
Using the Java EE Service Engine
to Create a Composite
Application

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 821–0236
June 2009

Copyright 2009 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In particular, and without
limitation, these intellectual property rights may include one or more U.S. patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights – Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions
of the FAR and its supplements.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other
countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, the Solaris logo, the Java Coffee Cup logo, docs.sun.com, Java, and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. or its subsidiaries in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of
SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and SunTM Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts
of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to
the Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN LOOK GUIs and otherwise comply with Sun's written license
agreements.

Products covered by and information contained in this publication are controlled by U.S. Export Control laws and may be subject to the export or import laws in
other countries. Nuclear, missile, chemical or biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export
or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied persons and specially
designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

090702@22510

Contents

Using the Java EE Service Engine to Create a Composite Application .. 5
Tutorial Requirements ...6

Prerequisites ..6
System Requirements ...6

Tutorial Scenario ..6
Configuring the Tutorial Environment ...7

Starting the GlassFish Software ...7
▼ To Check the Status of the GlassFish V2 Application Server in the NetBeans IDE7
▼ To Register the GlassFish V2 Application Server with the NetBeans IDE8
▼ To Start the GlassFish V2 Application Server in the NetBeans IDE ...8

Enabling the JBI Framework ...9
Creating an EJB Module Project ...9

▼ To Create the EJB Module Project ..9
▼ To Create a WSDL Document .. 12
▼ To Create a Web Service from WSDL ... 15
▼ To Clean and Build the EJB Module Project ... 19

Creating a Composite Application Project ... 19
▼ To Create a Composite Application Project ... 19

Building and Deploying the Composite Application Project .. 22
▼ To Build and Deploy the Composite Application .. 22

Testing the Composite Application .. 23
▼ To Add a Test Case ... 23
▼ To Run the Test Case ... 26

Summary .. 27

3

4

Using the Java EE Service Engine to Create a
Composite Application

This tutorial is designed to showcase the Java EE Service Engine's functionality. This example is
designed to show how the Java EE Service Engine implements a Web Service from a WSDL file
accessing it through the HTTP Binding Component.

We will create a Composite Application so that Java EE SE will be used in the service and we will
then run a test case to test our service. This tutorial also uses the features of the HTTP Binding
Component.

What You Need to Know

These topics provide information you need to know before you start the tutorial:

■ “Tutorial Requirements” on page 6
■ “Tutorial Scenario” on page 6

What You Need to Do

This tutorial includes instructions on how to perform these tasks:

■ “Configuring the Tutorial Environment” on page 7
■ “Starting the GlassFish Software” on page 7
■ “Enabling the JBI Framework” on page 9
■ “Creating a Composite Application Project” on page 19
■ “Building and Deploying the Composite Application Project” on page 22
■ “Testing the Composite Application” on page 23

5

Tutorial Requirements
Before you proceed, make sure you review the requirements in this section.

Prerequisites
This tutorial assumes that you have some basic programming experience with the Java language
and platform, and knowledge of the NetBeans IDE.

System Requirements
This tutorial assumes that your system meets the requirements specified in the System
Requirements topic of the NetBeans IDE 6.1 Release Notes. NetBeans IDE runs on operating
systems that support the Java VM (Virtual Machine).

Tutorial Scenario
The following sample illustrates how Java EE Service Engine implements a Web Service from
WSDL.

Tutorial Requirements

Using the Java EE Service Engine to Create a Composite Application • June 20096

http://www.netbeans.org/community/releases/61/relnotes.html

Configuring the Tutorial Environment
Before you deploy your composite application, the application server and the appropriate JBI
components must be configured correctly and must be running.

The following software is required for this tutorial:
■ GlassFish ESB (Installation Instructions) includes the following:

■ GlassFish V2 Update Release 2 (UR2)
■ NetBeans IDE 6.1
■ Open ESB core components
■ Java Business Integration (JBI) service engines
■ Java Business Integration (JBI) binding components
■ Java Business Integration (JBI) component tooling

■ JDK (Java Development Kit) 6

Note – Glassfish ESB installer installs all the components including NetBeans IDE. To download
only the NetBeans IDE, see NetBeans IDE Download.

Note – You must have the JDK (Java Development Kit) software installed and JAVA_HOME set
as an environment variable, prior to installing the GlassFish ESB or the installation will halt
midway. See Installing the JDK Software and Setting JAVA_HOME for details.

Starting the GlassFish Software
The Java EE Service Engine starts together with GlassFish. Before deploying and performing
test runs of a Composite Application project in the NetBeans IDE, make sure that the GlassFish
Application Server is started.

▼ To Check the Status of the GlassFish V2 Application
Server in the NetBeans IDE
If the Services window is not visible, on the NetBeans IDE menubar choose Window →
Services.

In the Services window, expand the Serversnode.
The Servers node should contain a GlassFish V2 subnode. If the GlassFish V2 node is not
visible, see “To Register the GlassFish V2 Application Server with the NetBeans IDE” on
page 8.

1

2

Configuring the Tutorial Environment

Using the Java EE Service Engine to Create a Composite Application 7

https://open-esb.dev.java.net/Downloads.html
http://wiki.open-esb.java.net/Wiki.jsp?page=UsingTheGlassFishESBInstallationGUI
http://java.sun.com/javase/downloads/index.jsp
http://www.netbeans.org/downloads/
http://wiki.open-esb.java.net/Wiki.jsp?page=Inst_jdk_javahome_t.txt

If a green arrow icon appears on the GlassFish V2 node, the server is running. If no green
arrow icon appears, see “To Start the GlassFish V2 Application Server in the NetBeans IDE” on
page 8.

▼ To Register the GlassFish V2 Application Server with
the NetBeans IDE

If the Services window is not visible, on the NetBeans IDE menubar choose Window→ Services.

In the Services window, right-click the Servers node and choose Add Server from the pop-up
menu.

The Add Server Instance dialog box opens.

In the Choose Server page of the dialog box, select GlassFish V2 from the Server drop-down list.

If you want to change the server name that the IDE uses to identify the server, type it in the
Name field.

Click Next .

The Platform Location Folder page opens.

In the Platform Location field, click Browse and select the installation location of the application
server.

Select the Register Local Default Domain option and click Next.

Type the user name and password for the domain's administrator.

If you accepted the default values during the installation, the user name is admin and the
password is adminadmin.

Click Finish.

▼ To Start the GlassFish V2 Application Server in the
NetBeans IDE

On the NetBeans IDE page, in the Services window, right-click the GlassFish V2 node and
choose Start.

1

2

3

4

5

6

7

8

9

1

Configuring the Tutorial Environment

Using the Java EE Service Engine to Create a Composite Application • June 20098

Wait until the following message appears in the Output window:

"Application server startup complete."

When the server is running, the IDE displays a green arrow icon on the GlassFish V2 node.

The Java EE Service Engineis represented as sun-javaee-engine in the Services window of the
IDE, under the GlassFish V2→JBI→Service Engines nodes.

Enabling the JBI Framework
In some cases, you might have to enable the JBI framework to deploy a Java EE Service Engine
component. The following command enables the JBI framework:

asadmin enable --user adminuser JBIFramework

Creating an EJB Module Project
In this section you will create a new EJB module project called Hello. You will also create a
WSDL document, a web service and then clean and build the EJB module project.

▼ To Create the EJB Module Project
From the NetBeans IDE's main menu, choose File→ New Project.

The New Project wizard opens.

In the Categories list, select the Enterprise node and in the Projects list select EJB Module.

2

1

2

Creating an EJB Module Project

Using the Java EE Service Engine to Create a Composite Application 9

Click Next.

In the Project Name field, type Hello.

You may choose to change the Project Location or use the default location.

3

4

Creating an EJB Module Project

Using the Java EE Service Engine to Create a Composite Application • June 200910

Click Next.

In the Server field select your server and in Java EE Version field select the appropriate version.

5

6

Creating an EJB Module Project

Using the Java EE Service Engine to Create a Composite Application 11

Click Finish.

The Projects window now contains a node for a EJB Module project called Hello.

▼ To Create a WSDL Document
In the Projects window of the IDE, right-click the Hello node and choose New→ WSDL Document.

In the File Name field type HelloWSDL.

In the WSDL Type, select the Concrete WSDL Document option.

In the Binding field, select SOAP and in the Type field, select RPC Literal.

7

1

2

3

4

Creating an EJB Module Project

Using the Java EE Service Engine to Create a Composite Application • June 200912

Click Next.

On the Abstract Configuration page, in Input, under the Message Part Name double-click Part1
and change the value to in and press Return.

Doing the same way in Output, change Part2 to outunder Message Part Name and press
Return.

5

6

7

Creating an EJB Module Project

Using the Java EE Service Engine to Create a Composite Application 13

Click Next.

Choose the defaults and click Finish on the Concrete Configuration page.

8

9

Creating an EJB Module Project

Using the Java EE Service Engine to Create a Composite Application • June 200914

▼ To Create a Web Service from WSDL
In the Projects window of the IDE, right-click the Hellonode and choose New→ Other.

In the Categories list select Web Services and in File Types select Web Service from WSDL.

1

2

Creating an EJB Module Project

Using the Java EE Service Engine to Create a Composite Application 15

Click Next.

Type the Web Service Name as HelloWebWSDL and the Package name as Hello1.

3

4

Creating an EJB Module Project

Using the Java EE Service Engine to Create a Composite Application • June 200916

Click the Browse button to select local WSDL file or the WSDL URL and then click Open.5

Creating an EJB Module Project

Using the Java EE Service Engine to Create a Composite Application 17

Note – This WSDL File or the WSDL URL is located in the NetBeans Projects folder. For
example: C:\Documents and Settings\Administrator\My

Documents\NetBeansProjects\Hello\src\java This path is valid if you have used the default
project location while creating the EJB module project.

Click Finish.

Click the Source button and add the following line to the public class.

return "Java EE Service Engine" + in;

From the NetBeans IDE toolbar click Save All button.

6

7

8

Creating an EJB Module Project

Using the Java EE Service Engine to Create a Composite Application • June 200918

▼ To Clean and Build the EJB Module Project
In the Projects window right-click the Hello node and choose Clean and Build.

When the build is complete the Output window reports BUILD SUCCESSFUL.

If the Output window is not visible, choose Window → Output → Output.

Creating a Composite Application Project
A EJB Module project is not directly deployable. You must first add a EJB Module project, as a
JBI module, to a Composite Application project. You can then deploy the Composite
Application project. Deploying the project makes the service assembly available to the
application server and enables its service units to run.

▼ To Create a Composite Application Project
From the NetBeans IDE's main menu, choose File→ New Project.

The New Project wizard opens.

In the Categories list, select the SOA node and in the Projects list select Composite Application
.

●

1

2

Creating a Composite Application Project

Using the Java EE Service Engine to Create a Composite Application 19

Click Next.

In the Name and Location page, change the project name to HelloCompositeApp, and specify
the location of project files or just use the default location.

3

4

Creating a Composite Application Project

Using the Java EE Service Engine to Create a Composite Application • June 200920

Leave the Set as Main Project option selected and click Finish.

To add the EJB Module as a JBI module to the Composite Application project, right-click
HelloCompositeApp and choose Add JBI Module.

The Select Project dialog box opens.

Select the Helloproject you created earlier and select dist/Hello.jar under Project JAR Files
and click Add Project JAR Files button.

5

6

7

Creating a Composite Application Project

Using the Java EE Service Engine to Create a Composite Application 21

The Select Project dialog box closes and the Hello.jar file is added to the JBI Modules node of
the HelloCompositeApp Composite Application in the Projects window.

Building and Deploying the Composite Application Project
Deploying the project makes the service assembly available to the application server, which
allows its service units to run. Before you deploy the EJB Module project, you must add the JBI
module to the deployment project.

▼ To Build and Deploy the Composite Application
Right-click the HelloCompositeApp node, and choose Build from the pop-up menu.

When the build is complete the Output window reports BUILD SUCCESSFUL.

Right-click the HelloCompositeApp node, and choose Deploy.

Deployment is successful when you see the BUILD SUCCESSFUL message in the build.xml (run)
tab of the Output window.

Open the Services window of the IDE and expand Servers→ GlassFish V2→ JBI→ Service

Assemblies to see your new deployed Service Assembly.

1

2

3

Building and Deploying the Composite Application Project

Using the Java EE Service Engine to Create a Composite Application • June 200922

If you do not see the deployed project, right-click the Service Assemblies node and choose
Refresh.

Testing the Composite Application
You can enhance the Composite Application project by adding test cases, binding to the
operation, supplying input, and then using the Tester. You have to first add a test case and then
run the test case.

▼ To Add a Test Case
In the Projects window of the IDE, expand the HelloCompositeApp project node, right-click the
Test node, and choose New Test Case from the pop-up menu.
The New Test Case wizard opens.

Accept the default test case name, TestCase1, and click Next.

From the Select the WSDL Document page, expand the Hello - Hello, src , java nodes, and
select HelloWSDL.wsdl.

1

2

3

Testing the Composite Application

Using the Java EE Service Engine to Create a Composite Application 23

Click Next.

From the Select the Operation to Test page, select HelloWSDLOperation and click Finish.

4

5

Testing the Composite Application

Using the Java EE Service Engine to Create a Composite Application • June 200924

A new TestCase1 node is added under the project's Test node in the Projects window,
containing two subnodes, Input and Output.

The Source Editor appears containing the Input file, Input.xml

Note – If the Source Editor does not contain a tab for Input.xml, double-click the Input node in
the Projects window to open the file.

From the Input.xml tab of the Source Editor, locate the line:

<in>?string?</ in>

Replace the string ?string? with Hello Application, so that it appears as:

<in> Hello Application</ in>

6

7

Testing the Composite Application

Using the Java EE Service Engine to Create a Composite Application 25

From the NetBeans IDE toolbar, click the Save All button.

▼ To Run the Test Case
In the Projects window, expand the HelloCompositeApp→ Test→ TestCase1nodes,
right-click TestCase1 for the specific test case, and then choose Run.

In the Output window the first run correctly reports that it failed. This happens because the
output produced does not match the (empty) Output.xml file, and the file's null content is
replaced with the output of the first run.

When the Overwrite Empty Output dialog box appears, click Yes to accept new output.

To compare the output with newly generated output, we have to right-click the generated
Output file in the projects window and choose Use Recent Result as Output option. From
the next run onwards the system compares the generated output with the output.xml file and
provides the result.

Run the test again.

The test case is compared to the current output file and succeeds.

To check the output, double-click the Outputnode under TestCase1.

In the Output.xml tab, according to this tutorial example, the result should have a string as
shown in the figure below.

8

1

2

3

4

Testing the Composite Application

Using the Java EE Service Engine to Create a Composite Application • June 200926

Summary
In this tutorial, you learned how the Java EE Service Engine implements a Web Service derived
from WSDL, and you created and tested a composite application.

This tutorial demonstrates how to:

■ Create a EJB Module project
■ Create a WSDL document and a Web Service from WSDL
■ Build and deploy a Composite Application project to GlassFish
■ Create and run test cases

Summary

Using the Java EE Service Engine to Create a Composite Application 27

28

	Using the Java EE Service Engine to Create a Composite Application
	Using the Java EE Service Engine to Create a Composite Application
	Tutorial Requirements
	Prerequisites
	System Requirements

	Tutorial Scenario
	Configuring the Tutorial Environment
	Starting the GlassFish Software
	To Check the Status of the GlassFish V2 Application Server in the NetBeans IDE
	To Register the GlassFish V2 Application Server with the NetBeans IDE
	To Start the GlassFish V2 Application Server in the NetBeans IDE
	Enabling the JBI Framework

	Creating an EJB Module Project
	To Create the EJB Module Project
	To Create a WSDL Document
	To Create a Web Service from WSDL
	To Clean and Build the EJB Module Project

	Creating a Composite Application Project
	To Create a Composite Application Project

	Building and Deploying the Composite Application Project
	To Build and Deploy the Composite Application

	Testing the Composite Application
	To Add a Test Case
	To Run the Test Case

	Summary

