
JAXB Wizard and Code-Seeder
Palette User's Guide

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 821–0451–10
September 2009

Copyright 2009 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In particular, and without
limitation, these intellectual property rights may include one or more U.S. patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights – Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions
of the FAR and its supplements.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other
countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, the Solaris logo, the Java Coffee Cup logo, docs.sun.com, Java, and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. or its subsidiaries in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of
SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and SunTM Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts
of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to
the Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN LOOK GUIs and otherwise comply with Sun's written license
agreements.

Products covered by and information contained in this publication are controlled by U.S. Export Control laws and may be subject to the export or import laws in
other countries. Nuclear, missile, chemical or biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export
or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied persons and specially
designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

090917@22749

Contents

Using the JAXB Wizard and Code-Seeder Palette .. 5
Performing a Typical JAXB Binding Process ..6

▼ To Perform a Typical JAXB Binding Process ...6
The JAXB Wizard ...7

Code-Seeder Palette (JAXB) Wizard Editor Palette Actions ...8

3

4

Using the JAXB Wizard and Code-Seeder Palette

The Java Architecture for XML Binding (JAXB) provides a fast and convenient way to bind
XML schemas to Java representations, making it easy for Java developers to incorporate XML
data and processing functions in Java applications. As part of this process, JAXB provides
methods for constructing, unmarshalling, and marshalling XML content and data using Java
language objects. This allows you to leverage the flexibility of platform-neutral XML data in
Java applications without having to work with or even know XML programming techniques.
The result is highly portable XML data joined with highly portable Java code that can be used to
create flexible and portable applications and Web services.

When using integration solutions, data in web services is received and sent through JAX-WS or
JAX-RPC. When the data is received it is converted to Java classes, which makes it easy to access
when contained in the message. But not all data enters the system through web services. For
example, it could enter through Java-based integration applications, where data is read from
JMS or from the file system. In either case, there is a similar need to be able to access the data
through Java classes. The JAXB Wizard enables you to generate Java classes from an XSD or
DTD inside the IDE. The Code-Seeder Palette's functionality allows you to generate template
code in order to marshal, unmarshal, construct JAXB Objects to and from many sources.
Sources can be JMS Message, String, or File.

What You Need to Do

The following topics provide instructions on how access and use data to generate Java classes
from an XSD or DTD inside the IDE.

■ “Performing a Typical JAXB Binding Process” on page 6
■ “The JAXB Wizard” on page 7

Additional Resources

5

Below are links to additional information, tutorials, and a screencast to help you work with the
JAXB Wizard and Code-Seeder Pallete:

■ Using JAXB to Process XML Payloads (http://webcast-west.sun.com/interactive/
09B01880/index.html)

This is a 14–minute screencast. It might take some time to download.
■ Binding WSDL to Java with JAXB (http://www.netbeans.org/kb/docs/websvc/

jaxb.html)

This is a short JAXB tutorial.
■ JAXB Sample (http://wiki.netbeans.org/NB6JAXBSample1)
■ Frequently Asked Questions (http://wiki.netbeans.org/FaqJaxb)

Performing a Typical JAXB Binding Process
The JAXB APIs and tools are shipped in the jaxb subdirectory of the Java WSDP. This directory
contains sample applications, a JAXB binding compiler (xjc), and implementations of the
runtime binding framework APIs contained in the javax.xml.bind package. For more
information on binding between XML Schema and Java Classes, refer to the following tutorial:
http://java.sun.com/javaee/5/docs/tutorial/doc/bnazf.html.

▼ To Perform a Typical JAXB Binding Process
The following steps demonstrate ONE particular way to bind XML schemas and Java
representations. Depending on your requirements, the binding process can be achieved in
several different ways.

Generate JAXB classes.

An XML schema is used as input to the JAXB binding compiler to generate JAXB classes based
on that schema.

Compile JAXB classes.

All of the generated classes, source files, and application code must be compiled.

Unmarshal XML documents.

XML documents written according to the constraints in the source schema are unmarshalled by
the JAXB binding framework.

1

2

3

Performing a Typical JAXB Binding Process

JAXB Wizard and Code-Seeder Palette User's Guide • September 20096

http://webcast-west.sun.com/interactive/09B01880/index.html
http://webcast-west.sun.com/interactive/09B01880/index.html
http://www.netbeans.org/kb/docs/websvc/jaxb.html
http://www.netbeans.org/kb/docs/websvc/jaxb.html
http://wiki.netbeans.org/NB6JAXBSample1
http://wiki.netbeans.org/FaqJaxb
http://java.sun.com/javaee/5/docs/tutorial/doc/bnazf.html

Note – JAXB also supports the unmarshalling of XML data from sources other than
files/documents, such as DOM nodes, string buffers, and SAX Sources.

Generate the content tree.
The unmarshalling process generates a content tree of data objects instantiated from the
generated JAXB classes; this content tree represents the structure and content of the source
XML documents.

Validate source XML (optional).
The unmarshalling process optionally involves validation of the source XML documents before
generating the content tree.

Note – If you modify the content tree in Step 6 (below), you can also use the JAXB Validate
operation to validate the changes before marshalling the content back to an XML document.

Process content.
The client application can modify the XML data represented by the Java content tree by means
of interfaces generated by the binding compiler.

Marshal the content tree out to one or more XML output documents.
The content may be validated before marshalling.

To summarize, using JAXB involves two discrete sets of activities:
■ Generate and compile JAXB classes from a source schema, and build an application that

implements these classes
■ Run the application to unmarshal, process, validate, and marshal XML content through the

JAXB binding framework

These two steps are usually performed at separate times in two distinct phases. Typically, there
is an application development phase in which JAXB classes are generated and compiled, with a
binding implementation being built. That is followed by a deployment phase in which the
generated JAXB classes are used to process XML content in an ongoing live production setting.

The JAXB Wizard
The JAXB wizard enables you to generate and compile JAXB classes for a schema, while not
requiring a knowledge of the JAXB XML Binding Compiler (xjc) Tool. The wizard also helps in
code completion for generated classes. JAXB code generation and compilation is made part of
the project's compilation and build task. Once the JAXB Binding is created, the code seeder
Palette actions will help you in using the JAXB generated classes in constructing, marshalling,
and unmarshalling

4

5

6

7

The JAXB Wizard

Using the JAXB Wizard and Code-Seeder Palette 7

Code-Seeder Palette (JAXB) Wizard Editor Palette
Actions
The Code-Seeder Palette (JAXB) Wizard contains the following palette actions.

■ “Constructs JAXB Object” on page 8
■ “Marshal JAXB Object” on page 11
■ “Unmarshal JAXB Object” on page 13

Constructs JAXB Object
The Constructs action generates code to instantiate JAXB objects. This code generation is
useful in automating the generation of a series of getter and setter methods, especially when the
JAXB object contains a series of nested objects. The code that is generated will not only
instantiate the JAXB Object, but will also populate all the nested objects with initial values. This
instantiation and population of values and objects can be done by passing a sample XML file.
The Sample XML file needs to conform to the XSD/Schema used to generate the JAXB class.
When sample XML file is not provided, all the nested JAXB members objects are instantiated.

▼ To Generate Code Using the Constructs JAXB Object

Drag and drop the Constructs JAXB Object icon into the IDE editor of an existing project.

The Generate JAXB Constructs code dialog box is displayed.

FIGURE 1 Palette Menu

1

The JAXB Wizard

JAXB Wizard and Code-Seeder Palette User's Guide • September 20098

Enter the JAXB class name with the package name to be instantiated/initialized. You can also
use the Find button to search for the class (as shown below).

Enter a sample XML file (if available) for the initialization code to use. Update the auto
generated method name if required.

FIGURE 2 JAXB Constructs Object

FIGURE 3 Find Class Type

2

3

The JAXB Wizard

Using the JAXB Wizard and Code-Seeder Palette 9

Assuming the XML file conforms to the schema used in generating JAXB classes, a method will
be created (as shown below).

If the sample XML file is not provided, the code generated will not populate the default values
(as shown below).

FIGURE 4 Providing Sample XML File

FIGURE 5 Successful Method Created

4

The JAXB Wizard

JAXB Wizard and Code-Seeder Palette User's Guide • September 200910

Marshal JAXB Object
The Marshal palette icon action generates template code to marshal a JAXB object. This
provides the ability to convert a Java object tree back into XML data. There is no difference
between marshalling a content tree that is created manually using the factory methods and
marshalling a content tree that is the result of an unmarshal operation. Clients can marshal a
Java content tree back to XML data to a java.io.OutputStream or a java.io.Writer. You
must know the Class name of the object you are trying to marshal. You can search for the class
using the Find button. The template code can be generated to marshal a JAXB object to a String,
OutputStream, File, Writer, or byte array.

Note – The Code-Seeder currently generates code using a single package name in the context
path. You may want to edit the code if more than one package name is needed in the context
path.

▼ To Generate Code Using the Marshal JAXB Object

To marshal an existing JAXB class object, drag and drop the JAXB Marshal palette icon to IDE
editor.
The Generate JAXB Marshal codedialog box is displayed.

FIGURE 6 Unpopulated Method

1

The JAXB Wizard

Using the JAXB Wizard and Code-Seeder Palette 11

Enter the JAXB object's class name or use the Find... button to search for the class. (as in the
Construct's Figure 3section)

Select the Marshal To option. You can generate the code from a marshal JAXB object to one of
String, Writer, OutputStream, JMSTextMessage, or File.

The desired method will be generated (as shown below).

FIGURE 7 JAXB Marshal Object

FIGURE 8 Select Marshal To

2

3

The JAXB Wizard

JAXB Wizard and Code-Seeder Palette User's Guide • September 200912

Unmarshal JAXB Object
The Unmarshal palette icon action will generate template code to unmarshal a JAXB object.
This allows for any global XML element declared in the schema to be unmarshalled as the root
of an instance document. The JAXBContext object allows the merging of global elements across
a set of schemas (listed in the contextPath). This means that a client application is able to
unmarshal XML documents that are instances of any of the schemas listed in the contextPath.
You must know the Class name of the object you are trying to unmarshal. Since each schema in
the schema set can belong to distinct namespaces, the unification of schemas to an
unmarshalling context should be namespace-independent. You can search for the class using
the Find button. The template code can be generated to unmarshal a JAXB object from a String,
InputStream, File, Reader, or byte array.

Note – The Code-Seeder currently generates code using a single package name in the context
path. You may want to edit the code if more than one package name is needed in the context
path.

▼ To Generate Code Using the Unmarshal JAXB Object

To unmarshal an existing JAXB class object, drag and drop the JAXB Unmarshal palette icon into
the IDE editor.

The Generate JAXB Unmarshal code dialog box is displayed.

FIGURE 9 Marshal Generated Method

1

The JAXB Wizard

Using the JAXB Wizard and Code-Seeder Palette 13

Enter the JAXB object's class name or use the Find... button to search for the class. (as in the
Construct's Figure 3section)

Select the Unmarshal From option. You can generate the code to unmarshal a JAXB object from
one of String, Reader, InputStream, JMSTextMessage, or File.

The Unmarshal Method will be generated as shown below.

FIGURE 10 Unmarshal Option

FIGURE 11 Select Unmarshal From

FIGURE 12 Unmarshal Method

2

3

The JAXB Wizard

JAXB Wizard and Code-Seeder Palette User's Guide • September 200914

	JAXB Wizard and Code-Seeder Palette User's Guide
	Using the JAXB Wizard and Code-Seeder Palette
	Performing a Typical JAXB Binding Process
	To Perform a Typical JAXB Binding Process

	The JAXB Wizard
	Code-Seeder Palette (JAXB) Wizard Editor Palette Actions
	Constructs JAXB Object
	To Generate Code Using the Constructs JAXB Object

	Marshal JAXB Object
	To Generate Code Using the Marshal JAXB Object

	Unmarshal JAXB Object
	To Generate Code Using the Unmarshal JAXB Object

