
Service Registry 3.1 Developer's
Guide

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 819–4638–10
February 2007

Copyright 2007 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In particular, and without
limitation, these intellectual property rights may include one or more U.S. patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights – Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions
of the FAR and its supplements.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other
countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, the Solaris logo, the Java Coffee Cup logo, docs.sun.com, Java, and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and SunTM Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts
of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to
the Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN LOOK GUIs and otherwise comply with Sun's written license
agreements.

Products covered by and information contained in this publication are controlled by U.S. Export Control laws and may be subject to the export or import laws in
other countries. Nuclear, missile, chemical or biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export
or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied persons and specially
designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2007 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Sun Microsystems, Inc. détient les droits de propriété intellectuelle relatifs à la technologie incorporée dans le produit qui est décrit dans ce document. En particulier,
et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plusieurs brevets américains ou des applications de brevet en attente aux Etats-Unis
et dans d'autres pays.

Cette distribution peut comprendre des composants développés par des tierces personnes.

Certaines composants de ce produit peuvent être dérivées du logiciel Berkeley BSD, licenciés par l'Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d'autres pays; elle est licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, le logo Solaris, le logo Java Coffee Cup, docs.sun.com, Java et Solaris sont des marques de fabrique ou des marques déposées de
Sun Microsystems, Inc. aux Etats-Unis et dans d'autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques
déposées de SPARC International, Inc. aux Etats-Unis et dans d'autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par
Sun Microsystems, Inc.

L'interface d'utilisation graphique OPEN LOOK et Sun a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît les efforts de
pionniers de Xerox pour la recherche et le développement du concept des interfaces d'utilisation visuelle ou graphique pour l'industrie de l'informatique. Sun détient
une licence non exclusive de Xerox sur l'interface d'utilisation graphique Xerox, cette licence couvrant également les licenciés de Sun qui mettent en place l'interface
d'utilisation graphique OPEN LOOK et qui, en outre, se conforment aux licences écrites de Sun.

Les produits qui font l'objet de cette publication et les informations qu'il contient sont régis par la legislation américaine en matière de contrôle des exportations et
peuvent être soumis au droit d'autres pays dans le domaine des exportations et importations. Les utilisations finales, ou utilisateurs finaux, pour des armes nucléaires,
des missiles, des armes chimiques ou biologiques ou pour le nucléaire maritime, directement ou indirectement, sont strictement interdites. Les exportations ou
réexportations vers des pays sous embargo des Etats-Unis, ou vers des entités figurant sur les listes d'exclusion d'exportation américaines, y compris, mais de manière
non exclusive, la liste de personnes qui font objet d'un ordre de ne pas participer, d'une façon directe ou indirecte, aux exportations des produits ou des services qui
sont régis par la legislation américaine en matière de contrôle des exportations et la liste de ressortissants spécifiquement designés, sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE "EN L'ETAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES OU TACITES
SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT TOUTE GARANTIE
IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE UTILISATION PARTICULIERE OU A L'ABSENCE DE CONTREFACON.

070226@16599

Contents

Preface ...9

1 Overview of JAXR ...17
About Registries and Repositories ... 17
About JAXR .. 18
JAXR Architecture ... 19
About the Examples .. 20

▼ To Edit the build.properties File ... 21

2 Setting Up a JAXR Client ... 23
Starting the Registry .. 23
Getting Access to the Registry .. 23

▼ To Create a Keystore for Your Certificate ... 24
▼ To Edit the Security Settings of the build.properties File .. 25

Establishing a Connection to the Registry .. 25
Obtaining a Connection Factory .. 25
Creating a Connection .. 25

Obtaining and Using a RegistryService Object ... 26

3 Querying a Registry ..29
Basic Query Methods .. 29
JAXR Information Model Interfaces ... 30
Finding Objects by Unique Identifier ... 34

Finding Objects by Unique Identifier: Example ... 34
▼ To Run the JAXRSearchById Example .. 34

Finding Objects by Name ... 35
Finding Objects by Name: Example ... 36

3

▼ To Run the JAXRSearchByName Example .. 36
Finding Objects by Type ... 37

Finding Objects by Type: Example .. 37
▼ To Run the JAXRSearchByObjectType Example .. 37

Finding Objects by Classification .. 38
▼ To Run the JAXRGetCanonicalSchemes Example ... 40

Finding Objects by Classification: Examples .. 40
▼ To Run the JAXRSearchByClassification and

JAXRSearchByCountryClassification Examples ... 41
Finding Objects by External Identifier .. 41

Finding Objects by External Identifier: Example ... 42
▼ To Run the JAXRSearchByExternalIdentifier Example ... 42

Finding Objects by External Link .. 42
Finding Objects by External Link: Example ... 42

▼ To Run the JAXRSearchByExternalLink Example ... 43
Finding Objects You Published ... 43

Finding Objects You Published: Examples ... 43
▼ To Run the JAXRGetMyObjects and JAXRGetMyObjectsByType Examples 44

Retrieving Information About an Object ... 44
Retrieving the Identifier Values for an Object .. 45
Retrieving the Name or Description of an Object .. 45
Retrieving the Type of an Object .. 46
Retrieving the Classifications for an Object .. 46
Retrieving the External Identifiers for an Object ... 47
Retrieving the External Links for an Object .. 47
Retrieving the Slots for an Object ... 48
Retrieving the Attributes of an Organization or User ... 49
Retrieving the Services and Service Bindings for an Organization .. 51
Retrieving an Organization Hierarchy .. 52
Retrieving the Audit Trail of an Object ... 52
Retrieving the Version of an Object ... 54

Using Declarative Queries .. 55
Using Declarative Queries: Example ... 55

▼ To Run the JAXRQueryDeclarative Example .. 56
Using Iterative Queries ... 56

Using Iterative Queries: Example ... 57

Contents

Service Registry 3.1 Developer's Guide • February 20074

▼ To Run the JAXRQueryIterative Example .. 57
Using Stored Queries .. 58

Using Stored Queries: Example .. 59
▼ To Run the JAXRQueryStored Example .. 59

Using Federated Queries .. 59
Using Federated Queries: Example .. 60

▼ To Run the JAXRQueryFederationExample ... 60

4 Publishing Objects to the Registry ... 61
Authenticating with the Registry ... 62
Creating Objects .. 63

Using Create Methods for Objects ... 64
Adding Names and Descriptions to Objects ... 64
Identifying Objects .. 65
Creating and Using Classification Schemes and Concepts ... 66
Adding Classifications to Objects .. 68
Adding External Identifiers to Objects .. 69
Adding External Links to Objects .. 70
Adding Slots to Objects ... 70
Creating Extrinsic Objects .. 71
Creating Services by Publishing WSDL Files .. 73
Creating Organizations ... 74

Saving Objects in the Registry .. 78

5 Managing Objects in the Registry .. 81
Creating Relationships Between Objects: Associations .. 81

Creating Associations: Example ... 83
▼ To Run the JAXRPublishAssociation Example ... 83

Organizing Objects Within Registry Packages .. 84
Organizing Objects Within Registry Packages: Examples .. 84

▼ To Run the JAXRPublishPackage and JAXRSearchPackage Examples 84
Changing the State of Objects in the Registry .. 85

Changing the State of Objects in the Registry: Examples .. 86
▼ To Run the JAXRApproveObject, JAXRDeprecateObject, and

JAXRUndeprecateObject Examples .. 86

Contents

5

Controlling Access to Objects .. 87
Removing Objects From the Registry and Repository .. 87

Removing Objects from the Registry: Example .. 88
▼ To Run the JAXRDelete Example ... 88

6 Developing Client Programs for the UDDI Interface ... 89
Creating Client Programs ... 89

7 Troubleshooting ..91
“Message Send Failed” Error from Service Registry .. 91
Unable to Create ExternalLink or ServiceBinding ... 92
FileNotFoundException for Keystore File .. 92

A Canonical Constants ..93
Constants for Classification Schemes ... 94
Constants for Association Type Concepts ... 94
Constants for Content Management Service Concepts .. 95
Constants for Data Type Concepts ... 95
Constants for Deletion Scope Type Concepts ... 95
Constants for Email Type Concepts .. 96
Constants for Error Handling Model Concepts .. 96
Constants for Error Severity Type Concepts ... 96
Constants for Event Type Concepts .. 96
Constants for Invocation Model Concepts .. 97
Constants for Node Type Concepts .. 97
Constants for Notification Option Type Concepts ... 97
Constants for Object Type Concepts .. 97

Constants for Extrinsic Object Types .. 98
Constants for Phone Type Concepts ... 98
Constants for Query Language Concepts ... 99
Constants for Response Status Type Concepts .. 99
Constants for Stability Type Concepts ... 99
Constants for Status Type Concepts ... 99
Constants for Subject Role Concepts .. 100

Contents

Service Registry 3.1 Developer's Guide • February 20076

Constants for Stored Queries ... 100

Index ... 101

Contents

7

8

Preface

The Service Registry 3.1 Developer's Guide describes how to use the JavaTM API for XML
Registries (JAXR) to query Service Registry (“the Registry”) and to publish content to it.

Service Registry is an ebXML Registry: a federated registry and repository that manages all types
of electronic content described by standard and extensible metadata. It provides federated,
secure information management of Service Oriented Architecture (SOA) and other content and
metadata. It supports the ebXML Registry 3.0 and UDDI 3.0 registry protocols.

Who Should Use This Book
The Developer's Guide is intended for applications programmers who plan to develop JAXR
clients that search the Registry and that publish content to the Registry.

This guide assumes you are familiar with the following:

■ The Java programming language
■ The basic concepts of the ebXML Registry and Repository specifications

Before You Read This Book
You should be familiar with the basic concepts of these specifications:

■ ebXML Registry Information Model Version 3.0
■ ebXML Registry Services and Protocols Version 3.0

As you develop code, you can use the Web Console provided with the Service Registry software
to verify that your code is working correctly. Read the Service Registry 3.1 User’s Guide to
familiarize yourself with the Web Console.

Service Registry is a component of Sun Java Enterprise System (“Java ES”), a software
infrastructure that supports enterprise applications distributed across a network or Internet
environment. You should be familiar with the Java ES* documentation at
http://docs.sun.com/coll/1286.2.

9

http://docs.oasis-open.org/regrep/v3.0/specs/regrep-rim-3.0-os.pdf
http://docs.oasis-open.org/regrep/v3.0/specs/regrep-rs-3.0-os.pdf
http://docs.sun.com/coll/1286.2

How This Book Is Organized
The contents of this book are as follows:

Chapter 1 provides a brief overview of JAXR.

Chapter 2 describes the first steps to follow to implement a JAXR client that can perform
queries and updates to the Service Registry.

Chapter 3 describes the interfaces and methods JAXR provides for querying a registry.

Chapter 4 describes how to publish objects to the Registry.

Chapter 5 describes how to perform operations on objects in the registry, such as deleting
objects and changing their state.

Chapter 6 describes how to develop Java client programs that enable you to use UDDI queries to
search the Registry.

Chapter 7 describes solutions to some problems that you can encounter when using JAXR with
Service Registry.

Appendix A lists constants that you can use to search for objects by their unique identifiers.

Service Registry Documentation Set
The Service Registry documentation set is available at
http://docs.sun.com/app/docs/coll/1314.2. To learn about Service Registry, refer to the
books listed in the following table.

TABLE P–1 Service Registry Documentation

Document Title Contents

Service Registry 3.1 Release Notes Contains the latest information about Service
Registry, including known problems.

Service Registry 3.1 Administration Guide Describes how to configure Service Registry after
installation and how to use the administration tool
provided with the Registry. It also describes how to
perform other administrative tasks.

Service Registry 3.1 User’s Guide Describes how to use the Service Registry Web
Console to search Service Registry and to publish data
to it.

Preface

Service Registry 3.1 Developer's Guide • February 200710

http://docs.sun.com/app/docs/coll/1314.2

TABLE P–1 Service Registry Documentation (Continued)
Document Title Contents

Service Registry 3.1 Developer’s Guide Describes how to use the Java API for XML Registries
(JAXR) to search Service Registry and to publish data
to it.

Related Books
When you install Service Registry, it is deployed to the Sun Java System Application Server. For
information about administering Application Server, refer to Sun Java System Application
Server Enterprise Edition 8.2 Administration Guide.

The Java ES documentation set describes deployment planning and system installation. The
URL for system documentation is http://docs.sun.com/coll/1286.2. For an introduction to
Java ES, refer to the books in the order in which they are listed in the following table.

TABLE P–2 Java Enterprise System Documentation

Document Title Contents

Sun Java Enterprise System 5 Release
Notes for UNIX

Sun Java Enterprise System 5 Release
Notes for Microsoft Windows

Contains the latest information about Java ES, including known
problems. In addition, components have their own release notes listed
in the Release Notes Collection
(http://docs.sun.com/coll/1315.2).

Sun Java Enterprise System 5
Technical Overview

Introduces the technical and conceptual foundations of Java ES.
Describes components, the architecture, processes, and features.

Sun Java Enterprise System
Deployment Planning Guide

Provides an introduction to planning and designing enterprise
deployment solutions based on Java ES. Presents basic concepts and
principles of deployment planning and design, discusses the solution
life cycle, and provides high-level examples and strategies to use when
planning solutions based on Java ES.

Sun Java Enterprise System 5
Installation Planning Guide

Helps you develop the implementation specifications for the hardware,
operating system, and network aspects of your Java ES deployment.
Describes issues such as component dependencies to address in your
installation and configuration plan.

Sun Java Enterprise System 5
Installation Guide for UNIX

Sun Java Enterprise System 5
Installation Guide for Microsoft
Windows

Guides you through the process of installing Java ES. Also shows how
to configure components after installation, and verify that they
function properly.

Preface

11

http://docs.sun.com/coll/1286.2
http://docs.sun.com/coll/1315.2

TABLE P–2 Java Enterprise System Documentation (Continued)
Document Title Contents

Sun Java Enterprise System 5
Installation Reference for UNIX

Gives additional information about configuration parameters,
provides worksheets to use in your configuration planning, and lists
reference material such as default directories and port numbers on the
Solaris Operating System and Linux operating environment.

Sun Java Enterprise System 5 Upgrade
Guide for UNIX

Sun Java Enterprise System 5 Upgrade
Guide for Microsoft Windows

Provides instructions for upgrading to Java ES 5 from previously
installed versions.

Sun Java Enterprise System 5
Monitoring Guide

Gives instructions for setting up the Monitoring Framework for each
product component and using the Monitoring Console to view
real-time data and create monitoring rules.

Sun Java Enterprise System Glossary Defines terms that are used in Java ES documentation.

The URL for all documentation about Java ES and its components is
http://docs.sun.com/prod/entsys.5.

Default Paths and File Names
The following table describes the default paths and file names that are used in this book.

TABLE P–3 Default Paths and File Names

Placeholder Description Default Value

ServiceRegistry-base Represents the base installation
directory for Service Registry.

Solaris OS: /opt/SUNWsrvc-registry

Linux and HP-UX systems:
/opt/sun/srvc-registry

RegistryDomain-base Represents the directory where the
Application Server domain for
Service Registry is located and where
the Service Registry database is
located.

Solaris OS:
/var/opt/SUNWsrvc-registry

Linux and HP-UX systems:
/var/opt/sun/srvc-registry

Ant-base Represents the directory where the
Java ES version of the Ant tool is
located.

Solaris OS: /usr/sfw/bin

Linux and HP-UX systems:
/opt/sun/share/bin

Preface

Service Registry 3.1 Developer's Guide • February 200712

http://docs.sun.com/prod/entsys.5

Typographic Conventions
The following table describes the typographic changes that are used in this book.

TABLE P–4 Typographic Conventions

Typeface Meaning Example

AaBbCc123 The names of commands, files, and
directories, and onscreen computer
output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have mail.

AaBbCc123 What you type, contrasted with onscreen
computer output

machine_name% su

Password:

AaBbCc123 A placeholder to be replaced with a real
name or value

The command to remove a file is rm filename.

AaBbCc123 Book titles, new terms, and terms to be
emphasized (note that some emphasized
items appear bold online)

Read Chapter 6 in the User's Guide.

A cache is a copy that is stored locally.

Do not save the file.

Shell Prompts in Command Examples
The following table shows default system prompts and superuser prompts.

TABLE P–5 Shell Prompts

Shell Prompt

C shell on UNIX and Linux systems machine_name%

C shell superuser on UNIX and Linux systems machine_name#

Bourne shell and Korn shell on UNIX and Linux systems $

Bourne shell and Korn shell superuser on UNIX and Linux systems #

Microsoft Windows command line C:\

Preface

13

Symbol Conventions
The following table explains symbols that might be used in this book.

TABLE P–6 Symbol Conventions

Symbol Description Example Meaning

[] Contains optional arguments
and command options.

ls [-l] The -l option is not required.

{ | } Contains a set of choices for a
required command option.

-d {y|n} The -d option requires that you use
either the y argument or the n
argument.

${ } Indicates a variable
reference.

${com.sun.javaRoot} References the value of the
com.sun.javaRoot variable.

- Joins simultaneous multiple
keystrokes.

Control-A Press the Control key while you press
the A key.

+ Joins consecutive multiple
keystrokes.

Ctrl+A+N Press the Control key, release it, and
then press the subsequent keys.

→ Indicates menu item
selection in a graphical user
interface.

File → New → Templates From the File menu, choose New.
From the New submenu, choose
Templates.

Documentation, Support, and Training
The Sun web site provides information about the following additional resources:

■ Documentation (http://www.sun.com/documentation/)
■ Support (http://www.sun.com/support/)
■ Training (http://www.sun.com/training/)

Searching Sun Product Documentation
Besides searching Sun product documentation from the docs.sun.comSM web site, you can use a
search engine by typing the following syntax in the search field:

search-term site:docs.sun.com

For example, to search for “broker,” type the following:

broker site:docs.sun.com

Preface

Service Registry 3.1 Developer's Guide • February 200714

http://www.sun.com/documentation/
http://www.sun.com/support/
http://www.sun.com/training/

To include other Sun web sites in your search (for example, java.sun.com, www.sun.com, and
developers.sun.com), use sun.com in place of docs.sun.com in the search field.

Third-Party Web Site References
Third-party URLs are referenced in this document and provide additional, related information.

Note – Sun is not responsible for the availability of third-party web sites mentioned in this
document. Sun does not endorse and is not responsible or liable for any content, advertising,
products, or other materials that are available on or through such sites or resources. Sun will not
be responsible or liable for any actual or alleged damage or loss caused or alleged to be caused by
or in connection with use of or reliance on any such content, goods, or services that are available
on or through such sites or resources.

Sun Welcomes Your Comments
Sun is interested in improving its documentation and welcomes your comments and
suggestions. To share your comments, go to http://docs.sun.com and click Send Comments.
In the online form, provide the full document title and part number. The part number is a
7-digit or 9-digit number that can be found on the book's title page or in the document's URL.
For example, the part number of this book is 819-4638.

Preface

15

http://java.sun.com
http://www.sun.com
http://developers.sun.com
http://docs.sun.com

16

Overview of JAXR

This section provides a brief overview of the JavaTM API for XML Registries (JAXR). The section
covers the following topics:

■ “About Registries and Repositories” on page 17
■ “About JAXR” on page 18
■ “JAXR Architecture” on page 19
■ “About the Examples” on page 20

About Registries and Repositories
An XML registry is an infrastructure that enables the building, deployment, and discovery of
web services. It is a neutral third party that facilitates dynamic and loosely coupled
business-to-business (B2B) interactions. A registry is available to organizations as a shared
resource, normally in the form of a web-based service.

Currently, several specifications for XML registries exist. These specifications include

■ The ebXML Registry and Repository standard, which is sponsored by the Organization for
the Advancement of Structured Information Standards (OASIS) and the United Nations
Centre for the Facilitation of Procedures and Practices in Administration, Commerce and
Transport (U.N./CEFACT). ebXML stands for Electronic Business using eXtensible Markup
Language.

■ The Universal Description, Discovery, and Integration (UDDI) protocol, which is
developed by a vendor consortium.

A registry provider is an implementation of a registry that conforms to a specification for XML
registries.

While a UDDI registry stores information about businesses and the services they offer, an
ebXML registry has a much wider scope. It is a repository as well as a registry. A repository
stores arbitrary content as well as information about that content. In other words, a repository

1C H A P T E R 1

17

stores data as well as metadata. The ebXML Registry standard defines an interoperable
Enterprise Content Management (ECM) API for web services.

An ebXML registry and repository is to the web what a relational database is to enterprise
applications: it provides a means for web services and web applications to store and share
content and metadata.

An ebXML registry can be part of a registry federation, an affiliated group of registries. For
example, the health ministry of a country in Europe could operate a registry, and that registry
could be part of a federation that included the registries of other European health ministries.

Service Registry implements version 3.0 of the ebXML Registry and Repository specification.
The specification is in two parts:

■ ebXML Registry Services and Protocols Version 3.0 (“ebXML RS”) defines the services and
protocols for an ebXML Registry.

■ ebXML Registry Information Model Version 3.0 (“ebXML RIM”) defines the types of
metadata and content that can be stored in an ebXML Registry.

Service Registry is based on an open source registry project developed at SourceForge.net. The
web site for the SourceForge project contains a Wiki with additional information about ebXML
registries, including an overview.

■ http://ebxmlrr.sourceforge.net/wiki/

■ http://ebxmlrr.sourceforge.net/wiki/index.php/Overview

About JAXR
JAXR enables Java software programmers to use a single, easy-to-use abstraction API to access a
variety of XML registries. A unified JAXR information model describes content and metadata
within XML registries.

JAXR gives developers the ability to write registry client programs that are portable across
various target registries. JAXR also enables value-added capabilities beyond those of the
underlying registries.

The current version of the JAXR specification includes detailed bindings between the JAXR
information model and the ebXML Registry specifications. You can find the latest version of the
JAXR specification at http://java.sun.com/xml/downloads/jaxr.html. The API
documentation for JAXR is part of the API documentation for Java 2 Platform, Enterprise
Edition (J2EE platform) (http://java.sun.com/j2ee/1.4/docs/api/index.html).

Service Registry includes a JAXR provider that implements the level 1 capability profile, which
allows full access to ebXML registries. The ebXML specifications and the JAXR specification are
not in perfect alignment, because the ebXML specifications have advanced beyond the JAXR
specification. For this reason, the JAXR provider for the Registry includes some additional

About JAXR

Service Registry 3.1 Developer's Guide • February 200718

http://docs.oasis-open.org/regrep/v3.0/specs/regrep-rs-3.0-os.pdf
http://docs.oasis-open.org/regrep/v3.0/specs/regrep-rim-3.0-os.pdf
http://ebxmlrr.sourceforge.net/wiki/
http://ebxmlrr.sourceforge.net/wiki/index.php/Overview
http://java.sun.com/xml/downloads/jaxr.html
http://java.sun.com/j2ee/1.4/docs/api/index.html
http://java.sun.com/j2ee/1.4/docs/api/index.html

implementation-specific interfaces, classes, and methods that implement the ebXML
specifications. These additional interfaces, classes, and methods are likely to be included in the
next version of the JAXR specification.

JAXR Architecture
The high-level architecture of JAXR consists of the following parts:

■ A JAXR client: This is a client program that uses the JAXR API to access a registry through a
JAXR provider.

■ A JAXR provider: This is an implementation of the JAXR API that provides access to a
specific registry provider or to a class of registry providers that are based on a common
specification. This guide does not describe how to implement a JAXR provider.

A JAXR provider implements two main packages:

■ javax.xml.registry, which consists of the API interfaces and classes that define the
registry access interface.

■ javax.xml.registry.infomodel, which consists of interfaces that define the information
model for JAXR. These interfaces define the types of objects that reside in a registry and how
they relate to each other. The basic interface in this package is the RegistryObject
interface.

The most basic interfaces in the javax.xml.registry package are

■ Connection. The Connection interface represents a client session with a registry provider.
The client must create a connection with the JAXR provider in order to use a registry.

■ RegistryService. The client obtains a RegistryService object from its connection. The
RegistryService object in turn enables the client to obtain the interfaces it uses to access
the registry.

The primary interfaces, also part of the javax.xml.registry package, are

■ QueryManager and BusinessQueryManager, which allow the client to search a registry for
information in accordance with the javax.xml.registry.infomodel interfaces. An
optional interface, DeclarativeQueryManager, allows the client to use SQL syntax for
queries. The ebXML provider for the Registry implements DeclarativeQueryManager.

■ LifeCycleManager and BusinessLifeCycleManager, which allow the client to modify the
information in a registry by either saving the information (updating it) or deleting it.

For more details, and for a figure that illustrates the relationships among these interfaces, see
the API documentation for the javax.xml.registry package at
http://java.sun.com/j2ee/1.4/docs/api/javax/xml/registry/package-summary.html.

When an error occurs, JAXR API methods throw a JAXRException or one of its subclasses.

JAXR Architecture

Chapter 1 • Overview of JAXR 19

http://java.sun.com/j2ee/1.4/docs/api/javax/xml/registry/package-summary.html

Many methods in the JAXR API use a Collection object as an argument or a returned value.
Use of a Collection object allows operations on several registry objects at a time.

Figure 1–1 illustrates the architecture of JAXR. For the Registry, a JAXR client uses the
capability level 0 and level 1 interfaces of the JAXR API to access the JAXR provider, which is an
ebXML provider. The JAXR provider in turn accesses the Registry, an ebXML registry.

About the Examples
Many sample client programs that demonstrate JAXR features are described in this manual. If
you installed the developer bundle for the registry, a zip file containing these examples is in the
file ServiceRegistry-base/samples.zip.

Copy this zip file to any convenient location on your file system. After you unzip the file, the
example source code is in the directory INSTALL/registry-samples, where INSTALL is the
directory where you unzipped the examples.

Each example or group of examples has a build.xml file that allows you to compile and run
each example using the Ant tool. Each build.xml file has a compile target and one or more
targets that run the example or examples. Some of the run targets take command-line
arguments.

On a system where the Service Registry developer bundle is installed, the ant command is in the
following directory:

UDDI

ebXML Provider UDDI Provider Other Provider

JAXR API
Capability-specific Interfaces

JAXR Client

Registry-specific
JAXR Provider

Diverse
Registries

UDDI/
SOAP

Other

???

ebXML

ebXML/
SOAP

FIGURE 1–1 JAXR Architecture

About the Examples

Service Registry 3.1 Developer's Guide • February 200720

On Solaris OS: /usr/sfw/bin

On Linux and HP-UX systems: /opt/sun/share/bin

This manual refers to this directory as Ant-base.

The ant command requires the JAVA_HOME environment variable to be set. Ordinarily, you set
this variable to the following value:

/usr/jdk/entsys-j2se

Before you run the examples, you must edit the build.properties file in the directory
INSTALL/registry-samples/common. This file is used by the Ant targets that run the
examples.

The other properties file, JAXRExamples.properties, is a resource bundle that is used by the
examples themselves. It contains strings that you can modify at any time. The Ant targets that
run the examples always use the latest version of the file.

In addition, a targets.xml file in the INSTALL/registry-samples/common directory defines
the classpath for compiling and running the examples. It also contains a clean target that
deletes the build directory created when each example is compiled. You do not need to edit this
file.

Note – You can find additional JAXR examples in the form of Junit tests at the SourceForge
project web site. You can browse these examples online or follow the download instructions.

▼ To Edit the build.properties File
Set the property registry.home to the directory where the Registry is installed.
On Solaris OS: /opt/SUNWsrvc-registry

On Linux and HP-UX systems: /opt/sun/srvc-registry

Set the property share.dir to the directory where the Java ES shared components are located.
On Solaris OS: /usr/share

On Linux and HP-UX systems: /opt/sun/share

Set the property proxyHost to the name of the system through which you access the Internet, if
you are behind a firewall.
If you are not sure what the value should be, consult your system administrator or another
person with that information. The proxyPort value is set to 8080, the typical value; change this
value if necessary.

1

2

3

About the Examples

Chapter 1 • Overview of JAXR 21

http://http:ebxmlrr.cvs.sourceforge.net/ebxmlrr/omar/test/org/freebxml/omar/client/xml/registry/
http://sourceforge.net/tracker/index.php?func=detail[amp]aid=1043009[amp]group_id=37074[amp]atid=627327

Edit the properties query.url and publish.url to specify the URL of the Registry.
The file provides a default setting of localhost:6480 for the host and port. Change this setting
to another host or port if the Registry is installed on a remote server or at a non-default port.

Edit the alias and passwordproperties to specify the values that are required for publishing to
the Registry. Make these edits after you use the User Registration Wizard of the Web Console.
See “Getting Access to the Registry”on page 23 for details.

4

5

About the Examples

Service Registry 3.1 Developer's Guide • February 200722

Setting Up a JAXR Client

This chapter describes the first steps to follow to implement a JAXR client that can perform
queries and updates to Service Registry. A JAXR client is a client program that uses the JAXR
API to access registries.

This chapter covers the following topics:

■ “Starting the Registry” on page 23
■ “Getting Access to the Registry” on page 23
■ “Establishing a Connection to the Registry” on page 25
■ “Obtaining and Using a RegistryService Object” on page 26

Starting the Registry
To start the Registry, you start the container where the Registry is installed, the Sun Java System
Application Server.

If the Registry is not already running, start it or ask your system administrator to do so. See “To
Stop and Restart the Application Server Domain for the Registry” in Service Registry 3.1
Administration Guide for instructions.

Getting Access to the Registry
Any user of a JAXR client can perform queries on the Registry for objects that are not restricted
by an access control policy. A user must, however, obtain permission from the Registry for the
following actions:

■ To add data to the Registry
■ To update Registry data
■ To perform queries for restricted objects

The Registry uses client-certificate authentication for user access.

2C H A P T E R 2

23

To create a user that can submit data to the Registry, use the User Registration Wizard of the
Web Console. The Web Console is part of the Registry software. For details on using the wizard
to obtain a user name and password as well as a certificate that authorizes you to use the
Registry, see “Creating a User Account” in Service Registry 3.1 User’s Guide. You can also use an
existing certificate that you obtained from a certificate authority.

Before you can publish to the Registry, you must move the certificate from the .p12 file that you
downloaded to a JKS keystore file. The keystore file must reside at the following location in your
home directory: $HOME/soar/3.0/jaxr-ebxml/security/keystore.jks. The example
programs include an Ant target that performs this task. For details, see “To Create a Keystore
for Your Certificate” on page 24.

After you create a user account and a keystore, edit the build.properties file. See “To Edit the
Security Settings of the build.properties File” on page 25 for details.

▼ To Create a Keystore for Your Certificate
To create a JKS keystore for your certificate, you use the Ant target move-keystore, which is
defined in the file INSTALL/registry-samples/common/targets.xml. This targets file is used
by all the build.xml files in the example directories.

Note – The Admin Tool keystoreMover command performs the same function as this Ant
target. See “keystoreMover” in Service Registry 3.1 Administration Guide for details.

The move-keystore target uses a property named keystoreFile that is defined in the file
INSTALL/registry-samples/common/build.properties. Do not change the definition of
this property. The move-keystore target also specifies a keystore password of ebxmlrr. This
value is used in the storepass property of the file build.properties.

Go to any of the example directories except common.
For example, you might use the following command:
cd registry-samples/search-id

Run the following command (all on one line):
Ant-base/ant move-keystore -Dp12path=path-of-p12-file -Dalias=your-user-name
-Dpassword=your-password

Use a command like the following:

Ant-base/ant move-keystore -Dp12path=/home/myname/testuser.p12 -Dalias=testuser

-Dpassword=testuser

To see a syntax reminder for this target, use the command Ant-base/ant -projecthelp.

1

2

Getting Access to the Registry

Service Registry 3.1 Developer's Guide • February 200724

▼ To Edit the Security Settings of the build.properties
File

Open the file INSTALL/registry-samples/common/build.properties in a text editor.

Find the following lines:
alias=

keypass=

For the value of the aliasproperty, specify the alias that you provided to the User Registration
Wizard.

For the value of the keypassproperty, specify the password that you provided to the User
Registration Wizard.

Save and close the file.

Establishing a Connection to the Registry
The first task that a JAXR client must complete is to establish a connection to a registry.
Establishment of a connection involves the following tasks:

■ “Obtaining a Connection Factory” on page 25
■ “Creating a Connection” on page 25

Obtaining a Connection Factory
A client creates a connection from a connection factory. To obtain an instance of the abstract
class ConnectionFactory, the client calls the getConnectionFactory method in the JAXR
provider’s JAXRUtility class.

import org.freebxml.omar.client.xml.registry.util.JAXRUtility;

...

ConnectionFactory factory = JAXRUtility.getConnectionFactory();

Creating a Connection
To create a connection, a client first creates a set of properties that specify the URL or URLs of
the registry or registries to be accessed. The following code provides the URLs of the query
service and publishing service for the Registry if the Registry is deployed on the local system.

1

2

3

4

5

Establishing a Connection to the Registry

Chapter 2 • Setting Up a JAXR Client 25

Properties props = new Properties();

props.setProperty("javax.xml.registry.queryManagerURL",

"http://localhost:6480/soar/registry/soap");

props.setProperty("javax.xml.registry.lifeCycleManagerURL",

"http://localhost:6480/soar/registry/soap");

The client then obtains the connection factory as described in “Obtaining a Connection
Factory” on page 25, sets its properties, and creates the connection. The following code
fragment performs these tasks:

ConnectionFactory factory = JAXRUtility.getConnectionFactory();

factory.setProperties(props);

Connection connection = factory.createConnection();

The makeConnection method in the sample programs shows the steps used to create a JAXR
connection.

Table 2–1 lists and describes the two properties that you can set on a connection. These
properties are defined in the JAXR specification.

TABLE 2–1 Standard JAXR Connection Properties

Property Name and Description Data Type Default Value

javax.xml.registry.queryManagerURL

Specifies the URL of the query manager service within the target
registry provider.

String None

javax.xml.registry.lifeCycleManagerURL

Specifies the URL of the life-cycle manager service within the
target registry provider (for registry updates).

String Same as the specified
queryManagerURL value

Obtaining and Using a RegistryServiceObject
After creating the connection, the client uses the connection to obtain a RegistryService
object and then the interface or interfaces that the client will use:

RegistryService rs = connection.getRegistryService();

DeclarativeQueryManager bqm = rs.getDeclarativeQueryManager();

BusinessLifeCycleManager blcm = rs.getBusinessLifeCycleManager();

Typically, a client obtains two objects from the RegistryService object: a query manager and a
life cycle manager. The query manager is either a DeclarativeQueryManager object or a
BusinessQueryManager object; both of these implement the base interface QueryManager. The
life cycle manager is a BusinessLifeCycleManager object, which implements the base interface
LifeCycleManager. If the client is using the Registry for simple queries only, it might need to
obtain only a query manager.

Obtaining and Using a RegistryServiceObject

Service Registry 3.1 Developer's Guide • February 200726

If your program uses implementation-specific features of the Service Registry JAXR provider,
you need to use the implementation-specific version of the respective query manager or life
cycle manager: BusinessQueryManagerImpl, DeclarativeQueryManagerImpl, or
BusinessLifeCycleManagerImpl.

Obtaining and Using a RegistryServiceObject

Chapter 2 • Setting Up a JAXR Client 27

28

Querying a Registry

This chapter describes the interfaces and methods that JAXR provides for querying a registry.
The chapter covers the following topics:

■ “Basic Query Methods” on page 29
■ “JAXR Information Model Interfaces” on page 30
■ “Finding Objects by Unique Identifier” on page 34
■ “Finding Objects by Name” on page 35
■ “Finding Objects by Type” on page 37
■ “Finding Objects by Classification” on page 38
■ “Finding Objects by External Identifier” on page 41
■ “Finding Objects by External Link” on page 42
■ “Finding Objects You Published” on page 43
■ “Retrieving Information About an Object” on page 44
■ “Using Declarative Queries” on page 55
■ “Using Iterative Queries” on page 56
■ “Using Stored Queries” on page 58
■ “Using Federated Queries” on page 59

Basic Query Methods
The simplest way for a client to use a registry is to query the registry for information about the
objects and data it contains. The QueryManager, BusinessQueryManager, and RegistryObject

interfaces support a number of finder and getter methods. These methods allow clients to
search for data by using the JAXR information model. Many of the finder methods return a
BulkResponse. A BulkResponse is a collection of objects that meets a set of criteria that are
specified in the method arguments.

3C H A P T E R 3

29

The most general of these methods are as follows:

■ getRegistryObject and getRegistryObjects. When used with an argument, these
QueryManager methods return one or more objects based on their object type or unique
identifier. Without an argument, the getRegistryObjects method returns the objects
owned by the caller. For information on unique identifiers, see “Finding Objects by Unique
Identifier” on page 34.

■ findObjects, an implementation-specific BusinessQueryManager method that returns a
list of all objects of a specified type that meet the specified criteria.

Other finder methods allow you to find specific kinds of objects supported by the JAXR
information model. A UDDI registry supports a specific hierarchy of objects: organizations,
which contain users, services, and service bindings. In contrast, an ebXML registry permits the
storage of freestanding objects of various types that can be linked to each other in various ways.
Other objects are not freestanding but are always attributes of another object.

The BusinessQueryManager finder methods are useful primarily for searching UDDI registries.
The more general findObjects method and the RegistryObject getter methods are more
appropriate for Service Registry.

To execute queries for unrestricted objects (see “Getting Access to the Registry” on page 23),
you do not need to log in to the Registry. By default, an unauthenticated user has the identity of
the user named “Registry Guest.”

JAXR Information Model Interfaces
Table 3–1 lists the main interfaces supported by the JAXR information model. All these
interfaces extend the RegistryObject interface. The table indicates objects specific to the
Service Registry implementation of JAXR.

For more details, and for a figure that illustrates the relationships among these interfaces, see
the API documentation for the javax.xml.registry.infomodel package at
http://java.sun.com/

j2ee/1.4/docs/api/javax/xml/registry/infomodel/package-summary.html.

TABLE 3–1 JAXR RegistryObject Subinterfaces

Interface Name Description

AdhocQuery (Implementation-specific) Represents an ad hoc query expressed in a query syntax.
AdhocQuery objects are stored in the Registry and are used for discovery of registry
objects. AdhocQuery objects are similar in purpose to the concept of stored
procedures in relational databases.

JAXR Information Model Interfaces

Service Registry 3.1 Developer's Guide • February 200730

http://java.sun.com/j2ee/1.4/docs/api/javax/xml/registry/infomodel/package-summary.html
http://java.sun.com/j2ee/1.4/docs/api/javax/xml/registry/infomodel/package-summary.html

TABLE 3–1 JAXR RegistryObject Subinterfaces (Continued)
Interface Name Description

Association Defines a relationship between two objects.

Getter and finder methods: RegistryObject.getAssociations,
BusinessQueryManager.findAssociations,
BusinessQueryManager.findCallerAssociations.

AuditableEvent Provides a record of a change to an object. A collection of AuditableEvent objects
constitutes an object’s audit trail.

Getter method: RegistryObject.getAuditTrail.

Classification Classifies an object by using a ClassificationScheme.

Getter method: RegistryObject.getClassifications.

ClassificationScheme Represents a taxonomy used to classify objects. In an internal
ClassificationScheme, all taxonomy elements are defined in the registry as Concept
instances. In an external ClassificationScheme, the values are not defined in the
registry as Concept instances but instead are referenced by their String
representations.

Finder methods: BusinessQueryManager.findClassificationSchemes,
BusinessQueryManager.findClassificationSchemeByName.

Concept Represents a taxonomy element and its structural relationship with other elements in
an internal ClassificationScheme. Called a ClassificationNode in the ebXML
specifications.

Finder methods: BusinessQueryManager.findConcepts,
BusinessQueryManager.findConceptByPath.

ExternalIdentifier Provides additional information about an object by using String values within an
identification scheme (an external ClassificationScheme). Examples of
identification schemes are DUNS numbers and Social Security numbers.

Getter method: RegistryObject.getExternalIdentifiers.

ExternalLink Provides a URI for content that resides outside the registry.

Getter method: RegistryObject.getExternalLinks.

ExtrinsicObject Provides metadata that describes submitted content whose type is not intrinsically
known to the registry and that therefore must be described by means of additional
attributes, such as MIME type.

No specific getter or finder methods.

Federation (Implementation-specific) Represents an affiliated group of registries.

No specific getter or finder methods.

JAXR Information Model Interfaces

Chapter 3 • Querying a Registry 31

TABLE 3–1 JAXR RegistryObject Subinterfaces (Continued)
Interface Name Description

Notification (Implementation-specific) Represents a notification from the registry regarding an
event that matches a Subscription.

No specific getter or finder methods.

Organization Provides information about an organization. May have a parent, and may have one or
more child organizations. Always has a User object as a primary contact, and may
offer Service objects.

Finder method: BusinessQueryManager.findOrganizations.

Registry (Implementation-specific) Represents a registry.

No specific getter or finder methods.

RegistryPackage Represents a logical grouping of registry objects. A RegistryPackage may have any
number of RegistryObjects.

Getter and finder methods: RegistryObject.getRegistryPackages,
BusinessQueryManager.findRegistryPackages.

Service Provides information on a service. May have a set of ServiceBinding objects.

Finder method: BusinessQueryManager.findServices.

ServiceBinding Represents technical information on how to access a Service.

Getter and finder methods: Service.getServiceBindings,
BusinessQueryManager.findServiceBindings.

SpecificationLink Provides the linkage between a ServiceBinding and a technical specification that
describes how to use the service by using the ServiceBinding.

Getter method: ServiceBinding.getSpecificationLinks.

Subscription (Implementation-specific) Defines a User's interest in certain types of
AuditableEvent objects.

No specific getter or finder methods.

User Provide information about registered users within the registry. User objects are
affiliated with Organization objects.

Getter methods: Organization.getUsers, Organization.getPrimaryContact.

Table 3–2 lists the other interfaces supported by the JAXR information model. These interfaces
provide attributes for the main registry objects. These interfaces do not extend the
RegistryObject interface.

JAXR Information Model Interfaces

Service Registry 3.1 Developer's Guide • February 200732

TABLE 3–2 JAXR Information Model Interfaces Used as Attributes

Interface Name Description

EmailAddress Represents an email address. A User can have an EmailAddress.

Getter method: User.getEmailAddresses.

InternationalString Represents a String that can be internationalized into several
locales. Contains a Collection of LocalizedString objects. The
name and description of a RegistryObject are
InternationalString objects.

Getter methods: RegistryObject.getName,
RegistryObject.getDescription.

Key An object that identifies a RegistryObject. Contains a unique
identifier value that must be a unique URN, such as a DCE 128
UUID (Universal Unique IDentifier).

Getter method: RegistryObject.getKey.

LocalizedString A component of an InternationalString that associates a
String with its Locale.

Getter method: InternationalString.getLocalizedStrings.

PersonName Represents a person’s name. A User has a PersonName.

Getter method: User.getPersonName.

PostalAddress Represents a postal address. An Organization or User can have
one or more PostalAddress objects.

Getter methods: Organization.getPostalAddress,
OrganizationImpl.getPostalAddresses

(implementation-specific), User.getPostalAddresses.

Slot Provides a dynamic way to add arbitrary attributes to
RegistryObject instances.

Getter methods: RegistryObject.getSlot,
RegistryObject.getSlots.

TelephoneNumber Represents a telephone number. An Organization or a User can
have one or more TelephoneNumber objects.

Getter methods: Organization.getTelephoneNumbers,
User.getTelephoneNumbers.

JAXR Information Model Interfaces

Chapter 3 • Querying a Registry 33

Finding Objects by Unique Identifier
Every object in the Registry has two identifiers, a unique identifier (also called a Key) and a
logical identifier. Often, the unique identifier is the same as the logical identifier. However,
when an object exists in more than one version, the unique identifiers are different for each
version, but the logical identifier remains the same. (See “Retrieving the Version of an Object”
on page 54.)

If you know the value of the unique identifier for an object, you can retrieve the object by calling
the QueryManager.getRegistryObject method with the String value as an argument. For
example, if bqm is your BusinessQueryManager instance and idString is the String value, the
following line of code retrieves the object:

RegistryObject obj = bqm.getRegistryObject(idString);

After you have the object, you can obtain its type, name, description, and other attributes.

Finding objects by identifier is the most efficient way to retrieve objects from the Registry.

Finding Objects by Unique Identifier: Example
For an example of finding objects by unique identifier, see JAXRSearchById.java in the
directory INSTALL/registry-samples/search-id/src, which searches for objects that have a
specified unique identifier.

▼ To Run the JAXRSearchById Example

Go to the directory INSTALL/registry-samples/search-id.

Type the following command:
Ant-base/ant run -Did=urn-value

For example, if you specify the following ID, you retrieve information on the ObjectType
classification scheme.

urn:oasis:names:tc:ebxml-regrep:classificationScheme:ObjectType

1

2

Finding Objects by Unique Identifier

Service Registry 3.1 Developer's Guide • February 200734

Finding Objects by Name
To search for objects by name, you normally use a combination of find qualifiers and name
patterns. Find qualifiers affect sorting and pattern matching. Name patterns specify the strings
to be searched. The BusinessQueryManagerImpl.findObjects method takes a collection of
FindQualifier objects as its second argument and takes a collection of name patterns as its
third argument. The method signature is as follows:

public BulkResponse findObjects(java.lang.String objectType,

java.util.Collection findQualifiers,

java.util.Collection namePatterns,

java.util.Collection classifications,

java.util.Collection specifications,

java.util.Collection externalIdentifiers,

java.util.Collection externalLinks)

throws JAXRException

For the first argument, the object type, you normally specify one of a set of string constants that
are defined in the LifeCycleManager interface.

You can use wildcards in a name pattern. Use percent signs (%) to specify that the search string
occurs at the beginning, middle, or end of the object name. Here are some examples:

■ Specify nor% to return strings that start with Nor or nor, such as North and northern.
■ Specify %off% to return strings that contain the string off, such as Coffee.
■ Specify %ica to return strings that end with ica, such as America.

You can also use an underscore (_) as a wildcard to match a single character. For example, the
search string _us_ would match objects named Aus1 and Bus3.

For example, the following code fragment finds all the organizations in the Registry whose
names begin with a specified string, searchString, and sorts them in alphabetical order.

// Define find qualifiers and name patterns

Collection findQualifiers = new ArrayList();

findQualifiers.add(FindQualifier.SORT_BY_NAME_ASC);

Collection namePatterns = new ArrayList();

namePatterns.add(searchString + "%");

// Find organizations with name that starts with searchString

BulkResponse response =

bqm.findObjects("Organization", findQualifiers,

namePatterns, null, null, null, null);

Collection orgs = response.getCollection();

Finding Objects by Name

Chapter 3 • Querying a Registry 35

The findObjects method is not case-sensitive, unless you specify
FindQualifier.CASE_SENSITIVE_MATCH. In the previous fragment, the first argument could be
either "Organization" or "organization", and the name pattern matches names regardless of
case.

The following code fragment performs a case-sensitive search for all registry objects whose
names contain the string searchString and sorts the objects in alphabetical order.

Collection findQualifiers = new ArrayList();

findQualifiers.add(FindQualifier.CASE_SENSITIVE_MATCH);

findQualifiers.add(FindQualifier.SORT_BY_NAME_ASC);

Collection namePatterns = new ArrayList();

namePatterns.add("%" + searchString + "%");

// Find objects with name that contains searchString

BulkResponse response =

bqm.findObjects("RegistryObject", findQualifiers,

namePatterns, null, null, null, null);

Collection objects = response.getCollection();

To locate a particular object, search by unique identifier if possible. Searching by name is less
efficient and more likely to lead to errors, since names are not unique.

Finding Objects by Name: Example
For an example of finding objects by name, see JAXRSearchByName.java in the directory
INSTALL/registry-samples/search-name/src.

▼ To Run the JAXRSearchByName Example

Go to the directory INSTALL/registry-samples/search-name.

Type the following command, specifying a string value:
Ant-base/ant run -Dname=string

The program performs a case-insensitive search, returning all objects whose names contain the
specified string. The program also displays the object’s classifications, external identifiers,
external links, slots, and audit trail.

1

2

Finding Objects by Name

Service Registry 3.1 Developer's Guide • February 200736

Finding Objects by Type
To find all objects of a specified type, specify only the first argument of the
BusinessQueryManagerImpl.findObjects method and, optionally, a collection of
FindQualifier objects. For example, if typeString is a string whose value is
LifeCycleManager.SERVICE, the following code fragment finds all services in the Registry and
sorts them in alphabetical order.

Collection findQualifiers = new ArrayList();

findQualifiers.add(FindQualifier.SORT_BY_NAME_ASC);

BulkResponse response = bqm.findObjects(typeString,

findQualifiers, null, null, null, null, null);

You cannot use wildcards in the first argument to findObjects.

Finding Objects by Type: Example
For an example of finding objects by type, see JAXRSearchByObjectType.java in the directory
INSTALL/registry-samples/search-object-type/src.

▼ To Run the JAXRSearchByObjectType Example

Go to the directory INSTALL/registry-samples/search-object-type.

Type the following command, specifying a string value:
Ant-base/ant run -Dtype=type-name

Specify the exact name of the type, not a wildcard, as in the following command line:

Ant-base/ant run -Dtype=federation

The JAXRSearchByObjectType program passes the object type as a string argument to
QueryManager.findObjects in order to accept user input as simply as possible. However,
developers should use the constants defined by the LifeCycleManager interface.

The program performs a case-insensitive search, returning all objects whose type is
type-nameand displaying their names, descriptions, and unique identifiers. At the end, it
displays the number of objects found.

1

2

Finding Objects by Type

Chapter 3 • Querying a Registry 37

Finding Objects by Classification
To find objects by classification, you first establish the classification within a particular
classification scheme. Then you specify the classification as an argument to the
BusinessQueryManagerImpl.findObjects method.

To establish the classification within a particular classification scheme, you first find the
classification scheme. Then you create a Classification object to be used as an argument to
the findObjects method or another finder method.

The following code fragment finds all organizations that correspond to a particular
classification within the ISO 3166 country codes classification system that is maintained by the
International Organization for Standardization (ISO). See
http://www.iso.org/iso/en/prods-services/iso3166ma/index.html for details. This
classification scheme is provided in the sample database that is included with the Registry.

String schemeId = "urn:freebxml:registry:demo:schemes:iso-ch:3166:1999";

ClassificationScheme cScheme =

(ClassificationScheme) bqm.getRegistryObject(schemeId);

Classification classification =

blcm.createClassification(cScheme, "United States", "US");

Collection classifications = new ArrayList();

classifications.add(classification);

// perform search

BulkResponse response = bqm.findObjects(LifeCycleManager.ORGANIZATION,

null, null, classifications, null, null, null);

Collection orgs = response.getCollection();

The ebXML Registry Information Model Specification requires a set of canonical classification
schemes to be present in an ebXML registry. Each scheme also has a set of required concepts
(which are called ClassificationNode objects in the ebXML specifications). The primary
purpose of the canonical classification schemes is not to classify objects but to provide
enumerated types for object attributes. For example, the EmailType classification scheme
provides a set of values for the type attribute of an EmailAddress object.

Table 3–3 lists and describes these canonical classification schemes.

TABLE 3–3 Canonical Classification Schemes

Classification Scheme Description

AssociationType Defines the types of associations between RegistryObjects.

ContentManagementService Defines the types of content management services.

Finding Objects by Classification

Service Registry 3.1 Developer's Guide • February 200738

http://www.iso.org/iso/en/prods-services/iso3166ma/index.html

TABLE 3–3 Canonical Classification Schemes (Continued)
Classification Scheme Description

DataType Defines the data types for attributes in classes defined by the
specification.

DeletionScopeType Defines the values for the deletionScope attribute in the
RemoveObjectsRequest protocol message.

EmailType Defines the types of email addresses.

ErrorHandlingModel Defines the types of error handling models for content
management services.

ErrorSeverityType Defines the different error severity types encountered by the
registry during processing of protocol messages.

EventType Defines the types of events that can occur in a registry.

InvocationModel Defines the different ways that a content management service
may be invoked by the registry.

NodeType Defines the different ways in which a ClassificationScheme
may assign the value of the code attribute for its
ClassificationNodes.

NotificationOptionType Defines the different ways in which a client may be notified by
the registry of an event within a Subscription.

ObjectType Defines the different types of RegistryObjects a registry may
support.

PhoneType Defines the types of telephone numbers.

QueryLanguage Defines the query languages supported by a registry.

ResponseStatusType Defines the different types of status for a RegistryResponse.

StatusType Defines the different types of status for a RegistryObject.

SubjectGroup Defines the groups that a User may belong to for access control
purposes.

SubjectRole Defines the roles that may be assigned to a User for access control
purposes.

To find objects that use the canonical classification schemes and their concepts, you can look up
the objects by using string constants that are defined in the package
org.freebxml.common.CanonicalConstants. The constants are listed in “Constants for
Classification Schemes” on page 94.

First, you look up the classification scheme by using the value of its unique identifier:

Finding Objects by Classification

Chapter 3 • Querying a Registry 39

String schemeId =

CanonicalConstants.CANONICAL_CLASSIFICATION_SCHEME_ID_SubjectRole;

ClassificationScheme cScheme =

(ClassificationScheme) bqm.getRegistryObject(schemeId);

String schemeName = getName(cScheme);

Then you look up the concept in the same way and create a classification from it:

String concId =

CanonicalConstants.CANONICAL_SUBJECT_ROLE_ID_RegistryAdministrator;

Concept concept = (Concept) bqm.getRegistryObject(concId);

Classification classification =

blcm.createClassification(concept);

Finally, you search for objects in the same way you do with a non-canonical classification
scheme:

Collection classifications = new ArrayList();

classifications.add(classification);

BulkResponse response = bqm.findObjects("RegistryObject",

null, null, classifications, null, null, null);

Collection objects = response.getCollection();

For a sample program that displays all the canonical classification schemes and their concepts,
see JAXRGetCanonicalSchemes.java in the directory
INSTALL/registry-samples/classification-schemes/src.

▼ To Run the JAXRGetCanonicalSchemes Example
Go to the directory INSTALL/registry-samples/classification-schemes.

Type the following command:
Ant-base/ant get-schemes

Finding Objects by Classification: Examples
For examples of finding objects by classification, see JAXRSearchByClassification.java and
JAXRSearchByCountryClassification.java in the directory
INSTALL/registry-samples/search-classification/src. The first example searches for
objects that use the canonical classification scheme SubjectRole, while the other example
searches for organizations that use a geographical classification.

The program JAXRSearchByCountryClassification.java uses the OR_ALL_KEYS field of
FindQualifier to find organizations that use either of two geographical classifications. By
default, finder methods look for objects that have all the specified classifications.

1

2

Finding Objects by Classification

Service Registry 3.1 Developer's Guide • February 200740

▼ To Run the JAXRSearchByClassification and
JAXRSearchByCountryClassification Examples
To obtain results from the JAXRSearchByCountryClassification example, you must publish
an object that uses the specified classifications. Run the example in “Adding Classifications:
Example” on page 69 first.

Go to the directory INSTALL/registry-samples/search-classification.

Type either of the following commands:
Ant-base/ant search-class

Ant-base/ant search-geo

The search-class target typically returns one result. The search-geo target returns results if
you have run the run target in “Adding Classifications: Example” on page 69.

Finding Objects by External Identifier
Finding objects by external identifier is similar to finding objects by classification. You first find
the classification scheme, then create an ExternalIdentifier object to be used as an argument
to the BusinessQueryManagerImpl.findObjects method or another finder method.

The following code fragment finds all registry objects that contain the Sun Microsystems stock
ticker symbol as an external identifier. You need to create an external classification scheme
named NASDAQ for this example to work. See “Adding External Identifiers to Objects” on page
69 for details on how to perform this task.

The collection of external identifiers is supplied as the next-to-last argument of the
findObjects method.

String schemeId = "urn:devguide:samples:ClassificationScheme:NASDAQ";

ClassificationScheme cScheme = (ClassificationScheme)

bqm.getRegistryObject(schemeId);

ExternalIdentifier extId =

blcm.createExternalIdentifier(cScheme, "%Sun%",

"SUNW");

Collection extIds = new ArrayList();

extIds.add(extId);

// perform search

BulkResponse response = bqm.findObjects("RegistryObject",

null, null, null, null, extIds, null);

Collection objects = response.getCollection();

Before You Begin

1

2

Finding Objects by External Identifier

Chapter 3 • Querying a Registry 41

Finding Objects by External Identifier: Example
For an example of finding objects by external identifier, see
JAXRSearchByExternalIdentifier.java in the directory
INSTALL/registry-samples/search-external-identifier/src, which searches for objects
that use the NASDAQ classification scheme.

▼ To Run the JAXRSearchByExternalIdentifier Example
To obtain results from this example, first run the publish-object example described in
“Adding Classifications: Example” on page 69.

Go to the directory INSTALL/registry-samples/search-external-identifier.

Type the following command:
Ant-base/ant run

Finding Objects by External Link
Finding objects by external link does not require the use of a classification scheme, but it does
require you to specify a valid URI. The arguments to the createExternalLink method are a
URI and a description.

If the link you specify is outside your firewall, you must also specify the system properties
http.proxyHost and http.proxyPort when you run the program so that JAXR can determine
the validity of the URI.

The following code fragment finds all organizations that have a specified ExternalLink object.

ExternalLink extLink =

blcm.createExternalLink("http://java.sun.com/",

"Sun Java site");

Collection extLinks = new ArrayList();

extLinks.add(extLink);

BulkResponse response = bqm.findObjects(LifeCycleManager.ORGANIZATION,

null, null, null, null, null, extLinks);

Collection objects = response.getCollection();

Finding Objects by External Link: Example
For an example of finding objects by external link, see JAXRSearchByExternalLink.java in the
directory INSTALL/registry-samples/search-external-link/src, which searches for

Before You Begin

1

2

Finding Objects by External Link

Service Registry 3.1 Developer's Guide • February 200742

objects that have a specified external link. The http.proxyHost and http.proxyPort

properties are specified in the run target in the build.xml file. Make sure you have set these
properties as described in “To Edit the build.properties File” on page 21.

▼ To Run the JAXRSearchByExternalLink Example
To obtain results from this example, first run the publish-object example described in
“Adding Classifications: Example” on page 69.

Go to the directory INSTALL/registry-samples/search-external-link.

Type the following command:
Ant-base/ant run

Finding Objects You Published
You can retrieve all objects that you published to the Registry. Alternatively, you can narrow the
search to retrieve only the objects that you published that are of a particular object type. To
retrieve all the objects that you have published, use the no-argument version of the
QueryManager.getRegistryObjects method. The name of this method is misleading, because
the method returns only objects that you have published, not all registry objects.

For example, if bqm is your BusinessQueryManager instance, use the following line of code:

BulkResponse response = bqm.getRegistryObjects();

To retrieve all the objects of a particular type that you published, use
QueryManager.getRegistryObjects with a constant argument that specifies the type:

BulkResponse response = bqm.getRegistryObjects(LifeCycleManager.SERVICE);

The QueryManager.getRegistryObjects method is case-sensitive.

The sample programs JAXRGetMyObjects and JAXRGetMyObjectsByType show how to use
these methods.

Finding Objects You Published: Examples
For examples of finding objects you published, see JAXRGetMyObjects.java and
JAXRGetMyObjectsByType.java in the directory
INSTALL/registry-samples/get-objects/src. The first example, JAXRGetMyObjects.java,
retrieves all objects you have published. The second example, JAXRGetMyObjectsByType.java,
retrieves all the objects you have published of a specified type.

Before You Begin

1

2

Finding Objects You Published

Chapter 3 • Querying a Registry 43

▼ To Run the JAXRGetMyObjects and JAXRGetMyObjectsByType Examples

Go to the directory INSTALL/registry-samples/get-objects.

To find all the objects that you have published, type the following command:
Ant-base/ant get-obj

To find all the objects that you have published of a specified type, type the following command,
where type-name is case-sensitive:
Ant-base/ant get-obj-type -Dtype=type-name

The JAXRGetMyObjectsByType program passes the object type as a string argument to
QueryManager.getRegistryObjects in order to accept user input as simply as possible.
However, developers should use the constants defined by the LifeCycleManager interface.

Retrieving Information About an Object
After you have retrieved the object or objects you are searching for, you can also retrieve the
object’s attributes and other objects that belong to it:

■ Name
■ Description
■ Type
■ Unique identifier and logical identifier
■ Classifications
■ External identifiers
■ External links
■ Slots

For an organization, you can also retrieve the following:

■ The primary contact, which is a User object
■ Postal address
■ Telephone numbers
■ Services

For a service, you can retrieve the service bindings.

For any object, you can also retrieve the audit trail, which contains the events that have changed
the object’s state, and the version. You can also retrieve an object’s version number. If versioning
is turned on, the version number is updated whenever a change is made to one of the object’s
attributes.

1

2

3

Retrieving Information About an Object

Service Registry 3.1 Developer's Guide • February 200744

Note – At this release of Service Registry, versioning is turned off by default. To enable
versioning, an administrator must perform the task described in “Enabling Versioning of
Registry Objects” in Service Registry 3.1 Administration Guide.)

This section covers the following topics:

■ “Retrieving the Identifier Values for an Object” on page 45
■ “Retrieving the Name or Description of an Object” on page 45
■ “Retrieving the Type of an Object” on page 46
■ “Retrieving the Classifications for an Object” on page 46
■ “Retrieving the External Identifiers for an Object” on page 47
■ “Retrieving the External Links for an Object” on page 47
■ “Retrieving the Slots for an Object” on page 48
■ “Retrieving the Attributes of an Organization or User” on page 49
■ “Retrieving the Services and Service Bindings for an Organization” on page 51
■ “Retrieving an Organization Hierarchy” on page 52
■ “Retrieving the Audit Trail of an Object” on page 52
■ “Retrieving the Version of an Object” on page 54

Retrieving the Identifier Values for an Object
The unique identifier for an object is contained in a Key object. A Key is a structure that contains
the identifier in the form of an id attribute that is a String value. To retrieve the identifier, call
the method RegistryObject.getKey().getId().

The JAXR provider also has an implementation-specific method for retrieving the logical
identifier, which is called a lid. The lid is a String attribute of a RegistryObject. To retrieve
the lid, call RegistryObjectImpl.getLid. The method has the following signature:

public java.lang.String getLid()

throws JAXRException

For an example of the use of this method, see JAXRSearchOrg.java in the directory
INSTALL/registry-samples/organizations/src. For more information on this example,
see “Retrieving Organization Attributes: Example” on page 50.

Retrieving the Name or Description of an Object
The name and description of an object are both InternationalString objects. An
InternationalString object contains a set of LocalizedString objects. The methods
RegistryObject.getName and RegistryObject.getDescription return the
LocalizedString object for the default locale. You can then retrieve the String value of the
LocalizedString object. The following code fragment uses these methods:

Retrieving Information About an Object

Chapter 3 • Querying a Registry 45

String name = ro.getName().getValue();

String description = ro.getDescription().getValue();

Call the getName or getDescription method with a Locale argument to retrieve the value for a
particular locale.

Many of the examples contain private utility methods that retrieve the name, description, and
unique identifier for an object. See, for example, JAXRGetMyObjects.java in the directory
INSTALL/registry-samples/get-objects/src.

Retrieving the Type of an Object
If you have searched the Registry without specifying a particular object type, you can retrieve
the type of the objects returned by the search. Use the RegistryObject.getObjectType
method, which returns a Concept value. You can then use the Concept.getValue method to
obtain the String value of the object type. The following code fragment uses these methods:

Concept objType = object.getObjectType();

System.out.println("Object type is " + objType.getValue());

The concept will be one of those in the canonical classification scheme ObjectType. For an
example of this code, see JAXRSearchByName.java in the directory
INSTALL/registry-samples/search-name/src.

Retrieving the Classifications for an Object
Use the RegistryObject.getClassifications method to retrieve a Collection of the object’s
classifications. For a classification, the important attributes are its value and the classification
scheme to which it belongs. Often, a classification has no name or description. The following
code fragment retrieves and displays an object’s classifications.

Collection classifications = object.getClassifications();

Iterator classIter = classifications.iterator();

while (classIter.hasNext()) {

Classification classification =

(Classification) classIter.next();

String name = classification.getName().getValue();

System.out.println(" Classification name is " + name);

System.out.println(" Classification value is " +

classification.getValue());

ClassificationScheme scheme =

classification.getClassificationScheme();

System.out.println(" Classification scheme for " +

name + " is " + scheme.getName().getValue());

}

Retrieving Information About an Object

Service Registry 3.1 Developer's Guide • February 200746

Some of the examples have a showClassifications method that uses code similar to this. See,
for example, JAXRSearchByName.java in the directory
INSTALL/registry-samples/search-name/src.

Retrieving the External Identifiers for an Object
Use the RegistryObject.getExternalIdentifiers method to retrieve a Collection of the
object’s external identifiers. For each identifier, you can retrieve its name, its value, and the
classification scheme to which it belongs. For an external identifier, the method that retrieves
the classification scheme is getIdentificationScheme. The following code fragment retrieves
and displays an object’s external identifiers.

Collection exIds = object.getExternalIdentifiers();

Iterator exIdIter = exIds.iterator();

while (exIdIter.hasNext()) {

ExternalIdentifier exId =

(ExternalIdentifier) exIdIter.next();

String name = exId.getName().getValue();

System.out.println(" External identifier name is " +

name);

String exIdValue = exId.getValue();

System.out.println(" External identifier value is " +

exIdValue);

ClassificationScheme scheme =

exId.getIdentificationScheme();

System.out.println(" External identifier " +

"classification scheme is " +

scheme.getName().getValue());

}

Some of the examples have a showExternalIdentifiers method that uses code similar to this.
See, for example, JAXRSearchByName.java in the directory
INSTALL/registry-samples/search-name/src.

Retrieving the External Links for an Object
Use the RegistryObject.getExternalLinks method to retrieve a Collection of the object’s
external links. For each external link, you can retrieve its name, description, and value. For an
external link, the name is optional. The following code fragment retrieves and displays an
object’s external links.

Collection exLinks = obj.getExternalLinks();

Iterator exLinkIter = exLinks.iterator();

while (exLinkIter.hasNext()) {

Retrieving Information About an Object

Chapter 3 • Querying a Registry 47

ExternalLink exLink = (ExternalLink) exLinkIter.next();

String name = exLink.getName().getValue();

if (name != null) {

System.out.println(" External link name is " + name);

}

String description = exLink.getDescription().getValue();

System.out.println(" External link description is " +

description);

String externalURI = exLink.getExternalURI();

System.out.println(" External link URI is " +

externalURI);

}

Some of the examples have a showExternalLinks method that uses code similar to this. See, for
example, JAXRSearchByName.java in the directory
INSTALL/registry-samples/search-name/src.

Retrieving the Slots for an Object
Slots are arbitrary attributes that you can create for an object. Use the
RegistryObject.getSlots method to retrieve a Collection of the object’s slots. For each slot,
you can retrieve its name, values, and type. The name of a Slot object is a String, not an
InternationalString, and a slot has a Collection of values. The following fragment retrieves
and displays an object’s slots:

Collection slots = object.getSlots();

Iterator slotIter = slots.iterator();

while (slotIter.hasNext()) {

Slot slot = (Slot) slotIter.next();

String name = slot.getName();

System.out.println(" Slot name is " + name);

Collection values = slot.getValues();

Iterator valIter = values.iterator();

int count = 1;

while (valIter.hasNext()) {

String value = (String) valIter.next();

System.out.println(" Slot value " + count++ +

": " + value);

}

String type = slot.getSlotType();

if (type != null) {

System.out.println(" Slot type is " + type);

}

Some of the examples have a showSlots method that uses this code. See, for example,
JAXRSearchByName.java in the directory INSTALL/registry-samples/search-name/src.

Retrieving Information About an Object

Service Registry 3.1 Developer's Guide • February 200748

Retrieving the Attributes of an Organization or User
Every Organization object can have one or more postal addresses and one or more telephone
numbers in addition to the attributes that are available to all other objects. Every organization
also has a User object as a primary contact. The organization can have additional affiliated User

objects.

The attributes for a User object include a PersonName object, which has a different format from
the name of an object. A user can have multiple postal addresses as well as multiple telephone
numbers. A user can also have multiple email addresses.

To retrieve the postal address for an organization, call the Organization.getPostalAddress
method as follows (org is the organization):

PostalAddress pAd = org.getPostalAddress();

After you retrieve the address, you can retrieve the address attributes as follows:

System.out.println(" Postal Address:\n " +

pAd.getStreetNumber() + " " + pAd.getStreet() +

"\n " + pAd.getCity() + ", " +

pAd.getStateOrProvince() + " " +

pAd.getPostalCode() + "\n " + pAd.getCountry() +

"(" + pAd.getType() + ")");

To retrieve the primary contact for an organization, call the
Organization.getPrimaryContact method as follows (org is the organization):

User pc = org.getPrimaryContact();

To retrieve the postal addresses for a user, call the User.getPostalAddresses method and
extract the Collection values as follows (pc is the primary contact):

Collection pcpAddrs = pc.getPostalAddresses();

Iterator pcaddIter = pcpAddrs.iterator();

while (pcaddIter.hasNext()) {

PostalAddress pAd = (PostalAddress) pcaddIter.next();

/* retrieve attributes */

}

To retrieve the telephone numbers for either an organization or a user, call the
getTelephoneNumbers method. In the following code fragment, org is the organization. The
code retrieves the country code, area code, main number, and type of the telephone number.

Collection orgphNums = org.getTelephoneNumbers(null);

Iterator orgphIter = orgphNums.iterator();

while (orgphIter.hasNext()) {

Retrieving Information About an Object

Chapter 3 • Querying a Registry 49

TelephoneNumber num = (TelephoneNumber) orgphIter.next();

System.out.println(" Phone number: " +

"+" + num.getCountryCode() + " " +

"(" + num.getAreaCode() + ") " +

num.getNumber() + " (" + num.getType() + ")");

}

A TelephoneNumber can also have an extension, retrievable through the getExtension method.
If the number can be dialed electronically, it can have a url attribute, retrievable through the
getUrl method.

To retrieve the name of a user, call the User.getPersonName method. A PersonName has three
attributes that correspond to the given name, middle name (or names), and surname of a user.
In the following code fragment, pc is the primary contact.

PersonName pcName = pc.getPersonName();

System.out.println(" Contact name: " +

pcName.getFirstName() + " " +

pcName.getMiddleName() + " " +

pcName.getLastName());

To retrieve the email addresses for a user, call the User.getEmailAddresses method. An
EmailAddress has two attributes, the address and its type. In the following code fragment, pc is
the primary contact.

Collection eAddrs = pc.getEmailAddresses();

Iterator eaIter = eAddrs.iterator();

while (eaIter.hasNext()) {

EmailAddress eAd = (EmailAddress) eaIter.next();

System.out.println(" Email address: " +

eAd.getAddress() + " (" + eAd.getType() + ")");

}

The attributes for PostalAddress, TelephoneNumber, PersonName, and EmailAddress objects
are all String values. As noted in “JAXR Information Model Interfaces” on page 30, these objects
do not extend the RegistryObject interface, so they do not have the attributes of other registry
objects.

Retrieving Organization Attributes: Example
For an example of retrieving the attributes of an organization and the User that is its primary
contact, see JAXRSearchOrg.java in the directory
INSTALL/registry-samples/organizations/src, which displays information about an
organization whose name contains a specified string.

Retrieving Information About an Object

Service Registry 3.1 Developer's Guide • February 200750

▼ To Run the JAXRSearchOrg Example

Go to the directory INSTALL/registry-samples/organizations.

Type the following command:
Ant-base/ant search-org -Dorg=string

Retrieving the Services and Service Bindings for an
Organization
Most organizations offer services. JAXR has methods that retrieve the services and service
bindings for an organization.

A Service object has all the attributes of other registry objects. In addition, it normally has
service bindings, which provide information about how to access the service. A ServiceBinding

object, along with its other attributes, normally has an access URI. It can also have a
specification link, which provides the linkage between a service binding and a technical
specification that describes how to use the service through the service binding.

A specification link has the following attributes:
■ A specification object, which is typically an ExtrinsicObject

■ A usage description, which is an InternationalString object
■ A Collection of usage parameters, which are String values

You can use the Service.getProvidingOrganization method to retrieve the organization that
provides a service, and you can use the ServiceBinding.getService method to retrieve the
service for a service binding.

The following code fragment retrieves the services for the organization org. Then it retrieves
the service bindings for each service and, for each service binding, its access URI.

Collection services = org.getServices();

Iterator svcIter = services.iterator();

while (svcIter.hasNext()) {

Service svc = (Service) svcIter.next();

System.out.println(" Service name: " + getName(svc));

System.out.println(" Service description: " +

getDescription(svc));

Collection serviceBindings = svc.getServiceBindings();

Iterator sbIter = serviceBindings.iterator();

while (sbIter.hasNext()) {

ServiceBinding sb = (ServiceBinding) sbIter.next();

System.out.println(" Binding name: " +

1

2

Retrieving Information About an Object

Chapter 3 • Querying a Registry 51

getName(sb));

System.out.println(" Binding description: " +

getDescription(sb));

System.out.println(" Access URI: " +

sb.getAccessURI());

}

}

}

The example “Retrieving Organization Attributes: Example” on page 50 also displays the
services and service bindings for the organizations it finds.

Services often exist independent of an organization. You can search for services directly using
the BusinessQueryManagerImpl.findObjects method.

Retrieving an Organization Hierarchy
JAXR allows you to group organizations into families. One organization can have other
organizations as its children. The child organizations can also have children. Therefore, any
given organization can have a parent, children, and descendants.

The Organization.getParentOrganization method retrieves an organization’s parent. In the
following fragment, chorg is a child organization.

Organization porg = chorg.getParentOrganization();

The Organization.getChildOrganizations method retrieves a Collection of the
organization’s children. In the following fragment, org is a parent organization.

Collection children = org.getChildOrganizations();

The Organization.getDescendantOrganizations method retrieves multiple generations of
descendants, while the Organization.getRootOrganization method retrieves the parentless
ancestor of any descendant.

For an example of retrieving an organization hierarchy, see “Creating and Retrieving an
Organization Hierarchy: Examples” on page 78.

Retrieving the Audit Trail of an Object
Whenever an object is published to the Registry, and whenever it is modified in any way, the
JAXR provider creates another object, called an AuditableEvent. The JAXR provider also
creates an AuditableEvent object when some objects are modified in certain ways. The JAXR
provider adds the AuditableEvent object to the audit trail for the published object. The audit
trail contains a list of all the events for that object. To retrieve the audit trail, call

Retrieving Information About an Object

Service Registry 3.1 Developer's Guide • February 200752

RegistryObject.getAuditTrail. You can also retrieve the individual events in the audit trail
and find out their event types. JAXR supports the event types listed in Table 3–4.

TABLE 3–4 AuditableEventTypes

Event Type Description

EVENT_TYPE_CREATED Object was created and was published to the registry.

EVENT_TYPE_DELETED Object was deleted using one of the LifeCycleManager or
BusinessLifeCycleManager deletion methods.

EVENT_TYPE_DEPRECATED Object was deprecated using the
LifeCycleManager.deprecateObjects method.

EVENT_TYPE_UNDEPRECATED Object was undeprecated using the
LifeCycleManager.unDeprecateObjects method.

EVENT_TYPE_VERSIONED A new version of the object was created. If versioning is enabled,
this event typically happens when any of the object’s attributes
changes.

EVENT_TYPE_UPDATED Object was updated.

EVENT_TYPE_APPROVED Object was approved using the
LifeCycleManagerImpl.approveObjects method
(implementation-specific).

EVENT_TYPE_DOWNLOADED Object was downloaded (implementation-specific).

EVENT_TYPE_RELOCATED Object was relocated from another registry
(implementation-specific).

The following code fragment retrieves the audit trail for a registry object, displaying the type
and timestamp of each event:

Collection events = obj.getAuditTrail();

String objName = obj.getName().getValue();

Iterator eventIter = events.iterator();

while (eventIter.hasNext()) {

AuditableEventImpl ae = (AuditableEventImpl) eventIter.next();

int eType = ae.getEventType();

if (eType == AuditableEvent.EVENT_TYPE_CREATED) {

System.out.print(objName + " created ");

} else if (eType == AuditableEvent.EVENT_TYPE_DELETED) {

System.out.print(objName + " deleted ");

} else if (eType == AuditableEvent.EVENT_TYPE_DEPRECATED) {

System.out.print(objName + " deprecated ");

} else if (eType == AuditableEvent.EVENT_TYPE_UNDEPRECATED) {

System.out.print(objName + " undeprecated ");

} else if (eType == AuditableEvent.EVENT_TYPE_UPDATED) {

Retrieving Information About an Object

Chapter 3 • Querying a Registry 53

System.out.print(objName + " updated ");

} else if (eType == AuditableEvent.EVENT_TYPE_VERSIONED) {

System.out.print(objName + " versioned ");

} else if (eType == AuditableEventImpl.EVENT_TYPE_APPROVED) {

System.out.print(objName + " approved ");

} else if (eType == AuditableEventImpl.EVENT_TYPE_DOWNLOADED) {

System.out.print(objName + " downloaded ");

} else if (eType == AuditableEventImpl.EVENT_TYPE_RELOCATED) {

System.out.print(objName + " relocated ");

} else {

System.out.print("Unknown event for " + objName + " ");

}System.out.println(ae.getTimestamp().toString());

}

Some of the examples have a showAuditTrail method that uses code similar to this. See, for
example, JAXRSearchByName.java in the directory
INSTALL/registry-samples/search-name/src.

See “Changing the State of Objects in the Registry” on page 85 for information on how to
change the state of registry objects.

Retrieving the Version of an Object
If you modify the attributes of a registry object, the Registry may create a new version of the
object. For details on how versioning happens, see “Changing the State of Objects in the
Registry” on page 85. When you first create an object, the object has a version of 1.1.

Note – At this release, versioning of objects is disabled by default. To enable versioning of
objects, an administrator must perform the task described in “Enabling Versioning of Registry
Objects” in Service Registry 3.1 Administration Guide. The administrator commonly enables
versioning for some object types but not for all.

To retrieve the version of an object, use the implementation-specific getVersionInfo method
for a registry object, which returns a VersionInfoType object. The method has the following
signature:

public VersionInfoType getVersionInfo()

throws JAXRException

For example, to retrieve the version number for the organization org, cast org to a
RegistryObjectImpl when you call the method. Then call the
VersionInfoType.getVersionName method, which returns a String.

Retrieving Information About an Object

Service Registry 3.1 Developer's Guide • February 200754

import org.oasis.ebxml.registry.bindings.rim.VersionInfoType;

...

VersionInfoType vInfo =

((RegistryObjectImpl)org).getVersionInfo();

if (vInfo != null) {

System.out.println("Org version: " +

vInfo.getVersionName());

}

Some of the examples use code similar to this. See, for example, JAXRSearchByName.java in the
directory INSTALL/registry-samples/search-name/src.

Using Declarative Queries
Instead of the BusinessQueryManager interface, you can use the DeclarativeQueryManager
interface to create and execute queries to the Registry. If you are familiar with SQL, you might
prefer to use declarative queries. The DeclarativeQueryManager interface depends on another
interface, Query.

The DeclarativeQueryManager interface has two methods, createQuery and executeQuery.
The createQuery method takes two arguments, a query type and a string that contains the
query. The following code fragment creates an SQL query that asks for a list of all Service
objects in the Registry. Here, rs is a RegistryService object.

DeclarativeQueryManager qm = rs.getDeclarativeQueryManager();

String qString = "select s.* from Service s";

Query query = qm.createQuery(Query.QUERY_TYPE_SQL, qString);

After you create the query, you execute it as follows:

BulkResponse response = qm.executeQuery(query);

Collection objects = response.getCollection();

You then extract the objects from the response just as you do with ordinary queries.

For more information on SQL query syntax and for examples, see Chapter 6, “Query
Management Protocols,” of the ebRS 3.0 specification, especially Section 6.6.

Using Declarative Queries: Example
For examples of the use of declarative queries, see JAXRQueryDeclarative.java and
JAXRGetAllSchemes.java in the directory
INSTALL/registry-samples/query-declarative/src. Both examples create and execute a
SQL query. The query strings are defined in the JAXRExamples.properties file.

Using Declarative Queries

Chapter 3 • Querying a Registry 55

The SQL query string for JAXRQueryDeclarative is as follows (all on one line):

SELECT ro.* from RegistryObject ro, Name nm, Description d

WHERE upper(nm.value) LIKE upper(’%free%’) AND upper(d.value)

LIKE upper(’%free%’) AND (ro.id = nm.parent AND ro.id = d.parent)

This query finds all objects that have the string "free" in both the name and the description
attributes.

The SQL query string for JAXRGetAllSchemes is as follows:

SELECT * FROM ClassScheme s order by s.id

This query finds all the classification schemes in the Registry.

▼ To Run the JAXRQueryDeclarative Example

Go to the directory INSTALL/registry-samples/query-declarative.

To run the JAXRQueryDeclarative example, type the following command:
Ant-base/ant get-free

To run the JAXRGetAllSchemes example, type the following command:
Ant-base/ant get-schemes

Using Iterative Queries
If you expect a declarative query to return a very large result set, you can use the
implementation-specific iterative query feature. The
DeclarativeQueryManagerImpl.executeQuery method can take an argument that specifies a
set of parameters. This method has the following signature:

public BulkResponse executeQuery(Query query,

java.util.Map queryParams,

IterativeQueryParams iterativeParams)

throws JAXRException

You can specify parameters that cause each query to request a different subset of results within
the result set. Instead of making one query return the entire result set, you can make each
individual query return a manageable set of results.

Suppose you have a query string that you expect to return up to 100 results. You can create a set
of parameters that causes the query to return 10 results at a time. First, you create an instance of
the class IterativeQueryParams, which is defined in the package org.freebxml.omar.common.

1

2

3

Using Iterative Queries

Service Registry 3.1 Developer's Guide • February 200756

The two fields of the class are startIndex, the starting index of the array, and maxResults, the
maximum number of results to return. You specify the initial values for these fields in the
constructor.

int maxResults = 10;

int startIndex = 0;

IterativeQueryParams iterativeQueryParams =

new IterativeQueryParams(startIndex, maxResults);

Execute the queries within a for loop that terminates with the highest number of expected
results and that advances by the maxResults value for the individual queries. Increment the
startIndex field at each loop iteration.

for (int i = 0; i < 100; i += maxResults) {

// Execute query with iterative query params

Query query = dqm.createQuery(Query.QUERY_TYPE_SQL,

queryStr);

iterativeQueryParams.startIndex = i;

BulkResponse br = dqm.executeQuery(query, null,

iterativeQueryParams);

Collection objects = br.getCollection();

// retrieve individual objects ...

}

The Registry is not required to maintain transactional consistency or state between iterations of
a query. New objects might be added to the complete result set between iterations, or existing
objects might be removed from the result set. Therefore, you might notice that a result set
element is skipped or duplicated between iterations.

Using Iterative Queries: Example
For an example of the use of an iterative query, see JAXRQueryIterative.java in the directory
INSTALL/registry-samples/query-iterative/src. This program finds all registry objects
whose names match a given string and then iterates through the first 100 of them.

▼ To Run the JAXRQueryIterative Example

Go to the directory INSTALL/registry-samples/query-iterative.

Type the following command, specifying a string value:
Ant-base/ant run -Dname=string

1

2

Using Iterative Queries

Chapter 3 • Querying a Registry 57

Using Stored Queries
It is possible to invoke queries that are stored in the Registry. A number of predefined queries
are already stored in the Registry as AdhocQuery objects. To find them, search for objects of that
type. Most of these queries are provided in the Web Console. See Chapter 2, “Searching the
Registry,” in Service Registry 3.1 User’s Guide for information on how to invoke these queries
through the Web Console.

To invoke stored queries through JAXR, you need to know the following:

■ The unique identifier for the query. Constants you can use to specify this identifier are in
“Constants for Stored Queries” on page 100.

■ The parameters to specify to the query. Only the simplest queries (GetCallersUser and
FindAllMyObjects) take no parameters. The easiest way to determine the parameters used
by a query is to use the Web Console to find the object and then to examine its details, which
include the SQL statement executed by the query.

For example, suppose you wanted to invoke the stored query named Basic Query to search by
object type for all organizations in the Registry. If you look at this query in the Web Console,
you can see that it takes a parameter named $objectTypePath. This means that you specify the
classification scheme node as a path structure instead of specifying the concept for the object
type directly. The following code first retrieves the constant for the query identifier, then
specifies the object type path. The actual String value of the object type path is
/urn:oasis:names:tc:ebxml-regrep:

classificationScheme:ObjectType/RegistryObject/Organization.

String queryId =

CanonicalConstants.CANONICAL_QUERY_BasicQuery;

String objectType =

CanonicalConstants.CANONICAL_CLASSIFICATION_SCHEME_ID_ObjectType;

String objectTypePath =

"/" + objectType + "/RegistryObject/Organization";

Once you have the values for the query identifier and the parameters, you create a HashMap to
pass these values. First put the parameters in the HashMap, and finally the query identifier, using
the constant CANONICAL_SLOT_QUERY_ID to specify the parameter name. Then you call an
implementation-specific form of the DeclarativeQueryManager.createQuery method to
create the query. Finally, you call an implementation-specific form of the
DeclarativeQueryManager.executeQuery method to execute the parameterized query.

Map parameters = new HashMap();

parameters.put("$objectTypePath", objectTypePath);

parameters.put(CanonicalConstants.CANONICAL_SLOT_QUERY_ID, queryId);

Query query = dqm.createQuery(Query.QUERY_TYPE_SQL);

BulkResponse br = dqm.executeQuery(query, parameters);

Using Stored Queries

Service Registry 3.1 Developer's Guide • February 200758

The signatures of the implementation-specific forms of the createQuery and executeQuery

methods are as follows:

public Query createQuery(int queryType)

throws InvalidRequestException, JAXRException

public BulkResponse executeQuery(Query query, java.util.Map queryParams)

throws JAXRException

Using Stored Queries: Example
For an example of the use of a stored query, see JAXRQueryStored.java in the directory
INSTALL/registry-samples/query-stored/src. This example returns all organizations
stored in the Registry.

▼ To Run the JAXRQueryStored Example

Go to the directory INSTALL/registry-samples/query-stored.

Type the following command:
Ant-base/ant run

Using Federated Queries
If the registry you are querying is part of one or more registry federations (see “About Registries
and Repositories” on page 17), you can perform declarative queries on all registries in all
federations of which your registry is a member, or on all the registries in one federation.

To perform a query on all registries in all federations of which your registry is a member, call the
implementation-specific setFederated method on a QueryImpl object. The method has the
following signature:

public void setFederated(boolean federated)

throws JAXRException

You call the method as follows:

QueryImpl query = (QueryImpl)

dqm.createQuery(Query.QUERY_TYPE_SQL, qString);

query.setFederated(true);

If you know that your registry is a member of only one federation, this method is the only one
you need to call before you execute the query.

1

2

Using Federated Queries

Chapter 3 • Querying a Registry 59

To limit your query to the registries in one federation, you need to call an additional
implementation-specific method, setFederation. This method takes as its argument the
unique identifier of the federation you want to query:

public void setFederation(java.lang.String federationId)

throws JAXRException

Therefore, before you can call this method, you must obtain the unique identifier value.
Normally, this value is well-known.

Next, create the query, call setFederated and setFederation, and execute the query:

QueryImpl query = (QueryImpl)

dqm.createQuery(Query.QUERY_TYPE_SQL, qString);

query.setFederated(true);

query.setFederation(fedId);

response = dqm.executeQuery(query);

Using Federated Queries: Example
For an example of the use of a federated query, see JAXRQueryFederation.java in the directory
INSTALL/registry-samples/query-federation/src. This example performs two queries, a
declarative query and a stored query, on every federation it finds (the database provided with
the Registry contains only one). Because the federation stored in the Registry database does not
have a well-known identifier value, the example uses findObjects to locate the federation.

The declarative query is the query that is performed in “Using Declarative Queries: Example”
on page 55. The stored query is the FindAllMyObjects query.

Because the federation in the Registry database has no members, this example cannot perform
the queries.

▼ To Run the JAXRQueryFederationExample

Go to the directory INSTALL/registry-samples/query-federation.

Type the following command:
Ant-base/ant run

1

2

Using Federated Queries

Service Registry 3.1 Developer's Guide • February 200760

Publishing Objects to the Registry

If a client has authorization to do so, it can submit objects to Service Registry, modify objects,
and remove objects. A client uses the BusinessLifeCycleManager interface to perform these
tasks.

Registries usually allow a client to modify or remove objects only if the objects are being
modified or removed by the same user who first submitted them. Access policies can control
who is authorized to publish objects and to perform actions on them.

Note – The term submit is used by the ebXML Registry specifications; the term publish is used by
the JAXR API specification. The two terms mean the same thing.

Publishing registry objects involves the following tasks:

■ “Authenticating with the Registry” on page 62
■ “Creating Objects” on page 63
■ “Saving Objects in the Registry” on page 78

Submitting objects is a multi-step task: you create the objects and populate them by setting their
attributes, then you save the objects. The objects appear in the registry only after you save them.

You may remember that when you search for objects by classification, external identifier, and
the like, you create the classification or other object that you are using in the search. (For an
example, see “Finding Objects by Classification” on page 38.) However, you do not save this
object. You create the object only for the purposes of the search, after which the object
disappears. You do not need authorization from the Registry to create an object, but you must
have authorization to save it.

4C H A P T E R 4

61

Authenticating with the Registry
The Registry uses certificate authentication, so to submit data to the Registry you must have a
certificate. You must also use the User Registration Wizard of the Web Console to create a user
who can submit data to the Registry. See “Getting Access to the Registry” on page 23 for details.

Before a client can submit data, the client must send its certificate to the Registry in a set of
credentials. The following code fragment shows how to perform this task. You need to specify
the following required values to obtain credentials:

■ The keystore path, the full path to the file, typically keystore.jks, in which the certificate
key is stored

■ The keystore password, typically ebxmlrr
■ The user name and password that you chose when you registered using the Wizard

Typically, you would retrieve the four required values from property settings, and you would
encapsulate much of the code in a method.

String keystorePath = "myKeystorePath";

String storepass = "myStorepass";

String alias = "myAlias";

String keypass = myKeypass";

Set credentials = new HashSet();

KeyStore keyStore = KeyStore.getInstance("JKS");

keyStore.load(new BufferedInputStream(

new FileInputStream(keystorePath)),

storepass.toCharArray());

X509Certificate cert = (X509Certificate)

keyStore.getCertificate(alias);

PrivateKey privateKey =

(PrivateKey) keyStore.getKey(alias, keypass.toCharArray());

credentials.add(new X500PrivateCredential(cert, privateKey,

alias));

connection.setCredentials(credentials);

If the setCredentials method succeeds, you are logged in to the Registry and can publish
objects.

The sample programs that authenticate with the Registry all call a method named
getCredentialsFromKeystore that contains this code. The method is defined in the file
INSTALL/registry-samples/common/src/RegistryCredentials.java.

Authenticating with the Registry

Service Registry 3.1 Developer's Guide • February 200762

Note – The method in RegistryCredentials.java contains commented-out lines that display
the values of the keystore file, the keystore password, the user alias, and the user password. If
you get an error the first time you try to publish an object, remove the comment characters from
these lines to make sure that these properties are set correctly as described in “To Edit the
Security Settings of the build.properties File” on page 25.

Creating Objects
A client creates an object and populates it with data before publishing it. You can create and
publish any of the following types of RegistryObject:

■ AdhocQuery (implementation-specific)
■ Association

■ ClassificationScheme

■ Concept

■ ExternalLink

■ ExtrinsicObject

■ Federation (implementation-specific)
■ Organization

■ Person (implementation-specific)
■ RegistryPackage

■ Service

■ Subscription

■ User

The following types of RegistryObject cannot be published separately, but you can create and
save these objects as part of another object:

■ Classification (any RegistryObject)
■ ExternalIdentifier (any RegistryObject)
■ ServiceBinding (Service)
■ Slot (any RegistryObject)
■ SpecificationLink (ServiceBinding)

Some objects fall into special categories:

■ An AuditableEvent is published by the Registry when an object has a change in state.
■ A Notification is published by the Registry when an AuditableEvent that matches a

Subscription occurs.
■ A Registry can be published only by a user with the role RegistryAdministrator.

Creating Objects

Chapter 4 • Publishing Objects to the Registry 63

The subsections that follow describe first the tasks common to creating and saving all registry
objects. The subsections then describe some tasks specific to particular object types.

■ “Using Create Methods for Objects” on page 64
■ “Adding Names and Descriptions to Objects” on page 64
■ “Identifying Objects” on page 65
■ “Creating and Using Classification Schemes and Concepts” on page 66
■ “Adding Classifications to Objects” on page 68
■ “Adding External Identifiers to Objects” on page 69
■ “Adding External Links to Objects” on page 70
■ “Adding Slots to Objects” on page 70
■ “Creating Extrinsic Objects” on page 71
■ “Creating Services by Publishing WSDL Files” on page 73
■ “Creating Organizations” on page 74

Using Create Methods for Objects
The LifeCycleManager interface supports create methods for all types of RegistryObject
(except AuditableEvent and Notification, which can be created only by the Registry itself).

In addition, you can use the LifeCycleManager.createObject factory method to create an
object of a particular type. This method takes a String argument consisting of one of the static
fields supported by the LifeCycleManager interface. In the following code fragment, blcm is the
BusinessLifeCycleManager object:

Organization org = (Organization)

blcm.createObject(blcm.ORGANIZATION);

The object-specific create methods usually take one or more parameters that set some of the
attributes of the object. For example, the createOrganization method sets the name of the
organization:

Organization org = blcm.createOrganization("MyOrgName");

On the other hand, the createExtrinsicObject method normally takes a DataHandler
argument that sets the repository item for the extrinsic object.

Adding Names and Descriptions to Objects
For all objects, you can set the name and description attributes by calling setter methods. These
attributes are of type InternationalString. An InternationalString includes a set of
LocalizedString objects that allow users to display the name and description in one or more
locales. By default, the InternationalString value uses the default locale.

Creating Objects

Service Registry 3.1 Developer's Guide • February 200764

For example, the following fragment creates a description that uses two localized strings. One
string is in the language of the default locale. The other string is in Canadian French.

InternationalString is =

blcm.createInternationalString("What We Do");

Locale loc = new Locale("fr", "CA");

LocalizedString ls = blcm.createLocalizedString(loc,

"ce que nous faisons");

is.addLocalizedString(ls);

org.setDescription(is);

Identifying Objects
As stated in “Finding Objects by Unique Identifier” on page 34, every object in the Registry has
two identifiers, a unique identifier and a logical identifier. If you do not set these identifiers
when you create the object, the Registry generates a unique value and assigns that value to both
the unique and the logical identifiers.

Whenever a new version of an object is created, the logical identifier remains the same as the
original one, but the Registry generates a new unique identifier by adding a colon and the
version number to the unique identifier. See “Retrieving the Version of an Object” on page 54
and “Creating Relationships Between Objects: Associations” on page 81 for more information.

If you are creating long-lived objects, you should establish a hierarchical identification scheme
with human-friendly names. Then you can use API methods to set object identifiers. You can
find examples of human-friendly identifier names in many of the objects that populate the
default Registry database. For example, the organization in this database has the identifier
urn:freebxml:registry:Organization:freebXMLRegistry.

In the JAXR API, the unique identifier is called a Key object. You can use the
LifeCycleManager.createKey method to create a unique identifier from a String object. You
can then use the RegistryObject.setKey method to set the key.

The logical identifier is called a lid. The JAXR provider for the Registry has an
implementation-specific method, RegistryObjectImpl.setLid, which also takes a String
argument, for setting this identifier. The method has the following signature:

public void setLid(java.lang.String lid)

throws JAXRException

Any identifier that you specify must be a valid, globally unique URN (Uniform Resource
Name). When the JAXR API generates a key for an object, the key is in the form of a DCE 128
UUID (Universal Unique IDentifier).

If you set the unique identifier but do not set the lid, the Registry assigns the object a lid that
has the same value as the unique identifier. If you set the lid explicitly when you create an
object, the value should be the same as that of the unique identifier.

Creating Objects

Chapter 4 • Publishing Objects to the Registry 65

Most of the sample programs do not set identifiers, because the objects they create are not
expected to be long-lived or unique objects.

Creating and Using Classification Schemes and
Concepts
You can create your own classification schemes and concept hierarchies for classifying registry
objects. To do so, follow these steps:

1. Use the LifeCycleManager.createClassificationScheme method to create the
classification scheme.

2. Use the LifeCycleManager.createConcept method to create concepts.
3. Use the ClassificationScheme.addChildConcept method to add the concepts to the

classification scheme.
4. For a deeper hierarchy, use the Concept.addChildConcept method to add child concepts to

the concepts.
5. Save the classification scheme.

The LifeCycleManager.createClassificationScheme method has several forms. You can
specify two arguments, a name and description, as either String or InternationalString
values. For example, to create a classification scheme to describe how books are shelved in a
library, you could use the following code fragment:

ClassificationScheme cs =

blcm.createClassificationScheme("LibraryFloors",

"Scheme for Shelving Books");

An alternate form of the createClassificationScheme method takes one argument, a
Concept, and converts the concept to a ClassificationScheme.

The createConcept method takes three arguments: a parent, a name, and a value. The parent
can be either a ClassificationScheme or another Concept. You can specify a value but no
name.

The following code fragment creates a concept for each floor of the library by using a static
String array that contains the names of the floors. The code fragment then adds the concept to
the classification scheme.

for (int i = 0; i < floors.length; i++) {

Concept con = blcm.createConcept(cs, floors[i], floors[i]);

cs.addChildConcept(con);

...

Creating Objects

Service Registry 3.1 Developer's Guide • February 200766

For each concept, you can create more new concepts and call Concept.addChildConcept to
create another level of the hierarchy. When you save the classification scheme, the entire
concept hierarchy is also saved.

Creating and Displaying Classification Schemes: Examples
For an example of creating a classification scheme, see JAXRPublishScheme.java in the
directory INSTALL/registry-samples/classification-schemes/src. This example creates
a classification scheme named LibraryFloors and a concept hierarchy that includes each floor
of the library and the subject areas that can be found there. It gives the classification scheme a
human-friendly unique identifier value so that it can be searched for by identifier rather than by
name.

To display the concept hierarchy, use the program JAXRSearchScheme.java in the same
directory. This example displays the concept hierarchy for the LibraryFloors classification
scheme.

To delete the classification scheme and concepts, use the program JAXRDeleteScheme.java in
the same directory.

▼ To Run the JAXRPublishScheme Example

Go to the directory INSTALL/registry-samples/classification-schemes.

Type the following command:
Ant-base/ant pub-scheme

▼ To Run the JAXRSearchScheme Example

Go to the directory INSTALL/registry-samples/classification-schemes.

Type the following command:
Ant-base/ant search-scheme

▼ To Run the JAXRDeleteScheme Example

Go to the directory INSTALL/registry-samples/classification-schemes.

Type the following command:
Ant-base/ant del-scheme

1

2

1

2

1

2

Creating Objects

Chapter 4 • Publishing Objects to the Registry 67

Adding Classifications to Objects
Objects can have one or more classifications based on one or more classification schemes
(taxonomies). To establish a classification for an object, the client first locates the taxonomy.
The client then creates a classification by using the classification scheme and a concept (a
taxonomy element) within the classification scheme.

For information on creating a new classification scheme with a hierarchy of concepts, see
“Creating and Using Classification Schemes and Concepts” on page 66. A classification scheme
with a concept hierarchy is called an internal classification scheme.

To add a classification that uses an existing classification scheme, you usually call the
QueryManager.getRegistryObject method to find the classification scheme, specifying the
unique identifier of the scheme as the argument. For example, the following code fragment
searches for the classification scheme that is named AssociationType, using the value defined
in CanonicalConstants:

String schemeId =

CanonicalConstants.CANONICAL_CLASSIFICATION_SCHEME_ID_AssociationType;

ClassificationScheme cScheme = (ClassificationScheme)

bqm.getRegistryObject(schemeId);

After you locate the classification scheme, you call the
LifeCycleManager.createClassification method, specifying three arguments: the
classification scheme and the name and value of the concept.

Classification classification =

blcm.createClassification(cScheme, "Extends", "Extends");

An alternative method is to call BusinessQueryManager.findConcepts (or
BusinessQueryManagerImpl.findObjects with a LifeCycleManager.CONCEPT argument) to
locate the concept you wish to use, and then to call another form of createClassification,
with the concept as the only argument:

Classification classification =

blcm.createClassification(concept);

After creating the classification, you call RegistryObject.addClassification to add the
classification to the object.

object.addClassification(classification);

To add multiple classifications, you can create a Collection, add the classification to the
Collection, and call RegistryObject.addClassifications to add the Collection to the
object.

Creating Objects

Service Registry 3.1 Developer's Guide • February 200768

Adding Classifications: Example
For an example of adding classifications to an object, see JAXRPublishObject.java in the
directory INSTALL/registry-samples/publish-object/src. This example creates an
organization named GenericOrg and adds a number of objects to it.

▼ To Run the JAXRPublishObject Example

Go to the directory INSTALL/registry-samples/publish-object.

Type the following command:
Ant-base/ant run

Adding External Identifiers to Objects
To add an external identifier to an object, follow these steps:

1. Find or create the classification scheme to be used.
2. Create an external identifier using the classification scheme.

To create external identifiers, you use an external classification scheme, which is a classification
scheme without a concept hierarchy. You specify a name and value for the external identifier.

The database that is supplied with the Registry does not include any external classification
schemes. Before you can use an external classification scheme, you must create it, using code
like the following:

ClassificationScheme extScheme =

blcm.createClassificationScheme("NASDAQ",

"OTC Stock Exchange");

String extSchemeId = "urn:devguide:samples:ClassificationScheme:NASDAQ";

Key extSchemeKey = blcm.createKey(extSchemeId);

extScheme.setKey(extSchemeKey);

Collection classSchemes = new ArrayList();

classSchemes.add(extScheme);

BulkResponse response = blcm.saveObjects(classSchemes);

To find an existing classification scheme, you typically call the
BusinessQueryManager.getRegistryObject method, as described in “Adding Classifications
to Objects” on page 68.

For example, the following code fragment finds the external classification scheme you just
created:

String extSchemeId = "urn:devguide:samples:ClassificationScheme:NASDAQ";

ClassificationScheme extScheme =

bqm.getRegistryObject(extSchemeId);

1

2

Creating Objects

Chapter 4 • Publishing Objects to the Registry 69

To add the external identifier, you call the LifeCycleManager.createExternalIdentifier
method, which takes three arguments: the classification scheme and the name and value of the
external identifier. Then you add the external identifier to the object.

ExternalIdentifier extId =

blcm.createExternalIdentifier(extScheme, "Sun",

"SUNW);

object.addExternalIdentifier(extId);

The example INSTALL/registry-samples/publish-object/src/JAXRPublishObject.java,
described in “Adding Classifications: Example” on page 69, also adds an external identifier to an
object.

Adding External Links to Objects
To add an external link to an object, you call the LifeCycleManager.createExternalLink
method, which takes two arguments: the URI of the link, and a description of the link. Then you
add the external link to the object.

String eiURI = "http://java.sun.com/";

String eiDescription = "Java Technology";

ExternalLink extLink =

blcm.createExternalLink(eiURI, eiDescription);

object.addExternalLink(extLink);

The URI must be a valid URI, and the JAXR provider checks its validity. If the link that you
specify is outside your firewall, you need to specify the system properties http.proxyHost and
http.proxyPort when you run the program so that JAXR can determine the validity of the
URI.

To disable URI validation (for example, if you want to specify a link that is not currently active),
call the ExternalLink.setValidateURI method before you create the link.

extLink.setValidateURI(false);

The example INSTALL/registry-samples/publish-object/src/JAXRPublishObject.java,
described in “Adding Classifications: Example” on page 69, also adds an external link to an
object. The build.xml file for this example specifies the system properties http.proxyHost and
http.proxyPort.

Adding Slots to Objects
Slots are arbitrary attributes, so the API provides maximum flexibility for you to create them.
You can provide a name, one or more values, and a type. The name and type are String objects.

Creating Objects

Service Registry 3.1 Developer's Guide • February 200770

The name is ordinarily a human-friendly URN. The type is the unique identifier value of a
concept in the canonical DataType classification scheme; see “Constants for Data Type
Concepts” on page 95.

The value or values are stored as a Collection of String objects, but the
LifeCycleManager.createSlot method has a form that allows you to specify a single String
value. For example, the following code fragment creates a slot using a String value, then adds
the slot to the object.

String slotName = "urn:com:acme:organizationalUnit:Branch";

String slotValue = "Paris";

String slotType = CanonicalConstants.CANONICAL_DATA_TYPE_ID_String;

Slot slot = blcm.createSlot(slotName, slotValue, slotType);

org.addSlot(slot);

The example INSTALL/registry-samples/publish-object/src/JAXRPublishObject.java,
described in “Adding Classifications: Example” on page 69, also adds a slot to an object.

Creating Extrinsic Objects
As “About Registries and Repositories” on page 17 explains, the Registry includes a repository
in which you can store electronic content. For every item that you store in the repository, you
must first create an ExtrinsicObject. When you save the ExtrinsicObject to the Registry, the
associated repository item is also saved.

To create an ExtrinsicObject, you first need to create a javax.activation.DataHandler
object for the repository item. The LifeCycleManager.createExtrinsicObject method takes
a DataHandler argument.

Note – You can also use an implementation-specific form of the createExtrinsicObject
method that takes no arguments. If you use this form, you can create the DataHandler object
later and use the ExtrinsicObject.setRepositoryItem method to specify the repository item.
You can also create extrinsic objects that have no associated repository items.

To store a file in the repository, for example, first create a java.io.File object. From the File
object, create a javax.activation.FileDataSource object, which you use to instantiate the
DataHandler object.

String filename = "./MyFile.xml";

File repositoryItemFile = new File(filename);

DataHandler repositoryItem =

new DataHandler(new FileDataSource(repositoryItemFile));

Next, call createExtrinsicObject with the DataHandler as argument:

Creating Objects

Chapter 4 • Publishing Objects to the Registry 71

ExtrinsicObject eo =

blcm.createExtrinsicObject(repositoryItem);

eo.setName("My Graphics File");

Set the MIME type of the object to make the object accessible. The default MIME type is
application/octet-stream. If the file is an XML file, set the MIME type as follows:

eo.setMimeType("text/xml");

Finally, call the implementation-specific ExtrinsicObjectImpl.setObjectType method to
store the ExtrinsicObject in an appropriate area of the Registry. This method has the
following signature:

public void setObjectType(Concept objectType)

throws JAXRException

The easiest way to find the appropriate concept for a particular type of file is to use the Explore
feature of the Web Console. Look under the ObjectType classification scheme for the various
types of ExtrinsicObject concepts. Specify the ID for the concept as the argument to
getRegistryObject, then specify the concept as the argument to setObjectType.

String conceptId =

"urn:oasis:names:tc:ebxml-regrep:ObjectType:RegistryObject:ExtrinsicObject:XML";

Concept objectTypeConcept =

(Concept) bqm.getRegistryObject(conceptId);

((ExtrinsicObjectImpl)eo).setObjectType(objectTypeConcept);

The constant that represents this value is
CanonicalConstants.CANONICAL_OBJECT_TYPE_ID_XML.

Finally, you save the ExtrinsicObject to the Registry.

Collection extobjs = new ArrayList();

extobjs.add(eo);

BulkResponse response = blcm.saveObjects(extobjs);

The ExtrinsicObject contains the metadata, and a copy of the file is stored in the repository.

If the Registry does not have a concept for the kind of file that you want to store there, you can
create and save the concept yourself.

Creating an Extrinsic Object: Example
For an example of creating an extrinsic object, see JAXRPublishExtrinsicObject.java in the
directory INSTALL/registry-samples/publish-extrinsic/src. This example publishes an
XML file to the Registry (its own build.xml file).

Creating Objects

Service Registry 3.1 Developer's Guide • February 200772

▼ To Run the JAXRPublishExtrinsicObject Example

Go to the directory INSTALL/registry-samples/publish-extrinsic.

Type the following command:
Ant-base/ant run

Creating Services by Publishing WSDL Files
An ebXML Registry includes an XML content cataloging service. This means that when you
publish certain kinds of files as ExtrinsicObject objects, the registry creates other kinds of
objects. The most important use of this capability is the creation of Service objects from WSDL
files.

If you publish a WSDL file as an ExtrinsicObject, the cataloging service creates one or more
services and service bindings, along with additional ExtrinsicObject objects, based on the
content of the WSDL file.

To publish a Service based on a WSDL file, create an ExtrinsicObject as described in
“Creating Extrinsic Objects” on page 71. Use the ID for the WSDL concept and the text/xml
MIME type.

String conceptId =

"urn:oasis:names:tc:ebxml-regrep:ObjectType:RegistryObject:ExtrinsicObject:WSDL";

Concept objectTypeConcept =

(Concept) bqm.getRegistryObject(conceptId);

((ExtrinsicObjectImpl)eo).setObjectType(objectTypeConcept);

eo.setMimeType("text/xml");

The constant that represents this value is
CanonicalConstants.CANONICAL_OBJECT_TYPE_ID_WSDL. However, the interface for WSDL
object type concepts is org.freebxml.omar.common.profile.ws.wsdl.CanonicalConstants,
not org.freebxml.omar.common.CanonicalConstants.

After you publish the WSDL file, you will find in the Registry a service and service binding that
correspond to the service and portType elements of the WSDL file, along with additional
ExtrinsicObject objects of type Binding and PortType.

Note – To publish a WSDL file that contains imports or includes of other WSDL and/or XML
Schema files, you must package all the files in a zip file and publish the zip file as an
ExtrinsicObject with the object type that of the WSDL concept and the mime type
"application/zip".

1

2

Creating Objects

Chapter 4 • Publishing Objects to the Registry 73

When you remove a service from the Registry, the service bindings are also removed. However,
the extrinsic objects associated with the service are not removed. Similarly, if you remove an
extrinsic object and its WSDL file from the Registry and repository, the service associated with
them is not removed.

Creating a Service by Publishing a WSDL File: Example
For an example of creating a service by publishing a WSDL file, see JAXRPublishService.java
in the directory INSTALL/registry-samples/publish-service/src. This example publishes
a simple WSDL file named MyCoffeeService.wsdl.

▼ To Run the JAXRPublishService Example

Go to the directory INSTALL/registry-samples/publish-service.

Type the following command:
Ant-base/ant run

Creating Organizations
An Organization object is probably the most complex registry object. This object normally
includes the following attributes, in addition to those common to all objects:

■ One or more PostalAddress objects.
■ One or more TelephoneNumber objects.
■ A PrimaryContact object, which is a User object. A User object normally includes a

PersonName object and collections of TelephoneNumber, EmailAddress, and
PostalAddress objects.

■ One or more Service objects and their associated ServiceBinding objects.

An organization can also have one or more child organizations, which can in turn have
children, to form a hierarchy of organizations.

The following code fragment creates an organization and specifies its name, description, postal
address, and telephone number.

// Create organization name and description

Organization org =

blcm.createOrganization("The ebXML Coffee Break");

InternationalString is =

blcm.createInternationalString("Purveyor of " +

"the finest coffees. Established 1905");

org.setDescription(is);

1

2

Creating Objects

Service Registry 3.1 Developer's Guide • February 200774

// create postal address for organization

String streetNumber = "99";

String street = "Imaginary Ave. Suite 33";

String city = "Imaginary City";

String state = "NY");

String country = "USA");

String postalCode = "00000";

String type = "Type US";

PostalAddress postAddr =

blcm.createPostalAddress(streetNumber, street, city, state,

country, postalCode, type);

org.setPostalAddress(postAddr);

// create telephone number for organization

TelephoneNumber tNum = blcm.createTelephoneNumber();

tNum.setCountryCode("1");

tNum.setAreaCode("100");

tNum.setNumber("100-1000");

tNum.setType(CanonicalConstants.CANONICAL_PHONE_TYPE_CODE_OfficePhone);

Collection tNums = new ArrayList();

tNums.add(tNum);

org.setTelephoneNumbers(tNums);

The telephone number type is the value of a concept in the PhoneType classification scheme:
"OfficePhone", "MobilePhone", "HomePhone", "FAX", or "Beeper". Use the
CanonicalConstants code for the phone type.

To create a hierarchy of organizations, use the Organization.addChildOrganization method
to add one organization to another, or use the Organization.addChildOrganizations method
to add a Collection of organizations to another.

Adding Services to an Organization
Most organizations publish themselves to a registry to offer services, so JAXR has facilities to
add services to an organization. Typically, you first create the service by publishing a WSDL file
(see “Creating Services by Publishing WSDL Files” on page 73). Then you add the service to the
organization.

Like an Organization object, a Service object has a name, a description, and a unique key that
is generated by the Registry when the service is registered. A Service object can also have
classifications.

In addition to the attributes common to all objects, a service also commonly has service
bindings, which provide information about how to access the service. A ServiceBinding object
normally has a description and an access URI,.

Creating Objects

Chapter 4 • Publishing Objects to the Registry 75

The following code fragment shows how to locate a previously published service and add it to
the organization. This example uses the service published in “Creating a Service by Publishing a
WSDL File: Example” on page 74.

String serviceId = "urn:Foo:service:MyCoffeeService";

Service service = (Service) bqm.getRegistryObject(serviceId);

System.out.println("Service URN is " + serviceId);

Collection services = new ArrayList();

services.add(service);

org.addServices(services);

Creating Users
If you create an organization without specifying a primary contact, the default primary contact
is the User object that created the organization (that is, the user whose credentials you set when
you created the connection to the Registry). However, you can specify a different user as the
primary contact.

A User is also a complex type of registry object. It normally includes the following attributes, in
addition to those common to all objects:

■ A PersonName object
■ One or more PostalAddress objects
■ One or more TelephoneNumber objects
■ One or more EmailAddress objects
■ One or more URL objects that represent the user’s home page

Note – Typically, users create themselves by registering using the Web Console. It is highly
uncommon to use JAXR to create a user. The sample programs create users to illustrate the
User object and to generate organizations with different primary contacts.

The following code fragment creates a User and then sets that User as the primary contact for
the organization. This User has a telephone number and email address but no postal address.

// Create primary contact, set name

User primaryContact = blcm.createUser();

String userId = primaryContact.getKey().getId();

System.out.println("User URN is " + userId);

PersonName pName =

blcm.createPersonName("Jane", "M.", "Doe");

primaryContact.setPersonName(pName);

// Set primary contact phone number

TelephoneNumber pctNum = blcm.createTelephoneNumber();

Creating Objects

Service Registry 3.1 Developer's Guide • February 200776

pctNum.setCountryCode("1");

pctNum.setAreaCode("100");

pctNum.setNumber("100-1001");

pctNum.setType(CanonicalConstants.CANONICAL_PHONE_TYPE_CODE_MobilePhone);

Collection phoneNums = new ArrayList();

phoneNums.add(pctNum);

primaryContact.setTelephoneNumbers(phoneNums);

// Set primary contact email address

EmailAddress emailAddress =

blcm.createEmailAddress("jane.doe@TheCoffeeBreak.com");

emailAddress.setType(CanonicalConstants.CANONICAL_EMAIL_TYPE_CODE_OfficeEmail));

Collection emailAddresses = new ArrayList();

emailAddresses.add(emailAddress);

primaryContact.setEmailAddresses(emailAddresses);

URL pcUrl = new URL((bundle.getString("person.url"));

primaryContact.setUrl(pcUrl);

// Set primary contact for organization

org.setPrimaryContact(primaryContact);

The telephone number type for the primary contact is the value of a concept in the PhoneType
classification scheme: "OfficePhone", "MobilePhone", "HomePhone", "FAX", or "Beeper". The
email address type for the primary contact is the value of a concept in the EmailType
classification scheme: either "OfficeEmail" or "HomeEmail". Use the CanonicalConstants
codes for these types.

Creating an Organization: Examples
For examples of creating an organization, see JAXRPublishOrg.java and
JAXRPublishOrgNoPC.java in the directory
INSTALL/registry-samples/organizations/src.

The JAXRPublishOrg example creates an organization and its primary contact. It adds a service,
the one published in “Creating a Service by Publishing a WSDL File: Example” on page 74. The
example displays the unique identifiers for the organization, user, and service so that you can
use the identifiers later when you delete the objects. This example creates a fictitious User as the
primary contact for the organization. The name of the organization is The ebXML Coffee
Break.

The other example, JAXRPublishOrgNoPC.java, does not set a primary contact for the
organization. In this case, the primary contact by default is the User who is authenticated when
you run the program. The name of this organization is DefaultPCOrg.

Creating Objects

Chapter 4 • Publishing Objects to the Registry 77

▼ To Run the JAXRPublishOrg and JAXRPublishOrgNoPC Examples

Go to the directory INSTALL/registry-samples/organizations.

Type the following commands:
Ant-base/ant pub-org

Ant-base/ant pub-org-nopc

Creating and Retrieving an Organization Hierarchy: Examples
For examples of publishing and retrieving an organization hierarchy, see
JAXRPublishOrgFamily.java and JAXRSearchOrgFamily.java in the directory
INSTALL/registry-samples/organizations/src.

▼ To Run the JAXRPublishOrgFamily and JAXRSearchOrgFamily

Examples

Go to the directory INSTALL/registry-samples/organizations.

Type the following command to publish the organizations:
Ant-base/ant pub-fam

Type the following command to retrieve the organizations that you published:
Ant-base/ant search-fam

Saving Objects in the Registry
After you have created an object and set its attributes, you publish it to the Registry by calling
either the LifeCycleManager.saveObjects method or an object-specific save method like
BusinessLifeCycleManager.saveOrganizations or
BusinessLifeCycleManager.saveServices. You always publish a collection of objects, not a
single object. The save methods return a BulkResponse object that contains the keys (that is, the
unique identifiers) for the saved objects. The following code fragment saves an organization
and retrieves its key:

// Add organization and submit to registry

// Retrieve key if successful

Collection orgs = new ArrayList();

orgs.add(org);

BulkResponse response = blcm.saveObjects(orgs);

Collection exceptions = response.getExceptions();

if (exceptions == null) {

1

2

1

2

3

Saving Objects in the Registry

Service Registry 3.1 Developer's Guide • February 200778

System.out.println("Organization saved");

Collection keys = response.getCollection();

Iterator keyIter = keys.iterator();

if (keyIter.hasNext()) {

javax.xml.registry.infomodel.Key orgKey =

(javax.xml.registry.infomodel.Key) keyIter.next();

String id = orgKey.getId();

System.out.println("Organization key is " + id);

}

}

If one of the objects exists but some of the data have changed, the save methods update and
replace the data. This may result in the creation of a new version of the object (see “Changing
the State of Objects in the Registry” on page 85).

Saving Objects in the Registry

Chapter 4 • Publishing Objects to the Registry 79

80

Managing Objects in the Registry

After you publish objects to Service Registry, you can perform operations on the objects. This
chapter describes these operations.
■ “Creating Relationships Between Objects: Associations” on page 81
■ “Organizing Objects Within Registry Packages” on page 84
■ “Changing the State of Objects in the Registry” on page 85
■ “Controlling Access to Objects” on page 87
■ “Removing Objects From the Registry and Repository” on page 87

Creating Relationships Between Objects: Associations
You can create an Association object and use it to specify a relationship between any two
objects. The ebXML specification specifies an AssociationType classification scheme that
contains a number of canonical concepts you can use when you create an Association. You
can also create your own concepts within the AssociationType classification scheme.

The canonical association types are as follows:

■ AccessControlPolicyFor

■ AffiliatedWith, which has the subconcepts EmployeeOf and MemberOf

■ Contains

■ ContentManagementServiceFor

■ EquivalentTo

■ Extends

■ ExternallyLinks

■ HasFederationMember

■ HasMember

■ Implements

5C H A P T E R 5

81

■ InstanceOf

■ InvocationControlFileFor, which has the subconcepts CatalogingControlFileFor and
ValidationControlFileFor

■ OffersService

■ OwnerOf

■ RelatedTo

■ Replaces

■ ResponsibleFor

■ SubmitterOf

■ Supersedes

■ Uses

The Registry uses some of these association types automatically. For example, when you add a
Service to an Organization, the Registry creates an OffersService association with the
Organization as the source and the Service as the target.

Associations are directional: each Association object has a source object and a target object.
Establishing an association between two objects is a three-step process:

1. Find the AssociationType concept that you want to use, or create one.
2. Use the LifeCycleManager.createAssociation method to create the association. This

method takes two arguments, the target object and the concept that identifies the
relationship.

3. Use the RegistryObject.addAssociation method to add the association to the source
object.

For example, suppose you have two objects, obj1 and obj2, and you want to establish a
RelatedTo relationship between them. (In this relationship, which object is the source and
which is the target is arbitrary.) First, locate the RelatedTo concept:

// Find RelatedTo concept for Association

String concString =

CanonicalConstants.CANONICAL_ASSOCIATION_TYPE_ID_RelatedTo;

Concept relConcept = (Concept) bqm.getRegistryObject(concString);

Create the association, specifying obj2 as the target:

Association relAssoc =

blcm.createAssociation(obj2, relConcept);

Add the association to the source object, obj1:

obj1.addAssociation(relAssoc);

Creating Relationships Between Objects: Associations

Service Registry 3.1 Developer's Guide • February 200782

Finally, save the association:

Collection associations = new ArrayList();

associations.add(relAssoc1);

BulkResponse response = blcm.saveObjects(associations);

Associations can be of two types, intramural and extramural. You create an intramural
association when both the source and target object are owned by you. You create an extramural
association when at least one of these objects is not owned by you. The owner of an object can
use an access control policy to restrict the right to create an extramural association with that
object as a source or target.

Creating Associations: Example
For an example of creating an association, see JAXRPublishAssociation.java in the directory
INSTALL/registry-samples/publish-association/src/. This example creates a
RelatedTo association between any two objects whose unique identifiers you specify. For
example, you could specify the two child organizations created in “Creating and Retrieving an
Organization Hierarchy: Examples” on page 78.

▼ To Run the JAXRPublishAssociation Example
Go to the directory INSTALL/registry-samples/organizations.

Retrieve the organization hierarchy by running the following command:
Ant-base/ant search-fam

Notice the key ID strings of the two child organizations.

Go to the directory INSTALL/registry-samples/publish-association.

Type the following command:
Ant-base/ant run -Did1=string1 -Did2=string2

Replace string1 and string2 with the two child organization ID strings.

Whether the association is intramural or extramural depends upon who owns the two objects.
In this case, the association is intramural.

1

2

3

4

Creating Relationships Between Objects: Associations

Chapter 5 • Managing Objects in the Registry 83

Organizing Objects Within Registry Packages
Registry packages allow you to group a number of logically related registry objects, even if the
individual member objects belong to different owners. A RegistryPackage is analogous to a
directory or folder in a file system, and the registry objects it contains are analogous to the files
in the directories or folders.

To create a RegistryPackage object, call the LifeCycleManager.createRegistryPackage
method, which takes a String or InternationalString argument. Then call the
RegistryPackage.addRegistryObject or RegistryPackage.addRegistryObjects method to
add objects to the package.

For example, you could create a RegistryPackage object that is named “SunPackage”:

RegistryPackage pkg =

blcm.createRegistryPackage("SunPackage");

Then, after finding all objects with the string "Sun" in their names, you could iterate through
the results and add each object to the package:

pkg.addRegistryObject(object);

A common use of packages is to organize a set of extrinsic objects. A registry administrator can
use the cp command of the Admin Tool to load a file system into the Registry, storing the
directories as registry packages and the files as the package contents. See “cp” in Service
Registry 3.1 Administration Guide for details.

Organizing Objects Within Registry Packages:
Examples
For examples of using registry packages, see JAXRPublishPackage.java and
JAXRSearchPackage.java in the directory INSTALL/registry-samples/packages/src. The
first example publishes a RegistryPackage object that includes all objects in the Registry whose
names contain the string "free". The second example searches for this package and displays its
contents.

▼ To Run the JAXRPublishPackage and JAXRSearchPackage Examples

Go to the directory INSTALL/registry-samples/packages.

Type the following command:
Ant-base/ant pub-pkg

1

2

Organizing Objects Within Registry Packages

Service Registry 3.1 Developer's Guide • February 200784

Type the following command:
Ant-base/ant search-pkg

Changing the State of Objects in the Registry
You add an AuditableEvent object to the audit trail of an object when you publish the object to
the Registry or when you modify the object in certain ways. See “Retrieving the Audit Trail of an
Object” on page 52 for details on these events and on how to obtain information about them.

Many events are created as a side effect of some other action:

■ Saving an object to the Registry creates an EVENT_TYPE_CREATED event.
■

The following actions create an EVENT_TYPE_VERSIONED event if versioning is enabled for
the object type of the object being modified:
■ Changing an object’s name or description
■ Adding, modifying, or removing a Classification, ExternalIdentifier, or Slot
■ For an Organization or User, adding, modifying, or removing a PostalAddress or

TelephoneNumber

You can retrieve version information for an object. See “Retrieving the Version of an
Object” on page 54 for details.

Note – At this release, versioning of objects is disabled by default. To enable versioning of
objects, an administrator must perform the task described in “Enabling Versioning of Registry
Objects” in Service Registry 3.1 Administration Guide. The administrator commonly enables
versioning for some object types but not for all.

You can also change the state of objects explicitly. This feature may be useful in a production
environment where different versions of objects exist and where you wish to use some form of
version control. For example, you can approve a version of an object for general use and
deprecate an obsolete version before you remove it. If you change your mind after deprecating
an object, you can undeprecate it. As a registered user, you can perform these actions only on
objects you own.

■ You can approve objects by using the LifeCycleManagerImpl.approveObjects method.
This feature is implementation-specific.

■ You can deprecate objects by using the LifeCycleManager.deprecateObjects method.
■ You can undeprecate objects by using the LifeCycleManager.unDeprecateObjects

method.

The LifeCycleManagerImpl.approveObjects method has the following signature:

3

Changing the State of Objects in the Registry

Chapter 5 • Managing Objects in the Registry 85

public BulkResponse approveObjects(java.util.Collection keys)

throws JAXRException

The code to deprecate an object typically looks like this:

String id = id-string;
Key key = blcm.createKey(id);

Collection keys = new ArrayList();

keys.add(key);

// deprecate the object

blcm.deprecateObjects(keys);

It is possible to restrict access to these actions to specific users, user roles, and user groups, such
as registry administrators. See “Controlling Access to Objects” on page 87.

No AuditableEvent is created for actions that do not alter the state of a RegistryObject. For
example, queries do not generate an AuditableEvent, and no AuditableEvent is generated for
a RegistryObject when it is added to a RegistryPackage or when you create an Association

with the object as the source or target.

Changing the State of Objects in the Registry:
Examples
For examples of approving, deprecating, undeprecating objects, see the examples in
INSTALL/registry-samples/auditable-events/src: JAXRApproveObject.java,
JAXRDeprecateObject.java, and JAXRUndeprecateObject.java. Each example performs an
action on an object whose unique identifier you specify, then displays the object’s audit trail so
that you can see the effect of the example.

For all examples, the object that you specify must be one that you created.

▼ To Run the JAXRApproveObject, JAXRDeprecateObject, and
JAXRUndeprecateObject Examples

Go to the directory INSTALL/registry-samples/auditable-events.

Type the following command:
Ant-base/ant approve-obj -Did=id-string

Type the following command:
Ant-base/ant deprecate-obj -Did=id-string

1

2

3

Changing the State of Objects in the Registry

Service Registry 3.1 Developer's Guide • February 200786

Type the following command:
Ant-base/ant undeprecate-obj -Did=id-string

Controlling Access to Objects
Access to objects in the Registry is set by access control policies (ACPs). The default access
control policy specifies the following:

■ The predefined user Registry Guest can read any object. All users have this identity when
they are not logged in to the Registry.

■ All registered users can create objects and can perform actions on objects they own.
■ Any user classified as a RegistryAdministrator can perform actions on all objects in the

Registry. By default, only the predefined user Registry Operator is classified as an
administrator. For instructions on how to become an administrator, see “Creating an
Administrator” in Service Registry 3.1 Administration Guide.

Very fine-grained access control on individual objects is possible through custom ACPs.
However, writing an ACP is currently a manual process that requires knowledge of OASIS
eXtensible Access Control Markup Language (XACML). For details, refer to Chapter 9, “Access
Control Information Model,” of ebXML RIM 3.0, especially the examples in Sections 9.7.6
through 9.7.8.

Removing Objects From the Registry and Repository
A registry allows you to remove from it any objects that you have submitted to it. You use the
object’s ID as an argument to the LifeCycleManager.deleteObjects method.

The following code fragment deletes the object that corresponds to a specified key string and
then displays the key again so that you can confirm that it has deleted the correct one.

String id = key.getId();

Collection keys = new ArrayList();

keys.add(key);

BulkResponse response = blcm.deleteObjects(keys);

Collection exceptions = response.getException();

if (exceptions == null) {

System.out.println("Objects deleted");

Collection retKeys = response.getCollection();

Iterator keyIter = retKeys.iterator();

javax.xml.registry.infomodel.Key orgKey = null;

if (keyIter.hasNext()) {

orgKey =

(javax.xml.registry.infomodel.Key) keyIter.next();

4

Removing Objects From the Registry and Repository

Chapter 5 • Managing Objects in the Registry 87

id = orgKey.getId();

System.out.println("Object key was " + id);

}

}

Deleting an Organization object does not delete the Service and User objects that belong to
the Organization. If you want to delete those objects, you must delete them separately.

Deleting a Service object deletes the ServiceBinding objects that belong to it. Deleting the
Service and ServiceBinding objects, however, does not delete the associated
ExtrinsicObject instances and their associated repository items. You must delete the extrinsic
objects separately.

When you delete an object that has Classification or ExternalIdentifier or Slot objects,
those objects are also deleted. However, if the object has ExternalLink objects, those objects are
not deleted.

AuditableEvent objects are not deleted when the objects associated with them are deleted. You
might find that as you use the Registry, a large number of these objects accumulates.

Removing Objects from the Registry: Example
For an example of deleting an object from the Registry, see JAXRDelete.java in the directory
INSTALL/registry-samples/delete-object/src. This example deletes the object whose
unique identifier you specify.

▼ To Run the JAXRDelete Example

Go to the directory INSTALL/registry-samples/delete-object.

Type the following command:
Ant-base/ant run -Did=id-string

1

2

Removing Objects From the Registry and Repository

Service Registry 3.1 Developer's Guide • February 200788

Developing Client Programs for the UDDI
Interface

This chapter explains how to create client programs for the Universal Description, Discovery
and Integration (UDDI) interface to Service Registry.

Creating Client Programs
Client programs can access the UDDI interface to Service Registry by using the SOAP 1.1
protocol over HTTP. Client programs in any programming language can access the UDDI
interface service endpoint of Service Registry by using UDDI 3.0.2 Inquiry protocols. The
endpoint for the UDDI Inquiry interface is as follows:

http://host:port/soar/uddi/inquire

The UDDI interface to Service Registry conforms to the UDDI 3.0.2 Inquiry API WSDL as
defined at the following URLs:

■ UDDI API Binding: http://uddi.org/wsdl/uddi_api_v3_binding.wsdl
■ UDDI API Port Type: http://uddi.org/wsdl/uddi_api_v3_portType.wsdl

You can develop a Java client program for the UDDI interface using JAX-RPC 1.1 by generating
the client stubs from the previously listed UDDI 3.0.2 WSDL files.

Additions and changes to the UDDI 3.0.2 WSDL and schemas to enable a Java client to be
generated according to the requirements of the JAX-RPC 1.1 Specification are described in the
UDDI Spec TC Technical Note at the following URL: http://www.oasis-open.org/
committees/uddi-spec/doc/tn/uddi-spec-tc-tn-jax-rpc-20050126.htm.

The Java client program can then invoke methods on the UDDI Inquiry interface by using the
methods exposed by the client stub.

In the current release of Service Registry, the UDDI interface does not support the UDDI 3.0.2
Publication, Security, Custody Transfer, or Subscription protocols. The following UDDI 3.0.2
interfaces are implemented to return E_unsupported (10050) error codes for every method:

6C H A P T E R 6

89

http://uddi.org/wsdl/uddi_api_v3_binding.wsdl
http://uddi.org/wsdl/uddi_api_v3_portType.wsdl
http://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-jax-rpc-20050126.htm
http://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-jax-rpc-20050126.htm

http://host:port/soar/uddi/custody
http://host:port/soar/uddi/publish
http://host:port/soar/uddi/security
http://host:port/soar/uddi/subscription

The Inquiry interface implementation does not support authorization using -authInfo
arguments or requests for partial results using either -listHead or -maxRows arguments.

Client programs that publish to the registry must use the JAXR API as described in earlier
sections.

Creating Client Programs

Service Registry 3.1 Developer's Guide • February 200790

Troubleshooting

This chapter describes solutions to some problems that you can encounter when using JAXR
with Service Registry.

■ ““Message Send Failed” Error from Service Registry” on page 91
■ “Unable to Create ExternalLink or ServiceBinding” on page 92
■ “FileNotFoundException for Keystore File” on page 92

See “Known Issues and Bugs” in Service Registry 3.1 Release Notes for details about other
problems you might encounter, along with workarounds.

“Message Send Failed”Error from Service Registry
If you run a program and get a stack trace with a Message send failed error, the probable
reason is that the Registry is not running or that the specified URL is incorrect. The beginning
of the stack trace looks like this:

[java] Jul 10, 2006 10:23:09 PM com.sun.xml.messaging.saaj.client.p2p.HttpSOAPConnection post

[java] SEVERE: SAAJ0009: Message send failed

[java] com.sun.xml.messaging.saaj.SOAPExceptionImpl: java.security.PrivilegedActionException:

com.sun.xml.messaging.saaj.SOAPExceptionImpl: Message send failed

Make sure that the host name and port in
INSTALL/registry-samples/common/build.properties are correct for your installation.

To make sure that the Registry is running, use the command-line or web interface to the
Application Server domain for the Registry. For details, see “Administering the Application
Server Domain for Service Registry” in Service Registry 3.1 Administration Guide.

7C H A P T E R 7

91

Unable to Create ExternalLinkor ServiceBinding
You might get an error in one of the following situations, even if you have specified the system
properties http.proxyHost and http.proxyPort:

■ When you specify an External URI for an ExternalLink object
■ When you specify an Access URI for a ServiceBinding object

The error message looks like this:

The URL: uri is not resolvable.

Use Absolute Path Format [scheme:][//authority][path][?query][#fragment]

This error means that the administrative task described in “Configuring the Java Virtual
Machine (JVM) for the Registry Domain” in Service Registry 3.1 Administration Guide has not
been performed. The Service Registry administrator for your site needs to perform this task and
restart the Registry before you can create these objects.

FileNotFoundException for Keystore File
An error like the following indicates that you did not create a keystore file:

[java] Query URL is http://localhost:6480/soar/registry/soap

[java] Created connection to registry

[java] java.io.FileNotFoundException:

/home/myname/soar/3.0/jaxr-ebxml/security/keystore.jks (No such file or directory)

If you see this error, follow all the procedures described in the section “Getting Access to the
Registry” on page 23.

Unable to Create ExternalLink or ServiceBinding

Service Registry 3.1 Developer's Guide • February 200792

Canonical Constants

This appendix lists the canonical constants for unique identifiers that are defined by the ebXML
Registry and Repository specification. The constants are defined in the interface
org.freebxml.omar.common.CanonicalConstants, which extends
org.freebxml.omar.common.CanonicalSchemes.

These constants define the unique identifier strings for known objects. Use the constants to look
up these objects by identifier.

The canonical constants for concepts defined in
org.freebxml.omar.common.CanonicalConstants also include constants for the logical
identifier (lid) of each concept and for the concept's code, which is its name. For example, the
MemberOf concept has the following three constants:

■ CANONICAL_ASSOCIATION_TYPE_ID_Uses, defined as
"urn:oasis:names:tc:ebxml-regrep:AssociationType:Uses"

■ CANONICAL_ASSOCIATION_TYPE_LID_Uses, defined as
"urn:oasis:names:tc:ebxml-regrep:AssociationType:Uses"

■ CANONICAL_ASSOCIATION_TYPE_CODE_Uses, defined as "Uses"

Classification schemes have constants for the unique identifier and the logical identifier, but do
not have a code constant.

This appendix lists only the unique identifier constants, but you can use the lid and code
constants where appropriate.

AA P P E N D I X A

93

Constants for Classification Schemes
The constants for the unique identifiers of canonical classification schemes are as follows:

■ CANONICAL_CLASSIFICATION_SCHEME_ID_AssociationType

■ CANONICAL_CLASSIFICATION_SCHEME_ID_ContentManagementService

■ CANONICAL_CLASSIFICATION_SCHEME_ID_DataType

■ CANONICAL_CLASSIFICATION_SCHEME_ID_DeletionScopeType

■ CANONICAL_CLASSIFICATION_SCHEME_ID_EmailType

■ CANONICAL_CLASSIFICATION_SCHEME_ID_ErrorHandlingModel

■ CANONICAL_CLASSIFICATION_SCHEME_ID_ErrorSeverityType

■ CANONICAL_CLASSIFICATION_SCHEME_ID_EventType

■ CANONICAL_CLASSIFICATION_SCHEME_ID_InvocationModel

■ CANONICAL_CLASSIFICATION_SCHEME_ID_NodeType

■ CANONICAL_CLASSIFICATION_SCHEME_ID_NotificationOptionType

■ CANONICAL_CLASSIFICATION_SCHEME_ID_ObjectType

■ CANONICAL_CLASSIFICATION_SCHEME_ID_PhoneType

■ CANONICAL_CLASSIFICATION_SCHEME_ID_QueryLanguage

■ CANONICAL_CLASSIFICATION_SCHEME_ID_ResponseStatusType

■ CANONICAL_CLASSIFICATION_SCHEME_ID_StabilityType

■ CANONICAL_CLASSIFICATION_SCHEME_ID_StatusType

■ CANONICAL_CLASSIFICATION_SCHEME_ID_SubjectGroup

■ CANONICAL_CLASSIFICATION_SCHEME_ID_SubjectRole

Constants for Association Type Concepts
The constants for unique identifiers for the concepts that identify Association objects are as
follows:

■ CANONICAL_ASSOCIATION_TYPE_ID_AccessControlPolicyFor

■ CANONICAL_ASSOCIATION_TYPE_ID_AffiliatedWith

■ CANONICAL_ASSOCIATION_TYPE_ID_CatalogingControlFileFor

■ CANONICAL_ASSOCIATION_TYPE_ID_Contains

■ CANONICAL_ASSOCIATION_TYPE_ID_ContentManagementServiceFor

■ CANONICAL_ASSOCIATION_TYPE_ID_EmployeeOf

■ CANONICAL_ASSOCIATION_TYPE_ID_EquivalentTo

■ CANONICAL_ASSOCIATION_TYPE_ID_Extends

■ CANONICAL_ASSOCIATION_TYPE_ID_ExternallyLinks

■ CANONICAL_ASSOCIATION_TYPE_ID_HasFederationMember

■ CANONICAL_ASSOCIATION_TYPE_ID_HasMember

■ CANONICAL_ASSOCIATION_TYPE_ID_Implements

■ CANONICAL_ASSOCIATION_TYPE_ID_InstanceOf

■ CANONICAL_ASSOCIATION_TYPE_ID_InvocationControlFileFor

■ CANONICAL_ASSOCIATION_TYPE_ID_MemberOf

Constants for Classification Schemes

Service Registry 3.1 Developer's Guide • February 200794

■ CANONICAL_ASSOCIATION_TYPE_ID_OffersService

■ CANONICAL_ASSOCIATION_TYPE_ID_OwnerOf

■ CANONICAL_ASSOCIATION_TYPE_ID_RelatedTo

■ CANONICAL_ASSOCIATION_TYPE_ID_Replaces

■ CANONICAL_ASSOCIATION_TYPE_ID_ResponsibleFor

■ CANONICAL_ASSOCIATION_TYPE_ID_SubmitterOf

■ CANONICAL_ASSOCIATION_TYPE_ID_Supersedes

■ CANONICAL_ASSOCIATION_TYPE_ID_Uses

■ CANONICAL_ASSOCIATION_TYPE_ID_ValidationControlFileFor

Constants for Content Management Service Concepts
The constants for unique identifiers for the concepts that identify content management services
are as follows:

■ CANONICAL_CONTENT_MANAGEMENT_SERVICE_ID_ContentCatalogingService

■ CANONICAL_CONTENT_MANAGEMENT_SERVICE_ID_ContentValidationService

Constants for Data Type Concepts
The constants for unique identifiers for the concepts that identify data types are as follows:

■ CANONICAL_DATA_TYPE_ID_Boolean

■ CANONICAL_DATA_TYPE_ID_Date

■ CANONICAL_DATA_TYPE_ID_DateTime

■ CANONICAL_DATA_TYPE_ID_Double

■ CANONICAL_DATA_TYPE_ID_Duration

■ CANONICAL_DATA_TYPE_ID_Float

■ CANONICAL_DATA_TYPE_ID_Integer

■ CANONICAL_DATA_TYPE_ID_ObjectRef

■ CANONICAL_DATA_TYPE_ID_String

■ CANONICAL_DATA_TYPE_ID_Time

■ CANONICAL_DATA_TYPE_ID_URI

Constants for Deletion Scope Type Concepts
The constants for unique identifiers for the concepts that identify deletion scope types are as
follows:

■ CANONICAL_DELETION_SCOPE_TYPE_ID_DeleteAll

■ CANONICAL_DELETION_SCOPE_TYPE_ID_DeleteRepositoryItemOnly

Constants for Deletion Scope Type Concepts

Appendix A • Canonical Constants 95

Constants for Email Type Concepts
The constants for unique identifiers for the concepts that identify email types are as follows:

■ CANONICAL_EMAIL_TYPE_ID_HomeEmail

■ CANONICAL_EMAIL_TYPE_ID_OfficeEmail

Constants for Error Handling Model Concepts
The constants for unique identifiers for the concepts that identify error handling models are as
follows:

■ CANONICAL_ERROR_HANDLING_MODEL_ID_FailOnError

■ CANONICAL_ERROR_HANDLING_MODEL_ID_LogErrorAndContinue

Constants for Error Severity Type Concepts
The constants for unique identifiers for the concepts that identify error severity types are as
follows:

■ CANONICAL_ERROR_SEVERITY_TYPE_ID_Error

■ CANONICAL_ERROR_SEVERITY_TYPE_ID_Warning

Constants for Event Type Concepts
The constants for unique identifiers for the concepts that identify event types are as follows:

■ CANONICAL_EVENT_TYPE_ID_Approved

■ CANONICAL_EVENT_TYPE_ID_Created

■ CANONICAL_EVENT_TYPE_ID_Deleted

■ CANONICAL_EVENT_TYPE_ID_Deprecated

■ CANONICAL_EVENT_TYPE_ID_Downloaded

■ CANONICAL_EVENT_TYPE_ID_Relocated

■ CANONICAL_EVENT_TYPE_ID_Undeprecated

■ CANONICAL_EVENT_TYPE_ID_Updated

■ CANONICAL_EVENT_TYPE_ID_Versioned

Constants for Email Type Concepts

Service Registry 3.1 Developer's Guide • February 200796

Constants for Invocation Model Concepts
The constants for unique identifiers for the concepts that identify invocation models are as
follows:

■ CANONICAL_INVOCATION_MODEL_ID_Decoupled

■ CANONICAL_INVOCATION_MODEL_ID_Inline

Constants for Node Type Concepts
The constants for unique identifiers for the concepts that identify node types are as follows:

■ CANONICAL_NODE_TYPE_ID_EmbeddedPath

■ CANONICAL_NODE_TYPE_ID_NonUniqueCode

■ CANONICAL_NODE_TYPE_ID_UniqueCode

Constants for Notification Option Type Concepts
The constants for unique identifiers for the concepts that identify notification option types are
as follows:

■ CANONICAL_NOTIFICATION_OPTION_TYPE_ID_ObjectRefs

■ CANONICAL_NOTIFICATION_OPTION_TYPE_ID_Objects

Constants for Object Type Concepts
The constants for unique identifiers for the concepts that identify object types are as follows:

■ CANONICAL_OBJECT_TYPE_ID_AdhocQuery

■ CANONICAL_OBJECT_TYPE_ID_Association

■ CANONICAL_OBJECT_TYPE_ID_AuditableEvent

■ CANONICAL_OBJECT_TYPE_ID_Classification

■ CANONICAL_OBJECT_TYPE_ID_ClassificationNode

■ CANONICAL_OBJECT_TYPE_ID_ClassificationScheme

■ CANONICAL_OBJECT_TYPE_ID_ExternalIdentifier

■ CANONICAL_OBJECT_TYPE_ID_ExternalLink

■ CANONICAL_OBJECT_TYPE_ID_ExtrinsicObject

■ CANONICAL_OBJECT_TYPE_ID_Federation

■ CANONICAL_OBJECT_TYPE_ID_Notification

■ CANONICAL_OBJECT_TYPE_ID_Organization

■ CANONICAL_OBJECT_TYPE_ID_Person

■ CANONICAL_OBJECT_TYPE_ID_Registry

Constants for Object Type Concepts

Appendix A • Canonical Constants 97

■ CANONICAL_OBJECT_TYPE_ID_RegistryObject

■ CANONICAL_OBJECT_TYPE_ID_RegistryPackage

■ CANONICAL_OBJECT_TYPE_ID_Service

■ CANONICAL_OBJECT_TYPE_ID_ServiceBinding

■ CANONICAL_OBJECT_TYPE_ID_SpecificationLink

■ CANONICAL_OBJECT_TYPE_ID_Subscription

■ CANONICAL_OBJECT_TYPE_ID_User

Constants for Extrinsic Object Types
The constants for unique identifiers for the concepts that specify extrinsic object types are as
follows.

■ CANONICAL_OBJECT_TYPE_ID_Policy

■ CANONICAL_OBJECT_TYPE_ID_PolicySet

■ CANONICAL_OBJECT_TYPE_ID_XACML

■ CANONICAL_OBJECT_TYPE_ID_XForm

■ CANONICAL_OBJECT_TYPE_ID_XHTML

■ CANONICAL_OBJECT_TYPE_ID_XML

■ CANONICAL_OBJECT_TYPE_ID_XMLSchema

■ CANONICAL_OBJECT_TYPE_ID_XSLT

The extrinsic object constants listed above are defined in
org.freebxml.omar.common.CanonicalConstants. The following constants for WSDL object
type concepts, however, are defined in
org.freebxml.omar.common.profile.ws.wsdl.CanonicalConstants:

■ CANONICAL_OBJECT_TYPE_ID_WSDL

■ CANONICAL_OBJECT_TYPE_ID_WSDL_BINDING

■ CANONICAL_OBJECT_TYPE_ID_WSDL_PORT

■ CANONICAL_OBJECT_TYPE_ID_WSDL_PORT_TYPE

■ CANONICAL_OBJECT_TYPE_ID_WSDL_SERVICE

Constants for Phone Type Concepts
The constants for unique identifiers for the concepts that identify phone types are as follows:

■ CANONICAL_PHONE_TYPE_ID_Beeper

■ CANONICAL_PHONE_TYPE_ID_FAX

■ CANONICAL_PHONE_TYPE_ID_HomePhone

■ CANONICAL_PHONE_TYPE_ID_MobilePhone

■ CANONICAL_PHONE_TYPE_ID_OfficePhone

Constants for Phone Type Concepts

Service Registry 3.1 Developer's Guide • February 200798

Constants for Query Language Concepts
The constants for unique identifiers for the concepts that identify query languages are as
follows:

■ CANONICAL_QUERY_LANGUAGE_ID_ebRSFilterQuery

■ CANONICAL_QUERY_LANGUAGE_ID_SQL_92

■ CANONICAL_QUERY_LANGUAGE_ID_XPath

■ CANONICAL_QUERY_LANGUAGE_ID_XQuery

Constants for Response Status Type Concepts
The constants for unique identifiers for the concepts that identify response status types are as
follows:

■ CANONICAL_RESPONSE_STATUS_TYPE_ID_Failure

■ CANONICAL_RESPONSE_STATUS_TYPE_ID_Success

■ CANONICAL_RESPONSE_STATUS_TYPE_ID_Unavailable

Constants for Stability Type Concepts
The constants for unique identifiers for the concepts that identify stability types are as follows:

■ CANONICAL_STABILITY_TYPE_ID_Dynamic

■ CANONICAL_STABILITY_TYPE_ID_DynamicCompatible

■ CANONICAL_STABILITY_TYPE_ID_Static

Constants for Status Type Concepts
The constants for unique identifiers for the concepts that identify status types are as follows:

■ CANONICAL_STATUS_TYPE_ID_Approved

■ CANONICAL_STATUS_TYPE_ID_Deprecated

■ CANONICAL_STATUS_TYPE_ID_Submitted

■ CANONICAL_STATUS_TYPE_ID_Withdrawn

Constants for Status Type Concepts

Appendix A • Canonical Constants 99

Constants for Subject Role Concepts
The constants for unique identifiers for the concepts that identify subject roles are as follows:

■ CANONICAL_SUBJECT_ROLE_ID_ContentOwner

■ CANONICAL_SUBJECT_ROLE_ID_Intermediary

■ CANONICAL_SUBJECT_ROLE_ID_RegistryAdministrator

■ CANONICAL_SUBJECT_ROLE_ID_RegistryGuest

Constants for Stored Queries
The constants defined for predefined queries are as follows:

■ CANONICAL_QUERY_BasicQuery

■ CANONICAL_QUERY_BasicQueryCaseSensitive

■ CANONICAL_QUERY_FindAllMyObjects

■ CANONICAL_QUERY_FindObjectByIdAndType

■ CANONICAL_QUERY_GetAuditTrailForRegistryObject

■ CANONICAL_QUERY_GetCallersUser

■ CANONICAL_QUERY_GetClassificationSchemesById

■ CANONICAL_QUERY_GetRegistryPackagesByMemberId

Additional constants for WSDL queries are defined in the interface
omar.common.profile.ws.wsdl.CanonicalConstants:

■ CANONICAL_QUERY_WSDL_DISCOVERY

■ CANONICAL_QUERY_SERVICE_DISCOVERY

■ CANONICAL_QUERY_PORT_DISCOVERY

■ CANONICAL_QUERY_BINDING_DISCOVERY

■ CANONICAL_QUERY_PORTTYPE_DISCOVERY

Constants for Subject Role Concepts

Service Registry 3.1 Developer's Guide • February 2007100

Index

Numbers and Symbols
% (percent sign), wildcard in JAXR queries, 35

A
access control policies, 87
addAssociation method (RegistryObject interface), 82
addChildConcept method (ClassificationScheme

interface), 66
addChildConcept method (Concept interface), 66
addChildOrganization method (Organization

interface), 75
addChildOrganizations method (Organization

interface), 75
addClassification method (RegistryObject

interface), 68
addRegistryObject method (RegistryPackage

interface), 84
addRegistryObjects method (RegistryPackage

interface), 84
addServiceBindings method (Service interface), 76
addServices method (Organization interface), 76
AdhocQuery interface, 30
ant command, using with JAXR examples, 20-22
approveObjects method (LifeCycleManagerImpl

class), 85
approving registry objects, 85

example, 86-87
Association interface, 31

creating objects, 81-83
AssociationType classification scheme, 38, 81

AssociationType classification scheme (Continued)
concepts, 81

audit trails
generating events, 85-87
retrieving, 52-54

AuditableEvent interface, 31
retrieving objects, 52-54

authentication, 62-63

B
build.properties file

JAXR examples, 21
BusinessLifeCycleManager interface, 19, 26, 61
BusinessQueryManager interface, 26

C
canonical constants for unique identifiers, 93
certificates, obtaining, 23-25
Classification interface, 31

adding objects, 68-69
retrieving objects, 46-47
using to find objects, 38-41

classification schemes
creating with JAXR, 66-67
ebXML specification, 38

ClassificationScheme interface, 31
clients, JAXR, 19

examples, 20-22
setting up, 23-27

101

Concept interface, 31
concepts, using to create classifications with

JAXR, 68-69
connection factories, JAXR, creating, 25
Connection interface, 19, 25-26
connection properties, JAXR, examples, 25-26
ConnectionFactory class, 25
connections, JAXR

creating, 25-26
setting properties, 25-26

constants, canonical, 93
ContentManagementService classification scheme, 38
createAssociation method (LifeCycleManager

interface), 82
createClassification method (LifeCycleManager

interface), 38, 68
createClassificationScheme method (LifeCycleManager

interface), 66
createConcept method (LifeCycleManager

interface), 66
createExternalIdentifier method (LifeCycleManager

interface), 41, 70
createExternalLink method (LifeCycleManager

interface), 42, 70
createExtrinsicObject method (LifeCycleManager

interface), 71
createInternationalString method (LifeCycleManager

interface), 65
createKey method (LifeCycleManager interface), 65
createLocalizedString method (LifeCycleManager

interface), 65
createObject method (LifeCycleManager interface), 64
createOrganization method (LifeCycleManager

interface), 74
createPersonName method (LifeCycleManager

interface), 76
createPostalAddress method (LifeCycleManager

interface), 74
createQuery method (DeclarativeQueryImpl

interface), 58
createQuerymethod (DeclarativeQueryManager

interface), 55
createRegistryPackage method (LifeCycleManager

interface), 84

createService method (LifeCycleManager interface), 76
createServiceBinding method (LifeCycleManager

interface), 76
createSlot method (LifeCycleManager interface), 70
createTelephoneNumber method (LifeCycleManager

interface), 74
createUser method (LifeCycleManager interface), 76

D
DataType classification scheme, 39
DeclarativeQueryManager interface, 19, 26, 55-56
DeclarativeQueryManagerImpl class, 56-57
deleteObjects method (LifeCycleManager

interface), 87
DeletionScopeType classification scheme, 39
deprecateObjects method (LifeCycleManager

interface), 85
deprecating registry objects, 85

example, 86-87

E
ebXML, registries, 17
EmailAddress interface, 33

retrieving objects, 49-51
EmailType classification scheme, 39
ErrorHandlingModel classification scheme, 39
ErrorSeverityType classification scheme, 39
EventType classification scheme, 39
examples

adding classifications to objects, 69
adding external identifiers to objects, 70
adding external links to objects, 70
adding slots to objects, 71
build.properties file, 21
changing the state of registry objects, 86-87
creating associations, 83
creating classification schemes, 67
creating extrinsic objects, 72-73, 74
creating organization hierarchies, 78
creating organizations, 77-78
creating registry packages, 84-85

Index

Service Registry 3.1 Developer's Guide • February 2007102

examples (Continued)
declarative queries, 55-56
deleting objects, 88
displaying classification schemes and concepts, 40
federated queries, 60
finding objects by classification, 40-41
finding objects by external identifier, 42
finding objects by external link, 42-43
finding objects by key, 34
finding objects by name, 36
finding objects by type, 37
finding objects by unique identifier, 34
finding objects you published, 43-44
introduction, 20-22
iterative queries, 57
JAXRExamples.properties file, 21
publishing services, 74
retrieving organization and user attributes, 50-51
retrieving organization hierarchies, 78
retrieving registry packages, 84-85
stored queries, 59
storing items in the repository, 72-73
targets.xml file, 21

executeQuery method (DeclarativeQueryImpl
interface), 58

executeQuery method (DeclarativeQueryManager
interface), 55

executeQuery method (DeclarativeQueryManagerImpl
class), 56

external classification schemes, definition, 69
ExternalIdentifier interface, 31

adding objects, 69-70
retrieving objects, 47
using to find objects, 41-42

ExternalLink interface, 31
adding objects, 70
retrieving objects, 47-48
using to find objects, 42-43

extramural associations, definition, 83
ExtrinsicObject interface, 31

creating objects, 71-73
deleting objects, 88
using to publish a service, 73-74

F
Federation interface, 31
federations, registry, querying, 59-60
findObjects method (BusinessQueryManagerImpl

class), 30, 35

G
getAccessURI method (ServiceBinding interface), 51
getAddress method (EmailAddress interface), 50
getAreaCode method (TelephoneNumber

interface), 49
getAuditTrail method (RegistryObject

interface), 52-54
getChildOrganizations method (Organization

interface), 52
getCity method (PostalAddress interface), 49
getClassifications method (RegistryObject

interface), 46-47
getConnectionFactory method, 25
getCountry method (PostalAddress interface), 49
getCountryCode method (TelephoneNumber

interface), 49
getDescendantOrganizations method (Organization

interface), 52
getDescription method (RegistryObject interface), 45
getEmailAddresses method (User interface), 50
getEventType method (AuditableEvent interface), 53
getExtension method (TelephoneNumber

interface), 50
getExternalIdentifiers method (RegistryObject

interface), 47
getExternalLinks method (RegistryObject

interface), 47-48
getFirstName method (PersonName interface), 50
getId method (Key interface), 45
getIdentificationScheme method (ExternalIdentifier

interface), 47
getKey method (RegistryObject interface), 45
getLastName method (PersonName interface), 50
getLid method (RegistryObjectImpl class), 45
getMiddleName method (PersonName interface), 50
getName method (RegistryObject interface), 45
getNumber method (TelephoneNumber interface), 49

Index

103

getObjectType method (RegistryObject interface), 46
getParentOrganization method (Organization

interface), 52
getPersonName method (User interface), 50
getPostalAddress method (Organization interface), 49
getPostalAddresses method (User interface), 49
getPostalCode method (PostalAddress interface), 49
getPrimaryContact method (Organization

interface), 49
getRegistryObject method (QueryManager

interface), 30, 34
getRegistryObjects method (QueryManager

interface), 30, 43
getRootOrganization method (Organization

interface), 52
getServiceBindings method (Service interface), 51
getServices method (Organization interface), 51
getSlots method (RegistryObject interface), 48
getSlotType method (Slot interface), 48
getStateOrProvince method (PostalAddress

interface), 49
getStreet method (PostalAddress interface), 49
getStreetNumber method (PostalAddress interface), 49
getTelephoneNumbers method (Organization interface

or User interface), 49
getTimeStamp method (AuditableEvent interface), 53
getType method (EmailAddress interface), 50
getType method (PostalAddress interface), 49
getType method (TelephoneNumber interface), 49
getUrl method (TelephoneNumber interface), 50
getValues method (Slot interface), 48
getVersionInfo method (RegistryObjectImpl class), 54
getVersionName method (VersionInfoType

interface), 54
Glossary, link to, 12

I
information model, JAXR, 18-19

interfaces, 30-33
internal classification schemes, definition, 68
InternationalString interface, 33
intramural associations, definition, 83
InvocationModel classification scheme, 39

IterativeQueryParams class, 56

J
javax.xml.registry.infomodel package, 19
javax.xml.registry package, 19
JAXR

architecture, 19-20
classification schemes, 38
clients, 19, 23-27
creating connections, 25-26
creating objects, 63-78
definition, 18-19
establishing security credentials, 62-63
information model, 18-19, 30-33
provider, 19
publishing objects to a registry, 61-79
querying a registry, 29-60
specification, 18-19

JAXRExamples.properties file, JAXR examples, 21

K
Key interface, 33

using to find objects, 34

L
LifeCycleManager interface, 19, 26
LocalizedString interface, 33
logical identifiers, retrieving, 45

N
NodeType classification scheme, 39
Notification interface, 32
NotificationOptionType classification scheme, 39

Index

Service Registry 3.1 Developer's Guide • February 2007104

O
ObjectType classification scheme, 39
Organization interface, 32

creating objects, 74-78
deleting objects, 88
retrieving object attributes, 49-51
retrieving parent and child objects, 52
retrieving services and service bindings, 51-52

P
PersonName interface, 33
PhoneType classification scheme, 39
PostalAddress interface, 33

retrieving objects, 49-51
providers, JAXR, 19

Q
queries

basic methods, 29-30
by classification, 38-41
by external identifier, 41-42
by external link, 42-43
by name, 35-36
by type, 37
by unique identifier, 34
declarative, 55-56
federated, 59-60
iterative, 56-57
stored, 58-59

QueryLanguage classification scheme, 39
QueryManager interface, 19, 26

R
registries

definition, 17
ebXML, 17
federations, 59-60
UDDI, 17

registry federations, definition, 18

Registry interface, 32
registry objects

adding classifications, 68-69
adding external identifiers, 69-70
adding external links, 70
adding names and descriptions, 64-65
adding slots, 70-71
approving, deprecating, or undeprecating, 85
controlling access to, 87
creating, 63-78
creating associations, 81-83
creating identifiers, 65-66
finding by classification, 38-41
finding by external identifier, 41-42
finding by external link, 42-43
finding by key, 34
finding by name, 35-36
finding by type, 37
finding by unique identifier, 34
finding objects you published, 43-44
finding with declarative queries, 55-56
finding with iterative queries, 56-57
finding with stored queries, 58-59
organizing as registry packages, 84-85
removing, 87-88
retrieving audit trail, 52-54
retrieving classifications, 46-47
retrieving external identifiers, 47
retrieving external links, 47-48
retrieving information about, 44-55
retrieving logical identifier, 45
retrieving name or description, 45-46
retrieving slots, 48
retrieving type, 46
retrieving unique identifier, 45
retrieving version information, 54-55
saving, 78-79
using create methods, 64

registry providers, definition, 17
RegistryObject interface, 19
RegistryPackage interface, 32

creating objects, 84-85
RegistryService interface, 19, 26-27
repositories, definition, 17

Index

105

ResponseStatusType classification scheme, 39

S
saveObjects method (LifeCycleManager interface), 78
saving registry objects, 78-79
security credentials for Registry, 62-63
service bindings, definition, 75
Service interface, 32

creating objects, 75-76
creating objects by publishing WSDL files, 73-74
deleting objects, 88
retrieving objects, 51-52

Service Registry
changing the state of objects, 85-87
getting access, 23-25
obtaining authorization, 62-63
publishing objects with JAXR, 61-79
querying with JAXR, 29-60
removing objects, 87-88
saving objects, 78-79
starting, 23

ServiceBinding interface, 32
creating objects, 75-76
retrieving objects, 51-52

setAccessURI method (ServiceBinding interface), 76
setAreaCode method (TelephoneNumber

interface), 74
setCountryCode method (TelephoneNumber

interface), 74
setDescription method (RegistryObject interface), 74
setEmailAddresses method (User interface), 76
setFederated method (QueryImpl class), 59
setFederation method (QueryImpl class), 60
setKey method (RegistryObject interface), 65
setLid method (RegistryObjectImpl class), 65
setMimeType method (ExtrinsicObject interface), 72,

73
setNumber method (TelephoneNumber interface), 74
setObjectType method (ExtrinsicObjectImpl class), 72,

73
setPersonName method (User interface), 76
setPostalAddress method (Organization interface), 74

setTelephoneNumbers method (Organization
interface), 74

setTelephoneNumbers method (User interface), 76
setType method (TelephoneNumber interface), 74
setUrl method (User interface), 76
setValidateURI method (ExternalLink interface), 70
setValidateURI method (ServiceBinding interface), 76
Slot interface, 33

adding objects, 70-71
retrieving objects, 48

SpecificationLink interface, 32
StatusType classification scheme, 39
SubjectGroup classification scheme, 39
SubjectRole classification scheme, 39
Subscription interface, 32

T
targets.xml file, JAXR examples, 21
TelephoneNumber interface, 33

retrieving objects, 49-51

U
UDDI, registries, 17
UDDI interface to Service Registry, creating client

programs, 89-90
unDeprecateObjects method (LifeCycleManager

interface), 85
undeprecating registry objects, 85

example, 86-87
unique identifiers

finding objects by, 34
retrieving, 45

User interface, 32
creating objects, 76-77
retrieving object attributes, 49-51

V
version information, retrieving, 54-55

Index

Service Registry 3.1 Developer's Guide • February 2007106

W
wildcards, using in JAXR queries, 35
WSDL files, storing as extrinsic objects, 73-74

Index

107

108

	Service Registry 3.1 Developer's Guide
	Preface
	Who Should Use This Book
	Before You Read This Book
	How This Book Is Organized
	Service Registry Documentation Set
	Related Books
	Default Paths and File Names
	Typographic Conventions
	Shell Prompts in Command Examples
	Symbol Conventions
	Documentation, Support, and Training
	Searching Sun Product Documentation
	Third-Party Web Site References
	Sun Welcomes Your Comments

	Overview of JAXR
	About Registries and Repositories
	About JAXR
	JAXR Architecture
	About the Examples
	To Edit the build.properties File

	Setting Up a JAXR Client
	Starting the Registry
	Getting Access to the Registry
	To Create a Keystore for Your Certificate
	To Edit the Security Settings of the build.properties File

	Establishing a Connection to the Registry
	Obtaining a Connection Factory
	Creating a Connection

	Obtaining and Using a RegistryService Object

	Querying a Registry
	Basic Query Methods
	JAXR Information Model Interfaces
	Finding Objects by Unique Identifier
	Finding Objects by Unique Identifier: Example
	To Run the JAXRSearchById Example

	Finding Objects by Name
	Finding Objects by Name: Example
	To Run the JAXRSearchByName Example

	Finding Objects by Type
	Finding Objects by Type: Example
	To Run the JAXRSearchByObjectType Example

	Finding Objects by Classification
	To Run the JAXRGetCanonicalSchemes Example
	Finding Objects by Classification: Examples
	To Run the JAXRSearchByClassification and JAXRSearchByCountryClassification Examples

	Finding Objects by External Identifier
	Finding Objects by External Identifier: Example
	To Run the JAXRSearchByExternalIdentifier Example

	Finding Objects by External Link
	Finding Objects by External Link: Example
	To Run the JAXRSearchByExternalLink Example

	Finding Objects You Published
	Finding Objects You Published: Examples
	To Run the JAXRGetMyObjects and JAXRGetMyObjectsByType Examples

	Retrieving Information About an Object
	Retrieving the Identifier Values for an Object
	Retrieving the Name or Description of an Object
	Retrieving the Type of an Object
	Retrieving the Classifications for an Object
	Retrieving the External Identifiers for an Object
	Retrieving the External Links for an Object
	Retrieving the Slots for an Object
	Retrieving the Attributes of an Organization or User
	Retrieving Organization Attributes: Example
	To Run the JAXRSearchOrg Example

	Retrieving the Services and Service Bindings for an Organization
	Retrieving an Organization Hierarchy
	Retrieving the Audit Trail of an Object
	Retrieving the Version of an Object

	Using Declarative Queries
	Using Declarative Queries: Example
	To Run the JAXRQueryDeclarative Example

	Using Iterative Queries
	Using Iterative Queries: Example
	To Run the JAXRQueryIterative Example

	Using Stored Queries
	Using Stored Queries: Example
	To Run the JAXRQueryStored Example

	Using Federated Queries
	Using Federated Queries: Example
	To Run the JAXRQueryFederationExample

	Publishing Objects to the Registry
	Authenticating with the Registry
	Creating Objects
	Using Create Methods for Objects
	Adding Names and Descriptions to Objects
	Identifying Objects
	Creating and Using Classification Schemes and Concepts
	Creating and Displaying Classification Schemes: Examples
	To Run the JAXRPublishScheme Example
	To Run the JAXRSearchScheme Example
	To Run the JAXRDeleteScheme Example

	Adding Classifications to Objects
	Adding Classifications: Example
	To Run the JAXRPublishObject Example

	Adding External Identifiers to Objects
	Adding External Links to Objects
	Adding Slots to Objects
	Creating Extrinsic Objects
	Creating an Extrinsic Object: Example
	To Run the JAXRPublishExtrinsicObject Example

	Creating Services by Publishing WSDL Files
	Creating a Service by Publishing a WSDL File: Example
	To Run the JAXRPublishService Example

	Creating Organizations
	Adding Services to an Organization
	Creating Users
	Creating an Organization: Examples
	To Run the JAXRPublishOrg and JAXRPublishOrgNoPC Examples

	Creating and Retrieving an Organization Hierarchy: Examples
	To Run the JAXRPublishOrgFamily and JAXRSearchOrgFamily Examples

	Saving Objects in the Registry

	Managing Objects in the Registry
	Creating Relationships Between Objects: Associations
	Creating Associations: Example
	To Run the JAXRPublishAssociation Example

	Organizing Objects Within Registry Packages
	Organizing Objects Within Registry Packages: Examples
	To Run the JAXRPublishPackage and JAXRSearchPackage Examples

	Changing the State of Objects in the Registry
	Changing the State of Objects in the Registry: Examples
	To Run the JAXRApproveObject, JAXRDeprecateObject, and JAXRUndeprecateObject Examples

	Controlling Access to Objects
	Removing Objects From the Registry and Repository
	Removing Objects from the Registry: Example
	To Run the JAXRDelete Example

	Developing Client Programs for the UDDI Interface
	Creating Client Programs

	Troubleshooting
	“Message Send Failed” Error from Service Registry
	Unable to Create ExternalLink or ServiceBinding
	FileNotFoundException for Keystore File

	Canonical Constants
	Constants for Classification Schemes
	Constants for Association Type Concepts
	Constants for Content Management Service Concepts
	Constants for Data Type Concepts
	Constants for Deletion Scope Type Concepts
	Constants for Email Type Concepts
	Constants for Error Handling Model Concepts
	Constants for Error Severity Type Concepts
	Constants for Event Type Concepts
	Constants for Invocation Model Concepts
	Constants for Node Type Concepts
	Constants for Notification Option Type Concepts
	Constants for Object Type Concepts
	Constants for Extrinsic Object Types

	Constants for Phone Type Concepts
	Constants for Query Language Concepts
	Constants for Response Status Type Concepts
	Constants for Stability Type Concepts
	Constants for Status Type Concepts
	Constants for Subject Role Concepts
	Constants for Stored Queries

	Index

