
Using the HTTP Binding
Component

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 821–0015
June 2009

Copyright 2009 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In particular, and without
limitation, these intellectual property rights may include one or more U.S. patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights – Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions
of the FAR and its supplements.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other
countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, the Solaris logo, the Java Coffee Cup logo, docs.sun.com, Java, and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and SunTM Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts
of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to
the Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN LOOK GUIs and otherwise comply with Sun's written license
agreements.

Products covered by and information contained in this publication are controlled by U.S. Export Control laws and may be subject to the export or import laws in
other countries. Nuclear, missile, chemical or biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export
or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied persons and specially
designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

090616@22510

Contents

Using the HTTP Binding Component ... 7
About the HTTP Binding Component ..8
HTTP/SOAP Binding Architecture ...8
HTTP Binding Component Features .. 10
Service Provider Features ... 10
Service Consumer Features .. 11
Security Features .. 11
HTTP Binding Component Example Scenario ... 11

Purchase Order Example .. 11
SOAP Processing ... 13
SOAP 1.1 WSDL Extensibility Elements .. 14

SOAP 1.1 Connectivity Element .. 14
SOAP 1.1 Binding Elements ... 14

SOAP 1.2 WSDL Extensibility Elements .. 21
SOAP 1.2 Connectivity Element .. 21
SOAP 1.2 Binding Elements ... 22

WS-I Basic Profile 1.1 .. 32
HTTP Processing ... 32
HTTP WSDL Extensibility Elements .. 32

HTTP Connectivity Element .. 32
HTTP Binding Elements ... 33

HTTP GET and POST Processing ... 36
XML/HTTP GET Processing ... 36

Configuring the HTTP Binding Component for HTTP Get Interactions 36
Binding Details ... 37

Using the HTTP Binding Component with the HTTP POST Method ... 40
Configuring the HTTP Binding Component for HTTP Get Interactions 40
Binding Details ... 41

3

HTTP POST Treatment of http:urlEncoded and http:urlReplacement 41
HTTP Binding Component Runtime Properties .. 42
HTTP Binding Component Client Endpoint Properties ... 48

▼ Accessing the HTTP Binding Component Client Endpoint Properties 49
HTTP BC Client Endpoint Configuration Properties ... 50

Using Normalized Message Properties to Propagate Binding Context Information 51
Using Normalized Message Properties in a BPEL Process .. 51
Normalized Message Properties ... 56

Quality of Service (QOS) Features ... 59
Configuring the Quality of Service Properties .. 59
Message Throttling: Configuring and Using .. 61
Redelivery: Configuring and Using ... 62

Using the Tango Web Service Features with the HTTP Binding Component 64
Configuring Reliable Message Delivery .. 65

Configuring the Tango Web Services Attributes exposed by the HTTP Binding Component . 66
Accessing the Tango (WSIT) Web Service Attribute Configuration 66
Server Configuration—Web Service Attributes ... 67
Client Configuration — Web Service Attributes .. 75

HTTP Binding Component Security .. 82
Using Basic Authentication with the HTTP Binding Component .. 82
Configuring Security Mechanisms .. 91

Using Application Variables to Define Name/Value Pairs ... 117
Using Application Variables for password protection .. 119

Using Application Configuration to Configure Connectivity Parameters 120
▼ To apply a named Config Extension to the Application Configuration 120

Enhanced Logging ... 121
Statistics Monitoring ... 121
Using WS-Transaction ... 122
Clustering Support for the HTTP Binding Component ... 122

HTTP Load Balancer ... 123
Configuring the HTTP Binding Component for Clustering .. 123

Common User Scenarios .. 125
Validating HTTP Extensibility Elements from the WSDL Editor 125
Adding a SOAP Template to a WSDL Document .. 126
Adding an HTTP Template to a WSDL Document ... 126
Web Service Client Calling an Operation Using HTTP Basic Authentication 127

Contents

Using the HTTP Binding Component • June 20094

Web Service Implementing an Operation Protected by HTTP Basic Authentication 127
Web Service Client Calling an Operation Using SSL Authentication 128
Web Service Implements an Operation Protected by SSL Authentication 129

Contents

5

6

Using the HTTP Binding Component

This guide provides an overview of the HTTP Binding Component, and includes details that are
necessary to configure and deploy the binding component in a JBI project. The HTTP Binding
Component provides connectivity for SOAP over HTTP in a JBI 1.0 compliant environment.
The HTTP Binding Component is used as both a provider proxy to support connectivity to
services in the JBI environment, and as a consumer proxy to invoke services. The HTTP
Binding Component is a JSR 208-compliant JBI runtime component that implements the Java
Business Integration component interfaces.

For more information, see the Java CAPS web site at http://developers.sun.com/javacaps/.

What You Need to Know

These links take you to what you need to know before you use the HTTP Binding Component.
■ “About the HTTP Binding Component” on page 8
■ “HTTP/SOAP Binding Architecture” on page 8
■ “HTTP Binding Component Features” on page 10
■ “HTTP Binding Component Example Scenario” on page 11

Reference Information

These links take you to additional reference information about configuring and using the HTTP
Binding Component.
■ “SOAP Processing” on page 13
■ “HTTP Processing” on page 32
■ “HTTP GET and POST Processing” on page 36
■ “HTTP Binding Component Runtime Properties” on page 42
■ “HTTP Binding Component Client Endpoint Properties” on page 48
■ “Using Normalized Message Properties to Propagate Binding Context Information” on

page 51
■ “Quality of Service (QOS) Features” on page 59
■ “Using the Tango Web Service Features with the HTTP Binding Component” on page 64

7

http://developers.sun.com/javacaps/

■ “HTTP Binding Component Security” on page 82
■ “Using Application Variables to Define Name/Value Pairs” on page 117
■ “Using Application Configuration to Configure Connectivity Parameters” on page 120
■ “Statistics Monitoring” on page 121
■ “Clustering Support for the HTTP Binding Component” on page 122
■ “Common User Scenarios” on page 125

About the HTTP Binding Component
The HTTP Binding Component provides connectivity for SOAP over HTTP in a JBI 1.0
compliant environment. The HTTP Binding Component is used as both a provider proxy to
support connectivity to services in the JBI environment, and as a consumer proxy to invoke
services.

The JBI platform enables software vendors to provide services that can be invoked by external
components using different protocols. These services are represented as JBI service engines and
implement the business logic of the service. JBI binding components implement the protocol
transformations between abstract messages handled by the JBI Service Engines and concrete
messages of the protocol.

The HTTP Binding Component enables external components to invoke services, hosted by the
JBI platform, using SOAP messages over the HTTP/HTTPS protocol. It also allows JBI
components to invoke external web services using the same SOAP over the HTTP/HTTPS
protocol.

The transformation of abstract messages to SOAP messages occurs in the HTTP Binding
Component. WSDL extensibility elements, as defined in the WSDL 1.1, SOAP 1.1, SOAP 1.2
specifications, and Basic Profile 1.1, are used to properly configure this transformation. These
WSDL extensibility elements are part of the binding and service sections of WSDL
documents. These WSDL documents are the major artifacts included in a Service Unit, the JBI
deployable unit into a Binding Component. Both the binding and service sections of a WSDL
document must be properly filled out to determine how the message is transformed and the
destination of that message.

HTTP/SOAP Binding Architecture
The HTTP Binding Component's SOAP binding enables external components to invoke web
services hosted by the JBI platform using SOAP messages over the HTTP protocol. It also
enables JBI engines to exposes their services. The web service can be unsecured or secured,
using HTTP over SSL, TLS, or some other technology.

The SOAP binding resides in the JBI framework. It leverages the services offered by the web
container to receive incoming web service requests. The Binding components are based on

About the HTTP Binding Component

Using the HTTP Binding Component • June 20098

standards and do not use any proprietary API to promote reusability across different J2EE
based JBI platforms. The binding does not use any web container services for outbound web
services requests.

The HTTP Binding Component is B.P.1.0 compliant. The binding component addresses Basic
Profile 1.1 requirements for messaging, such as:

■ XML representation of SOAP messages, including fault messages
■ Transport level security
■ SOAP processing model
■ Use of SOAP in HTTP

The following diagram illustrates relationship between the HTTP Binding Component and the
other components within the runtime environment.

The Application Server contains the ESB/JBI container, as well as the Metro container that
incorporates JAX-WS, JAX-RPC, JAXB, and Tango (WSIT), and the HTTP (Grizzly) container
that adds Asynchronous Processing and NIO. The ESB/JBI container incorporates the HTTP
Binding Component, the BPEL Service Engine, and the Java EE Service Engine, as well as other
JBI Components. The HTTP/SOAP Binding Component provides interaction between the
various containers and JBI components within the Application Server.

HTTP/SOAP Binding Architecture

Using the HTTP Binding Component 9

HTTP Binding Component Features
Features of the HTTP/SOAP Binding Component include the following:

■ Supports the WSDL 1.1, SOAP 1.1, SOAP 1.2 specifications and Basic Profile 1.1. Message
exchanges to and from this binding component make use of the JBI WSDL 1.1 wrapper for
the normalized message

■ Implements HTTP and SOAP binding as defined by the WSDL 1.1 specification
■ Follows WS-I 1.0 conventions and adds additional support for nonconforming components
■ Supports Document and Remote Procedure Call (RPC) style web services
■ Supports literal and encoded use
■ Supports the common convention of WSDL retrieval, such as <service uri>?wsdl
■ Uses XML Catalogs following the OASIS Committee Specification, which enable the

component to resolve schemas locally without resorting to network access
■ Supports JBI service unit deployments to define the web services to provide or consume
■ Makes use of the WSDL extensibility (standard HTTP and SOAP extensions) to define

external communication details for the web services to provision or consume
■ Supports Binding Component to Binding Component Connection, which allows direct

HTTP Binding Component to HTTP Binding Component connections within a composite
application

■ Provides enhanced Application Variable Support
■ Supports HTTP and HTTPS connections
■ Provides Metro (JAX-WS, Tango/WSIT) integration to support WS-* features (such as

WS-Security, WS-Addressing, WS-Reliable Messaging, WS-Transaction, and so forth) for
incoming and outgoing requests

■ Provides full JAX-WS integration for incoming and outgoing requests
■ Supports GlassFish cluster mode

Service Provider Features
An HTTP Binding Component acting as a service provider supports sending HTTP or SOAP
messages to an external web service.

Service provider features include:

■ Outbound requests handled through the Java API for XML Web Services (JAX-WS)
■ Support for proxy and proxy server authentication

HTTP Binding Component Features

Using the HTTP Binding Component • June 200910

http://enterprise.netbeans.org/soa/compapp/casa/tutorials/bcbc/index.html

Service Consumer Features
The HTTP Binding Component, acting as a service consumer, services HTTP requests or SOAP
requests from HTTP clients, transforms (normalizes) them, and sends them to the normalized
message router.

Service consumer features include:

■ Uses asynchronous I/O (NIO) in the server to service thousands of concurrent incoming
requests

■ Packaged with an embedded HTTP server (Grizzly)
■ Supports clustering

Security Features
Security features include support for transport level security through:

■ Basic authentication
■ SSL support

HTTP Binding Component Example Scenario
The following purchase order example illustrates how an HTTP Binding Component can be
used in a composite application. In this example scenario, a single HTTP Binding Component
acts as both a service provider and service consumer.

Purchase Order Example
A medical supply company provides a web site that contains a line of products for pre-approved
customers only. One of these customers, a clinic, logs onto the web site and orders 1000 surgical
masks and 2000 pairs of latex gloves. The purchase order is received and stored by the medical
supply company's server, and a response is sent back to the clinic to confirm that the order has
been received.

HTTP Binding Component Example Scenario

Using the HTTP Binding Component 11

The purchase order handling system in this scenario is represented by a web service
implemented using Sun Java Application Server with the JBI framework.

The actors in this situation are as follows:

■ Web Client — Packages up the purchase order as a SOAP request and sends it to the server.
■ HTTP Binding Component — Sends and receives HTTP and SOAP messages.
■ BPEL Service Engine — Responsible for implementing the core business logic of fulfilling

the purchase order.
■ Normalized Message Router (NMR) — Routes normalized messages between JBI

components. In this scenario, it routes normalized messages to and from the HTTP BC and
the BPEL SE.

Scenario Message Flow

FIGURE 1 HTTP Binding Component Acting as Service Provider and Service Consumer

HTTP Binding Component Example Scenario

Using the HTTP Binding Component • June 200912

The steps of the purchase order scenario message flow follow the numbers in figure 1.

1. The web client, using a client-side scripting language like the JavaScriptTM, takes the
purchase order information entered into the web form and packages it into a SOAP
message. The format of the SOAP message is defined using a WSDL.

2. The SOAP message is sent to a web service endpoint hosted by the HTTP Binding
Component.

3. The HTTP Binding Component transforms the SOAP message into a normalized message.
The normalized message is sent to the Normalized Message Router.

4. The Normalized Message Router routes the normalized message to the BPEL Service
Engine.

5. The BPEL Service Engine interprets the purchase order information and properly invokes
other BPEL processes to fulfill the request.

6. The BPEL Service Engine creates a response message in the form of a Normalized Message.
The normalized message is sent to the Normalized Message Router.

7. The HTTP Binding Component receives the response message and converts it to a SOAP
message. The SOAP message is sent back to the web client as a proper response as defined by
the WSDL.

8. The web client takes the response and creates a human-readable HTML page to inform the
customer whether the purchase order was accepted or rejected.

SOAP Processing
The HTTP Binding Component provides external connectivity for SOAP over HTTP in a JBI
1.0 compliant environment. The HTTP Binding Component supports the SOAP 1.1 and SOAP
1.2 specifications and implements SOAP binding from the WSDL 1.1 specification. The HTTP
Binding Component also supports Basic Profile 1.1, and SOAP Attachments.

This section includes the following topics:

■ “SOAP 1.1 WSDL Extensibility Elements” on page 14
■ “SOAP 1.1 Connectivity Element” on page 14
■ “SOAP 1.1 Binding Elements” on page 14

■ “SOAP 1.2 WSDL Extensibility Elements” on page 21
■ “SOAP 1.2 Connectivity Element” on page 21
■ “SOAP 1.2 Binding Elements” on page 22

■ “SOAP 1.1 WSDL Extensibility Elements” on page 14

SOAP Processing

Using the HTTP Binding Component 13

SOAP 1.1 WSDL Extensibility Elements
The SOAP 1.1 WSDL elements enable you to configure SOAP Connectivity and SOAP Binding
information for the HTTP Binding Component.

■ The only “SOAP 1.1 Connectivity Element” on page 14 is “SOAP 1.1 address Element” on
page 14

■ “SOAP 1.1 Binding Elements” on page 14 elements include the following:
■ “SOAP 1.1 binding Element” on page 15
■ “SOAP 1.1 operation Element” on page 15
■ “SOAP 1.1 body Element” on page 16
■ “SOAP 1.1 fault Element” on page 18
■ “SOAP 1.1 header and headerfault Elements” on page 19

SOAP 1.1 Connectivity Element
The only SOAP 1.1 Connectivity element is the address element.

SOAP 1.1 address Element
The SOAP 1.1 address extensibility element specifies the address used to connect to the SOAP
server.

TABLE 1 SOAP 1.1 addressElement Attributes

Property Description Required or Optional Example

location A URL which
indicates the address
used to connect to the
SOAP server

Required http://myhost:7676/mars/kb423

The following example illustrates the use of the SOAP 1.1 address element.

<port binding="y:binding" name="soapEndpoint">
<soap:address location="http://myhost:7676/some/additional/context" />

</port>

SOAP 1.1 Binding Elements
The SOAP 1.1 extensibility elements for binding abstract WSDL messages to SOAP messages
fall into several sections or levels.

SOAP 1.1 WSDL Extensibility Elements

Using the HTTP Binding Component • June 200914

Each level signifies how the binding should occur:

■ binding level — the configuration applies to the entire port type
■ operation level — the configuration applies only to the operation
■ message level — the configuration applies to that particular message, whether the message is

input or output

SOAP 1.1 binding Element
The SOAP 1.1 binding element indicates that the binding is bound to the SOAP 1.1 protocol
format: Envelope, Header and Body. This element does not indicate the encoding or format of
the message, for example, that it necessarily follows section 5 of the SOAP 1.1 specification.

TABLE 2 SOAP 1.1 bindingElement Attributes

Property Description Required or Optional Example

transport Indicates to which
transport of SOAP this
binding corresponds

Optional http://schemas.xmlsoap.org/soap/http

style Indicates the default
style of this particular
SOAP binding

Optional rpc

The SOAP 1.1 binding element must be present when using the SOAP binding. The following
example illustrates the use of the SOAP 1.1 binding element.

<definitions >

<binding >

<soap:binding transport="uri"? style="rpc|document"?>
</binding>

</definitions>

The style attribute value is the default style attribute for each contained operation. If the style
attribute is omitted, the value is assumed to be "document".

The value of the required transport attribute indicates the transport to use to deliver SOAP
messages. The URI value http://schemas.xmlsoap.org/soap/http corresponds to the HTTP
binding in the SOAP specification. Other URIs may be used here to indicate other transports
such as SMTP, FTP, and so forth.

SOAP 1.1 operation Element
The SOAP 1.1 operation element provides binding information from the abstract operation to
the concrete SOAP operation.

SOAP 1.1 WSDL Extensibility Elements

Using the HTTP Binding Component 15

TABLE 3 SOAP 1.1 operationElement Attributes

Property Description Required or Optional Example

soapAction Indicates the
soapAction that
should be put into the
HTTP header

Optional urn:someSoapAction

style Indicates the default
style of this particular
SOAP operation

Optional rpc

The following example illustrates the use of the SOAP operation element.

<definitions >

<binding >

<operation >

<soap:operation soapAction="uri"? style="rpc|document"?>?
</operation>

</binding>

</definitions>

The style attribute indicates whether the operation is RPC-oriented, with messages containing
parameters and return values, or document-oriented, with messages containing documents.
This information is used to select an appropriate programming model. The value of this
attribute also affects the way in which the body of the SOAP message is constructed. If the
attribute is not specified, it defaults to the value specified in the soap:binding element. If the
soap:binding element does not specify a style, it is assumed to be "document".

The soapAction attribute specifies the value of the SOAPAction header for this operation. Use
this URI value directly as the value for the SOAPAction header. do not attempt to make a relative
URI value absolute when making the request. For the HTTP protocol binding of SOAP, this
value is required and has no default value. For other SOAP protocol bindings, this value should
not be specified, and the soap:operation element can be omitted.

SOAP 1.1 body Element
The SOAP 1.1 body element provides binding information from the abstract operation to the
concrete SOAP operation.

SOAP 1.1 WSDL Extensibility Elements

Using the HTTP Binding Component • June 200916

TABLE 4 SOAP 1.1 bodyElement Attributes

Property Description Required or Optional Example

parts Indicates the parts from the
WSDL message that will be
included in the body element

Optional part1

use Indicates how message parts
are encoded in the SOAP body

Optional literal

encodingStyle Indicates a particular encoding
style to use

Optional http://someEncodingStyle

namespace Indicates the namespace of the
wrapper element for RPC style
messages

Optional urn:someNamespace

The following example illustrates the SOAP 1.1 body element.

<definitions >

<binding >

<operation >

<input>

<soap:body parts="nmtokens"? use="literal|encoded"?
encodingStyle="uri-list"? namespace="uri"?>

</input>

<output>

<soap:body parts="nmtokens"? use="literal|encoded"?
encodingStyle="uri-list"? namespace="uri"?>

</output>

</operation>

</binding>

</definitions>

The optional parts attribute of type nmtokens indicates which parts appear somewhere within
the SOAP body portion of the message. Other parts of a message may appear in other portions
of the message, such as when SOAP is used in conjunction with the multipart/related MIME
binding. If the parts attribute is omitted, then all parts defined by the message are assumed to
be included in the SOAP Body portion.

The use attribute indicates whether the message parts are encoded using some encoding rules,
or whether the parts define the concrete schema of the message.

If use is encoded, then each message part references an abstract type using the type attribute.
These abstract types are used to produce a concrete message by applying an encoding that is
specified by the encodingStyle attribute. The part names, types and value of the namespace
attribute are all inputs to the encoding, although the namespace attribute only applies to

SOAP 1.1 WSDL Extensibility Elements

Using the HTTP Binding Component 17

content that is not explicitly defined by the abstract types. If the referenced encoding style
allows variations in its format, as does the SOAP encoding, then all variations must be
supported ("reader makes right").

If use is literal, then each part references a concrete schema definition using either the element
or type attribute. In the first case, the element referenced by the part will appear directly under
the body element for document style bindings, or under an accessor element named after the
message part in RPC style. In the second case, the type referenced by the part becomes the
schema type of the enclosing element: body for document style or part accessor element for
RPC style.

You can use the value of the encodingStyle attribute when the use is literal to indicate that the
concrete format was derived using a particular encoding such as the SOAP encoding, but that
only the specified variation is supported ("writer makes right").

The value of the encodingStyle attribute is a list of URIs, each separated by a single space. The
URIs represent encodings used within the message, in order of most restrictive to least
restrictive, like the encodingStyle attribute defined in the SOAP specification.

SOAP 1.1 fault Element
The fault element specifies the contents of SOAP Fault Details element. It is patterned after the
body element.

TABLE 5 SOAP 1.1 faultElement Attributes

Property Description
Required or
Optional Example

name Indicates the name of the part from
the WSDL message that will be
included in the fault element

Required part1

use Indicates how message parts will be
encoded in the SOAP fault

Required literal

encodingStyle Indicates a particular encoding
style to use

Optional http://someEncodingStyle

namespace Indicates the namespace of the
wrapper element for RPC style
messages

Optional urn:someNamespace

The following example illustrates the SOAP fault element.

<definitions >

<binding >

<operation >

<fault>*

SOAP 1.1 WSDL Extensibility Elements

Using the HTTP Binding Component • June 200918

<soap:fault name="nmtoken" use="literal|encoded"
encodingStyle="uri-list"? namespace="uri"?>

</fault>

</operation>

</binding>

</definitions>

The name attribute relates the soap:fault to the wsdl:fault defined for the operation. The
fault message must have a single part.

The use, encodingStyle, and namespace attributes are all used in the same way as those used
with the body element, except that style="document" is assumed, because faults do not
contain parameters.

SOAP 1.1 header and headerfault Elements
The header and headerfault elements enable you to define headers that are transmitted inside
the header element of the SOAP Envelope. You do not have to exhaustively list all headers that
appear in the SOAP Envelope using header. For example, extensions to WSDL may imply
specific headers should be added to the actual payload and you do not have to list those headers
here.

TABLE 6 SOAP 1.1 headerElement Attributes

Property Description Required or Optional Example

message Indicates the WSDL message
that will be used in binding to
the header element

Required part1

part Indicates the parts from the
WSDL message that will be
included in the header
element

Required part1

use Indicates how message parts
will be encoded in the SOAP
header

Required literal

encodingStyle Indicates a particular
encoding style to use

Optional http://someEncodingStyle

namespace Indicates the namespace of
the wrapper element for RPC
style messages

Optional urn:someNamespace

SOAP 1.1 WSDL Extensibility Elements

Using the HTTP Binding Component 19

TABLE 7 SOAP 1.1 headerfaultElement Attributes

Property Description Required or Optional Example

name Indicates the WSDL message
that will be used in binding to
the headerfault element

Required part1

part Indicates the parts from the
WSDL message that will be
included in the headerfault
element

Required part1

use Indicates how message parts
will be encoded in the SOAP
headerfault

Required literal

encodingStyle Indicates a particular
encoding style to use

Optional http://someEncodingStyle

namespace Indicates the namespace of
the wrapper element for RPC
style messages

Optional urn:someNamespace

The following example illustrates the SOAP header and headerfault elements.

<definitions >

<binding >

<operation >

<input>

<soap:header message="qname" part="nmtoken" use="literal|encoded"
encodingStyle="uri-list"? namespace="uri"?>*

<soap:headerfault message="qname" part="nmtoken" use="literal|encoded"
encodingStyle="uri-list"? namespace="uri"?/>*

<soap:header>

</input>

<output>

<soap:header message="qname" part="nmtoken" use="literal|encoded"
encodingStyle="uri-list"? namespace="uri"?>*

<soap:headerfault message="qname" part="nmtoken" use="literal|encoded"
encodingStyle="uri-list"? namespace="uri"?/>*

<soap:header>

</output>

</operation>

</binding>

</definitions>

The use, encodingStyle, and namespace attributes are all used in the same way as those used
with the body element, except that style="document" is assumed because headers do not
contain parameters.

SOAP 1.1 WSDL Extensibility Elements

Using the HTTP Binding Component • June 200920

Together, the message attribute (of type QName) and the part attribute (of type nmtoken)
reference the message part that defines the header type.

The optional headerfault elements that appear inside the header and have the same syntax as
the header, enable you to specify the header types used to transmit error information pertaining
to the header, and defined by the header. The SOAP specification states that errors pertaining to
headers must be returned in the headers. This mechanism enables you to specify the format of
such headers.

SOAP 1.2 WSDL Extensibility Elements
The SOAP 1.2 WSDL extensibility elements enable you to configure two sets of information for
the HTTP Binding Component: SOAP 1.2 connectivity information, and binding information
to convert WSDL messages to and from SOAP messages.

■ The only “SOAP 1.2 Connectivity Element” on page 21 is “SOAP 1.2 address Element” on
page 21

■ “SOAP 1.2 Binding Elements” on page 22 elements include the following:
■ “SOAP 1.2 binding Element” on page 22
■ “SOAP 1.2 operation Element” on page 23
■ “SOAP 1.2 body Element” on page 24
■ “SOAP 1.2 fault Element” on page 26
■ “SOAP 1.2 header and headerfault Elements” on page 27

SOAP 1.2 Connectivity Element
The only SOAP 1.2 Connectivity element is the address element.

SOAP 1.2 address Element
The SOAP 1.2 address extensibility element specifies the URL address used to connect to the
SOAP server.

TABLE 8 SOAP 1.2 addressElement Attributes

Property Description Required or Optional Example

location A URL address used
to connect to the
SOAP server

Required http://myhost:7676/mars/kb423

The following example illustrates the use of the SOAP 1.2 address element.

SOAP 1.2 WSDL Extensibility Elements

Using the HTTP Binding Component 21

<service name="echoService">
<port name="echoPort" binding="tns:echoBinding">

<soap12:address location="http://localhost:9080/echoService/echoPort"/>
</port>

</service>

Note – The required location attribute (of type xs:anyURI) is a URI at which the endpoint can
be accessed. The value of the location attribute cannot be a relative URI. The URI scheme
specified must correspond to the transport or transfer protocol specified by the
soap12:binding/@transport attribute of the corresponding wsdl:binding of the containing
wsdl:port.

SOAP 1.2 Binding Elements
The SOAP 1.2 extensibility elements for binding abstract WSDL messages to SOAP 1.2
messages fall into several sections or levels.

Each level signifies how the binding should occur:

■ binding level — the configuration applies to the entire port type
■ operation level — the configuration applies only to the operation
■ message level — the configuration applies to that particular message, whether the message is

input or output

SOAP 1.2 binding Element
The SOAP 1.2 extensibility elements, for binding abstract WSDL messages to SOAP 1.2
messages, fall into different sections or levels.

Each level signifies how the binding should occur:

■ binding level — the configuration applies to the entire port type
■ operation level — the configuration applies only to the operation
■ message level — the configuration applies to that particular message, whether the message is

input or output

TABLE 9 SOAP 1.2 bindingElement Attributes

Property Description Required or Optional Example

transport Indicates to which
transport of SOAP this
binding corresponds

Optional http://schemas.xmlsoap.org/soap/http

SOAP 1.2 WSDL Extensibility Elements

Using the HTTP Binding Component • June 200922

TABLE 9 SOAP 1.2 bindingElement Attributes (Continued)
Property Description Required or Optional Example

style Indicates the default
style of this particular
SOAP binding

Optional rpc

The SOAP 1.2 binding element must be present when using the SOAP binding. The following
example illustrates the use of the SOAP 1.2 binding element.

<wsdl:definitions ...>

...

<wsdl:binding ...>

<soap12:binding style="rpc|document" ? transport="xs:anyURI"wsdl:
required="xs:boolean" ? />

Note – The code sample above was wrapped for display purposes.

The style attribute value is the default style attribute for each contained operation. If the style
attribute is omitted, the value is assumed to be "document".

The value of the required transport attribute indicates the transport to use to deliver SOAP
messages. The URI value http://schemas.xmlsoap.org/soap/http corresponds to the HTTP
binding in the SOAP specification. Other URIs may be used here to indicate other transports
such as SMTP, FTP, and so forth.

SOAP 1.2 operation Element
The SOAP 1.2 operation element provides binding information from the abstract operation to
the concrete SOAP operation.

TABLE 10 SOAP 1.2 operationElement Attributes

Property Description Required or Optional Example

soapAction Indicates the action
parameter carried in the
application/soap+xml
Content-Type header field

Optional urn:someSoapAction

style Indicates the default style of
this particular SOAP
operation

Optional rpc

SOAP 1.2 WSDL Extensibility Elements

Using the HTTP Binding Component 23

TABLE 10 SOAP 1.2 operationElement Attributes (Continued)
Property Description Required or Optional Example

soapActionRequired Indicates whether the value
of the soapAction attribute
is or is not required to be
part of request message

Optional true

The following example illustrates the use of the SOAP operation element.

<definitions>;

<binding >;

<operation >;

<soap12:operation soapAction="xs:anyURI" ?

soapActionRequired="xs:boolean" ?

style="rpc|document" ?

wsdl:required="xs:boolean" ? /> ?

</soap12:operation>

</binding>;

</definitions>

The style attribute value, if present, is a string that specifies the style for the operation. The
style attribute indicates whether the operation is RPC-oriented (a messages containing
parameters and return values) or document-oriented (a message containing documents). If the
style attribute is omitted from the soap12:operation element, then the operation inherits the
style specified or implied by the soap12:binding element in the containing wsdl:binding
element.

The soapAction attribute (of type xs:anyURI) specifies the value of the action parameter,
carried in the application/soap+xml Content-Type header field, for this operation. The value
of this attribute must be an absolute URI.

The soapActionRequired attribute (of type xs:Boolean), if present, indicates whether the
value of the soapAction attribute is or is not required to be conveyed in the request message. If
the soapActionRequired attribute is omitted, its value defaults to true. When the value of
soapActionRequired is true, the soapAction attribute must be present

SOAP 1.2 body Element
The SOAP 1.2 body element specifies how the message parts appear within the SOAP body

element.

SOAP 1.2 WSDL Extensibility Elements

Using the HTTP Binding Component • June 200924

TABLE 11 SOAP 1.2 bodyElement Attributes

Property Description Required or Optional Example

parts Indicates the parts from the
WSDL message that will be
included in the body element

Optional part1

use Indicates how message parts
are encoded in the SOAP body

Optional literal

encodingStyle Indicates a particular encoding
style to use

Optional http://someEncodingStyle

namespace Indicates the namespace of the
wrapper element for RPC style
messages

Optional urn:someNamespace

The following example illustrates the SOAP 1.2 body element.

<wsdl:definitions ... >

<wsdl:binding ... >

<wsdl:operation ... >

<wsdl:input>

<soap12:body parts="soap12:tParts" ?

namespace="xs:anyURI" ?

use="literal|encoded" ?

encodingStyle="xs:anyURI" ? ... />

...

</wsdl:input>

<wsdl:output>

<soap12:body parts="soap12:tParts ?

namespace="xs:anyURI" ?

use="literal|encoded" ?

encodingStyle="xs:anyURI" ? ... />

...

</wsdl:output>

</wsdl:operation>

...

</wsdl:binding>

...

</wsdl:definitions>

The optional parts attribute (of type soap12:tParts, which is a list of xs:NMTOKENs)
indicates which message parts are bound to the SOAP 1.2 body element of the message. Other
message parts may be bound to other portions of the message, such as when SOAP is used in

SOAP 1.2 WSDL Extensibility Elements

Using the HTTP Binding Component 25

conjunction with the multipart/related MIME binding, or when bound as SOAP header blocks.
If the parts attribute is omitted, then all of the parts defined by the associated wsdl:message are
assumed to be included in the SOAP body.

The use attribute, if present, indicates whether the message parts are encoded using some
encoding rules, or the parts define the concrete schema of the message. If the value is "encoded"
the message parts are encoded using encoding rules that are specified by the value, actual or
implied, of the encodingStyle attribute. If the value is "literal" then the message parts are
literally defined by the schema types referenced.

The encodingStyle attribute (of type xs:anyURI), if present, identifies the set of encoding
rules used to construct the message. This attribute must not be present unless the style
attribute of the soap12:binding element of the containing wsdl:binding has a value of “rpc”
and the use attribute on the containing soap12:body element has a value of "encoded". The
value of the encodingStyle attribute, if present, must not be a relative URI.

SOAP 1.2 fault Element
The fault element specifies the contents of SOAP 1.2 Fault Details element. It is patterned
after the body element.

TABLE 12 SOAP 1.2 faultElement Attributes

Property Description
Required or
Optional Example

name Indicates the name of the part from
the WSDL message that will be
included in the fault element

Required part1

use Indicates how message parts will be
encoded in the SOAP 1.2 fault

Required literal

encodingStyle Indicates a particular encoding
style to use

Optional http://someEncodingStyle

namespace Indicates the namespace of the
wrapper element for RPC style
messages

Optional urn:someNamespace

The following example illustrates the SOAP fault element.

<wsdl:definitions ... >

...

<wsdl:binding ... >

...

<wsdl:operation ... >

...

<wsdl:fault ... >*

SOAP 1.2 WSDL Extensibility Elements

Using the HTTP Binding Component • June 200926

<soap12:fault name="xs:NMTOKEN"
namespace="xs:anyURI" ?

use="literal|encoded" ?

encodingStyle="xs:anyURI" ? ... />

...

</wsdl:fault>

</wsdl:operation>

...

</wsdl:binding>

...

</wsdl:definitions>

The name attribute (of type xs:NMTOKEN) associates the corresponding wsdl:fault defined in
the wsdl:portType for the containing wsdl:operation.

The use attribute, if present, indicates whether the message parts are encoded using some
encoding rules, or whether the parts define the concrete schema of the message. If the value is
"encoded" the message parts are encoded using some encoding rules as specified by the value,
actual or implied, of the encodingStyle attribute. If the value is "literal" then the message
parts are literally defined by the schema types referenced.

The namespace attribute (of type xs:anyURI), if present, defines the namespace to be assigned
to the wrapper element for the fault. This attribute is ignored if the style attribute of either the
soap12:binding element of the containing wsdl:binding or of the soap12:operation
element of the containing wsdl:operation is either omitted or has a value of “document”. This
attribute must be present if the value of the style attribute of the soap12:binding element of
the containing wsdl:binding is “rpc”. The value of the namespace attribute must not be a
relative URI.

The encodingStyle attribute (of type xs:anyURI), if present, identifies the set of encoding rules
used to construct the fault message. This attribute must not be present unless the style
attribute of the soap12:binding element of the containing wsdl:binding has a value of “rpc”
and the use attribute on the containing soap12:body element has a value of "encoded". The
value of the encodingStyle attribute must not be a relative URI.

SOAP 1.2 header and headerfault Elements
The header and headerfault elements enable you to define headers that are transmitted inside
the header element of the SOAP Envelope. You do not have to exhaustively list all headers that
appear in the SOAP 1.2 Envelope using header. For example, extensions to WSDL may imply
specific headers should be added to the actual payload and you do not have to list those headers
here.

SOAP 1.2 WSDL Extensibility Elements

Using the HTTP Binding Component 27

TABLE 13 SOAP 1.2 headerElement Attributes

Property Description Required or Optional Example

message Indicates the WSDL message
that will be used in binding to
the header element

Required part1

part Indicates the parts from the
WSDL message that will be
included in the header
element

Required part1

use Indicates how message parts
will be encoded in the SOAP
header

Required literal

encodingStyle Indicates a particular
encoding style to use

Optional http://someEncodingStyle

namespace Indicates the namespace of
the wrapper element for RPC
style messages

Optional urn:someNamespace

The following example illustrates the SOAP 1.2 header element.

<wsdl:definitions ... >

...

<wsdl:binding ... >

...

<wsdl:operation ... >

...

<wsdl:input ... >*

<soap12:header message="xs:QName"
part="xs:NMTOKEN"
use="literal|encoded"
namespace="xs:anyURI" ?

encodingStyle="xs:anyURI" ? ... /> *

...

</wsdl:input>

<wsdl:output ... >*

<soap12:header message="xs:QName"
part="xs:NMTOKEN"
use="literal|encoded"
namespace="xs:anyURI" ?

encodingStyle="xs:anyURI" ? ... /> *

...

</wsdl:output>

</wsdl:operation>

...

SOAP 1.2 WSDL Extensibility Elements

Using the HTTP Binding Component • June 200928

</wsdl:binding>

...

</wsdl:definitions>

The message attribute (of type xs:QName), together with the parts attribute, indicates which
message parts are bound as children of the SOAP 1.2 header element of the message. The
referenced message does not need to be the same as the message that defines the SOAP Body.

The parts attribute (of type xs:NMTOKEN), together with the message attribute, indicates which
message part is bound as a child of the SOAP 1.2 header element of the message.

The namespace attribute (of type xs:anyURI), if present, defines the namespace to be assigned
to the header element serialized with use="encoded". In all cases, the header is constructed as if
the style attribute of the wsoap12:binding element, of the containing wsdl:binding, has a
value of “document”. The value of the namespace attribute, if present, must not be a relative
URI.

The use attribute indicates whether the message parts are encoded using some encoding rules,
or whether the parts define the concrete schema of the message. If the value is "encoded" the
message parts are encoded using some encoding rules as specified by the value, actual or
implied, of the encodingStyle attribute. If the value is "literal" then the message parts are
literally defined by the schema types referenced.

The encodingStyle attribute (of type xs:anyURI), if present, identifies the set of encoding rules
used to construct the message. This attribute must not be present unless the style attribute, of
the soap12:binding element, of the containing wsdl:binding, has a value of “rpc” and the use
attribute, on the containing soap12:body element, has a value of "encoded". The value of the
encodingStyle attribute, if present, must not be a relative URI.

/soap12:header/@{any}}} is an extensibility mechanism that enables additional attributes,
that are defined in a foreign namespace, to be added to the element.

Optional soap12:headerfault elements, which appear inside wsoap12:header elements,
specify the header types used to transmit error information pertaining to the header, defined by
the soap12:header.

TABLE 14 SOAP 1.2 headerfaultElement Attributes

Property Description Required or Optional Example

message Indicates the WSDL message
that will be used in binding to
the headerfault element

Required part1

SOAP 1.2 WSDL Extensibility Elements

Using the HTTP Binding Component 29

TABLE 14 SOAP 1.2 headerfaultElement Attributes (Continued)
Property Description Required or Optional Example

part Indicates the parts from the
WSDL message that will be
included in the headerfault
element

Required part1

use Indicates how message parts
will be encoded in the SOAP
headerfault

Required literal

encodingStyle Indicates a particular
encoding style to use

Optional http://someEncodingStyle

namespace Indicates the namespace of
the wrapper element for RPC
style messages

Optional urn:someNamespace

The following example illustrates the SOAP 1.2 headerfault element.

<wsdl:definitions ... >

...

<wsdl:binding ... >

...

<wsdl:operation ... >

...

<wsdl:input ... >

<soap12:header ... >

<soap12:headerfault message="xs:QName"
part="xs:NMTOKEN"
use="literal|encoded"
namespace="xs:anyURI" ?

encodingStyle="xs:anyURI" ?

... /> *

</soap12:header> *

...

</wsdl:input> *

<wsdl:output ... >

<soap12:header ... >

<soap12:headerfault message="xs:QName"
part="xs:NMTOKEN"
use="literal|encoded"
namespace="xs:anyURI" ?

encodingStyle="xs:anyURI" ?

... /> *

</soap12:header> *

...

SOAP 1.2 WSDL Extensibility Elements

Using the HTTP Binding Component • June 200930

</wsdl:output> *

</wsdl:operation>

...

</wsdl:binding>

...

</wsdl:definitions>

The headerfault elements, which appear inside header and have the same syntax as header,
enable you to specify the header types that are used to transmit error information pertaining to
the header, defined by the header. The SOAP specification states that errors pertaining to
headers must be returned in headers, and this mechanism enables you to specify the format of
such headers.

The message attribute (of type xs:QName), together with the parts attribute, indicates which
message part is to be bound as a child of the SOAP 1.2 header element of the message, for
returning faults pertaining to the enclosing soap12:header. The referenced message does not
need to be the same as the message that defines the SOAP Body.

The parts attribute (of type xs:NMTOKEN), together with the message attribute, indicates which
message part is to be bound as a child of the SOAP 1.2 header element of the message for
returning faults pertaining to the enclosing soap12:header.

The namespace attribute (of type xs:anyURI), if present, defines the namespace to be assigned
to the wrapper element for an rpc-style operation. This attribute is ignored if the style
attribute of either the soap12:binding element, of the containing wsdl:binding or of the
soap12:operation element of the containing wsdl:operation, is either omitted or has a value
of “document”. This attribute must be present if the value of the style attribute of the
soap12:binding element of the containing wsdl:binding is “rpc”. The value of the namespace
attribute, must not be a relative URI.

The use attribute indicates whether the message parts are encoded using some encoding rules,
or whether the parts define the concrete schema of the message. If the value is "encoded" the
message parts are encoded using some encoding rules, as specified by the value, actual or
implied, of the encodingStyle attribute. If the value is "literal" then the message parts are
literally defined by the schema types referenced.

The encodingStyle attribute (of type xs:anyURI), if present, identifies the set of encoding rules
used to construct the message. This attribute must not be present unless the style attribute, of
the soap12:binding element, of the containing wsdl:binding, has a value of “rpc” and the use
attribute on the containing soap12:body element has a value of "encoded". The value of the
encodingStyle attribute must not be a relative URI.

/soap12:headerfault/@{any}}} is an extensibility mechanism that enables additional
attributes, defined in a foreign namespace, to be added to the element.

SOAP 1.2 WSDL Extensibility Elements

Using the HTTP Binding Component 31

WS-I Basic Profile 1.1
The HTTP Binding Component conforms to the Basic Profile 1.1 Web service specification.

HTTP Processing
The HTTP extensibility elements describe interactions between a web browser and a web site
through the HTTP 1.1 GET and POST verbs. These elements enable applications other than
web browsers to interact with the site.

This section includes the following topics:

■ “HTTP WSDL Extensibility Elements” on page 32
■ “HTTP Connectivity Element” on page 32
■ “HTTP Binding Elements” on page 33

HTTP WSDL Extensibility Elements
The HTTP WSDL elements enable you to configure HTTP Connectivity and HTTP Binding
information for the HTTP Binding Component:

■ The only “HTTP Connectivity Element” on page 32 is the “HTTP address Element” on
page 32

■ “HTTP Binding Elements” on page 33 elements include the following:
■ “HTTP binding Element” on page 33
■ “HTTP operation Element” on page 34
■ “HTTP urlEncoded Element” on page 34
■ “HTTP urlReplacement Element” on page 35

You can specify the following protocol-specific information:

■ An indication that a binding uses HTTP GET or POST
■ An address for the port
■ A relative address for each operation (relative to the base address defined by the port)

HTTP Connectivity Element
The only HTTP Connectivity element is the address element.

HTTP address Element
The HTTP address extensibility element enables you to specify connectivity information to the
HTTP server.

WS-I Basic Profile 1.1

Using the HTTP Binding Component • June 200932

TABLE 15 HTTP addressElement Attributes

Property Description
Required or
Optional Example

location A URL that specifies the
connectivity information to
connect to the HTTP
server.

Required http://myhost:7676/some/additional/context

The following example illustrates the use of the HTTP address extensibility element defined for
a service port.

<port binding="y:binding" name="soapEndpoint">
<http:address location="http://myhost:7676/some/additional/context" />

</port>

HTTP Binding Elements
The HTTP extensibility elements for binding abstract WSDL messages to HTTP messages fall
into several sections.

Each section signifies how the binding should occur.
■ binding level — applies to the entire port type
■ operation level — applies only to the operation
■ message level — applies to a particular message, whether it is input or output.

HTTP binding Element
The HTTP binding element specifies that the binding is bound to the HTTP protocol.

TABLE 16 HTTP bindingElement Attributes

Property Description Required or Optional Example

verb Indicates to which transport of
HTTP this binding
corresponds.

Required GET

The HTTP binding element must be present when using the HTTP binding. The following
example illustrates the HTTP binding element.

<definitions >

<binding >

<http:binding verb="nmtoken" />

</binding>

</definitions>

HTTP WSDL Extensibility Elements

Using the HTTP Binding Component 33

The value of the required verb attribute indicates the HTTP verb. Common values are GET or
POST, but others may be used. Note that HTTP verbs are case sensitive.

HTTP operation Element
The HTTP operation element provides binding information from the abstract operation to the
concrete HTTP operation.

TABLE 17 HTTP operationElement Attributes

Property Description Required or Optional Example

location Indicates the relative URI.
Combined with the address
location attribute.

Required o1

The following example illustrates the WSDL operation element.

<definitions >

<binding >

<operation >

<soap:operation location="uri" />

</operation>

</binding>

</definitions>

The location attribute specifies a relative URI for the operation. This URI is combined with the
URI specified in the http:address element to form the full URI for the HTTP request. The URI
value must be a relative URI.

HTTP urlEncoded Element
The urlEncoded element indicates that all of the message parts are encoded into the HTTP
request URI using the standard URI-encoding rules (name1=value&name2=value...). The
names of the parameters correspond to the names of the message parts. Each value contributed
by the part is encoded using a name=value pair. You can use this value with GET to specify URL
encoding, or with POST to specify a FORM-POST. For GET, the "?" character is automatically
appended as necessary.

Example:

<definitions >

<binding >

<operation >

<input >

<http:urlEncoded/>

</input>

HTTP WSDL Extensibility Elements

Using the HTTP Binding Component • June 200934

<output >

<-- mime elements -->

</output>

</operation>

</binding>

</definitions>

HTTP urlReplacement Element
The urlReplacement element indicates that all the message parts are encoded into the HTTP
request URI using a replacement algorithm:

■ The relative URI value of http:operation is searched for a set of search patterns.
■ The search occurs before the value of the http:operation is combined with the value of the

location attribute from http:address.
■ There is one search pattern for each message part. The search pattern string is the name of

the message part surrounded with parenthesis "(" and ")".
■ For each match, the value of the corresponding message part is substituted for the match at

the location of the match
■ Matches are performed before any values are replaced. Replaced values do not trigger

additional matches.

Message parts must not have repeating values.

Example:

<definitions >

<binding >

<operation >

<input >

<http:urlReplacement/>

</input>

<output >

<-- mime elements -->

</output>

</operation>

</binding>

</definitions>

HTTP WSDL Extensibility Elements

Using the HTTP Binding Component 35

HTTP GET and POST Processing
The HTTP Binding Component supports HTTP Binding as defined by the WSDL 1.1
specification. For more information on the WSDL 1.1 specification for the HTTP/SOAP
Binding, refer to WSDL 1.1 Specification .

The binding component supports the following message processing:

■ “XML/HTTP GET Processing” on page 36
■ “ Using the HTTP Binding Component with the HTTP POST Method” on page 40

XML/HTTP GET Processing
The HTTP Binding Component is used as a provider proxy to provide connectivity to services
in the JBI environment, or as consumer proxy to invoke services. The binding component
implements the HTTP 1.1 GET binding defined in the WSDL 1.1 Specification, enabling
applications to consume or provide services from the JBI environment using a web browser-like
HTTP GET interaction.

Configuring the HTTP Binding Component for HTTP
Get Interactions
To configure the HTTP Binding Component to function for HTTP GET interactions, the
WSDL file of the service to which the binding component is acting as proxy, needs to use the
following HTTP binding language elements defined in the WSDL 1.1 Specification:

■ An <http:binding> element indicating that a WSDL binding uses HTTP GET.
■ An <http:address> element representing the address of the port.
■ An <http:operation> element representing a relative address for each operation, that is

relative to the <http:address> defined by the port.
■ An <http:urlEncoded> and <http:urlReplacement> element to indicate how all of the

message parts of a request are encoded and made a part of the HTTP request URI.

Examples that demonstrate how to configure the HTTP Binding Component as a provider
proxy or consumer proxy are available at Using the HTTP Binding Component with the HTTP
GET method (http://wiki.open-esb.java.net/Wiki.jsp?page=HttpBcGetInteraction)
and Using the HTTP Binding Component with the HTTP POST Method
(http://wiki.open-esb.java.net/Wiki.jsp?page=HttpBcPostInteraction).

HTTP GET and POST Processing

Using the HTTP Binding Component • June 200936

http://wiki.open-esb.java.net/Wiki.jsp?page=HttpBcGetInteraction
http://wiki.open-esb.java.net/Wiki.jsp?page=HttpBcGetInteraction
http://wiki.open-esb.java.net/Wiki.jsp?page=HttpBcPostInteraction
http://wiki.open-esb.java.net/Wiki.jsp?page=HttpBcPostInteraction

Binding Details
The following sections describe how the HTTP Binding Component supports and implements
the HTTP Binding language elements. Unless indicated otherwise, each of the WSDL elements
described below are defined in the namespace http://schemas.xmlsoap.org/wsdl/http/.

http:binding Element
The <http:binding> element:

■ Indicates that the binding uses the HTTP protocol.
■ Must be specified as a subordinate element of a <wsdl:binding>

Note – Currently the HTTP Binding Component only supports GET and POST values (please
note that HTTP methods are case-sensitive).

Example:

<http:binding verb="POST"/>

http:address Element
The <http:address> element:

■ Represents the address of the port.
■ Must be specified as a subordinate element of a <wsdl:port>
■ Requires a location attribute that specifies the base URI for the port.

Example:

<http::address location="http://localhost/MyService/MyPort"/>

http:operation Element
The <http:operation> element:

■ Represents an address for an operation.
■ Must be specified as a subordinate element of a <wsdl:operation/>
■ Requires a location attribute that specifies the base URI for the operation.
■ The full URI for a request to this port and to this specific operation. The <http:address>

element addresses the port, and since a port can have multiple operations, this element
represents a relative address to a particular operation; the value of this element's location
attribute is appended to the value of the<http:address> location attribute to form the full
URI for a request to this port and to this specific operation.

XML/HTTP GET Processing

Using the HTTP Binding Component 37

The HTTP Binding Component supports a blank location attribute value for this element.

Example:

Given:

<http:operation location="Submit">
<http:address location="http://localhost/MyService/MyPort">

The full HTTP request URI is:

http://localhost/MyService/MyPort/Submit

http:urlEncoded Element
The <http:urlEncoded> element:

■ Indicates that all message parts that make up the input message are encoded into the request
URI using query-string encoding, as follows:
■ Name-value pair formatted as name=value
■ Ampersand-delimited name-value pairs:name1=value1&name2=value2&...
■ Message part names comprise the names in each pair, and message part values comprise

the values in each pair.
■ Must be specified as a subordinate element of a <wsdl:input/>
■ Requires a location attribute that specifies the base URI for the operation.
■ Is only supported by the HTTP Binding Component for the GET method.

<http:urlEncoded> is ignored for the POST method. For more information, see POST
URL Processing of the HTTP WSDL Binding Implementation (http://
wiki.open-esb.java.net/Wiki.jsp?page=HttpPostUrlProcessing).

Example:

Given this description:

<wsd:message name="MyMessage">
<wsdl:part name="partA" type="xsd:string"/>
<wsdl:part name="partB" type="xsd:string"/>

</wsdl:message>

...

<wsdl:portType name="MyPortType">
<wsdl:operation name="MyOperation">

<wsdl:input message="MyMessage"/>
</wsdl:operation>

</wsdl:portType>

...

<wsdl:binding name="MyBinding" type="MyPortType">
<http:binding verb="GET"/>
<wsdl:operation name="MyOperation">

XML/HTTP GET Processing

Using the HTTP Binding Component • June 200938

http://wiki.open-esb.java.net/Wiki.jsp?page=HttpPostUrlProcessing
http://wiki.open-esb.java.net/Wiki.jsp?page=HttpPostUrlProcessing
http://wiki.open-esb.java.net/Wiki.jsp?page=HttpPostUrlProcessing

<wsdl:input>

<http:urlEncoded/>

</wsdl:input>

</wsdl:operation>

</wsdl:binding>

...

<wsdl:service name="MyService">
<wsdl:port name="Port1" binding="MyBinding">

<http:address location="http://localhost/MyService/MyPort"/>
</wsdl:port>

</wsdl:service>

Given these values mapped to the input parts:

"valueY" -> "partA"
"valueZ" -> "partB"

The full HTTP request URI is:

http://localhost/MyService/MyPort/MyOperation/partA=valueY&partB=valueZ

http:urlReplacement
The <http:urlReplacement/> element:
■ Indicates that all message parts that make up the input message are encoded into the request

URI using the replacement algorithm detailed in the WSDL 1.1 Specification.
■ Must be specified as a subordinate element of a <wsdl:input/>
■ Requires a location attribute that specifies the base URI for the operation.
■ Is only supported by the HTTP Binding Component for the GET method.

<http:urlEncoded> is ignored for the POST method. For more information, see POST
URL Processing of the HTTP WSDL Binding Implementation (http://
wiki.open-esb.java.net/Wiki.jsp?page=HttpPostUrlProcessing).

Example:

Given this description:

<wsd:message name="MyMessage">
<wsdl:part name="partA" type="xsd:string"/>
<wsdl:part name="partB" type="xsd:string"/>

</wsdl:message>

...

<wsdl:portType name="MyPortType">
<wsdl:operation name="MyOperation">

<wsdl:input message="MyMessage"/>
</wsdl:operation>

</wsdl:portType>

...

<wsdl:binding name="MyBinding" type="MyPortType">

XML/HTTP GET Processing

Using the HTTP Binding Component 39

http://wiki.open-esb.java.net/Wiki.jsp?page=HttpPostUrlProcessing
http://wiki.open-esb.java.net/Wiki.jsp?page=HttpPostUrlProcessing
http://wiki.open-esb.java.net/Wiki.jsp?page=HttpPostUrlProcessing

<http:binding verb="GET"/>
<wsdl:operation name="MyOperation/(partA)/subcategory/(partB)">

<wsdl:input>

<http:urlReplacement/>

</wsdl:input>

</wsdl:operation>

</wsdl:binding>

...

<wsdl:service name="MyService">
<wsdl:port name="Port1" binding="MyBinding">

<http:address location="http://localhost/MyService/MyPort"/>
</wsdl:port>

</wsdl:service>

Given these values mapped to the input parts:

"valueY" -> "partA"
"valueZ" -> "partB"

The full HTTP request URI is:

http://localhost/MyService/MyPort/MyOperation/valueY/subcategory/valueZ

Using the HTTP Binding Component with the HTTP POST
Method

The HTTP BC implements the HTTP 1.1 POST binding defined in the WSDL 1.1 specification,
enabling applications to consume or provide services from the JBI environment using a web
browser-like HTTP GET interaction.

Configuring the HTTP Binding Component for HTTP
Get Interactions
To configure the HTTP Binding Component to function for HTTP POST interactions, the
WSDL file of the service to which the binding component is acting as proxy, needs to use the
following HTTP binding language elements defined in the WSDL 1.1 Specification:

■ An <http:binding> element indicating that a WSDL binding uses HTTP POST.
■ An <http:address> element representing the address of the port.
■ An <http:operation> element representing a relative address for each operation, that is

relative to the <http:address> defined by the port.
■ An <http:urlEncoded> and <http:urlReplacement> element to indicate how all of the

message parts of a request are encoded and made a part of the HTTP request URI.

Using the HTTP Binding Component with the HTTP POST Method

Using the HTTP Binding Component • June 200940

Examples that demonstrate how to configure the HTTP Binding Component as a provider
proxy or consumer proxy are available at Using the HTTP Binding Component with the HTTP
GET method and Using the HTTP Binding Component with the HTTP POST method.

Note – Currently the HTTP Binding Component only supports the use of
<http:urlReplacement> and <http:urlEncoded> with HTTP GET.

Binding Details
For information on the Binding details for these elements, see “Binding Details” on page 37.

HTTP POST Treatment of http:urlEncoded and
http:urlReplacement
The HTTP Binding Component does not use the WSDL HTTP Binding consistently across
GET and POST-style interactions, due to request structure differences between GET and POST
requests.

The differences are:

■ GET requests do not carry additional data aside from what is included in the URL (and in
the HTTP headers).

■ POST requests can send additional data in the request entity body. For example, when a web
browser is used to submit a form (or upload a file through a form) by POST, the form data,
or the contents of the file, is sent as the body of the request. The data is not made part of the
request URL.

Because of these differences, the current HTTP Binding Component implementation considers
http:urlEncoded and http:urlReplacement to be meaningful only when used in conjunction
with HTTP GET, because these binding elements refer to URL encoding styles that apply only
to GET requests.

For HTTP POST, the current implementation ignores both http:urlEncoded and
http:urlReplacement binding elements.

Using the HTTP Binding Component with the HTTP POST Method

Using the HTTP Binding Component 41

http://wiki.open-esb.java.net/Wiki.jsp?page=HttpBcGetInteraction
http://wiki.open-esb.java.net/Wiki.jsp?page=HttpBcGetInteraction
http://wiki.open-esb.java.net/Wiki.jsp?page=HttpBcPostInteraction

HTTP Binding Component Runtime Properties
The HTTP Binding Component's runtime properties can be configured from the NetBeans
IDE, or from a command prompt (command line interface) during installation.

The HTTP Binding Component properties apply to the binding component as a whole,
including all provider and consumer endpoints.

To display or edit the properties in the NetBeans IDE, do the following:

1. From the Services tab of the NetBeans IDE, expand the Servers node.

2. Start your application server. To do this, right-click your application server and select Start
from the shortcut menu.

3. Under the application server, expand the JBI → Binding Components nodes and select the
HTTP Binding Component (com.sun.httpsoapbc). The current HTTP Binding Component
properties are displayed at the right side of the NetBeans IDE. You can also double-click the
HTTP Binding Component to open a properties window.

4. Edit the properties as needed. To apply any changes you make to the runtime HTTP
Binding Component properties, stop and restart the HTTP Binding Component.

HTTP Binding Component Runtime Properties

Using the HTTP Binding Component • June 200942

The HTTP Binding Component properties specify clustering and proxy settings, and reference
the Binding Component's description, name, type, and state.

TABLE 18 HTTP Binding Component Runtime Properties

Property Description
Required or
Optional Example

General Properties

Description Indicates the purpose of the HTTP Binding
Component. This property is displayed for
reference purposes.

Automatic HTTP Soap Binding to
send SOAP messages, for
example, to and from
BPEL service engine.

Name Indicates the name of the HTTP Binding
Component. This property is displayed for
reference purposes.

Automatic com.sun.httpsoapbc-1.0-2

FIGURE 2 HTTP Binding Component Runtime Properties

HTTP Binding Component Runtime Properties

Using the HTTP Binding Component 43

TABLE 18 HTTP Binding Component Runtime Properties (Continued)

Property Description
Required or
Optional Example

State Indicates the state of the HTTP Binding
Component as "Started" or "Stopped." This
property is displayed for reference
purposes.

Automatic Started

Type Indicates the type of component. This
property is displayed for reference
purposes.

Automatic binding-component

Identification Properties

Version Indicates the component specification
version.

Static 1.0

Build Number Indicates the component build number. Static 080311_4

Configuration Properties

Number of
Outbound
Threads

Specifies the maximum number of threads
to process outbound HTTP/SOAP
invocations concurrently.

The value can be any integer from 1 to
2147483647.

Required 10

Default HTTP
Port Number

Specifies the default HTTP port number
for the HTTP Binding Component
instance. This property is required for
clustering and allows each HTTP Binding
Component to be differentiated by its
unique default port number. A default port
number is calculated and preassigned
when the binding component is initially
installed in the application server instance.
A file containing the persisted
configuration is stored for each
component. This is used to assign a unique
default port number for each HTTP
Binding Component instance on a
computer.

Required 8180

HTTP Binding Component Runtime Properties

Using the HTTP Binding Component • June 200944

TABLE 18 HTTP Binding Component Runtime Properties (Continued)

Property Description
Required or
Optional Example

Default HTTPS
Port Number

Specifies the default HTTP Secure port
number for the HTTP Binding
Component instance. This property is
required for clustering and allows each
HTTP Binding Component to be
differentiated by its unique default port
number. A default port number is
calculated and preassigned when the
binding component is initially installed in
the application server instance. A file
containing the persisted configuration is
stored for each component. This is used to
assign a unique default port number for
each HTTP Binding Component instance
on a computer.

Required 8280

(SSL) Client
authentication
enabled

Specifies if client authentication 2-way
(mutual) SSL on the default HTTPS port is
enabled. Restart the binding component to
effect changes for this property.

Optional Select the checkbox to
enable

Sun Access
Manager
Configuration
Directory

Specifies the location of the Sun Access
Manager configuration directory, which
contains the Access Manager properties
file.

If you are using the OpenSSO Web Service
Security Agent (WSS), use this property to
specify the directory that contains the the
AMConfig.properties file.

For more information see “Authentication
Mechanisms for Consumer Endpoints” on
page 83

Optional C:\GlassFishESBv21\glassfish\addons\accessmanager

Sun Access
Manager
Classpath

Specifies the client SDK JAR and WS
provider JAR files to be added to the
classpath. The files you specify depend on
whether you are using Access Manager or
OpenSSO Web Service Security Agent
(WSS)

For more information see “Authentication
Mechanisms for Consumer Endpoints” on
page 83

Optional C:\GlassFishESBv21\glassfish\addons\accessmanager\amc

Note: Files are comma
separated.

HTTP Binding Component Runtime Properties

Using the HTTP Binding Component 45

TABLE 18 HTTP Binding Component Runtime Properties (Continued)

Property Description
Required or
Optional Example

Proxy Type Specifies the proxy type as SOCKS, HTTP,
or DIRECT. Enter one of the following
String values: SOCKS

The proxy server is a SOCKS (version 4 or
version 5) server. HTTP

The proxy is an HTTP proxy server.
DIRECT

The connection does not go through any
proxy.

Required SOCKS

Proxy Host Specifies the proxy host name or IP
address.

Optional polaris.sun.com

Proxy Port Specifies the proxy port number. Required 2080

Non-proxy Hosts Specifies the list of hosts that you do not
want to go through the proxy. Each host is
separated with a pipe "|".

Optional localhost|127.0.0.4

Proxy User Name Specifies the user name used to the proxy
server. For SOCKS-v4, no authentication is
required. For SOCKS-v5, the binding
component supports no authentication,
and Username/Password authentication.
For HTTP Proxy, the binding component
supports Basic Authentication, Digest
Access, and NTLM. Basic Authentication
requires a specified username and
password. Digest Access and NTLM
require a dedicated proxy server for
support.

Required in
some cases

Proxy User
Password

Specifies the password used in conjunction
with the the ProxyUserName to access the
proxy server. For SOCKS-v4, no
authentication is required. For SOCKS-v5,
the binding component supports no
authentication, and Username/Password
authentication. For HTTP Proxy, the
binding component supports Basic
Authentication, Digest Access, and NTLM.
Basic Authentication requires a specified
username and password. Digest Access and
NTLM require a dedicated proxy server for
support.

Required in
some cases

HTTP Binding Component Runtime Properties

Using the HTTP Binding Component • June 200946

TABLE 18 HTTP Binding Component Runtime Properties (Continued)

Property Description
Required or
Optional Example

Use Default JVM
Proxy Settings

Indicates whether the HTTP Binding
Component's proxy settings are specified
by the existing JVM settings or by the
HTTP Binding Component properties.
The options indicate the following: true

The proxy is controlled by the existing
JVM system settings. The settings are
outside of this binding component, so all
additional proxy settings are ignored. false

The proxy is controlled by the binding
component proxy settings.

Required false

Application
Configuration

Specifies the values for a Composite
Application's endpoint connectivity
parameters (normally defined in the WSDL
service extensibility elements), and apply
these values to a user-named endpoint
Config Extension Property.

The Application Configuration property
editor includes fields for all of the
connectivity parameters that apply to that
component's binding protocol. When you
enter the name of a saved Config Extension
and define the connectivity parameters in
the Application Configuration editor, these
values override the WSDL defined
connectivity attributes when your project
is deployed. To change these connectivity
parameters again, you simply change the
values in the Application Configuration
editor, then shutdown and start your
Service Assembly to apply the new values.

Optional The user-defined name of
the Config Extension you
want and define, and the
values for the connection
parameters.

HTTP Binding Component Runtime Properties

Using the HTTP Binding Component 47

TABLE 18 HTTP Binding Component Runtime Properties (Continued)

Property Description
Required or
Optional Example

Application
Variables

Specifies a list of name:value pairs for a
given stated type. The application variable
name can be used as a token for a WSDL
extensibility element attribute in a
corresponding binding.
The Application Variables configuration
property offers four variable types:
■ String: Specifies a string value, such as

a path or directory.
■ Number: Specifies a number value.
■ Boolean: Specifies a Boolean value.
■ Password: Specifies a password value.

Optional Enter the name value, such
as PASSWORD, and enter
the variable Value, such as
SECRET.

For Boolean values, the
Value field provides a
checkbox (checked = true).

For Password values, the
Value entered is masked as
asterisks.

Statistics Properties

Includes 19
different
component
activities
including
exchanges, errors,
requests, replies,
and so forth.

Lists component statistics that are collected
for actions such as endpoints activated,
average response time, completed
exchanges, and so forth. Running statistics
are automatically collected and displayed.

Automatic 240

Loggers Properties

Includes over 30
different
component
activities that can
be recorded by the
server.log.

Specifies the level of logging for each event.
There are eight levels of logging, FINEST
(most detailed), FINER, FINE, CONFIG,
INFO, WARNING, SEVERE (failure
messages only), and OFF.

Optional WARNING

HTTP Binding Component Client Endpoint Properties
The HTTP Binding Component's Client Endpoint Configuration Properties allow you to define
the outbound properties for the specific WSDL port. The properties editor is accessed from the
Composite Application Service Assembly (CASA) Editor.

HTTP Binding Component Client Endpoint Properties

Using the HTTP Binding Component • June 200948

▼ Accessing the HTTP Binding Component Client
Endpoint Properties

Open your project in the CASA Editor and click the Build icon in the CASA Editor toolbar.

All of the project's WSDL ports (endpoints) are visible.

Right-click the outbound client endpoint (green arrow) that you want to configure, and choose
Properties from the pop-up menu.

The Properties Editor Appears.

1

2

HTTP Binding Component Client Endpoint Properties

Using the HTTP Binding Component 49

HTTP BC Client Endpoint Configuration Properties
The properties editor contains the following configuration properties:

Main Properties

Interface Name Provides the existing name of the interface.

Service Name Provides the existing name of the service.

Endpoint Name Provides the existing endpoint name.

Config Endpoint Extension Properties

Disable in BC Specifies whether the endpoint is enabled or disabled. To disable and
endpoint select the checkbox. The endpoint will not be activated the next
time the composite application is deployed.

Config Extension Properties

Name Specifies the name of the Application Configuration used by this endpoint.

Application Configurations which define endpoint configuration extension
properties, and be defined and named in the Application Configuration property, an
HTTP Binding Component Runtime Property. Various application configurations
can be configured and named. These are then available for use by the endpoint by
specifying the application configuration name in the endpoint's Config Extension
Property. For more information, see “Using Application Configuration to Configure
Connectivity Parameters” on page 120

HTTP Client Connection Extension Properties

Connect Timeout Specifies the connect timeout value in milliseconds, used to open an
HTTP connection to an external service. A value of 0 (zero) indicates an
infinite timeout.

Read Timeout Specifies the read timeout in milliseconds, indicating the configured
length of time to read from the input stream when an HTTP connection
to an external service is established. A value of 0 (zero) indicates an
infinite timeout.

SSL Hostname Verification Extension Properties

Hostname Verification Specifies whether Hostname Verification is enabled. Select the
checkbox to enable Hostname Verification and when a custom host
name verifier is used. Clear the checkbox to turn Hostname
Verification off.

HTTP Binding Component Client Endpoint Properties

Using the HTTP Binding Component • June 200950

Hostname Verification ensures that the host name in the digital
certificate matches the host name in the URL to which client
connects. In some cases it is useful to turn verification off, such as
for test purposes or when security is not an issue.

Note – To enable any changes to your project configuration, redeploy your project.

Using Normalized Message Properties to Propagate Binding
Context Information

Normalized Message properties are commonly used to specify metadata that is associated with
message content. javax.jbi.security.subject and javax.jbi.message.protocol.type are
two examples of standard normalized Message properties defined in the JBI Specification.

Normalized Message properties are used to provide additional capabilities in Open ESB, such
as:

■ Getting and Setting transport context properties. For example, HTTP headers in the
incoming HTTP request, or file names read by the File Binding Component

■ Getting and Setting protocol specific headers or context properties (SOAP headers)
■ Getting and Setting additional message metadata. For example. a unique message identifier,

or an endpoint name associated with a message
■ Dynamic configurations. For example, to dynamically overwrite the statically configured

destination file name at runtime

Some of the use cases mentioned above require protocol/binding specific properties, typically
used by a particular binding component. Other properties are considered common or general
purpose properties that all participating JBI components make use of, for example, the message
ID property, which can be utilized to uniquely identify or track a given message in the
integration.

Using Normalized Message Properties in a BPEL
Process
The Normalized Message properties are accessed from the BPEL Designer Mapper view. When
you expand a variable's Properties folder it exposes the variable's predefined NM properties, as
well as the regular BPEL specific WSDL properties used in correlation sets, assigns, and to build
expressions . If the specific NM property you need is not currently listed, additional NM
properties can be added.

Using Normalized Message Properties to Propagate Binding Context Information

Using the HTTP Binding Component 51

Using Predefined Normalized Message Properties in a BPEL Process
Predefined Normalized Message properties are ready for use, from a variable's Properties file.

▼ To use predefined normalized message properties in a BPEL process

From the Design View diagram, select the activity with the process you want to edit.

Click Mapper to switch to the Mapper view of the BPEL process.

From the Output pane, expand the Variable you want to edit and its Properties file.
The Properties file contains the predefined Normalized Message (NM) properties.

To use a predefined NM Property, select the property and use it to build an expression or an
assign.

Adding Additional Normalized Message Properties to a BPEL Process
If the specific NM Property you want is not listed, you can add additional NM properties.

There are two options available when adding NM Properties:

■ Add NM Property Shortcut: This option typically supports simple type properties, in that it
does not grant access to some data within the NM Property.

■ Add NM Property: This option provides access to data within the NM property used to
build expressions.

1

2

3

4

Using Normalized Message Properties to Propagate Binding Context Information

Using the HTTP Binding Component • June 200952

▼ To add a Normalized Message Property Shortcut to a BPEL process

From the Output or Input panes of the BPEL Mapper, expand the node for the variable to which
you want to add an NM property. Right-click that variables Propertiesdirectory node and
select Add NM Property Shortcut from the pop-up menu.
The Add NM Property Shortcut dialog box appears.

Enter the information for the new NM property into the the Add NM Property Shortcut dialog
box, as follows:

a. Property Name: The NM property name (see each binding component's documentation for
available NM properties).

b. Display Name:The display name for the NM property. This is a user-defined name that
appears in the Mapper tree. The display name is optional.

Click OK.
The new NM property is added to the Mapper tree under the variables Properties directory. The
property can now be used in assigns and to build expressions.

▼ To edit an NM Property Shortcut

To edit an existing NM property shortcut, right-click the NM property shortcut in the BPEL
Mapper tree and choose Edit NM Property Shortcut in the pop-up menu.
The Add NM Property Shortcut dialog box appears.

Edit the NM Property Name or Display Name, and click OK.

▼ To delete an NM Property Shortcut

To delete an NM property shortcut, right-click the property in the Mapper tree.

Choose Delete NM Property Shortcut in the pop-up menu.
The NM Property Shortcut is deleted.

1

2

3

1

2

1

2

Using Normalized Message Properties to Propagate Binding Context Information

Using the HTTP Binding Component 53

▼ To add a Normalized Message Property to a BPEL process

From the Output or Input panes of the BPEL Mapper, expand the node for the variable to which
you want to add an NM property. Right-click that variables Propertiesdirectory node and
select Add NM Property from the pop-up menu.
The Add NM Property dialog box appears.

Enter the information for the new NM property in the the Add NM Property dialog box, as
follows:

a. Property Name: User-defined property name. This name is displayed in mapper tree and
stored in WSDL file.

b. Type or Element:Displays the property type or element associated with the selected node in
the Map Property To tree.

c. Associate property with message: Specifies with which message type the property is
associated.

■ A check mark indicates that the new NM property is associated with all variables of the
specified message type. For example, in the image below, the new NM property will be
associated with the requestMessage type.

■ Unchecked indicates that the new NM property is associated with all variables of any
message type.

d. Map Property To: The Map Property To tree displays all of the predefined NM properties.
This is used to build a query or choose a property type.
When you select a node within the property tree the Type or Element and Query fields are
populated automatically. Valid endpoint nodes are displayed in bold.

e. New NM Property: Select the New NM Property checkbox to add a specific NM property, and
enter the name of the property in the New NM Property field. The new NM property is added
to the Map Property To tree.

f. Sync with tree:When this checkbox is selected, the Query field is automatically synchronized
with the selected node in the Map Property To tree.

g. Query: Displays the query type associated with the selected node in the Map Property To

tree.

1

2

Using Normalized Message Properties to Propagate Binding Context Information

Using the HTTP Binding Component • June 200954

Click OK. The new NM property name is added to the tree in the BPEL Mapper, and the NM
property is stored in nmPropertiesDefinitions.wsdl as a pair of elements: <vprop:property>
and <vprop:propertyAlias>

The new NM property can now be used in assigns and to build expressions.

▼ To delete an NM Property

To delete a new NM property, right-click the property in the Mapper tree.

Choose Delete NM Property in the pop-up menu.
The property is deleted.

3

1

2

Using Normalized Message Properties to Propagate Binding Context Information

Using the HTTP Binding Component 55

BPEL Code Generation Using NM Properties
Data copied from an NM property or an NM property shortcut generates code that is similar to
the following:

<from variable="inputVar" sxnmp:nmProperty="org.glassfish.openesb.file
.outbound.dcom.username"/>

Data copied from WSDL properties based on NM property generates code that is similar to the
following:

<from variable="inputVar" property="ns3:DemoNMProperty"/>

When properties and NM properties are used to build an expression, code similar to the
following code is generated:

<from>concat(bpws:getVariableProperty(’inputVar’, ’ns3:DemoNMProperty’),

sxnmp:getVariableNMProperty(’inputVar’,’org.glassfish.openesb.file.outbound.dcom.

username’))</from>

An NM property used in a condition generates code that is similar to the following:

<condition>sxnmp:getVariableNMProperty(’inputVar’, ’my.nmProperty.boolean’)</condition>

Normalized Message Properties
Normalized Message properties are either General, available to all participating JBI
components, or protocol/binding specific, used by a particular binding component.

TABLE 19 General Normalized Message Properties

Property Name Type Description and Use

org.glassfish.openesb.
messaging.groupid

java.lang.String Uniquely identifies a message with the group to
which a message belongs. For example, it applies the
RM sequence group number for SOAP messages, or
a time stamped file name (where the file record
message comes from).

This property is optional.

org.glassfish.openesb.
messaging.messageid

java.lang.String Uniquely identifies a message. For batch processing
this might be a record number (for example, a
particular record in a file), or a GUID.

This property is mandatory.

Using Normalized Message Properties to Propagate Binding Context Information

Using the HTTP Binding Component • June 200956

TABLE 19 General Normalized Message Properties (Continued)
Property Name Type Description and Use

org.glassfish.openesb.
messaging.lastrecord

java.lang.String The value is a string representation of boolean
("true" or "false"). This property can be used to
signal the last record in a group, e.g. the last record
in a RM sequence for SOAP messages, or the last
record in a file when multiple record processing is
turned on for File BC.

This property is mandatory.

org.glassfish.openesb.
exchange.endpointname

java.lang.String The value a string representation of the endpoint
name set on the exchange. This represents the
endpoint name of the "owner" of the message, and
could be made available by JBI runtime.

SOAP HTTP Binding Component Specific Normalized Message
Properties
The following properties are specific to the HTTP (SOAP) Binding Component.

TABLE 20 SOAP HTTP Binding Component NM Properties

Property Name Type Description and Use

org.glassfish.openesb.
headers.soap

java.util.Map The map contains a list of SOAP header elements. The
key is the QName of the SOAP header.

The value is a DocumentFragment object. The
DocumentFragment has one node in it, the header
element itself.

org.glassfish.openesb.
inbound.http.headers

java.util.Map The map contains a list of HTTP headers. The key is
the HTTP header name.

The value is the string representation of the HTTP
header value.

This property provides all of the HTTP headers that
the HTTP BC receives in the incoming message. The
map also includes two additional properties that the
HTTP Binding Component populates based on the
transport context: ClientHostName and
ClientPortNumber, which provide the information
about the client's host IP address and port number

Using Normalized Message Properties to Propagate Binding Context Information

Using the HTTP Binding Component 57

TABLE 20 SOAP HTTP Binding Component NM Properties (Continued)
Property Name Type Description and Use

org.glassfish.openesb.
outbound.http.headers

java.util.Map The map contains a list of HTTP headers. The key
being the HTTP header name.

The value is the string representation of the HTTP
header value.

This property is used to allow any custom HTTP
headers to be propagated to the outgoing service
invocations.

org.glassfish.openesb.
outbound.custom.properties

java.util.Map The map contains a list of custom properties*.

The map key is a string.

The map value can be any Object.

org.glassfish.openesb.
inbound.address.url

java.lang.String On the receiving (server) side, this property is
populated by the HTTP Binding Component with the
server address URL (for example, address URL on
soap:address)

org.glassfish.openesb.
outbound.address.url

java.lang.String On the sending (client) side, this property is used to
dynamically overwrite the default address defined in
the SOAP or HTTP binding WSDL.

The HTTP Binding Component does a basic URL
validation on the address set on the property before
using it to invoke an external service. If it is an invalid
URL, the HTTP BC proceeds with the service
invocation using the statically configured address
URL.

org.glassfish.openesb.
outbound.basicauth.username

java.lang.String This is a sender (client) side property only.

When set, the user name will be set on the HTTP basic
authentication header.

org.glassfish.openesb.
outbound.basicauth.password

java.lang.String This is a sender (client) side property only.

When set, the user name will be set on the HTTP basic
authentication header.

Note – The org.glassfish.openesb.custom.properties property is designed to allow custom
data to be set on the HTTP/SOAP binding message context. The custom properties on the
binding message context can then be made available in the security CallbackHandlers. For
example, you can allow custom SAML assertion headers to be set in the SAML CallbackHandler
based on the user credentials (application data) set on the binding message context.

Using Normalized Message Properties to Propagate Binding Context Information

Using the HTTP Binding Component • June 200958

Quality of Service (QOS) Features
Quality of Service features are configured from the CASA Editor, and include properties used to
configure Retry (Redelivery) and Throttling.

This section contains the following topics:

■ “Configuring the Quality of Service Properties” on page 59
■ “Message Throttling: Configuring and Using ” on page 61
■ “Redelivery: Configuring and Using” on page 62

Configuring the Quality of Service Properties
The QOS attributes are configured from the Config QoS Properties Editor, accessed from the
Composite Application Service Assembly (CASA) Editor. For an example of how to access the
Config QOS Properties Editor, see “Configuring the HTTP Binding Component Endpoint for
Throttling” on page 61

Attribute Description Value/Example

Consumer Settings

Service Name Specifies the consumer service name. Click the ellipses button to
open the QName Editor. Select a pre-existing Namespace URL
or enter a new Namespace URL and prefix.

{http://j2ee.netbeans.org/wsdl/SoapBasicAuth}SoapBa

Endpoint Name Specifies the consumer endpoint name. Click the ellipses button
to open an edit window.

SoapBasicAuthPortWssToken

Provider Settings

Service Name Specifies the provider service name. Click the ellipses button to
open the QName Editor. Select a pre-existing Namespace URL
or enter a new Namespace URL and prefix.

{http://enterprise.netbeans.org/bpel/BasicAuthBP/Soa

Endpoint Name Specifies the Provider endpoint name. Click the ellipses button
to open an edit window.

SoapBasicAuthAMPortTypeRole_myRole

RedeliveryExtension Settings

maxAttempts Specifies the number of retries to attempt before using the
on-failure option.

20

waitTime Specifies time (in milliseconds) to wait between redelivery
attempts.

300

Quality of Service (QOS) Features

Using the HTTP Binding Component 59

Attribute Description Value/Example

on-failure Specifies the type of action to be taken when message exchange
(ME) redelivery attempts have been exhausted.
The on-failure options are
■ delete: When the final defined delivery attempt has failed,

the QoS utility abandons the message exchanges (ME) and
returns a Done status to the JBI component, which proceeds
to its next process instance. This option is only supported
for In-Only message exchanges.

■ error: When the final defined delivery attempt has failed, the
QoS utility returns an Error status to the JBI component,
and the JBI component throws an Exception. This is the
default option, and is supported for both In-Only and
In-Out message exchanges.

■ redirect: Similar to the delete option, except that the QoS
utility re-routes the ME to the configured redirect endpoint
when the maxAttempts count has been exhausted. If the
QoS utility is successful in routing the message to the
redirect endpoint, a Done status is returned to the JBI
component; otherwise, an Error status is returned. This
option is supported for In-Only message exchanges only.

■ suspend: The QoS utility returns an Error status to the JBI
component if it is not able to deliver the ME to the actual
provisioning endpoint. After the redelivery attempts have
been exhausted, the JBI Component suspends the process
instance. This option is only supported if monitoring is
enabled in the JBI Component, since the user must use the
monitoring tool to resume a suspended instance. This
option is supported for both In-Only and In-Out message
exchanges.

delete

ThrottlingExtension Settings

maximum-ConcurrencyLimitSpecifies the maximum number of concurrent messages that can
be processed on a specific connection. This number is used to set
up the maximum number of concurrent messages that the
internal endpoint sends to the the provider endpoint.

10

Quality of Service (QOS) Features

Using the HTTP Binding Component • June 200960

Message Throttling: Configuring and Using
Throttling allows you to set the maximum number of concurrent messages that are processed
by a particular endpoint. Increased message load and large message payloads can cause memory
usage spikes that can decrease performance. Throttling limits resource consumption so that
consistent performance is maintained.

The HTTP Binding Component, using functionality provided by the Grizzly HTTP Web
Server, manages the flow of messages by evaluating endpoints to determine when it is necessary
to suspend requests and when to resume processing as usual.

For more information in regard to HTTP BC and Throttling, see HTTP BC Throttling
(http://wiki.open-esb.java.net/Wiki.jsp?page=HTTPBCThrottling).

Configuring the HTTP Binding Component Endpoint for Throttling
For the HTTP Binding Component, throttling is a QOS feature configured from the CASA
Editor.

▼ To configure Throttling for an HTTP/SOAP WSDL port

From the NetBeans IDE Projects window, right-click the Service Assembly node under your
composite application, and select Edit from the popup menu.
The CASA Editor opens containing your composite application.

In the CASA Editor, click the QOS icon located on the link between your JBI Module and the
WSDL port you want to configure.
The QOS Properties Editor appears.

1

2

Quality of Service (QOS) Features

Using the HTTP Binding Component 61

http://wiki.open-esb.java.net/Wiki.jsp?page=HTTPBCThrottling
http://wiki.open-esb.java.net/Wiki.jsp?page=HTTPBCThrottling

In the QOS Properties Editor, click the property field for maximumConcurrencyLimit under
ThrottlingExtension, and enter an integer for the maximum number of concurrent messages
allowed for this endpoint.

Click Close.

The appropriate throttling configuration for the connection is generated in the project's jbi.xml
file, when the service assembly is built.

Redelivery: Configuring and Using
Redelivery is a Quality of Service mechanism that handles message delivery when first-time
delivery fails. Redelivery allows you to define the number of attempts that the system makes to
deliver a message, the time between attempts, and the final result for an undeliverable message
or nonresponsive endpoint.

Redelivery is configured for a specific connection from the Composite Application Service
Assembly (CASA) Editor, by clicking the QoS icon for that connection. This opens the Config
QoS Properties for that connection. From the RedeliveryExtension section of the editor,
configure the Redelivery properties.

3

4

Quality of Service (QOS) Features

Using the HTTP Binding Component • June 200962

The Redelivery configuration parameters are:

■ maxAttempts: Specifies the number of times that the project attempts to re-deliver a
message. An error status is returned to the JBI component for each failed attempt.

■ waitTime: Specifies the time, in milliseconds, that the project waits between redelivery
attempts.

■ on-failure: Specifies the actions taken and the message destination when the specified
redelivery attempts have been exhausted. This parameter has four options: delete, redirect,
suspend, and error.

The on-failure parameter has four options: delete, redirect, suspend, and error.
■ delete: The delete option specifies that when the final attempt to re-deliver the message

has failed, the QoS utility deletes the message and returns a Done status to the JBI
component, at which time the component proceeds to its next process. The delete option
only supports In-Only message exchanges.

■ redirect: The redirect option specifies that after the final attempt to re-deliver the
message has failed, the QoS utility redirects the message to a user-defined endpoint, such
as a “dead-message” folder. Upon successful delivery to the redirect endpoint, the QoS
utility returns a Done status to the JBI component, at which time the component
proceeds to its next process. The redirect option only supports In-Only message
exchanges.

■ suspend: The suspend option specifies that when the final attempt to re-deliver the
message has failed, the JBI component suspends the process instance . This option is
only supported if monitoring is enabled in the JBI Component, since the user must use
the monitoring tool to resume a suspended instance. This option is supported for both
In-Only and In-Out message exchanges.

■ error: The error option specifies that when the final attempt to re-deliver the message is
exhausted, the JBI component throws an exception. This option is only supported if
monitoring is enabled in the JBI Component, since the user must use the monitoring
tool to resume a suspended instance. This option is supported for both In-Only and
In-Out message exchanges.

Note: The on-failure options: delete and redirect, cannot be applied to In-Out message
exchanges because In-Out message exchanges require a specific response from the process
instance to proceed further, and as such, the return value for these options does not suffice.

For more information regarding Redelivery, see Redelivery (http://
wiki.open-esb.java.net/Wiki.jsp?page=Redelivery).

Quality of Service (QOS) Features

Using the HTTP Binding Component 63

http://wiki.open-esb.java.net/Wiki.jsp?page=Redelivery
http://wiki.open-esb.java.net/Wiki.jsp?page=Redelivery

Using the Tango Web Service Features with the HTTP Binding
Component

Tango is a key component of the Metro Project. Tango (also known as WSIT) is an
implementation of the key enterprise web services, commonly known as WS-services, such as
WS-Security, WS-Reliable Messaging, WS-Transactions, and so forth. Tango leverages the
existing JAX-WS and EJB programming models and allows you to define Security, Reliability,
and Transactional capability for application endpoints by bundling an additional configuration
file with your application.

The HTTP Binding Component exposes several Tango features that can be applied to your
composite application projects.

■ Messaging Optimization: Modifies web service messages for optimal processing and
bandwidth efficiency. Message Optimization is recommended if your client endpoint will be
processing web documents larger than 1KB.
MTOM Message Transmission Optimization Mechanism optimizes web service messages
so that they are efficiently transmitted over the internet by encoding the XML code for better
processing time and minimal bandwidth requirements.

■ WS-Addressing: Enables re-routing of requests and responses. WS-Addressing supports
normalized web service addresses, enabling multiple transports to be used (other than
HTTP).

■ Reliable Messaging: Ensures that application messages are delivered once only, and
optionally in the correct order, to web service endpoints.
■ WS Reliable Messaging: Defines a standard for identifying, tracking and managing

message delivery between two parties reliably, ensuring recovery from failures that may
be caused by messages that are lost or received in the wrong order. See for more
information see “Configuring Reliable Message Delivery” on page 65.

■ WS Atomic Transactions: Supports a two phase commit protocol to ensure that either
all of the operations invoked within a transaction succeed, or they are all rolled back.

■ Security:Works in addition to existing transport-level security to provide interoperable
message content integrity and confidentiality.
■ WS Security: Defines a standard set of SOAP extensions used when building secure web

services to implement message content integrity and confidentiality. Supports various
security token formats, trust domains, signature formats, and encryption technologies.

■ WS Secure Conversation: Allows a consumer and provider to establish a shared
security context for multiple-message-exchanges. The Secure Conversation
authentication specification defines a standardized way to authenticate a series of
messages, thereby addressing the short comings of web services security. With the WS
Security Conversation model, the security context is defined as a new web services
security token type, obtained using a binding of Web Services Trust.

Using the Tango Web Service Features with the HTTP Binding Component

Using the HTTP Binding Component • June 200964

■ WS Trust: Defines extensions to Web Services Security that provide methods for
issuing, renewing, and validating security tokens. Supports the management of Trust
relationships.

Configuring Reliable Message Delivery
The following example demonstrates how to configure Reliable Message Delivery for a project,
and uses the Synchronous BPEL Process sample included with NetBeans.

▼ Installing the Synchronous BPEL Process sample

In the NetBeans IDE, select the Projects tab to display the Projects window.

From the File menu, select New Project.
The New Project dialog box appears.

In the Categories list of the New Project dialog box, select Samples → SOA → Synchronous BPEL
Process, and click Next.

Accept the default project name and location, and click Finish.
Your new project appears in the Projects window.

▼ Configuring Web Services for a Project from the CASA Editor

In the NetBeans IDE, expand the SynchronousSampleApplication node in the Projects window.
Right-click Service Assembly and select Edit.
The CASA Editor opens in the NetBeans IDE, displaying the Design View of the Synchronous
Sample application. The CASA Editor creates and modifies a .casa file, which contains the
configuration information for the composite application. For this sample, the CASA Editor
created the SynchronousSampleApplication.casa file.

In the CASA Editor, click the Build Project icon to build the composite application.
When the build successfully completes, the Design View displays a WSDL port endpoint, a JBI
module, and the connection between the endpoint and the JBI module.

Right-click the SOAP Binding and select Clone WSDL Port to edit... from the popup menu.
The Clone WSDL port to CompApp dialog appears. Click OK to continue. The SOAP Binding
icon now contains icons to access the Properties Editor and Server/Client Configuration.

Click the Server/Client Configuration icon on the SOAP Binding, and select Server Configuration.
The WS-Policy Attachment dialog box for the SOAP Binding port appears.

1

2

3

4

1

2

3

4

Using the Tango Web Service Features with the HTTP Binding Component

Using the HTTP Binding Component 65

From the WS-Policy Attachment dialog box, click the check box for Reliable Message
Delivery to enable reliable messaging, and click the check box for Deliver Messages In
Exact Order to enable message order. For even more options click the Advanced button.

Click OK.

Configuring the Tango Web Services Attributes exposed by
the HTTP Binding Component

For composite applications, the Web Services attributes are configured for a WSDL port using
in the WS Policy Attachment Editor associated with the specific endpoint. The WS Policy
Attachment Editor for a WSDL port is accessed in the CASA Editor.

This section contains the following topics:

■ “Accessing the Tango (WSIT) Web Service Attribute Configuration” on page 66
■ “Server Configuration—Web Service Attributes” on page 67
■ “Configuring Security Mechanisms” on page 91

Accessing the Tango (WSIT) Web Service Attribute
Configuration
The Web Services attributes are configured for each WSDL port using in the WS Policy
Attachment Editor associated with the specific endpoint. The WS Policy Attachments Editor is
accessed from the CASA Editor by right-clicking a WSDL port and selecting Edit Web Service
Attributes → Server Configuration, or Client Configuration.

The following directions assume that you have already created a Composite Application. This
option is available after a WSDL port has been cloned or created in CASA.

▼ Accessing the WS-Policy Attachment Editor for a Specific Endpoint

From the NetBeans IDE's Projects window, expand your composite application. Right-click the
Service Assembly node and select Edit from the popup menu.
The Composite Application Service Assembly (CASA) Editor appears, containing the
composite application.

In the CASA Editor, select the Build Project icon to build the composite application.
When the build successfully completes, the Design view displays the WSDL port endpoints, JBI
modules, and the connections between each.

5

6

1

2

Configuring the Tango Web Services Attributes exposed by the HTTP Binding Component

Using the HTTP Binding Component • June 200966

If you did not build or clone the WSDL port, the WS Policy Attachment for that port is not
available for configuration. To clone a port, right-click the WSDL port, and select Clone WSDL
Port to edit in the popup menu.

After the port has been cloned, the Port Properties and Web Service Attributes icons are added
to the port.

Click the ports Web Service Attributes icon (the bottom icon on the port) and select Server
Configuration or Client Configuration to open the appropriate WS Policy Attachment
Configuration Editor.

Server Configuration—Web Service Attributes
The Server Configuration web service attributes exposed by the HTTP Binding Component are
configured from the WS Policy Attachment Configuration Editor.

3

4

Configuring the Tango Web Services Attributes exposed by the HTTP Binding Component

Using the HTTP Binding Component 67

The Server Configuration web service attributes include the following:

Attribute Description Value

Binding Settings

Optimize
Transfer of
Binary Data
(MTOM)

Specifies whether the web service is configured to optimize messages
that it transmits and decodes optimized messages that it receives.

Select the checkbox
to enable.

Configuring the Tango Web Services Attributes exposed by the HTTP Binding Component

Using the HTTP Binding Component • June 200968

Attribute Description Value

Reliable Message
Delivery

Specifies whether the service sends an acknowledgement to the
clients for each message that is delivered, thus enabling clients to
recognize message delivery failures and retransmit the message.

Select the checkbox
to enable.

Deliver Messages in Exact Order:

Specifies whether the Reliable Messaging protocol ensures that the
application messages for a given message sequence are delivered to
the endpoint application in the order indicated by the message
numbers.

This option increases the time to process application message
sequences and may result in slower of web service performance. Only
enable this option when ordered delivery is required by the web
service

Select the checkbox
to enable.

Flow Control:

Specifies whether the Flow Control feature is enabled. It may be
necessary to withhold messages from the application if ordered
delivery is required and some preceding messages have not yet
arrived. If the number of stored messages reaches the threshold
specified in the Max Buffer Size setting, incoming messages
belonging to the sequence are ignored.

Select the checkbox
to enable.

Maximum Flow Control Buffer Size:

Specifies the number of messages that are buffered for a message
sequence. 32 is the default setting.

32 is the default
value.

Inactivity Timeout (ms):

Specifies in milliseconds, the time interval at which source or
destination can terminate a message sequence due to inactivity. A
web service endpoint will always terminate a sequence whose
timeout has expired. To keep a sequence active, an inactive client
sends a stand-alone message with an AckRequested header to act as a
heartbeat when the end of the inactivity timeout interval approaches.

600,000
(milliseconds) is the
default value.

Secure Service Specifies whether web service security options are enabled for all of
the operations of a web service.

Select the checkbox
to enable.

Configuring the Tango Web Services Attributes exposed by the HTTP Binding Component

Using the HTTP Binding Component 69

Attribute Description Value

Security
Mechanism

Specifies the security mechanism used by the web service operation.
The available security mechanisms are:
■ “Username Authentication with Symmetric Key ” on page 92
■ “Mutual Certificates Security” on page 94
■ “Transport Security (SSL)” on page 96
■ “Message Authentication over SSL” on page 97
■ “SAML Authorization over SSL” on page 99
■ “Endorsing Certificate” on page 101
■ “SAML Sender Vouches with Certificates” on page 102
■ “SAML Holder of Key” on page 105
■ “STS Issued Token” on page 107
■ “STS Issued Token with Service Certificate” on page 110

See the “Configuring Security Mechanisms” on page 91 section for
more information.

Select the security
mechanism to be
used by your
application.

Information about
your selected
mechanism and its
additional
requirements is
displayed in the
message box below
your selection.

Configure:

The configuration button opens a configuration editor for the
selected security mechanism.

See the Security
Mechanisms section
for more
information about
configuration
properties.

Use Development Defaults:

Specifies whether to import certificates into the GlassFish keystore
and truststore to be used immediately for development. The default
certificates are imported in the correct format and a default user is
created in the file realm, with username "wsitUser".

For your project you will most likely choose to use your own
certificates and user settings, but in a development environment you
may find the defaults useful.

Check box Selected
indicates that you
are using the default
certificates.

Configuring the Tango Web Services Attributes exposed by the HTTP Binding Component

Using the HTTP Binding Component • June 200970

Attribute Description Value

Keystore Click the Keystore button to open the Keystore Configuration Editor.
The editor specifies the following information:
■ Location: Use the Browse button to specify the location and

name of the keystore.

■ Keystore Password: Specifies the password for the keystore file. If
you are running under GlassFish, GlassFish's password is already
entered. If you have changed the keystore's password from the
default, you must specify the correct value in this field.

■ Alias: Specifies the alias of the certificate in the specified keystore
to be used for authentication.
The Keystore alias for non-STS applications is
xws-security-client for client-side, and
xws-security-server for server-side configuration.
The Keystore alias for STS applications is xws-security-client
for both client-side and STS Configuration.

■ Key Password: Specifies the password of the key within the
keystore. By default, the key password uses the store password.
Only specify a password in this field when the key password is
different.

■ Alias Selector Class: Specifies the selector class for aliases.

Configure the
Keystore from the
Keystore
Configuration
Editor.

Truststore Click the Truststore button to open the Truststore Configuration
Editor.
The editor specifies the following information:
■ Location: Use the Browse button to specify the location and file

name of the truststore that stores the public key certificates of the
CA and the client's public key certificate.

■ Truststore Password: Specifies the password for the Truststore. If
you are running under GlassFish, GlassFish's password is
changeit. If you have changed the truststore's password from the
default, you must specify the correct value in this field.

■ Load Aliases: Clicking the Load Aliases button populates the
Alias field with the aliases contained in the truststore file. The
Location and Truststore Password fields must be specified
correctly for this option to work.

■ Certificate Selector: Specifies a String which specifies the
identities of zero or more certificates. The specifiers can conform
to X.509 naming conventions. A certificate selector can also use
various shortcuts to match either subject alternative names, the
filename, or even the issuer.

Configure the
Truststore from the
Truststore
Configuration
Editor.

Configuring the Tango Web Services Attributes exposed by the HTTP Binding Component

Using the HTTP Binding Component 71

Attribute Description Value

Validators Click the Validators button to open the Validator Configuration
Editor.
The editor specifies the following information:
■ Username Validator: Specifies the validator class used to validate

username and password on the server side. This option is only
used by a web service.
Note: When using the default Username Validator, make sure
that the username and password of the client are registered with
GlassFish (using Admin Console) if using GlassFish, or is
included in the tomcat-users.xml file if using Tomcat.

■ Timestamp Validator: Specifies the validator class to be used to
check the token timestamp to determine whether the token has
expired or is still valid.

■ Certificate Validator: Specifies the validator class to be used to
validate the certificate supplied by the client or the web service.

■ SAML Validator: Specifies the validator class to be used to
validate SAML token supplied by the client or the web service.

Configure the
Validators from the
Validator
Configuration
Editor.

Advanced
(Advanced
Security
Options)

Click the Advanced button to open the Advanced Security Options
Editor.
The editor specifies the following information:
■ Maximum Clock Skew (ms): Specifies the maximum difference

allowed between the system clocks of the sender and recipient in
milliseconds.

■ Timestamp Freshness Limit (ms): Specifies the Timestamp
Freshness Limit in milliseconds. Timestamps received with a
creation time older than the Timestamp Freshness Limit period
are rejected by the receiver.

■ Use Default Certificate Revocation Mechanism: If this option is
selected, the default revocation checking mechanism of the
underlying PKIX service provider is used.

Configure the
Advanced Security
Options from the
Advanced Security
Options Editor.

Configuring the Tango Web Services Attributes exposed by the HTTP Binding Component

Using the HTTP Binding Component • June 200972

Attribute Description Value

Act as a Secure
Token Service
(STS)

Select the Act as a Secure Token Service checkbox and click the
Configure button to open the STS Configuration Editor.
The editor specifies the following information:
■ Issuer: Specifies an identifier for the issuer for the issued token.

This value can be any String that uniquely identifies the STS.

■ Contract Implementation Class: Specifies the actual
implementation class for the WSTrustContract interface that
handles token issuance, validation, and so forth. Default value is
com.sun.xml.ws.trust.impl.IssueSamlTokenContractImpl

for issuing SAML assertions, or click Browse to select another
contract implementation class.

■ Lifetime Issued Tokens (ms): Specifies the life span of the token
issued by the STS. The default value is 36000 ms.

■ Encrypt Issued Key: Specifies whether the issued key is encrypted
using the service certificate. Selected indicates yes.

■ Encrypt Issued Token: Specifies whether the issued token is
encrypted using the service certificate. Selected indicates yes.

■ Service Providers: Specifies the Service Providers that have a trust
relationship with the STS. Click Add to specify a a new provider.
Providers can be listed using the following protocols:

■ Provider Endpoint URI: Specifies the endpoint URI of the
service provider.

■ Certificate Alias: Specifies the alias of the certificate of the
service provider in the keystore.

■ Token Type: Specifies the type of token the service provider
requires.

■ Key Type: Specifies the type of key the service provider
requires: public key or symmetric key.

Configure the STS
Configuration
Options from the
STS Configuration
Editor.

Allow TCP
Transport

Specifies whether the service supports TCP and HTTP message
transport. TCP enhances performance for smaller messages by
eliminating the overhead of sending messages over HTTP protocol.

Select the checkbox
to enable.

Disable Fast
Infoset

Specifies whether Fast Infoset is enables for faster parsing, faster
serializing, and creating smaller document sizes, compared with
equivalent XML Documents. When this option is selected, the Web
service will not process incoming messages or produce outgoing
messages encoded using Fast Infoset.

Select the checkbox
to enable.

Operation Settings

Configuring the Tango Web Services Attributes exposed by the HTTP Binding Component

Using the HTTP Binding Component 73

Attribute Description Value

Transactions Specifies the level at which transactions are secured.

Input Message Settings

Authentication
Token

Specifies which supporting token will be used to sign and/or encrypt
the specified message parts. Options include Username, X509,
SAML, Issued, or None.

Username

Signed:

Specifies that the authentication token must be a signed, supporting
token. A signed supporting token is also signed by the primary
message signature.

Select the checkbox
to enable.

Endorsed:

Specifies that the authentication token must be endorsed. With an
endorsing supporting token, the key represented by the token is used
to endorse/sign the primary message signature.

Select the checkbox
to enable.

Message Parts:

Specifies the message parts that must be signed and/or encrypted.
Click the Message Parts button to open the Message Parts dialog box.
From the Message Parts dialog box you can specify the following
options for message parts or elements:
■ Sign: Specifies that the message part requires a digital signature

for integrity protection.

■ Encrypt: Specifies that the message part requires encryption for
confidentiality.

■ Require: Specifies that the message part is required for a message.
The Message Parts dialog box also includes the following buttons:
■ Add Body: Adds a row for the message body (this is only

necessary if a row has been removed).

■ Add Header: adds a row for either a specific SOAP header part or
for all SOAP header parts (this is only necessary if the SOAP
header row in question has been deleted).

■ Add XPath: adds rows that enable you to specify signature and/or
encryption for an XPath expression or a URI which indicates the
version of XPath to use. The Required field is selected by default.
Only one XPath element is allowed.

■ Remove: removes a selected row.

Sign

Output Message Settings

Configuring the Tango Web Services Attributes exposed by the HTTP Binding Component

Using the HTTP Binding Component • June 200974

Attribute Description Value

Message Parts Specifies the message parts that must be signed and/or encrypted.
Click the Message Parts button to open the Message Parts dialog box.

See Message Parts under Input Message above for more information.

Client Configuration — Web Service Attributes
The Client Configuration web service attributes exposed in the WS Policy Attachment Editor
are dependent on the project and the server configuration.

Configuring the Tango Web Services Attributes exposed by the HTTP Binding Component

Using the HTTP Binding Component 75

The attributes exposed by the HTTP Binding Component are described in the following table.

Attribute Description Value

Transport Settings

Automatically Select
Optimal Encoding
(XML/Fast Infoset)

Specifies whether to use XML or Fast Infoset encoding.

Fast Infoset is a more efficient alternative to XML that uses a
binary encoding. If the service is configured to allow Fast Infoset,
select this option to use Fast Infoset for faster parsing, faster
serializing, and smaller document sizes when compared with
equivalent XML documents.

Select the checkbox
to enable.

Configuring the Tango Web Services Attributes exposed by the HTTP Binding Component

Using the HTTP Binding Component • June 200976

Attribute Description Value

Automatically Select
Optimal Transport
(XML/Fast Infoset)

Specifies whether client runtime checks to see if the service
supports TCP. If it does, the client uses TCP transport
automatically for service-client communication.

TCP provides better performance when sending smaller
messages. The performance enhancement is visible mostly in
smaller messages because the overhead of sending messages over
the HTTP protocol is eliminated. If the service does not support
TCP, or if this option is not selected for the client, HTTP is used
for transport.

Select the checkbox
to enable.

Security Settings

Use development
defaults

Specifies whether to import certificates into the GlassFish
Keystore and Truststore so that they can be used immediately for
development. The security mechanisms require the use of v3
certificates. The default GlassFish Keystore and Truststore do
not contain v3 certificates at this time. In order to use message
security mechanisms with GlassFish, it is necessary to obtain
Keystore and Truststore files that contain v3 certificates and
import the appropriate certificates into the default GlassFish
stores.

In addition to importing certificates, when this option is selected
a default user is created in the file realm with username wsitUser.

For a production environment, provide your own certificates
and user settings.

Select the checkbox
to enable.

Configuring the Tango Web Services Attributes exposed by the HTTP Binding Component

Using the HTTP Binding Component 77

Attribute Description Value

Keystore Click the Keystore button to open the Keystore Configuration
Editor.
The editor specifies the following information:
■ Location: Specifies the directory and file name containing

the certificate key to be used to authenticate the client. Use
the Browse button to specify the location and name.

■ Keystore Password: Specifies the password for the keystore
used by the client. The default GlassFish password is
changeit.

■ Alias: Specifies the alias of the certificate in the specified
keystore to be used for authentication.

■ Load Aliases: Click this button to populate the Alias list with
all of the certificates available in the selected keystore. This
option will only work if the keystore location and password
are correct.

■ Key Password: Specifies the password of the key within the
keystore. By default, the key password uses the store
password. Only specify a password in this field when the key
password is different.

■ Alias Selector Class: Specifies the selector class for aliases.

Configure the
Keystore from the
Keystore
Configuration
Editor.

Configuring the Tango Web Services Attributes exposed by the HTTP Binding Component

Using the HTTP Binding Component • June 200978

Attribute Description Value

Truststore Click the Truststore button to open the Truststore Configuration
Editor.
The editor specifies the following information:
■ Location: Specifies the directory and file name of the client

truststore containing the certificate of the server. Use the
Browse button to select the location and file name.

■ Truststore Password: Specifies the password for the
Truststore used by the client. If you are running under
GlassFish, GlassFish's password is changeit.

■ Alias: Specifies the peer alias of the certificate in the
truststore that is to be used when the client needs to send
encrypted data.

■ Load Aliases: Clicking the Load Aliases button populates the
Alias field with the aliases contained in the truststore file.
The Location and Truststore Password fields must be
specified correctly for this option to work.

■ Certificate Selector: Specifies a String which specifies the
identities of zero or more certificates. The specifiers can
conform to X.509 naming conventions. A certificate selector
can also use various shortcuts to match either subject
alternative names, the filename, or even the issuer.

Configure the
Truststore from the
Truststore
Configuration
Editor.

Authentication
Credentials

Specifies whether the Authentication Credentials are Dynamic
or Static. The two proceeding property fields that are associated
with Authentication Credentials change, depending on the
Authentication Credentials property value. When the value is set
as Static, specify the default username and password.

Note: The Static option has a risk of exposing the password as a
plain text String stored in the WSIT client side configuration.
However, when used in the context of GlassFish, this static
option has a special utility for embedded web service clients
(Example: A servlet or an EJB acting as a web service Client). The
Password in this case can be specified as a placeholder by starting
the password String start with a "$" character. The WSIT security
runtime then makes a SecretKeyCallback passing the password
placeholder (minus the "$" character). The actual password is
then obtained as a result of the SecretKeyCallback.

For more information seeWSIT Security Configuration
Demystified (https://xwss.dev.java.net/
articles/security_config.html)

Dynamic

Configuring the Tango Web Services Attributes exposed by the HTTP Binding Component

Using the HTTP Binding Component 79

https://xwss.dev.java.net/articles/security_config.html
https://xwss.dev.java.net/articles/security_config.html
https://xwss.dev.java.net/articles/security_config.html

Attribute Description Value

Username Callback
Handler
or
Username

Specifies the Username Callback Handler (when the
Authentication Credentials value is set as Dynamic).

A CallbackHandler is a class that implements a
javax.security.auth.callback. For the Username Callback Handler
(javax.security.auth.callback.NameCallback), the NameCallback
is used to retrieve the Username. This is necessary when the
Security Mechanism requires the client to supply a Username
and a Password. The CallbackHandler invocation only applies to
a Plain J2SE web service client.

For more information seeWSIT Security Configuration
Demystified (https://xwss.dev.java.net/
articles/security_config.html)

Username Callback
Handler

Specifies the name of an authorized user (when the
Authentication Credentials value is set as Static).

This option is best used only in the development environment.
When the Default Username and Default Password are specified,
the username and password are stored in the wsit-client.xml file
in clear text, which presents a security risk. Do not use this
option for production.

Username

Password Callback
Handler
or
Password

Specifies the Username Callback Handler (when the
Authentication Credentials value is set as Dynamic).

For the Password Callback Handler
(javax.security.auth.callback.PasswordCallback), the
PasswordCallback is used to retrieve the Password. This is
necessary when the Security Mechanism requires the client to
supply a Username and a Password. The CallbackHandler
invocation only applies to a Plain J2SE web service Client.

For more information seeWSIT Security Configuration
Demystified (https://xwss.dev.java.net/
articles/security_config.html)

Password Callback
Handler

Specifies the password for the authorized user (when the
Authentication Credentials value is set as Static).

This option is best used only in the development environment.
When the Default Username and Default Password are specified,
the username and password are stored in the wsit-client.xml file
in clear text, which presents a security risk. Do not use this
option for production.

Password

Configuring the Tango Web Services Attributes exposed by the HTTP Binding Component

Using the HTTP Binding Component • June 200980

https://xwss.dev.java.net/articles/security_config.html
https://xwss.dev.java.net/articles/security_config.html
https://xwss.dev.java.net/articles/security_config.html
https://xwss.dev.java.net/articles/security_config.html
https://xwss.dev.java.net/articles/security_config.html
https://xwss.dev.java.net/articles/security_config.html

Attribute Description Value

SAML Callback
Handler

Specifies the SAML Callback Handler. To use a SAML Callback
Handler, you need to create one, as there is no default.

A CallbackHandler is a class that implements a
javax.security.auth.callback. The SAML Callback Handler
(com.sun.xml.wss.impl.callback.SAMLCallback), is necessary
when using a Security Mechanism that requires the client to
supply a SAMLAssertion, such as a Sender-Vouches or a
Holder-of-Key assertion.

For more information seeWSIT Security Configuration
Demystified (https://xwss.dev.java.net/
articles/security_config.html)

SAML Callback
Handler

Advanced Configuration Settings

RM Resend Interval
(ms)

Specifies the time interval (in milliseconds) at which the sender
resends unacknowledged messages to the receiver. By default,
the resend happens every 2000ms.

2000

RM Close Timeout
(ms)

Specifies the interval (in milliseconds) at which the client waits
for a close() call to return. If unacknowledged messages are
received after this interval is reached, and the call to close has
returned, an error is logged regarding the lost messages.

0

RM Ack Request
Interval (ms)

Specifies the suggested minimum interval (in milliseconds) that
the sender should allow to elapse between Acknowledgement
requests to the receiver.

200

Secure Session
Token Lifetime (ms)

Specifies the life span of the security session (the interval at
which the security session expires).

36000

Renew Expired
Secure Session
Tokens

Specifies whether expired secure session tokens are renewed. Select the checkbox
to enable.

Require Cancel of
Secure Session

Specifies whether cancel of secure session is enabled. Select the checkbox
to enable.

Maximum Clock
Skew (ms)

Specifies the maximum difference allowed between the system
clocks of the sender and recipient in milliseconds.

300000

Timestamp
Freshness Limit (ms)

Specifies the Timestamp Freshness Limit in milliseconds.
Timestamps received with a creation time older than the
Timestamp Freshness Limit period are rejected by the receiver.

300000

Use Default
Certificate
Revocation
Mechanism

If this option is selected, the default revocation checking
mechanism of the underlying PKIX service provider is used.

Select the checkbox
to enable.

Configuring the Tango Web Services Attributes exposed by the HTTP Binding Component

Using the HTTP Binding Component 81

https://xwss.dev.java.net/articles/security_config.html
https://xwss.dev.java.net/articles/security_config.html
https://xwss.dev.java.net/articles/security_config.html

HTTP Binding Component Security
The HTTP Binding Component provides external connectivity between the JBI environment
and external environments. To ensure that transactions are secure, the HTTP Binding
Component employs both transport and message security.

■ Transport Layer Security provides mechanisms to secure network transactions between
clients and servers, such as the username/password used in HTTP Basic authentication and
authorization.

■ Message Layer Security uses security information contained within the message or message
attachment, such as the UsernameToken used in SOAP Message Security.

This section contains the following topics:

■ “Using Basic Authentication with the HTTP Binding Component” on page 82
■ “Using Basic Authentication with the HTTP Binding Component” on page 82

■ “Configuring Security Mechanisms” on page 91

Using Basic Authentication with the HTTP Binding
Component
Basic authentication enables you to require credentials, in the form of a username and
password, to make a transaction. These credentials are transmitted as plain text. The username
and password are encoded as a sequence of base-64 characters before transmission to ensure
privacy. So, for example, the user name “Fred” and password “Dinosaur” are combined as
“Fred:Dinosaur.” When encoded in base-64, these characters are equivalent to
“RnJlZDpEaW5vc2F1cg0K”.

For a Provider web service, a request message from a client contains the user name and
password fields in the request header.

For a Consumer web service invoking a web service with basic authentication enabled, the user
name and password are appended to the request headers for authentication.

For more information on basic authentication protocol see RFC 1945 (Hypertext Transfer
Protocol HTTP/1.0), RFC 2616 (Hypertext Transfer Protocol HTTP/1.1), and RFC 2617
(HTTP Authentication: Basic and Digest Access Authentication).

Basic Authentication Supported Features
Basic authentication is supported by specifying a policy in the WSDL. A basic authentication
policy can be added to the WSDL either manually or by using the WS-Policy Attachment
window accessed from CASA and provided through Tango (WSIT). A basic authentication
policy is specified at the root level of the WSDL and a reference to the policy is made in the
WSDL Port type section, binding the policy to the endpoint.

HTTP Binding Component Security

Using the HTTP Binding Component • June 200982

To support basic authentication, the HTTP Binding Component defines the following WSDL
elements:
■ MustSupportBasicAuthentication: This element has an attribute called on which can be

used to turn authentication on or off. This attribute accepts the values true or false. The
MustSupportBasicAuthentication element within a policy is required to enable basic
authentication in the endpoint.

■ UsernameToken: This element specifies the user name and password fields for one of the
following actions:
■ Authenticate the request when the endpoint is a provider
■ Invoke a web service with basic authentication enabled when the configured endpoint is

a consumer
The user name and password fields can be specified either as plain text in the WSDL, or
as tokens in the WSDL and configured at runtime.

Authentication Mechanisms for Consumer Endpoints
Four types of authentication mechanisms are supported for web service consumer endpoints.

A consumer endpoint can be configured to use one of these mechanisms by adding it as a child
element to the MustSupportBasicAuthentication element of the endpoints Policy.
■ “WssTokenCompare Username/Password Authentication” on page 83: Compares the

username and password extracted from the HTTP Authorization request header with the
username and password specified in the Policy's WssUsernameToken10 and WssPassword

elements.
■ “Using the Access Manager for Authentication and Authorization” on page 84: Configures

the consuming endpoint to use the Sun Access Manager to authenticate the HTTP client's
credentials.

■ “Using the OpenSSO Web Services Security (WSS) Agent for Authentication and
Authorization” on page 88: Configures the consuming endpoint to use the OpenSSO Web
Services Security Agent to authenticate the HTTP client's credentials.

■ “Using the GlassFish Realm Security to Authenticate the HTTP Client Credentials” on
page 90: Configures the consuming endpoint to use the Sun Realm security to authenticate
the HTTP client's credentials.

The following sections describe these mechanisms in more detail.

WssTokenCompare Username/Password Authentication
To use the WssTokenCompare feature, the Policy element must be present, and specify the
username and password that are used for authentication. The username and password
extracted from the HTTP Authorization request header are compared with the username and
password specified in the Policy's WssUsernameToken10 and WssPassword elements.

HTTP Binding Component Security

Using the HTTP Binding Component 83

The following sample WSDL contains the policy and its reference to use WssTokenCompare.
Note that an application variable token is used for the password so that the password is not
exposed in the WSDL. The value of the password can be specified in the component's
Application Variable property in NetBeans.

<wsdl:service name="echoService">
<wsdl:port name="echoPort" binding="tns:echoBinding">

<soap:address location="http://pponnala-tecra-xp.stc.com:18181/
echoService/echoPort"/>
<wsp:PolicyReference URI="#HttpBasicAuthBindingBindingPolicy"/>

</wsdl:port>

</wsdl:service>

<wsp:Policy wsu:Id="HttpBasicAuthBindingBindingPolicy">
<mysp:MustSupportBasicAuthentication on="true">

<mysp:BasicAuthenticationDetail>

<mysp:WssTokenCompare/>

</mysp:BasicAuthenticationDetail>

</mysp:MustSupportBasicAuthentication>

<mysp:UsernameToken mysp:IncludeToken="http://schemas.xmlsoap.org/ws/
2005/07/securitypolicy/IncludeToken/AlwaysToRecipient">
<wsp:Policy>

<sp:WssUsernameToken10>wilma</sp:WssUsernameToken10>

<sp:WssPassword>${pass_token}</sp:WssPassword>

</wsp:Policy>

</mysp:UsernameToken>

</wsp:Policy>

Note – The code displayed above is wrapped for display purposes.

Using the Access Manager for Authentication and Authorization
To use Access Manager to configure access-level authorization, you configure the consuming
endpoint to use the Sun Access Manager to authenticate the client's credentials. The HTTP
Binding Component SOAP binding integrates seamlessly with Sun Access Manager to
authenticate the HTTP client's credentials (the username and password extracted from the
HTTP Authorization header) against the user's credentials in the Sun Access Manager database.

Installing the Access Manager Add-on

Access Manager is installed as an GlassFish add-on which includes the Access Manager Server
and JAR files. To install Access Manager, do the following:

1. Download the standalone (15 MB) Sun Java System Access Manager 7.1 Patch 1
(https://cds.sun.com/
is-bin/INTERSHOP.enfinity/WFS/CDS-CDS_SMI-Site/en_US/-/USD/

ViewProductDetail-Start?ProductRef=accessmanager-7_1_patch1-JPR@CDS-CDS_SMI).

HTTP Binding Component Security

Using the HTTP Binding Component • June 200984

https://cds.sun.com/is-bin/INTERSHOP.enfinity/WFS/CDS-CDS_SMI-Site/en_US/-/USD/ViewProductDetail-Start?ProductRef=accessmanager-7_1_patch1-JPR@CDS-CDS_SMI
https://cds.sun.com/is-bin/INTERSHOP.enfinity/WFS/CDS-CDS_SMI-Site/en_US/-/USD/ViewProductDetail-Start?ProductRef=accessmanager-7_1_patch1-JPR@CDS-CDS_SMI
https://cds.sun.com/is-bin/INTERSHOP.enfinity/WFS/CDS-CDS_SMI-Site/en_US/-/USD/ViewProductDetail-Start?ProductRef=accessmanager-7_1_patch1-JPR@CDS-CDS_SMI
https://cds.sun.com/is-bin/INTERSHOP.enfinity/WFS/CDS-CDS_SMI-Site/en_US/-/USD/ViewProductDetail-Start?ProductRef=accessmanager-7_1_patch1-JPR@CDS-CDS_SMI

2. Extract the access_manager-7_1–p01–rr.zip file to the following directory:
/GlassFishESBv21/glassfish/bin/accessmanager

3. Install the Access Manager add-on to GlassFish using the following asadmin command
from your CLI: /GlassFishESBv21/glassfish/bin/asadmin install-addon
/accessmanager/am_installer.jar

Access Manager is extracted into /GlassFishESBv21/glassfish/addons/accessmanager

with the necessary JAR files and AMConfig.properties.

4. Restart the GlassFish server. Upon restart the post-configuration is done automatically for
Access Manager

Installing Access Manager with JavaTM Application Platform SDK

You can also download Access Manager as part of the Java Application Platform SDK
installation, following the SDK Update 7 Installation Instructions. Upon installation, the Access
Manager is available in the SDK install directory in the addons/accessmanager directory.

To configure and deploy the Access Manager instance that is installed with the SDK package
from GlassFish ESB, modify the server.policy file of GlassFish from GlassFish ESB as follows:

From the Command Line:

1. Copy (cp) /GlassFishESB21/glassfish/domains/domain1/config/server.policy to
/GlassFishESB21/glassfish/domains/domain1/config/server.policy.Orig

2. Cat /~<SDK_location>/addons/accessmanager/as9.0_serverpolicy to
/GlassFishESB21/glassfish/domains/domain1/config/server.policy.

3. Autodeploy amserver.war.

Copy (cp) /~<SDK_location>/addons/accessmanager/amserver.war to
/GlassFishESB21/glassfish/domains/domain1/autodeploy

4. Restart GlassFish

/GlassFishESB21/stop_glassfish_domain1

/GlassFishESB21/start_glassfish_domain1

HTTP Binding Component Security

Using the HTTP Binding Component 85

https://cds.sun.com/is-bin/INTERSHOP.enfinity/WFS/CDS-CDS_Developer-Site/en_US/-/USD/ViewProductDetail-Start?ProductRef=java_app_platform_sdk-5_07-nojdk-oth-JPR@CDS-CDS_Developer
http://java.sun.com/javaee/sdk/javaee5sdku7_install.jsp

Configure the HTTP Binding Component to use Access Manager

To configure the Sun Access Manager Configuration Directory, do the following:

1. Access the HTTP Binding Component Properties from the NetBeans Services window.
Right-click sun-http-binding under Servers → GlassFish → JBI → Binding

Components, and choose Properties from the pop-up menu.

2. Configure the Sun Access Manager Configuration Directory property to specify the location
of the Sun Access Manager's AMConfig.properties file. For example:
C:/GlassFishESBv21/glassfish/addons/accessmanager

Configure the Sun Access Manager Configuration Directory property to point to the
directory that contains the the AMConfig.properties file. For example:
C:/GlassFishESBv21/glassfish/addons/accessmanager

3. Configure the Sun Access Manager Classpath property to point to the following JAR files
extracted to the /GlassFishESBv21/glassfish/addons/accessmanager directory:
■ amclientsdk.jar
■ amWebServicesProvider.jar

Note that the two files must be separated by a comma.

HTTP Binding Component Security

Using the HTTP Binding Component • June 200986

4. Modify the AMConfig.properties file as needed to connect to Access Manager. At a
minimum, the following properties must be configured:

com.iplanet.am.naming.url=@PROTOCOL@:

//@SERVER_HOST@:@SERVER_PORT@/@DEPLOY_URI@/namingservice

com.sun.identity.agents.app.username=@APPLICATION_USER@

com.iplanet.am.service.password=@APPLICATION_PASSWD@

am.encryption.pwd=@ENCRYPTION_KEY@

com.iplanet.am.server.protocol=@SERVER_PROTOCOL@

com.iplanet.am.server.host=@SERVER_HOST@

com.iplanet.am.server.port=@SERVER_PORT@

com.iplanet.am.services.deploymentDescriptor=@DEPLOY_URI@

com.sun.identity.loginurl=@SERVER_PROTOCOL@://@SERVER_HOST@:

@SERVER_PORT@/@DEPLOY_URI@/UI/Login

com.sun.identity.liberty.authnsvc.url=@SERVER_PROTOCOL@://

@SERVER_HOST@:@SERVER_PORT@/@DEPLOY_URI@/Liberty/authnsvc

5. Configure the policy in the WSDL to enable Authorization by changing the Access Manager
authorization attribute to true (note the attribute authorization="true" in the example
below). This attribute is optional and the default value is false.

The following sample WSDL contains the policy and its reference to use Access Manager.

<service name="AuthAMService">
<port name="AuthAMPort" binding="tns:AuthAMBinding">

<soap:address location="http://localhost:${HttpDefaultPort}/AuthAMService
/AuthAMPort"/>

<wsp:PolicyReference URI="#HttpAuthorizationBindingAMPolicy"/>
</port>

</service>

<wsp:Policy wsu:Id="HttpAuthorizationBindingAMPolicy">
<mysp:MustSupportBasicAuthentication on="true">

<!-- authenticationType is one of simple, am, or realm -->

<mysp:BasicAuthenticationDetail>

<mysp:AccessManager authorization="true"/>
</mysp:BasicAuthenticationDetail>

</mysp:MustSupportBasicAuthentication>

</wsp:Policy>

For more information on HTTP Binding Component authorization using Sun Access Manager,
and Access Manager Classpath configuration, see: HTTP BC Access Manager Authorization.

Note – When OpenSSO Enterprise Server is running on an HTTPS port, the certificates on the
OpenSSO Enterprise server must be installed on the client side in order for the HTTP Binding
Component to access the server. Certificates should be installed in the GlassFish domain config
directory. For example: \GlassFishESBv21\glassfish\domains\domain1\config.

HTTP Binding Component Security

Using the HTTP Binding Component 87

http://wiki.open-esb.java.net/Wiki.jsp?page=HTTPBCAccessManagerAuthorization

Using the OpenSSO Web Services Security (WSS) Agent for
Authentication and Authorization
To configure access-level authorization using OpenSSO Web Services Security Agent, you
configure the consuming endpoint to use OpenSSO WSS Agent to authenticate the client's
credentials (the username and password extracted from the HTTP Authorization header)
against the user's credentials in the WSS Agent database. OpenSSO Web Services Security
Agent allows the HTTP Binding Component to talk to OpenSSO Enterprise Server 8 installed
on a remote or local computer.

Install OpenSSO Enterprise Server

To use the OpenSSO Web Services Security Agent, first download and install OpenSSO
Enterprise Server following the directions and requirements presented in the Installing and
Configuring a Single OpenSSO Enterprise Instance document.

Configure the HTTP Binding Component to use OpenSSO Web Service Security

With OpenSSO Enterprise Server installed, you can now configure the HTTP Binding
Component to use the OpenSSO WSS Agent. The OpenSSO WSS Agent file contains the client
configuration AMConfig.properties, and OpenSSO ClientSDK, that allow web service
providers and clients to easily integrate, to validate and secure web service communications.

1. Download openssowssproviders.zip. This file is available from http://

download.java.net/

general/opensso/stable/opensso-build6/openssowssproviders.zip, or you can go to
the OpenSSO Downloadpage and click WSS Agent to download the zip file.

2. Create a directory, such as /GlassFishESB/WSSAgent_OpenSSO/, and extract the contents
of the openssowssproviders.zip file into it.

3. From the NetBeans Services window, make sure that the GlassFish server is started. If not,
right-click GlassFish and choose Start from the pop-up menu.

4. Open the HTTP Binding Component Properties. To do this, expand Servers → GlassFish →
JBI → Binding Components in the Services window, right-click sun-http-binding and
select Properties from the pop-up menu.
The HTTP Binding Component Properties Editor appears.

5. Configure the Sun Access Manager Classpath property to point to the following JAR files
that you extracted to the WSSAgent_OpenSSO directory:
■ openssoclientsdk.jar
■ openssowssproviders.jar

Note that the two files must be separated by a comma.

HTTP Binding Component Security

Using the HTTP Binding Component • June 200988

http://wikis.sun.com/display/OpenSSO/Sun+OpenSSO+Enterprise+8.0+Documentation+Center
http://wikis.sun.com/display/OpenSSO/Sun+OpenSSO+Enterprise+8.0+Documentation+Center
http://download.java.net/general/opensso/stable/opensso-build6/openssowssproviders.zip
http://download.java.net/general/opensso/stable/opensso-build6/openssowssproviders.zip
http://download.java.net/general/opensso/stable/opensso-build6/openssowssproviders.zip
http://download.java.net/general/opensso/stable/opensso-build6/openssowssproviders.zip
https://opensso.dev.java.net/public/use/index.html#agent

6. Configure the Sun Access Manager Configuration Directory property to point to the
directory that contains the the AMConfig.properties file. This is located in the ./resources
directory extracted to the WSSAgent_OpenSSO directory.

7. Modify the AMConfig.properties file as needed to connect to OpenSSO Enterprise Server.
At a minimum, the following properties must be configured:

com.iplanet.am.naming.url=@PROTOCOL@:

//@SERVER_HOST@:@SERVER_PORT@/@DEPLOY_URI@/namingservice

HTTP Binding Component Security

Using the HTTP Binding Component 89

com.sun.identity.agents.app.username=@APPLICATION_USER@

com.iplanet.am.service.password=@APPLICATION_PASSWD@

am.encryption.pwd=@ENCRYPTION_KEY@

com.iplanet.am.server.protocol=@SERVER_PROTOCOL@

com.iplanet.am.server.host=@SERVER_HOST@

com.iplanet.am.server.port=@SERVER_PORT@

com.iplanet.am.services.deploymentDescriptor=@DEPLOY_URI@

com.sun.identity.loginurl=@SERVER_PROTOCOL@://@SERVER_HOST@:

@SERVER_PORT@/@DEPLOY_URI@/UI/Login

com.sun.identity.liberty.authnsvc.url=@SERVER_PROTOCOL@://

@SERVER_HOST@:@SERVER_PORT@/@DEPLOY_URI@/Liberty/authnsvc

8. Restart GlassFish and HTTP BC and test the modifications.

Using the GlassFish Realm Security to Authenticate the HTTP Client
Credentials
The HTTP Binding Component can integrate with GlassFish Application Server, out of the box,
to provide authentication of requesting clients by authenticating the client against the
credentials in a "realm". To take advantage of this security feature, the HTTP/SOAP Binding
Component's consuming endpoint needs to be properly configured in the WSDL.

To configure an HTTP/SOAP endpoint to use Realm security configure the PolicyReference
element which belongs in the namespace,
http://schemas.xmlsoap.org/ws/2004/09/policy. The PolicyReference identifies the
Policy, which also belongs in the namespace,
http://schemas.xmlsoap.org/ws/2004/09/policy, that provides the details for configuring
Realm security.

This is an example of an endpoint with an associated PolicyReference element.

<port name="SoapBasicAuthPortRealm" binding="tns:SoapBasicAuthRealmBinding">
<soap:address location="http://localhost:12081/SoapBasicAuthService

/SoapBasicAuthRealmPort"/>
<wsp:PolicyReference URI="#HttpBasicAuthBindingBindingRealmPolicy"/>

</port>

The PolicyReference element contains an attribute called URI. The value of the URI consists of
a '#' character followed by the name of the policy defined somewhere else in the WSDL. Taking
this example further, the example below defines the Policy that the PolicyReference
references. In the following example, ignore the UsernameToken. This is used by the "outbound"
endpoint for sending the username/password credential when it sends a request. You don't
need to have this element for "inbound" (consuming) endpoints, but it's included here to
illustrate the bi-directionality of an endpoint.

<wsp:Policy wsu:Id="HttpBasicAuthBindingBindingRealmPolicy">
<mysp:MustSupportBasicAuthentication on="true">

<mysp:BasicAuthenticationDetail>

HTTP Binding Component Security

Using the HTTP Binding Component • June 200990

<mysp:Realm realmName="file" />

</mysp:BasicAuthenticationDetail>

</mysp:MustSupportBasicAuthentication>

<mysp:UsernameToken mysp:IncludeToken="http://schemas.xmlsoap.org/ws/2005
/07/securitypolicy/IncludeToken/AlwaysToRecipient">

<wsp:Policy>

<sp:WssUsernameToken10>wilma</sp:WssUsernameToken10>

<sp:WssPassword>pebbles</sp:WssPassword>

</wsp:Policy>

</mysp:UsernameToken>

</wsp:Policy>

Note – The code above has been wrapped for display purposes

The PolicyReference and Policy elements are used above simply to ensure that we adhere to
the standard for SOAP binding. There are no Tango WS-Policy Attachments involved and the
WS-Policy Attachment "runtime" will ignore the child element
MustSupportBasicAuthentication which is specific to the HTTP Soap BC.
MustSupportBasicAuthentication is in the namespace,
http://sun.com/ws/httpbc/security/BasicauthSecurityPolicy.

For example, your GlassFish installation comes with a preconfigured file realm which is
essentially a file-based user database. See the GlassFish documentation on Realm security, or for
a demonstration of how Realm security is configured for a SOAP endpoint see Securing
Communication using GlassFish Realm Security.

Configuring Security Mechanisms
This section discusses the following Security Mechanisms available through Tango, and the
server configuration options for each selection. For more information on any of these security
mechanisms, see Security Mechanisms. (https://wsit-docs.dev.java.net/releases/1.1/
ahicu.html)

The available security mechanisms are:
■ “Username Authentication with Symmetric Key ” on page 92
■ “Mutual Certificates Security” on page 94
■ “Transport Security (SSL)” on page 96
■ “Message Authentication over SSL” on page 97
■ “SAML Authorization over SSL” on page 99
■ “Endorsing Certificate” on page 101
■ “SAML Sender Vouches with Certificates” on page 102
■ “SAML Holder of Key” on page 105
■ “STS Issued Token” on page 107

HTTP Binding Component Security

Using the HTTP Binding Component 91

https://glassfish.dev.java.net/javaee5/docs/AG/ablnk.html#ablpc
http://wiki.open-esb.java.net/Wiki.jsp?page=Securing%20Communications%20In%20Open%20ESB%20With%20Glassfish%20Realm%20Security
http://wiki.open-esb.java.net/Wiki.jsp?page=Securing%20Communications%20In%20Open%20ESB%20With%20Glassfish%20Realm%20Security
https://wsit-docs.dev.java.net/releases/1.1/ahicu.html
https://wsit-docs.dev.java.net/releases/1.1/ahicu.html

■ “STS Issued Token with Service Certificate” on page 110
■ “STS Issued Endorsing Token” on page 113

Username Authentication with Symmetric Key
The Username Authentication with Symmetric Keys mechanism protects your application for
integrity and confidentiality. Symmetric key cryptography relies on a single, shared, secret key
that is used to both sign and encrypt a message, and is usually faster than public key
cryptography.

Server-Side Requirements

The following server-side options need to be configured for this security mechanisms:

■ Keystore: Configure the Keystore to specify the alias identifying the service certificate and
private key. For the GlassFish Keystores, the file is keystore.jks and the alias is
xws-security-server, assuming that you have updated the GlassFish default certificate
stores.

■ User in GlassFish: Add a user to the file realm of GlassFish to use a mechanism that requires
a user database for authentication.

Client-Side Requirements

The following client-side options need to be configured for this security mechanisms:

■ Truststore: Configure the Truststore that contains the certificate and trusted roots of the
server. For the GlassFish truststores, the file is cacerts. jks and the alias is
xws-security-server, assuming that you have updated the GlassFish default certificate
stores.
When using an STS mechanism, the client specifies the Truststore and certificate alias for
the STS, not the service. For the GlassFish stores, the file is cacerts.jks and the alias is
wssip.

■ Default User: Configure either a default username and password, a
UsernameCallbackHandler, or leave these options blank and specify a user at runtime.

■ User in GlassFish: Add a user to the file realm of GlassFish to use a mechanism that requires
a user database for authentication.

TABLE 21 Username Authentication with Symmetric Key Configuration Properties

Property Description Value

Authentication Token Specifies which supporting token will be used to sign and/or encrypt
the specified message parts. Options include Username, X509,
SAML, Issued, or None

Username

HTTP Binding Component Security

Using the HTTP Binding Component • June 200992

TABLE 21 Username Authentication with Symmetric Key Configuration Properties (Continued)
Property Description Value

Algorithm Suite Specifies the algorithm suite required to perform cryptographic
operations with symmetric or asymmetric key-based security
tokens.

An algorithm suite specifies actual algorithms and allowed key
lengths. A mechanism alternative will define what algorithms are
used and how they are used. The value of this attribute is typically
referenced by a security binding and is used to specify the
algorithms used for all cryptographic operations performed under
the security binding. The default value is Basic 128 bit.

Some of the algorithm suite settings require that Unlimited
StrengthEncryption be configured in the Java Runtime
Environment (JRE), particularly the algorithm suites that use 256
bit encryption. For instructions on downloading and configuring
unlimited strength encryption, see: http://java.sun.com/
products/jce/javase.html or http://java.sun.com/javase/
downloads/index_jdk5.jsp#docs

Basic 128bit

Security Header
Layout

Specifies the layout rule to apply when adding items to the security
header.
The options are:
■ Strict: Items are added to the security header following the

general principle of ?declare before use?

■ Lax: Items are added to the security header in any order that
conforms to WSS: SOAP Message Security. However, WSIT
follows Strict even when Lax is selected.

■ Lax (Timestamp First): The same as Lax, except that the first
item in the security header must be a wsse:Timestamp.

■ Lax (Timestamp Last):The same as for Lax, except that the last
item in the security header must be a wsse:Timestamp.

Strict

Require Derived Keys Specifies that a derived key is required.

A derived key is a cryptographic key created from a password or
other user data. Derived keys allow applications to create session
keys as needed, eliminating the need to store a particular key. The
use of the same session key (for example, when using Secure
Conversation) for repeated message exchanges is sometimes
considered a risk. To reduce that risk, enable Require Derived Keys.

Select the
checkbox to
enable.

HTTP Binding Component Security

Using the HTTP Binding Component 93

http://java.sun.com/products/jce/javase.html
http://java.sun.com/products/jce/javase.html
http://java.sun.com/javase/downloads/index_jdk5.jsp#docs
http://java.sun.com/javase/downloads/index_jdk5.jsp#docs

TABLE 21 Username Authentication with Symmetric Key Configuration Properties (Continued)
Property Description Value

Establish Secure
Session (Secure
Conversation)

Secure Session enables establishes a shared security context between
the consumer and provider when a multiple-message-exchange
sequence is first initiated. Subsequent messages use (possibly
derived) session keys that increase the overall security while
reducing the security processing overhead for each message.

When this option and Require Derived Keys are both enabled, a
derived key will be used. If not, the original session key will be used.

Note on Secure Session and Reliable Message Delivery: Reliable
Messaging can be used independently of the security mechanisms;
however, when used with a security mechanism, Reliable Messaging
requires the use of Secure Session, which will be automatically
configured for a security mechanism when Reliable Messaging is
selected before the security mechanism is selected. If Secure Session
is selected for a security mechanism and the Reliable Messaging
option is not selected before the security mechanism is specified,
Reliable Messaging will need to be manually selected in order for
Secure Session to work.

Select the
checkbox to
enable.

Require Derived Keys
for Secure Session

Specifies that a derived key is required for Secure Session. See
Require Derived Key above for more information.

Select the
checkbox to
enable.

Require Signature
Confirmation

Specifies that the responder process the signature in the request.
Select this option to reduce the risk of attacks when the WSS
Version is 1.1 .

Select the
checkbox to
enable.

Encrypt Signature Specifies whether the primary signature and signature confirmation
elements must be encrypted.

Select the
checkbox to
enable.

Encrypt before
Signing

Specifies that the order of message protection is to encrypt the
SOAP content, then sign the entire SOAP body. The encryption key
and signing key must be derived from the same source key.

If not selected, the default behavior is Sign Before Encrypt.

Check box
Selected
indicates
disabled.

Mutual Certificates Security
The Mutual Certificates Security mechanism uses security through authentication and message
protection to ensure integrity and confidentiality. This mechanism requires a keystore and
truststore file for both the client and server sides of the application.

For an example of configuring WS Security for Mutual Certificates Security see Using the WSIT
Mutual Certificates Security Mechanism with the HTTP BC (http://
wiki.open-esb.java.net/Wiki.jsp?page=HTTPBCWSITMutualCerts)

Server-Side Requirements

HTTP Binding Component Security

Using the HTTP Binding Component • June 200994

http://wiki.open-esb.java.net/Wiki.jsp?page=HTTPBCWSITMutualCerts
http://wiki.open-esb.java.net/Wiki.jsp?page=HTTPBCWSITMutualCerts
http://wiki.open-esb.java.net/Wiki.jsp?page=HTTPBCWSITMutualCerts

The following server-side options need to be configured for this security mechanisms:

■ Keystore: Configure the Keystore to specify the alias identifying the service certificate and
private key. For the GlassFish Keystores, the file is keystore.jks and the alias is
xws-security-server, assuming that you have updated the GlassFish default certificate
stores.

■ Truststore (no alias): Configure the Truststore to specify the alias that contains the
certificate and trusted roots of the client. For the GlassFish Truststores, the file is cacerts.
jks and the alias is xws-security-client, assuming that you have updated the GlassFish
default certificate stores.

Client-Side Requirements

The following client-side options need to be configured for this security mechanisms:

■ Keystore: Configure the keystore to point to the alias for the client certificate. For the
GlassFish Keystores, the file is keystore.jks and the alias is xws-security-client,
assuming that you have updated the GlassFish default certificate stores.

■ Truststore: Configure the Truststore that contains the certificate and trusted roots of the
server. For the GlassFish truststores, the file is cacerts. jks and the alias is
xws-security-server, assuming that you have updated the GlassFish default certificate
stores.
When using an STS mechanism, the client specifies the Truststore and certificate alias for
the STS, not the service. For the GlassFish stores, the file is cacerts.jks and the alias is
wssip.

TABLE 22 Mutual Certificates Security Configuration Properties

Property Description Value

Algorithm Suite Specifies the algorithm suite required to perform cryptographic
operations with symmetric or asymmetric key-based security
tokens.

See Algorithm Suite under Table 21 for more information.

Basic 128bit

Security Header
Layout

Specifies the layout rule to apply when adding items to the security
header. Options are Strict, Lax, Lax (Timestamp First), and Lax
(Timestamp Last).

See Security Header Layout under Table 21 for more information.

Strict

HTTP Binding Component Security

Using the HTTP Binding Component 95

TABLE 22 Mutual Certificates Security Configuration Properties (Continued)
Property Description Value

Require Derived Keys Specifies that a derived key is required.

A derived key is a cryptographic key created from a password or
other user data. Derived keys allow applications to create session
keys as needed, eliminating the need to store a particular key. The
use of the same session key (for example, when using Secure
Session) for repeated message exchanges is sometimes considered a
risk. To reduce that risk, enable Require Derived Keys.

Select the
checkbox to
enable.

Establish Secure
Session (Secure
Conversation)

Secure Session enables establishes a shared security context between
the consumer and provider when a multiple-message-exchange
sequence is first initiated. Subsequent messages use (possibly
derived) session keys that increase the overall security while
reducing the security processing overhead for each message.

For more information see Establish Secure Session under Table 21.

Select the
checkbox to
enable.

Require Derived Keys
for Secure Session

Specifies that a derived key is required for Secure Session. See
Require Derived Keys above for more information.

Select the
checkbox to
enable.

Encrypt Signature Specifies whether the primary signature and signature confirmation
elements must be encrypted.

Select the
checkbox to
enable.

Encrypt before
Signing

Specifies that the order of message protection is to encrypt the
SOAP content, then sign the entire SOAP body. The encryption key
and signing key must be derived from the same source key.

If not selected, the default behavior is Sign Before Encrypt.

Check box
Selected
indicates
disabled.

Transport Security (SSL)
The Transport Security mechanism uses SSL for authentication and confidentiality during
message transport. Transport-layer security relies on secure HTTP transport (HTTPS) using
Secure Sockets Layer (SSL). This point-to-point security mechanism that can be used for
authentication, message integrity, and confidentiality.

Server-Side Requirements

The following server-side options need to be configured for this security mechanisms:

■ SSL: Configure the system to point to the client and server Keystore and Truststore files.
■ User in GlassFish: Add a user to the file realm of GlassFish to use a mechanism that requires

a user database for authentication.

Client-Side Requirements

HTTP Binding Component Security

Using the HTTP Binding Component • June 200996

The following client-side options need to be configured for this security mechanisms:

■ SSL: Configure the system to point to the client and server Keystore and Truststore files.
■ User in GlassFish: Add a user to the file realm of GlassFish to use a mechanism that requires

a user database for authentication.

TABLE 23 Transport Security (SSL) Configuration Properties

Property Description Value

Algorithm Suite Specifies the algorithm suite required to perform cryptographic
operations with symmetric or asymmetric key-based security
tokens.

See Algorithm Suite under Table 21 for more information.

Basic 128bit

Security Header
Layout

Specifies the layout rule to apply when adding items to the security
header. Options are Strict, Lax, Lax (Timestamp First), and Lax
(Timestamp Last).

See Security Header Layout under Table 21 for more information.

Strict

Require Client
Certificate

Specifies that a client certificate must be provided to the server for
verification.

If you are using a security mechanism with SSL, a client certificate
will be required by the server both during its initial handshake and
again during verification.

Check box
Selected
indicates
disabled.

Message Authentication over SSL
The Message Authentication over SSL mechanism attaches a cryptographically secured identity
or authentication token with the message and use SSL for confidentiality protection.
Authentication is specified through a Username Supporting Token or an X.509 Supporting
Token.

Server-Side Requirements

The following server-side options need to be configured for this security mechanisms:

■ SSL: Configure the system to point to the client and server Keystore and Truststore files.
■ User in GlassFish: Add a user to the file realm of GlassFish to use a mechanism that requires

a user database for authentication.

Client-Side Requirements

HTTP Binding Component Security

Using the HTTP Binding Component 97

The following client-side options need to be configured for this security mechanisms:

■ Keystore: Configure the keystore to point to the alias for the client certificate. For the
GlassFish Keystores, the file is keystore.jks and the alias is xws-security-client,
assuming that you have updated the GlassFish default certificate stores.

■ SSL: Configure the system to point to the client and server Keystore and Truststore files.

TABLE 24 Message Authentication over SSL Configuration Properties

Property Description Value

Authentication Token Specifies which supporting token will be used to sign and/or encrypt
the specified message parts. Options include Username, X509,
SAML, Issued, or None

Username

WSS Version Specifies which version of the Web Services Security specification is
followed. Options are 1.0 and 1.1.

Enabling WSS 1.1 enables the Server to reuse an encrypted key
already generated by the client. This saves the time otherwise
required to create a Symmetric Key during the course of response,
encrypt it with the client public key (which is also an expensive RSA
operation), and transmit the encrypted key in the message (it
occupies markup and requires Base64 operations). Enabling WSS
1.1 also enables encrypted headers.

1.1

Algorithm Suite Specifies the algorithm suite required to perform cryptographic
operations with symmetric or asymmetric key-based security
tokens.

See Algorithm Suite under Table 21 for more information.

Basic 128bit

Security Header
Layout

Specifies the layout rule to apply when adding items to the security
header. Options are Strict, Lax, Lax (Timestamp First), and Lax
(Timestamp Last).

See Security Header Layout under Table 21 for more information.

Strict

Establish Secure
Session (Secure
Conversation)

Secure Session enables establishes a shared security context between
the consumer and provider when a multiple-message-exchange
sequence is first initiated. Subsequent messages use (possibly
derived) session keys that increase the overall security while
reducing the security processing overhead for each message.

For more information see Establish Secure Session under Table 21.

Select the
checkbox to
enable.

HTTP Binding Component Security

Using the HTTP Binding Component • June 200998

TABLE 24 Message Authentication over SSL Configuration Properties (Continued)
Property Description Value

Require Derived Keys
for Secure Session

Specifies that a derived key is required for Secure Session.

A derived key is a cryptographic key created from a password or
other user data. Derived keys allow applications to create session
keys as needed, eliminating the need to store a particular key. The
use of the same session key for repeated message exchanges is
sometimes considered a risk. To reduce that risk, enable Require
Derived Keys for Secure Session.

Select the
checkbox to
enable.

Require Signature
Confirmation

Specifies that the responder process the signature in the request.
Select this option to reduce the risk of attacks when the WSS
Version is 1.1 .

Select the
checkbox to
enable.

SAML Authorization over SSL
The SAML Authorization over SSL mechanism attaches an authorization token to the message.
SSL is used for confidentiality protection. In this mechanism, the SAML token is expected to
carry some authorization information about an end user. The sender of the token is actually
vouching for the credentials in the SAML token.

Server-Side Requirements

The following server-side options need to be configured for this security mechanisms:

■ Keystore: Configure the Keystore to specify the alias identifying the service certificate and
private key. For the GlassFish Keystores, the file is keystore.jks and the alias is
xws-security-server, assuming that you have updated the GlassFish default certificate
stores.

■ Truststore (no alias): Configure the Truststore to specify the alias that contains the
certificate and trusted roots of the client. For the GlassFish Truststores, the file is cacerts.
jks and the alias is xws-security-client, assuming that you have updated the GlassFish
default certificate stores.

■ SSL: Configure the system to point to the client and server Keystore and Truststore files.

Client-Side Requirements

HTTP Binding Component Security

Using the HTTP Binding Component 99

The following client-side options need to be configured for this security mechanisms:

■ Keystore: Configure the keystore to point to the alias for the client certificate. For the
GlassFish Keystores, the file is keystore.jks and the alias is xws-security-client,
assuming that you have updated the GlassFish default certificate stores.

■ Truststore: Configure the Truststore that contains the certificate and trusted roots of the
server. For the GlassFish truststores, the file is cacerts. jks and the alias is
xws-security-server, assuming that you have updated the GlassFish default certificate
stores.
When using an STS mechanism, the client specifies the Truststore and certificate alias for
the STS, not the service. For the GlassFish stores, the file is cacerts.jks and the alias is
wssip.

■ SAML Callback Handler: Specify a SAML Callback Handler. To use a SAML Callback
Handler, you need to create one, as there is no default.

■ SSL: Configure the system to point to the client and server Keystore and Truststore files.

TABLE 25 SAML Authorization over SSL Configuration Properties

Property Description Value

SAML Version Specifies which version of the SAML token should be used. The
SAML Version is something the CallbackHandler has to verify, not
the security runtime.

SAML tokens are defined in WSS: SAML Token Profile documents,
available from http://www.oasis-open.org/specs/index.php.

1.1 (Profile 1.0)

WSS Version Specifies which version of the Web Services Security specification is
followed. Options are 1.0 and 1.1.

Enabling WSS 1.1 enables the Server to reuse an encrypted key
already generated by the client. This saves the time otherwise
required to create a Symmetric Key during the course of response,
encrypt it with the client public key (which is also an expensive RSA
operation), and transmit the encrypted key in the message (it
occupies markup and requires Base64 operations). Enabling WSS
1.1 also enables encrypted headers.

1.1

Algorithm Suite Specifies the algorithm suite required to perform cryptographic
operations with symmetric or asymmetric key-based security
tokens.

See Algorithm Suite under Table 21 for more information.

Basic 128bit

Security Header
Layout

Specifies the layout rule to apply when adding items to the security
header. Options are Strict, Lax, Lax (Timestamp First), and Lax
(Timestamp Last).

See Security Header Layout under Table 21 for more information.

Strict

HTTP Binding Component Security

Using the HTTP Binding Component • June 2009100

http://www.oasis-open.org/specs/index.php

TABLE 25 SAML Authorization over SSL Configuration Properties (Continued)
Property Description Value

Require Client
Certificate

Specifies that a client certificate must be provided to the server for
verification.

If you are using a security mechanism with SSL, a client certificate
will be required by the server both during its initial handshake and
again during verification.

Check box
Selected
indicates
disabled.

Require Signature
Confirmation

Specifies that the responder process the signature in the request.
Select this option to reduce the risk of attacks when the WSS
Version is 1.1 .

Select the
checkbox to
enable.

Endorsing Certificate
The Endorsing Certificate mechanism uses secure messages that use symmetric key for integrity
and confidentiality, and an endorsing client certificate to augment the claims provided by the
token associated with the message signature. The client knows the service's certificate, and
requests need to be endorsed or authorized by a special identity.

Server-Side Requirements

The following server-side options need to be configured for this security mechanisms:

■ Keystore: Configure the Keystore to specify the alias identifying the service certificate and
private key. For the GlassFish Keystores, the file is keystore.jks and the alias is
xws-security-server, assuming that you have updated the GlassFish default certificate
stores.

■ Truststore: Configure the Truststore to specify the alias that contains the certificate and
trusted roots of the client. For the GlassFish Truststores, the file is cacerts. jks and the
alias is xws-security-client, assuming that you have updated the GlassFish default
certificate stores.

Client-Side Requirements

The following client-side options need to be configured for this security mechanisms:

■ Keystore: Configure the keystore to point to the alias for the client certificate. For the
GlassFish Keystores, the file is keystore.jks and the alias is xws-security-client,
assuming that you have updated the GlassFish default certificate stores.

■ Truststore: Configure the Truststore that contains the certificate and trusted roots of the
server. For the GlassFish truststores, the file is cacerts. jks and the alias is
xws-security-server, assuming that you have updated the GlassFish default certificate
stores.
When using an STS mechanism, the client specifies the Truststore and certificate alias for
the STS, not the service. For the GlassFish stores, the file is cacerts.jks and the alias is
wssip.

HTTP Binding Component Security

Using the HTTP Binding Component 101

TABLE 26 Endorsing Certificate Configuration Properties

Property Description Value

Algorithm Suite Specifies the algorithm suite required to perform cryptographic
operations with symmetric or asymmetric key-based security
tokens.

See Algorithm Suite under Table 21 for more information.

Basic 128bit

Security Header
Layout

Specifies the layout rule to apply when adding items to the security
header. Options are Strict, Lax, Lax (Timestamp First), and Lax
(Timestamp Last).

See Security Header Layout under Table 21 for more information.

Strict

Establish Secure
Session (Secure
Conversation)

Secure Session enables establishes a shared security context between
the consumer and provider when a multiple-message-exchange
sequence is first initiated. Subsequent messages use (possibly
derived) session keys that increase the overall security while
reducing the security processing overhead for each message.

For more information see Establish Secure Session under Table 21.

Select the
checkbox to
enable.

Require Derived Keys
for Secure Session

Specifies that a derived key is required for Secure Session. See
Require Derived Key above for more information.

A derived key is a cryptographic key created from a password or
other user data. Derived keys allow applications to create session
keys as needed, eliminating the need to store a particular key. The
use of the same session key for repeated message exchanges is
sometimes considered a risk. To reduce that risk, enable Require
Derived Keys for Secure Session.

Select the
checkbox to
enable.

Require Signature
Confirmation

Specifies that the responder process the signature in the request.
Select this option to reduce the risk of attacks when the WSS
Version is 1.1 .

Select the
checkbox to
enable.

Encrypt Signature Specifies whether the primary signature and signature confirmation
elements must be encrypted.

Select the
checkbox to
enable.

Encrypt before
Signing

Specifies that the order of message protection is to encrypt the
SOAP content, then sign the entire SOAP body. The encryption key
and signing key must be derived from the same source key.

If not selected, the default behavior is Sign Before Encrypt.

Check box
Selected
indicates
disabled.

SAML Sender Vouches with Certificates
This mechanism uses mutual certificates to provide integrity and confidentiality for messages,
and uses a Sender Vouches SAML token to provide authorization. The Sender Vouches method
establishes correspondence between a SOAP message and the SAML assertions added to the

HTTP Binding Component Security

Using the HTTP Binding Component • June 2009102

SOAP message. Confirmation evidence, used to establish correspondence between the subject
of the SAML subject statements (in SAML assertions) and SOAP message content, is provided
by the attesting entity.

The message payload needs to be signed and encrypted. The requestor is vouching for the
credentials (present in the SAML assertion) of the entity on behalf of which the requestor is
acting. The initiator token, which is an X.509 token, is used for signature. The recipient token,
which is also an X.509 token, is used for encryption. For the server, this is reversed, the recipient
token is the signature token and the initiator token is the encryption token. A SAML token is
used for authorization.

For an example of configuring WS Security for SAML Sender Vouches with Certificates see
Using the SAML Sender Vouches with Certificates Security Mechanism with the HTTP BC
(http://wiki.open-esb.java.net/Wiki.jsp?page=HTTPBCWSITSAMLSV)

Server-Side Requirements

The following server-side options need to be configured for this security mechanisms:

■ Keystore: Configure the Keystore to specify the alias identifying the service certificate and
private key. For the GlassFish Keystores, the file is keystore.jks and the alias is
xws-security-server, assuming that you have updated the GlassFish default certificate
stores.

■ Truststore (no alias): Configure the Truststore to specify the alias that contains the
certificate and trusted roots of the client. For the GlassFish Truststores, the file is cacerts.
jks and the alias is xws-security-client, assuming that you have updated the GlassFish
default certificate stores.

Client-Side Requirements

The following client-side options need to be configured for this security mechanisms:

■ Keystore: Configure the keystore to point to the alias for the client certificate. For the
GlassFish Keystores, the file is keystore.jks and the alias is xws-security-client,
assuming that you have updated the GlassFish default certificate stores.

■ Truststore: Configure the Truststore that contains the certificate and trusted roots of the
server. For the GlassFish truststores, the file is cacerts. jks and the alias is
xws-security-server, assuming that you have updated the GlassFish default certificate
stores.
When using an STS mechanism, the client specifies the Truststore and certificate alias for
the STS, not the service. For the GlassFish stores, the file is cacerts.jks and the alias is
wssip.

■ SAML Callback Handler: Specify a SAML Callback Handler. To use a SAML Callback
Handler, you need to create one, as there is no default.

HTTP Binding Component Security

Using the HTTP Binding Component 103

http://wiki.open-esb.java.net/Wiki.jsp?page=HTTPBCWSITSAMLSV
http://wiki.open-esb.java.net/Wiki.jsp?page=HTTPBCWSITSAMLSV

TABLE 27 SAML Sender Vouches with Certificates Configuration Properties

Property Description Value

SAML Version Specifies which version of the SAML token should be used. The
SAML Version is something the CallbackHandler has to verify, not
the security runtime.

SAML tokens are defined in WSS: SAML Token Profile documents,
available from http://www.oasis-open.org/specs/index.php.

1.1 (Profile 1.0)

Algorithm Suite Specifies the algorithm suite required to perform cryptographic
operations with symmetric or asymmetric key-based security
tokens.

See Algorithm Suite under Table 21 for more information.

Basic 128bit

Security Header
Layout

Specifies the layout rule to apply when adding items to the security
header. Options are Strict, Lax, Lax (Timestamp First), and Lax
(Timestamp Last).

See Security Header Layout under Table 21 for more information.

Strict

Require Derived Keys Specifies that a derived key is required.

A derived key is a cryptographic key created from a password or
other user data. Derived keys allow applications to create session
keys as needed, eliminating the need to store a particular key. The
use of the same session key for repeated message exchanges is
sometimes considered a risk. To reduce that risk, enable Require
Derived Keys.

Select the
checkbox to
enable.

Establish Secure
Session (Secure
Conversation)

Secure Session enables establishes a shared security context between
the consumer and provider when a multiple-message-exchange
sequence is first initiated. Subsequent messages use (possibly
derived) session keys that increase the overall security while
reducing the security processing overhead for each message.

For more information see Establish Secure Session under Table 21.

Select the
checkbox to
enable.

Require Derived Keys
for Secure Session

Specifies that a derived key is required for Secure Session. See
Require Derived Keys above for more information.

Select the
checkbox to
enable.

Encrypt Signature Specifies whether the primary signature and signature confirmation
elements must be encrypted.

Select the
checkbox to
enable.

Encrypt before
Signing

Specifies that the order of message protection is to encrypt the
SOAP content, then sign the entire SOAP body. The encryption key
and signing key must be derived from the same source key.

If not selected, the default behavior is Sign Before Encrypt.

Check box
Selected
indicates
disabled.

HTTP Binding Component Security

Using the HTTP Binding Component • June 2009104

http://www.oasis-open.org/specs/index.php

SAML Holder of Key
This mechanism protects messages with a signed SAML assertion (issued by a trusted
authority) carrying client public key and authorization information with integrity and
confidentiality protection using mutual certificates. The Holder-of-Key (HOK) method
establishes the correspondence between a SOAP message and the SAML assertions added to the
SOAP message. For more information see the SAML Token Profile document
athttp://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.0.pdf.

Server-Side Requirements

The following server-side options need to be configured for this security mechanisms:

■ Keystore: Configure the Keystore to specify the alias identifying the service certificate and
private key. For the GlassFish Keystores, the file is keystore.jks and the alias is
xws-security-server, assuming that you have updated the GlassFish default certificate
stores.

■ Truststore (no alias): Configure the Truststore to specify the alias that contains the
certificate and trusted roots of the client. For the GlassFish Truststores, the file is cacerts.
jks and the alias is xws-security-client, assuming that you have updated the GlassFish
default certificate stores.

Client-Side Requirements

The following client-side options need to be configured for this security mechanisms:

■ Keystore: Configure the keystore to point to the alias for the client certificate. For the
GlassFish Keystores, the file is keystore.jks and the alias is xws-security-client,
assuming that you have updated the GlassFish default certificate stores.

■ Truststore: Configure the Truststore that contains the certificate and trusted roots of the
server. For the GlassFish truststores, the file is cacerts. jks and the alias is
xws-security-server, assuming that you have updated the GlassFish default certificate
stores.
When using an STS mechanism, the client specifies the Truststore and certificate alias for
the STS, not the service. For the GlassFish stores, the file is cacerts.jks and the alias is
wssip.

■ SAML Callback Handler: Specify a SAML Callback Handler. To use a SAML Callback
Handler, you need to create one, as there is no default.

HTTP Binding Component Security

Using the HTTP Binding Component 105

http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.0.pdf

TABLE 28 SAML Holder of Key Configuration Properties

Property Description Value

SAML Version Specifies which version of the SAML token should be used. The
SAML Version is something the CallbackHandler has to verify, not
the security runtime.

SAML tokens are defined in WSS: SAML Token Profile documents,
available from http://www.oasis-open.org/specs/index.php.

1.1 (Profile 1.0)

Algorithm Suite Specifies the algorithm suite required to perform cryptographic
operations with symmetric or asymmetric key-based security
tokens.

See Algorithm Suite under Table 21 for more information.

Basic 128bit

Security Header
Layout

Specifies the layout rule to apply when adding items to the security
header. Options are Strict, Lax, Lax (Timestamp First), and Lax
(Timestamp Last).

See Security Header Layout under Table 21 for more information.

Strict

Require Derived Keys Specifies that a derived key is required

A derived key is a cryptographic key created from a password or
other user data. Derived keys allow applications to create session
keys as needed, eliminating the need to store a particular key. The
use of the same session key for repeated message exchanges is
sometimes considered a risk. To reduce that risk, enable Require
Derived Keys.

Select the
checkbox to
enable.

Establish Secure
Session (Secure
Conversation)

Secure Session enables establishes a shared security context between
the consumer and provider when a multiple-message-exchange
sequence is first initiated. Subsequent messages use (possibly
derived) session keys that increase the overall security while
reducing the security processing overhead for each message.

For more information see Establish Secure Session under Table 21.

Select the
checkbox to
enable.

Require Derived Keys
for Secure Session

Specifies that a derived key is required for Secure Session. See
Require Derived Keys above for more information.

Select the
checkbox to
enable.

Encrypt Signature Specifies whether the primary signature and signature confirmation
elements must be encrypted.

Select the
checkbox to
enable.

Encrypt before
Signing

Specifies that the order of message protection is to encrypt the
SOAP content, then sign the entire SOAP body. The encryption key
and signing key must be derived from the same source key.

If not selected, the default behavior is Sign Before Encrypt.

Check box
Selected
indicates
disabled.

HTTP Binding Component Security

Using the HTTP Binding Component • June 2009106

http://www.oasis-open.org/specs/index.php

STS Issued Token
Protects messages using a token issued by a trusted Secure Token Service (STS) for message
integrity and confidentiality protection.

To use this mechanism for the web service, select this option as your security mechanism. You
must have a Security Token Service that can be referenced by the service. The security
configuration for the client-side of this application is dependent upon the security mechanism
selected for the STS, and not on the security mechanism selected for the application. The client
Truststore must contain the certificate of the STS, which has the alias of wssip if you are using
the updated GlassFish certificates.

Server-Side Requirements

The following server-side options need to be configured for this security mechanisms:

■ Keystore: Configure the Keystore to specify the alias identifying the service certificate and
private key. For the GlassFish Keystores, the file is keystore.jks and the alias is
xws-security-server, assuming that you have updated the GlassFish default certificate
stores.

■ Truststore: Configure the Truststore to specify the alias that contains the certificate and
trusted roots of the client. For the GlassFish Truststores, the file is cacerts. jks and the
alias is xws-security-client, assuming that you have updated the GlassFish default
certificate stores.

■ STS: You must have a Security Token Service that can be referenced by the service. The STS
is secured using a separate (non-STS) security mechanism.

Client-Side Requirements

The following client-side options need to be configured for this security mechanisms:

■ Keystore: Configure the keystore to point to the alias for the client certificate. For the
GlassFish Keystores, the file is keystore.jks and the alias is xws-security-client,
assuming that you have updated the GlassFish default certificate stores.

■ Truststore: Configure the Truststore that contains the certificate and trusted roots of the
server. For the GlassFish truststores, the file is cacerts. jks and the alias is
xws-security-server, assuming that you have updated the GlassFish default certificate
stores.
When using an STS mechanism, the client specifies the Truststore and certificate alias for
the STS, not the service. For the GlassFish stores, the file is cacerts.jks and the alias is
wssip.

■ STS: You must have a Security Token Service that can be referenced by the service. The STS
is secured using a separate (non-STS) security mechanism. The security configuration for
the client-side of this application is dependent upon the security mechanism selected for the
STS, and not on the security mechanism selected for the application.

HTTP Binding Component Security

Using the HTTP Binding Component 107

TABLE 29 STS Issued Token Configuration Properties

Property Description Value

Issuer Address Specifies the address of the issuer (STS) that will
accept the security token presented in the message.
The element type is an endpoint reference. An STS
contains a set of interfaces used to issue, exchange,
and validate security tokens.

For example, for JAX-WS services, the Issuer
Address is:
http://localhost:8080/jaxws-sts/sts

http://localhost:8080/jaxws-sts/sts

Issuer Metadata
Address

Specifies the address from which to retrieve the
issuer metadata. This should just be the URLs.

For example, for JAX-WS services, the Issuer
Metadata Address is as follows:
http://localhost:8080/jaxws-sts/sts

http://localhost:8080/jaxws-sts/sts

Token Type Specifies the type of SAML token required by the
service provider. For example:
urn:oasis:names:tc:SAML1.0:assertion.

The options are 1.0, 1.1, or 2.0.

1.1

Key Type Specifies the type of key preferred by the service
provider.
The choices are public key or symmetric key:
■ Symmetric Key cryptography relies on a shared

secret and is usually faster than Public Key
cryptography

■ Public Key cryptography relies on a key that is
made public to all and is primarily used for
encryption but can be used for verifying
signatures.

Applies to Issued Token mechanisms only.

Symmetric Key

Algorithm Suite Specifies the algorithm suite required to perform
cryptographic operations with symmetric or
asymmetric key-based security tokens.

See Algorithm Suite under Table 21 for more
information.

Basic 128bit

HTTP Binding Component Security

Using the HTTP Binding Component • June 2009108

TABLE 29 STS Issued Token Configuration Properties (Continued)
Property Description Value

Security Header
Layout

Specifies the layout rule to apply when adding
items to the security header. Options are Strict,
Lax, Lax (Timestamp First), and Lax (Timestamp
Last).

See Security Header Layout under Table 21 for
more information.

Strict

Require Derived
Keys for Issued
Token

Specifies that a derived key is required for Secure
Session.

A derived key is a cryptographic key created from a
password or other user data. Derived keys allow
applications to create session keys as needed,
eliminating the need to store a particular key. The
use of the same session key for repeated message
exchanges is sometimes considered a risk. To
reduce that risk, enable Require Derived Keys for
Issued Token.

Select the checkbox to enable.

Establish Secure
Session (Secure
Conversation)

Secure Session enables establishes a shared security
context between the consumer and provider when
a multiple-message-exchange sequence is first
initiated. Subsequent messages use (possibly
derived) session keys that increase the overall
security while reducing the security processing
overhead for each message.

For more information see Establish Secure Session
under Table 21.

Select the checkbox to enable.

Require Derived
Keys for Secure
Session

Specifies that a derived key is required for Secure
Session. See Require Derived Keys for Issue Token
above for more information.

Select the checkbox to enable.

Require Signature
Confirmation

Specifies that the responder process the signature
in the request. Select this option to reduce the risk
of attacks when the WSS Version is 1.1 .

Select the checkbox to enable.

Encrypt Signature Specifies whether the primary signature and
signature confirmation elements must be
encrypted.

Select the checkbox to enable.

Encrypt before
Signing

Specifies that the order of message protection is to
encrypt the SOAP content, then sign the entire
SOAP body. The encryption key and signing key
must be derived from the same source key.

If not selected, the default behavior is Sign Before
Encrypt.

Check box Selected indicates
disabled.

HTTP Binding Component Security

Using the HTTP Binding Component 109

STS Issued Token with Service Certificate
Similar to STS Issued Token, except that in addition to the service requiring the client to
authenticate using a SAML token issued by a designated STS, confidentiality protection is
achieved using a service certificate. A service certificate is used by a client to authenticate the
service and provide message protection. For GlassFish, a default certificate of s1as is included.

To use this mechanism for the web service, select this option as your security mechanism. You
must have a Security Token Service that can be referenced by the service. The security
configuration for the client-side of this application is dependent upon the security mechanism
selected for the STS, and not on the security mechanism selected for the application. The client
Truststore must contain the certificate of the STS, which has the alias of wssip if you are using
the updated GlassFish certificates.

Server-Side Requirements

The following server-side options need to be configured for this security mechanisms:

■ Keystore: Configure the Keystore to specify the alias identifying the service certificate and
private key. For the GlassFish Keystores, the file is keystore.jks and the alias is
xws-security-server, assuming that you have updated the GlassFish default certificate
stores.

■ Truststore: Configure the Truststore to specify the alias that contains the certificate and
trusted roots of the client. For the GlassFish Truststores, the file is cacerts. jks and the
alias is xws-security-client, assuming that you have updated the GlassFish default
certificate stores.

■ STS: You must have a Security Token Service that can be referenced by the service. The STS
is secured using a separate (non-STS) security mechanism.

Client-Side Requirements

The following client-side options need to be configured for this security mechanisms:

■ Keystore: Configure the keystore to point to the alias for the client certificate. For the
GlassFish Keystores, the file is keystore.jks and the alias is xws-security-client,
assuming that you have updated the GlassFish default certificate stores.

■ Truststore: Configure the Truststore that contains the certificate and trusted roots of the
server. For the GlassFish truststores, the file is cacerts. jks and the alias is
xws-security-server, assuming that you have updated the GlassFish default certificate
stores.
When using an STS mechanism, the client specifies the Truststore and certificate alias for
the STS, not the service. For the GlassFish stores, the file is cacerts.jks and the alias is
wssip.

HTTP Binding Component Security

Using the HTTP Binding Component • June 2009110

■ STS: You must have a Security Token Service that can be referenced by the service. The STS
is secured using a separate (non-STS) security mechanism. The security configuration for
the client-side of this application is dependent upon the security mechanism selected for the
STS, and not on the security mechanism selected for the application.

TABLE 30 STS Issued Token with Service Certificate Configuration Properties

Property Description Value

Issuer Address Specifies the address of the issuer (STS) that will accept
the security token presented in the message. The
element type is an endpoint reference. An STS contains
a set of interfaces used to issue, exchange, and validate
security tokens.

For example, for JAX-WS services, the Issuer Address
is: http://localhost:8080/jaxws-sts/sts

http://localhost:8080/jaxws-sts/sts

Issuer Metadata
Address

Specifies the address from which to retrieve the issuer
metadata. This should just be the URLs.

For example, for JAX-WS services, the Issuer Metadata
Address is as follows:
http://localhost:8080/jaxws-sts/sts

http://localhost:8080/jaxws-sts/sts

Token Type Specifies the type of SAML token required by the
service provider. For example:
urn:oasis:names:tc:SAML1.0:assertion.

The options are 1.0, 1.1, or 2.0.

1.1

Key Type Specifies the type of key preferred by the service
provider.
The choices are public key or symmetric key:
■ Symmetric Key cryptography relies on a shared

secret and is usually faster than Public Key
cryptography

■ Public Key cryptography relies on a key that is
made public to all and is primarily used for
encryption but can be used for verifying signatures.

Applies to Issued Token mechanisms only.

Symmetric Key

HTTP Binding Component Security

Using the HTTP Binding Component 111

TABLE 30 STS Issued Token with Service Certificate Configuration Properties (Continued)
Property Description Value

Key Size Specifies the size of the symmetric key requested in
number of bits.

This information is provided as an indication of the
desired strength of the security. Valid choices include
128, 192, and 256. The security token is not obligated to
use the requested key size, nor is the STS obligated to
issue a token with the same key size. That said, the
recipient should try to use a key at least as strong as the
specified value if possible.

Applies to Issued Token mechanisms only.

128

Algorithm Suite Specifies the algorithm suite required to perform
cryptographic operations with symmetric or
asymmetric key-based security tokens.

See Algorithm Suite under Table 21 for more
information.

Basic 128bit

Security Header
Layout

Specifies the layout rule to apply when adding items to
the security header. Options are Strict, Lax, Lax
(Timestamp First), and Lax (Timestamp Last).

See Security Header Layout under Table 21 for more
information.

Strict

Require Derived
Keys

Specifies that a derived key is required

A derived key is a cryptographic key created from a
password or other user data. Derived keys allow
applications to create session keys as needed,
eliminating the need to store a particular key. The use
of the same session key for repeated message exchanges
is sometimes considered a risk. To reduce that risk,
enable Require Derived Keys.

Select the checkbox to enable.

Establish Secure
Session (Secure
Conversation)

Secure Session enables establishes a shared security
context between the consumer and provider when a
multiple-message-exchange sequence is first initiated.
Subsequent messages use (possibly derived) session
keys that increase the overall security while reducing
the security processing overhead for each message.

For more information see Establish Secure Session
under Table 21.

Select the checkbox to enable.

Require Derived
Keys for Secure
Session

Specifies that a derived key is required for Secure
Session. See Require Derived Keys above for more
information.

Select the checkbox to enable.

HTTP Binding Component Security

Using the HTTP Binding Component • June 2009112

TABLE 30 STS Issued Token with Service Certificate Configuration Properties (Continued)
Property Description Value

Require
Signature
Confirmation

Specifies that the responder process the signature in the
request. Select this option to reduce the risk of attacks
when the WSS Version is 1.1 .

Select the checkbox to enable.

Encrypt
Signature

Specifies whether the primary signature and signature
confirmation elements must be encrypted.

Select the checkbox to enable.

Encrypt before
Signing

Specifies that the order of message protection is to
encrypt the SOAP content, then sign the entire SOAP
body. The encryption key and signing key must be
derived from the same source key.

If not selected, the default behavior is Sign Before
Encrypt.

Check box Selected indicates
disabled.

STS Issued Endorsing Token
Similar to STS Issued Token, except that the client authenticates using a SAML token that is
issued by a designated STS. An endorsing token is used to sign the message signature.

Message integrity and confidentiality are protected using ephemeral keys encrypted for the
service. Ephemeral keys use an algorithm where the exchange key value is purged from the
cryptographic service provider (CSP) when the key handle is destroyed. The service requires
messages to be endorsed by a SAML token issued by a designated STS.

For this mechanism, the service requires that secure communications be endorsed by a trusted
STS. The service does not trust the client directly, but instead trusts tokens issued by a
designated STS. In other words, the STS is taking on the role of a second service with which the
client has to securely authenticate.

To use this mechanism for the web service, select this option as your security mechanism. You
must have a Security Token Service that can be referenced by the service. The security
configuration for the client-side of this application is dependent upon the security mechanism
selected for the STS, and not on the security mechanism selected for the application. The client
Truststore must contain the certificate of the STS, which has the alias of wssip if you are using
the updated GlassFish certificates.

Server-Side Requirements

HTTP Binding Component Security

Using the HTTP Binding Component 113

The following server-side options need to be configured for this security mechanisms:

■ Keystore: Configure the Keystore to specify the alias identifying the service certificate and
private key. For the GlassFish Keystores, the file is keystore.jks and the alias is
xws-security-server, assuming that you have updated the GlassFish default certificate
stores.

■ Truststore: Configure the Truststore to specify the alias that contains the certificate and
trusted roots of the client. For the GlassFish Truststores, the file is cacerts. jks and the
alias is xws-security-client, assuming that you have updated the GlassFish default
certificate stores.

■ STS: You must have a Security Token Service that can be referenced by the service. The STS
is secured using a separate (non-STS) security mechanism.

Client-Side Requirements

The following client-side options need to be configured for this security mechanisms:

■ Keystore: Configure the keystore to point to the alias for the client certificate. For the
GlassFish Keystores, the file is keystore.jks and the alias is xws-security-client,
assuming that you have updated the GlassFish default certificate stores.

■ Truststore: Configure the Truststore that contains the certificate and trusted roots of the
server. For the GlassFish truststores, the file is cacerts. jks and the alias is
xws-security-server, assuming that you have updated the GlassFish default certificate
stores.
When using an STS mechanism, the client specifies the Truststore and certificate alias for
the STS, not the service. For the GlassFish stores, the file is cacerts.jks and the alias is
wssip.

■ STS: You must have a Security Token Service that can be referenced by the service. The STS
is secured using a separate (non-STS) security mechanism. The security configuration for
the client-side of this application is dependent upon the security mechanism selected for the
STS, and not on the security mechanism selected for the application.

TABLE 31 STS Issued Endorsing Token Configuration Properties

Property Description Value

Issuer Address Specifies the address of the issuer (STS) that will accept
the security token presented in the message. The
element type is an endpoint reference. An STS contains
a set of interfaces used to issue, exchange, and validate
security tokens.

For example, for JAX-WS services, the Issuer Address
is: http://localhost:8080/jaxws-sts/sts

http://localhost:8080/jaxws-sts/sts

HTTP Binding Component Security

Using the HTTP Binding Component • June 2009114

TABLE 31 STS Issued Endorsing Token Configuration Properties (Continued)
Property Description Value

Issuer Metadata
Address

Specifies the address from which to retrieve the issuer
metadata. This should just be the URLs.

For example, for JAX-WS services, the Issuer Metadata
Address is as follows:
http://localhost:8080/jaxws-sts/sts

http://localhost:8080/jaxws-sts/sts

Token Type Specifies the type of SAML token required by the
service provider. For example:
urn:oasis:names:tc:SAML1.0:assertion.

The options are 1.0, 1.1, or 2.0.

1.1

Key Type Specifies the type of key preferred by the service
provider.
The choices are public key or symmetric key:
■ Symmetric Key cryptography relies on a shared

secret and is usually faster than Public Key
cryptography

■ Public Key cryptography relies on a key that is
made public to all and is primarily used for
encryption but can be used for verifying signatures.

Applies to Issued Token mechanisms only.

Symmetric Key

Key Size Specifies the size of the symmetric key requested in
number of bits.

This information is provided as an indication of the
desired strength of the security. Valid choices include
128, 192, and 256. The security token is not obligated to
use the requested key size, nor is the STS obligated to
issue a token with the same key size. That said, the
recipient should try to use a key at least as strong as the
specified value if possible.

Applies to Issued Token mechanisms only.

128

Algorithm Suite Specifies the algorithm suite required to perform
cryptographic operations with symmetric or
asymmetric key-based security tokens.

See Algorithm Suite under Table 21 for more
information.

Basic 128bit

HTTP Binding Component Security

Using the HTTP Binding Component 115

TABLE 31 STS Issued Endorsing Token Configuration Properties (Continued)
Property Description Value

Security Header
Layout

Specifies the layout rule to apply when adding items to
the security header. Options are Strict, Lax, Lax
(Timestamp First), and Lax (Timestamp Last).

See Security Header Layout under Table 21 for more
information.

Strict

Require Derived
Keys for X509
Token

Specifies that a derived key is required for X509 Token.
See Require Derived Key above for more information.

A derived key is a cryptographic key created from a
password or other user data. Derived keys allow
applications to create session keys as needed,
eliminating the need to store a particular key. The use
of the same session key for repeated message exchanges
is sometimes considered a risk. To reduce that risk,
enable Require Derived Keys for X509 Token.

Select the checkbox to enable.

Require Derived
Keys for Issued
Token

Specifies that a derived key is required for Issued
Token. See Require Derived Keys for X509 Token
above for more information.

Select the checkbox to enable.

Establish Secure
Session (Secure
Conversation)

Secure Session enables establishes a shared security
context between the consumer and provider when a
multiple-message-exchange sequence is first initiated.
Subsequent messages use (possibly derived) session
keys that increase the overall security while reducing
the security processing overhead for each message.

For more information see Establish Secure Session
under Table 21.

Select the checkbox to enable.

Require Derived
Keys for Secure
Session

Specifies that a derived key is required for Secure
Session. See Require Derived Keys for X509 Token
above for more information.

Select the checkbox to enable.

Require
Signature
Confirmation

Specifies that the responder process the signature in the
request. Select this option to reduce the risk of attacks
when the WSS Version is 1.1 .

Select the checkbox to enable.

Encrypt
Signature

Specifies whether the primary signature and signature
confirmation elements must be encrypted.

Select the checkbox to enable.

Encrypt before
Signing

Specifies that the order of message protection is to
encrypt the SOAP content, then sign the entire SOAP
body. The encryption key and signing key must be
derived from the same source key.

If not selected, the default behavior is Sign Before
Encrypt.

Check box Selected indicates
disabled.

HTTP Binding Component Security

Using the HTTP Binding Component • June 2009116

Using Application Variables to Define Name/Value Pairs
The binding component Application Variables property allows you to define a list of
name:value pairs for a given stated type. The application variable name can be used as a token
for a WSDL extensibility element attribute in a corresponding binding. For example, if you
were defining an application variable for the hostname as FOO, then the WSDL attribute would
be ${FOO}. In the Application Variables property you would enter a String value of FOO for the
name, and the desired attribute as the value. When you deploy an application that uses
application variables, any variable that is referenced in the application's WSDL is loaded
automatically.

Using Application Variables to Define Name/Value Pairs

Using the HTTP Binding Component 117

The Application Variables configuration property offers four variable types:

■ String: Specifies a string value, such as a path or directory.
■ Number: Specifies a number value.
■ Boolean: Specifies a Boolean value. The VALUE field provides a checkbox (checked = true).

Using Application Variables to Define Name/Value Pairs

Using the HTTP Binding Component • June 2009118

■ Password: Specifies a password value. The password is masked and displays only asterisks.

Variables also allow greater flexibility for your WSDL files. For example, you can use the same
WSDL for different runtime environments by using application variables to specify system
specific information. These values can then be changed from the binding component runtime
properties as needed, for any specific environment.

When you deploy an application that uses Application Variables, all of the Application
Variables that are referenced in the application's WSDL files are loaded automatically. If you
attempt to start an application and an Application Variables value is not defined (no value is
specified for the Application Variable) an exception is thrown.

To change a property when the application is running, change your Application Variable
property value, then right-click your application in the Services window under Servers →
GlassFish → JBI → Service Assemblies, and click Stop in the popup menu. When you restart
your project, your new settings will take effect.

Using Application Variables for password protection
To protect passwords that would otherwise appear as clear text in your WSDL file, you can enter
a Password application variable as a token. In the following example, a password application
variable is created that uses the name SECRET and the password PROTECT.

▼ Creating a password Application Variable

From the Binding Components directory, under Servers → GlassFish → JBI in the Servers
window, select the sun-http-binding.

The sun-http-binding Properties appear in the Properties window.

Click-on the Application Variables property ellipsis (...) button.

The Application Variables editor appears.

Click Add, select Password as your variable type, and click OK.

A new row is added to the Application Variables editor.

Enter SECRET as the name, and enter PROTECT as the value.

Because this is a password type, the characters of your password are displayed as asterisks.

Use the application variable name ${SECRET} as your WSDL password attribute, using the dollar
sign and curly braces as shown.

1

2

3

4

5

Using Application Variables to Define Name/Value Pairs

Using the HTTP Binding Component 119

Using Application Configuration to Configure Connectivity
Parameters

The Application Configuration property allows you to configure the external connectivity
parameters for an application that you have created, such as a service assembly, and without
changing or rebuilding the application, deploy the same application into a different system. For
example, you could take an application that is running in a test environment, and deploy it to a
production environment without rebuilding the application.

From the Application Configuration property, you can specify values for a Composite
Application's external connectivity parameters, which are normally defined in the WSDL
service extensibility elements. You can then apply these values to a user-named endpoint
Config Extension Property. The Application Configuration property editor includes fields for
all of the connectivity parameters that apply to that component's binding protocol. When you
enter the name of a saved Config Extension and define the connectivity parameters in the
Application Configuration editor, these values override the WSDL defined connectivity
attributes when your project is deployed. To change these connectivity parameters again, you
simply change the values in the Application Configuration editor, then shutdown and start your
Service Assembly to apply the new values.

The Application Configuration property editor allows you to create several application
configurations referenced by their own user-defined names. Note that different binding
component protocols will have different attributes. The HTTP binding attributes are not the
same as the JMS binding attributes, and therefore, the Application Configuration property
editors for each of these binding components will contain different attributes.

To change a property when the application is running, change your Application Configuration
property value, then right-click your application in the Services window under Servers →
GlassFish → JBI Service Assemblies, and click Stop in the popup menu. When you restart your
project, your new settings will take effect.

The HTTP Binding Component's Application Configuration property contains one parameter
only: HTTP URL Location.

▼ To apply a named Config Extension to the Application
Configuration

In the CASA editor, specify a name for your endpoint Configuration Extension , from the
endpoint's Configuration Extension property.

In the Services window, go to the Binding Components directory under the JBI node, right-click
the binding component used by your application, and select Properties.
The Properties window appears.

1

2

Using Application Configuration to Configure Connectivity Parameters

Using the HTTP Binding Component • June 2009120

In the binding component's properties, click on the Application Configuration property ellipsis
(...) button.

The Application Configuration property editor appears.

Enter the user-defined name of the Config Extension you want and define the values for the
connection parameters.

Once the Application Configuration values have been defined, deploy your application.

Enhanced Logging
The HTTP Binding Component runtime Logger properties include over 30 different
component activities that can be monitored and recorded at user-designated levels. Logging
levels are set separately for each of these activities from the HTTP Binding Component
Properties Editor.

Each logger can be set to record information at any of the following levels:

■ FINEST: messages provide highly detailed tracing
■ FINER: messages provide more detailed tracing
■ FINE: messages provide basic tracing
■ CONFIG: provides static configuration messages
■ INFO: provides informative messages
■ WARNING: messages indicate a warning
■ SEVERE: messages indicate a severe failure
■ OFF: no logging messages

Exception messages start with a unique identifier. The HTTP Binding Component exception
messages starts with HTTPBC. For example: HTTPBC-E00101.Start_failed=HTTPBC-E00101:
{0} failed to start. {1}

Statistics Monitoring
The HTTP Binding Component records and maintains statistics for 19 different component
activities including exchanges, errors, requests, replies, and so forth. These statistics are
recorded during the lifecycle of an endpoint, and accessed from the HTTP Binding Component
Properties Editor. For example: statistics for the number of times that a send request has been
completed are available in the application's HTTP Binding Component properties as the
current value for Statistics → Sent Requests.

3

4

5

Statistics Monitoring

Using the HTTP Binding Component 121

Using WS-Transaction
The HTTP Binding Component is integrated with WS-Transaction, an implementation of
WS-Atomic Transaction available through Tango (WSIT). WS-AtomicTransaction is a
specification that defines a two phase protocol to ensure that transactions are fully completed or
fully rolled back, also known as “all or nothing.” Depending on the transactions success, the
registered transaction participants arrive at a commit or abort decision, and both participants
are informed of the final result.

The SoapWSATCompositeApp Sample Composite Application

For a sample composite application that demonstrates how to use WS-Transaction with the
HTTP Binding Component and the BPEL Service Engine, see HTTP BC AtomicTransactions
(http://wiki.open-esb.java.net/Wiki.jsp?page=HTTPBCWSAtomicTransaction).

The sample demonstrates the following:

■ Using existing Java Transaction APIs (JTA) to initiate and complete the transaction.
■ Invocations of transacted web service operations flow transactional context from client to

web service.
■ Transactional context import from web service client to HTTP/SOAP Binding Component.
■ Transaction propagation from the HTTP/SOAP Binding Component to the BPEL Service

Engine and from the BPEL Service Engine to the HTTP/SOAP Binding Component .
■ Transactional context flow resuming from the HTTP/SOAP Binding Component to the web

service.
■ Persistent resources updated with client-created transactions are all committed or rolled

back as a single atomic transaction.
■ After the client-side code commits or aborts the JTA transaction, the client confirms that all

operations in the transaction succeeded or failed by using calls to verify methods on the
transacted web service.

Clustering Support for the HTTP Binding Component
A cluster is a logical entity encompassing zero or more server instances. Simply speaking, a
cluster is a collection of application server instances that can distribute a workload throughout
the clustered application instances for optimal performance. These server instances share the
same set of applications, resources, and configuration information. A clustered server instance
belongs to exactly one cluster, and inherits everything from that parent cluster. Instances in a
cluster can extend over any number of computers.

Sun Java System Application Server supports clustering of homogenous application server
instances (containing the same set of JBI components, applications, and configuration

Using WS-Transaction

Using the HTTP Binding Component • June 2009122

http://wiki.open-esb.java.net/Wiki.jsp?page=HTTPBCWSAtomicTransaction
http://wiki.open-esb.java.net/Wiki.jsp?page=HTTPBCWSAtomicTransaction

information) installed on a single host or on multiple hosts. Applications that run on each
application server instance are independent, but are also manageable by an administration
infrastructure, either through web browser based (DAS) or command line clients.

HTTP Load Balancer
The HTTP Load Balancer is a web server plug-in that accepts HTTP and HTTPS requests and
distributes them to application server instances in a cluster. This allows the HTTP Binding
Component to be scaled horizontally, running on multiple instances in a Sun Java System
Application Server cluster.

The advantages of clustering are many:

■ Increases overall system throughput by distributing workload among multiple physical
machines

■ Servers with different hardware capacities can have the work load distributed in favor of
more powerful hosts

■ In the event that one particular application server instance is overloaded or becomes
unavailable, requests can be re-routed to the least loaded application server instances

■ Clustering is invisible to the client. As far as the client is concerned, all HTTP requests are
directed to the web server instance where the load balancer is configured

The HTTP Load Balancer includes the following features:

■ Sticky Round Robin load balancing algorithm
■ Support for multiple clusters
■ Configurable health failover capability (less than 30ms)
■ Checks and reloads for dynamic changes made to the load balancer configuration
■ Support for quiescence - enabling rolling web service upgrades
■ Automatic retry of failed requests for impotent URLs
■ Configurable error pages

Configuring the HTTP Binding Component for
Clustering
For the most part, configuring the HTTP Binding Component for clustering is handled by Sun
Java System Application Server (GlassFish). The HTTP Binding Component is a pre-installed
component in the application server. Default HTTP and HTTPS port numbers are calculated
and preassigned when the binding components are installed in the server instances. A web
service, serviced by an HTTP Binding Component, is identified by a unique URL identifier with
the structure: "http://<hostname>:<port>/<context> ".

Clustering Support for the HTTP Binding Component

Using the HTTP Binding Component 123

Each component instance in the cluster must have exclusive access to the resource, therefore a
unique port number is assigned to each component instance. A predefined token name is used
in the WSDL artifact to resolve the actual port value when the component is deployed into each
instance.

Predefined HTTP Port Tokens

Predefined token names:

■ "${HttpDefaultPort}" for the HTTP port
■ "${HttpsDefaultPort}" for the HTTPS port

These token names are used in lieu of a real port number in the endpoint URL (soap:address) to
allow the application client to direct HTTP requests to the default port. The value of the token is
then resolved by the HTTP Binding Component, based on the configured default values when
an application is deployed.

Note – If you reinstall an HTTP Binding Component, you must reconfigure the default ports
properly for each component instance.

Understanding the ${HttpDefaultPort} Token
The following section provides a little background on the ${HttpDefaultPort} token and how it's
resolved when an application is deployed.

Just like the GlassFish web services, which are always deployed to a designated HTTP port (8080
is the configured default), the HTTP Binding Component also has a default HTTP port to
which web services are deployed. Since the HTTP Binding Component comes with GlassFish as
a pre-installed component, a default HTTP port is always assigned to it. The default port is
configured in the JBI Runtime module during the installation of GlassFish, at which time it
allocates an available port for each HTTP Binding Component instance in the GlassFish
domain(s).

Originally, this default port setting and the ${HttpDefaultPort} token were placed in the WSDL
URL to support clustering, where multiple HTTP BC instances could be running on the same
machine. As such, when an application is deployed, the port token is used to resolve the actual
port value to the assigned port in each instance, with no chance of port collisions.

Since then, the use of the port has evolved such that the HTTP Binding Component (the web
service container in JBI) acts in a fashion that is similar to the GlassFish web service container.
When an application “arrives“ in the binding component, it looks up its default HTTP port
setting, and replace the token in the URL with the actual port number. If the default port
number is not configured, an Initialization failed exception is thrown.

Clustering Support for the HTTP Binding Component

Using the HTTP Binding Component • June 2009124

Note – For more information on how to configure clustering see Configuring GlassFish ESB for
Clustering.

Common User Scenarios
The following common user scenarios convey how components interact with external systems
to achieve specific business goals. The first five scenarios apply to design-time operations, and
the remaining scenarios apply to runtime operations:

1. “Validating HTTP Extensibility Elements from the WSDL Editor” on page 125
2. “Adding a SOAP Template to a WSDL Document” on page 126
3. “Adding an HTTP Template to a WSDL Document” on page 126
4. “Web Service Client Calling an Operation Using HTTP Basic Authentication” on page 127
5. “Web Service Implementing an Operation Protected by HTTP Basic Authentication” on

page 127
6. “Web Service Client Calling an Operation Using SSL Authentication” on page 128
7. “Web Service Implements an Operation Protected by SSL Authentication” on page 129

Validating HTTP Extensibility Elements from the
WSDL Editor
In this example, validation of HTTP Extensibility Elements is invoked from the WSDL Editor.
This example assumes that you are working with an existing WSDL document containing
HTTP extensibility elements.

Results

The WSDL Validation window appears at the bottom of the editor. In a normal flow case, there
is a statement saying no errors were found. In the exception flow case, there is a dialog
displaying all of the current errors.

Main Scenario

This scenario is the same for both normal flow and exception flow.

1. Double-click the WSDL to open the WSDL Editor.
2. From the WSDL Editor toolbar, click the "Validate XML" button. The Output pane appears

at the bottom of the NetBeans IDE.
3. From the Project Explorer, right-click the WSDL file and select "Validate XML" from the

pop-up menu. Validation results are displayed in the Output pane.

Common User Scenarios

Using the HTTP Binding Component 125

http://wiki.open-esb.java.net/Wiki.jsp?page=GlassFishESBClustering
http://wiki.open-esb.java.net/Wiki.jsp?page=GlassFishESBClustering

Adding a SOAP Template to a WSDL Document
In this example, you use the New WSDL Document wizard to generate SOAP Extensibility
elements.

Results

The generated WSDL contains SOAP extensibility elements at the binding level, the binding
operation level, the binding operation input level, and the port level. The binding level subtype
is set to the binding subtype selected in step 4 of the New WSDL Document wizard.

Main Scenario

1. A new WSDL document is created by right-clicking the project in the Project Explorer and
selecting "New → WSDL Document" from the pop-up menu. The New WSDL Document
wizard appears.

2. Follow steps 1-3 of the wizard to generate a new WSDL document.
3. From step 4 of the wizard, select "SOAP" as the Binding Type. The available binding subtype

options appear in the Binding Subtype field.

Select an appropriate option:
■ RPC Literal
■ Document Literal
■ RPC Encoded

4. Click "Finish" to generate the WSDL document.

Adding an HTTP Template to a WSDL Document
In this example, you use the New WSDL Document wizard to generate HTTP extensibility
elements.

Results

The generated WSDL contains HTTP extensibility elements at the binding level, the binding
operation level, the binding operation input level, and the port level. The binding level subtype
is set to the binding subtype selected in step 4 of the New WSDL Document wizard.

Main Scenario

1. A new WSDL document is created by right-clicking the project in the Project Explorer and
selecting "New → WSDL Document" from the pop-up menu. The New WSDL Document
wizard appears.

2. Follow steps 1-3 of the wizard to generate a new WSDL document.
3. From step 4 of the wizard, select "HTTP" as the Binding Type. The available binding subtype

options appear in the Binding Subtype field.

Common User Scenarios

Using the HTTP Binding Component • June 2009126

Select an appropriate option:
■ Post Operation UrlEncoded
■ Post Operation UrlReplacement
■ Get Operation UrlEncoded
■ Get Operation UrlReplacement

4. Click "Finish" to generate the WSDL document.

Web Service Client Calling an Operation Using HTTP
Basic Authentication
In this example, a client invokes a service that requires HTTP Basic Authentication. This
example assumes that you are running a deployed BPEL project with a WSDL configured to
handle HTTP Basic Authentication. This BPEL project invokes a service protected using HTTP
Basic Authentication.

Results

The service processes the expected SOAP Message through HTTP after verifying the security
credentials.

Main Scenario

1. A web service client invokes an in-only abstract operation that is implemented by a BPEL
process. The abstract operation has a concrete HTTP SOAP binding, so the client must use
SOAP over HTTP protocol to properly invoke the operation.

2. The BPEL Process, acting as the client, receives the message for the abstract operation and
invokes a different in-only abstract operation. This operation has a concrete HTTP SOAP
binding that requires HTTP Basic Authentication.

3. The binding component picks up the normalized message and converts it to a SOAP
message.

4. The binding component pulls the appropriate username and password from the Access
Manager or from the WSDL.

5. The binding component forwards the message and proper security credentials to the
service.

Web Service Implementing an Operation Protected by
HTTP Basic Authentication
In this example, a user creates a BPEL project in JBI that is protected by HTTP Basic
Authentication. This example assumes that you are running a deployed BPEL project with a
BPEL process which implements a service that requires HTTP Basic Authentication.

Common User Scenarios

Using the HTTP Binding Component 127

Results

The JBI process receives the expected SOAP Message through HTTP after verifying the security
credentials.

Main Scenario

1. A BPEL Service Engine requires basic authentication for the operation that it implements.
2. The HTTP Binding Component receives the HTTP message and parses out the HTTP Basic

Authentication security information.
3. The binding component verifies the security information using a known database of user

names and passwords from the Access Manager or from the WSDL.
4. The binding component creates a normalized message and sends it to the Normalized

Message Router.
5. A BPEL process, belonging to a BPEL Service Engine, processes the abstract message and

returns a status message of either Done or ERROR.

Web Service Client Calling an Operation Using SSL
Authentication
In this example, a client invokes a service that requires SSL Authentication. This example
assumes that you are running a deployed BPEL project with a WSDL configured for SSL
Authentication. This BPEL project invokes a service that is protected by SSL Authentication.

Results

The service receives the expected SOAP Message through HTTP after verifying the security
credentials.

Main Scenario

1. The BPEL process acts as the client to the service implementation. The abstract operation
has a concrete HTTP SOAP binding, so the client must use SOAP over HTTP protocol to
properly invoke the operation.

2. The HTTP Binding Component receives the SOAP message, converts it to a normalized
message, and forwards the message to the Normalized Message Router to the awaiting BPEL
process.

3. The BPEL Process, acting as the client, receives the abstract operation message and invokes a
different in-only abstract operation. This operation has a concrete HTTP SOAP binding
that requires SSL Authentication.

4. When the client BPEL process invokes the abstract operation, a normalized message is
generated and sent to the Normalized Message Router.

Common User Scenarios

Using the HTTP Binding Component • June 2009128

5. The binding component picks up the normalized message and converts it to a SOAP
message.

6. The binding component establishes secure communication with the service provider and
forwards the request to them.

Web Service Implements an Operation Protected by
SSL Authentication
In this example, a server implements a service that requires SSL Authentication. This example
assumes that you have deployed a BPEL project with a BPEL process which implements a
service that requires SSL authentication.

Results

The service receives the expected SOAP Message through HTTP after verifying the security
credentials.

Main Scenario

1. A web service client invokes an In-Only abstract operation that is implemented by a BPEL
process. This operation has a concrete HTTP SOAP binding, so the client must use HTTP
protocol to properly invoke the operation.

2. The binding component institutes the SSL hand shake and establishes secure
communication with the client.

3. The binding component receives the HTTP message and parses out the SSL Authentication
security information.

4. The binding component verifies the security information using known SSL certificates.
5. The binding component creates a normalized message and sends it to the Normalized

Message Router.
6. A BPEL process processes the abstract message and returns a status message of either Done

or ERROR.

Common User Scenarios

Using the HTTP Binding Component 129

130

	Using the HTTP Binding Component
	Using the HTTP Binding Component
	About the HTTP Binding Component
	HTTP/SOAP Binding Architecture
	HTTP Binding Component Features
	Service Provider Features
	Service Consumer Features
	Security Features
	HTTP Binding Component Example Scenario
	Purchase Order Example

	SOAP Processing
	SOAP 1.1 WSDL Extensibility Elements
	SOAP 1.1 Connectivity Element
	SOAP 1.1 address Element

	SOAP 1.1 Binding Elements
	SOAP 1.1 binding Element
	SOAP 1.1 operation Element
	SOAP 1.1 body Element
	SOAP 1.1 fault Element
	SOAP 1.1 header and headerfault Elements

	SOAP 1.2 WSDL Extensibility Elements
	SOAP 1.2 Connectivity Element
	SOAP 1.2 address Element

	SOAP 1.2 Binding Elements
	SOAP 1.2 binding Element
	SOAP 1.2 operation Element
	SOAP 1.2 body Element
	SOAP 1.2 fault Element
	SOAP 1.2 header and headerfault Elements

	WS-I Basic Profile 1.1
	HTTP Processing
	HTTP WSDL Extensibility Elements
	HTTP Connectivity Element
	HTTP address Element

	HTTP Binding Elements
	HTTP binding Element
	HTTP operation Element
	HTTP urlEncoded Element
	HTTP urlReplacement Element

	HTTP GET and POST Processing
	XML/HTTP GET Processing
	Configuring the HTTP Binding Component for HTTP Get Interactions
	Binding Details
	http:binding Element
	http:address Element
	http:operation Element
	http:urlEncoded Element
	http:urlReplacement

	Using the HTTP Binding Component with the HTTP POST Method
	Configuring the HTTP Binding Component for HTTP Get Interactions
	Binding Details
	HTTP POST Treatment of http:urlEncoded and http:urlReplacement

	HTTP Binding Component Runtime Properties
	HTTP Binding Component Client Endpoint Properties
	Accessing the HTTP Binding Component Client Endpoint Properties
	HTTP BC Client Endpoint Configuration Properties

	Using Normalized Message Properties to Propagate Binding Context Information
	Using Normalized Message Properties in a BPEL Process
	Using Predefined Normalized Message Properties in a BPEL Process
	To use predefined normalized message properties in a BPEL process
	Adding Additional Normalized Message Properties to a BPEL Process
	To add a Normalized Message Property Shortcut to a BPEL process
	To edit an NM Property Shortcut
	To delete an NM Property Shortcut
	To add a Normalized Message Property to a BPEL process
	To delete an NM Property
	BPEL Code Generation Using NM Properties

	Normalized Message Properties
	SOAP HTTP Binding Component Specific Normalized Message Properties

	Quality of Service (QOS) Features
	Configuring the Quality of Service Properties
	Message Throttling: Configuring and Using
	Configuring the HTTP Binding Component Endpoint for Throttling
	To configure Throttling for an HTTP/SOAP WSDL port

	Redelivery: Configuring and Using

	Using the Tango Web Service Features with the HTTP Binding Component
	Configuring Reliable Message Delivery
	Installing the Synchronous BPEL Process sample
	Configuring Web Services for a Project from the CASA Editor

	Configuring the Tango Web Services Attributes exposed by the HTTP Binding Component
	Accessing the Tango (WSIT) Web Service Attribute Configuration
	Accessing the WS-Policy Attachment Editor for a Specific Endpoint

	Server Configuration—Web Service Attributes
	Client Configuration — Web Service Attributes

	HTTP Binding Component Security
	Using Basic Authentication with the HTTP Binding Component
	Basic Authentication Supported Features
	Authentication Mechanisms for Consumer Endpoints
	WssTokenCompare Username/Password Authentication
	Using the Access Manager for Authentication and Authorization
	Installing the Access Manager Add-on
	Installing Access Manager with JavaTM Application Platform SDK
	Configure the HTTP Binding Component to use Access Manager

	Using the OpenSSO Web Services Security (WSS) Agent for Authentication and Authorization
	Install OpenSSO Enterprise Server
	Configure the HTTP Binding Component to use OpenSSO Web Service Security

	Using the GlassFish Realm Security to Authenticate the HTTP Client Credentials

	Configuring Security Mechanisms
	Username Authentication with Symmetric Key
	Mutual Certificates Security
	Transport Security (SSL)
	Message Authentication over SSL
	SAML Authorization over SSL
	Endorsing Certificate
	SAML Sender Vouches with Certificates
	SAML Holder of Key
	STS Issued Token
	STS Issued Token with Service Certificate
	STS Issued Endorsing Token

	Using Application Variables to Define Name/Value Pairs
	Using Application Variables for password protection
	Creating a password Application Variable

	Using Application Configuration to Configure Connectivity Parameters
	To apply a named Config Extension to the Application Configuration

	Enhanced Logging
	Statistics Monitoring
	Using WS-Transaction
	Clustering Support for the HTTP Binding Component
	HTTP Load Balancer
	Configuring the HTTP Binding Component for Clustering
	Understanding the ${HttpDefaultPort} Token

	Common User Scenarios
	Validating HTTP Extensibility Elements from the WSDL Editor
	Adding a SOAP Template to a WSDL Document
	Adding an HTTP Template to a WSDL Document
	Web Service Client Calling an Operation Using HTTP Basic Authentication
	Web Service Implementing an Operation Protected by HTTP Basic Authentication
	Web Service Client Calling an Operation Using SSL Authentication
	Web Service Implements an Operation Protected by SSL Authentication

