
Sun Cluster Reference Manual for
Solaris OS

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 819–0582–10
August 2005, Revision A

Copyright 2005 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No
part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.
Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S.
and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of
SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the
pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a
non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs
and otherwise comply with Sun’s written license agreements.

U.S. Government Rights – Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2005 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative
aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, et Solaris sont des marques de fabrique ou des marques déposées, de
Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou
des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une
architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît
les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique pour l’industrie
de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence couvrant également les
licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS DES
GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

050505@9999

Contents

Preface 9

SC31 1ha 15
rt_callbacks(1HA) 16
scdsbuilder(1HA) 22
scdsconfig(1HA) 23
scdscreate(1HA) 25
scha_cluster_get(1HA) 28
scha_cmds(1HA) 31
scha_control(1HA) 38
scha_resource_get(1HA) 43
scha_resourcegroup_get(1HA) 47
scha_resource_setstatus(1HA) 50
scha_resourcetype_get(1HA) 52

SC31 1m 55
cconsole(1M) 56
ccp(1M) 58
chosts(1M) 59
cl_eventd(1M) 60
cports(1M) 61
crlogin(1M) 62
ctelnet(1M) 64
halockrun(1M) 66
hatimerun(1M) 68
pmfadm(1M) 70

3

pmfd(1M) 76

pnmd(1M) 77

rdt_setmtu(1M) 78

rpc.pmfd(1M) 79

sccheck(1M) 80

sccheckd(1M) 83

scconf(1M) 84

scconf_dg_rawdisk(1M) 102

scconf_dg_sds(1M) 105

scconf_dg_svm(1M) 107

scconf_dg_vxvm(1M) 109

scconf_quorum_dev_netapp_nas(1M) 111

scconf_quorum_dev_scsi(1M) 113

scconf_transp_adap_bge(1M) 116

scconf_transp_adap_ce(1M) 117

scconf_transp_adap_e1000g(1M) 118

scconf_transp_adap_eri(1M) 119

scconf_transp_adap_ge(1M) 120

scconf_transp_adap_hme(1M) 121

scconf_transp_adap_ibd(1M) 122

scconf_transp_adap_qfe(1M) 123

scconf_transp_adap_sci(1M) 124

scconf_transp_adap_wrsm(1M) 125

scconf_transp_jct_dolphinswitch(1M) 126

scconf_transp_jct_etherswitch(1M) 127

scconf_transp_jct_ibswitch(1M) 128

scdidadm(1M) 129

scdpm(1M) 134

scgdevs(1M) 137

scinstall(1M) 139

scnas(1M) 155

scnasdir(1M) 158

scrgadm(1M) 161

scsetup(1M) 170

scshutdown(1M) 171

scsnapshot(1M) 173

scstat(1M) 176

scswitch(1M) 181

4 Sun Cluster Reference Manual for Solaris OS • August 2005, Revision A

scversions(1M) 192
scvxinstall(1M) 194

SC31 3ha 199

scds_close(3HA) 200
scds_error_string(3HA) 201
scds_failover_rg(3HA) 202
scds_fm_action(3HA) 203
scds_fm_net_connect(3HA) 206
scds_fm_net_disconnect(3HA) 209
scds_fm_print_probes(3HA) 211
scds_fm_sleep(3HA) 212
scds_fm_tcp_connect(3HA) 214
scds_fm_tcp_disconnect(3HA) 216
scds_fm_tcp_read(3HA) 217
scds_fm_tcp_write(3HA) 219
scds_free_ext_property(3HA) 221
scds_free_netaddr_list(3HA) 222
scds_free_net_list(3HA) 223
scds_free_port_list(3HA) 224
scds_get_ext_property(3HA) 225
scds_get_netaddr_list(3HA) 227
scds_get_port_list(3HA) 228
scds_get_resource_group_name(3HA) 229
scds_get_resource_name(3HA) 230
scds_get_resource_type_name(3HA) 231
scds_get_rg_hostnames(3HA) 232
scds_get_rs_hostnames(3HA) 234
scds_hasp_check(3HA) 235
scds_initialize(3HA) 237
scds_pmf_get_status(3HA) 239
scds_pmf_restart_fm(3HA) 241
scds_pmf_signal(3HA) 242
scds_pmf_start(3HA) 244
scds_pmf_stop(3HA) 246
scds_pmf_stop_monitoring(3HA) 248
scds_print_netaddr_list(3HA) 250
scds_print_net_list(3HA) 251

5

scds_print_port_list(3HA) 252

scds_property_functions(3HA) 253

scds_restart_resource(3HA) 258

scds_restart_rg(3HA) 259

scds_simple_net_probe(3HA) 260

scds_simple_probe(3HA) 262

scds_svc_wait(3HA) 264

scds_syslog(3HA) 267

scds_syslog_debug(3HA) 268

scds_timerun(3HA) 270

scha_calls(3HA) 272

scha_cluster_close(3HA) 277

scha_cluster_get(3HA) 281

scha_cluster_getlogfacility(3HA) 285

scha_cluster_getnodename(3HA) 286

scha_cluster_open(3HA) 287

scha_control(3HA) 291

scha_resource_close(3HA) 295

scha_resource_get(3HA) 301

scha_resourcegroup_close(3HA) 307

scha_resourcegroup_get(3HA) 311

scha_resourcegroup_open(3HA) 315

scha_resource_open(3HA) 319

scha_resource_setstatus(3HA) 325

scha_resourcetype_close(3HA) 327

scha_resourcetype_get(3HA) 330

scha_resourcetype_open(3HA) 333

scha_strerror(3HA) 336

SC31 4 337

clusters(4) 338

rt_reg(4) 339

serialports(4) 346

SC31 5 349

HAStorage(5) 350

property_attributes(5) 353

6 Sun Cluster Reference Manual for Solaris OS • August 2005, Revision A

rac_cvm(5) 355

rac_framework(5) 358

rac_hwraid(5) 359

rac_svm(5) 360

rac_udlm(5) 363

RGOffload(5) 366

rg_properties(5) 368

r_properties(5) 376

rt_properties(5) 392

scalable_service(5) 400

SUNW.Event(5) 402

SUNW.gds(5) 407

SUNW.HAStorage(5) 412

SUNW.HAStoragePlus(5) 415

SUNW.rac_cvm(5) 418

SUNW.rac_framework(5) 421

SUNW.rac_hwraid(5) 422

SUNW.rac_svm(5) 423

SUNW.rac_udlm(5) 426

SUNW.RGOffload(5) 429

SC31 7 431

clprivnet(7) 432

did(7) 433

SC31 7p 435

sctransp_dlpi(7p) 436

Index 437

7

8 Sun Cluster Reference Manual for Solaris OS • August 2005, Revision A

Preface

The Sun Cluster Reference Manual provides reference information for commands,
functions, and other public interfaces in Sun™ Cluster software. This book is intended
for experienced system administrators with extensive knowledge of Sun software and
hardware. This book is not to be used as a planning or presales guide. The information
in this book assumes knowledge of the Solaris™ Operating System and expertise with
the volume manager software that is used with Sun Cluster software.

Both novice users and those familiar with the Solaris Operating System can use online
man pages to obtain information about their SPARC™ based system or x86 based
system and its features.

A man page is intended to answer concisely the question “What does this command
do?“ The man pages in general comprise a reference manual. They are not intended to
be a tutorial.

Note – Sun Cluster software runs on two platforms, SPARC and x86. The information
in this book pertains to both platforms unless otherwise specified in a special chapter,
section, note, bulleted item, figure, table, or example.

Overview
The following contains a brief description of each man page section and the
information it references:

� Section 1 describes, in alphabetical order, commands available with the operating
system.

� Section 1M describes, in alphabetical order, commands that are used chiefly for
system maintenance and administration purposes.

9

� Section 2 describes all of the system calls. Most of these calls have one or more
error returns. An error condition is indicated by an otherwise impossible returned
value.

� Section 3 describes functions found in various libraries, other than those functions
that directly invoke UNIX® system primitives, which are described in Section 2.

� Section 4 outlines the formats of various files. The C structure declarations for the
file formats are given where applicable.

� Section 5 contains miscellaneous documentation such as character-set tables.

� Section 6 contains available games and demos.

� Section 7 describes various special files that refer to specific hardware peripherals
and device drivers. STREAMS software drivers, modules, and the
STREAMS-generic set of system calls are also described.

� Section 9 provides reference information that is needed to write device drivers in
the kernel environment. This section describes two device driver interface
specifications: the Device Driver Interface (DDI) and the Driver/Kernel Interface
(DKI).

� Section 9E describes the DDI/DKI, DDI-only, and DKI-only entry-point routines a
developer can include in a device driver.

� Section 9F describes the kernel functions available for use by device drivers.

� Section 9S describes the data structures that drivers use to share information
between the driver and the kernel.

The following is a generic format for man pages. The man pages of each manual
section generally follow this order, but include only needed headings. For example, if
no bugs can be reported, no BUGS section is included. See the intro pages for more
information and detail about each section, and man(1) for general information about
man pages.

NAME This section gives the names of the commands or
functions that are documented, followed by a brief
description of what they do.

SYNOPSIS This section shows the syntax of commands or
functions. If a command or file does not exist in the
standard path, its full path name is shown. Options
and arguments are alphabetized, with single-letter
arguments first, and options with arguments next,
unless a different argument order is required.

The following special characters are used in this
section:

[] Brackets. The option or argument that is
enclosed in these brackets is optional. If
the brackets are omitted, the argument
must be specified.

10 Sun Cluster Reference Manual for Solaris OS • August 2005, Revision A

. . . Ellipses. Several values can be provided
for the previous argument, or the
previous argument can be specified
multiple times, for example, “filename
. . .“ .

| Separator. Only one of the arguments
separated by this character can be
specified at a time.

{ } Braces. The options and/or arguments
enclosed within braces are
interdependent. All characters within
braces must be treated as a unit.

PROTOCOL This section occurs only in subsection 3R and
indicates the protocol description file.

DESCRIPTION This section defines the functionality and behavior
of the service. Thus it describes concisely what the
command does. DESCRIPTION does not discuss
OPTIONS or cite EXAMPLES. Interactive
commands, subcommands, requests, macros, and
functions are described under USAGE.

IOCTL This section appears on pages in Section 7 only.
Only the device class that supplies appropriate
parameters to the ioctl(2) system call is called
ioctl and generates its own heading. ioctl calls
for a specific device are listed alphabetically (on the
man page for that specific device). ioctl calls are
used for a particular class of devices. All these calls
have an io ending, such as mtio(7I).

OPTIONS This section lists the command options with a
concise summary of what each option does. The
options are listed literally and in the order they
appear in the SYNOPSIS section. Possible
arguments to options are discussed under the
option, and where appropriate, default values are
supplied.

OPERANDS This section lists the command operands and
describes how they affect the actions of the
command.

OUTPUT This section describes the output – standard output,
standard error, or output files – generated by the
command.

11

RETURN VALUES If the man page documents functions that return
values, this section lists these values and describes
the conditions under which they are returned. If a
function can return only constant values, such as 0
or –1, these values are listed in tagged paragraphs.
Otherwise, a single paragraph describes the return
values of each function. Functions that are declared
void do not return values, so they are not discussed
in RETURN VALUES.

ERRORS On failure, most functions place an error code in
the global variable errno that indicates why they
failed. This section lists alphabetically all error
codes a function can generate and describes the
conditions that cause each error. When more than
one condition can cause the same error, each
condition is described in a separate paragraph
under the error code.

USAGE This section lists special rules, features, and
commands that require in-depth explanations. The
subsections that are listed here are used to explain
built-in functionality:

Commands
Modifiers
Variables
Expressions
Input Grammar

EXAMPLES This section provides examples of usage or of how
to use a command or function. Wherever possible,
a complete example, which includes command-line
entry and machine response, is shown. Whenever
an example is given, the prompt is shown as
example%, or if the user must be superuser,
example#. Examples are followed by explanations,
variable substitution rules, or returned values. Most
examples illustrate concepts from the SYNOPSIS,
DESCRIPTION, OPTIONS, and USAGE sections.

ENVIRONMENT VARIABLES This section lists any environment variables that
the command or function affects, followed by a
brief description of the effect.

12 Sun Cluster Reference Manual for Solaris OS • August 2005, Revision A

EXIT STATUS This section lists the values the command returns to
the calling program or shell and the conditions that
cause these values to be returned. Usually, zero is
returned for successful completion, and values
other than zero are returned for various error
conditions.

FILES This section lists all file names that are referred to
by the man page, files of interest, and files created
or required by commands. Each file name is
followed by a descriptive summary or explanation.

ATTRIBUTES This section lists characteristics of commands,
utilities, and device drivers by defining the
attribute type and its corresponding value. See
attributes(5) for more information.

SEE ALSO This section lists references to other man pages,
in-house documentation, and outside publications.

DIAGNOSTICS This section lists diagnostic messages with a brief
explanation of the condition that caused the error.

WARNINGS This section lists warnings about special conditions
that could seriously affect your working conditions.
WARNINGS is not a list of diagnostics.

NOTES This section lists additional information that does
not belong anywhere else on the page. NOTES
covers points of special interest to the user. Critical
information is never covered here.

BUGS This section describes known bugs and, wherever
possible, suggests workarounds.

13

14 Sun Cluster Reference Manual for Solaris OS • August 2005, Revision A

SC31 1ha

15

rt_callbacks – callback interface for management of services as Sun Cluster resources

rt_callbacks method-path -R resource -T type -G group

rt_callbacks validate-path [-c | -u] -R resource -T type -G group
[-r prop=val] [-x prop=val] [-g prop=val]

rt_callbacks, the callback interface for Sun Cluster resource types, defines the
interface used by the cluster’s Resource Group Manager (RGM) facility to control
services as cluster resources. This man page describes the callback methods and
arguments for the Version 2 API shipped with Sun Cluster 3.x.

The implementor of a resource type provides programs or scripts that serve as the
callback methods:

method-path The path the program that has been declared in the rt_reg(4)
registration file, and registered with scrgadm(1M) as one of a
resource type’s callback methods: START, STOP, INIT, FINI,
BOOT, PRENET_START, POSTNET_STOP, MONITOR_START,
MONITOR_STOP, MONITOR_CHECK, or UPDATE.

validate-path The path to the program that has been declared as a resource
type’s VALIDATE method in the rt_reg(4) registration file, and
registered with scrgadm(1M).

The callback methods are passed prescribed operands and are expected to take certain
actions to control the operation of the service on the cluster.

The paths to the callback method programs are declared in a resource type registration
file, see rt_reg(4), by the resource type implementor. The cluster administrator uses
scrgadm(1M) to register the resource type into the cluster configuration using the
registration file. Also using scrgadm(1M), the registered resource type can then be
used to create resources configured in resource groups managed by the RGM.

The RGM responds to events by automatically invoking the callback methods of the
resources in the resource groups it manages. The callback methods are expected to
take certain actions on the service represented by the resource, such as stopping or
starting the service on a cluster node.

The exit value returned from the callback method indicates to the RGM whether the
callback method succeeded or failed. The RGM either takes additional action in the
event of a method failure, or records the failure in the resource state to indicate the
need for administrative action.

The following operands are supported:

-c Operand for a VALIDATE method invocation. Indicates that the
method is being called at the time of resource creation to validate
the initial setting of all resource and resource group properties.

rt_callbacks(1HA)

NAME

SYNOPSIS

DESCRIPTION

OPERANDS

16 Sun Cluster Reference Manual for Solaris OS • Last Revised 26 Apr 2002

A VALIDATE invocation will either be passed a -c or -u flag, but
not both.

The -c flag indicates that there will also be -r and -x operands
passed giving values for all properties and extension properties in
the resource, and -g operands passed giving values for all
properties in the resource group.

-g prop=val The operand provides the value of a resource group property to a
VALIDATE method. The prop is the name of a resource group
property, and val is the value of the property when the
administrator creates the resource, or the value set when the
resource group containing the resource is updated.

There might be several -g operands passed in a VALIDATE call.

-G group The name of the resource group in which the resource is
configured.

-r prop=val The operand provides the value for a system-defined resource
property to a VALIDATE method. The prop is the name of a
system-defined resource property, and val the value set by the
administrator on resource creation or update.

There might be several -r operands passed in a VALIDATE call.

-R resource The name of the resource for which the method is invoked.

-T type The name of the resource type of the resource.

-u Operand for a VALIDATE method invocation. Indicates that the
method is being called at the time of an administrative update of
properties of an already existing resource, or update of the
properties of the resource group containing the resource.

A VALIDATE invocation will either be passed a -c or -u flag, but
not both.

The -u flag indicates that there will also be -r, -x, and -g passed
giving values for all resource and resource group properties that
were set by the administrative action. Only properties that have
had values set in the update operation are passed. In contrast, the
-c flag indicates that values for all properties are passed.

-x prop=val The operand provides the value of a resource extension property
to a VALIDATE method. The prop is the name of a resource
extension property. An extension property is defined by the
resource type implementation and declared in the paramtable of
the resource type registration file. The val is the value set by the
administrator on resource creation or update.

There might be several -x operands passed in a VALIDATE call.

rt_callbacks(1HA)

SC31 1ha 17

The callback methods are defined by the cluster RGM mechanism that invokes them.
The methods are expected to execute operations on a cluster resource, and return an
exit status reporting on the success of the operation. Following is a description of each
callback method: how it is used by the RGM, what action it is expected to take, and
the effect of a failure exit status.

START The START method is invoked on a cluster node when the resource
group containing the resource is brought online on that node. The
administrator can toggle the state between on and off using the
scswitch command. The START method activates the resource on a
node.

RGM action on START method failure depends on the setting of the
Failover_mode property of the resource. If Failover_mode is set to
SOFT or HARD, the RGM will attempt to relocate the resource’s
group to another node, otherwise the RGM sets the resource’s state
to START_FAILED.

STOP The STOP method is invoked on a cluster node when the resource
group containing the resource is brought offline on that node. The
administrator can toggle the state between on and off using the
scswitch command. This method deactivates the resource if it is
active.

RGM action on STOP method failure depends on the setting of the
Failover_mode property of the resource. If Failover_mode is set to
HARD, the RGM will attempt to forcibly stop the resource by
aborting the node, otherwise the RGM sets the resource’s state to
STOP_FAILED.

INIT The INIT method is invoked when the resource group containing
the resource is put under the management of the RGM. It is called
on nodes determined by the Init_nodes resource type property.
The method is intended to do initialization of the resource.

FINI The FINI method is invoked when the resource group containing
the resource is removed from RGM management. It is called on
nodes determined by the Init_nodes resource type property. The
method is intended to do clean-up activities of the resource.

BOOT The BOOT method is invoked when a node joins or rejoins the
cluster as the result of being booted or rebooted. It is called on
nodes determined by the Init_nodes resource type property.
Similar to INIT, the method is intended to do initialization of the
resource on nodes that join the cluster after the resource group
containing the resource has already been brought online.

rt_callbacks(1HA)

USAGE

18 Sun Cluster Reference Manual for Solaris OS • Last Revised 26 Apr 2002

VALIDATE The VALIDATE method is called when a resource is created, and
also when administrative action updates the properties of the
resource or its containing resource group. VALIDATE is called on
the set of cluster nodes indicated by the Init_nodes property of the
resource’s type.

VALIDATE is called before the creation or update is applied, and a
failure exit code from the method on any node causes the creation
or update to be canceled.

When VALIDATE is called as the result of a resource being created,
all system-defined, extension, and resource group properties are
passed as parameters to VALIDATE. When VALIDATE is called as
the result of an update to the resource, only the properties being
updated are passed. You can use scha_resource_get and
scha_resourcegroup_get to retrieve the properties of the
resource not being updated.

If the VALIDATE method is implemented as a script, use
logger(1) to write messages to the system log. If the VALIDATE
method is implemented as a C program, use syslog(3C) to write
messages to the system log.

UPDATE The UPDATE method is called to notify a running resource that
properties have been changed. UPDATE is invoked after an
administration action succeeds in setting properties of a resource
or its resource group. It is called on nodes where the resource is
online. This method is intended to use the scha_resource_get
and scha_resourcegroup_get access methods to read property
values that can affect an active resource and adjust the running
resource accordingly.

PRENET_START An auxiliary to the START method, the PRENET_START method is
intended to do start-up actions that are needed before the related
network address is configured up. It is called on nodes where the
START method is to be called. It is invoked after network
addresses in the same resource group have been plumbed but
before the addresses have been configured up and before the
START method for the resource is called. The PRENET_START
method is called before both the START method for the resource,
and before the PRENET_START method of any other resource that
depends on the resource.

PRENET_START failure has the same affect as START failure.

POSTNET_STOP An auxiliary to the STOP method, the POSTNET_STOP method is
intended to do shutdown actions that are needed after the related
network address is configured down. It is called on nodes where
the STOP method has been called. It is invoked after the network

rt_callbacks(1HA)

SC31 1ha 19

addresses in the resource group have been configured down, and
after the STOP method for the resource has been called, but before
the network addresses have been unplumbed. The
POSTNET_STOP method is called after both the STOP method for
the resource and after the POSTNET_STOP method of any other
resource that depends on the resource.

POSTNET_STOP failure has the same affect as STOP failure.

MONITOR_START The MONITOR_START method is called after the resource is
started, on the same node where the resource is started. It is
intended to start a monitor for the resource. MONITOR_START may
be called to restart monitoring that has been suspended.

MONITOR_START failure causes the RGM to set the resource state
to MONITOR_FAILED.

MONITOR_STOP The MONITOR_STOP method is called before the resource is
stopped, on the same node where the resource is running. It is
intended to stop a monitor for the resource. MONITOR_STOP may
be called to suspend monitoring while the system disrupts global
resources used by the resource. It is also called when monitoring is
disabled by administrative action.

MONITOR_CHECK The MONITOR_CHECK method is called before the resource group
containing the resource is relocated to a new node as the result of a
scha_control(3HA) or scha_control(1HA) request from a
fault monitor. It may be called on any node that is a potential new
master for the resource group. The MONITOR_CHECK method is
intended to assess whether a node is healthy enough to run a
resource. The MONITOR_CHECK method must be implemented in
such a way that it does not conflict with the running of another
method concurrently.

MONITOR_CHECK failure vetoes the relocation of the resource
group to the node where the callback was invoked.

0 Successful completion. Communicates to the cluster RGM facility that the
method succeeded.

non-0 An error occurred.

The specific value of a failure exit status does not affect the RGM’s action on failure.
However, the exit status is recorded in the cluster log on method failure. A resource
type implementation may define different non-0 exit codes to communicate error
information to the administrator by way of the cluster log.

rt_callbacks(1HA)

EXIT STATUS

20 Sun Cluster Reference Manual for Solaris OS • Last Revised 26 Apr 2002

The Sun Cluster resource management callback methods are executed with root
permission by the RGM cluster facility. The programs implementing the methods are
expected to be installed with appropriate execution permissions, and for security,
should not be writable.

Environment variables set for callback method execution are as follows:

HOME=/
PATH=/usr/bin:/usr/cluster/bin

LD_LIBRARY_PATH=/usr/cluster/lib

If a callback method invocation exceeds its timeout period, the process is sent a
SIGTERM signal. If the SIGTERM fails to stop the method execution, the process is
sent SIGKILL.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscdev

Interface Stability Evolving

logger(1), scha_cmds(1HA), scrgadm(1M), syslog(3C), scha_calls(3HA),
scha_control(3HA), rt_reg(4), signal(3C), attributes(5)

rt_callbacks(1HA)

ENVIRONMENT
VARIABLES

SIGNALS

ATTRIBUTES

SEE ALSO

SC31 1ha 21

scdsbuilder – Launch the GUI version of the Sun Cluster Data Service Builder

scdsbuilder

The scdsbuilder command launches the GUI version of the Sun Cluster Data
Service Builder.

To run scdsbuilder, you must have a development version of Solaris 8 software or
compatible versions, Java in your path, and JDK version 1.3.1 or compatible versions.

If a resource type developed with the Data Service Builder resides in the current
directory, scdsbuilder automatically loads it and disables the Create button.

If the C compiler, cc(1B) is not in your path, then scdsbuilder disables the C option
in the C vs Ksh question for the generated source code. If a resource type developed
with the Data Service Builder and having its source code in C resides in the current
directory, and the C compiler, cc, is not in your path, scdsbuilder returns with an
error.

The following exit values are returned:

0 Successful completion.

>0 An error occurred. The command did not complete.

install_directory/rtconfig Contains information from the previous
session; facilitates the tool’s quit and restart
feature.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscdev

Interface Stability Evolving

cc(1B), scdscreate(1HA), scdsconfig(1HA), attributes(5)

scdsbuilder(1HA)

NAME

SYNOPSIS

DESCRIPTION

EXIT STATUS

FILES

ATTRIBUTES

SEE ALSO

22 Sun Cluster Reference Manual for Solaris OS • Last Revised 17 Apr 2002

scdsconfig – configure resource type template

scdsconfig -s start_command [-u start_method_timeout] [-t stop_command]
[-v stop_method_timeout] [-m probe_command] [-n probe_timeout]
[-d working_directory]

The scdsconfig command configures the resource type template that you previously
created with scdscreate(1HA). scdsconfig enables you to configure C-, Generic
Data Service (GDS)-, or Korn shell-based templates for both network aware
(client-server model) and non-network aware (clientless) applications.

scdsconfig configures application-specific commands to start, stop, and probe the
application. You can also use scdsconfig to set timeout values for the start, stop,
and probe commands. scdsconfig supports both network aware (client-server
model) and non-network aware (client-less) applications. You can run scdsconfig
from the same directory where scdscreate was run. You can also specify that same
directory by using the -d option. scdsconfig configures the resource type template
by placing the user-specified parameters at correct locations in the generated code. If C
was the type of generated source code, this command also compiles the code.
scdsconfig puts the output into a Solaris package that you can then install. This
command creates the package in the pkg subdirectory under the
$vendor_id$resource_type_name directory created by scdscreate.

The following options are supported:

-d working_directory If scdsconfig is not run from the same directory
where scdscreate was run, then this option is
required to specify the directory where the resource
type template was originally created.

-m probe_command This optional parameter specifies a command to
periodically check the health of the network aware or
non-network aware application. It must be a complete
command line that can be passed directly to a shell to
probe the application. The probe_command returns with
an exit status of 0 if the application is running
successfully. An exit status other than 0 indicates that
the application is failing to perform correctly. In this
event, the resources of this resource type are either
restarted on the same node or the resource group that
contains the resource is failed over to another healthy
node, depending on the failure history of the
application in the past.

-n probe_timeout This optional parameter specifies the timeout, in
seconds, for the probe command. The timeout must
take into account system overloads to prevent false
failures. The default value is 30 seconds.

-s start_command The start command starts the application. This
command must be a complete command line that can

scdsconfig(1HA)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

SC31 1ha 23

be passed directly to a shell to start the application. You
can include command line arguments to specify
hostnames, port numbers, or other configuration data
that is necessary to start the application. To create a
resource type with multiple independent process trees,
you specify a text file that contains the list of
commands, one per line, to start the different process
trees.

-t stop_command This optional parameter specifies the stop command
for the application. It must be a complete command
line that can be passed directly to a shell to stop the
application. If you omit this option, the generated code
stops the application via signals. The stop command is
allotted 80 percent of the timeout value to stop the
application. If the stop command fails to stop the
application within this period, a SIGKILL is allotted 15
percent of the timeout value to stop the application. If
SIGKILL also fails to stop the application, the stop
method returns with an error.

-u start_method_timeout This optional parameter specifies the timeout, in
seconds, for the start command. The timeout must take
into account system overloads to prevent false failures.
The default value is 300 seconds.

-v stop_method_timeout This optional parameter specifies the timeout, in
seconds, for the stop command. The timeout must take
into account system overloads to prevent false failures.
The default value is 300 seconds.

The following exit values are returned:

0 The command completed successfully.

nonzero An error occurred.

working_directory/rtconfig Contains information from the previous
session. Facilitates the tool’s quit and restart
feature.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscdev

Interface Stability Evolving

ksh(1), scdsbuilder(1HA), scdscreate(1HA), attributes(5)

scdsconfig(1HA)

EXIT STATUS

FILES

ATTRIBUTES

SEE ALSO

24 Sun Cluster Reference Manual for Solaris OS • Last Revised 7 Jun 2004

scdscreate – create a Sun Cluster resource type template

scdscreate -V vendor_id -T resource_type_name -a [-s] [-n RT_version]
[-d working_directory] [-k | -g]

The scdscreate command creates a template for making an application highly
available (HA) or scalable. This command enables you to create C-, Generic Data
Service (GDS)-, or Korn shell-based templates for both network aware (client-server
model) and non-network aware (clientless) applications.

You can create the template in one of two fundamentally different ways:

GDS scdscreate creates a set of three driving scripts that
work from a single resource type SUNW.gds, which is
pre-installed on the cluster. These scripts are named
startRT_Name, stopRT_Name, and removeRT_Name and
starts, stops, and removes an instance of that
application. In this model, the implementation of the
SUNW.gds resource type that is pre-installed on the
cluster is immutable.

Generated Source Code scdscreate creates a template for a Sun Cluster
resource type, whose instantiations run under the
control of the Resource Group Manager (RGM) to make
the given application highly available and scalable.

Either model can create templates for network aware (client-server model) and
non-network aware (client-less) applications.

scdscreate creates a directory of the form $vendor_id$resource_type_name under
working_directory. This directory contains the driving scripts, or the generated source,
binary, and package files for the resource type. scdscreate also creates a
configuration file, rtconfig, in which you can store configuration information for the
resource type. scdscreate allows you to create only one resource type per directory.
You must create different resource types in different directories.

The following options are supported:

-a This parameter specifies that the resource type that is
being created is not network aware. scdscreate
disables all the networking related code in the template
that is created.

-n RT_version This optional parameter specifies the version of the
generated resource’s type. If you omit this parameter,
and you’re creating a C- or Korn shell-based
application, the text string 1.0 is used by default. If
you omit this parameter, and you’re creating a
GDS-based application, the RT_version string of the

scdscreate(1HA)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

SC31 1ha 25

GDS is used by default. The RT_version distinguishes
between multiple registered versions, or upgrades, of
the same base resource type.

You cannot include the following characters in
RT_version: blank, tab, slash (/), backslash (\), asterisk
(*), question mark (?), comma (,), semicolon (;), left
square bracket ([), or right square bracket (]).

-d working_directory Creates the template for the resource type in a directory
other than the current directory. If you omit this
argument, scdscreate creates the template in the
current directory.

-g This optional parameter generates the GDS-based form
of the template to make an application highly available
or scalable.

-k This optional parameter generates source code in Korn
shell command syntax rather than in C. See ksh(1).

-s This optional parameter indicates that the resource
type is scalable. You can configure an instance
(resource) of a scalable resource type into a failover
resource group, and hence, turn off the scalability
feature. If you omit this argument, scdscreate
creates the template for a failover resource type.

-T resource_type_name The resource type name and resource type version, in
conjunction with the vendor ID, uniquely identifies the
resource type that is being created.

-V vendor_id The vendor ID is typically the stock symbol, or some
other identifier of the vendor that is creating the
resource type. scdscreate affixes the vendor ID,
followed by a period (.) to the beginning of the
resource type name. This syntax ensures that the
resource type name remains unique if more than one
vendor uses the same resource type name.

0 The command completed successfully.

nonzero An error occurred.

working_directory/rtconfig Contains information from the previous
session and facilitates the quit and restart
feature of scdscreate.

scdscreate(1HA)

EXIT STATUS

FILES

26 Sun Cluster Reference Manual for Solaris OS • Last Revised 26 May 2004

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscdev

Interface Stability Evolving

ksh(1), scdsbuilder(1HA), scdsconfig(1HA), attributes(5),
rt_properties(5)

Sun Cluster Data Services Developer’s Guide for Solaris OS

scdscreate(1HA)

ATTRIBUTES

SEE ALSO

SC31 1ha 27

scha_cluster_get – access cluster information

scha_cluster_get -O optag…

The scha_cluster_get command accesss information about a cluster. The
command is intended to be used in shell script implementations of the callback
methods for resource types that represent services controlled by the cluster’s Resource
Group Manager (RGM) facility. It provides the same information as the
scha_cluster_get(3HA) function.

Information is output by the command to standard output in formatted strings as
described in scha_cmds(1HA). Output is takes the form of a string or strings on
separate lines. The output can be stored in shell variables and parsed using shell
facilities or awk(1) for use in scripts.

The following options are supported:

-O optag The optag argument indicates the information to be accessed.
Depending on the optag, an additional argument may be needed to
indicate the cluster node for which information is to be retrieved.

Note – optag options, such as NODENAME_LOCAL and
NODENAME_NODEID, are not case sensitive. You can use any
combination of uppercase and lowercase letters when you specify
optag options.

The following optag values are supported:

NODENAME_LOCAL
Outputs the name of the cluster node where command is
executed.

NODENAME_NODEID
Outputs the name of the cluster node indicated by the numeric
identifier. Requires an additional unflagged argument that is a
numeric cluster node identifier.

ALL_NODENAMES
Outputs on successive lines the names of all nodes in the
cluster.

ALL_NODEIDS
Outputs on successive lines the numeric node identifiers of all
nodes in the cluster.

NODEID_LOCAL
Outputs the numeric node identifier for the node where the
command is executed.

NODEID_NODENAME
Outputs the numeric node identifier of the node indicated by
the name. Requires an additional unflagged argument that is
the name of a cluster node.

scha_cluster_get(1HA)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

28 Sun Cluster Reference Manual for Solaris OS • Last Revised 26 May 2004

PRIVATELINK_HOSTNAME_LOCAL
Outputs the hostname by which the node that the command is
run on is addressed on the cluster interconnect.

PRIVATELINK_HOSTNAME_NODE
Outputs the hostname by which the named node is addressed
on the cluster interconnect. Requires an additional unflagged
argument that is the name of a cluster node.

ALL_PRIVATELINK_HOSTNAMES
Outputs on successive lines the hostnames by which all cluster
nodes are addressed on the cluster interconnect.

NODESTATE_LOCAL
Outputs UP or DOWN depending on the state of the node
where the command is executed.

NODESTATE_NODE
Outputs UP or DOWN depending on the state of the named
node. Requires an additional unflagged argument that is the
name of a cluster node.

SYSLOG_FACILITY
Outputs the number of the syslog(3C) facility that the RGM
uses for log messages. The value is 24, which corresponds to
the daemon facility. You can use this value as the facility level in
the logger(1) command to log messages in the cluster log.

ALL_RESOURCEGROUPS
Outputs on successive lines the names of all the resource
groups that are being managed on the cluster.

ALL_RESOURCETYPES
Outputs on successive lines the names of all the resource types
that are registered on the cluster.

CLUSTERNAME
Outputs the name of the cluster.

EXAMPLE 1 Using the scha_cluster Command in a Shell Script

The following shell script uses the scha_cluster_get(1HA) command to print
whether each cluster node is up or down:

#!/bin/sh
nodenames=‘scha_cluster_get -O All_Nodenames‘
for node in $nodenames
do

state=‘scha_cluster_get -O NodeState_Node $node‘
printf "State of node: %s\n exit: %d\n value: %s\n" "$node" $? "$state"

done

The following exit values are returned:

0 Successful completion.

scha_cluster_get(1HA)

EXAMPLES

EXIT STATUS

SC31 1ha 29

non-0 An error occurred.

Failure error codes are described in scha_calls(3HA).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscdev

Interface Stability Stable

awk(1), logger(1), sh(1), scha_cmds(1HA), scha_calls(3HA),
scha_cluster_get(3HA), attributes(5)

scha_cluster_get(1HA)

ATTRIBUTES

SEE ALSO

30 Sun Cluster Reference Manual for Solaris OS • Last Revised 26 May 2004

scha_cmds – command standard output for scha_cluster_get, scha_control,
scha_resource_get, scha_resourcegroup_get, scha_resourcetype_get,
scha_resource_setstatus

scha_command -O optag…

The Sun Cluster scha_cluster_get(1HA), scha_control(1HA),
scha_resource_get(1HA), scha_resourcegroup_get(1HA),
scha_resourcetype_get(1HA), and scha_resource_setstatus(1HA)
commands are command-line implementations of the callback methods for resource
types. See rt_callbacks(1HA).

Resource types represent services that are controlled by the cluster’s Resource Group
Manager (RGM) facility. These commands provide a command line interface to the
functionality of the scha_calls(3HA) C functions.

The get commands access cluster configuration information and all have the same
general interface in that they take an -O optag operand that indicates the information
to be accessed and output the results to standard output as formatted strings.
Additional arguments might be needed depending on the command and optag. For
information regarding the format for different optag results, see the Results Format
section.

Note – optag options, for all scha commands, are not case sensitive. You can use any
combination of uppercase and lowercase letters when you specify optag options.

The scha_control(1HA) command also takes an -O optag option that indicates a
control operation, but does not produce output to standard output.

The scha_resource_setstatus(1HA) command sets the STATUS and
STATUS_MSG properties of a resource that is managed by the RGM.

The format of strings that are output to the standard output by the commands
depends on the type of the result that is indicated by the optag you include with the -O
option. Formats for each type are specified in the following table. Format notation is
described in formats(5).

Result Type Format on Standard Output

boolean TRUE\n or FALSE\n

enum %s\n, the string name of an enum value

scha_cmds(1HA)

NAME

SYNOPSIS

DESCRIPTION

Result Formats

SC31 1ha 31

Result Type Format on Standard Output

extension %s\n, the type attribute of the extension property,
which is one of the following values: STRING, INT,
BOOLEAN, ENUM, or STRINGARRAY.

Following the type information, the property value is
output according to the formats for each type as
follows: STRING as string, INT as int, BOOLEAN as
boolean, ENUM as enum, STRINGARRAY as
string_array

int %d\n

status %s\n%s\n, the first string is the status, which is one of
the following enum values: DEGRADED, FAULTED,
OFFLINE, ONLINE, or UNKNOWN.

The second string is the status message.

string %s\n

string_array Each element in the array is output in the format %s\n.
An asterisk, indicating all nodes or resources, can be
returned for the GLOBAL_RESOURCES_USED and
INSTALLED_NODES properties.

unsigned_int %u\n

unsigned_int_array Each element in the array is output in the format %u\n

The following table specifies the valid optag values for different commands as well as
the type of the result that is output according to the formats specified in the previous
table.

optag Values for scha_cluster_get(1HA) Result Type

ALL_NODEIDS unsigned_int_array

ALL_NODENAMES string_array

ALL_PRIVATELINK_HOSTNAMES string_array

ALL_RESOURCEGROUPS string_array

ALL_RESOURCETYPES string_array

CLUSTERNAME string

NODEID_LOCAL unsigned_int

NODEID_NODENAME unsigned_int

NODENAME_LOCAL string

scha_cmds(1HA)

optag Result Types

32 Sun Cluster Reference Manual for Solaris OS • Last Revised 7 Jun 2004

optag Values for scha_cluster_get(1HA) Result Type

NODENAME_NODEID string

NODESTATE_LOCAL enum (UP, DOWN)

NODESTATE_NODE enum (UP, DOWN)

PRIVATELINK_HOSTNAME_LOCAL string

PRIVATELINK_HOSTNAME_NODE string

SYSLOG_FACILITY int

optag Values for scha_control(1HA)

CHECK_GIVEOVER

CHECK_RESTART

GIVEOVER

IGNORE_FAILED_START

RESOURCE_IS_RESTARTED

RESOURCE_RESTART

RESTART

optag Values for
scha_resource_get(1HA) Result Type

AFFINITY_TIMEOUT int

ALL_EXTENSIONS string_array

BOOT_TIMEOUT int

CHEAP_PROBE_INTERVAL int

EXTENSION extension

FAILOVER_MODE enum (NONE, HARD, SOFT, RESTART_ONLY, LOG_ONLY)

FINI_TIMEOUT int

GROUP string

INIT_TIMEOUT int

LOAD_BALANCING_POLICY string

LOAD_BALANCING_WEIGHTS string_array

MONITORED_SWITCH enum (DISABLED, ENABLED)

scha_cmds(1HA)

SC31 1ha 33

optag Values for
scha_resource_get(1HA) Result Type

MONITOR_CHECK_TIMEOUT int

MONITOR_START_TIMEOUT int

MONITOR_STOP_TIMEOUT int

NETWORK_RESOURCES_USED string_array

NUM_RESOURCE_RESTARTS int

NUM_RG_RESTARTS int

ON_OFF_SWITCH enum (DISABLED, ENABLED)

PORT_LIST string_array

POSTNET_STOP_TIMEOUT int

PRENET_START_TIMEOUT int

RESOURCE_DEPENDENCIES string_array

RESOURCE_DEPENDENCIES_RESTARTstring_array

RESOURCE_DEPENDENCIES_WEAK string_array

RESOURCE_PROJECT_NAME string

RESOURCE_STATE enum (ONLINE, OFFLINE, START_FAILED,
STOP_FAILED, MONITOR_FAILED,
ONLINE_NOT_MONITORED, STARTING, STOPPING)

RESOURCE_STATE_NODE enum (see RESOURCE_STATE for values)

RETRY_COUNT int

RETRY_INTERVAL int

R_DESCRIPTION string

SCALABLE boolean

START_TIMEOUT int

STATUS status

STATUS_NODE status

STOP_TIMEOUT int

THOROUGH_PROBE_INTERVAL int

TYPE string

TYPE_VERSION string

UDP_AFFINITY boolean

scha_cmds(1HA)

34 Sun Cluster Reference Manual for Solaris OS • Last Revised 7 Jun 2004

optag Values for
scha_resource_get(1HA) Result Type

UPDATE_TIMEOUT int

VALIDATE_TIMEOUT int

WEAK_AFFINITY boolean

optag Values for
scha_resource_get(1HA) and
scha_resourcetype_get(1HA) Result Type

API_VERSION int

BOOT string

FAILOVER boolean

FINI string

INIT string

INIT_NODES enum (RG_PRIMARIES, RT_INSTALLED_NODES)

INSTALLED_NODES string_array. An asterisk (*) is returned to indicate
all nodes.

IS_LOGICAL_HOSTNAME boolean

IS_SHARED_ADDRESS boolean

MONITOR_CHECK string

MONITOR_START string

MONITOR_STOP string

PKGLIST string_array

POSTNET_STOP string

PRENET_START string

RT_BASEDIR string

RT_DESCRIPTION string

RT_SYSTEM boolean

RT_VERSION string

SINGLE_INSTANCE boolean

START string

STOP string

scha_cmds(1HA)

SC31 1ha 35

optag Values for
scha_resource_get(1HA) and
scha_resourcetype_get(1HA) Result Type

UPDATE string

VALIDATE string

optag Values for scha_resourcegroup_get(1HA) Result Type

AUTO_START_ON_NEW_CLUSTER boolean

DESIRED_PRIMARIES int

FAILBACK boolean

GLOBAL_RESOURCES_USED string_array (an asterisk (*) is returned to
indicate all resources)

IMPLICIT_NETWORK_DEPENDENCIES boolean

LOGICAL_HOST boolean

MAXIMUM_PRIMARIES int

NODELIST string_array

PATHPREFIX string

PINGPONG_INTERVAL int

RESOURCE_LIST string_array

RG_AFFINITIES string_array

RG_DEPENDENCIES string_array

RG_DESCRIPTION string

RG_MODE enum (FAILOVER, SCALABLE)

RG_PROJECT_NAME string

RG_STATE enum (UNMANAGED, ONLINE, OFFLINE,
PENDING_ONLINE, PENDING_OFFLINE,
ERROR_STOP_FAILED, ONLINE_FAULTED,
PENDING_ONLINE_BLOCKED)

RG_STATE_NODE enum (see RG_STATE for values)

RG_SYSTEM boolean

RG_IS_FROZEN boolean

There is one set of exit values for all scha commands.

The exit values are the numeric values of the scha_err_t return codes of the
corresponding C functions as described in scha_calls(3HA).

scha_cmds(1HA)

EXIT STATUS

36 Sun Cluster Reference Manual for Solaris OS • Last Revised 7 Jun 2004

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscdev

Interface Stability Stable

awk(1), sh(1), rt_callbacks(1HA), scha_cluster_get(1HA),
scha_control(1HA), scha_resource_get(1HA),
scha_resourcegroup_get(1HA), scha_resourcetype_get(1HA),
scha_resource_setstatus(1HA), scha_calls(3HA), attributes(5),
formats(5)

scha_cmds(1HA)

ATTRIBUTES

SEE ALSO

SC31 1ha 37

scha_control – request resource group control

scha_control -O optag -G group -R resource

The scha_control command requests the restart or relocation of a resource group
that is under the control of the Resource Group Manager (RGM) cluster facility. This
command is intended to be used in shell script implementations of resource monitors.
It provides the same functionality as the scha_control(3HA) C function.

The exit code of the command indicates whether the requested action was rejected. If
the request is accepted, the command does not return until the resource group or
resource has completed going offline and back online. The fault monitor that called
scha_control(1HA) might be stopped as a result of the group going offline and so
might never receive the return status of a successful request.

You need solaris.cluster.resource.admin RBAC authorization to use this
command. See rbac(5).

You must also be able to assume a role to which the Sun Cluster Commands rights
profile has been assigned to use this command. Authorized users can issue privileged
Sun Cluster commands on the command line from the pfsh(1), pfcsh(1), or pfksh(1)
profile shell. A profile shell is a special kind of shell that enables you to access
privileged Sun Cluster commands that are assigned to the Sun Cluster Commands
rights profile. A profile shell is launched when you run su(1M) to assume a role. You
can also use pfexec(1) to issue privileged Sun Cluster commands.

The following options are supported:

-G group Is the name of the resource group that is to be restarted or
relocated. If the group is not online on the node where the request
is made, the request is rejected.

-O optag Requests optag options.

Note – optag options, such as CHECK_GIVEOVER and
CHECK_RESTART, are not case sensitive. You can use any
combination of uppercase and lowercase letters when you specify
optag options.

The following optag values are supported:

CHECK_GIVEOVER
Performs all the same validity checks that would be done for a
GIVEOVER of the resource group named by the -G option, but
does not actually relocate the resource group.

CHECK_RESTART
Performs all the same validity checks that would be done for a
RESTART of the resource group named by the -G option, but
does not actually restart the resource group.

scha_control(1HA)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

38 Sun Cluster Reference Manual for Solaris OS • Last Revised 26 Jan 2005

GIVEOVER
Requests that the resource group named by the -G option be
brought offline on the local node, and online again on a different
node of the RGM’s choosing. Note that, if the resource group is
currently online on two or more nodes and there are no
additional available nodes on which to bring the resource group
online, it can be taken offline on the local node without being
brought online elsewhere. The request might be rejected
depending on the result of various checks. For example, a node
might be rejected as a host because the group was brought
offline due to a GIVEOVER request on that node within the
interval specified by the PINGPONG_INTERVAL property.

If the cluster administrator configures the RG_Affinities
properties of one or more resource groups, and you issue a
scha_control GIVEOVER request on one resource group,
more than one resource group might be relocated as a result.
The RG_Affinities property is described in
rg_properties(5).

The MONITOR_CHECK method is called before the resource
group that contains the resource is relocated to a new node as
the result of a scha_control(3HA) or scha_control(1HA)
request from a fault monitor.

The MONITOR_CHECK method may be called on any node that
is a potential new master for the resource group. The
MONITOR_CHECK method is intended to assess whether a node
is healthy enough to run a resource. The MONITOR_CHECK
method must be implemented in such a way that it does not
conflict with the running of another method concurrently.

MONITOR_CHECK failure vetoes the relocation of the resource
group to the node where the callback was invoked.

IGNORE_FAILED_START
Requests that, if the currently executing Prenet_start or
Start method fails, the resource group is not to fail over,
regardless of the setting of the Failover_mode property.

In other words, this optag value overrides the recovery action
that is normally taken for a resource for which the
Failover_Mode property is set to SOFT or HARD when that
resource fails to start. Normally, the resource group fails over to
a different node. Instead, the resource behaves as if
Failover_Mode is set to NONE. The resource enters the
START_FAILED state, and the resource group ends up in the
ONLINE_FAULTED state, if no other errors occur.

scha_control(1HA)

SC31 1ha 39

This optag value is meaningful only when it is called from a
Start or Prenet_start method that subsequently exits with
a nonzero status or times out. This optag value is valid only
for the current invocation of the Start or Prenet_start
method. scha_control should be called with this optag
value in a situation in which the Start method has determined
that the resource cannot start successfully on another node. If
this optag value is called by any other method, the error
SCHA_ERR_INVAL is returned. This optag value prevents the
“ping pong” failover of the resource group that would
otherwise occur.

RESOURCE_IS_RESTARTED
Requests that the resource restart counter for the resource
named by the -R option be incremented on the local node,
without actually restarting the resource.

A resource monitor that restarts a resource directly without
calling the RESOURCE_RESTART option of scha_control (for
example, using pmfadm(1M)) can use this option to notify the
RGM that the resource has been restarted. This incrementing is
reflected in subsequent NUM_RESOURCE_RESTARTS queries of
scha_resource_get(1HA).

If the resource’s type fails to declare the RETRY_INTERVAL
standard property, the RESOURCE_IS_RESTARTED option of
scha_control is not permitted, and scha_control returns
exit 13 (SCHA_ERR_RT).

RESOURCE_RESTART
Requests that the resource named by the -R option be brought
offline and online again on the local node without stopping any
other resources in the resource group. The resource is stopped
and restarted by applying the following sequence of methods to
it on the local node:

MONITOR_STOP
STOP
START
MONITOR_START

If the resource’s type does not declare a MONITOR_STOP and
MONITOR_START method, then only the STOP and START
methods are invoked to perform the restart. If the resource’s
type does not declare both a START and STOP method,
scha_control fails with exit code 13 (SCHA_ERR_RT).

scha_control(1HA)

40 Sun Cluster Reference Manual for Solaris OS • Last Revised 26 Jan 2005

If a method invocation fails while restarting the resource, the
RGM might set an error state, relocate the resource group, or
reboot the node, depending on the setting of the
FAILOVER_MODE property of the resource. For additional
information, see the FAILOVER_MODE property in
r_properties(5).

A resource monitor using this option to restart a resource can
use the NUM_RESOURCE_RESTARTS query of
scha_resource_get(1HA) to keep count of recent restart
attempts.

The RESOURCE_RESTART function should be used with care by
resource types that have PRENET_START, POSTNET_STOP, or
both methods. Only the MONITOR_STOP, STOP, START, and
MONITOR_START methods are applied to the resource. Network
address resources on which this resource implicitly depends are
not restarted and remain online.

RESTART
Requests that the resource group that is named by the -G option
be brought offline, then online again, without forcing relocation
to a different node. The request might ultimately result in
relocating the resource group if a resource in the group fails to
restart. A resource monitor using this option to restart a
resource group can use the NUM_RG_RESTARTS query of
scha_resource_get(1HA) to keep count of recent restart
attempts.

The CHECK_GIVEOVER and CHECK_RESTART optag values are
intended to be used by resource monitors that take direct action
upon resources (for example, killing and restarting processes, or
rebooting nodes) rather than invoking scha_control to
perform a giveover or restart. If the check fails, the monitor
should sleep for awhile and restart its probes rather than invoke
its restart or failover actions. For more information, see
scha_control(3HA).

-R resource Is the name of a resource in the resource group, presumably the
resource whose monitor is making the scha_control(1HA)
request. If the named resource is not in the resource group, the
request is rejected.

The setting of the Failover_mode property of the indicated
resource might suppress the requested scha_control action. If
Failover_mode is RESTART_ONLY, only scha_control
RESOURCE_RESTART is permitted. Other requests, including
GIVEOVER, CHECK_GIVEOVER, RESTART, and CHECK_RESTART,
return the SCHA_ERR_CHECKS exit code and the requested
giveover or restart action is not executed, producing only a

scha_control(1HA)

SC31 1ha 41

syslog message. If the Retry_count and Retry_interval
properties are set on the resource, the number of resource restarts
is limited to Retry_count attempts within the
Retry_interval. If Failover_mode is LOG_ONLY, any
scha_control request returns the SCHA_ERR_CHECKS exit code
and the requested giveover or restart action is not executed,
producing only a syslog message.

The following exit values are returned:

0 The command completed successfully.

nonzero An error occurred.

Failure error codes are described in scha_calls(3HA).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscdev

Interface Stability Stable

pmfadm(1M), rt_callbacks(1HA), scha_cmds(1HA),
scha_resource_get(1HA), scha_control(3HA), scha_calls(3HA),
attributes(5), r_properties(5), rg_properties(5)

scha_control(1HA)

EXIT STATUS

ATTRIBUTES

SEE ALSO

42 Sun Cluster Reference Manual for Solaris OS • Last Revised 26 Jan 2005

scha_resource_get – access resource information

scha_resource_get -O optag -R resource [-G group…]

The scha_resource_get command accesses information about a resource that is
under the control of the Resource Group Manager (RGM) cluster facility. You can use
this command to query the properties of the resource’s type, as described in
rt_properties(5), as well as the properties of the resource, as described in
r_properties(5).

scha_resource_get is intended to be used in shell script implementations of the
callback methods for resource types that represent services controlled by the cluster’s
RGM. It provides the same information as the scha_resource_get(3HA) C
function.

Information is output by the command to stdout in formatted strings as described in
scha_cmds(1HA). Output is a string or several strings output on separate lines. The
output can be stored in shell variables and parsed using shell facilities or awk(1) for
further use by the script.

You need solaris.cluster.resource.read RBAC authorization to use this
command. See rbac(5).

You must also be able to assume a role to which the Sun Cluster Commands rights
profile has been assigned to use this command. Authorized users can issue privileged
Sun Cluster commands on the command line from the pfsh(1), pfcsh(1), or pfksh(1)
profile shell. A profile shell is a special kind of shell that enables you to access
privileged Sun Cluster commands that are assigned to the Sun Cluster Commands
rights profile. A profile shell is launched when you run su(1M) to assume a role. You
can also use pfexec(1) to issue privileged Sun Cluster commands.

The following options are supported:

-G group
Is the name of the resource group in which the resource has been configured.
Although this argument is optional, the command will run more efficiently if it is
included.

-O optag
Indicates the information to be accessed. Depending on the optag that you specify,
you might need to include an additional option to indicate the cluster node for
which information is to be retrieved.

Note – optag options, such as AFFINITY_TIMEOUT and BOOT_TIMEOUT, are not
case sensitive. You can use any combination of uppercase and lowercase letters
when you specify optag options.

The following optag values retrieve the corresponding resource properties. The
value of the named property of the resource is output. The RESOURCE_STATE,
STATUS, NUM_RG_RESTARTS, and NUM_RESOURCE_RESTARTS properties refer to
the value on the node where the command is executed (see r_properties(5)).

scha_resource_get(1HA)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

SC31 1ha 43

AFFINITY_TIMEOUT
BOOT_TIMEOUT
CHEAP_PROBE_INTERVAL
FAILOVER_MODE
FINI_TIMEOUT
INIT_TIMEOUT
LOAD_BALANCING_POLICY
LOAD_BALANCING_WEIGHTS
LOGICAL_HOSTNAMES_USED
MONITORED_SWITCH
MONITOR_CHECK_TIMEOUT
MONITOR_START_TIMEOUT
MONITOR_STOP_TIMEOUT
NETWORK_RESOURCES_USED
NUM_RESOURCE_RESTARTS
NUM_RG_RESTARTS
ON_OFF_SWITCH
PORT_LIST
POSTNET_STOP_TIMEOUT
PRENET_START_TIMEOUT
RESOURCE_DEPENDENCIES
RESOURCE_DEPENDENCIES_RESTART
RESOURCE_DEPENDENCIES_WEAK
RESOURCE_PROJECT_NAME
RESOURCE_STATE
RESOURCE_STATE_NODE
RETRY_COUNT
RETRY_INTERVAL
R_DESCRIPTION
SCALABLE
START_TIMEOUT
STATUS
STATUS_NODE
STOP_TIMEOUT
THOROUGH_PROBE_INTERVAL
TYPE
TYPE_VERSION
UDP_AFFINITY
UPDATE_TIMEOUT
VALIDATE_TIMEOUT
WEAK_AFFINITY

STATUS_NODE
Requires an unflagged argument that names a node. Outputs the value of the
resource’s STATUS property for the named node.

RESOURCE_STATE_NODE
Requires an unflagged argument that names a node. Outputs the value of the
resource’s RESOURCE_STATE property for the named node.

EXTENSION
Requires an unflagged argument that names an extension of the resource.
Outputs the type of property followed by its value, on successive lines. Shell
scripts might need to discard the type to obtain the value, as shown in
EXAMPLES.

ALL_EXTENSIONS
Outputs on successive lines the names of all extension properties of the resource.

scha_resource_get(1HA)

44 Sun Cluster Reference Manual for Solaris OS • Last Revised 26 May 2004

GROUP
Outputs the name of the resource group into which the resource is configured.

The following optag values retrieve the corresponding resource type properties. The
value of the named property of the resource’s type is output.

Note – optag options, such as API_VERSION and BOOT, are not case sensitive. You
can use any combination of uppercase and lowercase letters when you specify optag
options.

For descriptions of resource type properties, see rt_properties(5).

API_VERSION
BOOT
FAILOVER
FINI
INIT
INIT_NODES
INSTALLED_NODES
IS_LOGICAL_HOSTNAME
IS_SHARED_ADDRESS
MONITOR_CHECK
MONITOR_START
MONITOR_STOP
PKGLIST
POSTNET_STOP
PRENET_START
RT_BASEDIR
RT_DESCRIPTION
RT_SYSTEM
RT_VERSION
SINGLE_INSTANCE
START
STOP
UPDATE
VALIDATE

-R resource
Is the name of a resource that is being managed by the RGM cluster facility.

EXAMPLE 1 A Sample Script Using scha_resource_get

The following script is passed -R and -G arguments, which provide the required
resource name and resource group name. Next, the scha_resource_get command
accesses the Retry_count property of the resource and the enum-type LogLevel
extension property of the resource.

#!/bin/sh

while getopts R:G: opt
do

case $opt in
R) resource="$OPTARG";;
G) group="$OPTARG";;

esac
done

scha_resource_get(1HA)

EXAMPLES

SC31 1ha 45

EXAMPLE 1 A Sample Script Using scha_resource_get (Continued)

retry_count=‘scha_resource_get -O Retry_count -R $resource \\
-G $group‘
printf "retry count for resource %s is %d\n" $resource \\
$retry_count

LogLevel_info=‘scha_resource_get -O Extension -R $resource \\
-G $group LogLevel‘

Get the enum value that follows the type information
of the extension property. Note that the preceding
assignment has already changed the newlines separating
the type and the value to spaces for parsing by awk.

loglevel=‘echo $LogLevel_info | awk ’{print $2}’‘

The following exit values are returned:

0 The command completed successfully.

nonzero An error occurred.

Failure error codes are described in scha_calls(3HA).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscdev

Interface Stability Evolving

awk(1), scha_cmds(1HA), scha_calls(3HA), scha_resource_get(3HA),
attributes(5), r_properties(5), rt_properties(5)

scha_resource_get(1HA)

EXIT STATUS

ATTRIBUTES

SEE ALSO

46 Sun Cluster Reference Manual for Solaris OS • Last Revised 26 May 2004

scha_resourcegroup_get – access resource group information

scha_resourcegroup_get -O optag -G group…

The scha_resourcegroup_get command accesses information about a resource
group that is under the control of the Resource Group Manager (RGM) cluster facility.

This command is intended to be used in shell script implementations of the callback
methods for resource types. These resource types represent services that are controlled
by the cluster’s RGM. This command provides the same information as the
scha_resourcegroup_get(3HA) C function.

Information is output by the command to standard output in formatted strings as
described in scha_cmds(1HA). Output is a string or several strings on separate lines.
The output can be stored in shell variables and parsed using shell facilities or awk(1)
for further use by the script.

You need solaris.cluster.resource.read RBAC authorization to use this
command. See rbac(5).

You must also be able to assume a role to which the Sun Cluster Commands rights
profile has been assigned to use this command. Authorized users can issue privileged
Sun Cluster commands on the command line from the pfsh(1), pfcsh(1), or pfksh(1)
profile shell. A profile shell is a special kind of shell that enables you to access
privileged Sun Cluster commands that are assigned to the Sun Cluster Commands
rights profile. A profile shell is launched when you run su(1M) to assume a role. You
can also use pfexec(1) to issue privileged Sun Cluster commands.

The following options are supported:

-G group Is the name of the resource group.

-O optag Indicates the information that is to be accessed. Depending on the optag
that you specify, you might need to include an additional operand to
indicate the cluster node for which information is to be retrieved.

Note – optag options, such as DESIRED_PRIMARIES and FAILBACK, are not
case sensitive. You can use any combination of uppercase and lowercase
letters when you specify optag options.

The following optags retrieve the corresponding resource group properties.
The value of the named property of the resource group is output. The
RG_STATE property refers to the value on the node where the command is
executed.

AUTO_START_ON_NEW_CLUSTER
DESIRED_PRIMARIES
FAILBACK
GLOBAL_RESOURCES_USED
IMPLICIT_NETWORK_DEPENDENCIES
MAXIMUM_PRIMARIES
NODELIST
PATHPREFIX

scha_resourcegroup_get(1HA)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

SC31 1ha 47

PINGPONG_INTERVAL
RESOURCE_LIST
RG_AFFINITIES
RG_DEPENDENCIES
RG_DESCRIPTION
RG_IS_FROZEN
RG_MODE
RG_PROJECT_NAME
RG_STATE
RG_STATE_NODE
RG_SYSTEM

Note – RG_STATE_NODE requires an unflagged argument that names a node. Outputs
the value of the resource group’s RG_STATE property for the named node.

EXAMPLE 1 A Sample Script Using scha_resourcegroup_get

The following script is passed a -G argument, which provides the required resource
group name. Next, the scha_resourcegroup_get command is used to get the list
of resources in the resource group.

#!/bin/sh

while getopts G: opt
do

case $opt in
G) group="$OPTARG";;

esac
done

resource_list=‘scha_resourcegroup_get -O Resource_list -G $group‘

for resource in $resource_list
do

printf "Group: %s contains resource: %s\n" "$group" "$resource"

done

The following exit values are returned:

0 The command completed successfully.

nonzero An error occurred.

Failure error codes are described scha_calls(3HA).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscdev

Interface Stability Stable

scha_resourcegroup_get(1HA)

EXAMPLES

EXIT STATUS

ATTRIBUTES

48 Sun Cluster Reference Manual for Solaris OS • Last Revised 26 May 2004

awk(1), scha_cmds(1HA), scha_calls(3HA), scha_resourcegroup_get(3HA),
attributes(5)

scha_resourcegroup_get(1HA)

SEE ALSO

SC31 1ha 49

scha_resource_setstatus – command to set resource status

scha_resource_setstatus -R resource -G group -s status [-m msg]

The scha_resource_setstatus command sets the Status and Status_msg
properties of a resource that is managed by the Resource Group Manager (RGM)
cluster facility. This command is intended to be used by the resource’s monitor to
indicate the resource’s state as perceived by the monitor. It provides the same
functionality as the scha_resource_setstatus(3HA) C function.

A successful call to scha_resource_setstatus(1HA) causes the Status and
Status_msg properties of the resource to be updated to the supplied values. The
update of the resource status is logged in the cluster system log and is visible to
cluster administration tools.

You need solaris.cluster.resource.admin RBAC authorization to use this
command. See rbac(5).

You must also be able to assume a role to which the Sun Cluster Commands rights
profile has been assigned to use this command. Authorized users can issue privileged
Sun Cluster commands on the command line from the pfsh(1), pfcsh(1), or pfksh(1)
profile shell. A profile shell is a special kind of shell that enables you to access
privileged Sun Cluster commands that are assigned to the Sun Cluster Commands
rights profile. A profile shell is launched when you run su(1M) to assume a role. You
can also use pfexec(1) to issue privileged Sun Cluster commands.

The following options are supported:

-G group Is the resource group that contains the resource.

-m msg Is a string value. If no -m operand is given, the value of the
resource’s Status_msg is set to NULL.

-R resource Names the resource whose status is to be set.

-s status Is the value of status: OK, DEGRADED, FAULTED, UNKNOWN, or
OFFLINE.

The following exit values are returned:

0 The command completed successfully.

nonzero An error occurred.

Failure error codes are described in scha_calls(3HA).

EXAMPLE 1 Setting the Status of Resource R1

The following example sets the status of resource R1 in resource group RG2 to OK and
sets the Status_msg to Resource R1 is OK:

scha_resource_setstatus -R R1 -G RG2 -s OK -m "Resource R1 is OK"

scha_resource_setstatus(1HA)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

EXIT STATUS

EXAMPLES

50 Sun Cluster Reference Manual for Solaris OS • Last Revised 6 May 2003

EXAMPLE 2 Setting the Status of Resource R1

The following example sets the status of R1 in resource group RG2 to DEGRADED and
sets the Status_msg to NULL:

scha_resource_setstatus -R R1 -G RG2 -s DEGRADED

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscdev

Interface Stability Stable

scha_cmds(1HA), scha_calls(3HA), scha_resource_setstatus(3HA),
attributes(5)

scha_resource_setstatus(1HA)

ATTRIBUTES

SEE ALSO

SC31 1ha 51

scha_resourcetype_get – access resource type information

scha_resourcetype_get -O optag -T type

The scha_resourcetype_get command accesses information about a resource type
that is registered with the Resource Group Manager (RGM) cluster facility.

The command is intended to be used in shell script implementations of the callback
methods for resource types that represent services controlled by the cluster’s RGM. It
provides the same information as the scha_resourcetype_get(3HA) C function.

Information is output by the command to stdout in formatted strings as described in
scha_cmds(1HA). Output is a string or several strings output on separate lines. The
output might be stored in shell variables and parsed using shell facilities or awk(1) for
further use by the script.

You need solaris.cluster.resource.read RBAC authorization to use this
command. See rbac(5).

You must also be able to assume a role to which the Sun Cluster Commands rights
profile has been assigned to use this command. Authorized users can issue privileged
Sun Cluster commands on the command line from the pfsh(1), pfcsh(1), or pfksh(1)
profile shell. A profile shell is a special kind of shell that enables you to access
privileged Sun Cluster commands that are assigned to the Sun Cluster Commands
rights profile. A profile shell is launched when you run su(1M) to assume a role. You
can also use pfexec(1) to issue privileged Sun Cluster commands.

The following options are supported:

-O optag Indicates the information to be accessed.

Note – optag options, such as API_VERSION and BOOT, are not case
sensitive. You can use any combination of uppercase and lowercase letters
when you specify optag options.

The following optag values retrieve the corresponding resource type
properties. The value of the named property of the resource’s type is
output.

API_VERSION
BOOT
FAILOVER
FINI
INIT
INIT_NODES
INSTALLED_NODES
IS_LOGICAL_HOSTNAME
IS_SHARED_ADDRESS
MONITOR_CHECK
MONITOR_START
MONITOR_STOP
PKGLIST
POSTNET_STOP

scha_resourcetype_get(1HA)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

52 Sun Cluster Reference Manual for Solaris OS • Last Revised 7 Jun 2004

PRENET_START
RT_BASEDIR
RT_DESCRIPTION
RT_SYSTEM
RT_VERSION
SINGLE_INSTANCE
START
STOP
UPDATE

VALIDATE

-T type Is the name of a resource type that is registered for use by the RGM cluster
facility.

The following exit values are returned:

0 The command completed successfully.

nonzero An error occurred.

Failure error codes are described scha_calls(3HA).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscdev

Interface Stability Stable

awk(1), scha_cmds(1HA), scha_calls(3HA), scha_resourcetype_get(3HA),
attributes(5)

scha_resourcetype_get(1HA)

EXIT STATUS

ATTRIBUTES

SEE ALSO

SC31 1ha 53

scha_resourcetype_get(1HA)

54 Sun Cluster Reference Manual for Solaris OS • Last Revised 7 Jun 2004

SC31 1m

55

cconsole , ctelnet, crlogin – multi window, multi machine, remote console, login and
telnet commands

$CLUSTER_HOME/bin/cconsole [clustername… | hostname…]

$CLUSTER_HOME/bin/ctelnet [clustername… | hostname…]

$CLUSTER_HOME/bin/crlogin [-l user] [clustername… | hostname…]

These utilities initiate a multiple window connection to a set of specified hosts. There
are three variations: one that is specifically intended for remote console access while
the others provide remote logins using rlogin(1) or telnet(1).

Each utility starts a host window for each of the specified hosts, as well as a common
window. Input directed into the common window is sent to each of these host
windows.

This tool is useful for system administration tasks that require similar things to be
done on each of several hosts. For tasks that are identical on all hosts, typing in the
common window sends the characters to all of the hosts. However, the host windows
are normal terminal windows so they can also be used one at a time (by moving the
mouse into one of them and typing directly into it) to perform host specific tasks.

The common window also allows the user to select which hosts receive the characters
typed in the common window, so only the specified hosts will receive input.

These utilities use entries in two different databases, clusters(4) and
serialports(4).

Remote console access, using cconsole is provided through telnet(1). All normal
telnet escape characters are available to the user. See telnet(1) for a complete
listing of telnet(1) escape characters. Because there are a few telnet escapes that
are commonly used, they are provided here as well. The escape character is Control-],
specified below as ^].

^] quit Quit the session. Analogous to ~. in tip(1) and rlogin(1).

^] send brk Send a break signal to the remote system. This is what is needed to
halt the Sun CPU. The normal key board sequence is “L1-A.”

One of the options provided with rlogin(1) is also provided with the crlogin
utility:

-l user Specify a username, user for the remote login. The default is to use
the local username. The argument value is remembered so hosts
and clusters specified later can use the -l option when making the
connection.

The ctelnet utility is similar to cconsole except the connection is directly over the
Internet.

The following enviornment variables affect the execution of these utilities:

cconsole(1M)

NAME

SYNOPSIS

DESCRIPTION

cconsole

crologin

ctelnet

ENVIRONMENT
VARIABLES

56 Sun Cluster Reference Manual for Solaris OS • Last Revised 26 Apr 2002

CLUSTER_HOME Location of Sun Cluster System tools. Defaults to
/opt/SUNWcluster.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWccon

Interface Stability Stable

rlogin(1), telnet(1), tip(1), chosts(1M), cports(1M), clusters(4),
serialports(4), attributes(5)

The standard set of X Window System command line arguments are accepted.

cconsole(1M)

ATTRIBUTES

SEE ALSO

NOTES

SC31 1m 57

ccp – the Sun Cluster System Cluster Control Panel GUI

$CLUSTER_HOME/bin/ccp [clustername]

The ccp utility is a launch pad for the cconsole(1M), ctelnet(1M), and
crlogin(1M) cluster utilities.

ccp also accepts the standard set of X Window System command line arguments.

The following operands are supported:

clustername If provided, this option could be passed on as an
argument to a tool in ccp’s set of tools. The clustername
argument can be specified by adding $CLUSTER in a
tool’s command line property.

The following environment varaiables affect the exectution of the ccp utility:

CLUSTER_HOME Location of cluster tools. Defaults to
/opt/SUNWcluster.

CCP_CONFIG_DIR Location of the tools’ configuration files containing tool
properties. Defaults to
/opt/SUNWcluster/etc/ccp.

$CLUSTER_HOME/etc/ccp/*

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWccon

Interface Stability Unstable

cconsole(1M), ctelnet(1M), crlogin(1M), attributes(5)

ccp(1M)

NAME

SYNOPSIS

DESCRIPTION

OPERANDS

ENVIRONMENT
VARIABLES

FILES

ATTRIBUTES

SEE ALSO

58 Sun Cluster Reference Manual for Solaris OS • Last Revised 16 Apr 2002

chosts – expand cluster names into host names

$CLUSTER_HOME/bin/chosts name [name…]

The chosts utility expands the arguments into a list of host names.

The following operands are supported:

name The parameter name can be a hostname or a cluster name. If name
is a hostname, it is expanded to be a hostname. If name is a cluster
name, that is, an entry exists in the /etc/clusters database (or
a NIS or NIS+ map), it is expanded into the list of hosts that make
up that cluster, as specified in the database. The list is typically
used by programs that wish to operate on a list of hosts.

If an entry for clusters has been made in the
/etc/nisswitch.conf file, then the order of lookups is
controlled by that entry. If there is no such file or no such entry,
then the nameservice look up order is implicitly nis files.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWccon

Interface Stability Unstable

cconsole(1M), crlogin(1M), ctelnet(1M), cports(1M), clusters(4),
attributes(5)

chosts(1M)

NAME

SYNOPSIS

DESCRIPTION

OPERANDS

ATTRIBUTES

SEE ALSO

SC31 1m 59

cl_eventd – Cluster event daemon

/usr/cluster/lib/sc/cl_eventd [-v]

The cl_eventd daemon is started at boot time to monitor system events that are
generated by other cluster components. This daemon also forwards these events to
other cluster nodes. Only the events of class EC_Cluster are forwarded to other
cluster nodes.

The following option is supported:

-v Send additional troubleshooting and debugging information to
syslogd(1M).

/usr/cluster/lib/sc/cl_eventd Cluster event daemon

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscu

syseventd(1M), syslog(3C)

The cl_eventd daemon does not provide a publicly accessible interface.

cl_eventd(1M)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

FILES

ATTRIBUTES

SEE ALSO

NOTES

60 Sun Cluster Reference Manual for Solaris OS • Last Revised 24 September 2002

cports – expand host names into <host, server, port> triples

$CLUSTER_HOME/bin/cports hostname [hostname…]

The cports utility expands the hostname arguments into a list of <host, server,
port> triples. The returned information is used to access the serial port consoles of
the named hosts by way of the terminal server returned in the triples.

If an entry for serialports has been made in the /etc/nisswitch.conf file, then
the order of lookups is controlled by that entry. If there is no such file or no such entry,
then the nameservice look up order is implicitly nis files.

EXAMPLE 1 Using the cports Command

If the /etc/serialports file contains the entry:

pepsi soda-tc 5002

this command:

% cports pepsi

prints the string:

pepsi soda-tc 5002

This information can be used by the telnet(1) command to remotely access pepsi’s
console:

% telnet soda-tc 5002

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWccon

Interface Stability Unstable

cconsole(1M), crlogin(1M), ctelnet(1M), chosts(1M), telnet(1),
serialports(4), attributes(5)

cports(1M)

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

ATTRIBUTES

SEE ALSO

SC31 1m 61

cconsole , ctelnet, crlogin – multi window, multi machine, remote console, login and
telnet commands

$CLUSTER_HOME/bin/cconsole [clustername… | hostname…]

$CLUSTER_HOME/bin/ctelnet [clustername… | hostname…]

$CLUSTER_HOME/bin/crlogin [-l user] [clustername… | hostname…]

These utilities initiate a multiple window connection to a set of specified hosts. There
are three variations: one that is specifically intended for remote console access while
the others provide remote logins using rlogin(1) or telnet(1).

Each utility starts a host window for each of the specified hosts, as well as a common
window. Input directed into the common window is sent to each of these host
windows.

This tool is useful for system administration tasks that require similar things to be
done on each of several hosts. For tasks that are identical on all hosts, typing in the
common window sends the characters to all of the hosts. However, the host windows
are normal terminal windows so they can also be used one at a time (by moving the
mouse into one of them and typing directly into it) to perform host specific tasks.

The common window also allows the user to select which hosts receive the characters
typed in the common window, so only the specified hosts will receive input.

These utilities use entries in two different databases, clusters(4) and
serialports(4).

Remote console access, using cconsole is provided through telnet(1). All normal
telnet escape characters are available to the user. See telnet(1) for a complete
listing of telnet(1) escape characters. Because there are a few telnet escapes that
are commonly used, they are provided here as well. The escape character is Control-],
specified below as ^].

^] quit Quit the session. Analogous to ~. in tip(1) and rlogin(1).

^] send brk Send a break signal to the remote system. This is what is needed to
halt the Sun CPU. The normal key board sequence is “L1-A.”

One of the options provided with rlogin(1) is also provided with the crlogin
utility:

-l user Specify a username, user for the remote login. The default is to use
the local username. The argument value is remembered so hosts
and clusters specified later can use the -l option when making the
connection.

The ctelnet utility is similar to cconsole except the connection is directly over the
Internet.

The following enviornment variables affect the execution of these utilities:

crlogin(1M)

NAME

SYNOPSIS

DESCRIPTION

cconsole

crologin

ctelnet

ENVIRONMENT
VARIABLES

62 Sun Cluster Reference Manual for Solaris OS • Last Revised 26 Apr 2002

CLUSTER_HOME Location of Sun Cluster System tools. Defaults to
/opt/SUNWcluster.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWccon

Interface Stability Stable

rlogin(1), telnet(1), tip(1), chosts(1M), cports(1M), clusters(4),
serialports(4), attributes(5)

The standard set of X Window System command line arguments are accepted.

crlogin(1M)

ATTRIBUTES

SEE ALSO

NOTES

SC31 1m 63

cconsole , ctelnet, crlogin – multi window, multi machine, remote console, login and
telnet commands

$CLUSTER_HOME/bin/cconsole [clustername… | hostname…]

$CLUSTER_HOME/bin/ctelnet [clustername… | hostname…]

$CLUSTER_HOME/bin/crlogin [-l user] [clustername… | hostname…]

These utilities initiate a multiple window connection to a set of specified hosts. There
are three variations: one that is specifically intended for remote console access while
the others provide remote logins using rlogin(1) or telnet(1).

Each utility starts a host window for each of the specified hosts, as well as a common
window. Input directed into the common window is sent to each of these host
windows.

This tool is useful for system administration tasks that require similar things to be
done on each of several hosts. For tasks that are identical on all hosts, typing in the
common window sends the characters to all of the hosts. However, the host windows
are normal terminal windows so they can also be used one at a time (by moving the
mouse into one of them and typing directly into it) to perform host specific tasks.

The common window also allows the user to select which hosts receive the characters
typed in the common window, so only the specified hosts will receive input.

These utilities use entries in two different databases, clusters(4) and
serialports(4).

Remote console access, using cconsole is provided through telnet(1). All normal
telnet escape characters are available to the user. See telnet(1) for a complete
listing of telnet(1) escape characters. Because there are a few telnet escapes that
are commonly used, they are provided here as well. The escape character is Control-],
specified below as ^].

^] quit Quit the session. Analogous to ~. in tip(1) and rlogin(1).

^] send brk Send a break signal to the remote system. This is what is needed to
halt the Sun CPU. The normal key board sequence is “L1-A.”

One of the options provided with rlogin(1) is also provided with the crlogin
utility:

-l user Specify a username, user for the remote login. The default is to use
the local username. The argument value is remembered so hosts
and clusters specified later can use the -l option when making the
connection.

The ctelnet utility is similar to cconsole except the connection is directly over the
Internet.

The following enviornment variables affect the execution of these utilities:

ctelnet(1M)

NAME

SYNOPSIS

DESCRIPTION

cconsole

crologin

ctelnet

ENVIRONMENT
VARIABLES

64 Sun Cluster Reference Manual for Solaris OS • Last Revised 26 Apr 2002

CLUSTER_HOME Location of Sun Cluster System tools. Defaults to
/opt/SUNWcluster.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWccon

Interface Stability Stable

rlogin(1), telnet(1), tip(1), chosts(1M), cports(1M), clusters(4),
serialports(4), attributes(5)

The standard set of X Window System command line arguments are accepted.

ctelnet(1M)

ATTRIBUTES

SEE ALSO

NOTES

SC31 1m 65

halockrun – run a child program while holding a file lock

/usr/cluster/bin/halockrun [-vsn] [-e exitcode] lockfilename prog [args]

The halockrun utility provides a convenient means to claim a file lock on a file and
run a program while holding that lock. As this utility supports script locking, this
utiltiy is useful when programming in scripting languages such as the Bourne shell.
See sh(1).

halockrun opens the file lockfilename and claims an exclusive mode file lock on the
entire file. See fcntl(2) fcntl(2)). Then it runs the program prog with arguments
args as a child process and waits for the child process to exit. When the child exits,
halockrun releases the lock, and exits with the same exit code with which the child
exited.

The overall effect is that the child prog is run as a critical section, and that this critical
section is well-formed, in that no matter how the child terminates, the lock is released.

If the file lockfilename cannot be opened or created, then halockrun prints an error
message on stderr and exits with exit code 99.

The following options are supported:

e exitcode Normally, errors detected by halockrun exit with exit
code 99. The -e option provides a means to change
this special exit code to a different value.

-n The lock should be requested in non-blocking mode: if
the lock cannot be granted immediately, halockrun
exits immediately, with exit code 1, without running
prog. This behavior is not affected by the -e option.

Without the -n option, the lock is requested in blocking
mode, thus, the halockrun utility blocks waiting for
the lock to become available.

-s Claim the file lock in shared mode, rather than in
exclusive mode.

-v Verbose output, on stderr.

Errors detected by halockrun itself, such that the child process was never started,
cause halockrun to exit with exit code 99. (This exit code value can be changed to a
different value using the -e option. See OPTIONS.

Otherwise, halockrun exits with the same exit code with which the child exited.

See attributes(5) for descriptions of the following attributes:

halockrun(1M)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

EXIT STATUS

ATTRIBUTES

66 Sun Cluster Reference Manual for Solaris OS • Last Revised 22 Apr 2003

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

Interface Stability Evolving

fcntl(2), attributes(5)

halockrun(1M)

SEE ALSO

SC31 1m 67

hatimerun – run child program under a timeout

/usr/cluster/bin/hatimerun [-va] [-k signalname] [-e exitcode]
-t timeOutSecs prog args

The hatimerun utility provides a convenient facility for timing out the execution of
another child, program. It is useful when programming in scripting languages, such as
the Bourne shell. See sh(1).

The hatimerun utility runs the program prog with arguments args as a child
subprocess under a timeout, and as its own process group. The timeout is specified in
seconds, by the -t timeOutSecs option. If the timeout expires, then hatimerun kills
the child subprocess’s process group with a SIGKILL signal, and then exits with exit
code 99.

The following options are supported:

-a Changes the meaning of hatimerun radically: instead
of killing the child when the timeout expires, the
hatimerun utility simply exits, with exit code 99,
leaving the child to run asynchronously.

It is illegal to supply both the -a option and the -k
option.

-e Changes the exit code for the timeout case to some
other value than 99.

-k Specifies what signal is used to kill the child process
group. The possible signal names are the same as those
recognized by the kill(1) command. In particular, the
signal name should be one of the symbolic names
defined in the <signal.h> description. The signal
name is recognized in a case-independent fashion,
without the SIG prefix. It is also legal to supply a
numeric argument to the -k option, in which case that
signal number is used.

It is illegal to supply both the -a option and the -k
option.

-v Verbose output, on stderr.

If the timeout occurs, then hatimerun exits with exit code 99 (which can be
overridden to some other value using the -e option).

If the timeout does not occur but some other error is detected by the hatimerun
utility (as opposed to the error being detected by the child program), then
hatimerunhatimerun exits with exit code 98.

Otherwise, hatimerun exits with the child’s exit status.

hatimerun(1M)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

EXIT STATUS

68 Sun Cluster Reference Manual for Solaris OS • Last Revised 22 Apr 2003

The hatimerun utility catches the signal SIGTERM. It responds to the signal by
killing the child as if a timeout had occurred, and then exiting with exit code 98.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

Interface Stability Evolving

kill(1), sh(1), attributes(5)

hatimerun(1M)

ATTRIBUTES

SEE ALSO

SC31 1m 69

pmfadm – process monitor facility administration

/usr/cluster/bin/pmfadm -c nametag [-a action] [[-e ENV_VAR=env.var…]
| -E]

[-n retries] [-t period] [-C level#] command [args-to-command...]

/usr/cluster/bin/pmfadm -m nametag [-n retries] [-t period]

/usr/cluster/bin/pmfadm -s nametag [-w timeout] [signal]

/usr/cluster/bin/pmfadm -k nametag [-w timeout] [signal]

/usr/cluster/bin/pmfadm -l nametag [-h host]

/usr/cluster/bin/pmfadm -q nametag [-h host]

/usr/cluster/bin/pmfadm -L [-h host]

The pmfadm utility provides the administrative, command-line interface to the process
monitor facility.

The process monitor facility provides a means of monitoring processes, and their
descendents, and restarting them if they fail to remain alive. The total number of
failures allowed can be specified, and limited to a specific time period. After the
maximum number of failures has occurred within the specified time period, a message
is logged to the console, and the process is no longer restarted.

If an action program has been specified, it is called when the number of failures
allowed has been reached. If the action program exits with non-zero status, the process
nametag is removed from the process monitor facility. Otherwise, the process is
restarted with the original parameters passed into pmfadm.

Processes that are started under control of the process monitor are run as the uid of
the user that initiated the request. Only the original user, or root, can manipulate the
nametag associated with those processes. Status information, however, is available to
any caller, local or remote.

All spawned processes, and their descendent spawned processes, of the process that
initially started are monitored. Only when the last process/sub-process exits does the
process monitor attempt to restart the process.

The following options are supported:

-a action The action program to be called when the process fails
to stay alive. This program must be specified in a single
argument to the -a flag, but can be a quoted string that
contains multiple components. In either case, the string
is executed as specified, with two additional
arguments, the event that occurred (currently only
failed), and the nametag associated with the process.

pmfadm(1M)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

70 Sun Cluster Reference Manual for Solaris OS • Last Revised 4 Nov 2003

The current directory, and PATH environment variable,
are reinstantiated before the command is executed. No
other environment variables are, or should be assumed
to be, preserved.

If the action program exits with status 0, the process is
started over again with the original arguments that
were given to pmfadm. Any other exit status causes the
nametag to cease to exist within the scope of the
process monitor.

If no -a action is specified, the result is the same as if
there were an action script specified which always exits
non-zero.

-c nametag Start a process, with nametag as an identifier. All
arguments that follow the command-line flags are
executed as the process of interest. The current
directory, and PATH environment variable, are
reinstantiated by the process monitor facility before the
command is executed. No other environment variables
are, or should be assumed to be, preserved.

If nametag already exists, pmfadm exits with exit status
1, with no side effects.

I/O redirection is not supported in the command line
arguments. If this is necessary, a script should be
created that performs this redirection, and used as the
command that pmfadm executes.

-C level# When starting a process, monitor it and its children up
to and including level level#. The value of level# must
be an integer greater than or equal to zero. The original
process executed is at level 0, its children are executed
at level 1, their children are executed at level 2, and so
on. Any new fork operation produces a new level of
children.

This option provides more control over which
processes get monitored. It is useful for monitoring
servers that fork new processes.

When this option is not specified, all children are
monitored, and the original process is not restarted
until it and all its children have died.

pmfadm(1M)

SC31 1m 71

If a server forks new processes to handle client
requests, it might be desirable to monitor only the
server. The server needs to be restarted if it dies even if
some client processes are still running. The appropriate
monitoring level is -C 0.

If, after forking a child, the parent exits, then it is the
child that needs monitoring. The level to use to
monitor the child is -C 1. When both processes die, the
server is restarted.

-e ENV_VAR=env.value An environment variable in the form
ENV_VAR=env.value which is passed to the execution
environment of the new process. This option can be
repeated, so multiple environment variables can be
passed. The default is not to use this option, in which
case the rpc.pmfd(1M) environment plus the path of
the pmfadm environment are passed.

-E Pass the whole pmfadm environment to the new
process. The default is not to use this option, in which
case the rpc.pmfd(1M) environment plus the path of
the pmfadm environment are passed.

The -e and -E options are mutually exclusive, that is,
both cannot be used in the same command.

-h host The name of the host to contact. Defaults to localhost.

-k nametag Send the specified signal to the processes associated
with nametag, including any processes associated with
the action program if it is currently running. The
default signal, SIGKILL, is sent if none is specified. If
the process and its descendants exit, and there are
remaining retries available, the process monitor restarts
the process. The signal specified is the same set of
names recognized by the kill(1) command.

-l nametag Print out status information about nametag. The output
from this command is useful mainly for diagnostics
and might be subject to change.

-L Return a list of all tags running that belong to the user
that issued the command, or if the user is root, all tags
running on the server are shown.

-m nametag Modify the number of retries, or time period over
which to observe retries, for nametag. Once these
parameters have been changed, the history of earlier
failures is cleared.

pmfadm(1M)

72 Sun Cluster Reference Manual for Solaris OS • Last Revised 4 Nov 2003

-n retries Number of retries allowed within the specified time
period. The default value for this field is 0, which
means that the process is not restarted once it exits. The
maximum value allowed is 100. A value of -1 indicates
that the number of retries is infinite.

-q nametag Indicate whether nametag is registered and running
under the process monitor. Returns 0 if it is, 1 if it is
not. Other return values indicate an error.

-s nametag Stop restarting the command associated with nametag.
The signal, if specified, is sent to all processes,
including the action script and its processes if they are
currently executing. If a signal is not specified, none is
sent. Stopping the monitoring of processes does not
imply that they no longer exist. The processes remain
running until they, and all of their descendents, have
exited. The signal specified is the same set of names
recognized by the kill(1) command.

-t period Minutes over which to count failures. The default value
for this flag is -1, which equates to infinity. If this
parameter is specified, process failures that have
occurred outside of the specified period are not
counted.

-w timeout When used in conjunction with the -s nametag or -k
nametag flags, wait up to the specified number of
seconds for the processes associated with nametag to
exit. If the timeout expires, pmfadm exits with exit
status 2. The default value for this flag is 0, meaning
that the command returns immediately without
waiting for any process to exit.

If a value of -1 is given, pmfadm waits indefinitely for
the processes associated with the tag to exit. The
pmfadm process does not release the RPC server thread
that it uses until the RPC timeout period is reached.
Therefore, avoid setting the -w timeout value to -1
unnecessarily.

EXAMPLE 1 Starting a Sleep Process That Will Not be Restarted

The following example starts a sleep process named sleep.once that will not be
restarted once it exits:

example% pmfadm -c sleep.once /bin/sleep 5

pmfadm(1M)

EXAMPLES

SC31 1m 73

EXAMPLE 2 Starting a Sleep Process and Restarting It

The following example starts a sleep process and restarts it, at most, one time:

example% pmfadm -c sleep.twice –n 1 /bin/sleep 5

EXAMPLE 3 Starting a Sleep Process and Restarting It

The following examples start a sleep process and restarts it, at most, twice per minute.
It calls /bin/true when it fails to remain running beyond the acceptable number of
failures:

example% pmfadm -c sleep.forever –n 2 –t 1 –a /bin/true /bin/sleep 60

EXAMPLE 4 Listing the Current Status of the sleep.forever Nametag

The following command lists the current status of the sleep.forever nametag:

example% pmfadm -l sleep.forever

EXAMPLE 5 Sending a SIGHUP to All Processes

The following command sends a SIGHUP to all processes associated with
sleep.forever, waiting up to five seconds for all processes to exit.

example% pmfadm -w 5 -k sleep.forever HUP

EXAMPLE 6 Stopping the Monitoring of Processes and Sending a SIGHUP

The following command stops monitoring (restarting) processes associated with
sleep.forever, and sends a SIGHUP to any processes related to it. This command
returns as soon as the signals have been delivered, but possibly before all processes
have exited.

example% pmfadm -s sleep.forever HUP

EXAMPLE 7 Listing All Tags Running That Belong to the User

If a user issues the following commands:

example% pmfadm -c sleep.once /bin/sleep 30
example% pmfadm -c sleep.twice /bin/sleep 60

example% pmfadm -c sleep.forever /bin/sleep 90

the output of the following command:

example% pmfadm -L

is

sleep.once sleep.twice sleep.forever

pmfadm(1M)

74 Sun Cluster Reference Manual for Solaris OS • Last Revised 4 Nov 2003

The following exit values are returned:

<0 An error occurred.

0 Successful completion.

1 nametag doesn’t exist, or there was an attempt to create a nametag
that already exists.

2 The command timed out.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

Interface Stability Evolving

truss(1), rpc.pmfd(1M), attributes(5)

To avoid collisions with other controlling processes. truss(1) does not allow tracing a
process that it detects as being controlled by another process by way of the /proc
interface. Since rpc.pmfd(1M) uses the /proc interface to monitor processes and
their descendents, those processes that are submitted to rpc.pmfd by way of pmfadm
cannot be traced or debugged.

pmfadm(1M)

EXIT STATUS

ATTRIBUTES

SEE ALSO

NOTES

SC31 1m 75

rpc.pmfd, pmfd – RPC-based process monitor server

/usr/cluster/lib/sc/rpc.pmfd

/usr/cluster/lib/sc/pmfd

rpc.pmfd is the Sun RPC server for serving the process monitor facility that is used
by Sun Cluster software. This daemon initially starts when the system comes up.

rpc.pmfd must be started as superuser so commands that are queued to be
monitored can be run as the user that submitted them.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

Interface Stability Evolving

truss(1)attributes(5)

Diagnostic messages are normally logged to the console.

To avoid collisions with other controlling processes, truss(1) does not allow tracing a
process that it detects as being controlled by another process by way of the /proc
interface. As rpc.pmfd uses the /proc interface to monitor proceses and their
descendents, those processes cannot be traced or debugged.

pmfd(1M)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

DIAGNOSTICS

NOTES

76 Sun Cluster Reference Manual for Solaris OS • Last Revised 22 Apr 2003

pnmd – Public Network Management (PNM) service daemon

/usr/cluster/bin/pnmd [-d [-t [tracefile]]]

pnmd is a server daemon for the Public Network Management (PNM) module. It is
usually started up at system boot time. When it is started, it starts the PNM service.

in.mpathd(1M) does adapter testing and intra-node failover for all IP Network
Multipathing (IPMP) groups in the local host.

pnmd keeps track of the local host’s IPMP state and facilitates inter-node failover for
all IPMP groups.

The following options are supported:

-d Display debug messages on stderr.

-t tracefile When used with the -d option, it causes all debug messages to be
redirected to tracefile. If tracefile. is omitted,
/var/cluster/run/pnmd.log is used.

pnmd is a daemon and has no direct stdin, stdout, or stderr connection to the
outside. All diagnostic messages are logged through syslog(3C).

pnmd must be run in super-user mode.

Due to the volume of debug messages generated, do not use the -t option for an
extended period of time.

pnmd is started by the pnm startup script. It is started under the Process Monitoring
Facility daemon pmfd. As such, if pnmd is killed by a signal, it is automatically
restarted by pmfd.

The SIGTERM signal can be used to kill pnmd gracefully. Other signals should not be
used to kill the daemon.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscu

Interface Stability Evolving

ifconfig(1M), in.mpathd(1M), syslog(3C), attributes(5)

pnmd(1M)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

DIAGNOSTICS

NOTES

ATTRIBUTES

SEE ALSO

SC31 1m 77

rdt_setmtu – set the MTU size in RSMRDT driver

/usr/cluster/bin/rdt_setmtu [MTU size]

The rdt_setmtu command takes number of bytes as new MTU size and sets the
global MTU size in RSMRDT driver. The RSMRDT driver uses the new MTU size for
all the new instantiations of RSM connections. The existing RSM connections continue
to use the old MTU size value. The MTU size should be a multiple of 64 (0x40) bytes
otherwise rdt_setmtu does not set the MTU size in RSMRDT driver and returns an
error. The rdt_setmtu when running without any argument, displays the MTU size
of RSMRDT driver.

The following operands are supported:

MTU size MTU size in bytes.

The following exit values are returned:

0 Successful completion.

1 An error occurred while setting MTU size.

This utility writes an error message to stderr when it exits with non-zero status.

See attributes(5) for descriptions of the following attributes.

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscrdt

Interface Stability Evolving

attributes(5)

rdt_setmtu(1M)

NAME

SYNOPSIS

DESCRIPTION

OPERANDS

EXIT STATUS

ATTRIBUTES

SEE ALSO

78 Sun Cluster Reference Manual for Solaris OS • Last Revised 16 Apr 2002

rpc.pmfd, pmfd – RPC-based process monitor server

/usr/cluster/lib/sc/rpc.pmfd

/usr/cluster/lib/sc/pmfd

rpc.pmfd is the Sun RPC server for serving the process monitor facility that is used
by Sun Cluster software. This daemon initially starts when the system comes up.

rpc.pmfd must be started as superuser so commands that are queued to be
monitored can be run as the user that submitted them.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

Interface Stability Evolving

truss(1)attributes(5)

Diagnostic messages are normally logged to the console.

To avoid collisions with other controlling processes, truss(1) does not allow tracing a
process that it detects as being controlled by another process by way of the /proc
interface. As rpc.pmfd uses the /proc interface to monitor proceses and their
descendents, those processes cannot be traced or debugged.

rpc.pmfd(1M)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

DIAGNOSTICS

NOTES

SC31 1m 79

sccheck – check for and report on vulnerable Sun Cluster configurations

sccheck [-b] [-v verbosity] [-s severity] [-h nodename[,nodename]…]
[-o output-dir]

sccheck [-b] [-v verbosity] [-W] [-h nodename[,nodename]…] [-o output-dir]

The sccheck utility examines Sun Cluster nodes for known vulnerabilities and
configuration problems, and it delivers reports that describe all failed checks, if any.
The utility runs one of these two sets of checks, depending on the state of the node
that issues the command:

� Preinstallation checks – When issued from a node that is not running as an active
cluster member, the sccheck utility runs preinstallation checks on that node.
These checks ensure that the node meets the minimum requirements to be
successfully configured with Sun Cluster software.

� Cluster configuration checks – When issued from an active member of a running
cluster, the sccheck utility runs configuration checks on the specified or default
set of nodes. These checks ensure that the cluster meets the basic configuration
required for a cluster to be functional. The sccheck utility produces the same
results for this set of checks regardless of which cluster node issues the command.

The sccheck utility runs configuration checks and uses the explorer(1M) utility to
gather system data for check processing. The sccheck utility first runs single-node
checks on each nodename specified, then runs multiple-node checks on the specified or
default set of nodes.

Each configuration check produces a set of reports that are saved in the specified or
default output directory. For each specified nodename, the sccheck utility produces a
report of any single-node checks that failed on that node. Then the node from which
sccheck was run produces an additional report for the multiple-node checks. Each
report contains a summary that shows the total number of checks executed and the
number of failures, grouped by check severity level.

Each report is produced in both ordinary text and in XML. The DTD for the XML
format is available in the /usr/cluster/lib/sccheck/checkresults.dtd file.
The reports are produced in English only.

The sccheck utility is a client-server program in which the server is started when
needed by the inetd daemon. Environment variables in the user’s shell are not
available to this server. Also, some environment variables, in particular those that
specify the non-default locations of Java and Sun Explorer software, can be overridden
by entries in the /etc/default/sccheck file. The ports used by the sccheck
utility can also be overridden by entries in this file, as can the setting for required
minimum available disk space. The server logs error messages to syslog and the
console.

The following options are supported:

-b
Specifies a brief report. This report contains only the summary of the problem and
the severity level. Analysis and recommendations are omitted.

sccheck(1M)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

80 Sun Cluster Reference Manual for Solaris OS • Last Revised 6 May 2003

You need solaris.cluster.system.read RBAC authorization to use this
command option. See rbac(5).

-h nodename[,nodename]…
Specifies the nodes on which to run checks. If the -h option is not specified, the
sccheck utility reports on all active cluster members.

This option is only legal when issued from an active cluster member.

-o output-dir
Specifies the directory in which to save reports. output-dir must already exist or be
able to be created by the sccheck utility. Any previous reports in output-dir are
overwritten by the new reports.

If the -o option is not specified,
/var/cluster/sccheck/reports.yyyy–mm–dd:hh:mm:ss is used as
output-dir by default, where yyyy–mm–dd:hh:mm:ss is the
year-month-day:hour:minute:second when the directory was created.

-s severity
Specifies the minimum severity level to report on, where severity is a number in the
range of 1 to 4 that indicates one of the following severity levels:

1. Low
2. Medium
3. High
4. Critical Each check has an assigned severity level. Specifying a severity level
will exclude any failed checks of lesser severity levels from the report. When the -s
option is not specified, the default severity level is 0, which means that failed
checks of all severity levels are reported.

The -s option is mutually exclusive with the -W option.

-v verbosity
Specifies the sccheck utility’s level of verbosity, where verbosity is a number in the
range of 0 to 2 that indicates one of the following verbosity levels:

� 0: No progress messages. This level is the default.
� 1: Issues sccheck progress messages.
� 2: Issues Sun Explorer and more detailed sccheck progress messages.

You need solaris.cluster.system.read RBAC authorization to use this
command option. See rbac(5).

The -v option has no effect on report contents.

-W
Disables any warnings. The report generated is equivalent to -s3.

The -W option is mutually exclusive with the -s option. The -W option is retained
for compatibility with prior versions of the sccheck utility.

You need solaris.cluster.system.read RBAC authorization to use this
command option. See rbac(5).

sccheck(1M)

SC31 1m 81

The following exit values are returned:

0 The command completed successfully. No violations were reported.

1-4 The code indicates that the highest severity level of all violations was
reported.

100+ An error has occurred. Some reports might have been generated.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscu, SUNWscsck

Interface Stability Evolving

/etc/default/sccheck

/usr/cluster/lib/sccheck/checkresults.dtd

/var/cluster/sccheck/reports.yyyy–mm–dd:hh:mm:ss

explorer(1M), sccheckd(1M), scinstall(1M), attributes(5)

Sun Cluster Software Installation Guide, Sun Cluster System Administration Guide

sccheck(1M)

EXIT STATUS

ATTRIBUTES

FILES

SEE ALSO

82 Sun Cluster Reference Manual for Solaris OS • Last Revised 6 May 2003

sccheckd – service for the sccheck utility

sccheckd

The sccheckd service is the server side of the client-server utility sccheck(1M).

The inetd(1M) daemon starts the sccheckd service. The service reads the
/etc/default/sccheck file at startup and during execution. The service logs
diagnostics and error messages to syslog and the console. The sccheckd service has
no direct connection to stdin, stdout, or stderr.

The sccheckd service exits when the last client connection exits.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscu

Interface Stability Evolving

/etc/default/sccheck

sccheck(1M)

sccheckd(1M)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

FILES

SEE ALSO

SC31 1m 83

scconf – update the Sun Cluster software configuration

scconf -a [-Hv] [-h node_options] [-A adapter_options] [-B junction_options]
[-m cable_options] [-P privatehostname_options] [-q quorum_options]
[-D devicegroup_options] [-T authentication_options]

scconf -c [-Hv] [-C cluster_options] [-A adapter_options] [-B junction_options]
[-m cable_options] [-P privatehostname_options] [-q quorum_options]
[-D devicegroup_options] [-T authentication_options] [-w heartbeat_options]

scconf -r [-Hv] [-h node_options] [-A adapter_options] [-B junction_options]
[-m cable_options] [-q quorum_options] [-D devicegroup_options]
[-T authentication_options]

scconf -p [-Hv [v]]

scconf [-H]

The scconf command manages the Sun Cluster software configuration. You can use
scconf to add items to the configuration, to change properties of previously
configured items, and to remove items from the configuration. In each of these three
forms of the command, options are processed in the order in which they are typed on
the command line. All updates associated with each option must complete
successfully before the next option is considered.

The scconf command can only be run from an active cluster node. As long as the
node is active in the cluster, it makes no difference which node is used to run the
command. The results of running the command are always the same, regardless of the
node used.

The -p option of scconf enables you to print a listing of the current configuration.

All forms of the scconf command accept the -H option. Specifying -H displays help
information, and all other options are ignored and not executed. Help information is
also printed when scconf is invoked without options.

The following option is common to all forms of the scconf command:

-H
If this option is specified on the command line at any position, prints help
information. All other options are ignored and are not executed. Help information
is also printed if scconf is invoked with no options.

The following options modify the basic form and function of the scconf command.
None of these options can be combined on the same command line.

-a
Specifies the add form of the scconf command. The -a option can be used to add
or initialize most of the items that are used to define the software configuration of a
Sun Cluster. Additional options are used with -a to specify elements (adapter,
junction, or device group options, for example) and their associated properties to be

scconf(1M)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

Basic Options

84 Sun Cluster Reference Manual for Solaris OS • Last Revised 14 Sep 2004

added. Any number of these additional options can be combined on the same
command line, as long as they are for use with the -a option.

-c
Specifies the change form of the scconf command. The -c option is used to
change properties of items already configured as part of the Sun Cluster software
configuration. Additional options are used with -c to specify new or changed
properties. Any number of these additional options can be combined on the same
command line, as long as they are for use with the -c option.

-p
Specifies the print form of the scconf command. The -p option prints a listing of
the current Sun Cluster configuration elements and their associated properties that
you can configure with scconf. This option can be combined with one or more -v
options to print more verbose listings.

-r
Specifies the remove form of the scconf command. The -r option is used to
remove items from the Sun Cluster software configuration. Additional options are
used with -r to specify the items to delete from the configuration. Any number of
these additional options can be combined on the same command line, as long as
they are for use with the -r option.

The following additional options can be combined with one or more of the previously
described basic options. Refer to the SYNOPSIS section to see the options that can be
used with each form of scconf.

The additional options are as follows:

-A adapter_options
Adds, removes, or changes the properties of a cluster transport adapter. The node
on which the given adapter is hosted need not be active in the cluster for these
operations to succeed. The -A adapter_options for each of the three forms of the
command that accept -A are described here.

� Use this syntax to specify -A adapter_options for the add form of the command:

–A name=adaptername,node=node[,vlanid=vlanid][,state=state] \
[,other_options]

� Use this syntax to specify -A adapter_options for the change form of the
command:

–A name=adaptername,node=node[,state=state] \
[,other_options]

� Use this syntax to specify -A adapter_options for the remove form of the
command:

–A name=name,node=node

The -A option supports the following suboptions:

trtype=type
Specifies the transport type. This suboption must be included when -A is used
with the add form of the command.

scconf(1M)

Additional
Options

SC31 1m 85

An example of a transport type is dlpi. See sctransp_dlpi(7P).

name=adaptername
Specifies the name of an adapter on a particular node. This suboption must be
included with each occurrence of the -A option.

adaptername is constructed from a device name, immediately followed by a
physical-unit number (for example, hme0).

node=node
Specifies the name of an adapter on a particular node. A node suboption is
required for each occurrence of the -A option.

The node can be given either as a node name or node ID.

[vlanid=vlanid]
Specifies the VLAN ID of the tagged-VLAN adapter.

state=state
Changes the state of the adapter. You can use this suboption with the change
form of the command. The state can be set to either enabled or disabled.

When an adapter is added to the configuration, its state is always set to
disabled. By default, adding a cable to any of the ports on an adapter changes
the state of both the port and the adapter to enabled. See -m cable_options.

Disabling an adapter also has the effect of disabling all ports associated with that
adapter. However, enabling an adapter does not result in the enabling of its
ports. To enable an adapter port, you must enable the cable to which the port is
connected.

[other_options]
If other options are available for a particular adapter type, they can be used with
-A in the add and change forms of the command. Refer to the cluster transport
adapter man pages (for example, scconf_transp_adap_hme(1M),
scconf_transp_adap_eri(1M), and scconf_transp_adap_sci(1M)) for
information about special options.

You need solaris.cluster.transport.modify RBAC authorization to use
this command option with -a, -c, or -r. See rbac(5).

-B junction_options
Adds, removes, or changes the properties of a cluster transport junction.

Examples of such devices can include, but are not limited to, Ethernet hubs, other
switches of various types, and rings.

The -B junction_options for each of the three forms of the command that accept -B
are described here.

� Use this syntax to specify -B junction_options for the add form of the command:

–B type=type,name=name[,other_options]

scconf(1M)

86 Sun Cluster Reference Manual for Solaris OS • Last Revised 14 Sep 2004

� Use this syntax to specify -B junction_options for the change form of the
command:

–B name=name[,state=state][,other_options]
� Use this syntax to specify -B junction_options for the remove form of the

command:

–B name=name

The -B option supports the following suboptions:

type=type
Specifies a cluster transport junction type. This suboption must be included
when -B is used with the add form of the command.

Ethernet hubs and SCI switches are examples of cluster transport junctions of
type switch. The man pages scconf_transp_jct_dolphinswitch(1M) and
scconf_transp_jct_etherswitch(1M) contain more information.

name=name
Specifies the name of a cluster transport junction. A name suboption must be
included with each occurrence of the -B option.

name can be up to 256 characters in length. It is made up of either letters or
digits, with the first character being a letter. Each transport junction name must
be unique across the namespace of the cluster.

state=state
Changes the state of a cluster transport junction. This suboption can be used
with a -B change command. state can be set to either enabled or disabled.

When a junction is added to the configuration, its state is always set to
disabled. By default, adding a cable to any of the ports on a junction changes
the state of both the port and the junction to enabled. See -m cable_options.

Disabling a junction also has the effect of disabling all ports associated with that
junction. However, enabling a junction does not result in the enabling of its
ports. To enable a junction port, you must enable the cable to which the port is
connected.

[other_options]
When other options are available for a particular junction type, they can be used
with -B in the add and change forms of the command. Refer to the cluster
transport junction man pages (for example,
scconf_transp_jct_dolphinswitch(1M) and
scconf_transp_jct_etherswitch(1M)) for information about special
options.

You need solaris.cluster.transport.modify RBAC authorization to use
this command option with -a, -c, or -r. See rbac(5).

-C cluster_options
Changes the name of the cluster itself. This option can only be used with the
change form of the command.

scconf(1M)

SC31 1m 87

Specify cluster_options for the change form of the command as follows:

-C cluster=clustername cluster=clustername

This form of the command changes the name of the cluster to clustername.

-D devicegroup_options
Adds disk device groups to the configuration, changes or resets properties of
existing device groups, or removes groups from the Sun Cluster device groups
configuration. Other disk device group options (other_options) play a crucial role in
adding or changing device groups and their options. Pay special attention to the
man pages for the type-dependent disk device group options (for example,
scconf_dg_vxvm(1M), scconf_dg_sds(1M), scconf_dg_svm(1M), and
scconf_dg_rawdisk(1M)) when configuring any device group. Not all device
group types support all three forms of the -D option. For example, sds device
groups can normally only be used with the change form of the command to
change certain attributes, such as the ordering of the node preference list.

The add form of the command can be used to either create device groups or to add
nodes to existing device groups. For some device group types, the add form can
also be used to add devices to a group. The change form of the command registers
updates to change certain attributes associated with a group. The remove form of
the command is used to either remove an entire device group or one or more of a
group’s components.

The -D devicegroup_options for each of the three forms of the scconf command that
accept -D are as follows:

Add:

-D type=type,name=name,nodelist=node[:node]...
[,preferenced={true | false}]
[,numsecondaries=integer]
[,failback={enabled | disabled}][,other_options]

Change:

-D name=name[,nodelist=node[:node]...]
[,preferenced={true | false}]
[,numsecondaries=integer]
[,failback={enabled | disabled}][,other_options]

Remove:

-D name=name,nodelist=node[:node]...

The -D option supports the following suboptions:

type=type
Must be used with the add form of the command to indicate the type of disk
device group to create (for example, vxvm or rawdisk).

name=name
Is the name of the disk device group and must be supplied with all three forms
of the command.

scconf(1M)

88 Sun Cluster Reference Manual for Solaris OS • Last Revised 14 Sep 2004

nodelist=node[:node]…
Is a list of potential primary nodes that is required for some disk device group
types when adding a group to the cluster. Refer to the man pages for the
type-dependent disk device group for more information.

With the add form of the command, the nodelist is, by default, an ordered list
indicating the preferred order in which nodes should attempt to take over as the
primary node for a disk device group. However, if the preferenced suboption
is set to false (see the next subsection), the first node to access a device in the
group automatically becomes the primary node for that group. The
preferenced suboption cannot be used when adding nodes to an existing
device group. However, the preferenced suboption can be used when you
create the group for the first time, or with the change form of the command.

To change the primary node order preference, you must specify the complete list
of cluster nodes in the nodelist in the order that you prefer. You must also set
the preferenced suboption to true.

When used with the remove form of the command, the nodelist suboption is
used to remove the indicated nodes from the device group. Only by not
providing a nodelist can the entire device group be removed. Simply
removing all of the nodes from a device group does not necessarily remove that
group.

[preferenced={true | false}]
Indicates the status of the preferred order of potential primary nodes for a disk
device group. As long as the preferenced suboption is not set to false, node
lists for newly created device groups indicate a preferred order in which nodes
attempt to take over as the primary node for a disk device group.

If the preferenced suboption is not specified with an add that is used to create
a device group, it is, by default, false. However, if the preferenced suboption is
not specified with a change, it is, by default, set to true when nodelist is
given.

The preferenced suboption cannot be used with an add that is used to add
nodes to an established device group. In this case, the established node
preference list setting is used.

[numsecondaries=integer]
Enables you to dynamically change the desired number of secondary nodes for a
device group. A device group is an HA service that requires one node to act as a
primary node and one or more nodes to act as secondary nodes. The secondary
nodes of a device group are able to take over and act as the primary node if the
current primary node fails.

This integer value should be greater than 0 but less than the total number of
nodes in the specified group. The default is 1.

scconf(1M)

SC31 1m 89

A system administrator can use the numsecondaries suboption to change the
number of secondary nodes for a device group while maintaining a given level
of availability. If a node in a device group is removed from the secondary nodes
list, it is not able to take over and act as a primary node until it is converted back
to a secondary node. Before making a change to the number of secondary nodes,
you need to assess the impact on the secondary global file system.

The numsecondaries suboption only applies to nodes in a device group that
are currently in cluster mode and can be used together with the node’s
preferenced suboption. If a device’s preferenced suboption is enabled, the
nodes that are least preferred are removed from the secondary nodes list first. If
no node in a device group is flagged as preferred, the cluster randomly picks the
node to remove.

When a device group’s actual number of secondary nodes drops to less that the
desired level due to node failures, nodes that were removed from the secondary
nodes list are added back to the secondary list of nodes if they are currently in a
cluster, belong to the device group, and are not currently a primary or a
secondary node. The conversion starts with the node in the device group with
the highest preference until the number of desired secondary nodes is matched.

If a node in the device group has a higher preference than an existing secondary
node and joins the cluster, the node with the least preference is removed from the
secondary nodes list and is replaced by the newly added node. This replacement
only occurs when there are more actual secondary nodes than the desired level.

To set the desired number of secondary nodes to the system default (without
having to know the default value), issue one of these commands:

scconf -aD type=vxvm,name=foo, \
nodelist=node1:node2,numsecondaries=

or

scconf -cD name=foo,numsecondaries=

The numsecondaries suboption can only be used with the -a option when a
device group is created. The numsecondaries suboption cannot be used with
the -a option to add a host to an existing device group.

[failback={enabled | disabled}]
Enables or disables the failback behavior of a disk device group with either
the add or the change form of the command.

Specifies the behavior of the system should a disk device group primary node
leave the cluster membership and later return.

When the node leaves the cluster membership, the disk device group fails over
to the secondary node. When the failed node rejoins the cluster membership, the
disk device group can either continue to be mastered by the secondary node, or
fail back to the original primary node.

scconf(1M)

90 Sun Cluster Reference Manual for Solaris OS • Last Revised 14 Sep 2004

If failback is enabled, the disk device group becomes mastered by the
original primary node. If failback is disabled, the disk device group
continues to be mastered by the secondary node.

By default, failback is disabled.

[other_options]
You can use other disk device group type-dependent options with either the add
or change form of the command. Refer to the appropriate man pages for more
information (for example, scconf_dg_vxvm(1M), scconf_dg_sds(1M),
scconf_dg_svm(1M), and scconf_dg_rawdisk(1M)).

You need solaris.cluster.device.modify RBAC authorization to use this
command option with -a, -c, or -r. See rbac(5).

-h node_options
Adds or removes a node from the cluster configuration database. When used with
the add form of scconf, both the new name and an internally generated node ID
are added to the cluster configuration database. In addition, the new node is given
a disk reservation key and a quorum vote count of zero. The name that is assigned
to access the node over the cluster interconnect is initialized to
clusternodenodeid-priv. See the -p option to learn more about printing
configuration elements and their associated properties.

scconf cannot be used by itself to add a new node to the cluster. You can only use
scconf to update the configuration database itself. scconf does not copy the
configuration database onto the new node or create the necessary node identifier on
the new node. To add a node to a cluster, use scinstall(1M).

When used with the remove form of scconf, all references to the node, including
the last transport cable, all resource group references, and all device group
references must be removed before scconf can be used to completely remove the
node from the cluster configuration.

The node to be removed must not be configured for any quorum devices. In
addition, you cannot remove a node from a three-node cluster unless there is at
least one shared quorum device configured.

The system administration procedures in the Sun Cluster documentation describe
how to remove a cluster node in more detail.

You must specify the node=node suboption with any occurrence of the -h option.
For the add form of the command, the given node must be a node name.

Use this syntax to specify the -h node_options for the add form of the command:

–h node=nodename

For the remove form of the command, the node can be given either as a node name
or node ID. Use this syntax to specify the -h node_options for the remove form of
the command:

scconf(1M)

SC31 1m 91

–h node=node

You need solaris.cluster.node.modify RBAC authorization to use this
command option with -a, -c, or -r. See rbac(5).

-m cable_options
Helps to establish the cluster interconnect topology. This option helps by
configuring the cables that are connecting the various ports that are found on the
cluster transport adapters and junctions. Each new cable typically maps a
connection either between two cluster transport adapters or between an adapter
and a port on a transport junction. The -m cable_options for each of the forms of the
command that accept -m are as follows:

� Use this syntax to specify the -m cable_options for the add form of the command:

–m endpoint=[node:]name[@port],
endpoint=[node:]name[@port][,noenable]

� Use this syntax to specify the -m cable_options for the change form of the
command:

–m endpoint=[node:]name[@port],state=state
� Use this syntax to specify the -m cable_options for the remove form of the

command:

–m endpoint=[node:]name[@port]

The -m option supports the following suboptions:

endpoint=[node:]name[@port]
Must be included with each occurrence of the -m option. For the add form of the
command, two endpoint options must be specified. The name component of the
option argument is used to specify the name of either a cluster transport adapter
or cluster transport junction at one of the endpoints of a cable. If a node
component is given, the name is the name of a cluster transport adapter.
Otherwise, the name is the name of a cluster transport junction.

If a port component is not given, an attempt is made to assume a default port
name. The default port for an adapter is always 0. The default port name for a
junction endpoint is equal to the node ID of the node attached to the other end of
the cable. Refer to the cluster transport adapter and cluster transport junction
man pages for more information about port assignments and other requirements
(for example,scconf_transp_adap_hme(1M),
scconf_transp_adap_eri(1M), scconf_transp_adap_sci(1M),
scconf_transp_jct_etherswitch(1M), and
scconf_transp_jct_dolphinswitch(1M)). Before a cable can be added, the
adapters and junctions at each of the two endpoints of the cable must already be
configured (see -A and -B).

state=state
Changes the state of a cable and the two endpoints to which it is connected.
When a cable is enabled, the cable, its two ports, and the adapters or junctions
associated with those two ports are all enable. However, when a cable is
disabled, only the cable and its two ports are disabled. The state of the

scconf(1M)

92 Sun Cluster Reference Manual for Solaris OS • Last Revised 14 Sep 2004

adapters or junctions associated with the two ports remains unchanged. By
default, the state of a cable, and its endpoints, is always set to enabled at the
time that the cable is added to the configuration. But, to add a cable in the
disabled state, use noenable as part of an add.

noenable
Can be used when adding a cable to the configuration. By default, when you add
a cable, the state of the cable, the two ports to which it is connected, and the
adapters or junctions on which the ports are found, are set to enable. But, if
noenable is specified when you add a cable, the cable and its two endpoints are
added in the disabled state. The state of the adapters or junctions on which the
ports are found remains unchanged.

You need solaris.cluster.transport.modify RBAC authorization to use
this command option with -a, -c, or -r. See rbac(5).

-P privatehostname_options
When used with either the add or change form of the command, specifies a host
name alias to use for IP access of a given node over the private cluster interconnect,
or transport. If not otherwise assigned, or if reset, the default private host name is
clusternodenodeid-priv.

Private host names should never be stored in the hosts(4) database. A special
nsswitch facility (see nsswitch.conf(4)) performs all host name lookups for
private host names.

Both the add and change forms of scconf behave identically in relation to the -P
option. The -P privatehostname_options for each of the two forms of the command
that accept -P are as follows:

Add:

–P node=node[,privatehostname=hostalias]

Change:

–P node=node[,privatehostname=hostalias]

The -P option supports the following suboptions:

node=node
Provides the name or ID of the node to be assigned the private host name, or
host alias, supplied with the privatehostname suboption.

[privatehostname=hostalias]
Supplies the host alias to be used for accessing a node over the private cluster
interconnect, or transport. If no privatehostname suboption is specified, the
private host name for the given node is reset to the default.

You need solaris.cluster.transport.modify RBAC authorization to use
this command option with -a, -c, or -r. See rbac(5).

scconf(1M)

SC31 1m 93

-q quorum_options
Manages shared cluster quorum devices and various cluster quorum properties.
Pay special attention to the man pages for type-dependent quorum device options
(for example, scconf_quorum_dev_scsi(1M) and
scconf_quorum_dev_netapp_nas(1M).

The add and remove forms of the command add and remove shared quorum
devices to or from the configuration. The change form of the command changes
various cluster quorum configuration properties or states. The -q quorum_options
available for each of the three forms of the command can be used to change the
cluster quorum configuration as follows:

Add:

–q name=devicename,type={scsi | netapp_nas}

For SCSI quorum devices only:
-q autoconfig[,noop]

Change:

-q node=node,{maintstate | reset}
–q name=devicename,{maintstate | reset}
–q reset
-q installmode

For SCSI quorum devices only:
-q autoconfig[,noop]

Remove:

–q name=devicename

When scconf is interrupted or fails while performing quorum-related operations,
quorum configuration information can become inconsistent in the cluster
configuration database. If this occurs, either run the same scconf command again
or run it with the reset suboption to reset the quorum information.

The -q option supports the following suboptions:

autoconfig
When used with the add form of the command, automatically chooses and
assigns one quorum device in the two-node cluster. The quorum device is chosen
from the available devices. If a quorum device is already configured, the
command aborts.

When used with the change form of the command, automatically chooses and
assigns one device that replaces all existing quorum devices in the two-node
cluster. The quorum device is chosen from the available devices.

All available devices in the cluster must be qualified to be a quorum device. The
autoconfig suboption does not assess whether an available device is qualified
to be a quorum device.

scconf(1M)

94 Sun Cluster Reference Manual for Solaris OS • Last Revised 14 Sep 2004

If the cluster contains more than two nodes, the autoconfig suboption makes
no changes to the quorum configuration. Do not use the autoconfig suboption
if you intend to configure a NAS device as quorum.

installmode
Forces the cluster back into installation mode. While in installmode, nodes do
not attempt to reset their quorum configurations at boot time. Also, while in this
mode, many administrative functions are blocked. When a cluster is first
installed, it is set up with installmode set. Once all of the nodes have joined
the cluster for the first time, and shared quorum devices have been added to the
configuration, issue scconf -c -q reset to reset the vote counts to their
default values and to clear the installmode setting.

name=devicename
Specifies the name of an attached shared storage device to use when adding or
removing a shared quorum device to or from the cluster. This suboption can also
be used with the change form of the command to change the state of a quorum
device.

Each quorum device must be connected, or ported, to at least two nodes in the
cluster. It is not possible to use a non-shared disk as a quorum device.

The change form of scconf can be used with -q name to either put the device
into a maintenance state or to reset the device’s quorum configuration to the
default. While in maintenance state, the device takes on a vote count of zero and,
so, does not participate in forming quorum. When reset to the default, the vote
count for the device is changed to N-1, where N is the number of nodes with
nonzero vote counts that have ports to the device.

node=node
When used with the add form of the command, selects the nodes that should be
configured with ports to the shared quorum device being added. This suboption
can also be used with the change form of the command to change the quorum
state of a node.

When the node suboption is used with the change form of the quorum update
command, it is used to either place a node into maintenance state or to reset the
node’s quorum configuration to the default.

You must shut down a node before you can put it into maintenance state.
scconf returns an error if you attempt to put a cluster member into
maintenance state.

While in maintenance state, the node takes on a vote count of zero and, so, does
not participate in quorum formation. In addition, any shared quorum devices
configured with ports to the node have their vote counts adjusted down by one
to reflect the new state of the node. When the node is reset to the default, its vote
count is reset to 1 and the shared quorum device vote counts are re-adjusted
back up. Unless the cluster is in installmode, the quorum configuration for
each node is automatically reset at boot time.

scconf(1M)

SC31 1m 95

A node can be specified as either a node name or a node ID.

{maintstate}
When used as a flag with the change form of the command, for either the
globaldev or node suboptions, puts a shared quorum device or node into a
quorum maintenance state. When in maintenance state, a shared device or node
no longer participates in quorum formation. This feature can be useful when a
node or device must be shut down for an extended period of maintenance. Once
a node boots back into the cluster, under usual circumstances, it removes itself
from maintenance mode.

It is not legal to specify both maintstate and reset with the same -q option.

{reset}
When used as a flag with the change form of the command, resets the
configured quorum vote count of a shared quorum device or node. This option
can be combined with either the globaldev or node suboptions, or it can be its
own suboption.

If used by itself, the entire quorum configuration is reset to the default vote count
settings. In addition, if installmode is set, it is cleared by a global quorum
configuration reset. installmode cannot be reset on a two-node cluster unless
at least one shared quorum device has been successfully configured.

[,noop]
Is valid with the autoconfig suboption. The command prints to standard
output the list of quorum devices that the autoconfig suboption would add or
change. The autoconfig,noop suboption makes no changes to the quorum
configuration.

type=type
When used with the add form of the command, specifies the type of quorum
device to create.

scsi
Specifies a shared disk quorum device. See scconf_quorum_dev_scsi(1M)
for SCSI-type-specific options.

netapp_nas
Specifies a Network Appliance NAS quorum device. See
scconf_quorum_dev_netapp_nas(1M) for NAS-type-specific options.

otheroptions
You can use other quorum-device-type-specific options. Refer to
scconf_quorum_dev_scsi(1M) and
scconf_quorum_dev_netapp_nas(1M) for details.

You need solaris.cluster.quorum.modify RBAC authorization to use this
command option with -a, -c, or -r. See rbac(5).

-T authentication_options
Establishes authentication policies for nodes that are attempting to add themselves
to the cluster configuration. Specifically, when a machine requests that it be added

scconf(1M)

96 Sun Cluster Reference Manual for Solaris OS • Last Revised 14 Sep 2004

to the cluster as a cluster node (see scinstall(1M)), a check is made to determine
whether or not the node has permission to join. If the node has permission, the
joining node is authenticated. By default, any machine is allowed to add itself to the
cluster.

The -T authentication_options for each of the three forms of the command that accept
-T are as follows:

Add:

–T node=nodename[,...][,authtype=authtype]

Change:

–T authtype=authtype

Remove:

–T {node=nodename[,...] | all}

The -T option supports the following suboptions:

node=nodename
Adds or removes host names from the list of nodes that are able to install and
configure themselves as nodes in the cluster. At least one node suboption is
required for the add form of the command and is optional for remove. If the
authentication list is empty, any host can request that it be added to the cluster
configuration. However, if the list has at least one name in it, all such requests
are authenticated using the authentication list.

Illegal nodenames are accepted, including the node name of dot (.). The dot
character is special in that if a nodename of . is added to the authentication list,
all other names are removed. This feature prevents a host from attempting to
install and configure itself in the cluster.

all
You can clear the list of all node names by specifying scconf -r -T all. A
cleared authentication list means that any node can attempt to install and
configure itself in the cluster.

authtype=authtype
Is used with either the add or change form of the command.

The only currently supported authentication types (authtype) are des and sys
(or unix). The default authentication type is sys, which provides the least
amount of secure authentication.

When des, or Diffie-Hellman, authentication is used, entries should be added to
the publickey(4) database for each cluster node to be added before actually
running scinstall(1M) to add the node.

You need solaris.cluster.node.modify RBAC authorization to use this
command option with -a, -c, or -r. See rbac(5).

scconf(1M)

SC31 1m 97

-v
When used with the -p option, requests a more verbose, or detailed, listing of the
cluster configuration. If used with other options, additional information might be
printed when an error is encountered.

You need solaris.cluster.device.read,
solaris.cluster.transport.read, solaris.cluster.resource.read,
solaris.cluster.node.read, solaris.cluster.quorum.read, and
solaris.cluster.system.read RBAC authorizations to use this command
option with -p. See rbac(5).

-w heartbeat_options
Changes the global heartbeat parameters of a cluster, which effectively changes the
heartbeat parameters across all the adapters of the cluster.

Sun Cluster relies on heartbeats over the private interconnect to detect
communication failures among cluster nodes. Reducing the heartbeat timeout
enables Sun Cluster to detect failures more quickly, as the time that is required to
detect failures decreases when you decrease the values of heartbeat timeout. Thus,
Sun Cluster recovers more quickly from failures, consequently increasing the
availability of your cluster.

The -w option supports the following suboptions:

heartbeat_quantum=quantum_milliseconds
Defines how often to send heartbeats. Sun Cluster uses a 1 second (1,000
milliseconds) heartbeat quantum by default. Specify a value between 100
milliseconds and 10,000 milliseconds.

heartbeat_timeout=timeout_milliseconds
The time interval after which, if no heartbeats are received from the peer nodes,
the corresponding path is declared as down. Sun Cluster uses a 10 second
(10,000 millisecond) heartbeat timeout by default. Specify a value between 2,500
milliseconds and 60,000 milliseconds.

Note – Even under ideal conditions, when you reduce the values of heartbeat
parameters with -w, there is always a risk that spurious path timeouts and node
panics might occur. Always test and thoroughly qualify the lower values of
heartbeat parameters under relevant workload conditions before actually
implementing them in your cluster.

With the -w option, you can change only one heartbeat suboption at a time. When
decreasing the values of heartbeat parameters, change heartbeat_quantum first,
followed by heartbeat_timeout. When increasing the values of heartbeat
parameters, change heartbeat_timeout first, followed by heartbeat_quantum.

Note – The value you specify for heartbeat_timeout must always be greater than
or equal to five times the value you specify for heartbeat_quantum
(heartbeat_timeout >= (5*heartbeat_quantum)).

You need solaris.cluster.system.modify RBAC authorization to use -w. See
rbac(5).

scconf(1M)

USAGE

98 Sun Cluster Reference Manual for Solaris OS • Last Revised 14 Sep 2004

If you change heartbeat parameters with -w, and you later choose to back out and go
back to a previous version of Sun Cluster that does not support -w, you must first
reset all heartbeat parameters to the original, default values that are supported in the
previous version.

EXAMPLE 1 Decreasing the Heartbeat

The following example shows how to decrease the heartbeat quantum to 100
milliseconds from the Sun Cluster default of 1,000 milliseconds. This example also
shows how to decrease the heartbeat timeout to 2500 milliseconds from the Sun
Cluster default of 10,000 milliseconds.

phys-schost-1# scconf -c -w heartbeat_quantum=100
phys-schost-1# scconf -c -w heartbeat_timeout=2500

Because heartbeat_timeout must always be greater than or equal to five times
heartbeat_quantum, you need to set heartbeat_quantum first. Otherwise, the
requirement is not met. In other words, if heartbeat_quantum is currently set to the
default 1,000 milliseconds, and if you were to set heartbeat_timeout to 2500
milliseconds, heartbeat_timeout would be less than five times
heartbeat_quantum. The scconf command would consequently fail.

Once heartbeat_quantum is set to the correct value however, the requirement is
maintained, and you can then set heartbeat_timeout to the decreased value.

EXAMPLE 2 Increasing the Heartbeat

The following example shows how to increase the heartbeat timeout and heartbeat
quantum to Sun Cluster default values from the values to which you set these
parameters in the previous example.

phys-schost-1# scconf -c -w heartbeat_timeout=10000
phys-schost-1# scconf -c -w heartbeat_quantum=1000

You set heartbeat_timeout first to maintain the requirement that
heartbeat_timeout always be greater than or equal to five times
heartbeat_quantum. Once heartbeat_timeout is set to the value you want, you
can then set heartbeat_quantum to the new, increased value.

EXAMPLE 3 Typical Postinstallation Setup Operations

The following commands provide an example of a typical set of postinstallation setup
operations that might be performed on a new two-node cluster. These commands add
a shared quorum device to the cluster, clear installmode, configure a second set of
cluster transport connections, and secure the cluster against other machines that might
attempt to add themselves to the cluster:

phys-red# scconf -a -q globaldev=d0
phys-red# scconf -c -q reset
phys-red# scconf -a \

-A trtype=dlpi,name=hme1,node=phys-red \

scconf(1M)

EXAMPLES

SC31 1m 99

EXAMPLE 3 Typical Postinstallation Setup Operations (Continued)

-A trtype=dlpi,name=hme1,node=phys-green \
-m endpoint=phys-red:hme1,endpoint=phys-green:hme1

phys-red# scconf -a -T node=.

The following exit values are returned:

0 The command completed successfully.

nonzero An error has occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscu

Interface Stability Evolving

scconf_dg_rawdisk(1M), scconf_dg_sds(1M), scconf_dg_svm(1M),
scconf_dg_vxvm(1M), scconf_quorum_dev_scsi(1M),
scconf_quorum_dev_netapp_nas(1M), scconf_transp_adap_bge(1M),
scconf_transp_adap_ce(1M), scconf_transp_adap_e1000g(1M),
scconf_transp_adap_eri(1M), scconf_transp_adap_ge(1M),
scconf_transp_adap_hme(1M), scconf_transp_adap_ibd(1M),
scconf_transp_adap_qfe(1M), scconf_transp_adap_sci(1M),
scconf_transp_adap_wrsm(1M), scconf_transp_jct_dolphinswitch(1M),
scconf_transp_jct_etherswitch(1M), scconf_transp_jct_ibswitch(1M),
hosts(4), nsswitch.conf(4), publickey(4), attributes(5), sctransp_dlpi(7P)

Use the -w option only when all nodes in a cluster are up. Do not use -w when any
node in a cluster is down. Nodes might hang or panic as a result.

Clusters that contain one or more single-CPU nodes, or that contain more than eight
nodes, are more likely to experience timeouts and node panics when the clusters run
with low heartbeat parameter values.

Note – Even under ideal conditions, when you reduce the values of heartbeat
parameters with -w, there is always a risk that spurious path timeouts and node
panics might occur. Always test and thoroughly qualify the lower values of heartbeat
parameters under relevant workload conditions before actually implementing them in
your cluster.

You should either back up the root file system on every node after changing the
configuration with scconf, or keep a log of all changes. If you need to recover
configuration changes between normal system backups, use the log to return to the
most recent configuration.

scconf(1M)

EXIT STATUS

ATTRIBUTES

SEE ALSO

WARNINGS

NOTES

100 Sun Cluster Reference Manual for Solaris OS • Last Revised 14 Sep 2004

Option lists specified with the scconf command are always executed in the order
that you specify them on the command line. But, whenever possible, certain transport
options (-A, -B, and -m) are processed by scconf as a single transaction against the
cluster configuration database. Try to group all related options of this type together on
a single command line to reduce overhead to the cluster.

The -w option works only in 3.1 8/04 and later versions of Sun Cluster that run on
Solaris 8 Update 7 and later versions of Solaris.

scconf(1M)

SC31 1m 101

scconf_dg_rawdisk – add, change or update rawdisk device group configuration

scconf -a -D type=rawdisk, [generic_options]
[,globaldev=gdev1,globaldev=gdev1,…] [,localonly=true]

scconf -a -D type=rawdisk, [generic_options]
[,globaldev=gdev1,globaldev=gdev1,…]
[,localonly=true | false]

scconf -c -D name=diskgroup,autogen=true

scconf -r -D device_service_name [,nodelist=node[:node]…]
[,globaldev=gdev1,…]

The scconf_dg_rawdisk utility adds, changes or updates rawdisk device group
configuration

A rawdisk is a disk that is not being used as part of a volume manager volume or
metadevice. Rawdisk device groups allow you to define a set of disks within a disk
device group. At system boot, by default, a rawdisk device group is created for every
Disk ID pseudo driver (DID) device in the configuration. By convention, the rawdisk
device group names are assigned at initialization and are derived from the DID
names. For every node added to a rawdisk disk device group, the scconf utility
verifies that every device in the group is physically ported to the node.

The scconf add (-a) command can be used to create a rawdisk device group with
multiple disk devices configured in it. A rawdisk device group is created for every
disk device in the cluster at boot time. Before you can add a new rawdisk device
group, devices to be used in the new group must be removed from the device group
created at boot time. Then a new rawdisk device group can be created containing
these devices. This is accomplished by creating a list of these devices in the
globaldev option of scconf along with a potential primary node preference list in
the nodelist option. If the device group already exists, only new nodes and global
devices will be added and nodes or devices which are part of an existing device group
will be ignored. If the preferenced suboption is not given at all with an add to
create a new device group, then it is, by default, false. However, if the
preferenced suboption is specified for the existing device group with a value of
true or false, an error is returned. This is done in order to maintain the existing
nodelist preference state. If a device group should be mastered by only a particular
node then it should be configured with the otheroption set to localonly=true.
Only one node can be specified in the nodelist to create a localonly device group.

The scconf change (-c) command is used to change the order of the potential
primary node preference, to enable or disable failback, to set the desired nuber of
secondarie, and to add more global devices to the device group.

If you want to change the order of node preference list, then all the nodes currently
existing in the device group must be specified in the nodelist. In addition, if you are
changing the the order of node preference, you must also set the preferenced
suboption to true.

scconf_dg_rawdisk(1M)

NAME

SYNOPSIS

DESCRIPTION

102 Sun Cluster Reference Manual for Solaris OS • Last Revised 15 Aug 2003

If the preferenced suboption is not specified with the change, the already
established true or false setting is used.

New nodes cannot be added using the change form of the command. Change option
can also be used for changing a device group to localonly device group and
vice-versa. To change a device group to a localonly device group, set
otheroption to localonly=true. Specify localonly=false to set it back to not
the localonly device group. nodelist must already be set to a list of one node, or
an error results. It is legal to specify a nodelist with the change form of the
command, when you set localonly to true. This is, however, redundant, since the
list can only contain the single node that is already configured. It would be an error to
specify any other than the node that is already configured.

The scconf remove (-r) command can be used to remove the nodes, global devices,
and the device group name from the cluster device group configuration. If nodes or
global devices are specified with the device group name, they are removed from the
device group first. After the last device and node are removed from the device group,
the device group is also removed from cluster configuration. If only the name of the
device group is given (no nodes or devices at all), the entire device group is removed.

If a rawdisk device name is registered in a rawdisk device group then it cannot be
registered in an Solstice DiskSuite device group or a VERITAS Volume Manager
device group.

See scconf(1M) for the list of supported generic options.

The following action options are used to describe the actions performed by the
command. Only one action option is allowed in the command.

The following action options are supported:

-a Add a new rawdisk device group to the cluster configuration. You
can also use this option to change the device group configuration.

-c Change the ordering of the node preference list, change preference
and failback policy, change the desired number of secondaries, and
also add more devices to the device group with the globaldev
option. It is also used to set a device group as local only.

-r Remove the rawdisk device group name from the cluster.

The autogen flag is an indicator of the scstat and scconf
commands. These two commands do not list devices with the
autogen property unless the -v command line option is used.
When a device is used with the change form of the scconf
command, the device’s autogen property is reset, or set to false,
unless autogen=true is also specified.

scconf_dg_rawdisk(1M)

OPTIONS

SC31 1m 103

EXAMPLE 1 Using scconf Commands

The following scconf commands create a rawdisk device group, change the order of
the potential primary nodes, change preference and failback policy, change the desired
number of secondaries, and remove the rawdisk device group from the cluster
configuration.

phys-host# scconf -a -D type=rawdisk,name=rawdisk_groupname,
nodelist=host1:host2:host3,preferenced=false,failback=enabled,
numsecondaries=,globaldev=d1,globaldev=d2

phys-host# scconf -a -D type=rawdisk,name=rawdisk_groupname,
nodelist=host1,globaldev=d1,globaldev=d2,localonly=true,
globaldev=d1,globaldev=d2

phys-host# scconf -c -D name=rawdisk_groupname,
nodelist=host3:host2:host1,preferenced=true,failback=disabled,
numsecondaries=2,globaldev=d4,globaldev=d5

phys-host# scconf -c -D name=rawdisk_groupname,localonly=true

phys-host# scconf -r -D name=rawdisk_groupname

phys-host# scconf -r -D name=rawdisk_groupname,nodelist=node1,node2

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

Availability SUNWcsu

scconf(1M), attributes(5)

scconf_dg_rawdisk(1M)

EXAMPLES

ATTRIBUTES

SEE ALSO

104 Sun Cluster Reference Manual for Solaris OS • Last Revised 15 Aug 2003

scconf_dg_sds – change Solstice Disksuite disk device group configuration.

scconf -c -D [generic_options]

A Solstice DiskSuite disk device group is defined by a name, the nodes upon which
this group can be accessed, a global list of devices in the diskset, and a set of
properties used to control actions such as potential primary preference and failback
behavior.

For Solstice DiskSuite disk device groups, only one diskset may be assigned to a disk
device group, and the group name must always match the name of the diskset itself.

In Solstice DiskSuite, a multihosted or shared device is a grouping of two or more
hosts and disk drives that are accessible by all hosts, and that have the same device
names on all hosts. This identical device naming requirement is achieved by using the
raw disk devices to form the diskset. The Disk ID pseudo driver (DID) allows
multihosted devices to have consistent names across the cluster. Only hosts already
configured as part of a diskset itself can be configured into the nodelist of a Solstice
DiskSuite device group. At the time drives are added to a shared diskset, they must
not belong to any other shared diskset.

The Solstice DiskSuite metaset(1M) command creates the diskset, which also initially
creates and registers it as a Solstice DiskSuite device group. Next, you must use the
scconf(1M) command to set the node preference list, the preferenced and
failback suboptions, and change the desired number of secondaries.

If you want to change the order of node preference list or the failback mode, you must
specify all the nodes that currenly exist in the device group in the nodelist. In
addition, if you are changing the the order of node preference, you must also set the
preferenced suboption to true.

If you do not specify the preferenced suboption with the “change”, the already
established true or false setting is used.

You cannot use the scconf command to remove the Solstice DiskSuite device group
from the cluster configuration. Use the Solstice DiskSuite metaset command instead.
You remove a disk device group by removing the Solstice DiskSuite diskset.

See scconf(1M) for the list of supported generic options. See metaset(1M) for the
list of metaset related commands to create and remove disksets and disk device
groups.

Only one action option is allowed in the command. The following action options are
supported.

-c Change the ordering of the node preference list, change preference
and failback policy, and change the desired number of secondaries.

EXAMPLE 1 Creating and Registering a Diskset

The following metaset commands create a diskset and register the diskset as a
Solstice DiskSuite device group.

scconf_dg_sds(1M)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

EXAMPLES

SC31 1m 105

EXAMPLE 1 Creating and Registering a Diskset (Continued)

Next, the scconf command is used to specify the order of the potential primary
nodes for the device group, change the preferenced and failback options, and change
the desired number of secondaries.

phys-host# metaset -s diskset1 -a -h host1 host2

phys-host# scconf -c -D name=diskset1,nodelist=host2:host1,

preferenced=true,failback=disabled,numsecondaries=1

scconf(1M), metaset(1M), attributes(5)

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

scconf_dg_sds(1M)

SEE ALSO

ATTRIBUTES

106 Sun Cluster Reference Manual for Solaris OS • Last Revised 9 Jun 2004

scconf_dg_svm – change Solaris Volume Manager disk device group configuration.

scconf -c -D [generic_options]

A Solaris Volume Manager disk device group is defined by a name, the nodes upon
which this group can be accessed, a global list of devices in the diskset, and a set of
properties used to control actions such as potential primary preference and failback
behavior.

For Solaris Volume Manager disk device groups, only one diskset may be assigned to
a disk device group, and the group name must always match the name of the diskset
itself.

In Solaris Volume Manager, a multihosted or shared device is a grouping of two or
more hosts and disk drives that are accessible by all hosts, and that have the same
device names on all hosts. This identical device naming requirement is achieved by
using the raw disk devices to form the diskset. The Disk ID pseudo driver (DID)
allows multihosted devices to have consistent names across the cluster. Only hosts
already configured as part of a diskset itself can be configured into the nodelist of a
Solaris Volume Manager device group. At the time drives are added to a shared
diskset, they must not belong to any other shared diskset.

The Solaris Volume Manager metaset(1M) command creates the diskset, which also
initially creates and registers it as a Solaris Volume Manager device group. Next, you
must use the scconf(1M) command to set the node preference list, the
preferenced, failback and numsecondaries suboptions.

If you want to change the order of node preference list or the failback mode, you must
specify all the nodes that currenly exist in the device group in the nodelist. In
addition, if you are changing the the order of node preference, you must also set the
preferenced suboption to true.

If you do not specify the preferenced suboption with the “change”, the already
established true or false setting is used.

You cannot use the scconf command to remove the Solaris Volume Manager device
group from the cluster configuration. Use the Solaris Volume Manager metaset
command instead. You remove a disk device group by removing the Solaris Volume
Manager diskset.

See scconf(1M) for the list of supported generic options. See metaset(1M) for the
list of metaset related commands to create and remove disksets and disk device
groups.

Only one action option is allowed in the command. The following action options are
supported.

-c Change the ordering of the node preference list, change preference
and failback policy, and change the desired number of secondaries.

scconf_dg_svm(1M)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

SC31 1m 107

EXAMPLE 1 Creating and Registering a Diskset

The following metaset commands create a diskset and register the diskset as a
Solaris Volume Manager device group.

Next, the scconf command is used to specify the order of the potential primary
nodes for the device group, change the preferenced and failback options, and change
the desired number of secondaries.

phys-host# metaset -s diskset1 -a -h host1 host2

phys-host# scconf -c -D name=diskset1,nodelist=host2:host1,

preferenced=true,failback=disabled,numsecondaries=1

scconf(1M), metaset(1M), attributes(5)

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

scconf_dg_svm(1M)

EXAMPLES

SEE ALSO

ATTRIBUTES

108 Sun Cluster Reference Manual for Solaris OS • Last Revised 9 Jun 2004

scconf_dg_vxvm – add, change, or update VxVM device group configuration.

scconf -a -D type=vxvm,devicegroup-options

scconf -c -D devicegroup-options [,sync]

scconf -r -D name=devicegroupname

The scconf_dg_vxvm(1M) command is used to add, change, and remove the
VERITAS Volume Manager (VxVM) disk device groups to the Sun Cluster
device-groups configuration.

The add (-a) option adds a new VxVM disk device group to the Sun Cluster
device-groups configuration. With this option you define a name for the new device
group, specify the nodes on which this group can be accessed, and specify a set of
properties used to control actions.

For VxVM disk device groups, you can only assign one VxVM disk group to a disk
device group, and the disk device group name must always match the name of the
VxVM disk group. You cannot create a VxVM disk device group unless you first
import the corresponding VxVM disk group on one of the nodes in that device’s
nodelist.

Before you can add a node to a VxVM disk device group, every physical disk in the
disk group must be physically ported to that node. After you register the disk group
as a VxVM disk device group, you must first deport the disk group from the current
node owner and turn off the auto-import flag for the disk group.

To create a VxVM disk device group for a disk group, you must run the scconf(1M)
command from the same node where the disk group was created.

The scconf change (-c) command changes the order of the potential primary node
preference, to enable or disable failback, to add more global devices to the device
group, and to change the desired number of secondaries.

To change the order-of-node preference list from false to true, you must specify in
thenodelist all the nodes that currently exist in the device group. You must also set
the preferenced suboption to true.

If you do not specify the preferenced suboption with the change form of the
command, the already established true or false setting is used.

The sync option is used to synchronize the clustering software with VxVM
disk-group volume information. The sync option is only valid with the change form
of the command. Use the sync option whenever you add or remove a volume from a
device group.

The remove (-r) option removes a VxVM device group from the Sun Cluster
device-groups configuration. You can also use this form of command to remove the
nodes from the VxVM disk device group configuration.

See the scconf(1M) man page for the list of supported generic device-group options.

scconf_dg_vxvm(1M)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

SC31 1m 109

The following action options describe the actions that the command performs. Only
one action option is allowed in the command.

The following action options are supported:

-a Add a VxVM device group to the cluster configuration.

-c Change the ordering of the node preference list, change preference
and failback policy, and change the desired number of secondaries.

-r Remove the specified VxVM device group from the cluster.

EXAMPLE 1 Using scconf Commands

The following scconf commands create a VxVM device group, change the order of
the potential primary nodes, change the preference and failback policy for the device
group, change the desired number of secondaries, and remove the VxVM device
group from the cluster configuration.

host1# scconf -a -D type=vxvm,name=diskgrp1,
nodelist=host1:host2:host3,preferenced=false,failback=enabled
host1# scconf -c -D name=diskgrp1,
nodelist=host2:host1:host3,preferenced=true,failback=disabled,
numsecondaries=2

host1# scconf -r -D name=diskgrp1,nodelist=node1

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

Availability SUNWcsu

Interface Stability Evolving

scconf(1M), attributes(5)

scconf_dg_vxvm(1M)

EXAMPLES

ATTRIBUTES

SEE ALSO

110 Sun Cluster Reference Manual for Solaris OS • Last Revised 17 Aug 2004

scconf_quorum_dev_netapp_nas – add and remove shared Network Appliance
network-attached storage (NAS) quorum devices and change various NAS cluster
quorum configuration properties or states.

scconf {-a| -c | -r } -q name=devicename otheroptions

A Network Appliance NAS device can be configured as a quorum device for Sun
Cluster. The NAS configuration information consists of:

� a device name, which must be unique across quorum devices
� a filer name, which defaults to the device name if not specified
� a LUN ID, which defaults to 0 if not specified

To provide support for NAS devices as quorum devices, the administrator must install
the quorum device support module provided by Network Appliance. If this module is
not available, scconfprevents the addition of the quorum device. See Sun Cluster
With Network-Attached Storage Devices Manual for Solaris OS for instructions about
obtaining the support module.

Additionally, the iSCSI license must be valid for the Network Appliance device.

The following options can be used for NAS quorum devices. See scconf(1M) for the
list of supported generic options. See scconf_quorum_dev_netapp_nas(1M) for
options that are specific to shared disk quorum devices.

The add and remove forms of the command are used to add and remove NAS
quorum devices to or from the configuration. The change form of the command is
used for changing various properties of cluster quorum configuration.

Before you add a quorum device, you must set up and configure the device and the
logical unit number (LUN) on the device to be configured as a quorum device. For
detailed procedures, see your Network Appliance documentation. For Sun Cluster
requirements of device setup, see Sun Cluster With Network-Attached Storage Devices
Manual for Solaris OS. After the quorum device is added, you cannot change the type.

Add a NAS quorum device:

–q -a name=devicename,type=netapp_nas[,filer=filer-name][,lun_id=0]
Change a NAS quorum device’s configuration:

–q -c name=devicename,{maintstate | reset}

Remove a NAS quorum device:

–q -r name=devicename

The -q option supports the following Network Appliance NAS-specific suboptions:

filer=filer-name
Specifies the name of the device on the network that you can use to access the NAS
device when you are using rsh or telnet.

lun_id=0
Specifies the LUN ID on the NAS device that will be a NAS quorum device. The
LUN ID defaults to 0.

scconf_quorum_dev_netapp_nas(1M)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

SC31 1m 111

When scconf is interrupted or fails while performing quorum-related operations,
quorum configuration information can become inconsistent in the cluster
configuration database. If an inconsistency occurs, either run the same scconf
command again or run it with the reset option to reset the quorum information.

EXAMPLE 1 Adding Network Appliance NAS Quorum Devices

The following scconf command adds the Network Appliance NAS quorum device
qd1.

-a –q name=qd1,type=netapp_nas,filer=nas1.sun.com,lun_id=0

EXAMPLE 2 Removing Network Appliance NAS Quorum Devices

The following scconf command removes the Network Appliance NAS quorum
device qd1.

-r –q name=qd1

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

Interface Stability Evolving

scconf(1M), scconf-quorum-dev-scsi(1M)

scconf_quorum_dev_netapp_nas(1M)

EXAMPLES

ATTRIBUTES

SEE ALSO

112 Sun Cluster Reference Manual for Solaris OS • Last Revised 16 Nov 2004

scconf_quorum_dev_scsi – Add and remove shared SCSI quorum devices and change
various SCSI cluster quorum configuration properties or states.

scconf {-a| -c | -r } -q globaldev=devicename otheroptions

scconf {-a| -c | -r } -q name=devicename otheroptions

A SCSI quorum device is considered to be any Sun Cluster supported, attached
storage that is connected to two or more nodes of the cluster. The device must be
managed by DID, and the device name that is provided must be a DID device name.

The SCSI quorum device has no other properties that can be specified.

The following options are specific to shared disk quorum devices. See scconf(1M) for
the list of supported generic options. See scconf_quorum_dev_netapp_nas(1M)
for options that are specific to NAS quorum devices.

The add and remove forms of the command are used to add and remove shared
quorum devices to or from the configuration. The change form of the command is
used for changing various properties of cluster quorum configuration. The -q
quorum-options available for each of the three forms of the command can be used to
change the cluster quorum configuration are as follows:

Add a shared quorum device:

–q -a globaldev=devicename[, node=node,node=node[, ...]]

or

–q -a name= devicename,type=scsi
or

-q -a autoconfig[,noop]

Change a property or state of quorum configuration:

–q -c globaldev=devicename,{maintstate | reset}

or

-q -c autoconfig[,noop]

Remove a shared quorum device:

–q -r globaldev=devicename
or

–q -r name=devicename

autoconfig
When used with the add form of the command, automatically chooses and assigns
one quorum device in the two-node cluster. The quorum device is chosen from the
available devices. If a quorum device is already configured, the command aborts.

When used with the change form of the command, automatically chooses and
assigns one device that replaces all existing quorum devices in the two-node
cluster. The quorum device is chosen from the available devices.

scconf_quorum_dev_scsi(1M)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

SC31 1m 113

All available devices in the cluster must be qualified to be a quorum device. The
autoconfig suboption does not assess whether an available device is qualified to
be a quorum device.

If the cluster contains more than two nodes, the autoconfig suboption makes no
changes to the quorum configuration. Do not use the autoconfig suboption if
you intend to configure a NAS device as quorum.

[,noop]
Is valid with the autoconfig suboption. The command prints to standard output
the list of quorum devices that the autoconfig suboption would add or change.
The autoconfig,noop suboption makes no changes to the quorum configuration.

When scconf is interrupted or fails while performing quorum-related operations,
quorum configuration information can become inconsistent in the cluster
configuration database. If an inconsistency occurs, either run the same scconf
command again or run it with the reset option to reset the quorum information.

With the add form of the command, if a name is specified without a node list, the
quorum device is added with a port defined for every node to which the device is
attached. But, if a node list is given, at least two nodes must be provided, and each
node in the list must be ported to the device.

EXAMPLE 1 Adding SCSI Quorum Devices

The following scconf commands adds a SCSI quorum device.

-a –q globaldev=/dev/did/rdsk/d4s2
or

-a –q name=/dev/did/rdsk/d4s2,type=scsi

EXAMPLE 2 Changing SCSI Quorum Devices

The following scconf command changes a SCSI quorum device configuration.

-c -q globaldev=/dev/did/rdsk/d4s2,reset
or

-c -q name=/dev/did/rdsk/d4s2,reset

EXAMPLE 3 Removing SCSI Quorum Devices

The following scconf command removes the SCSI quorum device. qd1.

-r –q globaldev=qd1

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

scconf_quorum_dev_scsi(1M)

EXAMPLES

ATTRIBUTES

114 Sun Cluster Reference Manual for Solaris OS • Last Revised 16 Nov 2004

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

scconf(1M), scconf_quorum_dev_netapp_nas(1M)

scconf_quorum_dev_scsi(1M)

SEE ALSO

SC31 1m 115

scconf_transp_adap_bge – configure the bge transport adapter

bge adapters may be configured as cluster transport adapters. These adapters may
only be used with the dlpi transport type. The bge adapter is VLAN capable.

The bge adapter connects to a transport junction or to another bge adapter on a
different node. In either case, the connection is made through a transport cable.

When a transport junction is used and the endpoints of the transport cable are
configured using the scconf command, the scinstall command, or other tools,
you are asked to specify a port name on the transport junction. You can provide any
port name, or accept the default, as long as the name is unique for the junction.

Refer to scconf(1M) for more configuration details.

The default is to set the port name to the node ID hosting the adapter at the other end
of the cable.

There are no user configurable properties for cluster transport adapters of this type.

scinstall(1M), scconf(1M)

scconf_transp_adap_bge(1M)

NAME

DESCRIPTION

SEE ALSO

116 Sun Cluster Reference Manual for Solaris OS • Last Revised 13 August 2004

scconf_transp_adap_ce – configure the ce Sun Ethernet transport adapter

ce adapters can be configured as cluster transport adapters. These adapters can be
used with transport types dlpi. The ce adapter is VLAN capable.

A ce adapter connects to a transport junction or to another ce adapter on a different
node. In either case, the connection is made through a transport cable.

When a transport junction is used and the endpoints of the transport cable are
configured using scconf(1M), scinstall(1M) or other tools, you are asked to
specify a port name on the transport junction. You can provide any port name, or
accept the default, as long as the name is unique for the junction.

The default is to set the port name to the node ID hosting the adapter at the other end
of the cable.

There are no user configurable properties for cluster transport adapters of this type.

scconf(1M), scinstall(1M)

scconf_transp_adap_ce(1M)

NAME

DESCRIPTION

SEE ALSO

SC31 1m 117

scconf_transp_adap_e1000g – configure the Intel PRO/1000 network adapter

e1000g Intel PRO/1000 network adapters can be configured. These adapters can only
be used with transport type dlpi.

The e1000g based network adapter connects to a transport junction or to another
Ethernet adapter on a different node. In either case, the connection is made through a
transport cable.

When a transport junction is used and the endpoints of the transport cable are
configured using scconf(1M), scinstall(1M), or other tools, you are asked to
specify a port name on the transport junction. You can provide any port name, or
accept the default, as long as the name is unique for the junction.

The default is to set the port name to the node identifier that hosts the adapter at the
other end of the cable.

Refer to scconf(1M) for more configuration details.

There are no user configurable properties for cluster transport adapters of this type.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture x86

scconf(1M), scinstall(1M), e1000g(7D)

scconf_transp_adap_e1000g(1M)

NAME

DESCRIPTION

ATTRIBUTES

SEE ALSO

118 Sun Cluster Reference Manual for Solaris OS • Last Revised 11 Sep 2003

scconf_transp_adap_eri – configure the eri transport adapter

eri Ethernet adapters can be configured as cluster transport adapters. These adapters
can only be used with transport type dlpi.

The eri Ethernet adapter connects to a transport junction or to another Ethernet
adapter on a different node. In either case, the connection is made through a transport
cable.

When a transport junction is used and the endpoints of the transport cable are
configured using scconf(1M), scinstall(1M), or other tools, you are asked to
specify a port name on the transport junction. You can provide any port name, or
accept the default, as long as the name is unique for the junction.

The default is to set the port name to the node ID hosting the adapter at the other end
of the cable.

Refer to scconf(1M) for more configuration details.

There are no user configurable properties for cluster transport adapters of this type.

scconf(1M), scinstall(1M), eri(7D)

scconf_transp_adap_eri(1M)

NAME

DESCRIPTION

SEE ALSO

SC31 1m 119

scconf_transp_adap_ge – configure the Gigabit Ethernet (ge) transport adapter

ge adapters can be configured as cluster transport adapters. These adapters can only
be used with transport type dlpi.

The ge adapter connects to a transport junction or to another ge adapter on a different
node. In either case, the connection is made through a transport cable.

When a transport junction is used and the endpoints of the transport cable are
configured using scconf(1M), scinstall(1M), or other tools, you are asked to
specify a port name on the transport junction. You can provide any port name, or
accept the default, as long as the name is unique for the junction.

The default is to set the port name to the node ID hosting the adapter at the other end
of the cable.

Refer to scconf(1M) for more configuration details.

There are no user configurable properties for cluster transport adapters of this type.

scconf(1M), scinstall(1M)

scconf_transp_adap_ge(1M)

NAME

DESCRIPTION

SEE ALSO

120 Sun Cluster Reference Manual for Solaris OS • Last Revised 11 Aug 2000

scconf_transp_adap_hme – configure the hme transport adapter

hme Ethernet adapters can be configured as cluster transport adapters. These adapters
may only be used with transport type dlpi.

The hme Ethernet adapter connects to a transport junction or to another Ethernet
adapter on a different node. In either case, the connection is made through a transport
cable.

When a transport junction is used and the endpoints of the transport cable are
configured using scconf(1M), scinstall(1M), or other tools, you are asked to
specify a port name on the transport junction. You can provide any port name, or
accept the default, as long as the name is unique for the junction.

The default is to set the port name to the node ID hosting the adapter at the other end
of the cable.

Refer to scconf(1M) for more configuration details.

There are no user configurable properties for cluster transport adapters of this type.

scconf(1M), scinstall(1M), hme(7D)

scconf_transp_adap_hme(1M)

NAME

DESCRIPTION

SEE ALSO

SC31 1m 121

scconf_transp_adap_ibd – configure the InfiniBand (ibd) transport adapter

ibd adapters can be configured as cluster transport adapters. These adapters can only
be used with transport type dlpi.

The ibd adapter connects to an InfiniBand transport junction. The connection is made
through a transport cable.

When the endpoints of the transport cable are configured by using scconf(1M),
scinstall(1M), or other tools, you are asked to specify a port name on the transport
junction. You can provide any port name, or accept the default, as long as the name is
unique for the junction.

The default is to set the port name to the node ID that hosts the adapter at the other
end of the cable.

Refer to scconf(1M) for more configuration details.

There are no user-configurable properties for cluster transport adapters of this type.

scconf(1M), scconf_transp_jct_ibswitch(1M), scinstall(1M)

scconf_transp_adap_ibd(1M)

NAME

DESCRIPTION

SEE ALSO

122 Sun Cluster Reference Manual for Solaris OS • Last Revised 14 Sep 2004

scconf_transp_adap_qfe – configure the qfe transport adapter

qfe Ethernet adapters can be configured as cluster transport adapters. These adapters
can only be used with transport type dlpi.

The qfe Ethernet adapter connects to a transport junction or to another Ethernet
adapter on a different node. In either case, the connection is made through a transport
cable.

When a transport junction is used and the endpoints of the transport cable are
configured using scconf(1M), scinstall(1M), or other tools, you are asked to
specify a port name on the transport junction. You can provide any port name, or
accept the default, as long as the name is unique for the junction.

The default is to set the port name to the node ID hosting the adapter at the other end
of the cable.

Refer to scconf(1M) for more configuration details.

There are no user configurable properties for cluster transport adapters of this type.

scconf(1M), scinstall(1M), qfe(7D)

scconf_transp_adap_qfe(1M)

NAME

DESCRIPTION

SEE ALSO

SC31 1m 123

scconf_transp_adap_sci – configure the sci cluster transport adapter

SCI-PCI adapters can be configured as cluster transport adapters. These adapters can
be used with the dlpi transport type.

The adapter name is sciN, for example, sci0. Do not use scidN as the adapter
name.

An sci adapter can only be connected to another sci adapter or to an SCI switch.
When an sci adapter is connected to an SCI switch, it is important that you specify
the correct port name when referring to a port on the switch as an endpoint argument
to the scconf(1M) or scinstall(1M) utility. The port name must match the port
number on the SCI switch (the number printed on the switch itself). Failure to give the
correct port name could result in the scconf or scinstall utility failing. The result
of providing an incorrect port name will be the same as you would see if the cable
between the adapter and the switch were removed.

There are no user-configurable properties for cluster transport adapters of this type.

scconf(1M), scconf_transp_jct_dolphinswitch(1M), scinstall(1M)

scconf_transp_adap_sci(1M)

NAME

DESCRIPTION

SEE ALSO

124 Sun Cluster Reference Manual for Solaris OS • Last Revised 7 Jun 2004

scconf_transp_adap_wrsm.1m – configure the wrsm transport adapter

wrsm adapters may be configured as cluster transport adapters. These adapters can
only be used with transport types dlpi.

The wrsm adapter connects to a transport junction or to another wrsm adapter on a
different node. In either case, the connection is made through a transport cable.

Although you can connect the wrsm adapters directly by using a point-to-point
configuration, Sun Cluster software requires that you specify a virtual transport
junction. For example, if node1:wrsm1 is connected to node2:wsrm1 directly
through a cable, you must specify the following configuration information.

node1:wrsm1 <--cable1--> Transport Junction sw_wrsm1 <--cable2--> node2:wrsm1

The transport junction, whether a virtual switch or a hardware switch, must have a
specific name. The name must be sw_wrsmN where the adapter is wrsmN. This
requirement reflects a Wildcat restriction that requires that all wrsm controllers on the
same Wildcat network have the same instance number.

When a transport junction is used and the endpoints of the transport cable are
configured using scconf(1M) , scinstall(1M), or other tools, you are asked to
specify a port name on the transport junction. You can provide any port name, or
accept the default, as long as the name is unique for the transport junction.

The default sets the port name to the node ID that hosts the adapter at the other end of
the cable.

Refer to scconf(1M) for more configuration details.

There are no user configurable properties for cluster transport adapters of this type.

scconf(1M), scinstall(1M), wrsmconf(1M), wrsmstat(1M), wrsm(7D),
wrsmd(7D)

scconf_transp_adap_wrsm(1M)

NAME

DESCRIPTION

SEE ALSO

SC31 1m 125

scconf_transp_jct_dolphinswitch – configure the Dolphin cluster transport junction

SCI switches may be used as cluster transport junctions. They are of junction type
switch.

The Dolphin SCI switch is used with SCI adapters. The ports of a Dolphin SCI switch
are numbered (printed on the switch itself). The port number should be used as the
name of the port. It is important that you specify the correct port name when referring
to a port on the switch as an endpoint argument to scconf(1M) or scinstall(1M).
Failure to give the correct port name (which must be the same as the port number that
appears on the switch), could result in scconf or scinstall failing or an operation
running on a wrong port. This might bring down the cluster or prevent a node from
coming up in clustered mode.

There are no user configurable properties on the Dolphin SCI switch.

scconf(1M), scinstall(1M)

scconf_transp_jct_dolphinswitch(1M)

NAME

DESCRIPTION

SEE ALSO

126 Sun Cluster Reference Manual for Solaris OS • Last Revised 22 Apr 2002

scconf_transp_jct_etherswitch – configure an Ethernet cluster transport junction

Ethernet switches can be configured as cluster transport junctions. They are of junction
type switch. There are no user configurable properties.

scconf(1M)

scconf_transp_jct_etherswitch(1M)

NAME

DESCRIPTION

SEE ALSO

SC31 1m 127

scconf_transp_jct_ibswitch – configure an InfiniBand cluster transport junction

InfiniBand switches can be configured as cluster transport junctions. They are of
junction type switch. There are no user configurable properties.

scconf(1M), scconf_transp_adap_ibd(1M)

scconf_transp_jct_ibswitch(1M)

NAME

DESCRIPTION

SEE ALSO

128 Sun Cluster Reference Manual for Solaris OS • Last Revised 14 Sep 2004

scdidadm – device identifier configuration and administration utility wrapper

/usr/cluster/bin/scdidadm -c

/usr/cluster/bin/scdidadm -C

/usr/cluster/bin/scdidadm -r

/usr/cluster/bin/scdidadm -R {path | instance_number | all}

/usr/cluster/bin/scdidadm -l | -L [-h] [-o fmt] ...
[path | instance_number]

/usr/cluster/bin/scdidadm [-u] [-i]

/usr/cluster/bin/scdidadm -U

/usr/cluster/bin/scdidadm -v

The scdidadm utility administers the device identifier (DID) pseudo device driver
did(7).

The scdidadm utility performs the following primary operations:

� Creates driver configuration files
� Modifies entries in the file
� Loads the current configuration into the kernel
� Lists the mapping between device entries and did driver instance numbers

The startup script /etc/init.d/bootcluster uses the scdidadm utility to
initialize the did driver. You can also use scdidadm to update or query the current
device mapping between the devices present and the corresponding device identifiers
and did driver instance numbers.

The devfsadm(1M) command creates the file system device entry points.

The following options are supported:

-c Performs a consistency check against the kernel representation of
the devices and the physical devices. On failing a consistency
check, an error message is displayed. The process continues until
all devices have been checked.

You need solaris.cluster.device.read RBAC
authorization to use this command option. See rbac(5).

-C Removes all did references to underlying devices that have been
detached from the current node. Specify this option after the
Solaris device commands have been used to remove references to
nonexistent devices on the cluster nodes.

You can only use this option from a node that is booted in cluster
mode.

scdidadm(1M)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

SC31 1m 129

You need solaris.cluster.device.modify RBAC
authorization to use this command option. See rbac(5).

-h Prints a header when listing device mappings. This option is
meaningful only when used with the -l and -L options.

-i Initializes the did driver. Use this option if you want to enable
I/O requests to the did driver.

You need solaris.cluster.device.modify RBAC
authorization to use this command option. See rbac(5).

-l Lists the local devices in the DID configuration file. The output of
this command can be customized using the -o option. When no
-o options are specified, the default listing displays the instance
number, the local fullpath, and the fullname.

You need solaris.cluster.device.read RBAC
authorization to use this command option. See rbac(5).

-L Lists all the paths, including those on remote hosts, of the devices
in the DID configuration file. The output of this command can be
customized using the -o option. When no -o options are specified,
the default listing displays the instance number, all local and
remote fullpath strings, and the fullname.

You need solaris.cluster.device.read RBAC
authorization to use this command option. See rbac(5).

-o fmt Lists the devices currently known to the did driver according to
the format specification fmt. Multiple -o options can be specified.
The fmt specification is interpreted as a comma-separated list of
format option arguments. This option is meaningful only when
used with the -l and -L options. The available format option
arguments are the following:

instance Prints the instance number of the device known by the
did driver, for example, 1.

path Prints the physical path name of the device associated
with this device identifier, for example,
/dev/rdsk/c0t3d0.

fullpath Prints the full physical path name of the device that is
associated with this device identifier. This path name
includes the host, for example,
phys-hostA:/dev/rdsk/c0t3d0.

host With the -L option, prints the names of all hosts that
have connectivity to the specified device, one per line.
With the -l option, prints the name of the local host
that has connectivity to the specified device.

scdidadm(1M)

130 Sun Cluster Reference Manual for Solaris OS • Last Revised 6 May 2003

name Prints the DID name of the device associated with this
device identifier, for example, d1.

fullname Prints the full DID path name of the device associated
with this device identifier, for example,
/dev/did/rdsk/d1.

diskid Prints the hexadecimal representation of the device
identifier associated with the instance of the device
being listed.

asciidiskid Prints the ASCII representation of the device identifier
associated with the instance of the device being listed.

-r Reconfigures the database. When you specify this option, a
thorough search of the rdsk and rmt device trees is conducted. A
new instance number is assigned for all device identifiers that
were not recognized before. A new path is added for each newly
recognized device.

You can only use this option from a node that is booted in cluster
mode.

You need solaris.cluster.device.modify RBAC
authorization to use this command option. See rbac(5).

-R {path |
instance_number |
all}

Performs a repair procedure on a particular device instance. The
argument to this command can be either a particular physical
device path that has been replaced with a new device, or the
instance_number of the device that was just replaced. When used
with the all keyword, the scdidadm utility updates the
configuration data of all devices connected to the node.

You can only use this option from a node that is booted in cluster
mode.

You need solaris.cluster.device.modify RBAC
authorization to use this command option. See rbac(5).

-u Loads the device identifier configuration table into the kernel. This
option loads all the currently known configuration information
about device paths and their corresponding instance numbers into
the kernel.

You need solaris.cluster.device.modify RBAC
authorization to use this command option. See rbac(5).

-U Converts an existing /etc/did.conf file into a set of Cluster
Configuration Repository (CCR) tables. If the tables already exist,
this command fails.

scdidadm(1M)

SC31 1m 131

You need solaris.cluster.device.modify RBAC
authorization to use this command option. See rbac(5).

-v Prints the version number of this program.

EXAMPLE 1 Adding Devices Attached to the Local Host to the CCR

% scdidadm -r

EXAMPLE 2 Listing the Physical Path of the Device

The following example lists the physical path of the device that corresponds to
instance 2 of the did driver:

% scdidadm -l -o path 2

/dev/dsk/c1t4d0

EXAMPLE 3 Specifying Multiple Format Options

You can specify multiple format option arguments in either of the following ways:

% scdidadm –l –o path –o name 2

% scdidadm -l -o path,name 2

In either example, the output might look like this:

/dev/dsk/c1t4d0 d1

EXAMPLE 4 Performing a Repair Procedure

The following example performs the repair procedure for a particular device path. The
device /dev/dsk/c1t4d0 has been replaced with a new device with which a new
device identifier is associated. The database is updated to show that this new device
identifier corresponds to the instance number that was previously associated with the
old device identifier:

% scdidadm -R c1t4d0

EXAMPLE 5 Performing a Repair Procedure

An alternative method of performing a repair procedure is to use the instance number
associated with the device path. For example, if the instance number for the device
c1t4d0 in the previous example is 2, then the following syntax performs the same
operation as the previous example:

% scdidadm -R 2

The following exit values are returned:

0 The command completed successfully.

scdidadm(1M)

EXAMPLES

EXIT STATUS

132 Sun Cluster Reference Manual for Solaris OS • Last Revised 6 May 2003

1 An error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscu

Interface Stability Evolving

devfsadm(1M), attributes(5), did(7)

Sun Cluster 3.1 System Administration Guide

Each multiported tape drive or CD-ROM drive appears in the namespace once per
physical connection.

scdidadm(1M)

ATTRIBUTES

SEE ALSO

NOTES

SC31 1m 133

scdpm – Disk-path monitoring administration command

scdpm -m [node|all]:<[/dev/did/rdsk/]d- | [/dev/rdsk/]c-t-d- | all>
scdpm -u [node|all]:<[/dev/did/rdsk/]d- | [/dev/rdsk/]c-t-d- | all>
scdpm -p [-F] [node|all]:<[/dev/did/rdsk/]d- | [/dev/rdsk/]c-t-d- | all>

scdpm -f filename

The scdpm command manages the disk-path monitoring daemon in a cluster
environment. This command is used to monitor and unmonitor disk paths. You can
also use the scdpm command to display the status of disk paths. All of the accessible
disk paths in the cluster or on a specific node are printed to the standard output. The
scdpm command must be run from a cluster node that is online in cluster mode.

You can specify either a global name or a UNIX name when you monitor a new disk
path. Additionally, you can force the daemon to reread the entire disk configuration.

The following options are supported.

-m
Monitor the new disk path that is specified by node:disk path. If the node name is not
specified, all is the default option.

-u
Unmonitor a disk path. The daemon on each node stops monitoring the specified
path.

-p
Print the current status of a specified disk path from all the nodes that are attached
to the storage. With the -F option, scdpm prints the faulty disk paths in the cluster.
If the node name is not specified, all is the default option. The status can be Ok ,
Fail, Unmonitored, or Unknown.

Note – You need solaris.cluster.device.read RBAC authorization to use
this command with the -p option. See rbac(5).

-f file name
Read the list of disk paths to monitor or unmonitor for a specified file name. The
file must list the command to monitor or unmonitor, node-name and disk-path
name. The commands are m for monitor, and u for unmonitor. The command must
be followed by a space. The node-name and disk-path name should be separated by
a colon.

syntax in command file:
[u,m] [node|all]:<[/dev/did/rdsk/]d- | [/dev/rdsk/]c-t-d- | all>

command file entry
u schost-1:/dev/did/rdsk/d5
m schost-2:all

Note – You need solaris.cluster.device.admin RBAC authorization to use
this command with the -m, -u and -f options. See See rbac(5).

The following exit values are returned:

scdpm(1M)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

EXIT STATUS

134 Sun Cluster Reference Manual for Solaris OS • Last Revised 15 Nov 2002

>0 An error occurred. Error messages are displayed on the standard
error.

0 Successful completion.

1 Complete failure.

2 Partial failure.

Note – The disk path is represented by a node name and a disk name. The node name
must be the hostname or the word all to address all of the nodes in the cluster. The
disk name must be the global disk name, a UNIX path name, or the word all to
address all the disks in the node. The disk name can be either the full global path
name or just the disk name, for example /dev/did/dsk/d3 or d3. The disk name
can also be the full UNIX path name, for example /dev/rdsk/c0t0d0s0.

Disk-path status changes are logged by using the syslogd LOG_INFO facility level.
All failures are logged by using LOG_ERR facility level.

EXAMPLE 1 Monitoring All Disk Paths in the Cluster Infrastructure

The following command forces the daemon to monitor all disk paths in the cluster
infrastructure.

scdpm -m all

EXAMPLE 2 Monitoring a New Disk Path

The following command monitors a new disk path. In the following example, all
nodes monitor /dev/did/dsk/d3 where this path is valid.

scdpm -m /dev/did/dsk/d3

EXAMPLE 3 Monitoring a Disk Path on a Single Node

The following command monitors a new path on a single node. The daemon on the
schost-2 node monitors paths to the /dev/did/dsk/d4 and /dev/did/dsk/d5
disks.

scdpm -m schost-2:d4 -m schost-2:d5

EXAMPLE 4 Printing All Disk Paths and the Status

The following command prints all disk paths in the cluster and their status.

scdpm -p all:all
schost-1:/dev/did/dsk/d4 Ok
schost-1:/dev/did/dsk/d3 Ok
schost-2:/dev/did/dsk/d4 Fail
schost-2:/dev/did/dsk/d3 Ok
schost-2:/dev/did/dsk/d5 Unmonitored

schost-2:/dev/did/dsk/d6 Ok

scdpm(1M)

EXAMPLES

SC31 1m 135

EXAMPLE 5 Printing All of the Failed Disk Paths

The following command prints all of the failed disk paths on the schost-2 node.

scdpm -p -F all

schost-2:/dev/did/dsk/d4 Fail

EXAMPLE 6 Printing the Status of all Disk Paths From a Single Node

The following command prints the disk path and the status for disks that are
monitored on the schost-2 node.

scdpm -p schost-2:all
schost-2:/dev/did/dsk/d4 Fail

schost-2:/dev/did/dsk/d3 Ok

See attributes(5) for descriptions of the following attributes.

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscu

scconf(1M), scdidadm(1M)

Sun Cluster 3.1 System Administration Guide

scdpm(1M)

ATTRIBUTES

SEE ALSO

136 Sun Cluster Reference Manual for Solaris OS • Last Revised 15 Nov 2002

scgdevs – global devices namespace administration script

/usr/cluster/bin/scgdevs

The scgdevs utility manages the global devices namespace. The global devices
namespace is mounted under /global and consists of a set of logical links to physical
devices. As /dev/global is visible to each node of the cluster, each physical device is
visible across the cluster. This fact means that any disk, tape, or CD-ROM that is
added to the global devices namespace can be accessed from any node in the cluster.

The scgdevs command allows the administrator to attach new global devices (for
example, tape drives, CD-ROM drives, and disk drives) to the global devices
namespace without requiring a system reboot. The drvconfig(1M) and
devlinks(1M) commands must be executed prior to running the scgdevs script.

Alternatively, a reconfiguration reboot can be used to rebuild the global namespace
and attach new global devices. See boot(1M).

This script must be run from a node that is a current cluster member. If this script is
run from a node that is not a cluster member, the script exits with an error code and
leaves the system state unchanged.

You need solaris.cluster.system.modify RBAC authorization to use this
command. See rbac(5).

You must also be able to assume a role to which the Sun Cluster Commands rights
profile has been assigned to use this command. Authorized users can issue privileged
Sun Cluster commands on the command line from the pfsh(1), pfcsh(1), or pfksh(1)
profile shell. A profile shell is a special kind of shell that enables you to access
privileged Sun Cluster commands that are assigned to the Sun Cluster Commands
rights profile. A profile shell is launched when you run su(1M) to assume a role. You
can also use pfexec(1) to issue privileged Sun Cluster commands.

The following exit values are returned:

0 The command completed successfully.

nonzero An error occurred. Error messages are displayed on the standard
output.

/devices Device nodes directory

/global/.devices Global devices nodes directory

/dev/md/shared SDS/Solaris Volume Manager metaset directory

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

scgdevs(1M)

NAME

SYNOPSIS

DESCRIPTION

EXIT STATUS

FILES

ATTRIBUTES

SC31 1m 137

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

boot(1M), devfsadm(1M), devlinks(1M), drvconfig(1M), scdidadm(1M),
attributes(5), did(7)

Sun Cluster System Administration Guide

The scgdevs command, called from the local node, will perform its work on remote
nodes asynchronously. Therefore, command completion on the local node does not
necessarily mean it has completed its work clusterwide.

This document does not constitute an API. /global/.devices and /devices
might not exist or might have different contents or interpretations in a future release.
The existence of this notice does not imply that any other documentation that lacks
this notice constitutes an API. This interface should be considered an unstable
interface.

scgdevs(1M)

SEE ALSO

NOTES

138 Sun Cluster Reference Manual for Solaris OS • Last Revised 23 Oct 2003

scinstall – install Sun Cluster software and initialize new cluster nodes

media-mnt-pt/Solaris_arch/Product/sun_cluster/Solaris_ver/Tools/scinstall

media-mnt-pt/Solaris_arch/Product/sun_cluster/Solaris_ver/Tools/scinstall
-i [-k] [-d cdimage-dir] [-s srvc[,…]] [-M patch-options]
[-F [-C clustername] [-T authentication-options] [-G [special | mount-point]
[-o only one]] [-A adapter-options] [-B junction-options] [-m cable-options]
[-w netaddr-options]]

media-mnt-pt/Solaris_arch/Product/sun_cluster/Solaris_ver/Tools/scinstall
-i [-k] [-d cdimage-dir] [-s srvc[,…]] [-M patch-options]
[-N cluster-member [-C clustername] [-G {special | mount-point}]
[-A adapter-options] [-B junction-options] [-m cable-options]]

media-mnt-pt/Solaris_arch/Product/sun_cluster/Solaris_ver/Tools/scinstall
-a install-dir [-d cdimage-dir]

media-mnt-pt/Solaris_arch/Product/sun_cluster/Solaris_ver/Tools/scinstall
-c jumpstart-dir -h nodename [-d cdimage-dir] [-s srvc[,…]]
[-M patch-options] [-F [-C clustername] [-G {special | mount-point}]]
[-T authentication-options [-A adapter-options] [-B junction-options]
[-m cable-options] [-w netaddr-options]]

media-mnt-pt/Solaris_arch/Product/sun_cluster/Solaris_ver/Tools/scinstall
-c jumpstart-dir -h nodename [-d cdimage-dir] [-s srvc[,…]]
[-M patch-options] [-N cluster-member [-C clustername]
[-G {special | mount-point}] [-A adapter-options] [-B junction-options]
[-m cable-options]]

media-mnt-pt/Solaris_arch/Product/sun_cluster/Solaris_ver/Tools/scinstall
-u update [upgrade-options] [-M patch-options]

/usr/cluster/bin/scinstall -r [-N cluster-member] [-G mount-point]

scinstall -p [-v]

The scinstall command performs a number of Sun Cluster node initialization,
installation, and upgrade tasks, as follows.

� The “install” form (-i) of scinstall installs and initializes a node as a new Sun
Cluster member. It either establishes the first node in a new cluster (-F) or adds a
node to an already-existing cluster (-N). Always run this form of the scinstall
command from the node that is being installed or added to the cluster.

� The “set up install server” form (-a) of scinstall creates an install-dir on any
Solaris machine from which the command is run and then copies a Sun Cluster
installation media to that directory. Typically, you would create the target directory
on an NFS server which has also been set up as a Solaris install server (see the
setup_install_server(1M) man page).

� The “add install client” form (-c) of scinstall establishes the given nodename as
a custom JumpStart client in the jumpstart-dir on the machine from which the
command is run. Typically, the jumpstart-dir is located on an already-established

scinstall(1M)

NAME

SYNOPSIS

DESCRIPTION

SC31 1m 139

Solaris install server configured to JumpStart the Solaris nodename install client (see
the add_install_client(1M) man page).

� The “remove” form (-r) of scinstall removes cluster configuration information
and uninstalls Sun Cluster software from a cluster node.

� The “upgrade” form (-u) of scinstall upgrades a Sun Cluster node. Always run
this form of the scinstall command from the node being upgraded.

� The “print release” form (-p) of scinstall prints release and package versioning
information for the Sun Cluster software installed on the node from which the
command is run.

Without options, the scinstall command attempts to run in interactive mode.

Run all forms of the scinstall command other than the “print release” form (-p) as
superuser.

The scinstall command is located in the Tools directory on the Sun Cluster
installation media. If the Sun Cluster installation media has been copied to a local
disk, media-mnt-pt is the path to the copied Sun Cluster media image. The SUNWscu
software package also includes a copy of the scinstall command.

The following options direct the basic form and function of the command.

None of the following options can be combined on the same command line.

-a
Specifies the “set up install server” form of the scinstall command. This option
is used to create an install-dir on any Solaris machine from which the command is
run and then make a copy of the Sun Cluster media in that directory.

If the install-dir already exists, the scinstall command returns an error message.
Typically, the target directory is created on an NFS server which has also been set
up as a Solaris install server (see the setup_install_server(1M) man page).

-c
Specifies the “add install client” form of the scinstall command. This option
establishes the given nodename as a custom JumpStart client in the jumpstart-dir on
the machine from which you issued the command.

Typically, the jumpstart-dir is located on an already-established Solaris install server
that is configured to JumpStart the nodename install client (see the
add_install_client(1M) man page).

scinstall(1M)

OPTIONS

Basic Options

140 Sun Cluster Reference Manual for Solaris OS • Last Revised 11 April 2005

This form of the command enables fully-automated cluster installation from a
JumpStart server by helping to establish each cluster node, or nodename, as a custom
JumpStart client on an already-established Solaris JumpStart server. The command
makes all necessary updates to the rules file in the given jumpstart-dir. In addition,
special JumpStart class files and finish scripts that support cluster initialization
are added to the jumpstart-dir, if they are not already installed. Configuration data
that is used by the Sun Cluster-supplied finish script is established for each node
that you set up by using this method.

Users can customize the Solaris class file that the -c option to the scinstall
command installs by editing the file directly in the normal way. However, it is
always important to ensure that the Solaris class file defines an acceptable Solaris
installation for a Sun Cluster node. Otherwise, the installation might need to be
restarted.

Both the class file and finish script installed by this form of the command are
located in the following directory:

jumpstart-dir/autoscinstall.d/3.1

The class file is installed as autoscinstall.class, and the finish script is
installed as autoscinstall.finish.

For each cluster nodename that you set up with the -c option as an automated Sun
Cluster JumpStart install client, this form of the command sets up a configuration
directory as the following:

jumpstart-dir/autoscinstall.d/nodes/nodename

Options for specifying Sun Cluster node installation and initialization are saved in
files located in these directories. Never edit these files directly.

You can customize the JumpStart configuration in the following ways:

� You can add a user-written finish script as the following file name:

jumpstart-dir/autoscinstall.d/nodes/nodename/finish

The scinstall command runs the user-written finish scripts after it runs the
finish script supplied with the product.

� If the directory

jumpstart-dir/autoscinstall.d/nodes/nodename/archive

exists, the scinstall command copies all files in that directory to the new
installation. In addition, if an etc/inet/hosts file exists in that directory,
scinstall uses the hosts information found in that file to supply
name-to-address mappings when a name service (NIS/NIS+/DNS) is not used.

� If the directory

jumpstart-dir/autoscinstall.d/nodes/nodename/patches

scinstall(1M)

SC31 1m 141

exists, the scinstall command installs all files in that directory by using the
patchadd(1M) command. This directory is intended for Solaris software
patches and any other patches that must be installed before Sun Cluster software
is installed.

You can create these files and directories individually or as links to other files or
directories that exist under jumpstart-dir.

See the add_install_client(1M) man page and related JumpStart
documentation for more information about how to set up custom JumpStart install
clients.

Run this form of the command from the install-dir (see the -a form of scinstall)
on the JumpStart server that you use to initialize the cluster nodes.

Before you use the scinstall command to set up a node as a custom Sun Cluster
JumpStart client, you must first establish each node as a Solaris install client. The
JumpStart directory you specify with the -c option to the add_install_client
command should be the same directory you specify with the -c option to
scinstall. However, the scinstall jumpstart-dir does not have a server
component to it, since you must run the scinstall command from a Solaris
JumpStart server.

To remove a node as a custom Sun Cluster JumpStart client, simply remove it from
the rules file.

-i
Specifies the “install” form of the scinstall command. This form of the
command can both install Sun Cluster software and initialize a node as a new
cluster member. The new node is the node from which you issue the scinstall
command.

If the -F option is used with -i, scinstall establishes the node as the first node
in a new cluster.

If the -o option is used with the -F option, scinstall establishes a single-node
cluster.

If the -N option is used with -i, scinstall adds the node to an already-existing
cluster.

If the -s option is used and the node is an already-established cluster member, only
the specified srvc (data service) is installed.

-p
Prints release and package versioning information for the Sun Cluster software
installed on the node from which the command is run. This is the only form of
scinstall that you can run as a non-root user.

-r
Removes cluster configuration information and uninstall Sun Cluster software from
a cluster node. You can then reinstall the node or remove the node from the cluster.

scinstall(1M)

142 Sun Cluster Reference Manual for Solaris OS • Last Revised 11 April 2005

You must run the command on the node that you uninstall, from a directory that is
not used by the cluster software, and the node must be in non-cluster mode.

-u update
Upgrades Sun Cluster software on the node from which you invoke the
scinstall command. See Upgrade Options below for information specific to
the type of upgrade that you intend to perform.

You can combine additional options with the basic options to modify the default
behavior of each form of the command. Refer to the SYNOPSIS section for additional
details about which of these options are legal with which forms of scinstall.

The following additional options are supported:

-d cdimage-dir
Specifies an alternate directory location for finding the media images of the Sun
Cluster product and unbundled Sun Cluster data services. The -d option is legal
with all forms of the command other than the interactive and “print release” (-p)
forms.

If the -d option is not specified, the default directory is the media image from
which the current instance of the scinstall command is started.

-h nodename
Specifies the node name. The -h option is only legal with the “add install client”
(-c) form of the command.

The nodename is the name of the cluster node (that is, JumpStart install client) to set
up for custom JumpStart installation.

-k
Specifies that scinstall will not install Sun Cluster software packages. The -k
option is only legal with the “install” (-i) form of the command.

If this option is not specified, the default behavior is to install any Sun Cluster
packages that are not already installed.

-s srvc[,…]
Specifies a data service. The -s option is only legal with the “install” (-i),
“upgrade” (-u), or “add install client” (-c) forms of the command to install or
upgrade the specified srvc (data service package).

If a data service package cannot be located, a warning message is printed, but
installation otherwise continues to completion.

-v
Prints release information in verbose mode. The -v option is only legal with the
“print release” (-p) form of the command to specify verbose mode.

In the verbose mode of “print release,” the version string for each installed Sun
Cluster software package is also printed.

scinstall(1M)

Additional
Options

SC31 1m 143

-F [config-options]
Establishes the first node in the cluster. The -F option is only legal with the
“install” (-i), “upgrade” (-u), or “add install client” (-c) forms of the command.

The installation of secondary nodes will be blocked until the first node is fully
installed, instantiated as a cluster member, and prepared to perform all necessary
tasks associated with adding new cluster nodes. If the -F option is used with the
-o option, a single-node cluster is installed and no additional nodes can be added
during the installation process.

-N cluster-member [config-options]
Specifies the cluster member. The -N option is only legal with the “install” (-i),
“add install client” (-c), “remove” (-r), or “upgrade” (-u) forms of the command.

� When used with the -i, -c, or -u option, the -N option is used to add
additional nodes to an existing cluster. The given cluster-member is typically the
name of the first cluster node established for the cluster. However, it can be the
name of any cluster node already participating as a cluster member. The node
being initialized is added to the cluster of which cluster-member is already an
active member. The process of adding a new node to an existing cluster involves
updating the configuration data on the given cluster-member, as well as creating
a copy of the configuration database onto the local file system of the new node.

� When used with the -r option, the -N option specifies the cluster-member, which
can be any other node in the cluster that is an active cluster member. The
scinstall command contacts the specified cluster-member to make updates to
the cluster configuration. If the -N option is not given, scinstall makes a best
attempt to find an existing node to contact.

The config-options which can be used with the -F option or -N cluster-member option
are as follows.

media-mnt-pt/Solaris_arch/Product/sun_cluster/Solaris_ver/Tools/scinstall
{-i | -c jumpstart-dir -h nodename}
[-F

[-C clustername]
[-G {special | mount-point}]
[-T authentication-options]
[-A adapter-options]
[-B junction-options]
[-m endpoint=[this-node]:name[@port],endpoint=[node:]name[@port]]
[-o]
[-w netaddr-options]

]

media-mnt-pt/Solaris_arch/Product/sun_cluster/Solaris_ver/Tools/scinstall
{-i | -c jumpstart-dir -h nodename}
[-N cluster-member

[-C clustername]
[-G {special | mount-point}]
[-A adapter-options]
[-B junction-options]
[-m endpoint=cable-options]

]

scinstall(1M)

Configuration
Options

144 Sun Cluster Reference Manual for Solaris OS • Last Revised 11 April 2005

-m cable-options
Specifies the cluster interconnect connections. This option is only legal when the -F
or -N option is also given.

The -m option helps to establish the cluster interconnect topology by configuring
the cables connecting the various ports found on the cluster transport adapters and
junctions. Each new cable configured with this form of the command establishes a
connection from a cluster transport adapter on the current node to either a port on
a cluster transport junction or an adapter on another node already in the cluster.

If you specify no -m options, the scinstall command attempts to configure a
default cable. However, if you configure more than one transport adapter or
junction with a given instance of scinstall, it is not possible for scinstall to
construct a default. The default is to configure a cable from the singly-configured
transport adapter to the singly-configured (or default) transport junction.

The -m cable-options are as follows.

-m endpoint=[this-node]:name[@port],endpoint=[node:]name[@port]

You must always specify two endpoint options with each occurrence of the -m
option. The name component of the option argument specifies the name of either a
cluster transport adapter or a cluster transport junction at one of the endpoints of a
cable.

� If you specify the node component, the name is the name of a transport adapter.
� If you do not specify the node component, the name is the name of a transport

junction.

If you specify no port component, the scinstall command attempts to assume a
default port name. The default port for an adapter is always 0. The default port
name for a junction endpoint is equal to the node ID of the node being added to the
cluster.

Refer to the individual cluster transport adapter and cluster transport junction man
pages for more information regarding port assignments and other requirements. The
man pages for cluster transport adapters use the naming convention
scconf_transp_adap_adapter(1M). The man pages for cluster transport junctions
use the naming convention scconf_transp_jct_switch(1M).

Before you can configure a cable, you must first configure the adapters and/or
junctions at each of the two endpoints of the cable (see -A and -B).

The first line in the synopsis given at the beginning of this subsection attempts to
express that at least one of the two endpoints must be an adapter on the node being
installed. And so, it is not necessary to include this-node explicitly. The following is
an example of adding a cable:

-m endpoint=:hme1,endpoint=switch1

scinstall(1M)

SC31 1m 145

In this example, port 0 of the hme1 transport adapter on this node (the node that
scinstall is installing) is cabled to a port on transport junction switch1. The
port used on switch1 defaults to the node number of this node.

-o
Specifies installation and configuration of a single node cluster. This option is only
legal when the -i and -F options are also given.

Other - F options are supported, but not required. If the cluster name is not given,
the name of the node is used as the cluster name. Transport configuration options
may be given, and will be stored in the CCR. The -G option is only required if the
global devices file system is not the default (/globaldevices). Once a single-node
cluster is installed, it is not necessary to configure a quorum device or to disable
installmode.

-w netaddr-options
Specifies the private network address. This option is only legal when the -F option
is also given.

Use this option to specify a private network address (networks(4) and, optionally,
netmasks(4)) for use on the private network. You should only need to use this
option when the default private network address collides with an address already
in use within the enterprise. The default network address is 172.16.0.0, with a
default netmask of 255.255.0.0.

The -w netaddr-options are as follows:

–w netaddr=netaddr[,netmask=netmask]

netaddr=netaddr
Specifies the private network address. The default netaddr for the private
interconnect, or cluster transport, is 172.16.0.0. The last two octets of this
address must always be zero.

[netmask=netmask]
Specifies the netmask. The default netmask for the private interconnect is
255.255.0.0. The last two octets of the netmask must always be zero, and
there cannot be any holes in the mask.

-A adapter-options
Specifies the transport adapter and, optionally, its transport type. This option is
only legal when the -F or -N option is also given.

Each occurrence of the -A option configures a cluster transport adapter attached to
the node from which scinstall is run.

If no -A options are given, an attempt is made to use a default adapter and
transport type. The default transport type is dlpi. In Sun Cluster 3.1 for SPARC,
the default adapter is hme1.

When the adapter transport type is dlpi, you do not need to specify the trtype
suboption. In this case, you can use either of the following two forms to specify the
-A adapter-options:

scinstall(1M)

146 Sun Cluster Reference Manual for Solaris OS • Last Revised 11 April 2005

–A [trtype=type,]name=adaptername[,vlanid=vlanid][,other-options]
-A adaptername

[trtype=type]
Specifies the transport type of the adapter. Use the trtype option with each
occurrence of the -A option for which you want to specify the transport type of
the adapter. An example of a transport type is dlpi (see the
sctransp_dlpi(7P) man pages).

The default transport type is dlpi.

name=adaptername
Specifies the adapter name. You must use the name subobtion with each
occurrence of the -A option to specify the adaptername. An adaptername is
constructed from a device name, immediately followed by a physical-unit number
(for instance, hme0).

If you specify no other suboptions with the -A option, you can specify the
adaptername as a standalone argument to the -A option (that is, -A adaptername).

vlanid=vlanid
Specifies the VLAN ID of the tagged-VLAN adapter.

[other-options]
Specifies additional adapter options. When a particular adapter provides any
other options, you can specify them by using the -A option. Refer to the
individual man page for the cluster transport adapter for information on any
special options that you might use with the adapter.

-B junction-options
Specifies the transport junction. This option is only legal when the -F or -N option
is also given.

Each occurrence of the -B option configures a cluster transport junction. Examples
of such devices can include, but are not limited to, Ethernet switches, other
switches of various types, and rings.

If you specify no -B options, scinstall attempts to add a default junction at the
time that the first node is instantiated as a cluster node. When you add additional
nodes to the cluster, no additional junctions are added by default. However, you
can add them explicitly. The default junction is named switch1, and it is of type
switch.

When the junction type is type switch, you do not need to specify the type
suboption. In this case, you can use either of the following two forms to specify the
-B junction-options.

-B [type=type,]name=name[,other-options]
-B name

If a cluster transport junction is already configured for the given junction name,
scinstall prints a message and ignores the -B option.

scinstall(1M)

SC31 1m 147

If you use directly-cabled transport adapters, you are not required to configure any
transport junctions. To avoid configuring default transport junctions, use the
following special -B option:

-B type=direct

[type=type]
Specifies the transport junction type. You can use the type option with each
occurrence of the -B option. Ethernet switches are an example of a cluster
transport junction which is of the junction type switch. See the individual man
page for the cluster transport junction for more information.

You can specify the type suboption as direct to suppress the configuration of
any default junctions. Junctions do not exist in a transport configuration made
up of only directly-connected transport adapters. When the type suboption is
set to direct, you do not need to use the name suboption.

name=name
Specifies the transport junction name. Unless the type is direct, you must use
the name subobtion with each occurrence of the -B option to specify the
transport junction name. The name can be up to 256 characters in length and is
made up of either letters or digits, with the first character being a letter. Each
transport junction name must be unique across the namespace of the cluster.

If no other suboptions are needed with -B, you can give the junction name as a
standalone argument to -B (that is, -B name).

[other-options]
Specifies additional transport junction options. When a particular junction type
provides other options, you can specify them with the -B option. Refer to the
individual man page for the cluster transport junction for information on any
special options that you might use with them.

-C clustername
Specifies the name of the cluster. This option is only legal when the -F or -N option
is also given.

� If the node being installed is the first node in a new cluster, the default
clustername is the same as the name of the node being installed (or when
upgrading, if it exists, the current cluster’s clustername will be used as the
default clustername).

� If the node being installed is being added to an already-existing cluster, the
default clustername is the name of the cluster to which cluster-member already
belongs.

It is an error to specify a clustername that is not the name of the cluster to which
cluster-member belongs.

-G {special | mount-point}
Specifies a raw special disk device or a file system for the global-devices mount
point. This option is only legal when the -F, -N, or -r option is also given.

scinstall(1M)

148 Sun Cluster Reference Manual for Solaris OS • Last Revised 11 April 2005

� When used with the -F or -N option, the -G option specifies the raw special disk
device or the file system mount-point to use in place of the /globaldevices
mount point. Each cluster node must have a local file system mounted globally
on /global/.devices/node@nodeID before the node can successfully
participate as a cluster member. However, since the node ID is not known until
the scinstall command is run, scinstall attempts to add the necessary
entry to the vfstab(4) file when it does not find a
/global/.devices/node@nodeID mount.

By default, the scinstall command looks for an empty file system mounted
on /globaldevices. If such a file system is provided, the scinstall
command makes the necessary changes to the vfstab file. These changes create
a new /global/.devices/node@nodeID mount point and remove the default
/globaldevices mount point. However, if
/global/.devices/node@nodeID is not mounted and an empty
/globaldevices file system is not provided, the -G option must be given to
specify the raw special disk device or the file system mount-point to use in place
of /globaldevices.

If a raw special disk device name is given and
/global/.devices/node@nodeID is not mounted, a file system is created on
the device using the newfs(1M) command. It is an error to supply the name of a
device with an already-mounted file system.

As a guideline, this file system should be at least 512 Mbytes in size. If this
partition or file system is not available, or is not large enough, it might be
necessary to reinstall the Solaris operating environment.

� When used with the -r option, the -G mount-point option specifies the new
mount-point name to use to restore the former /global/.devices mount
point. If the -G option is not specified, the mount point is renamed
/globaldevices by default.

-T authentication-options
Specifies node-authentication options for the cluster. This option is only legal when
the -F option is also given.

Use this option to establish authentication policies for nodes that attempt to add
themselves to the cluster configuration. Specifically, when a machine requests that it
be added to the cluster as a cluster node, a check is made to determine whether or
not the node has permission to join. If the joining node has permission, it is
authenticated and allowed to join the cluster.

You can only use the -T option with the scinstall command when you set up
the very first node in the cluster. If the authentication list or policy needs to be
changed on an already-established cluster, use the scconf(1M) command.

The default is to allow any machine to add itself to the cluster.

The -T authentication-options are as follows.

-T node=nodename[,...][,authtype=authtype]

scinstall(1M)

SC31 1m 149

node=nodename[,…]
Specifies node names to add to the node authentication list. You must specify at
least one node suboption to the -T option. This option is used to add node
names to the list of nodes that are able to install and configure themselves as
nodes in the cluster. If the authentication list is empty, any node can request that
it be added to the cluster configuration. However, if the list has at least one name
in it, all such requests are authenticated using the authentication list. You can
modify or clear this list of nodes at any time by using the scconf(1M) command
from one of the active cluster nodes.

[authtype=authtype]
Specifies the type of node authentication. The only currently-supported
authtypes are des and sys (or, unix). If no authtype is specified, sys is the
default.

If you will you specify des (Diffie-Hellman) authentication, first add entries to
the publickey(4) database for each cluster node to be added before you run the
-T option to the scinstallcommand.

You can change the authentication type at any time by using the scconf(1M)
command from one of the active cluster nodes.

The -M option installs the patches in the patch directory during the scinstall
process by using the patchadd(1M) command. The patch-options to -M are as follows.

media-mnt-pt/Solaris_arch/Product/sun_cluster/Solaris_ver/Tools/scinstall
[-M patchdir=dirname[,patchlistfile=filename]]

Note – If you use the -M option, the scinstall command ignores the patch directory
inside the jumpstart-dir directory.

patchdir=dirname Specifies the path to the directory that contains the
patches required for Sun Cluster. This directory must
be on a file system that is accessible by all nodes.

If you are including Solaris patches in the
/var/cluster/patches directory, view the
/etc/release file to see the exact version of Solaris
software that is installed on a node.

patchlistfile=filename Specifies a file containing the list of patches to install. If
you do not specify a patch list file, the scinstall
command will install all the patches in the dirname
directory, including tarred, jarred, and zipped patches.

For information on creating a patch list file, refer to the
patchadd(1M) manual page.

Use the -u update option to upgrade Sun Cluster software. The upgrade-options to
-u update are as follows.

scinstall(1M)

Patch Options

Upgrade Options

150 Sun Cluster Reference Manual for Solaris OS • Last Revised 11 April 2005

media-mnt-pt/Solaris_arch/Product/sun_cluster/Solaris_ver/Tools/scinstall
-u update [-s {srvc[,…] | all}] [-d cdimage-dir] [-O]
[-S { interact | testaddr=testipaddr@adapter[,testaddr=…]}]

-s {srvc[,…] | all}
Upgrades data services. If the -s option is not specified, only cluster framework
software is upgraded. If the -s option is specified, only the specified data services
are upgraded.

The following suboption to the -s option is specific to the update mode of
upgrade:

all Upgrades all data services.

This suboption to -s is only legal with the update mode.

This suboption upgrades all data services currently installed on the
node, except those data services for which an update version does not
exist in the update release.

The -s option is not compatible with the -S test IP address option.

-O
Overrides the hardware validation and bypasses the version-compatibility checks.

-S {interact | testaddr=testipaddr@adapter[,testaddr=…]
Specifies test IP addresses. This option allows the user either to direct the command
to prompt the user for the required IP Network Multipathing addresses or to
supply a set of IP Network Multipathing test addresses on the command line for
the conversion of NAFO to IP Network Multipathing groups. See “Introducing
IPMP (Overview)” in System Administration Guide: IP Services for additional
information on IP Network Multipathing.

Note – The -S option is only required when one or more of the NAFO adapters in
pnmconfig is not already converted to use IP Network Multipathing.

The suboptions of the -S option are the following:

interact
Prompt the user to supply one or more IP Network Multipathing test addresses
individually.

testaddr=testipaddr@adapter
Allow the user to specify one or more IP Network Multipathing test addresses
without being prompted for the list.

testipaddr
The IP address or hostname (in the /etc/inet/hosts file) that will be
assigned as routable, no-failover and deprecated test IP address to the
adapter. IP Network Multipathing uses test addresses to detect failures and
repairs. See “IPMP Addressing” in System Administration Guide: IP Services for
additional information on configuring test IP addresses.

scinstall(1M)

SC31 1m 151

adapter
The name of the NAFO network adapter to be added to an IP Network
Multipathing group.

It is illegal to combine both the interact and the testaddr suboptions on the
same command line.

The following sequence of commands installs and initializes a typical two-node cluster
with Sun Cluster software for Solaris 9 on SPARC.

Insert the framework installation media on node1 and issue the following commands:

node1# cd media-mnt-pt/Solaris_sparc/Product/sun_cluster/Solaris_9/Tools/
node1# ./scinstall -i -F

Insert the framework installation media on node2 and issue the following commands:

node2# cd media-mnt-pt/Solaris_sparc/Product/sun_cluster/Solaris_9/Tools/
node2# ./scinstall -i -N node1

The following commands install and initialize a single-node cluster with Sun Cluster
software for Solaris 9 on SPARC, with all defaults accepted. Insert the framework
installation media and issue the following commands:

cd media-mnt-pt/Solaris_sparc/Product/sun_cluster/Solaris_9/Tools/
./scinstall -i -F -o

The following sequence of commands arranges to set up a Solaris installation server to
install and initialize Sun Cluster software, for Solaris 9 on SPARC, on a three-node
SCI–PCI cluster. Insert the framework installation media on the installation server and
issue the following commands:

cd media-mnt-pt/Solaris_sparc/Product/sun_cluster/Solaris_9/Tools/
./scinstall -a /export/sc3.1
cd /export/sc3.1/Solaris_sparc/Product/sun_cluster/Solaris_9/Tools/
./scinstall –c /export/jumpstart -h node1 -F -A hme2
./scinstall –c /export/jumpstart -h node2 -N node1 -A hme2

./scinstall –c /export/jumpstart -h node3 -N node1 -A hme2

The following sequence of commands upgrades the framework and data service
software of a cluster to the next Sun Cluster release. The first example uses the Sun
Cluster version for Solaris 9 on SPARC and the second example uses the Sun Cluster
version for Solaris 9 on x86. Carry out these operations on each cluster node. Insert the
framework installation media and issue the following commands:

SPARC

ok> boot -x
cd media-mnt-pt/Solaris_sparc/Product/sun_cluster/Solaris_9/Tools/
./scinstall -u update -S interact
cd /

eject cdrom

scinstall(1M)

EXAMPLES

Installing and
Initializing a

Two-Node Cluster

Installing and
Initializing a
Single-Node

Cluster

Setting Up a
Solaris Installation

Server

Upgrading the
Framework and

Data Service
Software

152 Sun Cluster Reference Manual for Solaris OS • Last Revised 11 April 2005

Insert the Agents installation media and issue the following commands:

/usr/cluster/bin/scinstall -u update -s all -d /cdrom/cdrom0

reboot

x86

<<< Current Boot Parameters >>>
Boot path: /pci@1,0/pci8086,340f@7,1/sd@0,0:a
Boot args:

Type b [file-name] [boot-flags] <ENTER> to boot with options
or i <ENTER> to enter boot interpreter
or <ENTER> to boot with defaults

<<< timeout in 5 seconds >>>

Select (b)oot or (i)nterpreter: b -x
...
cd media-mnt-pt/Solaris_x86/Product/sun_cluster/Solaris_9/Tools/
./scinstall -u update -S interact
cd /

eject

Insert the Agents installation media and issue the following commands:

/usr/cluster/bin/scinstall -u update -s all -d /cdrom/cdrom0

reboot

The following sequence of commands places the node in non-cluster mode, then
removes Sun Cluster software and configuration information from the cluster node,
renames the global-devices mount point to the default name /globaldevices, and
performs cleanup:

SPARC

ok> boot -x
cd /

/usr/cluster/bin/scinstall -r

x86

<<< Current Boot Parameters >>>
Boot path: /pci@1,0/pci8086,340f@7,1/sd@0,0:a
Boot args:

Type b [file-name] [boot-flags] <ENTER> to boot with options
or i <ENTER> to enter boot interpreter
or <ENTER> to boot with defaults

<<< timeout in 5 seconds >>>

Select (b)oot or (i)nterpreter: b -x
...
cd /

/usr/cluster/bin/scinstall -r

The following exit values are returned:

scinstall(1M)

Uninstalling a
Node

EXIT STATUS

SC31 1m 153

0 Successful completion.

non-zero An error occurred.

media-mnt-pt/.cdtoc

media-mnt-pt/Solaris_arch/Product/sun_cluster/.producttoc

media-mnt-pt/Solaris_arch/Product/sun_cluster/Solaris_ver/ \
Packages/.clustertoc

media-mnt-pt/Solaris_arch/Product/sun_cluster/Solaris_ver/ \
Packages/.order

media-mnt-pt/Solaris_arch/Product/sun_cluster/Solaris_ver/ \
Tools/defaults

media-mnt-pt/components/srvc/Solaris_ver/Packages/.clustertoc

media-mnt-pt/components/srvc/Solaris_ver/Packages/.order

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability Sun Cluster installation media, Java Enterprise
Systems installation media, SUNWscu

Interface Stability Evolving

add_install_client(1M), newfs(1M), patchadd(1M), sccheck(1M),
scconf(1M), scconf_transp_adap_bge(1M), scconf_transp_adap_eri(1M),
scconf_transp_adap_ge(1M), scconf_transp_adap_hme(1M),
scconf_transp_adap_ibd(1M), scconf_transp_adap_qfe(1M),
scconf_transp_adap_sci(1M), scconf_transp_jct_dolphinswitch(1M),
scconf_transp_jct_etherswitch(1M), scconf_transp_jct_ibswitch(1M),
setup_install_server(1M), clustertoc(4), netmasks(4), networks(4),
order(4), packagetoc(4), sctransp_dlpi(7P)

Sun Cluster Software Installation Guide for Solaris OS

System Administration Guide: IP Services

scinstall(1M)

FILES

ATTRIBUTES

SEE ALSO

154 Sun Cluster Reference Manual for Solaris OS • Last Revised 11 April 2005

scnas – manage network-attached storage (NAS) device configuration data for Sun
Cluster.

scnas -a [-H] [-n] -h device-name -t device-type -o specific-options
[-f input-file]

scnas -c [-H] [-n] -h device-name -o specific-options [-f input-file]

scnas -r [-H] -h device-name

scnas -p [-H] [-h device-name] [-t device-type]

scnas [-H]

The scnas command manages NAS devices in a Sun Cluster configuration. To
manage NAS directories in the cluster, use the scnasdir(1M) command.

You can use the scnas command to create the NAS device configuration, to update
the NAS type-specific properties, and to remove the device configuration from Sun
Cluster. The options to this command are processed in the order in which they are
typed on the command line.

The scnas command can only be run from an active cluster node. The results of
running the command are always the same, regardless of the nodethat is used.

All forms of the scnas command accept the -H option. Specifying -H displays help
information. All other options are ignored. Help information is also printed when
scnas is run without options.

The NAS device must be set up before using the scnas command to manage a NAS
device. Refer to the documentation for the particular NAS device for procedures for
setting up a device.

The following options are common to all forms of the scnas command:

-H
If this option is specified on the command line at any position, the command prints
help information. All other options are ignored and are not executed. Help
information is also printed if scnas is run with no options.

-n
If this option is specified on the command line at any position, the scnas
command only checks the usage and does not write the configuration data. If the
-n option is specified with the -f option, the scnas command checks the input file
for the password.

The following options modify the basic form and function of the scnas command.
None of these options can be combined on the same command line.

scnas(1M)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

Basic Options

SC31 1m 155

-a
Specifies the add form of the scnas command. The -a option can be used to add a
NAS device into the Sun Cluster configuration. Additional associated properties of
the device need to be specified.

-c
Specifies the change form of the scnas command. The -c option is used to
change specific NAS device properties.

-r
Specifies the remove form of the scnas command. The -r option is used to
remove the NAS device from the Sun Cluster configuration. Before removing a
device, all its exported directories must be removed by using scnasdir.

-p
Specifies the print form of the scnas command. When no other options are
given, the -p option prints a listing of all the current NAS devices configured in
Sun Cluster and all their associated properties. This option can be used with
additional options to query a particular device or a particular type of device.

The following additional options can be combined with one or more of the previously
described basic options to configure all properties for a device. The device does not
need to be online to use these options. Refer to the SYNOPSIS section to see the
options that can be used with each form of scnas.

The additional options are as follows:

-h device-name
Use this option to specify the name of the NAS device in the Sun Cluster
configuration. The device name identifies the device and can be used to remotely
access the device by using rhs or telnet.

This device name must be specified for the add, change, and remove forms of the
scnas command.

-t device-type
The NAS device type. Currently, the NAS device type is identified by the vendor
name.

For example, the NAS device type for Network Appliance, Inc. is netapp. This
option is required when you add a NAS device to the Sun Cluster configuration.

-o specific-options
Use this option to provide the properties that are specific to a NAS device type. For
example, the NAS device from Network Appliance, Inc. has the following property:

-o userid=userid

The userid property is used by the cluster to perform administrative duties on the
device. When you add a userid to the device configuration, you are prompted for
its password. You can also place the password in a text file and use it by specifying
the -f option.

scnas(1M)

Additional
Options

156 Sun Cluster Reference Manual for Solaris OS • Last Revised 19 January 2005

-f input-file
For security reasons, the password cannot be specified in command-line options. To
keep the password secure, place it in a text file and specify the file by using the -f
option. If you do not specify an input file for the password, the command prompts
for the password.

Set permissions of the input file to readable by root and prohibit access by either
group or world.

In the input file, the password cannot be entered across multiple lines. Leading
white spaces and tabs are ignored. Comments begin with an unquoted # sign, and
continue to the next new line.

The parser ignores all comments. When you use an input file for the device user
password, the # sign cannot be part of the password.

EXAMPLE 1 Adding a NAS Device to a Cluster

The following scnas command adds a Network Appliance, Inc. storage system to the
Sun Cluster configuration.

scnas -a -h netapp1 -t netapp -o userid=root

Please enter password:

EXAMPLE 2 Removing a NAS Device From a Cluster

The following scnas command removes a NAS device from the Sun Cluster
configuration.

scnas -r -h netapp1

The following exit values are returned:

0 The command executed successfully.

nonzero An error has occurred.

scconf(1M), scnasdir(1M)

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

Stability Evolving

scnas(1M)

EXAMPLES

EXIT STATUS

SEE ALSO

ATTRIBUTES

SC31 1m 157

scnasdir – manage the exported directories on a network-attached storage (NAS)
device in a Sun Cluster configuration.

scnasdir [-a] [-H] [-n] -h device-name [-d directory [-d directory…]]
[-f input-file]

scnasdir -r [-H] [-n] -h device-name [-d all | -d directory
[-d directory…]] [-f input-file]

scnasdir -p [-H] [-h device-name] [-t device-type]

scnasdir [-H]

The scnasdir command manages the exported directories on NAS devices in a Sun
Cluster configuration. The device must already have been configured in the cluster by
using the scnas command.

The scnasdir command can be used to add directories to a device’s cluster
configuration, to remove directories from a device’s cluster configuration, and to print
the directories of a particular device or particular device types.

The options in this command are processed in the order in which they are typed on
the command line. The scnasdir command can only be run from an active cluster
node. The results of running the command are always the same, regardless of the node
that is used.

All forms of the scnasdir command accept the -H option. Specifying -H displays
help information, and all other options are ignored and not executed. Help
information is also printed when scnasdir is run without options.

The following options are common to all forms of the scnasdir command:

-H
If this option is specified on the command line at any position, the command prints
help information. All other options are ignored and are not executed. Help
information is also printed if scnasdir is run with no options.

-n
If this option is specified on the command line at any position, the scnasdir
command only checks the usage and does not write the configuration data. If the
-n option is specified with the -f option, the scnasdir command displays the
data that will be processed for the user to review.

The following options modify the basic form and function of the scnasdir
command. None of these options can be combined on the same command line.

-a
Specifies the add form of the scnasdir command. The -a option can be used to
add directories into the device’s Sun Cluster configuration.

scnasdir(1M)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

Basic Options

158 Sun Cluster Reference Manual for Solaris OS • Last Revised 1 June 2004

-r
Specifies the remove form of the scnasdir command. The -r option is used to
remove all the directories, or the specified directories of a NAS device from its Sun
Cluster configuration.

-p
Specifies the print form of the scnasdir command. When no other option is
given, this -p option prints a listing of all the directories of all the NAS devices
configured in Sun Cluster. This option can be used with additional options to query
a particular device or particular types of NAS devices.

The following additional options can be combined with one or more of the previously
described basic options to manage the directories of a device.

The additional options are as follows:

-h device-name
Use this option to specify the name of the NAS device in the Sun Cluster
configuration. The -h option identifies the device and can be used to remotely
access the device by using rhs or telnet.

This device name must be specified for the add, change, and remove forms of the
scnasdir command.

-d all | directory
Use this option to list the directories (or volumes) exported on the NAS device to be
configured into the Sun Cluster. These directories must be created and exported on
the device before using scnasdir. See the documentation for the NAS device type
for procedures for exporting directories.

The -d all option can only be accepted by the remove format, -r.

The directories must be specified by using either the -d option, or the -f option,
for the add and remove forms of the scnasdir command.

-f input-file
Directories can be placed into a plain text file, one directory per line, and used with
the -f option. Leading white spaces and tabs are ignored. Comments begin with an
unquoted # sign, and continue to the next new line. The parser ignores all
comments.

EXAMPLE 1 Adding Two NAS Storage Device Directories to a Cluster

The following scnasdir command adds two directories of a NAS device to the Sun
Cluster configuration.

scnasdir -a -h netapp1 -d /vol/DB1 -d /vol/DB2

EXAMPLE 2 Removing All of a NAS Storage Device’s Directories From a Cluster

The following scnasdir command removes all the directories that are configured for
a NAS device.

scnasdir(1M)

Additional
Options

EXAMPLES

SC31 1m 159

EXAMPLE 2 Removing All of a NAS Storage Device’s Directories From a Cluster
(Continued)

scnasdir -r -h netapp1 -d all

The following exit values are returned:

0 The command executed successfully.

nonzero An error has occurred.

scconf(1M), scnas(1M)

attributes(5)

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

scnasdir(1M)

EXIT STATUS

SEE ALSO

ATTRIBUTES

160 Sun Cluster Reference Manual for Solaris OS • Last Revised 1 June 2004

scrgadm – manage registration and unregistration of resource types, resource groups,
and resources

Show Current Configuration

scrgadm -p[v[v]] [-t resource_type_name] [-g resource_group_name]
[-j resource_name]

Resource Type Commands

scrgadm -a -t resource_type_name [-h RT_installed_node_list]
[-f registration_file_path]

scrgadm -c -t resource_type_name [-h RT_installed_node_list]
[-y RT_system={TRUE|FALSE}]

scrgadm -r -t resource_type_name

Resource Group Commands

scrgadm -a -g RG_name [-h nodelist] [-y property…]

scrgadm -c -g RG_name [-h nodelist] -y property…

scrgadm -r -g RG_name

Resource Commands

scrgadm -a -j resource_name -t resource_type_name -g RG_name [-y property…]
[-x extension_property…]

scrgadm -c -j resource_name [-y property…] [-x extension_property…]

scrgadm -r -j resource_name

Logical Host Name Resource Commands

scrgadm -a -L -g RG_name -l hostnamelist [-j resource_name] [-n netiflist]
[-y property…]

Shared Address Resource Commands

scrgadm -a -S -g RG_name -l hostnamelist [-j resource_name] [-n netiflist]
[-X auxnodelist] [-y property…]

A resource type specifies common properties and callback methods for all resources of
that type. Before you can create a resource of a particular type, you must first register
the resource type using the following form of the command:

scrgadm -a -t resource_type_name

A resource group contains a set of resources, all of which are brought online or offline
together on a given node or set of nodes. You first create an empty resource group
before placing any resources in it. To create a resource group, use the following
command:

scrgadm -a -g RG_name

scrgadm(1M)

NAME

SYNOPSIS

DESCRIPTION

SC31 1m 161

There are two types of resource groups: failover and scalable.

A failover resource group is online on only one node at a time. A failover resource
group can contain resources of any type although scalable resources that are
configured in a failover resource group run on only one node at a time.

To create a failover resource group named MyDatabaseRG, use the following
command:

scrgadm -a -g MyDatabaseRG

A scalable resource group can be online on several nodes at once. A scalable resource
group can contain only resources that support scaling and cannot contain resources
that are constrained, by their resource type definition, to only failover behavior.

To create a scalable resource group named MyWebServerRG, use the following
command:

scrgadm -a -g MyWebServerRG \
-y Maximum_primaries=integer \

-y Desired_primaries=integer

A newly created resource group is in an UNMANAGED state. After creating resources in
the group, use the scswitch(1M) command to put a resource group in a MANAGED
state.

To create a resource of a given type in a resource group, use the following command:

scrgadm -a -j resource_name -t resource_type_name -g RG_name

Creating a resource causes the underlying RGM mechanism to take several actions.
The underlying RGM mechanism calls the VALIDATE method on the resource to
verify that the property settings of the resource are valid. If the VALIDATE method
completes successfully and the resource group has been put in a MANAGED state, the
RGM initializes the resource by calling the INIT method on the resource. The RGM
then brings the resource online if it is enabled and its resource group is online.

To remove a resource group, first remove all resources from that resource group. To
remove a resource, first disable it with the scswitch(1M) command. Removing a
resource causes the RGM to clean up after the resource by calling the FINI method
on that resource.

Action options specify the actions performed by the command. Only one action option
is allowed on the command line.

The following action options are supported:

-a
Adds a new configuration. Use with these options:

-g Creates a resource group.

scrgadm(1M)

OPTIONS

Action Options

162 Sun Cluster Reference Manual for Solaris OS • Last Revised 7 January 2005

You need solaris.cluster.resource.modify RBAC authorization
to use this command option with -a, -c, or -r. See rbac(5).

-j Creates a resource.

You need solaris.cluster.resource.modify RBAC authorization
to use this command option with -a, -c, or -r. See rbac(5).

-t Adds a resource type.

You need solaris.cluster.resource.modify RBAC authorization
to use this command option with -a, -c, or -r. See rbac(5).

-c
Modifies an existing configuration. Only values of the specified properties are set.
Other properties retain their current values. Use with these options:

-g Modifies a resource group.

You need solaris.cluster.resource.modify RBAC authorization
to use this command option with -a, -c, or -r. See rbac(5).

-j Modifies a resource.

You need solaris.cluster.resource.modify RBAC authorization
to use this command option with -a, -c, or -r. See rbac(5).

-t Modifies a resource type.

You need solaris.cluster.resource.modify RBAC authorization
to use this command option with -a, -c, or -r. See rbac(5).

-r
Removes configuration. Use with these options:

-g Removes a resource group.

You need solaris.cluster.resource.modify RBAC authorization
to use this command option with -a, -c, or -r. See rbac(5).

-j Removes a resource.

You need solaris.cluster.resource.modify RBAC authorization
to use this command option with -a, -c, or -r. See rbac(5).

-t Removes a resource type.

You need solaris.cluster.resource.modify RBAC authorization
to use this command option with -a, -c, or -r. See rbac(5).

-p
Displays existing configuration information. Use with these options:

-g resource_group_name
Displays specific resource group configuration information.

scrgadm(1M)

SC31 1m 163

You need solaris.cluster.resource.read RBAC authorization to use this
command option with -p. See rbac(5).

-j resource_name
Displays specific resource configuration information.

You need solaris.cluster.resource.read RBAC authorization to use this
command option with -p. See rbac(5).

-t resource_type_name
Displays specific resource type configuration information.

You need solaris.cluster.resource.read RBAC authorization to use this
command option with -p. See rbac(5).

-v[v]
Displays more verbose output.

You need solaris.cluster.resource.read RBAC authorization to use this
command option with -p. See rbac(5).

If you do not specify any -g, -j, or -t options, information about all resource
types, resource groups, and resources that are currently configured on the cluster
are provided by default.

Multiple -g, -j, and -t options are supported and can be combined with any
combination of -v options.

You can use up to two -v options on a single command line.

Target options identify the target object. The following target options are supported:

Note – Property names for resource groups, resources, and resource types are not case
sensitive. You can use any combination of uppercase and lowercase letters when you
specify property names.

-g RG_name
Resource group.

-j resource_name
Resource. When used with the -a option, the -t and -g target options must be
specified in the command to indicate the type of the resource that is to be
instantiated and the name of the containing resource group.

-t resource_type_name
Resource type.

The following options are supported:

-f registration_file_path
Is valid with -a. Specifies the path name of the resource type registration file and is
required if the file is not in the well-known directory (usually
/usr/cluster/lib/rgm/rtreg).

scrgadm(1M)

Target Options

Resource
Type-Specific

Options

164 Sun Cluster Reference Manual for Solaris OS • Last Revised 7 January 2005

-h RT_installed_node_list
Is valid with -a and -c. Specifies a comma-separated list of node names upon
which this resource type is installed. Resources of this type can be instantiated only
in resource groups whose nodelist is a subset of this list.

-h is optional with the -a option. If -h is not specified, it implies that the resource
type has been installed on all nodes. Doing so permits resources of this type to be
instantiated in any resource group.

When used with the -c option, -h must be specified with either a new installed
node list or with an escaped wildcard character (*). The wildcard character
indicates that the resource type has been installed on all nodes.

Note – A comma is not allowed in a node name.

-t resource_type_name
Is valid with -a, -c, and -r. A resource type is defined by a resource type
registration file that specifies standard and extension property values for the
resource type. Placing a valid resource type registration file in the well-known
directory where registration files are usually installed
(/usr/cluster/lib/rgm/rtreg) enables the shorthand notation:

scrgadm -a -t SUNW.rt:2.0

As a result, you do not need to use the following notation:

scrgadm -a -t rtn -f full_path_to_SUNW.rt:2.0

To view the names of the currently registered resource types, use the following
command:

scrgadm -p

Starting in Sun Cluster 3.1, the syntax of a resource type name is as follows:

vendor_id.resource_type:version

The three components of the resource type name are properties specified in the RTR
file as Vendor_id, Resource_type, and RT_version. The scrgadm command inserts the
period and colon delimiters. The optional Vendor_id prefix is necessary only if it is
required to distinguish between two registration files of the same name provided by
different vendors. The RT_version is used for upgrading from one version of a data
service to another version of the data service.

To ensure that the Vendor_id is unique, use the stock symbol for the company that is
creating the resource type. The resource_type_name that is used with the -t option
can either be the full resource type name or an abbreviation that omits the
Vendor_id. For example, both -t SUNW.iws and -t iws are valid. If there are two
resource types in the cluster with names that differ only in the Vendor_id prefix, the
use of the abbreviated name fails.

The scrgadm command fails to register the resource type if the RT_version string
includes a blank, tab, slash (/), backslash (\), asterisk (*), question mark (?), left
square bracket ([), or right square bracket (]) character.

scrgadm(1M)

SC31 1m 165

When you specify the resource_type_name with the -t option, you can omit the
version component if only one version is registered.

Resource type names that you created before the Sun Cluster 3.1 release continue to
conform to the following syntax:

vendor_id.resource_type

-y RT_system={TRUE|FALSE}
Sets the RT_system property of a resource type either to TRUE or to FALSE. The
default value of the RT_system property is FALSE. See rt_properties(5) for a
description of the RT_system property.

The following options are supported:

-h nodelist
Is valid with -a and -c. This option is a shortcut for –y Nodelist=nodelist.

-y property
Is valid with -a and -c. A property is defined as a name=value pair. Multiple
instances of -y property are allowed. The form of the value is dictated by each
property. In the following example, property1 takes a single string as the value, while
property2 takes a comma-separated string array:

-y property1=value1 -y property2=value2a,value2b

To set a string property to an empty value, use this option without specifying a
value, as follows:

-y property=

Recognition of -y property names is not case-sensitive.

See rg_properties(5) for a description of the resource group properties.

The following options are supported:

-x extension_property
Is valid with -a and -c. An extension_property is defined as a name=value pair that is
applicable only to a given resource type. Multiple instances of -x extension_property
are allowed. The form of value is dictated by each extension_property. In the
following example, extension_property1 takes a single string as the value, while
extension_property2 takes a comma-separated string array:

-x extension_property1=value1 \
-x extension_property2=value2a,value2b

For information about the extension properties that are available for a particular
data service, see the man page for that data service.

-y property
Is valid with -a and -c. A property is defined as a name=value pair. Multiple
instances of -y property are allowed. The form of the value is dictated by each
property. In the following example, property1 takes a single string as the value, while
property2 takes a comma-separated string array:

scrgadm(1M)

Resource
Group-Specific

Options

Resource-Specific
Options

166 Sun Cluster Reference Manual for Solaris OS • Last Revised 7 January 2005

-y property1=value1 -y property2=value2a,value2b

To set a property to an empty value, use this option without specifying a value, as
follows:

-y property=

Recognition of -y property names is not case-sensitive.

See the r_properties(5) man page for a description of the resource properties.

These options apply to logical host name resources. There are no special commands
for removing a LogicalHostname resource:

scrgadm -r -j resource_name

resource_name is the same name that is supplied with the optional -j option when you
create the LogicalHostname resource. If the -j option and resource_name are
omitted when the LogicalHostname resource is created, then the name is generated
by scrgadm.

The following options are supported:

-j resource_name
The -j option is required when you use an IP address rather than a host name as
the first argument to the -l hostnamelist option.

Use -j with -a to explicitly name a LogicalHostname resource when the
resource is created and with -r to remove a resource from a resource group. If you
do not use the -j option to explicitly name the resource, the scrgadm command
creates the resource and assigns the name of the first host name in hostnamelist to
that resource.

-L
Indicates that the options that are used on the command line apply to a logical host
name. If you issue the command when any cluster node is not an active cluster
member, you must also use the -n netiflist option.

-l hostnamelist
Specifies the IPv4 or IPv6 addresses to be shared. Use host names even though you
can specify IP addresses. hostnamelist is a comma-separated list of host names that
are to be made available by this LogicalHostname resource.

-n netiflist
Specifies the list of network interfaces. The -L option requires the -n option if the
command is issued when any cluster node is not an active cluster member.

The netiflist takes the following form:

netif@node[,...]

netif may be given as network adapter name, such as le0, or as an IP Network
Multipathing group name, such as sc_ipmp. The node may be a node name or node
identifier. All nodes in the nodelist of the resource group must be represented in

scrgadm(1M)

LogicalHostName
Specific Options

SC31 1m 167

netiflist. If -n netiflist is omitted, an attempt is made to discover a net adapter on the
subnet identified by the hostnamelist for each node in the nodelist. Single-adapter IP
Network Multipathing groups are created for discovered network adapters not
already in an IP Network Multipathing group. Similarly, a single-adapter IP
Network Multipathing group is created for a named adapter, if a group does not
already exist.

Refer to the NOTES section for more information.

-y property
Refer to the Resource-Specific Options section for details.

All of the LogicalHostname-specific options also apply to SharedAddress
resources with the following changes and additions:

-S
Indicates that the options that are used on the command line apply to a shared
address.

-X auxnodelist
Specifies a comma-separated list of node names or identifiers. Entries on this list
must be members of the cluster. These nodes are nodes that may host the specified
shared addresses, but never serve as the primary node in the case of failover.

This list is mutually exclusive with nodelist. See the description of nodelist under
Resource Group-Specific Options.

The following exit values are returned:

0 The command completed successfully.

A warning message might be written to the standard error even
when this command completes successfully.

nonzero An error has occurred.

Writes an error message to standard error when it exits with
nonzero status.

Some operations are not permitted on resource types whose RT_System property is
TRUE. Similarly, some operations are not permitted on a resource group (and its
resources) whose RG_System property is TRUE. See rt_properties(5) and
rg_properties(5).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

Interface Stability Evolving

scrgadm(1M)

SharedAddress
Specific Options

EXIT STATUS

ATTRIBUTES

168 Sun Cluster Reference Manual for Solaris OS • Last Revised 7 January 2005

ifconfig(1M), scstat(1M), scswitch(1M), attributes(5), r_properties(5),
rbac(5), rg_properties(5), rt_properties(5)

A network adapter that is not already configured for use cannot be discovered or
placed into an IP Network Multipathing group during LogicalHostname and
SharedAddress add operations. See ifconfig(1M).

If scrgadm exits nonzero with the error message cluster is reconfiguring, the
requested operation might have completed successfully, despite the error status. If you
doubt the result, you can execute scrgadm again with the same arguments after the
reconfiguration is complete.

scrgadm(1M)

SEE ALSO

NOTES

SC31 1m 169

scsetup – interactive cluster configuration tool

scsetup [-f logfilename]

At post-install time, the scsetup utility performs initial setup tasks, such as
configuring quorum devices and resetting installmode. Always run the scsetup utility
just after the cluster has been installed and all of the nodes have joined for the first
time.

Once installmode has been disabled, scsetup provides a menu-driven front end to
most ongoing cluster administration tasks.

You can execute scsetup from any node in the cluster. However, when installing a
cluster for the first time, it is important to wait until all nodes have joined the cluster
before running scsetup and resetting installmode.

The following options are supported:

-f logfilename Specify the name of a log file to which commands can be logged. If
this option is specified, most command sets generated by
scsetupcan be run and logged, or just logged, depending on user
responses.

See attributes(5) for descriptions of the following attributes.

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

Interface Stability Evolving

scconf(1M), scrgadm(1M), scswitch(1M), attributes(5)

scsetup(1M)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

ATTRIBUTES

SEE ALSO

170 Sun Cluster Reference Manual for Solaris OS • Last Revised 22 Apr 200214

scshutdown – shut down a cluster

scshutdown [-y] [-g grace-period] [message]

The scshutdown utility shuts down an entire cluster in an orderly fashion.

Before starting the shutdown, scshutdown sends a warning message, then a final
message asking for confirmation.

Only run the scshutdown command from one node.

scshutdown performs the following actions when it shuts down a cluster:

� Changes all functioning resource groups on the cluster to an offline state. If any
transitions fail, scshutdown does not complete and displays an error message.

� Unmounts all cluster file systems. If any unmounts fail, scshutdown does not
complete and displays an error message.

� Shuts down all active device services. If any transition of a device fails,
scshutdown does not complete and displays an error message.

� Runs /usr/sbin/init 0 on all nodes. See init(1M) for more information.

You need solaris.cluster.system.admin RBAC authorization to use this
command. See rbac(5).

The following options are supported:

-g grace-period Changes the number of seconds from the 60-second default to the
time specified by grace-period.

-y Pre-answers the confirmation question so the command can be run
without user intervention.

The following operands are supported:

message Is a string that is issued after the standard warning
message The system will be shut down in … is
issued. If message contains more than one word, delimit
it with single (’) or double (") quotation marks. The
warning message and the user-provided message are
output when there are 7200, 3600, 1800, 1200, 600,
300, 120, 60, and 30 seconds remaining before
scshutdown begins.

EXAMPLE 1 Shutting Down a Cluster

phys-palindrome-1# scshutdown

The following exit values are returned:

0 The command completed successfully.

scshutdown(1M)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

EXAMPLES

EXIT STATUS

SC31 1m 171

nonzero An error occurred. Error messages are displayed on the standard
output.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

Interface Stability Evolving

shutdown(1M), init(1M), attributes(5)

scshutdown(1M)

ATTRIBUTES

SEE ALSO

172 Sun Cluster Reference Manual for Solaris OS • Last Revised 6 May 2003

scsnapshot – retrieve configuration data about resource groups, resource types, and
resources, and generate a shell script

scsnapshot [-s scriptfile] [-o imagefile]

scsnapshot [-s scriptfile] oldimage newimage

The scsnapshot tool retrieves information from the Cluster Configuration
Repository (CCR) about configuration data that is related to resource groups, resource
types, and resources. The scsnapshot tool formats the configuration data as a shell
script that can be used for the following purposes:

� To replicate configuration data on a cluster that has no configured resource groups,
resource types, and resources

� To upgrade configuration data on a cluster that has configured resource groups,
resource types, and resources

The scsnapshot tool retrieves configuration data only from the Cluster
Configuration Repository (CCR). Other configuration data is ignored. The
scsnapshot tool does not take into account the dynamic state of different resource
groups, resource types, and resources.

This section describes how you can use the scsnapshot tool.

scsnapshot [-s scriptfile] [-o imagefile]

Used without the -o option, the scsnapshot tool generates a script that creates
configuration data for clusters that do not already have configured resource groups,
resource types, and resources. See Example 1.

Used with the -o option, the scsnapshot tool produces an image file that represents
the configuration data. The image file can be used in further invocations of the
scsnapshot tool to upgrade configuration data on a cluster. See Example 2.

To use the scsnapshot tool to retrieve configuration data, you need
solaris.cluster.resource.read role-based access control (RBAC)
authorization. For more information, see the rbac(5) man page.

To track differences between versions of configuration data, store the image files in a
source control system such as SCCS.

scsnapshot [-s scriptfile] oldimage newimage

The scsnapshot tool generates a shell script that can be used to upgrade the
configuration data that is contained in the oldimage file with the configuration data that
is contained in the newimage file.

To use the scsnapshot tool to upgrade configuration data, you do not need specific
RBAC authorization.

The following options are supported by the scsnapshot tool. If you use an incorrect
command option, the correct way to use the command option is displayed.

scsnapshot(1M)

NAME

SYNOPSIS

DESCRIPTION

USAGE

Retrieving
Configuration Data

for Resource
Groups, Resource

Types, and
Resources

Upgrading
Configuration Data

for Resource
Groups, Resource

Types, and
Resources

OPTIONS

SC31 1m 173

-s scriptfile
Stores the generated script in a file called scriptfile.

If this option is not specified, the generated script is written to the standard output.

If a file called scriptfile already exists, it is renamed as scriptfile.old, and a new file
called scriptfile is created. If a file called scriptfile.old already exists, it is
overwritten.

-o imagefile
Stores the generated image file in a file called imagefile.

If this option is not specified, an image file is not generated.

If a file called imagefile already exists, it is renamed as imagefile.old, and a new file
called imagefile is created. If a file called imagefile.old already exists, it is
overwritten.

oldimage
Specifies an image file that contains the old configuration data.

newimage
Specifies an image file that contains the new configuration data.

The output of the scsnapshot tool is an executable Bourne-shell based script. Before
you run the script, you might need to manually change some properties to reflect the
features of your host.

The script compares the following characteristics of the local cluster to the cluster
where the script was generated:

� Machine architecture
� Version of the Solaris Operating System
� Version of the Sun Cluster software

If the characteristics are not the same, the script writes an error and ends. A message
asks whether you want to rerun the script by using the -f option. The -f option
forces the script to run, despite any difference in characteristics.

The script generated by the scsnapshot tool verifies that the Sun Cluster resource
type exists on the local cluster. If the resource type does not exist on the local cluster,
the script writes an error and ends. A message asks whether you want to install the
missing resource type before you run the script again.

To run a script that is generated by the scsnapshot tool, you need
solaris.cluster.resource.modify RBAC authorization. For more information,
see the rbac(5) man page.

EXAMPLE 1 To Generate a Shell Script That Retrieves Configuration Data for Resources
Groups, Resource Types, and Resources

The script that is generated in this example is called scriptfile.sh.

example% scsnapshot -s scriptfile.sh

scsnapshot(1M)

EXTENDED
DESCRIPTION

EXAMPLES

174 Sun Cluster Reference Manual for Solaris OS • Last Revised 4 Jun 2004

EXAMPLE 2 To Generate a Shell Script That Retrieves Configuration Data and Stores an
Image File

The script that is generated in this example is called scriptfile.sh. The
configuration data is stored an image file called imagefile.

example% scsnapshot -s scriptfile.sh -o imagefile

EXAMPLE 3 To Generate a Shell Script That Upgrades Configuration Data on One Cluster
With Configuration Data From Another Cluster

This example creates a script that upgrades the configuration data on cluster1 to
match the configuration data on cluster2. The configuration data for cluster1 is
in a file called imagefile1, and the configuration data for cluster2 is in a file
called imagefile2. The name of a shell script is not specified, so the generated script
is written to the standard output.

example% scsnapshot imagefile1 imagefile2

The following exit values are returned:

0 The command completed successfully.

nonzero An error occurred. Error messages are displayed on the standard
output.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscu

Interface Stability Evolving

scrgadm(1M), r_properties(5), rbac(5), rg_properties(5), rt_properties(5)

scsnapshot(1M)

EXIT CODES

ATTRIBUTES

SEE ALSO

SC31 1m 175

scstat – monitor the status of Sun Cluster

scstat [-DWginpv [v]q] [-h node]

The scstat command displays the current state of Sun Cluster and its components.
Only one instance of the scstat command needs to run on any machine in the Sun
Cluster configuration.

When run without any options, scstat displays the status for all components of the
cluster. This display includes the following information:

� A list of cluster members
� The status of each cluster member
� The status of resource groups and resources
� The status of every path on the cluster interconnect
� The status of every disk device group
� The status of every quorum device
� The status of every IP Network Multipathing group and public network adapter

You need solaris.cluster.device.read,
solaris.cluster.transport.read, solaris.cluster.resource.read,
solaris.cluster.node.read, solaris.cluster.quorum.read, and
solaris.cluster.system.read RBAC authorization to use this command
without options. See rbac(5).

The resource state, resource group state, and resource status are all maintained on a
per-node basis. For example, a given resource has a distinct state on each cluster node
and a distinct status on each cluster node.

The resource state is set by the Resource Group Manager (RGM) on each node, based
only on which methods have been invoked on the resource. For example, after the
STOP method has run successfully on a resource on a given node, the resource’s state
will be OFFLINE on that node. If the STOP method exits nonzero or times out, then the
state of the resource is Stop_failed.

Possible resource states include: Online, Offline, Start_failed, Stop_failed,
Monitor_failed, Online_not_monitored, Starting, and Stopping.

Possible resource group states are: Unmanaged, Online, Offline,
Pending_online, Pending_offline, Error_stop_failed, Online_faulted,
and Pending_online_blocked.

In addition to resource state, the RGM also maintains a resource status that can be set
by the resource itself by using the API. The field Status Message actually consists of
two components: status keyword and status message. Status message is optionally set
by the resource and is an arbitrary text string that is printed after the status keyword.

Descriptions of possible values for a resource’s status are as follows:

DEGRADED The resource is online, but its performance or
availability might be compromised in some way.

scstat(1M)

NAME

SYNOPSIS

DESCRIPTION

Resources and
Resource Groups

176 Sun Cluster Reference Manual for Solaris OS • Last Revised 7 Jun 2004

FAULTED The resource has encountered an error that prevents it
from functioning.

OFFLINE The resource is offline.

ONLINE The resource is online and providing service.

UNKNOWN The current status is unknown or is in transition.

Device group status reflects the availability of the devices in that group.

The following are possible values for device group status and their descriptions:

DEGRADED The device group is online, but not all of its potential
primaries (secondaries) are up. For two-node
connectivity, this status basically indicates that a
stand-by primary does not exist, which means a failure
of the primary node will result in a loss of access to the
devices in the group.

OFFLINE The device group is offline. There is no primary node.
The device group must be brought online before any of
its devices can be used.

ONLINE The device group is online. There is a primary node,
and devices within the group are ready for I/O.

WAIT The device group is between one status and another.
This status might occur, for example, when a device
group is going from offline to online.

IP Network Multipathing group status reflects the availability of the backup group
and the adapters in the group.

The following are possible values for IP Network Multipathing group status and their
descriptions:

OFFLINE The backup group failed. All adapters in the group are
offline.

ONLINE The backup group is functional. At least one adapter in
the group is online.

UNKNOWN Any other state than those listed before. This could
result when an adapter is detached or marked as down
by Solaris commands such as if_mpadm(1M) or
ifconfig(1M).

The following are possible values for IP Network Multipathing adapter status and
their descriptions:

OFFLINE The adapter failed or the backup group is offline.

ONLINE The adapter is functional.

scstat(1M)

Device Groups

IP Network
Multipathing

Groups

SC31 1m 177

STANDBY The adapter is on standby.

UNKNOWN Any other state than those listed before. This could
result when an adapter is detached or marked as down
by Solaris commands such as if_mpadm or ifconfig.

You can specify command options to request the status for specific components.

If more than one option is specified, the scstat command prints the status in the
specified order.

The following options are supported:

-D Shows status for all disk device groups.

You need solaris.cluster.device.read RBAC
authorization to use this command option. See rbac(5).

-g Shows status for all resource groups.

You need solaris.cluster.resource.read RBAC
authorization to use this command option. See rbac(5).

-h node Shows status for the specified node (node) and status of the disk
device groups of which this node is the primary node. Also shows
the status of the quorum devices to which this node holds
reservations of the resource groups to which the node is a potential
master, and holds reservations of the transport paths to which the
node is attached.

You need solaris.cluster.device.read,
solaris.cluster.transport.read,
solaris.cluster.resource.read,
solaris.cluster.node.read,
solaris.cluster.quorum.read, and
solaris.cluster.system.read RBAC authorization to use
this command option. See rbac(5).

-i Shows status for all IP Network Multipathing groups and public
network adapters.

-n Shows status for all nodes.

You need solaris.cluster.node.read RBAC authorization
to use this command option. See rbac(5).

-p Shows status for all components in the cluster. Use with -v to
display more verbose output.

scstat(1M)

OPTIONS

178 Sun Cluster Reference Manual for Solaris OS • Last Revised 7 Jun 2004

You need solaris.cluster.device.read,
solaris.cluster.transport.read,
solaris.cluster.resource.read,
solaris.cluster.node.read,
solaris.cluster.quorum.read, and
solaris.cluster.system.read RBAC authorization to use
-p with -v. See rbac(5).

-q Shows status for all device quorums and node quorums.

You need solaris.cluster.quorum.read RBAC
authorization to use this command option. See rbac(5).

-v[v] Shows verbose output.

-W Shows status for cluster transport path.

You need solaris.cluster.transport.read RBAC
authorization to use this command option. See rbac(5).

EXAMPLE 1 Using the scstat Command

The following command displays the status of all resource groups followed by the
status of all components related to the specified host:

% scstat -g -h host

The output that is displayed appears in the order in which the options are specified.

These results are the same results you would see by typing the two commands:

% scstat -g

and

% scstat -h host

The following exit values are returned:

0 The command completed successfully.

nonzero An error has occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

Interface Stability Evolving

scha_resource_setstatus(1HA), scha_resource_setstatus(3HA),
attributes(5)

scstat(1M)

EXAMPLES

EXIT STATUS

ATTRIBUTES

SEE ALSO

SC31 1m 179

An online quorum device means that the device was available for contributing to the
formation of quorum when quorum was last established. From the context of the
quorum algorithm, the device is online because it actively contributed to the formation
of quorum. However, an online quorum device might not necessarily continue to be in
a healthy enough state to contribute to the formation of quorum when quorum is
re-established. The current version of Sun Cluster does not include a disk monitoring
facility or regular probes to the quorum devices.

scstat(1M)

NOTES

180 Sun Cluster Reference Manual for Solaris OS • Last Revised 7 Jun 2004

scswitch – perform ownership and state change of resource groups and disk device
groups in Sun Cluster configurations

scswitch -c -h node[,...] -j resource[,...] -f flag-name

scswitch {-e | -n} [-M] -j resource[,...]

scswitch -F {-g resource-grp[,...] | -D device-group[,...]}

scswitch -m -D device-group[,...]

scswitch -Q [-g resource-grp[,...]]

scswitch -R -h node[,...] -g resource-grp[,...]

scswitch -S -h from-node [-K continue_evac]

scswitch {-u | -o} -g resource-grp[,...]

scswitch -z -g resource-grp[,...] -h node[,...]

scswitch -z -g resource-grp[,...]

scswitch -z

scswitch -z -D device-group[,...] -h node

scswitch -Z [-g resource-grp[,...]]

The scswitch command moves resource groups or disk device groups to new
primary nodes. It also provides options for evacuating all resource groups and disk
device groups from a node by moving ownership elsewhere, bringing resource groups
or disk device groups offline and online, enabling or disabling resources, switching
resource groups to or from an Unmanaged state, or clearing error flags on resource
groups.

You can run the scswitch command from any node in a Sun Cluster configuration. If
a device group is offline, you can use scswitch to bring the device group online onto
any host in the node list. However, once the device group is online, a switchover to a
spare node is not permitted. Only one invocation of scswitch at a time is permitted.

Do not attempt to kill an scswitch operation that is already underway.

There are ten forms of the scswitch command, each specified by a different option.
See SYNOPSIS and OPTIONS.

change error flag (-c)
Clears the specified error flag-name on one or more resources on the specified nodes.

enable or disable (-e or -n)
Enables or disables the specified resources.

take offline (-F)
Takes the specified resource-grps or device-grps offline on all nodes.

set maintenance mode (-m)
Takes the specified disk device-grps offline from the cluster for maintenance. The
resulting state survives reboots. If a disk device group is currently being accessed,

scswitch(1M)

NAME

SYNOPSIS

DESCRIPTION

SC31 1m 181

this action fails and the specified disk device groups are not taken offline from the
cluster. Disk device groups are brought back online by using the -z option. Only
explicit calls to scswitch can bring a disk device group out of maintenance mode.

quiesce (-Q)
Brings the specified resource-grps to a quiescent state. This option stops these
resource-grps from continuously bouncing around from one node to another in the
event of the failure of a START or STOP method.

restart (-R)
Takes the specified resource-grps offline and then back online on the specified
primary nodes of the resource groups. The specified nodes must be the current
primaries of the resource groups.

evacuate or switch all (-S)
Attempts to switch over all resource groups and disk device groups from the
specified from-node to a new set of primaries. The system attempts to select new
primaries based on configured preferences for each group. All evacuated groups are
not necessarily remastered by the same primary. If one or more resource groups or
disk device groups cannot be evacuated from the specified from-node, the command
fails, issues an error message, and exits with a nonzero exit code.

unmanage or manage (-u or -o)
Takes the specified resource-grps to (-u) the unmanaged state or takes the specified
unmanaged resource-grps out of (-o) the unmanaged state.

The -o option brings the specified resource-grps under Resource Group Manager
(RGM) management so that the RGM attempts to bring the resource groups online.

set primaries (-z)
Causes the orderly transfer of one or more resource-grps or disk device-grps from one
primary node in a Sun Cluster configuration to another node in the configuration
(or to multiple nodes for resource groups that are configured with multiple
primaries). This option takes resource groups offline and brings disk device groups
back online after being in maintenance mode. This option also brings all or selected
resource groups online on their most-preferred node or nodes. This option does not,
however, enable any resources, enable monitoring on any resources, or take any
resource groups out of the unmanaged state, as the -Z option does.

bring online (-Z)
Enables all resources in the specified resource-grps, enables monitoring on all
resources, manages groups, and brings the groups online on the default list of
primaries.

The ten forms of the scswitch command are specified by the following options:

-c Clears the -f flag-name on the specified set of resources on the specified
nodes. For the current release of Sun Cluster software, the -c option is only
implemented for the Stop_failed error flag. Clearing the Stop_failed
error flag places the resource into the offline state on the specified nodes.

scswitch(1M)

OPTIONS

182 Sun Cluster Reference Manual for Solaris OS • Last Revised 7 Jun 2004

If the Stop method fails on a resource and the Failover_mode property
of the resource is set to Hard, the RGM halts or reboots the node to force
the resource (and all other resources mastered by that node) offline.

If the Stop method fails on a resource and the Failover_mode property
is set to a value other than Hard, the individual resource goes into the
Stop_failed state and the resource group is placed into the
Error_stop_failed state. A resource group in the
Error_stop_failed state on any node cannot be brought online on any
node, nor can it be edited (you cannot add or delete resources or change
resource group properties or resource properties). You must clear the
Stop_failed state by performing the procedure documented in the Sun
Cluster Data Services Installation Guide for Solaris OS.

Caution – Make sure that both the resource and its monitor are stopped on
the specified node before you clear the Stop_failed flag. Clearing the
Stop_failed error flag without fully killing the resource and its monitor
can lead to more than one instance of the resource executing on the cluster
simultaneously. If you are using shared storage, this situation can cause
data corruption. If necessary, as a last resort, execute a kill(1) command
on the associated processes.

-e or -n Enables (-e) or disables (-n) the specified resources.

You cannot disable a resource without also disabling all resources that
depend on that resource. Conversely, you cannot enable a resource unless
all of the resources on which that resource depends are also enabled. Once
you have enabled a resource, it goes online or offline depending on
whether its resource group is online or offline. A disabled resource is
immediately brought offline from all of its current masters and remains
offline regardless of the state of its resource group.

-F Takes the specified resource-grps (-g) or device-groups (-D) offline on all
nodes.

When the -F option takes a disk device group offline, the associated VxVM
disk group or Solstice DiskSuite diskset is unported or released by the
primary node. Before a disk device group can be taken offline, all access to
its devices must be stopped and all dependent file systems must be
unmounted. You must start an offline disk device group by issuing an
explicit scswitch call, by accessing a device within the group, or by
mounting a file system that depends on the group.

-m Specifies the “set maintenance mode” form of the scswitch command.

scswitch(1M)

SC31 1m 183

The -m option takes the specified device-groups offline from the cluster for
maintenance. Before a disk device group can be placed in maintenance
mode, all access to its devices must be stopped and all dependent file
systems must be unmounted. Disk device groups are brought back online
by using the -z option.

-Q Brings the specified resource-grps, which might be reconfigured, to a
quiescent state. This form of the scswitch command does not exit until
the resource-grps have reached a quiescent state in which they are no longer
stopping or starting on any node.

If a Monitor_stop, Stop, Postnet_stop, Start, or Prenet_start
method fails, on any resource in a group while the scswitch -Q
command is executing, the resource behaves as if its Failover_mode
property was set to None, regardless of its actual setting. Upon failure of
one of these methods, the resource moves to an error state (either
Start_failed or Stop_failed) rather than initiating a failover or a
rebooting of the node.

When the scswitch -Q command exits, the specified resource-grps might
be online or offline. You can determine their current state by executing the
scstat(1M) command.

If a node dies during execution of the scswitch -Q command, execution
might be interrupted, and, as a result, the resource groups are left in a
non-quiescent state. If execution is interrupted, scswitch -Q returns a
nonzero exit code and writes an error message to the standard error. In this
case, you can re-issue the scswitch -Q command.

-R Specifies the “restart” form of the command. The -R option moves the
specified resource-grps offline and then back online on the specified primary
nodes. The resource groups must already be mastered by all of the specified
nodes.

-S Specifies the “evacuate” or “switch all” form of the scswitch command.

The -S option switches all resource groups and disk device groups off the
specified node. If not all groups owned by the given node can be
successfully evacuated to a new set of primaries, the command exits with
an error. If the primary ownership of a group cannot be changed to one of
the other nodes, primary ownership for that group is retained by the
original node.

-u or -o Specifies the “change resource group state” form of the scswitch
command.

The -u option takes the specified managed resource-grps to the unmanaged
state. As a precondition of the -u option, all resources that belong to the
indicated resource groups must first be disabled.

scswitch(1M)

184 Sun Cluster Reference Manual for Solaris OS • Last Revised 7 Jun 2004

The -o option takes the specified unmanaged resource-grps to the managed
state. Once a resource group is in the managed state, the RGM attempts to
bring the resource group online.

-z Specifies a change in mastery of a specified resource-grp or a disk device-grp.

When used with the -g and -h options, the -z option brings the specified
resource-grps online on the nodes specified by the -h option and takes them
offline on all other cluster nodes. If the node list specified with the -h
option is the empty set, the -z option takes the resource groups specified
by the -g option offline from all of their current masters. If one of the listed
resource-grps is not capable of being mastered by node, an error is reported
and no resource-grps are switched over. All nodes specified by the -h option
must be current members of the cluster and must be potential primaries of
all of the resource groups specified by the -g option. The number of nodes
specified by the -h option must not exceed the setting of the
Maximum_primaries property of any of the resource groups specified by
the -g option.

When used with only the -g option, the -z option brings the specified
resource-grps, which must already be managed, online on their
most-preferred node or nodes. This form of scswitch does not bring a
resource group online in violation of its strong RG_affinities, and
writes a warning message if the affinities of a resource group cannot be
satisfied on any node.

If you configure the RG_affinities properties of one or more resource
groups, and you issue the scswitch -z -g command (with or without
the -h option), additional resource groups other than those that are
specified after the -g option might be switched as well. RG_affinities
is described in rg_properties(5).

When used alone (scswitch -z), the -z switches all managed resource
groups online on their most-preferred node or nodes.

When used with only -g or when used alone, the -z option only switches
resources and groups online, unlike the -Z option. Resource groups that
are unmanaged remain unmanaged, and resources that are disabled or that
have monitoring disabled are left in the disabled state.

When used with the -D option, the -z option switches one or more
specified device-groups to the specified node. Only one primary node name
can be specified for a disk device group’s switchover. When multiple
device-groups are specified, the -D option switches the device-groups in the
order specified. If the -z -D operation encounters an error, the operation
stops and no further switches are performed.

scswitch(1M)

SC31 1m 185

-Z Enables all resources of the specified resource-grps and their monitors,
moves the resource-grp into the managed state, and brings the resource-grp
online on all the default primaries. When the -g option is not specified, the
scswitch command attempts to bring all resource groups online.

You can combine the following options with the previous ten options as follows:

-D Specifies the name of one or more device-groups.

This option is only legal with the -F, -m, and -z options.

You need solaris.cluster.device.admin RBAC authorization to use
this command option with -F, -m, and -z (in conjunction with -h). See
rbac(5).

You must also be able to assume a role to which the Sun Cluster
Commands rights profile has been assigned to use this command.
Authorized users can issue privileged Sun Cluster commands on the
command line from the pfsh(1), pfcsh(1), or pfksh(1) profile shell. A
profile shell is a special kind of shell that enables you to access privileged
Sun Cluster commands that are assigned to the Sun Cluster Commands
rights profile. A profile shell is launched when you run su(1M) to assume a
role. You can also use pfexec(1) to issue privileged Sun Cluster
commands.

-f Specifies the error flag-name.

This option is only legal with the -c option.

The only error flag currently supported is Stop_failed.

You need solaris.cluster.resource.admin RBAC authorization to
use this command option with -c. See rbac(5).

You must also be able to assume a role to which the Sun Cluster
Commands rights profile has been assigned to use this command.
Authorized users can issue privileged Sun Cluster commands on the
command line from the pfsh(1), pfcsh(1), or pfksh(1) profile shell. A
profile shell is a special kind of shell that enables you to access privileged
Sun Cluster commands that are assigned to the Sun Cluster Commands
rights profile. A profile shell is launched when you run su(1M) to assume a
role. You can also use pfexec(1) to issue privileged Sun Cluster
commands.

-g Specifies the name of one or more resource-grps.

This option is only legal with the -F, -o, -Q, -R, -u, -z, and -Z options.

You need solaris.cluster.resource.admin RBAC authorization to
use this command option with -F, -o, -R (in conjunction with -h), -u, -z
(in conjunction with -h), or -Z. See rbac(5).

scswitch(1M)

186 Sun Cluster Reference Manual for Solaris OS • Last Revised 7 Jun 2004

You must also be able to assume a role to which the Sun Cluster
Commands rights profile has been assigned to use this command.
Authorized users can issue privileged Sun Cluster commands on the
command line from the pfsh(1), pfcsh(1), or pfksh(1) profile shell. A
profile shell is a special kind of shell that enables you to access privileged
Sun Cluster commands that are assigned to the Sun Cluster Commands
rights profile. A profile shell is launched when you run su(1M) to assume a
role. You can also use pfexec(1) to issue privileged Sun Cluster
commands.

-h Specifies the names of one or more cluster nodes.

This option is only legal with the -c, -R, -S, and -z options.

When used with the -c, -R, or -z option, the -h option specifies the target
server (or list of servers in the case of resource groups configured with
multiple primaries).

When used with the -S option, the -h option specifies the original server.
A comma-delimited list of nodes can be specified after the -h option for
resource-grps or device-groups that are configured with multiple primaries. In
this case, if any of the listed primaries cannot master a particular
resource-grp or device-group, resource-grp or disk device-group is not switched
over.

You need solaris.cluster.resource.admin RBAC authorization to
use this command option with -c, -R (in conjunction with -g), -S, and -z
(in conjunction with -g). In addition, you need
solaris.cluster.device.admin RBAC authorization to use this
command option with -z (in conjunction with -D). See rbac(5).

You must also be able to assume a role to which the Sun Cluster
Commands rights profile has been assigned to use this command.
Authorized users can issue privileged Sun Cluster commands on the
command line from the pfsh(1), pfcsh(1), or pfksh(1) profile shell. A
profile shell is a special kind of shell that enables you to access privileged
Sun Cluster commands that are assigned to the Sun Cluster Commands
rights profile. A profile shell is launched when you run su(1M) to assume a
role. You can also use pfexec(1) to issue privileged Sun Cluster
commands.

-j Specifies the names of one or more resources.

This option is legal only with the -c, -e, and -n options.

You need solaris.cluster.resource.admin RBAC authorization to
use this command option with -c, -e, or -n. See rbac(5).

scswitch(1M)

SC31 1m 187

You must also be able to assume a role to which the Sun Cluster
Commands rights profile has been assigned to use this command.
Authorized users can issue privileged Sun Cluster commands on the
command line from the pfsh(1), pfcsh(1), or pfksh(1) profile shell. A
profile shell is a special kind of shell that enables you to access privileged
Sun Cluster commands that are assigned to the Sun Cluster Commands
rights profile. A profile shell is launched when you run su(1M) to assume a
role. You can also use pfexec(1) to issue privileged Sun Cluster
commands.

-K Specifies the number of seconds to keep resource groups from switching
back onto a node after that node has been successfully evacuated.

Resource groups cannot fail over or automatically switch over onto the
node while that node is being evacuated, and, after evacuation is
completed, for the number of seconds that you specify with this option.
You can, however, initiate a switchover onto the evacuated node with the
scswitch -z -g -h command before continue_evac seconds have passed.
Only automatic switchovers are prevented.

This option is legal only with the -S option. You must specify an integer
value between 0 and 65535. If you do not specify a value, 60 seconds is
used by default.

You need solaris.cluster.resource.admin RBAC authorization to
use this command option. See rbac(5).

You must also be able to assume a role to which the Sun Cluster
Commands rights profile has been assigned to use this command.
Authorized users can issue privileged Sun Cluster commands on the
command line from the pfsh(1), pfcsh(1), or pfksh(1) profile shell. A
profile shell is a special kind of shell that enables you to access privileged
Sun Cluster commands that are assigned to the Sun Cluster Commands
rights profile. A profile shell is launched when you run su(1M) to assume a
role. You can also use pfexec(1) to issue privileged Sun Cluster
commands.

-M Enables (-e) or disables (-n) monitoring for the specified resources. When
you disable a resource, you need not disable monitoring on it because both
the resource and its monitor are kept offline.

This option is legal only with the -e and -n options.

You need solaris.cluster.resource.admin RBAC authorization to
use this command option with -e and -n. See rbac(5).

scswitch(1M)

188 Sun Cluster Reference Manual for Solaris OS • Last Revised 7 Jun 2004

You must also be able to assume a role to which the Sun Cluster
Commands rights profile has been assigned to use this command.
Authorized users can issue privileged Sun Cluster commands on the
command line from the pfsh(1), pfcsh(1), or pfksh(1) profile shell. A
profile shell is a special kind of shell that enables you to access privileged
Sun Cluster commands that are assigned to the Sun Cluster Commands
rights profile. A profile shell is launched when you run su(1M) to assume a
role. You can also use pfexec(1) to issue privileged Sun Cluster
commands.

EXAMPLE 1 Switching Over a Resource Group

The following command switches over resource-grp-2 to be mastered by node1:

node1# scswitch –z –h node1 –g resource-grp-2

EXAMPLE 2 Switching Over a Managed Resource Group Without Enabling Monitoring or
Resources

The following command brings resource-grp-2 online if resource-grp-2 is already
managed, but does not enable any resources or enable monitoring on any resources
that are currently disabled.

node1# scswitch –z –g resource-grp-2

EXAMPLE 3 Switching Over a Resource Group Configured to Have Multiple Primaries

The following command switches over resource-grp-3, a resource group configured to
have multiple primaries, to be mastered by node1,node2,node3:

node1# scswitch –z –h node1,node2,node3 –g resource-grp-3

EXAMPLE 4 Moving All Resource Groups and Disk Device Groups Off of a Node

The following command switches over all resource groups and disk device groups
from node1 to a new set of primaries:

node1# scswitch –S –h node1

EXAMPLE 5 Moving All Resource Groups and Disk Device Groups Persistently Off of a Node

The following command switches over all resource groups and disk device groups
from node1 to a new set of primaries. The following command also shows how to
prevent resource groups from automatically switching back onto that node after that
node has been successfully evacuated. For example, this situation might occur if one
of the resource groups failed to start on its new master. You prevent this situation from
occurring by setting the -K option continue_evac to an integer number of seconds, in

scswitch(1M)

EXAMPLES

SC31 1m 189

EXAMPLE 5 Moving All Resource Groups and Disk Device Groups Persistently Off of a
Node (Continued)

this example, two minutes. That is, by setting -K to 120, you prevent resource groups
from switching back onto the evacuated node for two minutes. This situation arises
when resource groups attempt to switch back automatically when strong negative
affinities have been configured (with RG_affinities).

node1# scswitch –S –h node1 -K 120

EXAMPLE 6 Restarting Some Resource Groups

The following command restarts some resource groups on the specified nodes:

node1# scswitch –R –h node1,node2 –g resource-grp-1,resource-grp-2

EXAMPLE 7 Disabling Some Resources

node1# scswitch –n –j resource-1,resource-2

EXAMPLE 8 Enabling a Resource

node1# scswitch –e –j resource-1

EXAMPLE 9 Taking Resource Groups to the Unmanaged State

node1# scswitch –u –g resource-grp-1,resource-grp-2

EXAMPLE 10 Taking Resource Groups Out of the Unmanaged State

node1# scswitch –o –g resource-grp-1,resource-grp-2

EXAMPLE 11 Switching Over a Device Group

The following command switches over device-group-1 to be mastered by node2:

node1# scswitch –z –h node2 –D device-group-1

EXAMPLE 12 Putting a Device Group Into Maintenance Mode

The following command puts device-group-1 into maintenance mode:

node1# scswitch –m –D device-group-1

EXAMPLE 13 Quiescing Resource Groups

The following command brings resource groups RG1 and RG2 to a quiescent state:

node1# scswitch –Q -g RG1,RG2

scswitch(1M)

190 Sun Cluster Reference Manual for Solaris OS • Last Revised 7 Jun 2004

This command blocks until requested actions are completely finished or an error
occurs.

The following exit values are returned:

0 The command completed successfully.

nonzero An error has occurred. scswitch writes an error message to
standard error.

If scswitch exits nonzero with the error message cluster is reconfiguring,
the requested operation might have completed successfully, despite the error status. If
you doubt the result, you can execute scswitch again with the same arguments after
the reconfiguration is complete.

If scswitch exits nonzero with the error message Resource group failed to
start on chosen node and may fail over to other node(s), the resource
group will continue to reconfigure for some time after the scswitch command exits.
Additional scswitch or scrgadm(1M) operations on that resource group will fail
until the resource group has reached a terminal state such as Online,
Online_faulted, or Offline on all nodes.

If you invoke the scswitch command on multiple resource groups and multiple
errors occur, the exit value only reflects one of the errors. To avoid this possibility,
invoke scswitch on just one resource group at a time.

Some operations are not permitted on a resource group (and its resources) whose
RG_system property is True. See rg_properties(5) for more information.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

Interface Stability Evolving

kill(1), scrgadm(1M), scstat(1M), attributes(5), rg_properties(5)

Sun Cluster Data Services Installation Guide for Solaris OS

If you take a resource group offline by using the -z or -F options with the -g option,
the Offline state of the resource group will not survive node reboots. In other words,
if a node dies or joins the cluster, the resource group might come online on some node,
even if you previously switched the resource group offline. Even if all of the resources
are disabled, the resource group will come online. To prevent the resource group from
coming online, you must either put the resource group in the Unmanaged state or set
the Desired_primaries property of the group to zero.

scswitch(1M)

EXIT STATUS

ATTRIBUTES

SEE ALSO

NOTES

SC31 1m 191

scversions – Sun Cluster version management

scversions [-c]

The scversions command commits the cluster to a new level of functionality after a
rolling–upgrade to new Sun Cluster software. With no arguments, the scversions
command prints a message indicating whether a commitment is needed.

The following operands are supported:

-c Commit the set of nodes that are currently active members of the cluster to
the highest possible level of functionality.

When you upgrade a node (either through upgrade to a new release of the
product or by application of a patch) and boot it back into the cluster, some
of the internal protocols on that node might have to run at lower versions
in order to cooperate correctly with other nodes in the cluster. When the
cluster is in this state, some administrative actions might be disabled and
some new functionality introduced in the upgrade might be unavailable.

When you run this command once from any node after all nodes is
upgraded, the cluster switches to the highest versions of internal protocols
possible. Assuming all nodes have the same Sun Cluster software installed
at that time, all new functionality becomes available and any
administrative restrictions are removed.

If a node that has not been upgraded is an active member of the cluster at
the time you run the -c option to scversions, the command has no effect
because the cluster is already running at the highest possible level of
functionality.

If a node has not been upgraded and is not an active member of the cluster
when you run the -c option to scversions (for example, if that node is
down for maintenance), the internal protocols of the cluster are upgraded
to the highest possible versions. You might have to upgrade the node that
was not an active member of the cluster to enable it to rejoin the cluster.

0 Success

non-zero Failure

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscu

Interface Stability Evolving

scinstall(1M)

scversions(1M)

NAME

SYNOPSIS

DESCRIPTION

OPERANDS

EXIT STATUS

ATTRIBUTES

SEE ALSO

192 Sun Cluster Reference Manual for Solaris OS • Last Revised 13 December 2002

Sun Cluster 3.1 5/03 Software Installation Guide

scversions(1M)

SC31 1m 193

scvxinstall – install VERITAS Volume Manager (VxVM) on a cluster node

scvxinstall [-d cdrom-image] [-L license…]

scvxinstall {-i | -e} [-d cdrom-image] [-L license…]

scvxinstall -s

scvxinstall -H

The scvxinstall utility provides automatic VxVM installation and optional
root-disk encapsulation for Sun Cluster nodes.

The first form of the scvxinstall utility in the SYNOPSIS section of this man page
runs in interactive mode. All other forms of the utility run in non-interactive mode.

� In interactive mode, scvxinstall prompts the user for the mode of operation
(“install only” or “install and encapsulate”) and for any needed CD-ROM and
licensing information.

� In non-interactive mode, scvxinstall does not prompt the user for information.
If any needed information is not supplied on the utility line, scvxinstall
terminates with an error return code.

The cluster must meet the following requirements before you run the scvxinstall
utility:

� All nodes in the cluster configuration must be current cluster members.
� Each root disk that you will encapsulate must have at least two free (unassigned)

partitions.
� All nodes must be added to the node authentication list.
� As of VxVM 4.1, you must install VxVM software and licenses before you run the

scvxinstall utility.

The “install-only” mode of the scvxinstall utility performs the following tasks:

1. Verifies that the node you are installing is booted in cluster mode and is running as
root, and verify that all other cluster nodes are running in cluster mode.

2. For VxVM 4.0 or earlier, adds the VxVM software, licensing, and man-page
packages, but not the GUI packages.

3. Negotiates a cluster-wide value for the vxio major number by modifying the
/etc/name_to_major file. This ensures that the vxio number is the same on all
cluster nodes.

4. For VxVM 4.0 or earlier, installs the VxVM license key.

5. Instructs the user to reboot the node to resume operation with the new vxio major
numbers in effect.

The “install-and-encapsulate” mode of the scvxinstall utility performs the same
tasks as the “install-only” mode except Step 5, then performs the following additional
tasks:

1. Runs several VxVM commands to prepare for root-disk encapsulation.

scvxinstall(1M)

NAME

SYNOPSIS

DESCRIPTION

194 Sun Cluster Reference Manual for Solaris OS • Last Revised 4 April 2005

2. Modifies the global-devices entry in the /etc/vfstab file specified for the
/global/.devices/node@n file system, where n is the node ID number. The
scvxinstall utility replaces the existing device path /dev/did/{r}dsk with
/dev/{r}dsk. This change ensures that VxVM recognizes that the global-devices
file system resides on the root disk.

3. Twice reboots each node that is running scvxinstall, once to allow VxVM to
complete the encapsulation process and once more to resume normal operation.
The scvxinstall utility includes a synchronization mechanism to ensure that it
reboots only one node at a time, to prevent loss of quorum.

4. Unmounts the global-devices file system. The file system is automatically
remounted after the encapsulation process is complete.

5. Recreates the special files for the root-disk volumes with a unique minor number
on each node.

The following options are supported:

-d cdrom-image
Valid only for VxVM 4.0 or earlier. Specifies the path to the VxVM packages.

-e
Specifies the "install and encapsulate" mode of the scvxinstall utility. This
option installs VxVM, if installing VxVM 4.0 or earlier, encapsulates the root disk,
and performs postinstallation tasks. If the scvxinstall utility was previously run
on the node in "install only" mode, scvxinstall confirms that "install only" mode
tasks are completed before it performs the root-disk encapsulation tasks.

-H
Specifies the "help" mode of the scvxinstall utility. This option displays a brief
help message about the scvxinstall utility.

-i
Specifies the “install only” mode of the scvxinstall utility. This option installs
VxVM, if installing VxVM 4.0 or earlier, and performs postinstallation tasks, but
does not encapsulate the root disk.

-L license
Valid only for VxVM 4.0 or earlier. Specifies a license key for the VxVM software.
You can specify the -L license option multiple times to supply multiple license keys
to the scvxinstall utility. If you have no additional license keys to install, you
can specify the word none for the license argument to the -L option.

-s
Specifies the “show status” mode of the scvxinstall utility. This option displays
the status of running or completed scvxinstall processing on the node.

EXAMPLE 1 Running scvxinstall Interactively

The following command runs scvxinstall interactively.

example# scvxinstall

scvxinstall(1M)

OPTIONS

EXAMPLES

SC31 1m 195

EXAMPLE 2 Installing the VxVM Packages Without Encapsulating the Root Disk

The following command installs the VxVM 4.0 packages but does not encapsulate the
root disk. This command also supplies the VxVM license key. This example assumes
that the VxVM CD-ROM is in the CD-ROM drive.

example# scvxinstall -i -L "9999 9999 9999 9999 9999 999"

EXAMPLE 3 Installing the VxVM Packages Without Encapsulating the Root Disk

The following command installs the VxVM 4.0 packages but does not encapsulate the
root disk. The command supplies the path to the CD-ROM images of the VxVM
packages, which are stored on a server.

example# scvxinstall -i -d /net/myserver/VxVM/pkgs

EXAMPLE 4 Installing the VxVM Packages and Encapsulating the Root Disk

The following command installs the VxVM 4.0 packages and encapsulates the root
disk. The command supplies the VxVM license key. This example assumes that the
VxVM CD-ROM is in the CD-ROM drive.

example# scvxinstall -e -L "9999 9999 9999 9999 9999 999"

EXAMPLE 5 Installing the VxVM Packages and Encapsulating the Root Disk

The following command installs the VxVM 4.0 packages and encapsulates the root
disk. The command supplies the path to the CD-ROM images and supplies the VxVM
license key.

example# scvxinstall -e -d /net/myserver/VxVM/pkgs -L "9999 9999 9999 9999 9999 999"

EXAMPLE 6 Encapsulating the Root Disk After Installing VxVM 4.1 Software

The following command verifies that VxVM 4.1 software and licenses are installed and
configured, encapsulates the root disk, and negotiates a cluster-wide value for the
vxio major number.

example# scvxinstall -e

EXAMPLE 7 Performing Postinstallation Tasks After Installing VxVM 4.1 Software

The following command verifies that VxVM 4.1 software and licenses are installed and
configured, then negotiates a cluster-wide value for the vxio major number.

example# scvxinstall -i

The following exit values are returned:

0 Successful completion.

non-zero An error has occurred.

scvxinstall(1M)

EXIT STATUS

196 Sun Cluster Reference Manual for Solaris OS • Last Revised 4 April 2005

/etc/rc2.d/S74scvxinstall.sh
(Solaris 8 and Solaris 9) An rc script used to complete processing following a
root-disk-encapsulation reboot

/usr/cluster/lib/svc/method/scvxinstall
(Solaris 10) An rc script used to complete processing following a
root-disk-encapsulation reboot

/var/cluster/logs/install/scvxinstall.log.pid
Log file created by scvxinstall

/var/cluster/scvxinstall/*
Location of temporary files used by scvxinstall

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

Availability SUNWcsu, SUNWscr

Interface Stability Evolving

scconf(1M), scinstall(1M), scsetup(1M)

Sun Cluster Software Installation Guide for Solaris OS

scvxinstall(1M)

FILES

ATTRIBUTES

SEE ALSO

SC31 1m 197

scvxinstall(1M)

198 Sun Cluster Reference Manual for Solaris OS • Last Revised 4 April 2005

SC31 3ha

199

scds_close – free DSDL environment resources

cc [flags...]-I /usr/cluster/include file -L /usr/cluster/lib -l dsdev

#include <rgm/libdsdev.h>

void scds_close(scds_handle_t *handle);

The scds_close() function reclaims resources that were allocated during data
service method initialization by using scds_initialize(3HA). Call this function
once, prior to termination of the program.

The following parameters are supported:

handle The handle returned from scds_initialize().

/usr/cluster/include/rgm/libdsdev.h
include file

/usr/cluster/lib/libdsdev.so
library

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscdev

Interface Stability Evolving

scds_initialize(3HA), attributes(5)

scds_close(3HA)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

FILES

ATTRIBUTES

SEE ALSO

200 Sun Cluster Reference Manual for Solaris OS • Last Revised 17 Jun 2002

scds_error_string – translate an error code to an error string

cc [flags...]-I /usr/cluster/include file -L /usr/cluster/lib -l dsdev

#include <rgm/libdsdev.h>

const char *scds_error_string(scha_err_t error_code);

The scds_error_string() function translates an error code from a DSDL function
into a short string describing the error. Invalid error codes return NULL.

The pointer returned by this function is to memory belonging to the DSDL. Do not
modify this memory.

The following parameters are supported:

error_code Error code returned by a DSDL function.

/usr/cluster/include/rgm/libdsdev.h
include file

/usr/cluster/lib/libdsdev.so
library

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscdev

Interface Stability Evolving

scha_calls(3HA), attributes(5)

scds_error_string(3HA)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

FILES

ATTRIBUTES

SEE ALSO

SC31 3ha 201

scds_failover_rg – failover a resource group

cc [flags
...] -I/usr/cluster/include file -L
/usr/cluster/lib -ldsdev

#include <rgm/libdsdev.h>

scha_err_t scds_failover_rg(scds_handle_t handle);

The scds_failover_rg() function performs a scha_control(3HA)
SCHA_GIVEOVER operation on the resource group containing the resource passed to
the calling program.

When this function succeeds, it does not return. Therefore, treat this function as the
last piece of code to be executed in the calling program.

The following parameters are supported:

handle The handle returned from scds_initialize(3HA).

The following return values are supported:

SCHA_ERR_NOERR Indicates the function succeeded.

Other values Indicate the function failed. See scha_calls(3HA) for a
description of other error codes.

/usr/cluster/include/rgm/libdsdev.h
include file

/usr/cluster/lib/libdsdev.so
library

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscdev

Interface Stability Evolving

scha_calls(3HA), scha_control(3HA), attributes(5)

scds_failover_rg(3HA)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

RETURN VALUES

FILES

ATTRIBUTES

SEE ALSO

202 Sun Cluster Reference Manual for Solaris OS • Last Revised 17 Jun 2002

scds_fm_action – take action after probe completion

cc [flags...]-I /usr/cluster/include file -L /usr/cluster/lib -l dsdev

#include <rgm/libdsdev.h>

scha_err_t scds_fm_action(scds_handle_t handle, int probe_status, long
elapsed_milliseconds);

The scds_fm_action() function uses the probe_status of the data service in
conjunction with the past history of failures to take one of the following actions:

� Restart the application.
� Fail over the resource group.
� Do nothing.

Use the value of the input probe_status argument to indicate the severity of the
failure. For example, you might consider a failure to connect to an application as a
complete failure, but a failure to disconnect as a partial failure. In the latter case you
would have to specify a value for probe_status between 0 and
SCDS_PROBE_COMPLETE_FAILURE.

The DSDL defines SCDS_PROBE_COMPLETE_FAILURE as 100. For partial probe
success or failure, use a value between 0 and SCDS_PROBE_COMPLETE_FAILURE.

Successive calls to scds_fm_action() compute a failure history by summing the
value of the probe_status input parameter over the time interval defined by the
Retry_interval property of the resource. Any failure history older than
Retry_interval is purged from memory and is not used towards making the
restart or failover decision.

The scds_fm_action() function uses the following algorithm to choose which
action to take:

Restart If the accumulated history of failures reaches
SCDS_PROBE_COMPLETE_FAILURE, scds_fm_action()
restarts the resource by calling the STOP method of the resource
followed by the START method. It ignores any PRENET_START or
POSTNET_STOP methods defined for the resource type.

The status of the resource is set to SCHA_RSSTATUS_DEGRADED by
making a scha_resource_setstatus() call, unless the
resource is already set.

If the restart attempt fails because the START or STOP methods of
the resource fail, a scha_control() is called with the GIVEOVER
option to fail the resource group over to another node. If the
scha_control() call succeeds, the resource group is failed over
to another cluster node and the call to scds_fm_action() never
returns.

scds_fm_action(3HA)

NAME

SYNOPSIS

DESCRIPTION

SC31 3ha 203

Upon a successful restart, failure history is purged. Another restart
is attempted if and only if the failure history again accumulates to
SCDS_PROBE_COMPLETE_FAILURE.

Failover If the number of restarts attempted by successive calls to
scds_fm_action() reaches the Retry_count value defined for
the resource, a failover is attempted by making a call to
scha_control() with the GIVEOVER option.

The status of the resource is set to SCHA_RSSTATUS_FAULTED by
making a scha_resource_setstatus() call, unless the
resource is already set.

If the scha_control() call fails, the entire failure history
maintained by scds_fm_action() is purged.

If the scha_control() call succeeds, the resource group is failed
over to another cluster node and the call to scds_fm_action()
never returns.

No Action If the accumulated history of failures remains below
SCDS_PROBE_COMPLETE_FAILURE, no action is taken. In
addition, if the probe_status value is 0, which indicates a
successful check of the service, no action is taken, irrespective of
the failure history.

The status of the resource is set to SCHA_RSSTATUS_OK by
making a scha_resource_setstatus() call, unless the
resource is already set.

The following parameters are supported:

handle The handle returned from scds_initialize(3HA).

probe_status A number you specify between 0 and
SCDS_PROBE_COMPLETE_FAILURE that indicates the
status of the data service. A value of 0 implies that the
recent data service check was successful. A value of
SCDS_PROBE_COMPLETE_FAILURE means complete
failure and implies that the service has completely
failed. You can also supply a value in between 0 and
SCDS_PROBE_COMPLETE_FAILURE that implies a
partial failure of the service.

elapsed_milliseconds The time, in milliseconds, to complete the data service
check. This value is reserved for future use.

The following exit values are returned:

0 The function succeeded.

nonzero The function failed.

scds_fm_action(3HA)

PARAMETERS

RETURN VALUES

204 Sun Cluster Reference Manual for Solaris OS • Last Revised 24 Jan 2005

SCHA_ERR_NOERR No action was taken, or a restart was successfully attempted.

SCHA_ERR_FAIL A failover attempt was made but it did not succeed.

SCHA_ERR_NOMEM System is out of memory.

/usr/cluster/include/rgm/libdsdev.h
include file

/usr/cluster/lib/libdsdev.so
library

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscdev

Interface Stability Evolving

scds_fm_sleep(3HA), scds_initialize(3HA), scha_calls(3HA),
scha_control(3HA), scha_fm_print_probes(3HA),
scha_resource_setstatus(3HA), attributes(5)

scds_fm_action(3HA)

ERRORS

FILES

ATTRIBUTES

SEE ALSO

SC31 3ha 205

scds_fm_net_connect – establish a TCP connection to an application

cc [flags...]-I /usr/cluster/include file -L /usr/cluster/lib -l dsdev

#include <rgm/libdsdev.h>

scha_err_t scds_fm_net_connect(scds_handle_t handle, scds_socket_t
*socklist, int count, scds_netaddr_t addr, time_t timeout);

The scds_fm_net_connect() function establishes one or more TCP connections
(depending on the protocol value of Port_list for each address, as described below)
to a process that is being monitored.

You can retrieve a list of network addresses for the resource by using
scds_get_netaddr_list(3HA). That call also fills the protocol value for each
address in the list. If tcp6 is specified as the protocol in Port_list for that address,
the protocol value is set to SCDS_IPPROTO_TCP6. If tcp is specified as the protocol in
Port_list for that address or if no protocol is specified in Port_list, the protocol
value is set to SCDS_IPPROTO_TCP.

This function also resolves the hostname that is supplied in addr and connects to:

� The IPv4 address of the hostname at the specified port, if the protocol that is
specified in addr is SCDS_IPPROTO_TCP.

� Both the IPv4 address (if there is one) and the IPv6 address (if there is one) of the
hostname at the specified port, if the protocol specified in addr is
SCDS_IPPROTO_TCP6. The status and the file descriptor, if applicable, are stored
in the scds_socket_t array that is supplied to this function. The first member of
this array is used for the IPv4 mapping and the second member of this array is
used for IPv6. The status can be set to one of the following values:

� SCDS_FMSOCK_OK — The operation succeeded and the associated socket file
descriptor is valid.

� SCDS_FMSOCK_NA — The address type (IPv4 or IPv6) does not apply to this
hostname. If the hostname contains only one or more IPv4 mappings, the
status of the second member in the array that is passed to this function is set to
SCDS_FMSOCK_NA. The associated socket file descriptor is set to an unknown
value, and should never be used.

� SCDS_FMSOCK_ERR — The operation failed or timed out. The associated socket
file descriptor is set to an unknown value, and should never be used.

The following parameters are supported:

handle The handle that is returned by scds_initialize(3HA).

socklist An array of SCDS_MAX_IPADDR_TYPES members of type
scds_socket_t. Each member in the array holds a status and a
socket file descriptor for a TCP connection. This parameter is an
output argument that is set by this function.

count The number of members in the socklist array. Set this parameter to
SCDS_MAX_IPADDR_TYPES.

scds_fm_net_connect(3HA)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

206 Sun Cluster Reference Manual for Solaris OS • Last Revised 7 Jun 2004

addr The hostname, TCP port number, and protocol identifier that
specify where the process is listening.

timeout The timeout value in seconds. Each socket gets the same time
period for a connection to be established before it is timed out. As
these time intervals proceed in parallel, this value is effectively the
maximum time that the function takes to execute.

The scds_fm_net_connect() function returns the following values:

0 The function succeeded. At least one socket connected.

SCHA_ERR_INVAL The function was called with invalid paramaters.

Other nonzero
values

Not a single connection could be established, due to a timeout, a
refused connection, or some other error. You can inspect the
status field of all members of the socklist array that are set to
SCDS_FMSOCK_ERR to determine the exact error.

SCHA_ERR_NOERR Indicates that the function succeeded.

SCHA_ERR_INTERNAL Indicates that an internal error occurred while the
function was executing.

SCHA_ERR_STATE Indicates that the connection request was refused by
the server.

SCHA_ERR_TIMEOUT Indicates that the connection request timed out.

EXAMPLE 1 Using the scds_fm_net_connect() Function

/* this function is called repeatedly,
after thorough_probe_interval seconds */

int probe(scds_handle_t scds_handle, ...)
{

scds_socket_t socklist[SCDS_MAX_IPADDR_TYPES];
...

/* for each hostname/port/proto */
for (i = 0; i < netaddr->num_netaddrs, i++) {

if (scds_fm_net_connect(scds_handle, socklist,
SCDS_MAX_IPADDR_TYPES, netaddr[i], timeout) !=
SCHA_ERR_NOERR)
{

/* failed completely */
...

} else {
/* at least one sock connected */
for (j = 0, j < SCDS_MAX_IPADDR_TYPES, j++) {

if (socklist[j].status == SCDS_FM_SOCK_NA)
continue;

if (socklist[j].status == SCDS_FMSOCK_ERR) {
/* this particular connection failed */
scds_syslog(LOG_ERR, "Failed: %s",

scds_error_string(socklist[j].err));

scds_fm_net_connect(3HA)

RETURN VALUES

ERRORS

EXAMPLES

SC31 3ha 207

EXAMPLE 1 Using the scds_fm_net_connect() Function (Continued)

continue;
}

/* use socklist[i].fd to perform write/read */
...

}
(void) scds_fm_net_disconnect(scds_handle, socklist,

SCDS_MAX_IPADDR_TYPES, remaining_time);
}

}
...
return (result);

}

/usr/cluster/include/rgm/libdsdev.h
Include file

/usr/cluster/lib/libdsdev.so
Library

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscdev

Interface Stability Evolving

scds_fm_net_disconnect(3HA), scds_fm_tcp_connect(3HA),
scds_get_netaddr_list(3HA), scds_initialize(3HA), scha_calls(3HA),
attributes(5)

scds_fm_net_connect(3HA)

FILES

ATTRIBUTES

SEE ALSO

208 Sun Cluster Reference Manual for Solaris OS • Last Revised 7 Jun 2004

scds_fm_net_disconnect – terminate a TCP connection to an application

cc [flags...]-I /usr/cluster/include file -L /usr/cluster/lib -l dsdev

#include <rgm/libdsdev.h>

scha_err_t scds_fm_net_disconnect(scds_handle_t handle,
scds_socket_t *socklist, int count, time_t timeout);

The scds_fm_net_disconnect() function terminates one or more TCP
connections to a process that is being monitored.

An attempt is made to close all valid socket connections in the socklist array within
the specified timeout interval. On return, each member of socklist contains the
value SCDS_FMSOCK_NA.

The following parameters are supported:

handle The handle that is returned by scds_initialize(3HA).

socklist The socket list that is returned by scds_fm_net_connect(3HA).
This argument is an input/output argument.

count The number of members in the socklist array. Set this parameter to
SCDS_MAX_IPADDR_TYPES.

timeout The timeout value in seconds. Each socket gets the same time
period to disconnect before it is timed out. As these time intervals
proceed in parallel, this value is effectively the maximum time that
the function takes to execute.

The scds_fm_net_disconnect() function returns the following values:

0 The function succeeded.

SCHA_ERR_INVAL The function was called with invalid paramaters.

Other nonzero
values

The function failed. See scha_calls(3HA) for the meaning of
failure codes.

/usr/cluster/include/rgm/libdsdev.h
Include file

/usr/cluster/lib/libdsdev.so
Library

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscdev

Interface Stability Evolving

scds_fm_net_disconnect(3HA)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

RETURN VALUES

FILES

ATTRIBUTES

SC31 3ha 209

scds_fm_net_connect(3HA), scds_fm_tcp_disconnect(3HA),
scds_initialize(3HA), scha_calls(3HA), attributes(5)

scds_fm_net_disconnect(3HA)

SEE ALSO

210 Sun Cluster Reference Manual for Solaris OS • Last Revised 26 May 2004

scds_fm_print_probes – print probe debugging information

cc [flags...]-I /usr/cluster/include file -L /usr/cluster/lib -l dsdev

#include <rgm/libdsdev.h>

void scds_fm_print_probes(scds_handle_t handle, int debug_level);

The scds_fm_print_probes() function writes probe status information, reported
with scds_fm_action(3HA), to the system log. This information includes a list of all
probe status history maintained by the DSDL and the timestamp associated with the
probe status.

The DSDL defines the maximum debugging level, SCDS_MAX_DEBUG_LEVEL, as 9.

If you specify a debug_level greater than the current debugging level being used,
no information is written.

The following parameters are supported:

handle The handle returned from scds_initialize(3HA).

debug_level Debugging level at which the data is to be written. It is an integer
between 1 and SCDS_MAX_DEBUG_LEVEL, defined as 9 by the
DSDL.

/usr/cluster/include/rgm/libdsdev.h
include file

/usr/cluster/lib/libdsdev.so
library

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscdev

Interface Stability Evolving

scds_fm_action(3HA), scds_initialize(3HA), scds_syslog_debug(3HA),
attributes(5)

scds_fm_print_probes(3HA)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

FILES

ATTRIBUTES

SEE ALSO

SC31 3ha 211

scds_fm_sleep – wait for a message on a fault monitor control socket

cc [flags...]-I /usr/cluster/include file -L /usr/cluster/lib -l dsdev

#include <rgm/libdsdev.h>

scha_err_t scds_fm_sleep(scds_handle_t handle, time_t timeout);

Thescds_fm_sleep() function waits for a data service application process tree that
running under control of the process monitor facility to die. If no such death occurs
within the specified timeout period, the function returns SCHA_ERR_NOERR.

If a data service application process tree death occurs, scds_fm_sleep() records
SCDS_COMPLETE_FAILURE in the failure history and either restarts the process tree
or fails it over according to the algorithm described in the scds_fm_action(3HA)
man page. If a failover attempt is unsuccessful, a restart of the application is
attempted.

If an attempted restart fails, the function returns SCHA_ERR_INTERNAL.

Note that if the failure history causes this function to do a failover, and the failover
attempt succeeds, scds_fm_sleep() never returns.

The following parameters are supported:

handle The handle returned from scds_initialize(3HA).

timeout The timeout period measured in seconds.

The scds_fm_sleep() function returns the following:

0 The function succeeded.

non-zero The function failed.

SCHA_ERR_NOERR Indicates the process tree has not died.

SCHA_ERR_INTERNAL Indicates the data service application process tree has
died and failed to restart.

Other values Indicate the function failed. See scha_calls(3HA) for
the meaning of failure codes.

/usr/cluster/include/rgm/libdsdev.h
include file

/usr/cluster/lib/libdsdev.so
library

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscdev

scds_fm_sleep(3HA)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

RETURN VALUES

ERRORS

FILES

ATTRIBUTES

212 Sun Cluster Reference Manual for Solaris OS • Last Revised 18 Jun 2002

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

scha_calls(3HA), scds_fm_action(3HA), scds_initialize(3HA),
attributes(5)

scds_fm_sleep(3HA)

SEE ALSO

SC31 3ha 213

scds_fm_tcp_connect – establish a tcp connection to an application

cc [flags...]-I /usr/cluster/include file -L /usr/cluster/lib -l dsdev

#include <rgm/libdsdev.h>

scha_err_t scds_fm_tcp_connect(scds_handle_t handle, int *sock,
const char*hostname, int port, time_t timeout);

The scds_fm_tcp_connect() function establishes a TCP connection with a process
being monitored.

Retrieve the hostname with either scds_get_rs_hostnames(3HA) or
scds_get_rg_hostnames(3HA).

Consider using scds_fm_net_connect(3HA) instead of this function.

The following parameters are supported:

handle The handle returned by scds_initialize(3HA).

sock A handle to the socket established by this function. This parameter
is an output argument set by this function.

hostname Name of the host where the process is listening. If the hostname
maps to an IPv4 address only, or to both IPv4 and IPv6 addresses,
this function uses the IPv4 mapping as the address at which to
connect. If the hostname maps to an IPv6 address only, this function
uses that IPv6 mapping as the address at which to connect.

port TCP port number.

timeout Timeout value in seconds.

The scds_fm_tcp_connect() function returns the following:

0 The function succeeded.

nonzero The function failed.

SCHA_ERR_NOERR Indicates the function succeeded.

SCHA_ERR_STATE Indicates that an attempt to initiate a connection on a
socket failed for reasons other than a timeout.

SCHA_ERR_TIMEOUT Indicates the function timed out.

Other values Indicate the function failed. See scha_calls(3HA) for
the meaning of failure codes.

/usr/cluster/include/rgm/libdsdev.h
Include file

/usr/cluster/lib/libdsdev.so
Library

scds_fm_tcp_connect(3HA)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

RETURN VALUES

ERRORS

FILES

214 Sun Cluster Reference Manual for Solaris OS • Last Revised 7 Jun 2004

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscdev

Interface Stability Deprecated

scds_fm_net_connect(3HA), scds_fm_tcp_disconnect(3HA),
scds_get_rg_hostnames(3HA), scds_get_rs_hostnames(3HA),
scds_initialize(3HA), scha_calls(3HA), attributes(5)

scds_fm_tcp_connect(3HA)

ATTRIBUTES

SEE ALSO

SC31 3ha 215

scds_fm_tcp_disconnect – terminate a tcp connection to an application

cc [flags...]-I /usr/cluster/include file -L /usr/cluster/lib -l dsdev

#include <rgm/libdsdev.h>

scha_err_t scds_fm_tcp_disconnect(scds_handle_t handle, int sock,
time_t timeout);

The scds_fm_tcp_disconnect() function terminates a TCP connection with a
process being monitored.

The following parameters are supported:

handle The handle returned by scds_initialize(3HA).

sock The socket number returned by a previous call to
scds_fm_tcp_connect(3HA).

timeout Timeout value in seconds.

The following exit values are returned:

0 The function succeeded.

nonzero The function failed.

SCHA_ERR_NOERR Indicates that the function succeeded.

SCHA_ERR_TIMEOUT Indicates that the function timed out.

Other values Indicate that the function failed. See
scha_calls(3HA) for the meaning of failure codes.

/usr/cluster/include/rgm/libdsdev.h
Include file

/usr/cluster/lib/libdsdev.so
Library

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscdev

Interface Stability Deprecated

scds_fm_net_disconnect(3HA), scds_fm_tcp_connect(3HA),
scds_initialize(3HA), scha_calls(3HA), attributes(5)

scds_fm_tcp_disconnect(3HA)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

RETURN VALUES

ERRORS

FILES

ATTRIBUTES

SEE ALSO

216 Sun Cluster Reference Manual for Solaris OS • Last Revised 7 Jun 2004

scds_fm_tcp_read – read data using a tcp connection to an application

cc [flags...]-I /usr/cluster/include file -L /usr/cluster/lib -l dsdev

#include <rgm/libdsdev.h>

scha_err_t scds_fm_tcp_read(scds_handle_t handle, int sock, char
*buffer, size_t *size, time_t timeout);

The scds_fm_tcp_read() function reads data from a TCP connection with a
process being monitored.

The size argument is an input and argument. On input, you specify the size of the
buffer, bytes. On completion, the function places the data in buffer and specifies the
actual number of bytes read in size. If the buffer is not big enough for the number of
bytes read, the function returns a full buffer of size bytes, and you can call the function
again for further data.

If the function times out, it returns SCHA_ERR_TIMEOUT. In this case, the function
might return fewer bytes than requested, indicated by the value returned in size.

The following parameters are supported:

handle The handle returned from scds_initialize(3HA)

sock The socket number returned by a previous call to
scds_fm_tcp_connect(3HA)

buffer Data buffer

size Data buffer size. On input, you specify the size of the buffer, in
bytes. On output, the function returns the actual number of bytes
read.

timeout Timeout value in seconds.

The scds_fm_tcp_read() function returns the following:

0 The function succeeded.

non-zero The function failed.

SCHA_ERR_NOERR Indicates the function succeeded.

SCHA_ERR_TIMEOUT Indicates the function timed out.

Other values Indicate the function failed. See scha_calls(3HA) for
the meaning of failure codes.

/usr/cluster/include/rgm/libdsdev.h
include file

/usr/cluster/lib/libdsdev.so
library

scds_fm_tcp_read(3HA)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

RETURN VALUES

ERRORS

FILES

SC31 3ha 217

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscdev

Interface Stability Evolving

scds_fm_tcp_disconnect(3HA), scds_fm_tcp_write(3HA),
scds_initialize(3HA), scha_calls(3HA), attributes(5)

scds_fm_tcp_read(3HA)

ATTRIBUTES

SEE ALSO

218 Sun Cluster Reference Manual for Solaris OS • Last Revised 18 Jun 2002

scds_fm_tcp_write – write data using a tcp connection to an application

cc [flags...]-I /usr/cluster/include file -L /usr/cluster/lib -l dsdev

#include <rgm/libdsdev.h>

scha_err_t scds_fm_tcp_write(scds_handle_t handle, int sock, char
*buffer, size_t *size, time_t timeout);

The scds_fm_tcp_write() function writes data from by means of a TCP
connection to a process being monitored.

The size argument is an input and output argument. On input, you specify the number
of bytes to be written. On output, the function returns the number of bytes actually
written. If the input and output values of size are not equal, an error has occurred. The
function returns SCHA_ERR_TIMEOUT if it times out before writing all the requested
data.

The following parameters are supported:

handle The handle returned from scds_initialize(3HA)

sock The socket number returned by a previous call to
scds_fm_tcp_connect(3HA)

buffer Data buffer

size Data buffer size. On input, you specify the number of bytes to be
written. On output, the function returns the number of bytes
actually written.

timeout Timeout value in seconds

The scds_fm_tcp_write() function returns the following:

0 The function succeeded.

non-zero The function failed.

SCHA_ERR_NOERR Indicates the function succeeded.

SCHA_ERR_TIMEOUT Indicates the function timed out.

Other values Indicate the function failed. See scha_calls(3HA) for
the meaning of failure codes.

/usr/cluster/include/rgm/libdsdev.h
include file

/usr/cluster/lib/libdsdev.so
library

See attributes(5) for descriptions of the following attributes:

scds_fm_tcp_write(3HA)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

RETURN VALUES

ERRORS

FILES

ATTRIBUTES

SC31 3ha 219

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscdev

Interface Stability Evolving

scds_fm_tcp_connect(3HA), scds_fm_tcp_read(3HA),
scds_initialize(3HA), scha_calls(3HA), attributes(5)

scds_fm_tcp_write(3HA)

SEE ALSO

220 Sun Cluster Reference Manual for Solaris OS • Last Revised 18 Jun 2002

scds_free_ext_property – free the resource extension property memory

cc [flags...]-I /usr/cluster/include file -L /usr/cluster/lib -l dsdev

#include <rgm/libdsdev.h>

void scds_free_ext_property(scha_ext_prop_value_t *property_value);

The scds_free_ext_property() function reclaims memory allocated during calls
to scds_get_ext_property(3HA).

The following parameters are supported:

property_value Pointer to a property value

/usr/cluster/include/rgm/libdsdev.h
Include file

/usr/cluster/lib/libdsdev.so
Library

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscdev

Interface Stability Evolving

scds_get_ext_property(3HA), attributes(5)

scds_free_ext_property(3HA)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

FILES

ATTRIBUTES

SEE ALSO

SC31 3ha 221

scds_free_netaddr_list – free the network address memory

cc [flags...]-I /usr/cluster/include file -L /usr/cluster/lib -l dsdev

#include <rgm/libdsdev.h>

void scds_free_netaddr_list(scds_netaddr_list_t *netaddr_list);

The scds_free_netaddr_list() function reclaims memory allocated during calls
to scds_get_netaddr_list(3HA). It deallocates the memory pointed to by
netaddr_list.

The following parameters are supported:

netaddr_list Pointer to a list of hostname-port-protocol 3-tuples used by the
resource group.

/usr/cluster/include/rgm/libdsdev.h
Include file

/usr/cluster/lib/libdsdev.so
Library

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscdev

Interface Stability Evolving

scds_get_netaddr_list(3HA), attributes(5)

scds_free_netaddr_list(3HA)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

FILES

ATTRIBUTES

SEE ALSO

222 Sun Cluster Reference Manual for Solaris OS • Last Revised 18 Jun 2002

scds_free_net_list – free the network resource memory

cc [flags...]-I /usr/cluster/include file -L /usr/cluster/lib -l dsdev

#include <rgm/libdsdev.h>

void scds_free_net_list(scds_net_resource_list_t *net_resource_list);

The scds_free_net_list() function reclaims memory allocated during calls to
scds_get_rg_hostnames(3HA) or scds_get_rs_hostnames(3HA). It
deallocates the memory pointed to by netresource_list.

The following parameters are supported:

netresource_list Pointer to a list of network resources used by the resource group

/usr/cluster/include/rgm/libdsdev.h
Include file

/usr/cluster/lib/libdsdev.so
Library

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscdev

Interface Stability Evolving

scds_get_rg_hostnames(3HA), scds_get_rs_hostnames(3HA),
attributes(5)

scds_free_net_list(3HA)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

FILES

ATTRIBUTES

SEE ALSO

SC31 3ha 223

scds_free_port_list – free the port list memory

cc [flags...]-I /usr/cluster/include file -L /usr/cluster/lib -l dsdev

#include <rgm/libdsdev.h>

void scds_free_port_list(scds_port_list_t *port_list);

The scds_free_port_list() function reclaims memory allocated during calls to
scds_get_port_list(3HA). It deallocates the memory pointed to by port_list.

The following parameters are supported:

port_list Pointer to a list of port-protocol pairs used by the resource group

/usr/cluster/include/rgm/libdsdev.h
Include file

/usr/cluster/lib/libdsdev.so
Library

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscdev

Interface Stability Evolving

scds_get_port_list(3HA), attributes(5)

scds_free_port_list(3HA)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

FILES

ATTRIBUTES

SEE ALSO

224 Sun Cluster Reference Manual for Solaris OS • Last Revised 24 Jan 2005

scds_get_ext_property – retrieve an extension property

cc [flags...]-I /usr/cluster/include file -L /usr/cluster/lib -l dsdev

#include <rgm/libdsdev.h>

scha_err_t scds_get_ext_property(scds_handle_t handle, const char
*property_name, scha_prop_type_t property_type,
scha_extprop_value_t **property_value);

The scds_get_ext_property() function retrieves the value of a given extension
property.

The name of the property is first looked up in the list of properties specified in the
method argument list (argv[], which was parsed by scds_initialize()). If the
property name is not in the method argument list, it is retrieved using the Sun Cluster
API. See scha_calls(3HA).

Upon successful completion, the value of the property is placed in the appropriate
variable in the union in a scha_extprop_value_t structure and a pointer to this
structure is passed back to the caller in property_value.

You are responsible for freeing memory by using scds_free_ext_property().

You can find information about the data types scha_prop_type_t and
scha_extprop_value_t in scha_calls(3HA) and in the <scha_types.h>
header file.

DSDL provides convenience functions to retrieve the values of some of the more
commonly used resource extension properties. See the
scds_property_functions(3HA) man page.

The following parameters are supported:

handle The handle returned from scds_initialize(3HA)

property_name Name of the property being retrieved

property_type Property value type. Valid types are defined in scha_calls(3HA)
and property_attributes(5).

property_value Pointer to a property value

The scds_get_ext_property() function returns the following:

0 The function succeeded.

non-zero The function failed.

SCHA_ERR_INVAL RTR file does not define the specified property.

SCHA_ERR_NOERR Indicates the function succeeded.

Other values Indicate the function failed. See scha_calls(3HA) for the
meaning of the failure codes.

scds_get_ext_property(3HA)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

RETURN VALUES

ERRORS

SC31 3ha 225

EXAMPLE 1 Using scds_get_ext_property

#include <scha_types.h>
#include <libdsdev.h>
#define INT_EXT_PROP “Int_extension_property”
...
int retCode;
scha_extprop_value_t *intExtProp;
int retrievedValue;
...

retCode = scds_get_ext_property(handle,
INT_EXT_PROP, SCHA_PTYPE_INT, &intExtProp);

if (retCode != SCHA_ERR_NOERR) {
scds_syslog(LOG_ERR,

"Failed to retrieve the extension property %s: %s.",
INT_EXT_PROP, scds_error_string(retCode));

...
} else {

retrievedValue = intExtProp->val.val_int;
...
scds_free_ext_property(intExtProp);
...

}

...

/usr/cluster/include/rgm/libdsdev.h
Include file

/usr/cluster/lib/libdsdev.so
Library

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscdev

Interface Stability Evolving

scds_free_ext_property(3HA), scds_initialize(3HA),
scds_property_functions(3HA), scha_calls(3HA), rt_reg(4),
attributes(5), property_attributes(5)

Only the values of extension properties defined in the RTR file can be retrieved using
this function. See rt_reg(4). If the extension property is not defined in the RTR file,
SCHA_ERR_INVAL is returned.

scds_get_ext_property(3HA)

EXAMPLES

FILES

ATTRIBUTES

SEE ALSO

NOTES

226 Sun Cluster Reference Manual for Solaris OS • Last Revised 24 Jan 2005

scds_get_netaddr_list – get the network addresses used by a resource

cc [flags...]-I /usr/cluster/include file -L /usr/cluster/lib -l dsdev
#include <rgm/libdsdev.h>

scha_err_t scds_get_netaddr_list(scds_handle_t handle,
scds_netaddr_list_t **netaddr_list);

The scds_get_netaddr_list() function returns all hostname, port, and protocol
combinations that are in use by the resource. These combinations are derived by
combining the Port_list property settings on the resource with all the hostnames in
use by the resource, as returned by the scds_get_rs_hostnames() function.

Use scds_get_netaddr_list() in a fault monitor to monitor the resource, and to
derive the list of hostnames, ports, and protocols that are in use by the resource .

Values for the protocol type are defined in header file <rgm/libdsdev.h>.

Free the memory that is allocated and returned by this function with
scds_free_netaddr_list().

The following parameters are supported:

handle The handle that is returned by scds_initialize()

netaddr_list The list of hostnames, ports, and protocols that are used by the
resource group

The scds_get_netaddr_list() function returns the following values:

0 The function succeeded.

nonzero The function failed.

SCHA_ERR_NOERR Indicates that the function succeeded

Other values Indicate that the function failed. See scha_calls(3HA) for the
meaning of failure codes.

/usr/cluster/include/rgm/libdsdev.h
Include file

/usr/cluster/lib/libdsdev.so
Library

See attributes(5) for descriptions of the following attributes.

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscdev

Interface Stability Evolving

scds_free_netaddr_list(3HA), scds_get_rs_hostnames(3HA),
scha_calls(3HA), r_properties(5), attributes(5)

scds_get_netaddr_list(3HA)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

RETURN VALUES

ERRORS

FILES

ATTRIBUTES

SEE ALSO

SC31 3ha 227

scds_get_port_list – retrieve the port list used by a resource

cc [flags...]-I /usr/cluster/include file -L /usr/cluster/lib -l dsdev

#include <rgm/libdsdev.h>

scha_err_t scds_get_port_list(scds_handle_t handle,
scds_port_list_t **port_list);

The scds_get_port_list() function returns a list of port-protocol pairs used by
the resource. Values for the protocol type are defined in the header file
<netinet/in.h>.

Free the memory allocated and returned by this function with
scds_free_port_list().

The following parameters are supported:

handle The handle returned from scds_initialize()

port_list List of port-protocol pairs used by the resource group

The scds_get_port_list() function returns the following:

0 The function succeeded.

non-zero The function failed.

SCHA_ERR_NOERR Indicates the function succeeded.

Other values Indicate the function failed. See scha_calls(3HA) for
the meaning of failure codes.

/usr/cluster/include/scha.h
Include file

/usr/cluster/lib/libscha.so
Library

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscdev

Interface Stability Evolving

scds_free_port_list(3HA), scha_calls(3HA), attributes(5)

scds_get_port_list(3HA)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

RETURN VALUES

ERRORS

FILES

ATTRIBUTES

SEE ALSO

228 Sun Cluster Reference Manual for Solaris OS • Last Revised 19 Jun 2002

scds_get_resource_group_name – retrieve the resource group name

cc [flags...]-I /usr/cluster/include file -L /usr/cluster/lib -l dsdev

#include <rgm/libdsdev.h>

const char *scds_get_resource_group_name(scds_handle_t handle);

The scds_get_resource_group_name() function returns a pointer to a character
string that is the name of the resource group containing the resource passed to the
calling program. The pointer is to memory belonging to the DSDL. Do not modify this
memory. A call to scds_close() invalidates the pointer.

The following parameters are supported:

handle The handle returned from scds_initialize()

NULL Indicates an error condition such as not previously calling
scds_initialize(3HA)

See scha_calls(3HA) for a description of other error codes.

/usr/cluster/include/scha.h
Include file

/usr/cluster/lib/libscha.so
Library

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscdev

Interface Stability Evolving

scds_close(3HA), scds_initialize(3HA), scha_calls(3HA), attributes(5)

scds_get_resource_group_name(3HA)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

ERRORS

FILES

ATTRIBUTES

SEE ALSO

SC31 3ha 229

scds_get_resource_name – retrieve the resource name

cc [flags...]-I /usr/cluster/include file -L /usr/cluster/lib -l dsdev

#include <rgm/libdsdev.h>

const char *scds_get_resource_name(scds_handle_t handle);

The scds_get_resource_name() function returns a pointer to a character string
containing the name of the resource passed to the calling program. The pointer is to
memory belonging to the DSDL. Do not modify this memory. A call to
scds_close() invalidates the pointer.

The following parameters are supported:

handle The handle returned from scds_initialize()

NULL Indicates an error condition such as not previously calling
scds_initialize(3HA)

See scha_calls(3HA) for a description of other error codes.

/usr/cluster/include/rgm/libdsdev.h
Include file

/usr/cluster/lib/libdsdev.so
Library

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscdev

Interface Stability Evolving

scds_close(3HA), scds_initialize(3HA), scha_calls(3HA), attributes(5)

scds_get_resource_name(3HA)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

ERRORS

FILES

ATTRIBUTES

SEE ALSO

230 Sun Cluster Reference Manual for Solaris OS • Last Revised 19 Jun 2002

scds_get_resource_type_name – retrieve the resource type name

cc [flags...]-I /usr/cluster/include file -L /usr/cluster/lib -l dsdev

#include <rgm/libdsdev.h>

const char *scds_get_resource_type_name(scds_handle_t handle);

The scds_get_resource_type_name() function returns a pointer to a character
string containing the name of the resource type of the resource passed to the calling
program. The pointer is to memory belonging to the DSDL. Therefore, do not modify
this memory. A call to scds_close() invalidates the pointer.

The following parameters are supported:

handle The handle returned from scds_initialize()

NULL Indicates an error condition such as not previously calling
scds_initialize()

See scha_calls(3HA) for a description of other error codes.

/usr/cluster/include/rgm/libdsdev.h
Include file

/usr/cluster/lib/libdsdev.so
Library

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscdev

Interface Stability Evolving

scds_close(3HA), scds_initialize(3HA), scha_calls(3HA), attributes(5)

scds_get_resource_type_name(3HA)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

ERRORS

FILES

ATTRIBUTES

SEE ALSO

SC31 3ha 231

scds_get_rg_hostnames – get the network resources used in a resource group

cc [flags...]-I /usr/cluster/include file -L /usr/cluster/lib -l dsdev

#include <rgm/libdsdev.h>

scha_err_t scds_get_rg_hostnames(char *resourcegroup_name,
scds_net_resource_list_t **netresource_list);

The scds_get_rg_hostnames() function retrieves a list of hostnames used by all
the network resources in a resource group. This function returns a pointer to the list in
netresource_list. It is possible for a resource group to contain no network resources or to
contain resources that do not use network resources, so this function can return
netresource_list set to NULL.

You can pass the name of any resource group name in the system to
scds_get_rg_hostnames(). Use the hostnames returned by
scds_get_rg_hostnames() to contact applications running in the specified
resource group.

Free the memory allocated and returned by this function with
scds_free_net_list().

The following parameters are supported

resourcegroup_name Name of the resource group for which data is to be
retrieved

netresource_list List of network resources used by the resource group

The scds_get_rg_hostnames() function returns the following:

0 The function succeeded.

non-zero The function failed.

SCHA_ERR_NOERR Function succeeded.

See scha_calls(3HA) for a description of other error codes.

/usr/cluster/include/rgm/libdsdev.h
Include file

/usr/cluster/lib/libdsdev.so
Library

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscdev

Interface Stability Evolving

scds_get_rg_hostnames(3HA)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

RETURN VALUES

ERRORS

FILES

ATTRIBUTES

232 Sun Cluster Reference Manual for Solaris OS • Last Revised 24 Jul 2002

scds_free_net_list(3HA), scds_get_rs_hostnames(3HA),
scha_calls(3HA), attributes(5)

scds_get_rg_hostnames(3HA)

SEE ALSO

SC31 3ha 233

scds_get_rs_hostnames – get the network resources used by a resource

cc [flags...]-I /usr/cluster/include file -L /usr/cluster/lib -l dsdev

#include <rgm/libdsdev.h>

scha_err_t scds_get_rs_hostnames(scds_handle_t handle,
scds_net_resource_list_t **netresource_list);

The scds_get_rs_hostnames() function retrieves a list of hostnames used by the
resource. If the resource property Network_resources_used is set, then the
hostnames correspond to the network resources listed in
Network_resources_used. Otherwise, they correspond to all the network
resources in the resource group containing the resource.

This function returns a pointer to the list in netresource_list. It is possible for a resource
group to contain no network resources or to contain resources that do not use network
resources, so this function can return netresource_list set to NULL.

Free the memory allocated and returned by this function with
scds_free_net_list(3HA).

The following parameters are supported

handle The handle returned from scds_initialize(3HA)

netresource_list List of network resources used by the resource group

The scds_get_rs_hostnames() function returns the following:

0 The function succeeded

non-zero The function failed

SCHA_ERR_NOERR Function succeeded.

See scha_calls(3HA) for a description of other error codes.

/usr/cluster/include/rgm/libdsdev.h
Include file

/usr/cluster/lib/libdsdev.so
Library

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscdev

Interface Stability Evolving

scds_free_net_list(3HA), scds_get_rg_hostnames(3HA),
scds_initialize(3HA), scha_calls(3HA), attributes(5), r_properties(5)

scds_get_rs_hostnames(3HA)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

RETURN VALUES

ERRORS

FILES

ATTRIBUTES

SEE ALSO

234 Sun Cluster Reference Manual for Solaris OS • Last Revised 8 Jul 2002

scds_hasp_check – get status information about SUNW.HAStoragePlus resources used
by a resource

cc [flags...]-I /usr/cluster/include file -L /usr/cluster/lib -l dsdev

#include <rgm/libdsdev.h>

scha_err_t scds_hasp_check(scds_handle_t handle,
scds_hasp_status_t *hasp_status);

The scds_hasp_check() function retrieves status information about
SUNW.HAStoragePlus resources used by a resource. This information is obtained
from the state, online or otherwise, of all SUNW.HAStoragePlus resources that the
resource depends upon using Resource_dependencies or
Resource_dependencies_weak system properties defined for the resource.

Resource Type implementations can use scds_hasp_check() in VALIDATE and
MONITOR_CHECK method callback implementation to ascertain whether checks
specific to any filesystems that are managed by SUNW.HAStoragePlus resources,
should be carried out or not.

When the function succeeds, a status code is stored in hasp_status. This code can be
one of the following:

SCDS_HASP_NO_RESOURCE
This indicates there is no SUNW.HAStoragePlus resource that this resource
depends on.

SCDS_HASP_ERR_CONFIG
Indicates that at least one of the SUNW.HAStoragePlus resource is in a different
resource group then the current resource.

SCDS_HASP_NOT_ONLINE
This indicates there is at least one SUNW.HAStoragePlus resource, that this
resource depends on, which is not online on any potential primary node for this
resource.

SCDS_HASP_ONLINE_NOT_LOCAL
This indicates there is at least one SUNW.HAStoragePlus resource that this
resource depends on, that is online on a different cluster node, that is, it. is not
online on the cluster node where this function call is made.

SCDS_HASP_ONLINE_LOCAL
This indicates that all SUNW.HAStoragePlus resources that this resource depends
on are online on the node which called scds_hasp_check().

These status codes have precedence over each other in the order in which they have
been listed above. For example, if there is an SUNW.HAStoragePlus resource not
online and another SUNW.HAStoragePlus resource online on a different node, the
status code will be set to SCDS_HASP_NOT_ONLINE rather than
SCDS_HASP_ONLINE_NOT_LOCAL.

All SUNW.HAStoragePlus resources who have their extension property
FilesystemMountPoints set to empty, are ignored by scds_hasp_check().

scds_hasp_check(3HA)

NAME

SYNOPSIS

DESCRIPTION

SC31 3ha 235

The following parameters are supported:

handle The handle returned from scds_initialize(3HA)

hasp_status Status of SUNW.HAStoragePlus resources used by the resource

The scds_hasp_check() function returns the following:

0 The function succeeded

non-zero The function failed

SCHA_ERR_NOERR Indicates the function succeeded and the
status code stored in hasp_status is valid

SCHA_ERR_INTERNAL Indicates the function failed. Value stored in
hasp_status is undefined and should be
ignored.

See scha_calls(3HA) for a description of other error codes.

/usr/cluster/include/rgm/libdsdev.h
Include file

/usr/cluster/lib/libdsdev.so
Library

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscdev

Interface Stability Evolving

scds_initialize(3HA), attributes(5)

scds_hasp_check(3HA)

PARAMETERS

RETURN VALUES

ERRORS

FILES

ATTRIBUTES

SEE ALSO

236 Sun Cluster Reference Manual for Solaris OS • Last Revised 8 Jul 2002

scds_initialize – allocate and initialize DSDL environment

cc [flags...]-I /usr/cluster/include file -L /usr/cluster/lib -l dsdev

#include <rgm/libdsdev.h>

scha_err_t scds_initialize(scds_handle_t *handleint argc, char
*argv[]);

The scds_initialize() function initializes the DSDL environment. You must call
this function once at the beginning of each program or fault monitor that uses any
other DSDL functions.

The scds_initialize() function does the following:

� Checks and processes the command line arguments (argc and argv[]) that the
framework passes to the calling program and that must be passed along to
scds_initialize(). No further processing of the command line arguments is
required of the calling program. See EXAMPLES.

� Sets up internal data structures with information needed by the other functions in
the DSDL. It retrieves resource, resource type, and resource group property values
and stores them in these data structures. Values for any properties supplied on the
command line by means of the argv[] argument take precedence over those
retrieved from the RGM. That is, if a new value for a property has been specified in
the command line arguments (argv[]) passed to the data service method, then this
new value is returned by the function that retrieves that property’s value.
Otherwise, the existing value retrieved from the RGM is returned.

� Initializes the data service fault monitoring information
� Initializes the logging environment. All syslog messages are prefixed with:

SC[<resourceTypeName>,<resourceGroupName>,<resourceName>,<methodName>

Functions that send messages to syslog use the facility returned by
scha_cluster_getlogfacility(). These messages can be forwarded to
appropriate log files and users. See syslog.conf(4) for more information.

� Validates fault monitor probe settings. It verifies that the Retry_interval is
greater than or equal to (Thorough_probe_interval * Retry_count). If this
is not true, it sends an appropriate message to the syslog facility. You could call
scds_initialize() and scds_close() in a VALIDATE method for this
validation of the fault monitor probe settings even if you call no other DSDL
functions in the VALIDATE method.

If scds_initialize() succeeds, you must call scds_close() before exiting the
calling program.

If scds_initialize() fails, you must not call scds_close() to clean up. When
scds_initialize() fails, do not call any other DSDL functions. They will return
SCHA_ERR_INVAL or a NULL value. Rather, call exit() with a non-zero argument.

The following parameters are supported:

handle A handle initialized by scds_initialize() and used by other
DSDL functions

scds_initialize(3HA)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

SC31 3ha 237

argc Number of arguments passed to the calling program

argv Pointer to an argument array passed to the calling program

The scds_initialize() function returns the following:

0 The function succeeded.

non-zero The function failed.

SCHA_ERR_NOERR Function succeeded

See scha_calls(3HA) for a description of other error codes.

EXAMPLE 1 Using scds_initialize

int
main(int argc, char *argv[]){
scds_handle_t handle;

if (scds_initialize(&handle, argc, argv) !=
SCHA_ERR_NOERR)
exit(1);
...
/* data service code */
...
scds_close(&handle);

}

/usr/cluster/include/rgm/libdsdev.h
Include file

/usr/cluster/lib/libdsdev.so
Library

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscdev

Interface Stability Evolving

scds_close(3HA), scds_property_functions(3HA), scha_calls(3HA),
scha_cluster_getlogfacility(3HA), syslog.conf(4), r_properties(5)

scds_initialize(3HA)

RETURN VALUES

ERRORS

EXAMPLES

FILES

ATTRIBUTES

SEE ALSO

238 Sun Cluster Reference Manual for Solaris OS • Last Revised 24 Jan 2005

scds_pmf_get_status – determine if a PMF-monitored process tree exists

cc [flags...]-I /usr/cluster/include file -L /usr/cluster/lib -l dsdev

#include <rgm/libdsdev.h>

scha_err_t scds_pmf_get_status(scds_handle_t handle,
scds_pmf_type_t program_type, int instance, scds_pmf_status_t
*pmf_status);

The scds_pmf_get_status() function determines if the specified instance is being
monitored under PMF control. This function is equivalent to the pmfadm(1M)
command with the -q option.

The following parameters are supported:

handle The handle returned from scds_initialize()

program_type Type of program to execute. Valid types are:

SCDS_PMF_TYPE_SVC Data service application

SCDS_PMF_TYPE_MON Fault monitor

SCDS_PMF_TYPE_OTHER Other

instance For resources with multiple instances, this integer, starting at 0,
uniquely identifies the instance. For single instance resources, use
0.

pmf_status If PMF is monitoring the specified instance, pmf_status is set to
SCDS_PMF_MONITORED. Otherwise it is set to
SCDS_PMF_NOT_MONITORED.

The scds_pmf_get_status() function returns the following:

0 The function succeeded.

non-zero The function failed.

SCHA_ERR_NOERR Function succeeded

See scha_calls(3HA) for a description of other error codes.

/usr/cluster/include/rgm/libdsdev.h
Include file

/usr/cluster/lib/libdsdev.so
Library

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscdev

scds_pmf_get_status(3HA)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

RETURN VALUES

ERRORS

FILES

ATTRIBUTES

SC31 3ha 239

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

pmfadm(1M), scds_initialize(3HA), scha_calls(3HA), attributes(5)

scds_pmf_get_status(3HA)

SEE ALSO

240 Sun Cluster Reference Manual for Solaris OS • Last Revised 8 Jul 2002

scds_pmf_restart_fm – restart fault monitor using PMF

cc [flags...]-I /usr/cluster/include file -L /usr/cluster/lib -l dsdev

#include <rgm/libdsdev.h>

scha_err_t scds_pmf_restart_fm(scds_handle_t handle, int instance);

The scds_pmf_restart_fm() function sends a SIGKILL signal to the fault monitor
process tree to kill the fault monitor and then uses PMF to restart it. This function uses
the MONITOR_STOP_TIMEOUT property as its timeout value. That is,
scds_pmf_restart_fm() waits at most the value of the MONITOR_STOP_TIMEOUT
property for the process tree to die.

If the MONITOR_STOP_TIMEOUT property is not explicitly set in the RTR file, the
default timeout value is used.

One way to use this function is to call it in an UPDATE method to restart the monitor,
possibly with new parameters.

The following parameters are supported:

handle The handle returned from scds_initialize()

instance For resources with multiple instances of the fault monitor, this
integer, starting at 0, uniquely identifies the fault monitor instance.
For single instance fault monitors, use 0.

The scds_pmf_restart_fm() function returns the following:

0 The function succeeded.

non-zero The function failed.

SCHA_ERR_NOERR Function succeeded

See scha_calls(3HA) for a description of other error codes.

/usr/cluster/include/rgm/libdsdev.h
Include file

/usr/cluster/lib/libdsdev.so
Library

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscdev

Interface Stability Evolving

pmfadm(1M), scha_calls(3HA), signal(3HEAD), attributes(5) ,
r_properties(5)

scds_pmf_restart_fm(3HA)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

RETURN VALUES

ERRORS

FILES

ATTRIBUTES

SEE ALSO

SC31 3ha 241

scds_pmf_signal – send a signal to a process tree under PMF control

cc [flags...]-I /usr/cluster/include file -L /usr/cluster/lib -l dsdev

#include <rgm/libdsdev.h>

scha_err_t scds_pmf_signal(scds_handle_t handle, scds_pmf_type_t
program_type, int instance, int signal, time_t timeout);

The scds_pmf_signal() function sends the specified signal to a process tree
running under PMF control. This function is equivalent to the pmfadm(1M) command
with the -k option.

After sending the signal, the scds_pmf_signal() function waits for the specified
timeout period for the process tree to die, before returning. A value of 0 for timeout
tells the function to return immediately without waiting for any process to exit. A
value of -1 tells the function to wait indefintely for the processes to exit.

The following parameters are supported:

handle The handle returned from scds_initialize()

program_type Type of program to execute. Valid types are:

SCDS_PMF_TYPE_SVC Data service application

SCDS_PMF_TYPE_MON Fault monitor

SCDS_PMF_TYPE_OTHER Other

instance For resources with multiple instances, this integer, starting at 0,
uniquely identifies the instance. For single instance resources, use
0.

signal Solaris signal to send. See signal(3HEAD).

timeout Timeout period in seconds.

The scds_pmf_signal() function returns the following:

0 The function succeeded.

non-zero The function failed.

SCHA_ERR_TIMEOUT The process tree did not exit within the specified
timeout period after the signal was sent.

SCHA_ERR_NOERR The function succeeded.

Other values Indicate the function failed. See scha_calls(3HA) for
the meaning of failure codes.

/usr/cluster/include/rgm/libdsdev.h
Include file

/usr/cluster/lib/libdsdev.so
Library

scds_pmf_signal(3HA)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

RETURN VALUES

ERRORS

FILES

242 Sun Cluster Reference Manual for Solaris OS • Last Revised 8 Jul 2002

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscdev

Interface Stability Evolving

pmfadm(1M), scds_initialize(3HA), scha_calls(3HA), signal(3HEAD),
attributes(5)

scds_pmf_signal(3HA)

ATTRIBUTES

SEE ALSO

SC31 3ha 243

scds_pmf_start – execute a program under PMF control

cc [flags...]-I /usr/cluster/include file -L /usr/cluster/lib -l dsdev

#include <rgm/libdsdev.h>

scha_err_t scds_pmf_start(scds_handle_t handle, scds_pmf_type_t
program_type, int instance, const char *command, int
child_monitor_level);

The scds_pmf_start() function executes a program, specified by command, under
PMF control. This function is equivalent to the pmfadm(1M) command with the -c
option.

The command argument contains a command line and command line arguments that
are passed to the function.

When you start a data service application or other process (program type
SCDS_PMF_TYPE_SVC or SCDS_PMF_TYPE_OTHER) under PMF with
scds_pmf_start(), you choose the level of child processes to monitor by using the
child_monitor_level argument. Values for the child_monitor_level
argument are none, some or all. The child_monitor_level argument specifies
that children up to and including level child_monitor_level will be monitored.
The original process is executed at level 0, its children at level 1, their children at level
2, and so on. Any new fork operation produces a new level of children. Specify -1 to
monitor all levels of children.

For example, if the command to start is a daemon, the appropriate
child_monitor_level is 1. If the command to start is a script that starts a daemon,
the appropriate value for child_monitor_level is 2.

For a fault monitor (program type SCDS_PMF_TYPE_MON), the
child_monitor_level argument is ignored and 0 is used.

If the underlying application process is already running, scds_pmf_start() prints a
syslog() error and returns SCHA_ERR_INTERNAL because the RGM guarantees that
two calls to a START function on a node must have an intervening STOP function.

The following parameters are supported:

handle The handle returned from scds_initialize(3HA)

program_type Type of program to execute. Valid types are:

SCDS_PMF_TYPE_SVC Data service application

SCDS_PMF_TYPE_MON Fault monitor

SCDS_PMF_TYPE_OTHER Other

instance For resources with multiple instances, this integer, starting at 0,
uniquely identifies the instance. For single instance resources, use
0.

scds_pmf_start(3HA)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

244 Sun Cluster Reference Manual for Solaris OS • Last Revised 9 Jul 2002

command Command, including command line arguments, to execute under
PMF control.

child_monitor_level For program_type SCDS_PMF_TYPE_SVC and
SCDS_PMF_TYPE_OTHER, this argument specifies the level of child
processes to be monitored (equivalent to the -C option to
pmfadm). Use -1 to specify all levels of child processes. For
program_type SCDS_PMF_TYPE_MON, this argument is ignored.

The scds_pmf_start() function returns the following:

0 The function succeeded.

non-zero The function failed.

SCHA_ERR_INTERNAL The underlying application process is already running.

SCHA_ERR_NOERR The function succeeded.

Other values The function failed. See scha_calls(3HA) for a
description of other error codes.

/usr/cluster/include/rgm/libdsdev.h
Include file

/usr/cluster/lib/libdsdev.so
Library

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscdev

Interface Stability Evolving

pmfadm(1M), scds_initialize(3HA), scds_pmf_stop(3HA),
scds_svc_wait(3HA), scha_calls(3HA), attributes(5)

scds_pmf_start(3HA)

RETURN VALUES

ERRORS

FILES

ATTRIBUTES

SEE ALSO

SC31 3ha 245

scds_pmf_stop – terminate a process that is running under PMF control

cc [flags...]-I /usr/cluster/include file -L /usr/cluster/lib -l dsdev
#include <rgm/libdsdev.h>

scha_err_t scds_pmf_stop(scds_handle_t handle, scds_pmf_type_t
program_type, int instance, int signal, time_t timeout);

The scds_pmf_stop() function stops a program that is running under PMF control.
It is equivalent to the pmfadm(1M) command with the -s option.

If the requested instance is not running, scds_pmf_stop() returns with value
SCHA_ERR_NOERR.

If the requested instance is running, then the specified signal is sent to the instance. If
the instance fails to die within a period of time equal to 80% of the timeout value,
SIGKILL is sent to the instance. If the instance then fails to die within a period of time
equal to 15% of the timeout value, the function is considered to have failed and
returns SCHA_ERR_TIMEOUT. The remaining 5% of the timeout argument is presumed
to have been absorbed by this function’s overhead.

The following parameters are supported:

handle The handle returned from scds_initialize(3HA)

program_type Type of program to execute. Valid types are:

SCDS_PMF_TYPE_SVC Data service application

SCDS_PMF_TYPE_MON Fault monitor

SCDS_PMF_TYPE_OTHER Other

instance For resources with multiple instances, this integer, starting at 0,
uniquely identifies the instance. For single instance resources, use
0.

signal Solaris signal to send kill the instance. See signal(3HEAD). Use
SIGKILL if the specified signal fails to kill the instance.

timeout Timeout period measured in seconds.

The scds_pmf_stop() function returns the following:

0 The function succeeded.

non-zero The function failed.

SCHA_ERR_TIMEOUT The function timed out.

SCHA_ERR_NOERR The function succeeded.

Other values Indicate the function failed. See scha_calls(3HA) for
a description of other error codes.

/usr/cluster/include/rgm/libdsdev.h
Include file

scds_pmf_stop(3HA)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

RETURN VALUES

ERRORS

FILES

246 Sun Cluster Reference Manual for Solaris OS • Last Revised 9 Jul 2002

/usr/cluster/lib/libdsdev.so
Library

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscdev

Interface Stability Evolving

pmfadm(1M), scds_initialize(3HA), scds_pmf_start(3HA),
scha_calls(3HA), signal(3HEAD), attributes(5)

scds_pmf_stop(3HA)

ATTRIBUTES

SEE ALSO

SC31 3ha 247

scds_pmf_stop_monitoring – stop monitoring a process that is running under PMF
control

cc [flags...]-I /usr/cluster/include file -L /usr/cluster/lib -l dsdev

#include <rgm/libdsdev.h>

scha_err_t scds_pmf_stop_monitoring(scds_handle_t handle,
scds_pmf_type_t program_type, int instance);

The scds_pmf_stop_monitoring() function stops the monitoring of a process tree
that is running under PMF control. PMF does not send a signal to stop the process.
Rather, PMF makes no future attempts to restart the process.

If the requested process is not under PMF control, scds_pmf_stop_monitoring()
returns, with value SCHA_ERR_NOERR.

The following parameters are supported:

handle The handle returned from scds_initialize(3HA)

program_type Type of program to execute. Valid types are:

SCDS_PMF_TYPE_SVC Data service application

SCDS_PMF_TYPE_MON Fault monitor

SCDS_PMF_TYPE_OTHER Other

instance For resources with multiple instances, this integer, starting at 0,
uniquely identifies the instance. For single instance resources, use
0.

The scds_pmf_stop_monitoring() function returns the following:

0 The function succeeded.

non-zero The function failed.

SCHA_ERR_NOERR The function succeeded.

See scha_calls(3HA) for a description of other error codes.

/usr/cluster/include/rgm/libdsdev.h
Include file

/usr/cluster/lib/libdsdev.so
Library

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscdev

scds_pmf_stop_monitoring(3HA)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

RETURN VALUES

ERRORS

FILES

ATTRIBUTES

248 Sun Cluster Reference Manual for Solaris OS • Last Revised 9 Jul 2002

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

pmfadm(1M), scds_initialize(3HA), scds_pmf_start(3HA),
scds_pmf_stop(3HA), scha_calls(3HA), attributes(5)

scds_pmf_stop_monitoring(3HA)

SEE ALSO

SC31 3ha 249

scds_print_netaddr_list – print the contents of a list of hostname-port-protocol
3-tuples used by a resource group

cc [flags...]-I /usr/cluster/include file -L /usr/cluster/lib -l dsdev

#include <rgm/libdsdev.h>

void scds_print_netaddr_list(scds_handle_t handle, int debug_level,
const scds_netaddr_list_t *netaddr_list);

The scds_print_netaddr_list() function writes the contents of a list of
hostname-port-protocol 3-tuples, pointed to by netaddr_list, to the system log, at the
debugging level specified by debug_level. If the specified debugging level is greater
than the debugging level currently being used, no information is written.

The following parameters are supported:

handle The handle returned from scds_initialize(3HA)

debug_level The debugging level at which the data is to be written

netaddr_list Pointer to a list of hostname-port-protocol 3-tuples used by the
resource group, retrieved with scds_get_netaddr_list(3HA)

/usr/cluster/include/rgm/libdsdev.h
Include file

/usr/cluster/lib/libdsdev.so
Library

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscdev

Interface Stability Evolving

scds_get_netaddr_list(3HA), scds_initialize(3HA),
scds_syslog_debug(3HA), attributes(5)

scds_print_netaddr_list(3HA)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

FILES

ATTRIBUTES

SEE ALSO

250 Sun Cluster Reference Manual for Solaris OS • Last Revised 22 Jul 2002

scds_print_net_list – print the contents of a network resource list

cc [flags...]-I /usr/cluster/include file -L /usr/cluster/lib -l dsdev

#include <rgm/libdsdev.h>

voidscds_print_net_list(scds_handle_t handle, int debug_level, const
scds_net_resource_list_t *netresource_list);

The scds_print_net_list() function writes the contents of the network resource
list, pointed to by netresource_list, to the system log, at the debugging level specified by
debug_level. If the specified debugging level is greater than the debugging level
currently being used, no information is written.

The following parameters are supported:

handle The handle returned from scds_initialize(3HA)

debug_level Debugging level at which the data is to be written

netresource_list Pointer to an initialized network resource list, retrieved
with either scds_get_rg_hostnames(3HA) or
scds_get_rs_hostnames(3HA)

/usr/cluster/include/rgm/libdsdev.h
Include file

/usr/cluster/lib/libdsdev.so
Library

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscdev

Interface Stability Evolving

scds_get_rg_hostnames(3HA), scds_get_rs_hostnames(3HA),
scds_initialize(3HA), scds_syslog_debug(3HA), attributes(5)

scds_print_net_list(3HA)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

FILES

ATTRIBUTES

SEE ALSO

SC31 3ha 251

scds_print_port_list – print the contents of a port list

cc [flags...]-I /usr/cluster/include file -L /usr/cluster/lib -l dsdev

#include <rgm/libdsdev.h>

void scds_print_port_list(scds_handle_t handle, int debug_level,
const scds_port_list_t *port_list);

The scds_print_port_list() function writes the contents of a port list, pointed to
by port_list, to the system log, at the debugging level specified by debug_level. If the
specified debugging level is greater than the debugging level currently being used, no
information is written.

The following parameters are supported:

handle The handle returned from scds_initialize(3HA)

debug_level Debugging level at which the data is to be written

port_list Pointer to a list of port-protocol pairs used by the resource group,
retrieved with scds_get_port_list().

/usr/cluster/include/rgm/libdsdev.h
Include file

/usr/cluster/lib/libdsdev.so
Library

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscdev

Interface Stability Evolving

scds_get_port_list(3HA), scds_initialize(3HA),
scds_syslog_debug(3HA), attributes(5)

scds_print_port_list(3HA)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

FILES

ATTRIBUTES

SEE ALSO

252 Sun Cluster Reference Manual for Solaris OS • Last Revised 22 Jul 2002

scds_property_functions – A set of convenience functions to retrieve values of
commonly used resource properties, resource group properties, resource type
properties, and extension properties

cc [flags...]-I /usr/cluster/include file -L /usr/cluster/lib -l dsdev

#include <rgm/libdsdev.h>

return_value scds_get_property_name(scds_handle_t handle);

The DSDL provides a set of convenience functions to retrieve values of commonly
used resource properties, resource group properties, resource type properties, and
extension properties. Retrieve user-defined extension properties with
scds_get_ext_property(3HA).

All convenience functions use the following conventions:

� The functions take only the handle argument.
� Each function corresponds to a particular property.
� The return value type of the function matches the type of the property value it

retrieves.
� These functions do not return errors because the return values have been

pre-computed in scds_initialize(3HA). For functions that return pointers, a
NULL value is returned when an error condition is encountered, for example, when
scds_initialize() was not previously called.

� If a new value for a property has been specified in the command-line arguments
passed to the calling program (argv[]), this new value is returned. Otherwise, these
functions return the value retrieved from the RGM.

� Some of these convenience functions return a pointer to memory belonging to the
DSDL. Do not modify this memory. A call to scds_close(3HA) invalidates this
pointer.

See the r_properties(5), rg_properties(5), and rt_properties(5) man pages
for descriptions of standard properties. See the individual data service man pages for
descriptions of extension properties.

See the scha_calls(3HA) man page and the <scha_types.h> header file for
information about the data types used by these functions, such as
scha_prop_type_t, scha_extprop_value_t, scha_initnodes_flag_t,
scha_str_array_t, scha_failover_mode_t, scha_switch_t, and
scha_rsstatus_t.

These functions use the following naming conventions:

Resource property
scds_get_rs_property-name

Resource group property
scds_get_rg_property-name

Resource type property
scds_get_rt_property-name

scds_property_functions(3HA)

NAME

SYNOPSIS

DESCRIPTION

SC31 3ha 253

Commonly used extension property
scds_get_ext_property-name

Note – Property names are not case sensitive. You can use any combination of
uppercase and lowercase letters when you specify property names.

The function declaration returns values for the resource property to retrieve. Some of
the properties’ values are explicitly set either in the RTR file or by a scrgadm(1M)
command. Others are determined dynamically by the RGM. The functions return data
types appropriate for the requested property.

Cheap_probe_interval
int scds_get_rs_cheap_probe_interval(scds_handle_t handle)

Failover_mode
scha_failover_mode_t scds_get_rs_failover_mode(scds_handle_t
handle)

Monitor_stop_timeout
int scds_get_rs_monitor_stop_timeout(scds_handle_t handle)

Monitored_switch
scha_switch_t scds_get_rs_monitored_switch(scds_handle_t
handle)

Network_resources_used
scha_str_array_t *
scds_get_rs_network_resources_used(scds_handle_t handle)

On_off_switch
scha_switch_t scds_get_rs_on_off_switch(scds_handle_t handle)

Resource_dependencies
const scha_str_array_t *
scds_get_rs_resource_dependencies(scds_handle_t handle)

Resource_dependencies_restart
const scha_str_array_t *
scds_get_rs_resource_dependencies_restart(scds_handle_t
handle)

Resource_dependencies_weak
const scha_str_array_t *
scds_get_rs_resource_dependencies_weak(scds_handle_t handle)

Resource_project_name
const char * scds_get_rs_resource_project_name(scds_handle_t
handle)

Retry_count
int scds_get_rs_retry_count(scds_handle_t handle)

Retry_interval
int scds_get_rs_retry_interval(scds_handle_t handle)

scds_property_functions(3HA)

Resource-Specific
Functions

254 Sun Cluster Reference Manual for Solaris OS • Last Revised 16 Aug 2004

Scalable
boolean scds_get_rs_scalable(scds_handle_t handle)

Start_timeout
int scds_get_rs_start_timeout(scds_handle_t handle)

Stop_timeout
int scds_get_rs_stop_timeout(scds_handle_t handle)

Thorough_probe_interval
int scds_get_rs_thorough_probe_interval(scds_handle_t handle)

The function declaration returns values for the resource group property to retrieve.
Some of the properties’ values are explicitly set either in the RTR file or by a
scrgadm(1M) command. Others are determined dynamically by the RGM. The
functions return data types appropriate for the requested property.

Desired_primaries
int scds_get_rg_desired_primaries(scds_handle_t handle)

Global_resources_used
const scha_str_array_t *
scds_get_rg_global_resources_used(scds_handle_t handle)

Implicit_network_dependencies
boolean_t
scds_get_rg_implicit_network_dependencies(scds_handle_t
handle)

Maximum_primaries
int scds_get_rg_maximum_primaries(scds_handle_t handle)

Nodelist
const scha_str_array_t * scds_get_rg_nodelist (scds_handle_t
handle)

Pathprefix
const char * scds_get_rg_pathprefix(scds_handle_t handle)

Pingpong_interval
int scds_get_rg_pingpong_interval(scds_handle_t handle)

Resource_list
const scha_str_array_t *
scds_get_rg_resource_list(scds_handle_t handle)

RG_affinities
const scha_str_array_t *
scds_get_rg_rg_affinities(scds_handle_t handle)

RG_mode
scha_rgmode_t scds_get_rg_rg_mode(scds_handle_t handle)

RG_project_name
const char * scds_get_rg_rg_project_name(scds_handle_t handle)

scds_property_functions(3HA)

Resource
Group-Specific

Functions

SC31 3ha 255

The function declaration returns values for the resource type property to retrieve.
Some of the properties’ values are explicitly set either in the RTR file or by a
scrgadm(1M) command. Others are determined dynamically by the RGM. The
functions return data types appropriate for the requested property.

API_version
int scds_get_rt_api_version(scds_handle_t handle)

Failover
boolean_t scds_get_rt_failover(scds_handle_t handle)

Init_nodes
scha_initnodes_flag_t scds_get_rt_init_nodes(scds_handle_t
handle)

Installed_nodes
const scha_str_array_t *
scds_get_rt_installed_nodes(scds_handle_t handle)

RT_basedir
const char * scds_get_rt_rt_basedir(scds_handle_t handle)

RT_version
const char * scds_get_rt_rt_version(scds_handle_t handle)

Single_instance
boolean_t scds_get_rt_single_instance(scds_handle_t handle)

Start_method
const char * scds_get_rt_start_method(scds_handle_t handle)

Stop_method
const char * scds_get_rt_stop_method(scds_handle_t handle)

The function declaration returns values for the resource extension property to retrieve.
Some of the properties’ values are explicitly set either in the RTR file or by a
scrgadm(1M) command. The functions return data types appropriate for the
requested property.

A resource type can define extension properties beyond the four listed here, but these
four properties have convenience functions defined for them. You retrieve these
properties with these convenience functions or with the
scds_get_ext_property(3HA) function. You must use
scds_get_ext_property() to retrieve extension properties other than these four.

Confdir_list
scha_str_array_t * scds_get_ext_confdir_list(scds_handle_t
handle)

Monitor_retry_count
int scds_get_ext_monitor_retry_count(scds_handle_t handle)

Monitor_retry_interval
int scds_get_ext_monitor_retry_interval(scds_handle_t handle)

scds_property_functions(3HA)

Resource
Type-Specific

Functions

Extension
Property-Specific

Functions

256 Sun Cluster Reference Manual for Solaris OS • Last Revised 16 Aug 2004

Probe_timeout
int scds_get_ext_probe_timeout(scds_handle_t handle)

The following parameter is supported for all the convenience functions:

handle The handle that is returned from scds_initialize(3HA).

Each function returns a value type that matches the type of the property value it
retrieves.

These functions do not return errors because the return values have been
pre-computed in scds_initialize(3HA). For functions that return pointers, a NULL
value is returned when an error condition is encountered, for example, when
scds_initialize() was not previously called

/usr/cluster/include/rgm/libdsdev.h
Include file

/usr/cluster/lib/libdsdev.so
Library

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscdev

Interface Stability Evolving

scrgadm(1M), scds_close(3HA), scds_get_ext_property(3HA),
scds_get_port_list(3HA), scds_get_resource_name(3HA),
scds_get_resource_group_name(3HA),
scds_get_resource_type_name(3HA), scds_initialize(3HA),
scha_calls(3HA), attributes(5), r_properties(5), rg_properties(5), and
rt_properties(5)

scds_property_functions(3HA)

PARAMETERS

RETURN VALUES

FILES

ATTRIBUTES

SEE ALSO

SC31 3ha 257

scds_restart_resource – restart a resource

cc [flags...]-I /usr/cluster/include file -L /usr/cluster/lib -l dsdev

#include <rgm/libdsdev.h>

scha_err_t scds_restart_resource(scds_handle_t handle);

The scds_restart_resource() function provides resource-level granularity for
the restart operation. This function calls the STOP method and then the START method
for the resource passed to the calling program. If PRENET_START and POSTNET_STOP
methods are defined for the resource type, they are ignored. Call this function from
the fault monitor.

The following parameters are supported:

handle The handle returned from scds_initialize(3HA)

The scha_restart_resource() function returns the following:

0 The function succeeded.

non-zero The function failed.

SCHA_ERR_NOERR Function succeeded.

See scha_calls(3HA) for a description of other error codes.

/usr/cluster/include/rgm/libdsdev.h
Include file

/usr/cluster/lib/libdsdev.so
Library

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscdev

Interface Stability Evolving

rt_callbacks(1HA), scds_restart_rg(3HA), scha_calls(3HA),
scha_control(3HA), attributes(5)

scds_restart_resource(3HA)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

RETURN VALUES

ERRORS

FILES

ATTRIBUTES

SEE ALSO

258 Sun Cluster Reference Manual for Solaris OS • Last Revised 23 Jul 2002

scds_restart_rg – restart a resource group

cc [flags...]-I /usr/cluster/include file -L /usr/cluster/lib -l dsdev

#include <rgm/libdsdev.h>

scha_err_t scds_restart_rg(scds_handle_t handle);

The scds_restart_rg() function performs an scha_control(3HA)
SCHA_RESTART operation on the resource group containing the resource passed to the
calling program. Call this function from the fault monitor.

When this function succeeds, it does not return. Therefore, treat this function as the
last piece of code to be executed in the calling program.

The following parameters are supported:

handle The handle returned from scds_initialize(3HA)

The scds_restart_rg() function returns the following:

0 The function succeeded.

non-zero The function failed.

SCHA_ERR_NOERR Function succeeded.

See scha_calls(3HA) for a description of other error codes.

/usr/cluster/include/rgm/libdsdev.h
Include file

/usr/cluster/lib/libdsdev.so
Library

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscdev

Interface Stability Evolving

scha_calls(3HA), scha_control(3HA), scds_initialize(3HA),
scds_restart_resource(3HA), attributes(5)

scds_restart_rg(3HA)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

RETURN VALUES

ERRORS

FILES

ATTRIBUTES

SEE ALSO

SC31 3ha 259

scds_simple_net_probe – probe by establishing and terminating a TCP connection to
an application

cc [flags...]-I /usr/cluster/include file -L /usr/cluster/lib -l dsdev

#include <rgm/libdsdev.h>

scha_err_t scds_simple_net_probe(scds_handle_t handle,
scds_netaddr_t addr, time_t timeout, scds_fmsock_status_t
*status, int count);

The scds_simple_net_probe() function is a wrapper function around
scds_fm_net_connect(3HA) and scds_fm_net_disconnect(3HA). For hosts
that have multiple mappings, scds_simple_net_probe() handles both IPv4 and
IPv6 addresses for the supplied hostname.

You can retrieve a list of network addresses for the resource by using
scds_get_netaddr_list(3HA).

The status for a connect to, or disconnect from, an IPv4 target is stored in the first
member of the scds_fmsock_status_t array. The second member contains the
status for an IPv6 target. If the hostname that is supplied to this function does not
contain an IPv4 or IPv6 mapping, the corresponding status is set to
SCDS_FMSOCK_NA.

The following parameters are supported:

handle The handle returned by scds_initialize(3HA).

addr The hostname, TCP port number, and protocol identifier that
specify where the process is listening.

timeout The timeout value in seconds to wait for a successful connection.
Each socket (IPv4 or IPv6) gets the same timeout period, and
timeouts proceed in parallel.

status Array of SCDS_MAX_IPADDR_TYPES members of type
scds_fmsock_status_t. Each member in the array holds a
status. This parameter is an output argument that is set by this
function.

count The number of members in the socklist array. Set this parameter to
SCDS_MAX_IPADDR_TYPES.

The scds_simple_net_probe() function returns the following values:

0 The function succeeded.

SCHA_ERR_INVAL The function was called with invalid paramaters.

Other nonzero
values

At least one connect operation failed due to a timeout, a refused
connection, or some other error. Inspect the err field of all
members of the socklist array that are set to
SCDS_FMSOCK_ERR to determine the exact error.

scds_simple_net_probe(3HA)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

RETURN VALUES

260 Sun Cluster Reference Manual for Solaris OS • Last Revised 7 Jun 2004

nonzero At least one connect or disconnect operation failed. You can
inspect the scds_fmsock_status_t array to determine if the
failure was in an IPv4 target, an IPv6 target, or both.

SCHA_ERR_NOERR Indicates that the function succeeded.

SCHA_ERR_INTERNAL Indicates that an internal error occurred while the
function was executing.

SCHA_ERR_STATE Indicates that the connection request was refused by
the server.

SCHA_ERR_TIMEOUT Indicates that the connection request timed out.

/usr/cluster/include/rgm/libdsdev.h
Include file

/usr/cluster/lib/libdsdev.so
Library

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscdev

Interface Stability Evolving

scds_fm_net_connect(3HA), scds_fm_net_disconnect(3HA),
scds_get_netaddr_list(3HA), scds_initialize(3HA),
scds_simple_probe(3HA), scha_calls(3HA), attributes(5)

scds_simple_net_probe(3HA)

ERRORS

FILES

ATTRIBUTES

SEE ALSO

SC31 3ha 261

scds_simple_probe – probe by establishing and terminating a TCP connection to an
application

cc [flags...]-I /usr/cluster/include file -L /usr/cluster/lib -l dsdev

#include <rgm/libdsdev.h>

scha_err_t scds_simple_probe(scds_handle_t handle, const char
*hostname, int port, time_t timeout);

The scds_simple_probe() function is a wrapper function around
connect(3SOCKET) and close(2) to run under a timeout.

Retrieve the hostname with either scds_get_rg_hostnames(3HA) or
scds_get_rs_hostnames(3HA).

Consider using scds_simple_net_probe(3HA) instead of this function.

The following parameters are supported:

handle The handle returned by scds_initialize(3HA).

hostname Internet hostname of the machine to which to connect.

port Port number with which to make the connection.

timeout Timeout value in seconds (to wait for a successful connection).

The scds_simple_probe() function returns the following:

0 The function succeeded.

nonzero The function failed.

SCHA_ERR_NOERR Indicates that the function succeeded.

SCHA_ERR_TIMEOUT Indicates that the function timed out.

See scha_calls(3HA) for a description of other error codes.

/usr/cluster/include/rgm/libdsdev.h
Include file

/usr/cluster/lib/libdsdev.so
Library

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscdev

Interface Stability Deprecated

scds_simple_probe(3HA)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

RETURN VALUES

ERRORS

FILES

ATTRIBUTES

262 Sun Cluster Reference Manual for Solaris OS • Last Revised 7 Jun 2004

close(2), connect(3SOCKET), scds_fm_net_connect(3HA),
scds_fm_net_disconnect(3HA), scds_get_rg_hostnames(3HA),
scds_get_rs_hostnames(3HA), scds_initialize(3HA),
scds_simple_net_probe(3HA), scha_calls(3HA), attributes(5)

scds_simple_probe(3HA)

SEE ALSO

SC31 3ha 263

scds_svc_wait – wait for the specified timeout period for a monitored process to die

cc [flags...]-I /usr/cluster/include file -L /usr/cluster/lib -l dsdev

#include <rgm/libdsdev.h>

scha_err_t scds_svc_wait(scds_handle_t handle, time_t timeout);

The scds_svc_wait() function waits for the specified timeout period for a
monitored process group to die. It waits upon all process groups started by
scds_pmf_start(3HA) for the resource passed to the calling START method. The
scds_svc_wait() function uses the Retry_interval and Retry_count
properties of the resource to limit the number of process deaths to wait on. If the
number of process deaths during Retry_interval reaches the value of
Retry_count, scds_svc_wait() returns with SCHA_ERR_FAIL.

If the number of process failures is below the value of Retry_count, the process is
restarted and scds_svc_wait() waits the full timeout period for further process
deaths. The counting of process failures spans successive calls to scds_svc_wait().

The following parameters are supported:

handle The handle returned from scds_initialize(3HA)

timeout Timeout period measured in seconds

The scds_svc_wait() function returns the following:

0 The function succeeded.

non-zero The function failed.

SCHA_ERR_TIMEOUT The function timed out.

SCHA_ERR_NOERR No process deaths occurred, or a process was
successfully restarted.

SCHA_ERR_FAIL The number of failures reached the value of the
Retry_count property.

SCHA_ERR_STATE A system error or an otherwise unexpected error
occurred.

See scha_calls(3HA) for a description of other error codes.

EXAMPLE 1 Using scds_svc_wait() in a START Method

The following example shows how you could use scds_svc_wait in a START
method to return early if the service fails to start. After starting an application process
with scds_pmf_start(), a START method must wait for the application to fully
initialize itself and become available before returning success. If the application fails to
start, the START method must wait the entire Start_timeout period before
returning with failure. Using scds_svc_wait(), as in the following example, allows
START methods to restart applications up to Retry_count times and return early
with failure from the START method if the service is unable to start up.

scds_svc_wait(3HA)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

RETURN VALUES

ERRORS

EXAMPLES

264 Sun Cluster Reference Manual for Solaris OS • Last Revised 24 Jul 2002

EXAMPLE 1 Using scds_svc_wait() in a START Method (Continued)

/*
* scds_svc_wait is a subroutine in a START method to
* check that the service is fully available before returning.
* Calls svc_probe() to check service availability.
*/
int
svc_wait(scds_handle_t handle)
{

while (1) {
/* Wait for 5 seconds */
if (scds_svc_wait(handle, 5) != SCHA_ERR_NOERR) {

scds_syslog(LOG_ERR, "Service failed to start.");
return (1); /* Start Failure */

}
/* Check if service is fully up every 5 seconds */
if (svc_probe(handle) == 0) {

scds_syslog(LOG_INFO, "Service started successfully.");
return (0);

}
}
return (0);

}

/usr/cluster/include/rgm/libdsdev.h
Include file

/usr/cluster/lib/libdsdev.so
Library

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscdev

Interface Stability Evolving

scds_initialize(3HA), scds_pmf_start(3HA) , scha_calls(3HA),
attributes(5), r_properties(5)

� If the START method exceeds the Start_timeout setting on the resource, the
RGM will kill the START method even if the START method is currently waiting for
scds_svc_wait() to return.

� If Retry_interval on the resource is larger then Start_timeout, the START
method could be timed out by the RGM even if the number of failures is below
Retry_count.

� If a START method starts multiple process groups with multiple calls to
scds_pmf_start(), scds_svc_wait() starts process groups as they die. It
does not enforce any dependencies between process groups. Do not use
scds_svc_wait() if there is a dependency between process groups such that

scds_svc_wait(3HA)

FILES

ATTRIBUTES

SEE ALSO

NOTES

SC31 3ha 265

failure of one process group requires a restart of other process groups. Instead, use
sleep() to wait between health checks of the process groups.

scds_svc_wait(3HA)

266 Sun Cluster Reference Manual for Solaris OS • Last Revised 24 Jul 2002

scds_syslog – write a message to the system log

cc [flags...]-I /usr/cluster/include file -L /usr/cluster/lib -l dsdev

#include <rgm/libdsdev.h>

void scds_syslog(int priority, const char *format...);

The scds_syslog() function writes a message to the system log. It uses the facility
returned by thescha_cluster_getlogfacility(3HA) function. You can forward
these messages to appropriate log files and users. See syslog.conf(4) for more
information.

All syslog messages are prefixed with:
SC[<resourceTypeName>,<resourceGroupName>,<resourceName>,<methodName>

Caution – Messages written to the system log are not internationalized. Do not use
gettext() or other message translation functions in conjunction with this function.

The following parameters are supported:

priority Message priority, as specified by syslog(3C)

format Message format string, as specified by printf(3C)

... Variables, indicated by the format parameter, as specified by
printf()

/usr/cluster/include/rgm/libdsdev.h
Include file

/usr/cluster/lib/libdsdev.so
Library

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscdev

Interface Stability Evolving

printf(3C), scds_syslog_debug(3HA),
scha_cluster_getlogfacility(3HA), syslog(3C), syslog.conf(4),
attributes(5)

scds_syslog(3HA)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

FILES

ATTRIBUTES

SEE ALSO

SC31 3ha 267

scds_syslog_debug – write a debugging message to the system log

cc [flags...]-I /usr/cluster/include file -L /usr/cluster/lib -l dsdev

#include <rgm/libdsdev.h>

void scds_syslog_debug(int debug_level, const char *format...);

The scds_syslog_debug() function writes a debugging message to the system log.
It uses the facility returned by the scha_cluster_getlogfacility(3HA) function.

All syslog messages are prefixed with:
SC[<resourceTypeName>,<resourceGroupName>,<resourceName>,<methodName>

If you specify a debug_level greater than the current debugging level being used, no
information is written.

The DSDL defines the maximum debugging level, SCDS_MAX_DEBUG_LEVEL, as 9.
The scds_initialize(3HA) function, which the calling program must call before
scds_syslog_debug(), retrieves the current debugging level from the file:
/var/cluster/rgm/rt/<resourceTypeName>/loglevel.

Caution – Messages written to the system log are not internationalized. Do not use
gettext() or other message translation functions in conjunction with this function.

The following parameters are supported:

debug_level Debugging level at which this message is to be written. Valid
debugging levels are between 1 and SCDS_MAX_DEBUG_LEVEL,
which is defined as 9 by the DSDL. If the specified debugging level
is greater than the debugging level set by the calling program, the
message is not written to the system log.

format Message format string, as specified by printf(3C)

... Variables, indicated by the format parameter, as specified by
printf(3C)

EXAMPLE 1 Display All Debugging Messages

To see all debugging messages for resource type SUNW.iws, issue the following
command on all nodes of your cluster

echo 9 > /var/cluster/rgm/rt/SUNW.iws/loglevel

EXAMPLE 2 Suppress Debugging Messages

To suppress debugging messages for resource type SUNW.iws, issue the following
command on all nodes of your cluster

echo 0 > /var/cluster/rgm/rt/SUNW.iws/loglevel

/usr/cluster/include/rgm/libdsdev.h
Include file

scds_syslog_debug(3HA)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

EXAMPLES

FILES

268 Sun Cluster Reference Manual for Solaris OS • Last Revised 24 Jul 2002

/usr/cluster/lib/libdsdev.so
Library

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscdev

Interface Stability Evolving

printf(3C), scds_syslog(3HA), scha_cluster_getlogfacility(3HA),
syslog(3C), syslog.conf(4), attributes(5)

scds_syslog_debug(3HA)

ATTRIBUTES

SEE ALSO

SC31 3ha 269

scds_timerun – execute a given command in a given amount of time

cc [flags...]-I /usr/cluster/include file -L /usr/cluster/lib -l dsdev

#include <rgm/libdsdev.h>

scha_err_t scds_timerun(scds_handle_t handle, const char *command,
time_t timeout, int signal, int *cmd_exit_code);

The scds_timerun() function executes a specified command using
hatimerun(1M). If the command does not complete within the allotted time
period,which is specified by the timeout argument, scds_timerun() sends a signal,
specified by the signal argument, to kill it.

The command argument does not support I/O redirection. However, you can write a
script to perform redirection and then identify this script in the command argument as
the command for scds_timerun() to execute.

The following parameters are supported:

handle The handle returned from scds_initialize(3HA)

command String containing the command to run

timeout Time, in seconds, allotted to run the command

signal Signal to kill the command if it is still running when the timeout
expires. If signal = -1, then SIGKILL is used. See
signal(3HEAD).

cmd_exit_code Return code from execution of the command

The scds_timerun() function returns the following:

0 The function succeeded.

non-zero The function failed.

SCHA_ERR_NOERR The command executed and
cmd_exit_code contains the child
program’s exit status.

SCHA_ERR_INTERNAL The timeout did not occur, but some other
error was detected by scds_timerun()
that was not an error detected by the child
program. Or hatimerun(1M) caught the
signal SIGTERM.

SCHA_ERR_INVAL There was an invalid input argument.

SCHA_ERR_TIMEOUT The timeout occurred before the command
specified by the command argument finished
executing.

See scha_calls(3HA) for a description of other error codes.

scds_timerun(3HA)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

RETURN VALUES

ERRORS

270 Sun Cluster Reference Manual for Solaris OS • Last Revised 24 Jul 2002

/usr/cluster/include/rgm/libdsdev.h
Include file

/usr/cluster/lib/libdsdev.so
Library

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscdev

Interface Stability Evolving

hatimerun(1M), scds_initialize(3HA), scha_calls(3HA), signal(3HEAD),
attributes(5)

scds_timerun(3HA)

FILES

ATTRIBUTES

SEE ALSO

SC31 3ha 271

scha_calls – Sun Cluster library functions used in the implementation of callback
methods and monitors of resource types

cc [flags...]-I /usr/cluster/include file -L /usr/cluster/lib -l scha

#include <scha.h>

scha_err_t scha_get_function(handle, const char *tag...);

scha_err_t scha_control(const char *tag…);

The Sun Cluster library functions scha_resource_get(3HA),
scha_resourcetype_get(3HA), scha_resourcegroup_get(3HA),
scha_cluster_get(3HA), scha_control(3HA), scha_strerror(3HA), and
scha_resource_setstatus(3HA) provide an interface to be used in the
implementation of callback methods and monitors of resource types. The resource
types represent services that are controlled by the cluster’s Resource Group Manager
(RGM) facility.

The “get” functions access cluster configuration information. All these functions have
the same general signature. These functions take a handle argument that is returned
from a previous call to an “open” function. This handle indicates the object in the
cluster configuration that is to be accessed. A tag argument indicates the property of
the object that is to be accessed. The value of tag determines whether additional
arguments are needed and the type of a final “out” argument through which the
requested information is returned. You can make repeated “get” calls with the same
handle until a “close” call, which invalidates the handle and frees memory that is
allocated for values that are returned from the “get” calls.

Memory, if needed to return a value, is allocated for each “get” call. Space allocated to
return a value in one call will not be overwritten and reused by subsequent calls.

The scha_control(3HA) function also has a tag argument that indicates a control
operation, but does not return information in an output argument.

The scha_resource_setstatus(1HA) command sets the Status and
Status_msg properties of a resource that is managed by the RGM.

The man pages for the individual functions should be referred to for the macro values
accepted as tag argument values for each function, and variable argument types for
each tag. The types of output arguments are described in the next section.

There is one set of scha_err_t enum-type return values for the scha functions. The
enum symbols, integer values, and meaning of the exit codes are described in
RETURN VALUES.

The scha_strerror(3HA) function converts an scha_err_t code returned by an
scha function to the appropriate error message.

uint_t
An unsigned integer type. This type is defined in the system header file
<sys/types.h>.

scha_calls(3HA)

NAME

SYNOPSIS

DESCRIPTION

Output Argument
Data Types

272 Sun Cluster Reference Manual for Solaris OS • Last Revised 7 Jun 2004

boolean_t
This type is defined in the system header file <sys/types.h>.

typedef enum { B_FALSE, B_TRUE } boolean_t;

scha_switch_t
An enum type that indicates an On_Off_switch or Monitored_switch resource
property value.

typedef enum scha_switch {
SCHA_SWITCH_DISABLED = 0,
SCHA_SWITCH_ENABLED

} scha_switch_t;

scha_rsstate_t
An enum type that indicates a resource state.

typedef enum scha_rsstate {
SCHA_RSSTATE_ONLINE = 0,
SCHA_RSSTATE_OFFLINE,
SCHA_RSSTATE_START_FAILED,
SCHA_RSSTATE_STOP_FAILED,
SCHA_RSSTATE_MONITOR_FAILED,
SCHA_RSSTATE_ONLINE_NOT_MONITORED,
SCHA_RSSTATE_STARTING,
SCHA_RSSTATE_STOPPING

} scha_rsstate_t;

scha_rgstate_t
An enum type that indicates a resource group state.

typedef enum scha_rgstate {
SCHA_RGSTATE_UNMANAGED = 0,
SCHA_RGSTATE_ONLINE,
SCHA_RGSTATE_OFFLINE,
SCHA_RGSTATE_PENDING_ONLINE,
SCHA_RGSTATE_PENDING_OFFLINE,
SCHA_RGSTATE_ERROR_STOP_FAILED
SCHA_RGSTATE_ONLINE_FAULTED,
SCHA_RGSTATE_PENDING_ONLINE_BLOCKED

} scha_rgstate_t;

scha_rgmode_t
An enum type that indicates if the mode of a resource group is failover or scalable.

typedef enum scha_rgmode {
RGMODE_NONE = 0,
RGMODE_FAILOVER,
RGMODE_SCALABLE

} scha_rgmode_t;

scha_failover_mode_t
An enum type that indicates a value for the Failover_Mode resource property.

typedef enum scha_failover_mode {
SCHA_FOMODE_NONE = 0,
SCHA_FOMODE_HARD,
SCHA_FOMODE_SOFT,

scha_calls(3HA)

SC31 3ha 273

SCHA_FOMODE_RESTART_ONLY,
SCHA_FOMODE_LOG_ONLY

} scha_failover_mode_t;

scha_initnodes_flag_t
An enum type that indicates a value for the Init_nodes resource type property.

typedef enum scha_initnodes_flag {
SCHA_INFLAG_RG_PRIMARIES = 0,
SCHA_INFLAG_RT_INSTALLED_NODES

} scha_initnodes_flag_t;

scha_node_state_t
An enum type that indicates whether a node is up or down.

typedef enum scha_node_state {
SCHA_NODE_UP = 0,
SCHA_NODE_DOWN

} scha_node_state_t;

scha_str_array_t
A structure that holds the value of a list of strings.

typedef struct scha_str_array {
uint_t array_cnt;
boolean_t is_ALL_value;
char **str_array;

} scha_str_array_t;

array_cnt Gives the number elements in the list.

is_ALL_value If a property is set to the “all” value, also known as
the wild card or asterisk (*) character,
is_ALL_value is set to B_TRUE and str_array is
NULL. As a result, str_array is ignored.

str_array A pointer to an array of array_cnt strings.

scha_uint_array_t
A structure that holds the value of a list of unsigned integers.

typedef struct scha_uint_array {
uint_t array_cnt;
uint_t *int_array;

} scha_uint_array_t;

array_cnt The number of elements in the list.

int_array A pointer to an array of array_cnt unsigned
integers.

scha_status_value_t
The structure for returning the status and status message of a resource.

typedef struct scha_status_value {
scha_rsstatus_t status;
char *status_msg;

} scha_status_value_t;

scha_calls(3HA)

274 Sun Cluster Reference Manual for Solaris OS • Last Revised 7 Jun 2004

typedef enum scha_rsstatus {
SCHA_RSSTATUS_ONLINE = 0,
SCHA_RSSTATUS_OFFLINE,
SCHA_RSSTATUS_FAULTED,
SCHA_RSSTATUS_DEGRADED,
SCHA_RSSTATUS_UNKNOWN

} scha_rsstatus_t;

status Holds an enum value that indicates the resource
status as set by the resource monitor.

scha_extprop_value_t
The structure that is used for returning the value of an extension property.

The prop_type structure member indicates the type of the extension property and
determines which element of the union is used for the prop_type field and the
return values:

SCHA_PTYPE_STRING val_str
SCHA_PTYPE_INT val_int
SCHA_PTYPE_ENUM val_enum
SCHA_PTYPE_BOOLEAN val_boolean
SCHA_PTYPE_STRINGARRAY val_strarray

typedef struct scha_extprop_value {
scha_prop_type_t prop_type;
union {

char *val_str;
int val_int;
char *val_enum;
boolean_t val_boolean;
scha_str_array_t *val_strarray;
} val;

} scha_extprop_value_t;

The following is a list of the scha_err_t error numbers and the error codes returned
by scha_strerror(3HA).

0 SCHA_ERR_NOERR No error was found

1 SCHA_ERR_NOMEM Not enough swap

2 SCHA_ERR_HANDLE Invalid resource management handle

3 SCHA_ERR_INVAL Invalid input argument

4 SCHA_ERR_TAG Invalid API tag

5 SCHA_ERR_RECONF Cluster is reconfiguring

6 SCHA_ERR_ACCESS Permission denied

7 SCHA_ERR_SEQID Resource, resource group, or resource type has been
updated since last scha_*_open call

8 SCHA_ERR_DEPEND Object dependency problem

scha_calls(3HA)

RETURN VALUES

SC31 3ha 275

9 SCHA_ERR_STATE Object is in wrong state

10 SCHA_ERR_METHOD Invalid method

11 SCHA_ERR_NODE Invalid node

12 SCHA_ERR_RG Invalid resource group

13 SCHA_ERR_RT Invalid resource type

14 SCHA_ERR_RSRC Invalid resource

15 SCHA_ERR_PROP Invalid property

16 SCHA_ERR_CHECKS Sanity checks failed

17 SCHA_ERR_RSTATUS Bad resource status

18 SCHA_ERR_INTERNAL Internal error was encountered

31 SCHA_ERR_TIMEOUT Operation timed out

32 SCHA_ERR_FAIL Failover attempt failed

/usr/cluster/include/scha.h Include file

/usr/cluster/lib/libscha.so Library

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscdev

Interface Stability Evolving

scha_cmds(1HA), scha_resource_setstatus(1HA)scha_cluster_get(3HA),
scha_control(3HA), scha_resource_get(3HA),
scha_resourcegroup_get(3HA), scha_resource_setstatus(3HA),
scha_resourcetype_get(3HA), scha_strerror(3HA), attributes(5)

scha_calls(3HA)

FILES

ATTRIBUTES

SEE ALSO

276 Sun Cluster Reference Manual for Solaris OS • Last Revised 7 Jun 2004

scha_cluster_open, scha_cluster_close, scha_cluster_get – cluster information access
functions

cc [flags...]-I /usr/cluster/include file -L /usr/cluster/lib -l scha

#include <scha.h>

scha_err_t scha_cluster_open(scha_cluster_t *handle);

scha_err_t scha_cluster_get(scha_cluster_t handle, const char
**tag, ...);

scha_err_t scha_cluster_close(scha_cluster_t handle);

The scha_cluster_open(), scha_cluster_get(), and
scha_cluster_close() functions are used together to obtain information about a
cluster.

scha_cluster_open() initializes cluster access and returns an access handle to be
used by scha_cluster_get(). The handle argument is the address of a variable to
hold the value that is returned by the function call.

scha_cluster_get() accesses cluster information as indicated by the tag argument.
The handle is a value that is returned from a prior call to scha_cluster_open().
The tag should be a string value defined by a macro in the <scha_tags.h> header
file. The arguments that follow the tag depend on the value of tag.

An additional argument following the tag might be needed to indicate a cluster node
from which the information is to be retrieved. The last argument in the argument list is
to be of a type suitable to hold the information indicated by tag. This is the out
argument for the cluster information. No value is returned for the out parameter if the
function fails. Memory that is allocated to hold information returned by
scha_cluster_get() remains intact until scha_cluster_close() is called on
the handle that is used for scha_cluster_get().

scha_cluster_close() takes a handle argument that is returned from a previous
call to scha_cluster_get(). This function invalidates the handle and frees
memory that is allocated to return values to scha_cluster_get() calls that were
made with the handle. Note that memory, if needed to return a value, is allocated for
each get call. Space allocated to return a value in one call will not be overwritten and
reused by subsequent calls.

The macros that are defined in <scha_tags.h> that you can use as tag values follow.
The type of the output argument and any additional arguments are indicated.
Structure and enum types are described in scha_calls(3HA).

SCHA_NODENAME_LOCAL
The output argument type is char**.

This macro returns the name of the cluster node where the function executed.

SCHA_NODENAME_NODEID
The output argument type is char**. An additional argument is of type uint_t.
The additional argument is a numeric cluster node identifier.

scha_cluster_close(3HA)

NAME

SYNOPSIS

DESCRIPTION

Macros That You
Can Use for tag

SC31 3ha 277

This macro returns the name of the node indicated by the numeric identifier.

SCHA_ALL_NODENAMES
The output argument type is scha_str_array_t**.

This macro returns the names of all nodes in the cluster.

SCHA_ALL_NODEIDS
The output argument type is scha_uint_array_t**.

This macro returns numeric node identifiers for all the nodes in the cluster.

SCHA_NODEID_LOCAL
The output argument type is uint_t*.

This macro returns the numeric node identifier for the node where the command is
executed.

SCHA_NODEID_NODENAME
The output argument type is uint_t*. An additional argument is of type char *.
The macro requires an additional argument that is a name of a cluster node.

This macro returns the numeric node identifier of the node indicated by the name.

SCHA_PRIVATELINK_HOSTNAME_LOCAL
The output argument type is char**.

This macro returns the host name by which the node on which the command is run
is addressed on the cluster interconnect.

SCHA_PRIVATELINK_HOSTNAME_NODE
The output argument type is char**. An additional argument is of type char *.
This macro requires an additional unflagged argument that is the name of a cluster
node.

This macro returns the host name by which the named node is addressed on the
cluster interconnect.

SCHA_ALL_PRIVATELINK_HOSTNAMES
The output argument type is scha_str_array_t**.

This macro returns the host names for all cluster nodes by which the nodes are
addressed on the cluster interconnect.

SCHA_NODESTATE_LOCAL
The output argument type is scha_node_state_t*.

This macro returns SCHA_NODE_UP or SCHA_NODE_DOWN, depending on the state
of the node where the command is executed.

SCHA_NODESTATE_NODE
The output argument type is scha_node_state_t*. An additional argument is
type char*. The macro requires an additional unflagged argument that is the name
of a cluster node.

scha_cluster_close(3HA)

278 Sun Cluster Reference Manual for Solaris OS • Last Revised 7 Jun 2004

This macro returns SCHA_NODE_UP or SCHA_NODE_DOWN, depending on the state
of the named node.

SCHA_SYSLOG_FACILITY
The output argument type is int*.

This macro returns the number of the syslog(3C) facility that the RGM uses for
log messages. The value that is returned is 24, which corresponds to the
LOG_DAEMON facility value.

SCHA_ALL_RESOURCEGROUPS
The output argument type is scha_str_array_t**.

This macro returns the names of all the resource groups that are being managed on
the cluster.

SCHA_ALL_RESOURCETYPES
The output argument type is scha_str_array_t**.

This macro returns the names of all the resource types that are registered on the
cluster.

SCHA_CLUSTERNAME
The output argument is type char**.

This macro returns the name of the cluster.

The scha_cluster_open() function returns the following:

0 The function succeeded.

nonzero The function failed.

SCHA_ERR_NOERR Function succeeded.

See scha_calls(3HA) for a description of other error codes.

EXAMPLE 1 Using the scha_cluster_get(3HA) Function

The following example uses the scha_cluster_get() function to get the names of
all cluster nodes and to find out whether the node is up or down.

#include <scha.h>
#include <stdio.h>
#include <stdlib.h>

main()
{

scha_err_t err;
scha_node_state_t node_state;
scha_str_array_t *all_nodenames;
scha_cluster_t handle;
int ix;
const char *str;

err = scha_cluster_open(&handle);

scha_cluster_close(3HA)

RETURN VALUES

ERRORS

EXAMPLES

SC31 3ha 279

EXAMPLE 1 Using the scha_cluster_get(3HA) Function (Continued)

if (err != SCHA_ERR_NOERR) {
fprintf(stderr, "FAILED: scha_cluster_open()0);
exit(err);

}

err = scha_cluster_get(handle, SCHA_ALL_NODENAMES, &all_nodenames);
if (err != SCHA_ERR_NOERR) {

fprintf(stderr, "FAILED: scha_cluster_get()0);
exit(err);

}

for (ix = 0; ix < all_nodenames->array_cnt; ix++) {
err = scha_cluster_get(handle, SCHA_NODESTATE_NODE,

all_nodenames->str_array[ix], &node_state);
if (err != SCHA_ERR_NOERR) {

fprintf(stderr, "FAILED: scha_cluster_get()"
"SCHA_NODESTATE_NODE0);

exit(err);
}

switch (node_state) {
case SCHA_NODE_UP:

str = "UP";
break;

case SCHA_NODE_DOWN:
str = "DOWN";
break;

}

printf("State of node: %s value: %s\
",

all_nodenames->str_array[ix], str);
}

}

/usr/cluster/include/scha.h Include file

/usr/cluster/lib/libscha.so Library

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscdev

Interface Stability Evolving

scha_cluster_get(1HA), scha_calls(3HA),
scha_cluster_getlogfacility(3HA), scha_cluster_getnodename(3HA),
scha_strerror(3HA), syslog(3C), attributes(5)

scha_cluster_close(3HA)

FILES

ATTRIBUTES

SEE ALSO

280 Sun Cluster Reference Manual for Solaris OS • Last Revised 7 Jun 2004

scha_cluster_open, scha_cluster_close, scha_cluster_get – cluster information access
functions

cc [flags...]-I /usr/cluster/include file -L /usr/cluster/lib -l scha

#include <scha.h>

scha_err_t scha_cluster_open(scha_cluster_t *handle);

scha_err_t scha_cluster_get(scha_cluster_t handle, const char
**tag, ...);

scha_err_t scha_cluster_close(scha_cluster_t handle);

The scha_cluster_open(), scha_cluster_get(), and
scha_cluster_close() functions are used together to obtain information about a
cluster.

scha_cluster_open() initializes cluster access and returns an access handle to be
used by scha_cluster_get(). The handle argument is the address of a variable to
hold the value that is returned by the function call.

scha_cluster_get() accesses cluster information as indicated by the tag argument.
The handle is a value that is returned from a prior call to scha_cluster_open().
The tag should be a string value defined by a macro in the <scha_tags.h> header
file. The arguments that follow the tag depend on the value of tag.

An additional argument following the tag might be needed to indicate a cluster node
from which the information is to be retrieved. The last argument in the argument list is
to be of a type suitable to hold the information indicated by tag. This is the out
argument for the cluster information. No value is returned for the out parameter if the
function fails. Memory that is allocated to hold information returned by
scha_cluster_get() remains intact until scha_cluster_close() is called on
the handle that is used for scha_cluster_get().

scha_cluster_close() takes a handle argument that is returned from a previous
call to scha_cluster_get(). This function invalidates the handle and frees
memory that is allocated to return values to scha_cluster_get() calls that were
made with the handle. Note that memory, if needed to return a value, is allocated for
each get call. Space allocated to return a value in one call will not be overwritten and
reused by subsequent calls.

The macros that are defined in <scha_tags.h> that you can use as tag values follow.
The type of the output argument and any additional arguments are indicated.
Structure and enum types are described in scha_calls(3HA).

SCHA_NODENAME_LOCAL
The output argument type is char**.

This macro returns the name of the cluster node where the function executed.

SCHA_NODENAME_NODEID
The output argument type is char**. An additional argument is of type uint_t.
The additional argument is a numeric cluster node identifier.

scha_cluster_get(3HA)

NAME

SYNOPSIS

DESCRIPTION

Macros That You
Can Use for tag

SC31 3ha 281

This macro returns the name of the node indicated by the numeric identifier.

SCHA_ALL_NODENAMES
The output argument type is scha_str_array_t**.

This macro returns the names of all nodes in the cluster.

SCHA_ALL_NODEIDS
The output argument type is scha_uint_array_t**.

This macro returns numeric node identifiers for all the nodes in the cluster.

SCHA_NODEID_LOCAL
The output argument type is uint_t*.

This macro returns the numeric node identifier for the node where the command is
executed.

SCHA_NODEID_NODENAME
The output argument type is uint_t*. An additional argument is of type char *.
The macro requires an additional argument that is a name of a cluster node.

This macro returns the numeric node identifier of the node indicated by the name.

SCHA_PRIVATELINK_HOSTNAME_LOCAL
The output argument type is char**.

This macro returns the host name by which the node on which the command is run
is addressed on the cluster interconnect.

SCHA_PRIVATELINK_HOSTNAME_NODE
The output argument type is char**. An additional argument is of type char *.
This macro requires an additional unflagged argument that is the name of a cluster
node.

This macro returns the host name by which the named node is addressed on the
cluster interconnect.

SCHA_ALL_PRIVATELINK_HOSTNAMES
The output argument type is scha_str_array_t**.

This macro returns the host names for all cluster nodes by which the nodes are
addressed on the cluster interconnect.

SCHA_NODESTATE_LOCAL
The output argument type is scha_node_state_t*.

This macro returns SCHA_NODE_UP or SCHA_NODE_DOWN, depending on the state
of the node where the command is executed.

SCHA_NODESTATE_NODE
The output argument type is scha_node_state_t*. An additional argument is
type char*. The macro requires an additional unflagged argument that is the name
of a cluster node.

scha_cluster_get(3HA)

282 Sun Cluster Reference Manual for Solaris OS • Last Revised 7 Jun 2004

This macro returns SCHA_NODE_UP or SCHA_NODE_DOWN, depending on the state
of the named node.

SCHA_SYSLOG_FACILITY
The output argument type is int*.

This macro returns the number of the syslog(3C) facility that the RGM uses for
log messages. The value that is returned is 24, which corresponds to the
LOG_DAEMON facility value.

SCHA_ALL_RESOURCEGROUPS
The output argument type is scha_str_array_t**.

This macro returns the names of all the resource groups that are being managed on
the cluster.

SCHA_ALL_RESOURCETYPES
The output argument type is scha_str_array_t**.

This macro returns the names of all the resource types that are registered on the
cluster.

SCHA_CLUSTERNAME
The output argument is type char**.

This macro returns the name of the cluster.

The scha_cluster_open() function returns the following:

0 The function succeeded.

nonzero The function failed.

SCHA_ERR_NOERR Function succeeded.

See scha_calls(3HA) for a description of other error codes.

EXAMPLE 1 Using the scha_cluster_get(3HA) Function

The following example uses the scha_cluster_get() function to get the names of
all cluster nodes and to find out whether the node is up or down.

#include <scha.h>
#include <stdio.h>
#include <stdlib.h>

main()
{

scha_err_t err;
scha_node_state_t node_state;
scha_str_array_t *all_nodenames;
scha_cluster_t handle;
int ix;
const char *str;

err = scha_cluster_open(&handle);

scha_cluster_get(3HA)

RETURN VALUES

ERRORS

EXAMPLES

SC31 3ha 283

EXAMPLE 1 Using the scha_cluster_get(3HA) Function (Continued)

if (err != SCHA_ERR_NOERR) {
fprintf(stderr, "FAILED: scha_cluster_open()0);
exit(err);

}

err = scha_cluster_get(handle, SCHA_ALL_NODENAMES, &all_nodenames);
if (err != SCHA_ERR_NOERR) {

fprintf(stderr, "FAILED: scha_cluster_get()0);
exit(err);

}

for (ix = 0; ix < all_nodenames->array_cnt; ix++) {
err = scha_cluster_get(handle, SCHA_NODESTATE_NODE,

all_nodenames->str_array[ix], &node_state);
if (err != SCHA_ERR_NOERR) {

fprintf(stderr, "FAILED: scha_cluster_get()"
"SCHA_NODESTATE_NODE0);

exit(err);
}

switch (node_state) {
case SCHA_NODE_UP:

str = "UP";
break;

case SCHA_NODE_DOWN:
str = "DOWN";
break;

}

printf("State of node: %s value: %s\
",

all_nodenames->str_array[ix], str);
}

}

/usr/cluster/include/scha.h Include file

/usr/cluster/lib/libscha.so Library

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscdev

Interface Stability Evolving

scha_cluster_get(1HA), scha_calls(3HA),
scha_cluster_getlogfacility(3HA), scha_cluster_getnodename(3HA),
scha_strerror(3HA), syslog(3C), attributes(5)

scha_cluster_get(3HA)

FILES

ATTRIBUTES

SEE ALSO

284 Sun Cluster Reference Manual for Solaris OS • Last Revised 7 Jun 2004

scha_cluster_getlogfacility – cluster log facility access

cc [flags...]-I /usr/cluster/include file -L /usr/cluster/lib -l scha

#include <scha.h>

scha_err_t scha_cluster_getlogfacility(int *logfacility);

The scha_cluster_getlogfacility() function returns the system log facility
number that is being used as the cluster log. The value is intended to be used with the
Solaris syslog(3C) function by resource type implementations to record events and
status messages to the cluster log.

The function returns an error status, and if successful, the facility number in the
location pointed to by the logfacility argument.

The scha_cluster_getlogfacility() function returns the following:

0 The function succeeded.

non-zero The function failed.

SCHA_ERR_NOERR Function succeeded.

See scha_calls(3HA) for a description of other error codes.

EXAMPLE 1 Using the scha_cluster_getlogfacility() Function

main()
{

scha_err_t err_code;
int logfacility;

err_code = scha_cluster_getlogfacility(&logfacility);

if (err_code == SCHA_ERR_NOERR) {
openlog("test resource", LOG_CONS, logfacility);
syslog(LOG_INFO, "Access function call succeeded.");

}

}

/usr/cluster/include/scha.h include file

/usr/cluster/lib/libscha.so library

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscdev

Interface Stability Evolving

syslog(3C), scha_calls(3HA), scha_cluster_get(3HA),
scha_strerror(3HA), attributes(5)

scha_cluster_getlogfacility(3HA)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

EXAMPLES

FILES

ATTRIBUTES

SEE ALSO

SC31 3ha 285

scha_cluster_getnodename – local cluster node name access function

cc [flags...]-I /usr/cluster/include file -L /usr/cluster/lib -l scha

#include <scha.h>

scha_err_t scha_cluster_getnodename(char **nodename);

The scha_cluster_getnodename() function returns the name of the cluster node
on which the function is called. The cluster node name is not necessarily the same as
the Solaris system name. The function returns an error status, and if successful, a
string containing the node name in the location pointed to by the nodename argument.
The nodename is set to NULL if the call fails. The caller of
scha_cluster_getnodename() is responsible for freeing the memory allocated for
the returned string value using the standard C library function free(3C). To avoid a
core dump, only free the memory upon successful return of the function.

The scha_cluster_getnodename() function returns the following:

0 The function succeeded.

non-zero The function failed.

SCHA_ERR_NOERR Function succeeded.

See scha_calls(3HA) for a description of other error codes.

EXAMPLE 1 Using the scha_cluster_getnodename() Function

scha_err_t err_code;
char *nodename;
err_code = scha_cluster_getnodename(&nodename);
...

if(nodename != NULL) free(nodename);

/usr/cluster/include/scha.h include file

/usr/cluster/lib/libscha.so library

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscdev

Interface Stability Evolving

free(3C), scha_calls(3HA), scha_cluster_get(3HA), scha_strerror(3HA),
attributes(5)

scha_cluster_getnodename(3HA)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

EXAMPLES

FILES

ATTRIBUTES

SEE ALSO

286 Sun Cluster Reference Manual for Solaris OS • Last Revised 17 Apr 2002

scha_cluster_open, scha_cluster_close, scha_cluster_get – cluster information access
functions

cc [flags...]-I /usr/cluster/include file -L /usr/cluster/lib -l scha

#include <scha.h>

scha_err_t scha_cluster_open(scha_cluster_t *handle);

scha_err_t scha_cluster_get(scha_cluster_t handle, const char
**tag, ...);

scha_err_t scha_cluster_close(scha_cluster_t handle);

The scha_cluster_open(), scha_cluster_get(), and
scha_cluster_close() functions are used together to obtain information about a
cluster.

scha_cluster_open() initializes cluster access and returns an access handle to be
used by scha_cluster_get(). The handle argument is the address of a variable to
hold the value that is returned by the function call.

scha_cluster_get() accesses cluster information as indicated by the tag argument.
The handle is a value that is returned from a prior call to scha_cluster_open().
The tag should be a string value defined by a macro in the <scha_tags.h> header
file. The arguments that follow the tag depend on the value of tag.

An additional argument following the tag might be needed to indicate a cluster node
from which the information is to be retrieved. The last argument in the argument list is
to be of a type suitable to hold the information indicated by tag. This is the out
argument for the cluster information. No value is returned for the out parameter if the
function fails. Memory that is allocated to hold information returned by
scha_cluster_get() remains intact until scha_cluster_close() is called on
the handle that is used for scha_cluster_get().

scha_cluster_close() takes a handle argument that is returned from a previous
call to scha_cluster_get(). This function invalidates the handle and frees
memory that is allocated to return values to scha_cluster_get() calls that were
made with the handle. Note that memory, if needed to return a value, is allocated for
each get call. Space allocated to return a value in one call will not be overwritten and
reused by subsequent calls.

The macros that are defined in <scha_tags.h> that you can use as tag values follow.
The type of the output argument and any additional arguments are indicated.
Structure and enum types are described in scha_calls(3HA).

SCHA_NODENAME_LOCAL
The output argument type is char**.

This macro returns the name of the cluster node where the function executed.

SCHA_NODENAME_NODEID
The output argument type is char**. An additional argument is of type uint_t.
The additional argument is a numeric cluster node identifier.

scha_cluster_open(3HA)

NAME

SYNOPSIS

DESCRIPTION

Macros That You
Can Use for tag

SC31 3ha 287

This macro returns the name of the node indicated by the numeric identifier.

SCHA_ALL_NODENAMES
The output argument type is scha_str_array_t**.

This macro returns the names of all nodes in the cluster.

SCHA_ALL_NODEIDS
The output argument type is scha_uint_array_t**.

This macro returns numeric node identifiers for all the nodes in the cluster.

SCHA_NODEID_LOCAL
The output argument type is uint_t*.

This macro returns the numeric node identifier for the node where the command is
executed.

SCHA_NODEID_NODENAME
The output argument type is uint_t*. An additional argument is of type char *.
The macro requires an additional argument that is a name of a cluster node.

This macro returns the numeric node identifier of the node indicated by the name.

SCHA_PRIVATELINK_HOSTNAME_LOCAL
The output argument type is char**.

This macro returns the host name by which the node on which the command is run
is addressed on the cluster interconnect.

SCHA_PRIVATELINK_HOSTNAME_NODE
The output argument type is char**. An additional argument is of type char *.
This macro requires an additional unflagged argument that is the name of a cluster
node.

This macro returns the host name by which the named node is addressed on the
cluster interconnect.

SCHA_ALL_PRIVATELINK_HOSTNAMES
The output argument type is scha_str_array_t**.

This macro returns the host names for all cluster nodes by which the nodes are
addressed on the cluster interconnect.

SCHA_NODESTATE_LOCAL
The output argument type is scha_node_state_t*.

This macro returns SCHA_NODE_UP or SCHA_NODE_DOWN, depending on the state
of the node where the command is executed.

SCHA_NODESTATE_NODE
The output argument type is scha_node_state_t*. An additional argument is
type char*. The macro requires an additional unflagged argument that is the name
of a cluster node.

scha_cluster_open(3HA)

288 Sun Cluster Reference Manual for Solaris OS • Last Revised 7 Jun 2004

This macro returns SCHA_NODE_UP or SCHA_NODE_DOWN, depending on the state
of the named node.

SCHA_SYSLOG_FACILITY
The output argument type is int*.

This macro returns the number of the syslog(3C) facility that the RGM uses for
log messages. The value that is returned is 24, which corresponds to the
LOG_DAEMON facility value.

SCHA_ALL_RESOURCEGROUPS
The output argument type is scha_str_array_t**.

This macro returns the names of all the resource groups that are being managed on
the cluster.

SCHA_ALL_RESOURCETYPES
The output argument type is scha_str_array_t**.

This macro returns the names of all the resource types that are registered on the
cluster.

SCHA_CLUSTERNAME
The output argument is type char**.

This macro returns the name of the cluster.

The scha_cluster_open() function returns the following:

0 The function succeeded.

nonzero The function failed.

SCHA_ERR_NOERR Function succeeded.

See scha_calls(3HA) for a description of other error codes.

EXAMPLE 1 Using the scha_cluster_get(3HA) Function

The following example uses the scha_cluster_get() function to get the names of
all cluster nodes and to find out whether the node is up or down.

#include <scha.h>
#include <stdio.h>
#include <stdlib.h>

main()
{

scha_err_t err;
scha_node_state_t node_state;
scha_str_array_t *all_nodenames;
scha_cluster_t handle;
int ix;
const char *str;

err = scha_cluster_open(&handle);

scha_cluster_open(3HA)

RETURN VALUES

ERRORS

EXAMPLES

SC31 3ha 289

EXAMPLE 1 Using the scha_cluster_get(3HA) Function (Continued)

if (err != SCHA_ERR_NOERR) {
fprintf(stderr, "FAILED: scha_cluster_open()0);
exit(err);

}

err = scha_cluster_get(handle, SCHA_ALL_NODENAMES, &all_nodenames);
if (err != SCHA_ERR_NOERR) {

fprintf(stderr, "FAILED: scha_cluster_get()0);
exit(err);

}

for (ix = 0; ix < all_nodenames->array_cnt; ix++) {
err = scha_cluster_get(handle, SCHA_NODESTATE_NODE,

all_nodenames->str_array[ix], &node_state);
if (err != SCHA_ERR_NOERR) {

fprintf(stderr, "FAILED: scha_cluster_get()"
"SCHA_NODESTATE_NODE0);

exit(err);
}

switch (node_state) {
case SCHA_NODE_UP:

str = "UP";
break;

case SCHA_NODE_DOWN:
str = "DOWN";
break;

}

printf("State of node: %s value: %s\
",

all_nodenames->str_array[ix], str);
}

}

/usr/cluster/include/scha.h Include file

/usr/cluster/lib/libscha.so Library

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscdev

Interface Stability Evolving

scha_cluster_get(1HA), scha_calls(3HA),
scha_cluster_getlogfacility(3HA), scha_cluster_getnodename(3HA),
scha_strerror(3HA), syslog(3C), attributes(5)

scha_cluster_open(3HA)

FILES

ATTRIBUTES

SEE ALSO

290 Sun Cluster Reference Manual for Solaris OS • Last Revised 7 Jun 2004

scha_control – resource group control request function

cc [flags...]-I/usr/cluster/include file -L/usr/cluster/lib -l scha

#include <scha.h>

scha_err_t scha_control(const char *tag, const char *rgname, const
char *rname);

The scha_control() function provides an interface to request the restart or
relocation of a resource group or resource that is under the control of the Resource
Group Manager (RGM) cluster facility. The command is intended to be used in
resource monitors.

The setting of the Failover_mode property of the indicated resource might suppress
the requested scha_control action. If Failover_mode is RESTART_ONLY, only
SCHA_RESOURCE_RESTART is permitted. Other requests, including SCHA_GIVEOVER,
SCHA_CHECK_GIVEOVER, SCHA_RESTART, and SCHA_CHECK_RESTART, return the
SCHA_ERR_CHECKS exit code and the requested giveover or restart action is not
executed, producing only a syslog message. If the Retry_count and
Retry_interval properties are set on the resource, the number of resource restarts
is limited to Retry_count attempts within the Retry_interval. If
Failover_mode is LOG_ONLY, any scha_control request returns the
SCHA_ERR_CHECKS exit code and the requested giveover or restart action is not
executed, producing only a syslog message.

The tag argument indicates whether the request is to restart or relocate the resource or
group. This argument should be a string value that is defined by one of the following
macros, which are defined in <scha_tags.h>:

SCHA_CHECK_GIVEOVER
Perform all the same validity checks that would be done for a SCHA_GIVEOVER of
the resource group named by the rgname argument, but do not actually relocate the
resource group.

SCHA_CHECK_RESTART
Perform all the same validity checks that would be done for an SCHA_RESTART of
the resource group named by the rgname argument, but do not actually restart the
resource group.

The SCHA_CHECK_GIVEOVER and SCHA_CHECK_RESTART options are intended to
be used by resource monitors that take direct action upon resources, for example,
killing and restarting processes, rather than invoking scha_control() to perform
a giveover or restart. If the check fails, the monitor should sleep and restart its
probes rather than invoke its failover actions. See ERRORS.

The rgname argument is the name of the resource group that is to be restarted or
relocated. If the group is not online on the node where the request is made, the
request is rejected.

The rname argument is the name of a resource in the resource group. Presumably
this is the resource whose monitor is making the scha_control() request. If the
named resource is not in the resource group the request is rejected.

scha_control(3HA)

NAME

SYNOPSIS

DESCRIPTION

Macros That You
Can Use for tag

SC31 3ha 291

The exit code of the command indicates whether the requested action was rejected.
If the request is accepted, the function does not return until the resource group or
resource has completed going offline and back online. The fault monitor that called
scha_control() might be stopped as a result of the resource group’s going
offline and so might never receive the return status of a successful request.

SCHA_GIVEOVER
Requests that the resource group named by the rgname argument be brought offline
on the local node, and online again on a different node of the RGM’s choosing.
Note that, if the resource group is currently online on two or more nodes and there
are no additional available nodes on which to bring the resource group online, it
can be taken offline on the local node without being brought online elsewhere. The
request might be rejected depending on the result of various checks. For example, a
node might be rejected as a host because the group was brought offline due to a
SCHA_GIVEOVER request on that node within the interval specified by the
Pingpong_interval property.

If the cluster administrator configures the RG_affinities properties of one or
more resource groups, and you issue a scha_control GIVEOVER request on one
resource group, more than one resource group might be relocated as a result. The
RG_affinities property is described in rg_properties(5).

The MONITOR_CHECK method is called before the resource group that contains the
resource is relocated to a new node as the result of a scha_control(3HA) or
scha_control(1HA) request from a fault monitor.

The MONITOR_CHECK method may be called on any node that is a potential new
master for the resource group. The MONITOR_CHECK method is intended to assess
whether a node is running well enough to run a resource. The MONITOR_CHECK
method must be implemented in such a way that it does not conflict with the
running of another method concurrently.

MONITOR_CHECK failure vetoes the relocation of the resource group to the node
where the callback was invoked.

SCHA_IGNORE_FAILED_START
Requests that failure of the currently executing Prenet_start or Start method
should not cause a failover of the resource group, despite the setting of the
Failover_mode property.

In other words, this value overrides the recovery action that is normally taken for a
resource for which the Failover_Mode property is set to SOFT or HARD when that
resource fails to start. Normally, the resource group fails over to a different node.
Instead, the resource behaves as if Failover_Mode is set to NONE. The resource
enters the START_FAILED state, and the resource group ends up in the
ONLINE_FAULTED state, if no other errors occur.

This value is meaningful only when it is called from a Start or Prenet_start
method that subsequently exits with a nonzero status or times out. This value is
valid only for the current invocation of the Start or Prenet_start method.

scha_control(3HA)

292 Sun Cluster Reference Manual for Solaris OS • Last Revised 26 Jan 2005

scha_control() should be called with this value in a situation in which the
Start method has determined that the resource cannot start successfully on
another node. If this value is called by any other method, the error
SCHA_ERR_INVAL is returned. This value prevents the “ping pong” failover of the
resource group that would otherwise occur.

SCHA_RESOURCE_IS_RESTARTED
Request that the resource restart counter for the resource named by the rname
argument be incremented on the local node, without actually restarting the
resource.

A resource monitor that restarts a resource directly without calling
scha_control() with the RESOURCE_RESTART option (for example, using
pmfadm(1M)) can use this option to notify the RGM that the resource has been
restarted. This fact is reflected in subsequent scha_resource_get
NUM_RESOURCE_RESTARTS queries.

If the resource’s type fails to declare the Retry_interval standard property, the
RESOURCE_IS_RESTARTED option of scha_control() is not permitted and
scha_control() returns error code 13 (SCHA_ERR_RT).

SCHA_RESOURCE_RESTART
Request that the resource named by the rname argument be brought offline and
online again on the local node, without stopping any other resources in the resource
group. The resource is stopped and restarted by applying the following sequence of
methods to it on the local node:

MONITOR_STOP
STOP
START
MONITOR_START

If the resource’s type does not declare a MONITOR_STOP and MONITOR_START
method, only the STOP and START methods are invoked to perform the restart.The
resource’s type must declare a START and STOP method. If the resource’s type does
not declare both a START and STOP method, scha_control() fails with error
code 13 (SCHA_ERR_RT).

If a method invocation fails while restarting the resource, the RGM might either set
an error state, relocate the resource group, or reboot the node, depending on the
setting of the Failover_mode property of the resource. For additional
information, see the Failover_mode property in r_properties(5).

A resource monitor using this option to restart a resource can use the
NUM_RESOURCE_RESTARTS query of scha_resource_get() to keep count of
recent restart attempts.

The RESOURCE_RESTART function should be used with care by resource types that
have PRENET_START or POSTNET_STOP methods. Only the MONITOR_STOP,
STOP, START, and MONITOR_START methods are applied to the resource. Network
address resources on which this resource implicitly depends is not restarted and
remains online.

scha_control(3HA)

SC31 3ha 293

SCHA_RESTART
Request that the resource group named by the rgname argument be brought offline,
then online again, without forcing relocation to a different node. The request may
ultimately result in relocating the resource group if a resource in the group fails to
restart. A resource monitor using this option to restart a resource group can use the
NUM_RG_RESTARTS query of scha_resource_get() to keep count of recent
restart attempts.

The scha_control() function returns the following values:

0 The function succeeded.

nonzero The function failed.

SCHA_ERR_NOERR The function succeeded

SCHA_ERR_CHECKS The request was rejected. The checks on
relocation failed

See scha_calls(3HA) for a description of other error codes.

Normally, a fault monitor that receives an error code from scha_control() should
sleep for awhile and then restart its probes, since some error conditions, for example,
failover of a global device service causing disk resources to become temporarily
unavailable, resolve themselves after awhile. Once the error condition has resolved,
the resource itself might become healthy again, or if not, then a subsequent
scha_control() request might succeed.

</usr/cluster/include/scha.h> Include file

/usr/cluster/lib/libscha.so Library

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscdev

Interface Stability Evolving

rt_callbacks(1HA), scha_control(1HA), scha_calls(3HA),
scha_resource_get(3HA), scha_strerror(3HA), attributes(5),
r_properties(5), rg_properties(5)

scha_control(3HA)

RETURN VALUES

ERRORS

FILES

ATTRIBUTES

SEE ALSO

294 Sun Cluster Reference Manual for Solaris OS • Last Revised 26 Jan 2005

scha_resource_open, scha_resource_close, scha_resource_get – resource information
access functions

cc [flags...]-I /usr/cluster/include file -L /usr/cluster/lib -l scha

#include <scha.h>

scha_err_t scha_resource_open(const char *rname, const char
*rgname, scha_resource_t *handle);

scha_err_t scha_resource_close(scha_resource_t handle);

scha_err_t scha_resource_get(scha_resource_t handle, const char
*tag,...);

The scha_resource_open(), scha_resource_get(), and
scha_resource_close() functions are used together to access information about a
resource that is managed by the Resource Group Manager (RGM) cluster facility.

scha_resource_open() initializes access of the resource and returns a handle to be
used by scha_resource_get().

The rname argument of scha_resource_open() names the resource to be accessed.
The rgname argument is the name of the resource group in which the resource is
configured. The rgname argument may be NULL if the group name is not known.
However, the execution of the function is more efficient if it is provided. The handle
argument is the address of a variable to hold the value returned from the function call.

scha_resource_get() accesses resource information as indicated by the tag
argument. The tag argument should be a string value defined by a macro in the
<scha_tags.h> header file. Arguments following the tag depend on the value of tag.
An additional argument following the tag may be needed to indicate a cluster node
from which the information is to be retrieved, or other information that is specific to
the tag. The last argument in the argument list is to be of a type that is suitable to hold
the information that is indicated by tag. This argument is the out argument for the
resource information. No value is returned for the out argument if the function fails.

Memory that is allocated to hold information returned by scha_resource_get()
remains intact until scha_resource_close() is called on the handle used for the
scha_resource_get(). Note that repeated calls to scha_resource_get() with
the same handle and tag cause new memory to be allocated. Space allocated to return
a value in one call will not be overwritten and reused by subsequent calls.

scha_resource_close() takes a handle argument that is returned from a previous
call to scha_resource_open(). It invalidates the handle and frees memory
allocated to return values to scha_resource_get() calls that were made with the
handle.

Macros defined in <scha_tags.h> that may be used as tag arguments to
scha_resource_get() follow.

The type of the output argument and any additional arguments are indicated.
Structure and enum types are described in scha_calls(3HA).

scha_resource_close(3HA)

NAME

SYNOPSIS

DESCRIPTION

SC31 3ha 295

Macros that name resource properties are listed below. The value of the property of
the resource is output. The SCHA_RESOURCE_STATE, SCHA_STATUS,
SCHA_NUM_RG_RESTARTS, and SCHA_NUM_RESOURCE_RESTARTS properties refer to
the value on the node where the command is executed (see r_properties(5)).

Extension properties
These properties are declared in the RTR file of the resource’s type. The
implementation of the resource type defines these properties.

SCHA_AFFINITY_TIMEOUT
The output argument type is int*.

SCHA_ALL_EXTENSIONS
The output argument type is scha_str_array_t*.

SCHA_BOOT_TIMEOUT
The output argument type is int*.

SCHA_CHEAP_PROBE_INTERVAL
The output argument type is int*.

SCHA_EXTENSION
The output argument type is scha_extprop_value_t*.

SCHA_FAILOVER_MODE
The output argument type is scha_failover_mode_t*.

SCHA_FINI_TIMEOUT
The output argument type is int*.

SCHA_GROUP
The output argument type is char**.

SCHA_INIT_TIMEOUT
The output argument type is int*.

SCHA_LOAD_BALANCING_POLICY
The output argument type is char**.

SCHA_LOAD_BALANCING_WEIGHTS
The output argument type is scha_str_array_t**.

SCHA_MONITOR_CHECK_TIMEOUT
The output argument type is int*.

SCHA_MONITOR_START_TIMEOUT
The output argument type is int*.

SCHA_MONITOR_STOP_TIMEOUT
The output argument type is int*.

SCHA_MONITORED_SWITCH
The output argument type is scha_switch_t*.

SCHA_NETWORK_RESOURCES_USED
The output argument type is scha_str_array_t**.

scha_resource_close(3HA)

Tag Arguments

296 Sun Cluster Reference Manual for Solaris OS • Last Revised 7 Jun 2004

SCHA_NUM_RESOURCE_RESTARTS
The output argument type is int*.

SCHA_NUM_RG_RESTARTS
The output argument type is int*.

SCHA_ON_OFF_SWITCH
The output argument type is scha_switch_t*.

SCHA_PORT_LIST
The output argument type is scha_str_array_t**.

SCHA_POSTNET_STOP_TIMEOUT
The output argument type is int*.

SCHA_PRENET_START_TIMEOUT
The output argument type is int*.

SCHA_R_DESCRIPTION
The output argument type is char**.

SCHA_RESOURCE_DEPENDENCIES
The output argument type is scha_str_array_t**.

SCHA_RESOURCE_DEPENDENCIES_RESTART
The output argument type is scha_str_array_t**.

SCHA_RESOURCE_DEPENDENCIES_WEAK
The output argument type is scha_str_array_t**.

SCHA_RESOURCE_PROJECT_NAME
The output argument type is char**.

SCHA_RESOURCE_STATE
The output argument type is scha_rsstate_t*.

SCHA_RESOURCE_STATE_NODE
The output argument type is scha_rsstate_t*.

SCHA_RETRY_COUNT
The output argument type is int*.

SCHA_RETRY_INTERVAL
The output argument type is int*.

SCHA_SCALABLE
The output argument type is boolean_t*.

SCHA_START_TIMEOUT
The output argument type is int*.

SCHA_STATUS
The output argument type is scha_status_value_t**.

SCHA_STATUS_NODE
The output argument type is scha_status_value_t**.

scha_resource_close(3HA)

SC31 3ha 297

SCHA_STOP_TIMEOUT
The output argument type is int*.

SCHA_THOROUGH_PROBE_INTERVAL
The output argument type is int*.

SCHA_TYPE
The output argument type is char**.

SCHA_TYPE_VERSION
The output argument type is char**.

SCHA_UDP_AFFINITY
The output argument type is boolean_t*.

SCHA_UPDATE_TIMEOUT
The output argument type is int*.

SCHA_VALIDATE_TIMEOUT
The output argument type is int*.

SCHA_WEAK_AFFINITY
The output argument type is boolean_t*.

Macros that name resource type properties are listed below. The value of the property
of the resource’s type is output. For descriptions of resource type properties, see
rt_properties(5).

SCHA_API_VERSION
The output argument type is int*.

SCHA_BOOT
The output argument type is char**.

SCHA_FAILOVER
The output argument type is boolean_t*.

SCHA_FINI
The output argument type is char**.

SCHA_INIT
The output argument type is char**.

SCHA_INIT_NODES
The output argument type is scha_initnodes_flag_t*.

SCHA_INSTALLED_NODES
The output argument type is scha_str_array_t**.

SCHA_MONITOR_CHECK
The output argument type is char**.

SCHA_MONITOR_START
The output argument type is char**.

SCHA_MONITOR_STOP
The output argument type is char**.

scha_resource_close(3HA)

298 Sun Cluster Reference Manual for Solaris OS • Last Revised 7 Jun 2004

SCHA_PKGLIST
The output argument type is scha_str_array_t**.

SCHA_POSTNET_STOP
The output argument type is char**.

SCHA_PRENET_START
The output argument type is char**.

SCHA_RT_BASEDIR
The output argument type is char**.

SCHA_RT_DESCRIPTION
The output argument type is char**.

SCHA_RT_SYSTEM
The output argument type is boolean_t*.

SCHA_RT_VERSION
The output argument type is char**.

SCHA_SINGLE_INSTANCE
The output argument type is boolean_t*.

SCHA_START
The output argument type is char**.

SCHA_STOP
The output argument type is char**.

SCHA_UPDATE
The output argument type is char**.

SCHA_VALIDATE
The output argument type is char**.

These functions return the following values:

0 The function succeeded.

nonzero The function failed.

SCHA_ERR_NOERR Function succeeded.

See scha_calls(3HA) for a description of other error codes.

EXAMPLE 1 Using the scha_resource_get() Function

The following example uses scha_resource_get() to get the value of the
Retry_count property of a resource, and the value of the extension property named
Loglevel.

main() {
#include <scha.h>

scha_err_t err;
int *retry_count_out;

scha_resource_close(3HA)

RETURN VALUES

ERRORS

EXAMPLES

SC31 3ha 299

EXAMPLE 1 Using the scha_resource_get() Function (Continued)

scha_extprop_value_t *loglevel_out;
scha_resource_t handle;

/* a configured resource */
char * resource_name = "example_R";

/* resource group containing example_R */
char * group_name = "example_RG";

err = scha_resource_open(resource_name, group_name, &handle);

err = scha_resource_get(handle, SCHA_RETRY_COUNT, &retry_count_out);

/* Given extension property must be defined in resourcetype RTR file. */
err = scha_resource_get(handle, SCHA_EXTENSION, "LogLevel", &loglevel_out);

err = scha_resource_close(handle);

printf("The retry count for resource %s is %d\n", resource_name,
retry_count_out);

printf("The log level for resource %s is %d\n", resource_name,
loglevel_out->val.val_int);

}

</usr/cluster/include/scha.h> Include file

/usr/cluster/lib/libscha.so Library

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscdev

Interface Stability Evolving

scha_resource_get(1HA), scha_calls(3HA), scha_strerror(3HA),
attributes(5), r_properties(5), rt_properties(5)

scha_resource_close(3HA)

FILES

ATTRIBUTES

SEE ALSO

300 Sun Cluster Reference Manual for Solaris OS • Last Revised 7 Jun 2004

scha_resource_open, scha_resource_close, scha_resource_get – resource information
access functions

cc [flags...]-I /usr/cluster/include file -L /usr/cluster/lib -l scha

#include <scha.h>

scha_err_t scha_resource_open(const char *rname, const char
*rgname, scha_resource_t *handle);

scha_err_t scha_resource_close(scha_resource_t handle);

scha_err_t scha_resource_get(scha_resource_t handle, const char
*tag,...);

The scha_resource_open(), scha_resource_get(), and
scha_resource_close() functions are used together to access information about a
resource that is managed by the Resource Group Manager (RGM) cluster facility.

scha_resource_open() initializes access of the resource and returns a handle to be
used by scha_resource_get().

The rname argument of scha_resource_open() names the resource to be accessed.
The rgname argument is the name of the resource group in which the resource is
configured. The rgname argument may be NULL if the group name is not known.
However, the execution of the function is more efficient if it is provided. The handle
argument is the address of a variable to hold the value returned from the function call.

scha_resource_get() accesses resource information as indicated by the tag
argument. The tag argument should be a string value defined by a macro in the
<scha_tags.h> header file. Arguments following the tag depend on the value of tag.
An additional argument following the tag may be needed to indicate a cluster node
from which the information is to be retrieved, or other information that is specific to
the tag. The last argument in the argument list is to be of a type that is suitable to hold
the information that is indicated by tag. This argument is the out argument for the
resource information. No value is returned for the out argument if the function fails.

Memory that is allocated to hold information returned by scha_resource_get()
remains intact until scha_resource_close() is called on the handle used for the
scha_resource_get(). Note that repeated calls to scha_resource_get() with
the same handle and tag cause new memory to be allocated. Space allocated to return
a value in one call will not be overwritten and reused by subsequent calls.

scha_resource_close() takes a handle argument that is returned from a previous
call to scha_resource_open(). It invalidates the handle and frees memory
allocated to return values to scha_resource_get() calls that were made with the
handle.

Macros defined in <scha_tags.h> that may be used as tag arguments to
scha_resource_get() follow.

The type of the output argument and any additional arguments are indicated.
Structure and enum types are described in scha_calls(3HA).

scha_resource_get(3HA)

NAME

SYNOPSIS

DESCRIPTION

SC31 3ha 301

Macros that name resource properties are listed below. The value of the property of
the resource is output. The SCHA_RESOURCE_STATE, SCHA_STATUS,
SCHA_NUM_RG_RESTARTS, and SCHA_NUM_RESOURCE_RESTARTS properties refer to
the value on the node where the command is executed (see r_properties(5)).

Extension properties
These properties are declared in the RTR file of the resource’s type. The
implementation of the resource type defines these properties.

SCHA_AFFINITY_TIMEOUT
The output argument type is int*.

SCHA_ALL_EXTENSIONS
The output argument type is scha_str_array_t*.

SCHA_BOOT_TIMEOUT
The output argument type is int*.

SCHA_CHEAP_PROBE_INTERVAL
The output argument type is int*.

SCHA_EXTENSION
The output argument type is scha_extprop_value_t*.

SCHA_FAILOVER_MODE
The output argument type is scha_failover_mode_t*.

SCHA_FINI_TIMEOUT
The output argument type is int*.

SCHA_GROUP
The output argument type is char**.

SCHA_INIT_TIMEOUT
The output argument type is int*.

SCHA_LOAD_BALANCING_POLICY
The output argument type is char**.

SCHA_LOAD_BALANCING_WEIGHTS
The output argument type is scha_str_array_t**.

SCHA_MONITOR_CHECK_TIMEOUT
The output argument type is int*.

SCHA_MONITOR_START_TIMEOUT
The output argument type is int*.

SCHA_MONITOR_STOP_TIMEOUT
The output argument type is int*.

SCHA_MONITORED_SWITCH
The output argument type is scha_switch_t*.

SCHA_NETWORK_RESOURCES_USED
The output argument type is scha_str_array_t**.

scha_resource_get(3HA)

Tag Arguments

302 Sun Cluster Reference Manual for Solaris OS • Last Revised 7 Jun 2004

SCHA_NUM_RESOURCE_RESTARTS
The output argument type is int*.

SCHA_NUM_RG_RESTARTS
The output argument type is int*.

SCHA_ON_OFF_SWITCH
The output argument type is scha_switch_t*.

SCHA_PORT_LIST
The output argument type is scha_str_array_t**.

SCHA_POSTNET_STOP_TIMEOUT
The output argument type is int*.

SCHA_PRENET_START_TIMEOUT
The output argument type is int*.

SCHA_R_DESCRIPTION
The output argument type is char**.

SCHA_RESOURCE_DEPENDENCIES
The output argument type is scha_str_array_t**.

SCHA_RESOURCE_DEPENDENCIES_RESTART
The output argument type is scha_str_array_t**.

SCHA_RESOURCE_DEPENDENCIES_WEAK
The output argument type is scha_str_array_t**.

SCHA_RESOURCE_PROJECT_NAME
The output argument type is char**.

SCHA_RESOURCE_STATE
The output argument type is scha_rsstate_t*.

SCHA_RESOURCE_STATE_NODE
The output argument type is scha_rsstate_t*.

SCHA_RETRY_COUNT
The output argument type is int*.

SCHA_RETRY_INTERVAL
The output argument type is int*.

SCHA_SCALABLE
The output argument type is boolean_t*.

SCHA_START_TIMEOUT
The output argument type is int*.

SCHA_STATUS
The output argument type is scha_status_value_t**.

SCHA_STATUS_NODE
The output argument type is scha_status_value_t**.

scha_resource_get(3HA)

SC31 3ha 303

SCHA_STOP_TIMEOUT
The output argument type is int*.

SCHA_THOROUGH_PROBE_INTERVAL
The output argument type is int*.

SCHA_TYPE
The output argument type is char**.

SCHA_TYPE_VERSION
The output argument type is char**.

SCHA_UDP_AFFINITY
The output argument type is boolean_t*.

SCHA_UPDATE_TIMEOUT
The output argument type is int*.

SCHA_VALIDATE_TIMEOUT
The output argument type is int*.

SCHA_WEAK_AFFINITY
The output argument type is boolean_t*.

Macros that name resource type properties are listed below. The value of the property
of the resource’s type is output. For descriptions of resource type properties, see
rt_properties(5).

SCHA_API_VERSION
The output argument type is int*.

SCHA_BOOT
The output argument type is char**.

SCHA_FAILOVER
The output argument type is boolean_t*.

SCHA_FINI
The output argument type is char**.

SCHA_INIT
The output argument type is char**.

SCHA_INIT_NODES
The output argument type is scha_initnodes_flag_t*.

SCHA_INSTALLED_NODES
The output argument type is scha_str_array_t**.

SCHA_MONITOR_CHECK
The output argument type is char**.

SCHA_MONITOR_START
The output argument type is char**.

SCHA_MONITOR_STOP
The output argument type is char**.

scha_resource_get(3HA)

304 Sun Cluster Reference Manual for Solaris OS • Last Revised 7 Jun 2004

SCHA_PKGLIST
The output argument type is scha_str_array_t**.

SCHA_POSTNET_STOP
The output argument type is char**.

SCHA_PRENET_START
The output argument type is char**.

SCHA_RT_BASEDIR
The output argument type is char**.

SCHA_RT_DESCRIPTION
The output argument type is char**.

SCHA_RT_SYSTEM
The output argument type is boolean_t*.

SCHA_RT_VERSION
The output argument type is char**.

SCHA_SINGLE_INSTANCE
The output argument type is boolean_t*.

SCHA_START
The output argument type is char**.

SCHA_STOP
The output argument type is char**.

SCHA_UPDATE
The output argument type is char**.

SCHA_VALIDATE
The output argument type is char**.

These functions return the following values:

0 The function succeeded.

nonzero The function failed.

SCHA_ERR_NOERR Function succeeded.

See scha_calls(3HA) for a description of other error codes.

EXAMPLE 1 Using the scha_resource_get() Function

The following example uses scha_resource_get() to get the value of the
Retry_count property of a resource, and the value of the extension property named
Loglevel.

main() {
#include <scha.h>

scha_err_t err;
int *retry_count_out;

scha_resource_get(3HA)

RETURN VALUES

ERRORS

EXAMPLES

SC31 3ha 305

EXAMPLE 1 Using the scha_resource_get() Function (Continued)

scha_extprop_value_t *loglevel_out;
scha_resource_t handle;

/* a configured resource */
char * resource_name = "example_R";

/* resource group containing example_R */
char * group_name = "example_RG";

err = scha_resource_open(resource_name, group_name, &handle);

err = scha_resource_get(handle, SCHA_RETRY_COUNT, &retry_count_out);

/* Given extension property must be defined in resourcetype RTR file. */
err = scha_resource_get(handle, SCHA_EXTENSION, "LogLevel", &loglevel_out);

err = scha_resource_close(handle);

printf("The retry count for resource %s is %d\n", resource_name,
retry_count_out);

printf("The log level for resource %s is %d\n", resource_name,
loglevel_out->val.val_int);

}

</usr/cluster/include/scha.h> Include file

/usr/cluster/lib/libscha.so Library

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscdev

Interface Stability Evolving

scha_resource_get(1HA), scha_calls(3HA), scha_strerror(3HA),
attributes(5), r_properties(5), rt_properties(5)

scha_resource_get(3HA)

FILES

ATTRIBUTES

SEE ALSO

306 Sun Cluster Reference Manual for Solaris OS • Last Revised 7 Jun 2004

scha_resourcegroup_open, scha_resourcegroup_close, scha_resourcegroup_get –
resource information access functions

cc [flags...]-I /usr/cluster/include file -L /usr/cluster/lib -l scha

#include <scha.h>

scha_err_t scha_resourcegroup_open(const char *rgname,
scha_resourcegroup_t *handle);

scha_err_t scha_resourcegroup_close(scha_resourcegroup_t *handle);

scha_err_t scha_resourcegroup_get(scha_resourcegroup_t *handle,
const char *tag...);

The scha_resourcegroup_open(), scha_resourcegroup_get(), and
scha_resourcegroup_close() functions are used together to access information
about a resource group that is managed by the Resource Group Manager (RGM)
cluster facility.

scha_resourcegroup_open() initializes access of the resource group and returns a
handle to be used by scha_resourcegroup_get().

The rgname argument names the resource group to be accessed.

The handle argument is the address of a variable to hold the value returned from the
function call.

scha_resourcegroup_get() accesses resource group information as indicated by
the tag argument. The tag should be a string value defined by a macro in the
<scha_tags.h> header file. Arguments following the tag depend on the value of tag.
An additional argument following the tag may be needed to indicate a cluster node
from which the information is to be retrieved.

The last argument in the argument list is to be of a type suitable to hold the
information indicated by tag. This is the out argument for the resource group
information that is to be retrieved. No value is returned for the out parameter if the
function fails. Memory that is allocated to hold information returned by
scha_resourcegroup_get() remains intact until
scha_resourcegroup_close() is called on the handle used for
scha_resourcegroup_get().

scha_resourcegroup_close() takes a handle argument returned from a previous
call to scha_resourcegroup_open(). It invalidates the handle and frees memory
allocated to return values to scha_resourcegroup_get() calls that were made
with the handle. Note that memory, if needed to return a value, is allocated for each
get call. Space allocated to return a value in one call will not be overwritten and
reused by subsequent calls.

Macros defined in <scha_tags.h> that may be used as tag arguments to
scha_resourcegroup_get() follow. The type of the output argument and any
additional arguments are indicated. Structure and enum types are described in
scha_calls(3HA).

scha_resourcegroup_close(3HA)

NAME

SYNOPSIS

DESCRIPTION

SC31 3ha 307

Macros naming resource group properties are listed below. The value of the property
of the resource group is output. The RG_STATE property refers to the value on the
node where the function is called.

SCHA_DESIRED_PRIMARIES
The output argument type is int*.

SCHA_FAILBACK
The output argument type is boolean_t*.

SCHA_GLOBAL_RESOURCES_USED
The output argument type is scha_str_array_t**.

SCHA_IMPL_NET_DEPEND
The output argument type is boolean_t*.

SCHA_MAXIMUM_PRIMARIES
The output argument type is int*.

SCHA_NODELIST
The output argument type is scha_str_array_t**.

SCHA_PATHPREFIX
The output argument type is char**.

SCHA_PINGPONG_INTERVAL
The output argument type is int*.

SCHA_RESOURCE_LIST
The output argument type is scha_str_array_t**.

SCHA_RG_AUTO_START
The output argument type is boolean_t*.

SCHA_RG_DEPENDENCIES
The output argument type is scha_str_array_t**.

SCHA_RG_DESCRIPTION
The output argument type is char**.

SCHA_RG_IS_FROZEN
The output argument type is boolean_t*.

SCHA_RG_MODE
The output argument type is scha_rgmode_t*.

SCHA_RG_PROJECT_NAME
The output argument type is char**.

SCHA_RG_STATE
The output argument type is scha_rgstate_t*.

SCHA_RG_STATE_NODE
The output argument type is scha_rgstate_t*. An additional argument type is
char*. The additional argument names a cluster node and returns the state of the
resource group on that node.

scha_resourcegroup_close(3HA)

Tag Arguments

308 Sun Cluster Reference Manual for Solaris OS • Last Revised 7 Jun 2004

SCHA_RG_SYSTEM
The output argument type is boolean_t*.

These functions return the following:

0 The function succeeded.

nonzero The function failed.

SCHA_ERR_NOERR Function succeeded.

See scha_calls(3HA) for a description of other error codes.

EXAMPLE 1 Using the scha_resourcegroup_get() Function

The following example uses scha_resourcegroup_get() to get the list of
resources in the resource group example_RG.

main() {
#include <scha.h>

scha_err_t err;
scha_str_array_t *resource_list;
scha_resourcegroup_t handle;
int ix;

char * rgname = "example_RG";

err = scha_resourcegroup_open(rgname, &handle);

err = scha_resourcegroup_get(handle, SCHA_RESOURCE_LIST, &resource_list);

if (err == SCHA_ERR_NOERR) {
for (ix = 0; ix < resource_list->array_cnt; ix++) {

printf("Group: %s contains resource %s\
", rgname,

resource_list->str_array[ix]);
}

}

err = scha_resourcegroup_close(handle); /* resource_list memory freed */

}

/usr/cluster/include/scha.h Include file

/usr/cluster/lib/libscha.so Library

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscdev

Interface Stability Evolving

scha_resourcegroup_close(3HA)

RETURN VALUES

ERRORS

EXAMPLES

FILES

ATTRIBUTES

SC31 3ha 309

scha_resourcegroup_get(1HA) , scha_calls(3HA), attributes(5)

scha_resourcegroup_close(3HA)

SEE ALSO

310 Sun Cluster Reference Manual for Solaris OS • Last Revised 7 Jun 2004

scha_resourcegroup_open, scha_resourcegroup_close, scha_resourcegroup_get –
resource information access functions

cc [flags...]-I /usr/cluster/include file -L /usr/cluster/lib -l scha

#include <scha.h>

scha_err_t scha_resourcegroup_open(const char *rgname,
scha_resourcegroup_t *handle);

scha_err_t scha_resourcegroup_close(scha_resourcegroup_t *handle);

scha_err_t scha_resourcegroup_get(scha_resourcegroup_t *handle,
const char *tag...);

The scha_resourcegroup_open(), scha_resourcegroup_get(), and
scha_resourcegroup_close() functions are used together to access information
about a resource group that is managed by the Resource Group Manager (RGM)
cluster facility.

scha_resourcegroup_open() initializes access of the resource group and returns a
handle to be used by scha_resourcegroup_get().

The rgname argument names the resource group to be accessed.

The handle argument is the address of a variable to hold the value returned from the
function call.

scha_resourcegroup_get() accesses resource group information as indicated by
the tag argument. The tag should be a string value defined by a macro in the
<scha_tags.h> header file. Arguments following the tag depend on the value of tag.
An additional argument following the tag may be needed to indicate a cluster node
from which the information is to be retrieved.

The last argument in the argument list is to be of a type suitable to hold the
information indicated by tag. This is the out argument for the resource group
information that is to be retrieved. No value is returned for the out parameter if the
function fails. Memory that is allocated to hold information returned by
scha_resourcegroup_get() remains intact until
scha_resourcegroup_close() is called on the handle used for
scha_resourcegroup_get().

scha_resourcegroup_close() takes a handle argument returned from a previous
call to scha_resourcegroup_open(). It invalidates the handle and frees memory
allocated to return values to scha_resourcegroup_get() calls that were made
with the handle. Note that memory, if needed to return a value, is allocated for each
get call. Space allocated to return a value in one call will not be overwritten and
reused by subsequent calls.

Macros defined in <scha_tags.h> that may be used as tag arguments to
scha_resourcegroup_get() follow. The type of the output argument and any
additional arguments are indicated. Structure and enum types are described in
scha_calls(3HA).

scha_resourcegroup_get(3HA)

NAME

SYNOPSIS

DESCRIPTION

SC31 3ha 311

Macros naming resource group properties are listed below. The value of the property
of the resource group is output. The RG_STATE property refers to the value on the
node where the function is called.

SCHA_DESIRED_PRIMARIES
The output argument type is int*.

SCHA_FAILBACK
The output argument type is boolean_t*.

SCHA_GLOBAL_RESOURCES_USED
The output argument type is scha_str_array_t**.

SCHA_IMPL_NET_DEPEND
The output argument type is boolean_t*.

SCHA_MAXIMUM_PRIMARIES
The output argument type is int*.

SCHA_NODELIST
The output argument type is scha_str_array_t**.

SCHA_PATHPREFIX
The output argument type is char**.

SCHA_PINGPONG_INTERVAL
The output argument type is int*.

SCHA_RESOURCE_LIST
The output argument type is scha_str_array_t**.

SCHA_RG_AUTO_START
The output argument type is boolean_t*.

SCHA_RG_DEPENDENCIES
The output argument type is scha_str_array_t**.

SCHA_RG_DESCRIPTION
The output argument type is char**.

SCHA_RG_IS_FROZEN
The output argument type is boolean_t*.

SCHA_RG_MODE
The output argument type is scha_rgmode_t*.

SCHA_RG_PROJECT_NAME
The output argument type is char**.

SCHA_RG_STATE
The output argument type is scha_rgstate_t*.

SCHA_RG_STATE_NODE
The output argument type is scha_rgstate_t*. An additional argument type is
char*. The additional argument names a cluster node and returns the state of the
resource group on that node.

scha_resourcegroup_get(3HA)

Tag Arguments

312 Sun Cluster Reference Manual for Solaris OS • Last Revised 7 Jun 2004

SCHA_RG_SYSTEM
The output argument type is boolean_t*.

These functions return the following:

0 The function succeeded.

nonzero The function failed.

SCHA_ERR_NOERR Function succeeded.

See scha_calls(3HA) for a description of other error codes.

EXAMPLE 1 Using the scha_resourcegroup_get() Function

The following example uses scha_resourcegroup_get() to get the list of
resources in the resource group example_RG.

main() {
#include <scha.h>

scha_err_t err;
scha_str_array_t *resource_list;
scha_resourcegroup_t handle;
int ix;

char * rgname = "example_RG";

err = scha_resourcegroup_open(rgname, &handle);

err = scha_resourcegroup_get(handle, SCHA_RESOURCE_LIST, &resource_list);

if (err == SCHA_ERR_NOERR) {
for (ix = 0; ix < resource_list->array_cnt; ix++) {

printf("Group: %s contains resource %s\
", rgname,

resource_list->str_array[ix]);
}

}

err = scha_resourcegroup_close(handle); /* resource_list memory freed */

}

/usr/cluster/include/scha.h Include file

/usr/cluster/lib/libscha.so Library

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscdev

Interface Stability Evolving

scha_resourcegroup_get(3HA)

RETURN VALUES

ERRORS

EXAMPLES

FILES

ATTRIBUTES

SC31 3ha 313

scha_resourcegroup_get(1HA) , scha_calls(3HA), attributes(5)

scha_resourcegroup_get(3HA)

SEE ALSO

314 Sun Cluster Reference Manual for Solaris OS • Last Revised 7 Jun 2004

scha_resourcegroup_open, scha_resourcegroup_close, scha_resourcegroup_get –
resource information access functions

cc [flags...]-I /usr/cluster/include file -L /usr/cluster/lib -l scha

#include <scha.h>

scha_err_t scha_resourcegroup_open(const char *rgname,
scha_resourcegroup_t *handle);

scha_err_t scha_resourcegroup_close(scha_resourcegroup_t *handle);

scha_err_t scha_resourcegroup_get(scha_resourcegroup_t *handle,
const char *tag...);

The scha_resourcegroup_open(), scha_resourcegroup_get(), and
scha_resourcegroup_close() functions are used together to access information
about a resource group that is managed by the Resource Group Manager (RGM)
cluster facility.

scha_resourcegroup_open() initializes access of the resource group and returns a
handle to be used by scha_resourcegroup_get().

The rgname argument names the resource group to be accessed.

The handle argument is the address of a variable to hold the value returned from the
function call.

scha_resourcegroup_get() accesses resource group information as indicated by
the tag argument. The tag should be a string value defined by a macro in the
<scha_tags.h> header file. Arguments following the tag depend on the value of tag.
An additional argument following the tag may be needed to indicate a cluster node
from which the information is to be retrieved.

The last argument in the argument list is to be of a type suitable to hold the
information indicated by tag. This is the out argument for the resource group
information that is to be retrieved. No value is returned for the out parameter if the
function fails. Memory that is allocated to hold information returned by
scha_resourcegroup_get() remains intact until
scha_resourcegroup_close() is called on the handle used for
scha_resourcegroup_get().

scha_resourcegroup_close() takes a handle argument returned from a previous
call to scha_resourcegroup_open(). It invalidates the handle and frees memory
allocated to return values to scha_resourcegroup_get() calls that were made
with the handle. Note that memory, if needed to return a value, is allocated for each
get call. Space allocated to return a value in one call will not be overwritten and
reused by subsequent calls.

Macros defined in <scha_tags.h> that may be used as tag arguments to
scha_resourcegroup_get() follow. The type of the output argument and any
additional arguments are indicated. Structure and enum types are described in
scha_calls(3HA).

scha_resourcegroup_open(3HA)

NAME

SYNOPSIS

DESCRIPTION

SC31 3ha 315

Macros naming resource group properties are listed below. The value of the property
of the resource group is output. The RG_STATE property refers to the value on the
node where the function is called.

SCHA_DESIRED_PRIMARIES
The output argument type is int*.

SCHA_FAILBACK
The output argument type is boolean_t*.

SCHA_GLOBAL_RESOURCES_USED
The output argument type is scha_str_array_t**.

SCHA_IMPL_NET_DEPEND
The output argument type is boolean_t*.

SCHA_MAXIMUM_PRIMARIES
The output argument type is int*.

SCHA_NODELIST
The output argument type is scha_str_array_t**.

SCHA_PATHPREFIX
The output argument type is char**.

SCHA_PINGPONG_INTERVAL
The output argument type is int*.

SCHA_RESOURCE_LIST
The output argument type is scha_str_array_t**.

SCHA_RG_AUTO_START
The output argument type is boolean_t*.

SCHA_RG_DEPENDENCIES
The output argument type is scha_str_array_t**.

SCHA_RG_DESCRIPTION
The output argument type is char**.

SCHA_RG_IS_FROZEN
The output argument type is boolean_t*.

SCHA_RG_MODE
The output argument type is scha_rgmode_t*.

SCHA_RG_PROJECT_NAME
The output argument type is char**.

SCHA_RG_STATE
The output argument type is scha_rgstate_t*.

SCHA_RG_STATE_NODE
The output argument type is scha_rgstate_t*. An additional argument type is
char*. The additional argument names a cluster node and returns the state of the
resource group on that node.

scha_resourcegroup_open(3HA)

Tag Arguments

316 Sun Cluster Reference Manual for Solaris OS • Last Revised 7 Jun 2004

SCHA_RG_SYSTEM
The output argument type is boolean_t*.

These functions return the following:

0 The function succeeded.

nonzero The function failed.

SCHA_ERR_NOERR Function succeeded.

See scha_calls(3HA) for a description of other error codes.

EXAMPLE 1 Using the scha_resourcegroup_get() Function

The following example uses scha_resourcegroup_get() to get the list of
resources in the resource group example_RG.

main() {
#include <scha.h>

scha_err_t err;
scha_str_array_t *resource_list;
scha_resourcegroup_t handle;
int ix;

char * rgname = "example_RG";

err = scha_resourcegroup_open(rgname, &handle);

err = scha_resourcegroup_get(handle, SCHA_RESOURCE_LIST, &resource_list);

if (err == SCHA_ERR_NOERR) {
for (ix = 0; ix < resource_list->array_cnt; ix++) {

printf("Group: %s contains resource %s\
", rgname,

resource_list->str_array[ix]);
}

}

err = scha_resourcegroup_close(handle); /* resource_list memory freed */

}

/usr/cluster/include/scha.h Include file

/usr/cluster/lib/libscha.so Library

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscdev

Interface Stability Evolving

scha_resourcegroup_open(3HA)

RETURN VALUES

ERRORS

EXAMPLES

FILES

ATTRIBUTES

SC31 3ha 317

scha_resourcegroup_get(1HA) , scha_calls(3HA), attributes(5)

scha_resourcegroup_open(3HA)

SEE ALSO

318 Sun Cluster Reference Manual for Solaris OS • Last Revised 7 Jun 2004

scha_resource_open, scha_resource_close, scha_resource_get – resource information
access functions

cc [flags...]-I /usr/cluster/include file -L /usr/cluster/lib -l scha

#include <scha.h>

scha_err_t scha_resource_open(const char *rname, const char
*rgname, scha_resource_t *handle);

scha_err_t scha_resource_close(scha_resource_t handle);

scha_err_t scha_resource_get(scha_resource_t handle, const char
*tag,...);

The scha_resource_open(), scha_resource_get(), and
scha_resource_close() functions are used together to access information about a
resource that is managed by the Resource Group Manager (RGM) cluster facility.

scha_resource_open() initializes access of the resource and returns a handle to be
used by scha_resource_get().

The rname argument of scha_resource_open() names the resource to be accessed.
The rgname argument is the name of the resource group in which the resource is
configured. The rgname argument may be NULL if the group name is not known.
However, the execution of the function is more efficient if it is provided. The handle
argument is the address of a variable to hold the value returned from the function call.

scha_resource_get() accesses resource information as indicated by the tag
argument. The tag argument should be a string value defined by a macro in the
<scha_tags.h> header file. Arguments following the tag depend on the value of tag.
An additional argument following the tag may be needed to indicate a cluster node
from which the information is to be retrieved, or other information that is specific to
the tag. The last argument in the argument list is to be of a type that is suitable to hold
the information that is indicated by tag. This argument is the out argument for the
resource information. No value is returned for the out argument if the function fails.

Memory that is allocated to hold information returned by scha_resource_get()
remains intact until scha_resource_close() is called on the handle used for the
scha_resource_get(). Note that repeated calls to scha_resource_get() with
the same handle and tag cause new memory to be allocated. Space allocated to return
a value in one call will not be overwritten and reused by subsequent calls.

scha_resource_close() takes a handle argument that is returned from a previous
call to scha_resource_open(). It invalidates the handle and frees memory
allocated to return values to scha_resource_get() calls that were made with the
handle.

Macros defined in <scha_tags.h> that may be used as tag arguments to
scha_resource_get() follow.

The type of the output argument and any additional arguments are indicated.
Structure and enum types are described in scha_calls(3HA).

scha_resource_open(3HA)

NAME

SYNOPSIS

DESCRIPTION

SC31 3ha 319

Macros that name resource properties are listed below. The value of the property of
the resource is output. The SCHA_RESOURCE_STATE, SCHA_STATUS,
SCHA_NUM_RG_RESTARTS, and SCHA_NUM_RESOURCE_RESTARTS properties refer to
the value on the node where the command is executed (see r_properties(5)).

Extension properties
These properties are declared in the RTR file of the resource’s type. The
implementation of the resource type defines these properties.

SCHA_AFFINITY_TIMEOUT
The output argument type is int*.

SCHA_ALL_EXTENSIONS
The output argument type is scha_str_array_t*.

SCHA_BOOT_TIMEOUT
The output argument type is int*.

SCHA_CHEAP_PROBE_INTERVAL
The output argument type is int*.

SCHA_EXTENSION
The output argument type is scha_extprop_value_t*.

SCHA_FAILOVER_MODE
The output argument type is scha_failover_mode_t*.

SCHA_FINI_TIMEOUT
The output argument type is int*.

SCHA_GROUP
The output argument type is char**.

SCHA_INIT_TIMEOUT
The output argument type is int*.

SCHA_LOAD_BALANCING_POLICY
The output argument type is char**.

SCHA_LOAD_BALANCING_WEIGHTS
The output argument type is scha_str_array_t**.

SCHA_MONITOR_CHECK_TIMEOUT
The output argument type is int*.

SCHA_MONITOR_START_TIMEOUT
The output argument type is int*.

SCHA_MONITOR_STOP_TIMEOUT
The output argument type is int*.

SCHA_MONITORED_SWITCH
The output argument type is scha_switch_t*.

SCHA_NETWORK_RESOURCES_USED
The output argument type is scha_str_array_t**.

scha_resource_open(3HA)

Tag Arguments

320 Sun Cluster Reference Manual for Solaris OS • Last Revised 7 Jun 2004

SCHA_NUM_RESOURCE_RESTARTS
The output argument type is int*.

SCHA_NUM_RG_RESTARTS
The output argument type is int*.

SCHA_ON_OFF_SWITCH
The output argument type is scha_switch_t*.

SCHA_PORT_LIST
The output argument type is scha_str_array_t**.

SCHA_POSTNET_STOP_TIMEOUT
The output argument type is int*.

SCHA_PRENET_START_TIMEOUT
The output argument type is int*.

SCHA_R_DESCRIPTION
The output argument type is char**.

SCHA_RESOURCE_DEPENDENCIES
The output argument type is scha_str_array_t**.

SCHA_RESOURCE_DEPENDENCIES_RESTART
The output argument type is scha_str_array_t**.

SCHA_RESOURCE_DEPENDENCIES_WEAK
The output argument type is scha_str_array_t**.

SCHA_RESOURCE_PROJECT_NAME
The output argument type is char**.

SCHA_RESOURCE_STATE
The output argument type is scha_rsstate_t*.

SCHA_RESOURCE_STATE_NODE
The output argument type is scha_rsstate_t*.

SCHA_RETRY_COUNT
The output argument type is int*.

SCHA_RETRY_INTERVAL
The output argument type is int*.

SCHA_SCALABLE
The output argument type is boolean_t*.

SCHA_START_TIMEOUT
The output argument type is int*.

SCHA_STATUS
The output argument type is scha_status_value_t**.

SCHA_STATUS_NODE
The output argument type is scha_status_value_t**.

scha_resource_open(3HA)

SC31 3ha 321

SCHA_STOP_TIMEOUT
The output argument type is int*.

SCHA_THOROUGH_PROBE_INTERVAL
The output argument type is int*.

SCHA_TYPE
The output argument type is char**.

SCHA_TYPE_VERSION
The output argument type is char**.

SCHA_UDP_AFFINITY
The output argument type is boolean_t*.

SCHA_UPDATE_TIMEOUT
The output argument type is int*.

SCHA_VALIDATE_TIMEOUT
The output argument type is int*.

SCHA_WEAK_AFFINITY
The output argument type is boolean_t*.

Macros that name resource type properties are listed below. The value of the property
of the resource’s type is output. For descriptions of resource type properties, see
rt_properties(5).

SCHA_API_VERSION
The output argument type is int*.

SCHA_BOOT
The output argument type is char**.

SCHA_FAILOVER
The output argument type is boolean_t*.

SCHA_FINI
The output argument type is char**.

SCHA_INIT
The output argument type is char**.

SCHA_INIT_NODES
The output argument type is scha_initnodes_flag_t*.

SCHA_INSTALLED_NODES
The output argument type is scha_str_array_t**.

SCHA_MONITOR_CHECK
The output argument type is char**.

SCHA_MONITOR_START
The output argument type is char**.

SCHA_MONITOR_STOP
The output argument type is char**.

scha_resource_open(3HA)

322 Sun Cluster Reference Manual for Solaris OS • Last Revised 7 Jun 2004

SCHA_PKGLIST
The output argument type is scha_str_array_t**.

SCHA_POSTNET_STOP
The output argument type is char**.

SCHA_PRENET_START
The output argument type is char**.

SCHA_RT_BASEDIR
The output argument type is char**.

SCHA_RT_DESCRIPTION
The output argument type is char**.

SCHA_RT_SYSTEM
The output argument type is boolean_t*.

SCHA_RT_VERSION
The output argument type is char**.

SCHA_SINGLE_INSTANCE
The output argument type is boolean_t*.

SCHA_START
The output argument type is char**.

SCHA_STOP
The output argument type is char**.

SCHA_UPDATE
The output argument type is char**.

SCHA_VALIDATE
The output argument type is char**.

These functions return the following values:

0 The function succeeded.

nonzero The function failed.

SCHA_ERR_NOERR Function succeeded.

See scha_calls(3HA) for a description of other error codes.

EXAMPLE 1 Using the scha_resource_get() Function

The following example uses scha_resource_get() to get the value of the
Retry_count property of a resource, and the value of the extension property named
Loglevel.

main() {
#include <scha.h>

scha_err_t err;
int *retry_count_out;

scha_resource_open(3HA)

RETURN VALUES

ERRORS

EXAMPLES

SC31 3ha 323

EXAMPLE 1 Using the scha_resource_get() Function (Continued)

scha_extprop_value_t *loglevel_out;
scha_resource_t handle;

/* a configured resource */
char * resource_name = "example_R";

/* resource group containing example_R */
char * group_name = "example_RG";

err = scha_resource_open(resource_name, group_name, &handle);

err = scha_resource_get(handle, SCHA_RETRY_COUNT, &retry_count_out);

/* Given extension property must be defined in resourcetype RTR file. */
err = scha_resource_get(handle, SCHA_EXTENSION, "LogLevel", &loglevel_out);

err = scha_resource_close(handle);

printf("The retry count for resource %s is %d\n", resource_name,
retry_count_out);

printf("The log level for resource %s is %d\n", resource_name,
loglevel_out->val.val_int);

}

</usr/cluster/include/scha.h> Include file

/usr/cluster/lib/libscha.so Library

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscdev

Interface Stability Evolving

scha_resource_get(1HA), scha_calls(3HA), scha_strerror(3HA),
attributes(5), r_properties(5), rt_properties(5)

scha_resource_open(3HA)

FILES

ATTRIBUTES

SEE ALSO

324 Sun Cluster Reference Manual for Solaris OS • Last Revised 7 Jun 2004

scha_resource_setstatus – function to set resource status

cc [flags...]-I /usr/cluster/include file -L /usr/cluster/lib -l scha

#include <scha.h>

scha_err_t scha_resource_setstatus(const char *rname, const char
*rgname, scha_rsstatus_t status, const char *status_msg);

The scha_resource_setstatus() function sets the Status and Status_msg
property of a resource that is managed by the Resource Group Manager (RGM) cluster
facility. It is intended to be used by the resource’s monitor to indicate the resource’s
state as perceived by the monitor.

The rname argument names the resource whose status is to be set.

The rgname argument is the name of the group containing the resource.

The status is an enum value of type scha_rsstatus_t: SCHA_RSSTATUS_OK,
SCHA_RSSTATUS_OFFLINE, SCHA_RSSTATUS_FAULTED,
SCHA_RSSTATUS_DEGRADED or SCHA_RSSTATUS_UNKNOWN.

The status_msg argument is the new value for the Status_msg property and may be
NULL.

A successful call to scha_resource_setstatus() causes the Status and
Status_msg properties of the resource to be updated to the supplied values. The
update of the resource status is logged in the cluster system log and is visible to
cluster administration tools.

The scha_resosurce_setstatus() function returns the following:

0 The function succeeded.

non-zero The function failed.

SCHA_ERR_NOERR Function succeeded.

See scha_calls(3HA) for a description of other error codes.

EXAMPLE 1 Using the scha_resource_setstatus() Function

#include <scha.h>

scha_err_t err_code;
const char *rname = "example_R";
const char *rgname = "example_RG";

err_code = scha_resource_setstatus(rname, rgname,

SCHA_RSSTATUS_OK, "No problems");

/usr/cluster/include/scha.h include file

/usr/cluster/lib/libscha.so library

scha_resource_setstatus(3HA)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

EXAMPLES

FILES

SC31 3ha 325

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscdev

Interface Stability Evolving

scha_resource_setstatus(1HA), scha_calls(3HA), scha_strerror(3HA),
attributes(5)

scha_resource_setstatus(3HA)

ATTRIBUTES

SEE ALSO

326 Sun Cluster Reference Manual for Solaris OS • Last Revised 19 Apr 2002

scha_resourcetype_open, scha_resourcetype_close, scha_resourcetype_get – resource
type information access functions.

cc [flags...] -I /usr/cluster/include file -L /usr/cluster/lib -l scha

#include <scha.h>

scha_err_t scha_resourcetype_open(const char *rtname,
scha_resourcetype_t *handle);

scha_err_t scha_resourcetype_close(scha_resourcetype_t handle);

scha_err_t scha_resourcetype_get(scha_resourcetype_t handle, const
char *tag...);

The scha_resourcetype_open(), scha_resourcetype_get(), and
scha_resourcetype_close() functions are used together to access information on
a resource type that is used by the Resource Group Manager (RGM) cluster facility.

scha_resourcetype_open() initializes access of the resource type and returns a
handle to be used by scha_resourcetype_get().

The rtname argument of scha_resourcetype_open() names the resource type to
be accessed.

The handle argument is the address of a variable to hold the value returned from the
function call.

scha_resourcetype_get() accesses resource type information as indicated by the
tag argument. The tag argument should be a string value defined by a macro in the
<scha_tags.h> header file. Arguments following the tag depend on the value of tag.

An additional argument following the tag may be needed to indicate a cluster node
from which the information is to be retrieved, or other information specific to the tag.
The last argument in the argument list is to be of a type suitable type to hold the
information indicated by tag. This is the "out" argument for the resource type
information. No value is returned for the out parameter if the function fails. Memory
that is allocated to hold information returned by scha_resourcetype_get()
remains intact until scha_resourcetype_close() is called on the handle used for
scha_resourcetype_get().

scha_resourcetype_close() takes a handle argument returned from a previous
call to scha_resourcetype_open(). It invalidates the handle and frees memory
allocated to return values to scha_resourcetype_get() calls that were made with
the handle. Note that, memory, if needed to return a value, is allocated for each "get"
call. Space allocated to return a value in one call will not be overwritten and reused by
subsequent calls.

Macros defined in <scha_tags.h> that may be used as tag arguments to
scha_resourcetype_get() follow. The type of the output argument and any
additional arguments are indicated. Structure and enum types are described in
scha_calls(3HA).

scha_resourcetype_close(3HA)

NAME

SYNOPSIS

DESCRIPTION

SC31 3ha 327

Macros that name resource type properties are listed below. The value of the named
property of the resource’s type is output.

Note – optag arguments, such as SCHA_API_VERSION and SCHA_BOOT, are not case
sensitive. You can use any combination of uppercase and lowercase letters when you
specify optag arguments.

SCHA_API_VERSION
The output argument is of type int*.

SCHA_BOOT
The output argument is of type char **.

SCHA_FAILOVER
The output argument is of type boolean_t *

SCHA_FINI
The output argument is of type char **.

SCHA_INIT
The output argument is of type char **.

SCHA_INIT_NODES
The output argument is of type scha_initnodes_flag_t *.

SCHA_INSTALLED_NODES
The output argument is of type scha_str_array_t **

SCHA_IS_LOGICAL_HOSTNAME
The output argument is of type boolean_t *

SCHA_IS_SHARED_ADDRESS
The output argument is of type boolean_t *.

SCHA_MONITOR_CHECK
The output argument is of type char **.

SCHA_MONITOR_START
The output argument is of type char **.

SCHA_MONITOR_STOP
The output argument is of type char **.

SCHA_PKGLIST
The output argument is of type scha_str_array_t **.

SCHA_POSTNET_STOP
The output argument is of type char **.

SCHA_PRENET_START
The output argument is of type char **.

SCHA_RESOURCE_LIST
The output argument is of type scha_str_array_t**

SCHA_RT_BASEDIR
The output argument is of type char **.

scha_resourcetype_close(3HA)

optag Arguments

328 Sun Cluster Reference Manual for Solaris OS • Last Revised 26 May 2004

SCHA_RT_DESCRIPTION
The output argument is of type char **.

SCHA_RT_SYSTEM
The output argument is of type boolean_t *

SCHA_RT_VERSION
The output argument is of type char **.

SCHA_SINGLE_INSTANCE
The output argument is of type boolean_t *

SCHA_START
The output argument is of type char **.

SCHA_STOP
The output argument is of type char **.

SCHA_UPDATE
The output argument is of type char **.

SCHA_VALIDATE
The output argument is of type char **.

The scha_cluster_open() function returns the following:

0 The function succeeded.

non-zero The function failed.

SCHA_ERR_NOERR Function succeeded.

See scha_calls(3HA) for a description of other error codes.

/usr/cluster/include/scha.h include file

/usr/cluster/lib/libscha.so library

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscdev

Interface Stability Evolving

scha_resource_get(1HA), scha_calls(3HA), scha_strerror(3HA),
attributes(5)

scha_resourcetype_close(3HA)

RETURN VALUES

ERRORS

FILES

ATTRIBUTES

SEE ALSO

SC31 3ha 329

scha_resourcetype_open, scha_resourcetype_close, scha_resourcetype_get – resource
type information access functions.

cc [flags...] -I /usr/cluster/include file -L /usr/cluster/lib -l scha

#include <scha.h>

scha_err_t scha_resourcetype_open(const char *rtname,
scha_resourcetype_t *handle);

scha_err_t scha_resourcetype_close(scha_resourcetype_t handle);

scha_err_t scha_resourcetype_get(scha_resourcetype_t handle, const
char *tag...);

The scha_resourcetype_open(), scha_resourcetype_get(), and
scha_resourcetype_close() functions are used together to access information on
a resource type that is used by the Resource Group Manager (RGM) cluster facility.

scha_resourcetype_open() initializes access of the resource type and returns a
handle to be used by scha_resourcetype_get().

The rtname argument of scha_resourcetype_open() names the resource type to
be accessed.

The handle argument is the address of a variable to hold the value returned from the
function call.

scha_resourcetype_get() accesses resource type information as indicated by the
tag argument. The tag argument should be a string value defined by a macro in the
<scha_tags.h> header file. Arguments following the tag depend on the value of tag.

An additional argument following the tag may be needed to indicate a cluster node
from which the information is to be retrieved, or other information specific to the tag.
The last argument in the argument list is to be of a type suitable type to hold the
information indicated by tag. This is the "out" argument for the resource type
information. No value is returned for the out parameter if the function fails. Memory
that is allocated to hold information returned by scha_resourcetype_get()
remains intact until scha_resourcetype_close() is called on the handle used for
scha_resourcetype_get().

scha_resourcetype_close() takes a handle argument returned from a previous
call to scha_resourcetype_open(). It invalidates the handle and frees memory
allocated to return values to scha_resourcetype_get() calls that were made with
the handle. Note that, memory, if needed to return a value, is allocated for each "get"
call. Space allocated to return a value in one call will not be overwritten and reused by
subsequent calls.

Macros defined in <scha_tags.h> that may be used as tag arguments to
scha_resourcetype_get() follow. The type of the output argument and any
additional arguments are indicated. Structure and enum types are described in
scha_calls(3HA).

scha_resourcetype_get(3HA)

NAME

SYNOPSIS

DESCRIPTION

330 Sun Cluster Reference Manual for Solaris OS • Last Revised 26 May 2004

Macros that name resource type properties are listed below. The value of the named
property of the resource’s type is output.

Note – optag arguments, such as SCHA_API_VERSION and SCHA_BOOT, are not case
sensitive. You can use any combination of uppercase and lowercase letters when you
specify optag arguments.

SCHA_API_VERSION
The output argument is of type int*.

SCHA_BOOT
The output argument is of type char **.

SCHA_FAILOVER
The output argument is of type boolean_t *

SCHA_FINI
The output argument is of type char **.

SCHA_INIT
The output argument is of type char **.

SCHA_INIT_NODES
The output argument is of type scha_initnodes_flag_t *.

SCHA_INSTALLED_NODES
The output argument is of type scha_str_array_t **

SCHA_IS_LOGICAL_HOSTNAME
The output argument is of type boolean_t *

SCHA_IS_SHARED_ADDRESS
The output argument is of type boolean_t *.

SCHA_MONITOR_CHECK
The output argument is of type char **.

SCHA_MONITOR_START
The output argument is of type char **.

SCHA_MONITOR_STOP
The output argument is of type char **.

SCHA_PKGLIST
The output argument is of type scha_str_array_t **.

SCHA_POSTNET_STOP
The output argument is of type char **.

SCHA_PRENET_START
The output argument is of type char **.

SCHA_RESOURCE_LIST
The output argument is of type scha_str_array_t**

SCHA_RT_BASEDIR
The output argument is of type char **.

scha_resourcetype_get(3HA)

optag Arguments

SC31 3ha 331

SCHA_RT_DESCRIPTION
The output argument is of type char **.

SCHA_RT_SYSTEM
The output argument is of type boolean_t *

SCHA_RT_VERSION
The output argument is of type char **.

SCHA_SINGLE_INSTANCE
The output argument is of type boolean_t *

SCHA_START
The output argument is of type char **.

SCHA_STOP
The output argument is of type char **.

SCHA_UPDATE
The output argument is of type char **.

SCHA_VALIDATE
The output argument is of type char **.

The scha_cluster_open() function returns the following:

0 The function succeeded.

non-zero The function failed.

SCHA_ERR_NOERR Function succeeded.

See scha_calls(3HA) for a description of other error codes.

/usr/cluster/include/scha.h include file

/usr/cluster/lib/libscha.so library

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscdev

Interface Stability Evolving

scha_resource_get(1HA), scha_calls(3HA), scha_strerror(3HA),
attributes(5)

scha_resourcetype_get(3HA)

RETURN VALUES

ERRORS

FILES

ATTRIBUTES

SEE ALSO

332 Sun Cluster Reference Manual for Solaris OS • Last Revised 26 May 2004

scha_resourcetype_open, scha_resourcetype_close, scha_resourcetype_get – resource
type information access functions.

cc [flags...] -I /usr/cluster/include file -L /usr/cluster/lib -l scha

#include <scha.h>

scha_err_t scha_resourcetype_open(const char *rtname,
scha_resourcetype_t *handle);

scha_err_t scha_resourcetype_close(scha_resourcetype_t handle);

scha_err_t scha_resourcetype_get(scha_resourcetype_t handle, const
char *tag...);

The scha_resourcetype_open(), scha_resourcetype_get(), and
scha_resourcetype_close() functions are used together to access information on
a resource type that is used by the Resource Group Manager (RGM) cluster facility.

scha_resourcetype_open() initializes access of the resource type and returns a
handle to be used by scha_resourcetype_get().

The rtname argument of scha_resourcetype_open() names the resource type to
be accessed.

The handle argument is the address of a variable to hold the value returned from the
function call.

scha_resourcetype_get() accesses resource type information as indicated by the
tag argument. The tag argument should be a string value defined by a macro in the
<scha_tags.h> header file. Arguments following the tag depend on the value of tag.

An additional argument following the tag may be needed to indicate a cluster node
from which the information is to be retrieved, or other information specific to the tag.
The last argument in the argument list is to be of a type suitable type to hold the
information indicated by tag. This is the "out" argument for the resource type
information. No value is returned for the out parameter if the function fails. Memory
that is allocated to hold information returned by scha_resourcetype_get()
remains intact until scha_resourcetype_close() is called on the handle used for
scha_resourcetype_get().

scha_resourcetype_close() takes a handle argument returned from a previous
call to scha_resourcetype_open(). It invalidates the handle and frees memory
allocated to return values to scha_resourcetype_get() calls that were made with
the handle. Note that, memory, if needed to return a value, is allocated for each "get"
call. Space allocated to return a value in one call will not be overwritten and reused by
subsequent calls.

Macros defined in <scha_tags.h> that may be used as tag arguments to
scha_resourcetype_get() follow. The type of the output argument and any
additional arguments are indicated. Structure and enum types are described in
scha_calls(3HA).

scha_resourcetype_open(3HA)

NAME

SYNOPSIS

DESCRIPTION

SC31 3ha 333

Macros that name resource type properties are listed below. The value of the named
property of the resource’s type is output.

Note – optag arguments, such as SCHA_API_VERSION and SCHA_BOOT, are not case
sensitive. You can use any combination of uppercase and lowercase letters when you
specify optag arguments.

SCHA_API_VERSION
The output argument is of type int*.

SCHA_BOOT
The output argument is of type char **.

SCHA_FAILOVER
The output argument is of type boolean_t *

SCHA_FINI
The output argument is of type char **.

SCHA_INIT
The output argument is of type char **.

SCHA_INIT_NODES
The output argument is of type scha_initnodes_flag_t *.

SCHA_INSTALLED_NODES
The output argument is of type scha_str_array_t **

SCHA_IS_LOGICAL_HOSTNAME
The output argument is of type boolean_t *

SCHA_IS_SHARED_ADDRESS
The output argument is of type boolean_t *.

SCHA_MONITOR_CHECK
The output argument is of type char **.

SCHA_MONITOR_START
The output argument is of type char **.

SCHA_MONITOR_STOP
The output argument is of type char **.

SCHA_PKGLIST
The output argument is of type scha_str_array_t **.

SCHA_POSTNET_STOP
The output argument is of type char **.

SCHA_PRENET_START
The output argument is of type char **.

SCHA_RESOURCE_LIST
The output argument is of type scha_str_array_t**

SCHA_RT_BASEDIR
The output argument is of type char **.

scha_resourcetype_open(3HA)

optag Arguments

334 Sun Cluster Reference Manual for Solaris OS • Last Revised 26 May 2004

SCHA_RT_DESCRIPTION
The output argument is of type char **.

SCHA_RT_SYSTEM
The output argument is of type boolean_t *

SCHA_RT_VERSION
The output argument is of type char **.

SCHA_SINGLE_INSTANCE
The output argument is of type boolean_t *

SCHA_START
The output argument is of type char **.

SCHA_STOP
The output argument is of type char **.

SCHA_UPDATE
The output argument is of type char **.

SCHA_VALIDATE
The output argument is of type char **.

The scha_cluster_open() function returns the following:

0 The function succeeded.

non-zero The function failed.

SCHA_ERR_NOERR Function succeeded.

See scha_calls(3HA) for a description of other error codes.

/usr/cluster/include/scha.h include file

/usr/cluster/lib/libscha.so library

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscdev

Interface Stability Evolving

scha_resource_get(1HA), scha_calls(3HA), scha_strerror(3HA),
attributes(5)

scha_resourcetype_open(3HA)

RETURN VALUES

ERRORS

FILES

ATTRIBUTES

SEE ALSO

SC31 3ha 335

scha_strerror – map error code to error message

cc [flags...]-I /usr/cluster/include file -L /usr/cluster/lib -l scha

#include <scha.h>

char *scha_strerror(scha_err_t err_code);

The scha_strerror() routine translates the given scha_err_t error code to an
appropriate, but terse, error message. The char* string returned by this routine is not
internationalized, as its return value is to be used by the resource type implementation
for logging to the system log facility, syslog(3C).

The following return value is supported:

const char String describing the meaning of the error_code.

EXAMPLE 1 Using the scha_strerror() Routine

sample()
{

scha_err_t err;

char * resource_group = "example_RG"; /* resource group containing example_R */
char * resource_name = "example_R"; /* a configured resource */

err = scha_control(SCHA_GIVEOVER, resource_group, resource_name);

if (err != SCHA_ERR_NOERR) {
syslog(LOG_ERR, "scha_control GIVEOVER failed: %s",
scha_strerror(err));

}

}

/usr/cluster/include/scha.h include file

/usr/cluster/lib/libscha.so library

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscdev

Interface Stability Evolving

scha_calls(3HA), syslog(3C), attributes(5)

scha_strerror(3HA)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

EXAMPLES

FILES

ATTRIBUTES

SEE ALSO

336 Sun Cluster Reference Manual for Solaris OS • Last Revised 7 Jun 2004

SC31 4

337

clusters – cluster names database

/etc/clusters

The clusters file contains information regarding the known clusters in the local
naming domain. For each cluster a single line should be present with the following
information:

clustername whitespace-delimited list of hosts

Expansion is recursive if a name on the right hand side is tagged with the expansion
marker: ‘‘*’’.

Items are separated by any number of blanks and/or TAB characters. A ‘#’ indicates
the beginning of a comment. Characters up to the end of the line are not interpreted
by routines which search the file.

Cluster names may contain any printable character other than an upper case character,
a field delimiter, NEWLINE, or comment character. The maximum length of a cluster
name is 32 characters.

This information is used by Sun Cluster system administration tools, like
cconsole(1M) to specify a group of nodes to administer. The names used in this
database must be host names, as used in the hosts database.

The database is available from either NIS or NIS+ maps or a local file. Lookup order
can be specified in the /etc/nsswitch.conf file. The default order is nis files.

EXAMPLE 1 A Sample /etc/clusters File

Here is a typical /etc/clusters file:

bothclusters *planets *wine
planets mercury venus

wine zinfandel merlot chardonnay riesling

Here is a typical /etc/nsswitch.conf entry:

clusters: nis files

/etc/clusters

/etc/nsswitch.conf

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscu

Interface Stability Uncommitted

cconsole(1M), chosts(1M), serialports(4), nsswitch.conf(4),
attributes(5)

clusters(4)

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

FILES

ATTRIBUTES

SEE ALSO

338 Sun Cluster Reference Manual for Solaris OS • Last Revised 22 Apr 2002

rt_reg – resource type registration file

The resource type registration file describes a resource type. Resource types represent
highly-available or scalable services that run under the control of the Resource Group
Manager (RGM) cluster facility. The file is part of a resource type implementation and
is used as an input file for the scrgadm(1M) command to register the resource type
into the cluster configuration. Registering the resource type is a prerequisite to
creating resources of that type to run on the cluster.

A registration file declares the resource type properties and resource properties of a
resource type. The file is divided into two parts, the declaration of resource type
properties, and of resource properties. Note that property-names recognition is case
insensitive.

The resource type property declarations provide the information on the resource type
implementation, such as paths to the callback methods that are to be invoked by the
RGM to control resources of the type. Most resource type properties have fixed values
set in the rt_reg file. These properties are inherited by all resources of the type.

A resource type implementor can also customize and extend the administrative view
of resource properties. There are two kinds of resource properties that can have entries
in the second part of an rt_reg file: system defined properties and extension
properties.

System-defined resource properties have predetermined types and semantics. The
rt_reg file can be used to set attributes such as default, minimum and maximum
values for system defined resource properties. The rt_reg file can also be used to
declare extension properties that are defined entirely by the resource type
implementation. Extension properties provide a way for a resource type to add
information to the configuration data for a resource that is maintained and managed
by the cluster system.

The rt_reg file can set default values for resource properties, but the actual values
are set in individual resources. The properties in the rt_reg file can be variables that
can be set to different values and adjusted by the cluster administrator.

The resource type property declarations consist of a number of property value
assignments.

PROPERTY_NAME = "Value";

See the rt_properties(5) man page for a list of the resource type properties you can
declare in the rt_reg file. Since most properties have default values or are optional,
the only declarations that are essential in a resource type registration file are the type
name, the paths to the START and STOP callback methods, and RT_version.

Note that the first property in the file must be the Resource_type property.

Starting in Sun Cluster 3.1, a resource type name is of the form

vendor_id.rtname:version

rt_reg(4)

NAME

DESCRIPTION

Resource Type
Property

Declarations

SC31 4 339

The three components of the resource type name are properties specified in the RTR
file as Vendor_id, Resource_type, and RT_version; the scrgadm command inserts the
period and colon delimiters. Although optional, the Vendor_id prefix is recommended
to distinguish betweentwo registration files of the same name provided by different
vendors. To ensure that the Vendor_id is unique, the recommended approach is to use
the stock symbol for the company creating the resource type.

Resource type names created prior to Sun Cluster 3.1 continue to be of the form:

vendor_id.rtname

Resource property declarations consist of a number of entries, each entry being a
bracketed list of attribute value assignments. The first attribute in the entry must be
the resource property name.

System-defined properties have predetermined type and description attributes and so
these attributes cannot be redeclared in the rt_reg file. Range restrictions, a default
value, and constraints on when the value can be set by the administrator can be
declared for system defined properties.

Attributes that can be set for system-defined properties are listed in the
property_attributes(5) man page. Attributes not available for system-defined
properties are noted as such in the table.

System-defined properties that can have entries in the rt_reg file are listed in the
r_properties(5) man page. The following is a sample entry for the system defined
RETRY_COUNT resource property.

{
PROPERTY = RETRY_COUNT;
MIN=0;
MAX=10;
DEFAULT=2;
TUNABLE = ANYTIME;

}

Entries for extension properties must indicate a type for the property. Attributes that
can be set for extension properties are listed in the property_attributes(5) man
page.

The following is a sample entry for an extension property named "ConfigDir" that is
of string type. The TUNABLE attribute indicates that the cluster administrator can set
the value of the property when a resource is created.

{
PROPERTY = ConfigDir;
EXTENSION;
STRING;
DEFAULT="/";
TUNABLE = AT_CREATION;

}

rt_reg(4)

Resource Property
Declarations

340 Sun Cluster Reference Manual for Solaris OS • Last Revised 4 Feb 2003

An rt_reg file is an ASCII text file. It can include comments describing the contents
of the file. The contents are the two parts described above, with the resource type
property list preceding the resource property declarations.

White space can be blanks, tabs, newlines, or comments. White space can exist before
or after tokens. Blanks and the pound sign (#) are not considered to be white space
when found in quoted value tokens. White space separates tokens but is otherwise
ignored.

Comments begin with # and end with the first newline encountered, inclusively.

Directives begin with #$ and end with the first newline encountered, inclusively.
Directives must appear in the RTR file between the resource type property declaration
section and the resource property declaration section. Directives inserted in any other
location in the RTR file will produce parser errors. The only valid directives are
#$upgrade and #$upgrade_from. Any other directive will produce parser errors.

Tokens are property names, property values, and the following:

{ } Encloses parameter table properties

; Terminates properties and attributes

= Separates property names and property values or attribute names and
attribute values

, Separates values in a value list

The recognition of property-name keywords in the file is case insensitive.

Properties and attributes have one of three formats.

<property-name> = <property-value>;
<property-name>;
<property-name> = <property-value> [, <property-value>];

In the format above, the square brackets, [], enclose optional items. That is, the
property value can be a single <property-value> or a list of two or more
<property-value>s separated by commas.

The first property in the property list must be the simple resource type name.

Boolean properties and attributes have the following syntax:

<boolean-property-name>;
<boolean-property-name> = TRUE;
<boolean-property-name> = FALSE;

The first and second forms both set the <boolean-property-name> to TRUE.

rt_reg(4)

Usage

SC31 4 341

The only property name taking a list for its value is PKGLIST. An example is:

PKGLIST = SUNWscu, SUNWrsm;

Resource type property names are listed in the rt_properties(5) man page.
System-defined properties are listed in the r_properties(5) man page.

Resource declarations consist of any number of entries, each being a bracketed list of
resource property attributes.

{<attribute-value-list>}

Each attribute-value-list consists of attribute values for a resource property, in the
same syntax used for property values, with the addition of the two type-attribute
formats.

<type-attribute-value>;
<enum-type-attribute> { <enum-value> [, <enum-value>] };

The <type-attribute-value> syntax declares the data type of the extension
property to have the value <type-attribute-value>. It differs from the first
format of the <boolean-property-name>, which defines the property named by
<boolean-property-name> to have the value TRUE.

For example, the TUNABLE attribute can have one of the following values: FALSE or
NONE, AT_CREATION, TRUE or ANYTIME, and WHEN_DISABLED. When the TUNABLE
attribute uses the syntax:

TUNABLE;

it gets the value of ANYTIME.

The following is a description of the syntax of the rt_reg file with a BNF-like
grammar. Non-terminals are in lower case, and terminal keywords are in upper case,
although the actual recognition of keywords in the rt_reg file is case insensitive. The
colon (:) following a non-terminal at the beginning of a lines indicates a grammar
production. Alternative right-hand-sides of a grammar production are indicated on
lines starting with a vertical bar (|). Variable terminal tokens are indicated in angled
brackets and comments are parenthesized. Other punctuation in the right-hand side of
a grammar production, such as semi-colon (;), equals sign (=), and angled brackets
({}) are literals.

A comment has the form:

COMMENT : # <anything but NEWLINE> NEWLINE

Comments may appear after any token. Comments are treated as white-space.

rt_reg_file : Resource_type = value ; proplist paramtable

proplist : (NONE: empty)

rt_reg(4)

Grammar

342 Sun Cluster Reference Manual for Solaris OS • Last Revised 4 Feb 2003

| proplist rtproperty

rtproperty : rtboolean_prop ;
| rtvalue_prop ;

rtboolean_prop : SINGLE_INSTANCE
| FAILOVER | RT_SYSTEM

rtvalue_prop : rtprop = value
| PKGLIST = valuelist

rtprop : RT_BASEDIR
| RT_VERSION
| API_VERSION
| INIT_NODES
| START
| STOP
| VALIDATE
| UPDATE
| INIT
| FINI
| BOOT
| MONITOR_START
| MONITOR_STOP
| MONITOR_CHECK
| PRENET_START
| POSTNET_STOP
| RT_DESCRIPTION
| VENDOR_ID
| rtboolean_prop (booleans may have explicit assignments.)

value : <contiguous-non-ws-non-;-characters>
| "<anything but quote>"
| TRUE
| FALSE
| ANYTIME
| WHEN_DISABLED
| AT_CREATION
| RG_PRIMARIES
| RT_INSTALLED_NODES
| (NONE: Empty value)

valuelist : value
| valuelist , value

upgradesect : (empty)
| #$UPGRADE upgradelist

upgradelist : (empty)
| upgradelist #$UPGRADE_FROM rt_version upgtunability

upgtunability : ANYTIME
| AT_CREATION
| WHEN_DISABLED
| WHEN_OFFLINE
| WHEN_UNMANAGED
| WHEN_UNMONITORED

rt_reg(4)

SC31 4 343

paramtable : (empty)
| paramtable parameter

parameter : { pproplist }

pproplist : PROPERTY = value ; (property name must come first)
| pproplist pproperty

pproperty : pboolean_prop ;
| pvalue_prop ;
| typespec ;

pvalue_prop : tunable_prop
| pprop = value
| pprop = (NONE: no value setting)
| DEFAULT = valuelist

pprop : DESCRIPTION
| MIN
| MAX
| MINLENGTH
| MAXLENGTH
| ARRAY_MINSIZE
| ARRAY_MAXSIZE
| pboolean_prop

tunable_prop : TUNABLE
| TUNABLE = AT_CREATION
| TUNABLE = ANYTIME
| TUNABLE = WHEN_DISABLED
| TUNABLE = TRUE
| TUNABLE = FALSE
| TUNABLE = NONE

typespec : INT
| BOOLEAN
| STRING
| STRINGARRAY

| ENUM { valuelist }

EXAMPLE 1 A Sample Registration File

The following is the registration file for a simple example resource type.

#
Registration information for example resource type
#

Resource_type = example_RT;
Vendor_id = SUNW;
RT_Version = 2.0
RT_Basedir= /opt/SUNWxxx;
START = bin/example_service_start;
STOP = bin/example_service_stop;
Pkglist = SUNWxxx;

rt_reg(4)

EXAMPLES

344 Sun Cluster Reference Manual for Solaris OS • Last Revised 4 Feb 2003

EXAMPLE 1 A Sample Registration File (Continued)

#$upgrade
#$upgrade_from "1.0" when_unmonitored

#
Set range and defaults for method timeouts and Retry_count.
#
{ Property = START_TIMEOUT; Tunable; MIN=60; DEFAULT=300; }
{ Property = STOP_TIMEOUT; Tunable; MIN=60; DEFAULT=300; }
{ Property = Retry_count; Tunable; MIN=1; MAX=20; DEFAULT=10; }

#
An extension property that can be set at resource creation
#
{ Property = LogLevel;

Extension;
enum { OFF, TERSE, VERBOSE };
Default = TERSE;
Tunable = AT_CREATION;
Description = "Controls the detail of example_service logging";

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscdev

Interface Stability Evolving

scrgadm(1M), attributes(5), rt_properties(5), r_properties(5),
property_attributes(5)

Sun Cluster 3.1 Data Services Developer’s Guide

rt_reg(4)

ATTRIBUTES

SEE ALSO

SC31 4 345

serialports – name to serial port database

/etc/serialports

serialports NIS or NIS+ maps

The serialports database maps a name to a server name and TCP port number that
represents the serial port connected to the specified terminal server host. The database
is typically used to map host names to their consoles, but may also be used to provide
access to printers, modems, and the like. The mapping is used when the service is
being provided by a network based terminal concentrator such as a Xylogics Annex or
MicroAnnex. For each name a single line should be present with the following
information:

host-name concentrator-hostname tcp-port-number

Items are separated by any number of blanks or TAB characters. A ‘#’ indicates the
beginning of a comment. Characters after the hash up to the end of the line are not
interpreted by routines that search the file.

This information is used by cconsole(1M) to establish connection to a group of
consoles of a cluster of network hosts. The names used in this database must be host
names, as used in the hosts database.

For E10000 nodes, the entries are different. This is because E10000 uses netcon for
console purposes, which operates over a network and executes on the SSP. The
following is the generic format for the entry.

<hostname> <SSPname> 23

The database is available from either the NIS or NIS+ maps or a local file. Lookup
order is specified by the serialports entry in the /etc/nsswitch.conf file, if
present. If no search order is specified, the default order is nis files.

EXAMPLE 1 A Sample /etc/serialports File

The following is an example /etc/serialports file:

Network host to port database

NFS server cluster
mercury planets-tc 5001
venus planets-tc 5002

E10000 server cluster
cashews nuts-ssp-1 23

pecans nuts-ssp-2 23

EXAMPLE 2 A Sample /etc/nsswitch.conf File Entry

The following is a typical /etc/nsswitch.conf entry:

serialports: nis files

/etc/serialports

/etc/nsswitch.conf

serialports(4)

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

FILES

346 Sun Cluster Reference Manual for Solaris OS • Last Revised 23 Apr 2002

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscdev

Interface Stability Uncommitted

cconsole(1M), chosts(1M), cports(1M), clusters(4), nsswitch.conf(4),
attributes(5)

serialports(4)

ATTRIBUTES

SEE ALSO

SC31 4 347

serialports(4)

348 Sun Cluster Reference Manual for Solaris OS • Last Revised 23 Apr 2002

SC31 5

349

SUNW.HAStorage, HAStorage – resource type to synchronize action between HA
storage and data services

SUNW.HAStorage describes a resource type that defines resources in a resource group
to synchronize the actions between the cluster file system, global devices, and relevant
data services.

There is no direct synchronization between resource groups and disk device groups
(and the cluster file system). As a result, during a cluster reboot or failover, an attempt
to start a data service can occur while its dependent global devices or cluster file
systems are still unavailable. Consequently, the data service’s START method might
timeout and the service is not started on the cluster.

SUNW.HAStorage is a resource type that specifically monitors the storage device
services. You add a resource of this type to resource groups containing other resources
and set up dependencies between the other resources and the HAStorage resource.
The HAStorage resource continually tests the availability of the global devices, device
groups, and the cluster file system. The dependencies ensure that the data service
resources does not attempt to start until the device services are available.

When a data service resource is set up with a "strong dependency" upon a
SUNW.HAStorage resource, the data service resources are not started before all
dependent global devices and cluster file systems become available.

Multiple SUNW.HAStorage resources can be set up within a cluster to obtain finer
granularity of the service monitoring checks. Device services that the data service
needs to check and wait for but not depend upon to be online can be defined in a
separate resource, and a "weak dependency" can be set up from the data resource to
the device resource.

In this case, the data service resource waits for the resource to check if the device
services are all available. If not, even if the SUNW.HAStorage START method times
out, the data service can still be brought online. This feature is useful to some data
services. For example, assume a Web server depends on ten cluster file systems. If only
one file system isn’t ready within the timeout period, the Web service should still go
online since it still can provide 90 percent of the services.

Two extension properties are associated with the SUNW.HAStorage resource type:
ServicePaths and AffinityOn.

ServicePaths Contains valid global device group names, paths to global devices,
or cluster file system mount points that are to be checked. They are
defined in the format of

paths[,...].

A typical example of a global device group is nfs-dg. A path to a
global device is a valid device path in the global device namespace,
such as /dev/global/dsk/d5s2, /dev/global/dsk/d1s2, or
/dev/global/rmt/0. A cluster file system mount point is a valid
global mount point defined in /etc/vfstab on all cluster nodes

HAStorage(5)

NAME

DESCRIPTION

350 Sun Cluster Reference Manual for Solaris OS • Last Revised 24 Aug 2002

of the cluster. You can define a global device group, a global device
path, and a cluster file system mount point in one
SUNW.HAStorage resource.

AffinityOn A boolean flag that specifies whether the SUNW.HAStorage
resource needs to do an affinity switchover for the global devices
and cluster file systems defined in ServicePaths.

When AffinityOn is set to False, the SUNW.HAStorage
resource passively waits for the specified global services to become
available. As a result, the primary of each online global service
might not be the same node that is the primary of the resource
group.

The purpose of an affinity switchover is to enhance performance
by having data services and their dependent global services run on
the same node. For each global service, the SUNW.HAStorage
resource attempts affinity switchover only once. If switchover fails,
nothing is affected and the availability check occurs normally.

The default value for ServicePaths is the empty string. The
default value for AffinityOn is True. Both extension properties
can be changed at any time when the resource group is offline.

For scalable service resources, the setting of the AffinityOn flag
is ignored and no affinity switchover can be done. There is no
benefit to switching over the disk device services because the
scalable data service can be running on multiple nodes
simultaneously.

rt_reg(4)

SUNW.HAStorage specifies resources that check and wait for the specified global
devices, device group, and cluster file systems to become available. The checking is
only meaningful when data service resources (application resources) in the same
resource group are set up with the correct dependency upon the SUNW.HAStorage
resources. Otherwise, no synchronization is done.

Avoid configuring two different SUNW.HAStorage resources in different resource
groups with their ServicePaths property referencing the same global resource and with
both AffinityOn flags set to True. When the cluster is booting or during a
switchover, the resource groups might end up mastered on two different nodes. Both
of the SUNW.HAStorage resources would attempt to do an affinity switchover of the
same device group, resulting in a race condition. In this case, redundant switchovers
would occur and the device group might not end up being mastered by the most
preferred node.

HAStorage(5)

SEE ALSO

NOTES

SC31 5 351

The waiting time for global services to become available is specified by the
Prenet_Start_Timeout property in SUNW.HAStorage. The time is tunable with a
default value of 30 minutes (1,800 seconds).

HAStorage(5)

352 Sun Cluster Reference Manual for Solaris OS • Last Revised 24 Aug 2002

property_attributes – resource property attributes

The list below describes the resource property attributes that can be used to change
system-defined properties or create extension properties.

You cannot specify NULL or the empty string ("") as the default value for boolean,
enum, or int types.

Property
The name of the resource property.

Extension
If used, indicates that the RTR file entry declares an extension property defined by
the resource type implementation. Otherwise, the entry is a system-defined
property.

Description
A string annotation intended to be a brief description of the property. The
description attribute cannot be set in the RTR file for system-defined properties.

Property Type
Allowable types are: string, boolean, int, enum, and stringarray. You cannot set the
type attribute in an RTR file entry for system-defined properties. The type
determines acceptable property values and the type-specific attributes that are
allowed in the RTR file entry. An enum type is a set of string values.

Default
Indicates a default value for the property.

Tunable
Indicates when the cluster administrator can set the value of this property in a
resource. Can be set to None or False to prevent the administrator from setting the
property. Values that allow administrator tuning are: True or Anytime (at any
time), At_creation (only when the resource is created), or When_disabled
(when the resource is offline).

The default is True (Anytime).

Enumlist
For an enum type, a set of string values permitted for the property.

Min
For an int type, the minimal value permitted for the property. Note that you cannot
specify Min=0 for a method timeout.

Max
For an int type, the maximum value permitted for the property. Note that you
cannot specify a maximum value for a method timeout.

Minlength
For string and stringarray types, the minimum string length permitted.

Maxlength
For string and stringarray types, the maximum string length permitted.

property_attributes(5)

NAME

DESCRIPTION

SC31 5 353

Array_minsize
For stringarray type, the minimum number of array elements permitted.

Array_maxsize
For stringarray type, the maximum number of array elements permitted.

EXAMPLE 1 An int Type Definition

An int type definition might look like this:

{
PROPERTY = Probe_timeout;
EXTENSION;
INT;
DEFAULT = 30;
TUNABLE = ANYTIME;
DESCRIPTION = "Time out value for the probe (seconds)";

}

scrgadm(1M), r_properties(5) rg_properties(5), rt_properties(5)

property_attributes(5)

EXAMPLES

SEE ALSO

354 Sun Cluster Reference Manual for Solaris OS • Last Revised 29 Apr 2002

SUNW.rac_cvm, rac_cvm – resource type implementation that represents the VERITAS
Volume Manager (VxVM) component of Sun Cluster Support for Oracle Parallel
Server/Real Application Clusters

The SUNW.rac_cvm resource type represents the VxVM component of Sun Cluster
Support for Oracle Parallel Server/Real Application Clusters. You can use the
SUNW.rac_cvm resource type to represent this component only if the cluster feature of
VxVM is enabled.

Instances of the SUNW.rac_cvm resource type hold VxVM component configuration
parameters. Instances of this type also show the status of a reconfiguration of the
VxVM component.

The SUNW.rac_cvm resource type is a single-instance resource type. Only one
resource of this type may be created in the cluster.

To register this resource type and create instances of this resource type, use one of the
following utilities:

� The scsetup(1M) utility, specifying the option for configuring Sun Cluster
Support for Oracle Parallel Server/Real Application Clusters

� The scrgadm(1M) utility

You can set the following extension properties of the VxVM component resource by
using the scrgadm utility.

Note – Some extension properties are tunable only when the resource is disabled. You
can modify such extension properties only when VxVM is not running in cluster mode
on any cluster node.

Cvm_abort_step_timeout
Type integer; minimum 30; maximum 99999; defaults to 40. This property specifies
the timeout (in seconds) for the abort step of a reconfiguration of the VxVM
component of Sun Cluster Support for Oracle Parallel Server/Real Application
Clusters. You can modify this property at any time. The modified value is used for
the next reconfiguration of the VxVM component.

Cvm_return_step_timeout
Type integer; minimum 30; maximum 99999; defaults to 40. This property specifies
the timeout (in seconds) for the return step of a reconfiguration of the VxVM
component of Sun Cluster Support for Oracle Parallel Server/Real Application
Clusters. You can modify this property at any time. The modified value is used for
the next reconfiguration of the VxVM component.

Cvm_start_step_timeout
Type integer; minimum 30; maximum 99999; defaults to 120. This property specifies
the timeout (in seconds) for the start step of a reconfiguration of the VxVM
component of Sun Cluster Support for Oracle Parallel Server/Real Application
Clusters. You can modify this property at any time. The modified value is used for
the next reconfiguration of the VxVM component.

rac_cvm(5)

NAME

DESCRIPTION

SC31 5 355

Cvm_step1_timeout
Type integer; minimum 30; maximum 99999; defaults to 100. This property specifies
the timeout (in seconds) for step 1 of a reconfiguration of the VxVM component of
Sun Cluster Support for Oracle Parallel Server/Real Application Clusters. You can
modify this property at any time. The modified value is used for the next
reconfiguration of the VxVM component.

Cvm_step2_timeout
Type integer; minimum 30; maximum 99999; defaults to 100. This property specifies
the timeout (in seconds) for step 2 of a reconfiguration of the VxVM component of
Sun Cluster Support for Oracle Parallel Server/Real Application Clusters. You can
modify this property at any time. The modified value is used for the next
reconfiguration of the VxVM component.

Cvm_step3_timeout
Type integer; minimum 30; maximum 99999; defaults to 240. This property specifies
the timeout (in seconds) for step 3 of a reconfiguration of the VxVM component of
Sun Cluster Support for Oracle Parallel Server/Real Application Clusters. You can
modify this property at any time. The modified value is used for the next
reconfiguration of the VxVM component.

Cvm_step4_timeout
Type integer; minimum 100; maximum 99999; defaults to 320. This property
specifies the timeout (in seconds) for step 4 of a reconfiguration of the VxVM
component of Sun Cluster Support for Oracle Parallel Server/Real Application
Clusters. You can modify this property at any time. The modified value is used for
the next reconfiguration of the VxVM component.

Cvm_stop_step_timeout
Type integer; minimum 30; maximum 99999; defaults to 40. This property specifies
the timeout (in seconds) for the stop step of a reconfiguration of the VxVM
component of Sun Cluster Support for Oracle Parallel Server/Real Application
Clusters. You can modify this property at any time. The modified value is used for
the next reconfiguration of the VxVM component.

Reservation_timeout
Type integer; minimum 100; maximum 99999; defaults to 325. This property
specifies the timeout (in seconds) for the reservation step of a reconfiguration of
Sun Cluster Support for Oracle Parallel Server/Real Application Clusters. You can
modify this property at any time.

Vxclust_num_ports
Type integer; minimum 16; maximum 64; defaults to 32. This property specifies the
number of communications ports that the vxclust program uses. You can modify
this property only when the resource is disabled. The modified value is used for the
next reconfiguration of the VxVM component.

Vxclust_port
Type integer; minimum 1024; maximum 65535; defaults to 5568. This property
specifies the communications port number that the vxclust program uses. You
can modify this property only when the resource is disabled. The modified value is
used for the next reconfiguration of the VxVM component.

rac_cvm(5)

356 Sun Cluster Reference Manual for Solaris OS • Last Revised 15 Aug 2003

Vxconfigd_port
Type integer; minimum 1024; maximum 65535; defaults to 5560. This property
specifies the communications port number that the VxVM component configuration
daemon vxconfigd uses. You can modify this property only when the resource is
disabled. The modified value is used for the next reconfiguration of the VxVM
component.

Vxkmsgd_port
Type integer; minimum 1024; maximum 65535; defaults to 5559. This property
specifies the communications port number that the VxVM component messaging
daemon vxkmsgd uses. You can modify this property only when the resource is
disabled. The modified value is used for the next reconfiguration of the VxVM
component.

EXAMPLE 1 Changing a Property of a rac_cvm Resource

This example sets the timeout for step 4 of a reconfiguration of the VxVM component
of Sun Cluster Support for Oracle Parallel Server/Real Application Clusters to 300
seconds. The example assumes that an instance of the SUNW.rac_cvm resource type
named rac_cvm has been created.

example# scrgadm -c -j rac_cvm\\

-x cvm_step4_timeout=300

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

Availability SUNWcvm

scrgadm(1M), scsetup(1M), attributes(5)

rac_cvm(5)

EXAMPLES

ATTRIBUTES

SEE ALSO

SC31 5 357

SUNW.rac_framework, rac_framework – resource type implementation for the
framework that enables Sun Cluster Support for Oracle Parallel Server/Real
Application Clusters

The SUNW.rac_framework resource type represents the framework that enables Sun
Cluster Support for Oracle Parallel Server/Real Application Clusters. This resource
type enables you to monitor the status of this framework.

The SUNW.rac_framework resource type is a single instance resource type. Only one
resource of this type may be created in the cluster.

To register this resource type and create instances of this resource type, use one of the
following utilities:

� The scsetup(1M) utility, specifying the option for configuring Sun Cluster
Support for Oracle Parallel Server/Real Application Clusters

� The scrgadm(1M) utility

The Sun Cluster Support for Oracle Parallel Server/Real Application Clusters
framework resource has no extension properties.

EXAMPLE 1 Creating a rac_framework Resource

This example registers the SUNW.rac_framework resource type and creates an
instance of the SUNW.rac_framework resource type named rac_framework. The
example assumes that a resource group named rac-framework-rg has been created.

example# scrgadm -a -t SUNW.rac_framework
example# scrgadm -a -j rac_framework \

-g rac-framework-rg \

-t SUNW.rac_framework

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscucm

scrgadm(1M), scsetup(1M), attributes(5)

rac_framework(5)

NAME

DESCRIPTION

EXAMPLES

ATTRIBUTES

SEE ALSO

358 Sun Cluster Reference Manual for Solaris OS • Last Revised 16 Apr 2003

SUNW.rac_hwraid, rac_hwraid – resource type implementation that represents the
hardware redundant array of independent disks (RAID) component of Sun Cluster
Support for Oracle Parallel Server/Real Application Clusters

The SUNW.rac_hwraid resource type represents the hardware RAID component of
Sun Cluster Support for Oracle Parallel Server/Real Application Clusters.

The SUNW.rac_hwraid resource type is a single-instance resource type. Only one
resource of this type may be created in the cluster.

To register this resource type and create instances of this resource type, use one of the
following utilities:

� The scsetup(1M) utility, specifying the option for configuring Sun Cluster
Support for Oracle Parallel Server/Real Application Clusters

� The scrgadm(1M) utility

You can set the following extension properties of the hardware RAID resource by
using the scrgadm utility.

Reservation_timeout
Type integer; minimum 100; maximum 99999; defaults to 325. This property
specifies the timeout (in seconds) for the reservation step of a reconfiguration of
Sun Cluster Support for Oracle Parallel Server/Real Application Clusters. You can
modify this property at any time.

EXAMPLE 1 Changing a Property of a rac_hwraid Resource

This example sets the timeout for the reservation step of a reconfiguration of Sun
Cluster Support for Oracle Parallel Server/Real Application Clusters to 350 seconds.
The example assumes that an instance of the SUNW.rac_hwraid resource type
named rac_hwraid has been created.

example# scrgadm -c -j rac_hwraid\

-x reservation_timeout=350

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWhwraid

scrgadm(1M), scsetup(1M), attributes(5)

rac_hwraid(5)

NAME

DESCRIPTION

EXAMPLES

ATTRIBUTES

SEE ALSO

SC31 5 359

SUNW.rac_svm, rac_svm – resource type implementation that represents the Solaris
Volume Manager component of Sun Cluster Support for Oracle Parallel Server/Real
Application Clusters

The SUNW.rac_svm resource type represents the Solaris Volume Manager for Sun
Cluster component of the Sun Cluster framework for Oracle Parallel Server/Real
Application Clusters.

Instances of the SUNW.rac_svm resource type hold Solaris Volume Manager for Sun
Cluster component configuration parameters. Instances of this type also show the
status of a reconfiguration of the Solaris Volume Manager for Sun Cluster component.

The SUNW.rac_svm resource type is a single-instance resource type. Only one
resource of this type may be created in the cluster.

To register this resource type and create instances of this resource type, use one of the
following utilities:

� The scsetup(1M) utility, specifying the option for configuring Sun Cluster
Support for Oracle Parallel Server/Real Application Clusters

� The scrgadm(1M) utility

You can set the following extension properties of the Solaris Volume Manager for Sun
Cluster component resource by using the scrgadm utility.

Debug_level
Type integer; minimum 0; maximum 10; defaults to 1. This property specifies the
debug level for the Solaris Volume Manager for Sun Cluster module of Sun Cluster
framework for Oracle Parallel Server/Real Application Clusters. When the debug
level is increased, more messages are written to the log files during reconfiguration.
You can modify this property at any time.

Reservation_timeout
Type integer; minimum 100; maximum 99999; defaults to 325. This property
specifies the timeout (in seconds) for the reservation step of a reconfiguration of the
Solaris Volume Manager for Sun Cluster module of Sun Cluster Support for Oracle
Parallel Server/Real Application Clusters. You can modify this property at any
time.

Svm_abort_step_timeout
Type integer; minimum 30; maximum 99999; defaults to 120. This property specifies
the timeout (in seconds) for the abort step of a reconfiguration of the Solaris
Volume Manager for Sun Cluster module of Sun Cluster Support for Oracle Parallel
Server/Real Application Clusters. You can modify this property at any time.

Svm_return_step_timeout
Type integer; minimum 30; maximum 99999; defaults to 120. This property specifies
the timeout (in seconds) for the return step of a reconfiguration of the Solaris
Volume Manager for Sun Cluster module of Sun Cluster Support for Oracle Parallel
Server/Real Application Clusters. You can modify this property at any time.

rac_svm(5)

NAME

DESCRIPTION

360 Sun Cluster Reference Manual for Solaris OS • Last Revised 06 May 2004

Svm_start_step_timeout
Type integer; minimum 30; maximum 99999; defaults to 120. This property specifies
the timeout (in seconds) for the start step of a reconfiguration of the Solaris Volume
Manager for Sun Cluster module of Sun Cluster Support for Oracle Parallel
Server/Real Application Clusters. You can modify this property at any time.

Svm_step1_timeout
Type integer; minimum 30; maximum 99999; defaults to 120. This property specifies
the timeout (in seconds) for step 1 of a reconfiguration of the Solaris Volume
Manager for Sun Cluster module of Sun Cluster Support for Oracle Parallel
Server/Real Application Clusters. You can modify this property at any time.

Svm_step2_timeout
Type integer; minimum 30; maximum 99999; defaults to 120. This property specifies
the timeout (in seconds) for step 2 of a reconfiguration of the Solaris Volume
Manager for Sun Cluster module of Sun Cluster Support for Oracle Parallel
Server/Real Application Clusters. You can modify this property at any time.

Svm_step3_timeout
Type integer; minimum 30; maximum 99999; defaults to 120. This property specifies
the timeout (in seconds) for step 3 of a reconfiguration of the Solaris Volume
Manager for Sun Cluster module of Sun Cluster Support for Oracle Parallel
Server/Real Application Clusters. You can modify this property at any time.

Svm_step4_timeout
Type integer; minimum 100; maximum 99999; defaults to 120. This property
specifies the timeout (in seconds) for step 4 of a reconfiguration of the Solaris
Volume Manager for Sun Cluster module of Sun Cluster Support for Oracle Parallel
Server/Real Application Clusters. You can modify this property at any time.

Svm_stop_step_timeout
Type integer; minimum 30; maximum 99999; defaults to 120. This property specifies
the timeout (in seconds) for the stop step of a reconfiguration of the Solaris Volume
Manager for Sun Cluster module of Sun Cluster Support for Oracle Parallel
Server/Real Application Clusters. You can modify this property at any time.

EXAMPLE 1 Changing a Property of a rac_svm Resource

This example sets the timeout for step 4 of a reconfiguration of the Solaris Volume
Manager for Sun Cluster component of Sun Cluster Support for Oracle Parallel
Server/Real Application Clusters to 300 seconds. The example assumes that an
instance of the SUNW.rac_svm resource type named rac_svm has been created.

example# scrgadm -c -j rac_svm \

-x svm_step4_timeout=300

See attributes(5) for descriptions of the following attributes:

rac_svm(5)

EXAMPLES

ATTRIBUTES

SC31 5 361

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

Availability SUNWscmd

attributes(5)

scrgadm(1M), scsetup(1M)

rac_svm(5)

SEE ALSO

362 Sun Cluster Reference Manual for Solaris OS • Last Revised 06 May 2004

SUNW.rac_udlm, rac_udlm – resource type implementation for the configuration of
the UNIX Distributed Lock Manager (Oracle UDLM) component of Sun Cluster
Support for Oracle Parallel Server/Real Application Clusters

The SUNW.rac_udlm resource type enables the management of the Oracle UDLM
component of Sun Cluster Support for Oracle Parallel Server/Real Application
Clusters. The management of this component involves the following activities:

� Setting the parameters of the Oracle UDLM component
� Monitoring the status of the Oracle UDLM component

The SUNW.rac_udlm resource type is a single-instance resource type. Only one
resource of this type may be created in the cluster.

To register this resource type and create instances of this resource type, use one of the
following utilities:

� The scsetup(1M) utility, specifying the option for configuring Sun Cluster
Support for Oracle Parallel Server/Real Application Clusters

� The scrgadm(1M) utility

You can set the following extension properties for an Oracle UDLM resource by using
the scrgadm utility.

Note – Some extension properties are tunable only when the resource is disabled. You
can modify such extension properties only when the Oracle UDLM is not running on
any cluster node.

Failfastmode
Type enum; defaults to panic. This property specifies the failfast mode of the node
on which the Oracle UDLM is running. The failfast mode determines the action that
is performed in response to a critical problem with this node. The possible values of
this property are as follows:

off Failfast mode is disabled.

panic The node is forced to panic.

You can modify this property at any time. The modified value is used for the next
start-up of the Oracle UDLM. The Oracle UDLM is started when a node is
rebooted.

Num_ports
Type integer; minimum 16; maximum 64; defaults to 32. This property specifies the
number of communications ports that the Oracle UDLM uses. You can modify this
property only when the resource is disabled. The modified value is used for the
next start-up of the Oracle UDLM. The Oracle UDLM is started when a node is
rebooted.

Oracle_config_file
Type string; defaults to /etc/opt/SUNWcluster/conf/udlm.conf. This
property specifies the configuration file that the Oracle distributed lock manager

rac_udlm(5)

NAME

DESCRIPTION

SC31 5 363

(DLM) uses. This file must already exist. The file is installed when the Oracle
software is installed. For more information, refer to the documentation for the
Oracle software. You can modify this property at any time. The modified value is
used for the next start-up of the Oracle DLM.

Port
Type integer; minimum 1024; maximum 65500; defaults to 6000. This property
specifies the communications port number that the Oracle UDLM uses. You can
modify this property only when the resource is disabled. The modified value is
used for the next start-up of the Oracle UDLM. The Oracle UDLM is started when a
node is rebooted.

Schedclass
Type enum; defaults to RT. This property specifies the scheduling class of the
Oracle UDLM that is passed to the priocntl(1) command. The possible values of
this property are as follows:

RT Real-time

TS Time-sharing

IA Interactive

You can modify this property only when the resource is disabled. The modified
value is used for the next start-up of the Oracle UDLM. The Oracle UDLM is
started when a node is rebooted.

Schedpriority
Type integer; minimum 0; maximum 59; defaults to 11. This property specifies the
scheduling priority of the Oracle UDLM that is passed to the priocntl command.
You can modify this property only when the resource is disabled. The modified
value is used for the next start-up of the Oracle UDLM. The Oracle UDLM is
started when a node is rebooted.

Udlm_abort_step_timeout
Type integer; minimum 30; maximum 99999; defaults to 325. This property specifies
the timeout (in seconds) for the abort step of an Oracle UDLM reconfiguration. You
can modify this property at any time. The modified value is used for the next
reconfiguration of the Oracle UDLM.

Udlm_start_step_timeout
Type integer; minimum 30; maximum 99999; defaults to 100. This property specifies
the timeout (in seconds) for the start step of an Oracle UDLM reconfiguration. You
can modify this property at any time. The modified value is used for the next
start-up of the Oracle UDLM. The Oracle UDLM is started when a node is
rebooted.

Udlm_step1_timeout
Type integer; minimum 30; maximum 99999; defaults to 100. This property specifies
the timeout (in seconds) for step 1 of an Oracle UDLM reconfiguration. You can
modify this property at any time. The modified value is used for the next
reconfiguration of the Oracle UDLM.

rac_udlm(5)

364 Sun Cluster Reference Manual for Solaris OS • Last Revised 16 Apr 2003

Udlm_step2_timeout
Type integer; minimum 30; maximum 99999; defaults to 100. This property specifies
the timeout (in seconds) for step 2 of an Oracle UDLM reconfiguration. You can
modify this property at any time. The modified value is used for the next
reconfiguration of the Oracle UDLM.

Udlm_step3_timeout
Type integer; minimum 30; maximum 99999; defaults to 100. This property specifies
the timeout (in seconds) for step 3 of an Oracle UDLM reconfiguration. You can
modify this property at any time. The modified value is used for the next
reconfiguration of the Oracle UDLM.

Udlm_step4_timeout
Type integer; minimum 30; maximum 99999; defaults to 100. This property specifies
the timeout (in seconds) for step 4 of an Oracle UDLM reconfiguration. You can
modify this property at any time. The modified value is used for the next
reconfiguration of the Oracle UDLM.

Udlm_step5_timeout
Type integer; minimum 30; maximum 99999; defaults to 100. This property specifies
the timeout (in seconds) for step 5 of an Oracle UDLM reconfiguration. You can
modify this property at any time. The modified value is used for the next
reconfiguration of the Oracle UDLM.

EXAMPLE 1 Changing a Property of a rac_udlm Resource

This example sets the timeout for step 4 of a reconfiguration of the Oracle UDLM
component of Sun Cluster Support for Oracle Parallel Server/Real Application
Clusters to 45 seconds. The example assumes that an instance of the SUNW.rac_udlm
resource type named rac_udlm has been created.

example# scrgadm -c -j rac_udlm\

-x udlm_step4_timeout=45

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWudlm

priocntl(1), scrgadm(1M), scsetup(1M), attributes(5)

rac_udlm(5)

EXAMPLES

ATTRIBUTES

SEE ALSO

SC31 5 365

SUNW.RGOffload, RGOffload – resource type to offload specified resource groups

SUNW.RGOffload describes a resource type that allows resources configured in
failover resource groups to offload other specified resource groups.

This facility is most useful when the limited resources on cluster nodes prevent
multiple data services from running simultaneously on a node. In such situations, a
RGOffload resource in a resource group containing critical data services is configured
to offload other resource groups.

You can use the scrgadm(1M) command or resource configuration GUI to add a
RGOffload resource to the resource group containing critical data service resources,
setup dependencies of the critical data service resources on this resource, and
configure the resource groups to be offloaded from a node when critical data service
resources are running on it. The dependencies ensure that the data service resources
do not attempt to start on a node until the START method of the RGOffload resource
has offloaded, or at least attempted to offload the specified resource groups from the
node.

Resource groups specified to be offloaded must have their Desired_primaries property
set to 0. The fault monitor of the SUNW.RGOffload resource will attempt to keep such
resource groups online on as many healthy nodes as possible, limited by the
Maximum_primaries property of individual resource groups. The fault monitor checks
the status of specified resource groups on all nodes every
Thorough_probe_interval.

When a data service resource is set up with a "strong dependency" upon a
SUNW.RGOffload resource, the data service resource is not started on a node if there
is a failure in offloading specified resource groups from that node. A data service
resource set up with a "weak dependency" upon the SUNW.RGOffload resource may
start when specified resource groups cannot be successfully offloaded from the node.
An attempt would be made to offload the specified resource groups, but a failure in
doing so will not prevent the startup of the data service resource.

See r_properties(5) for a complete description of the standard resource properties.

Monitor_retry_count
Type integer; defaults to 4. This property controls fault-monitor restarts. The
property indicates the number of times that the process monitor facility (PMF)
restarts the fault monitor. The property corresponds to the -n option passed to the
pmfadm(1M) command. The RGM counts the number of restarts in a specified time
window (see the property Monitor_retry_interval). Note that this property
refers to the restarts of the fault monitor itself, not the SUNW.RGOffload resource.
You can modify the value for this property at any time.

Monitor_retry_interval
Type integer; defaults to 2. This property indicates the time window in minutes
during which the RGM counts fault-monitor failures. The property corresponds to
the -t option passed to the pmfadm(1M) command. If the number of times that the
fault monitor fails exceeds the value of the extension property

RGOffload(5)

NAME

DESCRIPTION

Extension
Properties

366 Sun Cluster Reference Manual for Solaris OS • Last Revised 1 Apr 2002

Monitor_retry_count, the PMF does not restart the fault monitor. You can
modify the value for this property at any time.

rg_to_offload
Type string array, specified as a comma-separated list of resource groups. No
default exists for this field. You must provide the value when creating the resource.
This property indicates the list of resource groups to be offloaded. All resource
groups in this property must have Desired_primaries set to 0. rg_to_offload
should not contain the resource group in which the RGOffload resource is being
configured. rg_to_offload should also not contain resource groups dependent
upon each other. For example, if resource group RG-B depends on resource group
RG-A, then both, RG-A and RG-B should not be configured in this extension
property. SUNW.RGOffload resource type does not check for dependencies among
resource groups in the rg_to_offload extension property. You can modify the
value of this property at any time.

continue_to_offload
Type boolean; defaults to TRUE. This property indicates whether to continue
offloading the next resource group in the list specified in the rg_to_offload
property in case of error in offloading any resource group. You can modify the
value of this property at any time.

max_offload_retry
Type integer; defaults to 15. This property indicates the number of attempts during
the startup of RGOffload resource to offload a resource group specified in the
rg_to_offload property if there is a failure due to cluster or resource group
reconfiguration. This value applies to all resource groups in the rg_to_offload
property. When the value of this property is greater than 0, successive attempts to
offload the same resource group would be made after approximately 10 second
intervals. You can modify the value of this property at any time.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWrgofl

pmfadm(1M), scha_resource_get(1HA), scrgadm(1M), scswitch(1M),
scha_cluster_get(3HA), scha_resourcegroup_get(3HA) , attributes(5),
r_properties(5)

Sun Cluster Data Services Installation and Configuration Guide

RGOffload(5)

ATTRIBUTES

SEE ALSO

SC31 5 367

rg_properties – resource group properties

The list below describes the resource group properties that are defined by Sun Cluster.

Note – Resource group property names, such as Auto_start_on_new_cluster and
Desired_primaries, are not case sensitive. You can use any combination of
uppercase and lowercase letters when you specify resource group property names.

Auto_start_on_new_cluster (boolean)
This property controls whether the Resource Group Manager (RGM) starts the
resource group automatically when a new cluster is forming. The default is TRUE.

If set to TRUE, the RGM attempts to start the resource group automatically to
achieve Desired_primaries when all the nodes of the cluster are simultaneously
rebooted.

If set to FALSE, the resource group does not start automatically when the cluster is
rebooted. The resource group remains offline until the first time that the resource
group is manually switched online by using scswitch(1M) or the equivalent
graphical user interface command. After that, the resource group resumes normal
failover behavior.

Default TRUE

Tunable Any time

Desired_primaries (integer)
The desired number of nodes that the group can run on simultaneously.

The default is 1. If the RG_mode property is Failover, the value of this property
must be no greater than 1. If the RG_mode property is Scalable, a value greater
than 1 is allowed.

Default 1, see above

Tunable Any time

Failback (boolean)
A Boolean value that indicates whether to recalculate the set of nodes where the
group is online when the cluster membership changes. A recalculation can cause
the RGM to bring the group offline on less preferred nodes and online on more
preferred nodes.

Default FALSE

Tunable Any time

Global_resources_used (string_array)
Indicates whether cluster file systems are used by any resource in this resource
group. Legal values that the administrator can specify are an asterisk (*) to indicate
all global resources, and the empty string (“”) to indicate no global resources.

Default All global resources

Tunable Any time

rg_properties(5)

NAME

DESCRIPTION

Resource Group
Properties and

Descriptions

368 Sun Cluster Reference Manual for Solaris OS • Last Revised 10 Jan 2005

Implicit_network_dependencies (boolean)
A Boolean value that indicates, when TRUE, that the RGM should enforce implicit
strong dependencies of non-network-address resources on network-address
resources within the group. This means that the RGM starts all network-address
resources before all other resources and stops network address resources after all
other resources within the group. Network-address resources include the logical
host name and shared address resource types.

In a scalable resource group, this property has no effect because a scalable resource
group does not contain any network-address resources.

Default TRUE

Tunable Any time

Maximum_primaries (integer)
The maximum number of nodes where the group might be online at once.

If the RG_mode property is Failover, the value of this property must be no
greater than 1. If the RG_mode property is Scalable, a value greater than 1 is
allowed.

Default 1, see above

Tunable Any time

Nodelist (string_array)
A list of cluster nodes where the group can be brought online in order of preference.
These nodes are known as the potential primaries or masters of the resource group.

Default The list of all cluster nodes in arbitrary order

Tunable Any time

Pathprefix (string)
A directory in the cluster file system in which resources in the group can write
essential administrative files. Some resources might require this property. Make
Pathprefix unique for each resource group.

Default The empty string

Tunable Any time

Pingpong_interval (integer)
A non-negative integer value (in seconds) used by the RGM to determine where to
bring the resource group online in the event of a reconfiguration or as the result of
an scha_control giveover command or function being executed.

In the event of a reconfiguration, if the resource group fails more than once to come
online within the past Pingpong_interval seconds on a particular node
(because the resource’s Start or Prenet_start method exited nonzero or timed
out), that node is considered ineligible to host the resource group and the RGM
looks for another master.

rg_properties(5)

SC31 5 369

If a scha_control(1HA) command or scha_control(3HA) giveover is executed
on a given node by a resource, thereby causing its resource group to fail over to
another node, the first node (on which scha_control was invoked) cannot be the
destination of another scha_control giveover by the same resource until
Pingpong_interval seconds have elapsed.

Default 3600 (one hour)

Tunable Any time

Resource_list (string_array)
The list of resources that are contained in the group. The administrator does not set
this property directly. Rather, the RGM updates this property as the administrator
adds or removes resources from the resource group.

Default No default

Tunable Never

RG_affinities (string)
The RGM is to try to locate a resource group on a node that is a current master of
another given resource group (positive affinity), or to locate a resource group on a
node that is not a current master of a given resource group (negative affinity).

You can set RG_affinities to the following strings:

� ++, or strong positive affinity
� +, or weak positive affinity
� -, or weak negative affinity
� --, or strong negative affinity
� +++, or strong positive affinity with failover delegation For example,
RG_affinities=+RG2,--RG3 indicates that this resource group has a weak
positive affinity for RG2 and a strong negative affinity for RG3.

Using RG_affinities is described in “Administering Data Service Resources” in
Sun Cluster Data Services Planning and Administration Guide for Solaris OS.

Default The empty string

Tunable Any time

RG_dependencies (string_array)
Optional list of resource groups that indicate a preferred ordering for bringing
other groups online or offline on the same node. The graph of all strong
RG_affinities (positive and negative) together with RG_dependencies is not
allowed to contain cycles.

For example, suppose that resource group RG2 is listed in the RG_dependencies
list of resource group RG1. In other words, suppose that RG1 has a resource group
dependency on RG2. The following list summarizes the effects of this resource
group dependency:

rg_properties(5)

370 Sun Cluster Reference Manual for Solaris OS • Last Revised 10 Jan 2005

� When a node joins the cluster, Boot methods on that node are not run on
resources in RG1 until all Boot methods on that node have completed on
resources in RG2.

� If RG1 and RG2 are both in the PENDING_ONLINE state on the same node at the
same time, the starting methods (Prenet_start or Start) are not run on any
resources in RG1 until all the resources in RG2 have completed their starting
methods.

� If RG1 and RG2 are both in the PENDING_OFFLINE state on the same node at
the same time, the stopping methods (Stop or Postnet_stop) are not run on
any resources in RG2 until all the resources in RG1 have completed their
stopping methods.

� An attempt to switch the primaries of RG1 or RG2 fails if switching the
primaries would leave RG1 online on any node and RG2 offline on all nodes.
scswitch(1M) and scsetup(1M) contain more information.

� Setting the Desired_primaries property to a value that is greater than zero
on RG1 is not permitted if Desired_primaries is set to zero on RG2.

� Setting the Auto_start_on_new_cluster property to TRUE on RG1 is not
permitted if Auto_start_on_new_cluster is set to FALSE on RG2.

Default The empty list

Tunable Any time

RG_description (string)
A brief description of the resource group.

Default The empty string

Tunable Any time

RG_is_frozen (boolean)
A Boolean value that indicates whether a global device on which a resource group
depends is being switched over. If this property is set to TRUE, the global device is
being switched over. If this property is set to FALSE, no global device is being
switched over. A resource group depends on global devices as indicated by its
Global_resources_used property.

You do not set the RG_is_frozen property directly. The RGM updates the
RG_is_frozen property when the status of the global devices changes.

Default No default

Tunable Never

RG_mode (enum)
Indicates whether the resource group is a failover or a scalable group. If the value is
Failover, the RGM sets the Maximum_primaries property of the group to 1 and
restricts the resource group to being mastered by a single node.

rg_properties(5)

SC31 5 371

If the value of this property is Scalable, the RGM allows the
Maximum_primaries property to be set to a value that is greater than 1. As a
result, the group can be mastered by multiple nodes simultaneously. The RGM does
not allow a resource whose Failover property is TRUE to be added to a resource
group whose RG_mode is Scalable.

If Maximum_primaries is 1, the default is Failover. If Maximum_primaries is
greater than 1, the default is Scalable.

Default Depends on the value of Maximum_primaries

Tunable At creation

RG_name (string)
The name of the resource group. This property is required and must be unique
within the cluster.

Default No default

Tunable At creation

RG_project_name (string)
The Solaris project name (see projects(1)) that is associated with the resource
group. Use this property to apply Solaris resource management features, such as
CPU shares and resource pools, to cluster data services. When the RGM brings
resource groups online, it launches the related processes under this project name for
resources that do not have the Resource_project_name property set (see
r_properties(5)). The specified project name must exist in the projects database
(see projects(1) and System Administration Guide: Resource Management and
Network Services).

This property is only supported starting in Solaris 9.

Note – Changes to this property take affect the next time that the resource is started.

Default The text string “default”

Tunable Any time

Valid value Any valid Solaris project name

RG_state on each cluster node (enum)
Set by the RGM to UNMANAGED, ONLINE, OFFLINE, PENDING_ONLINE,
PENDING_OFFLINE, ERROR_STOP_FAILED, ONLINE_FAULTED, or
PENDING_ONLINE_BLOCKED to describe the state of the group on each cluster
node.

You cannot configure this property. However, you can indirectly set this property
by invoking scswitch(1M), or by using the equivalent scsetup(1M) or SunPlex
Manager commands. A group can exist in an UNMANAGED state when that group is
not under the control of the RGM.

The following descriptions summarize each state.

rg_properties(5)

372 Sun Cluster Reference Manual for Solaris OS • Last Revised 10 Jan 2005

Note – States apply to individual nodes only, except the UNMANAGED state, which
applies across all nodes. For example, a resource group might be OFFLINE on node
A, but PENDING_ONLINE on node B.

UNMANAGED The initial state of a newly created
resource group, or the state of a
previously managed resource group.
Either Init methods have not yet been
run on resources in the group, or Fini
methods have been run on resources in
the group.

The group is not managed by the RGM.

ONLINE The resource group has been started on
the node. In other words, the starting
methods (Prenet_start, Start, and
Monitor_start, as applicable to each
resource) have executed successfully on
all enabled resources in the group.

OFFLINE The resource group has been stopped on
the node. In other words, the stopping
methods (Monitor_stop, Stop, and
Postnet_stop, as applicable to each
resource) have executed successfully on
all enabled resources in the group. This
state also applies before a resource group
has started for the first time on the node.

PENDING_ONLINE The resource group is starting on the
node. The starting methods
(Prenet_start, Start, and
Monitor_start, as applicable to each
resource) are being executed on enabled
resources in the group.

PENDING_OFFLINE The resource group is stopping on the
node. The stopping methods
(Monitor_stop, Stop, and
Postnet_stop, as applicable to each
resource) are being executed on enabled
resources in the group.

ERROR_STOP_FAILED One or more resources within the
resource group failed to stop successfully
and are in Stop_failed state. Other
resources in the group might remain

rg_properties(5)

SC31 5 373

online or offline. This resource group is
not permitted to start on any node until
the ERROR_STOP_FAILED state is
cleared.

You must use an administrative
command, such as scswitch -c, to
manually kill the Stop_failed resource
and reset its state to OFFLINE.

ONLINE_FAULTED The resource group was
PENDING_ONLINE and has finished
starting on this node. However, one or
more resources ended up in
Start_failed state or with Faulted
status.

PENDING_ONLINE_BLOCKED The resource group failed to start fully
because one or more resources within
that resource group have an unsatisfied
strong resource dependency on a
resource in a different resource group.
Such resources remain OFFLINE. When
the resource dependencies are satisfied,
the resource group automatically moves
back to PENDING_ONLINE state.

Default No default

Tunable Never

RG_system (boolean)
If the RG_system property is TRUE for a resource group, particular operations are
restricted for the resource group and for the resources that the resource group
contains. This restriction is intended to help prevent accidental modification or
deletion of critical resource groups and resources. Only scrgadm(1M) and
scswitch(1M) commands are affected by this property. Operations for
scha_control(1HA) and scha_control(3HA) are not affected.

Before performing a restricted operation on a resource group (or a resource group’s
resources), you must first set the RG_system property of the resource group to
FALSE. Use care when you modify or delete a resource group that supports cluster
services, or when you modify or delete the resources that such a resource group
contains.

The following table shows the operations that are restricted for a resource group
when RG_system is set to TRUE.

rg_properties(5)

374 Sun Cluster Reference Manual for Solaris OS • Last Revised 10 Jan 2005

Operation Example

Delete a resource group scrgadm -r -g RG1

Edit a resource group property
(except for RG_system)

scrgadm -c -t RG1 -y nodelist=...

Add a resource to a resource
group

scrgadm -a -j R1 -g RG1

Delete a resource from a
resource group

scrgadm -r -j R1 -g RG1

Edit a property of a resource
that belongs to a resource group

scrgadm -c -j R1

Switch a resource group offline scswitch -F -g RG1

Manage a resource group scswitch -o -g RG1

Unmanage a resource group scswitch -u -g RG1

Enable a resource scswitch -e -j R1

Enable monitoring for a
resource

scswitch -e -M -j R1

Disable a resource scswitch -n -j R1

Disable monitoring for a
resource

scswitch -n -M -j R1

If the RG_system property is TRUE for a resource group, the only property of the
resource group that you can edit is the RG_system property itself. In other words,
editing the RG_system property is never restricted.

Default FALSE

Tunable Any time

projects(1), scha_control(1HA), scrgadm(1M), scswitch(1M),
scha_control(3HA), property_attributes(5), r_properties(5),
rt_properties(5)

System Administration Guide: Resource Management and Network Services

rg_properties(5)

SEE ALSO

SC31 5 375

r_properties – resource properties

The list below describes the resource properties defined by Sun Cluster. These
descriptions have been developed for data service developers. For more information
about a particular data service, see that data service’s man page.

Note – Scalable, as used in this man page, specifically describes a resource that uses the
network load balancing features of Sun Cluster. Such a resource also uses the
properties Affinity_timeout, Load_balancing_policy,
Load_balancing_weights, Port_list, UDP_affinity, and Weak_affinity.
Some resource types can run on multiple nodes without using network load
balancing. The Scalable resource for such a resource is set to False, and such a
resource does not use the preceding additional properties.

Required The cluster administrator must specify a value when
creating a resource with an administrative utility.

Optional If the cluster administrator does not specify a value
when creating a resource group, the system supplies a
default value.

Conditional The RGM creates the property only if the property is
declared in the RTR file. Otherwise, the property does
not exist and is not available to the cluster
administrator. A conditional property declared in the
RTR file is optional or required, depending on whether
a default value is specified in the RTR file. For details,
see the description of each conditional property.

Query-only Cannot be set directly by an administrative tool.

All properties that are designated as tunable can be edited by the cluster administrator
by using the command:

scrgadm -c -j resource -y property=new value

Note – Property names, such as Affinity_timeout and Cheap_probe_interval,
are not case sensitive. You can use any combination of uppercase and lowercase letters
when you specify property names.

Affinity_timeout (integer)
Length of time, in seconds, during which connections from a given client IP address
for any service in the resource are sent to the same server node. If you set this
property to -1, all connections are sent to the same node. If you set this property to
0, all open connections are sent to the same node. If you set this property to n, for n
number of seconds after the last connection has closed, all new connections are sent
to the same node as the last connection.

In all cases, if the server node leaves the cluster as a result of a failure, a new server
node is selected.

r_properties(5)

NAME

DESCRIPTION

Resource Property
Values

Resource
Properties and

Descriptions

376 Sun Cluster Reference Manual for Solaris OS • Last Revised 15 Mar 2005

This property is relevant only when Load_balancing_policy is either
Lb_sticky or Lb_sticky_wild. In addition, Weak_affinity must be set to
False (the default value).

This property is used only for scalable services.

Category Conditional/Optional

Default 0

Tunable Anytime

Cheap_probe_interval (integer)
The number of seconds between invocations of a quick fault probe of the resource.
This property is only created by the RGM and available to the cluster administrator
if this property is declared in the RTR file.

This property is optional if a default value is specified in the RTR file. If the
Tunable attribute is not specified in the resource type file, the Tunable value for
the property is When_disabled.

Category Conditional

Default See above

Tunable When disabled

Extension properties
The developer declares the resource type properties in the RTR file. The RTR file
defines the initial configuration of the data service at the time the cluster
administrator registers the data service with Sun Cluster. For information about the
individual attributes you can set for extension properties, see
property_attributes(5).

Category Conditional

Default No default

Tunable Depends on the specific property

Failover_mode (enum)
Modifies the recovery actions that the RGM takes when a resource fails to start or to
stop successfully, or when a resource monitor finds a resource to be unhealthy and
consequently requests a restart or failover.

NONE, SOFT, or HARD (method failures)

These settings affect only failover behavior when a start or stop method
(Prenet_start, Start, Monitor_stop, Stop, Postnet_stop) fails. Once the
resource has started successfully, NONE, SOFT, and HARD have no effect on
subsequent resource restart or giveover behavior that the resource monitor initiates
with the scha_control command or the scha_control() function. See the
scha_control(1HA) and the scha_control(3HA) man pages. NONE indicates

r_properties(5)

SC31 5 377

that the RGM is not to take any recovery action when one of the previously listed
start or stop methods fails. SOFT or HARD indicates that if a Start or
Prenet_start method fails, the RGM is to relocate the resource’s group to a
different node. For Start or Prenet_start failures, SOFT and HARD are the
same.

For failure of a stop method (Monitor_stop, Stop, or Postnet_stop), SOFT is
the same as NONE. If Failover_mode is set to HARD when one of these stop
methods fails, the RGM reboots the node to force the resource group offline. The
RGM might then attempt to start the group on another node.

RESTART_ONLY or LOG_ONLY

Unlike NONE, SOFT, and HARD, which affect failover behavior when a start or stop
method fails, RESTART_ONLY and LOG_ONLY affect all failover behavior. Failover
behavior includes monitor-initiated (scha_control) restarts of resources and
resource groups, and giveovers that are initiated by the resource monitor
(scha_control). RESTART_ONLY indicates that the monitor can run
scha_control to restart a resource or a resource group. The RGM allows
Retry_count restarts within Retry_interval. If Retry_count is exceeded, no
further restarts are permitted. If Failover_mode is set to LOG_ONLY, no resource
restarts or giveovers are permitted. Setting Failover_mode to LOG_ONLY is the
same as setting Failover_mode to RESTART_ONLY with Retry_count set to
zero.

RESTART_ONLY or LOG_ONLY (method failures)

If a Prenet_start, Start, Monitor_stop, Stop, or Postnet_stop method
fails, RESTART_ONLY and LOG_ONLY are the same as NONE. That is, the node is
neither failed over nor rebooted.

Effect of Failover_mode settings on a data service

The effect that each setting for Failover_mode has on a data service depends on
whether the data service is monitored or unmonitored and whether it is based on
the Data Services Development Library (DSDL).

� A data service is monitored if it implements a Monitor_start method and
monitoring of the resource is enabled. The RGM starts a resource monitor by
executing the Monitor_start method after starting the resource itself. The
resource monitor probes the health of the resource. If the probes fail, the
resource monitor might request a restart or a failover by calling the
scha_control() function. For DSDL-based resources, probes might reveal
partial failure (degradation) or a complete failure of the data service. Repeated
partial failures accumulate to a complete failure.

� A data service is unmonitored if it does not provide a Monitor_start method
or monitoring of the resource has been disabled.

� DSDL-based data services include those that are developed with Agent Builder,
through the GDS, or by using the DSDL directly. Some data services, HA Oracle
for example, were developed without using the DSDL.

r_properties(5)

378 Sun Cluster Reference Manual for Solaris OS • Last Revised 15 Mar 2005

NONE, SOFT, or HARD (probe failures)

If you set Failover_mode to NONE, SOFT, or HARD and the data service is a
monitored DSDL-based service, and if the probe fails completely, the monitor calls
the scha_control() function to request a restart of the resource. If probes
continue to fail, the resource is restarted up to a maximum of Retry_count
number of times within Retry_interval. If the probes fail again after the
Retry_count number of restarts is reached, the monitor requests a failover of the
resource’s group to another node.

If you set Failover_mode to NONE, SOFT, or HARD and the data service is an
unmonitored DSDL-based service, the only failure that is detected is the death of
the resource’s process tree. If the resource’s process tree dies, the resource is
restarted.

If the data service is a not a DSDL-based service, the restart or failover behavior
depends on how the resource monitor is coded. For example, the Oracle resource
monitor recovers by restarting the resource or the resource group, or by failing over
the resource group.

RESTART_ONLY (probe failures)

If you set Failover_mode to RESTART_ONLY and the data service is a monitored
DSDL-based service, and if the probe fails completely, the resource is restarted
Retry_count times within Retry_interval. However, if Retry_count is
exceeded, the resource monitor exits, sets the resource status to FAULTED, and
generates the status message “Application faulted, but not restarted. Probe
quitting.” At this point, although monitoring is still enabled, the resource is
effectively unmonitored until it is repaired and restarted by the cluster
administrator.

If you set Failover_mode to RESTART_ONLY and the data service is an
unmonitored DSDL-based service, and if the process tree dies, the resource is not
restarted.

If a monitored data service is not DSDL-based, the recovery behavior depends on
how the resource monitor is coded. If you set Failover_mode to RESTART_ONLY,
the resource or resource group can be restarted by a call to the scha_control()
function Retry_count times within Retry_interval. If the resource monitor
exceeds Retry_count, the attempt to restart fails. If the monitor calls the
scha_control() function to request a failover, that request fails as well.

LOG_ONLY (probe failures)

If you set Failover_mode to LOG_ONLY for any data service, all
scha_control() requests either to restart the resource or resource group or to fail
over the group are precluded. If the data service is DSDL-based, a message is
logged when a probe completely fails, but the resource is not restarted. If a probe
fails completely more than Retry_count times within Retry_interval, the
resource monitor exits, sets the resource status to FAULTED, and generates the

r_properties(5)

SC31 5 379

status message “Application faulted, but not restarted. Probe quitting.” At this
point, although monitoring is still enabled, the resource is effectively unmonitored
until it is repaired and restarted by the cluster administrator.

If you set Failover_mode to LOG_ONLY and the data service is an unmonitored
DSDL-based service, and if the process tree dies, a message is logged but the
resource is not restarted.

If a monitored data service is not DSDL-based, the recovery behavior depends on
how the resource monitor is coded. If you set Failover_mode to LOG_ONLY, all
scha_control() requests either to restart the resource or resource group or to fail
over the group fail.

Category Optional

Default NONE

Tunable Anytime

Load_balancing_policy (string)
A string that defines the load-balancing policy in use. This property is used only for
scalable services. The RGM automatically creates this property if the Scalable
property is declared in the RTR file.

Load_balancing_policy can take the following values:

� Lb_weighted (the default). The load is distributed among various nodes
according to the weights set in the Load_balancing_weights property.

� Lb_sticky. The set of ports is known at the time the application resources are
configured. A given client (identified by the client’s IP address) of the scalable
service is always sent to the same node of the cluster.

� Lb_sticky_wild. The port numbers are not known in advance but are
dynamically assigned. A given client (identified by the client’s IP address) that
connects to an IP address of a wildcard sticky service is always sent to the same
cluster node regardless of the port number to which that IP address is coming.

Category Conditional/Optional

Default Lb_weighted

Tunable At creation

Load_balancing_weights (string_array)
For scalable resources only. The RGM automatically creates this property if the
Scalable property is declared in the RTR file. The format is
weight@node,weight@node..., where weight is an integer that reflects the relative
portion of load distributed to the specified node. The fraction of load distributed to
a node is the weight for this node divided by the sum of all weights. For example,
1@1,3@2 specifies that node 1 receives 1/4 of the load and node 2 receives 3/4. The
empty string (“”), the default, sets a uniform distribution. Any node that is not
assigned an explicit weight receives a default weight of 1. You can specify weight 0
to assign no load to a node.

r_properties(5)

380 Sun Cluster Reference Manual for Solaris OS • Last Revised 15 Mar 2005

If the Tunable attribute is not specified in the resource type file, the Tunable
value for the property is Anytime. Changing this property revises the distribution
for new connections only.

Category Conditional/Optional

Default Null

Tunable Anytime

method_timeout for each callback method (integer)
A time lapse, in seconds, after which the RGM concludes that an invocation of the
method has failed.

Note – You cannot specify a maximum value for a method timeout (using the Max
attribute). Likewise, you cannot specify a minimum value of zero (Min=0).

Category Conditional/Optional

Default 3,600 (one hour) if the method itself is declared in the RTR file.

Tunable Anytime

Monitored_switch (enum)
You cannot directly set this property. Rather, it is set to Enabled or Disabled by
the RGM if the cluster administrator enables or disables the monitor with an
administrative utility. If disabled, the Monitor_start method will not be called
on the resource until monitoring is enabled again. If the resource does not have a
monitor callback method, this property evaluates to Disabled.

Category Query-only

Default Enabled if the resource type has monitoring methods; disabled
otherwise.

Tunable See description

Network_resources_used (string_array)
A list of logical host name or shared address network resources used by the
resource. For scalable services, this property refers to shared address resources that
usually are configured in a separate resource group. For failover services, this
property refers to logical host name or shared address resources that might exist in
the same resource group or in a different group. The RGM automatically creates
this property if the Scalable property is declared in the RTR file. If the Scalable
property is not declared in the RTR file, Network_resources_used is
unavailable unless it is explicitly declared in the RTR file.

If the Tunable attribute is not specified in the RTR file, the Tunable value for the
property is At_creation.

Category Conditional/Required

Default No default

Tunable At creation

r_properties(5)

SC31 5 381

Num_resource_restarts on each cluster node (integer)
You cannot directly set this property, which is set by the RGM to the number of
scha_control Resource_restart or Resource_is_restarted calls that
have been made for this resource on this node within the past n seconds, where n is
the value of the Retry_interval property of the resource. The resource restart
counter is reset to zero by the RGM whenever a scha_control giveover is
executed by this resource, whether the giveover attempt succeeds or fails.
scha_control is described in more detail in scha_control(1HA) or
scha_control(3HA).

If a resource type does not declare the Retry_interval property, the
Num_resource_restarts property is not available for resources of that type.

Category Query-only

Default No default

Tunable See description

Num_rg_restarts on each cluster node (integer)
You cannot directly set this property, which is set by the RGM to the number of
scha_control Restart calls that have been made by this resource for the
resource group to which it belongs on this node within the past n seconds, where n
is the value of the Retry_interval property of the resource. If a resource type
does not declare the Retry_interval property, the Num_rg_restarts property
is not available for resources of that type.

Category Query-only

Default No default

Tunable See description

On_off_switch (enum)
You cannot directly set this property. Rather, it is set to Enabled or Disabled by
the RGM if the cluster administrator enables or disables the resource with an
administrative utility. If disabled, a resource has no callbacks invoked until it is
enabled again.

Category Query-only

Default Disabled

Tunable See description

Port_list (string_array)
A comma-separated list of port numbers on which the server is listening.
Appended to each port number is a slash (/) followed by the protocol that is being
used by that port, for example, Port_list=80/tcp or
Port_list=80/tcp6,40/udp6.

Possible protocols that you can specify include tcp, for only TCP IPv4, tcp6, for
both TCP IPv4 and TCP IPv6, udp, for only UDP IPv4, or udp6, for both UDP IPv4
and UDP IPv6.

r_properties(5)

382 Sun Cluster Reference Manual for Solaris OS • Last Revised 15 Mar 2005

If the Scalable property is declared in the RTR file, the RGM automatically
creates Port_list. Otherwise, this property is unavailable unless it is explicitly
declared in the RTR file.

Setting up this property for Apache is described in the Sun Cluster Data Service for
Apache Guide for Solaris OS.

Category Conditional/Required

Default No default

Tunable Anytime

R_description (string)
A brief description of the resource.

Category Optional

Default The empty string

Tunable Anytime

Resource_dependencies (string_array)
A list of resources in the same or in different groups upon which this resource has a
strong dependency. This resource cannot be started if the start of any resource in
the list fails. If this resource and one of the resources in the list start at the same
time, the RGM waits until the resource in the list starts before the RGM starts this
resource. If the resource in this resource’s Resource_dependencies list does not
start (for example, if the resource group for the resource in the list remains offline or
if the resource in the list is in a Start_failed state), this resource also remains
offline. If this resource remains offline because of a dependency on a resource in a
different resource group that fails to start, this resource’s group enters a
Pending_online_blocked state.

If this resource is brought offline at the same time as those in the list, this resource
stops before those in the list. However, if this resource remains online or fails to
stop, a resource in the list that is in a different resource group stops anyway.
Resources in the list cannot be disabled unless this resource is disabled first.

By default in a resource group, application resources have an implicit strong
resource dependency on network address resources.
Implicit_network_dependencies in rg_properties(5) contains more
information.

Within a resource group, Prenet_start methods are run in dependency order
before Start methods. Postnet_stop methods are run in dependency order after
Stop methods. In different resource groups, the dependent resource waits for the
depended-on resource to finish Prenet_start and Start before it runs
Prenet_start. The depended-on resource waits for the dependent resource to
finish Stop and Postnet_stop before it runs Stop.

Category Optional

Default The empty list

r_properties(5)

SC31 5 383

Tunable Anytime

Resource_dependencies_restart (string_array)
A list of resources in the same or in different groups upon which this resource has a
restart dependency. This resource cannot be started if the start of any resource in
the list fails. If this resource and one of the resources in the list start at the same
time, the RGM waits until the resource in the list starts before the RGM starts this
resource.

If the resource in this resource’s Resource_dependencies_restart list does
not start (for example, if the resource group for the resource in the list remains
offline or if the resource in the list is in a Start_failed state), this resource
remains offline. If this resource remains offline because of a dependency on a
resource in a different resource group that fails to start, this resource’s group enters
a Pending_online_blocked state.

If this resource is brought offline at the same time as those in the list, this resource
stops before those in the list. However, if this resource remains online or fails to
stop, a resource in the list that is in a different resource group stops anyway.
Resources in the list cannot be disabled unless this resource is disabled first.

This property works just as Resource_dependencies does, except that, if any
resource in the restart dependency list is restarted, this resource is restarted. The
restart of this resource occurs after the resource in the list comes back online.

Within a resource group, Prenet_start methods are run in dependency order
before Start methods. Postnet_stop methods are run in dependency order after
Stop methods. In different resource groups, the dependent resource waits for the
depended-on resource to finish Prenet_start and Start before it runs
Prenet_start. The depended-on resource waits for the dependent resource to
finish Stop and Postnet_stop before it runs Stop.

Category Optional

Default The empty list

Tunable Anytime

Resource_dependencies_weak (string_array)
A list of resources in the same or in different groups upon which this resource has a
weak dependency. A weak dependency determines the order of method calls within
the group. The RGM calls the Start methods of the resources in this list before the
Start method of this resource. The RGM calls the Stop methods of this resource
before the Stop methods of those in the list. The resource can still start if those in
the list fail to start or remain offline.

If this resource and a resource in its Resource_dependencies_weak list start
concurrently, the RGM waits until the resource in the list starts before the RGM
starts this resource. If the resource in the list does not start (for example, if the
resource group for the resource in the list remains offline or the resource in the list
is in a Start_failed state), this resource starts. This resource’s resource group

r_properties(5)

384 Sun Cluster Reference Manual for Solaris OS • Last Revised 15 Mar 2005

might enter a Pending_online_blocked state temporarily as resources in the
this resource’s Resource_dependencies_weak list start. When all resources in
the list have started or failed to start, this resource starts and its group re-enters the
Pending_online state.

If this resource is brought offline at the same time as those in the list, this resource
stops before those in the list. However, if this resource remains online or fails to
stop, a resource in the list that is in a different resource group stops anyway.
Resources in the list cannot be disabled unless this resource is disabled first.

Within a resource group, Prenet_start methods are run in dependency order
before Start methods. Postnet_stop methods are run in dependency order after
Stop methods. In different resource groups, the dependent resource waits for the
depended-on resource to finish Prenet_start and Start before it runs
Prenet_start. The depended-on resource waits for the dependent resource to
finish Stop and Postnet_stop before it runs Stop.

Category Optional

Default The empty list

Tunable Anytime

Resource_name (string)
The name of the resource instance. Must be unique within the cluster configuration
and cannot be changed after a resource has been created.

Category Required

Default No default

Tunable Never

Resource_project_name (string)
The Solaris project name (see projects(1)) associated with the resource. Use this
property to apply Solaris resource management features such as CPU shares and
resource pools to cluster data services. When the RGM brings resources online, it
launches the related processes under this project name. If this property is not
specified, the project name will be taken from the RG_project_name property of
the resource group that contains the resource (see rg_properties(5)). If neither
property is specified, the RGM uses the predefined project name “default”. The
specified project name must exist in the projects database(see projects(1) and
System Administration Guide: Resource Management and Network Services).

This property is only supported starting in Solaris 9.

Note – Changes to this property take affect the next time the resource is started.

Category Optional

Default Null

Tunable Anytime

Valid value Any valid Solaris project name, or Null

r_properties(5)

SC31 5 385

Resource_state on each cluster node (enum)
The RGM-determined state of the resource on each cluster node. Possible states
include: Online, Offline, Start_failed, Stop_failed, Monitor_failed,
Online_not_monitored, Starting, and Stopping.

Online The starting methods (Prenet_start,
Start, and Monitor_start) have
executed successfully on the resource on
this node.

Offline The resource has not yet started for the
first time on this node, or the stopping
methods (Monitor_stop, Stop, and
Postnet_stop, as applicable to the
particular resource) have executed
successfully on the resource on this node.

Start_failed A Prenet_start or Start method
failed on the resource on this node.
Failed means that the method exited
with a nonzero exit status or timed out.
The service that is represented by the
resource might or might not actually
have started on this node.

Stop_failed A Monitor_stop, Stop, or
Postnet_stop method failed on the
resource on this node. Failed means
that the method exited with a nonzero
exit status or timed out. The service that
is represented by the resource might or
might not actually have stopped on this
node.

When a resource enters this state, the
resource group state becomes
Error_stop_failed and requires you
to intervene. Error_stop_failed is
described in more detail in
rg_properties(5).

Monitor_failed The resource successfully executed its
Prenet_start or Start methods (as
applicable to the specific resource type).
However, the resources’
Monitor_start method exited with a
nonzero exit status or timed out. The
resource monitor might or might not
actually have started on this node.

r_properties(5)

386 Sun Cluster Reference Manual for Solaris OS • Last Revised 15 Mar 2005

Online_not_monitored The resource successfully executed its
Prenet_start or Start methods (as
applicable to the specific resource type).
The Monitor_start method has not
yet been executed on the resource. A
resource that is unmonitored (that is, for
which there is no Monitor_start
method, or for which monitoring has
been disabled) remains in this state when
the resource group goes to Online state.

Starting The resource is running the
Prenet_start or Start method in an
attempt to go online.

Stopping The resource is running the Start or
Postnet_stop method in an attempt to
go offline.

You cannot configure this property.

Category Query-only

Default No default

Tunable Never

Retry_count (integer)
The number of times a monitor attempts to restart a resource if it fails. If the
Retry_count is exceeded, depending on the particular data service and the
setting of the Failover_mode property, the monitor might do one of the
following:

� Allow the resource group to remain on the current primary, even though the
resource is in a faulted state.

� Request a failover of the resource group onto a different node.

This property is created by the RGM and is made available to the cluster
administrator only if this property is declared in the RTR file. This property is
optional if a default value is specified in the RTR file.

If the Tunable attribute is not specified in the resource type file, the Tunable
value for the property is When_disabled.

Note – If you specify a negative value for this property, the monitor attempts to
restart the resource an unlimited number of times.

Category Conditional

Default See above

Tunable When disabled

r_properties(5)

SC31 5 387

Retry_interval (integer)
The number of seconds in which to count attempts to restart a failed resource. The
resource monitor uses this property in conjunction with Retry_count. This
property is created by the RGM and made available to the cluster administrator
only if it is declared in the RTR file. This property is optional if a default value is
specified in the RTR file.

If the Tunable attribute is not specified in the resource type file, the Tunable
value for the property is When_disabled.

Note – If the Retry_interval property is not declared, the call to
scha_resource_get (num_*_restarts) fails with exit 13 (SCHA_ERR_RT).

Category Conditional

Default See above

Tunable When disabled

Scalable (boolean)
Indicates whether the resource is scalable, that is, whether the resource uses the
networking load balancing features of Sun Cluster.

If this property is declared in the RTR file, the RGM automatically creates the
following scalable service properties for resources of that type:
Affinity_timeout, Load_balancing_policy, Load_balancing_weights,
Network_resources_used, Port_list, UDP_affinity, and
Weak_affinity. These properties have their default values unless they are
explicitly declared in the RTR file. The default for Scalable, when it is declared in
the RTR file, is True.

If this property is declared in the RTR file, it is not permitted to be assigned a
Tunable attribute other than At_creation.

If this property is not declared in the RTR file, the resource is not scalable, you
cannot tune this property, and no scalable service properties are set by the RGM.
However, you can explicitly declare the Network_resources_used and
Port_list properties in the RTR file, if you want, because these properties can be
useful in a non-scalable service as well as in a scalable service.

You use this resource property in combination with the Failover resource type
property, as follows:

If Failover is If Scalable is Description

True True Do not specify this illogical combination.

True False Specify this combination for a failover
service.

r_properties(5)

388 Sun Cluster Reference Manual for Solaris OS • Last Revised 15 Mar 2005

If Failover is If Scalable is Description

False True Specify this combination for a scalable
service that uses a SharedAddress
resource for network load balancing.

The Sun Cluster Concepts Guide describes
SharedAddress in more detail.

False False Although it is an unusual combination,
you can use this combination to configure a
multi-master service that does not use
network load balancing.

The description for Failover in rt_properties(5) contains additional
information.

Category Optional

Default See above

Tunable At creation

Status on each cluster node (enum)
Set by the resource monitor. Possible values are: Online, Degraded, Faulted,
Unknown, and Offline. The RGM sets the value to Online when the resource is
started, if it is not already set by the Start (or Prenet_start) method, to
Offline when the resource is stopped, if it is not already set by the Stop (or
Postnet_stop) method.

Category Query-only

Default No default

Tunable Only by using scha_resource_setstatus(1HA)

Status_msg on each cluster node (string)
Set by the resource monitor at the same time as the Status property. The RGM sets
it to the empty string when the resource is brought Offline, if it was not already
set by the Stop (or Postnet_stop) method.

Category Query-only

Default No default

Tunable Only by using scha_resource_setstatus(1HA)

Thorough_probe_interval (integer)
The number of seconds between invocations of a high-overhead fault probe of the
resource. This property is created by the RGM and available to the cluster
administrator only if it is declared in the RTR file. This property is optional if a
default value is specified in the RTR file.

If the Tunable attribute is not specified in the resource type file, the Tunable
value for the property is When_disabled.

r_properties(5)

SC31 5 389

Category Conditional

Default No default

Tunable When disabled

Type (string)
An instance’s resource type.

Category Required

Default No default

Tunable Never

Type_version (string)
Specifies which version of the resource type is currently associated with this
resource. The RGM automatically creates this property, which cannot be declared in
the RTR file. The value of this property is equal to the RT_version property of the
resource’s type. When a resource is created, the Type_version property is not
specified explictly, though it may appear as a suffix of the resource type name.
When a resource is edited, the Type_version may be changed to a new value.

Category See above

Default None

Tunable Its tunability is derived from:

� The current version of the resource type
� The #$upgrade_from directive in the resource type

registration file (see rt_reg(4))

UDP_affinity (boolean)
If true, all UDP traffic from a given client is sent to the same server node that
currently handles all TCP traffic for the client.

This property is relevant only when Load_balancing_policy is either
Lb_sticky or Lb_sticky_wild. In addition, Weak_affinity must be set to
False (the default value).

This property is only used for scalable services.

Category Conditional/Optional

Default False

Tunable When disabled

Weak_affinity (boolean)
If true, enable the weak form of the client affinity. This allows connections from a
given client to be sent to the same server node except when a server listener starts
(for example, due to a fault monitor restart, a resource failover or switchover, or a
node rejoining a cluster after failing) or when load_balancing_weights for the
scalable resource changes due to an administration action.

r_properties(5)

390 Sun Cluster Reference Manual for Solaris OS • Last Revised 15 Mar 2005

Weak affinity provides a low overhead alternative to the default form, both in terms
of memory consumption and processor cycles.

This property is relevant only when Load_balancing_policy is either
Lb_sticky or Lb_sticky_wild.

This property is only used for scalable services.

Category Conditional/Optional

Default False

Tunable When disabled

projects(1), scha_control(1HA), scha_resource_setstatus(1HA),
scrgadm(1M), scha_control(3HA), rt_reg(4), property_attributes(5),
rg_properties(5), rt_properties(5)

Sun Cluster Data Services Developer’s Guide for Solaris OS, System Administration Guide:
Resource Management and Network Services

r_properties(5)

SEE ALSO

SC31 5 391

rt_properties – resource type properties

The following information describes the resource type properties that are defined by
Sun Cluster. These descriptions have been developed for data service developers. For
information about a particular data service, see that data service man page.

Required The property requires an explicit value in the Resource
Type Registration (RTR) file. Otherwise, the object to
which the property belongs cannot be created. A blank
or the empty string is not allowed as a value.

Conditional To exist, the property must be declared in the RTR file.
Otherwise, the RGM does not create the property and
the property is not available to administrative utilities.
A blank or the empty string is allowed. If the property
is declared in the RTR file but no value is specified, the
RGM supplies a default value.

Conditional/Explicit To exist, the property must be declared in the RTR file
with an explicit value. Otherwise, the RGM does not
create the property and the property is not available to
administrative utilities. A blank or the empty string is
not allowed.

Optional The property can be declared in the RTR file. If the
property is not declared in the RTR file, the RGM
creates it and supplies a default value. If the property is
declared in the RTR file but no value is specified, the
RGM supplies the same default value as if the property
were not declared in the RTR file.

Query-only The property cannot be set directly by an
administrative utility. These properties are not set in
the RTR file.

Note – Resource type properties cannot be updated by administrative utilities with the
exception of Installed_nodes and RT_system, which cannot be declared in the
RTR file and must be set by the administrator.

A resource type is defined by a resource type registration file that specifies standard
and extension property values for the resource type.

Note – Resource type property names, such as API_version and Boot, are not case
sensitive. You can use any combination of uppercase and lowercase letters when you
specify property names.

API_version (integer)
The version of the resource management API that is used by this resource type
implementation.

rt_properties(5)

NAME

DESCRIPTION

Resource Type
Property Values

Resource Type
Properties and

Descriptions

392 Sun Cluster Reference Manual for Solaris OS • Last Revised 27 Oct 2004

The following information summarizes the maximum API_version that is
supported by each release of Sun Cluster.

Before and up to 3.1 2

3.1 10/03 3

3.1 4/04 4

3.1 9/04 5

3.1 3/05 6

Declaring a value for API_version that is greater than 2 in the RTR file prevents
that resource type from being installed on a version of Sun Cluster that supports a
lower maximum version. For example, if you declare API_version=5 for a
resource type, that resource type cannot be installed on any version of Sun Cluster
that was released before 3.1 9/04.

Category Optional

Default 2

Tunable Never

Boot (string)
An optional callback method: the path to the program that the RGM invokes on a
node, which joins or rejoins the cluster when a resource of this type is already
managed. This method is expected to initialize resources of this type similar to the
Init method.

Category Conditional/Explicit

Default None

Tunable Never

Failover (boolean)
TRUE indicates that resources of this type cannot be configured in any group that
can be online on multiple nodes at once.

You use this resource type property in combination with the Scalable resource
property, as follows:

If FAILOVER is If Scalable is Description

TRUE TRUE Do not specify this illogical combination.

TRUE FALSE Specify this combination for a failover
service.

rt_properties(5)

SC31 5 393

If FAILOVER is If Scalable is Description

FALSE TRUE Specify this combination for a scalable
service that uses a SharedAddress
resource for network load balancing.

The Sun Cluster Concepts Guide describes
SharedAddress in more detail.

FALSE FALSE Although it is an unusual combination,
you can use this combination to select a
multi-master service that does not use
network load balancing.

The description for Scalable in r_properties(5) and “Key Concepts –
Administration and Application Development” in Sun Cluster Concepts Guide for
Solaris OS contain additional information.

Category Optional

Default FALSE

Tunable Never

Fini (string)
An optional callback method: the path to the program that the RGM invokes when
a resource of this type is removed from RGM management.

Category Conditional/Explicit

Default No default

Tunable Never

Init (string)
An optional callback method: the path to the program that the RGM invokes when
a resource of this type becomes managed by the RGM.

Category Conditional/Explicit

Default No default

Tunable Never

Init_nodes (enum)
The values can be RG_primaries (just the nodes that can master the resource) or
RT_installed_nodes (all nodes on which the resource type is installed).
Indicates the nodes on which the RGM is to call the Init, Fini, Boot, and
Validate methods.

Category Optional

Default RG_primaries

Tunable Never

rt_properties(5)

394 Sun Cluster Reference Manual for Solaris OS • Last Revised 27 Oct 2004

Installed_nodes (string_array)
A list of the cluster node names that the resource type is allowed to be run on. The
RGM automatically creates this property. The cluster administrator can set the
value. You cannot declare this property in the RTR file.

Category Can be configured by the cluster administrator

Default All cluster nodes

Tunable Any time

Is_logical_hostname (boolean)
TRUE indicates that this resource type is some version of the LogicalHostname
resource type that manages failover Internet Protocol (IP) addresses.

Category Query-only

Default No default

Tunable Never

Is_shared_address (boolean)
TRUE indicates that this resource type is some version of the SharedAddress
resource type that manages failover IP (Internet Protocol) addresses.

Category Query-only

Default No default

Tunable Never

Monitor_check (string)
An optional callback method: the path to the program that the RGM invokes before
doing a monitor-requested failover of a resource of this type.

Category Conditional/Explicit

Default No default

Tunable Never

Monitor_start (string)
An optional callback method: the path to the program that the RGM invokes to
start a fault monitor for a resource of this type.

Category Conditional/Explicit

Default No default

Tunable Never

Monitor_stop (string)
A callback method that is required if Monitor_start is set: the path to the
program that the RGM invokes to stop a fault monitor for a resource of this type.

Category Conditional/Explicit

Default No default

rt_properties(5)

SC31 5 395

Tunable Never

Pkglist (string_array)
An optional list of packages that are included in the resource type installation.

Category Conditional/Explicit

Default No default

Tunable Never

Postnet_stop (string)
An optional callback method: the path to the program that the RGM invokes after
calling the Stop method of any network-address resources on which a resource of
this type depends. After the network interfaces are configured down, this method
must perform Stop actions.

Category Conditional/Explicit

Default No default

Tunable Never

Prenet_start (string)
An optional callback method: the path to the program that the RGM invokes before
calling the Start method of any network-address resources on which a resource of
this type depends. This method is expected to perform Start actions that must be
performed before network interfaces are configured.

Category Conditional/Explicit

Default No default

Tunable Never

Resource_list (string_array)
The list of all resources of the resource type. The administrator does not set this
property directly. Rather, the RGM updates this property when the administrator
adds or removes a resource of this type to or from any resource group.

Category Query-only

Default Empty list

Tunable Never

Resource_type (string)
The name of the resource type. To view the names of the currently registered
resource types, use:

scrgadm -p

In Sun Cluster 3.1 and later releases, a resource type name includes the version,
which is mandatory:

vendor_id.resource_type:version

rt_properties(5)

396 Sun Cluster Reference Manual for Solaris OS • Last Revised 27 Oct 2004

The three components of the resource type name are properties that are specified in
the RTR file as Vendor_id, Resource_type, and RT_version. The scrgadm command
inserts the period (.) and colon (:) delimiters. The RT_version suffix of the
resource type name is the same value as the RT_version property. To ensure that
the Vendor_id is unique, the recommended approach is to use the stock symbol for
the company creating the resource type. Resource type names that were created
before Sun Cluster 3.1 continue to use the syntax:

vendor_id.resource_type

Category Required

Default Empty string

Tunable Never

RT_basedir (string)
The directory path that is used to complete relative paths for callback methods. This
path is expected to be set to the installation location for the resource type packages.
The path must be a complete path, that is, the path must start with a forward slash
(/). This property is not required if all the method path names are absolute.

Category Required unless all method path names are absolute

Default No default

Tunable Never

RT_description (string)
A brief description of the resource type.

Category Conditional

Default Empty string

Tunable Never

RT_system (boolean)
If the RT_system property is TRUE for a resource type, you cannot delete the
resource type (scrgadm -r -t resource_type_name). This property is intended to
help prevent accidental deletion of resource types, such as LogicalHostname,
that are used to support the cluster infrastructure. However, you can apply the
RT_system property to any resource type.

To delete a resource type whose RT_system property is set to TRUE, you must first
set the property to FALSE. Use care when you delete a resource type whose
resources support cluster services.

Category Optional

Default FALSE

Tunable Any time

rt_properties(5)

SC31 5 397

RT_version (string)
Starting in Sun Cluster 3.1, a required version string of this resource type
implementation. The RT_version is the suffix component of the full resource type
name. The RT_version property, which was optional in Sun Cluster 3.0, is
mandatory in Sun Cluster 3.1 and later releases.

Category Conditional/Explicit or Required

Default No default

Tunable Never

Single_instance (boolean)
If TRUE, indicates that only one resource of this type can exist in the cluster. The
RGM allows only one resource of this type to run cluster-wide at one time.

Category Optional

Default FALSE

Tunable Never

Start (string)
A callback method: the path to the program that the RGM invokes to start a
resource of this type.

Category Required unless the RTR file declares a Prenet_start method

Default No default

Tunable Never

Stop (string)
A callback method: the path to the program that the RGM invokes to stop a
resource of this type.

Category Required unless the RTR file declares a Postnet_stop method

Default No default

Tunable Never

Update (string)
An optional callback method: the path to the program that the RGM invokes when
properties of a running resource of this type are changed.

Category Conditional/Explicit

Default No default

Tunable Never

Validate (string)
An optional callback method: the path to the program that will be invoked to check
values for properties of resources of this type.

Category Conditional/Explicit

rt_properties(5)

398 Sun Cluster Reference Manual for Solaris OS • Last Revised 27 Oct 2004

Default No default

Tunable Never

Vendor_ID (string)
See the Resource_type property.

Category Conditional

Default No default

Tunable Never

scrgadm(1M), rt_reg(4), property_attributes(5), r_properties(5),
rg_properties(5)

rt_properties(5)

SEE ALSO

SC31 5 399

scalable_service – scalable resource types

A scalable data service is one that takes advantage of the Sun Cluster networking
facility. Such a service is implemented as a resource type managed by the Resource
Group Manager (RGM).

The standard resource properties Scalable, Network_resources_used,
Port_list, Load_balancing_policy, and Load_balancing_weights are
common to all scalable resource types. See scrgadm(1M) for the syntax and
description of these properties.

Some data services can run in either a scalable or non-scalable mode. Such services
permit you to specify a value of True or False for the Scalable property at the
time the resource is created. If this property is set to True on a resource, the resource
is said to be in “scalable mode.” The resource then must be contained in a scalable
mode resource group, that is, a group that can have its Maximum_primaries
property set greater than 1.

For a data service that can only run in scalable mode, the Scalable property is
implicitly True for resources of this type, and cannot be changed by the adminstrator.

You can change the Load_balancing_weights and Port_list properties at any
time, even while the resource is online. Network_resources_used and
Load_balancing_policy are set when the resource is created, and you cannot edit
these properties afterward. Depending on how the resource type is implemented,
these properties might have default values, or you might be required to provide
values at when you create the resource.

A scalable service instance running on a particular node needs to be able to reply to
clients over the public networks. The RGM automatically monitors the health of the
public networks on nodes where scalable services are to run, and might bring down a
scalable service instance on a particular node if the public network becomes
inaccessible from that node. If monitoring is disabled on a scalable resource using
scswitch -n -M -j, these network checks are disabled.

When the Scalable resource property that is set to True is created or updated, the
RGM validates various resource properties and will reject the attempted update if
these properties are not configured correctly. Among the checks that are performed are
the following:

� The Network_resources_used property must not be empty. It must contain the
names of existing SharedAddress resources. Every node in the Nodelist of the
resource group containing the scalable resource must appear in either the
NetIfList property or the AuxNodeList property of one of the named
SharedAddress resources.

� The resource group that contains the scalable resource must have its
RG_dependencies property set to include the resource groups of all
SharedAddress resources listed in the scalable resource’s
Network_resources_used property.

scalable_service(5)

NAME

DESCRIPTION

Standard Resource
Properties

Network
Monitoring

Resource
Validatation

400 Sun Cluster Reference Manual for Solaris OS • Last Revised 16 Feb 2005

� The Port_list property must not be empty. It must contain a list of port and
protocol pairs, where protocol is tcp, tcp6, udp, or udp6. Possible protocols that
you can specify include tcp for only TCP IPv4, tcp6 for both TCP IPv4 and TCP
IPv6, udp for only UDP IPv4, or udp6 for both UDP IPv4 and UDP IPv6.

For example, you can specify Port_list=80/tcp,40/udp.

IP affinity guarantees that connections from a given client IP address are forwarded to
the same cluster node. Affinity_timeout, UDP_affinity, and Weak_affinity
are only relevant when Load_balancing_policy is set to either Lb_sticky or
Lb_sticky_wild. See r_properties(5) for detail information.

rt_callbacks(1HA), scrgadm(1M), rt_reg(4), r_properties(5)

Sun Cluster Software Installation Guide for Solaris OS, Sun Cluster Data Services
Developer’s Guide for Solaris OS

scalable_service(5)

Affinity

SEE ALSO

SC31 5 401

SUNW.Event – resource type implementation for the Cluster Reconfiguration
Notification Protocol (CRNP)

The SUNW.Event resource type implementation provides highly available CRNP
services on Sun Cluster. This implementation makes the notification daemon
(/usr/cluster/lib/sc/cl_apid) highly available by managing it as a resource
under the Sun Cluster resource group manager (RGM). The resource group that
contains the SUNW.Event resource must have a network resource configured in the
same resource group. Only a single resource of type SUNW.Event should exist on a
cluster.

This section describes key standard properties that control the behavior of the
implementation. You use scrgadm(1M) to set these properties on a SUNW.Event
resource. r_properties(5) describes these resource properties in more detail.

Network_resources_used
(string_array)

A comma-separated list of logical host name
or shared address network resources that
are used by the resource. r_properties(5)
describes Network_resources_used in
more detail.

Category Conditional/Required

Default No default

Tunable When disabled

Port_list (string_array) A comma-separated list of port numbers on
which the server is listening. The
r_properties(5) man page describes
Port_list in more detail.

Category Conditional/Required

Default No default

Tunable Anytime

Retry_count (integer) The number of times that a monitor
attempts to restart a resource if it fails. The
r_properties(5) man page describes
Retry_count in more detail.

Note – If you specify a negative value for
this property, the monitor attempts to
restart the resource an unlimited number of
times.

Category Conditional

Default 2

Tunable Anytime

SUNW.Event(5)

NAME

DESCRIPTION

Standard
Properties

402 Sun Cluster Reference Manual for Solaris OS • Last Revised 16 Feb 2005

Retry_interval (integer) The number of seconds over which to count
attempts to restart a failed resource.
r_properties(5) describes
Retry_interval in more detail.

Category Conditional

Default 300

Tunable Anytime

Thorough_probe_interval
(integer)

The number of seconds between
invocations of a high overhead fault probe
of the resource. r_properties(5)
describes Thorough_probe_interval in
more detail.

Category Conditional

Default 60

Tunable Anytime

This section describes key extension properties that control the behavior of the
implementation.

Allow_hosts
(string_array)

This property controls the set of clients that are allowed
to register with the implementation to recieve cluster
reconfiguration events. The general form of this
property is ipaddress/masklength, which defines a
subnet from which the clients are allowed to register.
For example, the setting 129.99.77.0/24 allows clients
on the subnet 129.99.77 to register for events. As
another example, 192.9.84.231/32 allows only the client
192.9.84.231 to register for events.

In addition, the following special keywords are
recognized. LOCAL refers to all clients that are located
in directly connected subnets of the cluster. ALL allows
all clients to register. Note that if a client matches an
entry in both the Allow_hosts and the Deny_hosts
property, that client is prevented from registering with
the implementation.

Category Optional

Default LOCAL

Tunable Anytime

Client_retry_count
(integer)

This property controls the number of attempts made by
the implementation while communicating with
external clients. If a client fails to respond within

SUNW.Event(5)

Extension
Properties

SC31 5 403

Client_retry_count attempts, the client times out.
The client is subsequently removed from the list of
registered clients that are eligible to recieve cluster
reconfiguration events. The client must re-register in
order to start recieving events again. The section about
the Client_retry_interval property describes
how often these retries are made by the
implementation.

Category Optional

Default 3

Tunable Anytime

Client_retry_interval
(integer)

This property defines the time period (in seconds) used
by the implementation while communicating with
unresponsive external clients. Up to
Client_retry_count attempts are made during this
interval to contact the client.

The value for this property can be modified at any
time.

Category Optional

Default 1800

Tunable Anytime

Client_timeout
(integer)

This property is the time out value (in seconds) that is
used by the implementation while communicating with
external clients. However, the implementation
continues to attempt to contact the client for a tunable
number of times. The sections about the
Client_retry_count and
Client_retry_interval properties describe the
means of tuning this property.

Category Optional

Default 60

Tunable Anytime

Deny_hosts
(string_array)

This property controls the set of clients that are
prevented from registering to recieve cluster
reconfiguration events. To determine access, the
settings on this property take precedence over those in
the Allow_hosts list. The format of this property is
the same as the format that is defined in the
Allow_hosts.

SUNW.Event(5)

404 Sun Cluster Reference Manual for Solaris OS • Last Revised 16 Feb 2005

Category Optional

Default NULL

Tunable Anytime

Max_clients (integer) This property controls the maximum number of clients
that can register with the implementation to recieve
notification of cluster events. Attempts by additional
clients to register for events are rejected by the
implementation. Since each client registration uses
resources on the cluster, tuning this property allows
users to control resource usage on the cluster by
external clients.

Category Optional

Default 1000

Tunable Anytime

EXAMPLE 1 Creating a SUNW.Event Resource With Default Properties

This example shows how to create a failover SUNW.Event resource that is named
CRNP in an existing resource group that is named events-rg. events-rg contains a
LogicalHostname or SharedAddress resource, which identifies the failover host
name that is associated with the resource group.

scrgadm -a -t SUNW.Event

scrgadm -a -j CRNP -t SUNW.Event -g events-rg

In this example, the SUNW.Event resource that is created is named CRNP. This
resource listens on port 9444 and allows all clients on directly connected subnets to
register for events.

EXAMPLE 2 Creating a SUNW.Event Resource With Non-Default Properties

This example shows how to create a SUNW.Event resource that is named CRNP in a
resource group that is named events-rg. The CRNP resource is configured to listen
on port 7000, and a specific network resource foo-1 (already configured in the
events-rg). This CRNP resource allows clients on subnet 192.9.77.0 and clients on
directly connected subnets to register, but disallows the client 192.9.77.98 from using
the implementation.

scrgadm -a -g events-rg -j CRNP -t SUNW.Event -y \
Port_list=7000/tcp -y Network_resources_used=foo-1 -x \

Allow_hosts=LOCAL,192.9.77.0/24 -x Deny_hosts=192.9.77.98/32

/usr/cluster/lib/sc/cl_apid
CRNP daemon

/usr/cluster/lib/sc/events/dtds
Directory that contains data type definitions for the CRNP protocol

SUNW.Event(5)

EXAMPLES

FILES

SC31 5 405

See attributes(5) for descriptions of the following attributes.

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscu

scrgadm(1M), scswitch(1M), scha_resource_get(1HA), attributes(5),
r_properties(5)

SUNW.Event(5)

ATTRIBUTES

SEE ALSO

406 Sun Cluster Reference Manual for Solaris OS • Last Revised 16 Feb 2005

SUNW.gds – resource type for making simple network aware and non-network aware
applications highly available or scalable

The Generic Data Service (GDS) is a mechanism that enables you to make simple
network-aware and non-network aware applications highly available or scalable by
plugging them into the Sun Cluster Resource Group Manager (RGM) framework.

The GDS contains a fully functional Sun Cluster resource type, complete with callback
methods (rt_callbacks(1HA)) and a Resource Type Registration (RTR) file
(rt_reg(4)).

Network_resources_used
For a network-aware application, if this property is omitted, the application needs
to listen on all addresses. This property need not be specified unless the application
binds to one or more specific addresses. r_properties(5) contains more detail.

Before creating the network-aware, GDS resource, a LogicalHostname or
SharedAddress resource must already have been configured in the same resource
group as the GDS resource.

Category Optional

Default Null

Tunable When disabled

Port_list
A comma-separated list of port numbers on which the server is listening. The
r_properties(5) man page describes Port_list in more detail.

Category Required (only if the application is network-aware)

Default No default

Tunable Anytime

Start_timeout (integer)
This property specifies the timeout value, in seconds, for the start command.

Category Optional

Default 300 seconds

Tunable Any time

Stop_timeout (integer)
This property specifies the timeout value, in seconds, for the stop command.

Category Optional

Default 300 seconds

Tunable Any time

Start_command (string)
The start command starts the application. This command must be a complete
command line that can be passed directly to a shell to start the application.

SUNW.gds(5)

NAME

DESCRIPTION

Standard
Properties

Extension
Properties

SC31 5 407

Category Required

Default No default

Tunable When disabled

Stop_command (string)
The stop command for the application. This command must be a complete
command line that can be passed directly to a shell to stop the application. If this
property is omitted, the GDS stops the application by using signals.

Category Optional

Default Null

Tunable When disabled

Probe_command (string)
The probe command periodically checks the health of a network aware or
non-network aware application. It must be a complete command line that can be
passed directly to a shell to probe the application. The probe command returns with
an exit status of 0 if the application is running correctly.

The exit status of the probe command is used to determine the severity of the
failure of the application. This exit status, called probe status, is an integer between
0 (for success) and 100 (for complete failure). The probe status can also be 201,
which causes the application to fail over unless Failover_enabled is set to
False.

The probe status is used within the GDS probing algorithm to decide whether to
restart the application locally or to fail over the application to another node. If the
probe command is omitted, the GDS provides its own simple probe that connects
to the application on the network resource. If the connect succeeds, the GDS
disconnects immediately. If both connect and disconnect succeed, the application is
deemed to be running correctly.

The GDS does not provide “default” probing behavior for non-network aware
applications. However, a non-network aware application is started under the
Process Monitor Facility (PMF), which monitors the application and restarts the
application if it fails to remain alive. The pmfadm(1M) man page contains more
information.

Category Optional

Default Null

Tunable When disabled

Probe_timeout (integer)
This property specifies the timeout value, in seconds, for the probe command.

Category Optional

Default 30 seconds

SUNW.gds(5)

408 Sun Cluster Reference Manual for Solaris OS • Last Revised 16 Feb 2005

Tunable Any time

Child_mon_level (integer)
This property provides control over the processes that are monitored through the
Process Monitor Facility (PMF). This property denotes the level to which the forked
children processes are monitored. Omitting this property or setting this property to
the default value is the same as omitting the -C option for pmfadm(1M): all children
(and their descendents) are monitored.

Category Optional

Default -1

Tunable At creation

Failover_enabled (boolean)
This property allows the resource to fail over. If this property is set to False,
failover of the resource is disabled. You can use this property to prevent the
application resource from initiating a failover of the resource group.

Category Optional

Default True

Tunable When disabled

Stop_signal (integer)
This property specifies the signal that is to stop the application. The values of this
property are the same as those defined in signal(3HEAD).

Category Optional

Default 15

Tunable When disabled

Log_level (enum)
This property specifies the level, or type, of diagnostic messages that are logged by
GDS. You can specify None, Info, or Err for this property. When you specify
None, diagnostic messages are not logged by GDS. When you specify Info, both
information and error messages are logged. When you specify Err, only error
messages are logged.

Category Optional

Default Info

Tunable Any time

Network_aware (boolean)
This property specifies whether an application uses the network.

Category Optional

Default True

Tunable At creation

SUNW.gds(5)

SC31 5 409

The following examples show how to use GDS to make an application named app
highly available. You can also use SunPlex Agent Builder (scdsbuilder(1HA)) to
create scripts that contain these commands.

This example shows how to register the SUNW.gds resource type, create a resource
group for the application, create the LogicalHostname resource for the logical host
name hhead, create the application resource, and then use scswitch(1M) to manage
the resource group, enable all the resources, and bring the resources online.

At this point, the application is up and running in a highly available fashion and is
being monitored by the simple probe that is provided by GDS. You can now use
scstat(1M) to check the status of the application.

scrgadm -a -t SUNW.gds
scrgadm -a -g rg1
scrgadm -a -L -g rg1 -l hhead
scrgadm -a -t SUNW.gds -g rg1 -j app-rs \

-x Start_command="/usr/local/app/bin/start" \
-y Port_list="1234/tcp"

scswitch -Z -g rg1

scstat -g

This example shows how to register the SUNW.gds resource type, create a resource
group for the application, create the LogicalHostname resource for the logical host
name hhead, create the application resource, log error messages only, and then use
scswitch to manage the resource group, enable all the resources, and bring the
resources online.

At this point, the application is up and running in a highly available fashion and is
being monitored by the fault monitor that is specified by Probe_command. You can
now use scstat to check the status of the application.

scrgadm -a -t SUNW.gds
scrgadm -a -g rg1
scrgadm -a -L -g rg1 -l hhead
scrgadm -a -t SUNW.gds -g rg1 -j app-rs \

-x Start_command="/usr/local/app/bin/start" \
-x Stop_command="/usr/local/app/bin/stop" \
-x Probe_command="/usr/local/app/bin/probe" \
-x stop_signal=9 -x failover_enabled=false \
-y Start_timeout=120 -y Stop_timeout=180 \
-y Port_list="1234/tcp" -x Probe_timeout=60 \
-x Log_level=Err

scswitch -Z -g rg1

scstat -g

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscgds

SUNW.gds(5)

EXAMPLES

Basic Example

Complex Example

ATTRIBUTES

410 Sun Cluster Reference Manual for Solaris OS • Last Revised 16 Feb 2005

rt_callbacks(1HA), scdsbuilder(1HA), scha_resource_get(1HA),
hatimerun(1M), pmfadm(1M), scrgadm(1M), scstat(1M), scswitch(1M),
signal(3HEAD), rt_reg(4), attributes(5), r_properties(5),
scalable_service(5)

SUNW.gds(5)

SEE ALSO

SC31 5 411

SUNW.HAStorage, HAStorage – resource type to synchronize action between HA
storage and data services

SUNW.HAStorage describes a resource type that defines resources in a resource group
to synchronize the actions between the cluster file system, global devices, and relevant
data services.

There is no direct synchronization between resource groups and disk device groups
(and the cluster file system). As a result, during a cluster reboot or failover, an attempt
to start a data service can occur while its dependent global devices or cluster file
systems are still unavailable. Consequently, the data service’s START method might
timeout and the service is not started on the cluster.

SUNW.HAStorage is a resource type that specifically monitors the storage device
services. You add a resource of this type to resource groups containing other resources
and set up dependencies between the other resources and the HAStorage resource.
The HAStorage resource continually tests the availability of the global devices, device
groups, and the cluster file system. The dependencies ensure that the data service
resources does not attempt to start until the device services are available.

When a data service resource is set up with a "strong dependency" upon a
SUNW.HAStorage resource, the data service resources are not started before all
dependent global devices and cluster file systems become available.

Multiple SUNW.HAStorage resources can be set up within a cluster to obtain finer
granularity of the service monitoring checks. Device services that the data service
needs to check and wait for but not depend upon to be online can be defined in a
separate resource, and a "weak dependency" can be set up from the data resource to
the device resource.

In this case, the data service resource waits for the resource to check if the device
services are all available. If not, even if the SUNW.HAStorage START method times
out, the data service can still be brought online. This feature is useful to some data
services. For example, assume a Web server depends on ten cluster file systems. If only
one file system isn’t ready within the timeout period, the Web service should still go
online since it still can provide 90 percent of the services.

Two extension properties are associated with the SUNW.HAStorage resource type:
ServicePaths and AffinityOn.

ServicePaths Contains valid global device group names, paths to global devices,
or cluster file system mount points that are to be checked. They are
defined in the format of

paths[,...].

A typical example of a global device group is nfs-dg. A path to a
global device is a valid device path in the global device namespace,
such as /dev/global/dsk/d5s2, /dev/global/dsk/d1s2, or
/dev/global/rmt/0. A cluster file system mount point is a valid
global mount point defined in /etc/vfstab on all cluster nodes

SUNW.HAStorage(5)

NAME

DESCRIPTION

412 Sun Cluster Reference Manual for Solaris OS • Last Revised 24 Aug 2002

of the cluster. You can define a global device group, a global device
path, and a cluster file system mount point in one
SUNW.HAStorage resource.

AffinityOn A boolean flag that specifies whether the SUNW.HAStorage
resource needs to do an affinity switchover for the global devices
and cluster file systems defined in ServicePaths.

When AffinityOn is set to False, the SUNW.HAStorage
resource passively waits for the specified global services to become
available. As a result, the primary of each online global service
might not be the same node that is the primary of the resource
group.

The purpose of an affinity switchover is to enhance performance
by having data services and their dependent global services run on
the same node. For each global service, the SUNW.HAStorage
resource attempts affinity switchover only once. If switchover fails,
nothing is affected and the availability check occurs normally.

The default value for ServicePaths is the empty string. The
default value for AffinityOn is True. Both extension properties
can be changed at any time when the resource group is offline.

For scalable service resources, the setting of the AffinityOn flag
is ignored and no affinity switchover can be done. There is no
benefit to switching over the disk device services because the
scalable data service can be running on multiple nodes
simultaneously.

rt_reg(4)

SUNW.HAStorage specifies resources that check and wait for the specified global
devices, device group, and cluster file systems to become available. The checking is
only meaningful when data service resources (application resources) in the same
resource group are set up with the correct dependency upon the SUNW.HAStorage
resources. Otherwise, no synchronization is done.

Avoid configuring two different SUNW.HAStorage resources in different resource
groups with their ServicePaths property referencing the same global resource and with
both AffinityOn flags set to True. When the cluster is booting or during a
switchover, the resource groups might end up mastered on two different nodes. Both
of the SUNW.HAStorage resources would attempt to do an affinity switchover of the
same device group, resulting in a race condition. In this case, redundant switchovers
would occur and the device group might not end up being mastered by the most
preferred node.

SUNW.HAStorage(5)

SEE ALSO

NOTES

SC31 5 413

The waiting time for global services to become available is specified by the
Prenet_Start_Timeout property in SUNW.HAStorage. The time is tunable with a
default value of 30 minutes (1,800 seconds).

SUNW.HAStorage(5)

414 Sun Cluster Reference Manual for Solaris OS • Last Revised 24 Aug 2002

SUNW.HAStoragePlus – Resource type to enforce dependencies between Sun Cluster
device services/file systems and data services.

SUNW.HAStoragePlus describes a resource type which allows for specifying
dependencies between data service resources and device groups, cluster (global) and
local file systems. This enables data services to be brought online only after their
dependent device groups and file systems are guaranteed to be available.
HAStoragePlus also provides support for mounting, unmounting and checks of file
systems.

Resource groups by themselves do not provide for direct synchronization with disk
device groups, cluster or local file systems. As a result, during a cluster reboot or
failover, an attempt to start a data service can occur while its dependent global
devices, and file systems are still unavailable. Consequently, the data service’s START
method might timeout resulting in data service failure.

SUNW.HAStoragePlus represents the device groups, cluster and local file systems
which are to be used by one or more data service resources. One adds a resource of
type SUNW.HAStoragePlus to a resource group and sets up dependencies between
other resources and the SUNW.HAStoragePlus resource. These dependencies ensure
that the data service resources are brought online after:

1. All specified device services are available (and collocated if necessary)
2. All specified file systems are mounted following their checks

The FilesystemMountPoints extension property allow for the specification of
either global or local file systems, that is, file systems that are either accessible from all
nodes of a cluster or from a single cluster node. Local file systems managed by a
SUNW.HAStoragePlus resource are mounted on a single cluster node and require the
underlying devices to be Sun Cluster global devices. SUNW.HAStoragePlus
resources specifying local file systems can only belong in a failover resource group
with affinity switchovers enabled. These local file systems can therefore be termed
failover file systems. Both local and global file system mount points can be specified
together.

A file system whose mount point is present in the FilesystemMountPoints
extension property is assumed to be local if its /etc/vfstab entry satisfies both of
the following conditions:

1. Non global mount option
2. Mount at boot flag is set to no

Note – Instances of the SUNW.HAStoragePlus resource type ignore the mount at boot
flag for global file systems.

Four extension properties are associated with the SUNW.HAStoragePlus resource
type:

SUNW.HAStoragePlus(5)

NAME

DESCRIPTION

SC31 5 415

GlobalDevicePaths Contains a list of valid global device group names or
global device paths. They are defined in the format of
paths[,...]. Default is an empty list.

FilesystemMountPoints Contains a list of valid file system mount points. They
are defined in the format of paths[,...]. Default is an
empty list. Each file system mount point should have
an equivalent /etc/vfstab entry across all cluster
nodes.

AffinityOn A Boolean flag that specifies whether the
SUNW.HAStoragePlus resource needs to do an
affinity switchover for all global devices defined in the
GlobalDevicePaths and
FilesystemMountPoints extension properties.
Affinity switchover is set by default, that is,
AffinityOn is set to TRUE.

When AffinityOn is set to FALSE, the
SUNW.HAStoragePlus resource passively waits for
the specified global services to become available. In this
case, the primary of each online global device service
might not be the same node which is the primary of the
resource group.

The purpose of an affinity switchover is to enhance
performance by ensuring the colocation of the device
and resource groups on a specific node. Data reads and
writes therefore will always occur over the device
primary paths. Affinity switchovers require the
potential primary list for the resource group and the
node list for the device groups to be equivalent. The
SUNW.HAStoragePlus resource performs an affinity
switchover for each device service only once, that is,
when the HastoragePlus resource is brought online.

The setting of the AffinityOn flag is ignored for
scalable services. Affinity switchovers are not possible
with scalable resource groups.

FilesystemCheckCommand SUNW.HAStoragePlus conducts a file system check
on each unmounted file system before attempting to
mount it. The default file system check command is
/usr/sbin/fsck -o p for UFS and VxFS
filesystems, and /usr/sbin/fsck for other file
systems. The FilesystemCheckCommand extension
property can be used to override this default file

SUNW.HAStoragePlus(5)

416 Sun Cluster Reference Manual for Solaris OS • Last Revised 05 May 2003

system check specification and instead specify an
alternate command string/executable. This command
string/executable will then be invoked on all
unmounted file systems.

The default FilesystemCheckCommand extension
property value is NULL. When the
FilesystemCheckCommand is set to NULL the
command will be assumed to be /usr/sbin/fsck -o
p for UFS/VxFS filesystems and /usr/sbin/fsck for
other file systems. When the
FilesystemCheckCommand is set to a user specified
command string, SUNW.HAStoragePlus will elect to
invoke this command string with the file system mount
point as an argument. Any arbitrary executable can be
specified in this manner. A non-zero return value will
be treated as a error which occured during the file
system check operation, causing the start method to
fail. Any arbitrary executable can be specified in this
manner. When the FilesystemCheckCommand is set
to /bin/true, file system checks will altogether be
avoided.

rt_reg(4), SUNW.HAStorage(5)

The HAStoragePlus RT is a part of the SUNWscu package.

Data service resources within a given resource group should be made dependent on a
SUNW.HAStoragePlus resource. Otherwise, no synchronization is possible between
the data services and the global devices/file systems. Strong resource dependencies
ensure that the SUNW.HAStoragePlus resource is brought online before other
resources are brought online. Local file systems managed by SUNW.HAStorage
resource are mounted only when the resource is brought online.

Although unlikely, the SUNW.HAStoragePlus resource is capable of mounting any
global file system found to be in a un mounted state. It is recommended that UFS file
systems have logging enabled.. All file systems are mounted in the overlay mode.
Local file systems will be forcibly unmounted.

Avoid configuring multiple SUNW.HAStoragePlus resources in different resource
groups referring to the same device group(s) and with AffinityOn flags set to TRUE.
Redundant device switchovers could occur resulting in the dislocation of resource and
device groups.

The waiting time for all device services and file systems to become available is
specified by the Prenet_Start_Timeout property in SUNW.HAStoragePlus. This
is a tunable parameter.

SUNW.HAStoragePlus(5)

SEE ALSO

NOTES

SC31 5 417

SUNW.rac_cvm, rac_cvm – resource type implementation that represents the VERITAS
Volume Manager (VxVM) component of Sun Cluster Support for Oracle Parallel
Server/Real Application Clusters

The SUNW.rac_cvm resource type represents the VxVM component of Sun Cluster
Support for Oracle Parallel Server/Real Application Clusters. You can use the
SUNW.rac_cvm resource type to represent this component only if the cluster feature of
VxVM is enabled.

Instances of the SUNW.rac_cvm resource type hold VxVM component configuration
parameters. Instances of this type also show the status of a reconfiguration of the
VxVM component.

The SUNW.rac_cvm resource type is a single-instance resource type. Only one
resource of this type may be created in the cluster.

To register this resource type and create instances of this resource type, use one of the
following utilities:

� The scsetup(1M) utility, specifying the option for configuring Sun Cluster
Support for Oracle Parallel Server/Real Application Clusters

� The scrgadm(1M) utility

You can set the following extension properties of the VxVM component resource by
using the scrgadm utility.

Note – Some extension properties are tunable only when the resource is disabled. You
can modify such extension properties only when VxVM is not running in cluster mode
on any cluster node.

Cvm_abort_step_timeout
Type integer; minimum 30; maximum 99999; defaults to 40. This property specifies
the timeout (in seconds) for the abort step of a reconfiguration of the VxVM
component of Sun Cluster Support for Oracle Parallel Server/Real Application
Clusters. You can modify this property at any time. The modified value is used for
the next reconfiguration of the VxVM component.

Cvm_return_step_timeout
Type integer; minimum 30; maximum 99999; defaults to 40. This property specifies
the timeout (in seconds) for the return step of a reconfiguration of the VxVM
component of Sun Cluster Support for Oracle Parallel Server/Real Application
Clusters. You can modify this property at any time. The modified value is used for
the next reconfiguration of the VxVM component.

Cvm_start_step_timeout
Type integer; minimum 30; maximum 99999; defaults to 120. This property specifies
the timeout (in seconds) for the start step of a reconfiguration of the VxVM
component of Sun Cluster Support for Oracle Parallel Server/Real Application
Clusters. You can modify this property at any time. The modified value is used for
the next reconfiguration of the VxVM component.

SUNW.rac_cvm(5)

NAME

DESCRIPTION

418 Sun Cluster Reference Manual for Solaris OS • Last Revised 15 Aug 2003

Cvm_step1_timeout
Type integer; minimum 30; maximum 99999; defaults to 100. This property specifies
the timeout (in seconds) for step 1 of a reconfiguration of the VxVM component of
Sun Cluster Support for Oracle Parallel Server/Real Application Clusters. You can
modify this property at any time. The modified value is used for the next
reconfiguration of the VxVM component.

Cvm_step2_timeout
Type integer; minimum 30; maximum 99999; defaults to 100. This property specifies
the timeout (in seconds) for step 2 of a reconfiguration of the VxVM component of
Sun Cluster Support for Oracle Parallel Server/Real Application Clusters. You can
modify this property at any time. The modified value is used for the next
reconfiguration of the VxVM component.

Cvm_step3_timeout
Type integer; minimum 30; maximum 99999; defaults to 240. This property specifies
the timeout (in seconds) for step 3 of a reconfiguration of the VxVM component of
Sun Cluster Support for Oracle Parallel Server/Real Application Clusters. You can
modify this property at any time. The modified value is used for the next
reconfiguration of the VxVM component.

Cvm_step4_timeout
Type integer; minimum 100; maximum 99999; defaults to 320. This property
specifies the timeout (in seconds) for step 4 of a reconfiguration of the VxVM
component of Sun Cluster Support for Oracle Parallel Server/Real Application
Clusters. You can modify this property at any time. The modified value is used for
the next reconfiguration of the VxVM component.

Cvm_stop_step_timeout
Type integer; minimum 30; maximum 99999; defaults to 40. This property specifies
the timeout (in seconds) for the stop step of a reconfiguration of the VxVM
component of Sun Cluster Support for Oracle Parallel Server/Real Application
Clusters. You can modify this property at any time. The modified value is used for
the next reconfiguration of the VxVM component.

Reservation_timeout
Type integer; minimum 100; maximum 99999; defaults to 325. This property
specifies the timeout (in seconds) for the reservation step of a reconfiguration of
Sun Cluster Support for Oracle Parallel Server/Real Application Clusters. You can
modify this property at any time.

Vxclust_num_ports
Type integer; minimum 16; maximum 64; defaults to 32. This property specifies the
number of communications ports that the vxclust program uses. You can modify
this property only when the resource is disabled. The modified value is used for the
next reconfiguration of the VxVM component.

Vxclust_port
Type integer; minimum 1024; maximum 65535; defaults to 5568. This property
specifies the communications port number that the vxclust program uses. You
can modify this property only when the resource is disabled. The modified value is
used for the next reconfiguration of the VxVM component.

SUNW.rac_cvm(5)

SC31 5 419

Vxconfigd_port
Type integer; minimum 1024; maximum 65535; defaults to 5560. This property
specifies the communications port number that the VxVM component configuration
daemon vxconfigd uses. You can modify this property only when the resource is
disabled. The modified value is used for the next reconfiguration of the VxVM
component.

Vxkmsgd_port
Type integer; minimum 1024; maximum 65535; defaults to 5559. This property
specifies the communications port number that the VxVM component messaging
daemon vxkmsgd uses. You can modify this property only when the resource is
disabled. The modified value is used for the next reconfiguration of the VxVM
component.

EXAMPLE 1 Changing a Property of a rac_cvm Resource

This example sets the timeout for step 4 of a reconfiguration of the VxVM component
of Sun Cluster Support for Oracle Parallel Server/Real Application Clusters to 300
seconds. The example assumes that an instance of the SUNW.rac_cvm resource type
named rac_cvm has been created.

example# scrgadm -c -j rac_cvm\\

-x cvm_step4_timeout=300

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

Availability SUNWcvm

scrgadm(1M), scsetup(1M), attributes(5)

SUNW.rac_cvm(5)

EXAMPLES

ATTRIBUTES

SEE ALSO

420 Sun Cluster Reference Manual for Solaris OS • Last Revised 15 Aug 2003

SUNW.rac_framework, rac_framework – resource type implementation for the
framework that enables Sun Cluster Support for Oracle Parallel Server/Real
Application Clusters

The SUNW.rac_framework resource type represents the framework that enables Sun
Cluster Support for Oracle Parallel Server/Real Application Clusters. This resource
type enables you to monitor the status of this framework.

The SUNW.rac_framework resource type is a single instance resource type. Only one
resource of this type may be created in the cluster.

To register this resource type and create instances of this resource type, use one of the
following utilities:

� The scsetup(1M) utility, specifying the option for configuring Sun Cluster
Support for Oracle Parallel Server/Real Application Clusters

� The scrgadm(1M) utility

The Sun Cluster Support for Oracle Parallel Server/Real Application Clusters
framework resource has no extension properties.

EXAMPLE 1 Creating a rac_framework Resource

This example registers the SUNW.rac_framework resource type and creates an
instance of the SUNW.rac_framework resource type named rac_framework. The
example assumes that a resource group named rac-framework-rg has been created.

example# scrgadm -a -t SUNW.rac_framework
example# scrgadm -a -j rac_framework \

-g rac-framework-rg \

-t SUNW.rac_framework

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscucm

scrgadm(1M), scsetup(1M), attributes(5)

SUNW.rac_framework(5)

NAME

DESCRIPTION

EXAMPLES

ATTRIBUTES

SEE ALSO

SC31 5 421

SUNW.rac_hwraid, rac_hwraid – resource type implementation that represents the
hardware redundant array of independent disks (RAID) component of Sun Cluster
Support for Oracle Parallel Server/Real Application Clusters

The SUNW.rac_hwraid resource type represents the hardware RAID component of
Sun Cluster Support for Oracle Parallel Server/Real Application Clusters.

The SUNW.rac_hwraid resource type is a single-instance resource type. Only one
resource of this type may be created in the cluster.

To register this resource type and create instances of this resource type, use one of the
following utilities:

� The scsetup(1M) utility, specifying the option for configuring Sun Cluster
Support for Oracle Parallel Server/Real Application Clusters

� The scrgadm(1M) utility

You can set the following extension properties of the hardware RAID resource by
using the scrgadm utility.

Reservation_timeout
Type integer; minimum 100; maximum 99999; defaults to 325. This property
specifies the timeout (in seconds) for the reservation step of a reconfiguration of
Sun Cluster Support for Oracle Parallel Server/Real Application Clusters. You can
modify this property at any time.

EXAMPLE 1 Changing a Property of a rac_hwraid Resource

This example sets the timeout for the reservation step of a reconfiguration of Sun
Cluster Support for Oracle Parallel Server/Real Application Clusters to 350 seconds.
The example assumes that an instance of the SUNW.rac_hwraid resource type
named rac_hwraid has been created.

example# scrgadm -c -j rac_hwraid\

-x reservation_timeout=350

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWhwraid

scrgadm(1M), scsetup(1M), attributes(5)

SUNW.rac_hwraid(5)

NAME

DESCRIPTION

EXAMPLES

ATTRIBUTES

SEE ALSO

422 Sun Cluster Reference Manual for Solaris OS • Last Revised 16 Apr 2003

SUNW.rac_svm, rac_svm – resource type implementation that represents the Solaris
Volume Manager component of Sun Cluster Support for Oracle Parallel Server/Real
Application Clusters

The SUNW.rac_svm resource type represents the Solaris Volume Manager for Sun
Cluster component of the Sun Cluster framework for Oracle Parallel Server/Real
Application Clusters.

Instances of the SUNW.rac_svm resource type hold Solaris Volume Manager for Sun
Cluster component configuration parameters. Instances of this type also show the
status of a reconfiguration of the Solaris Volume Manager for Sun Cluster component.

The SUNW.rac_svm resource type is a single-instance resource type. Only one
resource of this type may be created in the cluster.

To register this resource type and create instances of this resource type, use one of the
following utilities:

� The scsetup(1M) utility, specifying the option for configuring Sun Cluster
Support for Oracle Parallel Server/Real Application Clusters

� The scrgadm(1M) utility

You can set the following extension properties of the Solaris Volume Manager for Sun
Cluster component resource by using the scrgadm utility.

Debug_level
Type integer; minimum 0; maximum 10; defaults to 1. This property specifies the
debug level for the Solaris Volume Manager for Sun Cluster module of Sun Cluster
framework for Oracle Parallel Server/Real Application Clusters. When the debug
level is increased, more messages are written to the log files during reconfiguration.
You can modify this property at any time.

Reservation_timeout
Type integer; minimum 100; maximum 99999; defaults to 325. This property
specifies the timeout (in seconds) for the reservation step of a reconfiguration of the
Solaris Volume Manager for Sun Cluster module of Sun Cluster Support for Oracle
Parallel Server/Real Application Clusters. You can modify this property at any
time.

Svm_abort_step_timeout
Type integer; minimum 30; maximum 99999; defaults to 120. This property specifies
the timeout (in seconds) for the abort step of a reconfiguration of the Solaris
Volume Manager for Sun Cluster module of Sun Cluster Support for Oracle Parallel
Server/Real Application Clusters. You can modify this property at any time.

Svm_return_step_timeout
Type integer; minimum 30; maximum 99999; defaults to 120. This property specifies
the timeout (in seconds) for the return step of a reconfiguration of the Solaris
Volume Manager for Sun Cluster module of Sun Cluster Support for Oracle Parallel
Server/Real Application Clusters. You can modify this property at any time.

SUNW.rac_svm(5)

NAME

DESCRIPTION

SC31 5 423

Svm_start_step_timeout
Type integer; minimum 30; maximum 99999; defaults to 120. This property specifies
the timeout (in seconds) for the start step of a reconfiguration of the Solaris Volume
Manager for Sun Cluster module of Sun Cluster Support for Oracle Parallel
Server/Real Application Clusters. You can modify this property at any time.

Svm_step1_timeout
Type integer; minimum 30; maximum 99999; defaults to 120. This property specifies
the timeout (in seconds) for step 1 of a reconfiguration of the Solaris Volume
Manager for Sun Cluster module of Sun Cluster Support for Oracle Parallel
Server/Real Application Clusters. You can modify this property at any time.

Svm_step2_timeout
Type integer; minimum 30; maximum 99999; defaults to 120. This property specifies
the timeout (in seconds) for step 2 of a reconfiguration of the Solaris Volume
Manager for Sun Cluster module of Sun Cluster Support for Oracle Parallel
Server/Real Application Clusters. You can modify this property at any time.

Svm_step3_timeout
Type integer; minimum 30; maximum 99999; defaults to 120. This property specifies
the timeout (in seconds) for step 3 of a reconfiguration of the Solaris Volume
Manager for Sun Cluster module of Sun Cluster Support for Oracle Parallel
Server/Real Application Clusters. You can modify this property at any time.

Svm_step4_timeout
Type integer; minimum 100; maximum 99999; defaults to 120. This property
specifies the timeout (in seconds) for step 4 of a reconfiguration of the Solaris
Volume Manager for Sun Cluster module of Sun Cluster Support for Oracle Parallel
Server/Real Application Clusters. You can modify this property at any time.

Svm_stop_step_timeout
Type integer; minimum 30; maximum 99999; defaults to 120. This property specifies
the timeout (in seconds) for the stop step of a reconfiguration of the Solaris Volume
Manager for Sun Cluster module of Sun Cluster Support for Oracle Parallel
Server/Real Application Clusters. You can modify this property at any time.

EXAMPLE 1 Changing a Property of a rac_svm Resource

This example sets the timeout for step 4 of a reconfiguration of the Solaris Volume
Manager for Sun Cluster component of Sun Cluster Support for Oracle Parallel
Server/Real Application Clusters to 300 seconds. The example assumes that an
instance of the SUNW.rac_svm resource type named rac_svm has been created.

example# scrgadm -c -j rac_svm \

-x svm_step4_timeout=300

See attributes(5) for descriptions of the following attributes:

SUNW.rac_svm(5)

EXAMPLES

ATTRIBUTES

424 Sun Cluster Reference Manual for Solaris OS • Last Revised 06 May 2004

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

Availability SUNWscmd

attributes(5)

scrgadm(1M), scsetup(1M)

SUNW.rac_svm(5)

SEE ALSO

SC31 5 425

SUNW.rac_udlm, rac_udlm – resource type implementation for the configuration of
the UNIX Distributed Lock Manager (Oracle UDLM) component of Sun Cluster
Support for Oracle Parallel Server/Real Application Clusters

The SUNW.rac_udlm resource type enables the management of the Oracle UDLM
component of Sun Cluster Support for Oracle Parallel Server/Real Application
Clusters. The management of this component involves the following activities:

� Setting the parameters of the Oracle UDLM component
� Monitoring the status of the Oracle UDLM component

The SUNW.rac_udlm resource type is a single-instance resource type. Only one
resource of this type may be created in the cluster.

To register this resource type and create instances of this resource type, use one of the
following utilities:

� The scsetup(1M) utility, specifying the option for configuring Sun Cluster
Support for Oracle Parallel Server/Real Application Clusters

� The scrgadm(1M) utility

You can set the following extension properties for an Oracle UDLM resource by using
the scrgadm utility.

Note – Some extension properties are tunable only when the resource is disabled. You
can modify such extension properties only when the Oracle UDLM is not running on
any cluster node.

Failfastmode
Type enum; defaults to panic. This property specifies the failfast mode of the node
on which the Oracle UDLM is running. The failfast mode determines the action that
is performed in response to a critical problem with this node. The possible values of
this property are as follows:

off Failfast mode is disabled.

panic The node is forced to panic.

You can modify this property at any time. The modified value is used for the next
start-up of the Oracle UDLM. The Oracle UDLM is started when a node is
rebooted.

Num_ports
Type integer; minimum 16; maximum 64; defaults to 32. This property specifies the
number of communications ports that the Oracle UDLM uses. You can modify this
property only when the resource is disabled. The modified value is used for the
next start-up of the Oracle UDLM. The Oracle UDLM is started when a node is
rebooted.

Oracle_config_file
Type string; defaults to /etc/opt/SUNWcluster/conf/udlm.conf. This
property specifies the configuration file that the Oracle distributed lock manager

SUNW.rac_udlm(5)

NAME

DESCRIPTION

426 Sun Cluster Reference Manual for Solaris OS • Last Revised 16 Apr 2003

(DLM) uses. This file must already exist. The file is installed when the Oracle
software is installed. For more information, refer to the documentation for the
Oracle software. You can modify this property at any time. The modified value is
used for the next start-up of the Oracle DLM.

Port
Type integer; minimum 1024; maximum 65500; defaults to 6000. This property
specifies the communications port number that the Oracle UDLM uses. You can
modify this property only when the resource is disabled. The modified value is
used for the next start-up of the Oracle UDLM. The Oracle UDLM is started when a
node is rebooted.

Schedclass
Type enum; defaults to RT. This property specifies the scheduling class of the
Oracle UDLM that is passed to the priocntl(1) command. The possible values of
this property are as follows:

RT Real-time

TS Time-sharing

IA Interactive

You can modify this property only when the resource is disabled. The modified
value is used for the next start-up of the Oracle UDLM. The Oracle UDLM is
started when a node is rebooted.

Schedpriority
Type integer; minimum 0; maximum 59; defaults to 11. This property specifies the
scheduling priority of the Oracle UDLM that is passed to the priocntl command.
You can modify this property only when the resource is disabled. The modified
value is used for the next start-up of the Oracle UDLM. The Oracle UDLM is
started when a node is rebooted.

Udlm_abort_step_timeout
Type integer; minimum 30; maximum 99999; defaults to 325. This property specifies
the timeout (in seconds) for the abort step of an Oracle UDLM reconfiguration. You
can modify this property at any time. The modified value is used for the next
reconfiguration of the Oracle UDLM.

Udlm_start_step_timeout
Type integer; minimum 30; maximum 99999; defaults to 100. This property specifies
the timeout (in seconds) for the start step of an Oracle UDLM reconfiguration. You
can modify this property at any time. The modified value is used for the next
start-up of the Oracle UDLM. The Oracle UDLM is started when a node is
rebooted.

Udlm_step1_timeout
Type integer; minimum 30; maximum 99999; defaults to 100. This property specifies
the timeout (in seconds) for step 1 of an Oracle UDLM reconfiguration. You can
modify this property at any time. The modified value is used for the next
reconfiguration of the Oracle UDLM.

SUNW.rac_udlm(5)

SC31 5 427

Udlm_step2_timeout
Type integer; minimum 30; maximum 99999; defaults to 100. This property specifies
the timeout (in seconds) for step 2 of an Oracle UDLM reconfiguration. You can
modify this property at any time. The modified value is used for the next
reconfiguration of the Oracle UDLM.

Udlm_step3_timeout
Type integer; minimum 30; maximum 99999; defaults to 100. This property specifies
the timeout (in seconds) for step 3 of an Oracle UDLM reconfiguration. You can
modify this property at any time. The modified value is used for the next
reconfiguration of the Oracle UDLM.

Udlm_step4_timeout
Type integer; minimum 30; maximum 99999; defaults to 100. This property specifies
the timeout (in seconds) for step 4 of an Oracle UDLM reconfiguration. You can
modify this property at any time. The modified value is used for the next
reconfiguration of the Oracle UDLM.

Udlm_step5_timeout
Type integer; minimum 30; maximum 99999; defaults to 100. This property specifies
the timeout (in seconds) for step 5 of an Oracle UDLM reconfiguration. You can
modify this property at any time. The modified value is used for the next
reconfiguration of the Oracle UDLM.

EXAMPLE 1 Changing a Property of a rac_udlm Resource

This example sets the timeout for step 4 of a reconfiguration of the Oracle UDLM
component of Sun Cluster Support for Oracle Parallel Server/Real Application
Clusters to 45 seconds. The example assumes that an instance of the SUNW.rac_udlm
resource type named rac_udlm has been created.

example# scrgadm -c -j rac_udlm\

-x udlm_step4_timeout=45

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWudlm

priocntl(1), scrgadm(1M), scsetup(1M), attributes(5)

SUNW.rac_udlm(5)

EXAMPLES

ATTRIBUTES

SEE ALSO

428 Sun Cluster Reference Manual for Solaris OS • Last Revised 16 Apr 2003

SUNW.RGOffload, RGOffload – resource type to offload specified resource groups

SUNW.RGOffload describes a resource type that allows resources configured in
failover resource groups to offload other specified resource groups.

This facility is most useful when the limited resources on cluster nodes prevent
multiple data services from running simultaneously on a node. In such situations, a
RGOffload resource in a resource group containing critical data services is configured
to offload other resource groups.

You can use the scrgadm(1M) command or resource configuration GUI to add a
RGOffload resource to the resource group containing critical data service resources,
setup dependencies of the critical data service resources on this resource, and
configure the resource groups to be offloaded from a node when critical data service
resources are running on it. The dependencies ensure that the data service resources
do not attempt to start on a node until the START method of the RGOffload resource
has offloaded, or at least attempted to offload the specified resource groups from the
node.

Resource groups specified to be offloaded must have their Desired_primaries property
set to 0. The fault monitor of the SUNW.RGOffload resource will attempt to keep such
resource groups online on as many healthy nodes as possible, limited by the
Maximum_primaries property of individual resource groups. The fault monitor checks
the status of specified resource groups on all nodes every
Thorough_probe_interval.

When a data service resource is set up with a "strong dependency" upon a
SUNW.RGOffload resource, the data service resource is not started on a node if there
is a failure in offloading specified resource groups from that node. A data service
resource set up with a "weak dependency" upon the SUNW.RGOffload resource may
start when specified resource groups cannot be successfully offloaded from the node.
An attempt would be made to offload the specified resource groups, but a failure in
doing so will not prevent the startup of the data service resource.

See r_properties(5) for a complete description of the standard resource properties.

Monitor_retry_count
Type integer; defaults to 4. This property controls fault-monitor restarts. The
property indicates the number of times that the process monitor facility (PMF)
restarts the fault monitor. The property corresponds to the -n option passed to the
pmfadm(1M) command. The RGM counts the number of restarts in a specified time
window (see the property Monitor_retry_interval). Note that this property
refers to the restarts of the fault monitor itself, not the SUNW.RGOffload resource.
You can modify the value for this property at any time.

Monitor_retry_interval
Type integer; defaults to 2. This property indicates the time window in minutes
during which the RGM counts fault-monitor failures. The property corresponds to
the -t option passed to the pmfadm(1M) command. If the number of times that the
fault monitor fails exceeds the value of the extension property

SUNW.RGOffload(5)

NAME

DESCRIPTION

Extension
Properties

SC31 5 429

Monitor_retry_count, the PMF does not restart the fault monitor. You can
modify the value for this property at any time.

rg_to_offload
Type string array, specified as a comma-separated list of resource groups. No
default exists for this field. You must provide the value when creating the resource.
This property indicates the list of resource groups to be offloaded. All resource
groups in this property must have Desired_primaries set to 0. rg_to_offload
should not contain the resource group in which the RGOffload resource is being
configured. rg_to_offload should also not contain resource groups dependent
upon each other. For example, if resource group RG-B depends on resource group
RG-A, then both, RG-A and RG-B should not be configured in this extension
property. SUNW.RGOffload resource type does not check for dependencies among
resource groups in the rg_to_offload extension property. You can modify the
value of this property at any time.

continue_to_offload
Type boolean; defaults to TRUE. This property indicates whether to continue
offloading the next resource group in the list specified in the rg_to_offload
property in case of error in offloading any resource group. You can modify the
value of this property at any time.

max_offload_retry
Type integer; defaults to 15. This property indicates the number of attempts during
the startup of RGOffload resource to offload a resource group specified in the
rg_to_offload property if there is a failure due to cluster or resource group
reconfiguration. This value applies to all resource groups in the rg_to_offload
property. When the value of this property is greater than 0, successive attempts to
offload the same resource group would be made after approximately 10 second
intervals. You can modify the value of this property at any time.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWrgofl

pmfadm(1M), scha_resource_get(1HA), scrgadm(1M), scswitch(1M),
scha_cluster_get(3HA), scha_resourcegroup_get(3HA) , attributes(5),
r_properties(5)

Sun Cluster Data Services Installation and Configuration Guide

SUNW.RGOffload(5)

ATTRIBUTES

SEE ALSO

430 Sun Cluster Reference Manual for Solaris OS • Last Revised 1 Apr 2002

SC31 7

431

clprivnet – SUNW,clprivnet Sun Cluster private network driver

/dev/clprivnet

The SUNW,clprivnet Sun Cluster private network driver is a STREAMS pseudo
driver supporting Sun Cluster resident applications that use standard Solaris
interfaces to communicate over the Sun Cluster private network. By striping data
traffic over all links, this driver optimally utilizes the bandwidth of the private
network while supporting highly available, software fault-tolerant communication.

The driver is supported by the character-special device /dev/clprivnet, but is
reserved for Sun Cluster internal operation and the standard Solaris network utilities.
This interface must not be directly used for general application communication.

The administration and configuration of the driver as a network interface is done
completely by the Sun Cluster infrastructure internals.

/dev/clprivnet
clprivnet special character device

/usr/kernel/drv/clprivnet.conf
System-wide default device driver properties

clprivnet(7)

NAME

SYNOPSIS

DESCRIPTION

APPLICATION
PROGRAMMING

INTERFACE

ADMINISTRATION

FILES

432 Sun Cluster Reference Manual for Solaris OS • Last Revised 12 Dec 2002

did – user configurable disk id driver

Disk ID (DID) is a user configurable pseudo device driver that provides access to
underlying disk, tape, and CDROM devices. When the device supports unique device
ids, multiple paths to a device are determined according to the device id of the device.
Even if multiple paths are available with the same device id, only one DID name is
given to the actual device.

In a clustered environment, a particular physical device will have the same DID name
regardless of its connectivity to more than one host or controller. This, however, is only
true of devices that support a global unique device identifier such as physical disks.

DID maintains parallel directories for each type of device that it manages under
/dev/did. The devices in these directories behave the same as their non-DID
counterparts. This includes maintaining slices for disk and CDROM devices as well as
names for different tape device behaviors. Both raw and block device access is also
supported for disks by means of /dev/did/rdsk and /dev/did/rdsk.

At any point in time, I/O is only supported down one path to the device. No
multipathing support is currently available through DID.

Before a DID device can be used, it must first be initialized by means of the
scdidadm(1M) command.

The DID driver maintains an admin node as well as nodes for each DID device minor.

No user ioctls are supported by the admin node.

The DKIOCINFO ioctl is supported when called against the DID device nodes such as
/dev/did/rdsk/d0s2.

All other ioctls are passed directly to the driver below.

/dev/did/dsk/dnsm block disk or CDROM device, where n is
the device number and m is the slice
number

/dev/did/rdsk/dnsm raw disk or CDROM device, where n is the
device number and m is the slice number

/dev/did/rmt/n tape device , where n is the device number

/dev/did/admin administrative device

/kernel/drv/did driver module

/kernel/drv/did.conf driver configuration file

/etc/did.conf scdidadm configuration file for
non-clustered systems

Cluster Configuration
Repository (CCR) files

scdidadm(1M) maintains configuration in
the CCR for clustered systems

did(7)

NAME

DESCRIPTION

IOCTLS

FILES

SC31 7 433

devfsadm(1M), scdidadm(1M)

DID creates names for devices in groups, in order to decrease the overhead during
device hot-plug. For disks, device names are created in /dev/did/dsk and
/dev/did/rdsk in groups of 100 disks at a time. For tapes, device names are created
in /dev/did/rmt in groups of 10 tapes at a time. If more devices are added to the
cluster than are handled by the current names, another group will be created.

did(7)

SEE ALSO

NOTES

434 Sun Cluster Reference Manual for Solaris OS • Last Revised 24 April 2001

SC31 7p

435

sctransp_dlpi – configure the dlpi cluster interconnect

dlpi is a supported cluster transport type.

scconf(1M), scinstall(1M)

sctransp_dlpi(7p)

NAME

DESCRIPTION

SEE ALSO

436 Sun Cluster Reference Manual for Solaris OS • Last Revised 24 Apr 2002

Index

A
abort step timeout

Oracle distributed lock manager (DLM), 427
Solaris Volume Manager for Sun Cluster, 423
VERITAS Volume Manager (VxVM), 418

access cluster information —
scha_cluster_get, 28

access resource group information —
scha_resourcegroup_get, 47

access resource information —
scha_resource_get, 43

add, change or update rawdisk device group
configuration — scconf_dg_rawdisk, 102

add/change/update VxVM device group
configuration. — scconf_dg_vxvm, 109

alias shell built-in functions to create your own
pseudonym or shorthand for a command or
series of commands, 415

alias command, 415
allocate and initialize DSDL environment —

scds_initialize, 237

C
callback interface for management of services as

Sun Cluster resources — rt_callbacks, 16
cconsole — multi window, multi machine,

remote console, login and telnet
commands, 56

ccp — the Sun Cluster System Cluster Control
Panel GUI, 58

change Solstice Disksuite disk device group
configuration. — scconf_dg_sds, 105

check for and report on vulnerable Sun Cluster
configurations — sccheck, 80

chosts — expand cluster names into host
names, 59

cl_eventd — cluster event daemon, 60
clprivnet — SUNW,clprivnet Sun Cluster

private network driver, 432
cluster information access functions. —

scha_cluster_close, 287
cluster information access functions. —

scha_cluster_get, 287
cluster information access functions. —

scha_cluster_open, 287
cluster event daemon — cl_eventd, 60
cluster feature, VERITAS Volume Manager

(VxVM), 418
cluster log facility access —

scha_cluster_getlogfacility, 285
cluster names database — clusters, 338
clusters — cluster names database, 338
command standard output for scha_cluster_get,

scha_control, scha_resource_get,
scha_resourcegroup_get,
scha_resourcetype_get,
scha_resource_setstatus — scha_cmds, 31

command to set resource status —
scha_resource_setstatus, 50

communications ports
UNIX Distributed Lock Manager (Oracle

UDLM), 426
VERITAS Volume Manager (VxVM), 419

437

configuration daemon, VERITAS Volume
Manager (VxVM), 420

configuration files, Oracle distributed lock
manager (DLM), 426

configure an Ethernet cluster transport junction
— scconf_transp_jct_etherswitch, 127

configure an InfiniBand cluster transport
junction — scconf_transp_jct_ibswitch, 128

configure resource type template —
scdsconfig, 23

resource type — SUNW.gds, 407
configure the dlpi cluster interconnect —

sctransp_dlpi, 436
configure the Dolphin cluster transport junction

— scconf_transp_jct_dolphinswitch, 126
configure the eri transport adapter —

scconf_transp_adap_eri, 119
configure the Gigabit Ethernet (ge) transport

adapter — scconf_transp_adap_ge, 120
configure the InfiniBand (ibd) transport adapter

— scconf_transp_adap_ibd, 122
configure the hme transport adapter —

scconf_transp_adap_hme, 121
configure the Intel PRO/1000 network adapter

— scconf_transp_adap_e1000g, 118
configure the qfe transport adapter —

scconf_transp_adap_qfe, 123
configure the SCI–PCI cluster transport adapter

— scconf_transp_adap_sci, 124
configure the wsrm transport adapter —

scconf_transp_adap_wsrm, 125
cports — expand host names into <host, server,

port> triples, 61
create a Sun Cluster resource type template —

scdscreate, 25
crlogin — multi window, multi machine, remote

console, login and telnet commands, 56
ctelnet — multi window, multi machine, remote

console, login and telnet commands, 56
Cvm_abort_step_timeout extension

property, 418
Cvm_return_step_timeout extension

property, 418
Cvm_start_step_timeout extension

property, 418
Cvm_step1_timeout extension property, 419
Cvm_step2_timeout extension property, 419
Cvm_step3_timeout extension property, 419

Cvm_step4_timeout extension property, 419
Cvm_stop_step_timeout extension

property, 419

D
daemons

vxconfigd, 420
vxkmsgd, 420

Debug_level extension property
rac_svm resource type, 423
SUNW.rac_svm resource type, 423

determine if a PMF-monitored process tree
exists — scds_pmf_get_status, 239

did — user configurable disk id driver, 433
device identifier configuration and

administration utility wrapper —
scdidadm, 129

distributed lock manager (DLM), See Oracle
distributed lock manager (DLM)

DLM (distributed lock manager), See Oracle
distributed lock manager (DLM)

E
establish a TCP connection to an application —

scds_fm_net_connect, 206
establish a tcp connection to an application —

scds_fm_tcp_connect, 214
/etc/release file, 150
event — resource type implementation for the

Cluster Reconfiguration Notification Protocol
(CRNP)., 402

execute a given command in a given amount of
time — scds_timerun, 270

execute a program under PMF control —
scds_pmf_start, 244

expand cluster names into host names —
chosts, 59

expand host names into <host, server, port>
triples — cports, 61

extension properties
rac_cvm resource type, 418
rac_framework resource type, 421
rac_hwraid resource type, 422
rac_svm resource type, 423

438 Sun Cluster Reference Manual for Solaris OS • August 2005, Revision A

extension properties (Continued)
rac_udlm resource type, 426
SUNW.rac_cvm resource type, 418
SUNW.rac_framework resource type, 421
SUNW.rac_hwraid resource type, 422
SUNW.rac_svm resource type, 423
SUNW.rac_udlm resource type, 426

F
Failfastmode extension property, 426
failover a resource group —

scds_failover_rg, 202
frameworks, Sun Cluster Support for Oracle

Parallel Server/Real Application
Clusters, 421

free DSDL environment resources —
scds_close, 200

free the network address memory —
scds_free_netaddr_list, 222

free the network resource memory —
scds_free_net_list, 223

free the port list memory —
scds_free_port_list, 224

free the resource extension property memory —
scds_free_ext_property, 221

function to set resource status —
scha_resource_setstatus, 325

G
retrieve configuration data about resource

groups, resource types, and resources —
scsnapshot, 173

upgrade configuration data about resource
groups, resource types, and resources —
scsnapshot, 173

get status information about
SUNW.HAStoragePlus resources used by a
resource — scds_hasp_check, 235

get the network addresses used by a resource —
scds_get_netaddr_list, 227

get the network resources used by a resource —
scds_get_rs_hostnames, 234

get the network resources used in a resource
group — scds_get_rg_hostnames, 232

disk path monitoring administration
command— scdpm, 134

global devices namespace administration script
— scgdevs, 137

H
halockrun — run a child program while holding

a file lock, 66
hardware redundant array of independent disks

(RAID), 422
HAStorage — resource type to synchronize

action between HA storage and data
services, 412

hatimerun — run child program under a
timeout, 68

I
install Sun Cluster software and initialize new

cluster nodes — scinstall, 139
Install VERITAS Volume Manager (VxVM) on a

cluster node. — scvxinstall, 194
interactive cluster configuration tool —

scsetup, 170

L
Launch the GUI version of the Sun Cluster Data

Service Builder — scdsbuilder, 22
local cluster node name access function —

scha_cluster_getnodename, 286

M
manage registration and unregistration of

resource types, resource groups, and
resources. — scrgadm, 161

map error code to error message —
scha_strerror, 336

messaging daemon, VERITAS Volume Manager
(VxVM), 420

439

monitoring
Sun Cluster Support for Oracle Parallel

Server/Real Application Clusters, 421
UNIX Distributed Lock Manager (Oracle

UDLM, 426
monitoring the status of Sun Cluster —

scstat, 176
multi window, multi machine, remote console,

login and telnet commands — cconsole, 56
multi window, multi machine, remote console,

login and telnet commands — crlogin, 56
multi window, multi machine, remote console,

login and telnet commands — ctelnet, 56

N
Num_ports extension property, 426

O
Oracle_config_file extension

property, 426
Oracle distributed lock manager (DLM), 426
Oracle Parallel Server, See Sun Cluster Support

for Oracle Parallel Server/Real Application
Clusters

Oracle UDLM (UNIX Distributed Lock
Manager), 426

P
perform ownership/state change of resource

groups and disk device groups in Sun
Cluster configurations — scswitch, 181

pmfadm — process monitor facility
administration, 70

pmfd — RPC-based process monitor server, 79
pnmd — Public Network Management (PNM)

service daemon, 77
Port extension property, 427
ports, See communications ports
print the contents of a list of

hostname-port-protocol 3-tuples used by a
resource group —
scds_print_netaddr_list, 250

print the contents of a network resource list —
scds_print_net_list, 251

print the contents of a port list —
scds_print_port_list, 252

probe by establishing and terminating a TCP
connection to an application —
scds_simple_net_probe, 260

probe by establishing and terminating a TCP
connection to an application —
scds_simple_probe, 262

process monitor facility administration —
pmfadm, 70

programs, vxclust, 419
pseudonym, create or remove, 415
Public Network Management (PNM) service

daemon — pnmd, 77

R
rac_cvm resource type, 418
rac_framework resource type, 421
rac_hwraid resource type, 422
rac_svm resource type, 423
rac_udlm resource type, 426
RAID (redundant array of independent

disks), 422
rdt_setmtu — set the MTU size in RSMRDT

driver, 78
read data using a tcp connection to an

application — scds_fm_tcp_read, 217
Real Application Clusters, See Sun Cluster

Support for Oracle Parallel Server/Real
Application Clusters

reconfiguration timeouts
hardware redundant array of independent

disks (RAID), 422
Oracle distributed lock manager (DLM), 427
redundant array of independent disks

(RAID), 422
Solaris Volume Manager for Sun Cluster, 423
VERITAS Volume Manager (VxVM), 418

redundant array of independent disks
(RAID), 422

release file, 150
request resource group control —

scha_control, 38

440 Sun Cluster Reference Manual for Solaris OS • August 2005, Revision A

reservation step timeout
hardware redundant array of independent

disks (RAID), 422
redundant array of independent disks

(RAID), 422
Solaris Volume Manager for Sun Cluster, 423
VERITAS Volume Manager (VxVM), 419

Reservation_timeout extension property
rac_cvm resource type, 419
rac_hwraid resource type, 422
rac_svm resource type, 423
SUNW.rac_cvm resource type, 419
SUNW.rac_svm resource type, 423

resource information access functions —
scha_resource_close, 319

resource information access functions —
scha_resource_get, 319

resource information access functions —
scha_resource_open, 319

resource information access functions. —
scha_resourcegroup_close, 315

resource information access functions. —
scha_resourcegroup_get, 315

resource information access functions. —
scha_resourcegroup_open, 315

resource type information access functions. —
scha_resourcetype_close, 333

resource type information access functions. —
scha_resourcetype_get, 333

resource type information access functions. —
scha_resourcetype_open, 333

resource type to offload specified resource
groups — RGOffload, 429

resource type to offload specified resource
groups — SUNW.RGOffload, 429

resource type to synchronize action between
HA storage and data services —
HAStorage, 412

resource type to synchronize action between
HA storage and data services —
SUNW.HAStorage, 412

resource group control request function —
scha_control, 291

resource group properties — rg_properties, 368
Resource information access command —

scha_resource_get, 43

resource type implementation for the Cluster
Reconfiguration Notification Protocol
(CRNP) — Event, 402

resource type implementation for the Cluster
Reconfiguration Notification Protocol
(CRNP). — SUNW.Event, 402

Resource type information access command —
scha_resourcetype_get, 52

resource type properties — rt_properties-, 392
resource type registration file — rt_reg-, 339
resource types

rac_cvm, 418
rac_framework, 421
rac_hwraid, 422
rac_svm, 423
rac_udlm, 426
SUNW.rac_cvm, 418
SUNW.rac_framework, 421
SUNW.rac_hwraid, 422
SUNW.rac_svm, 423
SUNW.rac_udlm, 426

restart a resource — scds_restart_resource, 258
restart a resource group — scds_restart_rg, 259
restart fault monitor using PMF —

scds_pmf_restart_fm, 241
restrictions

rac_cvm resource type, 418
rac_udlm resource type, 426
SUNW.rac_cvm resource type, 418
SUNW.rac_udlm resource type, 426

retrieve an extension property —
scds_get_ext_property, 225

retrieve the port list used by a resource —
scds_get_port_list, 228

retrieve the resource group name —
scds_get_resource_group_name, 229

retrieve the resource name —
scds_get_resource_name, 230

retrieve the resource type name —
scds_get_resource_type_name, 231

return step timeout
Solaris Volume Manager for Sun Cluster, 423
VERITAS Volume Manager (VxVM), 418

rg_properties — resource group properties, 368
RGOffload — resource type to offload specified

resource groups, 429
RPC-based process monitor server — pmfd, 79

441

RPC-based process monitor server —
rpc.pmfd, 79

rpc.pmfd — RPC-based process monitor
server, 79

rt_callbacks — callback interface for
management of services as Sun Cluster
resources, 16

rt_properties — resource type properties-, 392
rt_reg- — resource type registration file, 339
run a child program while holding a file lock —

halockrun, 66
run child program under a timeout —

hatimerun, 68

S
sccheck — check for and report on vulnerable

Sun Cluster configurations, 80
sccheckd — service for the sccheck utility, 83
scconf — update the Sun Cluster software

configuration, 84
scconf_dg_rawdisk — add, change or update

rawdisk device group configuration, 102
scconf_dg_sds — change Solstice Disksuite disk

device group configuration., 105
scconf_dg_vxvm — add/change/update VxVM

device group configuration., 109
scconf_transp_adap_eri — configure the eri

transport adapter, 119
scconf_transp_adap_ge — configure the Gigabit

Ethernet (ge) transport adapter, 120
scconf_transp_adap_ibd — configure the

InfiniBand (ibd) transport adapter, 122
scconf_transp_adap_e1000g — configure the

Intel PRO/1000 network adapter, 118
scconf_transp_adap_hme — configure the hme

transport adapter, 121
scconf_transp_adap_qfe — configure the qfe

transport adapter, 123
scconf_transp_adap_sci — configure the

SCI–PCI cluster transport adapter, 124
scconf_transp_adap_wrsm — configure the

wrsm transport adapter, 125
scconf_transp_jct_dolphinswitch — configure

the Dolphin cluster transport junction, 126
scconf_transp_jct_etherswitch — configure an

Ethernet cluster transport junction, 127

scconf_transp_jct_ibswitch — configure an
InfiniBand cluster transport junction, 128

scdidadm — device identifier configuration and
administration utility wrapper, 129

scds_close — free DSDL environment
resources, 200

scds_error_string — translate an error code to
an error string, 201

scds_failover_rg — failover a resource
group, 202

scds_fm_action — take action after probe
completion, 203

scds_fm_net_connect — establish a TCP
connection to an application, 206

scds_fm_net_disconnect — terminate a TCP
connection to an application, 209

scds_fm_sleep — wait for a message on a fault
monitor control socket, 212

scds_fm_tcp_connect — establish a tcp
connection to an application, 214

scds_fm_tcp_disconnect — terminate a tcp
connection to an application, 216

scds_fm_tcp_read — read data using a tcp
connection to an application, 217

scds_fm_tcp_write — write data using a tcp
connection to an application, 219

scds_free_ext_property — free the resource
extension property memory, 221

scds_free_net_list — free the network resource
memory, 223

scds_free_netaddr_list — free the network
address memory, 222

scds_free_port_list — free the port list
memory, 224

scds_get_ext_property — retrieve an extension
property, 225

scds_get_netaddr_list — get the network
addresses used by a resource, 227

scds_get_port_list — retrieve the port list used
by a resource, 228

scds_get_resource_group_name — retrieve the
resource group name, 229

scds_get_resource_name — retrieve the
resource name, 230

scds_get_resource_type_name — retrieve the
resource type name, 231

scds_get_rg_hostnames — get the network
resources used in a resource group, 232

442 Sun Cluster Reference Manual for Solaris OS • August 2005, Revision A

scds_get_rs_hostnames — get the network
resources used by a resource, 234

scds_hasp_check — get status information
about SUNW.HAStoragePlus resources used
by a resource, 235

scds_initialize — allocate and initialize DSDL
environment, 237

scds_pmf_get_status — determine if a
PMF-monitored process tree exists, 239

scds_pmf_restart_fm — restart fault monitor
using PMF, 241

scds_pmf_signal — send a signal to a process
tree under PMF control, 242

scds_pmf_start — execute a program under
PMF control, 244

scds_pmf_stop — terminate a process that is
running under PMF control, 246

scds_pmf_stop_monitoring — stop monitoring
a process that is running under PMF
control, 248

scds_print_net_list — print the contents of a
network resource list, 251

scds_print_netaddr_list — print the contents of
a list of hostname-port-protocol 3-tuples
used by a resource group, 250

scds_print_port_list — print the contents of a
port list, 252

scds_restart_resource — restart a resource, 258
scds_restart_rg — restart a resource group, 259
scds_simple_net_probe — probe by establishing

and terminating a TCP connection to an
application, 260

scds_simple_probe — probe by establishing and
terminating a TCP connection to an
application, 262

scds_svc_wait — wait for the specified timeout
period for a monitored process to die, 264

scds_syslog — write a message to the system
log, 267

scds_syslog_debug — write a debugging
message to the system log, 268

scds_timerun — execute a given command in a
given amount of time, 270

scdsbuilder — Launch the GUI version of the
Sun Cluster Data Service Builder, 22

scdsconfig — configure resource type
template, 23

SUNW.gds — resource type, 407

scdscreate — create a Sun Cluster resource type
template, 25

scdpm — disk path monitoring administration
command, 134

scgdevs — global devices namespace
administration script, 137

scha_calls — Sun Cluster library functions used
in the implementation of callback methods
and monitors of resource types, 272

scha_cluster_close — cluster information access
functions., 287

scha_cluster_get — access cluster
information, 28

scha_cluster_get — cluster information access
functions., 287

scha_cluster_getlogfacility — cluster log facility
access, 285

scha_cluster_getnodename — local cluster node
name access function, 286

scha_cluster_open — cluster information access
functions., 287

scha_cmds — command standard output for
scha_cluster_get, scha_control,
scha_resource_get, scha_resourcegroup_get,
scha_resourcetype_get,
scha_resource_setstatus, 31

scha_control — request resource group
control, 38

scha_control — resource group control request
function, 291

scha_control — Sun Cluster library functions
used in the implementation of callback
methods and monitors of resource
types, 272

scha_get_function — Sun Cluster library
functions used in the implementation of
callback methods and monitors of resource
types, 272

scha_resource_close — resource information
access functions, 319

scha_resource_get — access resource
information, 43

scha_resource_get — Resource information
access command, 43

scha_resource_get — resource information
access functions, 319

scha_resource_open — resource information
access functions, 319

443

scha_resource_setstatus — command to set
resource status, 50

scha_resource_setstatus — function to set
resource status, 325

scha_resourcegroup_close — resource
information access functions., 315

scha_resourcegroup_get — access resource
group information, 47

scha_resourcegroup_get — resource
information access functions., 315

scha_resourcegroup_open — resource
information access functions., 315

scha_resourcetype_close — resource type
information access functions., 333

scha_resourcetype_get — Resource type
information access command, 52

scha_resourcetype_get — resource type
information access functions., 333

scha_resourcetype_open — resource type
information access functions., 333

scha_strerror — map error code to error
message, 336

Schedclass extension property, 427
Schedpriority extension property, 427
scinstall — install Sun Cluster software and

initialize new cluster nodes, 139
scrgadm — manage registration and

unregistration of resource types, resource
groups, and resources., 161

scsetup — interactive cluster configuration
tool, 170

scshutdown — shut down a cluster, 171
scsnapshot — retrieve configuration data about

resource groups, resource types, and
resources and generate a shell script, 173

scstat — monitoring the status of Sun
Cluster, 176

scswitch — perform ownership/state change of
resource groups and disk device groups in
Sun Cluster configurations, 181

sctransp_dlpi — configure the dlpi cluster
interconnect, 436

scversions — Sun Cluster version
management, 192

scvxinstall — Install VERITAS Volume Manager
(VxVM) on a cluster node., 194

send a signal to a process tree under PMF
control — scds_pmf_signal, 242

service for the sccheck utility — sccheckd, 83
set the MTU size in RSMRDT driver —

rdt_setmtu, 78
shell command interpreter builtin-functions

alias, 415
unalias, 415

shut down a cluster — scshutdown, 171
Solaris, version, 150
Solaris Volume Manager, 423
start step timeout

Oracle distributed lock manager (DLM), 427
Solaris Volume Manager for Sun Cluster, 424
VERITAS Volume Manager (VxVM), 418

status information
Sun Cluster Support for Oracle Parallel

Server/Real Application Clusters, 421
UNIX Distributed Lock Manager (Oracle

UDLM, 426
stop monitoring a process that is running under

PMF control —
scds_pmf_stop_monitoring, 248

Sun Cluster library functions used in the
implementation of callback methods and
monitors of resource types — scha_calls, 272

Sun Cluster library functions used in the
implementation of callback methods and
monitors of resource types —
scha_control, 272

Sun Cluster library functions used in the
implementation of callback methods and
monitors of resource types —
scha_get_function, 272

Sun Cluster Support for Oracle Parallel
Server/Real Application Clusters
framework, 421
hardware redundant array of independent

disks (RAID), 422
monitoring, 421
redundant array of independent disks

(RAID), 422
resource types

rac_cvm, 418
rac_framework, 421
rac_hwraid, 422
rac_svm, 423
rac_udlm, 426
SUNW.rac_cvm, 418
SUNW.rac_framework, 421

444 Sun Cluster Reference Manual for Solaris OS • August 2005, Revision A

Sun Cluster Support for Oracle Parallel
Server/Real Application Clusters, resource
types (Continued)

SUNW.rac_hwraid, 422
SUNW.rac_svm, 423
SUNW.rac_udlm, 426

Solaris Volume Manager, 423
status information, 421
UNIX Distributed Lock Manager (Oracle

UDLM), 426
VERITAS Volume Manager (VxVM), 418

Sun Cluster version management —
scversions, 192

SUNW,clprivnet Sun Cluster private network
driver — clprivnet, 432

SUNW.Event — resource type implementation
for the Cluster Reconfiguration Notification
Protocol (CRNP)., 402

SUNW.HAStorage — resource type to
synchronize action between HA storage and
data services, 412

SUNW.rac_cvm resource type, 418
SUNW.rac_framework resource type, 421
SUNW.rac_hwraid resource type, 422
SUNW.rac_svm resource type, 423
SUNW.rac_udlm resource type, 426
SUNW.RGOffload — resource type to offload

specified resource groups, 429
Svm_abort_step_timeout extension

property, 423
Svm_return_step_timeout extension

property, 423
Svm_start_step_timeout extension

property, 424
Svm_step1_timeout extension property, 424
Svm_step2_timeout extension property, 424
Svm_step3_timeout extension property, 424
Svm_step4_timeout extension property, 424
Svm_stop_step_timeout extension

property, 424

T
take action after probe completion —

scds_fm_action, 203
terminate a process that is running under PMF

control — scds_pmf_stop, 246

terminate a TCP connection to an application —
scds_fm_net_disconnect, 209

terminate a tcp connection to an application —
scds_fm_tcp_disconnect, 216

the Sun Cluster System Cluster Control Panel
GUI — ccp, 58

timeouts
hardware redundant array of independent

disks (RAID), 422
Oracle distributed lock manager (DLM), 427
redundant array of independent disks

(RAID), 422
Solaris Volume Manager for Sun Cluster, 423
VERITAS Volume Manager (VxVM), 418

translate an error code to an error string —
scds_error_string, 201

U
Udlm_abort_step_timeout extension

property, 427
udlm.conf configuration file, 426
Udlm_start_step_timeout extension

property, 427
Udlm_step1_timeout extension

property, 427
Udlm_step2_timeout extension

property, 428
Udlm_step3_timeout extension

property, 428
Udlm_step4_timeout extension

property, 428
Udlm_step5_timeout extension

property, 428
unalias shell built-in functions to create your

own pseudonym or shorthand for a
command or series of commands, 415

unalias command, 415
UNIX Distributed Lock Manager (Oracle

UDLM), 426
update the Sun Cluster software configuration

— scconf, 84
user configurable disk id driver — did, 433

V
VERITAS Volume Manager (VxVM), 418

445

Vxclust_num_ports extension property, 419
Vxclust_port extension property, 419
vxclust program, 419
vxconfigd daemon, 420
Vxconfigd_port extension property, 420
vxkmsgd daemon, 420
Vxkmsgd_port extension property, 420
VxVM (VERITAS Volume Manager), 418

W
wait for a message on a fault monitor control

socket — scds_fm_sleep, 212
wait for the specified timeout period for a

monitored process to die —
scds_svc_wait, 264

write a debugging message to the system log —
scds_syslog_debug, 268

write a message to the system log —
scds_syslog, 267

write data using a tcp connection to an
application — scds_fm_tcp_write, 219

446 Sun Cluster Reference Manual for Solaris OS • August 2005, Revision A

	Sun Cluster Reference Manual for Solaris OS
	Preface
	Overview

	SC31 1ha
	rt_callbacks
	scdsbuilder
	scdsconfig
	scdscreate
	scha_cluster_get
	scha_cmds
	scha_control
	scha_resource_get
	scha_resourcegroup_get
	scha_resource_setstatus
	scha_resourcetype_get

	SC31 1m
	cconsole
	ccp
	chosts
	cl_eventd
	cports
	crlogin
	ctelnet
	halockrun
	hatimerun
	pmfadm
	pmfd
	pnmd
	rdt_setmtu
	rpc.pmfd
	sccheck
	sccheckd
	scconf
	scconf_dg_rawdisk
	scconf_dg_sds
	scconf_dg_svm
	scconf_dg_vxvm
	scconf_quorum_dev_netapp_nas
	scconf_quorum_dev_scsi
	scconf_transp_adap_bge
	scconf_transp_adap_ce
	scconf_transp_adap_e1000g
	scconf_transp_adap_eri
	scconf_transp_adap_ge
	scconf_transp_adap_hme
	scconf_transp_adap_ibd
	scconf_transp_adap_qfe
	scconf_transp_adap_sci
	scconf_transp_adap_wrsm
	scconf_transp_jct_dolphinswitch
	scconf_transp_jct_etherswitch
	scconf_transp_jct_ibswitch
	scdidadm
	scdpm
	scgdevs
	scinstall
	scnas
	scnasdir
	scrgadm
	scsetup
	scshutdown
	scsnapshot
	scstat
	scswitch
	scversions
	scvxinstall

	SC31 3ha
	scds_close
	scds_error_string
	scds_failover_rg
	scds_fm_action
	scds_fm_net_connect
	scds_fm_net_disconnect
	scds_fm_print_probes
	scds_fm_sleep
	scds_fm_tcp_connect
	scds_fm_tcp_disconnect
	scds_fm_tcp_read
	scds_fm_tcp_write
	scds_free_ext_property
	scds_free_netaddr_list
	scds_free_net_list
	scds_free_port_list
	scds_get_ext_property
	scds_get_netaddr_list
	scds_get_port_list
	scds_get_resource_group_name
	scds_get_resource_name
	scds_get_resource_type_name
	scds_get_rg_hostnames
	scds_get_rs_hostnames
	scds_hasp_check
	scds_initialize
	scds_pmf_get_status
	scds_pmf_restart_fm
	scds_pmf_signal
	scds_pmf_start
	scds_pmf_stop
	scds_pmf_stop_monitoring
	scds_print_netaddr_list
	scds_print_net_list
	scds_print_port_list
	scds_property_functions
	scds_restart_resource
	scds_restart_rg
	scds_simple_net_probe
	scds_simple_probe
	scds_svc_wait
	scds_syslog
	scds_syslog_debug
	scds_timerun
	scha_calls
	scha_cluster_close
	scha_cluster_get
	scha_cluster_getlogfacility
	scha_cluster_getnodename
	scha_cluster_open
	scha_control
	scha_resource_close
	scha_resource_get
	scha_resourcegroup_close
	scha_resourcegroup_get
	scha_resourcegroup_open
	scha_resource_open
	scha_resource_setstatus
	scha_resourcetype_close
	scha_resourcetype_get
	scha_resourcetype_open
	scha_strerror

	SC31 4
	clusters
	rt_reg
	serialports

	SC31 5
	HAStorage
	property_attributes
	rac_cvm
	rac_framework
	rac_hwraid
	rac_svm
	rac_udlm
	RGOffload
	rg_properties
	r_properties
	rt_properties
	scalable_service
	SUNW.Event
	SUNW.gds
	SUNW.HAStorage
	SUNW.HAStoragePlus
	SUNW.rac_cvm
	SUNW.rac_framework
	SUNW.rac_hwraid
	SUNW.rac_svm
	SUNW.rac_udlm
	SUNW.RGOffload

	SC31 7
	clprivnet
	did

	SC31 7p
	sctransp_dlpi

	Index

