
Using the JMS JCA Wizard

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 821–0454–10
September 2009

Copyright 2009 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In particular, and without
limitation, these intellectual property rights may include one or more U.S. patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights – Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions
of the FAR and its supplements.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other
countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, the Solaris logo, the Java Coffee Cup logo, docs.sun.com, Java, and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. or its subsidiaries in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of
SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and SunTM Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts
of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to
the Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN LOOK GUIs and otherwise comply with Sun's written license
agreements.

Products covered by and information contained in this publication are controlled by U.S. Export Control laws and may be subject to the export or import laws in
other countries. Nuclear, missile, chemical or biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export
or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied persons and specially
designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

090917@22749

Contents

Using the JMS JCA Wizard .. 5
About the JMS JCA Wizard ...5
Receiving a JMS Text Message ..5

▼ To Create an Admin Object Resource ..6
▼ To Create the EJB Module Project ..7
▼ To Create the JCA Message-Driven Bean ..9
▼ To Test the Sample Code ... 15

Sending a JMS Text Message .. 15
▼ To Create an Admin Object Resource ... 16
▼ To Define a JMS Session Instance .. 16
▼ Create a Reference to the Destination Object ... 18
▼ To Test the Sample Code ... 20

Initiating a Request-Reply Transaction .. 20
▼ To Create the EJB Module Project ... 21
▼ To Create a Message Driven Bean .. 21
▼ To Create a JCA Message-Driven Bean for the Destination ... 27

3

4

Using the JMS JCA Wizard

The following topics provide information for using the JMS JCA, along with instructions for
configuring specific scenarios with the JMS JCA Wizard.

■ “About the JMS JCA Wizard” on page 5
■ “Receiving a JMS Text Message” on page 5
■ “Sending a JMS Text Message” on page 15
■ “Initiating a Request-Reply Transaction” on page 20

About the JMS JCA Wizard
The JMS JCA Wizard provides tools for Java EE users to easily connect to JMS message servers
from their Java EE applications. The wizard is a NetBeans IDE plug-in module and provides
GUI support for the JMS JCA inbound configuration and for code fragment generation through
a drag-and-drop code palette. The wizard leverages the EJB 3.0 and JCA 1.5 APIs to simplify
code creation. The runtime components are GlassFish Enterprise Server and the JMS JCA
Adapter. The JMS JCA Adapter is a JCA 1.5 compliant resource adapter. The advantage of using
the JMS JCA Adapter is that it allows you to connect transparently to the message servers from
different vendors, such as WebSphere, WebLogic, JBoss, and Sun Java System Message Queue.

Receiving a JMS Text Message
This topic provides instructions for building a Message-Driven Bean (MDB) that will monitor a
designated queue on a JMS destination (of the JMS Server) in order to receive JMS messages.
Upon receipt of the a JMS message, the MDB will print out the content of the message if it is of
the type TextMessage.

Perform the following steps to receive a JMS text message:

■ “To Create an Admin Object Resource” on page 6
■ “To Create the EJB Module Project” on page 7

5

■ “To Create the JCA Message-Driven Bean” on page 9
■ “To Test the Sample Code” on page 15

▼ To Create an Admin Object Resource
For this example, the message is being received from Queue1, so you need to create the
corresponding JMS Queue object resource in GlassFish.

Start the GlassFish server and use a browser to connect to the Admin Console.
The URL for the Admin Console is http://HostName:PortNumber. The default port number
is 4848.

In the left navigation bar, expand Resources and Connectors and then select Admin Object
Resources.

Click New.
The New Admin Object Resource window appears (Step 1 of 2).

Fill in the required fields.
For the purposes of this exercise, use the following values:
■ JNDI Name = jms/Queue1
■ Resource Type = javax.jms.Queue
■ Resource Adapter = sun-jms-adapter

FIGURE 1 Admin Object Resources

1

2

3

4

Receiving a JMS Text Message

Using the JMS JCA Wizard • September 20096

Click Next.

Enter a name for the resource.
For this exercise, enter Queue1. This is the physical destination name of the resource.

Click Finish.

▼ To Create the EJB Module Project
Right–click in the Projects Panel of the NetBeans IDE and select New Project.

FIGURE 2 New Admin Object Resources (Step 1 of 2)

FIGURE 3 New Admin Object Resources (Step 2 of 2)

5

6

7

1

Receiving a JMS Text Message

Using the JMS JCA Wizard 7

On the New Project Wizard, select Java EE under Categories, and then select EJB Module under
Projects.

Click Next.

The Name and Location window appears.

Enter the Project Name and Location fields.

For the purposes of this exercise, enter the following values:

■ Project Name = JMSJCASample
■ Project Location = the location to store NetBeans project files

FIGURE 4 Choose New Project

2

3

4

Receiving a JMS Text Message

Using the JMS JCA Wizard • September 20098

Click Next.

The Server and Settings window appears.

In the Server and Settings window, keep the default values for all fields.

Click Finish.

▼ To Create the JCA Message-Driven Bean
Right-click on the Project node, and then select New->Other.

On the wizard, select Java EE under Categories, and select JCA Message-Driven Bean under File
Types.

FIGURE 5 EJB Module Project Name and Location

5

6

7

1

2

Receiving a JMS Text Message

Using the JMS JCA Wizard 9

Click Next.

The JCA Message-Driven Bean Name and Location window appears.

Enter the Name and Location fields.

For this exercise, enter the following values:

■ Class Name = JCAMessageBeanSample
■ Package = jmsjca.sample

FIGURE 6 Choose JCA Message-Driven Bean

3

4

Receiving a JMS Text Message

Using the JMS JCA Wizard • September 200910

Click Next.

The Choose Inbound JCA window appears.

Select JMS Adapter and click Next.

Note – Currently only JMS Adapter can be selected in the window.

The Edit Activation Configuration window appears.

Configure the Inbound JMS connection by clicking on the ellipsis button next to the Connection
URL box (as shown below).

You can configure many different options for the Inbound JMS connection, such as the JNDI
name of the JMS connection resource or the JNDI name of the JMS destination. You can also
configure the more advanced options such as message re-delivery, selector, concurrency mode,
and so on. In this simple case, only the Connection URL and Destination options for our
sample code to work.

FIGURE 7 JCA Message-Driven Bean Name and Location

5

6

7

Receiving a JMS Text Message

Using the JMS JCA Wizard 11

Expand the tree node all the way and select jms/tx/jmq1 (as shown below).

This resource connects the embedded Sun MQ JMS server inside the GlassFish server and is
created by default with the installer. The default connection URL is mq://localhost:7676.

FIGURE 8 Edit Activation Configuration

8

Receiving a JMS Text Message

Using the JMS JCA Wizard • September 200912

Click on the ellipsis button next to Destination box.

The Connector Resource dialog box for the Destination appears.

Expand the tree node all the way and select jms/Queue1 (as shown below).

This is the Admin Object Resource created earlier for the Queue1 destination using the
GlassFish Admin Console.

FIGURE 9 Connector Resource — Connection URL

9

10

Receiving a JMS Text Message

Using the JMS JCA Wizard 13

Click Finish.

A Java source file is created and opened in the editor view. The source file is a skeleton file with
most of the boilerplate code already generated, as shown below.

Any JMS messages sent to the Queue1 destination are passed to the onMessage(...) method in
this Java file. The login can be processed inside the onMessage() method as needed. Because the

FIGURE 10 Connector Resource — Destination

FIGURE 11 Java Source Code

11

Receiving a JMS Text Message

Using the JMS JCA Wizard • September 200914

purpose of this task is to simply print out the message content of the JMS message (if the
message is of type javax.jms.TextMessage), the implementation code would be similar to the
following:

public void onMessage(Message message) {

try {

if (message instanceof javax.jms.TextMessage) {

logger.log(Level.INFO, "JMS message conecnt is: " +

((javax.jms.TextMessage) message).getText());

}

} catch (JMSException ex) {

Logger.getLogger(JCAMessageBeanSample.class.getName()).log(Level.SEVERE,

null, ex);

return;

}

}

Note – The above code has been wrapped to fit the page.

Click Save when you are done editing the file.

▼ To Test the Sample Code
Right-click the Project node and select Build.

When the build process is complete, right-click the Project node and select Undeploy and
Deploy.

Use a JMS client to send a text message to Queue1 on the to JMS server (located at
mq://localhost:7676, by default).

The contents of the message is logged in the server log file.

Sending a JMS Text Message
This topic provides instructions for sending a JMS message to a destination (Queue2). For
purposes of this exercise, the message content to Queue2 is "Hello " concatenated with the
message content received from the onMessage() method from Queue1. For more information
about receiving JMS messages, see “Receiving a JMS Text Message” on page 5.

12

1

2

3

Sending a JMS Text Message

Using the JMS JCA Wizard 15

Perform the following steps to send a JMS text message:
■ “To Create an Admin Object Resource” on page 16
■ “To Define a JMS Session Instance” on page 16
■ “Create a Reference to the Destination Object” on page 18
■ “To Test the Sample Code” on page 20

▼ To Create an Admin Object Resource
Start the GlassFish server and use a browser to connect to the Admin Console.
The URL for the Admin Console is http://HostName:PortNumber. The default port number
is 4848.

In the left navigation bar, expand Resources and Connectors, and then select Admin Object
Resources.

Click New.

For this exercise, enter the following values:

■ JNDI Name = jms/Queue2
■ Resource Type = javax.jms.Queue
■ Resource Adapter = sun-jms-adapter

Click Next.

Enter Queue2 in the Name property.
This is the physical destination name of the resource.

Click Finish.

▼ To Define a JMS Session Instance
You need to create a JMS message, object, or message producer to send a message to Queue2
once the JMS message is received inside the MDB file of the onMessage() method.

Launch the NetBeans IDE and open the Message-Driven Bean file you created in “To Create the
JCA Message-Driven Bean”on page 9.
The file is located in the Enterprise Beans node of the JMSJCASample project.

Drag-and-drop the Session icon from the Palette panel on the right side to the inside of the
onMessage()method, as shown in the figure below:

1

2

3

4

5

6

7

1

2

Sending a JMS Text Message

Using the JMS JCA Wizard • September 200916

The JCA Wizard dialog box appears.

For this exercise, enter the following values:

■ Method Name = queueToQueue
■ Resource JNDI Name = jms/tx/jmq1

FIGURE 12 JCA Message Bean Sample — Session

3

Sending a JMS Text Message

Using the JMS JCA Wizard 17

Click Finish.

Several Java code fragments is generated as a result, in particular the queueToQueue(...)
method, which can be implemented to process the incoming message.

Save the MDB file.

▼ Create a Reference to the Destination Object
Creating a reference to the destination object allows a message to be sent to the destination
object in the Java code. For this exercise, the destination object is Queue2.

In the NetBeans IDE, open the Message-Driven Bean file you created in “To Create the JCA
Message-Driven Bean”on page 9.

The file is located in the Enterprise Beans node of the JMSJCASample project.

Drag-and-drop the Queue icon from the Palette panel on the right to any place in Java editor, as
shown below.

FIGURE 13 JCA Adapter Declaration

4

5

1

2

Sending a JMS Text Message

Using the JMS JCA Wizard • September 200918

The Create JMS Destination dialog box appears.

For this exercise, enter the following information into the fields:

■ JNDI Name = jms/Queue2 (You can select this value by clicking the ellipsis button and
expanding the tree.)

■ Variable Name = queue2

Click OK.

FIGURE 14 JCA Message Bean Sample — Queue

FIGURE 15 Create JMS Destination

3

4

Sending a JMS Text Message

Using the JMS JCA Wizard 19

Write the actual code to create a new JMS message and send it to Queue2.
The code fragment inside the queueToQueue(...) method should be similar to the example
shown below:
private void queueToQueue(Message message, javax.jms.Session jmsSession)

throws java.lang.Exception {

if (message instanceof javax.jms.TextMessage) {

String oldContent = ((javax.jms.TextMessage) message).getText();

javax.jms.TextMessage newMessage = jmsSession.createTextMessage("Hello "
+ oldContent);

jmsSession.createProducer(queue2).send(newMessage);

}

}

Note – The above code has been wrapped to fit onto the page.

Save the changes.

▼ To Test the Sample Code
To test that JMS messages are being properly passed from Queue1 to Queue2, complete the
following steps.

Right-click on the Project node and select Build.

After the build process is complete, right-click on the Project node, and then select Undeploy
and Deploy.

Use your preferred JMS client to send a text message to Queue1 (located at
mq://localhost:7676,).

Use another JMS client (or the same client) to receive a text message from Queue2 in the JMS
server (located at mq://localhost:7676,).

Initiating a Request-Reply Transaction
JMS messaging solutions need to satisfy the requirements of operating on a fire-and-forget or a
store-and-forward basis. This messaging infrastructure is used to deliver each message to the
intended recipient whether that recipient is active at the time of send or not. In a request-reply
pattern, messages are delivered to the messaging system, which immediately acknowledges that
it has taken the responsibility for delivery to the ultimate recipient. That delivery might take
some time if the recipient is not active for a period or might not take place at all if the recipient
never appears.

5

6

1

2

3

4

Initiating a Request-Reply Transaction

Using the JMS JCA Wizard • September 200920

Perform the following steps to initiate a request-reply transaction:

■ “To Create the EJB Module Project” on page 21
■ “To Create a Message Driven Bean” on page 21
■ “To Create a JCA Message-Driven Bean for the Destination” on page 27

▼ To Create the EJB Module Project
From the File menu, select New Project.

The New Project dialog box appears.

Select Java EE under Categories, and then select EJB Module under Projects.

Click Next.

The Name and Location window appears.

Enter a unique Project Name and the location to store the project files.

Click Next.

The Server and Settings window appears.

Accept the default settings for the server and click Finish.

The new project is created.

▼ To Create a Message Driven Bean
Right-click the new project, and then select New -> Other.

The New File Wizard appears.

1

2

3

4

5

6

1

Initiating a Request-Reply Transaction

Using the JMS JCA Wizard 21

Select Java EE under Categories, and then select JCA Message-Driven Bean under File Types .

Click Next.

The Name and Location window appears.

FIGURE 16 New JCA Message-Driven Bean

2

3

Initiating a Request-Reply Transaction

Using the JMS JCA Wizard • September 200922

Enter a unique Class Name and a valid Package name.

Click Next.

The Choose Inbound JCA window appears.

Select the JMS Adapter and click Next.

The Edit Activation Configuration window appears.

FIGURE 17 Configuring the Message-Driven Bean

4

5

6

Initiating a Request-Reply Transaction

Using the JMS JCA Wizard 23

Set the Destination lookup to the JNDI Name of the Queue and click Finish.

A new Message-Driven Bean is created.

Drag a Queue rom the Palette panel on the right into the Java Editor.

The Create JMS Destination dialog box appears.

FIGURE 18 Edit Activation Configuration

FIGURE 19 JMS Destination

7

8

Initiating a Request-Reply Transaction

Using the JMS JCA Wizard • September 200924

Enter a valid JNDI Name, Variable Name, and click OK.

The Java code for the Queue instance is populated into the Java Editor. Repeat the above steps
for as many Queues that are needed.

Drag a Session from the Palette panel in the right into the onMessage()method in the Java
Editor.

The JMS Adapter Declaration dialog box appears.

Enter a valid method name, such as RequestReply and click Finish.

The Java code for the JMS Session is populated into the Java Editor.

Drag a Request-Reply from the Palette panel on the right into the new method.

The Create JMS Request-Reply dialog box appears.

FIGURE 20 JMS Adapter Declaration

9

10

11

12

Initiating a Request-Reply Transaction

Using the JMS JCA Wizard 25

Select following values for the fields:

■ Select Method – Select the method you specified earlier on the JMS Adapter Declaration
dialog box.

■ Request Message – Select message.
■ Request Destination – Select the JMS queue or topic you created for the adapter.
■ Non-transactional Connection Factory – Select a connection factory that contains “notx”

in the name.

Click OK.

In the Request-Reply method, enter the following code beneath the first line of code:

jmsSession.createProducer(queue2).send(replyMessage);

FIGURE 21 JMS Request-Reply

13

14

15

Initiating a Request-Reply Transaction

Using the JMS JCA Wizard • September 200926

Save the file.

▼ To Create a JCA Message-Driven Bean for the
Destination

From the NetBeans Palette window, drag an instance of the JMS Session into the onMessage()
method in the Java Editor.
The JMS Adapter Declaration dialog box appears.

Enter reply as the method name and click Finish.
The Java code for the JMS Session is populated into the Java Editor.

FIGURE 22 Request-Reply Method

FIGURE 23 Reply Method

16

1

2

Initiating a Request-Reply Transaction

Using the JMS JCA Wizard 27

In the reply method enter the following code:
jmsSession.createProducer(message.getJMSReplyTo()).send(message);

This code sends the incoming message to the reply destination.

Save the file.

Build and deploy the project.

FIGURE 24 Reply Method in the Java Editor

3

4

5

Initiating a Request-Reply Transaction

Using the JMS JCA Wizard • September 200928

	Using the JMS JCA Wizard
	Using the JMS JCA Wizard
	About the JMS JCA Wizard
	Receiving a JMS Text Message
	To Create an Admin Object Resource
	To Create the EJB Module Project
	To Create the JCA Message-Driven Bean
	To Test the Sample Code

	Sending a JMS Text Message
	To Create an Admin Object Resource
	To Define a JMS Session Instance
	Create a Reference to the Destination Object
	To Test the Sample Code

	Initiating a Request-Reply Transaction
	To Create the EJB Module Project
	To Create a Message Driven Bean
	To Create a JCA Message-Driven Bean for the Destination

