
Designing Intelligent Event
Processor (IEP) Projects

Part No: 821–0139
June 2009

Copyright ©2009 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In particular, and without
limitation, these intellectual property rights may include one or more U.S. patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights – Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions
of the FAR and its supplements.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other
countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, the Solaris logo, the Java Coffee Cup logo, docs.sun.com, Java, and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. or its subsidiaries in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of
SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and SunTM Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts
of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to
the Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN LOOK GUIs and otherwise comply with Sun's written license
agreements.

Products covered by and information contained in this publication are controlled by U.S. Export Control laws and may be subject to the export or import laws in
other countries. Nuclear, missile, chemical or biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export
or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied persons and specially
designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

100217@23474

Contents

1 Designing Intelligent Event Processor (IEP) Projects .. 7
Intelligent Event Processor Overview ..8

Complex Event Processing and Event Stream Processing ...8
Typical IEP Scenarios ...9
IEP Architecture ..9
IEP Design-Time and Runtime Components .. 10

Basic Workflow .. 12
Creating an Intelligent Event Processing Module Project .. 12
Adding and Configuring IEP Operators ... 13
Disabling the Generation of Bindings and Services ... 14
Validating Event Processors ... 15
Creating and Deploying the Composite Application Project ... 15

Introduction to IEP Operators ... 17
Understanding Schemas ... 17
Understanding Streams ... 18
Understanding Relations .. 18
Supported Data Types ... 19
IEP Operator Inputs and Outputs .. 20

Aggregator Operators ... 20
Relation Aggregator ... 21
Time Based Aggregator ... 22
Tuple Based Aggregator .. 23

Correlation and Filter Operators ... 24
Relation Map .. 24
Stream Projection and Filter ... 25
Tuple Serial Correlation .. 28

Input Operators ... 28
External Table Polling Stream .. 28

3

Replay Stream ... 30
Stream Input ... 32
Table Input .. 33

Output Operators .. 34
Batched Stream Output ... 34
Invoke Stream ... 35
Relation Output ... 36
Save Stream ... 36
Stream Output .. 38
Table Output .. 39

Relation Converter Operators ... 39
Delete Stream ... 39
Insert Stream ... 40
Notification Stream .. 41
Relation Stream .. 42

Relation Operators .. 42
Distinct .. 42
Intersect ... 43
Minus ... 44
Union ... 45
Union All ... 45

Sequence Operators .. 46
Contiguous Order .. 46
Gap Window .. 48

Stream Converter Operators .. 49
Attribute Based Window ... 49
Partitioned Window .. 50
Time Based Window ... 51
Tuple Based Window .. 52

WSDL Documents in IEP Module Projects ... 53
Data Types in the WSDL Document ... 53
Message Objects in the WSDL Document .. 55
Bindings and Services in the WSDL Document ... 56

Understanding the IEP Database .. 58
Configuring the IEP Database to Use Oracle .. 60
IEP Service Engine-Specific Database Tables ... 66

Contents

Designing Intelligent Event Processor (IEP) Projects • June 20094

Event Process-Specific Database Tables .. 67
Operator-Specific Database Tables .. 68

Configuring Message Reliability in an IEP Module Project ... 69
▼ To Disable Message Reliability for Outbound Messages ... 70

Index ..71

Contents

5

6

Designing Intelligent Event Processor (IEP)
Projects

The topics listed here provide information about how to use the Intelligent Event Processor
(IEP).

If you have any questions or problems, see the Java CAPS web site at http://
goldstar.stc.com/support.

What You Need to Know

■ “Intelligent Event Processor Overview” on page 8

What You Need to Do

■ “Basic Workflow” on page 12
■ “Introduction to IEP Operators” on page 17
■ “Aggregator Operators” on page 20
■ “Correlation and Filter Operators” on page 24
■ “Input Operators” on page 28
■ “Output Operators” on page 34
■ “Relation Converter Operators” on page 39
■ “Relation Operators” on page 42
■ “Sequence Operators” on page 46
■ “Stream Converter Operators” on page 49
■ “WSDL Documents in IEP Module Projects” on page 53
■ “Understanding the IEP Database” on page 58
■ “Configuring Message Reliability in an IEP Module Project” on page 69

1C H A P T E R 1

7

http://goldstar.stc.com/support
http://goldstar.stc.com/support

Intelligent Event Processor Overview
The Intelligent Event Processor (IEP) enables you to perform complex event processing (CEP)
and event stream processing (ESP) from within an enterprise service bus.

■ “Complex Event Processing and Event Stream Processing” on page 8
■ “Typical IEP Scenarios” on page 9
■ “IEP Architecture” on page 9
■ “IEP Design-Time and Runtime Components” on page 10

Complex Event Processing and Event Stream
Processing
In the most general sense, the term event refers to anything that happens in a system. For
example:

■ A password change
■ A stock purchase
■ A transfer of funds

You use IEP to process computerized representations of these events.

These events are generated and sent out by applications. The applications can be located within
the enterprise service bus, or they can come from an external system that is connected to the
enterprise service bus.

The term event stream refers to a continuous set of events. For example, an event stream could
contain the password changes made by the users of a web-based application.

Processing an event stream can involve many types of activities. For example:

■ You can examine a bounded portion of an event stream, such as all of the events that
occurred in the last two minutes. This bounded portion is called a window.

■ You can apply a function to a set of events. For example, you can determine the average
price of a stock during the last three hours, with the calculation updated every five minutes.

■ You can change the order of the events.

When you combine multiple events to create a higher level event, the result is called a complex
event.

An architectural style in which software modules operate in response to the arrival of events is
called event driven architecture.

Intelligent Event Processor Overview

Designing Intelligent Event Processor (IEP) Projects • June 20098

Typical IEP Scenarios
The following table describes typical IEP scenarios.

Scenario Example

Financial trade auditing and
compliance

Examine a stream of stock transactions and find any transactions that
are suspicious. Check whether any traders involved in a suspicious
transaction also appear in a database table that contains the names of
persons of interest.

Network monitoring and traffic
engineering

Receive an undifferentiated stream of alerts from various hardware
devices, group them by the device, and sort them by the unique ID. For
each device, detect any missing alerts and request them to be re-sent.

IT security event correlation Examine the password changes that have been made to a web-based
application. If the number of password changes in a given hour is
more than twice the average, then generate a security alert.

Asset management and tracking using
RFID

Examine the RFID signals that are regularly emitted by all of the
products in a store. Determine whether a product is moving through
the exit area without having been purchased. Determine whether a
product's RFID emitter is no longer working.

IEP Architecture
The following diagram illustrates the IEP architecture.

Intelligent Event Processor Overview

Chapter 1 • Designing Intelligent Event Processor (IEP) Projects 9

Within the enterprise service bus, the IEP Service Engine can interact with any JavaTM Business
Integration (JBI) service engine or binding component that is also plugged into the bus. The
Normalized Message Router takes care of message exchanges between the components.

By default, the IEP Service Engine receives input events from the HTTP Binding Component
and sends output to the File Binding Component. The IEP Service Engine uses a database to
maintain information about deployed event processors.

IEP Design-Time and Runtime Components
IEP consists of a design-time component and a runtime component.
■ The design-time component is integrated within the NetBeans IDE.
■ The runtime component is implemented as a JBI service engine.

In the NetBeans IDE, you create an IEP Module project and then add one or more event
processors.

For each event processor, you drag operators from the palette onto the design canvas. In the
palette, the operators are grouped into the following categories: Aggregator, Correlation and
Filter, Input, Output, Relation Converter, Relation, Sequence, and Stream Converter.

Database

IEP
Service Engine

HTTP Binding
Component

External Service
Consumer

External Service
Provider

JMX Based
Admin Tools

File Binding
Component

Binding
Component

System
Management

Layer

Service Engine

Normalized Message Router

JBI Framework

Java SE/Java EE

Intelligent Event Processor Overview

Designing Intelligent Event Processor (IEP) Projects • June 200910

An event processor must have at least one input operator and one output operator. You can add
any number of operators between the input operator and the output operator.

On the design canvas, you connect the operators with each other and use property editors to
configure the operators.

The following screen capture shows a set of operators in an event processor. The operator at the
left is an input operator. The operator at the right is an output operator.

Some operators allow you to enter SQL-like statements. For these operators, knowledge of the
SQL SELECT statement can be useful.

When you save an IEP Module project, IEP generates a Web Services Description Language
(WSDL) document for each event processor. The WSDL documents contain the endpoints for
the event processors.

You can run a set of predefined validation rules on an event processor at design time.

To deploy an IEP Module project, you must create and build a Composite Application project.
These tasks create a service assembly. The service assembly is a collection of service units
intended for the IEP Service Engine and any other required JBI component (such as the HTTP
Binding Component and the File Binding Component).

Intelligent Event Processor Overview

Chapter 1 • Designing Intelligent Event Processor (IEP) Projects 11

When the project is deployed, the IEP Service Engine receives and processes the input events.

Basic Workflow
This topic describes the basic workflow of IEP.

■ “Creating an Intelligent Event Processing Module Project” on page 12
■ “Adding and Configuring IEP Operators” on page 13
■ “Disabling the Generation of Bindings and Services” on page 14
■ “Validating Event Processors” on page 15
■ “Creating and Deploying the Composite Application Project” on page 15

Creating an Intelligent Event Processing Module
Project
You create a new Intelligent Event Processing Module project in the NetBeans IDE. You then
add one or more event processors to the project.

The following screen capture shows an IEP Module project that has one event processor.

▼ To Create an Intelligent Event Processing Module Project

From the IDE's main menu, choose File → New Project.
The New Project wizard opens.

In the Categories list, select the SOA node.

In the Projects list, select the Intelligent Event Processing Module node.

Click Next.

1

2

3

4

Basic Workflow

Designing Intelligent Event Processor (IEP) Projects • June 200912

(Optional) In the Project Name field, change the default project name.

Click Finish.
The new IEP Module project appears in the Projects window. You can now add one or more
event processors to the project.

▼ To Add an Event Processor to the Project

Right-click the Processor Files node and choose New → Intelligent Event Processor.

(Optional) In the File Name field, change the default file name.

Click Finish.
The event processor is added. The IEP Editor opens in Design view. You can now define the
event processing logic by adding and configuring IEP operators.

Adding and Configuring IEP Operators
Once you add an event processor to an IEP Module project, you define the event processing
logic by adding and configuring IEP operators.

An event processor must have at least one input operator.

An event processor must have at least one output operator.

You can add any number of operators between the input operator and the output operator.

The following screen capture shows a set of operators in an event processor. The operator at the
left is an input operator. The operator at the right is an output operator.

For general information about the IEP operators, see “Introduction to IEP Operators” on
page 17.

For specific information about each IEP operator, see the following topics:

■ “Aggregator Operators” on page 20

5

6

1

2

3

Basic Workflow

Chapter 1 • Designing Intelligent Event Processor (IEP) Projects 13

■ “Correlation and Filter Operators” on page 24
■ “Input Operators” on page 28
■ “Output Operators” on page 34
■ “Relation Converter Operators” on page 39
■ “Relation Operators” on page 42
■ “Sequence Operators” on page 46
■ “Stream Converter Operators” on page 49

▼ To Add IEP Operators to an Event Processor

If the Palette is not visible in the NetBeans IDE, then choose Window → Palette from the IDE's
main menu.

Drag the appropriate IEP operators from the Palette to the Design view.

▼ To Configure IEP Operators in an Event Processor

For each IEP operator that you added, do the following:

a. Double-click the operator. Alternately, you can click the operator, go to the Properties
window, and click the ellipsis.
The property editor opens.

b. Edit the appropriate properties. For some operators, you can add or modify attributes.

c. (Optional) Click the Documentation tab and supply notes on this component.

d. Click OK.

Connect the operators to each other as appropriate.
You send the output of one operator to the input of another operator by selecting the output
port of the first operator and dragging it to the input port of the second operator.

Disabling the Generation of Bindings and Services
When you save an IEP Module project, IEP generates a Web Services Description Language
(WSDL) document for each event processor. The WSDL documents contain the endpoints for
the event processors.

By default, the WSDL documents include concrete information (that is, bindings and services).
You might need to manually update the default settings for any binding and service. For
example, the default file directory is a Windows path, which would not work correctly on a

1

2

1

2

Basic Workflow

Designing Intelligent Event Processor (IEP) Projects • June 200914

UNIX system. If you manually update the WSDL document and then save the IEP Module
project again, the changes that you made to the WSDL document are overwritten.

You can configure IEP to generate abstract WSDL documents instead. The bindings and
services are not included. With this approach, you can define the bindings and services by using
the Composite Application Service Assembly (CASA) Editor. These bindings and services are
not affected by subsequent changes to the IEP Module project.

▼ To Disable the Generation of Bindings and Services

Go to the location of the IEP Module project and open the project.properties file.

Change the value of the always.generate.abstract.wsdl flag to true.

Save the project.properties file.

Validating Event Processors
You can run a set of predefined validation rules on an event processor at design time. The
validation rules include:
■ An event processor must have at least one input operator.
■ An event processor must have at least one output operator.
■ All of an operator's required properties must have values.
■ If an attribute has a data type of VARCHAR, then the size must also be specified.

▼ To Validate Event Processors

In the NetBeans IDE, open the event processor that you want to validate.

Click the Validate XML icon at the top of the Design view.
The results appear in the Output window.

If you switch to the Source view and click a validation error in the Output window, then the
source of the error is highlighted.

Creating and Deploying the Composite Application
Project
You deploy an IEP Module project as part of a Composite Application project.

1

2

3

1

2

3

Basic Workflow

Chapter 1 • Designing Intelligent Event Processor (IEP) Projects 15

The Composite Application Service Assembly (CASA) Editor provides a visual interface for
editing the deployment configuration of a Composite Application project. You can perform
such tasks as adding JBI module projects, adding and removing connections between
endpoints, and adding concrete WSDL elements.

▼ To Create a Composite Application Project

From the IDE's main menu, choose File → New Project.
The New Project wizard opens.

In the Categories list, select the SOA node.

In the Projects list, select the Composite Application node.

Click Next.

(Optional) In the Project Name field, change the default project name.

Click Finish.
The new Composite Application project appears in the Projects window. In addition, the CASA
Editor appears.

▼ To Add the IEP Module Project to the Composite Application Project

In the Projects window, right-click the Composite Application project and choose Add JBI
Module.
The Select Project dialog box appears.

Select the IEP Module project.

Click Add Project JAR Files.
The IEP Module project is added to the JBI Modules area of the CASA Editor.

▼ To Define the Binding Components and Connections

If you generated an abstract WSDL document, then use the CASA Editor to define the binding
components and connections.
For detailed instructions, see the CASA Editor topics in the NetBeans IDE help.

If you generated a concrete WSDL document, then you can override the generated bindings by
deleting the connections and defining the new binding components and connections.

1

2

3

4

5

6

1

2

3

1

2

Basic Workflow

Designing Intelligent Event Processor (IEP) Projects • June 200916

Caution – For both abstract and concrete WSDL documents, do not clone the WSDL document
to customize its generated bindings and services. Updates to the generated WSDL documents
will not be updated after the cloning. Over time, the cloned and edited WSDL document
deployed for the bindings will become inconsistent with the WSDL document deployed for the
IEP Service Engine.

▼ To Deploy the Composite Application Project

Right-click the Composite Application project and select Build.

Right-click the Composite Application project and select Deploy.

Wait until the BUILD SUCCESSFUL message appears in the Output window.
You can now create test cases to ensure that the IEP Module project works as expected.

If you make additional changes to the IEP Module project, then you must rebuild and redeploy
the Composite Application project.

Introduction to IEP Operators
The IEP operators enable you to define the logic in an event processor.

Most of the IEP operators take a stream or a relation as input and produce a stream or a relation
as output.

■ “Understanding Schemas” on page 17
■ “Understanding Streams” on page 18
■ “Understanding Relations” on page 18
■ “Supported Data Types” on page 19
■ “IEP Operator Inputs and Outputs” on page 20

Understanding Schemas
A schema defines the types of information that a set of data contains. A schema consists of one
or more attributes. Each attribute is identified by a name and has a data type that specifies the
allowed values.

For example, a schema could consist of the following attributes:

■ An attribute called Symbol that allows character values of between 1 and 10 characters
■ An attribute called Price that allows floating-point values

1

2

3

Introduction to IEP Operators

Chapter 1 • Designing Intelligent Event Processor (IEP) Projects 17

Understanding Streams
A stream is a series of timestamped events that have the same schema.

Assume that a stream has the following characteristics:

■ Each event represents a stock transaction.
■ The schema consists of the stock symbol and the stock price.

The following table shows an example of the events in the stream during a brief interval of time.

Symbol Price Timestamp

ADBE 21.60 2008-12-15-T10:30:02:899-05.00

AMZN 50.12 2008-12-15-T10:32:44:674-05.00

ATT 23.88 2008-12-15-T10:35:17:198-05.00

ADBE 21.70 2008-12-15-T10:38:23:257-05.00

Understanding Relations
A relation is a collection of events that match a user-defined condition at a point in time.

You can define the condition in various ways. For example:

■ All events that arrived in the last five seconds
■ All events that arrived in the last five hours
■ The most recent two events

Assume that you define the condition as all events that arrived in the last five seconds. For the
example in “Understanding Streams” on page 18, the relation at time
2008-12-15-T10:35:00:000-05.00 would consist of the following events.

Symbol Price Timestamp

ADBE 21.60 2008-12-15-T10:30:02:899-05.00

AMZN 50.12 2008-12-15-T10:32:44:674-05.00

Let's move forward one second in time. The relation at time 2008-12-15-T10:36:00:000-05.00
would consist of the following events. Compared with the previous relation, one event has
dropped out and one event has been added.

Introduction to IEP Operators

Designing Intelligent Event Processor (IEP) Projects • June 200918

Symbol Price Timestamp

AMZN 50.12 2008-12-15-T10:32:44:674-05.00

ATT 23.88 2008-12-15-T10:35:17:198-05.00

The relation at time 2008-12-15-T10:37:00:000-05.00 would consist of the following events.
This relation has the same events as the previous relation.

Symbol Price Timestamp

AMZN 50.12 2008-12-15-T10:32:44:674-05.00

ATT 23.88 2008-12-15-T10:35:17:198-05.00

The relation at time 2008-12-15-T10:38:00:000-05.00 would consist of the following events.
Compared with the previous relation, one event has dropped out.

Symbol Price Timestamp

ATT 23.88 2008-12-15-T10:35:17:198-05.00

The relation at time 2008-12-15-T10:39:00:000-05.00 would consist of the following events.
Compared with the previous relation, one event has been added.

Symbol Price Timestamp

ATT 23.88 2008-12-15-T10:35:17:198-05.00

ADBE 21.70 2008-12-15-T10:38:23:257-05.00

A relation can be empty. For the example in “Understanding Streams” on page 18, the relation
at time 2008-12-15-T10:45:00:000-05.00 would not contain any events because none of the
events arrived in the last five seconds.

Supported Data Types
In the property editor of an IEP operator, you can assign any of the following data types to an
attribute:

■ INTEGER
■ BIGINT
■ DOUBLE

Introduction to IEP Operators

Chapter 1 • Designing Intelligent Event Processor (IEP) Projects 19

■ VARCHAR
■ DATE
■ TIMESTAMP

The Size and Scale columns are disabled for the DATE and TIMESTAMP data types.

You must ensure that input and output data types are appropriately matched.

IEP Operator Inputs and Outputs
You can categorize the IEP operators by their input and outputs.

■ Stream to Relation. Operators that take a stream as input, and produce a relation as output
with the same schema as the stream.

■ Relation to Stream. Operators that take a relation as input, and produce a stream as output
with the same schema as the relation.

■ Relation to Relation. Operators that take one or more relations as input, and produce a
relation as output.

■ Stream to Stream. Operators that take a stream as input, and produce a stream as output.
The input stream and the output stream can have different schemas.

■ Relation to Table. Operators that take a relation as input, and produce a table as output.

For specific information about each IEP operator, see the following topics:

■ “Aggregator Operators” on page 20
■ “Correlation and Filter Operators” on page 24
■ “Input Operators” on page 28
■ “Output Operators” on page 34
■ “Relation Converter Operators” on page 39
■ “Relation Operators” on page 42
■ “Sequence Operators” on page 46
■ “Stream Converter Operators” on page 49

Aggregator Operators
Aggregator operators enable you to aggregate data and to perform additional operations on that
data to obtain output.

The following table lists the input and output for each operator.

Operator Input Ouput

Relation Aggregator Relation Relation

Aggregator Operators

Designing Intelligent Event Processor (IEP) Projects • June 200920

Operator Input Ouput

Time Based Aggregator Stream Stream

Tuple Based Aggregator Stream Stream

Relation Aggregator
The Relation Aggregator operator takes as input the output of a relation, treats that output as if
it were a database table, and performs a SQL SELECT on that table. The Relation Aggregator
operator issues output in the form of a relation.

Use the Relation Aggregator operator when you want to perform SQL operations on a relation.

▼ To Create a Relation Aggregator Operator

Drag a Relation Aggregator operator from the Palette to the Design view.

Double-click the Relation Aggregator operator.

The property editor opens with the default name of the Relation Aggregator operator and the
output schema name populated. The Property Window displays the schema of the data that is
input to the Relation Aggregator operator.

In the Select field, specify attributes from which to select.

Any attribute that you specify must appear in the group-by clause. Attributes that you select as
expression entries must be in the form of an attribute name, a literal, or an aggregate function
supported by the database you use. Examples include COUNT, MAX, MIN, and AVG.

In the Expression field, provide an SQL expression to further delimit your Select statement.

To save some typing, you can drag input attribute field names from the Inputs area into the
Expression field.

Optionally specify a Where statement in the Where field to provide a search condition, which
cannot have a subquery.

In the group by field, specify a comma-separated list of attribute names, indicating how you
want to group the attributes in the relation that is output from this operator.

Click OK.

1

2

3

4

5

6

7

Aggregator Operators

Chapter 1 • Designing Intelligent Event Processor (IEP) Projects 21

Time Based Aggregator
The Time Based Aggregator operator performs statistical analysis within a specified amount of
time that you provide as a size, which is period of time over which you can perform a
calculation, or the time slot. Increment specifies the frequency of the calculation; that is, how
often you calculate the statistical analysis.

Assume that you want to calculate a stock price's 20–day moving average. You can supply a size
of 20 in the property editor, and an increment that specifies how often you want to perform that
calculation (for example, once a day).

Statistics that you can compute via SQL statements in the property editor of the Time Based
Aggregator operator include:
■ Sum
■ Average
■ Minimum
■ Maximum
■ COUNT

Use the Time Based Aggregator operator when you want to perform real-time statistical
analysis. You can do simple or complex SQL manipulation within the time frame that you
specify, by using the Select, From and Where clauses, as indicated in the property editor.

For example, given a stream of transactions of a stock, you can compute the new stream that
holds the hourly minimum average and the maximum of the stock price.

▼ To Create a Time Based Aggregator Operator

Drag a Time Based Aggregator operator from the Palette to the Design view.

Double-click the Time Based Aggregator operator.
The property editor opens.

In the Start field, enter the time to start calculating the tasks that are to be performed by the
Time Based Aggregator within the process.

In the Increment field, enter the time increment for the Time Based Aggregator to perform the
analysis.

In the Size field, enter the time range for the Time Based Aggregator to perform the analysis.

In the Expression box, enter the expression for the SQL SELECT statement to specify the input
attribute upon which the SELECT is performed. Add attribute names, data types. and sizes, as
applicable.

1

2

3

4

5

6

Aggregator Operators

Designing Intelligent Event Processor (IEP) Projects • June 200922

In the From box, define the input on which to perform the selection.

In the Where clause box, provide additional filtering on records.
For example:

WHERE price > 30.00 AND stockDate < ’2006-01-01’ ;

In the Group by box, group a result into subsets that have matching values for one or more
columns of the database by specifying a comma-separated list of qualified attribute names.

Click OK.

Tuple Based Aggregator
The Tuple Based Aggregator operator performs statistical analysis for a specified number of
records (also called tuples) that you provide as a size, and also for an increment that indicates
how often you want the operation performed.

Statistics that you can compute via SQL statements in the property editor of the Tuple Based
Aggregator operator include:
■ Sum
■ Average
■ Minimum
■ Maximum
■ COUNT

Use the Tuple Based Aggregator operator when you want to perform statistical analysis on a
specified number of tuples.

For example, provided a stream of stock transactions, the Tuple Based Aggregator operator
computes a new stream that holds the minimum, average, and maximum of the stock price of
every 10 transactions, in which the size is 10.

▼ To Create a Tuple Based Aggregator Operator

Drag a Tuple Based Aggregator operator from the Palette to the Design view.

Double-click the Tuple Based Aggregator operator.
The property editor opens.

In the Start field, enter the record in which you want the operator calculations to begin.

In the Increment field, enter how often you want the analysis performed.

7

8

9

10

1

2

3

4

Aggregator Operators

Chapter 1 • Designing Intelligent Event Processor (IEP) Projects 23

In the Expression box, enter the expression for the SQL SELECT statement that is used to specify
the input attribute upon which the SELECT is performed. You can add, delete, or move
attributes.

In the From box, define the input on which to perform the selection.

In the Where clause box, provide additional filtering on records.
For example:

WHERE price > 30.00 AND stockDate < ’2006-01-01’ ;

In the Group by box, group a result into subsets that have matching values for one or more
columns of the database by specifying a comma-separated list of qualified attribute names.

Click OK.

Correlation and Filter Operators
Correlation enables you to obtain data based on the relationship of two pieces of existing data.
Filtering enables you to provide information to obtain a subset of data you want.

The following table lists the input and output for each operator.

Operator Input Output

Relation Map Relation Relation

Stream Projection and Filter Stream Stream

Tuple Serial Correlation Stream Stream

Relation Map
The Relation Map operator performs a select on two or more incoming relations, equivalent to
a SQL join view of a minimum of one relation and additional tables and relations. The Relation
Map operator can take multiple inputs.

You can use a Relation Map to join input from other operator sources, for example, from two or
more tuple based windows, or from two or more partitioned windows.

For example, with the latest two-hour window of stock transactions and the latest two-hour
window of trader information as input, you can compute the latest two-hour window of
possible trades by joining the trader's name with the name provided in the trader information.

5

6

7

8

9

Correlation and Filter Operators

Designing Intelligent Event Processor (IEP) Projects • June 200924

▼ To Create a Relation Map Operator

Drag a Relation Map operator from the Palette to the Design view.

Connect at least two inputs to the Relation Map operator.

Double-click the Relation Map operator.

The property editor opens.

In the Expression box, enter the expression for the SQL SELECT statement. Add attribute names,
data types and sizes, as applicable. Add, delete, or move attributes.

In the From field, define the input on which to perform the selection.

In the Where clause field, provide additional search criteria.

Click OK.

Stream Projection and Filter
The Stream Projection and Filter operator enables you to join a stream with multiple relations
and tables, in order to create new events or to filter existing events based on specified
conditions.

The input to the Stream Projection and Filter operator must include one (and only one) stream.
The input can also include any number of relations and tables.

The output from the Stream Projection and Filter operator is a stream.

Configuring the Stream Projection and Filter operator resembles the process of writing a SQL
SELECT statement. The property editor includes a SELECT area, a FROM area, and a WHERE
area. The property editor also includes a tree structure that contains the input operators and
their attributes.

1

2

3

4

5

6

7

Correlation and Filter Operators

Chapter 1 • Designing Intelligent Event Processor (IEP) Projects 25

In the SELECT area, you populate a table with one or more attributes. You can quickly add an
existing attribute by selecting the attribute in the tree structure and dragging it to the
Expression column. You can create a new attribute by using a mathematical computation in the
Expression column. In the following example, two existing attributes are multiplied to create
the new attribute.

total=Products.price*Products.tax

You can remove an attribute from the input stream by not including it in the SELECT area.

In the WHERE area, you can specify a search condition in the form of a boolean value
expression. The boolean value expression can include the following types of predicates:
comparison, between, in, like, null, quantified comparison, and exists.

One of the IEP tutorials uses the Stream Projection and Filter operator to check whether the
price of each stock transaction is significantly different from the average price of all stock
transactions during the last two minutes. The operator contains the following WHERE clause:

StockTransactions.symbol=RollingAvgPrice.symbol AND

(StockTransactions.price > 1.1 * RollingAvgPrice.price OR

Correlation and Filter Operators

Designing Intelligent Event Processor (IEP) Projects • June 200926

StockTransactions.price < 0.9 * RollingAvgPrice.price)

▼ To Create a Stream Projection and Filter Operator

Drag a Stream Projection and Filter operator from the Palette to the Design view.

Connect the output of an operator that has stream output to the input of the Stream Projection
and Filter operator.

(Optional) Connect the output of one or more operators that have relation output to the input of
the Stream Projection and Filter operator.

(Optional) Connect the output of one or more operators that have table output to the input of
the Stream Projection and Filter operator.

Double-click the Stream Projection and Filter operator.

The property editor opens.

If you want to change the default name, then change the value in the Name field.

In the SELECT area, populate the table with one or more attributes.

By default, the SELECT area contains only one attribute row. To create additional rows, click
Add Attribute.

You can drag and drop attributes from the tree structure into the Expression column. If you use
this approach, then the operator name is automatically added to the FROM area.

In the FROM area, specify the names of one or more input operators.

You can drag and drop operators from the tree structure into the FROM area.

You can specify an alias for a table (for example, TableInput0 t) and then use the alias in the
WHERE clause. You cannot specify an alias for a stream or a relation.

If you specify more than one operator name, then separate the names with a comma (for
example, StockTransactions,RollingAvgPrice).

(Optional) In the WHERE area, specify a search condition in the form of a boolean value
expression.

You can drag and drop operators and attributes from the tree structure into the WHERE area.

Click OK.

1

2

3

4

5

6

7

8

9

10

Correlation and Filter Operators

Chapter 1 • Designing Intelligent Event Processor (IEP) Projects 27

Tuple Serial Correlation
The Tuple Serial Correlation operator provides correlation of sequential events; that is, the
operator uses a specification of a number of events from an existing stream to create a stream
that contains larger events.

Assume that you have a stream of transactions of a stock, and you want to compute a new
stream in which each event is composed of three consecutive events from the original stream.
Using the latest two stock prices as output, you can build a trading model that predicts the next
stock prices.

▼ To Create a Tuple Serial Correlation Operator

Drag a Tuple Serial Correlation operator from the Palette to the Design view.

Double-click the Tuple Serial Correlation operator.
The property editor opens.

In the Increment field, enter how often you want to obtain events via the Tuple Serial
Correlation operator, based on the number of events.

In the Size field, specify the number of small consecutive events that you want to add to the
larger cumulative event.

Click OK.

Input Operators
Input operators enable you to receive data from external sources.

External Table Polling Stream
The External Table Polling Stream operator enables you to retrieve records from an external
database table at a specified interval, and to output the records as a stream. The Properties
Editor includes a wizard that you use to specify the various properties, including the table
columns, the polling interval, and the number of records to retrieve.

After using the wizard, you can update the values for most of the properties from the property
editor. However, if you want to add or remove table columns, then you must go through the
wizard again.

In the event process, you can link the output of the External Table Polling Stream operator to
more than one operator.

1

2

3

4

5

Input Operators

Designing Intelligent Event Processor (IEP) Projects • June 200928

One of the properties is the JNDI name of the database resource. Before you deploy the event
process, ensure that the JNDI name is configured in the application server to point to a valid
database connection. For detailed instructions on configuring JNDI names, see the application
server documentation.

▼ To Create an External Table Polling Stream Operator

Drag an External Table Polling Stream operator from the Palette to the Design view.

Double-click the External Table Polling Stream operator.
The property editor opens.

Click Select Table.
The Select External Table To Poll wizard appears.

In step 1 of the wizard, do the following:

a. Select the data source.

Note – Data sources are configured in the Databases node of the Services window.

b. Select the table from which you want to poll.

c. Click Next.

In step 2 of the wizard, do the following:

a. Select the column or columns that you want to retrieve from the table.

b. (Optional) Add a condition to the Where Clause area (for example, amount > 100).

c. Click Next.

In step 3 of the wizard, do the following:

a. The wizard displays the column or columns that you specified in step 2. Select the one or
more columns that uniquely identify each record.

Note – The operator uses this information to keep track of the last record that was retrieved.
If you do not select any of the columns, then each fetch will start at the beginning of the
table.

1

2

3

4

5

6

Input Operators

Chapter 1 • Designing Intelligent Event Processor (IEP) Projects 29

b. In the Interval field and drop-down list, specify how often you want to retrieve records from
the table.

c. In the Record Size field, specify the number of records to retrieve each time.

d. If you want to delete the records from the table after they have been fetched, then select the
Delete Records check box.

Note – If you do not select the one or more columns that uniquely identify each record, then
selecting the Delete Records check box will ensure that you do not keep retrieving the same
records.

e. In the JNDI Name field, type the JNDI name of the database resource (for example,
jdbc/iepseDerbyNonXA).

f. Click Finish. The property editor displays the values that you specified.

By default, the Preserve Last Fetched Record check box is selected. This setting indicates that if
the event process is redeployed, then the operator starts retrieving records where it left off.

If you leave the Preserve Last Fetched Record check box selected, then you must specify a table
name in the Last Fetched Record Table field. This table will be created in the IEP database, not
in the external database table.

If you want the operator to go back to the beginning of the table instead, then clear the Preserve
Last Fetched Record check box.

If you are retrieving records from an Oracle external database, then examine the Data Type
column. If a data type is not one of the supported IEP data types, then change the data type to a
supported IEP data type. For example, change the DECIMAL data type to the INTEGER data type.

(Optional) In the SELECT area, modify any of the default expressions by adding a SQL function.

(Optional) Click the Documentation tab and supply notes on this component.

Click OK.

Replay Stream
The Save Stream and Replay Stream operators are intended to help you perform diagnostics.
For example, you can use these operators when the output from an IEP Module project is not
the expected output.

7

8

9

10

11

Input Operators

Designing Intelligent Event Processor (IEP) Projects • June 200930

You first enable the Save Stream operator to begin saving an input stream to a database table.
You then use the Replay Stream operator to replay the events that the Save Stream operator
saved to the database table.

▼ To Create a Replay Stream Operator

Drag a Replay Stream operator from the Palette to the Design view.

Connect the output of the Replay Stream operator to any operator that accepts stream input
(for example, the Stream Output operator).

Double-click the Replay Stream operator.
The property editor opens.

Click Select Table.
The Select Table which has Stream Events wizard appears.

In step 1 of the wizard, do the following:

a. Select the data source.

Note – Data sources are configured in the Databases node of the Services window.

b. Select the table where the events are being saved.

c. Click Next.

In step 2 of the wizard, do the following:

a. Select the column or columns that you want to replay.

b. (Optional) Add a condition to the Where Clause area (for example, amount > 100).

c. Click Next.

In step 3 of the wizard, do the following:

a. Select the EMS_TIMESTAMP column.

b. In the JNDI Name field, type the JNDI name of the database resource (for example,
jdbc/iepseDerbyNonXA).

c. Click Finish. The property editor displays the values that you specified.

1

2

3

4

5

6

7

Input Operators

Chapter 1 • Designing Intelligent Event Processor (IEP) Projects 31

By default, the Preserve Last Fetched Record check box is selected. This setting indicates that if
the event process is redeployed, then the operator starts retrieving records where it left off.
If you leave the Preserve Last Fetched Record check box selected, then you must specify a table
name in the Last Fetched Record Table field. This table will be created in the IEP database, not
in the external database table.

If you want the operator to go back to the beginning of the table instead, then clear the Preserve
Last Fetched Record check box.

(Optional) Click the Documentation tab and supply notes on this component.

Click OK.
The Replay Stream operator reads events from the database table and sends the events to the
next operator.

Stream Input
The Stream Input operator enables you to convert incoming messages to a format that can be
used in the event process.

In the property editor, you define a schema that consists of one or more attributes. For example,
the schema could consist of two attributes: stock symbol and stock price. Each attribute has a
data type, such as INTEGER or VARCHAR.

At runtime, the event process reads the incoming messages from the Normalized Message
Router and creates a stream based on the schema that you defined.

You can connect the Stream Input operator to any operator that accepts stream input (for
example, the Time Based Window operator).

▼ To Create a Stream Input Operator

Drag a Stream Input operator from the Palette to the Design view.

Double-click the Stream Input operator.
The property editor opens.

If you want to change the default name, then change the value in the Name field.

If you want to define the schema by adding attributes, then do the following:

a. For each attribute in the schema, click Add Attribute and specify the name, data type, size (if
applicable), and scale (if applicable). You can optionally enter a comment.

8

9

10

1

2

3

4

Input Operators

Designing Intelligent Event Processor (IEP) Projects • June 200932

b. To remove an attribute from the schema, select the attribute and click Delete.

c. To move an attribute up or down in the schema, select the attribute and click Move Up or
Move Down.

If you want to define the schema by selecting an XML schema definition, then do the following:

a. Click Select Schema.

b. Select the element or type.

c. Click OK.

(Optional) Click the Documentation tab and supply notes on this component.

Click OK.

Table Input
The Table Input operator enables you to use a relational database table as input to the event
process.

You can connect the Table Input operator to any operator that accepts stream input (for
example, the Time Based Window operator).

▼ To Create a Table Input Operator

Drag a Table Input operator from the Palette to the Design view.

Double-click the Table Input operator.
The property editor opens.

The Details section of the property editor displays the name of the operator and the output
schema.

In the Attributes section, you can add or delete attributes for this table input, or move the
attributes up or down in order.

In the Data Type column in the Attributes section, select the appropriate data type from the list
of data types.

In the Size column, you can specify the size of the data type if, for example, you specify the
VARCHAR data type.

5

6

7

1

2

3

4

5

Input Operators

Chapter 1 • Designing Intelligent Event Processor (IEP) Projects 33

Click OK.

Output Operators
Output operators enable you to send data from an event process to an external source.

Batched Stream Output
The Batched Stream Output operator enables you to output events in batches, rather than one
event at a time.

Depending on the downstream JBI component, this approach can improve performance. For
example, if you are using IEP with the File Binding Component, sending 10 events at a time
might be faster than sending one event at a time.

▼ To Create a Batched Stream Output Operator

Drag a Batched Stream Output operator from the Palette to the Design view.

Connect the input of the new Batched Stream Output component to an operator that has
stream output.

Double-click the Batched Stream Output operator.
The property editor opens. Notice that the component has inherited the schema of its input
stream.

If you want to include a timestamp on the output, then select the Include Timestamp check box.

In the Batch Size field, specify the number of events in a batch.

In the Maximum Delay field and drop-down list, specify the maximum amount of time that the
operator will wait before sending a batch.
For example, assume that the batch size is 10 and the maximum delay is 30 seconds. If 30
seconds have passed since the previous batch was sent, and only eight events have arrived, then
the operator sends the eight events.

(Optional) Click the Documentation tab and supply notes on this component.

Click OK.

6

1

2

3

4

5

6

7

8

Output Operators

Designing Intelligent Event Processor (IEP) Projects • June 200934

Invoke Stream
The Invoke Stream operator enables you to send a stream of data from one event process
directly to another event process. The stream does not go through the Normalized Message
Router.

For example, you could create two event processes:

■ The first event process contains a Stream Input operator and a Stream Output operator.
■ The second event process contains a Stream Input operator and an Invoke Stream operator.

You could then configure the Invoke Stream operator in the second event process to send data
to the first event process.

▼ To Create an Invoke Stream Operator

Create an event process that will receive a stream of data from another event process. This event
process must contain a Stream Input operator.

Create an event process that will send a stream of data to the first event process. This event
process must contain an Invoke Stream operator.

Double-click the Invoke Stream operator in the second event process.

The property editor opens.

Click the ellipsis.

The Select Stream Input dialog box appears.

Expand the node that represents the first event process and select the Stream Input operator.

Click OK to close the Select Stream Input dialog box.

The Inputs area contains the attributes of the second event process. Drag and drop attributes
from the Inputs area to the Expression column in the SELECT area.

(Optional) Click the Documentation tab and supply notes on this component.

Click OK to close the property editor.

Now you can deploy both event processes. When an event is sent to the stream input of the
second event process, the Invoke Stream operator sends the event to the stream input of the first
event process.

1

2

3

4

5

6

7

8

9

Output Operators

Chapter 1 • Designing Intelligent Event Processor (IEP) Projects 35

Relation Output
The Relation Output operator sends out groups of tuples that reflect its input. When an event
triggers a change in a relation result, the operator sends out changes rather than an entire result
each time a triggering event is received.

The Relation Output operator sends out groups of tuples that reflect changes in the relation
result. Whenever an event triggers a change in the relation result, the operator sends out records
with a tag on the end. If the tag is a plus sign (+), then the record has been added. If the tag is a
minus sign (-), then the record has been deleted.

If a change occurs as a result of the triggering event such that a record changes, IEP sends a
delete record matching the changed record. IEP sends an add record when there is an updated
or new version of that record. The operator only sends out change events rather than repeatedly
sending the entire result.

If a triggering event enters into the event process, but the result of the final relation from that
event does not change, then the relation output is not triggered and data is not sent.

Use the Relation Output operator to provide a summary of data that has been added or deleted.

▼ To Create a Relation Output Operator

Drag a Relation Output operator from the Palette to the Design view.

Double-click the Relation Output operator.
The property editor opens.

If you want to include a timestamp on the output, then select the Include Timestamp check box.

Click OK.

Save Stream
The Save Stream and Replay Stream operators are intended to help you perform diagnostics.
For example, you can use these operators when the output from an IEP Module project is not
the expected output.

You first enable the Save Stream operator to begin saving an input stream to a database table.
You then use the Replay Stream operator to replay the events that the Save Stream operator
saved to the database table.

Before you begin, you must deploy an event process that contains a Stream Input operator.

1

2

3

4

Output Operators

Designing Intelligent Event Processor (IEP) Projects • June 200936

Note – If you know up front that you want to save an input stream to a database table, then you
can use the Save Stream operator at design time. The property editor enables you to configure
the same properties described in the following procedure.

▼ To Enable the Save Stream Operator Dynamically at Runtime

Start the IEP monitoring and debugging tool. For detailed information about this tool, see the
Open ESB wiki.

Run the listIEP command. You must specify the IEP service unit name as a parameter. You can
find the service unit name by going to the Services window of the IDE and expanding the
Servers node, the GlassFish V2 node, the JBI node, the Service Assemblies node, and the
individual service assembly node.

The command returns a list of plan names. For example:
[IEP] listIEP CompositeApp1-IepModule1

test_iep

Run the listOperators command. You must specify the plan name as a parameter.

The command returns a list of the operators in the event process. For example:
[IEP] listOperators test_iep

StreamInput0

StreamOutput0

Run the addSaveStream command. You must specify the following parameters: the plan name,
the name of the Stream Input operator, the JNDI name of the database resource, and the name
of the database table where the input stream will be saved. You can optionally specify a boolean
parameter called Is Global, which indicates whether the table and its data are kept between
deployments. By default, the Is Global parameter is set to true.
The command returns the name of the Save Stream operator that was added. For example:
[IEP] addSaveStream test_iep StreamInput0 jdbc/iepseDerbyNonXA STOCKTRANSACTIONS false

The result is StreamInput0SaveStream0

The Save Stream operator begins saving the input stream to the database table. If the table
name that you specified does not exist, then the table is created.

▼ To Disable the Save Stream Operator Dynamically at Runtime

Start the IEP monitoring and debugging tool. For detailed information about this tool, see the
Open ESB wiki.

1

2

3

4

5

1

Output Operators

Chapter 1 • Designing Intelligent Event Processor (IEP) Projects 37

Run the removeSaveStream command. You must specify the following parameters: the plan
name and the name of the Save Stream operator. For example:
[IEP] removeSaveStream test_iep StreamInput0SaveStream0

The Save Stream operator stops saving the input stream to the database table.

If the Is Global parameter of the addSaveStream command was set to true, then the table and
its data are not deleted. However, if you subsequently modify the schema of the stream input
(for example, by adding a column) and re-enable the Save Stream operator, then the table and
its data are deleted at that time.

If the Is Global parameter of the addSaveStream command was set to false, then the table and
its data are deleted.

Stream Output
The Stream Output operator enables you to convert a stream of events into outgoing messages
that can be sent to the Normalized Message Router and received by any JBI component.

When the WSDL document for the event processor is automatically generated, IEP uses the
Stream Output operator to define various WSDL elements. For example, if the Stream Output
operator is called SuspiciousTransactions, then the WSDL document contains an operation
called SuspiciousTransactions and a message called SuspiciousTransactions_Msg.

▼ To Create a Stream Output Operator

Drag a Stream Output operator from the Palette to the Design view.

Connect the input of the Stream Output operator to an operator that has stream output.

Double-click the Stream Output operator.

The property editor opens. Notice that the component has inherited the schema of its input
stream.

If you want to change the default name, then change the value in the Name field.

If you want to include a timestamp on the output, then select the Include Timestamp check box.

(Optional) Click the Documentation tab and supply notes on this component.

Click OK.

2

3

1

2

3

4

5

6

7

Output Operators

Designing Intelligent Event Processor (IEP) Projects • June 200938

Table Output
The Table Output operator provides static output in the form of relational tables.

Use the Table Output operator to provide relational table output from an event processor.

▼ To Create a Table Output Operator

Drag a Table Output operator from the Palette to the Design view.

Double-click the Table Output operator.
The property editor opens.

If you want to share the table related to the Table Output with other IEP processes or other
applications, then select the isGlobalparameter.
The table related to the Table Output is created if it does not exist. The table remains after the
undeployment or redeployment of the IEP process that contains it. IEP generates an additional
column for every table that is output.

Relation Converter Operators
Relation Converter operators change the records in a relation or the format of a relation, or they
can take a snapshot of the current relation.

The following table lists the input and output for each operator.

Operator Input Output

Delete Stream Relation Stream

Insert Stream Relation Stream

Notification Stream Relation Stream

Relation Stream Relation Stream

Delete Stream
The Delete Stream operator converts the deleted records of a changed relation into a stream.
The operator takes all records that are in a previous table but not in the current table, and puts
them into a stream with a timestamp.

Use the Delete Stream operator when you need to place deleted records from a relation into a
stream.

1

2

3

Relation Converter Operators

Chapter 1 • Designing Intelligent Event Processor (IEP) Projects 39

▼ To Create a Delete Stream Operator

Drag a Delete Stream operator from the Palette to the Design view.

Connect the input side of the Delete Stream operator to a relation output.

Double-click the Delete Stream operator.
The property editor opens.

The Details section of the property editor displays the name of the operator and the output
schema.

The Attributes section provides a picture of the current state of a stream.

Click OK.

Insert Stream
The Insert Stream operator converts a relation into a stream.

When the Insert Stream operation is triggered, all changed or new records are issued as output.

The Insert Stream operator passes new records as output. In contrast, the Relation Output
operator issues individual records tagged with either a plus, meaning a new record, or minus,
meaning a record that was issued previously but is no longer part of the relation result.

Use the Insert Stream operator when you want to pass new or changed records into the output
stream.

▼ To Create an Insert Stream Operator

Drag an Insert Stream operator from the Palette to the Design view.

Connect it to an operator with a relation output.

Double-click the Insert Stream operator.
The property editor opens.

The Details section of the property editor displays the name of the operator and the output
schema.

Click OK.

1

2

3

4

5

6

1

2

3

4

5

Relation Converter Operators

Designing Intelligent Event Processor (IEP) Projects • June 200940

Notification Stream
The Notification Stream operator takes a relation as input, and outputs a stream that consists of
events whose presence is determined by a specific time interval.

Assume that the following conditions are true:

■ The time interval of the Notification Stream operator is set to 1 minute.
■ An event arrives at the input relation at 2:00 in the afternoon.

If the event is still in the relation at 2:01 in the afternoon, then the event is included in the output
stream for the first time.

If the event is still in the relation at 2:02 in the afternoon, then the event is included in the output
stream for the second time.

If the event is still in the relation at 2:03 in the afternoon, then the event is included in the output
stream for the third time.

If the event is no longer in the relation at 2:04 in the afternoon, then the event is no longer
included in the output stream.

The scenario in “Gap Window” on page 48 involves creating a relation that indicates which
message is missing at any point in time. You could use the Notification Stream operator to
create an output stream of resend requests for the missing messages. Connect the Gap Window
operator to a Notification Stream operator, configure the time interval, and then send the
output to a Stream Output operator.

▼ To Create a Notification Stream Operator

Drag a Notification Stream operator from the Palette to the Design view.

Connect the input of the new Notification Stream component to an operator that has relation
output.

Double-click the Notification Stream operator.
The property editor opens. Notice that the component has inherited the schema of its input
relation.

Use the Notify Every field and drop-down list to specify the time interval.

(Optional) Click the Documentation tab and supply notes on this component.

Click OK.

1

2

3

4

5

6

Relation Converter Operators

Chapter 1 • Designing Intelligent Event Processor (IEP) Projects 41

Relation Stream
The Relation Stream operator converts a relation result from an input operator into a stream. It
provides a summary of the differences between the two consecutive tables, and places a
timestamp on each event in the diff and places the result into the output stream.

Use the Relation Stream operator when you need relation result information in stream.

▼ To Create a Relation Stream Operator

Drag a Relation Stream operator from the Palette to the Design view.

If needed, double-click the Relation Stream operator to examine the Details and Attribute
sections.

Relation Operators
Relation operators enable you to perform addition and combination, subtraction, intersection,
or unique identification operations on relations.

The following table lists the input and output for each operator.

Operator Input Output

Distinct Relation Relation

Intersect Relation Relation

Minus Relation Relation

Union Relation Relation

Union All Relation Relation

Distinct
The Distinct operator retains records input from a relation that are unique. If duplicate records
exist, they will not be sent out from the Distinct operator. All attributes of records must match
to be filtered with the Distinct operators.

You typically use the Distinct operator in conjunction with a relation output from another
operator. The Distinct operator does not forward duplicate records from input to it. Typical
operators whose input the Distinct operator uses include:

■ Attribute-Based Window operator

1

2

Relation Operators

Designing Intelligent Event Processor (IEP) Projects • June 200942

■ Partitioned Window operator
■ Time Based Window operator
■ Tuple-Based Window operator
■ Relation Map operator
■ Relation Aggregator operator

When you use the Distinct operator, any records provided must be a complete duplicate,
meaning that all attributes have to match for the Distinct operator to fill out all records.

The Distinct operator works with other operators. For example, you can use the Distinct
operator with a Tuple-Based Window operator to limit the number of tuples that are affected by
the operator. Or you can use the Distinct operator with the Time-Based Window operator to
keep records for only 30 seconds, but to filter out records if there are no duplicates.

▼ To Create a Distinct Operator

Drag a Distinct operator from the Palette to the Design view.

Connect an input from an operator that has a relation result.

Double-click the Distinct operator.

The property editor opens with the name of the Distinct operator and the output schema name
populated. The property editor displays the schema of the data that is input to the Distinct
operator.

(Optional) Click the Documentation tab and supply notes on this component.

Click OK.

Intersect
The Intersect operator enables definition of relation intersection. In effect, the operator behaves
like the SQL INTERSECT command and acts as an AND operator (that is, values are selected
only if they appear in all inputs provided to the operator).

All input schemas to the Intersect operator must be identical in format: column name and type
must match for all attributes. You cannot select a subset of columns (attributes) from the input
schemas, as you can with the SQL INTERSECT command.

1

2

3

4

5

Relation Operators

Chapter 1 • Designing Intelligent Event Processor (IEP) Projects 43

▼ To Create an Intersect Operator

Drag an Intersect operator from the Palette to the Design view.

Connect two input relations to the Intersect operator.

Double-click the Intersect operator.
The property editor opens.

Examine the Details and Attributes sections.

(Optional) Click the Documentation tab and supply notes on this component.

Click OK.

Minus
The Minus operator subtracts one stream from another stream. The order of subtraction is
determined by the order in which you connect the input relations. You cannot subtract unlike
operator attributes. The input schemas must be identical, with identical names and types for all
attributes.

Specify the operator to subtract from, then choose the expression in the Expression drop-down
list, where you can change the order for the subtraction operation. As with other operators, you
can specify multiple input streams to a minus operation, and provide filters before the Minus
operator.

▼ To Create a Minus Operator

Drag a Minus operator from the Palette to the Design view.

Connect two or more input relations to the Minus operator.

Double-click the Minus operator.
The Expression field provides the order of the minus expression. This is initially determined by
the order in which the inputs were connected. You can determine this by opening the properties
pane for the Minus operator. The input ID list provides the order of the operators that the
Minus operator subtracts. Next, open the properties pane for the relations feeding into the
Minus operator and examine their ID.

To change the order in the Expression dialog box, choose the Order by drop-down list and a new
primary operator. The latter becomes the first operator on the Expression field. You can connect

1

2

3

4

5

6

1

2

3

4

Relation Operators

Designing Intelligent Event Processor (IEP) Projects • June 200944

additional inputs to the Minus operator at a later time. You can also remove inputs. When you
remove inputs, the Expression is automatically updated.

Union
The Union operator combines elements from input relations. The Union operator captures one
of every record in every relation and provides one of every record as output, with duplicates
removed.

All input relations must have the same schema. Relations that are output from the Union
operator will have the same schema.

Because the Union operator does not pass through duplicates, if two different files input to it
indicate size of 1, the behavior is similar to having two single streams input to a merged file.

That is, for each event a new row is added, and one subtracted. Note that if the input files are
identical (the rows are exactly the same), and the Tuple Size is also 1, then the previous output is
deleted, but nothing is added.

▼ To Create a Union Operator

Drag a Union operator from the Palette to the Design view.

Connect the input of the new Union component to two or more operators that have relation
output.

Double-click the Union operator.
The property editor opens. Notice that the component has inherited the schema of its input
relations.

As needed, configure the following property: Name:

(Optional) Click the Documentation tab and supply notes on this component.

Click OK.

Union All
The Union All operator combines elements from input relations, and captures one of every
record in every relation and provides one of every record as output, including duplicates.

All input relations must have the same schema. Relations that are output from the Union All
operator have the same schema.

1

2

3

4

5

6

Relation Operators

Chapter 1 • Designing Intelligent Event Processor (IEP) Projects 45

You typically use the Union All operator to join data from two separate streams, such as when
your application requires that you match data from one stream against that of another, without
excluding duplicate records from the output.

▼ To Create a Union All Operator

Drag a Union All operator from the Palette to the Design view.

Connect the input of the new Union All component to two or more operators that have relation
output.

Double-click the Union All operator.
The property editor opens. Notice that the component has inherited the schema of its input
relations.

As needed, configure the following property: Name:

(Optional) Click the Documentation tab and supply notes on this component.

Click OK.

Sequence Operators
Sequence operators enable you to order events based on attributes that have sequential order.

The following table lists the input and output for each operator.

Operator Input Output

Contiguous Order Stream Stream

Gap Window Stream Relation

Contiguous Order
The Contiguous Order operator defines a stream that consists of events selected by one or more
attributes and then placed in sequence sorted by another attribute.

Assume that you have the following scenario:

■ A server receives a stream of messages from various hardware devices.
■ For each hardware device, the messages have unique IDs (1, 2, 3, 4, and so on).

1

2

3

4

5

6

Sequence Operators

Designing Intelligent Event Processor (IEP) Projects • June 200946

■ Because of an unreliable network, messages may be lost or received in a different order.
■ For each hardware device, you want to sort the messages by their unique ID.

You could add a Stream Input operator with the following attributes:

■ deviceID (VARCHAR)
■ msgID (BIGINT)
■ msg (VARCHAR)

You could then connect the Stream Input operator to a Contiguous Order operator.

In the property editor of the Contiguous Order operator, set the partition key to the deviceID
attribute. This setting divides the input stream into multiple substreams, one per device.

In the property editor of the Contiguous Order operator, set the sort value to the msgID
attribute and the start value to 1. For each substream, the Contiguous Order operator sorts the
messages by their unique ID.

For example, let's say that the messages from one device arrive in the following order: 3, 2, 5, 1,
7, 4, 4, 6.

When message 1 is received, the Contiguous Order operator will output messages 1, 2, and 3.
When message 4 is received, the Contiguous Order operator will output messages 4 and 5.
When message 6 is received, the Contiguous Order operator will output messages 6 and 7.

The Contiguous Order operator ignores duplicate events. Therefore, the output stream in the
hardware device scenario contains only one instance of message 4.

Note that in the output stream, the output from the multiple substreams is interspersed.

▼ To Create a Contiguous Order Operator:

Drag a Contiguous Order operator from the Palette to the Design view.

Connect the input of the new Contiguous Order component to an operator that has stream
output.

Double-click the Contiguous Order operator.
The property editor opens. Notice that the component has inherited the schema of its input
stream.

In the Attributes area, set the Partition Key column to the attribute or attributes that you want
to use to divide the input stream into substreams.

In the Sort By drop-down list, select the attribute that you want to sort by.
The attribute must have values that can be sorted sequentially.

1

2

3

4

5

Sequence Operators

Chapter 1 • Designing Intelligent Event Processor (IEP) Projects 47

In the Start field, type the attribute value that you want to start with.

(Optional) Click the Documentation tab and supply notes on this component.

Click OK.

Gap Window
The Gap Window operator defines a relation that consists of events that are missing from the
input stream, based on an attribute that has a sequential order.

Assume that you have the following scenario:

■ A server receives a stream of messages from various hardware devices.
■ For each hardware device, the messages have unique IDs (1, 2, 3, 4, and so on).
■ Because of an unreliable network, messages may be lost or received in a different order.
■ For each hardware device, you want to sort the messages by their unique ID.

You could add a Stream Input operator with the following attributes:

■ deviceID (VARCHAR)
■ msgID (BIGINT)
■ msg (VARCHAR)

You could then connect the Stream Input operator to a Gap Window operator.

In the property editor of the Gap Window operator, set the partition key to the deviceID
attribute. This setting divides the input stream into multiple substreams, one per device.

In the property editor of the Gap Window operator, set the sort value to the msgID attribute and
the start value to 1. For each substream, the Gap Window operator creates an output relation
that indicates which message is missing at any point in time.

For example, let's say that the messages from one device arrive in the following order: 3, 2, 5, 1,
7, 4, 4, 6.

When message 3 is received, the Gap Window operator will output message 1. When message 1
is received, the Gap Window operator will output message 4. When message 4 is received, the
Gap Window operator will output message 6. When message 6 is received, the Gap Window
operator will output message 8.

Note that in the output relation, the output from the multiple relations is interspersed.

6

7

8

Sequence Operators

Designing Intelligent Event Processor (IEP) Projects • June 200948

▼ To Create a Gap Window Operator:

Drag a Gap Window operator from the Palette to the Design view.

Connect the input of the new Gap Window component to an operator that has stream output.

Double-click the Gap Window operator.
The property editor opens. Notice that the component has inherited the schema of its input
stream.

In the Attributes area, set the partition key to the attribute or attributes that you want to use to
divide the input stream into substreams.

In the Sort By drop-down list, select the attribute that you want to sort by.
The attribute must have values that can be sorted sequentially.

In the Start field, type the attribute value that you want to start with.

(Optional) Click the Documentation tab and supply notes on this component.

Click OK.

Stream Converter Operators
Stream Converter operators convert stream data formats into other formats, and can perform
additional processing.

The following table lists the input and output for each operator.

Operator Input Output

Attribute Based Window Stream Relation

Partitioned Window Stream Relation

Time Based Window Stream Relation

Tuple Based Window Stream Relation

Attribute Based Window
The Attribute Based Window operator converts an input stream to a relation based on a
specified attribute and a size that defines the range of values for the attribute.

1

2

3

4

5

6

7

8

Stream Converter Operators

Chapter 1 • Designing Intelligent Event Processor (IEP) Projects 49

Assume that you select an attribute that has the INTEGER data type and that you set the size to
10. If the most recently received event has a value of 50 for the attribute, then the relation
consists of all events that have a value of between 40 and 50 for the attribute.

The following data types are supported: INTEGER, BIGINT, DOUBLE, DATE, and
TIMESTAMP. You cannot select an attribute that has the VARCHAR data type.

The input to the Attribute Based Window operator is a stream.

The output from the Attribute Based Window operator is a relation.

▼ To Create an Attribute Based Window Operator

Drag an Attribute Based Window operator from the Palette to the Design view.

Connect the output of an operator that has stream output to the input of the Attribute Based
Window operator.

Double-click the Attribute Based Window operator.
The property editor opens. The attributes of the input schema are displayed in read-only mode.

In the Attribute drop-down menu, select the attribute that you want to track.

In the Size field, enter a numerical value that the operator will use to define the range of values.
The operator determines the lowest value of the range by subtracting the size from the attribute
value of the most recently received event.

For attributes with the DATE data type, the size represents the number of days.

For attributes with the TIMESTAMP data type, the size represents the number of seconds.

(Optional) Click the Documentation tab and supply notes on this component.

Click OK.

Partitioned Window
The Partitioned Window operator converts an input stream to a relation based on one or more
attributes that serve as the partition key.

Assume that you have the following scenario:

■ The input stream contains census data.
■ You select the LastName attribute.
■ You set the number of events to 2.

1

2

3

4

5

6

7

Stream Converter Operators

Designing Intelligent Event Processor (IEP) Projects • June 200950

Each relation will consist of the last two events that contain the LastName attribute.

The input to the Partitioned Window operator is a stream.

The output from the Partitioned Window operator is a relation.

▼ To Create a Partitioned Window Operator

Drag a Partitioned Window operator from the Palette to the Design View.

Connect the output of an operator that has stream output to the input of the Partitioned
Window operator.

Double-click the Partitioned Window operator.
The property editor opens. The attributes of the input schema are displayed in read-only mode.

In the Size field, specify the number of events.

In the Partition Key column, select one or more attributes.

(Optional) Click the Documentation tab and supply notes on this component.

Click OK.

Time Based Window
The Time Based Window operator converts an input stream to a relation based on a specified
period of time.

Assume that you set the period of time to five seconds. Each relation will consist of all events
that arrived in the last five seconds.

The input to the Time Based Window operator is a stream.

The output from the Time Based Window operator is a relation.

You can combine the Time Based Window operator with a subsequent Relation Output
operator to provide a timestamp record for the records retained.

▼ To Create a Time Based Window Operator

Drag a Time Based Window operator from the Palette to the Design view.

Connect the output of an operator that has stream output to the input of the Time Based
Window operator.

1

2

3

4

5

6

7

1

2

Stream Converter Operators

Chapter 1 • Designing Intelligent Event Processor (IEP) Projects 51

Double-click the Time Based Window operator.
The property editor opens. The attributes of the input schema are displayed in read-only mode.

In the Size field and drop-down menu, specify the period of time.

(Optional) Click the Documentation tab and supply notes on this component.

Click OK.

Tuple Based Window
The Tuple Based Window operator converts an input stream to a relation based on a specified
number of events.

Assume that you set the number of events to two. Each relation will consist of the most recent
two events.

The input to the Tuple Based Window operator is a stream.

The output from the Tuple Based Window operator is a relation.

▼ To Create a Tuple Based Window Operator

Drag a Tuple Based Window operator from the Palette to the Design view.

Connect the output of an operator that has stream output to the input of the Tuple Based
Window operator.

Double-click the Tuple Based Window operator.
The property editor opens. The attributes of the input schema are displayed in read-only mode.

In the Size field, specify the number of events.

(Optional) Click the Documentation tab and supply notes on this component.

Click OK.

3

4

5

6

1

2

3

4

5

6

Stream Converter Operators

Designing Intelligent Event Processor (IEP) Projects • June 200952

WSDL Documents in IEP Module Projects
When you save an IEP Module project, IEP generates a Web Services Description Language
(WSDL) document for each event processor.

The WSDL documents contain the endpoints for the event processors.

Caution – Do not edit any section of the generated WSDL other than the following sections:
■ HTTP SOAP binding and service generation for input
■ File binding and service generation for output

IEP generates a WSDL document according to specific rules based on the XML Schema (the
XSD) that are important to understand. These rules are provided as reference and to enable you
to change specific binding components and service engines that can be changed.

The name of the WSDL document is derived from the name of the event processor. For
example, if the event processor is called insiderTrade.iep, then the WSDL document is called
insiderTrade.wsdl.

Note – If you subsequently rename the event processor, IEP does not refactor the name of the
WSDL document.

The target namespace is a convention of an XML Schema that enables the WSDL document to
refer to itself.

In the process of representing the event process in the WSDL document, the name of your event
process is concatenated with the string _iep to form the target namespace. For example, if the
name of the event process is MyEventProcessor, then the target namespace of the WSDL is
MyEventProcessor_iep.

<definitions targetNamespace="MyEventProcessor_iep"

xmlns:tns="MyEventProcessor_iep"
xmlns:typens="MyEventProcessor_iep"
xmlns:defns="MyEventProcessor_iep"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:file="http://schemas.sun.com/jbi/wsdl-extensions/file/"
xmlns="http://schemas.xmlsoap.org/wsdl/">

Data Types in the WSDL Document
The WSDL document defines XSD types (data types). IEP data types, as observable and editable
from the property editor for a specific operator, have their counterparts in XSD data types.

WSDL Documents in IEP Module Projects

Chapter 1 • Designing Intelligent Event Processor (IEP) Projects 53

For each operator, IEP generates two XSD elements: a regular message object and a batch
message object.

Each XSD element contains the following:
■ Operator name
■ Attribute name for each attribute in the attribute list
■ XSD data type

Attributes have specific data types and have their equivalent representation in the XSD.

IEP Data Type XSD Data Type

INTEGER int

BIGINT long

DOUBLE double

VARCHAR string

DATE date

TIMESTAMP dateTime

The following types are based on a simple event process that contains a Stream Input operator
and a Stream Output operator.

<types>

<xsd:schema targetNamespace="MyEventProcessor_iep"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="MyStreamInput_MsgObj">
<xsd:complexType>

<xsd:sequence>

<xsd:element name="AttrInteger" type="xsd:int"/>
<xsd:element name="AttrBigInt" type="xsd:long"/>
<xsd:element name="AttrDouble" type="xsd:double"/>
<xsd:element name="AttrVarchar" type="xsd:string"/>
<xsd:element name="AttrDate" type="xsd:date"/>
<xsd:element name="AttrTimestamp" type="xsd:dateTime"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="MyStreamInputBatch_MsgObj">
<xsd:complexType>

<xsd:sequence>

<xsd:element name="MyStreamInput_MsgObj" minOccurs="0"
maxOccurs="unbounded">

<xsd:complexType>

WSDL Documents in IEP Module Projects

Designing Intelligent Event Processor (IEP) Projects • June 200954

<xsd:sequence>

<xsd:element name="AttrInteger" type="xsd:int"/>
<xsd:element name="AttrBigInt" type="xsd:long"/>
<xsd:element name="AttrDouble" type="xsd:double"/>
<xsd:element name="AttrVarchar" type="xsd:string"/>
<xsd:element name="AttrDate" type="xsd:date"/>
<xsd:element name="AttrTimestamp" type="xsd:dateTime"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="StreamOutput0_MsgObj">
<xsd:complexType>

<xsd:sequence>

<xsd:element name="AttrInteger" type="xsd:int"/>
<xsd:element name="AttrBigInt" type="xsd:long"/>
<xsd:element name="AttrDouble" type="xsd:double"/>
<xsd:element name="AttrVarchar" type="xsd:string"/>
<xsd:element name="AttrDate" type="xsd:date"/>
<xsd:element name="AttrTimestamp" type="xsd:dateTime"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:schema>

</types>

Message Objects in the WSDL Document
The WSDL document contains two types of message objects:

■ Regular message object
■ Batch message object

IEP uses the regular message object when you are sending in one message at a time. A batch
message object is useful when you want to send in multiple messages.

<message name="MyStreamInput_Msg">
<part name="input" element="typens:MyStreamInput_MsgObj"/>

</message>

<message name="MyStreamInputBatch_Msg">
<part name="input" element="typens:MyStreamInputBatch_MsgObj"/>

</message>

<message name="StreamOutput0_Msg">
<part name="output" element="typens:StreamOutput0_MsgObj"/>

</message>

WSDL Documents in IEP Module Projects

Chapter 1 • Designing Intelligent Event Processor (IEP) Projects 55

If one of the messages in the batch message group fails to be processed appropriately in the IEP,
others will fail as well.

With a single message object, message failure is on a one-by-one basis.

Bindings and Services in the WSDL Document
By default, the WSDL documents that are automatically generated in an IEP Module project
include concrete information (bindings and services).

You can configure IEP to generate abstract WSDL documents instead.

Generating Concrete WSDL Documents
By default, the WSDL documents that are automatically generated in an IEP Module project
include concrete information (bindings and services).

If the event processor has a Stream Input operator, then the WSDL document contains a
SOAP-based binding and service.

If the event processor has a Stream Output operator, a Batched Stream Output operator, or a
Relation Output operator, then the WSDL document contains a file-based binding and service.

The following example shows a SOAP-based binding and service, followed by a file-based
binding and service.

<binding name="InputBinding" type="defns:InputPt">
<soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="MyStreamInput">

<soap:operation soapAction="MyStreamInput"/>
<input>

<soap:body use="literal"/>
</input>

</operation>

<operation name="MyStreamInputBatch">
<soap:operation soapAction="MyStreamInputBatch"/>
<input>

<soap:body use="literal"/>
</input>

</operation>

</binding>

<service name="InputService">
<port name="InputPort" binding="tns:InputBinding">

<soap:address location="http://localhost:12100/service/newEventProcessor_iep"/>
</port>

WSDL Documents in IEP Module Projects

Designing Intelligent Event Processor (IEP) Projects • June 200956

</service>

<binding name="OutputBinding_StreamOutput0" type="defns:OutputPt_StreamOutput0">
<file:binding/>

<operation name="StreamOutput0">
<file:operation/>

<input>

<file:message fileName="StreamOutput0.txt"
fileNameIsPattern="false"
addEOL="false"
multipleRecordsPerFile="true"
use="literal"/>

</input>

</operation>

</binding>

<service name="OutputService_StreamOutput0">
<port name="OutputPort_StreamOutput0" binding="tns:OutputBinding_StreamOutput0">

<file:address fileDirectory="C:/temp/newEventProcessor_iep"/>
</port>

</service>

You might need to manually update the default settings for any binding and service. For
example, the default file directory is a Windows path, which would not work correctly on a
UNIX system.

For detailed information about the binding and service configuration, see the documentation
for the HTTP Binding Component and the File Binding Component.

Note – If you manually update the WSDL document and then save the IEP Module project again,
the changes that you made to the WSDL document are overwritten.

Generating Abstract WSDL Documents
You can configure IEP to generate abstract WSDL documents by editing a flag in the IEP
project properties file. The bindings and services are not included.

With this approach, you can define the bindings and services by using the Composite
Application Service Assembly (CASA) Editor.

WSDL Documents in IEP Module Projects

Chapter 1 • Designing Intelligent Event Processor (IEP) Projects 57

Caution – If you use the CASA Editor, do not clone the IEP WSDL document to customize its
generated bindings and services. Updates to the generated WSDL documents will not be
updated after the cloning. Over time, the cloned and edited WSDL document deployed for the
bindings will become inconsistent with the WSDL document deployed for the IEP Service
Engine.

▼ To Generate Abstract WSDL Documents

Go to the location of the IEP Module project and open the project.properties file.

Change the value of the always.generate.abstract.wsdl flag to true.

Save the project.properties file.

Understanding the IEP Database
IEP uses a set of database tables to maintain information about the IEP Service Engine and
deployed event processes. You can connect to the database through NetBeans, and then view
the tables and their content through NetBeans windows. To view the IEP database tables, click
the Services window of the NetBeans IDE. Expand the Databases node, the connection node,
and the Tables node.

1

2

3

Understanding the IEP Database

Designing Intelligent Event Processor (IEP) Projects • June 200958

To view the contents of an IEP database table, right-click the table node and choose View Data.
The SQL Editor appears and displays the appropriate SQL SELECT statement, which is
performed on the table. The results of the query appear near the bottom of the SQL Editor.

The following image shows the contents of the EMS_PLAN table.

Understanding the IEP Database

Chapter 1 • Designing Intelligent Event Processor (IEP) Projects 59

You can use any of the following database servers for the IEP database:
■ Java DB (bundled with GlassFish)
■ Oracle Database 11g
■ Oracle Database 10g
■ Oracle 9i Database

Configuring the IEP Database to Use Oracle
By default, the IEP database is configured to use Java DB. Java DB is Sun's supported
distribution of the open source Apache Derby database. After installation, you can configure
the IEP database to use Oracle instead.

The first task is to create an IEP user in the Oracle database. You can run a provided SQL script
that creates the IEP user and grants the appropriate privileges. The default version of the script
contains the following SQL statements:

CREATE TABLESPACE "IEPSEDB_DB"
DATAFILE

’IEPSEDB_DB1.dat’ SIZE 2000M,

’IEPSEDB_DB2.dat’ SIZE 2000M;

CREATE USER IEPSEDB IDENTIFIED BY IEPSEDB

DEFAULT TABLESPACE IEPSEDB_DB

QUOTA UNLIMITED ON IEPSEDB_DB

TEMPORARY TABLESPACE temp

QUOTA 0M ON system;

GRANT CONNECT TO IEPSEDB;

GRANT RESOURCE TO IEPSEDB;

Understanding the IEP Database

Designing Intelligent Event Processor (IEP) Projects • June 200960

GRANT CREATE VIEW TO IEPSEDB;

grant select on sys.dba_pending_transactions to IEPSEDB;

grant select on sys.pending_trans$ to IEPSEDB;

grant select on sys.dba_2pc_pending to IEPSEDB;

grant execute on sys.dbms_system to IEPSEDB;

grant select on SYS.dba_2pc_neighbors to IEPSEDB;

grant force any transaction to IEPSEDB;

You need to create two sets of connection pools and JDBC resources. A connection pool is a
group of reusable connections for a particular database. The server maintains a pool of available
connections to increase performance. A JDBC resource provides applications with a means of
connecting to a database. Additional configuration of the service engine is also required.

To configure the IEP Service Engine to use Oracle, perform the following steps:

■ “To Create the IEP User in the Oracle Database” on page 61
■ “To Install the Oracle Database Driver in the Application Server” on page 62
■ “To Create the Non-XA Connection Pool” on page 62
■ “To Create the Non-XA JDBC Resource” on page 63
■ “To Create the XA Connection Pool” on page 63
■ “To Create the XA JDBC Resource” on page 64
■ “To Enable Automatic Recovery of XA Transactions” on page 65
■ “To Configure the IEP Service Engine to Use the JDBC Resources” on page 65
■ “To Restart the IEP Service Engine and Create the Database Tables” on page 65

▼ To Create the IEP User in the Oracle Database

In a web browser, enter the following URL: http://wiki.open-esb.java.net/
Wiki.jsp?page=HowToRunIEPOnOracle.

Download the create_iepse_user.sql script.

Open the create_iepse_user.sql script and review the instructions.

The names of the tablespace, data files, user, and password include the string IEPSEDB. If you
want to change this string to a different string, then replace all occurrences of IEPSEDBwith the
new string.

Connect to the Oracle database as a user with the SYSDBAprivilege.

Run the create_iepse_user.sql script against the database.

1

2

3

4

5

6

Understanding the IEP Database

Chapter 1 • Designing Intelligent Event Processor (IEP) Projects 61

http://wiki.open-esb.java.net/Wiki.jsp?page=HowToRunIEPOnOracle
http://wiki.open-esb.java.net/Wiki.jsp?page=HowToRunIEPOnOracle

▼ To Install the Oracle Database Driver in the Application Server

Go to the computer where the application server is installed.

Copy and paste the Oracle database driver (for example, ojdbc14.jar) to the
glassfish-home/libdirectory.

Restart the application server.

▼ To Create the Non-XA Connection Pool

Log in to the GlassFish Admin Console.

In the left navigation panel, expand Resources and JDBC, and then select Connection Pools.

Click New.
The New JDBC Connection Pool page appears.

Do the following:

a. In the Name field, specify a name for the non-XA connection pool (for example,
iepseOraclePoolNonXA).

b. In the Resource Type field, select javax.sql.DataSource.

c. In the Database Vendor field, select Oracle.

d. Click Next.

Scroll down to the Additional Properties table, and then do the following:

a. In the User row, enter the user name of the IEP user (for example, IEPSEDB).

b. In the Password row, enter the password of the IEP user (for example, IEPSEDB).

c. In the URL row, enter the string for connecting to the database (for example,
jdbc:oracle:thin:@myserver:1521:orcl).

Click Finish.
The connection pool is created.

Click the connection pool that you just created.
The Edit Connection Pool page appears.

1

2

3

1

2

3

4

5

6

7

Understanding the IEP Database

Designing Intelligent Event Processor (IEP) Projects • June 200962

Click Ping.
The Admin Console attempts to connect to the database. If the connection does not succeed,
check to see whether the database is running and verify the database connectivity properties,
such as the URL string.

▼ To Create the Non-XA JDBC Resource

In the left navigation panel of the Admin Console, expand Resources and JDBC, and then select
JDBC Resources.

Click New.
The New JDBC Resource page appears.

In the JNDI Name field, specify a unique name for the non-XA JDBC resource. By convention, the
name begins with the jdbc/ string. For example:
jdbc/iepseOracleNonXA

You will use the JNDI name in a later procedure.

In the Pool Name field, select the non-XA connection pool that you created in the previous
procedure.

Click OK.
The JDBC resource is created.

▼ To Create the XA Connection Pool

In the left navigation panel of the Admin Console, expand Resources and JDBC, and then select
Connection Pools.

Click New.
The New JDBC Connection Pool page appears.

For step 1 of the connection pool, do the following:

a. In the Name field, specify a name for the XA connection pool (for example,
iepseOraclePoolXA).

b. In the Resource Type field, select javax.sql.XADataSource.

c. In the Database Vendor field, select Oracle.

d. Click Next.

8

1

2

3

4

5

1

2

3

Understanding the IEP Database

Chapter 1 • Designing Intelligent Event Processor (IEP) Projects 63

For step 2 of the connection pool, do the following:

a. Scroll down to the Connection Validation section.

b. Select the Enabled check box that appears to the right of the Allow Non Component Callers
label.

c. Scroll down to the Additional Properties table.

d. In the User row, enter the user name of the IEP user (for example, IEPSEDB).

e. In the Password row, enter the password of the IEP user (for example, IEPSEDB).

f. In the URL row, enter the string for connecting to the database (for example,
jdbc:oracle:thin:@myserver:1521:orcl).

Click Finish.
The connection pool is created.

Click the connection pool that you just created.
The Edit Connection Pool page appears.

Click Ping.
The Admin Console attempts to connect to the database. If the connection does not succeed,
check to see whether the database is running, and verify the connectivity parameters, such as
the URL string.

▼ To Create the XA JDBC Resource

In the left navigation panel of the Admin Console, expand Resources and JDBC, and then select
JDBC Resources.

Click New.
The New JDBC Resource page appears.

In the JNDI Name field, specify a unique name for the XA JDBC resource. By convention, the
name begins with the jdbc/ string. For example:
jdbc/iepseOracleXA

You use the JNDI name in a later procedure.

In the Pool Name drop-down menu, select the XA connection pool that you created.

4

5

6

7

1

2

3

4

Understanding the IEP Database

Designing Intelligent Event Processor (IEP) Projects • June 200964

Click OK.
The JDBC resource is created.

▼ To Enable Automatic Recovery of XA Transactions

In the left navigation panel of the Admin Console, expand Configuration and then select
Transaction Service.

Select the Enabled check box that appears to the right of the On Restart label.

Click Save.

▼ To Configure the IEP Service Engine to Use the JDBC Resources

Log in to the NetBeans IDE.

In the Services window, expand Servers > GlassFish V2 > JBI > Service Engines.

If the IEP Service Engine is not started, right-click sun-iep-engine and select Start.

Right-click sun-iep-engine and select Properties.
The Properties dialog box appears.

In the Non XA Data Source Name property, enter the non-XA JDBC resource that you created (for
example, jdbc/iepseOracleNonXA).

In the XA Data Source Name property, enter the XA JDBC resource that you created (for example,
jdbc/iepseOracleXA).

In the Database Schema Name property, enter the user name of the IEP user (for example,
IEPSEDB).
In an Oracle database, the database schema name is identical to the user name.

Click OK.

▼ To Restart the IEP Service Engine and Create the Database Tables
When you restart the IEP Service Engine, the database tables are automatically created in the
database you specified through the connection pools and runtime properties.

If any Composite Application projects that contain event processes are currently deployed,
undeploy the projects.

5

1

2

3

1

2

3

4

5

6

7

8

1

Understanding the IEP Database

Chapter 1 • Designing Intelligent Event Processor (IEP) Projects 65

In the Services window, expand Servers > GlassFish V2 > JBI > Service Engines.

Right-click sun-iep-engine and select Stop.

Right-click sun-iep-engine and select Start.

If you undeployed any Composite Application projects, you can now redeploy the projects.

IEP Service Engine-Specific Database Tables
When you start the IEP Service Engine for the first time, the following tables are created in the
IEP database. These tables apply to the IEP Service Engine as a whole.

Caution – Do not delete or alter these tables.

EMS_PLAN Table
The EMS_PLAN table maintains information about the event processes that are deployed to the
IEP Service Engine. The EMS_PLAN table contains the following columns:
■ ID. An integer that uniquely identifies the event process.
■ INSTANCE_ID. A value that represents the event process.
■ NAME. The name of the event process.
■ CONTENT. The XML content of the event process. The value is displayed in binary format.
■ LAST_ACTIVATION. The last time the event process was started.
■ STATUS. The status of the event process definition. The valid values are started, stopped,

deployed, and undeployed.
■ ENGINE_ID. The ID of the cluster node that is running the event process. If you are not

running IEP in cluster mode, then the value is stand-alone.

EMS_OUTPUT Table
The EMS_OUTPUT table maintains information for event processes that have a Table Output
operator. The EMS_OUTPUT table contains the following columns:
■ PLAN_INSTANCE_ID. The instance ID of the event process that has the Table Output

operator.
■ OUTPUT_NAME. The name of the table.
■ OUTPUT_DESCRIPTION. The description of the table.
■ LAST_UPDATED. The last time the output table was updated.

2

3

4

5

Understanding the IEP Database

Designing Intelligent Event Processor (IEP) Projects • June 200966

EMS_ENGINE Table
The EMS_ENGINE table is used when you are running IEP in cluster mode. The
EMS_ENGINE table contains the following columns:

■ ID. A value that uniquely identifies the IEP instance (instance1, instance2, and so on). If
you are not running IEP in cluster mode, then the value is stand-alone.

■ INSTANCE_LOCATION. The IP address of the computer where the IEP instance is
running.

■ LEASE_EXPIRATION. A timestamp that the cluster nodes use to determine which IEP
instance is active.

EMS_TOKEN Table
The EMS_TOKEN table is used when you are running IEP in cluster mode. The EMS_TOKEN
table contains the following columns:

■ ID. The unique identifier of a token that can be acquired and released by cluster nodes.
■ NAME. The name of a token that can be acquired and released by cluster nodes.

Event Process-Specific Database Tables
When you deploy an event process, the following tables are created in the IEP database. If you
undeploy the event process, then the tables are deleted.

Caution – Do not delete or alter these tables.

EMS_PROCESSING_STATE_N Tables
The EMS_PROCESSING_STATE_N tables are used by the IEP Service Engine to maintain
execution state for an event process. The EMS_PROCESSING_STATE_N tables contain the
following columns:

■ PROCESSING_STATE. The execution state of the event process. The value is displayed in
binary format.

■ PREV_TIMESTAMP_TO_CHECK. A timestamp that the IEP Service Engine uses to
maintain execution state for the event process.

■ PREV_TIMESTAMP_TO_PROCESS. A timestamp that the IEP Service Engine uses to
maintain execution state for the event process.

Understanding the IEP Database

Chapter 1 • Designing Intelligent Event Processor (IEP) Projects 67

EMS_TABLE_USAGE_N Tables
The EMS_TABLE_USAGE_N tables are used in garbage collection. The
EMS_TABLE_USAGE_N tables contain the following columns:

■ TABLE_NAME. The name of a table.
■ USER_ID. The ID of the operator that is using the table.
■ EMS_TIMESTAMP. A timestamp that is used in garbage collection.

Operator-Specific Database Tables
In the IEP Service Engine, one or more tables are created per operator. These tables are specific
to operator behavior and functionality.

Caution – Do not delete or alter these tables.

The following table names illustrate how the names are formatted.

■ Q_0_O0
■ Q_0_O1
■ Q_1_O0
■ Q_1_O1

The first character of the table name is always Q.

The character after the first underscore is the ID of the event processor in the EMS_PLAN table.

The characters after the second underscore are the ID of the operator. You can view the
operator ID in the IEP design view by selecting the operator and displaying the Properties
window.

The operator ID is automatically generated. You cannot change the ID.

Understanding the IEP Database

Designing Intelligent Event Processor (IEP) Projects • June 200968

Configuring Message Reliability in an IEP Module Project
The IEP Service Engine receives messages from and sends messages to other Java Business
Integration (JBI) components. You can configure an IEP Module project for reliability in these
message exchanges. If the system crashes and is subsequently restarted, message loss and
message duplication do not occur.

This feature is supported for any JBI component that supports XA transactions.

You must follow the JBI component's procedure for configuring XA transactions.

Assume that you create an IEP Module project that receives messages from the JMS Binding
Component and sends messages to the JMS Binding Component. To configure message
reliability, set the transaction attribute of the JMS operation element to XATransaction.

The following example shows an input binding in a WSDL document. The transaction
attribute is set to XATransaction.

<binding name="InputBinding"
type="defns:InputPt">

<jms:binding></jms:binding>

<operation name="StreamInput0">
<jms:operation destination="ext_client_publish_IEPCrashAndRecoveryNoBP"

destinationType="Queue"
transaction="XATransaction"

maxConcurrentConsumers="32">
</jms:operation>

<input>

<jms:message textPart="input"
messageType="TextMessage">

</jms:message>

</input>

</operation>

</binding>

The following example shows an output binding in a WSDL document. The transaction
attribute is set to XATransaction.

<binding name="OutputBinding_StreamOutput0"
type="defns:OutputPt_StreamOutput0">

<jms:binding></jms:binding>

<operation name="StreamOutput0">
<jms:operation destination="ext_client_consume_IEPCrashAndRecoveryNoBP"

destinationType="Queue"
transaction="XATransaction"

deliveryMode="PERSISTENT"
disableMessageID="true"
disableMessageTimeStamp="true">

Configuring Message Reliability in an IEP Module Project

Chapter 1 • Designing Intelligent Event Processor (IEP) Projects 69

</jms:operation>

<input>

<jms:message textPart="output"
messageType="TextMessage">

</jms:message>

</input>

</operation>

</binding>

For more information about the JMS Binding Component, see Using the JMS Binding
Component.

You can disable message reliability for outbound messages by editing the Transacted Output
property of the IEP Service Engine.

▼ To Disable Message Reliability for Outbound
Messages

Go to the NetBeans IDE.

In the Services window, right-click the sun-iep-engine node and choose Properties.

Clear the Transacted Output check box.

Click OK.

1

2

3

4

Configuring Message Reliability in an IEP Module Project

Designing Intelligent Event Processor (IEP) Projects • June 200970

Index

A
Attribute Based Window operator, 49-50

B
Batched Stream Output operator, 34

C
CASA Editor, 16, 57
clustering, 66
complex event processing (CEP), 8
connection pool

defined, 61
non XA, 62-63
XA, 63-64

Contiguous Order operator, 46-48
create_iepse_user.sql script, 61

D
data types, 19-20, 53-55
database, IEP, 58-68
Database Schema Name property, 65
Delete Stream operator, 39-40
Distinct operator, 42-43

E
EMS_ENGINE table, 67
EMS_OUTPUT table, 66
EMS_PLAN table, 59, 66
EMS_PROCESSING_STATE_N tables, 67
EMS_TABLE_USAGE_N tables, 68
EMS_TOKEN table, 67
event, defined, 8
event driven architecture, 8
event processors

editing, 13-14
validating, 15

event stream processing (ESP), 8
External Table Polling Stream operator, 28-30

F
File Binding Component, 34

G
Gap Window operator, 48-49

I
IEP Service Engine

Database Schema Name property, 65
Non XA Data Source Name property, 65
Transacted Output property, 70
XA Data Source Name property, 65

71

Insert Stream operator, 40
instance ID, 66
Intelligent Event Processor

about, 8-12
database, 58-68
operators, 17-20
workflow, 12-17

Intersect operator, 43-44
Invoke Stream operator, 35

J
Java DB, 60
JDBC resource

defined, 61
non XA, 63
XA, 64-65

L
last activation, 66

M
message reliability, 69-70
Minus operator, 44-45

N
Non XA Data Source Name property, 65
Normalized Message Router, 10
Notification Stream operator, 41

O
ojdbc14.jar file, 62
operator ID, 68
operators

Attribute Based Window, 49-50
Batched Stream Output, 34

operators (Continued)
Continuous Order, 46-48
Delete Stream, 39-40
Distinct, 42-43
External Table Polling Stream, 28-30
Gap Window, 48-49
Insert Stream, 40
Intersect, 43-44
Invoke Stream, 35
Minus, 44-45
Notification Stream, 41
Partitioned Window, 50-51
Relation Aggregator, 21
Relation Map, 24-25
Relation Output, 36
Relation Stream, 42
Replay Stream, 30-32
Save Stream, 36-38
Stream Input, 32-33
Stream Output, 38
Stream Projection and Filter, 25-27
Table Input, 33-34
Table Output, 39
Time Based Aggregator, 22-23
Time Based Window, 51-52
Tuple Based Aggregator, 23-24
Tuple Based Window, 52
Tuple Serial Correlation, 28
Union, 45
Union All, 45-46

Oracle Database
driver, 62
supported versions, 60

P
Partitioned Window operator, 50-51
performance, improving, 34
Preserve Last Fetched Record, 30
processing state, 67
project, creating, 12-13
project.properties file, 15, 58

Index

Designing Intelligent Event Processor (IEP) Projects • June 200972

Q
Q tables, 68

R
relation, defined, 18-19
Relation Aggregator operator, 21
Relation Map operator, 24-25
Relation Output operator, 36
Relation Stream operator, 42
Replay Stream operator, 30-32
RFID scenario, 9

S
Save Stream operator, 36-38
Scale column, 20
scenarios, typical, 9
schema, defined, 17
Size column, 20
SQL statements, 11
stream, defined, 18
Stream Input operator, 32-33
Stream Output operator, 38
Stream Projection and Filter operator, 25-27

T
Table Input operator, 33-34
Table Output operator, 39
target namespace, 53
Time Based Aggregator operator, 22-23
Time Based Window operator, 51-52
Transacted Output property, 70
Tuple Based Aggregator operator, 23-24
Tuple Based Window operator, 52
Tuple Serial Correlation operator, 28

U
Union All operator, 45-46

Union operator, 45
user, IEP, 61

V
validating, 15

W
window, defined, 8
workflow, 12-17
WSDL documents

bindings, 56-58
data types, 53-55
message objects, 55-56
services, 56-58

X
XA Data Source Name property, 65

Index

73

74

	Designing Intelligent Event Processor (IEP) Projects
	Designing Intelligent Event Processor (IEP) Projects
	Intelligent Event Processor Overview
	Complex Event Processing and Event Stream Processing
	Typical IEP Scenarios
	IEP Architecture
	IEP Design-Time and Runtime Components

	Basic Workflow
	Creating an Intelligent Event Processing Module Project
	To Create an Intelligent Event Processing Module Project
	To Add an Event Processor to the Project

	Adding and Configuring IEP Operators
	To Add IEP Operators to an Event Processor
	To Configure IEP Operators in an Event Processor

	Disabling the Generation of Bindings and Services
	To Disable the Generation of Bindings and Services

	Validating Event Processors
	To Validate Event Processors

	Creating and Deploying the Composite Application Project
	To Create a Composite Application Project
	To Add the IEP Module Project to the Composite Application Project
	To Define the Binding Components and Connections
	To Deploy the Composite Application Project

	Introduction to IEP Operators
	Understanding Schemas
	Understanding Streams
	Understanding Relations
	Supported Data Types
	IEP Operator Inputs and Outputs

	Aggregator Operators
	Relation Aggregator
	To Create a Relation Aggregator Operator

	Time Based Aggregator
	To Create a Time Based Aggregator Operator

	Tuple Based Aggregator
	To Create a Tuple Based Aggregator Operator

	Correlation and Filter Operators
	Relation Map
	To Create a Relation Map Operator

	Stream Projection and Filter
	To Create a Stream Projection and Filter Operator

	Tuple Serial Correlation
	To Create a Tuple Serial Correlation Operator

	Input Operators
	External Table Polling Stream
	To Create an External Table Polling Stream Operator

	Replay Stream
	To Create a Replay Stream Operator

	Stream Input
	To Create a Stream Input Operator

	Table Input
	To Create a Table Input Operator

	Output Operators
	Batched Stream Output
	To Create a Batched Stream Output Operator

	Invoke Stream
	To Create an Invoke Stream Operator

	Relation Output
	To Create a Relation Output Operator

	Save Stream
	To Enable the Save Stream Operator Dynamically at Runtime
	To Disable the Save Stream Operator Dynamically at Runtime

	Stream Output
	To Create a Stream Output Operator

	Table Output
	To Create a Table Output Operator

	Relation Converter Operators
	Delete Stream
	To Create a Delete Stream Operator

	Insert Stream
	To Create an Insert Stream Operator

	Notification Stream
	To Create a Notification Stream Operator

	Relation Stream
	To Create a Relation Stream Operator

	Relation Operators
	Distinct
	To Create a Distinct Operator

	Intersect
	To Create an Intersect Operator

	Minus
	To Create a Minus Operator

	Union
	To Create a Union Operator

	Union All
	To Create a Union All Operator

	Sequence Operators
	Contiguous Order
	To Create a Contiguous Order Operator:

	Gap Window
	To Create a Gap Window Operator:

	Stream Converter Operators
	Attribute Based Window
	To Create an Attribute Based Window Operator

	Partitioned Window
	To Create a Partitioned Window Operator

	Time Based Window
	To Create a Time Based Window Operator

	Tuple Based Window
	To Create a Tuple Based Window Operator

	WSDL Documents in IEP Module Projects
	Data Types in the WSDL Document
	Message Objects in the WSDL Document
	Bindings and Services in the WSDL Document
	Generating Concrete WSDL Documents
	Generating Abstract WSDL Documents
	To Generate Abstract WSDL Documents

	Understanding the IEP Database
	Configuring the IEP Database to Use Oracle
	To Create the IEP User in the Oracle Database
	To Install the Oracle Database Driver in the Application Server
	To Create the Non-XA Connection Pool
	To Create the Non-XA JDBC Resource
	To Create the XA Connection Pool
	To Create the XA JDBC Resource
	To Enable Automatic Recovery of XA Transactions
	To Configure the IEP Service Engine to Use the JDBC Resources
	To Restart the IEP Service Engine and Create the Database Tables

	IEP Service Engine-Specific Database Tables
	EMS_PLAN Table
	EMS_OUTPUT Table
	EMS_ENGINE Table
	EMS_TOKEN Table

	Event Process-Specific Database Tables
	EMS_PROCESSING_STATE_N Tables
	EMS_TABLE_USAGE_N Tables

	Operator-Specific Database Tables

	Configuring Message Reliability in an IEP Module Project
	To Disable Message Reliability for Outbound Messages

	Index

