
Understanding the XSLT
Designer

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 821–0234
June 2009

Copyright 2009 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In particular, and without
limitation, these intellectual property rights may include one or more U.S. patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights – Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions
of the FAR and its supplements.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other
countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, the Solaris logo, the Java Coffee Cup logo, docs.sun.com, Java, and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and SunTM Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts
of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to
the Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN LOOK GUIs and otherwise comply with Sun's written license
agreements.

Products covered by and information contained in this publication are controlled by U.S. Export Control laws and may be subject to the export or import laws in
other countries. Nuclear, missile, chemical or biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export
or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied persons and specially
designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

090711@22510

Contents

XSLT Designer: Simple Transformation Tutorial ... 5
Overview ..5

Prerequisites ..5
System Requirements ...6
Software Requirements ..6

Configuring the Tutorial Environment ...7
Creating the XSLT Module Project ...7

▼ To create a new XSLT Module Project: ...7
Creating XML Schemas ...8

▼ To create the XML Schema for the incoming message: ..9
▼ To create the XML Schema for the outgoing message: .. 10

Creating a WSDL File .. 11
▼ To create a WSDL file: ... 11

Creating an XSLT Service ... 13
▼ To create and XSLT Service: .. 13
▼ To populate the XSL stylesheet: .. 14

Creating and Deploying the Composite Application .. 15
▼ To create a Composite Application project: ... 15
▼ To add a JBI module: ... 16
▼ To deploy the HelloXSLTCAP Composite Application: ... 17

Performing a Test Run of the XSL Transformation Service ... 17
▼ To create a test case: ... 17
▼ To perform a test run: .. 19

3

4

XSLT Designer: Simple Transformation Tutorial

The list below comprises the subjects covered in this topic:

■ “Overview” on page 5
■ “Configuring the Tutorial Environment” on page 7
■ “Creating the XSLT Module Project” on page 7
■ “Creating XML Schemas” on page 8
■ “Creating a WSDL File” on page 11
■ “Creating and Deploying the Composite Application” on page 15
■ “Performing a Test Run of the XSL Transformation Service” on page 17

Overview
In this tutorial you become acquainted with the XSLT Service Designer, which is part of the
OpenESB software package. The XSLT Designer is used to develop, deploy and test XSL
Transformation Services.

An XSL Transformation Service acts as a web service. It receives messages from a client,
transforms them, and either sends the messages back to the originator or forwards them to
another web service.

In this tutorial you create a simple XSL Transformation Service that receives a message,
transforms it, and sends it back to the calling web service.

Prerequisites
This tutorial assumes that you have some basic knowledge of, or programming experience with,
the NetBeans IDE, and some experience with XSLT.

5

System Requirements
This tutorial assumes that your system meets the following minimum requirements:

OS / Platform

SolarisTM SPARC 9,10

Solaris x86 9, 10

For Solaris 9, you should install the appropriate Solaris
Patch Cluster

Linux Open ESB was tested on the following Linux
platforms. Other Linux platforms might be suitable as
well:
■ Red Hat Linux AS 3.0
■ Red Hat Linux AS 4.0
■ JDS Release 3 (x86|)
■ JDS Release 3 32–bit (Opteron)

Windows 2000 Server

Windows 2003 Server

Windows XP

For all Windows platforms, the PATH environment
variable setting should contain the Java Runtime
Environment directory path.

If you are using the JAVA_HOME environment
variable, it should point to a Java 2 Platform, Standard
Edition 5 (J2SE 5) installation.

Application Server

Sun Java Systems Application Server 9.0 PE

Equivalent application server available from Project
GlassFish

When installing an application server, make sure you
also create an application server domain that will be
used by Open ESB

J2SE

J2SE 5

Memory

750 MB disk space

Recommend 1 GB or greater RAM

Disk space includes space required to download,
unzip and install Open ESB.

Software Requirements
To run this tutorial, download and install the following software:

■ Latest GlassFish ESB build

Overview

Understanding the XSLT Designer • June 20096

https://open-esb.dev.java.net/Downloads.html

Note – Because the OpenESB project is currently in active development, there may be minor
inconsistencies between later builds and this tutorial. If you have any corrections or updates,
please send them to us through the OpenESB Documentation Feedback Form

Configuring the Tutorial Environment
Perform the following steps to confirm that GlassFish V2 Application Server is installed and
that the JBI runtime contains the XSLT Service Engine and Transform Shared Library required
for this tutorial:

1. Open the Services window.
2. Expand the Servers node.
3. Right-click the GlassFish V2 node and choose Start form the pop-up menu.

If the Start option is not available and there is a green “badge” next to the GlassFish V2
node, that means the server is already running.

4. After the server is started, expand the GlassFish V2 > JBI node. Then expand the Shared
Libraries node to verify that sun-wsdl-ext-library is installed.

Creating the XSLT Module Project
An XSL Transformation Service is created within an XSLT Module project.

▼ To create a new XSLT Module Project:
From the IDE's main menu, choose File > New Project.

Under Categories select SOA.

Under Projects, select XSLT Module.

1

2

3

Creating the XSLT Module Project

XSLT Designer: Simple Transformation Tutorial 7

https://open-esb.dev.java.net/DocumentFeedback.html

Click Next.

In the Project Name field, type HelloXSLTransformation .

Modify the project location, or accept the default.

Click Finish.

The Projects window now contains the HelloXSLTransformation project node.

Expand the HelloXSLTransformation > Transformation Files node. Note that the
transformmap.xml file was created, which is a custom configuration file used to define
transformation processes.

In the next steps you create two XML Schema (.xsd) files, a web service description (.wsdl) file
and an XSL stylesheet (.xsl) file. To run an XSL Transformation Service, you need at least one
XML Schema, one WSDL file and one XSL stylesheet. For the purpose of this tutorial, you create
two XML Schemas.

Creating XML Schemas
In this step you are going to create two XML Schema filea: HelloXSLTIncoming.xsd as a basis
for the incoming message, and HelloXSLTOutgoing.xsd as a basis for the outgoing message.

4

5

6

7

8

9

Creating XML Schemas

Understanding the XSLT Designer • June 20098

▼ To create the XML Schema for the incoming message:
In the Projects window, right-click the HelloXSLTransformation > Transformation Files

node and choose New > XML Schema.

In the File Name field, type HelloXSLTIncoming.

Click Finish. A new node—HelloXSLTIncoming.xsd—appears under the Transformation
Filesnode in your HelloXSLTransformation project and the new Schema opens in the XML
Schema Editor.

In the first column of the Schema view, right-click Elements and choose Add Element from the
pop-up menu. The Add Element dialog box opens.

In the Name field, type name.

Under Type, select the Use Existing Type radio button.

Expand the Built-in Types node and select string, and click OK.

1

2

3

4

5

6

7

Creating XML Schemas

XSLT Designer: Simple Transformation Tutorial 9

To view the source of the Schema you created, click the Source button on the XML Schema Editor
toolbar. You should see the following code:
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://xml.netbeans.org/schema/HelloXSLTIncoming"
xmlns:tns="http://xml.netbeans.org/schema/HelloXSLTIncoming"
elementFormDefault="qualified">

<xsd:element name="name" type="xsd:string"></xsd:element>
</xsd:schema>

▼ To create the XML Schema for the outgoing message:
In the Projects window, right-click the HelloXSLTransformation > Transformation Files

node and choose New > XML Schema.

In the File Name field, type HelloXSLTOutgoing.

Click Finish. A new node—HelloXSLTOutgoing.xsd—appears under the Transformation
Filesnode in your HelloXSLTransformation project and the new Schema opens in the XML
Schema Editor.

In the first column of the Schema view, right-click Elements and choose Add Element from the
pop-up menu. The Element dialog box opens.

In the Name field, type greeting.

Under Type, select the Use Existing Type radio button.

8

1

2

3

4

5

6

Creating XML Schemas

Understanding the XSLT Designer • June 200910

Expand the Built-in Types node, select string and click OK.

To view the source of the Schema you created, click the Source button on the XML Schema Editor
toolbar. You should see the following code:
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://xml.netbeans.org/schema/HelloXSLTOutgoing"
xmlns:tns="http://xml.netbeans.org/schema/HelloXSLTOutgoing"
elementFormDefault="qualified">

<xsd:element name="greeting" type="xsd:string"></xsd:element>
</xsd:schema>

Click the Save All button on the toolbar.
You should see two Schema files listed under the Transformation Files node in your
HelloXSLTransformation project.

Creating a WSDL File
In this step you create a web service description file that defines the web interface of our XSLT
Service.

▼ To create a WSDL file:
In the Projects window, right-click the HelloXSLTransformation > Transformation Files

node and choose New > WSDL Document.

In the File Name field, type HelloXSLTWSDL.

Select Concrete WSDL Document as the WSDL type.

Select SOAP from the Binding drop-down list, and Document Literal from the Type drop-down
list, then click Next.

The Abstract Configuration window will open. Under Input, in the Element Or Type column, click
the ellipsis (...) button. The Select Element Or Type dialog box opens.

Scroll up and select By File > HelloXSLTransformation > src/HelloXSLTIncoming.xsd >

Elements > name and click OK.

7

8

9

1

2

3

4

5

6

Creating a WSDL File

XSLT Designer: Simple Transformation Tutorial 11

Under Output, in the Element Or Type column, click the ellipsis (...) button. The Select Element
Or Type dialog box opens.

Select By File > HelloXSLTransformation > src/HelloXSLTOutgoing.xsd > Elements >

greeting and click OK.

Click Next.

On the Concrete Configuration page review the values and click Finish. You should see the
HelloXSLTWSDL.wsdl file listed under the Transformation Files node in your
HelloXSLTransformation project.

Note – Creating and editing WSDL files is not covered in this tutorial. For detailed information
on the WSDL Editor in the NetBeans IDE, see Developer Guide to the WSDL Editor.

7

8

9

10

Creating a WSDL File

Understanding the XSLT Designer • June 200912

http://www.netbeans.org/kb/60/websvc/wsdl-guide.html

Creating an XSLT Service
In this step, you will create a simple request-reply XSLT service, which is a web service that
receives input messages, transforms them in accordance with an XSL stylesheet, and sends them
back.

▼ To create and XSLT Service:
In the Projects window, right-click the HelloXSLTransformation > Transformation Files

node and choose New > XSLT Service.

In the Service Type window, ensure that the Request-Reply Service radio button is selected and
click Next.

In the next step, enter HelloXSLTServiceas the service name and click Choose to select
Operation for the service.

In the TransformMap Service Parameters window, expand the upper node with the target
namespace until you see the operation, select HelloXSLTWSDLOperation and click Next.

1

2

3

4

Creating an XSLT Service

XSLT Designer: Simple Transformation Tutorial 13

Click Finish. The HelloXSLTService.xslfile opens in the XSLT Editor, where you can only view
and edit the source code.
Now you need to populate the XSL stylesheet with the transformation rules. The XSL stylesheet
defines how to transform the input XML document. In this version of the XSLT Designer, you
can only edit the source code in the Source view.

▼ To populate the XSL stylesheet:
Open the HelloXSLTService.xslfile and type in the following code:
<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.

xmlns:ns1="http://xml.netbeans.org/schema/HelloXSLTIncoming

xmlns:ns="http://xml.netbeans.org/schema/HelloXSLTOutgoing"

<xsl:template match="/">

<xsl:element name="ns:greeting">

5

1

Creating an XSLT Service

Understanding the XSLT Designer • June 200914

<xsl:value-of select="concat('Hello ', /ns1:name)"/>

</xsl:element>

</xsl:template>

</xsl:stylesheet>

Press the Validate File () button on the toolbar to ensure that the code has no errors.

Right-click the HelloXSLTransformationnode and choose Clean and Build from the
drop-down menu to build the project. You should see the BUILD SUCCESSFULmessage after
building the project completes.

Creating and Deploying the Composite Application
An XSLT project is not directly deployable. You must first add an XSLT project as a JBI module
to a Composite Application project before you can deploy the Composite Application project.
Deploying the project makes the service assembly available to the application server as a JBI
service unit. After deployment, you will be able to perform a test run of your XSLT service.

▼ To create a Composite Application project:
Choose File > New Project from the main menu.

Under Categories, select SOA.

Under Projects, select Composite Application. Click Next.

In the Project Name field, type HelloXSLTCAP.

Specify a project location or accept the default.

Click Finish.

The Projects window now contains the HelloXSLTCAPproject node.

2

3

1

2

3

4

5

6

7

Creating and Deploying the Composite Application

XSLT Designer: Simple Transformation Tutorial 15

▼ To add a JBI module:
Right-click the HelloXSLTCAP node and choose Add JBI Module from the pop-up menu.

Select the HelloXSLTransformation project and click Add Project Jar Files.

To verify that the JBI module has been added, expand HelloXSLTCAP > JBI Modules.

1

2

3

Creating and Deploying the Composite Application

Understanding the XSLT Designer • June 200916

▼ To deploy the HelloXSLTCAP Composite Application:
In the Projects window, right-click the HelloXSLTCAP node and choose Deploy Project from the
pop-up menu. This operation might take a while because the GlassFish V2 Application Server
starts.
Note: If the Warning - Select Server dialog box appears, select Sun Java System Application
Server 9 and click OK.

In the Output window that opens in the lower part of the IDE, watch for the BUILD SUCCESSFUL
message.

To verify that the project has been deployed, expand Sun Java System Application Server 9

> JBI > Service Assemblies in the Runtime window. You should see the HelloXSLTCAP node.

Performing a Test Run of the XSL Transformation Service
Testing an XSL Transformation Service means sending a message that the Service is expecting
and receiving, in this case, a reply message.

Before we can perform the testing, we must create a test case.

▼ To create a test case:
In the Projects window, expand the HelloXSLTCAP node and right-click the Testnode.

From the pop-up menu, select New Test Case.

In the Test Case Name field, type JohnSmith. Click Next.

1

2

3

1

2

3

Performing a Test Run of the XSL Transformation Service

XSLT Designer: Simple Transformation Tutorial 17

Under Select the WSDL Document, expand HelloXSLTransformation - XSLT Process Files

and select HelloXSLTWSDL.wsdl. Click Next.

Under Select the Operation to Test, expand HelloXSLTWSDLBinding and select
HelloXSLTWSDLOperation. Click Finish.

The JohnSmith node appears under HelloXSLTCAP > Test and the input message
file—Input.xml—opens in the editor.

In the Input.xml, modify the
<hel:name>?string?</hel:name>

line to

<hel:name>John Smith</hel:name>

The Input.xml file should be:

<soapenv:Envelope xsi:schemaLocation=

"http://schemas.xmlsoap.org/soap/envelope/ http://schemas.xmlsoap.org/

soap/envelope/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:soapenv=

"http://schemas.xmlsoap.org/soap/envelope/"
xmlns:hel="http://xml.netbeans.org/schema/HelloXSLTIncoming">

<soapenv:Body>

<hel:name>John Smith</hel:name>

</soapenv:Body>

</soapenv:Envelope>

4

5

6

7

Performing a Test Run of the XSL Transformation Service

Understanding the XSLT Designer • June 200918

Click the Save All button on the toolbar.
The Output node under the test case node refers to the expected reply message that is used for
comparison with the actual reply messages. Before we run the test for the first time, the
Output.xml file is empty. The first test run will populate Output.xml with the real output.
Subsequent test runs will compare the real output against the content of Output.xml

▼ To perform a test run:
Right-click the JohnSmithnode and select Run. Notice that the test fails and the following
dialog box appears:

Click Yes. Notice that the failed test node appears below the Outputnode.

Double-click the failed test node to see the message that the XSL Transformation Service sent
back:
<?xml version="1.0" encoding="UTF-8"?>

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance" xsi:schemaLocation="http://schemas.xmlsoap.org/soap/envelope/
http://schemas.xmlsoap.org/soap/envelope/" xmlns:ns="http://xml.netbeans.org/
schema/HelloXSLTOutgoing">

<SOAP-ENV:Header/>

<SOAP-ENV:Body>

8

1

2

3

Performing a Test Run of the XSL Transformation Service

XSLT Designer: Simple Transformation Tutorial 19

<ns:greeting xmlns:ns="http://xml.netbeans.org/schema/
HelloXSLTOutgoing">Hello John Smith</ns:greeting>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Notice the line

<ns:greeting xmlns:ns="http://xml.netbeans.org/schema/HelloXSLTOutgoing">Hello John Smith</ns:greeting>

The XSL Transformation Service received the name, concatenated it with the string 'Hello' and
sent the reply message.

Run the test again. The test is marked as passed.

You have successfully created, deployed and tested an XSL Transformation Service.

Now that you have successfully created the Request-Reply XSL Transformation Service,
continue with the Service Bridge type.

4

Performing a Test Run of the XSL Transformation Service

Understanding the XSLT Designer • June 200920

	Understanding the XSLT Designer
	XSLT Designer: Simple Transformation Tutorial
	Overview
	Prerequisites
	System Requirements
	Software Requirements

	Configuring the Tutorial Environment
	Creating the XSLT Module Project
	To create a new XSLT Module Project:

	Creating XML Schemas
	To create the XML Schema for the incoming message:
	To create the XML Schema for the outgoing message:

	Creating a WSDL File
	To create a WSDL file:

	Creating an XSLT Service
	To create and XSLT Service:
	To populate the XSL stylesheet:

	Creating and Deploying the Composite Application
	To create a Composite Application project:
	To add a JBI module:
	To deploy the HelloXSLTCAP Composite Application:

	Performing a Test Run of the XSL Transformation Service
	To create a test case:
	To perform a test run:

