> false.

[main] PARSE - Swift: mt_502.Mt_502.Data.OrderDetails.DateTime[0].DateTimeB: 231:

Failed to find BeginDelimiter("98B::").
[main] PARSE - Swift: matchDelimSkip("98C::") --> false.

[main] PARSE - Swift: mt_502.Mt_502.Data.OrderDetails.DateTime[0].DateTimeC: 231:

Failed to find BeginDelimiter("98C::").

Error Message Information

SWIFT Integration Projects • December 200872

The parser finds no repetitions, which does not fit in the required range of 1 to 3 as described in
the following example, so at this point, the parser fails, because no expected repetitions were
found:

[main] PARSE - Swift: mt_502.Mt_502.Data.OrderDetails: 231:

Failed to match minimum repititions[1 < 0 <= 3].

[main] PARSE - Swift: mt_502.Mt_502.Data.OrderDetails:

145: Failed to parse

required child(DateTime).

[main] PARSE - Swift: mt_502.Mt_502.Data:

145: Failed to match minimum

repititions[1 < 0 <= 1].

[main] PARSE - Swift: mt_502.Mt_502.Data:

73: Failed to parse required

child(OrderDetails).

[main] PARSE - Swift: mt_502.Mt_502:

67: Failed to match minimum repititions[1 < 0 <= 1].

[main] PARSE - Swift: mt_502.Mt_502:

0: Failed to parse required child(Data).

[main] LAST - Swift: Last match: mt_502.Mt_502.

Exception in thread "main" at 0: null: com.stc.

swift.runtime.SwiftUnmarshalException:

mt_502.Mt_502: 0: Failed to parse required child(Data).

at com.stc.swift.runtime.SwiftOtdRep.

throwExcept(SwiftOtdRep.java:1977)

at com.stc.swift.runtime.SwiftOtdRep.

parseChildren(SwiftOtdRep.java:1577)

at com.stc.swift.runtime.SwiftOtdRep.

parse(SwiftOtdRep.java:1486)

at com.stc.swift.runtime.SwiftOtdRep.

unmarshal(SwiftOtdRep.java:1339)

Using SWIFT FIN-Based Funds OTDs
This section explains how to use specialized funds features available with the SWIFT OTD
Library and Java CAPS.
■ “SWIFT OTD Library Funds Features” on page 73

SWIFT OTD Library Funds Features
The SWIFT OTD Library Object Type Definitions (OTDs) contain specialized OTDs that allow
you to automate the following funds operations:
■ Orders to buy and sell

Using SWIFT FIN-Based Funds OTDs

SWIFT Integration Projects 73

■ Client confirmations
■ Checking order status
■ Statement of holdings, for fund balances reconciliation

In the past, many funds industry players have asked SWIFT to help automate these operations
by providing standards and connectivity between funds distributors, transfer agents, funds
management companies, and other intermediaries like funds processing hubs. To meet these
needs, SWIFT has developed standards and message templates based on these standards.

The SWIFT OTD Library contains the following FIN-based MT Fund OTDs (see Table 13)
specialized for the associated SWIFT message types and fund operations:

TABLE 13 FIN-based Funds OTDs

OTD Name Base Description

mt_502_FUNDS FIN Order to buy and sell: for funds subscription, redemption, switch,
and cancellation.

mt_509_FUNDS FIN Order status: for status update on orders (for example, a rejection or
acknowledgement of a receipt).

mt_515_FUNDS FIN Client confirmation: for confirmation of the funds subscription,
redemption, switch and cancellation.

mt_535_FUNDS FIN Statement of holdings: for funds balance reconciliation.

mt_574_IRSLST FIN IRS 1441 NRA: IRS Beneficial Owners’ List

mt_574_W8BENO FIN IRS 1441 NRA): Form W8-BEN

These MT Fund OTDs apply to the funds message types in the ISO 15022 FIN Standard. The
Category 5 directory contains the SWIFT MT Funds message OTDs.

Using SWIFT OTD Library Java Classes
This section provides an overview of the Java classes/interfaces and methods contained in the
SWIFT OTD Library. These methods are used to extend the functionality of the library.

The SWIFT OTD Library exposes various Java classes to add extra functionality to the library
and its Object Type Definitions (OTDs). Some of these classes contain methods that allow you
to set data in the library OTDs, as well as get data from them.

Using SWIFT OTD Library Java Classes

SWIFT Integration Projects • December 200874

Relation to OTD Message Types
The nature of this data transfer depends on the available nodes and features in each of the
individual SWIFT OTD message types. For more information on the SWIFT OTD Library’s
messages and message types, see “Increasing the heap size from the heapSize.bat file” on
page 12.

SWIFT OTD Library Javadoc
The SWIFT OTD Library Javadoc is an API document in HTML format that provides
information on the various classes and methods available with the SWIFT OTD Library.

You can access the Javadoc by selecting and uploading the SwiftOTDLibraryDocs.sar from the
Documentation tab of the Sun Java Composite Application Platform Suite Installer (see
“Installing the SWIFT OTD Libraries” on page 9). The Javadoc can then be downloaded from
the Documentation tab of the Suite Installer.

A SWIFT OTD Library Javadoc is provided for the 2008 OTD Library. It is bundled in the
initial .zip file uploaded to the Suite Installer.

To access the appropriate ZIP file, do the following operations:

1. Extract the Javadoc.zip file from the Suite Installer to a temporary folder. This extracts the
following two files:
■ Swift2008Javadoc.zip: Contains the SWIFT 2008 OTD Library Javadoc.

2. Delete the Javadoc that does not apply to your installation.
3. Extract the appropriate Javadoc files to an easily accessible folder.
4. After you extract the SWIFT_OTD_Library_Javadoc.zip file, double-click the

JavadocOverview.html file to begin using the Javadoc. This file contains complete
instructions on how to use this document, as well a link that takes you to the additional
Javadoc files.

Note – The Javadoc for the SWIFT OTD Library is very large and may operate slowly in your
browser.

Using SWIFT OTD Library Java Classes

SWIFT Integration Projects 75

OTD Library Java Classes
The Javadoc shows a Java class for each OTD in the SWIFT OTD Library. For example, the class
Mt_101 includes the OTD for the MT 101 SWIFT message type. See “Increasing the heap size
from the heapSize.bat file” on page 12 for a complete list of the SWIFT message types/OTDs in
the library.

In addition to the classes for OTDs, there are the following Java classes with methods for
run-time operation:

■ SwiftMarshalException
■ SwiftOtdChild
■ SwiftOtdInputStream
■ SwiftOtdLocation
■ SwiftOtdRep
■ SwiftParseUtils
■ SwiftUnmarshalException

OTD Library Java Classes

SWIFT Integration Projects • December 200876

	SWIFT Integration Projects
	SWIFT Integration Projects
	Overview of SWIFT Message Libraries
	2008 Library Features
	Library Versions and Access
	What’s New in Java CAPS 6 Update 1
	Installing the SWIFT Message Library
	SWIFT OTD Library System Requirements
	Installing the SWIFT OTD Libraries
	Installing the eWay on a Java CAPS Supported System
	Adding a Product to an Existing Suite Installation
	After Installation

	Increasing the Heap Size
	Increasing the heap size from the Enterprise Designer
	Increasing the heap size from the heapSize.bat file
	Increasing the heap size from the Logical Host

	Using the SWIFT OTD Library
	SWIFT Message Type OTDs
	SWIFT Message Structure
	OTD and Collaboration Locations in Enterprise Designer

	SWIFT Message Type Reference
	Category 1 Messages
	Category 2 Messages
	Category 3 Messages
	Category 4 Messages
	Category 5 Messages
	Category 6 Messages
	Category 7 Messages
	Category 8 Messages
	Category 9 Messages
	Validation Collaborations
	SWIFT Generic Library
	SWIFT Message Library JAR Files

	Using Message Validation Features
	Basic Validation Features
	Validation Components
	Validation Methods
	Validation Collaboration Definitions
	Validation Operation
	Validation Project examples
	Basic validation steps

	Library Methods

	Message Validation Rules
	Message Format Validation Rules (MFVR)
	MFVR Validation Methods
	MFVR Errors

	In Collaboration Validation Methods
	validate()
	Description
	Syntax
	Parameters
	Return Values
	Throws

	validateMFVR()
	Description
	Syntax
	Parameters
	Return Values
	Throws

	Calling the Validation Methods in your Collaboration

	SWIFT Projects
	Importing a Sample Project
	SWIFT Projects and the Enterprise Designer
	SWIFT Sample prjSwift_JCD_MFVROnly Project
	Project Walkthrough
	SWIFT Sample prjSwift_JCD_MFVROnly Project Data

	SWIFT Sample prjSwift_JCD_MFVRAndBICPlusIBAN Project
	Project Walkthrough
	SWIFT Sample prjSwift_JCD_MFVRAndBICPlusIBAN Project Data

	SWIFT Sample prjSwift_JCD_BICPlusIBANOnly Project
	Project Walkthrough
	SWIFT Sample prjSwift_JCD_MFVRAndBICPlusIBAN Project Data

	SWIFT MX Validation Sample
	Sample Project
	Descriptions of components

	Running the MX Sample Project

	SWIFT Correlation Repository Sample
	Prerequisites
	Installation steps
	Preparing an SCR flow
	Designing an SCR flow
	Linking the Domain Name and Direction to a Color
	Using the SCR for Monitoring Flows
	Using the Viewer for Monitoring Transactions

	Using the SCR as Gatekeeper
	Using the Viewer to Repair Messages

	SWIFT Sample eInsightTM Project
	Project Walkthrough
	SWIFT eInsight Sample Project Data

	Using eGate With eInsight
	SWIFT OTD Library With eInsight

	Using a Business Process
	Configuring the Modeling Elements
	Copying the Output File
	Unmarshaling and Marshaling the Data
	Returning the Value

	Creating a Connectivity Map
	Selecting the External Applications
	Populating the Connectivity Map

	Binding the eWay Components
	Creating an Environment
	Configuring the eWays
	Configuring the Integration Server
	Creating the Deployment Profile
	Creating and Starting the Domain
	Building and Deploying the Project
	Build the Project
	Deploy the Project

	Running the Sample

	Updating BICDirService
	Source of Information
	Update Operation

	BICDirService Method Operation
	Lookup Method Definitions
	Validation Method Definitions
	BICDir Exceptions
	Error message framework
	Error message general form

	Updating BICPlusIBAN
	BICPlusIBAN Validation Method Definitions

	Error Message Information
	Error Messages
	Setting the Debug Level

	Message Examples
	Parse Debug Level Message Example

	Using SWIFT FIN-Based Funds OTDs
	SWIFT OTD Library Funds Features

	Using SWIFT OTD Library Java Classes
	Relation to OTD Message Types
	SWIFT OTD Library Javadoc

	OTD Library Java Classes

