
Configuring Java CAPS JBI
Components for GlassFish
Clustering

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 821–0826–10
October 2009



Copyright 2009 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In particular, and without
limitation, these intellectual property rights may include one or more U.S. patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights – Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions
of the FAR and its supplements.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other
countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, the Solaris logo, the Java Coffee Cup logo, docs.sun.com, Java, and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. or its subsidiaries in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of
SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and SunTM Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts
of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to
the Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN LOOK GUIs and otherwise comply with Sun's written license
agreements.

Products covered by and information contained in this publication are controlled by U.S. Export Control laws and may be subject to the export or import laws in
other countries. Nuclear, missile, chemical or biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export
or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied persons and specially
designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

091113@22749



Contents

Configuring Java CAPS JBI Components for Clustering .................................................................. 5
JBI Component Clustering Overview ..................................................................................................6

Clustering Overview .......................................................................................................................6
Component Support for Clustering .............................................................................................7
Clustering Setup Summary ............................................................................................................8

Creating a GlassFish Cluster .................................................................................................................8
▼ To Create a GlassFish Cluster ........................................................................................................8

Adding a Java CAPS JBI Component to a Cluster ........................................................................... 11
▼ To Add a Shared Library to a Cluster ......................................................................................... 11
▼ To Add a Java CAPS JBI Component to a Cluster .................................................................... 12

Modifying Server Properties for Java CAPS JBI Components in a Cluster .................................. 14
▼ To Modify Runtime Properties for a Component in a Cluster ............................................... 15
▼ To Create Application Configurations and Variables for a Component in a Cluster ......... 15
▼ To View the Descriptor for a Component in a Cluster ............................................................ 16
▼ To Set Logging Properties for a Component in a Cluster ....................................................... 17
▼ To Monitor a Component in a Cluster ...................................................................................... 17

Configuring the BPEL Service Engine for Clustering ..................................................................... 17
Setting Up the BPEL Database .................................................................................................... 18
Adding the BPEL Service Engine to the Cluster ....................................................................... 20
Debugging a Business Process Deployed in a Cluster ............................................................. 21

Configuring the IEP Service Engine for Clustering ......................................................................... 22
Setting Up the IEP Database ....................................................................................................... 22
Adding the IEP Service Engine to the Cluster .......................................................................... 24

Configuring the XSLT Service Engine for Clustering ..................................................................... 25
▼ To Add the XSLT Service Engine to the Cluster ....................................................................... 25

Configuring the Java EE Service Engine for Clustering .................................................................. 25
▼ To Enable the Java EE Service Engine on the Cluster .............................................................. 26

Configuring the Data Mashup Service Engine for Clustering ....................................................... 26

3



▼ To Add the Data Mashup Service Engine to the Cluster ......................................................... 26
Configuring the Database Binding Component for Clustering .................................................... 27

Creating the Clustering Database for the Database Binding Component ............................ 27
Adding the Database Binding Component to the Cluster ...................................................... 28

Configuring the File Binding Component for Clustering .............................................................. 28
Adding the File Binding Component to the Cluster ................................................................ 29
Configuring the File BC WSDL File for Clustering ................................................................. 29

Configuring the FTP Binding Component for Clustering ............................................................. 31
Adding the FTP Binding Component to the Cluster ............................................................... 32
Configuring the FTP BC WSDL for Clustering ....................................................................... 33

Configuring the HTTP Binding Component for Clustering ......................................................... 34
Enabling the HTTP Binding Component on the Cluster ....................................................... 34
Configuring the HTTP BC Port Numbers for Clustering ....................................................... 35

Configuring the JMS Binding Component for Clustering ............................................................. 36
▼ To Add the JMS Binding Component to the Cluster ............................................................... 37

Configuring the LDAP Binding Component for Clustering .......................................................... 37
▼ To Add the LDAP Binding Component to the Cluster ........................................................... 37

Configuring the Scheduler Binding Component for Clustering ................................................... 38
▼ To Add the Scheduler Binding Component to the Cluster ..................................................... 38

Deploying a Service Assembly to a Cluster ....................................................................................... 39
▼ To Deploy a Service Assembly to a Cluster ............................................................................... 39

Configuring Components for Standalone High Availability and Failover ................................... 40
Configuring the BPEL Service Engine for Multiple Standalone Instances ............................ 40
Configuring the IEP Service Engine for Multiple Standalone Instances ............................... 41

Contents

Configuring Java CAPS JBI Components for GlassFish Clustering • October 20094



Configuring Java CAPS JBI Components for
Clustering

The topics listed here provide procedures, conceptual information, and reference information
for configuring Java CAPS JBI components in a clustered environment.

Note – Clustering is only supported for the JBI components of Java CAPS, and not for the
Repository components.

What You Need to Know

These topics provide information you should know about clustering.

■ “Clustering Overview” on page 6
■ “Component Support for Clustering” on page 7
■ “Clustering Setup Summary” on page 8

What You Need to Do

These topics provide instructions on how to set up a cluster and how to configure JBI
components in Java CAPS for clustering.

■ “Creating a GlassFish Cluster” on page 8
■ “Adding a Java CAPS JBI Component to a Cluster” on page 11
■ “Modifying Server Properties for Java CAPS JBI Components in a Cluster” on page 14
■ “Configuring the BPEL Service Engine for Clustering” on page 17
■ “Configuring the IEP Service Engine for Clustering” on page 22
■ “Configuring the XSLT Service Engine for Clustering” on page 25
■ “Configuring the Java EE Service Engine for Clustering” on page 25
■ “Configuring the Data Mashup Service Engine for Clustering” on page 26
■ “Configuring the Database Binding Component for Clustering” on page 27
■ “Configuring the File Binding Component for Clustering” on page 28
■ “Configuring the FTP Binding Component for Clustering” on page 31
■ “Configuring the HTTP Binding Component for Clustering” on page 34

5



■ “Configuring the JMS Binding Component for Clustering” on page 36
■ “Configuring the LDAP Binding Component for Clustering” on page 37
■ “Configuring the Scheduler Binding Component for Clustering” on page 38
■ “Deploying a Service Assembly to a Cluster” on page 39
■ “Configuring Components for Standalone High Availability and Failover” on page 40

More Information

This topic provides additional information you should know about GlassFish server, Java
System Message Queue (JMQ), and Java Message Service (JMS) clusters.
■ Sun GlassFish Enterprise Server 2.1 High Availability Administration Guide
■ Chapter 5, “Configuring HTTP Load Balancing,” in Sun GlassFish Enterprise Server 2.1 High

Availability Administration Guide.
■ Article on GlassFish Clustering (for version 2.0)
■ Chapter 8, “Broker Clusters,” in Sun Java System Message Queue 4.1 Administration Guide
■ Chapter 10, “Java Message Service Load Balancing and Failover,” in Sun GlassFish Enterprise

Server 2.1 High Availability Administration Guide

JBI Component Clustering Overview
Java CAPS JBI components rely on the clustering capabilities of GlassFish Enterprise Server
(ES) for clustering and high-availability. In addition, most components can be configured for
different levels of load-balancing and failover. This document describes how the JBI
components use the clustering capabilities of GlassFish, but does not provide detailed
information about GlassFish clustering. A section is provided on basic cluster setup. For
detailed information about high availability and clustering in GlassFish, see the Sun GlassFish
Enterprise Server 2.1 High Availability Administration Guide.

The following topics provide overview information about clustering, JBI component clustering,
and the steps required to set up a cluster.
■ “Clustering Overview” on page 6
■ “Component Support for Clustering” on page 7
■ “Clustering Setup Summary” on page 8

Clustering Overview
A cluster is a collection of application server instances that can distribute processing among
clustered application instances. This provides optimal performance and scalability, along with
high availability and failover capabilities for reliability. Implementing JBI applications in a
clustered environment ensures continuous processing even when there is a hardware or
software failure.

JBI Component Clustering Overview

Configuring Java CAPS JBI Components for GlassFish Clustering • October 20096

http://docs.sun.com/doc/820-4341
http://docs.sun.com/doc/820-4341/abdgs?a=view
http://docs.sun.com/doc/820-4341/abdgs?a=view
http://developers.sun.com/appserver/reference/techart/glassfishcluster
http://docs.sun.com/doc/819-7755
http://docs.sun.com/doc/820-4341/abdbk?a=view
http://docs.sun.com/doc/820-4341/abdbk?a=view
http://docs.sun.com/doc/820-4341
http://docs.sun.com/doc/820-4341


The instances in a cluster share the same set of Java CAPS JBI applications, resources, and
configuration information, and can be implemented on one server or can extend over multiple
servers. A clustered instance belongs to only one cluster, through there can be multiple clusters
on a domain. All settings for a cluster are defined in a single configuration file named
cluster_name-config.

In a cluster configuration for JBI components, each component is added to a GlassFish cluster
and any Service Assemblies (SA) are deployed to the cluster. Adding a component to a cluster
adds the component to all instances of the cluster. Similarly, deploying an SA to a cluster
deploys it to all the cluster instances.

Component Support for Clustering
All Java CAPS JBI components are supported in a clustered environment. Some components
work inherently in a clustered environment and some require special configuration, notably in
the areas of load balancing and failover. Stateful service engines (SEs), such as BPEL SE and IEP
SE, use a persistence database to track cluster instances and distribute work. Other components,
such as the Scheduler BC, Data Mashup SE, and LDAP BC, work inherently in a clustered
environment without needing to know about the different instances.

The BPEL SE and IEP SE provide additional support for clustering at a component level for
backwards compatibility. This means that multiple SE instances can be deployed on one
GlassFish server in a non-clustered environment. This allows for persistence, high-availability,
and failover without using a GlassFish server cluster for all components.

Load Balancing and Failover
Load balancing and failover functions depend on the individual components in the cluster. For
example, load balancing is not applicable to Service Engines (SE), and is protocol specific for
some of the Binding Components (BC). For example, the HTTP Load Balancer is required for
SOAP transactions, while the File BC, JMS BC, and FTP BC all have built-in load balancing.

GlassFish provides additional support for high availability, load balancing, and failover with the
HTTP Load Balancer plug-in. The HTTP Load Balancer distributes incoming HTTP and
HTTPS transactions among the instances in a cluster and also fails over requests to another
server instance if the original server instance becomes unavailable. The HTTP BC does not have
its own load balancing capabilities, making the HTTP Load Balancer plug-in a useful tool when
implementing the HTTP BC in a clustered environment. For more information, see Chapter 5,
“Configuring HTTP Load Balancing,” in Sun GlassFish Enterprise Server 2.1 High Availability
Administration Guide.

Load balancing and failover for the JMS BC is provided through a JMS broker cluster. For more
information, see Chapter 10, “Java Message Service Load Balancing and Failover,” in Sun
GlassFish Enterprise Server 2.1 High Availability Administration Guide.

JBI Component Clustering Overview

Configuring Java CAPS JBI Components for Clustering 7

http://docs.sun.com/doc/820-4341/abdgs?a=view
http://docs.sun.com/doc/820-4341/abdgs?a=view
http://docs.sun.com/doc/820-4341/abdgs?a=view
http://docs.sun.com/doc/820-4341/abdbk?a=view
http://docs.sun.com/doc/820-4341/abdbk?a=view


Clustering Setup Summary
Below are the general steps for setting up clustering for Java CAPS JBI components. Each step is
described in detail in later topics. Note that all setup and configuration tasks are performed
using command line functions or the GlassFish Admin Console. NetBeans cannot be used for
clustering setup because it does not support or recognize GlassFish clustering.

1. Create a GlassFish cluster, as described in “Creating a GlassFish Cluster” on page 8.
2. Add any necessary libraries to the cluster, as described in “To Add a Shared Library to a

Cluster” on page 11.
3. Add the Service Engines and Binding Components to the cluster, as described in “To Add a

Java CAPS JBI Component to a Cluster” on page 12.
4. Make any necessary configuration changes to the Service Engines and Binding

Components. This is described in individual sections for each component.
5. Deploy the Service Assembly to the cluster, as described in “Deploying a Service Assembly

to a Cluster” on page 39.

Instructions for standalone (component-level) clustering are provided in the following topics:
■ “Configuring the BPEL Service Engine for Multiple Standalone Instances” on page 40
■ “Configuring the IEP Service Engine for Multiple Standalone Instances” on page 41

Creating a GlassFish Cluster
This topic provides general instructions for creating a cluster with GlassFish using asadmin
commands and the GlassFish Admin Console. This procedure creates a node agent to manage
the cluster, a cluster, and the cluster instances.

For complete instructions on creating and configuring GlassFish clusters, see the Sun GlassFish
Enterprise Server 2.1 High Availability Administration Guide.

▼ To Create a GlassFish Cluster
If it is not already running, start the GlassFish server you want to configure for clustering.
You can start the server from the command line or from the Services tab in NetBeans.

Once the server is started, launch the Admin Console by doing one of the following:

■ On the Services tab in NetBeans, right-click the server and select View Admin Console.

■ Launch a web browser and enter the following URL:
http://hostname:port

1

2

Creating a GlassFish Cluster

Configuring Java CAPS JBI Components for GlassFish Clustering • October 20098

http://docs.sun.com/doc/820-4341
http://docs.sun.com/doc/820-4341


■ hostname is the name of the machine where the server is located, and can be localhost.
■ port is the administrative port number, which is 4848 by default.

On the main Admin Console page, click Add Cluster Support.

Review the information on the Add Cluster Support page, and then click OK.

On the Restart Required page, click Stop Instance to stop the GlassFish server.

Follow the instructions on the Admin Console to restart the server.

Run the following command to create the node agent, using a unique value for the node agent
name:
GlassFish_Home/bin/asadmin create-node-agent NodeAgent_Name

Run the following command to start the node agent:
GlassFish_Home/bin/asadmin start-node-agent NodeAgent_Name

When the node agent is started, log back in to the GlassFish Admin Console and create the
cluster:

a. In the navigation bar on the left, click Clusters.

b. On the Clusters page, click New.

3

4

5

6

7

8

9

Creating a GlassFish Cluster

Configuring Java CAPS JBI Components for Clustering 9



c. Enter a name for the cluster, and then click OK.

Add instances to the cluster:

a. In the navigation bar on the left, expand Clusters and then select the cluster you just
created.

b. Click the Instances tab.

c. Under Server Instances, click New.

d. Enter a name for the instance, select the node agent you just created, and then click OK.

e. Repeat the above steps to add each instance to the cluster.

10

Creating a GlassFish Cluster

Configuring Java CAPS JBI Components for GlassFish Clustering • October 200910



To start the cluster, select Clusters in the left navigation bar, select the check box next the cluster
you just created, and then click Start Cluster.

Click OK on the dialog box that appears.

Tip – Log files for the cluster are located at
GlassFish_Home/nodeagents/cluster-nodeagent/agent/logs.

Adding a Java CAPS JBI Component to a Cluster
You add Java CAPS JBI components to a cluster using the GlassFish Admin Console. The
process for adding a component to a GlassFish cluster is the same for most components, though
some components require additional configuration once they are added. Most components are
dependant on one or more shared libraries, which need to be added to the cluster first.

Note – Java CAPS JBI components can only be added to a cluster and configured for clustering
using the GlassFish Admin Console. NetBeans does not currently recognize or support
GlassFish clustering, so any runtime configuration changes made on NetBeans are not seen by
the cluster.

▼ To Add a Shared Library to a Cluster
Make sure the cluster and all server instances are created and running. To verify they are
running, select Nodeagent in the left navigation bar on the Admin Console and review the
cluster information.

Launch the GlassFish Admin Console.

In the navigation bar on the left, expand JBI and then expand Shared Libraries.

Select the name of the shared library to add.
The Properties page appears.

Click the Targets tab.

On the Shared Library Targets page, click Manage Targets.

Under Add to Available Targets, select the cluster to which you want to add the shared library.

11

12

Before You Begin

1

2

3

4

5

6

Adding a Java CAPS JBI Component to a Cluster

Configuring Java CAPS JBI Components for Clustering 11



If the shared library is already added to another cluster or server to which it should not be, select
that cluster or server under Remove From Installed-To Targets.

Note – Removing a shared library from the default “server” target removes the library from the
NetBeans Services window.

Click OK.

Note – Validations are performed to ensure that no dependencies are broken when adding or
removing a shared library. In order to successfully remove a shared library from a server or
cluster target, you might need to shut down service engines or binding components that are
currently running on that target.

▼ To Add a Java CAPS JBI Component to a Cluster
Make sure the cluster and all server instances are created and running. To verify they are
running, select Nodeagent in the left navigation bar on the Admin Console and review the
cluster information. Also be sure any libraries on which the component is dependent have been
added to the cluster.

Note – The BPEL SE, IEP SE, and Database BC require additional steps before and after adding
them to a cluster in order to configure and create the persistence databases. In addition, most
components require some configuration steps. Be sure to review the sections for each
component you add before you begin. Links to each section are provided at the end of these
instructions.

Launch the GlassFish Admin Console.

7

8

Before You Begin

1

Adding a Java CAPS JBI Component to a Cluster

Configuring Java CAPS JBI Components for GlassFish Clustering • October 200912



In the navigation bar on the left, expand JBI and then expand Components.

Select the name of the service engine or binding component to add.

The Properties page appears.

Click the Targets tab.

On the Targets page, click Manage Targets.

Under Add to Available Targets, select the cluster to which you are adding the component.

Configure any runtime properties that appear below the target.

If the component is already added to another cluster or server that it should not be, select that
cluster or server under Remove From Installed-To Targets.

Note – Removing some components from the default “server” target removes them from the
NetBeans Services window.

Click OK.

The Targets page reappears.

In the Targets list, select the check box next to the cluster, and then click Start.

2

3

4

5

6

7

8

9

10

Adding a Java CAPS JBI Component to a Cluster

Configuring Java CAPS JBI Components for Clustering 13



Note – Many components require additional configuration or have certain requirements. Refer
to the topic for each component for more information. Below is a link to each component:

■ “Configuring the BPEL Service Engine for Clustering” on page 17
■ “Configuring the IEP Service Engine for Clustering” on page 22
■ “Configuring the XSLT Service Engine for Clustering” on page 25
■ “Configuring the Java EE Service Engine for Clustering” on page 25
■ “Configuring the Data Mashup Service Engine for Clustering” on page 26
■ “Configuring the Database Binding Component for Clustering” on page 27
■ “Configuring the File Binding Component for Clustering” on page 28
■ “Configuring the FTP Binding Component for Clustering” on page 31
■ “Configuring the HTTP Binding Component for Clustering” on page 34
■ “Configuring the JMS Binding Component for Clustering” on page 36
■ “Configuring the LDAP Binding Component for Clustering” on page 37
■ “Configuring the Scheduler Binding Component for Clustering” on page 38

Modifying Server Properties for Java CAPS JBI Components in
a Cluster

Once you have added a Java CAPS JBI component to a cluster, you can update the runtime
properties, update the application configuration (including adding variables), view the
component descriptor, set logging levels, and monitor the component. You must perform these
tasks on the GlassFish Admin Console, and you need to update the configuration for each
instance of that component in the cluster. Configuring runtime properties in NetBeans will not
work for the cluster.

Caution – Each time you add a new instance to a cluster, you need to configure the server
properties of all components on the cluster for the new instance. If you uninstall and reinstall a
component or drop it from the cluster and add it back in, you need to reconfigure the
component as well.

Before you perform any of these tasks, make sure the component is enabled on the cluster. Do
the following to enable the cluster:

1. On the GlassFish Admin Console, expand JBI and then expand Components.
2. Select the name of the service engine or binding component to modify. For example, to

modify the IEP SE runtime properties, select sun-iep-engine.
3. Click the Targets tab.
4. In the Targets list, select the check box next to the cluster and then click Start.

Modifying Server Properties for Java CAPS JBI Components in a Cluster

Configuring Java CAPS JBI Components for GlassFish Clustering • October 200914



▼ To Modify Runtime Properties for a Component in a
Cluster

On the GlassFish Admin Console, expand JBI and then expand Components.

Select the name of the component to configure.

Click the Configuration tab.

In the View/Update Instance field, select the first instance to configure.

Modify any of the runtime properties.
The runtime properties for each component are described in that component's user guide.

Click Save.

Repeat the above steps for each instance in the cluster, selecting a different instance each time
until all instances are configured.

Caution – When updating properties for a component that uses a persistence database, such as
the BPEL SE, IEP SE, or Database BC, be sure that all instances of that component point to the
JDBC resource for the same persistence database.

▼ To Create Application Configurations and Variables for
a Component in a Cluster

Note – Not all components support application configurations or application variables. For
example, the Data Mashup SE is the only service engine that supports configurations and
variables.

On the GlassFish Admin Console, expand JBI and then expand Components.

Select the name of the component to configure.

Click the Application tab.

To add a new configuration definition, do the following:

a. In the View/Update Instance field, select the first instance to configure.

1

2

3

4

5

6

7

1

2

3

4

Modifying Server Properties for Java CAPS JBI Components in a Cluster

Configuring Java CAPS JBI Components for Clustering 15



b. Click Add Configuration.

c. In the Identification section, enter a name for the configuration.

d. Enter values for any of the displayed properties.

e. Click Save.

f. Repeat the above steps for each instance in the cluster, selecting a different instance each
time until all instances are configured.

Caution – When updating properties for a component that uses a persistence database, such
as the BPEL SE, IEP SE, or Database BC, be sure that all instances of that component point
to the JDBC resource for the same persistence database.

To add a variable, do the following:

a. Click the Variables sub-tab.

b. In the View/update Instance field, select the first instance to configure.

c. Click Add Variable.

d. Enter a Name, Type, and Value for the variable.

e. Click Save.

f. Repeat the above steps for each instance in the cluster, selecting a different instance each
time until all instances are configured.

▼ To View the Descriptor for a Component in a Cluster
On the GlassFish Admin Console, expand JBI and then expand Components.

Select the name of the component to configure.

Click the Descriptor tab.

Review the displayed information.

5

1

2

3

4

Modifying Server Properties for Java CAPS JBI Components in a Cluster

Configuring Java CAPS JBI Components for GlassFish Clustering • October 200916



▼ To Set Logging Properties for a Component in a
Cluster

On the GlassFish Admin Console, expand JBI and then expand Components.

Select the name of the component to configure.

Click the Loggers tab.

In the View/Update Instance field, select the first instance to configure.

Select a new logging level for any of the displayed component loggers.

Click Save.

Repeat the above steps for each instance in the cluster, selecting a different instance each time
until all instances are configured.

▼ To Monitor a Component in a Cluster
On the GlassFish Admin Console, expand JBI and then expand Components.

Select the name of the component to Monitor.

Click the Monitoring tab.

In the View Instance field, select the instance to monitor.

View the statistics displayed for the component.

To view statistics for a different instance, select the instance from the View Instance field.

Configuring the BPEL Service Engine for Clustering
You can configure the BPEL SE for GlassFish clustering on the same or different machines. You
can also configure the SE for high availability and failover at the component level on a
standalone GlassFish server. This topic describes configuring the BPEL SE on a GlassFish
cluster. For information on standalone configuration for high availability and failover, see
“Configuring Components for Standalone High Availability and Failover” on page 40.

1

2

3

4

5

6

7

1

2

3

4

5

6

Configuring the BPEL Service Engine for Clustering

Configuring Java CAPS JBI Components for Clustering 17



When the BPEL SE is installed and configured in a clustered environment and one engine fails,
any in-process business process instances are taken over by one of the remaining engines and
the process is completed. When the failed engine recovers, it continues to process new requests.
Clustering for the BPEL SE leverages the persistence and recovery features of the SE, so
persistence must be enabled for the BPEL SE on each cluster instance.

Failover is also supported for business processes configured for correlation. When correlated
messages are processed in a clustered environment, the load balancer or binding component
routes the correlating message to any BPEL SE in the cluster. If the BPEL SE to which the
message was routed does not own the correlating business process instance, the instance is
routed to the engine that received the correlated message (regardless of which engine began
processing the initial message). Processing is then completed on the engine that received the
correlated message.

The BPEL Service Engine (SE) is dependent on the following shared library, which must be
added to the cluster before the BPEL SE is added to the cluster.
■ Sun WSDL Extension Library

Note – The following restrictions apply to BPEL SEs installed in a cluster.
■ All BPEL constructs work in a clustered environment with the exception of event handlers.
■ Reply activities are only supported in a clustered environment if the service is consumed by

another business process (as in a sub-process scenario).
■ The servers in a cluster need to be on the same time zone in order to detect whether an

instance has failed.

Setting Up the BPEL Database
In order to use the BPEL SE in a clustered environment, you need to create a database, and then
create and configure two connection pools and two data sources (to handle both XA and
non-XA activities). All engines in the cluster must be configured to use this database. The
database should be highly available because a database failure constitutes a single point of
failure in the cluster. Automatic database, connection pool, and data source creation is not
available from the clustered instances.

Tip – If you already created the database tables, connection pools, and JDBC resources, you can
re-use them for the cluster instances by just changing the target for the JDBC resources from the
default server to your cluster (described in step 3 below).

For more information about creating connection pools and JDBC resources, see Chapter 3,
“JDBC Resources,” in Sun GlassFish Enterprise Server 2.1 Administration Guide.

Configuring the BPEL Service Engine for Clustering

Configuring Java CAPS JBI Components for GlassFish Clustering • October 200918

http://docs.sun.com/doc/820-4335/ablih?a=view
http://docs.sun.com/doc/820-4335/ablih?a=view


▼ To Set Up the BPEL Database
If you are using an Oracle database, copy the driver file (ojdbc14.jar) from your Oracle
installation to GlassFish_Home/glassfish/lib, and then stop and restart the GlassFish server.

Configure the user and database as described in “Configuring the User and Database for
Persistence” in Using the BPEL Designer and Service Engine.

Create one XA connection pool and JDBC resource and one non-XA connection pool and JDBC
resource.

This is described in “ Creating an XA Connection Pool and a JDBC Resource” in Using the
BPEL Designer and Service Engine and “ Creating a Non-XA Connection Pool and JDBC
Resource” in Using the BPEL Designer and Service Engine.

For each JDBC resource you created, return to the JDBC Resources page on the GlassFish Admin
Console and do the following:

a. Select the JDBC resource from the list, and then click the Target tab.

b. Click Manage Targets.

c. Under Available Targets, select the cluster and click Add.

d. Click OK.

e. In the Targets table, select the cluster and then click Enable.

To automatically create the database tables, do the following:

a. In the NetBeans Services window, expand Servers > GlassFish V2 > JBI > Service Engines.

b. Right-click sun-bpel-engine, and then select Start.

c. On the Properties window, enable persistence and update the names of the XA and non-XA
data source fields to match the JDBC resources you created above.

d. Stop and start sun-bpel-engine.

e. Shutdown sun-bpel-engine.

Before You Begin

1

2

3

4

Configuring the BPEL Service Engine for Clustering

Configuring Java CAPS JBI Components for Clustering 19

http://docs.sun.com/doc/820-6323/gfjxt?a=view
http://docs.sun.com/doc/820-6323/gfjxt?a=view
http://docs.sun.com/doc/820-6323/gfjxf?a=view
http://docs.sun.com/doc/820-6323/gfjxf?a=view
http://docs.sun.com/doc/820-6323/gfjyi?a=view
http://docs.sun.com/doc/820-6323/gfjyi?a=view


Adding the BPEL Service Engine to the Cluster
Before you can add the BPEL SE to a cluster, you need to add a shared library. When you add
the BPEL SE to a cluster, you need to configure certain properties. The SE must be configured
for persistence and pointing to the correct data sources. All instances of the BPEL SE should
point to a single persistence database (which you created earlier under “To Set Up the BPEL
Database” on page 19).

▼ To Add the BPEL Service Engine to the Cluster

Add the following shared library to the cluster as described in “To Add a Shared Library to a
Cluster”on page 11:

■ sun-wsdl-ext-library

Add the BPEL SE (sun-bpel-engine) to the cluster as described in “To Add a Java CAPS JBI
Component to a Cluster”on page 12. Configure the following properties on the Manage Targets
page before you click OK:

a. Under General – Configure Component, specify a value for the Lease Renewal Interval.

Note – The Lease Renewal Interval is the time period in seconds that BPEL engines wait
before renewing their lease to let the cluster know it is still running (also known as the
heartbeat). If an engine does not update within the specified time period, it is considered to
be unavailable.

b. Under Persistence – Manage Persistence/Recovery, set Persistence Enabled to true.

c. In the Non XA Data Source Name property, enter the JNDI name of the non-XA JDBC resource
that you created earlier.

d. In the XA Data Source Name property, enter the JNDI name of the XA JDBC resource that you
created earlier.

This is the database that persists state data for business process instances for recovery.

e. Configure the remaining runtime properties as you typically would for the BPEL SE.

For more information, see “Configuring the BPEL Service Engine Runtime Properties” in
Using the BPEL Designer and Service Engine.

Verify that the engines table in the persistence database contains a row for each instance in the
cluster.

1

2

3

Configuring the BPEL Service Engine for Clustering

Configuring Java CAPS JBI Components for GlassFish Clustering • October 200920

http://docs.sun.com/doc/820-6323/cnfg_bpel-se-runtime-cnfg_r?a=view
http://docs.sun.com/doc/820-6323/cnfg_bpel-se-runtime-cnfg_r?a=view


Tip – If the rows do not appear, check the following:

■ Both JDBC Resources are enabled on the target cluster.
■ The engine is enabled on the target cluster.

If both of the above are enabled, you might need to stop and restart the BPEL SE in order for the
rows to appear.

You can also verify that the engines are renewing the lease within the specified interval by
querying the engines table again after the interval has passed and verifying that the
LASTUPDATETIME column is updated accordingly.

Debugging a Business Process Deployed in a Cluster
When configuring debugging for a business process in a clustered environment, you need to
configure each instance in the cluster for debugging and you need to set the breakpoints and
attach the port number using a separate NetBeans IDE instance for each cluster instance.

▼ To Debug a Business Process Deployed in a Cluster

Launch the GlassFish Admin Console.

In the navigation bar on the left, expand JBI, expand Components, and then select
sun-bpel-engine.

In the View/Update Instance field, select an instance you want to monitor.

Set the Debug Enabled property to true.

Set the Debug Port property to a unique valid port number.

Click Save.

Repeat the above steps for each instance you want to monitor.

If you set breakpoints in the business process and attach a port number, you need to launch a
new NetBeans IDE instance, set a break point, and then attach the port numbers for each
instance in the cluster.

1

2

3

4

5

6

7

8

Configuring the BPEL Service Engine for Clustering

Configuring Java CAPS JBI Components for Clustering 21



Configuring the IEP Service Engine for Clustering
You can configure the IEP SE to run in a GlassFish cluster on the same or different servers, You
can also configure the SE for high availability and failover on a standalone GlassFish server.
This topic describes configuring the IEP SE on a GlassFish cluster. For information on
standalone configuration for high availability and failover, see “Configuring Components for
Standalone High Availability and Failover” on page 40). The IEP SE can be implemented in a
cluster on the same or different servers.

The IEP SE uses a database to maintain instance information in a cluster. In a clustered
environment, an event processor belongs to any one of the live cluster instances at a given time.
All instances can receive the incoming messages, and once a message is received it is inserted
into the IEP database for further processing. The instance that owns the event processor picks
up the event to complete processing. The output is only written by the instance that owns the
event processor. If an instance fails, any in-process transactions are taken over by one of the
remaining instances and the process is completed. When the failed engine recovers, it continues
to process new requests.

The IEP SE is not dependent on any shared libraries.

Note – The servers in a cluster need to be on the same time zone in order to detect whether an
instance has failed.

Setting Up the IEP Database
Default connection pools and JDBC resources are automatically created for an IEP Derby
database, as are the Derby database and persistence tables once you enable the engine on the
cluster. The tables are automatically created for an Oracle database, but you need to manually
create the connection pools and JDBC resources for Oracle.

For Derby, you can customize the default connection pools and JDBC resources if necessary, or
create new ones for the cluster. IEP uses both XA and non-XA transactions so two connection
pools and JDBC resources are required, one for each type.

For more information about creating connection pools and JDBC resources, see Chapter 3,
“JDBC Resources,” in Sun GlassFish Enterprise Server 2.1 Administration Guide.

▼ To Set Up the IEP Database

If you are using Oracle, do the following. These steps are not necessary for other database
platforms.

a. Copy the Oracle driver (ojdbc14.jar) from your Oracle installation to GlassFish_Home/lib.
Restart the GlassFish server.

1

Configuring the IEP Service Engine for Clustering

Configuring Java CAPS JBI Components for GlassFish Clustering • October 200922

http://docs.sun.com/doc/820-4335/ablih?a=view
http://docs.sun.com/doc/820-4335/ablih?a=view


b. Create an Oracle database instance using the administrative tools provided by Oracle.

c. Create the IEP user as described in “To Create the IEP User in the Oracle Database”in
Designing Intelligent Event Processor (IEP) Projects.

Launch the GlassFish Admin Console.

Create and configure two connection pools for the database, one for XA transactions and one
for non-XA transactions. Point both connection pools to the same database using the same user
name and password.

Note – For Derby, you can use the connection pools that are automatically created when IEP is
installed.

■ Select Allow Non Component Callers.

■ For a Derby database, enter the following properties:

■ Host (can be localhost)
■ PortNumber (1527 is the default Derby port)
■ DatabaseName

■ User

■ Password

■ connectionAttributes (set this to ;create=true to automatically create the Derby
database)

■ For an Oracle database, enter the following properties:

■ URL (the format for the URL is
jdbc:oracle:thin:@hostName:portNumber:databaseName)

■ user

■ password

Create and configure two JDBC resources for the database, one for XA transactions and one for
non-XA transactions. After you enter the name and connection pool, do the following:

a. Under Available Targets, select the cluster and click Add.

b. Click OK.

This adds the resource to the cluster and enables the resource on the cluster.

2

3

4

Configuring the IEP Service Engine for Clustering

Configuring Java CAPS JBI Components for Clustering 23

http://docs.sun.com/doc/820-3378/ghurn?a=view
http://docs.sun.com/doc/820-3378/ghurn?a=view


To create the database tables, complete the steps under “Adding the IEP Service Engine to the
Cluster”on page 24.

Adding the IEP Service Engine to the Cluster
The IEP SE is not dependent on any shared libraries; you only need to add the service engine to
the cluster.

▼ To Add the IEP Service Engine to the Cluster

Add the IEP SE (sun-bpel-engine) to the cluster as described in “To Add a Java CAPS JBI
Component to a Cluster”on page 12.

Before you click OK on the Manage Targets page, do the following:

a. Under General – Configure Component, specify a value for the Lease Renewal Interval.

Note – The Lease Renewal Interval is the time period in seconds that BPEL engines wait
before renewing their lease to let the cluster know it is still running (also known as the
heartbeat). If an engine does not update within the specified time period, it is considered to
be unavailable.

b. In the Non XA Data Source Name property, enter the JNDI name of the non-XA JDBC resource
that you created earlier.

c. In the XA Data Source Name property, enter the JNDI name of the XA JDBC resource that you
created earlier.

This is the database that persists state data for business process instances for recovery.

d. Update the value of the Database Schema Name property if you created the database using
a username other than iepseDB.

e. Configure the remaining runtime properties as you typically would for the IEP SE.

For more information, see Designing Intelligent Event Processor (IEP) Projects.

Verify that the EMS_ENGINES table in the persistence database contains a row for each instance
in the cluster.

5

1

2

3

Configuring the IEP Service Engine for Clustering

Configuring Java CAPS JBI Components for GlassFish Clustering • October 200924

http://docs.sun.com/doc/820-3378


Tip – If the rows do not appear, check the following:

■ Both JDBC Resources are enabled on the target cluster.
■ The engine is enabled on the target cluster.

If both of the above are enabled, you might need to stop and restart the IEP SE in order for the
rows to appear.

Configuring the XSLT Service Engine for Clustering
There are no configuration requirements to run the XSLT SE in a clustered environment.
Because it is a stateless SE, the state does not need to be persisted. The XSLT SE is dependent on
the following shared library:

■ Sun WSDL Extension Library

▼ To Add the XSLT Service Engine to the Cluster
Add the following shared library to the cluster as described in “To Add a Shared Library to a
Cluster”on page 11:

■ sun-wsdl-ext-library

Add the XSLT SE (sun-xslt-engine) to the cluster as described in “To Add a Java CAPS JBI
Component to a Cluster”on page 12. Before you click OK on the Manage Targets page, you can
configure the following runtime properties:

■ Thread Count
■ Transformation Engine

Configuring the Java EE Service Engine for Clustering
There are no configuration requirements to run the Java EE SE in a clustered environment. The
Java EE SE is automatically added to any clusters you create, so you only need to start the service
engine to enable it on the cluster.

The Java EE SE is dependent on the following shared library:

■ Sun WSDL Shared Library

1

2

Configuring the Java EE Service Engine for Clustering

Configuring Java CAPS JBI Components for Clustering 25



▼ To Enable the Java EE Service Engine on the Cluster
Add the following shared library to the cluster as described in “To Add a Shared Library to a
Cluster”on page 11:

■ sun-wsdl-library

In the left navigation panel of the GlassFish Admin Console, expand JBI, expand Components,
and then select sun-javaee-engine.

Click the Targets tab.

Select the check box next to the cluster, and then click Start.

Configuring the Data Mashup Service Engine for Clustering
The Data Mashup SE is a stateless engine that supports read queries. No special configuration is
required to run the Data Mashup SE in a cluster because it is stateless. It works in
high-availability (HA) and failover systems. In failover systems, the entity that invoked the Data
Mashup SE either recovers or resends the data after a failed connection or a failure to invoke the
engine. The Data Mashup SE can then service the request.

▼ To Add the Data Mashup Service Engine to the Cluster
The Data Mashup SE is not dependent on any shared libraries, so you only need to add the SE to
the cluster.

Add the Data Mashup SE to the cluster as described in “To Add a Java CAPS JBI Component to a
Cluster”on page 12.
The name of the Data Mashup SE node is sun-edm-engine.

Before you click OK on the Manage Targets page, configure any runtime properties as you
typically would for the Data Mashup SE.

1

2

3

4

1

2

Configuring the Data Mashup Service Engine for Clustering

Configuring Java CAPS JBI Components for GlassFish Clustering • October 200926



Configuring the Database Binding Component for Clustering
The Database BC works differently in inbound mode than outbound mode in a cluster. In
inbound mode, the database BC distributes records evenly across the instances based on the
number of records configured for each poll. For inbound mode, you need to create database
tables to manage the instances. In outbound mode, the Database BC works the same in a
clustered environment as in a standalone environment.

The Database BC is not dependent on any shared libraries.

Creating the Clustering Database for the Database
Binding Component
When using the Database BC in inbound mode in a clustered environment, you need to create a
clustering database to manage the load. This is not required for outbound mode.

▼ To Create the Clustering Database for the Database Binding
Component
Create a database instance in which to create the clustering database tables, and make sure it is
running.

Run the following SQL command against the database for each polling table, updating the
variables for each table.
create table owner_polling_table (pkname datatype(size) primary key, instance_name

varchar(50), status varchar(30))

where:
■ polling_table is the name of the polling table
■ pkname is the name of the polling table's primary key
■ datatype is the data type for the primary key
■ size is the length of the primary key column

Run the following command against the database:
create table instancestate (instanceid varchar(50), lastupdatetime timestamp,

tablename varchar(50))

Create and configure a connection pool for the database (for more information, see Chapter 3,
“JDBC Resources,” in Sun GlassFish Enterprise Server 2.1 Administration Guide).

Create and configure a JDBC resource for the database. When you create the JDBC Resource,
select the cluster from the Available Targets list and click Add.
This adds the resource to the cluster and also enables the resource on the cluster.

Before You Begin

1

2

3

4

Configuring the Database Binding Component for Clustering

Configuring Java CAPS JBI Components for Clustering 27

http://docs.sun.com/doc/820-4335/ablih?a=view
http://docs.sun.com/doc/820-4335/ablih?a=view


Adding the Database Binding Component to the
Cluster
The Database BC does not depend on any shared libraries, so you only need to add the BC to the
cluster.

▼ To Add the Database Binding Component to the Cluster

Add the Database BC to the cluster as described in “To Add a Java CAPS JBI Component to a
Cluster”on page 12.
The name of the Database BC node is sun-database-binding.

Before you click OK on the Manage Targets page, configure the runtime properties:

■ Enter the number of outbound threads.

Note – When using a Derby database, be sure to set this to a relatively high number (for
example, 100 per 1000 records) or create all cluster-related tables in the same database.
Otherwise, a SQL exception may be thrown and the database will become unusable.

■ In the Cluster Database JNDI Name property, enter the name of the JDBC resource you
created earlier (in “To Create the Clustering Database for the Database Binding Component”
on page 27.

Configuring the File Binding Component for Clustering
When the File BC is implemented in a cluster, files are distributed evenly across instances in
inbound mode and each file is delivered to only one instance if a file locking mechanism is in
place. In on-demand read mode, each file is available to read either from all the instances
(configuration mode) or from only one instance (payload mode). In outbound mode, all
instances write to either one file (append mode) or to independent files, depending on how the
BC is configured.

You do need to configure the File WSDL file to ensure that outbound files are not overwritten
by simultaneous threads and that inbound files are picked up only once by only one inbound
thread. Name the output files using a pattern that includes either a UUID or sequence number
in the filename to prevent the files from being overwritten. For inbound files, you need to
configure the locking mechanism of the File BC to prevent the files from being picked up by
more than one instance. For on-demand read files, there is a new property named
deleteFileOnRead that allows you to specify that a file be removed from the directory when it is
read. You should also configure the BC to archive files if you have them removed. These steps
are described under “Configuring the File BC WSDL File for Clustering” on page 29.

1

2

Configuring the File Binding Component for Clustering

Configuring Java CAPS JBI Components for GlassFish Clustering • October 200928



Adding the File Binding Component to the Cluster
The File BC is dependent on the following shared library:
■ Sun Encoder Library

▼ To Add the File Binding Component to the Cluster

Add the following shared library to the cluster as described in “To Add a Shared Library to a
Cluster”on page 11:

■ sun-encoder-library

Add the File BC to the cluster as described in “To Add a Java CAPS JBI Component to a Cluster”on
page 12.
The name of the File BC node is sun-file-binding.

Before you click OK on the Manage Targets page, enter the number of threads for the outbound
processor.

Note – If you need to modify the number of outbound threads once the File BC is deployed to a
cluster, you need to make the changes using the GlassFish Admin Console and you need to
update the property for each instance in the cluster.

Configuring the File BC WSDL File for Clustering
The File BC has no runtime configuration requirements for clustering, but there are a few
requirements and options for configuring the properties in any File BC WSDL documents
deployed to the cluster. These options assist with concurrency issues, load balancing, and
failover.

In a clustered environment, you need to ensure that inbound files are picked up only once by
one instance and that outbound files are not overwritten by simultaneous threads. For
outbound files, you can specify a pattern for the output message name using either %u or
%seq_name to keep all file names unique (note that %d is not sufficient here). To ensure that
inbound messages are not processed by more than one instance, use the File BC's file locking
mechanism. This mechanism uses a thread lock (T_LOCK) and a file lock (F_LOCK) to protect
the messages from concurrent polling. The File BC processes messages as follows using the
locking mechanism:

1. Acquire the file lock.
2. If the file lock is acquired, continue processing; otherwise release the thread lock.
3. List the files under the directory specified by file:message/@fileDirectory that match

the file name or pattern.

1

2

3

Configuring the File Binding Component for Clustering

Configuring Java CAPS JBI Components for Clustering 29



4. Move each of the files to a working directory with the specified pattern appended to the file
name.

5. Place the file names in the working directory into a queue.

6. Release the file lock.

For more information about the properties discussed below, see the following topics in Using
the File Binding Component:

■ “Configuring File BC WSDL Attributes” in Using the File Binding Component in a Project
■ “Inbound Message Processing” in Using the File Binding Component in a Project
■ “Persisted Sequencing” in Using the File Binding Component in a Project

▼ To Configure the File BC WSDL File for Clustering

For outbound messages, do the following:

a. In the File BC WSDL document, scroll to the input message definition under Bindings (named
file:message, by default).

b. Select file:message.

The Properties panel displays the properties for the message.

c. In the FileName property, enter a name for the output file using either %u to assign a unique
UUID number to each output file or %{seq_name} for persisted sequence number creation.
For example, output%u.txt.

Note – Do not use %d in the file name. It does not ensure a unique file name and files might be
overwritten.

d. In the fileNameIsPattern property, enter true.

e. Save and close the WSDL file.

For on-demand, read-only messages, you can configure any of the following options:

a. In the File BC WSDL document, scroll to the input message under Bindings (named
file:message, by default).

b. Select file:message.

The Properties panel displays the properties for the message.

1

2

Configuring the File Binding Component for Clustering

Configuring Java CAPS JBI Components for GlassFish Clustering • October 200930

http://docs.sun.com/doc/820-7009/ghzfz?a=view
http://docs.sun.com/doc/820-7009/ghzfp?a=view
http://docs.sun.com/doc/820-7009/ghzdz?a=view


c. Do one of the following:

■ To allow multiple instances and processes to access the input file, set the value of the
deleteFileOnRead property to false.

■ To ensure only one thread and one process accesses the file, set the value of the
deleteFileOnRead property to true.
This deletes inbound on-demand messages once they are read.

d. If deleteFileOnRead is set to true, do one of the following:

■ To retain a copy of the deleted files, set the value of the archiveproperty to true and
specify an archive directory.
The files are removed from the input directory and are copied to the archive directory
with a UUID appended to the name to ensure it is unique. This retains a history of the
files that have been processed.

■ To simply delete the files once they are read, set the value of the archiveproperty to
false.

For inbound messages, use the file locking mechanism of the File BC to ensure that each
inbound file is picked up only once by one instance in the cluster.
Use the following attributes to implement the locking mechanism:

■ file:address/@lockName - The file name used for the F_LOCK.
■ file:address/@workArea - The name of the working directory.
■ file:address/@seqName - The name of the directory where all sequence numbers are saved.
■ file:address/@persistenceBaseLoc - The name of the directory where the lock files are stored.

For more information, see “Configuring File BC WSDL Attributes” in Using the File Binding
Component in a Project (under File Address Element) and “Inbound Message Processing” in
Using the File Binding Component in a Project.

Configuring the FTP Binding Component for Clustering
When the FTP BC is implemented in a cluster, all service provider instances poll requests
simultaneously, business logic is applied to those requests simultaneously, and responses are
posted simultaneously. Similarly, all service consumer instances post requests simultaneously.
The FTP BC is highly available, and a failure of any instance does not stop message transfer.
Messages are processed evenly among the pollers to balance the workload.

In on-demand read mode, each file is available to read from either all the instances
(configuration mode) or only one instance (payload mode). In outbound mode, configure all

3

Configuring the FTP Binding Component for Clustering

Configuring Java CAPS JBI Components for Clustering 31

http://docs.sun.com/doc/820-7009/ghzfz?a=view
http://docs.sun.com/doc/820-7009/ghzfz?a=view
http://docs.sun.com/doc/820-7009/ghzfp?a=view
http://docs.sun.com/doc/820-7009/ghzfp?a=view


instances to write to independent files rather than appending to one file. Using a UUID or
persisted sequence number pattern in outbound file names ensures that files are not
overwritten.

In inbound mode, the FTP BC distributes files evenly across the instances in a cluster, and each
file is delivered to only one instance. You do need to configure a file locking mechanism to
ensure files are not overwritten and to prevent redundant processing. This is configured by
defining a persistence directory in the FTP BC's JVM options (described in the instructions
below).

The FTP BC processes messages as follows using the locking mechanism:

1. Acquire the file lock.
2. If the file lock is acquired, continue processing; otherwise release the thread lock.
3. Poll the target.
4.

■ If the poller is retrieving a request, the target is
ftp:message/@messageRepository/inbox/messageName or
ftp:transfer/@receiveFrom.

■ If the poller is retrieving a response, the target is
ftp:message/@messageRepository/outbox/messageName or ftp:transfer/@sendTo.

5. If the message is retrieved successfully, archive the file so it will not be polled again.
6. Release the file lock.

The FTP BC is dependent on the following shared library:
■ Sun Encoder Library

Adding the FTP Binding Component to the Cluster
The FTP BC is dependent on the following shared library:

■ Sun Encoder Library

▼ To Add the FTP Binding Component to the Cluster

Add the following shared library to the cluster as described in “To Add a Shared Library to a
Cluster”on page 11:

■ sun-encoder-library

Add the FTP BC to the cluster as described in “To Add a Java CAPS JBI Component to a Cluster”on
page 12.
The name of the FTP BC node is sun-ftp-binding.

1

2

Configuring the FTP Binding Component for Clustering

Configuring Java CAPS JBI Components for GlassFish Clustering • October 200932



Before you click OK on the Manage Targets page, configure the runtime properties as you
typically would for the FTP BC.

Configure the JVM properties for the FTP BC by doing the following:

a. In the left navigation panel of the Admin Console, expand Configurations, expand
cluster_name-config, and then select JVM Settings.

b. Click the JVM Options tab.

c. To enable clustering, click Add JVM Option and enter the following in the empty row that
appears:
-Dcom.sun.jbi.ftpbc.isClustered=true

d. To define a file-based persistence directory, click Add JVM Option and enter the following in
the empty row that appears:
-Dcom.sun.jbi.ftpbc.token.persistence.url=persistence_directory

where persistence_directory is the location where the FTP BC lock files are stored.

e. Click Save.

f. Restart the cluster to pick up the changes to the JVM options.

Configuring the FTP BC WSDL for Clustering
The FTP BC has no runtime configuration requirements for clustering, but there are a few
requirements and options for configuring the properties in any FTP BC WSDL documents
deployed to the cluster. These options assist with concurrency issues and load balancing

To ensure that output files are not overwritten by concurrent threads, you can specify a pattern
for the output message name using either %u or %seq_name to keep all file names unique.

▼ To Configure the FTP BC WSDL for Clustering

For outbound messages, do the following:

a. In the FTP BC WSDL document, scroll to the input message definition under Bindings
(named ftp:message or ftp:transfer, by default).

b. Select ftp:message or ftp:transfer.
The Properties panel displays the properties for the message.

3

4

1

Configuring the FTP Binding Component for Clustering

Configuring Java CAPS JBI Components for Clustering 33



c. Do one of the following:

■ For ftp:message, modify the messageNameproperty to use a unique pattern.

Use either %u to assign a unique UUID number to each output file, or %seq_name for
persisted sequence number creation.

For example, output%u.txt.

■ For ftp:transfer, modify the sendToproperty to use a unique pattern.

Use the same patterns as described above.

Note – Do not use %d in the file name because files might be overwritten.

d. Save and close the WSDL file.

To define a directory where recovery logs, malformed messages, and so on are stored, set the
ftp:address/@baseLocationWSDL attribute to the full path.

Configuring the HTTP Binding Component for Clustering
The HTTP BC has no load balancing and failover mechanisms of its own, but Sun provides the
HTTP Load Balancer to perform these functions. The Load Balancer is a web server plug-in that
accepts HTTP and HTTPS requests and distributes them to application server instances in a
cluster. This allows the HTTP BC to be scaled horizontally, running on multiple instances in a
cluster. The Load Balancer gives you several advantages by managing the workload across
cluster instances. If you use the HTTP Load Balancer, you need to configure the load balancer
for each instance in the cluster.

You can read more information about clustering for the HTTP BC and using the HTTP Load
Balancer at “Clustering Support for the HTTP Binding Component” in Using the HTTP
Binding Component. For detailed information about the HTTP Load Balancer, see Chapter 5,
“Configuring HTTP Load Balancing,” in Sun GlassFish Enterprise Server 2.1 High Availability
Administration Guide.

Enabling the HTTP Binding Component on the Cluster
The HTTP BC is not dependent on any shared libraries, and is already added to the cluster. You
only need to start the binding component to enable it.

2

Configuring the HTTP Binding Component for Clustering

Configuring Java CAPS JBI Components for GlassFish Clustering • October 200934

http://docs.sun.com/doc/821-0015/cnfg_http-bc-clustering-support_r?a=view
http://docs.sun.com/doc/821-0015/cnfg_http-bc-clustering-support_r?a=view
http://docs.sun.com/doc/820-4341/abdgs?a=view
http://docs.sun.com/doc/820-4341/abdgs?a=view
http://docs.sun.com/doc/820-4341/abdgs?a=view


▼ To Enable the HTTP Binding Component on the Cluster

In the left navigation panel of the GlassFish Admin Console, expand JBI, expand Components,
and then select sun-http-binding.

Click the Targets tab.

Select the check box next to the cluster, and then click Start.

To modify any HTTP BC properties on the cluster, perform any of the steps under “Modifying
Server Properties for Java CAPS JBI Components in a Cluster”on page 14.
For more information, see “HTTP Binding Component Runtime Properties” in Using the
HTTP Binding Component.

Configuring the HTTP BC Port Numbers for Clustering
Each component instance in the cluster must have exclusive access to the resource, so a unique
port number must be assigned to each instance. When you define service ports for the URL, use
variables instead of actual port numbers in the soap:address element. This allows the client to
direct HTTP requests to the default port, which is defined in the HTTP BC runtime properties.
The value of the variable is resolved by the HTTP BC based on the configured default values
used when the application was deployed.

Note – If you reinstall the HTTP BC or drop it from the cluster and add it back in, you need to
reconfigure the default ports for each component instance. The BC also needs to be configured
for each server instance in the cluster.

▼ To Configure the HTTP BC Port Numbers for Clustering

In the WSDL files for the HTTP BC, change any hard-coded HTTP and HTTPS port numbers in the
soap:address elements to variables.
Use the following variables:

■ ${HttpDefaultPort} for the HTTP port
■ ${HttpsDefaultPosrt} for the HTTPS port

For example, instead of using this URL:

<soap:address location="http://localhost:18181/Synchronous"/>

Use the following URL:

<soap:address location="http://localhost:${HttpDefaultPort}/Synchronous"/>

1

2

3

4

1

Configuring the HTTP Binding Component for Clustering

Configuring Java CAPS JBI Components for Clustering 35

http://docs.sun.com/doc/821-0015/cnfg_http-bc-runtime-parameters_r?a=view
http://docs.sun.com/doc/821-0015/cnfg_http-bc-runtime-parameters_r?a=view


If it is not already enabled, enable the HTTP BC on the target cluster. Do the following to enable
the BC:

a. On the GlassFish Admin Console, expand JBI, expand Components, and then select
sun-http-binding.

b. Click the Targets tab.

c. In the Targets list, select the check box next to the cluster and then click Start.

To configure the BC, click the Configuration tab and then do the following:

a. In the View/Update Instance field, select the first instance to configure.

b. Verify the default values for the HTTP Port Number and the Default HTTPS Port Number
properties.

Note – These values are chosen automatically and must be different for each instance. If there
is a port conflict, you can change the default port numbers but it is recommended that you
use the default values.

c. Click Save.

d. Repeat the above steps for each instance in the cluster, verifying that the port numbers are
unique for each instance.

Configuring the JMS Binding Component for Clustering
The JMS BC can be configured to use queues or durable topics on either clustered JMS brokers
or an independent JMS server. In a GlassFish cluster, JMS queues and durable topics are
supported on independent JMS servers, but non-durable topics are not supported. With
non-durable topics, the BC on each instance is treated as an independent subscriber, which
results in duplicate messages. However, non-durable topics do work on a JMS cluster with a
standalone GlassFish instance.

More information about JMS BC clustering is provided at “JMS Binding Component
Clustering” in JMS Binding Component User’s Guide. For more information about JMS
clustering, see Chapter 8, “Broker Clusters,” in Sun Java System Message Queue 4.1
Administration Guide and Chapter 10, “Java Message Service Load Balancing and Failover,” in
Sun GlassFish Enterprise Server 2.1 High Availability Administration Guide.

The JMS BC is dependent on the following shared library:
■ Sun Encoder Library

2

3

Configuring the JMS Binding Component for Clustering

Configuring Java CAPS JBI Components for GlassFish Clustering • October 200936

http://docs.sun.com/doc/821-0452/dsgn_jmsbc-clustering_c?a=view
http://docs.sun.com/doc/821-0452/dsgn_jmsbc-clustering_c?a=view
http://docs.sun.com/doc/819-7755
http://docs.sun.com/doc/819-7755
http://docs.sun.com/doc/820-4341/abdbk?a=view
http://docs.sun.com/doc/820-4341/abdbk?a=view


▼ To Add the JMS Binding Component to the Cluster
Add the following shared library to the cluster as described in “To Add a Shared Library to a
Cluster”on page 11:

■ sun-encoder-library

Add the JMS BC to the cluster as described in “To Add a Java CAPS JBI Component to a Cluster”
on page 12.

The name of the JMS BC node is sun-jms-binding.

Before you click OK on the Manage Targets page, modify the number of threads if necessary.

Configuring the LDAP Binding Component for Clustering
The LDAP BC is stateless, which means it scales in a clustered environment because the
instances do not need to coordinate state and each maintains its own connections. In a failover
system, the original caller or last persistence point re-delivers the message if configured for at
least once delivery (the default) or once and only once delivery (XA transactions). When the
message is re-delivered to the LDAP BC, it performs the same operation again.

In case of failure, messages are processed as follows:

■ For operations in which multiple processes do not affect the result (such as read or search
operations), the request processing continues as before the failure.

■ For operations that modify, delete, and add, it is not guaranteed that each of these
operations is only executed once per message because LDAP does not support transactional
behavior on its own. It behaves in the same manner in a non-clustered environment.

The LDAP BC is not dependent on any shared libraries.

▼ To Add the LDAP Binding Component to the Cluster
Add the LDAP BC to the cluster as described in “To Add a Java CAPS JBI Component to a Cluster”
on page 12.

The name of the LDAP BC node is sun-ldap-binding.

Before you click OK on the Manage Targets page, modify the values of the runtime properties as
you typically would for the LDAP BC.

1

2

3

1

2

Configuring the LDAP Binding Component for Clustering

Configuring Java CAPS JBI Components for Clustering 37



Configuring the Scheduler Binding Component for Clustering
The Scheduler BC is not aware of multiple instances in a cluster. When implemented in a
clustered environment, the BC works in the same way as in a standard environment, which
means that all instances of the BC in a cluster function independently of one another instead of
sharing the work load. Each time the Scheduler BC is triggered in a cluster, each server instance
in the cluster processes the request, which results in multiple responses to each request instead
of just one.

To use the Scheduler BC in a clustered environment, you need to configure a way for the
receiving provider to treat the received trigger message such that multiple instances running at
the same time do not change the result. For example, when using the Scheduler BC in
conjunction with the Database BC to insert rows into a table, using a field from the message as a
primary key would prevent multiple rows being inserted for one request. The Scheduler BC
exposes an intended trigger date (accessed through the normalized message property
org.glassfish.openesb.scheduler.inbound.date) that could be used as a primary key.
Triggers are described under “Creating Simple Triggers” in Using the Scheduler Binding
Component. The date format is described under “Using the Scheduler Control and Triggers
Wizard” in Using the Scheduler Binding Component. You can use the substring-before XPath
function in a business process to extract the timestamp, along with logic to catch any unique key
violations. The substring-before function is documented under BPEL Mapper String
Functions (http://www.netbeans.org/kb/60/soa/bpel-mapper.html#StringFunc).

The Scheduler BC is dependent on the following shared libraries:

■ Sun WSDL Extension Library

▼ To Add the Scheduler Binding Component to the
Cluster

Add the following shared library to the cluster as described in “To Add a Shared Library to a
Cluster”on page 11:

■ sun-wsdl–ext–library

Add the Scheduler BC to the cluster as described in “To Add a Java CAPS JBI Component to a
Cluster”on page 12.

The name of the Scheduler BC node is sun-scheduler-binding.

Before you click OK on the Manage Target page, modify the values of the runtime properties as
you typically would for the Scheduler BC.

1

2

3

Configuring the Scheduler Binding Component for Clustering

Configuring Java CAPS JBI Components for GlassFish Clustering • October 200938

http://docs.sun.com/doc/820-7666/cnfg_sch-bc-simple-trig_c?a=view
http://docs.sun.com/doc/820-7666/cnfg_sch-bc-simple-trig_c?a=view
http://docs.sun.com/doc/820-7666/cnfg_sch-bc-scheduler-wzrd_c?a=view
http://docs.sun.com/doc/820-7666/cnfg_sch-bc-scheduler-wzrd_c?a=view
http://www.netbeans.org/kb/60/soa/bpel-mapper.html#StringFunc
http://www.netbeans.org/kb/60/soa/bpel-mapper.html#StringFunc


Deploying a Service Assembly to a Cluster
In order for an application to run on a cluster, you need to deploy the Service Assembly (SA) to
the cluster. Because NetBeans does not support GlassFish clustering, any Service Assemblies to
be run on a cluster need to be deployed using the GlassFish Admin Console or command line.
The following instructions are for deploying an SA using the GlassFish Admin Console.

▼ To Deploy a Service Assembly to a Cluster
Build the SA project to generate the package file that will be deployed to the cluster. Make sure
that all of the Java CAPS JBI components included in the Service Assembly have been added to
the target cluster and are in the started state. If any components have not been added to the
cluster, the deployment will fail. You should also know the location of the Service Assembly
package file.

In the left navigation bar on the GlassFish Admin Console, expand JBI and select Service
Assemblies.

Click Deploy.

Select the SA package file in either the File to Upload or File to Copy field, depending on the
location of the file.

Click Next.

By the Status field, select Enabled.

In the Add to Available Targets List, select the cluster.

Click Finish.

Note – You can also deploy the SA using the following commands, run from the
GlassFish_home\bin directory:

asadmin deploy-jbi-service-assembly --target cluster_name SA_file

asadmin start --target cluster_name SA_file

where cluster_name is the name of the GlassFish cluster and SA_file is the path and file name for
the SA package file.

Before You Begin

1

2

3

4

5

6

7

Deploying a Service Assembly to a Cluster

Configuring Java CAPS JBI Components for Clustering 39



Caution – When an SA is deployed to a cluster, make sure to only deploy and undeploy the SE
from the Admin Console or the command line. You cannot perform these tasks from NetBeans.
Disable the SA before you undeploy it.

Configuring Components for Standalone High Availability
and Failover

All Java CAPS JBI components provide high availability and failover features without using
GlassFish clustering. Implementing the BPEL SE or IEP SE in this type of environment requires
special configuration. The service engines are installed across multiple standalone GlassFish
domains installed on multiple machines. In this implementation, if one engine fails, any
running BPEL or IEP processes failover to the running engines.

Note – You can install the GlassFish domains on the same or different machines, but installing
on different machines provides high availability and failover.

Both the BPEL SE and IEP SE use persistence databases to manage the state of each instance.
They depend on the database server for high availability and failover features, so the persistence
database needs to be configured for high availability and failover.

Because of the new support for GlassFish clustering for Java CAPS JBI components, this feature
is provided primarily for compatibility with previous versions.

Configuring the BPEL Service Engine for Multiple
Standalone Instances
You can deploy the same application across multiple BPEL SEs that connect to the same
database. For both clustering and failover, BPEL SE persistence must be enabled.

▼ To Configure the BPEL Service Engine for Multiple Standalone
Instances
If you are using a Derby database, start the database independent of GlassFish. If you are using
Oracle, create the database instance for the persistence database.

Install two or more GlassFish v2.1 domains.

Configure the first GlassFish domain by doing the following:

a. Launch the Admin Console.

Before You Begin

1

2

Configuring Components for Standalone High Availability and Failover

Configuring Java CAPS JBI Components for GlassFish Clustering • October 200940



b. Create the database connection pools and JDBC resources as described in “Setting Up the
BPEL Database”on page 18.

c. In the left navigation bar, select Application Server.

d. Click the JVM Settings tab, and then click the JVM Options tab.

e. Click Add JVM Option, and enter the following in the blank row that appears:
-Dcom.sun.jbi.bpelse.isClustered=true

f. Click Add JVM Option, and enter the following in the blank row that appears:
-Dcom.sun.jbi.bpelse.engineId=Name

Where Name is a unique name for the BPEL SE instance.

g. Restart the application server.

h. Make sure all necessary components are installed.

i. Repeat these steps on the subsequent GlassFish domains. Use a unique name for the
instance, and point all domains to the same persistence database.

When all domains are configured, start the BPEL SE (sun-bpel-engine) on all domains.

Configure the following runtime properties for each IEP SE instance, and then stop and restart
the BPEL SE:

■ Persistence Enabled – Set this to true.
■ Non XA Data Source Name – The non-XA JDBC resource you created earlier.
■ XA Data Source Name – The XA JDBC resource you created earlier.

Check the BPEL SE database table named ENGINE. It should list each engine ID you defined.

When you deploy the Service Assembly, deploy it to all standalone GlassFish domains.

Configuring the IEP Service Engine for Multiple
Standalone Instances
You can deploy the same application across multiple IEP SEs that connect to the same database.
In a standalone environment, an event processor is owned by the IEP instance on which it is
deployed first. The rest of the processing is similar to that in a clustered environment. All
instances can receive the incoming messages, and once a message is received it is inserted into
the IEP database. The instance that owns the event processor picks up the event to complete

3

4

5

6

Configuring Components for Standalone High Availability and Failover

Configuring Java CAPS JBI Components for Clustering 41



processing and writes the output. If an IEP instance fails, any in-process transactions are taken
over by one of the remaining IEP instances and the process is completed. When the failed
engine recovers, it continues to process new requests.

▼ To Configure the IEP Service Engine for Multiple Standalone Instances
If you are using a Derby database, start the database independent of GlassFish. If you are using
Oracle, create the database instance for the persistence database.

Install two or more GlassFish v2.1 domains.

Configure the first GlassFish domain by doing the following:

a. Launch the Admin Console.

b. Create the database connection pools and JDBC resources as described in “Setting Up the
IEP Database”on page 22.

c. In the left navigation bar, select Application Server.

d. Click the JVM Settings tab, and then click the JVM Options tab.

e. Click Add JVM Option, and enter the following in the blank row that appears:
-Dcom.sun.jbi.iepse.isClustered=true

f. Click Add JVM Option, and enter the following in the blank row that appears:
-Dcom.sun.jbi.iepse.instanceName=Name

Where Name is a unique name for the IEP SE instance.

g. Restart the application server.

h. Make sure all necessary components are installed.

i. Repeat these steps on the subsequent GlassFish domains. Use a unique name for the
instance, and point all domains to the same persistence database.

When all domains are configured, start the IEP SE (sun-iep-engine) on all domains.

Configure the following runtime properties for each IEP SE instance, and then stop and restart
the IEP SE:

■ Non XA Data Source Name – The non-XA JDBC resource you created earlier.
■ XA Data Source Name – The XA JDBC resource you created earlier.

Before You Begin

1

2

3

4

Configuring Components for Standalone High Availability and Failover

Configuring Java CAPS JBI Components for GlassFish Clustering • October 200942



lmu
■ Database Schema Name – This matches the username specified in the connection pools.

Check the IEP SE database table named EMS_ENGINE. The ID column should list each instance
name you defined.

When you deploy the Service Assembly, deploy it to all standalone GlassFish domains.

5

6

Configuring Components for Standalone High Availability and Failover

Configuring Java CAPS JBI Components for Clustering 43



44


	Configuring Java CAPS JBI Components for GlassFish Clustering
	Configuring Java CAPS JBI Components for Clustering
	JBI Component Clustering Overview
	Clustering Overview
	Component Support for Clustering
	Load Balancing and Failover

	Clustering Setup Summary

	Creating a GlassFish Cluster
	To Create a GlassFish Cluster

	Adding a Java CAPS JBI Component to a Cluster
	To Add a Shared Library to a Cluster
	To Add a Java CAPS JBI Component to a Cluster

	Modifying Server Properties for Java CAPS JBI Components in a Cluster
	To Modify Runtime Properties for a Component in a Cluster
	To Create Application Configurations and Variables for a Component in a Cluster
	To View the Descriptor for a Component in a Cluster
	To Set Logging Properties for a Component in a Cluster
	To Monitor a Component in a Cluster

	Configuring the BPEL Service Engine for Clustering
	Setting Up the BPEL Database
	To Set Up the BPEL Database

	Adding the BPEL Service Engine to the Cluster
	To Add the BPEL Service Engine to the Cluster

	Debugging a Business Process Deployed in a Cluster
	To Debug a Business Process Deployed in a Cluster


	Configuring the IEP Service Engine for Clustering
	Setting Up the IEP Database
	To Set Up the IEP Database

	Adding the IEP Service Engine to the Cluster
	To Add the IEP Service Engine to the Cluster


	Configuring the XSLT Service Engine for Clustering
	To Add the XSLT Service Engine to the Cluster

	Configuring the Java EE Service Engine for Clustering
	To Enable the Java EE Service Engine on the Cluster

	Configuring the Data Mashup Service Engine for Clustering
	To Add the Data Mashup Service Engine to the Cluster

	Configuring the Database Binding Component for Clustering
	Creating the Clustering Database for the Database Binding Component
	To Create the Clustering Database for the Database Binding Component

	Adding the Database Binding Component to the Cluster
	To Add the Database Binding Component to the Cluster


	Configuring the File Binding Component for Clustering
	Adding the File Binding Component to the Cluster
	To Add the File Binding Component to the Cluster

	Configuring the File BC WSDL File for Clustering
	To Configure the File BC WSDL File for Clustering


	Configuring the FTP Binding Component for Clustering
	Adding the FTP Binding Component to the Cluster
	To Add the FTP Binding Component to the Cluster

	Configuring the FTP BC WSDL for Clustering
	To Configure the FTP BC WSDL for Clustering


	Configuring the HTTP Binding Component for Clustering
	Enabling the HTTP Binding Component on the Cluster
	To Enable the HTTP Binding Component on the Cluster

	Configuring the HTTP BC Port Numbers for Clustering
	To Configure the HTTP BC Port Numbers for Clustering


	Configuring the JMS Binding Component for Clustering
	To Add the JMS Binding Component to the Cluster

	Configuring the LDAP Binding Component for Clustering
	To Add the LDAP Binding Component to the Cluster

	Configuring the Scheduler Binding Component for Clustering
	To Add the Scheduler Binding Component to the Cluster

	Deploying a Service Assembly to a Cluster
	To Deploy a Service Assembly to a Cluster

	Configuring Components for Standalone High Availability and Failover
	Configuring the BPEL Service Engine for Multiple Standalone Instances
	To Configure the BPEL Service Engine for Multiple Standalone Instances

	Configuring the IEP Service Engine for Multiple Standalone Instances
	To Configure the IEP Service Engine for Multiple Standalone Instances




