
Using the File Binding
Component in a Project

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 821–0239
June 2009

Copyright 2009 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In particular, and without
limitation, these intellectual property rights may include one or more U.S. patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights – Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions
of the FAR and its supplements.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other
countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, the Solaris logo, the Java Coffee Cup logo, docs.sun.com, Java, and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. or its subsidiaries in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of
SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and SunTM Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts
of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to
the Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN LOOK GUIs and otherwise comply with Sun's written license
agreements.

Products covered by and information contained in this publication are controlled by U.S. Export Control laws and may be subject to the export or import laws in
other countries. Nuclear, missile, chemical or biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export
or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied persons and specially
designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

090702@22510

Contents

Using the File Binding Component in a Project ..5
About the File Binding Component ...6
File Binding Component Features ...7
Common User Scenarios ...8

Polling a Directory ..8
Writing Files to a Directory ...8
Multiple Records in a File ...8
End-of-Line Characters ...9

Runtime Configuration ...9
▼ Accessing the File Binding Component Runtime Properties ..9

The File Binding Component Runtime Properties .. 10
General Properties ... 10
Statistics Properties .. 11
Loggers Properties ... 12

Configuring File BC WSDL Attributes ... 12
Service Level WSDL Elements .. 12
File Address Element ... 12
Binding Level WSDL Elements .. 15
File Binding Element ... 15
File Operation Element ... 15
File Message Element ... 15
File Name Patterns ... 23
Application Variables in File Name Patterns .. 24

Inbound Message Processing ... 25
File Binding Component Processing Protocol ... 26

Persisted Sequencing ... 26
Mapping Persisted Sequences to File Based Persistences .. 27
Outbound Message Processing .. 29

3

Application Variable Support .. 30
Application Configuration Support .. 32
Processing Protocols and Capabilities .. 34

Inbound Processing ... 34
Outbound Processing .. 35

Normalized Message Properties .. 35
Normalized Message Properties Defined by the File Binding Component 36
General Normalized Message Properties .. 37

Consistent Logging Strategies .. 38
Message Exchange Redelivery Capability ... 39

Configuring Redelivery ... 40
▼ To Configure Redelivery ... 41

Endpoints Statistics and Monitoring Management .. 43
Throttling and Serial Processing ... 44

▼ To Configure Throttling ... 44

Contents

Using the File Binding Component in a Project • June 20094

Using the File Binding Component in a Project

What You Need to Know

These topics provide information you need to know before you use the File Binding
Component.

■ “About the File Binding Component” on page 6
■ “File Binding Component Features” on page 7
■ “Common User Scenarios” on page 8

Reference Information

These topics provide additional reference information about configuring and using the File
Binding Component.

■ “Runtime Configuration” on page 9
■ “Configuring File BC WSDL Attributes” on page 12
■ “Inbound Message Processing” on page 25
■ “Persisted Sequencing” on page 26
■ “Application Variable Support” on page 30
■ “Application Configuration Support” on page 32
■ “Processing Protocols and Capabilities” on page 34
■ “Normalized Message Properties” on page 35
■ “Consistent Logging Strategies” on page 38
■ “Message Exchange Redelivery Capability” on page 39
■ “Endpoints Statistics and Monitoring Management” on page 43
■ “Throttling and Serial Processing” on page 44

5

About the File Binding Component
The File Binding Component is a JSR-208 compliant JBI runtime component that provides a
transport service to a file system and offers a comprehensive solution to interact with the file
system from the JBI environment.

Looking at what File BC does at a very high level: On the server side, File BC polls for inbound
messages, stored in file(s), in a specified directory. On the client side, File BC puts messages into
file(s) in a designated directory.

When the File Binding Component acts as a JBI provider, the default behavior is that it
denormalizes the JBI message and writes the message to a specified destination in the file
system, but it could also provide the capability to do a file read if the action is specified explicitly.
When the File Binding Component acts as a JBI consumer, it polls the file system for a specified
file name (or file names matching a supported pattern), normalizes to a JBI message and routes
the message to the Normalized Message Router (NMR) so it can be serviced by other JBI
components.

The design time component of File BC is a Netbeans module that provides plug-in to NetBean's
project system and thus defines how file binding can be used. The runtime component
implements all required component interfaces in JBI specification and provides the
functionality to act as a proxy to services enabled using the file protocol.

The following diagram illustrates relationship between the File Binding Component and the
other components within the runtime environment.

About the File Binding Component

Using the File Binding Component in a Project • June 20096

File Binding Component Features
Following features are supported by the File Binding Component:

■ Supports in-only, in-out message exchange modes
■ Supports explicit on-demand read action
■ Supports Application Variables
■ Supports Application Configuration
■ Message exchange redelivery capability
■ Message exchange graceful recovery
■ Inbound throttling to control message handling concurrency
■ Multiple Endpoint to poll the same directory
■ Polling and writing multiple records per file
■ Staging, achieving and error handling files
■ Binary attachment support

File Binding Component Features

Using the File Binding Component in a Project 7

Common User Scenarios
The following common user scenarios convey how components interact with external systems
to achieve specific business goals.

Polling a Directory
A typical scenario for the File Binding Component as a service consumer is polling a directory
for files that match specified file names or file name patterns. When polling a directory, you can
specify the following:
■ Polling Interval - Use the pollingInterval message property to specify how frequently to

check the directory.
■ Pattern Matching - If the fileNameIsPattern message property is set, then the fileName

message property indicates the file name pattern for files to retrieve. Patterns that can be
embedded in a file name include an incremental counter, a UUID identifier, or a timestamp.
Refer to the section “File Name Patterns” on page 23 for more information.

Writing Files to a Directory
A typical scenario for the File Binding Component as a service provider is writing files to a
specific directory. When writing the files, you can also use pattern matching to generate file
names. When writing the files, you can specify the following:
■ File Type - Text, Binary and XML files are supported.
■ Pattern Generation - If the fileNameIsPattern message property is set, then the fileName

message property indicates the file name pattern to use when writing the files. Patterns that
can be embedded in a file name include an incremental counter, a UUID identifier, or a
timestamp.
Refer to the section “Application Variables in File Name Patterns” on page 24 for more
information.

Multiple Records in a File
In the File Binding Component, various message properties facilitate the processing of multiple
records in a file.

You can specify multiple records in a file by specifying a delimiter character (for variable length
records) or by specifying a record size (for fixed length records). In either case, you must first set
the multipleRecordsPerFile message property to enable processing of multiple records in a
file. You can also use end-of-line characters when processing multiple records in a file.

Common User Scenarios

Using the File Binding Component in a Project • June 20098

If the multipleRecordsPerFile is set, then use the recordDelimiter property to specify the
marker between records in a file.

If you want to specify fixed-length records, then do not specify the recordDelimiter property.
Instead, specify the length of the records with the maxBytesPerRecord property. If this property
is used to indicate the length of each record in a file, then multipleRecordsPerFile must be
set.

End-of-Line Characters
You can specify whether to add an EOL (end-of-line) character to a record when writing to a file
or whether to discard the EOL character after reading a record. The addEOL and removeEOL

message properties are useful when the EOL character is used to separate multiple records in a
file.

Runtime Configuration
The File Binding Component's runtime properties can be configured from the NetBeans IDE,
or from a command prompt (command line interface) during installation.

The File Binding Component properties apply to the binding component as a whole, including
all provider and consumer endpoints.

▼ Accessing the File Binding Component Runtime
Properties
From the Services tab of the NetBeans IDE, expand the Serversnode.

Start your application server, for example GlassFish V2. To do this, right-click your application
server and select Start from the shortcut menu.

Under the application server, expand the JBI→ Binding Components nodes and select
sun-file-binding.
The current File Binding properties are displayed at the right side of the NetBeans IDE. You can
also double-click sun—file—binding to open the Properties window.

Edit the properties as needed. To apply any changes you make to the Application Configuration
and Application Variables properties, shut down and restart the affected composite
applications, Any changes in the "Threads" count property will be applied dynamically without
restarting the File Binding Component. Any changes to the component Logger setting will be
applied dynamically without restarting the File Binding Component.

1

2

3

Runtime Configuration

Using the File Binding Component in a Project 9

The File Binding Component Runtime Properties
The File Binding runtime properties are categorized into three types:

■ General Properties
■ Statistics Properties
■ Loggers Properties

General Properties

Name Description Default Value

Description Indicates the purpose of the File
Binding Component. This
property is displayed for reference
purpose.

Java Enterprise Edition File
Binding

Name Indicates the name of the File
Binding Component. This
property is displayed for reference
purposes.

sun-file-binding

State Indicates the state of the File
Binding Component as "Started" or
"Stopped." This property is
displayed for reference purposes.

Started

Type Indicates the type of component.
This property is displayed for
reference purposes. (service-engine
or binding-component)

binding-component

Identification Properties

Version File Binding Component
specification fully supported by this
build.

<number-version

Build Number Date and time stamp for the
current build.

<build_number>

Configuration Properties

Runtime Configuration

Using the File Binding Component in a Project • June 200910

Number of Outbound Processor
Threads

Specifies the maximum number of
threads to process outbound
HTTP/SOAP invocations
concurrently. The value can be any
integer from 1 to 2147483647. This
is a required property.

5

Application Configuration Specifies the values for a
Composite Application's endpoint
connectivity parameters (normally
defined in the WSDL service
extensibility elements), and apply
these values to a user-named
endpoint ConfigExtension
Property. The Application
Configuration property editor
includes fields for all of the
connectivity parameters that apply
to that component's binding
protocol.

User defined

Application Variables Specifies a list of name: value pairs
for a given stated type. The
application variable name can be
used as a token for a WSDL
extensibility element attribute in a
corresponding binding.

The Application Variables
configuration property offers four
variable types:
■ String: Specifies a string value,

such as a path or directory
■ Number: Specifies a number

value
■ Boolean: Specifies a Boolean

value
■ Password: Specifies a password

value

User defined

Statistics Properties
Statistics properties include 19 different component activities including exchanges, errors,
requests, replies, and so forth. It lists component statistics that are collected for actions such as
endpoints activated, average response time, completed exchanges, and so forth. Running
statistics are automatically collected and displayed

Runtime Configuration

Using the File Binding Component in a Project 11

Loggers Properties
Loggers properties include 13 different component activities that can be recorded by the
server.log. The Logger properties specify the user-designated level of logging for an event.

Each logger can be set to record information at any of the following levels:

■ FINEST: messages provide highly detailed tracing
■ FINER: messages provide more detailed tracing
■ FINE: messages provide basic tracing
■ CONFIG: provides static configuration messages
■ INFO: provides informative messages
■ WARNING: messages indicate a warning
■ SEVERE: messages indicate a severe failure
■ OFF: no logging messages

Configuring File BC WSDL Attributes
To configure a JBI component to access web services, you specify both service level WSDL
elements and binding level WSDL elements.

Service Level WSDL Elements
Service level WSDL elements allow you to specify the “connectivity” information to a file
system. The File address extensibility element is the File Binding Component service level
WSDL element.

The service element specifies the connectivity to the file system using the File address element
file:address. The properties of address further allows you to specify a path to a directory and
then to specify whether the path is a absolute path or a relative path.

File Address Element
When you create a WSDL file for a BPEL project in the NetBeans IDE, the new WSDL
Document wizard generates the address service definition. You can then edit the properties of
address service to specify the path.

The following table describes the properties available for this service:

Configuring File BC WSDL Attributes

Using the File Binding Component in a Project • June 200912

Property Description Required Example

fileDirectory Defines the directory path
in the file system to read
from or write to.

Defines the directory path
in the file system to read
from or write to. If the
relativePath property is
false, then
fileDirectory

represents an absolute
path.

If relativePath property
is true, then
fileDirectory

represents a path relative
to the path specified in the
pathRelativeTo

property.

Required /home/joe/data

relativePath Specifies whether the
directory specified in the
fileDirectory property
is a relative path.

Optional true

pathRelativeTo Defines the base directory
for the directory defined
by fileDirectory.

Select one of the three
possible values:
■ User Home (The

home directory of the
user)

■ Current Working
Directory

■ Default System
Temp Dir

Optional User Home

Configuring File BC WSDL Attributes

Using the File Binding Component in a Project 13

Property Description Required Example

lockName Specifies the lock file
name which is created
under the target directory
specified by
fileDirectory.

Inbound readers use the
lock to synchronize their
concurrent access to the
target directory.

Optional filebc.lck

seqName Specifies the name of the
file where the current
value of the persistence
backed sequence number
is stored.

The file resides in the
target directory specified
by fileDirectory.

Optional filebc.seq

workArea Specifies the temp
directory name where
UUID tagged input files
wait to be further
processed.

It is a functioning “staging
area” for inbound
processing, and is relative
to the target directory
specified by
fileDirectory.

Optional filebc_tmp

The following example illustrates the WSDL service element:

Configuring File BC WSDL Attributes

Using the File Binding Component in a Project • June 200914

Binding Level WSDL Elements
Binding level WSDL elements allow you to define the file “transport” specific information for
operations and messages. The File Binding Component binding level WSDL elements include
the File binding, operation, and message extensibility elements.

File Binding Element
The file binding extensibility element allows the association of a binding to be file protocol
specific. The message format and protocol for the File Binding Component is always a file that is
supported on the native file system. When you create a WSDL file for a BPEL project in the
NetBeans IDE, the New WSDL Document wizard generates the file binding definition, which
includes a name you specify and a type that is generated by the wizard.

The following example illustrates the File binding element:

File Operation Element
The file operation element defines the supported operations. For the File Binding Component
the operations that can be supported are one-way and request-response.

The following example illustrates the File operation element:

File Message Element
The File message element extends the binding element to specify properties associated with
reading input files or writing output files in the file system. In the NetBeans IDE, select the
properties for a file:messages() element to specify the behavior for the message.

Configuring File BC WSDL Attributes

Using the File Binding Component in a Project 15

The following table describes the message properties available for reading from or writing to the
file system.

TABLE 1 Message Properties to Read/Write to a File System

Property Description Required Example

Use Specifies whether a
message (or message part)
is literal or encoded.

If encoded is specified,
then you must also
specify the encoder using
the encodingStyle()
property.

Required Literal (Default)

fileName Defines the file name
relative to the specified
directory to read from or
write to.

If fileNameIsPattern()
is false, this attribute
specifies an actual file
name. Otherwise, this
attribute specifies a
pattern marker used for
filtering input files from
the directory, or a file
name format to write to
the directory.

Required data.xml (Default)

fileNameIsPattern Indicates whether or not
the fileName() attribute
designates a filename
pattern.

Optional false

Configuring File BC WSDL Attributes

Using the File Binding Component in a Project • June 200916

TABLE 1 Message Properties to Read/Write to a File System (Continued)
Property Description Required Example

recordDelimiter Defines the record
delimiter when multiple
records are present.

The value of this attribute
is considered only if
multipleRecordsPerFile()

is true.

If no value is specified for
this attribute but
maxBytesPerRecord() is
defined when reading a
file, it is assumed that
each record is of fixed
length with the length
being the value defined
for
maxBytesPerRecord().
Otherwise, the default
record delimiter is the
linefeed character.

Optional \r\n

pollingInterval Defines the polling
interval that the File
Binding Component
searches for input files in
the specified directory.

The polling interval is
specified in milliseconds
and has a default value of
1000ms. This attribute
has no effect for writing.

Required 1000 (Default)

fileType Specifies whether the file
is a text file or binary file.

Optional text (Default)

encodingStyle Specifies the encoding
type associated with the
message (or message
part). This also defines the
encoder type responsible
to process the encoded
data.

Optional customencoder-1.0

Configuring File BC WSDL Attributes

Using the File Binding Component in a Project 17

TABLE 1 Message Properties to Read/Write to a File System (Continued)
Property Description Required Example

part The abstract WSDL
configuration for message
can have one or more
parts. The part() property
references one of the parts
that is named in the
abstract WSDL
configuration.

Optional Part1

addEOL Defines whether newline
characters (EOL
characters) should be
appended to the
outbound message or to
each record incase of
multiple records..

This attribute has no
effect for reading

Optional false

removeEOL Defines whether newline
characters (EOL
characters) should be
removed before
processing. or be
removed for each record
incase of multiple
records.

This attribute has no
effect for writing

Optional false

maxBytesPerRecord Defines the maximum
number of bytes to be
read per record. If only a
single record is present,
this attribute defines the
total number of bytes to
be read.

This attribute has no
effect for writing.

Optional 1024

multipleRecordsPerFile Specifies whether the file
to read from or write to
contains multiple records
or should be considered a
single payload.

Optional false

Configuring File BC WSDL Attributes

Using the File Binding Component in a Project • June 200918

TABLE 1 Message Properties to Read/Write to a File System (Continued)
Property Description Required Example

archive Specifies whether a
message is archived after
it is read for processing by
the File Binding
Component. When true,
the message is moved to
the directory specified by
archiveDirectory.

When a file is processed,
the File Binding
Component renames the
file to
input_file_name_processed()

or
input_file_name_error(),
depending on the success
of the operation. If the
archive() property is
true, the file is then
moved to the
archiveDirectory and a
UUID is appended to the
file name.

Optional true

Configuring File BC WSDL Attributes

Using the File Binding Component in a Project 19

TABLE 1 Message Properties to Read/Write to a File System (Continued)
Property Description Required Example

archiveDirectory If the archive() property
is set to true(),
archiveDirectory()

specifies the directory to
which processed (read)
messages will be moved.

Filenames for archived
messages are tagged with
a UUID to avoid file name
collision in the archive
directory.

If the
archiveDirIsRelative()

property is true(), then
the directory specified
here is a relative
directory. The parent
directory is the directory
specified in the
fileDirectory()

property for the
file:address() element.

Optional true

archiveDirIsRelative Indicates whether the
directory specified in
archiveDirectory() is
an absolute directory or a
relative directory.

If true(), the parent
directory is the directory
specified in the
fileDirectory()

property for the
file:address() element.

Optional true

Configuring File BC WSDL Attributes

Using the File Binding Component in a Project • June 200920

TABLE 1 Message Properties to Read/Write to a File System (Continued)
Property Description Required Example

protect Indicates if overwrite
protection is required
before writing messages
to a file.

When true(), existing
files of the same name will
be moved to the directory
specified by
protectDirectory

before the current
message is written.

When false(), the files
of the same name will be
overwritten.

Optional true

protectDirectory If the protect property is
set to true,
protectDirectory

specifies the directory to
which files will be moved
to prevent them from
being overwritten.
Filenames for protected
messages are tagged with
a UUID to avoid file name
collision in the protect
directory.

If the
protectDirIsRelative()

property is true(), then
the directory specified
here is a relative
directory.

The parent directory is
the directory specified in
the fileDirectory()
property for the
file:address() element.

Optional false

Configuring File BC WSDL Attributes

Using the File Binding Component in a Project 21

TABLE 1 Message Properties to Read/Write to a File System (Continued)
Property Description Required Example

protectDirIsRelative Indicates whether the
directory specified in
protectDirectory() is
an absolute directory or a
relative directory.

If true(), then the parent
directory is the directory
specified in the
fileDirectory()

property for the
file:address() element.

Optional true

stage Indicates if staging is
enabled.

If set to true(), then
messages are first written
to the directory specified
by stagingDirectory.

When the message is
completely written to the
staging directory, then it
is moved to the target
directory for the message.

Filenames for staged
messages are tagged with
a UUID to avoid file name
collision in the staging
directory.

Optional false

Configuring File BC WSDL Attributes

Using the File Binding Component in a Project • June 200922

TABLE 1 Message Properties to Read/Write to a File System (Continued)
Property Description Required Example

stageDirectory If the stage property is set
to true,
stageDirectory()

specifies the directory to
which files will first be
written before being
moved to the target
directory for the message.

If the
stageDirIsRelative()

property is true, then the
directory specified here is
a relative directory.

The parent directory is
the directory specified in
the fileDirectory()
property for the
file:address() element.

Optional false

stageDirIsRelative Indicates whether the
directory specified in
stageDirectory is an
absolute directory or a
relative directory.

If true, then the parent
directory is the directory
specified in the
fileDirectory()

property for the
file:address() element.

Optional true

File Name Patterns
File name patterns are used as a name filter for inbound message processing and as a name
generator for outbound message processing. The multiple processing threads that make up the
runtime File Binding Component fall into two types:

■ Inbound Processors: Message consumers that poll an input directory at a specified interval
for a specific file name.

■ Outbound Processors: Message provisioners that write messages to an output directory by a
specific file name.

Literal File Name

Configuring File BC WSDL Attributes

Using the File Binding Component in a Project 23

Input and output file names can be literal, or use a pattern.

■ Input: If the input file name is a literal, the inbound processor polls the input directory for a
file by that name, and the content of the file is converted to a normalized message.

■ Output: If the output file name is a literal, the outbound processor writes the denormalized
message to a file by that name.

Pattern File Name

In most cases, the file names specified for inbound or outbound processing are patterns. File
name pattern is a proprietary mechanism of the File Binding Component.

■ Inbound: When used by the inbound processor, the pattern serves as a filter. That is, if a file
name matches the pattern, it is selected by the inbound processor and its content is read,
normalized, and sent.

■ Outbound: When used by the outbound processor, the pattern serves as concrete name
generator. That is, the special pattern symbols, such as %d(), %u(), %t(), and
%{seq_name}(), that appear in the file name pattern specified as output file, will be
expanded. The symbols are substituted with their current value and derive a concrete file
name, to which the denormalized message is written.

When you set fileNameIsPattern() on a message property, you can specify patterns for
generating filenames for outbound messages or for reading filenames for inbound messages.

Application Variables in File Name Patterns
You can use application variables together with file name patterns to specify paths.

The following example shows how to use an application variable when specifying a path name
to a file that uses the %d pattern marker:

This example specifies a directory defined by the application variable base_dir. The application
variable is defined as a File Binding component runtime property. If base_dir is defined as
/duke/home, then this example reads or writes the following files:

Configuring File BC WSDL Attributes

Using the File Binding Component in a Project • June 200924

Inbound Message Processing
It is important that the Inbound files are picked up only once by one inbound thread and the
outbound files are not overwritten by simultaneous threads.

To make certain files are not overwritten by simultaneous threads, a locking mechanism is used
to synchronize the threads that poll the same endpoint or input directory.

Each endpoint is unique, and is associated with a physical file folder path, for example: C:\temp.
This is where the inbound messages are pulled. It is invalid to deploy a composite application
that contains endpoints that poll the same physical directory for the same file.

The life cycle of an inbound message can be expressed using the following illustration.

The process flow can be described by the following steps:

1. The inbound processor polls the input directory.
2. If a file name matches the given file name pattern, the inbound processor moves the file to

the workArea directory (filebc_tmp), and the name and path to the selected file is put into
the queue.

Inbound Message Processing

Using the File Binding Component in a Project 25

3. The selected files are locked by a file lock to prevent other inbound processors in a clustered
environment from selecting the same file.

4. Five inbound worker threads wait on the queue to process the selected inbound files

5. When a worker thread selects a file, it reads the file content, normalizes the content, and
sends normalized message to the NMR (Normalized Message Router).

6. If sending the message to the NMR is a success, the message is moved from the workArea to
an archive, and the suffix “_processed” is added to the file name.

If sending the message to the NMR fails, the message is retained in the workArea to be processed
by the user. An “_error” suffix is added to the file name. "_error" file contains details of the
failure.

File Binding Component Processing Protocol
The following attributes are used for the implementation of the locking/dispatch mechanism:

■ file:address/@lockName- This is the file name used for the F_LOCK. This is located under
the input directory specified by the file:message/@fileDirectory(), default value:
filebc_lock().

■ file:address/@workArea- The sub directory name used as a working directory. This is
relative to the input directory specified by the file:message/@fileDirectory(), default
value: filebc_tmp().

■ file:address/@seqName- The file name used as the persistence of a sequence number. This is
located under the input directory specified by the file:message/@fileDirectory(),
default value: filebc_seq()

Persisted Sequencing
The symbol % { <seq_name}() indicates a reference to a persisted sequence number by name,
where the sequence numbers's current value is incremented by one and the reference is
substituted.

The lexical definition is: <seq_name> =: (0–9a-zA-Z-_) + ()

The current sequence value is persisted so that it survives if the application is shutdown or
undeployed, or if the JBI container (application server) is shutdown.

Persisted Sequencing

Using the File Binding Component in a Project • June 200926

Mapping Persisted Sequences to File Based
Persistences
A file is used as the persistence storage of sequences. For a File Binding Component service, as
defined in a WSDL, the scope of the sequences are the endpoints associated with the bindings
that contain the references to these sequences. As displayed in the following WSDL, there are
two bindings which reference sequences by the name seq-v.1.

■ For seq-v.1() in FILE_OB_SEQBinding(), its scope is the EP0 identified by
FILE_OB_SEQService() + tns:FILE_OB_SEQBinding()

■ For seq-v.1() in FILE_OB_SEQBinding1(), its scope is the EP1 identified by
FILE_OB_SEQService1() + tns:FILE_OB_SEQBinding1()

The mapping of a sequence to a file system file is demonstrated in the WSDL file below.

Persisted Sequencing

Using the File Binding Component in a Project 27

In this example, %{se-v.1}() gives reference to a different sequence number when it appears in
different bindings.

The persisted storage for a sequence is a file with the same name under the directory specified
by the file:address->fileDirectory of the corresponding service binding.

For example, in the above WSDL, the persisted files are:

Persisted Sequencing

Using the File Binding Component in a Project • June 200928

■ %{seq-v.1() in EP0 is persisted in the file:
jfu-tecra\TEST_NETWORK_FILE\area_polled_EPO\filebc.seq\seq-v.1 %{seq-v.1}

■ %{seq-v.1() in EP1 is persisted in the file:
jfu-tecra\TEST_NETWORK_FILE\area_polled_EP1\filebc.seq\seq-v.1 %{seq-v.1}

Initial Value of a Persisted Sequence

The initial value of a persisted sequence is 0. The value is then incremented by 1 every time that
sequence is referenced. To create a sequence the starts with a number that is greater than zero,
edit the start value in the persisted storage file when the file is not in use.

Concurrence Control of Access to the Sequence Storage File

Access to a specific sequence in persistence storage file is thread and clustering safe. This means
that the file is read and updated by a single thread across clustered servers and JVMs, this can be
on one host or multiple hosts.

Outbound Message Processing
Outbound message processing always utilizes File Name Patterns to ensure that messages are
processed once only and are not overwritten.

The life cycle of an outbound message can be explained using the following illustration.

The process flow can be described by the following steps:

1. Outbound processors wait on the Normalized Message Router for outbound messages. The
number of available outbound processors is configured by the runtime parameter Outbound
Threads().

Persisted Sequencing

Using the File Binding Component in a Project 29

2. When an outbound message is available, an outbound processor takes the message,
denormalizes the message, and writes the message payload to the specified file destination.

3. A file name pattern is used to generate the unique message name. The file name pattern is
specified by the WSDL File message element attribute fileNameIsPattern().

For example, a UUID can be added to the file name using the following value:
output._%u.dat(). When persisted sequence numbering is used to provide a file name pattern,
the outbound processor reads the sequence number from the my_sequence directory and adds
this number to the file name. It then increments the number by one and writes the new number
back to the my_sequence directory. This process is synchronized so that only one outbound
process can access the my_sequence directory at any time, ensuring that the persisted sequence
number retains its integrity.

Application Variable Support
The binding component Application Variables property allows you to define a list of
name:value pairs for a given stated type. The application variable name can be used as a token
for a WSDL extensibility element attribute in a corresponding binding. For example, if you
were defining an application variable for the hostname as FOO, then the WSDL attribute would
be ${FOO}. In the Application Variables property you would enter a String value of FOO for the
name, and the desired attribute as the value. When you deploy an application that uses
application variables, any variable that is referenced in the application's WSDL is loaded
automatically.

The Application Variables configuration property offers four variable types:
■ String: Specifies a string value, such as a path or directory.
■ Number: Specifies a number value.
■ Boolean: Specifies a Boolean value. The VALUE field provides a checkbox (checked = true).
■ Password: Specifies a password value. The password is masked and displays only asterisks.

Variables also allow greater flexibility for your WSDL files. For example, you can use the same
WSDL for different runtime environments by using application variables to specify system
specific information. These values can then be changed from the binding component runtime
properties as needed, for any specific environment.

When you deploy an application that uses Application Variables, all of the Application
Variables that are referenced in the application's WSDL files are loaded automatically. If you
attempt to start an application and an Application Variables value is not defined (no value is
specified for the Application Variable) an exception is thrown.

To change a property when the application is running, change your Application Variable
property value, then right-click your application in the Services window under Servers >
GlassFish V2> JBI > Service Assemblies, and click Stop in the popup menu. When you restart
your project, your new settings will take effect.

Application Variable Support

Using the File Binding Component in a Project • June 200930

Application Variable Support

Using the File Binding Component in a Project 31

Application Configuration Support
An Application Configuration Object (ACO) defines a set of values which can be used to
override file:address attributes such as "fileDirectory" defined in the WSDL.

The Application Configuration property allows you to configure the external connectivity
parameters for an application that you have created, such as a service assembly, and without
changing or rebuilding the application, deploy the same application into a different system. For
example, you could take an application that is running in a test environment, and deploy it to a
production environment without rebuilding the application.

From the Application Configuration property, you can specify values for a Composite
Application's external connectivity parameters, which are normally defined in the WSDL
service extensibility elements. You can then apply these values to a user-named endpoint
ConfigExtension Property. The Application Configuration property editor includes fields for all
of the connectivity parameters that apply to that component's binding protocol. When you
enter the name of a saved ConfigExtension and define the connectivity parameters in the
Application Configuration editor, these values override the WSDL defined connectivity
attributes when your project is deployed. To change these connectivity parameters again, you
simply change the values in the Application Configuration editor, then shutdown and start your
Service Assembly to apply the new values.

The Application Configuration property editor allows you to create several application
configurations referenced by their own user-defined names. Note that different binding
component protocols will have different attributes. The File binding attributes are not the same
as the JMS or the HTTP binding attributes, and therefore, the Application Configuration
property editors for each of these binding components will contain different attributes.

To change a property when the application is running, change your Application Configuration
property value, then right-click your application in the Services window under Servers >
GlassFishV2 > JBI > Service Assemblies, and click Stop in the popup menu. When you restart
your project, your new settings will take effect.

Application Configuration Support

Using the File Binding Component in a Project • June 200932

The File Binding Component's Application Configuration property contains 6 parameters:

■ fileDirectory
■ lockName
■ pathRelativeTo
■ relativePath
■ seqName
■ workArea

Application Configuration Support

Using the File Binding Component in a Project 33

Processing Protocols and Capabilities
The consumer mode in JBI or the server side processing activities are referred as Inbound
processing. Error Handling and Recovery are an examples for Inbound processing.

The provider mode in JBI or the client side processing activities are referred to as Outbound
processing. File write and on-demand read protocols will be covered in this section.

Inbound Processing
The following list describes the Inbound processing file poll protocols and their capabilities:
■ Polling for file(s) in a specified directory.
■ Instead of renaming the original files, create a work directory relative to the input directory.

Name of the work directory is configurable via the workArea setting in file:address, with the
default being "filebc-in-processing".

■ Move each input file to work directory, and tag the original file names with a UUID.
■ Inbound worker thread reads files from the work directory and processes contents as

follows:
■ If multiple records per file setting is false (default), the content of the file will be treated

as the payload and set in the normalized message content.
■ If multiple records per file is true, create separate normalized messages one for each

record. How a record is read from the file depends on maxBytesPerRecord and
recordDelimiter settings.

■ All successfully processed input files will be archived, if the "archive" setting is true.
■ A "processed_files" directory will be created relative to the input directory

Processing Protocols and Capabilities

Using the File Binding Component in a Project • June 200934

■ Original files will be renamed with “_processed” suffix and put into the "processed_files"
directory

Error Handling

In case of errors while processing an input file:

■ An "error" folder will be included in the "new" folder created by the Binding Component in
the input directory.

■ Original UUID tagged file (from the work directory) will be moved to the errors directory
and a additional file with "_error" suffix will be generated. "_error" file will contain details of
the failure.

Recovery

Recovery is a mechanism used to prevent message loss in case of system crash.

On startup, Inbound Processor will first check the work directory and put any unprocessed files
in the queue for the worker thread. This ensures that any files left unprocessed in the work
directory will be processed when the systems restarts.

Outbound Processing
The following list describes the Outbound processing file write protocols and their capabilities:

■ Writing file(s) in a specified directory
■ Write single (overwrite mode) or multiple records (append mode) to a file
■ On Demand Read function acts when a JBI service invokes the File Binding Component to

read a specific message from a file directory.
■ Protects existing files in a directory from being overwritten by new files with the same name
■ If staging attribute is true, and not in append mode (multiple records per file), Outbound

messages are written first to a staging directory, then the completed file is moved to target
directory. This ensures that the output file is exposed only when message has been written
completely.

Normalized Message Properties
Normalized Message properties are commonly used to specify metadata that is associated with
message content. javax.jbi.security.subject and javax.jbi.message.protocol.type

are two examples of standard normalized Message properties defined in the JBI Specification.

Normalized Message properties are used to provide additional capabilities in Open ESB, such
as:

Normalized Message Properties

Using the File Binding Component in a Project 35

■ Getting and Setting transport context properties. For example, HTTP headers in the
incoming HTTP request, or file names read by the File Binding Component

■ Getting and Setting protocol specific headers or context properties (SOAP headers)
■ Getting and Setting additional message metadata. For example. a unique message identifier,

or an endpoint name associated with a message
■ Dynamic configurations. For example, to dynamically overwrite the statically configured

destination file name at runtime

Some of the use cases mentioned above require protocol/binding specific properties,
typically used by a particular binding component. Other properties are considered common
or general purpose properties that all participating JBI components make use of, for
example, the message ID property, which can be utilized to uniquely identify or track a
given message in the integration.

Normalized Message Properties Defined by the File
Binding Component
The following table describes the Inbound NM properties defined by the File Binding
Component.

TABLE 2 Inbound NM Properties

Property Description Type

org.glassfish.openesb.file.inbound.filedirectoryFile directory which is polled for
the input file

String

org.glassfish.openesb.file.inbound.filenameInput file being read/poll String

org.glassfish.openesb.file.inbound.datatypeDatatype of the file, can be text,
binary, xml

String

org.glassfish.openesb.file.inbound.batchidA file may have multiple records,
batchid represents the file

String

org.glassfish.openesb.file.inbound.recordnumberGiven a batch id , the record
number represents a particular
record

String

org.glassfish.openesb.file.inbound.lastrecordValue can be either "true" or
"false", this property is sent in case
of last record

String

org.glassfish.openesb.file.inbound.endPointnameRepresents the service name and
endpoint name

String

Normalized Message Properties

Using the File Binding Component in a Project • June 200936

The following table describes the Outbound NM properties defined by the File Binding
Component.

TABLE 3 Outbound NM Properties

Property Description Type

org.glassfish.openesb.file.outbound.filedirectoryfile directory containing the file to
read from or write to

String

org.glassfish.openesb.file.outbound.filenameThe file to read from or write to String

org.glassfish.openesb.file.outbound.datatypeDatatype of the file; can be text,
binary, xml

String

org.glassfish.openesb.file.outbound.diectoryrelativetoThe file directory can be relative to
user-home,current working dir,
system default temp dir

String

org.glassfish.openesb.file.outbound.addeolThe value can be true or false,
should end-of-the-line character be
appended to a record/message

String

org.glassfish.openesb.file.outbound.appendThe value can be true or false,
signify multiple records per file

String

org.glassfish.openesb.file.outbound.appenddelimiterIf multiple records are true, this
represents the record delimiter

String

org.glassfish.openesb.file.outbound.overwriteexistingfileThe value can be true or false,
overwrite existing file if true

String

General Normalized Message Properties
Normalized Message properties are either General, available to all participating JBI
components, or protocol/binding specific, used by a particular binding component.

The following General NM properties are available to all binding components.

Normalized Message Properties

Using the File Binding Component in a Project 37

TABLE 4 General NM Properties

Property Description and Use Type

org.glassfish.openesb.messaging.groupidUniquely identifies a message with
the group to which a message
belongs. For example, it applies the
RM sequence group number for
SOAP messages, or a time stamped
file name (where the file record
message comes from). This
property is optional.

java.lang.String

org.glassfish.openesb.messaging.messageidUniquely identifies a message. For
batch processing this might be a
record number (for example, a
particular record in a file), or a
GUID. This property is mandatory.

java.lang.String

org.glassfish.openesb.messaging.lastrecordThe value is a string representation
of boolean ("true" or "false"). This
property can be used to signal the
last record in a group, e.g. the last
record in a RM sequence for SOAP
messages, or the last record in a file
when multiple record processing is
turned on for File BC. This
property is optional.

java.lang.String

org.glassfish.openesb.exchange.endpointnameThe value a string representation of
the endpoint name set on the
exchange. This represents the
endpoint name of the "owner" of
the message, and could be made
available by JBI runtime.

java.lang.String

Consistent Logging Strategies
The File Binding Component runtime Logger properties include 8 different component
activities that can be monitored and recorded at user-designated levels. Logging levels are set
separately for each of these activities from the File Binding Component Properties Editor.

Each logger can be set to record information at any of the following levels:

■ FINEST: messages provide highly detailed tracing
■ FINER: messages provide more detailed tracing
■ FINE: messages provide basic tracing
■ CONFIG: provides static configuration messages
■ INFO: provides informative messages

Consistent Logging Strategies

Using the File Binding Component in a Project • June 200938

■ WARNING: messages indicate a warning
■ SEVERE: messages indicate a severe failure
■ OFF: no logging messages

Message Exchange Redelivery Capability
Before we proceed to Redelivery capability of the FIle Binding Component, it is important to
know about the Quality of Service (QOS) attributes. Redelivery is a part of the QOS properties.

The QOS attributes are configured from the Config QoS Properties Editor, accessed from the
Composite Application Service Assembly (CASA) Editor.

The following table describes the QOS attributes.

TABLE 5 QOS Attributes and Their Description

Attribute Description Example

Consumer Settings

Service Name Specifies the consumer service
name. Click the ellipses button to
open the QName Editor. Select a
pre-existing Namespace URL or
enter a new Namespace URL and
prefix.

http://j2ee.netbeans.org/wsdl/PollInOut/PollIn

Endpoint Name Specifies the consumer endpoint
name. Click the ellipses button to
open an edit window.

PollIn_InboundPort

Provider Settings

Service Name Specifies the provider service
name. Click the ellipses button to
open the QName Editor. Select a
pre-existing Namespace URL or
enter a new Namespace URL and
prefix.

http://enterprise.netbeans.org/bpel/PollInOut/PollWrite

Endpoint Name Specifies the Provider endpoint
name. Click the ellipses button to
open an edit window.

FileInboundPortTypeRole_myRole

Redelivery Extension Settings

Max Attempts Specifies the number of times
redelivery will be attempted before
using the on failure option.

20

Message Exchange Redelivery Capability

Using the File Binding Component in a Project 39

TABLE 5 QOS Attributes and Their Description (Continued)
Attribute Description Example

Wait Time Specifies time (in milliseconds) to
wait between redelivery attempts.

300

On Failure Specifies the type of action to be
taken when message exchange
(ME) redelivery attempts have
been exhausted. The on failure
options are:
■ Delete
■ Error
■ Redirect
■ Suspend

The File Binding Component
supports only Error and Suspend.

Error

Throttling Extension Settings

Max Concurrency Limit Specifies the maximum number of
concurrent messages that can be
processed on a specific connection.
This number is used to set up the
maximum number of concurrent
messages that the internal endpoint
sends to the provider endpoint.

10

Configuring Redelivery
Redelivery is a Quality of Service mechanism that handles message delivery when first-time
delivery fails. Redelivery allows you to define the number of attempts that the system makes to
deliver a message, the time between attempts, and the final result for an undeliverable message
or non-responsive endpoint. Redelivery is configured for a specific connection from the
Composite Application Service Assembly (CASA) Editor, by clicking the QoS icon for that
connection. This opens the Config QoS Properties for that connection. From the Redelivery
Extension section of the editor, configure the Redelivery properties.

If ERROR status is returned for an Inbound message sent by File Binding Component, the BC
will attempt to redeliver the message, based on Redelivery QoS settings. For example, a message
could have ERROR status if BPEL Service Engine encounters a problem while processing the
message.

The Redelivery configuration parameters are:

■ Max Attempts: Specifies the number of times that the project attempts to re-deliver a
message. An error status is returned to the JBI component for each failed attempt.

Message Exchange Redelivery Capability

Using the File Binding Component in a Project • June 200940

■ Wait Time: Specifies the time, in milliseconds, that the project waits between redelivery
attempts.

■ On Failure: Specifies the actions taken and the message destination when the specified
redelivery attempts have been exhausted. This parameter has four options: delete, redirect,
suspend, and error.

The On Failure parameter has four options: delete, redirect, suspend, and error.
■ Delete: The delete option specifies that when the final attempt to redeliver the message has

failed, the QoS utility deletes the message and returns a Done status to the JBI component, at
which time the component proceeds to its next process. The delete option only supports
In-Only message exchanges.

■ Error: The error option specifies that when the final attempt to redeliver the message is
exhausted, the providing JBI component will set the endpoint status to "ERROR", and will
raise an exception and populate the Error property with it. This option is supported for both
In-Only and In-Out message exchanges.

■ Redirect: The redirect option specifies that after the final attempt to redeliver the message
has failed, the QoS utility redirects the message to a user-defined endpoint, such as a
“dead-message” folder. Upon successful delivery to the redirect endpoint, the QoS utility
returns a Done status to the JBI component, at which time the component proceeds to its
next process. The redirect option only supports In-Only message exchanges.

■ Suspend: The suspend option specifies that when the final attempt to redeliver the message
has failed, the JBI component suspends the process instance . This option is only supported
if monitoring is enabled in the JBI Component, since the user must use the monitoring tool
to resume a suspended instance. This option is supported for both In-Only and In-Out
message exchanges.

▼ To Configure Redelivery
From the NetBeans IDE Projects window, right-click the Service Assembly node under your
composite application, and select Edit from the popup menu.

The CASA Editor opens containing your composite application.

1

Message Exchange Redelivery Capability

Using the File Binding Component in a Project 41

In the CASA Editor, click the QoS icon located on the link between your JBI Module and the WSDL
port you want to configure.

The QOS Properties Editor appears.

In the QOS Properties Editor, click the property field for Max Attempts under Redelivery
Extension, and enter an integer for the maximum number of redeliveries to be attempted.

Similarly set the Wait Time and On Failure attributes and click Close.

2

3

4

Message Exchange Redelivery Capability

Using the File Binding Component in a Project • June 200942

Endpoints Statistics and Monitoring Management
Endpoints statistics feature provides the File Binding Component's statistics data for endpoints
including active consuming endpoints, provisioning endpoints, the requests/response these
endpoints sent/received and so forth.

The File Binding Component records and maintains statistics for 19 different component
activities including exchanges, errors, requests, replies, and so forth. These statistics are

Endpoints Statistics and Monitoring Management

Using the File Binding Component in a Project 43

recorded during the lifecycle of an endpoint, and accessed from the File Binding Component
Properties Editor. For example: statistics for the number of times that a send request has been
completed are available in the application's File Binding Component properties as the current
value for Statistics→ Sent Requests.

The File Binding Component's performance measurements are always set to "on". The
supported categories for performance measurements are "Normalization" and
"Denormalization". The performance measurement data is returned as a
javax.management.openmbean.TabularDat.

Throttling and Serial Processing
Throttling allows you to set the maximum number of concurrent messages that are processed
by a particular endpoint. Increased message load and large message payloads can cause memory
usage spikes that can decrease performance. Throttling limits resource consumption so that
consistent performance is maintained.

When Max Concurrency Limit is set to 1, File Binding Component will process messages in a
serial fashion. That is, after sending one inbound message, next message will be sent only after a
response/acknowlegement is received for the first message.

▼ To Configure Throttling
From the NetBeans IDE Projects window, right-click the Service Assembly node under your
composite application, and select Edit from the pop-up menu.

The CASA Editor opens containing your composite application.

In the CASA Editor, click the QoS icon located on the link between your JBI Module and the WSDL
port you want to configure.

1

2

Throttling and Serial Processing

Using the File Binding Component in a Project • June 200944

The QOS Properties Editor appears.

In the QOS Properties Editor, click the property field for Max Concurrency Limit under
Throttling Extension, and enter an integer for the maximum number of concurrent messages
allowed for this endpoint.

3

Throttling and Serial Processing

Using the File Binding Component in a Project 45

Click Close.
The appropriate throttling configuration for the connection is generated in the project's jbi.xml
file, when the service assembly is built.

4

Throttling and Serial Processing

Using the File Binding Component in a Project • June 200946

	Using the File Binding Component in a Project
	Using the File Binding Component in a Project
	About the File Binding Component
	File Binding Component Features
	Common User Scenarios
	Polling a Directory
	Writing Files to a Directory
	Multiple Records in a File
	End-of-Line Characters

	Runtime Configuration
	Accessing the File Binding Component Runtime Properties
	The File Binding Component Runtime Properties
	General Properties
	Statistics Properties
	Loggers Properties

	Configuring File BC WSDL Attributes
	Service Level WSDL Elements
	File Address Element
	Binding Level WSDL Elements
	File Binding Element
	File Operation Element
	File Message Element
	File Name Patterns
	Application Variables in File Name Patterns

	Inbound Message Processing
	File Binding Component Processing Protocol

	Persisted Sequencing
	Mapping Persisted Sequences to File Based Persistences
	Outbound Message Processing

	Application Variable Support
	Application Configuration Support
	Processing Protocols and Capabilities
	Inbound Processing
	Outbound Processing

	Normalized Message Properties
	Normalized Message Properties Defined by the File Binding Component
	General Normalized Message Properties

	Consistent Logging Strategies
	Message Exchange Redelivery Capability
	Configuring Redelivery
	To Configure Redelivery

	Endpoints Statistics and Monitoring Management
	Throttling and Serial Processing
	To Configure Throttling

