Sun Java System Access Manager
7.1 Federation and SAML
Administration Guide

X Sun

microsystems

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
US.A.

Part No: 819-4674-10
March 2007

Copyright 2007 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In particular, and without
limitation, these intellectual property rights may include one or more U.S. patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions
of the FAR and its supplements.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other
countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, the Solaris logo, the Java Coffee Cup logo, docs.sun.com, Java, and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts
of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to
the Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN LOOK GUIs and otherwise comply with Sun's written license
agreements.

Products covered by and information contained in this publication are controlled by U.S. Export Control laws and may be subject to the export or import laws in
other countries. Nuclear, missile, chemical or biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export
or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied persons and specially
designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “ASIS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2007 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Sun Microsystems, Inc. détient les droits de propriété intellectuelle relatifs a la technologie incorporée dans le produit qui est décrit dans ce document. En particulier,
et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plusieurs brevets américains ou des applications de brevet en attente aux Etats-Unis
et dans d'autres pays.

Cette distribution peut comprendre des composants développés par des tierces personnes.

Certaines composants de ce produit peuvent étre dérivées du logiciel Berkeley BSD, licenciés par 1'Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d'autres pays; elle est licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, le logo Solaris, le logo Java Coffee Cup, docs.sun.com, Java et Solaris sont des marques de fabrique ou des marques déposées de
Sun Microsystems, Inc. aux Etats-Unis et dans d'autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques
déposées de SPARC International, Inc. aux Etats-Unis et dans d'autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par
Sun Microsystems, Inc.

L'interface d'utilisation graphique OPEN LOOK et Sun a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnait les efforts de
pionniers de Xerox pour la recherche et le développement du concept des interfaces d'utilisation visuelle ou graphique pour l'industrie de I'informatique. Sun détient
une licence non exclusive de Xerox sur l'interface d'utilisation graphique Xerox, cette licence couvrant également les licenciés de Sun qui mettent en place l'interface
d'utilisation graphique OPEN LOOK et qui, en outre, se conforment aux licences écrites de Sun.

Les produits qui font l'objet de cette publication et les informations qu'il contient sont régis par la legislation américaine en matiére de contréle des exportations et
peuvent étre soumis au droit d'autres pays dans le domaine des exportations et importations. Les utilisations finales, ou utilisateurs finaux, pour des armes nucléaires,
des missiles, des armes chimiques ou biologiques ou pour le nucléaire maritime, directement ou indirectement, sont strictement interdites. Les exportations ou
réexportations vers des pays sous embargo des Etats-Unis, ou vers des entités figurant sur les listes d'exclusion d'exportation américaines, y compris, mais de maniére
non exclusive, la liste de personnes qui font objet d'un ordre de ne pas participer, d'une fagon directe ou indirecte, aux exportations des produits ou des services qui
sont régis par la legislation américaine en matiére de contrdle des exportations et la liste de ressortissants spécifiquement designés, sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE "EN LETAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES OU TACITES
SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRISNOTAMMENT TOUTE GARANTIE
IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A LAPTITUDE A UNE UTILISATION PARTICULIERE OU A L'ABSENCE DE CONTREFACON.

070801@18135

Partl

Contents

PREFACE ...ttt ettt 19
The Liberty Alliance Project Specifications and Access Managercccceeveerevrneerensnennnnns 27
Introduction to the Liberty Alliance Project ... 29
Overview of the Liberty AllIance PrOJECtccevecurireeeiricieinieireieisecieeseesiese et sseneae 29
Members of the Liberty Alliance Projectooveveoeerireeeireeieieeieeeeiseeieseesessieesesisesesesseneans 30
Objectives of the Liberty Alliance Project SPecificationscceeeeverieessesiseresisesseennnnns 30
CONCEPL OF TACIILILY ...ttt ettt
Concept of Federation
Identity Federation
Provider Federation
CONECEPE OF TTUSE overeutieiirieiets ettt ettt ettt sttt it e bbb eeaesetaeaes 32
Liberty AlliIance Project TEIMScoceuriruririueiririeeieisieietsessie st iesessssessessesssesssasssesssesssssessans 33
ACCOUNT FEARTATION ..ottt ettt ettt et aen 34
ATTIATION vttt s sttt
Attribute Provider
AUthentiCAtioN CONEEXT ...c.cuiuiueirieetrecietrieeeireeet ettt ettt sttt be bbb e saesesesaeseen 34
Authentication DOIMAINc.oieueerieieeceisieiei ettt s st ae bbb sssesesassees 35
BINAING 1ottt ettt 35
CHICLE OF TTUSL 1ottt sttt ettt s i 35
CHEIMT ettt ettt ettt et et taes 35
CommON DOMAIN ittt ettt ettt ne
Defederation
FEAETALION ettt ettt
Federation COOKIEc.ueuriiueiricieiieisicietseicteteie ettt bttt eseaes 36
Federated IAENTILYc.coeueuriceeiriciereetsecie ettt ettt 36

Contents

Federation TermMiNaAtiONcoccueccueuiueurieieiricie ettt ettt bttt eeas 37
TAEIEILY euetenciei ettt ettt ettt sttt b st et eastetaas 37
TAENTLY FEAETAtION ..vveieeiieeieiecieirieieiee ettt bbbttt eeasaesenans 37
TAENTItY PTOVIAET .eieiiiieii ettt ettt enenes 37
TAENTILY SEIVICE ..uvuveieeeeieieieieiceeieietetet st tea ettt e s se s s s s asesesesssesessssssnnsssssesas 37
Liberty-Enabled Client37
LiDerty-Enabled PrOXYcocvceniciniceirieieis ettt ettt sese ettt esneaes 38
INAME TAENTITIET .eevieiiieieiete ettt ettt 38
PLINCIPAL ettt ettt ettt et 38
PLOMILE oottt ettt s st aesenas 38
PIOLOCOL .o 38
Provider Federation .38
PSEUAONYIN ettt ettt bbbttt 39
RECEIVET ettt ettt ettt 39
RESOUICE OFETING ..euvvrinieiiieieiciei ettt ettt bttt st naas 39
SEIUAET <.ttt ettt ettt nenenes 39

Single Logout

SINEIE SIZN-OM 1.ttt ettt sttt 40
TrUSEEA PTOVIAET ..eeeivviiicceietete ettt sttt bbb nanasanenaas 40
WED Service CONSUIMETcuveveiririinircirieieieieieiieseeeeeieseseeseesssssssssesessssssssssssssssssessssssssssssssssssesnes 40
WED SErvViCe PLOVIAETcuvuivivcieieieiiicicicteie ettt ae s s sees

Liberty Alliance Project Specifications
Liberty Identity Federation Framework

Liberty Identity Web Services Frameworkc.ococeurrurneeinieieinieirnee et ssessieeenas 47
Liberty Identity Service Interface SPeCiflCationsc.coeureereeeuierieeieireeeeeereinieeeseieesseseeaens 50
Schema Files and Service Definition DOCUMENTSccveeueurierrineeinieieineeieieeseesesseeeieeenes 51
SUPPOTT DOCUIMEILS ...ttt ettt sttt bbbttt sens 51
Implementation of the Liberty Alliance Project Specificationscccccocoeveirreeerennnne. 53
OVETVIBW .ottt ettt bbbttt et b bttt b bbb neaes 53
SAMPLE USE CASE ..evevveiereiireneieieietetees et eseas st s e e s sssesesessssasssssssssesessssssasnssesesas 54
Liberty Alliance Project Architecture in Access Manageroceovceevevceeenecurenceennes . 55
The Federation MOQUIEcccouvuiueiririeiieirieieeces ettt bbbt eenas 57

Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

Contents

Partll

Identity Federation and Single Sign-Omncccccviurinieinnicinieiecereeienee et 58
Authentication and Authentication CONLEXLcvveururieerrirererieieieeeerereieeseeeeeeeesseseesssasses 59
Identifiers and Name ReZIStIationcccceeeueueiriiieineieieisieeeseseeseseeesssesessssssessssssssssseens

GLODAL LOZOUL ...ttt ettt
Dynamic Identity Provider Proxying
The Liberty-based Web Services Modules

Liberty Personal Profile SEIVICEccviurunerurinieirisieireeieiees ettt ssessseeasans 65
DISCOVEIY SEIVICE ...ttt 66
SOAP BiNding SETVICE ..evueuiuiiueieiieisieieirestee ettt sttt ssse st esssesssassesasans 66
Authentication Web SEIVICEcvuucuriiueiriciricieiritieircteeci ettt sseaesees 66
The Liberty-based Application Programming INterfacescovueueereeeureneeeeresieeneeiseeesisesesenens 67
THE SAML SEIVICE ..ueuvirieiiiieiricieieieistct ettt ettt ettt ettt 69
LiDerty-Based SAMPLESc.cuiueuriririiieirieieirieteieeiseeie ettt ettt s et sae b eensaessenns 69
Federation Management ..ottt e 71
FRAEIATION ...t 73
Process Of FEAETAtIONccueviueuieieieieieisieite sttt ettt sss e ass s st s ssssessssnsnans 73
Pre-l0ZIN PIOCESS . .cucveiiuiriiieiriicieireets ettt ettt ettt ettt 74
Federation and Single Sign-Omn ..ot sseseseeseaes 76
Federation Graphical User INEIfaceoccuriviueuriiirinciciricieisceiereee ettt 77
Entities and Authentication DOMAINSc.coeeurieueinicirinciernieieinictreeseteeeesesesetseseseeteesseesesseacsseeaee 80
EINEIEIES oottt ettt

Authentication Domains

V¥V To Create An Authentication Domain

V¥V To Configure or Modify an Authentication DOmainc.eeeveereveeeereeneeeneerereeneereennnns 110

V To Delete an Authentication Domain

The Pre-10Zin URLcoiiiieirieiieeeeisiesee ettt sttt sttt s et esesensnens
V¥V To Configure for Pre-login
V To Configure for GIoDal LOZOULccovrueiieriririeiisisisieieis ettt ssssssssssssenns
FEdEration APocieieieieeeecceete ettt s s st s s a s ae s s s s
com.sun.identity.federation.plugins

com.sun.identity.federation.services
com.sun.liberty
LiDerty ID-FF OPErationsceceueuriueurerueurieueireeetseseseesesetesesessessaesseassesssssssessssssssssessssessssssssssassees

Contents

Partlil

AULO-FEAEIAtION ...uvoveireieieeicecieeeeeciseee ettt et e e 115
V¥ To Enable Auto Federationc..ccurecncinieeccineinecnnerneeeneeneaeeessesseeessessesessessesensennes 116
BUlK FEAETationcecuuieiecenieiececiiieeiciiieee e s nsnes 116
Configuring Trust Between PrOVIAErscccvvieurierieiniirieieineieieneiseeieisee e ssessesenns 117
V¥V To Configure Trust Between Service Providers and Identity Providerscc....... 117
Signing Liberty ID-FF Requests and RESPONSEScccueureueurireueireeenireieinieieineseisesesesseseseenenes
V To Enable Signing of Service Provider Authentication Requests
Dynamic Identity Provider PrOXYINGccocccvreurirecininieiricirieeneeeereecieeeeeisescseesesesseseseeneaes
V¥V To Configure and Test Dynamic Identity Provider Proxyingc.ccceeeueereeurenveenne.

Sample Federation ENVIrONMENTc.ccocuririuiiriiieirieieicieisecieiseeteeeie ettt

Common Domain Services for Federation Managementc.ccoooeiennicceceenennns

Common DOMAIN ... s
Common Domain COOKIEucuiiueiricirireieiritieireet ettt sese ettt sseaes
Configuring the Common Domain Services for Federation Management URLScoc......

Wrriter Service URL ...ttt

Reader SErvice URLcccuviieiieiiniieinicieicesteie ettt sttt et ettt
Configuring the Common Domain Services for Federation Management Properties
Installing the Common Domain Services for Federation Managementccocoeveveueunccunenenes

V¥ To Testa Common Domain Services for Federation Management Installation

SUPPOItEdWED SEIVICEScoeiieeee ettt enenas

Liberty Alliance Project Web Services Framework ..o
TWED SEIVICES ..uevueuiiriuieineieineeie sttt bttt bbbttt bbbttt bttt
Authentication Web Service ..o
Liberty Personal Profile Service
DISCOVETY SEIVICE ...ttt ettt ettt ettt s s
SOAP BINAiNg SEIVICEuvuviiuririieeirieieirisieiseie ettt ettt sss e sesseassessssseeassesssans
Liberty ID-WSF Architecture in ACCess MANAZETc.c.veeueereueireeueurecirereiesseeiessesesessesesseesessenes
Web Services and SECUTTLYcccvuiueuriiueiniciriiciicierecte ettt es st easaees
Developing NeW WED SEIVICESccuriiuririueuritieirieieirtietseeietsesetseeietsessaessese ettt essaeseesssesseaes
V¥ To Host a Custom Servicececeeveereueeecureunenes

V¥ To Invoke the Custom Service

Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

Contents

Setting Up Liberty ID-WSE 1.1 ProOfIlesccvuiurinieiriiieirieirinceneeieieciseeie et eeeans 144
V¥ To Configure Access Manager to Use Liberty ID-WSF 1.1 Profilesccccocveoeurevereenccunence 144
AuthenticationWeb SErvice ... ene

Authentication Web Service Overview

XML SEIVICE FILE vttt bbbt s bbb seaesenesaes
Authentication Web Service APIs
Which Authentication SErvice t0 USE?ooveeererereieirieeeeeiesessssssssssssesesssssssssssssssesesssseses 152
Authentication Web Service PTOCESSocvuviriieeereiriniriiseeieiesssssessssssssesessssssssssssssesesessssssssssnes 154
Authentication Web Service AtrDULEcvovveeeeeriririricceeie et asesenes 155
Mechanism Handlers List
Authentication Web Service APIcccceiviiiieeieieieieeeesee ettt b s s ssaes 156
com.sun.identity.liberty.ws.authnsvc Package ... 156
com.sun.identity.liberty.ws.authnsvc.mechanism Packagecomiinncinnenns 156
com.sun.identity.liberty.ws.authnsvc.protocol Packagecccoevmmvrnirenrennnnne 156
Access the Authentication Web SEIviCecoovvieuereriininiieeeeeeeecee e 157
Authentication Web Service SAMPIEc.cvveueiriueirinieinicieccisee ettt seaesees 157
DAta SEIVICESc.cuviuiiniieiicie ittt bbbttt 159
Data SEIVICES OVEIVIEWcveieiiiieeiieieieietstetesteteestetestete st se st se st se et eseseesesessesetesaneesasasesensesenenss 159
Liberty ID-WSF Data Services Template Specificationcccuceeereeeneeinincesenencisinceeneenns 160
Data Services APIcouue.e.

Liberty Personal Profile Service
Liberty Personal Profile SErvice PIOCESScocvuvuiererereririeiriiisssisinesesesssssssssssssssssessssssssesns
Liberty Personal Profile Service AttribULESococeurerueerieirieieireeie e
Access the Liberty Personal Profile SErviceccvvueneeirinicinincieincenneeneceeeeeeseeeeisesenes

Liberty EMployee Profile SErVICecouvueiiuniuriciiiriieieiniieiertisiieeiseieee s ssessese e ssesesaees

Data Services TemPlate APT ...ttt saeseen
com.sun.identity.liberty.ws.dst Package

com.sun.identity.liberty.ws.dst.service Package

Developing A NeW Data SEIVICEvovurureririririieeeeeerisisiisssssessssasssessssssssesessssssssssssssesessssssssssssses

Discovery Service

DiSCOVETY SEIVICE OVEIVIEW ...cvvvveiiiiiriririeieieicetntrts ettt sttt ettt ns 173

Contents

Discovery Service WSDL ..ottt ettt sttt senes 174

aMDisCO XML SeIVICE FIlES ...uvuiuiviiiiiriiciiiiicicireieecteieicti et sees 177

Discovery Service ArCRItECTUTEcccuviiueiieiricieircciee ettt 178
DiSCOVEIY SEIVICE PTOCESS ..ouvrviiiiiiiiiirieieecectcte ettt ettt sttt es

Discovery Service Attributes

Provider IDcoccovvrverirerreeeirinnens

Supported Authentication MeChaniSmscoceceveeeeeureririninineeeeierseeeeeeeeseseesesseaeens 181
SUPPOTLEA DITECHIVES .vuvuvvereiaieieeieerieieiriieseisieeseste et essss st ssssasesssssssesssesssesnssnseses 181
Policy Evaluation for DiSCOVETY LOOKUDcvuevviiiieriririeirriicese et ssessessssssnes 182
Policy Evaluation for Discovery Updatecoceovereieenicirineieneeieineceeeieisescesesesesseseseeneaes 182
AUhOTrizer PIUG-in Class ..ottt ettt enes

Entry Handler Plug-in Class

Classes For ResourceIDMapper PIUG-inccocencurinceeineeeiceisieie et 183
Authenticate RESPONSE MESSAZEcueuuruiururieieiriaeieiiieesieieieie et teeeiessesssessessseesssssseans 183
SessionContextStatement for BOOSITAPPINGc.ccveurvreiureriueieineieirieieireieieieiees et 183
EncryptNameIdentifier in Session Context for BOOtStrappingccoceevveeeureserereeenenas 184
IMPHEA RESOUICTE ...evviieiieieeeeieieieieieisciese et ess s st e e esessasssssssssasesssssssesessssssesssssseses 184
Resource Offerings for BOOISIIAPPING ...cccuevreueurireueiriiieirieieieie st seesesesseaes 184
Storing Resource Offerings
Storing Resource Offerings as User AtIIDULESccvvruririeiieiniserseeieeiisessessessiennens 185
WV To Store a Resource Offering as a User Attributecooocereeerincenncecinicesenecnereeeeene 185
Storing Resource Offerings as Dynamic AtrDULEScoceureururenieinineieireeecereeieeeieeeaas 187
WV To Store Resource Offerings as Dynamic Attributes in a Realmccoocvevreeenerrennnnes 188
V¥V To Store Resource Offerings as Dynamic Attributes in a Rolecccoceevvvverrerrennnnnes 190
Storing a Resource Offering for Discovery Service Bootstrappingcecoceveveueercecuneneans 193
WV To Store a Resource Offering for Discovery Service Bootstrapping193
Generating SECUTItY TOKENSc.ccuvurieiiirieieieieieie ettt s s sesesees 195
V¥ To Configure the Discovery Service to Generate Security Tokenscccccvevcueunecrrenceennes 195
DiSCOVETY SEIVICE APIS ..ottt ettt ettt bbbt 198
Client APIsin com.sun.identity.liberty.wS.diSCO .o 198
com.sun.identity.liberty.ws.disco.plugins.DiscoEntryHandler Interface 199

com.sun.identity.liberty.ws.interfaces.Authorizer Interface

V To Configure Discovery Service Policy Definitionscccvceeeeerevreernernennnne
com.sun.identity.liberty.ws.interfaces.ResourceIDMapper Interface 202
ACCESS the DISCOVETY SEIVICE ..euvuvueiiuieiiaeieicieisicieis ettt ettt 203
DiSCOVErY SETVICE SAMPIE ...ooieiiieiicieieie ettt easaes 203

8 Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

Contents

9

PartlVv

10

SOAP BINAING SEIVICEcocvoiiiieeceee ettt ettt s s b sessanas
SOAP Binding SErvice OVETVIEWc.veureiueureerieiieetrisietstasseessesssesssessesssssssassessssesssssssssssessssssessenns
XML SEIVICE FAle ..ottt
SOAPRECEIVET SEIVIEL ...ttt ettt
SOAP Binding Service APIs
SOAP BIiNAINg PIOCESSvvveeereeeeieiriririiesestesesssssssssssssssssesssssssssssssssessssssssssssssssssssssssssssssssssssssseses
SOAP Binding Service AIITDULESc.coeureiueurierieiieirieieireeietseetsesie ettt seseans
Request HAndIer LIStc.cocueicecuriiieiricinicieinccistreictsescseeseiet e tsese e sese e sseasseseaes
Web Service AUtNENTICATOT «.....viueiierieiceiriciee ettt e seasseen
Supported Authentication MeChaniSmSccooveueureeureniciricieinceeinireeereeeeeseeseesesseseseeeaes 208
SOAP Binding Service PACKAZEcoveuriiueirierieiieirieieirtsietce sttt 209
SAML Administration and Application Programming Interfacescccccooevvrivreerennne. 211
SAML ADMINISTIAtIONc.oeiiiiieiciiccccc ettt ses st nae e 213
SAML OVEIVIEW ..uvuiuiriirieieieteueuetrtstseeeeieb st stses s bbbt sttt bebeseae st st st st st sese sttt et ststeaeseneneananenes 213
Comparison of SAML and Liberty SpecifiCationscoccveeueunceeinineeeineeinineeeeseeieineeeeeeans 214
SAML Architecture in ACCess MANAZETcoccurueuerreeureneectreererseeesnesesessesesesteesseesesseseseesaes 214
USING the SAML SEIVICE ..ucuvinieiiriieireieiricieiseeisteie sttt ettt ettt 217
ELEMENES Of SAML ..ottt sttt es sttt ess st ass s sassesanses 217
Queries ANd RESPOMISESucuvemviiuirieieirieieieietsteie sttt ettt sesebeeaeaes 218
ASSEITIONS ...ttt ettt ettt ettt b e ettt bbbttt bbbttt s e
PIOTILES ettt bbbttt
SAML SOAP Receiver
SAMEL AIIDULES ...ttt sttt ettt
AMSAML . XML ATEIIDULES ..eoveevieciciiecteiccirccte ettt neaes 232
V¥ To Modify Attributes in the amSAML . XM Fileccueuriururinieiricieinccnncerceseeeeieene 233
Console Attributes

SAML APT .ot
com.sun.identity.saml Package
com.sun.identity.saml.assertion Package ... 241
com.sun.identity.saml.common PACKAZeccccoemmriririeeeieieiriniieseeseeeseses s saseneeens
com.sun.identity.saml.plugins Package ...

com.sun.identity.saml.protocol Package

com.sun.identity.saml.xmlsig Package ...

Contents

10

11

SAML OPETALIONS ..cveurniiriirereieieitririete ettt sttt se bttt ettt st ae ettt st eaeseneataesnes 246
Setting Up SAML Single SIZN-011cceuviruririeirieiririeiereieieeeieeseete e ssseseesssesseaas 246

VW T0 Set Up SAML Single SigN-00c.ceueeiirieeeieieininiiesseeieeiseseessesesesessssesesssssssssesssnes 247

V¥V To Verify the SAML Single Sign-on Configurationscceveeeereneeeerecreeneeenereeennene 250
SAML SAMIPLES ...ttt ettt ettt sttt b et sea bttt e e b bt as b et et eeaas 250
Application Programming INTErfacescccocovceuiieiieinieeissse s seesenns 253
PUDLIC INEEITACES ...vueuviiiiicieirete ettt sttt 253
ComMMON SEIVICE INTETTACESuvuvieieiicieieieieicie ettt sttt ettt seseeaas 256
com.sun.identity.liberty.ws.common Packagecconnnniiieennnnnieeeeenns 256
com.sun.identity.liberty.ws.interfaces Package ... 256
CommoOn SECUTTLY APT ...ttt ettt bbbt 258
com.sun.identity.liberty.ws.security Package ... 258
com.sun.identity.liberty.ws.common.wsse Packageccccovvvvirivecnennnrireesnnnns 259

Interaction Service

Configuring the INteraction SEIVICEcouoeviueirecirenieeirieieiree ettt eeseseeseaas 259
Interaction SEIVICe APT ...ttt 261
PAOS BINAING 1.ttt sttt sttt 262
Comparison 0f PAOS and SOAP ...ttt 262
PAOS Binding APT ...ttt et ettt 262
PAOS Binding SAMPIEoovmimiiieirieieiriiieeeieiees ettt se s s esssnsseses 263
Liberty-based and SAML SamPIEScoooiiiirniiiieie et
Federation Framework SAMPLESc.oceeuriveieiriiriieineineieiereieieret ettt sesessetsesessesnes
SAMPLEL DITECLOTY evviiiieiiieieieeeete ettt et ettt ettt b ettt be e eneneaene
SAMPLE2 DIFECLOTY evuvieeiieiiinirtrieice ettt bbbttt nen
SAMPLES DITECLOTY oottt ettt snene
Web Services Framework SAMPLESc.cvuviviriieeieiririrircceeeieerecee ettt seenens
WS C DITECLOTY ettt

sis-ep Directory
PA0S DIFECLOTY ..ottt ettt ettt st se e snene
AUTNNSVC DIFECLOTY vttt ettt sttt et a e
SAML SAMPLES ..ottt ettt sttt ettt bttt

Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

Contents

B KeYManAgQE@MENt ...ttt ettt ettt b et a s b b sanann 273

Public Key INfrastructure BASICSooeeieuririeeirieeieiieisieieiseesieisesssess s ssss s ssasssess st ssssssssssses 273

DiItal SIGNATUIES «..ecvveieiircieieecieecietree ettt sttt 274

DiGItal CEITIICATES ..uuvvuiueiuciricecieicieiree ettt ettt eeas s 274

keytool Command Line INtErfacecccoooiviiueveieiriiieeeeeeteeee ettt aenas 275
Setting Up a Keystore

W TO Set UP @ KEYSLOIE ...cucueiiiieieieiccieieietee ettt ettt 276

INAEX ..ot s e 279

12

Figures

FIGURE 1-1
FIGURE 1-2
FIGURE 2-1
FIGURE 2-2
FIGURE 2-3
FIGURE 3-1
FIGURE 7-1
FIGURE 7-2
FIGURE 8-1
FIGURE 8-2
FIGURE 10-1
FIGURE 10-2

FIGURE 10-3

Subjects Involved in a Liberty ID-FF Implementation ..., 42
Liberty ID-FFand SAML CONVEIZENCEcvvveriieriieriiietiieteieeeee e 43
Processin a Liberty-enabled Use Caseoeoeieieininiiniiiciiiieeiccciiens 35
Liberty-based Architecture of ACCess Managerccoeevevveieeninienieinenniniennenne 56
Architecture ot Liberty-based Web SEIvicesoovverireininininininenciiens 64
Detault Process of Federation ... 75
Data Service I'emplate as Building Block ot Data Services ..o 160
Liberty Personal Protile S€rvice ProCesscocoveeeiininininisissniieeiene 164
Discovery Service ArChiteCtureoooveiiiniiiiiieiiiie 178
Participants in, and Process of, the Discovery SErviceccovevnvininrininnnene. 179
SAML Interaction in ACCESS MANAZELccoeeereriieiniieieisnieieieess s 216
Web Browser Artitact Profile INteractions ..., 223
Web Browser POS'L' Profile INteractions ..o, 225

14

Tables

TABLE 2-1
TABLE 2-2
TABLE 3-1
TABLE 3-2
TABLE 3-3

TABLE 4-1

TABLE 6-1
TABLE 7-1
TABLE 8-1
TABLE 8-2

TABLE 8-3

TABLE 9-1

TABLE 10-1
TABLE 11-1
TABLE 11-2
TABLE11-3
TABLE 11-4
TABLE 11-5
TABLE 11-6
TABLE 11-7
TABLE11-8

TABLE A-1

Authentication Context CIASSESccccvvviiiviiiiiiniiiiiiiiiiiiie e 60
PUDLIC INTEITACES .ottt 67
Pre-login URL Parameters for Federation ... 111
com.sun.identity.federation.services Intertaces......cccccoeiiiieiiiiiiieececcnnne 114
com. suN. Liberty MethodsS ..o 115
Common Domain Services for Federation Management Properties in

LR 0o Tl i T o T e o Y=Y o s RSN 126
Detault Implementations for Authentication Mechanismcccoceveeeniieiennene 155
Data Service CHENTAPLS co..eiiiiieeeeeeeete e 171
Policy-Related DIFeCHIVESccooviiiiiiiiiiiiiiiiiniciiiiicnicne e 181
Discovery Service CHENTAPILS ..ottt 199
Implementations ot
com.sun.identity.liberty.ws.disco.plugins.DiscoEntryHandler 200
SOAP BInding Service APL ..o 209
Comparison of the SAML and Liberty Alliance Project Specifications 214
Access Manager PUbLiC APLS ... 254
com.sun.identity.liberty.ws.common Classesc.coumiiiniiniinieinecninenns 256
com.sun.identity.liberty.ws.interfaces Interfacescccccceeiriiiiiiiiiecnnnn. 256
com.sun.identity.liberty.ws.security CIassesccccuiininninniinnnnns 258
com.sun.identity.liberty.ws.common.wsse ClasSes ...cccccovvvrierrrrrriunreeeeennnns 259
Interaction Service Properties in AMConfig.properties ... 260

Interaction Service Classes
PAOS BINAING CLASSESvoviiiniiiiitietiiiieiteettete et

Contiguration Information tor samplel SEIVETSccceiriremeurcrcmerensenans 268

16

Examples

EXAMPLE 1-1
EXAMPLE 3-1
EXAMPLE 3-2
EXAMPLE 7-1
EXAMPLE 8-1

EXAMPLE 10-1

EXAMPLE 10-2
EXAMPLE 10-3
EXAMPLE 10-4

EXAMPLE 11-1

XML Code Sample Defining Authentication Contextccooevvevieinininrenienenne. 34
Service Provider Standard Metadata XML File tfor amadmin ..o 106
Identity Provider Proprietary Metadata XML File for amadmincc.......... 107
Extension Querytor creditcard ..., 168
Abstract WSDL tor Liberty ID-WSF Discovery Service Specification 175
SOAP Request for Authentication Assertion Using Web Browser Artitact Profile
.. 226
SOAP Response to SOAP Request tor Web Browser Artitact Protfile228
Sample Code to Obtain an Attribute Value 241
AuthorizationDecisionQuery Code Sample245
PAOS Client Servlet From PAOS Sample ..., 263

18

Preface

The Sun Java™ System Access Manager 7.1 Federation and SAML Administration Guide
provides information about the Federation and Security Assertions Markup Language (SAML)
components of Sun Java System Access Manager. The Federation and SAML Administration
Guide includes an introduction to the open-standard specifications used to develop these
features and information on how Access Manager has implemented them. It also includes
information on integrated web services, and summaries of the application programming
interface (API).

“Before You Read This Book” on page 19

“Related Books” on page 20

“Searching Sun Product Documentation” on page 23
“Accessing Sun Resources Online” on page 23
“Contacting Sun Technical Support” on page 23
“Documentation, Support, and Training” on page 24
“Typographic Conventions” on page 24

“Symbol Conventions” on page 25

“Shell Prompts in Command Examples” on page 26

Before You Read This Book

This Federation and SAML Administration Guide is intended for use by IT professionals,
network administrators and software developers who implement an identity framework using
Sun Java System servers and the following technologies:

Lightweight Directory Access Protocol (LDAP)

Java B

JavaServer PagesIM (JSP)

HyperText Transfer Protocol (HTTP)

HyperText Markup Language (HTML)

eXtensible Markup Language (XML)

Web Services Description Language (WSDL)

Security Assertion Markup Language (SAML)

SOAP (SOAP is no longer an acronym for the messaging protocol.)
Liberty Alliance Project specifications

http://www.projectliberty.org/index.php/liberty/specifications__1

Preface

Related Books

Access Manager is a component of the Sun Java Enterprise System, a software infrastructure
that supports enterprise applications distributed across a network or Internet environment.
Related documentation is available as follows:

20

“Access Manager Core Documentation” on page 20
“Other Sun Java System Products Documentation” on page 22

Note - For instructions on installing Access Manager, begin with the Sun Java Enterprise
System 5 Installation Guide for UNIX.

Access Manager Core Documentation

The Access Manager documentation set contains the following titles:

The Sun Java System Access Manager 7.1 Release Notes will be available online after the
product is released. It gathers an assortment of last-minute information, including a
description of what is new in this current release, known problems and limitations,
installation notes, and how to report issues with the software or the documentation.

The Sun Java System Access Manager 7.1 Technical Overview provides an overview of how
Access Manager components work together to consolidate access control functions, and to
protect enterprise assets and web-based applications. It also explains basic Access Manager
concepts and terminology.

The Sun Java System Access Manager 7.1 Deployment Planning Guide provides information
for planning an Access Manager deployment within an existing information technology
infrastructure.

The Sun Java System Access Manager 7.1 Postinstallation Guide provides information on
configuration tasks you perform after installing Access Manager.

The Sun Java System Access Manager 7.1 Performance Tuning Guide provides information
on how to tune Access Manager and its related components for optimal performance.

The Sun Java System Access Manager 7.1 Administration Guide describes how to configure,
monitor, manage, and maintain Access Manager services, identities, and policies either
through the console or the command-line interface.

The Sun Java System Access Manager 7.1 Administration Reference provides reference
information for administrators including, for example, error codes.

The Sun Java System Access Manager 7 2006Q4 Federation and SAML Administration Guide
(this guide) provides information about the features in Access Manager that are based on
the Liberty Alliance Project and SAML specifications. It includes information on the

Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

Preface

services based on these specifications, instructions for enabling a Liberty-based
environment, and summaries of the application programming interface (API) for extending
the framework.

= The Sun Java System Access Manager 7.1 Developer’s Guide offers information on how to
customize Access Manager and integrate its functionality into an organization’s current
technical infrastructure. It also contains details about the programmatic aspects of the
product and its APL.

= The Sun Java System Access Manager 7.1 C API Reference provides summaries of data types,
structures, and functions that make up the public Access Manager C APIs.

= The Sun Java System Access Manager 7.1 Java API Reference is generated from Java code
using the Javadoc™ tool. The pages provide information on the implementation of the Java
packages in Access Manager.

= The Sun Java System Access Manager Policy Agent 2.2 User’s Guide provides an overview of
the policy functionality and the policy agents available for Access Manager.

Updates to the Release Notes and links to modifications of the core documentation can be found
on the Access Manager page at the Sun Java Enterprise System documentation web site.
Updated documents will be marked with a revision date.

Sun Java Enterprise System Documentation

The following books in the Sun Java Enterprise System documentation set contain planning
and installation procedures for Access Manager:

= Sun Java Enterprise System 2006Q3 Deployment Planning Guide
= Sun Java Enterprise System 5 Installation Guide for UNIX

= Sun Java Enterprise System 5 Installation Reference for UNIX

= Sun Java Enterprise System 2006Q3 Upgrade Guide

A fulllist of the Java Enterprise System documentation is documented in the following table.

TABLEP-1 Sun Java Enterprise System Documentation Listing

Document Title Contents

Sun Java Enterprise System 5 Release Contains the latest information about Java ES, including known
Notes for UNIX problems. In addition, components have their own release notes listed

. in the Release Notes Collection.
Sun Java Enterprise System 5 Release

Notes for Microsoft Windows

Sun Java Enterprise System 5 Introduces the technical and conceptual foundations of Java ES.
Technical Overview Describes components, the architecture, processes, and features.

21

http://docs.sun.com/app/docs/coll/1292.2
http://docs.sun.com/prod/entsys.05q4
http://docs.sun.com/prod/entsys.06q4
http://docs.sun.com/coll/1315.2

Preface

TABLEP-1 Sun Java Enterprise System Documentation Listing (Continued)
DocumentTitle Contents
Sun Java Enterprise System 2006Q3 Provides an introduction to planning and designing enterprise
Deployment Planning Guide deployment solutions based on Java ES. Presents basic concepts and

principles of deployment planning and design, discusses the solution
life cycle, and provides high-level examples and strategies to use when
planning solutions based on Java ES.

Sun Java Enterprise System 5 Helps you develop the implementation specifications for the hardware,

Installation Planning Guide operating system, and network aspects of your Java ES deployment.
Describes issues such as component dependencies to address in your
installation and configuration plan.

Sun Java Enterprise System 5 Guides you through the process of installing Java ES. Also shows how
Installation Guide for UNIX to configure components after installation, and verify that they
function properly.

Sun Java Enterprise System 5
Installation Guide for Microsoft

Windows
Sun Java Enterprise System 5 Gives additional information about configuration parameters,
Installation Reference for UNIX provides worksheets to use in your configuration planning, and lists

reference material such as default directories and port numbers on the
Solaris Operating System and Linux operating environment.

Sun Java Enterprise System 2006Q3 Provides instructions for upgrading to Java ES 5 from previously
Upgrade Guide installed versions.

Sun Java Enterprise System 5 Upgrade
Guide for Microsoft Windows

Sun Java Enterprise System 5 Gives instructions for setting up the Monitoring Framework for each
Monitoring Guide product component and using the Monitoring Console to view
real-time data and create monitoring rules.

Sun Java Enterprise System Glossary ~ Defines terms that are used in Java ES documentation.

Other Sun Java System Products Documentation

Useful information can be found in the documentation for the following Sun Java System
products:

= Because Sun Java System Directory Server can be used as the data store in an Access
Manager deployment, you should be familiar with the Sun Java System Directory Server
Enterprise Edition 6.

= Because Sun Java System Web Server can be used as the web container in an Access Manager
deployment, you should be familiar with the Sun Java System Web Server 7, in particular the
Sun Java System Web Server 7.0 Developer’s Guide to Java Web Applications.

22 Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

http://docs.sun.com/coll/1316.1
http://docs.sun.com/coll/1316.1
http://docs.sun.com/coll/1308.2

Preface

= Because Sun Java System Application Server can be used as the web container in an Access
Manager deployment, you should be familiar with the Sun Java System Application Server
Enterprise Edition 8.2.

= Because Sun Java System Web Proxy Server can be used as a proxy server in an Access
Manager deployment, you should be familiar with theSun Java System Web Proxy Server.

Searching Sun Product Documentation

Besides searching Sun product documentation from the docs.sun.com® web site, you can use a
search engine by typing the following syntax in the search field:

search-term site:docs.sun.com

For example, to search for “broker,” type the following:

broker site:docs.sun.com

To include other Sun web sites in your search (for example, java.sun.com, www.sun.com, and
developers.sun.com), use sun . com in place of docs . sun. com in the search field.

Accessing Sun Resources Online

For product downloads, professional services, patches, support, and additional developer
information, go to:

Download Center

Sun Software Services

Sun Java Systems Services Suite

Sun Enterprise Services, Solaris Patches, and Support
Developer Information

Contacting Sun Technical Support

If you have technical questions about this product that are not answered in the product
documentation, contact Sun Support Services.

23

http://docs.sun.com/coll/1310.3
http://docs.sun.com/coll/1310.3
http://docs.sun.com/coll/1311.1
http://java.sun.com
http://www.sun.com
http://developers.sun.com
http://wwws.sun.com/software/download/
http://www.sun.com/service/support/software/
http://www.sun.com/service/sunjavasystem/sjsservicessuite.html
http://sunsolve.sun.com/
http://developers.sun.com/prodtech/index.html
http://www.sun.com/service/contacting

Preface

Documentation, Support, and Training

The Sun web site provides information about the following additional resources:

® Documentation (http://www.sun.com/documentation/)
= Support (http://www.sun.com/support/)
= Training (http://www.sun.com/training/)

Third-Party Web Site References

Third-party URLs are referenced in this document and provide additional, related information.

Note - Sun is not responsible for the availability of third-party web sites mentioned in this
document. Sun does not endorse and is not responsible or liable for any content, advertising,
products, or other materials that are available on or through such sites or resources. Sun will not
be responsible or liable for any actual or alleged damage or loss caused or alleged to be caused by
or in connection with use of or reliance on any such content, goods, or services that are available
on or through such sites or resources.

Sun Welcomes Your Comments

Sun is interested in improving its documentation and welcomes your comments and
suggestions. To share your comments, go to http://docs.sun.comand click Send Comments.
In the online form, provide the full document title and part number. The part number is a
7-digit or 9-digit number that can be found on the book's title page or in the document's URL.
For example, the title of this book is Sun Java System Access Manager 7.1 Federation and SAML
Administration Guide, and the part number is 819-4674-10.

Typographic Conventions

The following table describes the typographic changes that are used in this book.

TABLEP-2 Typographic Conventions

Typeface Meaning Example
AaBbCc123 The names of commands, files, and Edit your . login file.
directories, and onscreen computer

Use 1s -a to list all files.
output

machine name% you have mail.

24 Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

http://www.sun.com/documentation/
http://www.sun.com/support/
http://www.sun.com/training/
http://docs.sun.com

Preface

TABLEP-2 Typographic Conventions (Continued)
Typeface Meaning Example
AaBbCc123 What you type, contrasted with onscreen ~ machine_name% su
computer output
Password:
AaBbCc123 A placeholder to be replaced with a real The command to remove a file is rm filename.
name or value
AaBbCc123 Book titles, new terms, and terms to be Read Chapter 6 in the User's Guide.

emphasized (note that some emphasized
items appear bold online)

A cacheis a copy that is stored locally.

Do not save the file.

Symbol Conventions

The following table explains symbols that might be used in this book.

TABLEP-3 Symbol Conventions

Symbol Description Example Meaning
[1 Contains optional arguments 1s [-1] The -1 option is not required.
and command options.

{113 Contains a set of choicesfora -d {y|n}
required command option.

The -d option requires that you use
either the y argument or the n

argument.
${ } Indicates a variable ${com.sun.javaRoot} References the value of the
reference. com.sun. javaRoot variable.

- Joins simultaneous multiple ~ Control-A

keystrokes.

+ Joins consecutive multiple Ctrl+A+N
keystrokes.

- Indicates menu item

selection in a graphical user
interface.

Press the Control key while you press
the A key.

Press the Control key, release it, and
then press the subsequent keys.

File - New — Templates From the File menu, choose New.

From the New submenu, choose
Templates.

25

Preface

Shell Prompts in Command Examples

The following table shows default system prompts and superuser prompts.

TABLEP-4 Shell Prompts

Shell Prompt

C shell on UNIX and Linux systems machine_nameS
C shell superuser on UNIX and Linux systems machine_name#
Bourne shell and Korn shell on UNIX and Linux systems $

Bourne shell and Korn shell superuser on UNIX and Linux systems #

Microsoft Windows command line C:\

26 Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

PART I

The Liberty Alliance Project Specifications
and Access Manager

= Chapter 1, Introduction to the Liberty Alliance Project
= Chapter 2, Implementation of the Liberty Alliance Project Specifications

27

28

L K R 4 CHAPTER 1

Introduction to the Liberty Alliance Project

Sun Java™ System Access Manager implements identity federation, single sign-on (SSO), and
web services specifications defined by the Liberty Alliance Project. This introductory chapter
explains concepts used in the specifications, and the role of the Liberty Alliance Project in
creating identity-based solutions. It covers the following topics:

“Overview of the Liberty Alliance Project” on page 29
“Concept of Identity” on page 30

“Concept of Federation” on page 31

“Concept of Trust” on page 32

= “Liberty Alliance Project Terms” on page 33

= “Liberty Alliance Project Specifications” on page 41

Overview of the Liberty Alliance Project

In 2001 Sun Microsystems joined with other major companies to form the Liberty Alliance
Project. The goals were to define standards for developing identity-based infrastructures,
software, and web services, and to promote adoption of these standards. The Liberty Alliance
Project does not deliver products or services. It defines frameworks to ensure interoperability
between homogeneous products while respecting the privacy and security of identity data. This
section contains the following information:

= “Members of the Liberty Alliance Project” on page 30
= “Objectives of the Liberty Alliance Project Specifications” on page 30

Note - If you are already familiar with the concepts and protocols developed by the Liberty
Alliance Project, go to Chapter 2, “Implementation of the Liberty Alliance Project
Specifications” for information on how these standards are integrated into Access Manager.

29

Concept of Identity

Members of the Liberty Alliance Project

The members of the Liberty Alliance Project include some of the world’s most recognized
companies, representing products, services and partnerships across a wide spectrum of
consumer and business service providers. Members also include government organizations and
technology vendors. For more information regarding membership (and a complete listing of
current members), see the Liberty Alliance Project web site.

Note - Only members of the Liberty Alliance Project are allowed to provide feedback on drafts of
the specifications although any organization may implement them.

Objectives of the Liberty Alliance Project
Specifications

The specifications developed by the Liberty Alliance Project enable individuals and
organizations to securely conduct network transactions. The main objectives include:

= Serve as open standards for federated identity management and web services.
= Support and promote permission-based sharing of personal identity attributes.

® Provide a standard for SSO that includes decentralized authentication and authorization for
multiple providers.

= Create an open network identity infrastructure that supports all current and emerging user
agents (also referred to as browsers or wireless browsers).

= Enable consumers to protect their network identity information.

Concept of Identity

30

In one dictionary, identity is defined as ”a set of information by which one person is definitively
distinguished”. This information begins with a document that corroborates a person's name: a
birth certificate. Over time, additional information further designates aspects of identity:

= Anaddress

= A telephone number

One or more diplomas

A driver’s license

A passport

Financial institution accounts
Medical records

Insurance statements
Employment records

Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

http://www.projectliberty.org/liberty/membership

Concept of Federation

= Magazine subscriptions
= Utility bills

Each of these individual documents represents data that defines a person's identity as it relates
to the enterprise for which the document was defined. The composite of this data constitutes an
overall identity with each specific piece providing a distinguishing characteristic.

Because the Internet is becoming the primary vehicle for the types of interactions represented
by this identity-defining information, people are now creating online identities specific to the
businesses with which they interact. By defining a user identifier and password, an email
address, personal preferences (such as style of music, or opt-in/opt-out marketing decisions)
and other information more specific to the particular business (a bank account number or
ship-to address), users distinguish themselves from others who use the enterprise’s services.
This distinguishing information is referred to as a local identity because it is specific to the
service provider for which it has been set.

Considering the number of service providers for which you can define a local identity, accessing
each one can be a time-consuming and frustrating experiencing. In addition, although most
local identities are configured independently (and fragmented across the Internet), it might be
useful to connect the information. For example, a user's local identity with a bank could be
securely connected to the same user's local identity with a retailer. Federation addresses this
issue.

Concept of Federation

Federation is defined as “an association formed by merging several groups or parties”. In the
Liberty Alliance Project specifications, federation encompasses both identity federation and
provider federation.

= “Identity Federation” on page 31
= “Provider Federation” on page 32

Identity Federation

Federation, as it has evolved with regard to individual users and the World Wide Web, begins
with the notion of identity. (See “Concept of Identity” on page 30.) Sending and receiving email,
checking bank balances, finalizing travel arrangements, accessing utility accounts, and
shopping are just a few online services for which a user might define an identity. If a user
accesses all of these services, many different identity accounts have been configured. This
virtual phenomenon offers an opportunity to fashion a system for users to federate these
identities.

Identity federation allows the user to link, connect, or bind the local identities that have been
created for each service provider (a networked entity that provides services to other entities).

Chapter 1 « Introduction to the Liberty Alliance Project 31

Concept of Trust

The linked local identities, referred to as a federated identity, allow the user to log in to one
service provider site and click through to an affiliated service provider without having to
reauthenticate or reestablish identity.

Provider Federation

The concept of federation, as defined by the Liberty Alliance Project, begins with a "circle of
trust” A circle of trust is a group of service providers who contractually agree to exchange
authentication information using a Liberty-enabled architecture. Each circle of trust must also
include at least one identity provider, a service provider that maintains and manages identity
data, and provides authentication services.

Note - The establishment of contractual agreements between providers is beyond the scope of
this guide. See “Concept of Trust” on page 32 for an overview.

After the contracts and policies defining a circle of trust are in place, the specific protocols,
profiles, endpoints, and security mechanisms being used in the deployment are collected into a
metadata document that is exchanged amongst the members of the circle of trust. Access
Manager provides the tools necessary to integrate the metadata and enable the circle of trust,
technologically, as an authentication domain. Authentication within this virtual federation is
honored by all membered providers of the authentication domain. For more information, see
“Authentication Domain” on page 35.

Concept of Trust

32

The Liberty Alliance Project specifications assume existing trust relationships between
members in a circle of trust. This trust is usually defined through business arrangements or
contracts that describe the technical, operational, and legal responsibilities of each party and the
consequences for not completing them. When defined, a trust relationship allows one
organization to trust the user authentication and authorization decisions of another
organization. This trust then enables a user to log in to one site and, if desired, access a trusted
site without reauthentication.

Ensure that these trust agreements are in force before going live with a Liberty-compliant
system. The Liberty Alliance Project has created a support document for helping to establish
these arrangements. The Liberty Trust Model Guidelines document is located on the Support
Documents and Utility Schema Files page on the Liberty Alliance Project web site.

Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

http://www.projectliberty.org/liberty/resource_center/specifications/liberty_alliance_specifications_support_documents_and_utility_schema_files
http://www.projectliberty.org/liberty/resource_center/specifications/liberty_alliance_specifications_support_documents_and_utility_schema_files

Liberty Alliance Project Terms

Liberty Alliance Project Terms

Many of the concepts defined in this section are derived from the specifications discussed in
“Liberty Alliance Project Specifications” on page 41.

“Account Federation” on page 34
“Affiliation” on page 34

“Attribute Provider” on page 34
“Authentication Context” on page 34
“Authentication Domain” on page 35
“Binding” on page 35

“Circle of Trust” on page 35

“Client” on page 35

“Common Domain” on page 36
“Defederation” on page 36
“Federation” on page 36

“Federation Cookie” on page 36
“Federated Identity” on page 36
“Federation Termination” on page 37
“Identity” on page 37

“Identity Federation” on page 37
“Identity Provider” on page 37
“Identity Service” on page 37
“Liberty-Enabled Client” on page 37
“Liberty-Enabled Proxy” on page 38
“Name Identifier” on page 38
“Principal” on page 38

“Profile” on page 38

“Protocol” on page 38

= “Provider Federation” on page 38
“Pseudonym” on page 39

“Receiver” on page 39

“Resource Offering” on page 39

= “Sender” on page 39

“Server” on page 39

“Service Provider” on page 39
“Single Logout” on page 40

“Single Sign-On” on page 40
“Trusted Provider” on page 40

= “Web Service Consumer” on page 40
= “Web Service Provider” on page 40

Chapter 1 « Introduction to the Liberty Alliance Project 33

Liberty Alliance Project Terms

Account Federation

See “Identity Federation” on page 37.

Affiliation

An affiliation is a group of providers formed without regard to their configured authentication
domains. An affiliation is formed and maintained by an affiliation owner. Members of an
affiliation may invoke services either as a member of the affiliation (by virtue of their Affiliation
ID) or individually (by virtue of their Provider ID). An affiliation document describes a group of
providers. See “Entities” on page 80 for more information.

Attribute Provider

An attribute provider is a web service that hosts attribute data. The Access Manager Liberty
Personal Profile Service data service is an example of an attribute provider. For more
information, see Chapter 7, “Data Services.

Authentication Context

Authentication context refers to information added to a SAML Authentication Assertion
regarding details of the technology used for the actual authentication action. This information
might include the method of authentication (for example, HTTP Basic or Safeword), the
process followed in the issuance of the identity (for example, web self-registration), and any
other characteristics that may be relevant to the service provider consuming the assertion. The
following code sample describes a user having authenticated with a password over an
SSL-protected session.

EXAMPLE 1-1 XML Code Sample Defining Authentication Context

<?xml version="1.0" encoding="UTF-8" 7>
<AuthenticationContextStatement>
<AuthenticationMethod>
<PrincipalAuthenticationMethod>
<Password>
<Length min="3"/>
</Password>
</PrincipalAuthenticationMethod>
<AuthenticatorTransportProtocol>
<SSL/>
</AuthenticatorTransportProtocol>
</AuthenticationMethod>

34 Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

Liberty Alliance Project Terms

EXAMPLE 1-1 XML Code Sample Defining Authentication Context (Continued)

<AuthenticationContextStatement>

More information is in “Authentication and Authentication Context” on page 59.

Authentication Domain

An authentication domain is a federation of service providers (with at least one identity
provider) that is configured using Access Manager.

Note - An authentication domain is not a domain in the Domain Name System (DNS) sense of
the word.

Before an authentication domain can be configured, the service providers must contractually
agree to exchange authentication information using the Liberty Alliance Project specifications.
After this circle of trust is established, an authentication domain can be configured using Access
Manager and single sign-on can be enabled. Simply put, an authentication domain is the term
used by Access Manager when configuring a circle of trust. See “Concept of Trust” on page 32
for related information.

Binding

A binding describes how to integrate request and response messages into a transmission
protocol. See “Profile” on page 38 and “Protocol” on page 38 for related information.

Circle of Trust

See “Provider Federation” on page 32.

Client

A client is the role that any system entity assumes when making a request of another system
entity. In this scenario, the system entity to which the request is made is called a server as
discussed in “Server” on page 39.

Chapter 1 « Introduction to the Liberty Alliance Project 35

Liberty Alliance Project Terms

36

Common Domain

If an authentication domain has more than one identity provider, the service providers need a
way to determine which identity provider is used by the principal (as discussed in “Principal”
on page 38). Because this function must work across any number of DNS domains, the Liberty
approach is to create one domain that is common to all identity and service providers in the
authentication domain. This predetermined domain is called the common domain. Within the
common domain, when a principal has been authenticated to a service provider, the identity
provider writes a common domain cookie that stores the principal’s identity provider. When the
principal attempts to access another service provider within the authentication domain, the
service provider reads the common domain cookie and the request is forwarded to the correct
identity provider. See Chapter 4, “Common Domain Services for Federation Management” for
more information.

Defederation

See “Federation Termination” on page 37.

Federation

See “Concept of Federation” on page 31.

Federation Cookie

A federation cookie called fedCookie is implemented by Access Manager. It can have a value of
yes or no, based on the principal’s federation status. For information on how a federation
cookie is used, see “Process of Federation” on page 73 in Chapter 3, “Federation”

Note - The concept of a federation cookie was developed for Access Manager and is not a defined
part of the Liberty Alliance Project specifications. The definition is placed here for information
only.

Federated Identity

A federated identity refers to a user's consolidated local identities. The user must choose to
federate the separate identities that they have configured with multiple service providers.
Although federated, the local identities are still administered by the user, but they can be
securely shared between the service providers for which they were defined.

Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

Liberty Alliance Project Terms

Federation Termination

Users can terminate their federations. Federation termination (or defederation) cancels identity
federations established between the user’s identity provider and service provider accounts.

Identity

See “Concept of Identity” on page 30.

Identity Federation

Identity federation occurs when a user chooses to unite distinct service provider accounts with
one or more identity provider accounts. A user retains the individual account information with
each provider while simultaneously establishing a link that allows the exchange of
authentication information between them. For more information, see “Concept of Federation”
on page 31.

Identity Provider

An identity provider is a service provider that specializes in providing authentication services.
As the administrating service for authentication, an identity provider also maintains and
manages identity information. Authentication by an identity provider is honored by all service
providers with whom the identity provider is affiliated. This term is used when defining an
entity of this sort specific to the Liberty Identity Federation Framework as discussed in “Liberty
Identity Federation Framework” on page 41.

Identity Service

An identity service (also referred to as a data service or an attribute provider) is a web service that
acts on a resource to retrieve, update, or perform some action on data attributes related to a
principal (an identity). For example, an identity service might be a corporate phone book or
calendar service. For more information, see Chapter 7, “Data Services.”

Liberty-Enabled Client

A Liberty-enabled client is a client that has, or knows how to obtain, information about the
identity provider that a principal will use to authenticate to a service provider.

Chapter 1 « Introduction to the Liberty Alliance Project 37

Liberty Alliance Project Terms

38

Liberty-Enabled Proxy

A Liberty-enabled proxy is an HTTP proxy that emulates a Liberty-enabled client.

Name Identifier

To help preserve anonymity when identity information is exchanged between identity
providers and service providers, an arbitrary name identifier is used. A name identifier is a
randomly generated character string that is assigned to a principal and used to facilitate account
linking at the identity provider and service provider sites. This pseudonym allows all providers
to identify a principal without knowing the user’s actual identity. The name identifier has
meaning only in the context of the relationship between providers.

Principal

A principal is an entity that can acquire a federated identity, that is capable of making decisions,
and has authenticated actions done on its behalf. Examples of principals include an individual
user, a group of individuals, a corporation, other legal entities, or a component of the Liberty
architecture.

Profile

A profile defines the HTTP exchanges required to transfer XML requests and responses between
providers. See “Binding” on page 35 and “Protocol” on page 38 for related information.

Protocol

A protocol is an agreed-upon set of rules for formatting data to be transmitted between two or
more devices. XML schemas define the syntax for request and response messages that are
typically embedded into other structures for transport. Among other things, a protocol can
determine:

The type of error checking to be used.

Data compression method, if any.

How the sending device will indicate that it has finished sending a message.
How the receiving device will indicate that it has received a message.

See “Binding” on page 35 and “Profile” on page 38 for related information.

Provider Federation

See “Concept of Federation” on page 31.

Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

Liberty Alliance Project Terms

Pseudonym

See “Name Identifier” on page 38.

Receiver

A receiver is the role of a system entity when it receives a message sent by another system entity.
In this scenario, the system entity from which the message is received is called a sender as
discussed in “Sender” on page 39.

Resource Offering

In a discovery service, a resource offering defines associations between a piece of identity data
and the service instance that provides access to it. See Chapter 8, “Discovery Service”

Sender

A sender is the role donned by a system entity when it constructs and sends a message to
another system entity. In this scenario, the system entity from which the message is received is
called a receiver as discussed in “Receiver” on page 39.

Server

A server is the role that any system entity assumes when providing a service in response to a
request from another system entity. In this scenario, the system entity from which the request is
received is called a client as discussed in “Client” on page 35.

Note - In order to provide a service to clients, a server will often be both a sender and a receiver.

Service Provider

A service provider is a commercial or not-for-profit organization that offers web-based services
to a principal. This broad category can include Internet portals, retailers, transportation
providers, financial institutions, entertainment companies, libraries, universities, and
governmental agencies. This term is used when defining an entity of this sort specific to the
Liberty Identity Federation Framework as discussed in “Liberty Identity Federation
Framework” on page 41.

Chapter 1 « Introduction to the Liberty Alliance Project 39

Liberty Alliance Project Terms

40

Single Logout

A single logout occurs when a user logs out of an identity provider or a service provider. By
logging out of one provider, the user is logged out of all service providers or identity providers
in that authentication domain.

Single Sign-On

Single sign-on is established when a user with a federated identity authenticates to an identity
provider. If the user has previously opted-in for federation, access to affiliated service providers
is available without having to reestablish identity.

Trusted Provider

A trusted provider is a generic term for one of a group of service and identity providers in an
authentication domain. A user can transact and communicate with trusted providers in a secure
environment.

Web Service Consumer

A web service consumer invokes the operations that a web service provides by making a request
to a web service provider. This term is used when defining an entity of this sort specific to the
Liberty Identity Web Services Framework as discussed in “Liberty Identity Web Services
Framework” on page 47.

Web Service Provider

A web service provider implements a web service based on a request from a web service
consumer. This term is used when defining an entity of this sort specific to the Liberty Identity
Web Services Framework as discussed in “Liberty Identity Web Services Framework” on

page 47.

Note - A web service provider may run on the same Java virtual machine as the web service
consumer that is using it.

Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

Liberty Alliance Project Specifications

Liberty Alliance Project Specifications

The Liberty Alliance Project develops and delivers specifications that enable federated network
identity management. Using web redirection and open-source technologies such as SOAP and
XML, they enable distributed, cross-domain interactions. The specifications are divided into
the following components:

= “Liberty Identity Federation Framework” on page 41

= “Liberty Identity Web Services Framework” on page 47

= “Liberty Identity Service Interface Specifications” on page 50
= “Schema Files and Service Definition Documents” on page 51
= “Support Documents” on page 51

Liberty Identity Federation Framework

The Liberty Identity Federation Framework (Liberty ID-FF) defines a set of protocols, bindings,
and profiles that provides a solution for identity federation, cross-domain authentication, and
session management. This framework can be used to create a new identity management system
or to develop one in conjunction with legacy systems. This section contains information
regarding the Liberty ID-FE

= “The Liberty ID-FF Model” on page 41

“The Liberty ID-FF Convergence” on page 42
“Liberty ID-FF Protocols and Schema” on page 43
= “Liberty ID-FF Bindings and Profiles” on page 46

= “Additional Liberty ID-FF Documents” on page 46

More detailed information about the Liberty ID-FF 1.2 specifications can be found on the
Liberty Alliance Project web site at the Liberty Alliance ID-FF 1.2 Specifications page.

The Liberty ID-FF Model

The Liberty ID-FF is designed to work with heterogeneous platforms, various networking
devices (including personal computers, mobile phones, and personal digital assistants), and
emerging technologies. The following figure shows the subjects involved in a Liberty ID-FF
implementation.

Chapter 1 « Introduction to the Liberty Alliance Project 41

https://www.projectliberty.org/resource_center/specifications/liberty_alliance_id_ff_1_2_specifications

Liberty Alliance Project Specifications

42

Acircle of trust is a group of providers that
have joined together to exchange
authentication information.

/

Principal
* Customer
* Employee
* Company Service providers in the

Service Providers authentication domain offer

* Web content . :
« Portal complimentary services.
* Merchant

The principal has a defined ...

local identity with more than
one provider, and has the
option to federate them.

Identity Provider
* Authentication
* Federation

* Profile

The identity provider is the center

of the authentication infrastructure.

It is a trusted entity that maintains
core attributes regarding the principal.

FIGURE 1-1 Subjects Involved in a Liberty ID-FF Implementation

A principal can have a defined local identity with more than one provider, and it has the
option to federate the local identities. The principal might be an individual user, a group of
individuals, a corporation, or a component of the Liberty architecture.

A service provider is a commercial or not-for-profit organization that offers a web-based
service such as a news portal, a financial repository, or retail outlet.

An identity provider is a service provider that stores identity profiles and offers incentives to
other service providers for the prerogative of federating their user identities. Identity
providers might also offer services above and beyond those related to identity profile
storage.

To support identity federation, all service providers and identity providers must join
together into a circle of trust. A circle of trust must contain at least one identity provider and
at least two service providers. (One organization may be both an identity provider and a
service provider.) Providers in a circle of trust must first write operational agreements to
define their relationships. An operational agreement is a contract between organizations that
defines how the circle will work. For more information, see “Concept of Trust” on page 32.

The Liberty ID-FF Convergence

Up to version 1.1, the Liberty ID-FF was developed using the SAML 1.0 specification. The
Liberty ID-FF 1.2 was then developed using the SAML 1.1 specification. Following the release of
version 1.2, the Liberty ID-FF was reintroduced into the SAML 2.0 specification. Additionally,
SAML 2.0 adds components of the Shibboleth initiative. Going forward, SAML 2.0 will be the

Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

Liberty Alliance Project Specifications

basis on which the Liberty Alliance Project builds additional federated identity applications
(such as web service-enabled permissions-based attribute sharing). As such, SAML2.0isa
critical step towards full convergence of federated identity standards. The following diagram
illustrates the convergence history of SAML and the Liberty ID-FE

SAML v1.0 —p SAML v1.1 P SAML v2.0

| 5
— v !

Liberty v1.0 —»| Liberty ID-FF v1.1 —»| Liberty ID-FF v1.2

FIGURE 1-2 Liberty ID-FF and SAML Convergence

For more information on this convergence (including how the Shibboleth Project was also
integrated), see the Federation section of Strategic Initiatives on the Liberty Alliance Project
web site.

Liberty ID-FF Protocols and Schema

The Liberty ID-FF Protocols and Schema Specifications defines transmission formats for the
following functions:

= “Single Sign-On and Federation Protocol” on page 43

= “Name Registration Protocol” on page 45

= “Federation Termination Notification Protocol” on page 45
= “Single Logout Protocol” on page 46

= “Name Identifier Mapping Protocol” on page 46

Following are short explanations of each protocol. More detailed information can be found in
the Liberty ID-FF Protocols and Schema Specifications.

Single Sign-On and Federation Protocol

The Single Sign-On and Federation Protocol defines the rules for request and response messages
with which a principal is able to authenticate to one or more service providers and federate (or
link) configured identities. When a principal attempts to access a service provider resource, the
service provider issues a request for authentication to the principal's identity provider. The
identity provider responds with a message that contains authentication information, or an
artifact that points to authentication information.

Chapter 1 « Introduction to the Liberty Alliance Project 43

http://www.projectliberty.org/liberty/strategic_initiatives/federation
https://www.projectliberty.org/resource_center/specifications/liberty_alliance_id_ff_1_2_specifications

Liberty Alliance Project Specifications

44

Note - Under certain conditions, an identity provider may issue an authentication response to a
service provider without having received an authentication request.

The Single Sign-On and Federation Protocol also defines elements for inclusion in the request
and response that control the following behaviors:

Account federation. A principal can choose to federate a configured identity at the identity
provider site with a configured identity at the service provider site.

Account handle. An identity provider can issue an anonymous, temporary identifier to
refer to a particular principal during communication with a service provider. This identifier
is used to obtain information for or about the principal during federation (with the
principal's consent). The account handle is generated by the identity provider during
federation.

Note - This account handle is not to be confused with the handle that can be generated by the
service provider after federation using the Name Registration Protocol as discussed in “Name
Registration Protocol” on page 45.

Affiliation federation. Federation based on group affiliation can be enabled in an
authentication request. If enabled, it indicates that the requester is acting as a member of the
specified affiliation group. Federations are then established and resolved based on the
affiliation, not the requesting provider. The process allows for a unique identifier that
represents the affiliation.

Authentication context. A service provider can choose the type and level of authentication
that should be used when a principal logs in.

Authentication credentials. A principal can be prompted to authenticate with a user name
and password, for example, at the behest of the service provider.

Dynamic identity provider proxying. One identity provider might be asked to authenticate
a principal that has already been authenticated by a second identity provider. In this case,
the first identity provider may request authentication information from the second identity
provider on behalf of the service provider. Proxy behavior can be controlled by indicating a
list of preferred identity providers, and a value that defines the maximum number of proxy
steps that can be taken. Proxy behavior is defined locally by the proxying identity provider,
although a service provider controls whether or not to proxy. For more information, see
“Dynamic Identity Provider Proxying” on page 120.

Identity provider introduction. When an authentication domain has more than one
identity provider, a service provider can use this feature to determine which identity
provider a principal is using.

Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

Liberty Alliance Project Specifications

= Message exchange. The authentication request defines how messages are exchanged
between identity providers and service providers. The particular transfer and messaging
protocol used in the exchange (such as HTTP or SOAP) are specified in profiles defined in
the Liberty ID-FF Bindings and Profiles Specification. Two of these profiles are:

= The Liberty Artifact profile relies on Security Assertion Markup Language (SAML)
artifacts and assertions to relay authentication information.

= The Liberty Browser POST profile relies on an HTML form to communicate
authentication information between providers.

See “Liberty ID-FF Bindings and Profiles” on page 46 for more information.

= One-time federation. The ability to federate for one session only can be enabled in an
authentication request. This feature is useful for service providers with no user accounts, for
principals who want to act anonymously, or for dynamically created user accounts. It allows
for one-time federation, rather than a one-time name identifier for a session.

Name Registration Protocol

The optional Name Registration Protocol defines the request and response messages a service
provider would use to create its own opaque handle to identify a principal when
communicating with the identity provider. This registration would occur after federation has
been accomplished. After the service provider registers this new handle, subsequent
communications with the identity provider would use this identifier rather than the identifier
originally defined by the identity provider.

Caution - The handle discussed in this section is not related to the opaque handle that is
generated by the identity provider during federation as defined in “Single Sign-On and
Federation Protocol” on page 43. The Name Registration Protocol can, however, be used by the
identity provider to change the opaque handle that it registered with the service provider during
initial federation.

Federation Termination Notification Protocol

The Federation Termination Notification Protocol defines a one-way message that one provider
would use to notify another provider when a principal has terminated identity federation. The
message is asynchronous and states one of the following:

= The service provider will no longer accept authentication information regarding the
particular user.

= Theidentity provider will no longer provide authentication information regarding the
particular user.

Chapter 1 « Introduction to the Liberty Alliance Project 45

Liberty Alliance Project Specifications

46

Single Logout Protocol

The Single Logout Protocol defines the request and response messages that providers would
exchange when notifying each other of logout events. This exchange would terminate all
sessions when a logout occurs at either the service provider or the identity provider.

Name Identifier Mapping Protocol

The Name Identifier Mapping Protocol defines the request and response messages that one
service provider can use to communicate with a second service provider to obtain the name
identifier assigned to a principal federated in the name space of the second service provider.
This would be used when a principal authenticated to one service provider requests access to a
second service provider site with which it also has an identity federation relationship. The
protocol allows the second service provider to communicate with the first service provider
about the principal even though no identity federation for the principal exists between the two
service providers.

Liberty ID-FF Bindings and Profiles

The Liberty ID-FF Bindings and Profiles Specification defines the bindings and profiles for the
request and response messages explained in “Liberty ID-FF Protocols and Schema” on page 43.
A binding describes how to integrate request and response messages into a transmission
protocol. Currently, this specification defines only a SOAP binding. A profile defines the HTTP
exchanges required to transfer the requests and responses between providers. The defined
profiles are:

= Single Sign-on and Federation

= Name Identifier Registration
Federation Termination Notification
Single Logout

Identity Provider Introduction
Name Identifier Mapping

Name Identifier Encryption

For more information about these profiles and transmission of requests and responses in
general, see the Liberty ID-FF Bindings and Profiles Specification.

Additional Liberty ID-FF Documents

For additional information about the Liberty ID-FF specifications, the following documents are
available on the Liberty ID-FF 1.2 specification page.

» Liberty ID-FF Architecture Overview

Provides an architectural description of the Liberty ID-FF framework as well as policy,
security, and technical notes.

» Liberty ID-FF Guidelines

Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

https://www.projectliberty.org/resource_center/specifications/liberty_alliance_id_ff_1_2_specifications
https://www.projectliberty.org/resource_center/specifications/liberty_alliance_id_ff_1_2_specifications

Liberty Alliance Project Specifications

Provides guidance and checklists for implementing a Liberty-enabled environment using
the Liberty ID-FF specifications.

m Liberty ID-FF Static Conformance Requirements

Defines what features are mandatory and optional for implementations conforming to this
version of the Liberty ID-FF specifications.

Liberty Identity Web Services Framework

The Liberty ID-FF defines how to implement single sign-on and identity federation to solve
problems related to network identity. The Liberty Identity Web Services Framework (Liberty
ID-WSF) builds on this by providing specifications for identity-based web services to work in
tandem with the Liberty ID-FF. (An identity-based web service, or identity service, is a type of
web service that acts upon a resource to retrieve information about an identity, update
information about an identity, or perform some action for the benefit of an identity.) The
Liberty ID-WSF can be used to develop web services that retrieve, update, or perform an action
on identity data in a federated network environment using a SOAP-based invocation. The web
services include, among others, a calendar service, a wallet service, and an alert service. A
scenario that implements these specifications includes the following subjects:

= A web service consumer (WSC) invokes the functions provided by a web service by making a
request to the web service's provider.

= A web service provider (WSP) implements a web service based on a request from a WSC.

Note - For more information about the process between a WSC and WSP, see “Discovery Service
Process” on page 179.

The following sections contain brief explanations of the Liberty ID-WSF 1.1 specifications.

= “SOAP Binding Specification” on page 48

= “Discovery Service Specification” on page 48

= “Security Mechanisms Specification” on page 48
“Data Services Template Specification” on page 49
“Interaction Service Specification” on page 49
“Authentication Service Specification” on page 49

= “Client Profiles Specification” on page 49

= “Additional Liberty ID-WSF Documents” on page 50

More detailed information about the Liberty ID-WSF specifications can be found on the Liberty
Alliance Project web site.

Chapter 1 « Introduction to the Liberty Alliance Project 47

https://www.projectliberty.org/resource_center/specifications/liberty_alliance_id_wsf_1_1_specifications
https://www.projectliberty.org/resource_center/specifications/liberty_alliance_id_wsf_1_1_specifications

Liberty Alliance Project Specifications

48

SOAP Binding Specification

The Liberty ID-WSF SOAP Binding Specification provides a transport layer framework for
handling the request and response messages used by the Liberty ID-WSF services. It defines a
mapping for the messages onto SOAP, an extensible XML-based messaging protocol by
specifying, for example, how to:

= Correlate a particular SOAP request with its response.
= Indicate that Principal consent was obtained to carry out a given operation.
= Express additional context for a request.

For more information, see the Liberty ID-WSF SOAP Binding Specification.

Discovery Service Specification

The Liberty ID-WSF Discovery Service Specification defines a framework that enables a client to
locate the appropriate web service for retrieving, updating, or modifying a particular piece of
identity data. Typically, there are one or more services on a network that allow entities to
perform an action on identity data. To keep track of these services or to know which can be
trusted, clients require access to a discovery service. A discovery service is an identity service that
acts as a registry of resource offerings. A resource offering defines an association between a
particular piece of identity data and the instance of a web service that provides access to the
data. With access to the discovery service, the client is able to discover which web service must
be contacted to then access the desired identity data. A common use case is when personal
profile or calendar data is placed within a resource offering so that the data can be located by
other entities. For more information, see the Liberty ID-WSF Discovery Service Specification.

Security Mechanisms Specification

To access an identity service, an entity must interact with a discovery service to locate the
appropriate identity service as well as the specific identity service instance that exposes the
resource. The Liberty ID-WSF Security Mechanisms Specification describes mechanisms
(providing authentication, signing and encryption operations) that can be used to ensure the
integrity and confidentiality of the authorization messages exchanged when evaluating the
entity's authorization to access the discovery service and identity service instance. These
mechanisms consider:

= Authentication of the sender.

= Proxy rights for a third party to make a request as identity services may be accessed directly
or through the assistance of an intermediary.

m Authentication of the response.
= Authentication context and session status of the interacting entity.

= Authorization of invocation identity to access service or resource.

For more information, see the Liberty ID-WSF Security Mechanisms Specification.

Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

https://www.projectliberty.org/resource_center/specifications/liberty_alliance_id_wsf_1_1_specifications
https://www.projectliberty.org/resource_center/specifications/liberty_alliance_id_wsf_1_1_specifications
https://www.projectliberty.org/resource_center/specifications/liberty_alliance_id_wsf_1_1_specifications

Liberty Alliance Project Specifications

Data Services Template Specification

A data service is a web service that supports the query and modification of identity data. (An
example of a data service is an identity service, such as an online corporate directory.) The
Liberty ID-WSF Data Services Template Specification provides a protocol for the query and
modification of the data attributes stored in a data service. The service interface specifications
defined by the Liberty Alliance Project are based on this Data Services Template. For more
information, see the Liberty ID-WSF Data Services Template Specification. For more
information on the service interface specifications, see “Liberty Identity Service Interface
Specifications” on page 50.

Interaction Service Specification

The Liberty ID-WSF Interaction Service Specification provides communication protocols for
identity services to use when they must obtain permission from a principal (or someone who
owns a resource on behalf of that principal) to allow the principal's identity data to be shared
with requesting services. For more information, see the Liberty ID-WSF Interaction Service
Specification.

Authentication Service Specification

The Liberty ID-WSF Authentication Service Specification defines how to authenticate parties
communicating via SOAP request and response messages. It leverages widely used
authentication services and mechanisms, and facilitates selection of these services and
mechanisms at deployment time. The specification defines:

= Anauthentication protocol based on the Simple Authentication and Security Layer (SASL).
= Anauthentication service that Liberty-enabled clients can use to authenticate with identity

providers.

= Asingle sign-on service that Liberty-enabled providers can use to interact with each other.

The specification also defines an identity-based authentication security token service,
complementing the more general security token service as discussed in the section, “Discovery
Service Specification” on page 48. For more information, see the Liberty ID-WSF
Authentication Service Specification.

Client Profiles Specification

The Liberty ID-WSF Client Profiles Specification describes the requirements for Liberty-enabled
clients that interact with the SOAP-based Authentication Service. Client profiles can enable
browsers to perform an active role in transactions, in addition to the functions of a standard
browser. For more information, see the Liberty ID-WSF Client Profiles Specification.

Chapter 1 « Introduction to the Liberty Alliance Project 49

https://www.projectliberty.org/resource_center/specifications/liberty_alliance_id_wsf_1_1_specifications
https://www.projectliberty.org/resource_center/specifications/liberty_alliance_id_wsf_1_1_specifications
https://www.projectliberty.org/resource_center/specifications/liberty_alliance_id_wsf_1_1_specifications
https://www.projectliberty.org/resource_center/specifications/liberty_alliance_id_wsf_1_1_specifications
https://www.projectliberty.org/resource_center/specifications/liberty_alliance_id_wsf_1_1_specifications
https://www.projectliberty.org/resource_center/specifications/liberty_alliance_id_wsf_1_1_specifications

Liberty Alliance Project Specifications

50

Additional Liberty ID-WSF Documents

For additional information about the Liberty ID-WSF specifications, the following documents
are available on the Liberty ID-WSF 1.1 specification page.

Liberty ID-WSF Architecture Overview

Provides an architectural description of the Liberty ID-WSF framework including basic
usage scenarios. It also highlights how the Liberty ID-WSF interacts with an identity
management framework (such as the Liberty ID-FF).

Liberty ID-WSF Security and Privacy Overview

Provides an overview of security and privacy issues in the Liberty ID-WSE

Liberty ID-WSF Implementation Guidelines

Provides guidelines on how the Liberty ID-WSF specifications should be implemented.
Liberty ID-WSF Static Conformance Requirements

Defines the mandatory and optional features for implementations conforming to this
version of the specifications.

Liberty ID-WSF Implementation Guidelines

Describes the Liberty ID-WSF architecture, including examples, lessons learned, and best
practices.

Liberty Identity Service Interface Specifications

The Liberty Identity Service Interface Specifications (Liberty ID-SIS) are for building
identity-based web services. Included in the Liberty ID-SIS 1.0 are the following:

“Liberty ID-SIS Personal Profile Service Specification” on page 50
“Liberty ID-SIS Employee Profile Service Specification” on page 51
“Additional Liberty ID-SIS Service Specifications” on page 51

More detailed information about the service interface specifications can be found on the Liberty
Alliance Project web site.

Liberty ID-SIS Personal Profile Service Specification

The Liberty ID-SIS Personal Profile Service Specification defines an identity-based web service
that keeps, updates, and offers identity data regarding a user. This service queries and updates of
attribute data and incorporates mechanisms for access control and conveying data validation
information and usage directives from other specifications. A shopping portal that offers
information such as the principal’s account number and shopping preferences is an example of
a personal profile service. For more information, see the Liberty ID-SIS Personal Profile Service
Specification.

Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

https://www.projectliberty.org/resource_center/specifications/liberty_alliance_id_wsf_1_1_specifications
https://www.projectliberty.org/resource_center/specifications/liberty_alliance_id_sis_1_0_specifications
https://www.projectliberty.org/resource_center/specifications/liberty_alliance_id_sis_1_0_specifications
https://www.projectliberty.org/resource_center/specifications/liberty_alliance_id_sis_1_0_specifications
https://www.projectliberty.org/resource_center/specifications/liberty_alliance_id_sis_1_0_specifications

Liberty Alliance Project Specifications

Liberty ID-SIS Employee Profile Service Specification

The Liberty ID-SIS Employee Profile Service Specification defines an identity-based web service
that keeps, updates, and offers profile information regarding a user’s workplace. An online
corporate phone book that provides an employee name, office building location, and telephone
extension number is an example of an employee profile service. For more information, see the
Liberty ID-SIS Employee Profile Service Specification.

Additional Liberty ID-SIS Service Specifications

The Liberty Alliance Project defines several other service interface specifications not discussed
in this section, including a contact book, a geolocation service, and a presence service. For more
information on these services, see the Liberty ID-SIS Specifications page.

Schema Files and Service Definition Documents

The Liberty Alliance Project has created a number of XML Schema Definition (XSD) files and
Web Services Description Language (WSDL) documents to complement the specifications.
XSD files specify the information that the corresponding service can host by defining the data
and data structure. Typically, this structure is hierarchical and has one root node. Individual
branches of the structure can be accessed separately, and the whole structure can be accessed by
pointing to the root node. The data might be stored in implementation-specific ways. However,
the data will be exposed by the service using the XML schema and the WSDL definition of the
service type.

Note - The purpose of an XML schema is to describe the structure of an XML document. The
XML schema file format is XSD. XSD is an XML-based alternative to the Document Type
Definition (DTD) format. A DTD also describes the structure of an XML document, but it is
not in the XML format.

The WSDL definition is XML-based and describes how to communicate with the web service;
namely, protocol bindings and message formats. In simpler terms, the WSDL for a specific
service describes the public interface for that web service. The available XSD filesand WSDL
documents specific to the previously described specifications can be found on the Liberty
Alliance Project web site

(https://www.projectliberty.org/liberty/resource center/specifications).

Support Documents

The Liberty Alliance Project has also created a number of support documents including a
metadata service protocol, reverse HTTP bindings, and a glossary. A listing of these documents
and the appropriate links can be found on the Support Documents and Utility Schema Files

page.

Chapter 1 « Introduction to the Liberty Alliance Project 51

https://www.projectliberty.org/resource_center/specifications/liberty_alliance_id_sis_1_0_specifications
https://www.projectliberty.org/resource_center/specifications/liberty_alliance_id_sis_1_0_specifications
https://www.projectliberty.org/liberty/resource_center/specifications
https://www.projectliberty.org/liberty/resource_center/specifications
https://www.projectliberty.org/liberty/resource_center/specifications
https://www.projectliberty.org/resource_center/specifications/liberty_alliance_specifications_support_documents_and_utility_schema_files
https://www.projectliberty.org/resource_center/specifications/liberty_alliance_specifications_support_documents_and_utility_schema_files

52

Overview

CHAPTER 2

Implementation of the Liberty Alliance Project
Specifications

Sun Java System Access Manager contains the Sun Microsystems implementation of the Liberty
Alliance Project specifications. This chapter provides an overview of how these specifications
have been implemented. It covers the following topics:

“Overview” on page 53

“The Federation Module” on page 57

“The Liberty-based Web Services Modules” on page 63

“The Liberty-based Application Programming Interfaces” on page 67
“The SAML Service” on page 69

“Liberty-Based Samples” on page 69

Sun Java System Access Manager is a software product that helps organizations manage secure
access to the resources and web applications within their intranet and across the Internet. The
initial release of Access Manager implemented the Liberty Identity Federation Framework
(Liberty ID-FF) specifications, focusing on identity and provider federation, authentication
domains, and single sign-on. Subsequent releases of Access Manager added new features as
defined in version 1.2 of the Liberty ID-FF specifications as well as the version 1.1 specifications
of the Liberty Identity Web Services Framework (Liberty ID-WSF). These web services include a
framework for retrieving and updating identity data.

Identity data consists of all the information that companies maintain about individual
customers, corporate partners, and employees. The data is stored in identity-based service
providers (also referred to as identity providers) across the Internet. Federating the sources of
identity data allows for accessing, transporting, sharing, and managing the data between
partnered organizations and their applications without weakening existing security safeguards.
For example, many corporations provide access to outsourced human resources services, such
as health benefits and 401 (k) plans. The corporate intranet offers central access to these services,
but employees have to log in and authenticate themselves every time they access each service.

53

Overview

54

Since employees might not want to share the same profile and password with both their 401 (k)
provider and their health care provider, federation of their identity data can provide seamless
integration of these web resources across multiple security domains within the same enterprise.

To achieve this integration, enterprises can construct a network of partnered services for
securely exchanging customer account information, transaction data, and credentials through a
set of interoperable web services. Federation among partner networks allows identities to share
key pieces of their respective data without sharing control. For example, logging in to one web
site that represents an authentication domain consisting of an airline, a car rental company, and
a hotel chain allows an identity to make travel plans even if one of the sites does not contain an
identity data store.

The following sections contain additional information regarding the implementation of the
Liberty Alliance Project specifications in Access Manager.

= “Sample Use Case” on page 54
= “Liberty Alliance Project Architecture in Access Manager” on page 55

Sample Use Case

Using a cell phone, a principal is able to access a ring-tone vendor's site. Due to implementation
of single sign-on, the ring-tone vendor recognizes the principal from the cell-phone provider's
authentication. This allows the principal to purchase ring tones by interacting with the user's
bank for payment. The following figure illustrates the process of requesting a service and being
authenticated for access. It assumes the following:

= MyWireless is a cellular service provider and an identity provider in a federation framework
that contains access to the discovery service in a web services framework.

= MpyRingtones is a service provider in a federation framework that also acts as a web service
consumer (WSC) in a web services framework. It sells ringtones for use with cellular
phones.

= MyBank is a web service provider (WSP) in a web services framework. Linking MyBank to
My Ringtones offers the opportunity for seamless purchases.

Note - The same web service can act as a different entity in different scenarios.

The user attempts to access MyRingtones and, after being prompted for credentials stored with

Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

Overview

MyRingtones m— MyWireless MyBank

User Agent Service Identity Discovery Personal
Provider Provider Service Profile

(also acts as Service

Web Service (Web Service
Consumer) Provider)

1. Single sign-on authorized by Identity Provider
_— e — —)

2. Returns assertion including Discovery Service location

&
<

3. Request service

>

4. Request Personal [Profile Service (WSP)|location

5. Provide Personal Profile Service (WSP) focation

&
<

6. Request user attrijutes

A 4

7. Provide user attribjites

&
<

8. Provide service
<

<

FIGURE2-1 Processin a Liberty-enabled Use Case

MyBank, receives authorization through MyWireless. Single sign-on is accomplished in the
back end. The entire process is based on implementations of the Liberty ID-FEF, Liberty ID-WSEF,
and Liberty ID-SIS specifications.

Liberty Alliance Project Architecture in Access
Manager

The figure below shows the architecture of the Access Manager features that are based on the
Liberty Alliance Project specifications. These features leverage existing Access Manager services
including those for policy, service management, session management, and auditing.

Chapter2 - Implementation of the Liberty Alliance Project Specifications 55

Overview

56

Web Service Administration
(User Agent) Console
(User Agent)
A A
HTTP HTTP
Federation Application/
Manager Liberty Web Service
SAML API > API
SAML

f ¢

Liberty-based Features (Web Services, Protocols, Profiles)

) Discovery || Interaction Pers Prof Custom
Metadata fredieraton Service Service Service Services

AuthN Web Data

é Service Services
_% ID-FF ID-WSF ID-SIS
E Base Functionality
N e
JAX-RPC/JAXM
'I‘tggi\ctjii?n%/ Identity Repository API YA

Directory External
Server Data Store

O] Access Manager Components [] External to Access Manager

FIGURE2-2 Liberty-based Architecture of Access Manager

Note - For a complete architectural overview of Access Manager, see the Sun Java System Access
Manager 7.1 Technical Overview.

Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

The Federation Module

The Federation Module

The Federation component of Access Manager provides an interface for creating, modifying,
and deleting authentication domains and service and identity providers (both remote and
hosted types) for implementing a federated model. The web interface for the Liberty ID-FF in
Access Manager is accessible from the Federation tab in the Access Manager Console, as shown.

The Federation module includes the capabilities described in the following sections.

= “Identity Federation and Single Sign-On” on page 58

= “Authentication and Authentication Context” on page 59
= “Identifiers and Name Registration” on page 62

= “Global Logout” on page 62

= “Dynamic Identity Provider Proxying” on page 62

More information can be found in Chapter 3, “Federation” For more information about the
Liberty ID-FF functions, see the Liberty ID-FF Protocols and Schema Specifications.

Chapter2 - Implementation of the Liberty Alliance Project Specifications 57

http://www.projectliberty.org/specs/draft-liberty-idff-protocols-schema-1.2-errata-v1.0.pdf

The Federation Module

58

Identity Federation and Single Sign-On

Let's assume that a principal has separate user accounts with a service provider and an identity
provider in the same authentication domain. In order to gain access to these individual
accounts, the principal authenticates with each provider separately. After authenticating with
the service provider though, the principal can be given the option to federate the service
provider account with the identity provider account. Consenting to the federation of these two
accounts links them for the purpose of single sign-on. Single sign-on (SSO) is the means of
passing a user's credentials between applications without the user having to reauthenticate each
time an application is accessed. With Access Manager, you can achieve SSO in the following
ways:

= Install a policy agent in a web container to protect the application and pass the HTTP_HEADER
and REMOTE_USER variables to the application to capture the user credentials. You may or
may not need a custom authentication module.

= Customize the application's authentication module to create an SS0Token from the request
object or from the SSO cookie. Afterwards, retrieve the user credentials using the SSO API
and create a session using the application's API.

To set up federated SSO, you must first establish SSO. Following this, configure the service
provider application and the identity provider in Access Manager to enable federation using the
Liberty Alliance Project protocols. Liberty ID-FF providers differentiate between federated
users by defining a unique handle for each account. (They are not required to use the principal's
actual provider account identifier.) Providers can also choose to create multiple handles for a
particular principal. However, identity providers must create one handle per user for service
providers that have multiple web sites so that the handle can be resolved across all of them.

Note - Because both the identity provider and service provider in a federation need to remember
the principal's handle, they create entries that note the handle in their respective user
repositories. In some scenarios, only the identity provider's handle is conveyed to a service
provider. For example, if a service provider does not maintain its own user repository, the
identity provider's handle is used.

Access Manager can accommodate the following functions:

= Providers of either type give the principal notice upon identity federation or identity
defederation.

= Providers of either type notify each other regarding a principal's defederation.

= Identity providers notify the appropriate service providers regarding a principal's account
termination.

= Providers of either type give the principal a list of their federated identities.

m Users can terminate federations or defederate identities.

Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

The Federation Module

Additionally, Access Manager can accommodate the following:

= “Auto-Federation” on page 59
= “Bulk Federation” on page 59

Auto-Federation

Auto federation will automatically federate a user's disparate provider accounts based on a
common attribute. During single sign-on, if it is deemed a user at provider A and a user at
provider B have the same value for the defined common attribute (for example, an email
address), the two accounts will be federated without consent or interaction from the principal.
For more information, see “Auto-Federation” on page 115.

Bulk Federation

Federating one user's service provider account with their identity provider account generally
requires the principal to visit both providers and link them. The organization though needs the
ability to federate user accounts behind the scenes. Access Manager provides a script for
federating user accounts in bulk. The script allows the administrator to federate many (or all) of
a principal's provider accounts based on metadata passed to the script. Bulk federation is useful
when adding a new service provider to an enterprise so you can federate a group of existing
employees to the new service. For more information, see “Bulk Federation” on page 116.

Authentication and Authentication Context

Single sign-on is the means by which a provider of either type can convey to another provider
that a principal has been authenticated. Authentication is the process of validating user
credentials; for example, a user identifier accompanied by an associated password. You can
authenticate users with Access Manager in the following ways:

= Useapolicy agent to insert HTTP header variables into the request object. This functions
for Web applications only.

= Use the authentication API to validate and retrieve user identities. This will work with either
Web or non-Web applications.

Identity providers use local (to the identity provider) session information mapped to a user
agent as the basis for issuing Security Assertion Markup Language (SAML) authentication
assertions to service providers. Thus, when the principal uses a user agent to interact with a
service provider, the service provider requests authentication information from the identity
provider based on the user agent's session information. If this information indicates that the
user agent's session is presently active, the identity provider will return a positive authentication
response to the service provider. Access Manager provides the following authentication actions:

= Supports a range of authentication methods (for example, password or certificate-based
SSL).

Chapter2 - Implementation of the Liberty Alliance Project Specifications 59

The Federation Module

60

= Allows providers to exchange the following minimum set of authentication information
with regard to a principal:

m Authentication status (active or not)

= Instant (time authenticated)

= Authentication method

= Pseudonym (temporary or persistent)

= Allows an identity provider, at the discretion of the service provider, to authenticate a
principal by using an identity provider other than itself (proxy) and relay this information
back to the service provider.

SAML is used for provider interaction during authentication but not all SAML assertions are
equal. Different authorities issue SAML assertions of different quality. Therefore, the Liberty
Alliance Project defines how the consumer of a SAML assertion can determine the amount of
assurance to place in the assertion. This is referred to as the authentication context, information
added to the SAML assertion that gives the assertion consumer details they need to make an
informed entitlement decision. For example, a principal uses a simple identifier and a
self-chosen password to authenticate to an identity provider. The identity provider sends an
assertion that states the principal has been authenticated to a service provider. By including the
authentication context, the service provider can place the appropriate level of assurance on the
associated assertion. If the service provider were a bank, they might require stronger
authentication than that which has been used and respond to the identity provider with a
request to authenticate the user again using a more stringent context. The authentication
context information sent in the assertion might include:

= The initial user identification mechanism (for example, face-to-face, online, or shared
secret).

= The mechanisms for minimizing compromise of credentials (for example, private key in
hardware, credential renewal frequency, or client-side key generation).

= The mechanisms for storing and protecting credentials (for example, smart card, or
password rules).

= The authentication mechanisms (for example, password or smart card with PIN).

The Liberty Alliance Project specifications define authentication context classes against which
an identity provider can claim conformance. The Liberty-defined authentication contexts are
listed and described in the following table.

TABLE2-1 Authentication Context Classes

Class Description

MobileContract Identified when a mobile principal has an identity for which
the identity provider has vouched.

Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

The Federation Module

TABLE2-1 Authentication Context Classes (Continued)

Class Description

MobileDigitalID Identified by detailed and verified registration procedures, a
user's consent to sign and authorize transactions, and
DigitalID-based authentication.

MobileUnregistered Identified when the real identity of a mobile principal has
not been strongly verified.

Password Identified when a principal authenticates to an identity

Password-ProtectedTransport

Previous-Session

Smartcard

Smartcard-PKI

Software-PKI

Time-Sync-Token

provider by using a password over an unprotected HTTP
session.

Identified when a principal authenticates to an identity
provider by using a password over an SSL-protected session.

Identified when an identity provider must authenticate a
principal for a current authentication event and the
principal has previously authenticated to the identity
provider. This affirms to the service provider a time lapse
from the principal's current resource access request.

Note - The context for the previously authenticated session is
not included in this class because the user has not
authenticated during this session. Thus, the mechanism that
the user employed to authenticate in a previous session
should not be used as part of a decision on whether to now
allow access to a resource.

Identified when a principal uses a smart card to authenticate
to an identity provider.

Identified when a principal uses a smart card with an
enclosed private key and a PIN to authenticate to an identity
provider.

Identified when a principal uses an X.509 certificate stored
in software to authenticate to the identity provider over an
SSL-protected session.

Identified when a principal authenticates through a time
synchronization token.

The procedures in “Entities” on page 80 contain a number of attributes related to
authentication context. For more information, see the Liberty ID-FF Authentication Context
Specification. Additionally, there is an XML schema defined which the identity provider
authority can use to incorporate the context of the authentication in the SAML assertions it

issues.

Chapter2 - Implementation of the Liberty Alliance Project Specifications 61

https://www.projectliberty.org/liberty/resource_center/specifications/liberty_alliance_specifications_support_documents_and_utility_schema_files
https://www.projectliberty.org/liberty/resource_center/specifications/liberty_alliance_specifications_support_documents_and_utility_schema_files

The Federation Module

62

Identifiers and Name Registration

Access Manager supports name identifiers that are unique across all providers in an
authentication domain. This identifier can be used to obtain information for or about the
principal (with consent) without requiring the user to consent to a long-term relationship with
the service provider. During federation, the identity provider generates an opaque value that
serves as the initial name identifier that both the service provider and the identity provider use
to refer to the principal when communicating with each other.

After federation though, the identity provider or the service provider may register a different
opaque value. The reasons for doing this would be implementation-specific. If a service
provider registers a different opaque value for the principal, the identity provider must use the
new identifier when communicating with the service provider about the principal.

Note - The initial name identifier defined by the identity provider is always used to refer to the
principal unless a new name identifier is registered.

Global Logout

A principal may establish authenticated sessions with both an identity provider and individual
service providers, based on authentication assertions supplied by the identity provider. When
the principal logs out of a service provider session, the service provider sends a logout message
to the identity provider that provided the authentication for that session. When this happen, or
the principal manually logs out of a session at an identity provider, the identity provider sends a
logout message to each service provider to which it provided authentication assertions under
the relevant session. The one exception is the service provider that sent the logout request to the
identity provider.

Dynamic Identity Provider Proxying

An identity provider can choose to proxy an authentication request to an identity provider in
another authentication domain if it knows that the principal has been authenticated with this
identity provider. The proxy behavior is defined by the local policy of the proxying identity
provider. However, a service provider can override this behavior and choose not to proxy. This
function can be implemented as a form of authentication when, for instance, a roaming mobile
user accesses a service provider that is not part of the mobile home network. For more
information see “Dynamic Identity Provider Proxying” on page 120.

Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

The Liberty-based Web Services Modules

The Liberty-based Web Services Modules

Liberty-based web services are those based on specifications in the Liberty ID-WSF and the
Liberty ID-SIS. They are accessible from the Access Manager Console by clicking the Web
Services tab. The following diagram illustrates how the different web service specifications have

been implemented.

Chapter2 - Implementation of the Liberty Alliance Project Specifications 63

The Liberty-based Web Services Modules

AuthN Di
Web iscovery
Service

Service

SIS-PP
Client

SIS-EP
Client

Other SI
Client

DST Client API

User
Agent

Trusted

| Interaction API |

SOAP Client API

SOAP/HTTP(s) I

SOAP Receiver

| Interaction API |

Interaction

Authority | AuthN
Web

Service
Provider

Discovery
Service
Provider

DST

Redirect
other sis Handler

SIS-PP | SIS-EP |other ST
Provider | Provider

Data
Store

Providef

>

Metadata

[1D-WSF Components

. Access Manager Components

[External to Access Manager

FIGURE2-3 Architecture of Liberty-based Web Services
64 Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

The Liberty-based Web Services Modules

The web interface for the Liberty ID-WSF in Access Manager is accessible from the Web
Services tab in the Access Manager Console, as shown. The implemented web services include:

“Liberty Personal Profile Service” on page 65
“Discovery Service” on page 66

“SOAP Binding Service” on page 66
“Authentication Web Service” on page 66

VERSION

Uiser: amAdmin Server

Sun Java~ System Access Manager

| Personal Profile | Discovery Service | SOAP Binding Service Authentication Service |

Libarty Personal Profile Service

Global Attributes

ResourcelD Mapper: irnm sun identity liberty ws idpp plugin IDFPRES oW

Authorizer: |:r.~m sun idenuty libermy we ldpp plugin DPPAUThor
attribute Mapper: icnm sun identty liberty ws idpp plugin IDPRAETIDU
Provider ID: |

Hame Scheme: f& First Middle Last

Hamespace Prefic: hm.

Supported Containers (11 Items)
New,, i Dolete

(2 [i] | Name

| [T Addresscard

| T | EmergencyContact
i [T Emplaymentidentity
| [T | Legaiidenoty

| ™ R

Liberty Personal Profile Service

The Liberty Personal Profile Service is a data service that supports storing and modifying a
principal's identity attributes. Identity attributes might include information such as first name,
last name, home address, and emergency contact information. The Liberty Personal Profile
Service is queried or updated by a WSC acting on behalf of the principal. For more information,
see Chapter 7, “Data Services.”

Chapter2 - Implementation of the Liberty Alliance Project Specifications 65

The Liberty-based Web Services Modules

66

Discovery Service

The Discovery Service is a web service that allows a requesting entity, such as a service provider,
to dynamically determine a principal’s registered attribute provider. Typically, a service
provider queries the Discovery Service, which responds by providing a resource offering that
describes the location of the requested attribute provider. (A resource offering defines
associations between a piece of identity data and the service instance that provides access to the
data.) The implementation of the Discovery Service includes Java and web-based interfaces. For
more information, see Chapter 8, “Discovery Service.”

Note - By definition, a discoverable service is assigned a service type Uniform Resource
Identifier (URI), allowing the service to be registered in Discovery Service instances. The service
type URL is typically defined in the Web Service Definition Language (WSDL) file that defines
the service.

SOAP Binding Service

The SOAP Binding Service is the method of transport used to convey identity data between web
services. It includes a set of Java APIs used by the developer of a Liberty-enabled identity service.
The APIs are used to send and receive identity-based messages using SOAP, an XML-based
messaging protocol. The service invokes the correct request handler class (specified by a service
endpoint) to handle the messages. For more information, see Chapter 9, “SOAP Binding
Service”

Authentication Web Service

The Authentication Web Service adds authentication functionality to the SOAP binding. It
provides authentication to a WSC, allowing the WSC to obtain security tokens for further
interactions with other services at the same provider. These other services may include a
discovery service or single sign-on service. Upon successful authentication, the final Simple
Authentication and Security Layer (SASL) response contains the resource offering for the
Discovery Service. For more information, see Chapter 6, “Authentication Web Service”

Caution - Do not confuse the Liberty-based Authentication Web Service with the proprietary
Access Manager Authentication Service discussed in the Sun Java System Access Manager 7.1
Technical Overview.

Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

The Liberty-based Application Programming Interfaces

The Liberty-based Application Programming Interfaces

A number of the Liberty-based web services specifications have also been implemented in the
back end of Access Manager as APIs. The services include the Interaction Service and PAOS
binding. The following table summarizes the public APIs. They can be used to deploy
Liberty-enabled components or extend the core services.

TABLE 2-2

Public Interfaces

Package Name

Description

com.sun.identity.federation.plugins

com.sun.identity.federation.services

com.sun.

com.sun.

identity.liberty

identity.liberty

authnsvc.mechanism

com.sun.

identity.liberty

authnsvc.protocol

com.sun.

com.sun

com.sun.

com.sun.

com.sun.

identity.liberty

.identity.liberty

identity.liberty

identity.liberty

identity.liberty

WS

.WS.

. WS

.WS.

WS.

.WS.

.authnsvc

.WS.

.WS.

common

.common.wsse

disco

disco.plugins

dst

Contains interfaces which can be implemented to
allow applications to customize their actions before
and after invoking the federation protocols. See
Chapter 3, “Federation”

Provides interfaces for writing custom plug-ins that
can be used during the federation or single sign-on
process. See Chapter 3, “Federation”

Provides classes to manage the Authentication Web
Service. See Chapter 6, “Authentication Web Service”

Provides an interface to process incoming Simple
Authentication and Security Layer (SASL) requests
and generate SASL responses for the different SASL
mechanisms. See Chapter 6, “Authentication Web
Service”

Provides classes to manage Authentication Web
Service protocol. See Chapter 6, “Authentication Web
Service”

Defines common classes that are used by many of the
Access Manager Liberty-based web service
components. See “Common Service Interfaces” on
page 256 of this chapter.

Provides an interface to parse and create a X.509
Certificate Token Profile. See “Common Service
Interfaces” on page 256 of this chapter.

Provides interfaces to manage the Discovery Service.
See Chapter 8, “Discovery Service.”

Provides a plugin interface for the Discovery Service.
See Chapter 8, “Discovery Service”

Provides classes to implement an identity service. See
Chapter 7, “Data Services” for information about
services built using this APL

Chapter2 - Implementation of the Liberty Alliance Project Specifications 67

The Liberty-based Application Programming Interfaces

TABLE2-2 Public Interfaces (Continued)

Package Name

Description

com.sun.identity.liberty.ws.dst.service

com.sun.identity.liberty.ws.interaction

com.sun.identity.liberty.ws.interfaces

com.

com.

com.

com.

com.

com.

com.

com.

com.

sun.

sun

sun

sun.

sun.

sun

sun.

sun.

sun.

identity.

.identity.

.identity.

identity.

identity.

.identity.

identity.

identity.

identity.

liberty.ws.paos

liberty.ws.security

liberty.ws.soapbinding

saml

saml.

saml.

saml.

saml.

saml

assertion

common

plugins

protocol

.xmlsig

Provides a handler class that can be used by any
generic identity data service. See Chapter 7, “Data
Services” for information about data services.

Provides classes to support the Interaction
RequestRedirect Profile. See the section on the
“Interaction Service” on page 259 for information on
this profile.

Provides interfaces that are common to all Access
Manager Liberty-based web service components. See
Chapter 8, “Discovery Service” and Chapter 7, “Data
Services” for information about default
implementations. See the section on “Common
Service Interfaces” on page 256 for more general
information.

Provides classes for web applications to construct and
process PAOS requests and responses. See “PAOS
Binding” on page 262 of this chapter.

Provides an interface to manage Liberty-based web
service security mechanisms. See “Common Security
API” on page 258 of this chapter.

Provides classes to construct SOAP requests and
responses and to change the contact point for the
SOAP binding. See Chapter 9, “SOAP Binding
Service”

Provides a service provider interface (SPI) in which
proprietary XML/signature implementations can be
plugged in. See Chapter 10, “SAML Administration.”

Provides classes to manage assertions and profiles. See
Chapter 10, “SAML Administration.”

Provides classes that are common to all SAML
elements. See Chapter 10, “SAML Administration.”

Provides SPIs to integrate SAML into custom services.
See Chapter 10, “SAML Administration”

Provides classes that parse the XML messages used to
exchange assertions and information. See Chapter 10,
“SAML Administration.”

Provides an SPI in which proprietary XML/signature
implementations can be plugged in. See Chapter 10,
“SAML Administration”

68 Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

Liberty-Based Samples

TABLE2-2 Public Interfaces (Continued)
Package Name Description
com.sun.liberty Provides interfaces common to the Access Manager
Federation Management module. See Chapter 3,
“Federation”

For more information, see Chapter 11, “Application Programming Interfaces” For detailed API
documentation, including classes, methods and their syntax and parameters, see the Java API
Reference in /AccessManager-base/SUNWam/docs or on docs.sun.com.

The SAML Service

Access Manager uses SAML as the means for exchanging security information. SAML uses an
eXtensible Markup Language (XML) framework to achieve interoperability between vendor
platforms that provide SAML assertions. Originally, the Liberty ID-FF was created as an
extension of SAML 1.0 and 1.1. With the release of SAML 2.0 though, the Liberty ID-FF has
been rolled into the SAML 2.0 specifications. Going forward, SAML 2.0 will be used by the
Liberty Alliance Project to build additional federation—based applications. See “The Liberty
ID-FF Convergence” on page 42 for more information.

Note - The configuration and usage of the SAML Service is independent of the SAML
functionality used by the Liberty-based features in Access Manager. SAML usage by the
Liberty-based features in Access Manager is behind the scenes and not configurable.

Access Manager 7.1 supports SAML 1.1 and 2.0. SAML 1.1 is supported out of the box and can
be configured using the Access Manager Console. SAML 2.0 is supported after installing the
SAML v2 Plug-in for Federation Services on top of a working instance of Access Manager. For
more information on the SAML Service (based on SAML 1.1), see Chapter 10, “SAML
Administration.” For more information on the SAML v2 Plug-in for Federation Services, see the
Sun Java System SAML v2 Plug-in for Federation Services Release Notes and the Sun Java System
SAML v2 Plug-in for Federation Services User’s Guide.

Liberty-Based Samples

Access Manager has included sample code and files that can be used to further understand the
implementation of the Liberty Alliance Project specifications. For information about the
specifics of these samples, see the individual chapters or Appendix A, “Liberty-based and SAML
Samples”

Chapter2 - Implementation of the Liberty Alliance Project Specifications 69

70

PART 11

Federation Management

Chapter 3, Federation
Chapter 4, Common Domain Services for Federation Management

71

72

L K R 4 CHAPTER 3

Federation

Sun Java™ System Access Manager provides an interface for creating, modifying, and deleting
authentication domains, service providers, and identity providers. This chapter explains how to
use the Federation module to configure these components, allowing for Liberty-based provider
federation. It covers the following topics:

“Process of Federation” on page 73

“Federation Graphical User Interface” on page 77
“Entities and Authentication Domains” on page 80
“The Pre-login URL” on page 111

“Federation API” on page 113

“Liberty ID-FF Operations” on page 115

“Sample Federation Environment” on page 122

Process of Federation

The process of federation begins with authentication. A standard installation of Access
Manager provides two options for user authentication: the proprietary Authentication Service
and the Liberty-based Federation component. With the proprietary option, users attempting to
access a resource protected by Access Manager are redirected to the Authentication Service via
an Access Manager login page. After the users provide credentials, the Authentication Service
allows or denies access to the resource based on the outcome.

Note - For more information about the proprietary Authentication Service, see the Sun Java
System Access Manager 7.1 Administration Guide.

The second option for user authentication is Liberty-based federation. When a principal
attempts to access a web site that belongs to the trusted member provider of a configured
authentication domain, the process of user authentication begins with the search for a valid
Access Manager session token from the proprietary Authentication Service.

73

Process of Federation

74

= Ifno session token is found, the principal is redirected to a location defined by the pre-login
URL to establish a valid session. See “Pre-login Process” on page 74 for details.

= Ifasession token is found, the principal is granted (or denied) access to the requested page.
Assuming access is granted, the requested page contains a link so the principal can federate
the Access Manager identity with the identity local to the requested site. If the principal
clicks this link, federation begins. See “Federation and Single Sign-On” on page 76 for
details.

The following figure illustrates these divergent paths.

Note - The process shown in the figure below is the default process when no application has
been deployed. When an application is deployed and using Access Manager, the process will
change based on the application's query parameters and preferences. For more information, see
“The Pre-login URL” on page 111.

Pre-login Process

Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

Process of Federation

D User Interaction

. Access Manager Components

. Liberty-based Components

User attempts to
access protected
web resource

Is

cooki

Federation

e

present?

Federation

cookie
value=yes?

Yes

Send
authentication
request to IDP

Did IDP
send valid
response?

Yes

Pre-Login Processes

Yes

)]

User presents
credentials

User
selects
IDP

v

Send

Federation
request

User clicks link,
enables
Federation

FIGURE3-1 Default Process of Federation

Chapter3 - Federation

75

Process of Federation

76

The pre-login process establishes a valid Access Manager session. When a principal attempts to
access a service provider site and no Access Manager session token is found, Access Manager
searches for a federation cookie. A federation cookie is implemented by Access Manager and is
called fedCookie. It can have a value of either yes or no, based on the principal’s federation
status.

Note - A federation cookie is not defined in the Liberty Alliance Project specifications.

At this point, the pre-login process may take one of the following paths:

= Ifafederation cookie is found and its value is no, an Access Manager login page is displayed
and the principal submits credentials to the proprietary Authentication Service. When
authenticated by Access Manager, the principal is redirected to the requested page, which
might contain a link to allow for identity federation. If the principal clicks this link,
federation begins. See “Federation and Single Sign-On” on page 76 for details.

= Ifafederation cookie is found and its value is yes, the principal has already federated an
identity but has not been authenticated by an identity provider within the authentication
domain for this Access Manager session. Authentication to Access Manager is achieved on
the back end by sending a request to the principal’s identity provider. After authentication,
the principal is directed back to the requested page.

= Ifno federation cookie is found, a passive authentication request (one that does not allow
identity provider interaction with the principal) is sent to the principal’s identity provider. If
an affirmative authentication is received back from the identity provider, the principal is
directed to the Access Manager Authentication Service, where a session token is granted.
The principal is then redirected to the requested page. If the response from the identity
provider is negative (for example, if the session has timed out), the principal is sent to a
common login page to complete either a local login or Liberty-based federation. See
“Federation and Single Sign-On” on page 76 for details.

Note - This pre-login process is the default behavior of Access Manager. This process might
change based on parameters passed to Access Manager from the participating application. For
more details, see the section on “The Pre-login URL’ on page 111.

Federation and Single Sign-On

When a principal logs in to access a protected resource or service, Access Manager sends a
request to the appropriate identity provider for authentication confirmation. If the identity
provider sends a positive response, the principal gains access to all provider sites within the
authentication domain. If the identity provider sends a negative response, the principal is
directed to authenticate again using the Liberty-based federation process.

Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

Federation Graphical User Interface

In the Liberty-based federation process, a principal selects an identity provider and sends
credentials for authentication. After authentication is complete and access is granted, the
principal is issued a session token from the Access Manager Authentication Service and
redirected to the requested page. Aslong as the session token remains valid, the principal can
access other service providers in the authentication domain without having to authenticate
again.

Note - Common Domain Services for Federation Management are used by a service provider to
determine the identity provider used by a principal in an authentication domain that contains
multiple identity providers. See Chapter 4, “Common Domain Services for Federation
Management” for details.

Federation Graphical User Interface

The Federation component uses JavaServer Pages™ (JSP™) to define its look and feel. JSP are
HTML files that contain additional code to generate dynamic content. More specifically, a
JavaServer page contains HTML code to display static text and graphics, as well as application
code to generate information. When the page is displayed in a web browser, it contains both the
static HTML content and, in the case of the Federation component, dynamic content retrieved
through calls to the Federation API. An administrator can customize the look and feel of the
interface by changing the HTML tags in the JSP but the invoked APIs must not be changed.

The JSP are located in
/AccessManager-base/SUNWam/web-src/services/config/federation/default. The filesin
this directory provide a default interface to the Federation component. To customize the pages
for a specific organization, this default directory can be copied and renamed to reflect the name
of the organization (or any value). This directory would then be placed at the same level as the
default directory, and the files within this directory would be modified as needed. The following
table lists the JSP including details on what each page is used for and the invoked APIs that
cannot be modified. For more information about modifying these pages to customize the
console, see the Sun Java System Access Manager 7.1 Developer’s Guide.

Chapter3 - Federation 77

Federation Graphical User Interface

JSP Name and Implemented APIs

Purpose

B CommonLogin.jsp Invoked APIs are:

B |ibertyManager.
getLoginURL (request)

® | ibertyManager.
getInterSiteURL(request)

® |ibertyManager.
getIDPList(providerID)

B LibertyManager.
getNewRequest(request)

® |ibertyManager.
getSuccintID(idpID)

B |ibertyManager.
cleanQueryString(request)

® Error.jsp

B Federate.jsp Invoked APIs are:

® | ibertyManager.
isLECPProfile(request)

® |ibertyManager.
getAuthnRequestEnvelope
(request)

B |ibertyManager.
getUser(request)

® |ibertyManager.
getProvidersTo
Federate(providerID, userDN)

B FederationDone.jsp Invoked API is:

B |ibertyManager.
isFederationCancelled
(request)

B Footer.jsp

B Header.jsp

Displays a link to the local login page as well as links to
the login pages of the trusted identity providers. This
page is displayed when a user is not logged in locally or
with an identity provider. The list of identity providers
is obtained by using the
getIDPList(hostedProviderID) method.

Displays an error page when an error has occurred.
No APIs are invoked.

Displays when a user clicks a federate link on a
provider page. Contains a drop-down of all providers
with which the user is not yet federated. This list is
constructed by using the
getProvidersToFederate(userName,providerID)
method.

Displays the status of a federation (success or
cancelled). This page checks the status by using the
isFederationCancelled(request) method.

Displays a branded footer that is included on all the
pages. No APIs are invoked.

Displays a branded header that is included on all the
pages. No APIs are invoked.

78 Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

Federation Graphical User Interface

JSP Name and Implemented APIs

Purpose

ListOfCOTs.jsp Invoked APl is:

B |ibertyManager.
getListOfCOTs
(providerID)

LogoutDone. jsp Invoked APl is:

B LibertyManager.
isLogoutSuccess(request)

NameRegistration.jsp Invoked APIs are:

® | ibertyManager.
getUser(request)

B |ibertyManager.
getRegisteredProviders
(userDN)

NameRegistrationDone.jsp Invoked APIs are:

® | ibertyManager.
isNameRegistration
Success(request)

B LibertyManager.
isNameRegistration
Canceled(request)

Termination.jsp Invoked APIs are:

B | ibertyManager.
getUser(request)

® |ibertyManager.
getFederatedProviders
(userDN)

TerminationDone. jsp Invoked APIs are:

® | ibertyManager.
isTerminationSuccess
(request)

B LibertyManager.
isTerminationCanceled

(request)

Displays a list of circles of trust. When a user is
authenticated by an identity provider and the service
provider belongs to more than one circle of trust, the
user is shown this JSP and is prompted to select an
authentication domain as their preferred domain. In
the case that the provider belongs to only one domain,
this page will not be displayed. The list is obtained by
using the getListOfCOTs (providerID) method.

Displays the status of the local logout operation.

Displays when the Name Registration link is clicked
on a provider page. When a federated user chooses to
register a new Name Identifier from a service provider
to an identity provider, this JSP is displayed.

Displays the status of NameRegistration. jsp. When
finished, this page is displayed.

Displays when a user clicks a defederate link on a
provider page. Contains a drop-down of all providers
to which the user has federated and from which the
user can choose to defederate. The list is constructed
bytmingthegetFederatedProviders(userName)
method, which returns all active providers to which
the user is already federated.

Displays the status of federation termination (success
or cancelled). Status is checked using the
isTerminationCancelled(request) method.

Chapter3 - Federation

79

Entities and Authentication Domains

Entities and Authentication Domains

80

The Federation component in the Access Manager Console provides an interface for
configuring, modifying, and deleting authentication domains, and its member identity
providers and service providers. To enable provider federation using Access Manager, create
and populate an authentication domain using the following process:

1. Create an entity to hold the metadata (information that defines a particular identity services
architecture) for each provider that will become a member of the authentication domain.

See “Creating Entities” on page 82.
2. Configure and save an authentication domain.
See “Authentication Domains” on page 108.

3. Addan entity (a configured provider) to the authentication domain by configuring the
entity's properties to add the authentication domain and configuring the authentication
domain's properties to add the entity.

Information on configuring the entity's properties can be found in “To Configure Hosted or
Remote Identity Provider Attributes for a Provider Entity” on page 85 or “T'o Configure
Hosted or Remote Service Provider Attributes for a Provider Entity” on page 93.
Information on configuring the authentication domain's properties can be found in “To
Configure or Modify an Authentication Domain” on page 110.

Note - The establishment of contractual agreements between providers is beyond the scope of
this guide. For information, see the Liberty Trust Model Guidelines.

The following sections contain more detailed information:

= “Entities” on page 80
= “Authentication Domains” on page 108

Tip - In a federation setup, all service providers and identity providers must share a
synchronized clock. You can implement the synchronization by pointing to an external clock
source or by ensuring that, in case of delays in receiving responses, the responses are captured
without fail through adjustments of the time outs.

Entities

An entity may be configured with metadata (configuration information that defines a particular
identity service architecture) for an individual identity provider, an individual service provider,
or one of each. Contrarily, an entity may be configured as an affiliation, a selected group of
providers of either type. Both provider and affiliation entities can be configured using the
Access Manager Console.

Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

http://www.projectliberty.org/resources/specifications.php#box4

Entities and Authentication Domains

Note - For general information about entities, see the Liberty Metadata Description and
Discovery Specification.

Provider Entity

Affiliate Entity

A provider entity holds the metadata for individual providers of either type.
Allidentity providers and service providers (both hosted and remote) must
be configured within a provider entity before they can be associated with an
authentication domain, or chosen to be included in an affiliate entity. Using
the attributes provided in the Access Manager Console, one individual
identity provider, one individual service provider, or one of each can be
defined within a provider entity.

A configured affiliation (referenced by an affiliationID) containsa
grouping of provider sites. The affiliation is formed and maintained by an
affiliation owner who chooses the member providers from already
configured provider entities. (An affiliation is formed without regard to the
boundaries of any authentication domains which might also include the
providers as members.) The affiliation enables a user to federate amongst
the group of associated sites. The chosen providers may invoke services
either as a member of the affiliation, or individually as a provider. If services
are invoked as an affiliation member, a service provider might issue an
authentication request for a user on behalf of an affiliation. When
authentication is secured, the user can achieve single sign-on with all
members of the affiliation.

An affiliate entity holds the metadata that defines the grouping of one or
more provider entities that comprise the affiliation. It does not contain the
configuration information for any providers (which is defined in a provider
entity), only the configuration information for the affiliation itself.

Tip - The name identifier (a single persistent randomized string) is used to
achieve single sign-on between an identity provider and a group of service
providers acting as a single affiliation. If there are several service providers
and identity providers in the same circle of trust, use an affiliate entity to
avoid having to generate different name identifiers for commonly shared
services.

Configuring an entity using the Access Manager Console is a two-step process. First, you create
a provider or affiliate entity. Then, you populate the entity with either remote or hosted
provider metadata (either service or identity) or affiliation information. This process is
described in the following sections.

= “Creating Entities” on page 82

Chapter3 - Federation

81

hhttps://www.projectliberty.org/liberty/resource_center/specifications/liberty_alliance_specifications_support_documents_and_utility_schema_files
hhttps://www.projectliberty.org/liberty/resource_center/specifications/liberty_alliance_specifications_support_documents_and_utility_schema_files

Entities and Authentication Domains

82

= “Configuring Provider Entities” on page 83
= “Configuring Affiliate Entities” on page 101
= “Deleting Entities” on page 104

= “Creating and Configuring Entities using amadmin” on page 105

Note — This section contains information on how entities can be created and configured in
one step using the amadmin command-line interface and prepared XML files (as opposed to
the manual configuration illustrated in the previous sections).

Creating Entities

This section describes the process for creating a provider entity or an affiliate entity.

To Create a Provider Entity or an Affiliate Entity

An entity can be created but it will not be available for assignment to an authentication domain
until it has been populated with provider(s). Once created and populated, the entity (and thus
the member providers) can be added to an authentication domain.

In the Access Manager Console, select the Federation tab.
Under Federation, select the Entities tab.

Select New.
The new entity attributes are displayed.

Type a value for the Entity Name.

This field specifies the uniform resource identifier (URI) of the entity and must be unique. For
example, http://shivalik.sun.comorhttp://provider2.com:875.

(Optional) Enter a description of the entity in the Description field.
Select one of the following options to define the entity’s type.

= Select Providerand click OK.

The new entity is now displayed as a provider in the list of configured Entities. To configure
the entity, see “To Configure a Provider Entity” on page 83.

= Select Affiliate, type a value for both Affiliate Name and Affiliate Owner, and click OK.

The Affiliate Name (or affiliationID) specifies a URI that uniquely represents the affiliate
entity. For example, http://shivalik.sun.comorhttp://provider2.com:875. The

Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

Entities and Authentication Domains

Aftiliate Owner (or providerID) is the value assigned to the Entity Name attribute of the
provider entity that is forming the affiliation. After entering these values and clicking OK,
the new entity is displayed as an affiliate in the list of configured Entities. To configure the
entity, see “To Configure an Affiliate Entity” on page 101.

Note - Defining a service provider as the Affiliate Owner does not automatically include it as
amember of the affiliate. If an owner is also a member, the provider ID must be defined as
both.

Configuring Provider Entities
After you create a provider entity, you populate it with remote or hosted provider information
(either service or identity). This section contains the following procedures:

= “To Configure a Provider Entity” on page 83

= “To Configure General Attributes for a Provider Entity” on page 84

= “To Configure Hosted or Remote Identity Provider Attributes for a Provider Entity” on
page 85

= “To Configure Hosted or Remote Service Provider Attributes for a Provider Entity” on
page 93

To Configure a Provider Entity

When you configure a provider entity, you are populating it with remote or hosted provider
information (either service or identity). You might also be defining values for attributes that
were not available when the entity was initially created. Before performing this procedure, you
must have completed the steps in “To Create a Provider Entity or an Affiliate Entity” on page 82.
In the Access Manager Console, select the Federation tab.

Under Federation, select the Entities tab.

Select the provider entity that you want to configure.

Ensure that you select an entity marked as type Provider.

Define values for the General, Identity Provider or Service Provider attributes by choosing from
the View menu.

= Todefine values for General attributes, see “To Configure General Attributes for a Provider
Entity” on page 84.

= To define values for Identity Provider attributes, see “To Configure Hosted or Remote
Identity Provider Attributes for a Provider Entity” on page 85.

Chapter3 - Federation 83

Entities and Authentication Domains

84

= To define values for Service Provider attributes, see “To Configure Hosted or Remote Service

Provider Attributes for a Provider Entity” on page 93.

¥ To Configure General Attributes for a Provider Entity

Before performing this procedure, you must have completed the steps in “T'o Configure a
Provider Entity” on page 83.

Choose General from the View menu, and provide information for the Entity Common
Attributes.

Entity Common Attributes contain values that define the entity itself.

Entity Name
The static value of this attribute is the name that you provided when creating the entity.

Type
The static value of this attribute is Provider.

Description

The value of this optional attribute is the description that you provided when creating the
entity. You can modify the description.

Provide information for the Entity Contact Person Profile attributes.

Entity Contact Person Profile attributes contain values that define the administrator of the
entity.
First Name

Type the given name of the entity’s contact person.

Last Name
Type the surname of the entity’s contact person.

Type
Choose the type of contact from the drop-down menu:
Administrative
Billing
Technical
Other

Company
Type the name of the company that employs this person.

Liberty Principal ID
Type a URI that points to an online instance of the contact person’s personal information
profile.

Emails
Type one or more email addresses for the contact person in New Value and click Add.

Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

Entities and Authentication Domains

Telephone Numbers
Type one or more telephone numbers for the contact person in New Value and click Add.

3 (Optional) Provide information for the Organization Profiles.
The Organization Profiles attributes contain values that define the organizational name of the
entity.
Names

Type the complete legal name of the entity’s organization in New Value and click Add. Use
the format locale|organization-name. For example, en | organization-name. com.

Note - If the Names attribute contains a value, it is required to add values to the Display
Names and URL attributes.

Display Names
Type a name that is suitable for display in New Value and click Add. Use the format
locale|organization-display-name. For example, en | organization-display-name. com.

URL
Type a URL that can be used to direct a principal to additional information on the entity's
organization in New Value and click Add. Use the format locale|organization-URL. For
example, en|http://www. organization-name. com.

4 Click Save to complete the configuration, or define additional values for the Identity Provider or
Service Provider attributes by choosing from the View menu.

= To define values for Identity Provider attributes, see “To Configure Hosted or Remote
Identity Provider Attributes for a Provider Entity” on page 85.

= To define values for Service Provider attributes, see “To Configure Hosted or Remote Service
Provider Attributes for a Provider Entity” on page 93.

¥ To Configure Hosted or Remote Identity Provider Attributes for a
Provider Entity

Before performing this procedure, you must have completed the steps in “T'o Configure a
Provider Entity” on page 83.

Note - Some of the attributes below will only be visible after you have saved the initial provider
configuration.

1 Choose Identity Provider from the View menu.

Chapter3 - Federation 85

Entities and Authentication Domains

86

2

3

Select the type of provider that you are configuring:

New Hosted Provider
A hosted provider is installed on the same server as Access Manager.
New Remote Provider

A remote provider is not installed on the same server as Access Manager.

Provide information for the Common Attributes.

Common Attributes contain values that generally define the identity provider.

Provider Type

The static value of this attribute is the type of provider being configured: hosted or remote.

Description

The value of this attribute is a description of the identity provider.

Protocol Support Enumeration

Choose the Liberty ID-FF release that is supported by this provider.

= urn:liberty:iff:2003-08 refers to the Liberty Identity Federation Framework Version
1.2.

= urn:liberty:iff:2002-12 refers to the Liberty Identity Federation Framework Version
1.1.

Server Name Identifier Mapping Binding

Name identifier mapping allows a service provider to obtain a name identifier for a principal
that has federated in the namespace of a different service provider. Implementing this
protocol allows the requesting service provider to communicate with the second service
provider without an identity federation having been enabled. Type a URI that identifies the
communication specifications in New Value and click Add.

Note - Currently, the Name Identifier Mapping profile only supports SOAP. If this attribute is
used, its value must be
http://projectliberty.org/profiles/nim-sp-http.

Signing Key: Key Alias

Type the key alias that is used to sign requests and responses.

Encryption Key: Key Alias

Type the security certificate alias. Certificates are stored in a Java keystore file. Each specific
certificate is mapped to an alias that is used to fetch the certificate.

Encryption Key: Key Size

Type the length for keys that are used by the web service consumer when interacting with
another entity.

Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

Entities and Authentication Domains

Note - If the encryption method is DESede, the key size must be 192. If the encryption
method is AES, the key size must be 128, 192 or 256.

Encryption Key: Encryption Method
Choose the method of encryption:

= None
= AES
= DESede

Name Identifier Encryption
Select the check box to enable encryption of the name identifier.

Provide information for the Communication URLs.
Communication URLs attributes contain locations for redirects and sending requests.

SOAP Endpoint
Type a URI to the identity provider’s SOAP message receiver. This value communicates the
location of the SOAP receiver in non browser communications.

Single Sign-On Service URL
Type a URL to which service providers can send single sign-on and federation requests.

Single Logout Service
Type a URL to which service providers can send logout requests. Single logout synchronizes
the logout functionality across all sessions authenticated by the identity provider.

Single Logout Return
Type a URL to which the identity provider will redirect the principal after completing a
logout.

Federation Termination Service
Type a URL to which a service provider will send federation termination requests.

Federation Termination Return
Type a URL to which the identity provider will redirect the principal after completing
federation termination.

Name Registration Service
Type a URL to which a service provider will send requests to specify a new name identifier to
be used when communicating with the identity provider about a principal. This service can
only be used after a federation session is established.

Name Registration Return
Type a URL to which the identity provider will redirect the principal after HTTP name
registration has been completed.

Chapter3 - Federation 87

Entities and Authentication Domains

88

Provide information for the Communication Profiles.

Communication Profiles attributes define the transmission methods used by the identity
provider.

Federation Termination
Select a profile to notify other providers of a principal’s federation termination:

m HTTP Redirect
= SOAP

Single Logout
Select a profile to notify other providers of a principal’s logout:

s HTTP Redirect
m HTTP Get
= SOAP

Name Registration
Select a profile to notify other providers of a principal’s name registration:
= HTTP Redirect
= SOAP
Single Sign-on/Federation
Select a profile for sending authentication requests:
= Browser Post (specifies a browser-based HT'TP POST protocol)

= Browser Artifact (specifies a non-browser SOAP-based protocol)

= LECP (specifies a Liberty-enabled Client Proxy)

Note - Access Manager can handle requests that come from a Liberty-enabled client
proxy profile, but it requires additional configuration that is beyond the scope of this
manual.

Select any of the available authentication domains to assign to the provider.

A provider can belong to one or more authentication domains. However, a provider without a
specified authentication domain can not participate in Liberty-based communications. If no
authentication domains have been created, you can define this attribute later.

Note - If configuring a remote identity provider, skip to step 11. If configuring a hosted identity
provider, continue with step 7.

(Hosted Identity Provider Only) Provide mappings for the Authentication Context classes.

This attribute maps the Liberty-defined authentication context classes to authentication
methods available from the identity provider.

Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

Entities and Authentication Domains

Supported
Select the check box next to the authentication context class if the identity provider supports
it.

Context Reference
The Liberty-defined authentication context classes are:

= Mobile Contract

= Mobile Digital ID
MobileUnregistered
Password
Password-Protected Transport
Previous-Session

Smartcard

Smartcard-PKI
Software-PKI
Time-Sync-Token

Key
Choose the Access Manager authentication type to which the context is mapped.

Note - See “Authentication Types” in Sun Java System Access Manager 7.1 Administration
Guide for more information.

Value
Type the Access Manager authentication option.
Priority
Choose a priority level for cases where there are multiple contexts.

(Hosted Identity Provider Only) Select any of the available provider entities to assign as a
Trusted Provider and click Add.

This attribute tallies providers that the identity provider trusts.

(Hosted Identity Provider Only) Provide information for the Access Manager Configuration
attributes.

Access Manager Configuration attributes define general information regarding the instance of
Access Manager being used as an identity provider.

Provider Alias
Type an alias name for the local identity provider.

Authentication Type
Select the provider that should be used for authentication requests from a provider hosted
locally:

Chapter3 - Federation 89

Entities and Authentication Domains

90

= Remote specifies that the provider hosted locally would contact a remote identity
provider upon receiving an authentication request.

= Local specifies that the provider hosted locally should contact a local identity provider
upon receiving an authentication request (essentially, itself).

Default Authentication Context
Select the authentication context class (method of authentication) to use if the identity
provider does not receive this information as part of a service provider request. This value
also specifies the authentication context used by the service provider when an unknown user
tries to access a protected resource. The options are:

= Password

= Mobile Digital ID

= Smartcard

Smartcard-PKI
MobileUnregistered
Software-PKI
Previous-Session

Mobile Contract

= Time-Sync-Token

= Password-ProtectedTransport

Realm
Type a value that points to the realm in which this provider is configured. For example, /sp.

Liberty Version URI
Type the URI of the version of the Liberty Alliance Project specification being used. The
default valueis http://projectliberty.org/
specs/vl.

Name Identifier Implementation
This field defines the class used by a service provider to participate in name registration.
Name registration is a profile by which service providers specify a principal’s name identifier
that an identity provider will use when communicating with the service provider. The value
is com.sun.identity.
federation.services.util.FSNameIdentifierImpl.

Home Page URL
Type the URL of the home page of the identity provider.

Single Sign-on Failure Redirect URL
Type the URL to which a principal will be redirected if single sign-on has failed.

Assertion Issuer
Type the name of the host that issues the assertion. This value might be the load balancer's
host name if Access Manager is behind one.

Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

Entities and Authentication Domains

10

Generate Discovery Bootstrapping Resource Offering
Select the check box if you want a Discovery Service Resource Offering to be generated
during the Liberty-based single sign-on process for bootstrapping purposes.

Auto Federation
Select the check box to enable auto-federation.

Auto Federation Common Attribute Name
When creating an Auto Federation Attribute Statement, the value of this attribute will be
used. The statement will contain the AutoFedAttribute element and this common attribute
as its value.

Attribute Statement Plug-in
Specity a pluggable class used for adding attribute statements to an assertion that is
generated during the Liberty-based single sign-on process.

Identity Provider Attribute Mapping
Specify values to define the mappings used by the default attribute mapper plug-in.
Mappings should be configured in the format:

SAML-attribute=local-attribute

For example, EmailAddress=mail or Address=postaladdress. Type the mapping as a New
Value and click Add.

(Hosted Identity Provider Only) Provide information for the SAML Attributes.

SAML Attributes define general information regarding SAML assertions that are sent by the
identity provider.

Assertion Interval
Type the interval of time (in seconds) that an assertion issued by the identity provider will
remain valid. A principal will remain authenticated until the assertion interval expires.

Cleanup Interval
Type the interval of time (in seconds) before assertions stored in the identity provider will be
cleared.

Artifact Timeout
Type the interval of time (in seconds) to specify the timeout for assertion artifacts.

Assertion Limit
Type a number to define how many assertions an identity provider can issue, or how many
assertions that can be stored.

Note - To continue configuring a hosted identity provider, skip to step 12.

Chapter3 - Federation 91

Entities and Authentication Domains

92

11

12

13

(Remote Identity Provider Only) Provide information for the Proxy Authentication
Configuration attributes.

Proxy Authentication Configuration attributes define values for dynamic identity provider
proxying.
Proxy Authentication

Select the check box to enable proxy authentication for a service provider.

Proxy Identity Providers List
Type an identifier for an identity provider(s) that can be used for proxy authentication in
New Value and click Add. The value is a URI defined as the provider's identifier.

Maximum Number of Proxies
Enter the maximum number of identity providers that can be used for proxy authentication.

Use Introduction Cookie for Proxying
Select the check box if you want introductions to be used to find the proxying identity
provider.

(Optional) Provide information for the Organization Profiles.
The Organization Profiles attributes contain values that define the organizational name of the
entity.
Names
Type the complete legal name of the organization in New Value and click Add. Use the
format locale|organization-name, for example, en | organization-name. com.

Note - If the Names attribute contains a value, it is required to add values to the Display
Names and URL attributes also.

Display Names
Type a name that is suitable for display to a principal in New Value and click Add. The value
is defined in the format locale|organization-display-name, for example,
en|organization-display-name. com.

URL
Type a URL that can be used to direct a principal to additional information on the entity in
New Value and click Add. Use the format locale|organization-URL, for example,
en|http://www.organization-name. com.

Click New Contact Person to create a contact person for the provider.

The Contact Person attributes contain information regarding a human contact for the identity
provider.

First Name
Type the given name of the identity provider’s contact person.

Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

Entities and Authentication Domains

14

15

Last Name
Type the surname of the identity provider's contact person.

Type
Choose the contact's role from the drop-down menu:
Administrative
Billing
Technical
Other

Company
Type the name of the company that employs the contact person.

Liberty Principal Identifier
Type the name identifier that points to an online instance of the contact person’s personal
information profile.

Emails
Type one or more email addresses for the contact person in New Value and click Add.

Telephone Numbers
Type one or more telephone numbers for the contact person in New Value and click Add.

Click Create to create the contact person.

Click Save to complete the configuration, or define values for General or Service Provider
attributes by choosing from the View menu:

= Todefine values for General attributes, see “To Configure General Attributes for a Provider
Entity” on page 84.

= Todefine values for Service Provider attributes, see “To Configure Hosted or Remote Service
Provider Attributes for a Provider Entity” on page 93.

To Configure Hosted or Remote Service Provider Attributes for a
Provider Entity

Before performing this procedure, you must have completed the steps in “T'o Configure a
Provider Entity” on page 83.

Note - Some of the attributes below will only be visible after you have saved the initial provider
configuration.

Choose Service Provider from the View menu.

Select the type of provider that you are configuring:

Chapter3 - Federation 93

Entities and Authentication Domains

94

3

= New Hosted Provider
A hosted provider is installed on the same server as Access Manager.
= New Remote Provider

A remote provider is not installed on the same server as Access Manager.

Provide information for the Common Attributes.
Common Attributes contain values that generally define the service provider.

Provider Type
The static value of this attribute is the type of provider being configured: hosted or remote.
This attribute is visible only after saving your configuration.

Description
The value of this attribute is a description of the service provider.

Protocol Support Enumeration
Select the Liberty ID-FF release that is supported by this provider.

= urn:liberty:iff:2003-08 refers to the Liberty Identity Federation Framework Version
1.2.

= urn:liberty:iff:2002-12 refers to the Liberty Identity Federation Framework Version
1.1.

Server Name Identifier Mapping Binding
Name identifier mapping allows a service provider to obtain a name identifier for a principal
that has federated in the namespace of a different service provider. Implementing this
protocol allows the requesting service provider to communicate with the second service
provider without an identity federation having been enabled. Type a URI that identifies the
communication specifications in New Value and click Add.

Note - Currently, the Name Identifier Mapping profile only supports SOAP. If this attribute is
used, its value must be http://projectliberty.org/profiles/nim-sp-http.

Signing Key: Key Alias
Type the key alias that is used to sign requests and responses.

Encryption Key: Key Alias
Type the security certificate alias. Certificates are stored in a Java keystore file. Each specific
certificate is mapped to an alias that is used to fetch the certificate.

Encryption Key: Key Size
Type the length for keys that are used by the web service consumer when interacting with
another entity.

Encryption Key: Encryption Method
Select the method of encryption:

Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

Entities and Authentication Domains

= None
= AES
= DESede

Name Identifier Encryption
Select the check box to enable encryption of the name identifier.

Provide information for the Communication URLs.
Communication URLs attributes contain locations for redirects and sending requests.
SOAP Endpoint

Type a URI to the service provider’s SOAP message receiver. This value communicates the
location of the SOAP receiver in non browser communications.

Single Logout Service
Type a URL to which identity providers can send logout requests.

Single Logout Return
Type a URL to which the service provider will redirect the principal after completing a
logout.

Federation Termination Service
Type a URL to which identity providers will send federation termination requests.

Federation Termination Return
Type a URL to which the service provider will redirect the principal after completing
federation termination.

Name Registration Service
Type a URL that will be used when communicating with the identity provider to specify a
new name identifier for the principal. (Registration can occur only after a federation session
is established.)

Name Registration Return
Type a URL to which the service provider will redirect the principal after HTTP name
registration has been completed.

Provide information for the Communication Profiles.

Communication Profiles attributes define the transmission methods used by the service
provider.

Federation Termination
Select a profile to notify other providers of a principal’s federation termination:

m HTTP Redirect
= SOAP

Single Logout
Select a profile to notify other providers of a principal’s logout:

= HTTP Redirect

Chapter3 - Federation 95

Entities and Authentication Domains

= HTTP Get
= SOAP

Name Registration
Select a profile to notify other providers of a principal’s name registration:
= HTTP Redirect
= SOAP
Single Sign-on/Federation
Select a profile for sending authentication requests:
= Browser Post (specifies a browser-based HT'TP POST protocol)
= Browser Artifact (specifies a non-browser SOAP-based protocol)

= LECP (specifies a Liberty-enabled Client Proxy)

Note - Access Manager can handle requests that come from a Liberty-enabled client
proxy profile, but it requires additional configuration that is beyond the scope of this
manual.

6 Selectany of the available authentication domains to assign to the provider.

A provider can belong to one or more authentication domains. However, a provider without a
specified authentication domain cannot participate in Liberty-based communications. If no
authentication domains have been created, you can define this attribute later.

Note - If configuring a hosted service provider, skip to step 9. If configuring a hosted service
provider, continue with step 7.

7 (Hosted Service Provider Only) Provide a hierarchy for the Authentication Context classes.

This attribute corresponds to the authentication level defined for an Access Manager
authentication module. It will redirect the principal to the authentication type with an
authentication level equal to the number defined.

Context Reference
The Liberty-defined authentication context classes are:

Password

Mobile Digital ID

Smartcard

Smartcard-PKI
MobileUnregistered
Software-PKI
Previous-Session

Mobile Contract
Time-Sync-Token
Password-Protected Transport

96 Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

Entities and Authentication Domains

Level
Type a level for each authentication context class. The number can be any positive number.

(Hosted Service Provider Only) Select any of the available provider entities to assign as a Trusted
Provider and click Add.

This attribute tallies providers that the service provider trusts.

Provide information for the Service Provider attributes.
Service Provider attributes define general information regarding the service provider.

Assertion Consumer URL
Type the URL to the end point that defines where a provider will send SAML assertions.

Assertion Consumer Service URL ID
If the value of the Protocol Support Enumeration common attribute is
urn:liberty:iff:2003-08, type the required ID.

Set Assertion Consumer Service URL as Default
Select the check box to use the Assertion Consumer Service URL as the default value when
no identifier is provided in the request.

Sign Authentication Request
Select the check box to make the service provider always signs authentication requests.

Name Registration after Federation
Select the check box to enable the service provider to participate in name registration after a
principal has been federated.

Name ID Policy
Select the option permitting requester influence over name identifier policy at the identity
provider. The options are:

= None specifies that the identity provider will return the name identifier(s) for the
principal corresponding to the federation that exists between the identity provider and
the requesting service provider or affiliation group. If no such federation exists, an error
will be returned.

= One-time specifies that the identity provider will issue a temporary, one-time-use
identifier for the principal after federation.

= Federation specifies that the identity provider may start a new identity federation if one
does not already exist for the principal.

Affiliation Federation
Select the check box to enable affiliation federation.

Note - If configuring a remote service provider, skip to step 11. If configuring a hosted service
provider, continue with step 10.

Chapter3 - Federation 97

Entities and Authentication Domains

10 (Hosted Service Provider Only) Provide information for the Access Manager Configuration
attributes.

Access Manager Configuration attributes define general information regarding the instance of
Access Manager being used as a service provider.

Service Provider Adapter
Defines the implementation class for the
com.sun.identity.federation.plugins.FederationSPAdapter interface, used to add
application-specific processing during the federation process.

Provider Alias
Type an alias name for the local service provider.

Authentication Type
Select the provider that should be used for authentication requests from a provider hosted
locally:

= Remote specifies that the provider hosted locally would contact a remote identity
provider upon receiving an authentication request.

= Local specifies that the provider hosted locally should contact a local identity provider
upon receiving an authentication request (essentially, itself).

Default Authentication Context
This attribute defines the service provider's default authentication context class (method of
authentication). This method will always be called when the service provider sends an
authentication request. This value also specifies the authentication context used by the
service provider when an unknown user tries to access a protected resource. The options are:

Password

Mobile Digital ID

Smartcard

Smartcard-PKI
MobileUnregistered
Software-PKI
Previous-Session

Mobile Contract
Time-Sync-Token
Password-Protected Transport

Identity Provider Forced Authentication
Select the check box to indicate that the identity provider must reauthenticate (even during a
live session) when an authentication request is received. This attribute is enabled by default.

Request Identity Provider to be Passive
Select the check box to specify that the identity provider must not interact with the principal
and must interact with the user.

Realm
Type a value that points to the realm in which this provider is configured, for example, /sp.

98 Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

Entities and Authentication Domains

11

Liberty Version URI
Type the URI of the version of the Liberty specification being used. The default value is
http://projectliberty.org/specs/vl.

Name Identifier Implementation
This field defines the class used by a service provider to participate in name registration.
Name registration is a profile by which service providers specify a principal’s name identifier
that an identity provider will use when communicating with the service provider. The value
is com.sun.identity.federation.services.util.FSNameIdentifierImpl.

Home Page URL
Type the URL of the home page of the service provider.

Single Sign-on Failure Redirect URL
Type the URL to which a principal will be redirected if single sign-on has failed.

Auto Federation
Select the check box to enable auto-federation.

Auto Federation Common Attribute Name
When creating an Auto Federation Attribute Statement, the value of this attribute will be
used. The statement will contain the AutoFedAttribute element and this common attribute
as its value.

Attribute Mapper Class
The class used to map attributes in the SAML assertion to user attributes defined locally by
the service provider. The default class is
com.sun.identity.federation.services.FSDefaultAttributeMapper.

Service Provider Attribute Mapping
Specity values to define the mappings used by the default attribute mapper plug-in specified
above. Mappings should be configured in the format:

SAML-attribute=local-attribute

For example, EmailAddress=mail or Address=postaladdress. Type the mapping as a New
Value and click Add.

Provide information for the Proxy Authentication Configuration attributes.
Proxy Authentication Configuration attributes define values for dynamic identity provider
proxying.
Proxy Authentication
Select the check box to enable proxy authentication for a service provider.

Proxy Identity Providers List
Add alist of identity providers that can be used for proxy authentication. Type the URI
defined as the provider's identifier in New Value and click Add.

Chapter3 - Federation 99

Entities and Authentication Domains

12

13

100

Maximum Number of Proxies
Enter the maximum number of identity providers that can be used for proxy authentication.

Use Introduction Cookie for Proxying
Select the check box if you want introductions to be used to find the proxying identity
provider.

(Optional) Provide information for the Organization Profiles.

The Organization Profiles attributes contain values that define the organizational name of the
entity.

Names

Type the complete legal name of the entity’s organization in New Value and click Add. Use
the format locale|organization-name, for example, en | organization-name. com.

Note - If the Names attribute contains a value, it is required to add values to the Display
Names and URL attributes.

Display Names
Type a name that is suitable for display in New Value and click Add. Use the format
locale|organization-display-name, for example, en | organization-display-name . com.

URL
Type a URL that can be used to direct a principal to additional information on the entity's
organization in New Value and click Add. Use the format locale|organization-URL, for
example, en|http://www.organization-name.com.

Click New Contact Person to create a contact person for the provider.

The Contact Person attributes contain information regarding a human contact for the identity
provider.

First Name
Type the given name of the identity provider’s contact person.

Last Name
Type the surname of the identity provider's contact person.

Type
Choose the contact's role from the drop-down menu:
Administrative
Billing
Technical
Other

Company
Type the name of the company that employs the contact person.

Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

Entities and Authentication Domains

14

15

Liberty Principal Identifier
Type the name identifier that points to an online instance of the contact person’s personal
information profile.

Emails
Type one or more email addresses for the contact person in New Value and click Add.

Telephone Numbers
Type one or more telephone numbers for the contact person in New Value and click Add.

Click Create to create the contact person.

Click Save to complete the configuration, or define values for General or Identity Provider
attributes by choosing from the View menu:

= Todefine values for General attributes, see “To Configure General Attributes for a Provider
Entity” on page 84.

= To define values for Identity Provider attributes, see “To Configure Hosted or Remote
Identity Provider Attributes for a Provider Entity” on page 85.

Configuring Affiliate Entities

After you create an affiliate entity, you populate it with affiliation information. This section
contains the following procedures:

= “To Configure an Affiliate Entity” on page 101
= “To Configure General Attributes for an Affiliate Entity” on page 102
= “To Configure Afhiliate Attributes for an Afhiliate Entity” on page 103

To Configure an Affiliate Entity

Before performing this procedure, you must have completed the steps in “To Create a Provider
Entity or an Affiliate Entity” on page 82.

In the Access Manager Console, select the Federation tab.
Under Federation, select the Entities tab.

Select the entity that you want to configure.
Ensure that you select an entity marked as type Affiliate.

Define values for the General or Affiliate attribute groupings by choosing from the View menu:

= Todefine values for General attributes, see “To Configure General Attributes for an Affiliate
Entity” on page 102

Chapter3 - Federation 101

Entities and Authentication Domains

102

= Todefine values for Affiliate attributes, see “To Configure Affiliate Attributes for an Affiliate
Entity” on page 103

¥ To Configure General Attributes for an Affiliate Entity

Before performing this procedure, you must have completed the steps in “To Configure an
Affiliate Entity” on page 101.

Choose General from the View menu, and provide information for the Entity Common
Attributes.

Entity Common Attributes contain values that define the entity.

Entity Name
The static value of this attribute is the name that you provided when creating the entity.

Type
The static value of this attribute is Affiliate.

Description
The value of this optional attribute is the description that you provided when creating the
entity. You can modify the description.

Provide information for the Entity Contact Person Profile attributes.

Entity Contact Person Profile attributes contain values that define the administrator of the
entity.
First Name

Type the given name of the entity’s contact person.

Last Name
Type the surname of the entity’s contact person.

Type
Choose the type of contact from the drop-down menu:
Administrative
Billing
Technical
Other

Company
Type the name of the company that employs this person.

Liberty Principal ID
Type a URI that points to an online instance of the contact person’s personal information
profile.

Emails
Type one or more email addresses for the contact person in New Value and click Add.

Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

Entities and Authentication Domains

Telephone Numbers
Type one or more telephone numbers for the contact person in New Value and click Add.

(Optional) Provide information for the Organization Profiles.

The Organization Profiles attributes contain values that define the organizational name of the
entity.

Names

Type the complete legal name of the organization in New Value and click Add. Use the
format locale|organization-name, for example, en | organization-name. com.

Note - If the Names attribute contains a value, it is required to add values to the Display
Names and URL attributes also.

Display Names
Type a name that is suitable for display to a principal in New Value and click Add. The value
is defined in the format locale|organization-display-name. For example,
en|organization-display-name. com.

URL
Type a URL that can be used to direct a principal to additional information on the entity in
New Value and click Add. Use the format locale|organization-URL, for example,
en|http://www.organization-name. com.

Click Save to complete the configuration, or choose Affiliate from the View menu to configure
the Affiliate attributes.

To define values for Affiliate attributes, see “To Configure Affiliate Attributes for an Affiliate
Entity” on page 103.

To Configure Affiliate Attributes for an Affiliate Entity

Before performing this procedure, you must have completed the steps in “T'o Configure an
Aftiliate Entity” on page 101.

Select any of the available provider entities to add to the affiliation.

A provider must be a member of an authentication domain as, without a specified
authentication domain, it cannot participate in Liberty-based communications. The provider
can belong to one or more affiliations. Also, be sure that the selected provider has the Affiliation
Federation attribute enabled and the Protocol Support Enumeration attribute set to
urn:liberty:iff:2003-08 to enable the Liberty ID-FF version 1.2.

Choose Affiliate from the View menu and provide information for the Common Attributes.

Common Attributes contain values that generally define the affiliation.

Chapter3 - Federation 103

Entities and Authentication Domains

Name
The value of this attribute is the name of the affiliation.

Owner
The value of this attribute is the owner of the affiliation.

Signing Key: Key Alias
Type the key alias that is used to sign requests and responses.

Encryption Key: Key Alias
Type the security certificate alias. Certificates are stored in a JKS keystore file. Each specific
certificate is mapped to an alias that is used to fetch the certificate.

Encryption Key: Key Size
Type the length for keys used by the web service consumer when interacting with another
entity.

Encryption Key: Encryption Method
Select the method of encryption:

= None
= AES
= DESede

3 Click Save to complete the configuration.

4 Click OK to complete the configuration, or choose General from the View menu to configure the
General attributes.

To define values for General attributes, see “To Configure General Attributes for an Affiliate
Entity” on page 102.

Deleting Entities

If an entity is to be deleted from the console, it first needs to be manually removed from the
Trusted Providers list (if the provider is hosted) or the Available Providers list (if part of an
affiliation).

V¥ ToDelete a Provider or Affiliate Entity
1 Inthe Access Manager Console, click the Federation tab.
2 Under Federation, select the Entities tab.

3 Select the check box next to the entity that you want to delete.

No warning message is displayed when performing a delete.

4 Click Delete.

104 Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

Entities and Authentication Domains

Creating and Configuring Entities using amadmin

The previous sections detailed how to create and configure entities using the Access Manager
console. But entities can also be created and configured in one step using the amadmin
command-line interface and prepared XML files. Rather than filling in provider attribute values
manually, you would create an XML file containing the provider attributes and corresponding
values and import it using amadmin. Alternatively, you can modify the sample provider
metadata XML files included with Access Manager. See “samplel Directory” on page 267 for
information.

Caution - The format of the XML file used as input is based on the sms . dtd, located in
/AccessManager-base/SUNWam/dtd. Alterations to the DTD files may hinder the operation of
Access Manager.

There are two types of provider metadata (formatted in XML files) that can be used as input to
amadmin:

= Standard metadata properties are defined in the Liberty ID-FF specification.

= Extended metadata properties are proprietary and used by features specific to Access
Manager.

Note — amadmin uses different options to load the different types of metadata XML files.
Information on how to use amadmin can be found in “Using amadmin for Federation
Management” in Sun Java System Access Manager 7.1 Administration Reference. Information
regarding the attributes and possible values can be found in the online help of the Access
Manager console or in the following sections:

= “Creating Entities” on page 82
= “Configuring Provider Entities” on page 83
= “Configuring Affiliate Entities” on page 101

Following are instructions to load the provider metadata:
= “Loading Standard Metadata Using amadmin” on page 105
= “Loading Proprietary Metadata Using amadmin” on page 107

Loading Standard Metadata Using amadmin
To load metadata compliant with the Liberty ID-FF use the following command:

amadmin --runasdn userdn --password password --import metadata_filename

This option is usually used to load provider metadata sent from a trusted partner in an XML file
compliant with the Liberty ID-FF. Here is an example of a service provider metadata XML file
compliant with the Liberty ID-FF.

Chapter3 - Federation 105

Entities and Authentication Domains

EXAMPLE 3-1 Service Provider Standard Metadata XML File for amadmin

<l--
Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved
Use is subject to license terms.

-->

<EntityDescriptor meta:providerID="http://spl@.com" meta:cacheDuration="360"
xmlns:meta="urn:liberty:metadata:2003-08" xmlns="urn:liberty:metadata:2003-08">
<SPDescriptor cacheDuration="180" xmlns:meta="urn:liberty:metadata:2003-08"
aaa="aaa" protocolSupportEnumeration="urn:liberty:iff:2003-08">
<KeyDescriptor use="signing">
<EncryptionMethod>http://something/encrypt</EncryptionMethod>
<KeySize>4567</KeySize>
<ds:KeyInfo xmlns:ds="http://www.w3.0rg/2000/09/xmldsig#">
<ds:X509Data xmlns:ds="http://www.w3.0rg/2000/09/xmldsig#">
<ds:X509Certificate xmlns:ds="http://www.w3.0rg/2000/09/xmldsig#">
MIIC1DCCApICBD8poYwwCwYHK0ZIzjgEAWUAMFAXCzAJBgNVBAYTATVTMQwwCgYDVQQKEWNTdW4xX
IDAeBgNVBASTF1INVTiBPTkUgSWR1bnRpdHkgU2VydmVyMREwDwYDVQQDEwhzdW4tdW5peDAeFwOw
MzA3MzEyMzA5MDBaFwOwNDAxMj cyMzA5SMDBaMFAxCzAJBgNVBAYTATVTMQwwCgYDVQQKEWNTdW4x
IDAeBgNVBASTF1INVTiBPTkUgSWR1bnRpdHkgU2VydmVyMREwDwYDVQQDEwhzdW4tdw5peDCCAbcw
ggEsBgcghkjOOAQBMIIBHWKBgQD9f10BHXUSKVLfSpwu70Tn9hG3UjzvRADDH]j+At LEmaUVdQCIR
+1k9jVj6v8X1ujD2y5tVbNeBO4AdNG/yZmC3a51QpaStn+gEexAiwk+7qdf+t8Yb+DtX58aophUP
BPuD9tPFHsSMCNVQTWhaRMvZ1864rYdcq7/IiAxmd@UgBxwIVAIdgUI8VIwvMspK5gqLrhAvwWBz1
AoGBAPfhoIXWmz3ey7yrXDad4V7151K+7+j rqgvIXTAs9B4InUV1Xj rruWU/mcQcQgYCOSRZxI+hM
KBYTt88JIMozIpuE8FngLVHYNKOC]jrh4rs6Z1kW6j fwv6ITVi8ftiegEkO8yk8b60UZCIqIPT4Vrl
nwaSi2ZegHtVIWQBTDv+z0kqA4GEAAKBgCNS1i1+RQAQGcQ87GBFde8kf8R6ZVuaDDajFYE4/LNT
KrldhEcPCtvL+iUFi44LzJf8Wxh+eA5K1mjIdx00/UdwTpNQSqiRrm4PqOwFG+hPnUTYLTtENKVX
IIvfeoVDkXnF/2/i1Tu6ttZckimOPHfLzQUL41dL4QiaYuCQF6NTfMAsGBYqGSM44BAMFAAMVADAS
AhQ6yueX7Y1D7I1JhJI8D416xYqwopwIUHzX82qCzF+VzIUhi@JG7s1Spyis=
</ds:X509Certificate>
</ds:X509Data>
</ds:KeyInfo>
</KeyDescriptor>
<SingleLogoutServiceURL>http://www.sun.com/slo"</SingleLogoutServiceURL>
<SingleLogoutServiceReturnURL>http://www.sun.com/sloservice
</SingleLogoutServiceReturnURL>
<FederationTerminationServiceURL>http://www.sun.com/fts
</FederationTerminationServiceURL>
<FederationTerminationServiceReturnURL>http://www.sun.com/ftsr
</FederationTerminationServiceReturnURL>
<FederationTerminationNotificationProtocolProfile>http://projectliberty.org/profiles/
fedterm-sp-http</FederationTerminationNotificationProtocolProfile>
<SingleLogoutProtocolProfile>http://projectliberty.org/profiles/slo-sp-http
</SinglelLogoutProtocolProfile>
<RegisterNameIdentifierProtocolProfile>http://projectliberty.org/profiles/
rni-sp-http</RegisterNameIdentifierProtocolProfile>
<RegisterNameIdentifierServiceURL>http://www.sun2.com/risu

106 Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

Entities and Authentication Domains

EXAMPLE 3-1 Service Provider Standard Metadata XML File for amadmin (Continued)

</RegisterNameIdentifierServiceURL>
<RegisterNameIdentifierServiceReturnURL>http://www.sun2.com/rstu
</RegisterNameldentifierServiceReturnURL>
<RelationshipTerminationNotificationProtocolProfile>http://projectliberty.org/
profiles/rel-term-soap</RelationshipTerminationNotificationProtocolProfile>
<NameIdentifierMappingBinding AuthorityKind="ppp:AuthorizationDecisionQuery"
Location="http://eng.sun.com" Binding="http://www.sun.com"
xmlns:ppp="urn:oasis:names:tc:SAML:1.0:protocol"></NameldentifierMappingBinding>
<AdditionalMetalLocation namespace="abc">http://www.aol.com</AdditionalMetalLocation>
<AdditionalMetalLocation namespace="efd">http://www.netscape.com</AdditionalMetalLocation>
<AssertionConsumerServiceURL id="jh899" isDefault="true">
http://www.iplanet.com/assertionurl</AssertionConsumerServiceURL>
<AuthnRequestsSigned>true</AuthnRequestsSigned>
</SPDescriptor>
<ContactPerson xmlns:meta="urn:liberty:metadata:2003-08" contactType="technical"
meta:libertyPrincipalIdentifier="myid">
<Company>SUn Microsystems</Company>
<GivenName>Joe</GivenName>
<SurName>Smith</SurName>
<EmailAddress>joe@sun.com</EmailAddress>
<EmailAddress>smith@sun.com</EmailAddress>
<TelephoneNumber>45859995</TelephoneNumber>
</ContactPerson>
<Organization xmlns:xml="http://www.w3.0rg/XML/1998/namespace">
<0OrganizationName xml:lang="en">sun com</0OrganizationName>
<0OrganizationName xml:lang="en">sun micro com</OrganizationName>
<OrganizationDisplayName xml:lang="en">sun.com</OrganizationDisplayName>
<0OrganizationURL xml:lang="en">http://www.sun.com/liberty</0OrganizationURL>
</0rganization>
</EntityDescriptor>

Loading Proprietary Metadata Using amadmin

Access Manager provides proprietary attributes that are not a specific part of the Liberty ID-FE
To load Access Manager proprietary metadata use the following command:

amadmin --runasdn userdn --password password --data proprietary_metadata_filename

After loading the metadata, the - -export option can be used to export metadata compliant with
the Liberty ID-FF. This file can then be exchanged with trusted partners. Here is an example of
an identity provider metadata XML file for proprietary attributes.

EXAMPLE3-2 Identity Provider Proprietary Metadata XML File for amadmin

<?xml version="1.0" encoding="IS0-8859-1"7?>
<IDOCTYPE Requests PUBLIC "-//iPlanet//Sun Java System Access Manager 2005Q4 Admin CLI

Chapter3 - Federation 107

Entities and Authentication Domains

EXAMPLE 3-2 Identity Provider Proprietary Metadata XML File for amadmin (Continued)

DTD//EN" "jar://com/iplanet/am/admin/cli/amAdmin.dtd">
<Requests>
<0OrganizationRequests DN="dc=companyA,dc=com">
<CreateHostedProvider id="http://sp.companyA.com" role="SP"
defaultUrlPrefix="http://sp.companyA.com:80">
<AttributeValuePair>
<Attribute name="iplanet-am-provider-name"/>
<Value>sp</Value>
</AttributeValuePair>
<AttributeValuePair>
<Attribute name="iplanet-am-provider-alias"/>
<Value>sp.companyA.com</Value>
</AttributeValuePair>
<AttributeValuePair>
<Attribute name="iplanet-am-list-of-authenticationdomains"/>
<Value>samplecot</Value>
</AttributeValuePair>
<AttributeValuePair>
<Attribute name="iplanet-am-certificate-alias"/>
<Value>cert _alias</Value>
</AttributeValuePair>
<AttributeValuePair>
<Attribute name="iplanet-am-trusted-providers"/>
<Value>http://idp.companyB.com</Value>
<Value>http://idp.companyC.com</Value>
</AttributeValuePair>
<SPAuthContextInfo AuthContext="Password" AuthLevel="1"/>
<AttributeValuePair>
<Attribute name="iplanet-am-provider-homepage-url"/>
<Value>http://sp.companyA.com:80/idff/index. jsp</Value>
</AttributeValuePair>
</CreateHostedProvider>
</0rganizationRequests>
</Requests>

Authentication Domains

An authentication domain is a federation of any number of service providers (and at least one
identity provider) with whom principals can transact business in a secure and apparently
seamless environment. (The members of the domain must have previously established a circle
of trust based on the Liberty Alliance Project architecture and operational agreements.)

108 Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

Entities and Authentication Domains

Note - An authentication domain is not a domain in the domain name system (DNS) sense of
the word.

The following procedures describe how to create, configure, and delete authentication domains
using the Access Manager Console.

= “To Create An Authentication Domain” on page 109
= “To Configure or Modify an Authentication Domain” on page 110
= “To Delete an Authentication Domain” on page 110

To Create An Authentication Domain
In the Access Manager Console, click the Federation tab.
Under Federation, select the Authentication Domains tab.

Select New.

The New Authentication Domain attributes are displayed.
Type a name for the authentication domain.
(Optional) Type a description of the authentication domain in the Description field.

(Optional) Type a value for the Writer Service URL.

The Writer Service URL specifies the location of the service that writes the common domain
cookie. Use the format http://common-domain-host:port/common/writer. For more
information about the Common Domain Services, see Chapter 4, “Common Domain Services
for Federation Management.”

(Optional) Type a value for the Reader Service URL.

The Reader Service URL specifies the location of the service that reads the common domain
cookie. Use the format http: //common-domain-host:port/common/transfer. For more
information about the Common Domain Services, see Chapter 4, “Common Domain Services
for Federation Management.”

Select Active or Inactive.

The default status is Active. Selecting Inactive disables communication within the
authentication domain.

Click OK.

The new authentication domain is now displayed in the list of configured Authentication
Domains.

Chapter3 - Federation 109

Entities and Authentication Domains

¥ To Configure or Modify an Authentication Domain

1

10

11

110

In the Access Manager Console, click the Federation tab.

Under Federation, select the Authentication Domains tab.

All created Authentication Domains are displayed.

Click the name of the authentication domain that you want to modify.
The General and Providers properties for the authentication domain are displayed.

(Optional) Enter or modify a description of the authentication domain in the Description field.

(Optional) Enter or modify the value for the Writer Service URL.

The Writer Service URL specifies the location of the service that writes the common domain
cookie. Use the format http: //common-domain-host:port/common/writer. For more
information on the Common Domain Services, see Chapter 4, “Common Domain Services for
Federation Management.”

(Optional) Enter or modify the value for the Reader Service URL.

The Reader Service URL specifies the location of the service that reads the common domain
cookie. Use the format http: //common-domain-host:port/common/transfer. For more
information on the Common Domain Services, see Chapter 4, “Common Domain Services for
Federation Management.”

Select Active or Inactive.

The default status is Active. Selecting Inactive disables communication within the
authentication domain.

Click Add to populate the authentication domain with providers.
The Trusted Providers page is displayed.

Choose from the list of Available Providers and click Add.

Click OK to save the providers to the authentication domain.

The authentication domain's attribute page is displayed.

Click Save to complete the configuration.

To Delete an Authentication Domain

Deleting an authentication domain does not delete the providers that belong to it although it
will impact the trusted relationship.

Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

The Pre-login URL

1 Inthe Access Manager Console, click the Federation tab.

2 Under Federation, select the Authentication Domains tab.

All created Authentication Domains are displayed.
3 Select the check box next to the authentication domain that you want to delete.

4 Click Delete.

The Pre-login URL

The pre-login process is the entry point for applications participating in Liberty-based single
sign-on. As described in “Process of Federation” on page 73, the principal would be redirected
to the location defined by the pre-login URL if no Access Manager session token is found. This
default process, though, can be modified based on the values of query parameters passed to
Access Manager by the service provider viaa URL.

A query parameter is a name/value pair appended to the end of a URL. The parameter starts
with a question mark (?) and takes the form name=value. A number of parameters can be
combined in one URL; when more than one parameter exists, they are separated by an
ampersand (&). Use the format http://hostname: port/deploy-uri/preLogin?
metaAlias=metaAlias. Additional parameters are appended to the URL as
¶ml=valuel¶m2=value2 and so on. These parameters and their usage and values are
described in the following table.

TABLE3-1 Pre-login URL Parameters for Federation

Parameter Description

actionOnNoFedCookie The actionOnNoFedCookie parameter provides the flexibility to redirect a user
when the fedCookie is not present in the browser, and when there is only one
identity provider. It takes the following values:
= commonlogin will redirect to a common login page.

B locallogin will redirect to the local Access Manager login page.

B passive willissue a request to the identity provider by setting the
isPassive parameter of the AuthnRequest element to true.

B active will issue a normal single sign-on request to the identity provider.

Chapter3 - Federation m

The Pre-login URL

TABLE3-1 Pre-login URL Parameters for Federation (Continued)

Parameter

Description

anonymousOnetime

authlevel

goto

gotoOnFedCookieNo

The anonymousOnetime parameter can be used by service providers that
authenticate users with anonymous, one time federation sessions. A value of
true enables the service provider to issue a one time federation request and
generate an anonymous session after successful verification of the
authentication assertion from the identity provider. This feature is useful when
the service provider doesn't have a user repository (for example,
http://www.weather. com) but would like to depend on an identity provider for
authentication. When the service provider receives a successful authentication
assertion from an identity provider, they would generate an anonymous,
temporary session.

The authlevel parameter takes as a value a positive number that maps to an
authentication level defined in the Access Manager Authentication Framework.
The authentication level indicates how much to trust a method of
authentication.

Note - More information on the authentication framework can be found in Sun
Java System Access Manager 7.1 Administration Guide.

In this framework, each service provider is configured with a default
authentication context (preferred method of authentication). However, the
provider might like to change the assigned authentication context to one that is
based on the defined authentication level. For example, provider B would like to
generate a local session with an authentication level of 3 so it requests the
identity provider to authenticate the user with an authentication context
assigned that level. The value of this query parameter determines the
authentication context to be used by the identity provider.

The goto parameter takes as a value a URL to which the principal will be
redirected after a successful SSO. If the value is not specified, default redirection
will occur based on the value of the Provider Home Page URL attribute defined
in the service provider configuration. The value of this URL can be configured
by changing the iplanet-am-provider-homepage-url attribute in the
amProviderConfig.xml file.

The gotoOnFedCookieNo parameter takes as a value a URL to which the
principal is redirected if a fedCookie with a value of no is found. The default
behavior is to redirect the user to the Access Manager login page.

In order to modify the pre-login URL, edit the relevant properties in either the
AMConfig.properties file or the AMAgent.properties file, dependant on your deployment.
See the following procedures for more information:

= “To Configure for Pre-login” on page 113
= “To Configure for Global Logout” on page 113

112 Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

Federation API

v To Configure for Pre-login

In a federation setup, Access Manager acts as a service provider and manages an application
that runs on a separate instance of Sun Java System Web Server. You must configure the agent
that is protecting this application as follows:

1 Pointthe com.sun.am.policy.loginURL property in the AMAgent.properties file tothe
pre-login service URL running on Access Manager.

For example: com.sun.am.policy.loginURL =
http://www.spl.com:58080/amserver/preLogin?metaAlias=www.spl.com

2 Pointthe com.sun.am.policy.am.library.loginURL inthe AMAgent.properties file to the
login URL of the instance of Access Manager acting as the service provider.

For example: com.sun.am.policy.am.library.loginURL =
http://www.spl.com:58080/amserver/UI/Login

v To Configure for Global Logout

To implement the logout process for all service providers using the Liberty Logout method, do
the following:

1 CopytheAMClient.properties file to the service provider's web container.

2 Revise the Logout method, as follows:

ResourceBundle rsbu =ResourceBundle.getBundle("AMClient");
String logouturl = rsbu.getString
("com.sun.identity.federation.client.samples.logoutURL");
response.sendRedirect(logouturl);

This revision is equivalent to a redirection to
http://www.spl.com:58080/amserver/liberty-logout?metaAlias=www.spl.com.

Federation API

The following packages form the Federation API.

= “com.sun.identity.federation.plugins”on page 114
= “com.sun.identity.federation.services” onpage 114
= “com.sun.liberty” on page 114

Chapter3 - Federation 113

Federation API

114

com.sun.identity.federation.plugins

The com.sun.identity.federation.plugins package contains the FederationSPAdapter
interface which can be implemented to allow applications to customize their actions before and
after invoking the federation protocols. For example, a service provider may want to choose to
redirect to a specific location after single sign-on. For more detailed information, see the Java
API Reference in /AccessManager-base/SUNWam/docs or on Sun Java System Access

Manager 7.1 Java API Reference.

com.sun.identity.federation.services

The com.sun.identity.federation.services package provides interfaces for writing custom
plug-ins that can be used during the federation or single sign-on process. The interfaces are
described in the following table. For more detailed information, see the Java API Reference in
/AccessManager-base/SUNWam/docs or on Sun Java System Access Manager 7.1 Java API
Reference.

TABLE3-2 com.sun.identity.federation.services Interfaces

Interface Description

FSAttributeMapper Plug-in for mapping the attributes passed from the
identity provider to local attributes on the service
provider side during the single sign-on.

FSAttributePlugin Plug-in for an identity provider to add
AttributeStatements into a SAML assertion during
the single sign-on process.

FSIDPProxy Interface used to find a preferred identity provider to
which an authentication request can be proxied.

com.sun. liberty

The com. sun.liberty package contains the LibertyManager class which must be instantiated
by web applications that want to access the Federation component. It also contains the methods
needed for account federation, session termination, log in, log out and other actions. Some of
these methods are described in the following table. For more detailed information, see the Java
API Reference in / AccessManager-base/SUNWam/docs or on Sun Java System Access

Manager 7.1 Java API Reference.

Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

Liberty ID-FF Operations

TABLE3-3 com.sun.liberty Methods

Method

Description

getFederatedProviders(String userName)

getIDPFederationStatus(String user, String
provider)

getIDPList()

getIDPList(java.lang.String
hostedProviderID)

getProvidersToFederate
(java.lang.String providerID,
java.lang.String userName)

getSPList()

getSPList(java.lang.String hostedProviderID)

getSPFederationStatus(java.lang.String user,
java.lang.String provider)

Returns a specific user’s federated providers.

Retrieves a user’s federation status with a specified
identity provider. This method assumes that the user
is already federated with the provider.

Returns a list of all trusted identity providers.

Returns a list of all trusted identity providers for the
specified hosted provider.

Returns a list of all trusted identity providers to which
the specified user is not already federated.

Returns alist of all trusted service providers.

Returns a list of all trusted service providers for the
specified hosted provider.

Retrieves a user’s federation status with a specified
service provider. This method assumes that the user is
already federated with the provider.

Liberty ID-FF Operations

This section contains procedures illustrating how to use Access Manager to configure
interactions based on the Liberty ID-FE. They are:

= “Auto-Federation” on page 115

= “Bulk Federation” on page 116

= “Configuring Trust Between Providers” on page 117

= “Signing Liberty ID-FF Requests and Responses” on page 119
= “Dynamic Identity Provider Proxying” on page 120
Auto-Federation

The auto-federation feature in Access Manager will automatically federate a user's disparate
provider accounts based on a common attribute. This common attribute will be exchanged in a
single sign-on assertion so that the consuming service provider can identify the user and create
account federations. If auto-federation is enabled and it is deemed that a user at provider A and
auser at provider B have the same value for the defined common attribute (for example,
emailaddress), the two accounts will be federated automatically without principal interaction.

Chapter3 - Federation

115

Liberty ID-FF Operations

116

Note - Auto-federating a principal's two distinct accounts at two different providers requires
each provider to have agreed to implement support for this functionality beforehand.

To Enable Auto Federation

Ensure that each local service and identity provider participating in auto federation is
configured for it. Remote providers would not be configured in your deployment.

In the Access Manager Console, click the Federation tab.
Under Federation, select the Entities tab.

Select the name of a hosted provider entity to edit its profile.

Whether an entity is configured to hold hosted or remote providers is not information that is
disclosed on this screen.

Select Identity Provider or Service Provider from the View menu.
Select Access Manager Configuration.
Enable Auto Federation by checking the box.

Type a value for the Auto Federation Common Attribute Name attribute.

For example, enter emailaddress or userID. You should be sure that each participating user
profile (at both providers) has a value for this attribute.

Click Save to complete the configuration.

Bulk Federation

Access Manager provides a script for federating user accounts in bulk. It is called ambulkfed
and islocated in /opt/SUNWam/bin. The script assumes that the user database is
LDAPv3-compliant.

Note - The ambulkfed script is the primary script for bulk federation. It uses two other Perl
scripts, amGenerateLDIF.pl and amGenerateNI.pl, behind the scenes.

As input, the script takes a file that maps the user distinguished name (DN) of the identity
provider to the user DN of the service provider. Each line of the file must place the mappings in

Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

Liberty ID-FF Operations

v

Before You Begin

the following order and separated by a pipe (*|”): uid=spuser,dc=iplanet,dc=conm |
uid=idpuser,dc=iplanet, dc=com. The script generates unique random identifiers for each
mapping and creates four files:

spnameidentifiers.txt
idpnameidentifiers.txt
spuserdata.ldif
idpuserdata.ldif

These files contain the data for bulk federation. The LDIFs are used for instances of Access
Manager. ambulkfed generates and loads the LDIF data into Access Manager based on its given
provider role. For example, it will load spuserdata.ldif if Access Manager acts as a service
provider and it will load idpuserdata.ldif if Access Manager acts as an identity provider. The
LDIFs will also be stored locally and can be used with ldapmodify to load the data into a remote
instance of Access Manager. If the remote provider is not an instance of Access Manager, the
generated text files spnameidentifiers.txt and idpnameidentifiers.txt can be used to
generate federation data based on the input needs of the provider.

Configuring Trust Between Providers

In order to complete interactions based on the Liberty ID-FF, trust must exist between all
communicating providers. Each provider that wishes to be part of a federated trust model does
so after complex business negotiations, the exchange of provider configuration metadata, and
the configuration of trust. Using the Access Manager console, trusted providers are configured
using the metadata and are then grouped (as entities) into an authentication domain. To
accomplish this, you load the provider metadata, and assign the configured providers to the
same authentication domain. The following procedure explains how to configure trust using
either the command line interface or the Access Manager console. Additional information can
be found in “Entities and Authentication Domains” on page 80.

To Configure Trust Between Service Providers and Identity Providers

You must have metadata files specific to each provider you are configuring. Access Manager
includes sample metadata XML files that you can modify for your purposes. See “samplel
Directory” on page 267 for more information.

Load the hosted and remote provider metadata XML files to Access Manager using the amadmin
command line interface.

See “Creating and Configuring Entities using amadmin” on page 105 for information.
Login to the Access Manager console as amadmin, the default administrator.

Under Federation, click the Authentication Domains tab.

Chapter3 - Federation 17

Liberty ID-FF Operations

4 Select New.

The new Authentication Domain attributes are displayed.

5 Create the authentication domain and click OK.

See “T'o Create An Authentication Domain” on page 109 for information.
6 UnderFederation, click the Entities tab.

7 Select the name of a provider.

The provider was created when the metadata was loaded. The General attributes for the chosen
provider are displayed.

8 Select the appropriate provider type from the View pull down menu.

9 Scroll down to Authentication Domains, select the authentication domain just created and click
Add.

The authentication domain will be moved under Selected.

10 Click Save to store the change.

Repeat this configuration for all providers (remote and hosted) with which you want to
establish trust.

11 Under Federation, click the Authentication Domains tab.

12 Select the name of the authentication domain which was previously created.

The General attributes are displayed.

13 Under Providers, click Add.
The Select Trusted Partner Type and Profile page is displayed.

14 Selectthe appropriate provider(s) as trusted members of the authentication domain and click
Add.

The provider(s) will be moved under Selected.
15 Click OKto save the change.

16 Click Save to store the change.

Trust is now established between the appropriate providers.

118 Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

Liberty ID-FF Operations

v

Before You Begin

Signing Liberty ID-FF Requests and Responses

Federation-based communications passing between identity providers and service providers
are generally required to be digitally signed and verified. Signing and verifying messages
provides data integrity, data origin authentication, and a basis for non-repudiation. To turn on
signing for all Liberty ID-FF requests and responses emanating from your instance of Access
Manager, set the value of the com. sun.identity. federation.services.signingOn property
in AMConfig.properties to true and restart Access Manager and its web container. This allows
for signing of Liberty ID-FF requests being sent and verification of signature validity for Liberty
ID-FF responses received. If set to false, signing is disabled. If set to optional, requests and
responses will be signed or verified only if required by the federation profile being used. After
installation, AMConfig.properties islocated in the etc/opt/SUNWam/config directory.

Note - More information on com.sun.identity.federation.services.signingOn and the
other identity federation properties in AMConfig.properties can be found in the Chapter 6,
“amConfig.properties Reference,” in Sun Java System Access Manager 7.1 Administration
Reference.

Additionally, you can enable the signing of an authentication request from a service provider
configured on your instance of Access Manager, use the following procedure.

To Enable Signing of Service Provider Authentication Requests

A keystore must be set up before turning on the signing properties. See Appendix B, “Key
Management” information on how to do this.

Log in to the Access Manager console as the top-level administrator, by default, amadmin.
Select the Federation tab.
Select the Entities tab.

Select the name of the entity that contains the service provider configuration for which you
want to enable the signing of an authentication request.

Select Service Provider from the View pull-down menu.

Enable the Sign Authentication Request property under the Service Provider configuration and
click Save.

Log out of the Access Manager console.

Chapter3 - Federation 119

Liberty ID-FF Operations

Dynamic Identity Provider Proxying

An identity provider that is asked to authenticate a principal that has already been

authenticated with another identity provider may proxy the authentication request, on behalf of
the requesting service provider, to the authenticating identity provider. This is called dynamic
identity provider proxying. When the first identity provider receives an authentication request
regarding a principal, it prepares a new authentication assertion on its own behalf by
referencing the relevant information from the original assertion and sending the assertion to
the authenticating identity provider.

Note - The service provider requesting authentication may control this proxy behavior by
setting a list of preferred identity providers or by defining the amount of times the identity
provider can proxy the request.

¥ To Configure and Test Dynamic Identity Provider Proxying

The following steps describe the procedure to enable three machines for identity provider
proxying and test the configuration. The procedure assumes the three machines have Access
Manager installed and are configured as follows:

Machine Authentication Function Federation Function
Machine 1 Authenticating Identity Provider Identity Provider
Machine 2 Proxying Identity Provider Identity Provider and Service Provider
Machine 3 Requesting Service Provider Service Provider

All of the WAR files and metadata used in the following procedure can be found in
/AccessManager-base/samples/liberty/samplel.

1 To configure machine 3, deploy the SP1 WAR files and load sp1Metadata. xml.

Ensure that the metadata defines machine 2 as an identity provider and machine 3 as a service
provider.

2 Toconfigure machine 1, deploy the IDP1 WAR files and load idp1Metadata. xml.

Ensure that the metadata defines machine 1 as an identity provider and machine 2 as a service
provider.

3 To configure machine 2, do the following:

a. To configure machine 2 as a service provider, deploy the SP1 WAR files.
Modify AMClient.properties to reflect this.

120 Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

Liberty ID-FF Operations

b. To configure machine 2 as an identity provider, load a second, modified idp1Metadata.xml.

Ensure that idplMetadata.xml contains only data that defines machine 1 as an identity
provider. Remove all other metadata.

Log in to machine 2 and modify the following metadata:

a. Change the value of the Authentication Type attribute to Local.

This attribute can be found in the Access Manager Configuration section of the entity
describing machine 2 as a service provider.

b. Addmachine 1 and machine 3 to the list of Trusted Providers configured for machine 2.

This attribute can be found in the Trusted Provider section of the entity describing machine
2 as a service provider.

¢. Save the configuration.
Also on machine 2, modify the following metadata regarding machine 3.

a. Select the check box next to Enable Proxy Authentication.

This attribute can be found in the Proxy Authentication Configuration section of the entity
that defines machine 3 as an identity provider.

b. Add machine 1 to the list of Proxy Identity Providers List.

This attribute can be found in the Proxy Authentication Configuration section of the entity
that defines machine 3 as an identity provider. The value is a URI defined as the provider's
identifier.

¢. Set Maximum Number of Proxiesto 1.

d. Save the configuration.

Federate a user between machine 3 (acting as a service provider) and machine 2 (acting as an
identity provider).

Federate a user between machine 2 (acting as a service provider) and machine 1 (acting as an
identity provider).

Close the browser and attempt single sign-on.

You will be redirected to machine 1 rather than machine 2 if you enter the username and
password used to federate with machine 1.

Chapter3 - Federation 121

Sample Federation Environment

Sample Federation Environment

122

Access Manager provides a collection of samples based on the Liberty Alliance Project
specifications. They are located in the /AccessManager-base/SUNWam/samples/liberty/
directory. Appendix A, “Liberty-based and SAML Samples” includes information about these
samples.

Sample 1, located in /AccessManager-base/SUNWam/samples/liberty/Samplel, can be used to
configure an environment for creating and managing a federation. The sample demonstrates
the basic use of various Liberty-based federation protocols including account federation, single
sign-on, single logout, and federation termination. Completing the procedures in the sample
Readme. txt or Readme. html will help to give you a more complete understanding of how
federation works.

Note - The Readme file also contains instructions for configuring a common domain. For
information about common domains, see Chapter 4, “Common Domain Services for
Federation Management.”

Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

L R 2 4 CHAPTER 4

Common Domain Services for Federation
Management

Sun Java System Access Manager provides the Common Domain Services for Federation
Management that enable a service provider to determine the identity provider used by a
principal in an authentication domain that contains multiple identity providers.

This chapter covers the following topics:

“Common Domain” on page 123

“Common Domain Cookie” on page 124

“Configuring the Common Domain Services for Federation Management URLs” on page 125

“Configuring the Common Domain Services for Federation Management Properties” on
page 126

= “Installing the Common Domain Services for Federation Management” on page 126

Common Domain

Service providers need a way to determine which identity provider is used by a principal
requesting authentication. Because authentication domains are configured without regard to
their location, this function must work across DNS-defined domains. Thus, a common domain
is configured for this purpose. The common domain is established for use only within the scope
of the Common Domain Services for Federation Management. In Access Manager
deployments, the Common Domain Services for Federation Management are deployed in a
web container installed in a predetermined and pre-configured common domain so that the
common domain cookie is accessible to all providers in the authentication domain. If the HTTP
server in the common domain is operated by the service provider, the service provider will
redirect the user agent to the appropriate identity provider.

Let's suppose an authentication domain contains more than one identity provider; in this case, a
service provider in the authentication domain trusts more than one identity provider. But, a
principal can only issue a federation request to one identity provider, so the service provider to
which the principal is requesting access must have the means to determine the correct one. To
ascertain a principal’s identity provider, the service provider invokes a protocol exchange to

123

Common Domain Cookie

retrieve the common domain cookie, a cookie written for the purpose of introducing the identity
provider to the service provider. If no common domain cookie is found when the principal
issues a federation request, the service provider must present a list of trusted identity providers
from which the principal will choose. After successful authentication, the identity provider
writes (using the Writer Service URL as defined in “Configuring the Common Domain Services
for Federation Management URLs” on page 125) a common domain cookie. The next time the
principal attempts to access a service, the service provider finds and reads the common domain
cookie (using the Reader Service URL as defined in “Configuring the Common Domain
Services for Federation Management URLs” on page 125), to determine the identity provider.

After a principal authenticates with a particular identity provider, the identity provider
redirects the principal's browser to their Common Domain Services for Federation
Management using a parameter that indicates they are the identity provider for this principal.
The Common Domain Services for Federation Management then writes a cookie using that
parameter. Thereafter, all providers configured in this common domain will be able to tell
which identity provider is used by the principal. For example, suppose an identity provider is
available at http://www.Bank. comand a service provider is available via
http://www.Store.com. If the common domain they define is RetailGroup. com, the addresses
will be Bank.RetailGroup.comand Store.RetailGroup.com, respectively.

Note - The Common Domain Services for Federation Management is based on the Identity
Provider Introduction Profile detailed in the Liberty ID-FF Bindings and Profiles Specifications.

Common Domain Cookie

124

After an identity provider authenticates a principal, the identity provider sets a URL-encoded
cookie that is defined in a predetermined domain common to all identity providers and service
providers within the authentication domain. The common domain cookie is named
_liberty_idp. After successful authentication, a principal’s identity provider appends their
encoded identifier to a list in the cookie. If their identifier is already present in the list, the
identity provider may remove the initial appearance and append it again. The intent is that the
service provider reads the last identifier on the cookie’s list to find the principal’s most recently
established identity provider.

The identifiers in the common domain cookie are a list of SuccinctID elements encoded in the
Base64 format. One element maps to each identity provider in the authentication domain.
Service providers then use this SuccinctID element to find the user's preferred identity
provider.

Note - When the request contains no common domain cookie, the service provider presents a
list of trusted identity providers from which the principal may choose.

Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

http://www.projectliberty.org/specs/draft-liberty-idff-bindings-profiles-1.2-errata-v2.0.pdf

Configuring the Common Domain Services for Federation Management URLs

Configuring the Common Domain Services for Federation
Management URLs

In Access Manager, the Common Domain Services for Federation Management are configured
using two URLs that point to servlets developed for writing and reading the common domain
cookie. They are:

= “Writer Service URL’ on page 125
= “Reader Service URL’ on page 125

Note - For more information on how to configure these URLs, see “T'o Create An
Authentication Domain” on page 109 in Chapter 3, “Federation.”

Writer Service URL

The Writer Service URL is used by the identity provider. After successful authentication, the
common domain cookie is appended with the query parameter
_liberty_idp=entity-ID-of-identity-provider. This parameter is used to redirect the principal
to the Writer Service URL defined for the identity provider. The URL is configured as the value
for the Writer Service URL attribute when an authentication domain is created. Use the format
http://common-domain-host:port/deployment-uri/writer where common-domain-host:port
refers to the machine on which the Common Domain Services for Federation Management are
installed and deployment-uri tells the web container where to look for information specific to
the application (such as classes or JARs). The default URI is amcommon.

Reader Service URL

The Reader Service URL is used by the service provider. The service provider redirects the
principal to this URL in order to find the preferred identity provider. Once found, the principal
is redirected to the identity provider for single sign-on. The URL is defined as the value for the
Reader Service URL attribute when an authentication domain is created. It is formatted as
http://common-domain-host:port/deployment-uri/transfer where
common-domain-host:port refers to the machine on which the Common Domain Services for
Federation Management are installed and deployment-uri tells the web container where to look
for information specific to the application (such as classes or JARs). The default URI is
amcommon.

Chapter4 - Common Domain Services for Federation Management 125

Configuring the Common Domain Services for Federation Management Properties

Configuring the Common Domain Services for Federation
Management Properties

FSIntroConfig.properties isa file that contains properties used to configure the Common
Domain Services for Federation Management. It is deployed as part of the web application and
located in /AccessManager-base/web-src/common/WEB-INF/classes. It contains the
properties described in the following table (which may be modified).

TABLE4-1 Common Domain Services for Federation Management Properties in FSConfig.properties

Property Description

com.sun.identity.federation. The value of this property is the name of the common
services.introduction.cookiedomain domain.

com.sun.identity.federation. This property takes a value of either PERSISTENT or
services.introduction.cookietype SESSION. PERSISTENT defines the cookie as one that

will be stored and reused after a web browser is closed
and reopened. SESSION defines the cookie as one that
will not be stored after the web browser has been
closed.

com.iplanet.am.cookie.secure This property takes a value of either false or true. It
defines whether the cookie needs to be secured or not.

com.iplanet.am.cookie.encode This property takes a value of either false or true. It
defines whether the cookie will be URL encoded or
not. This property is useful if, for example, the web
container that reads or writes the cookie decrypts or
encrypts it by default.

Installing the Common Domain Services for Federation
Management

126

The Common Domain Services for Federation Management are installed as a web application
within Access Manager using the Sun Java Enterprise System installer. However, the Common
Domain Services for Federation Management can also be installed as a standalone web
application (separate from the Access Manager product) on a Java Enterprise Edition web
container. This option allows for generating common domain cookies on a machine on which
Access Manager is not installed. Once the Common Domain Services for Federation
Management is installed, you must set up the writer URL attribute for any identity providers
and the reader URL for any service providers. These URLs point to the machine on which
Common Domain Services for Federation Management is installed. For more information, see
the Sun Java Enterprise System 5 Installation Guide for UNIX.

Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

Installing the Common Domain Services for Federation Management

Tip - In most real world deployments, installing the Common Domain Services for Federation
Management on a separate machine is the obvious choice because of the need to setup a
third-level common domain between service providers and identity providers in disparate
enterprises.

To Test a Common Domain Services for Federation
Management Installation

For troubleshooting, make sure the debug level property in FSIntroConfig.properties is set
to message.

Install the Common Domain Services for Federation Management as a standalone application in
a web container in the common domain.

Ensure that the common domain has been defined and the web container is installed in it.

Modify the propertiesin FSIntroConfig.properties as needed.

See “Configuring the Common Domain Services for Federation Management Properties” on
page 126 for more information.

Configure at least two identity providers for a service provider.

Ensure that the “Writer Service URL’ on page 125 is configured for each identity provider and
the “Reader Service URL” on page 125 is configured for each service provider.

Login as a user and complete federation and single sign-on between one identity provider and
the service provider.

Ensure that the liberty idp cookie is set to the common domain.

Login as a user and complete federation and single sign-on between the second identity
provider and the service provider.

After the initial successful federation and single sign-on, all service providers in the common
domain are redirected to the first identity provider based on the information in the common
domain cookie.

Note - Whether the cookie is persistent or for this browser session alone is dependent on how
FSIntroConfig.properties is configured.

Chapter4 - Common Domain Services for Federation Management 127

128

PART I11

Supported Web Services

Chapter 5, “Liberty Alliance Project Web Services Framework”
Chapter 6, “Authentication Web Service”

Chapter 7, “Data Services”

Chapter 8, “Discovery Service”

Chapter 9, “SOAP Binding Service”

129

130

L K R 4 CHAPTER 5

Liberty Alliance Project Web Services
Framework

Sun Java"™ System Access Manager implements the Liberty Identity Web Services Framework
(Liberty ID-WSF) which defines a web services stack that can be used to support the Liberty
Alliance Project business model. These web services leverage the Liberty ID-FF for principal
authentication, federation, and privacy protections. This chapter covers the following topics:

“Web Services” on page 131

“Liberty ID-WSF Architecture in Access Manager” on page 133
“Web Services and Security” on page 134

“Setting Up Liberty ID-WSF 1.1 Profiles” on page 144

= “Developing New Web Services” on page 134

Web Services

Web services are distributed applications developed using open technologies such as eXtensible
Markup Language (XML), SOAP, and HyperText Transfer Protocol (HTTP). Enterprises use
these technologies as a mechanism for allowing their applications to cross network boundaries
and communicate with those of their partners, customers and suppliers. Access Manager
implements the Liberty ID-WSF which is designed to operate in concert with a federated
identity framework, such as the Liberty Identity Federation Framework (Liberty ID-FF).
Previous releases of Access Manager implemented the Liberty ID-WSF version 1.0. This current
release of Access Manager 7.1 extends the implementation to include version 1.1. Access
Manager includes the following Liberty ID-WSF web services:

= “Authentication Web Service” on page 132
“Liberty Personal Profile Service” on page 132
“Discovery Service” on page 132

“SOAP Binding Service” on page 133

131

Web Services

132

Authentication Web Service

The Authentication Web Service adds authentication functionality to the SOAP binding. It
provides authentication to a WSC, allowing the WSC to obtain security tokens for further
interactions with other services at the same provider. These other services may include a
discovery service or single sign-on service. Upon successful authentication, the final Simple
Authentication and Security Layer (SASL) response contains the resource offering for the
Discovery Service. For more information, see Chapter 6, “Authentication Web Service”

Caution - Do not confuse the Liberty-based Authentication Web Service with the proprietary
Access Manager Authentication Service discussed in the Sun Java System Access Manager 7.1
Technical Overview.

Liberty Personal Profile Service

The Liberty Personal Profile Service is a data service that supports storing and modifying a
principal's identity attributes. It maps attributes defined in a user's personal profile to LDAP
attributes in a data store. These identity attributes might include the user's first name, last name,
home address, or emergency contact information. The Liberty Personal Profile Service is
queried or updated by a WSC acting on behalf of the principal. For more information, see
Chapter 7, “Data Services”

Discovery Service

The Discovery Service is a framework for describing and discovering identity web services. It
allows a requesting entity, such as a service provider, to dynamically determine a principal's
registered web services provider (WSP), such as an attribute provider. Typically, a service
provider queries the Discovery Service, which responds by providing a resource offering that
describes the requested WSP. (A resource offering defines associations between a piece of
identity data and the service instance that provides access to the data.) The implementation of
the Discovery Service includes Java and web-based interfaces. The service is bootstrapped using
Liberty ID-FF single sign-on or the Liberty ID-WSF Authentication Web Service. For more
information, see Chapter 8, “Discovery Service”

Note - By definition, a discoverable service is assigned a service type URI, allowing the service to
be registered in Discovery Service instances. The service type URI is typically defined in the
Web Service Definition Language (WSDL) file that defines the service.

Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

Liberty ID-WSF Architecture in Access Manager

SOAP Binding Service

The SOAP Binding Service is the method of transport used to convey identity data between web
services. It includes a set of Java APIs used by the developer of a Liberty-enabled identity service.
The APIs are used to send and receive identity-based messages using SOAP, an XML-based
messaging protocol. The service invokes the correct request handler class (specified by a service
endpoint) to handle the messages. For more information, see Chapter 9, “SOAP Binding
Service”

Liberty ID-WSF Architecture in Access Manager

The Liberty ID-WSF defines an architecture in which SOAP over HTTP(S) is used as the
transport layer protocol. As well, custom web services can be plugged into it. All web services in
Access Manager (whether proprietary or custom) are front-ended by a servlet endpoint called
the SOAPReceiver. The SOAPReceiver validates digital signatures or encryptions from
incoming SOAP request messages and authenticates the remote web services client. The
following diagram shows the high level architecture of the Access Manager implementation of
the Liberty ID-WSE

Web Services
Client
(SOAP Client API)

+

Security SOAP Receiver Sgg\lﬁg
Mechanism —> Service
Request
—> Handler [~°[7" "1
:
1
! :
Di Personal Custom
éscoyery Profile Web
el Service Service

Access Manager ID-WSF

In the high-level process between a WSC and an Access Manager WSP, a user requests a specific
service on a WSC which passes the request to Access Manager. The request is received by the
SOAPReceiver which, in turn, passes it to the corresponding WSP (for example, the Liberty
Personal Profile Service or a custom web service). More detailed information can be found in
“SOAP Binding Process” on page 206.

Chapter5 - Liberty Alliance Project Web Services Framework 133

Web Services and Security

Web Services and Security

Access Manager defines a variety of security mechanisms for protecting web services. It includes
security mechanisms from both the Liberty ID-WSF Security Mechanisms Specification and the
WS-Security version 1.x specifications. The SOAP Binding Service is where security is
configured. It can be configured globally for all the services hosted by Access Manager to limit
the accepted security mechanisms or, each web service can define it's own security mechanisms
for more fine-grained security. The primary advantage of deploying the web services using
Access Manager is that web services security is handled by the Access Manager allowing
application developers to concentrate on the business logic of their web service. There are
blueprints available that present solutions for developing secure web services by enabling
application-level or message-level security. They can be found on the open development web
site for the Java BluePrints Project.

Note - These blueprints require that Access Manager be deployed in an instance of Application
Server 9 (which is not a supported container on Sun Java Enterprise System 5).

Developing New Web Services

v

Before You Begin

134

Any web service that is plugged into the Access Manager Liberty ID-WSF framework must
register a key, and an implementation of the
com.sun.identity.liberty.ws.soapbinding.RequestHandler interface, with the SOAP
Binding Service. (For example, the Liberty Personal Profile Service is registered with the key
idpp, and the class com.sun.identity.liberty. ws.soapbinding.PPRequestHandler.) The
Key value becomes part of the URL for the web service's endpoint (as in

protocol: / /host:port/deploymenturi/Liberty/key). The implemented class allows the web
service to retrieve the request (containing the authenticated principal and the authenticated
security mechanism along with the entire SOAP message). The web service processes the
request and generates a response. This section contains the process you would use to add a new
Liberty ID-WSF web service to the Access Manager framework. Instructions for some of these
steps are beyond the scope of this guide. The process has been divided into two tasks:

= “To Host a Custom Service” on page 134
= “To Invoke the Custom Service” on page 141

To Host a Custom Service

The XML Schema Definition (XSD) file written to define the new service is the starting point for
developing the service's server-side code. More information can be found in “Schema Files and
Service Definition Documents” on page 51.

Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

http://www.projectliberty.org/specs/liberty-idwsf-security-mechanisms-v1.2.pdf
http://www.oasis-open.org/specs/index.php#wssv1.0
https://blueprints.dev.java.net/bpcatalog/ee5/soa/ws-security-index.html

Developing New Web Services

Write an XML service schema for the new web service and Java classes to parse and process the
XML messages.

The following sample schema defines a stock quote web service. The QuoteRequest and
QuoteResponse elements define the parameters for the request and response that are inserted in
the SOAP Body of the request and response, respectively. You will need to have

QuoteRequest. javaand QuoteResponse. java to parse and process the XML messages.

<?xml version="1.0" encoding="UTF-8" 7>
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns="urn:com:sun:liberty:sample:stockticker"
targetNamespace="urn:com:sun:liberty:sample:stockticker">
<xs:annotation>
<xs:documentation>
This is a sample stock ticker web service protocol
</xs:documentation>
</xs:annotation>

<xs:element name="QuoteRequest" type="QuoteRequestType"/>
<xs:complexType name="QuoteRequestType">
<XS:sequence>
<xs:element name = "ResourceID" type="xs:string" minOccurs="0"/>
<xs:element name "Symbol" type="xs:string" minOccours="1"/>
</Xs:sequence>

</xs:complexType>

<xs:complexType name="PriceType">
<Xxs:sequence>
<xs:element name="Last" type="xs:integer"/>
<xs:element name="Open" type="xs:integer"/>
<xs:element name="DayRange" type="xs:string"/>
<xs:element name="Change" type="xs:string"/>
<xs:element name="PrevClose" type="xs:integer"/>
</Xs:sequence>
</xs:complexType>

<xs:element name="QuoteResponse" type="QuoteResponseType"/>
<xs:complexType name="QuoteResponseType">
<Xs:sequence>
<xs:element name="Symbol" type="xs:string"/>
<xs:element name="Time" type="xs:dateTime"/>
<xs:element name="Delay" type="xs:dateTime" minOccurs="0"/>
<xs:element name="Price" type="PriceType"/>
<xs:element name="Volume" type="xs:integer"/>
</Xs:sequence>
</xs:complexType>

</xs:schema>

Chapter5 - Liberty Alliance Project Web Services Framework 135

Developing New Web Services

136

Provide an implementation for one of the following interfaces based on the type of web service
being developed:

= com.sun.identity.liberty.ws.soapbinding.RequestHandler for developing and
deploying a general web service.

See “SOAP Binding Service Package” on page 209.

m com.sun.identity.liberty.ws.dst.service.DSTRequestHandler for developing and
deploying an identity data service type web service based on the Liberty Alliance Project
Identity Service Interface Specifications (Liberty ID-SIS).

See “com.sun.identity.liberty.ws.dst.service Package” on page 171.

In Access Manager, each web service must implement one of these interfaces to accept
incoming message requests and return outgoing message responses. The following sample
implements the com.sun.identity.liberty.ws.soapbinding.RequestHandler interface for
the stock quote web service. com.sun.identity.liberty.ws.soapbinding.Message is the API
used to construct requests and responses.

public class StockTickerService implements RequestHandler {
//implement business logic

public Message processRequest(Message msg) throws
SOAPFaultException, Exception {

SSOToken token = (SSOToken)msg.getToken();
List responseBody = processSOAPBody(msg.getBodies());

Message response = new Message();
response.setBodies(responseBody);

return response;

}

//more business logic

Compile the Java source code.

Be sure to include /AccessManager-base/SUNWam/1ib/am_services.jar in your classpath.

Add the previously created classes to the web container classpath and restart the web
container.

Login to the Access Manager console as the top level administrator.
By default, amadmin.

Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

Developing New Web Services

6 Clickthe Web Services tab.

7 UnderWeb Services, click the SOAP Binding Service tab to register the new implementation
with the SOAP Binding Service.

Teols

Bz [l Yew O QReskimarks Wirdow Hein
* - * - ‘ n |,-1 Fiip-\pc gtk B0 Biprmer e oh o c en®W Ferer ol ieonic e P Fomom et icSonvic e ekl omn
He=ie foemard Aalewed Sy

rEm--rh--]

B Yin M inayilees

if e

Sun Java” System Acce

Perymmal rafile. | Dwcevery Sendcs | SOAFSadng Sendice | Aihwalerion Barvce. |

SOAP Binding

Global Attributes

| Newm_ |

| 0 | emy = Clmas

| 1 1
r sphesar com i idandity ety ws et ghe s e Negue s arclsrmel
C dexe Car. i b Ty b ey wes s i Dvi Cdasiy et @

| C wpp L BN bRy B Gy e i PP e st i

Weh Ssrvca Lstherticrhos |:m n y ety ws i T e b e

Supporiad Suthesnincabion Mechanisms: |7 embbaty secarty 200104 DeentTLE G40
B aimi Sty ey 200008 - Chant TS XS04
i amikerty secwriy 200108 Ceeng TS mil
F emdibamy secury 300308 TLS Ak
= e iesrhy secerty 300308 TS W00
F o Bhearty secanty 200008 TLS aul
& em bkaity sy 20001-00 rud | S48
Fom bty secary. 200)00 rull X509
I i Bt iy et i - 2060 -0 -l | il
e ety secwty: 2004 -0l DeenkTLS Bearer
I wim ety s ey 20 50 TS Searo
| em ket wecomty 2004 -0 -l Brarsr
F bty Sty 2005 03 ChanlTLS Bacrar
I wm sty wecerty J005-07 CheeiTLS RRAM]
Fm ety secary 2005 02 ChesfTLS K50

FEEE T

8 Click New under the Request Handler List global attribute.

Chapter5 - Liberty Alliance Project Web Services Framework 137

Developing New Web Services

10

11

12

13

14

15

16

17

138

Enter a name for the implementation in the Key field.

This value will be used as part of the service endpoint URL for the web service. For example, if
the value is stock, the endpoint URL to access the stock quote web service will be:

http://SERVER_HOST:SERVER_PORT/SERVER_DEPLOY_URI/Liberty/stock
Enter the name of the implementation class previously created in the Class field.
(Optional) Enter a SOAP Action in the SOAP Action field.

Click Save to save the configuration.
The request handler will be displayed under the Request Handler List.

Click on the Access Control tab to begin the process of publishing the web service to the
Discovery Service.

The Discovery Service is a registry of web services. It matches the properties in a request with
the properties in its registry and returns the appropriate service location. See Chapter 8,
“Discovery Service”

Select the name of the realm to which you want to add the web service.

Select Services to access the realm's services.

Click Discovery Service.
If the Discovery Service has not yet been added, do the following.

a. Click Add.

A list of available services is displayed.

b. Select Discovery Service and click Next to add the service.

The list of added services is displayed including the Discovery Service.

Click Add to create a new resource offering.

Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

Developing New Web Services

T [l [ot ew Go fackmada Teols Windaw pes

3?;- - * v th ﬂl Ii T e e e Bl D s vt v Pl rePessnd e et En ng

+aldindtl

B Ehioms | | fheokmars [flae Desktep Syt Sun Microgmisma

| TESICH

SN java System Access Manager

Mew Resource Offerings

Dasciiption!

SErvice Instance

" Barvice Typs;

1A eefmar i ThE PR B OF Leaec F Tl BECADF M EENCE Impesreanis

¥
Pravides D¢
LRI gf tha proved e of the serd cn inntancs

* it Iz required bo define 1 or mare service descriptions

Service Desoription (0 kems)
| M h-wE |
| Security Machanism D
| There s Ao descrghons defisad
Resource Offering Options

Dpbsne: [Serace b no oplom B eeeihe

Dplesin Lokl
Currant Valusd =
=
E£
—
Maw Valus I Badd

L Thle b sy

D 2 @8 5o

18 (Optional) Enter a description of the resource offering in the Description field.

Chapter5 - Liberty Alliance Project Web Services Framework 139

Developing New Web Services

140

19

20

21

22

Type a URI for the value of the Service Type attribute.

This URI defines the type of service. It is recommended that the value of this attribute be the
targetNamespace URI defined in the abstract WSDL description for the service. An example of
avalid URI for the sample serviceis urn:com:sun: liberty:sample:stockticker.

Type a URI for the value of the Provider ID attribute.

The value of this attribute contains the URI of the provider of the service instance. This
information is useful for resolving trust metadata needed to invoke the service instance. A
single physical provider may have multiple provider IDs.

Note - The provider represented by the URI in the Provider ID attribute must also have an entry
in the ResourceIDMapper attribute. For more information, see “Classes For ResourceIDMapper
Plug-in” on page 183.

Click New Description to define the Service Description.

For each resource offering, at least one service description must be created.

a. Select the values for the Security Mechanism ID attribute to define how a web service client
can authenticate to a web service provider.

This field lists the security mechanisms that the service instance supports. Select the security
mechanisms that you want to add and click Add. To prioritize the list, select the mechanism
and click Move Up or Move Down.

b. Typea value for the End Point URL.
This value is the URL to access the new web service. For this example, it should be:
http://SERVER_HOST:SERVER_PORT/SERVER_DEPLOY_URI/Liberty/stock

¢. (Optional) Type a value for the SOAP Action.

This value is the equivalent of the wsdlsoap: soapAction attribute of the
wsdlsoap:operation element in the service's concrete WSDL-based description.

d. Click OK to complete the configuration.

Check the Options box if there are no options or add a URI to specify options for the resource
offering.

This field lists the options that are available for the resource offering. Options provide hints to a
potential requestor about the availability of certain data or operations to a particular offering.
The set of possible URIs are defined by the service type, not the Discovery Service. If no option
is specified, the service instance does not display any available options. For a standard set of
options, see the Liberty ID-SIS Personal Profile Service Specification.

Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

http://www.projectliberty.org/specs/liberty-idsis-pp-v1.0.pdf

Developing New Web Services

23

24

25

Select a directive for the resource offering.

Directives are special entries defined in SOAP headers that can be used to enforce policy-related
decisions. You can choose from the following:

= GenerateBearerToken specifies that a bearer token be generated.

= AuthenticateRequester must be used with any service description that use SAML for
message authentication.

= EncryptResourcelD specifies that the Discovery Service encrypt the resource ID.

= AuthenticateSessionContext is specified when a Discovery Service provider includes a
SAML assertion containing a SessionContextStatement in any future QueryResponse
messages.

= AuthorizeRequester is specified when a Discovery Service provider wants to include a
SAML assertion containing a ResourceAccessStatement in any future QueryResponse
messages.

If you want to associate a directive with one or more service descriptions, select the check box
for that Description ID. If no service descriptions are selected, the directive is applied to all
description elements in the resource offering.

Click OK.

Logout from the console.

To Invoke the Custom Service

Web service clients can access the custom web service by discovering the web service's end
point and using the required credentials. This information is stored by the Access Manager
Discovery Service. There are two ways in which a client can authenticate to Access Manager in
order to access the Discovery Service:

= The Liberty ID-FF is generally used if it's a browser-based application and the web service
client is a federation enabled service provider.

= The Access Manager Authentication Web Service (based on the Liberty ID-WSF) is used for
remote web services clients with pure SOAP-based authentication capabilities.

In the following procedure, we use the Liberty ID-WSF client API to invoke the web service.

Note - The code in this procedure is used to demonstrate the usage of the Liberty ID-WSF client
API. More information can be found in the Sun Java System Access Manager 7.1 Java API
Reference.

Chapter5 - Liberty Alliance Project Web Services Framework 141

Developing New Web Services

142

Write code to authenticate the WSC to the Authentication Web Service of Access Manager.

The sample code below will allow access to the Discovery Service. It is a client-side program to
be run inside the WSC application.

public class StockClient {

public SASLResponse authenticate(
String userName,
String password,
String authurl) throws Exception {

SASLRequest saslReq =
new SASLRequest(AuthnSvcConstants.MECHANISM PLAIN);
saslReq.setAuthzID(userName) ;

SASLResponse saslResp = AuthnSvcClient.sendRequest(saslReq, authurl);
String statusCode = saslResp.getStatusCode();
if (!statusCode.equals(SASLResponse.CONTINUE)) {

return null;

String serverMechanism = saslResp.getServerMechanism();
saslReq = new SASLRequest(serverMechanism);
String dataStr = userName + "\0@" + userName + "\@" + password;
saslReq.setData(dataStr.getBytes("UTF-8"));
saslReq.setRefToMessageID(saslResp.getMessageID());
saslResp = AuthnSvcClient.sendRequest(saslReq, authurl);
statusCode = saslResp.getStatusCode();
if (!statusCode.equals(SASLResponse.OK)) {

return null;

return saslResp;

Add code that will extract the Discovery Service information from the Authentication Response.
The following additional code would be added to what was developed in the previous step.

ResourceOffering discoro = saslResp.getResourceOffering();
List credentials = authnResponse.getCredentials();

Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

Developing New Web Services

Add code to query the Discovery Service for the web service's resource offering by using the
Discovery Service resource offering and the credentials that are required to access it.

The following additional code would be added to what was previously developed.

RequestedService rs = new RequestedService(null,
"urn:com:sun:liberty:sample:stockticker");
List rss = new ArraylList();
rss.add(rs);

Query discoQuery = new Query(discoro.getResourceID(), rss);
DiscoveryClient discoClient = null;

discoClient = new DiscoveryClient(secAssertion, serviceURL, null);
QueryResponse queryResponse = discoClient.getResourceOffering(discoQuery);

The discovery response contains the service's resource offering and the credentials required to
access the service.

quotes contains the response body (the stock quote). You would use the Access Manager SOAP
API to get the body elements.

List offerings = discoResponse.getResourceOffering();
ResourceOffering stockro = (ResourceOffering)offerings.get(0);

List credentials = discoResponse.getCredentials();

SecurityAssertion secAssertion = null;
if(credentials != null && !credentials.isEmpty()) {
secAssertion = (SecurityAssertion)credentials.get(0);

String serviceURL = ((Description)stockro.getServiceInstance().
getDescription().get(0)).getEndpoint();

QuoteRequest req = new QuoteRequest(symbol,
stockro.getResourceID().getResourcelID());

Element elem = XMLUtils.toDOMDocument (
req.toString(), debug).getDocumentElement();

List list = new ArrayList();
list.add(elem);

Message msg = new Message(null, secAssertion);
msg.setSOAPBodies(list);

Message response = Client.sendRequest(msg, serviceURL, null, null);
List quotes = response.getBodies();

Chapter5 - Liberty Alliance Project Web Services Framework 143

Setting Up Liberty ID-WSF 1.1 Profiles

Setting Up Liberty ID-WSF 1.1 Profiles

144

Access Manager automatically detects which version of the Liberty ID-WSF profiles is being
used. If Access Manager is the web services provider (WSP), it detects the version from the
incoming SOAP message. If Access Manager is the WSC, it uses the version the WSP has
registered with the Discovery Service. If the WSP can not detect the version from the incoming
SOAP message or the WSC can not communicate with the Discovery Service, the version
defined in the com.sun.identity.liberty.wsf.version property in AMConfig.properties
will be used. Following are the steps to configure Access Manager to use Liberty ID-WSF 1.1
profiles.

To Configure Access Manager to Use Liberty ID-WSF
1.1 Profiles

Install Access Manager on two different machines.
Test the installation by logging in to the console at http: //server: port/amserver/UI/Login.

Setup the two instances of Access Manager for communication using the Liberty ID-FF
protocols.

This entails setting up one instance as the service provider (SP) and the other as the identity
provider (IDP). Instructions for doing this can be found in “Entities and Authentication
Domains” on page 80 or in the README file located in the
/AccessManager-base/samples/liberty/samplel directory.

Note - This step also entails creating a keystore for each provider. Instructions for this procedure
are located in / AccessManager-base/samples/saml/xmlsig/keytool.html or in Appendix B,
“Key Management” in this guide. For testing purposes, you can copy the same keystore to each
machine; if not, import the public keys from one machine to the other. Be sure to update the
Key Alias attribute for each provider in AMConfig.properties and change the cookie name on
one of the machines (in the same file) if both machines are in the same domain.

Using the Access Manager console on the SP side, change the value of the Protocol Support
Enumeration attributetourn: liberty:iff:2003-08 in both provider configurations.

The value of this attribute defines the supported release of the Liberty ID-FF; in this case,
version 1.2.

Setup the two instances of Access Manager for communication with the Liberty ID-WSF web
services.

This entails copying the files located in the /AccessManager-base/samples/phase2/wsc
directory to your web container's doc root directory and making the changes specified in the
sample README file. The relevant files and corresponding function are:

Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

Setting Up Liberty ID-WSF 1.1 Profiles

= index.jsp: Retrieves boot strapping resource offering for Discovery Service.

= discovery-modify.jsp: Adds resource offering for a user.

= discovery-query.jsp: Sends query to Discovery Service for a resource offering.

® id-sis-pp-modify.jsp: Sends Data Service Modify request to modify user attributes.

= id-sis-pp-query.jsp: Sends Data Service Query request to retrieve user attributes.

Copy thediscovery-modify.jsp reproduced below into the web container's doc root
directory.

This JSP is configured to use the Liberty ID-WSF 1.1 Bearer token profile
(<SecurityMechID>urn:liberty:security:2005-02:null:Bearer</SecurityMechID>) with
appropriate directives and should replace the file already in the directory. You can modify this
file to use other profiles if you know the defined URI of the particular Liberty ID-WSF 1.1
profile. (X509 or SAML token, for example.)

<%- -
Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved
Use is subject to license terms.
- -%>
<%@page import="java.io.*,java.util.*,com.sun.identity.saml.common.*,
com.sun.identity.liberty.ws.disco.*,com.sun.identity.liberty.ws.disco.common.*,
javax.xml.transform.stream.*,
com.sun.identity.liberty.ws.idpp.plugin.IDPPResourceIDMapper,
com.iplanet.sso.*,com.sun.liberty.LibertyManager" %>
<html xmlns="http://www.w3.0rg/TR/xhtml1/DTD/xhtmll-strict.dtd">
<head><title>Discovery Service Modification</title></head>
<body bgcolor="white">
<hl>Discovery Service Modification</h1l>
<%
if (request.getMethod().equals("GET")) {
String resourceOfferingFile =
request.getParameter("discoveryResourceOffering");
if (resourceOfferingFile == null) {
resourceOfferingFile= "";
}
String entryID =
request.getParameter("entryID");
if (entryID == null) {
entryID= "";

// The following three values need to be changed to register a personal
// profile resource offering for a user.

String ppProviderID =
"http://shivalik.red.iplanet.com:58080/amserver/Liberty/idpp";

Chapter5 - Liberty Alliance Project Web Services Framework 145

Setting Up Liberty ID-WSF 1.1 Profiles

146

String userDN = "uid=amAdmin,ou=People,dc=iplanet,dc=com";
String ppEndPoint =
"http://shivalik.red.iplanet.com:58080/amserver/Liberty/idpp";

String providerID = request.getParameter("providerID");
String ppResourceID = (new IDPPResourceIDMapper()).getResourceID(
ppProviderID, userDN);

String newPPRO =
"<ResourceOffering xmlns=\"urn:liberty:disco:2003-08\">"

+ " <ResourcelID>" + ppResourceID + "</ResourceID>\n"
+ " <ServiceInstance>\n"
+ " <ServiceType>urn:liberty:id-sis-pp:2003-08</ServiceType>\n"
+ " <ProviderID>" + ppProviderID + "</ProviderID>\n"
+ " <Description>"
+ " <SecurityMechID>urn:liberty:security:2005-02:null:Bearer"
+ "</SecurityMechID>\n"
+ " <Endpoint>" + ppEndPoint + "</Endpoint>\n"
+ " </Description>\n"
+ " </Servicelnstance>\n"
+ " <Abstract>This is xyz </Abstract>\n"
+ "</ResourceOffering>";
%>
<form method="POST">
<table>
<tr>
<td>ResourceOffering (for discovery service itself)</td>
<td>

<textarea rows="2" cols="30" name="discoResourceOffering">

<%= resourceOfferingFile %>

</textarea>

</td>

</tr>

<tr>

<td>PP ResourceOffering to add</td>

<td>

<textarea rows="20" cols="60" name="insertStr"><%= newPPRO %></textarea>
</td>

</tr>

<tr>

<td>AND/OR PP ResourceOffering to remove</td>

<td>

<textarea rows="2" cols="30" name="entryID"></textarea>

</td>

</tr>

</table>

<input type="hidden" name="providerID" value="<%= providerID %>" />
<input type="submit" value="Send Discovery Update Request" />

Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

Setting Up Liberty ID-WSF 1.1 Profiles

</form>
<%
} else {
try {

String resourceXMLFile = request.getParameter("discoResourceOffering");
String resourceXML = null;

try {

BufferedReader bir = new BufferedReader(
new FileReader(resourceXMLFile));
StringBuffer buffer = new StringBuffer(2000);
int bl;
while ((bl=bir.read ())!= -1) {
buffer.append((char) bl);
}
resourceXML = buffer.toString();
} catch (Exception e) {
%>Warning: cannot read disco resource offering.<%

String insertString = request.getParameter("insertStr");
String entryID = request.getParameter("entryID");
String providerID = request.getParameter("providerID");
if (resourceXML == null || resourceXML.equals("")) {
%>ERROR: resource offering missing<%
} else {
ResourceOffering offering;
try {
offering = new ResourceOffering(DiscoUtils.parseXML(
resourcexXML)) ;
DiscoveryClient client = new DiscoveryClient(
offering,
SSOTokenManager.getInstance().createSSOToken(request),
providerID);
Modify mod = new Modify();
mod.setResourceID(offering.getResourceID());
mod.setEncryptedResourceID(offering.getEncryptedResourceID());
if ((insertString != null) &&
!'(insertString.equals("")))
{
InsertEntry insert = new InsertEntry(
new ResourceOffering(
DiscoUtils.parseXML(insertString)),
null);
// Uncommnent the following when it’s required.
List directives = new ArraylList();
Directive dirl = new Directive(
Directive.AUTHENTICATE REQUESTER);
directives.add(dirl);
// Directive dir2 = new Directive(

Chapter5 - Liberty Alliance Project Web Services Framework 147

Setting Up Liberty ID-WSF 1.1 Profiles

// Directive.AUTHORIZE REQUESTER);
// directives.add(dir2);
Directive dir3 = new Directive(
Directive.GENERATE BEARER TOKEN) ;

directives.add(dir3);
insert.setAny(directives);

List inserts = new ArraylList();

inserts.add(insert);

mod.setInsertEntry(inserts);

}

if ((entryID != null) && !(entryID.equals(""))) {
RemoveEntry remove = new RemoveEntry(
com.iplanet.am.util.XMLUtils.escapeSpecialCharacters(
entryID));
List removes = new ArraylList();
removes.add(remove) ;
mod.setRemoveEntry(removes);

}
if ((mod.getInsertEntry() == null) &&
(mod.getRemoveEntry() == null))

{
%>ERROR: empty Modify<%
} else {
%>
<h2>Formed Modify :</h2>
<pre><%= SAMLUtils.displayXML(mod.toString()) %></pre>
<%
ModifyResponse resp2 = client.modify(mod);
%>
<h2>Got result:</h2>
<pre><%= SAMLUtils.displayXML(resp2.toString()) %></pre>
<%
}

} catch (Throwable t) {
t.printStackTrace();
StringWriter buf = new StringWriter();
t.printStackTrace(new PrintWriter(buf));
%>
ERROR: caught exception:
<pre>

A
o0

out.println(buf.toString());

o°
\Y

</pre>

A
o°

o°
\%

148 Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

Setting Up Liberty ID-WSF 1.1 Profiles

<p>Return to index.jsp</p>

A
o°

} catch (Throwable e) {
e.printStackTrace();
StringWriter buf = new StringWriter();
e.printStackTrace(new PrintWriter(buf));
%>
ERROR: oocaught exception:
<p re>

A
o°

out.println(buf.toString());

o°
\%

</pre>

A
o°

of
Vv

<hr/>
</body>
</html>

Modify the values of the following propertiesin AMConfig.properties on the IDP side to reflect
the key alias.

AMConfig.properties islocated in /etc/opt/SUNWam/config. The following properties

should be changed.

= com.sun.identity.liberty.ws.wsc.certalias=wsc_certificate_alias

= com.sun.identity.liberty.ws.ta.certalias=signing trusted_authority_certificate_alias

= com.sun.identity.liberty.ws.trustedca.certaliases=list_of_trusted_authority_certification_

Register the Liberty Personal Profile Service to the user defined by the userDNin
discovery-modify.jsp.

Under the default top-level realm on the instance of Access Manager acting as an IDP, go to
Subjects and click User. Select the user and click Services. Click Add and register the Liberty
Personal Profile Service.

Note - In the discovery-modify. jsp reproduced above, the user is defined as the default
administrator, amAdmin. See the line:

String userDN = "uid=amAdmin,ou=People,dc=iplanet,dc=com";

Restart both instances of Access Manager.

Test that the Liberty ID-WSF 1.1 profiles are working by following the Run the Sample section of
the README located in / AccessManager-base/samples/phase2/wsc.

Chapter5 - Liberty Alliance Project Web Services Framework 149

150

L K R 4 CHAPTER 6

Authentication Web Service

Sun Java™ System Access Manager contains the Authentication Web Service. It enables web
service consumers and Liberty-enabled user agents to authenticate with identity providers
using SOAP messages. This chapter covers the following topics:

“Authentication Web Service Overview” on page 151
“Authentication Web Service Process” on page 154
“Authentication Web Service Attribute” on page 155
“Authentication Web Service API” on page 156
“Access the Authentication Web Service” on page 157
“Authentication Web Service Sample” on page 157

Authentication Web Service Overview

The SOAP specifications define an XML-based messaging paradigm, but do not specify any
particular security mechanisms. Particularly, they do not describe user authentication using
SOAP messages. To rectify this, the Authentication Web Service was implemented based on the
Liberty ID-WSF Authentication Service and Single Sign-On Service Specification. The
specification defines a protocol that adds the Simple Authentication and Security Layer (SASL)
authentication functionality to the SOAP binding described in the Liberty ID-WSF SOAP
Binding Specification and, Chapter 9, “SOAP Binding Service” in this guide. The Authentication
Web Service is for provider-to-provider authentication.

Note - The specification also contains an XML schema that defines the authentication protocol.
More information can be found in “Schema Files and Service Definition Documents” on
page 51.

This overview contains the following sections:

= “XML Service File” on page 152

151

http://www.projectliberty.org/specs/liberty-idwsf-authn-svc-v1.0.pdf
http://www.projectliberty.org/specs/liberty-idwsf-soap-binding-v1.1.pdf
http://www.projectliberty.org/specs/liberty-idwsf-soap-binding-v1.1.pdf

Authentication Web Service Overview

152

= “Authentication Web Service APIs” on page 152
= “Which Authentication Service to Use?” on page 152

XML Service File

The Authentication Web Service is configured using the XML service file amAuthnSvc . xml. This
file defines the attribute for the Authentication Web Service which can be managed through the
Access Manager console or the XML file.

Note - For information about service files, see the Sun Java System Access Manager 7.1
Administration Guide.

Authentication Web Service APIs

The Access Manager Authentication Web Service includes the following Java programming
packages:

® com.sun.identity.liberty.ws.authnsvc
® com.sun.identity.liberty.ws.authnsvc.mechanism
® com.sun.identity.liberty.ws.authnsvc.protocol

The first package is a client API for external Java applications to send SASL requests and receive
SASL responses. The second package defines an interface to handle different SASL mechanisms.
The final package contains classes that represent the SASL request and response. Together, the
packages are used to initiate the authentication process and communicate authentication
credentials to the Authentication Web Service. For more information, see the “Authentication
Web Service API” on page 156.

Which Authentication Service to Use?

The Liberty-based Authentication Web Service is not to be confused with the proprietary
Authentication Service discussed in the Sun Java System Access Manager 7.1 Administration
Guide. Architecturally, the Authentication Web Service sits on top of the Access Manager
Authentication Service and the Liberty Alliance Project framework. You might use the
Authentication Web Service if you are a service provider and want to use a standards-based
mechanism to authenticate users.

Following are two use cases where the Authentication Web Service is preferable to the Access
Manager Authentication Service:

= A service provider relies on a remote identity provider (not necessarily using Access
Manager) for authentication.

Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

Authentication Web Service Overview

= Anenterprise in a service-oriented architecture (SOA) environment wants to use
non-proprietary mechanisms to authenticate users and web services clients before accessing
a protected web service.

In addition to providing an authentication service to verify credentials (for example, user ID
and password), the Authentication Web Service provides the web services consumer (WSC)
with bootstrap information that contains the endpoint and credentials needed to access the
Discovery Service (as discussed in Chapter 8, “Discovery Service”). The WSC can ignore the
bootstrap or use it to access other web services, such as the authenticated user's personal profile
or calendar.

Note - An authenticated enterprise might also use the bootstrap information to access a partner
in a business-to-business environment.

Following is an example that shows how the Authentication Web Service interacts with the
Access Manager Authentication Service. It assumes the following separate entities:

= A user (principal)
= A service provider (acting asa WSC)

= Anidentity provider hosted by Access Manager where the Access Manager Authentication
Service is configured for Certificate and LDAP authentication and the Authentication Web
Service has mapped LDAP to its own PLAIN authentication mechanism

= The user's personal profile (hosted by another product)

The WSC delegates all authentication to the identity provider and prefers PLAIN
authentication which accepts a user identifier and password.

1. The user attempts access to a service provider (not necessarily hosted by Access Manager).

2. When the service provider finds that the user is not authenticated, it invokes the identity
provider's Authentication Web Service by sending it a SOAP request.

3. After inspecting its configuration, the Authentication Web Service sends back a response
indicating that it supports Certificate and PLAIN authentication.

4. The service provider decides on PLAIN authentication and prompts the user for an
identifier and password.

5. Interactions based on the standard PLAIN authentication mapping ensues between the
service provider and identity provider (hosted on Access Manager) using the
Authentication Web Service.

a. The service provider receives the user identifier and password and sends it to the identity
provider.

b. The identity provider passes the credentials to the locally hosted LDAP Authentication
module using the proprietary Access Manager Authentication Service's Java API.

c. The LDAP Authentication module verifies the credentials.

Chapter6 - Authentication Web Service 153

Authentication Web Service Process

d. The Authentication Web Service is notified of the verification and sends a response to
the service provider indicating successful authentication. If configured to do so, it also
includes bootstrap information formatted using XML and containing the Discovery
Service endpoint and a token to invoke it.

6. The service provider parses the response, verifies that it is a successful authentication, and
provides the service to the user.

At some point the service provider might need to access the user's personal profile. To do this, it
will use the bootstrap information received during this process to contact the Discovery Service
and find where the profile is stored. The Discovery Service returns a resource offering
(containing a token and the location of an endpoint), and the service provider uses that to
invoke the Liberty Personal Profile Service.

Authentication Web Service Process

154

The exchange of authentication information between a web service consumer (WSC) and the
web service provider (WSP) is accomplished using SOAP-bound messages. The messages are a
series of client requests and server responses specific to the defined SASL mechanism (or mode
of authentication). The authentication exchange can involve an arbitrary number of round
trips, dictated by the particular SASL mechanism employed. The WSC might have knowledge
of the supported SASL mechanisms, or it might send the server its own list of mechanisms and
allow the server to choose one. The list of supported mechanisms can be found at
http://www.iana.org/assignments/sasl-mechanisms.

After receiving a request for authentication (or any response from the WSC), the WSP may
issue additional challenges or indicate authentication failure or success. The sequence between
the WSC and the Authentication Web Service (a WSP) is as follows.

1. The authentication exchange begins when a WSC sends an SASL authentication request to
the Authentication Web Service on behalf of a principal.

The request message contains an identifier for the principal and indicates one or more SASL
mechanisms from which the service can choose.

2. The Authentication Web Service responds by asserting the method to use and, if applicable,
initiating a challenge.

If the Authentication Web Service does not support any of the cited methods, it responds by
aborting the exchange.

3. The WSC responds with the necessary credentials for the chosen method of authentication.
4. The Authentication Web Service replies by approving or denying the authentication.

If approved, the response includes the credentials the WSC needs to invoke other web
services, such as the Discovery Service.

Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

http://www.iana.org/assignments/sasl-mechanisms

Authentication Web Service Attribute

Authentication Web Service Attribute

The Authentication Web Service attribute is a global attribute. The value of this attribute is
carried across the Access Manager configuration and inherited by every organization.

Note - For information about the types of attributes used in Access Manager, see the Sun Java
System Access Manager 7.1 Technical Overview.

The attribute for the Authentication Web Service is defined in the amAuthnSvc. xml service file
and is called the Mechanism Handlers List.

Mechanism Handlers List

The Mechanism Handler List attribute stores information about the SASL mechanisms that are
supported by the Authentication Web Service.

key Parameter
The required key defines the SASL mechanism supported by the Authentication Web Service.

class Parameter

The required class specifies the name of the implemented class for the SASL mechanism. Two
authentication mechanisms are supported by the following default implementations:

TABLE6-1 Default Implementations for Authentication Mechanism

Class Description
com.sun.identity.liberty.ws. This class is the default implementation for the PLAIN
authnsvc.mechanism.PlainMechanismHandler authentication mechanism. It maps user identifiers

and passwords in the PLAIN mechanism to the user
identifiers and passwords in the LDAP authentication
module under the root organization.

com.sun.identity.liberty.ws. This class is the default implementation for the
authnsvc.mechanism.CramMD5MechanismHandler CRAM-MD5 authentication mechanism.

Chapter6 - Authentication Web Service 155

Authentication Web Service API

Note - The Authentication Web Service layer provides an interface that must be implemented
for each SASL mechanism to process the requested message and return a response. For more
information, see “com.sun.identity.liberty.ws.authnsvc.mechanism Package” on

page 156.

Authentication Web Service API

156

The Authentication Web Service provides programmatic interfaces to allow clients to interact
with it. The following sections provide short descriptions of these packages. For more detailed
information, see the Java API Reference in /AccessManager-base/SUNWam/docs or on
docs.sun.com. The authentication-related packages include:

= “com.sun.identity.liberty.ws.authnsvc Package” on page 156
= “com.sun.identity.liberty.ws.authnsvc.mechanism Package” on page 156
= “com.sun.identity.liberty.ws.authnsvc.protocol Package” on page 156

com.sun.identity.liberty.ws.authnsvc Package

This package provides web service clients with a method to request authentication credentials
from the Authentication Web Service and receive responses back from it using the Simple
Authentication and Security Layer (SASL).

com.sun.identity.liberty.ws.authnsvc.mechanism
Package

This package provides an interface that must be implemented for each different SASL
mechanism to enable authentication using them. Each SASL mechanism will correspond to one
implementation that will process incoming SASL requests and generate outgoing SASL
responses.

com.sun.identity.liberty.ws.authnsvc.protocol
Package

This package provides classes that correspond to the request and response elements defined in
the Liberty XSD schema that accompanies the Liberty ID-WSF Authentication Service
Specification. More information about the XSD schemas can be found in “Schema Files and
Service Definition Documents” on page 51.

Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

Authentication Web Service Sample

Access the Authentication Web Service

The URL to gain access to the Authentication Web Service is:

http://SERVER_HOST:SERVER_PORT/SERVER_DEPLOY_URI/Liberty/authnsvc

This URL is normally used by the Access Manager client API to access the service. For example,
the Access Manager public client,
com.sun.identity.liberty.ws.authnsvc.AuthnSvcClient uses this URL to authenticate
principals with Access Manager.

Authentication Web Service Sample

A sample authentication client is included with Access Manager. It is located in the
/AccessManager-base/SUNWam/samples/phase2/authnsvc directory. The client uses the PLAIN
SASL authentication mechanism. It first authenticates against the Authentication Web Service,
then extracts a resource offering to bootstrap the Discovery Service. It looks for a SAML Bearer
token credential, issues a discovery query request with SAML assertion included, and receives a
response.

Note - This sample can be used by a Liberty User Agent Device WSC.

Chapter6 - Authentication Web Service 157

158

L K R 4 CHAPTER 7

Data Services

Sun Java™ System Access Manager contains implementations of the Liberty ID-WSF Data
Services Template Specification in addition to instructions on how you can add a custom data
service to your deployment. This chapter covers the following topics:

= “Data Services Overview” on page 159
“Liberty Personal Profile Service” on page 162
“Liberty Employee Profile Service” on page 170
“Data Services Template API” on page 170
“Developing A New Data Service” on page 172

Data Services Overview

A data service is a web service that supports the query and modification of data regarding a
principal. An example of a data service is a web service that hosts and exposes a principal's
profile information, such as name, address and phone number. A query is when a web service
consumer (WSC) requests and receives the data (in XML format). A modify is when a WSC
sends new information to update the data. The Liberty Alliance Project has defined the Liberty
ID-WSEF Data Services Template Specification (Liberty ID-WSF-DST) as the standard protocol
for the query and modification of data profiles exposed by a data service. Using this
specification, the Liberty Alliance Project has developed additional specifications for other
types of data services: personal profile service, geolocation service, contact service, and calendar
service). Of these data services, Access Manager has implemented the Liberty Personal Profile
Service and, using the included sample, the Liberty Employee Profile Service.

Note - To develop your own data service see the instructions in “Developing A New Data
Service” on page 172.

159

http://www.projectliberty.org/specs/liberty-idwsf-dst-v1.1.pdf
http://www.projectliberty.org/specs/liberty-idwsf-dst-v1.1.pdf

Data Services Overview

160

Liberty ID-WSF Data Services Template Specification

The Liberty ID-WSF-DST specifies a base layer that can be extended by any instance of a data
service. An example of a data service is an identity service, such as an online corporate
directory. When you want to contact a colleague, you conduct a search based on the individual’s
name, and the data service returns information associated with that person's identity. The
information might include the individual’s office location and phone number, as well as job title
or department name. For proper implementation, all data services must be built on top of the
Liberty ID-WSE-DST because it provides the data model and message interfaces. The following
figure illustrates how Access Manager uses the Liberty ID-WSF-DST as the framework for data
services.

Liberty ID-SIS Data Services

r.-- - - - - - - - -/ — — — /"7

Liberty Liberty Additional Custom
| Personal Profile Employee Profile Data Services
Service Service (Calendar, Wallet)

Discovery SOAP |
| Service Binding

Liberty Web Services Framework

FIGURE7-1 Data Service Template as Building Block of Data Services

The Web Services framework in Access Manager uses the Liberty ID-WSF-DST to develop data
services. The Access Manager Liberty Personal Profile Service and Liberty Employee Profile
Service were developed on top of the Web Services framework, using the specification.
Additional data services can also be developed by the customer.

Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

Data Services Overview

Note - For more information on the data services specification, see the Liberty ID-WSF Data
Services Template Specification.

Liberty Personal Profile Service

The Liberty ID-SIS Personal Profile Service Specification (Liberty ID-SIS-PP) describes a data
service that provides an identity’s basic profile information, such as full name, contact details,
and financial information. This data service is intended to be the least common denominator
for holding consumer-based information about a principal. Access Manager has implemented
this specification and developed the Liberty Personal Profile Service.

For more information, see the Liberty ID-SIS Personal Profile Service Specification.

XML Service File

The Access Manager Liberty Personal Profile Service is configured using the XML service file
amLibertyPersonalProfile.xml. This file defines attributes for the Liberty Personal Profile
Service which can be managed through the Access Manager Console or the XML file itself.

Note - For information about service files, see the Sun Java System Access Manager 7.1
Administration Guide.

XSD Schema Definition

The Liberty ID-SIS-PP also defines an XML schema for use in building a personal profile
service. More information about the XSD schemas can be found in “Schema Files and Service
Definition Documents” on page 51.

Liberty Employee Profile Service

The Liberty ID-SIS Employee Profile Service Specification (Liberty ID-SIS-EP) describes a data
service that provides an identity’s profile information as it relates to employment. An example
of a employee profile service might be a corporate calendar or phone book.

Access Manager has implemented this specification by developing a sample that includes the
files needed to deploy and invoke a Liberty Employee Profile Service. The Liberty Employee
Profile Service is not available when Access Manager is installed. It must first be deployed. For
information about accessing the sample files and how to deploy them, see “Liberty Employee
Profile Service” on page 170.

Note - For more information, see the Liberty ID-SIS Employee Profile Service Specification.

Chapter7 - Data Services 161

http://www.projectliberty.org/specs/liberty-idwsf-dst-v1.1.pdf
http://www.projectliberty.org/specs/liberty-idwsf-dst-v1.1.pdf
http://www.projectliberty.org/specs/liberty-idsis-pp-v1.0.pdf
http://www.projectliberty.org/specs/liberty-idsis-ep-v1.0.pdf

Liberty Personal Profile Service

XML Service File

Among the files included with the sample is the XML service file
amLibertyEmployeeProfile.xml. This file defines the attributes for the Liberty Employee
Profile Service which, once deployed, can be managed through the Access Manager Console or
the XML file itself.

Note - For information about service files, see the Sun Java System Access Manager 7.1
Administration Guide.

XSD Schema Definition

The Liberty ID-SIS-EP also defines an XML schema for use in building an employee profile
service. More information about the XSD schemas can be found in “Schema Files and Service
Definition Documents” on page 51.

Data Services API

Access Manager data services are built using a Java package called
com.sun.identity.liberty.ws.dst. Access Manager provides this package for developing
custom services based on the Liberty ID-WSF-DST. Additional information about these
interfaces can be found in “Data Services Template API” on page 170 and in the Java API
Reference at / AccessManager-base/SUNWam/docs or on docs.sun.com.

Liberty Personal Profile Service

162

The Liberty Personal Profile Service is a default Access Manager identity service. It can be
queried for identity data and its attributes can be updated.

For access to occur, the hosting provider of the Liberty Personal Profile Service needs to be
registered with the Discovery Service on behalf of each identity principal. To register a service
with the Discovery Service, update a resource offering for that service. For more information,
see Chapter 8, “Discovery Service.” This section contains the following information:

= “Liberty Personal Profile Service Process” on page 162
= “Liberty Personal Profile Service Attributes” on page 164
= “Access the Liberty Personal Profile Service” on page 169

Liberty Personal Profile Service Process

The invocation of a personal profile begins when a WSC posts a query or a modify request to the
Liberty Personal Profile Service on behalf of a user. The following process is also illustrated in
Figure 6-2.

Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

Liberty Personal Profile Service

1. A web services client uses the Data Services Template API to post a query or a modify
request to the Liberty Personal Profile Service.

All the query or modify requests to any identity service are SOAP requests.

2. The client’s SOAP request is received by the SOAP receiver provided by the SOAP Binding
Service.

The SOAP receiver invokes either the Discovery Service, the Authentication Web Service, or
the Liberty Personal Profile Service, depending on the service key transmitted as part of the
URL. The SOAP Binding Service might also authenticate the client identity.

3. The Liberty Personal Profile Service implements the DSTRequestHandler to process the
request.

The request is processed based on the request type (query or modify) and the query
expression. Processing might entail the authorization of a WSC using the Access Manager
Policy Service, or it might entail using the Interaction Service for interacting with the user
before sending data to the WSC.

4. The Liberty Personal Profile Service builds a service response, adds credentials (if they are
required), and sends the response back to the WSC.

= Foraresponse to a query request, the Liberty Personal Profile Service builds a personal
profile container (as defined by the specification). It is formatted in XML and based on
the Query Select expression. The Personal Profile attribute values are extracted from the
data store by making use of the attribute mapper. The attribute mapper is defined by the
XML service file, and the attribute values will be used while building the XML container.
The Personal Profile Service then applies xpath queries on the XML and provides us
with the resultant XML data node.

= For aresponse to a modify request, the Liberty Personal Profile Service parses the
Modifiable Select expression and updates the new data from the new data node in the
request.

The following diagram illustrates the Liberty Personal Profile Service process.

Chapter7 - Data Services 163

Liberty Personal Profile Service

164

Web Services
Consumer

SOAP request sent via HTTP

SOAP Request Handler

v

Data Services Template Request Handler

v

Authorizer

Liberty Personal Profile Service

Attribute Mapper

Data
Store

FIGURE7-2 Liberty Personal Profile Service Process

Liberty Personal Profile Service Attributes

The Liberty Personal Profile Service attributes are global attributes. The values of these
attributes are carried across the Access Manager configuration and inherited by each configured
organization.

Note - For information about the types of attributes used in Access Manager, see the Sun Java
System Access Manager 7.1 Technical Overview.

Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

Liberty Personal Profile Service

Attributes for the Personal Profile Service are defined in the amLibertyPersonalProfile.xml
service file. The attributes are:

“ResourceID Mapper” on page 165
“Authorizer” on page 165

“Attribute Mapper” on page 166

“Provider ID” on page 166

“Name Scheme” on page 166

“Namespace Prefix” on page 166

“Supported Containers” on page 166
“PPLDAP Attribute Map List” on page 167
“Require Query PolicyEval” on page 168
“Require Modify PolicyEval” on page 168
“Extension Container Attributes” on page 168
“Extension Attributes Namespace Prefix” on page 169
“Service Update” on page 169

“Service Instance Update Class” on page 169
“Alternate Endpoint” on page 169

“Alternate Security Mechanisms” on page 169

ResourcelD Mapper

The value of this attribute specifies the implementation of
com.sun.identity.liberty.ws.interfaces.ResourceIDMapper. Although a new
implementation can be developed, Access Manager provides the default
com.sun.identity.liberty.ws.idpp.plugin.IDPPResourceIDMapper, which mapsa
discovery resource identifier to a user identifier.

Authorizer

Before processing a request, the Liberty Personal Profile Service verifies the authorization of the
WSC making the request. There are two levels of authorization verification:

= s the requesting entity authorized to access the requested resource profile information?

= [sthe requested resource published to the requestor?

Authorization occurs through a plug-in to the Liberty Personal Profile Service, an
implementation of the com. sun.identity.liberty.ws.interfaces.Authorizer interface.
Although a new implementation can be developed, Access Manager provides the default class,
com.sun.identity.liberty.ws.idpp.plugin.IDPPAuthorizer. This plug-in defines four
policy action values for the query and modify operations:

Allow

Deny

Interact For Consent
Interact For Value

Chapter7 - Data Services 165

Liberty Personal Profile Service

166

The resource values for the rules are similar to x-path expressions defined by the Liberty
Personal Profile Service. For example, a rule can be defined like this:

/PP/CommonName/AnalyzedName/FN Query Interact for consent
/PP/CommonName/* Modify Interact for value
/PP/InformalName Query Deny

Authorization can be turned off by deselecting one or both of the following attributes, which are
also defined in the Liberty Personal Profile Service:

= “Require Query PolicyEval” on page 168
= “Require Modify PolicyEval” on page 168

Attribute Mapper

The value of this attribute defines the class for mapping a Liberty Personal Profile Service
attribute to an Access Manager user attribute. By default, the class is
com.sun.identity.liberty.ws.idpp.plugin.IDPPAttributeMapper.

Note - com.sun.identity.liberty.ws.idpp.plugin.IDPPAttributeMapper isnota public
class.

ProviderID

The value of this attribute defines the unique identifier for this instance of the Liberty Personal
Profile Service. Use the format protocol: / /hostname: port/deloy-uri/Liberty/idpp.

Name Scheme

The value of this attribute defines the naming scheme for the Liberty Personal Profile Service
common name. Choose First Last or First Middle Last.

Namespace Prefix

The value of this attribute specifies the namespace prefix that is used for Liberty Personal Profile
Service XML protocol messages. A namespace differentiates elements with the same name that
come from different XML schemas. The Namespace Prefix is prepended to the element.

Supported Containers

The values of this attribute define a list of supported containers in the Liberty Personal Profile
Service. A container, as used in this instance, is an attribute of the Liberty Personal Profile
Service.

Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

Liberty Personal Profile Service

Note - The term container as described in this section is not related to the Access Manager
identity-related object that is also called container.

For example, Emergency Contact and Common Name are two default containers for the
Liberty Personal Profile Service. To add a new container, click Add, enter values in the provided
fields and click OK.

Note - This functionality is not yet public.

PPLDAP Attribute Map List

Each identity attribute defined in the Liberty Personal Profile Service maps one-to-one with an
Access Manager LDAP attribute. For example,
JobTitle=sunIdentityServerPPEmploymentIdentityJobTitle maps the Liberty JobTitle
attribute to the Access Manager sunIdentityServerPPEmploymentIdentityJobTitle
attribute.

The value of this attribute is a list that specifies the mappings. The list is used by the attribute
mapper defined in “Attribute Mapper” on page 166, by default,
com.sun.identity.liberty.ws.idpp.plugin.IDPPAttributeMapper.

Note - When adding new attributes to the Liberty Personal Profile Service or the LDAP data
store, ensure that the new attribute mappings are configured as values of this attribute.

In the following code sample, the Liberty Personal Profile Service informalName attribute
mapping to the LDAP attribute uid is added to the mappings already present in the Liberty
Personal Profile Service XML service file, amLibertyPersonalProfile.xml.

Note - Attribute mappings are defined as global attributes under the name
sunIdentityServerPPDSAttributeMapList in amLibertyPersonalProfile.xml. This
attribute corresponds to that sunIdentityServerPPDSAttributeMapList global attribute.

<AttributeSchema name="sunIdentityServerPPDSAttributeMapList"

type="1list"

syntax="string"

118nKey="p108">

<DefaultValues>
<Value>CN=sunIdentityServerPPCommonNameCN</Value>
<Value>FN=sunIdentityServerPPCommonNameFN</Value>
<Value>MN=sunIdentityServerPPCommonNameMN</Value>

Chapter7 - Data Services 167

Liberty Personal Profile Service

<Value>SN=sunIdentityServerPPCommonNameSN</Value>
<Value>InformalName=uid</Value>
</DefaultValues>
</AttributeSchema>

Require Query PolicyEval

If selected, this option requires that a policy evaluation be performed for Liberty Personal
Profile Service queries. For more information, see “Authorizer” on page 165.

Require Modify PolicyEval

If selected, this option requires that a policy evaluation be performed for Liberty Personal
Profile Service modifications. For more information, see “Authorizer” on page 165.

Extension Container Attributes

The Liberty Personal Profile Service allows you to specify extension attributes that are not
defined in the Liberty Alliance Project specifications. The values of this attribute specify a list of
extension container attributes. All extensions should be defined as:

/PP/Extension/PPISExtension [@name='extensionattribute’]

The following sample illustrates an extension query expression for creditcard, an extension
attribute.

EXAMPLE7-1 Extension Query for creditcard

/pp:PP/pp:Extension/ispp:PPISExtension[@name="creditcard’]
Note: The prefix for the PPISExtension is different,
and the schema for the PP extension is as follows:
<?xml version="1.0" encoding="UTF-8" 7>
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns="http://www.sun.com/identity/liberty/pp"
targetNamespace="http://www.sun.com/identity/liberty/pp">
<xs:annotation>
<xs:documentation>
</xs:documentation>
</xs:annotation>

<xs:element name="PPISExtension">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="name" type="xs:string"
use="required"/>
</xs:extension>

168 Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

Liberty Personal Profile Service

EXAMPLE7-1 Extension Query for creditcard (Continued)

</xs:simpleContent>
</xs:complexType>
</xs:element>
</xs:schema>

Type the new attribute and click Add.

Extension Attributes Namespace Prefix

The value of this attribute specifies the namespace prefix for the extensions defined in the
“Extension Container Attributes” on page 168. This prefix is prepended to the element and
helps to distinguish metadata from different XML schema namespaces.

Service Update

The SOAP Binding Service allows a service to indicate that requesters should contact it on a
different endpoint or use a different security mechanism and credentials to access the requested
resource. If selected, this attribute affirms that there is an update to the service instance.

Service Instance Update Class

The value of this attribute specifies the default implementation class
com.sun.identity.liberty.ws.idpp.plugin.IDPPServiceInstanceUpdate. This classis
used to update the information for the service instance.

Alternate Endpoint

The value of this attribute specifies an alternate SOAP endpoint to which a SOAP request can be
sent.

Alternate Security Mechanisms

This attribute allows you to choose a security mechanism. For more information about this
functionality and the mechanisms, see the Liberty ID-WSF Security Mechanisms specification.

Access the Liberty Personal Profile Service

The URL to gain access to the Liberty Personal Profile Service is:

http://SERVER_HOST:SERVER_PORT/SERVER_DEPLOY_URI/Liberty/idpp

Chapter7 - Data Services 169

http://www.projectliberty.org/specs/draft-liberty-idwsf-security-mechanisms-v2.0-03.pdf

Liberty Employee Profile Service

This URL is normally used by the Access Manager client API to access the service. For example,
the Access Manager public Data Service Template client,
com.sun.identity.liberty.ws.dst.DSTClient uses this URL to query and modify an
identity's personal profile attributes stored in Access Manager.

Liberty Employee Profile Service

The Liberty Employee Profile Service sample provides a collection of files that can be used to
deploy and invoke a corporate-based data service. The files are located in the
/AccessManager-base/SUNWam/samples/phase2/sis-ep directory.

Note - Before implementing this sample, you must have two instances of Access Manager
installed, running, and Liberty-enabled. Completing the steps in “samplel Directory” on
page 267 will accomplish this.

The Liberty Employee Profile Service is a deployment of the ID-SIS-EP specification as
discussed in “Liberty Employee Profile Service” on page 161. The Readme . html file in the
sample directory provides detailed steps on how to deploy and configure this sample for use asa
data service. See also Appendix A, “Liberty-based and SAML Samples.”

Data Services Template API

170

Access Manager contains two packages based on the Liberty ID-WSF-DST. They are:

= “com.sun.identity.liberty.ws.dst Package” on page 170
= “com.sun.identity.liberty.ws.dst.service Package” on page 171

For more detailed API documentation, including methods and their syntax and parameters, see
the Java API Reference in /AccessManager-base/SUNWam/docs or on docs.sun.com.

com.sun.identity.liberty.ws.dst Package

The following table summarizes the classes in the Data Services Template client API that are
included in the com.sun.identity.liberty.ws.dst package.

Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

Data Services Template API

TABLE 7-1 Data Service Client APIs

Class Description

DSTClient Provides common functions for the Data Services
Templates query and modify options.

DSTData Provides a wrapper for any data entry.

DSTModification Represents a Data Services Template modification
operation.

DSTModify Represents a Data Services Template modify request.

DSTModifyResponse Represents a Data Services Template response to a
DST modify request.

DSTQuery Represents a Data Services Template query request.

DSTQueryItem Wrapper for one query item.

DSTQueryResponse Represents a Data Services Template query response.

DSTUtils Provides utility methods used by the DST layer.

com.sun.identity.liberty.ws.dst.service
Package

This package provides a handler class that can be used by any generic identity data service that
is built using the Liberty Alliance ID-SIS Specifications.

Note - The Liberty Personal Profile Service is built using the Liberty ID-SIS Personal Profile
Service Specification, based on the Liberty Alliance ID-SIS Specifications.

The DSTRequestHandler class is used to process query or modify requests sent to an identity
data service. It is an implementation of the interface
com.sun.identity.liberty.ws.soapbinding.RequestHandler. For more detailed API
documentation, see the Java API Reference in /AccessManager-base/SUNWam/docs or on
docs.sun.com.

Note - Access Manager provides a sample that makes use of the DSTRequestHandler class. The
sis-ep sample illustrates how to implement the DSTRequestHandler and deploy a new identity
data service instance. The sample is located in the
/AccessMunager—base/SUNWam/samples/phaseZ/sis -ep directory. For more information, see
“sis-ep Directory” on page 270.

Chapter7 - Data Services 171

Developing A New Data Service

Developing A New Data Service

172

In addition to deploying an employee profile service, the Liberty Employee Profile Service
sample can be used as a guide to develop other custom data services based on the Liberty
ID-WSE-DST. Sections 2 and 3 in the Readme . htm1 file in the
/AccessManager-base/SUNWam/samples/phase2/sis-ep directory has detailed steps on how to
deploy and configure data services. To use those instructions for a new data service, you need to
write a new data service schema. This schema [an XML Schema Definition (XSD) document
that is described in “Schema Files and Service Definition Documents” on page 51] defines the
service’s data and data structure. After you write a new XSD file, use the sample Readme. html to
deploy your new data service instead of the 1ib-id-sis-ep.xsd file referred to in the
instructions.

Note - Instructions on writing an XSD file are beyond the scope of this guide.

Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

L K R 4 CHAPTER 8

Discovery Service

Sun Java™ System Access Manager contains a Discovery Service defined by the Liberty Alliance
Project. The Discovery Service allows a requesting entity to dynamically determine a principal’s
registered identity service. It might also function as a security token service, issuing security
tokens to the requester that can then be used in the request to the discovered identity service.

This chapter covers the following topics:

“Discovery Service Overview” on page 173
“Discovery Service Process” on page 179
“Discovery Service Attributes” on page 180
“Storing Resource Offerings” on page 184
“Generating Security Tokens” on page 195
“Discovery Service APIs” on page 198
“Access the Discovery Service” on page 203
“Discovery Service Sample” on page 203

Discovery Service Overview

All web services are defined by a Web Services Description Language (WSDL) file that describes
the type of data the service contains, the available ways said data can be exchanged, the
operations that can be performed using the data, a protocol that can be used to perform the
operations, and a URL (or endpoint) for access to the service. Additionally, the WSDL file itself
is assigned a unique resource identifier (URI) that is used to locate it. The file is then published
and the URI is placed in a Universal Description, Discovery and Integration (UDDI) repository
so it can be found by potential users. Thus, the web service can now be discovered. According to
the Web Services Glossary, discovery of a web service is the act of locating a WSDL file for it.
Typically, there are one or more web services on a network so, a discovery service is required to
keep track of them.

Access Manager implements the Liberty ID-WSF Discovery Service Specification for its
Discovery Service. The Discovery Service is a registry for identity-based web services. An

173

http://www.w3.org/TR/ws-gloss/
http://www.projectliberty.org/specs/liberty-idwsf-disco-svc-v1.1.pdf

Discovery Service Overview

174

identity-based web service presents an interface to access a type of data that is considered a part
of a principal's online identity. For example, a payment web service might contain an
individual's credit card information and would allow payments to be made using this
information. When a web service consumer (WSC) queries the Discovery Service for a web
service provider that allows access to a particular user's credit card information, the Discovery
Service matches the properties in the request against the properties of it's registered services and
returns the appropriate resource offering.

Note - A resource offering defines an association between a type of identity data and a URI to the
WSDL definition that provides information about obtaining access to the data. For more
information on resource offerings, see “Storing Resource Offerings” on page 184.

This overview contains the following sections:

= “Discovery Service WSDL” on page 174
= “amDisco XML Service Files” on page 177
= “Discovery Service Architecture” on page 178

Discovery Service WSDL

A WSDL document is written in the eXtensible Markup Language (XML) and describes a web
service. It specifies the location of the service and the operations the service exposes.

Note - The WSDL specification can be found at http: //www.w3.0rg/TR/wsdl.

The portType property in the Liberty ID-WSF Discovery Service WSDL file defines the
Discovery Service operations.

= DiscoverylLookup allows the Discovery Service to be queried. Using a Query, a WSC can
find out which web service provider (WSP) stores the identity data relevant to the principal's
request. The Discovery Service responds with QueryResponse that includes the necessary
information for that identity.

= DiscoveryUpdate enables maintenance of resource offerings already defined for the
Discovery Service. Using a Modify,a WSC can add and remove resources, or change
existing ones. The Discovery Service responds with ModifyResponse.

Following is a reproduction of liberty-idwsf-disco-svc-v1.2.wsdl, the Liberty ID-WSF
Discovery Service WSDL file.

Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

http://www.w3.org/TR/wsdl

Discovery Service Overview

EXAMPLE8-1 Abstract WSDL for Liberty ID-WSF Discovery Service Specification

<?xml version="1.0"7?>

<definitions name="disco-svc"
targetNamespace="urn:liberty:disco:2003-08"
xmlns:typens="urn:liberty:disco:2003-08"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:sb="urn:liberty:sb:2003-08"
xmlns:disco="urn:liberty:disco:2003-08">

<!l-- Abstract WSDL for Liberty Discovery Service Specification -->

<xsd:documentation>

XML Schema from Liberty Discovery Service Specification.

NOTICE

Copyright (c) 2004-2005 Liberty Alliance participants, see
http://www.projectliberty.org/specs/idwsf 1 1 copyrights.php

</xsd:documentation>

<types>
<xsd:schema>
<xsd:import schemalLocation="liberty-idwsf-disco-svc-exts-v1l.2.xsd"/>
<xsd:import schemalLocation="1liberty-idwsf-soap-binding-exts-v1l.2.xsd"/>
<xsd:import schemalLocation="1liberty-idwsf-soap-binding-v1.2.xsd"/>
</xsd:schema>
</types>

<message name="Query">
<part name="body" element="disco:Query"/>
</message>

<message name="QueryResponse">
<part name="body" element="disco:QueryResponse"/>
</message>

<message name="Modify">
<part name="body" element="disco:Modify"/>
</message>

<message name="ModifyResponse">

<part name="body" element="disco:ModifyResponse"/>
</message>

Chapter8 - Discovery Service

175

Discovery Service Overview

EXAMPLE8-1 Abstract WSDL for Liberty ID-WSF Discovery Service Specification (Continued)

<message name="CorrelationHeader">
<part name="Correlation" element="typens:Correlation"/>
</message>

<portType name="DiscoveryPort">

<operation name="DiscoveryLookup">

<input message="typens:Query"/>

<output message="typens:QueryResponse"/>
</operation>

<operation name="DiscoveryUpdate">

<input message="typens:Modify"/>

<output message="typens:ModifyResponse"/>
</operation>

</portType>

<!--
An example of a binding and service that can be used with this

abstract service description is provided below.
-->

<binding name="DiscoveryBinding" type="typens:DiscoveryPort">
<soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>

<operation name="DiscoveryLookup">
<soap:operation soapAction="http://example.com/DiscoverylLookup"/>

<input>
<soap:header message="typens:CorrelationHeader" part="Correlation" use="literal"/>
<soap:body use="literal"/>

</input>

<output>
<soap:header message="typens:CorrelationHeader" part="Correlation" use="literal"/>
<soap:body use="literal"/>

</output>

</operation>

<operation name="DiscoveryUpdate">
<soap:operation soapAction="http://example.com/DiscoveryUpdate"/>

176 Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

Discovery Service Overview

EXAMPLE8-1 Abstract WSDL for Liberty ID-WSF Discovery Service Specification (Continued)

<input>
<soap:header message="typens:CorrelationHeader" part="Correlation" use="literal"/>
<soap:body use="literal"/>
</input>
<output>
<soap:header message="typens:CorrelationHeader" part="Correlation" use="literal"/>
<soap:body use="literal"/>
</output>
</operation>
</binding>
<service name="DiscoveryService">
<port name="DiscoveryPort" binding="typens:DiscoveryBinding">
<l-- Modify with the REAL SOAP endpoint -->
<soap:address location="http://example.com/discovery"/>
</port>

</service>

</definitions>

amDisco XML Service Files

The Discovery Service is defined by the XML service file amDisco. xml. This file defines the
attributes for the Discovery Service. All of the attributes in the Discovery Service can be
managed through either the Access Manager Console or this file.

Note - For more information about service files, see the Sun Java System Access Manager 7.1
Administration Guide. For more information about Discovery Service attributes, see “Discovery
Service Attributes” on page 180.

A second XML file, amDisco_add.xml is in /AccessManager-base/SUNWam/upgrade/
services50 sunIdentityServerDiscoveryService/10 20/data. This file is used for
upgrading Identity Server 6.2 to Access Manager 7.1. It lists the changes to the amDisco.xml file
since the earlier release.

Chapter 8 - Discovery Service 177

Discovery Service Overview

178

Discovery Service Architecture

Java applications use the client API (discussed in “Client APIs in
com.sun.identity.liberty.ws.disco” on page 198) to form requests sent to the Discovery
Service and to parse the responses received back from it. Requests are initially received by a
SOAP receiver which constructs the SOAP message that incorporates the client request.

Note - The SOAP Binding Service defines how to send and receive messages using SOAP, an
XML-based messaging protocol. The SOAP receiver is a servlet that constructs the message
using these definitions. For more information, see Chapter 9, “SOAP Binding Service”

The SOAP message is then routed to the Discovery Service which parses the resource identifier
from it. This identifier is used to find a matching user distinguished name (DN). The necessary
information is then culled from the corresponding profile, a response is generated, and the
response is sent back to the SOAP receiver. The SOAP receiver then sends the response back to
the client. The following figure illustrates this architecture. The “Discovery Service Process” on
page 179 has more information on how the Discovery Service works.

Java Applications/ Form messages
Client APIs and parse responses

SOAP messages and responses

SOAP Receiver/
Discovery Service

Query and modify through SDK

Discovery

Resource
Data Store

FIGURE8-1 Discovery Service Architecture

Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

Discovery Service Process

Discovery Service Process

This figure provides a high-level overview of the interaction between parties in a web services
environment using the Discovery Service. In this scenario, the identity provider hosts the
Discovery Service. The process assumes that the Discovery Service is not generating security
tokens. The individual steps are written up in more detail following the figure.

2. Request access to

service

3. Send discovery lo

4. Return discovery r

&

User Agent Service AuthN Web Personal
Provider Service/ Profile
(@l . .
(e Discovery Service
Consumer) Service
1. Single sign-on and introduction
_ €<— — —)

kup query

Esponse

<

5. Send data query t

6. Return response W

&

>

ith identity data for ac

<

7. Render service pafes

FIGURE8-2 Participants in, and Process of, the Discovery Service

€SS

personal profile (identity) service

1. The userlogs in to a Liberty-enabled identity provider, is authenticated, and completes the
federation process, enabling single sign-on with other members of the authentication

domain. More specifically:
a. Within a browser, the user types the URL for a Liberty-enabled service provider.

b. The service provider collects the user’s credentials and redirects the information to the
identity provider for authentication.

c. Ifthe credentials are verified, the user is authenticated.

d. Assuming the identity provider is the center of an authentication domain, that provider
will notify the authenticated user of the option to federate any local identities created
with member organizations. The user would then accept or decline this invitation to

Chapter8 - Discovery Service

179

Discovery Service Attributes

federate. By accepting the invitation, the user will be given the option to federate to a
member organization’s web site at each login. If the user accepts this option to federate,
single sign-on is enabled.

2. After authentication, the user now requests access to services hosted by another service
provider in the authentication domain.

3. The service provider, acting as a web service consumer (WSC), sends a DiscoveryLookup
query to the Discovery Service looking for a pointer to the user's identity provider.

The service provider is able to bootstrap the Discovery Service using the end point reference
culled from the authentication statement.

4. The Discovery Service returns a DiscoveryLookup response to the service provider that
points to the instance of the requested identity provider.

The response contains the resource offering for the user’s Personal Profile Service.

5. The service provider then sends a query (using the “Data Services Template Specification”
on page 49) to the Personal Profile Service.

The required authentication mechanism specified in the Personal Profile Service resource
offering must be followed.

6. The Personal Profile Service authenticates and validates authorization, or policy, or both for
the requested user and service provider, and returns a Data Services Template response.

If user interaction is required for some attributes, the Interaction Service will be invoked to
query the user for consents or attribute values. The Data Services Template would then be
returned after all required data is collected.

7. The service provider processes the Personal Profile Service response and renders HTML
pages based on the original request and user authorization.

A user's actual account information is not exchanged during federation. Thus, the identifier
displayed on each provider site will be based on the respective local identity profile.

Discovery Service Attributes

The Discovery Service attributes are global attributes whose values are applied across the Access
Manager configuration and inherited by every configured organization. The Discovery Service
attributes are:

= “Provider ID” on page 181

= “Supported Authentication Mechanisms” on page 181
“Supported Directives” on page 181

“Policy Evaluation for Discovery Lookup” on page 182
“Policy Evaluation for Discovery Update” on page 182
“Authorizer Plug-in Class” on page 182

“Entry Handler Plug-in Class” on page 182

“Classes For ResourceIDMapper Plug-in” on page 183

180 Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

Discovery Service Attributes

“Authenticate Response Message” on page 183

“SessionContextStatement for Bootstrapping” on page 183

“Encrypt NameIdentifier in Session Context for Bootstrapping” on page 184
“Implied Resource” on page 184

“Resource Offerings for Bootstrapping” on page 184

Note - For information about the types of attributes used in Access Manager, see the Sun Java
System Access Manager 7.1 Technical Overview.

ProviderID

This attribute takes a URI that points to the Discovery Service. Use the format
protocol://host: port/amserver/Liberty/disco. This value can be changed only if other
relevant attributes values are changed to match the new pointer.

Supported Authentication Mechanisms

This attribute specifies the authentication methods supported by the Discovery Service. These
security mechanisms refer to the way a web service consumer authenticates to the web service
provider or provides message-level security. By default, all available methods are selected. If an
authentication method is not selected and a WSC sends a request using that method, the
request is rejected. For more information, see the Liberty ID-WSF Security Mechanisms
specification.

Supported Directives

This attribute allows you to specify a policy-related directive for a resource. If a service provider
wants to use an unsupported directive, the request will fail. The following table describes the
available options. More information can be found in the Liberty ID-WSF Discovery Service
Specification.

TABLES-1 Policy-Related Directives

Directive Purpose

AuthenticateRequester The Discovery Service should include a SAML assertion
containing an AuthenticationStatement in its query
responses to enable the client to authenticate to the service
instance hosting the resource.

Chapter 8 - Discovery Service 181

http://www.projectliberty.org/specs/liberty-idwsf-security-mechanisms-v1.2.pdf
http://www.projectliberty.org/specs/liberty-idwsf-disco-svc-v1.2.pdf
http://www.projectliberty.org/specs/liberty-idwsf-disco-svc-v1.2.pdf

Discovery Service Attributes

182

TABLES-1 Policy-Related Directives (Continued)
Directive Purpose
AuthenticateSessionContext The Discovery Service should include a SAML assertion

containing a SessionContextStatement inits query
responses that indicate the status of the session.

AuthorizeRequestor The Discovery Service should include a SAML assertion
containing a ResourceAccessStatement in its responses
that indicate whether the client is allowed to access the
resource.

EncryptResourceID The Discovery Service should encrypt the resource
identifier in responses to all clients.

GenerateBearerToken For use with Bearer Token Authentication, the Discovery
Service should generate a token that grants the bearer
permission to access the resource.

Policy Evaluation for Discovery Lookup

If enabled, the service will perform a policy evaluation for the DiscoveryLookup operation. By
default, the check box is not selected.

Policy Evaluation for Discovery Update

If enabled, the service will perform a policy evaluation for the DiscoveryUpdate operation. By
default, the check box is not selected.

Authorizer Plug-in Class

The value of this attribute is the name and path to the class that implements the
com.sun.identity.liberty.ws.interfaces.Authorizer interface used for policy evaluation
ofa WSC. The default class is
com.sun.identity.liberty.ws.disco.plugins.DefaultDiscoAuthorizer. See
“com.sun.identity.liberty.ws.interfaces.Authorizer Interface” on page 200.

Entry Handler Plug-in Class

The value of this attribute is the name and path to the class that implements the
com.sun.identity.liberty.ws.disco.plugins.DiscoEntryHandler interface. This
interface is used to set or retrieve a principal’s discovery entries. To handle discovery entries
differently, implement the

Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

Discovery Service Attributes

com.sun.identity.liberty.ws.disco.plugins.DiscoEntryHandler interface and set the
implementing class as the value for this attribute. The default implementation for the Discovery
Service is com.sun.identity.liberty.ws.disco.plugins.UserDiscoEntryHandler. See
“com.sun.identity.liberty.ws.disco.plugins.DiscoEntryHandler Interface” on

page 199.

Classes For ResourceIDMapper Plug-in

The value of this attribute is a list of classes that generate identifiers for a resource offering
configured for an organization or role.
com.sun.identity.liberty.ws.interfaces.ResourceIDMapper isan interface used to map a
user identifier to the resource identifier associated with it. The Discovery Service provides two
implementations for this interface:

® com.sun.identity.liberty.ws.disco.plugins.Default64ResourceIDMapper assumes
the format to be providerID +"/" + the Base64 encoded userIDs

® com.sun.identity.liberty.ws.disco.plugins.DefaultHexResourceIDMapper assumes
the format to be providerID + "/" + the hex string of userIDs

Different implementations may also be developed with the interface and added as a value of this
attribute by clicking New and defining the following attributes:

= Provider ID takes as a value a URI that points to the Discovery Service. Use the format
http://host:port/amserver/Liberty/disco. See “Provider ID” on page 181.

=]D Mapper takes as a value the class name and path of the implementing class.

See “com.sun.identity.liberty.ws.interfaces.ResourceIDMapper Interface” on page 202.

Authenticate Response Message

If enabled, the service authenticates the response message. By default, the function is not
enabled.

SessionContextStatement for Bootstrapping

If enabled, this attribute specifies whether to generate a SessionContextStatement for
bootstrapping. A SessionContextStatement conveys the session status of an entity. By default,
this function is not enabled.

Chapter 8 - Discovery Service 183

Storing Resource Offerings

EncryptNameIdentifierin Session Context for
Bootstrapping

If enabled, the service encrypts the name identifier in a SessionContextStatement. By default,
this function is not enabled.

Implied Resource

If enabled, the service does not generate a resource identifier for bootstrapping. By default, this
function is not enabled.

Resource Offerings for Bootstrapping

This attribute defines a resource offering for bootstrapping a service. After single sign-on (SSO),
this resource offering and its associated credentials will be sent to the client in the SSO assertion.
Only one resource offering is allowed for bootstrapping. The value of the Resource Offerings for
Bootstrapping attribute is a default value configured during installation. If you want to define a
new resource offering, you must first delete the existing resource offering, then click New to
define the attributes for a new resource offering. If you want to edit an existing resource
offering, click the name of the existing Service Type to modify the attributes. For more
information, see “Storing a Resource Offering for Discovery Service Bootstrapping” on

page 193.

Storing Resource Offerings

184

A resource offering defines an association between a type of identity data and a URI to the
WSDL file that provides information about obtaining access to the data. In Access Manager, a
resource offering can be stored as a user attribute or as a dynamic attribute. Storing resource
offerings within a user profile supports both DiscoveryLookup and DiscoveryUpdate
operations. Storing resource offerings within a service and assigning that service to a realm or
role supports only the DiscoveryLookup operation using the discovery protocol. (Updates can
still be done using the Access Manager Console.) More information is provided in the following
sections:

= “Storing Resource Offerings as User Attributes” on page 185
= “Storing Resource Offerings as Dynamic Attributes” on page 187
= “Storing a Resource Offering for Discovery Service Bootstrapping” on page 193

Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

Storing Resource Offerings

10

11

12

Storing Resource Offerings as User Attributes

Resource offerings can be stored as an attribute under a user’s profile using the Lightweight
Directory Access Protocol (LDAP). Storing resource offerings within a user profile supports
both DiscoveryLookup and DiscoveryUpdate operations. The following procedure explains
how to access and create a user’s resource offerings.

To Store a Resource Offering as a User Attribute

In the Access Manager Console, click the Access Control tab.

Select the name of the realm that contains the user profile you want to modify.
Select Subjects to access user information.

Select the name of the user profile that you want to modify.

Select Services to access the user's services.

Click Add to configure the Discovery Service for this user.

Select Discovery Service and click Next.

The Discovery Service is added to the user's services.
Select General to access the user's User Discovery Resource Offering attribute.

Click Edit.

A User Discovery Resource Offering window opens.
Click Add in the User Discovery Resource Offering window.

(Optional) Type a value for the Resource ID Attribute.
This field defines an identifier for the resource offering.

Type the Resource ID Value.

This field defines the resource identifier. A resource identifier is a URI registered with the
Discovery Service that point to a particular discovery resource. It is generated by the profile
provider. The value of this attribute must not be a relative URI and should contain a domain
name that is owned by the provider hosting the resource. If a discovery resource is exposed in
multiple Resource Offerings, the Resource ID Value for all of those resource offerings would be
the same. An example of a valid Resource ID value is
http://profile-provider.com/profiles/14m@B82k15csaUxs.

Chapter 8 - Discovery Service 185

Storing Resource Offerings

186

13

14

15

16

Tip-urn:libery:isf:implied- resource canbe used as a Resource ID Value when only one
resource can be operated upon at the service instance being contacted. The URI only implicitly
identifies the resource in question. In some circumstances, the use of this resource identifier can
eliminate the need for contacting the discovery service to access the resource.

(Optional) Enter a description of the resource offering in the Description field.

Type a URI for the value of the Service Type attribute.
This URI defines the type of service.

Tip - It is recommended that the value of this attribute be the targetNamespace URI defined in
the abstract WSDL description for the service. An example of a valid URI is
urn:liberty:id-sis-pp:2003-08.

Type a URI for the value of the Provider ID attribute.

This attribute contains the URI of the provider of the service instance. This information is
useful for resolving trust metadata needed to invoke the service instance. A single physical
provider may have multiple provider IDs. An example of a valid URI is
http://profile-provider.com.

Note - The provider represented by the URI in the Provider ID attribute must also have a class
entry in the ResourceIDMapper attribute. For more information, see “Classes For
ResourceIDMapper Plug-in” on page 183.

Click Add Description to define the Service Description.

For each resource offering, at least one service description must be created.

a. Select the values for the Security Mechanism ID attribute to define how a web service client
can authenticate to a web service provider.

This field lists the security mechanisms that the service instance supports. Select the security
mechanisms that you want to add and click Add. To prioritize the list, select the mechanism
and click Move Up or Move Down.

b. Type avalue forthe End Point URL.

This value is the URL of the SOAP-over-HTTP endpoint. The URI scheme must be HTTP
or HTTPSasin https://soap.profile-provider.com/soap.

¢. (Optional) Type a value for the SOAP Action.

This value is the equivalent of the wsdlsoap: soapAction attribute of the
wsdlsoap:operation element in the service's concrete WSDL-based description.

Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

Storing Resource Offerings

17

18

19

20

21

d. Click OK to complete the configuration.

Check the Options box if there are no options or add a URI to specify options for the resource
offering.

This field lists the options that are available for the resource offering. Options provide hints to a
potential requestor about the availability of certain data or operations to a particular offering.
The set of possible URIs are defined by the service type, not the Discovery Service. If no option
is specified, the service instance does not display any available options. For a standard set of
options, see the Liberty ID-SIS Personal Profile Service Specification.

Select a directive for the resource offering.

Directives are special entries defined in SOAP headers that can be used to enforce policy-related
decisions. You can choose from the following:

= GenerateBearerToken specifies that a bearer token be generated.

= AuthenticateRequester mustbe used with any service description that use SAML for
message authentication.

= EncryptResourcelD specifies that the Discovery Service encrypt the resource ID.

= AuthenticateSessionContext is specified when a Discovery Service provider includes a
SAML assertion containing a SessionContextStatement in any future QueryResponse
messages.

= AuthorizeRequester is specified when a Discovery Service provider wants to include a
SAML assertion containing a ResourceAccessStatement in any future QueryResponse
messages.

If you want to associate a directive with one or more service descriptions, select the check box
for that Description ID. If no service descriptions are selected, the directive is applied to all
description elements in the resource offering.

Click OK.
Click Close to close the User Discovery Resource Offering window.

Click Save to save the configuration.

Storing Resource Offerings as Dynamic Attributes

Due to the repetition inherent in storing discovery entries as user attributes, Access Manager
has established the option of storing a discovery entry as a dynamic attribute within a role or a
realm. The role or realm can then be assigned to an identity-related object, making the entry
available to all users within the object. Unlike storing a discovery entry as a user attribute, this
scenario only supports the DiscoveryLookup operation.

Chapter 8 - Discovery Service 187

http://www.projectliberty.org/specs/liberty-idsis-pp-v1.0.pdf

Storing Resource Offerings

188

10

11

12

13

14

15

There are two ways in which you can store discovery entries as dynamic attributes. You can
store them in a realm or in a role. The following sections describe the procedures:

= “To Store Resource Offerings as Dynamic Attributes in a Realm” on page 188
= “To Store Resource Offerings as Dynamic Attributes in a Role” on page 190

To Store Resource Offerings as Dynamic Attributes in a Realm

To create a discovery entry as a dynamic attribute in a realm, the Discovery Service must first be
added and a template created.

In the Access Manager Console, click the Access Control tab.
Select the name of the realm you want to modify.
Select Services to access the realm's services.

Click Add to add the Discovery Service to the realm.

A list of available services is displayed.

Select Discovery Service and click Next to add the service.

A list of added services is displayed including the Discovery Service.
Select Subjects to access user information.

Select the name of the user you want to modify.

Select Services to add the Discovery Service to the user.

Click Add to add the Discovery Service to the user.

A list of available services is displayed.

Select Discovery Service and click Next to add the service.
A list of added services is displayed including the Discovery Service.

Using the path displayed on top of the Access Manager Console, click the name of the realm.
Click Services to access the realm's services.

Click Add.

Select Discovery Service and click Next to add the service.

Click Discovery Service to add a resource offering to the service.

Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

Storing Resource Offerings

16

17

18

19

20

21

Click Add to add a resource offering.
(Optional) Enter a description of the resource offering in the Description field.

Type a URI for the value of the Service Type attribute.

This URI defines the type of service. It is recommended that the value of this attribute be the
targetNamespace URI defined in the abstract WSDL description for the service. An example of
avalid URIisurn:liberty:id-sis-pp:2003-08.

Type a URI for the value of the Provider ID attribute.

The value of this attribute contains the URI of the provider of the service instance. This
information is useful for resolving trust metadata needed to invoke the service instance. A
single physical provider may have multiple provider IDs. An example of a valid URI is
http://profile-provider.com.

Note - The provider represented by the URI in the Provider ID attribute must also have an entry
in the ResourceIDMapper attribute. For more information, see “Classes For ResourceIDMapper
Plug-in” on page 183.

Click Add Description to define the Service Description.

For each resource offering, at least one service description must be created.

a. Select the values for the Security Mechanism ID attribute to define how a web service client
can authenticate to a web service provider.

This field lists the security mechanisms that the service instance supports. Select the security
mechanisms that you want to add and click Add. To prioritize the list, select the mechanism
and click Move Up or Move Down.

b. Type avalue for the End Point URL.

This value is the URL of the SOAP-over-HTTP endpoint. The URI scheme must be HTTP
or HTTPS asin https://soap.profile-provider.com/soap.

c. (Optional) Type a value for the SOAP Action.

This value is the equivalent of the wsdlsoap: soapAction attribute of the
wsdlsoap:operation element in the service's concrete WSDL-based description.

d. Click OK to complete the configuration.

Check the Options box if there are no options or add a URI to specify options for the resource
offering.

This field lists the options that are available for the resource offering. Options provide hints to a
potential requestor about the availability of certain data or operations to a particular offering.

Chapter 8 - Discovery Service 189

Storing Resource Offerings

190

22

23

24

25

The set of possible URIs are defined by the service type, not the Discovery Service. If no option
is specified, the service instance does not display any available options. For a standard set of
options, see the Liberty ID-SIS Personal Profile Service Specification.

Select a directive for the resource offering.

Directives are special entries defined in SOAP headers that can be used to enforce policy-related
decisions. You can choose from the following:

® GenerateBearerToken specifies that a bearer token be generated.

= AuthenticateRequester must be used with any service description that use SAML for
message authentication.

= EncryptResourcelID specifies that the Discovery Service encrypt the resource ID.

= AuthenticateSessionContext is specified when a Discovery Service provider includes a
SAML assertion containing a SessionContextStatement in any future QueryResponse
messages.

= AuthorizeRequester is specified when a Discovery Service provider wants to include a
SAML assertion containing a ResourceAccessStatement in any future QueryResponse
messages.

If you want to associate a directive with one or more service descriptions, select the check box
for that Description ID. If no service descriptions are selected, the directive is applied to all
description elements in the resource offering.

Click OK.

Click Close to close the Discovery Resource Offering window.

Click Save to save the configuration.

To Store Resource Offerings as Dynamic Attributes in a Role

To create a discovery entry as a dynamic attribute in a role, the Discovery Service must first be
added and a template created.

In the Access Manager Console, click the Access Control tab.
Select the name of the realm you want to modify.

Select Subjects to access the realm's identity information.
Select Role to access the realm's role information.

Select the name of the role you want to modify.

Alternately, you can create a new role and then select the name of this new role.

Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

http://www.projectliberty.org/specs/liberty-idsis-pp-v1.0.pdf

Storing Resource Offerings

10

11

12

13

Under Services, click Add to add the Discovery Service to therole.

A list of available services is displayed.

Select Discovery Service and click Next to add the service.

A list of added services is displayed including the Discovery Service.

Click Discovery Service to add a resource offering to the service.

Click Add.

(Optional) Enter a description of the resource offering in the Description field.

Type a URI for the value of the Service Type attribute.

This URI defines the type of service. It is recommended that the value of this attribute be the
targetNamespace URI defined in the abstract WSDL description for the service. An example of
avalid URIisurn:liberty:id-sis-pp:2003-08.

Type a URI for the value of the Provider ID attribute.

The value of this attribute contains the URI of the provider of the service instance. This
information is useful for resolving trust metadata needed to invoke the service instance. A
single physical provider may have multiple provider IDs. An example of a valid URI is
http://profile-provider.com.

Note - The provider represented by the URI in the Provider ID attribute must also have an entry
in the ResourceIDMapper attribute. For more information, see “Classes For ResourceIDMapper
Plug-in” on page 183.

Click Add Description to define the Service Description.

For each resource offering, at least one service description must be created.

a. Select the values for the Security Mechanism ID attribute to define how a web service client
can authenticate to a web service provider.

This field lists the security mechanisms that the service instance supports. Select the security
mechanisms that you want to add and click Add. To prioritize the list, select the mechanism
and click Move Up or Move Down.

b. Type avalue for the End Point URL.

This value is the URL of the SOAP-over-HTTP endpoint. The URI scheme must be HTTP
or HTTPS asin https://soap.profile-provider.com/soap.

Chapter 8 - Discovery Service 191

Storing Resource Offerings

192

14

15

16

17

18

¢. (Optional) Type a value for the SOAP Action.

This value is the equivalent of the wsdlsoap: soapAction attribute of the
wsdlsoap:operation element in the service's concrete WSDL-based description.

d. Click OKto complete the configuration.

Check the Options box if there are no options or add a URI to specify options for the resource
offering.

This field lists the options that are available for the resource offering. Options provide hints to a
potential requestor about the availability of certain data or operations to a particular offering.
The set of possible URIs are defined by the service type, not the Discovery Service. If no option
is specified, the service instance does not display any available options. For a standard set of
options, see the Liberty ID-SIS Personal Profile Service Specification.

Select a directive for the resource offering.

Directives are special entries defined in SOAP headers that can be used to enforce policy-related
decisions. You can choose from the following:

= GenerateBearerToken specifies that a bearer token be generated.

= AuthenticateRequester must be used with any service description that use SAML for
message authentication.

= EncryptResourcelID specifies that the Discovery Service encrypt the resource ID.

= AuthenticateSessionContext is specified when a Discovery Service provider includes a
SAML assertion containing a SessionContextStatement in any future QueryResponse
messages.

® AuthorizeRequester is specified when a Discovery Service provider wants to include a
SAML assertion containing a ResourceAccessStatement in any future QueryResponse
messages.

If you want to associate a directive with one or more service descriptions, select the check box
for that Description ID. If no service descriptions are selected, the directive is applied to all
description elements in the resource offering.

Click OK.

Click Close to close the Discovery Resource Offering window.

Click Save to save the configuration.

Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

http://www.projectliberty.org/specs/liberty-idsis-pp-v1.0.pdf

Storing Resource Offerings

Storing a Resource Offering for Discovery Service
Bootstrapping

Before a WSC can contact the Discovery Service to obtain a resource offering, the WSC needs to
discover the Discovery Service. Thus, an initial resource offering for locating the Discovery
Service is sent back to the WSC in a SAML assertion generated during authentication. The
following procedure describes how to configure a global attribute for bootstrapping the
Discovery Service. For more information on bootstrapping the Discovery Service, see
“Resource Offerings for Bootstrapping” on page 184.

To Store a Resource Offering for Discovery Service Bootstrapping
In the Access Manager Console, select the Web Services tab.
Under Web Services, click the Discovery Service tab.

Choose New under the Resource Offerings for Bootstrapping Resources attribute.

By default, the resource offering for bootstrapping the Discovery Service is already configured.
In order to create a new resource offering, you must first delete the default resource offering.

(Optional) Type a description of the resource offering.

Enter a URI for the value of the Service Type attribute.

This field defines the type of service. It is recommended that the value of this attribute be the
targetNamespace URI defined in the abstract WSDL description for the service. An example of
avalid URIisurn:liberty:disco:2003-08.

Enter a URI for the value of the Provider ID attribute.

This attribute contains the URI of the provider of the service instance. This is useful for
resolving trust metadata needed to invoke the service instance. A single physical provider may
have multiple provider IDs. An example of a valid URIis http://sample_disco.com.

Note - The provider represented by the URI in the Provider ID attribute must also have an entry
in the Classes for ResourcelDMapper Plugin attribute. For more information, see “Classes For
ResourceIDMapper Plug-in” on page 183.

Chapter 8 - Discovery Service 193

Storing Resource Offerings

194

Click Add Description to define a security mechanism ID.

For each resource offering, at least one service description must be created.

a. Select the values for the Security Mechanism ID attribute to define how a web service client
can authenticate to a web service provider.

This field lists the security mechanisms that the service instance supports. Select the security
mechanisms you wish to add and click the Add button. To arrange the priority of the list,
select the mechanism and use the Move Up or Move Down buttons.

b. Type a value for the End Point URL.

This value is the URL of the SOAP-over-HTTP endpoint. The URI scheme must be HTTP
or HTTPSasin https://soap.profile-provider.com/soap.

c. (Optional) Type a value for the SOAP action.

This field contains the equivalent of the wsdlsoap: soapAction attribute of the
wsdlsoap:operation element in the service's concrete WSDL-based description.

d. Click OK to save the configuration.

Check the Options box if there are no options or add a URI to specify options for the resource
offering.

This field lists the options that are available for the resource offering. Options provide hints to a
potential requestor about the availability of certain data or operations to a particular offering.
The set of possible URIs are defined by the service type, not the Discovery Service. If no option
is specified, the service instance does not display any available options. For a standard set of
options, see the Liberty ID-SIS Personal Profile Service Specification.

Select a directive for the resource offering.

Directives are special entries defined in SOAP headers that can be used to enforce policy-related
decisions. You can choose from the following:

= GenerateBearerToken specifies that a bearer token be generated.

= AuthenticateRequester must be used with any service description that use SAML for
message authentication.

= EncryptResourcelID specifies that the Discovery Service encrypt the resource ID.

= AuthenticateSessionContext is specified when a Discovery Service provider includes a
SAML assertion containing a SessionContextStatement in any future QueryResponse
messages.

® AuthorizeRequester is specified when a Discovery Service provider wants to include a
SAML assertion containing a ResourceAccessStatement in any future QueryResponse
messages.

Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

http://www.projectliberty.org/specs/liberty-idsis-pp-v1.0.pdf

Generating Security Tokens

If you want to associate a directive with one or more service descriptions, select the check box
for that Description ID. If no service descriptions are selected, the directive is applied to all
description elements in the resource offering.

10 Click OKto complete the configuration.

Generating Security Tokens

In general, a discovery service and an identity provider are hosted on the same machine.
Because the identity provider hosting the Discovery Service might be fulfilling other roles for an
identity (such as a Policy Decision Point or an Authentication Authority), it can be configured
to provide the requesting entity with security tokens. The Discovery Service can include a
security token (inserted into a SOAP message header) in a DiscoveryLookup response. The
token can then be used as a credential to invoke the service returned with it.

v To Configure the Discovery Service to Generate
Security Tokens

After completing the following procedure, you can test the functionality by running the
samples. See “Web Services Framework Samples” on page 269 for information.

1 Generate the keystore and certificate aliases for the machines that are hosting the Discovery
Service, the WSP and the WSC.

Access Manager uses a Java keystore for storing the public and private keys so, if this is a new
deployment, you might need to generate one. keystore.html in
AccessManager-base/SUNWam/samples/saml/xmlsig/ has information on accomplishing this
using keytool, the key and certificate management utility supplied with the Java Platform,
Standard Edition. In short, keytool generates key pairs as separate key entries (one for a public
key and the other for its associated private key). It wraps the public key into an X.509 self-signed
certificate (one for which the issuer/signer is the same as the subject), and storesitas a
single-element certificate chain. Additionally, the private key is stored separately, protected by a
password, and associated with the certificate chain for the corresponding public key. All public
and private keystore entries are accessed via unique aliases.

2 Update the values of the following key-related properties in the AMConfig.properties files of
the appropriate deployed instances of Access Manager.

AMConfig.properties islocated in /etc/opt/SUNWam/config/.

Chapter 8 - Discovery Service 195

Generating Security Tokens

Note - The same property might have already been edited depending on the deployment
scenario.

a. Update the values of the following key-related properties in the AMConfig.properties files
on the machine that hosts the Discovery Service.

com.sun.identity.saml.xmlsig.keystore defines the location of the keystore file.

com.sun.identity.saml.xmlsig.storepass defines the location of the file that
contains the password used to access the keystore file.

com.sun.identity.saml.xmlsig.keypass defines thelocation of the file that contains
the password used to protect the private key of a generated key pair.

com.sun.identity.liberty.ws.ta.certalias defines the certificate alias used by the
Discovery Service to sign SAML assertions.

com.sun.identity.liberty.ws.wsc.certalias defines the certificate alias used by the
Discovery Service to sign the protocol response.

b. Update the values of the following key-related properties in the AMConfig.properties files
on the machines that acts as the WSP.

com.sun.identity.saml.xmlsig.keystore defines thelocation of the keystore file.

com.sun.identity.saml.xmlsig.storepass defines the location of the file that
contains the password used to access the keystore file.

com.sun.identity.saml.xmlsig.keypass defines the location of the file that contains
the password used to protect the private key of a generated key pair.

com.sun.identity.liberty.ws.wsc.certalias defines the certificate alias used for
signing the WSP protocol responses.

com.sun.identity.liberty.ws.trustedca.certaliases defines the certificate alias
and the Provider ID list on which the WSP is trusting.

c. Update the values of the following key-related properties in the AMConfig.properties files
on the machine that acts as the WSC.

com.sun.identity.saml.xmlsig.keystore defines thelocation of the keystore file.

com.sun.identity.saml.xmlsig.storepass defines the location of the file that
contains the password used to access the keystore file.

com.sun.identity.saml.xmlsig.keypass defines thelocation of the file that contains
the password used to protect the private key of a generated key pair.

com.sun.identity.liberty.ws.wsc.certalias defines the certificate alias used by
web service clients for signing protocol requests.

196 Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

Generating Security Tokens

Note - The com.sun.identity.liberty.ws.wsc.certalias property must be added to
the AMConfig.properties file.

Configure each identity provider and service provider as an entity using the Access Manager
Federation module.

This entails configuring a entity for each provider using the Access Manager Console or loading
an XML metadata file using amadmin. See “Entities” on page 80 for information on the former
and Chapter 1, “The amadmin Command Line Tool,” in Sun Java System Access Manager 7.1
Administration Reference for information on the latter.

Note - Be sure to configure each provider's entity so that all providers in the scenario are defined
as Trusted Providers.

Establish provider trust between the entities by creating an authentication domain using the
Access Manager Federation module.

See “Authentication Domains” on page 108.

Change the default value of the Provider ID for the Discovery Service on the machine where the
Discovery Service is hosted to the value that reflects the previously loaded metadata.

a. Clickthe Web Services tab from the Access Manager Console.
b. Click the Discovery Service tab under Web Services.

¢. Change the default value of the Provider ID from
protocol: / /host:port/deployuri/Liberty/disco.

Note - If using the samples, make sure that the value of Provider ID in discovery-modify.jspis
changed, if necessary, before the WSP registers with the Discovery Service.

Change the default value of the Provider ID for the Liberty Personal Profile Service on the
machine where the Liberty Personal Profile Service is hosted to the value that reflects the
previously loaded metadata.

a. Clickthe Web Services tab from the Access Manager Console.

b. Click the Liberty Personal Profile Service tab under Web Services.

¢. Change the default value of the Provider ID from
protocol://host: port/deployuri/Liberty/idpp.

Register a resource offering for the WSP using either of the following methods.

Chapter 8 - Discovery Service 197

Discovery Service APIs

= Access Manager Console

See “Storing Resource Offerings” on page 184 for information on registering a resource
offering using the Access Manager Console.

= Client API

See discovery-modify.jsp in AccessManager-base/samples/phase2/wsc which calls the
API for registering a resource offering.

Also, make sure that the appropriate directives are chosen.

m For SAML Bearer token use GenerateBearerToken or AuthenticateRequester.
= For SAML Token (Holder of key) use AuthenticateRequester or AuthorizeRequester.

Discovery Service APIs

198

Access Manager contains several Java packages that are used by the Discovery Service. They
include:

® com.sun.identity.liberty.ws.disco includes a client API that provides interfaces to
communicate with the Discovery Service. See “Client APIs in
com.sun.identity.liberty.ws.disco” on page 198.

® com.sun.identity.liberty.ws.disco.plugins includes an interface that can be used to
develop plug-ins. The package also contains some default plug-ins. See
“com.sun.identity.liberty.ws.disco.plugins.DiscoEntryHandler Interface” on
page 199.

® com.sun.identity.liberty.ws.interfaces includes interfaces that can be used to
implement functionality common to all Liberty-enabled identity services. Several
implementations of these interfaces have been developed for the Discovery Service. See
“com.sun.identity.liberty.ws.interfaces.Authorizer Interface” on page 200 and
“com.sun.identity.liberty.ws.interfaces.ResourceIDMapper Interface” on page 202.

Note - Additional information is in the Java API Reference in
/AccessManager-base/SUNWam/docs or on docs.sun.com. Information about the
com.sun.identity.liberty.ws.common package isin “Common Service Interfaces” on
page 256 in Chapter 11, “Application Programming Interfaces”

Client APIsin com.sun.identity.liberty.ws.disco

The following table summarizes the client APIs in the package
com.sun.identity.liberty.ws.disco. For more information, including methods and their
syntax and parameters, see the Java API Reference in /AccessManager-base/SUNWam/docs or on
docs.sun.com.

Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

Discovery Service APIs

TABLE8-2 Discovery Service Client APIs

Class Description

Description Represents a DescriptionType element of a service instance.

Directive Represents a discovery service DirectiveType element.

DiscoveryClient Provides methods to send Discovery Service queries and
modifications.

EncryptedResourceID Represents an EncryptionResourcelD element for the Discovery
Service.

InsertEntry Represents an Insert Entry for Discovery Modify request.

Modify Represents a discovery modify request.

ModifyResponse Represents a discovery response to a modify request.

Query Represents a discovery Query object.

QueryResponse Represents a response to a discovery query request.

RemoveEntry Represents a remove entry element for the discovery modify
request.

RequestedService Enables the requester to specify that all the resource offerings
returned must be offered through a service instance that complys
with one of the specified service types.

ResourceID Represents a Discovery Service Resource ID.

ResourceOffering Associates a resource with a service instance that provides access
to that resource.

ServiceInstance Describes a web service at a distinct protocol endpoint.

com.sun.identity.liberty.ws.disco.
plugins.DiscoEntryHandler Interface

This interface is used to get and set discovery entries for a user. A number of default
implementations are provided, but if you want to handle this function differently, implement
this interface and set the implementing class as the value of the Entry Handler Plugin Class
attribute as discussed in “Entry Handler Plug-in Class” on page 182. The default
implementations of this interface are described in the following table.

Chapter8 - Discovery Service

199

Discovery Service APIs

TABLES-3 Implementationsof com.sun.identity.liberty.ws.disco.plugins.DiscoEntryHandler

Class Description
UserDiscoEntryHandler Gets or modifies discovery entries stored in the user’s
entry as a value of the

sunIdentityServerDiscoEntries attribute. The
UserDiscoEntryHandler implementation is used in
business-to-consumer scenarios such as the Liberty
Personal Profile Service.

DynamicDiscoEntryHandler Gets discovery entries stored as a value of the
sunIdentityServerDynamicDiscoEntries dynamic
attribute in the Discovery Service. Modification of
these entries is not supported and always returns
false. The resource offering is saved in an
organization or arole. The
DynamicDiscoEntryHandler implementation is used
in business-to-business scenarios such as the Liberty
Employee Profile service.

UserDynamicDiscoEntryHandler Gets a union of the discovery entries stored in the user
entry sunIdentityServerDiscoEntries attribute
and discovery entries stored in the Discovery Service
sunIdentityServerDynamicDiscoEntries attribute.
It modifies only discovery entries stored in the user
entry. The UserDynamicDiscoEntryHandler
implementation can be used in both
business-to-consumer and business-to-business
scenarios.

com.sun.identity.liberty.ws.interfaces.
Authorizer Interface

This interface is used to enable an identity service to check the authorization of a WSC. The
DefaultDiscoAuthorizer class is the default implementation of this interface. The class uses
the Access Manager Policy Service for creating and applying policy definitions. Policy
definitions for the Discovery Service are configured using the Access Manager Console.

Note - The Policy Service looks for an S50Token defined for Authenticated Users or Web Service
Clients. For more information on this and the Policy Service in general, see the Sun Java System
Access Manager 7.1 Administration Guide.

200 Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

Discovery Service APIs

10

11

12

13

14

15

16

17

To Configure Discovery Service Policy Definitions
Inthe Access Manager Console, click the Access Control tab.
Select the name of the realm in which the policy definitions will be configured.
Select Policies to access policy configurations.

Click New Policy to add a new policy definition.

Type a name for the policy.

(Optional) Enter a description for the policy.

(Optional) Select the check box next to Active.

Click New to add rules to the policy definition.

Select Discovery Service for the rule type and click Next.

Type a name for the rule.

Type aresource on which the rule acts.

The Resource Name field uses the form ServiceType + RESOURCE_SEPARATOR +
ProviderID. For example, urn: liberty:id-sis-pp:2003-08;http://example. com.

Select an action and appropriate value for the rule.

Discovery Service policies can only look up or update data.

Click Finish to configure the rule.

The com.sun.identity.liberty.ws.interfaces.Authorizer interface can be implemented
by any web service in Access Manager. For more information, see “Common Service Interfaces”
on page 256 and the Java API Reference in /AccessManager-base/SUNWam/docs or on
docs.sun.com.

Click New to add subjects to the policy definition.

Select the subject type and click Next.

Type a name for the group of subjects.

(Optional) Click the check box if this is an exclusive group.

Chapter 8 - Discovery Service 201

Discovery Service APIs

202

18

19

20

21

22

23

24

25

26

27

28

29

Select the users and click to add them to the group.
Click Finish to return to the policy definition screen.
Click New to add conditions to the policy definition.
Select the condition type and click Next.

Type values for the displayed attributes.

For more information, see the Sun Java System Access Manager 7.1 Administration Guide.
Click Finish to return to the policy definition screen.

Click New to add response providers to the policy definition.

Type a name for the response provider.

(Optional) Add values for the StaticAttribute.

(Optional) Add values for the DynamicAttribute.

Click Finish to return to the policy definition screen.

Click Create to finish the policy configuration.

com.sun.identity.liberty.ws.interfaces.
ResourceIDMapper Interface

This interface is used to map a user ID to the resource identifier associated with it. Access
Manager provides two implementations of this interface.

® com.sun.identity.liberty.ws.disco.plugins.Default64ResourceIDMapper assumes
the format to be providerID +"/" + the Base64 encoded userIDs

®m com.sun.identity.liberty.ws.disco.plugins.DefaultHexResourceIDMapper assumes
the format to be providerID +"/" + the hex string of userIDs

A different implementation of the interface may be developed. The implementation class
should be given to the provider that hosts the Discovery Service. The mapping between the
providerID and the implementation class can be configured through the “Classes For
ResourceIDMapper Plug-in” on page 183 attribute.

Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

Discovery Service Sample

Note - The com.sun.identity.liberty.ws.interfaces.ResourceIDMapper interface is
common to all identity services in Access Manager not only the Discovery Service. For more
information, see “Common Service Interfaces” on page 256 and the Java API Reference in
/AccessManager-base/SUNWam/docs or on docs.sun.com.

Access the Discovery Service

The URL to gain access to the Discovery Service is:

http://SERVER_HOST:SERVER_PORT/SERVER_DEPLOY_URI/Liberty/disco

This URL is normally used by the Access Manager client API to access the service. For example,
the Access Manager public Discovery Service client,
com.sun.identity.liberty.ws.disco.DiscoveryClient uses this URL to query and modify
the resource offerings of an identity.

Discovery Service Sample

A sample that shows the process for querying and modifying the Discovery Service is included
with Access Manager in the / AccessManager-base/SUNWam/samples/phase2/wsc directory.
The sample initially shows how to deploy and run a WSC. The final portion queries the
Discovery Service and modifies identity data in the Liberty Personal Profile Service. For more
information, see Appendix A, “Liberty-based and SAML Samples”

Chapter 8 - Discovery Service 203

204

L K R 4 CHAPTER 9

SOAP Binding Service

™

Sun™ Java System Access Manager contains an implementation of the Liberty ID-WSF SOAP
Binding Specification from the Liberty Alliance Project. The specification defines a transport
layer for sending and receiving SOAP messages.

This chapter covers the following topics:

= “SOAP Binding Service Overview” on page 205
= “SOAP Binding Process” on page 206

= “SOAP Binding Service Attributes” on page 207
= “SOAP Binding Service Package” on page 209

SOAP Binding Service Overview

The Liberty Identity Web Services Framework (Liberty ID-WSF) and Liberty Identity Service
Interface Specifications (Liberty ID-SIS) components of the Liberty Alliance Project
specifications use messages to convey identity data between providers. Access Manager has
implemented the Liberty ID-WSF SOAP Binding Specification (Liberty ID-WSE-SBS) as the
method of transport for this purpose. The specification defines SOAP as the binding to the
Hypertext Transport Protocol (HTTP), which is itself layered onto the TCP/IP stack.

Note - For more information, see the Liberty ID-WSF SOAP Binding Specification.

The following sections contain additional information about the SOAP Binding Service.

= “XML Service File” on page 206
= “SOAPReceiver Servlet” on page 206
= “SOAP Binding Service APIs” on page 206

205

http://www.projectliberty.org/specs/liberty-idwsf-soap-binding-v1.1.pdf

SOAP Binding Process

XML Service File

The Access Manager SOAP Binding Service is defined using the XML service file
amSOAPBinding.xml. This file defines the attributes for the SOAP Binding Service which can be
managed through the Access Manager Console or the XML file.

Note - For more information on service files, see the Sun Java System Access Manager 7.1
Administration Guide.

The Liberty ID-WSF-SBS also defines an XML schema for use in building the SOAP messages.
More information about the XSD schemas can be found in “Schema Files and Service Definition
Documents” on page 51.

SOAPReceiver Servlet

The SOAPReceiver servlet receives a Message object from a web service client (WSC), verifies
the signature, and constructs its own Message object for processing by Access Manager. The
SOAPReceiver then invokes the correct request handler class to pass this second Message object
on to the appropriate Access Manager service for a response. When the response is generated,
the SOAPReceiver returns this Message object back to the WSC. More information can be
found in the “SOAP Binding Process” on page 206.

SOAP Binding Service APIs

The Access Manager SOAP Binding Service includes a Java package named
com.sun.identity.liberty.ws.soapbinding. For more information, see “SOAP Binding
Service Package” on page 209.

SOAP Binding Process

206

In the SOAP Binding process, an identity service invokes the Message class (contained in the
client-side API) to construct a request. (As clients of the SOAP Binding Service, the Access
Manager Discovery Service, implemented Data Services Template services (including the
Liberty Personal Profile Service and the sample Employee Profile Service), and the
Authentication Web Service all use the SOAP Binding Service client-side API.) The Message
object will contain any default or non-default SOAP headers as well as the SOAP body
containing the request(s). Once generated, the WSC invokes the sendRequest method and
sends the Message object to the SOAP endpoint URL on the server side. The URL s, in effect, a
servlet called the SOAPReceiver. The SOAPReceiver receives the Message, verifies the signature,
and constructs its own Message object. The SOAPReceiver then invokes the appropriate
Request Handler class to send this second message to the corresponding service for a response.

Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

SOAP Binding Service Attributes

Note - com.sun.identity.liberty.ws.soapbinding.RequestHandler isan interface that
must be implemented on the server side by any Liberty-based web service using the SOAP
Binding Service. For more information, see “Request Handler List” on page 207.

The web service processes the second message, generates a response, and sends that response
back to the SOAPReceiver which, in turn, returns the response back to the WSC for processing.

Note - Before invoking a corresponding service, the SOAP framework might also do the
following:

= Authenticate the sender identity to verify the credentials of a WSC peer, probably by
verifying its client certificate.

= Authenticate the invoking identity to verify the credentials of a WSC on behalf of a user to
verify whether the user has been authenticated. This depends on the security authentication
profile.

= Granular authorization to authorize the WSC before processing a service request.

SOAP Binding Service Attributes

The SOAP Binding Service attributes are global attributes. The values of these attributes are
carried across the Access Manager configuration and inherited by every organization.

Note - For information about the types of attributes used in Access Manager, see the Sun Java
System Access Manager 7.1 Technical Overview.

Attributes for the SOAP Binding Service are defined in the amSOAPBinding.xml service file. The
SOAP Binding Service attributes are as follows:

= “Request Handler List” on page 207
= “Web Service Authenticator” on page 208
= “Supported Authentication Mechanisms” on page 208

Request Handler List

The Request Handler List stores information about the classes implemented from the
com.sun.identity.liberty.ws.soapbinding.RequestHandler interface. The SOAP Binding
Service provides the interface to process requests and return responses. The interface must be
implemented on the server side for each Liberty-based web service that uses the SOAP Binding
Service.

Chapter9 - SOAP Binding Service 207

SOAP Binding Service Attributes

208

To add a new implementation, click New and define values for the following parameters.

Key Parameter

The Key parameter is the last part of the URI path to a SOAP endpoint. The SOAP endpoint in
Access Manager is the SOAPReceiver servlet. The URI to the SOAPReceiver uses the format
protocol://host: port/deloy-uri/Liberty/key.If you define disco as the Key, the URI path to
the SOAPReceiver for the corresponding Discovery Service would be

protocol: / /host:port/amserver/Liberty/disco.

Note - Different service clients must use different keys when connecting to the SOAPReceiver.

Class Parameter

The Class parameter specifies the name of the class implemented from
com.sun.identity.liberty.ws.soapbinding.RequestHandler for the particular web
service. For example, class=com.example.identity.liberty.ws.disco.DiscoveryService.

SOAP Action Parameter

The optional SOAP Action can be used to indicate the intent of the SOAP HTTP request. The
SOAP processor on the receiving system can use this information to determine the ultimate
destination for the service. The value is a URIL No defined value indicates no intent.

Note - SOAP places no restrictions on the format or specificity of the URI or that it is resolvable.

Web Service Authenticator

This attribute takes as a value the implementation class for the Web Service Authenticator
interface. This class authenticates a request and generates a credential for a WSC.

Note - This interface is not public. The value of the attribute is configured during installation.

Supported Authentication Mechanisms

This attribute specifies the authentication mechanisms supported by the SOAP Receiver.
Authentication mechanisms offer user authentication as well as data integrity and encryption.
By default, all available authentication mechanisms are selected. If a mechanism is not selected
and a WSC sends a request using it, the request is rejected. Following is a list of the supported
authentication mechanisms:

Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

SOAP Binding Service Package

2003-08:
2003-08:
2003-08:
2003-08:
2003-08:
2003-08:
2003-08:
2003-08:
2003-08:
2004-04:
2004-04:
2004-04:
2005-02:
2005-02:
2005-02:
2005-02:
2005-02:
2005-02:
2005-02:
2005-02:
2005-02:

urn: liberty:
liberty:
liberty:
liberty:
liberty:
liberty:
liberty:
liberty:
liberty:
liberty:
liberty:
liberty:
liberty:
liberty:
liberty:
liberty:
liberty:
liberty:
liberty:
liberty:
liberty:

security:
security:
security:
security:
security:
security:
security:
security:
security:
security:
security:
security:
security:
security:
security:
security:
security:
security:
security:
security:
security:

urn:
urn:
urn:

urn:

urn:

urn:
urn:
urn:

urn:

urn:

urn:
urn:
urn:

urn:

urn:

urn:
urn:
urn:

urn:
urn:

ClientTLS
ClientTLS
ClientTLS
TLS:SAML
TLS: X509
TLS:null
null:SAML
null: X509
null:null
ClientTLS:Bearer
TLS:Bearer
null:Bearer
ClientTLS:Bearer
ClientTLS:SAML
ClientTLS: X509
TLS:Bearer

TLS: SAML

TLS: X509
null:Bearer
null:SAML
null:X509

: SAML
: X509
:null

Note - For more complete information

about authentication mechanisms and their level of

security, see the Liberty ID-WSF Security Mechanisms specification.

SOAP Binding Service Package

The Access Manager SOAP Binding Service includes a Java package named
com.sun.identity.liberty.ws.soapbinding.TTﬂspackageprovidesckmsestocormtruct
SOAP requests and responses and to change the contact point for the SOAP binding. The
following table describes some of the available classes. For more detailed information, see the
Java API Reference in /AccessManager-base/SUNWam/docs or on docs.sun.com.

TABLE9-1 SOAP Binding Service API
Class Description
Client Provides a method with which a WSC can send a request to a
WSP using a SOAP connection. It also returns the response.
ConsentHeader Represents the SOAP element named Consent.

Chapter9 - SOAP Binding Service

209

http://www.projectliberty.org/specs/liberty-idwsf-soap-binding-v1.1.pdf

SOAP Binding Service Package

TABLE9-1 SOAP Binding Service API (Continued)

Class

Description

CorrelationHeader

ProcessingContextHeader
ProviderHeader

RequestHandler

Message

ServiceInstanceUpdateHeader

ServicelInstanceUpdateHeader.Credential

SOAPFault

SOAPFaultDetail

UsageDirectiveHeader

Represents the SOAP element named Correlation. By
default, CorrelationHeader will always be signed.

Represents the SOAP element named ProcessingContext.
Represents the SOAP element named Provider.

Defines an interface that needs to be implemented on the
server side by each web service in order to receive a request
from a WSC and generate a response. After implementing
the class, it must be registered in the SOAP Binding Service
so the SOAP framework knows where to forward incoming
requests.

Represents a SOAP message and is used by both the web
service client and server to construct SOAP requests and
responses. Each SOAP message has multiple headers and
bodies. It may contain a certificate for client authentication,
the IP address of a remote endpoint, and a SAML assertion
used for signing.

Allows a service to change the endpoint on which requesters
will contact it.

Allows a service to use a different security mechanism and
credentials to access the requested resource.

Represents the SOAP element named SOAP Fault.

Represents the SOAP element named Detail, a child
element of SOAP Fault.

Defines the SOAP element named UsageDirective.

See Appendix A, “Liberty-based and SAML Samples” for sample code and files to help you
understand the implementation of the Liberty Alliance Project specifications.

See “PAOS Binding” on page 262 for information on this reverse HT'TP binding for SOAP.

210 Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

PART IV

SAML Administration and Application
Programming Interfaces

= Chapter 10, SAML Administration
= Chapter 11, Application Programming Interfaces

211

212

L K R 4 CHAPTER 10

SAML Administration

Sun Java™ System Access Manager uses the Security Assertion Markup Language (SAML) as
the means for exchanging security information. SAML uses an eXtensible Markup Language
(XML) framework to achieve interoperability between vendor platforms that provide SAML
assertions. This chapter explains SAML and defines how it is used within Access Manager. It
covers the following topics:

= “SAML Overview” on page 213

= “Elements of SAML” on page 217
= “SAML Attributes” on page 232
= “SAML API” on page 240

= “SAML Operations” on page 246
= “SAML Samples” on page 250

SAML Overview

SAML is an XML-based standard for communicating authentication, authorization and
attribute information amongst online partners. It allows businesses to securely send assertions
between partnered organizations regarding the identity and entitlements of a principal. The
Organization for the Advancement of Structured Information Standards (OASIS) Security
Services Technical Committee is in charge of defining, enhancing, and maintaining the SAML
specifications. SAML standardizes queries for, and responses that contain, user authentication,
entitlements, and attribute information in an XML format. This format can then be used by a
relying party to request security information about a principal from a SAML authority. A SAML
authority, sometimes called the asserting party, is a platform or application that can relay
security information. The relying party (or assertion consumer or requesting party) is a partner
site that receives the security information. The exchanged information deals with a subject’s
authentication status, access authorization, and attribute information. A subject is an entity in a
particular domain. A person identified by an email address is a subject, as might be a printer.

213

SAML Overview

214

Note - All parties in a SAML interaction need to form a trust relationship before they can share
information about a subject’s identity. How this is accomplished is beyond the scope of this
guide.

Comparison of SAML and Liberty Specifications

SAML was designed to address the issue of cross-domain single sign-on. The Liberty Alliance
Project was formed to develop technical specifications that would solve business process
problems. These issues include single sign-on, but also incorporate protocols for account
linking and consent, among others. SAML, on the other hand, does not solve issues such as
privacy, single logout, and federation termination.

The SAML 1.0 and 1.1 specifications and the Liberty Alliance Project specifications do not
compete with one another. They are complementary. In fact, the Liberty Alliance Project
specifications leverage profiles from the SAML specifications. The decision of whether to use
SAML or the Liberty specifications depends on your goal. In general, SAML should suffice for
single sign-on basics. The Liberty Alliance Project specifications can be used for more
sophisticated functions and capabilities, such as global sign-out, attribute sharing, web services.
The following table compares the benefits of the two.

TABLE10-1 Comparison of the SAML and Liberty Alliance Project Specifications

SAML Uses Liberty Alliance Project Uses
Cross-domain single sign-on Single sign-on only after user federation
No user federation User federation

No privacy control, best for use within one company Built on top of SAML

User identifier is sent in plain text User identifier is sent as a unique handle

Note - The Organization for the Advancement of Structured Information Standards (OASIS)
drives the development of SAML. For information and specifications, see the OASIS Security
Services (SAML) Technical Committee home page.

SAML Architecture in Access Manager

SAML security information is expressed in the form of an assertion about a subject. An
assertion is a package of verified security information that supplies one or more statements
concerning a subject’s authentication status, access authorization decisions, or identity
attributes. Assertions are issued by the SAML authority, and received by partner sites defined by

Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security

SAML Overview

the authority as trusted. SAML authorities use different sources to configure the assertion
information, including external data stores or assertions that have already been received and
verified. The following figure illustrates how SAML interacts with the other components in
Access Manager.

Note - Although Federation (as described in Chapter 3, “Federation”) integrates aspects of the
SAML specifications, its usage of SAML is independent of the SAML component as described in
this chapter.

SAML allows Access Manager to work in the following ways:

Chapter 10 « SAML Administration 215

SAML Overview

216

S
G
=2
= SfE
ke c -9.>, c
| g|5 S
2l &l 25
E 5 E al &2 g
g 2| B 3l 3l o 3 ¢ £ ¢
i & i E El B = <|8
s 2 =l < < = S
2
v L V @€ V.6 V 6 V o
SAML SAML SAML
Post Profile Aware Servlet SOAP Receiver
Servlet
v JAXM SOAP Provider
SAML API

Policy |dentity

SSO APl AuthN APl Service API

API Repo API

The lighter-shaded boxes are components of the SAML module.

FIGURE 10-1 SAML Interaction in Access Manager

= Users can authenticate using Access Manager and access trusted partner sites without
having to reauthenticate.

Note - This single sign-on process is independent of the proprietary Access Manager process
discussed in the Sun Java System Access Manager 7.1 Administration Guide.

Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

Elements of SAML

= Access Manager acts as a policy decision point, allowing external applications to access user
authorization information for the purpose of granting or denying access to their resources.
For example, employees of an organization can be allowed to order office supplies from
suppliers if they are authorized to do so.

= Access Manager acts as both an attribute authority (allowing trusted partner sites to query a
subject’s attributes) and an authentication authority (allowing trusted partner sites to query
a subject’s authentication information).

= Two parties in different security domains can validate each other for the purpose of
performing business transactions.

m The SAML API can be used to build Authentication, Authorization Decision, and Attribute
Assertions.

= The SAML service permits an XML-based digital signature signing and verifying
functionality to be plugged into it.

Using the SAML Service

The SAML Service can be accessed using a web browser or the SAML API. An end user
authenticates to Access Manager using a web browser and, once authorized to do so, attempts to
access URLs on trusted partner sites. Developers, who have integrated the SAML API into their
applications, are then able to exchange security information with Access Manager. For example,
aJava application can use the SAML API to achieve single sign-on. After obtaining a SSOToken
from Access Manager, the application can call the dowebArtifact () method of the SAMLClient
class, which will send a SOAP request for authorization information to Access Manager and, if
applicable, redirect the application to the destination site. For more information, see “SAML
API” on page 240.

Elements of SAML

SAML defines message formats in XML for queries and responses. SAML queries are sent to a
SAML authority and responses, in the form of SAML assertions, are returned via SOAP over
HTTP, the request-response protocol used to carry SAML messages. The following sections
describe these and other elements of SAML.

= “Queries and Responses” on page 218
= “Assertions” on page 219

= “Profiles” on page 221

= “SAML SOAP Receiver” on page 226

Chapter 10 « SAML Administration 217

Elements of SAML

Queries and Responses

An entity can interact with a SAML authority using requests containing queries and responses
containing assertions. AuthenticationQuery, AttributeQuery, and
AuthorizationDecisionQuery XML tags containing requests for security information are
wrapped within a <samlp:Request> XML tag and sent to a SAML authority.
AuthenticationStatement, AttributeStatement, and AuthorizationDecisionStatement
XML tags containing assertions of security information are wrapped within a
<samlp:Response> XML tag and returned to the assertion consumer. See the following sections
for more information.

= “Queries” on page 218
= “Responses” on page 218

Queries

A requesting party uses AuthenticationQuery, AttributeQuery, and
AuthorizationDecisionQuery tags within a <samlp:Request> to ask for assertions about a
particular entity from a SAML authority. Following is an example request containing an
attribute query.

<samlp:Request
xmlns:samlp="urn:oasis:names:tc:SAML:1.1:protocol"
RequestID="s9c4a43c0265e904ca86f43c3e30034dd56582a79"
MajorVersion="1" MinorVersion="1"
IssueInstant="2006-01-09T11:33:48Z2">
<samlp:AttributeQuery>
<saml:Subject xmlns:saml="urn:oasis:names:tc:SAML:1.1:assertion">
<saml:NameIdentifier NameQualifier="dc=example,dc=com">uid=amadmin,dc=example,dc=com</saml:NameIdentifier>
<saml:SubjectConfirmation>
<saml:ConfirmationMethod>urn:com:sun:identity</saml:ConfirmationMethod>
<saml:SubjectConfirmationData>
</saml:SubjectConfirmationData>
</saml:SubjectConfirmation>
</saml:Subject>
</samlp:AttributeQuery>
</samlp:Request>

Responses

A SAML authority uses AuthenticationStatement, AttributeStatement, and
AuthorizationDecisionStatement tags within a <samlp:Response> to return information
about an entity to the requesting party. Following is an example response containing an
assertion. See “Assertions” on page 219 for more information.

<samlp:Response
xmlns:samlp="urn:oasis:names:tc:SAML:1.1:protoco"

218 Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

Elements of SAML

ResponseID="s5757013615ab8ab95ffe272f9e377aa6ed823d030"
InResponseTo="s59c4a43c0265e904ca86f43c3e30034dd56582a79"
MajorVersion="1" MinorVersion="1"
Issuelnstant="2006-01-09T11:33:48Z"
Recipient="10.17.246.43">
<samlp:Status>
<samlp:StatusCode Value="samlp:Success">
</samlp:StatusCode>
</samlp:Status>
<saml:Assertion
xmlns:saml="urn:oasis:names:tc:SAML:1.1:assertion"
MajorVersion="1" MinorVersion="1"
AssertionID="s1f3764242b274a835475d5433b8c62020a0e39a80"
Issuer="dde280-3.france.sun.com:80"
Issuelnstant="2006-01-09T09:44:48Z" >
<saml:Conditions NotBefore="2006-01-09T09:41:48Z" NotOnOrAfter="2006-01-09T09:51:4872">
</saml:Conditions>
<!-- statements go here -->
</saml:Assertion>
</samlp:Response>

Assertions

SAML assertions are a declaration of facts about a principal. For example, an assertion can be
made that a particular client was granted update privileges to a specific database resource at a
certain time. Assertions are constructed in XML based on the SAML assertion schema.
Assertions are built from the user’s session information and optional attribute information
using the siteAttributeMapper class. For more information, see
“PartnerSiteAttributeMapper Interface” on page 243.

Note — One assertion can contain many different statements made by the authority.

The SAML specification provides for different types of assertions:

= An authentication assertion declares that the specified subject has been authenticated by a
particular means at a particular time. This information is declared within an
AuthenticationStatement XML tag. In Access Manager, the Authentication Service is the
authentication authority. The following code example illustrates a SAML assertion with an
AuthenticationStatement.

<?xml version="1.0" encoding="UTF-8" ?>

<saml:Assertion xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion"
MajorVersion="1" MinorVersion="0" AssertionID="random-182726"
Issuer="sunserver.example.com" IssueInstant="2001-11-05T17:23:00GMT-02:00">

Chapter 10 « SAML Administration 219

http://www.oasis-open.org/committees/security/docs/cs-sstc-schema-assertion-01.xsd

Elements of SAML

<saml:AuthenticationStatement
AuthenticationMethod="urn:oasis:names:tc:SAML:1.0:am:password"
AuthenticationInstant="2001-11-05T17:22:00GMT-02:00">
<saml:Subject>
<saml:NameIdentifier
NameQualifier="example.com">John Doe
</saml:NameIdentifier>
</saml:Subject>
</saml:AuthenticationStatement>
</saml:Assertion>

= An attribute assertion declares that the specified subject is associated with the specified
attribute. This information is declared within an AttributeStatement XML tag. The
identity data store that is networked with Access Manager is the attribute authority. The
following code example illustrates a SAML assertion with an AttributeStatement.

<?xml version="1.0" encoding="UTF-8" 7>
<saml:Assertion xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion"
MajorVersion="1" MinorVersion="0" AssertionID="random-182726"
Issuer="sunserver.example.com" IssueInstant="2001-11-05T17:23:00GMT-02:00">
<saml:AttributeStatement>
<saml:Subject>
<saml:NameIdentifier NameQualifier="dc=example,dc=com">
uid=amadmin,dc=example,dc=com</saml:NameIdentifier>
</saml:Subject>
<saml:Attribute AttributeName="sn" AttributeNamespace="urn:sun:fm:samples:saml:query">

<saml:AttributeValue xmlns:saml="urn:oasis:names:tc:SAML:1.1:assertion">amadmin</saml:AttributeValue>

</saml:Attribute>
<saml:Attribute AttributeName="cn" AttributeNamespace="urn:sun:fm:samples:saml:query">

<saml:AttributeValue xmlns:saml="urn:oasis:names:tc:SAML:1.1:assertion">amadmin</saml:AttributeValue>

</saml:Attribute>
</saml:AttributeStatement>
</saml:Assertion>

= Anauthorization decision assertion declares that the specified subject’s request for access to

a specified resource has been granted or denied. This information is declared within an
AuthorizationDecisionStatement XML tag. In Access Manager, the Policy Service is the
authorization authority.

Note — The OASIS Security Services (SAML) Technical Committee has recently frozen this

query in favor of using the eXtensible Access Control Markup Language (XACML). Future

versions of Access Manager will reflect this.

220 Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

Elements of SAML

Profiles

A profile is a set of rules that defines how to embed and extract SAML assertions. The profile
describes how the assertions are combined with other objects by an authority, transported from
the authority, and subsequently processed at the trusted partner site. Access Manager supports
the Web Browser Artifact Profile and the Web Browser POST Profile. Both profiles use HTTP.
The profile methods can be initiated through a web browser or the SAML API. (For more
information about the API method, see “SAML API” on page 240.) Either profile can be used in
single sign-on between two SAML-enabled entities, allowing an authenticated user to access
resources from a trusted partner site. Each profile has its benefits:

= The Web Browser Artifact Profile requires less processing overhead because there is no
assertion signing as there is in the Web Browser POST Profile.

= The Web Browser Artifact Profile works without browsers enabled with JavaScript
technology. It is considered more secure than the Web Browser POST Profile.

= The Web Browser POST Profile does not require SOAP. This profile is more
firewall-friendly and involves fewer steps and less server-side processing.

More information can be found in the following sections:

= “Web Browser Artifact Profile” on page 221
= “Web Browser POST Profile” on page 223

Web Browser Artifact Profile

The Web Browser Artifact Profile is used when there is a back channel available to process an
artifact. (An artifact is carried as part of the URL and points to an assertion which contains the
security information regarding the requestor.) The Web Browser Artifact Profile defines
interaction between three parties: a user equipped with a web browser, an authority site, and a
trusted partner site. The artifact is sent via a browser and processed using SOAP. The SOAP
communication should be either Basic Authentication or Client Certificate Authentication over
SSL although XML signing is a stronger alternative. The Web Browser Artifact Profile is
considered more secure than the Web Browser POST Profile (as discussed in “Web Browser
POST Profile” on page 223).

1. When an authenticated user attempts to access a trusted partner (generally by clicking a
link), the user is directed to a transfer service at the authority site.

In Access Manager, the transfer service is SAMLAwareServlet. The base of the transfer
service URL is

http(s)://access-manager-host.domain: port/deploy-uri/SAMLAwareServlet. The URL is
appended with the location to which the user is requesting access (?
TARGET=URL-of-destination).

2. SAMLAwareServlet receives the information and compares the SAML Service’s list of
Trusted Partners against the user’s TARGET location.

Chapter 10 « SAML Administration 221

Elements of SAML

222

Only targets that are configured in the Trusted Partners attribute of the SAML Service are
accessible. For more information about this attribute, see “Trusted Partners” on page 234.

Assuming the TARGET location was found in the list of Trusted Partners, SAMLAwareServlet
looks for and validates the session token from the inbound request.

Without a valid session token, Access Manager will not create an assertion.

Assuming a valid session token, SAMLAwareServlet creates an artifact and a corresponding
assertion.

An artifact is carried as part of the URL and points to an assertion and its source. An artifact
is not (and does not contain) security information. The assertion contains the security
information. For more information, see “PartnerSiteAttributeMapper Interface” on
page 243.

Note — The need to send an artifact rather than the assertion itself is dictated by the
restrictions on URL size that are imposed by many web browsers.

SAMLAwareServlet redirects the user’s browser to the Artifact Receiver URL with a query
string that contains the artifact and the original TARGET location.

Note - In Access Manager, the Artifact Receiver URL and SAMLAwareServlet are the same.
Other SAML implementations might not integrate the two functions.

At the Artifact Receiver URL, the artifact is extracted from the query string to locate the
SOAP Receiver URL at the trusted partner site.

The SAML API extracts the source ID from the artifact and uses it to locate the SOAP
Receiver URL at the trusted partner site. For more information about the use of SOAP, see
“SAML SOAP Receiver” on page 226.

A SOAP query that contains the artifact is sent to the SOAP Receiver URL at the trusted
partner site that is requesting the assertion to which the artifact points.

The SOAP Receiver URL accepts the returned artifact query from the trusted partner site
and responds by sending the correct assertion in a SOAP response.

The assertion is processed, mapping the user account information from the trusted partner
site to the target site’s user account.

The user is either granted or denied access to the trusted partner site. If access is granted, a
SSOToken is generated, a cookie is set to the browser, and the user is redirected to the TARGET
location.

Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

Elements of SAML

User Service
Agent Provider

Identity

Provider

@ GET <inter-site transfer service host name and path>?RelayState=<resource URL>
»
L}

®

Obtain
IdP

1

302; Location: <IDP Single Sign-On Serviqe >?<AuthnRequest>()
|

GET <IDP Single Sign-On Service >?<AuthnRequest>()

»
>

Process
AuthnRequest

i ®

302; Location: <SP Assertion Consumer URL>?RelayState=<resource URL>SAMLart=<...>
|

@ GET <SP Assertion Consumer URL>?RelayState=<resource URL>SAMLart=<...>
T
|

SOAP POST:<samlp:Request>()

»
»

<
<

Process
Assertion

|
|
|
|
|
|
|
I |
| |
| 200 OK SOAP:<samlp:Response>() I
[|
|
|
|
|
|
|
|
|

T
@ 200 OK:<resource URL>() !
|

FIGURE 10-2 Web Browser Artifact Profile Interactions

A sample has been provided to test the Web Browser Artifact Profile function. See “SAML
Samples” on page 250 for more information.

Web Browser POST Profile

The Web Browser POST Profile is a front-channel profile that sends responses via the browser. It
allows security information to be supplied to a trusted partner site using the HTTP POST
method (without the use of an artifact). This interaction consists of two parts. The first part is
between a user with a web browser and Access Manager. The second part is between the same
user and the trusted partner site. The content of the POST should be signed to ensure message

Chapter 10 « SAML Administration 223

Elements of SAML

integrity, and the method of transport should be SSL. The Web Browser POST Profile is simpler
than the Web Browser Artifact Profile (as discussed in “Web Browser Artifact Profile” on
page 221).

Note - The POST profile function is provided by either of two means: an HTTP request using
SAMLPOSTProfileServlet, or an SAMLClient API call [doWebPost ()] to a Java application.

m The first interaction of the Web Browser POST Profile is as follows:

L.

6.

An authenticated user attempts to access a trusted partner site using a web browser
(usually by clicking a link), and the user is redirected to a transfer service at the authority
site.

In Access Manager, the transfer service is SAMLPostProfileServlet. The base of the
transfer service URL is

http(s) ://access-manager-host.domain: port/deploy-uri/SAMLPOSTProfileServlet.
This URL is appended with the location to which the user is requesting access
(?TARGET=URL-of-destination).

Note - SAMLPostProfileServlet provides functions for both Web Browser POST Profile
interactions.

Access Manager obtains the TARGET location from the request and matches it against the
trusted partners configured in the Trusted Partners attribute of the SAML module.

For more information, see “Trusted Partners” on page 234.

Access Manager generates an assertion using the AssertionManager class of the SAML
APIL

For information about the AssertionManager class, see “com.sun.identity.saml
Package” on page 241.

Access Manager forms, signs, and Base64 encodes a SAMLResponse that contains the
assertion.

Access Manager generates an HTML form that contains both the SAMLResponse and the
TARGET as parameters and posts the form as an HTTP response back to the user’s
browser.

The user’s browser is then directed to the location based on this information.

®» The second interaction of the Web Browser POST Profile is as follows:

1.

The trusted partner site obtains the TARGET and SAMLResponse from the redirected
request.

The trusted partner site decodes the SAMLResponse, verifies the signature on the
SAMLResponse, and obtains and verifies the SAML response.

224 Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

Elements of SAML

The trusted partner site also verifies the assertion inside the SAMLResponse and enforces
single sign-on policy.

3. Assuming a positive authentication, the trusted partner site obtains or creates an
SSOToken and redirects the authenticated user to the TARGET location.

Service
Provider

Identity
Provider

©)

Obtain
1dP

1
302; Location: <IDP Single Sign-On Service >?<AuthnRequest>()

|
@ GET <IDP Single Sign-On Service >?<AuthnRequest>()

Process
AuthnRequest

HTTP 200; FORM; METHOD=POST; ACTION=<SP assertion consumer URL.; LARES=<AuthnResponse>

@ . .
@

POST <SP assertion consumer URL.; LARES=<AuthnResponse>
N

SOAP POST:<samlp:Request>()

A4

@ 200 OK SOAP:<samlp:Response>()

'
>

I

I

I

I

I

I:

Process
Assertion

|

|

|

|

1

1

|

|

|

|

|

|

|

|

@ 200 OK:<resource URL>() :
) I

FIGURE 10-3 Web Browser POST Profile Interactions

A sample has been provided to test the Web Browser POST Profile function. See “SAML
Samples” on page 250.

Single-Use Policy With POST Profile

According to the SAML specifications, the trusted partner site must ensure a single-use policy
for SSO assertions that are communicated using the Web Browser POST Profile.

Chapter 10 « SAML Administration 225

Elements of SAML

SAMLPOSTProfileServlet maintains a store of SSO assertion identifiers and the time that they
expire. When an assertion is received, the servlet first checks for an entry in the map. If an entry
exists, the servlet returns an error. If an entry does not exist, the assertion identifier and
expiration time are saved to the map. POSTCleanUpThread removes expired assertion identifiers
periodically.

SAML SOAP Receiver

Assertions are exchanged between Access Manager and inquiring parties using the <Request>
and <Response> XML constructs defined in the SAML specification. These SAML constructs
are then integrated into SOAP messages for transport.

Note - A SAML <Request> can contain queries for authentication status, authorization
decisions, attribute information, and one or more assertion identifier references or artifacts.

Access Manager uses SOAP, a message communications specification that integrates XML and
HTTPS, to transport the SAML constructs. The request is received by SAML SOAP Receiver, a
servlet that receives a SOAP message, extracts the SAML request, and responds with another
SOAP message that contains the requested assertion. SAML SOAP Receiver responds to queries
for authentication, attributes, or authorization decisions (including those that have an artifact)
by returning assertions. The access URL for SAML SOAP Receiver is

http(s) ://access-manager-host.domain: port/deploy-uri/SAMLSOAPReceiver.

Note - SAML SOAP Receiver only supports the POST method.

SOAP Messages

SOAP messages consist of three parts: an envelope, header data, and a message body. The
SAML <Request>and <Response> elements are enclosed in the message body. A client
transmits a SAML <Request> element within the body of a SOAP message to an entity.

Note - The SAML API and the Java API for XML Messaging (JAXM) are used to construct SOAP
messages and send them to SAML SOAP Receiver.

The following two samples illustrate a SOAP exchange for the “Web Browser Artifact Profile”
on page 221. The first is a request for an authentication assertion.

EXAMPLE 10-1 SOAP Request for Authentication Assertion Using Web Browser Artifact Profile

POST /authn HTTP/1.1
Host: idp.example.com
Content-type: text/xml

226

Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

Elements of SAML

EXAMPLE 10-1 SOAP Request for Authentication Assertion Using Web Browser Artifact Profile

(Continued)

Content-length: nnnn

<soap-env:Envelope
xmlns:soap-env="http://schemas.xmlsoap.org/soap/envelope/">
<soap-env:Header/>

<soap-env:Body>
<samlp:Request xmlns="urn:oasis:names:tc:SAML:1.0:protocol"

xmlns:lib="http://projectliberty.org/schemas/core/2002/12"
xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion"
xmlns:samlp="urn:oasis:names:tc:SAML:1.0:protocol"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
IssueInstant="2002-12-12T10:08:56Z"
MajorVersion="1"
MinorVersion="0"
RequestID="e4d71c43-c89a-426b-853e-a2b0cl4a5ed8"
id="ericssonb6dc3636-f2ad-42d1-9427-220f2cf70ecl"
xsi:type="1ib:SignedSAMLRequestType">
<ds:Signature xmlns:ds="http://www.w3.0rg/2000/09/xmldsig#">
<ds:SignedInfo>
<ds:CanonicalizationMethod
Algorithm="http://www.w3.0rg/2001/10/xml-exc-cl4n#">
</ds:CanonicalizationMethod>
<ds:SignatureMethod
Algorithm="http://www.w3.0rg/2000/09/xmldsig#rsa-shal">
</ds:SignatureMethod>
<ds:Reference URI="#ericssonb6dc3636-f2ad-42d1-9427-220f2cf70ecl">
<ds:Transforms>
<ds:Transform

Algorithm="http://www.w3.0rg/2000/09/xmldsig#enveloped-signature">

</ds:Transform>
<ds:Transform
Algorithm="http://www.w3.0rg/2001/10/xml-exc-cl4n#">
</ds:Transform>
</ds:Transforms>
<ds:DigestMethod
Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal">
</ds:DigestMethod>
<ds:DigestValue>+k6TnolGkIPKZ1pUQVyok8dwkuE=</ds:DigestValue>
</ds:Reference>
</ds:SignedInfo>
<ds:SignatureValue>

wXJMVoPO1V1jFnWIPyOWqP5Gqm8Al+/2b5gNzF4L4LMudyEcRtttLdPPT3bvhwkwHXjL9
NuOFumQ5YEyiVz1NcjAxXOLfgwutvEdIb748IU4L+80bXPXfqTZLiBK1RbHCRMRV]j1PIu

220GCV6EWUiWRVOD60x9svtSgFI+iXkzQ
</ds:SignatureValue>
<ds:KeyInfo>

Chapter 10 « SAML Administration

227

Elements of SAML

EXAMPLE 10-1 SOAP Request for Authentication Assertion Using Web Browser Artifact Profile
(Continued)

<ds:X509Data>
<ds:X509Certificate>
MIIDMTCCApqgAwIBAgIBHDANBgkqhkiGOw@BAQQFADCB1TELMAKGALIUEBhMCVVMxCzAJB
gNVBACTAINGMRkwFwYDVQQKExBMaWJ1cnR5IEFsbGlhbmNTMRQWEgGYDVQQLEWtIT1AgVG
VzdGVyczEiMCAGAIUEAXMZTG11iZXJ0eSBUZXNOZXIzIENTcnRpZml1lcjEKMCIGCSqGSIb
3DQEJARYVcnJvZHIpZ3V1ekBuZW9zb2wubmVOMBAXDTAYMTIWNDEINTgONFOXDTEYMT Iw
MTEINTgONFowgasxCzAJBgNVBAYTATVTMQswCQYDVQQHEwWITRjEKMCIGALIUEChMbTGliZ
XJ0eSBBbGxpYW5jZSBlcmljc3NvbilhMSYwJAYDVQQLEXx1JT1AgVGVzdGVycyBlcmljc3
NvbilhIHNpZ251cjEXMBUGAIUEAXMOZXJpY3Nzb24tYS5pb3AXKDAMBgkqhkiGOw@BCQE
WGXJyb2RyaWd1ZXpAZXJpY3Nzb24tYS5pb3AwgZ8wDQYJIKoZIhvcNAQEBBQADGYQAMIG]
AoGBAPU0GYvJIxQc5jzDnJ14TV6TaTbB3fHI5ju24Z20y6HQxm6gXdISAoWh7/ATes4UcVO
9DC2kKS6Vow2YoXt2LIyHOHWH2tEUt1jS/PUeBHEWCW3tFezM6jh5GG5 rCuVPZaw9eoGU
bFPSzOPFKUAwdHUXSDWufY1KZ93IxhOBeZgg6VAgMBAAG]jeTB3MEoGCWCGSAGG+EIBDQQ
9FjtUaGlzIHNpZ25pbmcgY2VydCB3YXMgY3J1YXR1ZCBmb3IgdGVzdGluZy4gRG8gbm9o
THRydXN@ IGlOLjAIBgNVHRMEAjAAMBEGCWCGSAGG+EIBAQQEAWIEMDALBgNVHQ8EBAMC
BsAwDQYJKoZIhvcNAQEEBQADGYEAR/HSgBpAp rQwQVyWDE9pCaiduKv4/W/+hrdpX1VKS
r6TI1g4ouDCQINos7tNuG9ZAbfWtHvCss51N2cfAzfns/DKgxRqcsxzL5ZUBksPpmsDob
00pUv6Xm8RFsi7yB9AGaVuqObeY/+m70n0u@30+FIMN3U1k2E3rOKX1U1noCO
</ds:X509Certificate>
</ds:X509Data>
</ds:KeyInfo>
</ds:Signature>
<samlp:AssertionArtifact>
AAM1uXw6+f+jyA/4XuFHgP17QDvc/LIQL9+t7YQtG1lGwkIbph@Adl+o+

</samlp:AssertionArtifact>

</samlp:Request>

</soap-env:Body>

</soap-env:Envelope>

In response to the request, SAML SOAP Receiver must return either a <Response> element
within the body of another SOAP message or a SOAP fault code (error message) for every
request received. The following sample is a response that contains an authentication assertion.

EXAMPLE10-2 SOAP Response to SOAP Request for Web Browser Artifact Profile

HTTP/1.1 200 OK

Content-Type: text/xml

Content-Length: nnnn

<soap-env:Envelope
xmlns:soap-env="http://schemas.xmlsoap.org/soap/envelope/">
<soap-env:Header/>
<soap-env:Body>

<samlp:Response
xmlns:samlp="urn:oasis:names:tc:SAML:1.0:protocol"

228 Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

Elements of SAML

EXAMPLE10-2 SOAP Response to SOAP Request for Web Browser Artifact Profile

InResponseTo="RPCUk211+GVz+t11LURp510FvIXKk"
IssueInstant="2002-10-31T21:42:13Z"
MajorVersion="1" MinorVersion="0"
Recipient="http://localhost:8080/sp"
ResponseID="LANWfL2xLybnc+BCwgY+pl/vIVAj">
<samlp:Status>
<samlp:StatusCode
xmlns:gns="urn:oasis:names:tc:SAML:1.0:protocol"
Value="qns:Success">
</samlp:StatusCode>
</samlp:Status>
<saml:Assertion
xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion"
xmlns:ds="http://www.w3.0rg/2000/09/xmldsig#"
xmlns:lib="http://projectliberty.org/schemas/core/2002/12"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
AssertionID="SqMC8Hs2v]7Z+t4UiLSmhKOSUOQU"
InResponseTo="RPCUk211+GVz+t11LURp51oFvIXk"
IssueInstant="2002-10-31T21:42:13Z"
Issuer="http://host:8080/idp"
MajorVersion="1" MinorVersion="0"
xsi:type="lib:AssertionType">
<saml:Conditions
NotBefore="2002-10-31T21:42:122"
NotOnOrAfter="2002-10-31T21:42:432">
<saml:AudienceRestrictionCondition>
<saml:Audience>http://localhost:8080/sp</saml:Audience>
</saml:AudienceRestrictionCondition>
</saml:Conditions>
<saml:AuthenticationStatement
AuthenticationInstant="2002-10-31T21:42:13Z"
AuthenticationMethod="urn:oasis:names:tc:SAML:1.0:am:password"
xsi:type="1lib:AuthenticationStatementType">
<saml:Subject xsi:type="1lib:SubjectType">
<saml:NameIdentifier>
C9FfGouQdBJ7bpkismYgd8ygeVb3P1WK
</saml:NameIdentifier>
<saml:SubjectConfirmation>
<saml:ConfirmationMethod>
urn:oasis:names:tc:SAML:1.0:cm:artifact-01
</saml:ConfirmationMethod>
</saml:SubjectConfirmation>
<lib:IDPProvidedNameIdentifier>
C9FfGouQdBJ7bpkismYgd8ygeVb3P1WK
</1lib:IDPProvidedNameIdentifier>
</saml:Subject>

Chapter 10 « SAML Administration

(Continued)

229

Elements of SAML

EXAMPLE10-2 SOAP Response to SOAP Request for Web Browser Artifact Profile

</saml:AuthenticationStatement>
<ds:Signature>
<ds:SignedInfo>
<ds:CanonicalizationMethod
Algorithm="http://www.w3.0rg/2001/10/xml-exc-cl4n#">
</ds:CanonicalizationMethod>
<ds:SignatureMethod
Algorithm="http://www.w3.0rg/2000/09/xmldsig#rsa-shal">
</ds:SignatureMethod>
<ds:Reference URI="">
<ds:Transforms>
<ds:Transform
Algorithm="http://www.w3.0rg/2000/09/xmldsig#enveloped-signature">
</ds:Transform>
<ds:Transform
Algorithm="http://www.w3.0rg/2001/10/xml-exc-cl4n#">
</ds:Transform>
</ds:Transforms>

<ds:DigestMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal">

</ds:DigestMethod>
<ds:DigestValue>ZbscbqHTX9H8bBftRIWLG4Epv1A=</ds:DigestValue>
</ds:Reference>
</ds:SignedInfo>
<ds:SignatureValue>
H+g3nC3jUaljluKUVkcC4iTFClxeZQIFFOnvHgPS50ZhtkBaDb9qI
TA79gIkotaB584wXqTXwsfsuIrwT5uL3r85Rj7IF6NeCeiy3K0+z3u
ewxyeZPz8wna449VNmOgNHYkgNak9ViNCp@/ks5MAttoPo2il0faK
u3wWG6d1G+DM=
</ds:SignatureValue>
</ds:Signature>
</saml:Assertion>
</samlp:Response>
</soap-env:Body>
</soap-env:Envelope>

(Continued)

Note - The entities requesting and responding with SAML must not include more than one
SAML request or response per SOAP message. They must also not include any additional XML

elements in the SOAP body.

Protecting SAML SOAP Receiver

The Access Manager administrator has the option of protecting the SAML SOAP Receiver. The

available methods are:

230 Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

Elements of SAML

= NOAUTH

Specify NOAUTH if the URL to the SAML SOAP receiver is accessed using HTTP, and the
SAML SOAP receiver is not protected by HTTP basic authentication.

= BASICAUTH

Specify BASICAUTH if the URL to the SAML SOAP receiver is accessed using HT'TP, and the
SAML SOAP receiver is protected by HTTP basic authentication.

= SSL

Specify SSL if the URL to the SAML SOAP receiver is accessed using HTTPS, and the SAML
SOAP receiver is not protected by HTTP basic authentication.

= SSLWITHBASICAUTH

Specify SSLWITHBASICAUTH if the URL to the SAML SOAP receiver is accessed using HTTPS,
and the SAML SOAP receiver is protected by HT'TP basic authentication.

Note - If you are protecting the SAML SOAP receiver URL with HTTP basic authentication, you
do so in the web container configuration and not in the Access Manager configuration. You do,
however, supply the HTTP basic authentication user ID and password in the Access Manager
configuration.

This value is configured as a sub-attribute of the Trusted Partners attribute in the SAML
module. The default authentication type is NOAUTH. If SSL authentication is to be specified, it is
configured in the SOAPUr1 field with the https protocol. For more information, see “Trusted
Partners” on page 234.

V¥ To Configure Access Manager for Basic Authentication

Basic authentication allows a provider originating a request to authenticate itself by
transmitting a username and password. The credentials are presented in response to a challenge
from the provider to which the request is being sent. You need to configure Access Manager to
support basic authentication using the following procedure.

1 Inthe Access Manager Console, click the Federation tab.

2 Under Federation, click the SAML tab.

3 Select New under the Trusted Partners attribute.

4 Selectthe Web Browser Artifact Profile (Artifact) under Source and click Next.

Chapter 10 « SAML Administration 231

SAML Attributes

10

11

Type a value for the Source ID attribute.

This is a 20-byte sequence (encoded using the Base64 format) that comes from the partner site.
It is generally the same value as that used for the Site ID attribute when configuring “Site
Identifiers” on page 234.

Enter the SOAP Receiver URL for the site you are configuring as a value for the SOAP URL
attribute.

General information on SOAP endpoints is in “SAML SOAP Receiver” on page 226.

Select BASICAUTH or SSLWITHBASICAUTH (if the endpoint is configured with Secure Sockets
Layer) as the authentication type.

Enter a user identifier for the user on the partner side being used to protect their SOAP Receiver.

Enter and reenter the password associated with the user on the partner side being used to
protect their SOAP Receiver.

Click Finish to complete the configuration.

Click Save to save the configuration.

SAML Attributes

232

The SAML module is configured by applying values to its attributes. anSAML . xm1 is the XML
service file that defines the attributes. All SAML attributes are global in that the values applied to
them are carried across the Access Manager configuration and inherited by every organization
defined in the instance of Access Manager.

Note - For more information on service files, see Sun Java System Access Manager 7.1
Administration Guide.

Most attributes in the SAML module can be configured either through the Access Manager
Console or the XML service file. “amSAML . xml Attributes” on page 232 lists the attributes that
can only be configured by modifying the amSAML . xm1 file. “Console Attributes” on page 233 lists
the attributes that can be configured using the console or the XML service file.

amSAML . xm1 Attributes

The following attributes can only be configured through the amSAML . xm1 file using the amadmin
command-line interface.

Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

SAML Attributes

= iplanet-am-saml-cleanup-intervalisused to specify how often the internal thread is run
to clean up expired assertions from the internal data store. The default is 180 seconds.

= iplanet-am-saml-assertion-max-number is used to specify the maximum number of
assertions that the server can hold at one time. No new assertion is created if the maximum
number is reached. The default value is 0, which means no limit.

¥ To Modify Attributes in the amSAML . xm1 File

1

Duplicate the amSAML . xm1 service file and make any changes to the attributes.
Remove the old amSAML . xm1 service file.

Use amadmin to reload the newly modified amSAML . xm1 file.

For more information on amadmin, see the Sun Java System Access Manager 7.1 Administration
Guide.

Console Attributes

The following SAML attributes can be configured by using the Access Manager Console or by
modifying amSAML . xm1 as described in “amSAML . xml Attributes” on page 232. When viewed
using the Console, the SAML attributes are separated into the following groups:

= “Properties Group” on page 233
= “Assertion” on page 239

= “Artifact” on page 239

= “Signing” on page 240
Properties Group

The attributes in the Properties group are as follows:

= “Target Specifier” on page 233
= “Site Identifiers” on page 234

= “Trusted Partners” on page 234
= “Target URLs” on page 238
Target Specifier

This attribute assigns a name to the destination site URL value that is used in the redirects
discussed in “Profiles” on page 221. The default is TARGET. Only sites configured in the Trusted
Partners attribute can be specified as a TARGET. For information, see “Trusted Partners” on
page 234.

Chapter 10 « SAML Administration 233

SAML Attributes

234

Site Identifiers

This attribute defines any site that is hosted by the server on which Access Manager is installed.
A default value is defined for the host during installation (with values retrieved from
AMConfig.properties), and a Site ID is automatically generated. Multiple entries are possible
(for example, load balancing or multiple instances of Access Manager sharing the same
Directory Server) although the default site identifier should always remain an entry.

Note - If configuring SAML for SSL (in both the source and destination site), ensure that the
protocol defined in the Instance ID attribute is HTTPS//.

To Configure a Site Identifier

You may also edit or duplicate entries already listed.

In the Access Manager Console, click the Federation tab.
Under Federation, click the SAML tab.

Select New under the Site Identifiers attribute.

Enter values for the following attributes:

Instance ID
The value of this property is protocol: / / host : port.

Site ID
This identifier is generated for each site, although the value will be the same for multiple
servers behind a load balancer. To obtain this identifier manually, type the following at the
command line:

% #java -classpath AM-classpath \ com.sun.identity.saml.common.SAMLSiteID
\protocol: //host: port

For more information, see “com.sun.identity.saml.common Package” on page 242.

Issuer Name
The value of this property is host: port.

Click OK.

Trusted Partners

This attribute defines any trusted partner (remote to the server on which Access Manager is
installed) that will be communicating with Access Manager.

Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

SAML Attributes

Note - The trusted partner site must have a prearranged trust relationship with one or more of
the sites configured in “Site Identifiers” on page 234.

Before configuring a trusted partner, you must determine the partner’s role in the trust
relationship. A trusted partner can be a source site (one that generates a single sign-on
assertion) or a destination site (one that receives a single sign-on assertion). Following is the
procedure for configuring a trusted partner.

To Configure a Trusted Partner

The Trusted Partners attribute can contain one or more entries. Each entry is configured based
on the site's defined role. For example, if the partner is the source site, this attribute is
configured based on how it will send assertions. If the partner is the destination site, this
attribute is configured based on which profile it uses to receive assertions.

In the Access Manager Console, click the Federation tab.
Under Federation, click the SAML tab.
Select New under the Trusted Partners attribute.

Select the role (Destination or Source) of the partner site that you are configuring by checking
the appropriate profiles used to communicate with itand click Next.

Select Web Browser Artifact Profile or Web Browser Post Profile for either Destination, Source,
or both, or SOAP Query for Source. The choices made dictate which of the attributes in the
following steps need to be configured.

Type values for the Common Settings subattributes based on the selected roles.

Source ID
This is a 20-byte sequence (encoded using the Base64 format) that comes from the partner
site. It is generally the same value as that used for the Site ID attribute when configuring “Site
Identifiers” on page 234.

Target
This is the domain of the partner site (with or without a port number). If you want to contact
aweb page that is hosted in this domain, the redirect URL is picked up from the values
defined in “Trusted Partners” on page 234.

Chapter 10 « SAML Administration 235

SAML Attributes

236

Note - If there are two defined entries for the same domain (one containing a port number
and one without a port number), the entry with the port number takes precedence. For
example, assume the following two trusted partner definitions: target=sun.comand
target=sun.com:8080. If the principal is seeking
http://machine.sun.com:8080/index.html, the second definition will be chosen.

Site Attribute Mapper
The class is used to return a list of attribute values defined as AttributeStatements
elements in an Authentication Assertion. A site attribute mapper needs to be implemented
from the com.sun.identity.saml.plugins.PartnerSiteAttributeMapper interface.

If no class is defined, no attributes will be included in the assertion. For more information,
see “PartnerSiteAttributeMapper Interface” on page 243.

Version
The SAML version used (1.0 or 1. 1) to send SAML requests. If this parameter is not defined,
the following default values (defined in AMConfig.properties) are used:

m com.example.identity.saml.assertion.version=1.1
® com.example.identity.saml.protocol.version=1.1

Account Mapper
The class that defines how the subject of an assertion is related to an identity at the
destination site. The default is com.sun.identity.saml.plugins.DefaultAccountMapper.
An account mapper needs to be implemented from one of the included interfaces:

® com.sun.identity.saml.plugins.AccountMapper
® com.sun.identity.saml.plugins.PartnerAccountMapper

If no class is defined, no attributes will be included in the assertion. For more information,
see “PartnerAccountMapper Interface” on page 243.

Certificate
A certificate alias that is used to verify the signature in an assertion when it is signed by the
partner and the certificate cannot be found in the KeyInfo portion of the signed assertion.

Host List
Alist of the IP addresses, the DNS host name, or the Certificate name for all hosts within
the partner site that can send requests to this authority. This list helps to ensure that the
requestor is indeed the intended receiver of the artifact. If the requester is defined in this list,
the interaction will continue. If the requester’s information does not match any hosts defined
in the host list, the request will be rejected.

Issuer
The creator of a generated assertion. The default syntax is hostname: port.

Type values for the Destination subattributes.

Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

SAML Attributes

Artifact: SAML URL
The URL that points to the servlet that implements the Web Browser Artifact Profile. See
“Web Browser Artifact Profile” on page 221.

Post: Post URL
The URL that points to the servlet that implements the Web Browser POST Profile. See
“Web Browser POST Profile” on page 223.

SOAP Query: Attribute Mapper
The class that is used to obtain single sign-on information from a query. You need to
implement an attribute mapper from the included interface. If no class is specified, the
DefaultAttributeMapper will be used. For more information, see
“com.sun.identity.saml.plugins Package” on page 242.

SOAP Query: Action Mapper
The class that is used to get single sign-on information and map partner actions to Access
Manager authorization decisions. You need to implement an action mapper from the
included interface. If no class is specified, the DefaultActionMapper will be used. For more
information, see “com.sun.identity.saml.plugins Package” on page 242.

7 Type values for the Source subattributes.

Artifact: SOAP URL
The URL to the SAML SOAP Receiver. See “SAML SOAP Receiver” on page 226.

Authentication Type
Authentication types that can be used with SAML:

= NOAUTH

Specify NOAUTH if the URL to the SAML SOAP receiver is accessed using HTTP, and the
SAML SOAP receiver is not protected by HTTP basic authentication.

= BASICAUTH

Specify BASICAUTH if the URL to the SAML SOAP receiver is accessed using HTTP, and
the SAML SOAP receiver is protected by HTTP basic authentication.

= SSL

Specify SSL if the URL to the SAML SOAP receiver is accessed using HTTPS, and the
SAML SOAP receiver is not protected by HTTP basic authentication.

= SSLWITHBASICAUTH

Specify SSLWITHBASICAUTH if the URL to the SAML SOAP receiver is accessed using
HTTPS, and the SAML SOAP receiver is protected by HT'TP basic authentication.

Chapter 10 « SAML Administration 237

SAML Attributes

238

Note - If you are protecting the SAML SOAP receiver URL with HTTP basic authentication,
you do so in the web container configuration and not in the Access Manager configuration.
You do, however, supply the HTTP basic authentication user ID and password in the Access
Manager configuration.

This attribute is optional. If not specified, the default is NOAUTH. If BASICAUTH or
SSLWITHBASICAUTH is specified, the Trusted Partners attribute is required and should be
HTTPS. For more information, see “Trusted Partners” on page 234.

User
When Basic Authentication is chosen as the Authentication Type, the value of this attribute
defines the user identifier of the partner being used to protect the partner’s SOAP receiver.

User's Password
When Basic Authentication is chosen as the Authentication Type, the value of this attribute
defines the password for the user identifier of the partner being used to protect the partner’s
SOAP receiver.

User's Password (reenter)
Reenter the password defined previously.

Click Finish to complete the configuration.

Target URLs

If the TARGET URL received through either profile is listed as a value of this attribute, the
assertions received will be sent to the TARGET URL using an HTTP FORM POST.

Caution - Do not use test URLs or any other additional URLs in a POST.

To configure this attribute, type values for the following subattributes:

Protocol
Choose either http or https.

Server Name
The name of the server on which the TARGET URL resides, such as www. sun. com.

Port
The port number, such as 58080.

Path
The URI, such as /amserver/console.

Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

SAML Attributes

Assertion

The attributes in the Assertion group are as follows:

= “Assertion Timeout” on page 239
= “Assertion Skew Factor For notBefore Time” on page 239

Assertion Timeout

This attribute specifies the number of seconds before a timeout occurs on an assertion. The
default is 420.

Assertion Skew Factor For notBefore Time

This attribute is used to calculate the notBefore time of an assertion. For example, if
Issuelnstant is 2002-09024T21:39:49Z, and Assertion Skew Factor For notBefore Time
is set to 300 seconds (180 is the default value), the notBefore attribute of the conditions element
for the assertion would be 2002-09-24T21:34:49Z7.

Note - The total valid duration of an assertion is defined by the values set in both the Assertion
Timeout and Assertion Skew Factor For notBefore Time attributes.

Artifact

The attributes in the Artifact group are as follows:

= “Artifact Timeout” on page 239
= “SAML Artifact Name” on page 239

For more information about artifacts, see “Web Browser Artifact Profile” on page 221.

Artifact Timeout

This attribute specifies the period of time an assertion that is created for an artifact will be valid.
The default is 400.

SAML Artifact Name

This attribute assigns a variable name to a SAML artifact. The artifact is bounded-size data that
identifies an assertion and a source site. It is carried as part of a URL query string and conveyed
by redirection to the destination site. The default name is SAMLart. Using the default SAMLart,
the redirect query string could be http: //host:port/deploy-URI/SamlAwareServiet?
TARGET=farget-URL/&SAMLart=artifact123.

Chapter 10 « SAML Administration 239

SAML API

SAMLAPI

240

Signing
The attributes in the Signing group are as follows:

= “Sign SAML Assertion” on page 240
= “Sign SAML Request” on page 240
= “Sign SAML Response” on page 240

Sign SAML Assertion

This attribute specifies whether all SAML assertions will be digitally signed (XML DSIG) before
being delivered. Selecting the check box enables this feature.

Sign SAML Request

This attribute specifies whether all SAML requests will be digitally signed (XML DSIG) before
being delivered. Selecting the check box enables this feature.

Sign SAML Response

This attribute specifies whether all SAML responses will be digitally signed (XML DSIG) before
being delivered. Selecting the check box enables this feature.

Note - All SAML responses used by the Web Browser POST Profile are digitally signed whether
or not this feature is enabled.

Access Manager contains a SAML API that consists of several Java packages. Administrators
can use these packages to integrate the SAML functionality and XML messages into their
applications and services. The API supports all types of assertions and operates with the Access
Manager authorities to process external SAML requests and generate SAML responses. The
packages include the following:

com.sun.identity.saml Package” on page 241
.sun.identity.saml.assertion Package” on page 241
com.sun.identity.saml.common Package” on page 242
com.sun.identity.saml.plugins Package” on page 242
.sun.identity.saml.protocol Package” on page 244
= “com.sun.identity.saml.xmlsig Package” on page 246

HE §E =E =
0
o
3

]
0
o
3

For more detailed information, including methods and their syntax and parameters, see the
Java API reference in / AccessManager-base/SUNWam/docs or on docs.sun.com.

Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

SAML API

com.sun.identity.saml Package

This package contains the AssertionManager and SAMLClient classes.

AssertionManager Class

The AssertionManager class provides interfaces and methods to create and get assertions,
authentication assertions, and assertion artifacts. This class is the connection between the
SAML specification and Access Manager. Some of the methods include the following:

®m createAssertion creates an assertion with an authentication statement based on an Access
Manager SSO Token ID.

= createAssertionArtifact creates an artifact that references an assertion based on an
Access Manager SSO Token ID.

= getAssertion returns an assertion based on the given parameter (given artifact, assertion
ID, or query).

SAMLClient Class

The SAMLClient class provides methods to execute either the Web Browser Artifact Profile or
the Web Browser POST Profile from within an application as opposed to a web browser. Its
methods include the following:

= getAssertionByArtifact returns an assertion for a corresponding artifact.
= doWebPOST executes the Web Browser POST Profile.
= doWebArtifact executes the Web Browser Artifact Profile.

com.sun.identity.saml.assertion Package

This package contains the classes needed to create, manage, and integrate an XML assertion
into an application. The following code example illustrates how to use the Attribute class and
getAttributeValue method to retrieve the value of an attribute. From an assertion, call the
getStatement () method to retrieve a set of statements. If a statement is an attribute statement,
call the getAttribute() method to get alist of attributes. From there, call
getAttributeValue() to retrieve the attribute value.

EXAMPLE 10-3 Sample Code to Obtain an Attribute Value

// get statement in the assertion

Set set = assertion.getStatement();

//assume there is one AttributeStatement

//should check null& instanceof

AttributeStatement statement = (AttributeStatement) set.iterator().next();
List attributes = statement.getAttribute();

// assume there is at least one Attribute

Chapter 10 - SAML Administration 241

SAML API

242

EXAMPLE 10-3 Sample Code to Obtain an Attribute Value (Continued)

Attribute attribute = (Attribute) attributes.get(0);
List values = attribute.getAttributeValue();

com.sun.identity.saml.common Package

This package defines classes common to all SAML elements, including site ID, issuer name, and
server host. The package also contains all SAML-related exceptions.

com.sun.identity.saml.plugins Package

Access Manager provides service provider interfaces (SPIs), three of which have default
implementations. The default implementations of these SPIs can be altered, or brand new ones
written, based on the specifications of a particular customized service. The implementations are
then used to integrate SAML into the custom service. Currently, the package includes the
following interfaces:

“ActionMapper Interface” on page 242
“AttributeMapper Interface” on page 242
“NameIdentifierMapper Interface” on page 242
“PartnerAccountMapper Interface” on page 243
“PartnerSiteAttributeMapper Interface” on page 243

ActionMapper Interface

ActionMapper is an interface used to obtain single sign-on information and to map partner
actions to Access Manager authorization decisions. A default action mapper is provided if no
other implementation is defined.

AttributeMapper Interface

AttributeMapper is an interface used in conjunction with an AttributeQuery class When a
site receives an attribute query, this mapper obtains the SSOToken or an assertion (containing an
authentication statement) from the query. The retrieved information is used to convert the
attributes in the query to the corresponding Access Manager attributes. A default attribute
mapper is provided if no other implementation is defined.

For more information, see “AttributeQuery Class” on page 244.

NameIdentifierMapper Interface

NameIdentifierMapper isan interface that can be implemented by a site to map a user account
to a name identifier in the subject of a SAML assertion. The implementation class is specified
when configuring the site's Trusted Partners.

Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

SAML API

PartnerAccountMapper Interface

Caution - The AccountMapper interface has been deprecated. Use the PartnerAccountMapper
interface.

The PartnerAccountMapper interface needs to be implemented by each partner site. The
implemented class maps the partner site's user accounts to user accounts configured in Access
Manager for purposes of single sign-on. For example, if single sign-on is configured from site A
to site B, a site-specific account mapper can be developed and defined in the Trusted Partners
sub-attribute of site B's Trusted Partners profile. When site B processes the assertion received, it
locates the corresponding account mapper by retrieving the source ID of the originating site.
The PartnerAccountMapper takes the whole assertion as a parameter, enabling the partner to
define user account mapping based on attributes inside the assertion. The default
implementation is com.sun.identity.saml.plugin.DefaultAccountMapper. If a site-specific
account mapper is not configured, this default mapper is used.

Note - Turning on the Debug Service in the AMConfig. properties file logs additional
information about the account mapper, for example, the user name and organization to which
the mapper has been mapped. For more information about the AMConfig.properties file, see
the Sun Java System Access Manager 7.1 Developer’s Guide.

PartnerSiteAttributeMapper Interface

Caution - The SiteAttributeMapper interface has been deprecated. Use the
PartnerSiteAttributeMapper interface.

The PartnerSiteAttributeMapper interface needs to be implemented by each partner site.
The implemented class defines a list of attributes to be returned as elements of the
AttributeStatements in an authentication assertion. By default, when Access Manager creates
an assertion and no mapper is specified, the authentication assertion only contains
authentication statements. If a partner site wants to include attribute statements, it needs to
implement this mapper which would be used to obtain attributes, create the attribute statement,
and insert the statement inside the assertion.

How to SetUp aPartnerSiteAttributeMapper

Implement a customized class based on the PartnerSiteAttributeMapper interface.

This class will include user attributes in the SAML authentication assertion.

Chapter 10 « SAML Administration 243

SAML API

244

Login to the Access Manager console to configure the class in the Site Attribute Mapper
attribute of the Trusted Partner configuration.

See “Trusted Partners” on page 234 for more information.

com.sun.identity.saml.protocol Package

This package contains classes that parse the request and response XML messages used to
exchange assertions and their authentication, attribute, or authorization information.

AuthenticationQuery Class

The AuthenticationQuery class represents a query for an authentication assertion. When an
identity attempts to access a trusted partner web site, a SAML request with an
AuthenticationQuery inside is directed to the authority site.

The Subject of the AuthenticationQuery must contain a SubjectConfirmation element. In
this element, ConfirmationMethod needs to be set tourn:com:sun:identity,and
SubjectConfirmationData needs to be set to the SS0Token ID of the Subject. If the Subject
contains a NameIdentifier, the value of the NameIdentifier should be the same as the one in
the SSOToken.

AttributeQuery Class

The AttributeQuery class represents a query for an identity’s attributes. When an identity
attempts to access a trusted partner web site, a SAML request with an AttributeQuery is
directed to the authority site.

You can develop an attribute mapper to obtain an SSOToken, or an assertion that contains an
AuthenticationStatement from the query. If no attribute mapper for the querying site is
defined, the DefaultAttributeMapper will be used. To use the DefaultAttributeMapper, the
query should have either the SSOToken or an assertion that contains an
AuthenticationStatement in the SubjectConfirmationData element. If an SSOToken is used,
the ConfirmationMethod must be setto urn:com:sun:identity:.Ifan assertion is used, the
assertion should be issued by the Access Manager instance processing the query or a server that
is trusted by the Access Manager instance processing the query.

Note - In the DefaultAttributeMapper, a subject’s attributes can be queried using another
subject’s SSOToken if the SSOToken has the privilege to retrieve the attributes.

For a query using the DefaultAttributeMapper, any matching attributes found will be
returned. If no AttributeDesignator is specified in the AttributeQuery, all attributes from
the services defined under the userServiceNameList in amSAML . properties will be returned.
The value of the userServiceNameList property is user service names separated by a comma.

Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

SAML API

AuthorizationDecisionQuery Class

The AuthorizationDecisionQuery class represents a query about a principal’s authority to
access protected resources. When an identity attempts to access a trusted partner web site, a
SAML request with an AuthorizationDecisionQuery is directed to the authority site.

You can develop an ActionMapper to obtain the SSOToken ID and retrieve the authentication
decisions for the actions defined in the query. If no ActionMapper for the querying site is
defined, the DefaultActionMapper will be used. To use the DefaultActionMapper, the query
should have the SSOToken ID in the SubjectConfirmationData element of the Subject. If the
SSO0Token ID is used, the ConfirmationMethod mustbe settourn:com:sun:identity:.Ifa
NameIdentifier is present, the information in the SSOToken must be the same as the
information in the NameIdentifier.

Note - When using web agents, the DefaultActionMapper handles actions in the namespace
urn:oasis:names:tc:SAML:1.0:ghpp only. Web agents serve the policy decisions for this
action namespace.

The authentication information can also be passed through the Evidence element in the query.
Evidence can contain an AssertionIDReference, an assertion containing an
AuthenticationStatement issued by the Access Manager instance processing the query, or an
assertion issued by a server that is trusted by the Access Manager instance processing the query.
The Subject in the AuthenticationStatement of the Evidence element should be the same as
the one in the query.

Note - Policy conditions can be passed through AttributeStatements of assertion(s) inside the
Evidence of a query. If the value of an attribute contains a TEXT node only, the condition is set
asattributeName=attributeValueString. Otherwise, the condition is set as
attributename=attributeValueElement.

The following example illustrates one of many ways to form an authorization decision query
that will return a decision.

EXAMPLE 10-4 AuthorizationDecisionQuery Code Sample

// testing getAssertion(authZQuery): no SC, with ni, with

// evidence(AssertionIDRef, authN, for this ni):
String nameQualifier = "dc=iplanet,dc=com";
String pName = "uid=amadmin, ou=people,dc=iplanet,dc=com";
NameIdentifier ni = new NameIdentifier(pName, nameQualifier);
Subject subject = new Subject(ni);
String actionNamespace = "urn:test";
// policy should be added to this resource with these

Chapter 10 - SAML Administration 245

SAML Operations

EXAMPLE10-4 AuthorizationDecisionQuery Code Sample (Continued)

// actions for the subject
Action actionl = new Action(actionNamespace, "GET");
Action action2 = new Action(actionNamespace, "POST");
List actions = new ArraylList();
actions.add(actionl);
actions.add(action2);
String resource = "http://www.sun.com:80";
eviSet = new HashSet();
// this assertion should contain authentication assertion for
// this subject and should be created by a trusted server
eviSet.add(eviAssertionIDRef3);
evidence = new Evidence(eviSet);
authzQuery = new AuthorizationDecisionQuery(eviSubjectl, actions,
evidence, resource);
try {
assertion = am.getAssertion(authzQuery, destID);
} catch (SAMLException e) {
out.println("--failed. Exception:" + e);

com.sun.identity.saml.xmlsig Package

All SAML assertions, requests, and responses can be signed using this signature package. It
contains SPI that are implemented to plug in proprietary XML signatures. This package
contains classes needed to sign and verify using XML signatures. By default, the keystore
provided with the Java Development Kit is used and the key type is DSA. The configuration
properties for this functionality are in the AMConfig.properties file. For information about
these properties, see the Sun Java System Access Manager 7.1 Developer’s Guide. For details on
how to use the signature functionality, see “SAML Samples” on page 250.

SAML Operations

This section contains procedures illustrating how to use the Access Manager SAML Service.
They are:

= “Setting Up SAML Single Sign-on” on page 246

Setting Up SAML Single Sign-on

The following procedures explain how to configure and access instances of Access Manager for
single sign-on using SAML 1.x assertions. Machine A (exampleA. com) is the source site which

246 Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

SAML Operations

authenticates the user and creates the SAML authentication assertion. Machine B
(exampleB. com) is the destination site which consumes the assertion and generates a SS0Token
for the user.

Note - If both machines are in the same domain, the cookie names must be different. You can
change the cookie name by modifying the com. iplanet.am. cookie.name property in
AMConfig.properties,located in /etc/opt/SUNWam/config/.

This section contains the following procedures:

= “To Set Up SAML Single Sign-on” on page 247
= “To Verify the SAML Single Sign-on Configurations” on page 250

To Set Up SAML Single Sign-on

This procedure assumes the following values:

Deployment URI amserver
Port 58080
Protocol http

Write down or copy the value of the Site ID attribute from the destination site (machine B).

a. Login to the Access Manager console running at exampleB. com as the default administrator,
amadmin.

b. Clickthe Federation tab.
c. Clickthe SAML tab.

d. Clickthe sole entry listed under Site Identifiers.
This takes you to the Edit site identifier page.

e. Write down or copy the value of the Site ID attribute.
f. Click Cancel.

g. Logout of thisinstance of Access Manager.

Chapter 10 - SAML Administration 247

SAML Operations

248

Configure the source site (machine A) to trust the destination site (machine B) AND write down
or copy the value of the Site ID attribute from the source site.

a. Login to the Access Manager console running at exampleA. com as the default administrator,
amadmin.

b. Clickthe Federation tab.
c. Clickthe SAML tab.

d. Click New under Trusted Partners.
This takes you to the Select trusted partner type and profile page.

e. CheckArtifact and Post under Destination and click Next.
This takes you to the Add New Trusted Partner page.

f. Setthevalues of the following attributes to configure machine B as a trusted partner of
machine A:

Source ID Type the Site ID copied from the destination site, machine B, in the
previous step.

Target The value of this attribute contains the host's domain or domain with
port. Do not include the accompanying protocol. For example,
exampleB. comand exampleB. com:58080 are valid but,
http://exampleB.com:58080.

SAML URL http://exampleB.com:58080/amserver/SAMLAwareServlet

HOST LIST exampleB.com

POST URL http://exampleB.com:58080/amserver/SAMLPOSTProfileServliet
g. ClickFinish.

h. Click Save.

i. Clickthe sole entry listed under Site Identifiers.
This takes you to the Edit site identifier page.

j. Write down or copy the value of the Site ID attribute.
k. Click Cancel to go to previous page.

l. Logoutof Access Manager.

Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

SAML Operations

3

Configure the destination site (machine B) to trust the source site (machine A).

a. Login to the Access Manager console running at exampleB. com as the default administrator,
amadmin.

b. Click the top-level realm under Access Control.
c. Click the Authentication tab.

d. Click New under Module Instances.

o

Type avalue in the Name field.

=h

Select the SAML radio button and click OK.
g. Click Save.
h. Click Access Control in the upper left corner.

Click the Federation tab.

Click the SAML tab.

—

k. Click New underTrusted Partners.
This takes you to the Select trusted partner type and profile page.

I. Check Artifact and Post under Source and click Next.
This takes you to the Add New Trusted Partner page.

m. Setthe values of the following attributes to configure machine A as a trusted partner of
machine B:

Source ID Type the Site ID you copied from the source site, machine A, in the
previous step.

SOAP URL http://exampleA.com:58080/amserver/SAMLSOAPReceiver

Issuer exampleA.com:58080

Note - If machine B uses https, check SSL under Authentication Type. Be sure to modify the
protocol in the other attributes as necessary.

Chapter 10 - SAML Administration 249

SAML Samples

n. Click Finish.
o. Click Save.

p. Logout of Access Manager.

To Verify the SAML Single Sign-on Configurations

Login to the Access Manager console running at exampleA. com as the default administrator,
amadmin.

To initialize single sign-on from machine A, do one of the following:

= Access the following URL to use the SAML Artifact profile:

http://exampleA.com:58080/amserver/SAMLAwareServiet?
TARGET=exampleB.com_Target URL

= Access the following URL to use the SAML POST profile:

http://exampleA.com:58080/amserver/SAMPOSTProfileServiet?
TARGET=exampleB.com_Target URL

Note - XML signing must be enabled before running the SAML POST profile. See “Signing
Liberty ID-FF Requests and Responses” on page 119 for details.

exampleB.com_Target_URL is any URL on the exampleB. com site to which the user will be
redirected after a successful single sign-on. For testing purpose, this could be the login page as
in TARGET=http://exampleB.com:58080/amserver/UI/Login. If the administrator
successfully accesses the Access Manager console on the destination site without manual
authentication, we know that an SSOtoken has been created for the principal on the destination
site and single sign-on has been properly established.

SAML Samples

250

You can access several SAML-based samples from the Access Manager installation in
/AccessManager-base/SUNWam/samples/saml. These samples illustrate how the SAML service
can be used in different ways, including the following:

= A sample that serves as the basis for using the SAML client API. This sample is located in
/AccessManager-base/SUNWam/samples/saml/client.

= A sample thatillustrates how to form a Query, write an AttributeMapper, and send and
process a SOAP message using the SAML SDK. This sample is located in
/AccessManager-base/SUNWam/samples/saml/que ry.

Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

SAML Samples

= A sample application for achieving SSO using either the Web Browser Artifact Profile or the
Web Browser POST Profile. This sample is located in
/AccessManager-base/SUNWam/samples/saml/sso.

= Asample that illustrates how to use the XMLSIG API and explains how to configure for
XML signing. This sample is located in
/AccessManager-base/SUNWam/samples/saml/xmlsig.

Each sample includes a README file with information and instructions on how to use it.

Chapter 10 « SAML Administration 251

252

L R 2 4 CHAPTER 11

Application Programming Interfaces

Sun Java System Access Manager provides a framework for identity federation and creating,
discovering, and consuming identity web services. This framework includes a graphical user
interface for Liberty-based web services as well as application programming interfaces (APIs).
This chapter provides information on the APIs that do not have a corresponding graphical user
interface (GUI).

This chapter covers the following topics:

= “Public Interfaces” on page 253

= “Common Service Interfaces” on page 256
= “Common Security API” on page 258

= “Interaction Service” on page 259

= “PAOS Binding” on page 262

Public Interfaces

The following list describes the public APIs you can use to deploy Liberty-enabled components
or extend the core services. Packages that are part of a web service that has a GUI are described
in the corresponding chapters of this book. Packages that are used solely on the back end are
described in this chapter. Links to those sections are also provided. For more information,
including methods and their syntax and parameters, see the Java API Reference in
/AccessManager-base/SUNWam/docs or on docs.sun.com.

253

Public Interfaces

TABLE11-1 Access Manager Public APIs

Package Name

Description

com.sun.identity.federation

com.sun.identity.federation

com.sun.identity.liberty

com.sun.identity.liberty
authnsvc.mechanism

com.sun.identity.liberty
authnsvc.protocol

com.sun.

com.sun.

com.sun

com.sun.

com.sun

com.sun

com.sun.

identity

identity.

.identity.

identity.

.identity.

.identity.

identity

.liberty

liberty

liberty

liberty

liberty

liberty

.liberty

WS

.WS.

WS.

WS

.WS.

WS

WS

WS

.plugins

.services

.authnsvc

WS.

-WS.

common

common.wsse

.disco

disco.plugins

.dst

.dst.service

.idpp.plugin

Provides interfaces which can be implemented to
allow applications to customize their actions before
and after invoking the federation protocols. See
Chapter 3, “Federation”

Provides interfaces for writing custom plug-ins that
can be used during the federation or single sign-on
process. See Chapter 3, “Federation.”

Provides classes to manage the Authentication Web
Service. See Chapter 6, “Authentication Web Service.”

Provides an interface to process incoming Simple
Authentication and Security Layer (SASL) requests
and generate SASL responses for the different SASL
mechanisms. See Chapter 6, “Authentication Web
Service”

Provides classes to manage the Authentication Web
Service protocol. See Chapter 6, “Authentication Web
Service”

Defines common classes used by many of the Access
Manager Liberty-based web service components. See
“Common Service Interfaces” on page 256.

Provides an interface to parse and create an X.509
Certificate Token Profile. See “Common Service
Interfaces” on page 256.

Provides interfaces to manage the Discovery Service.
See Chapter 8, “Discovery Service.”

Provides a plug-in interface for the Discovery Service.
See Chapter 8, “Discovery Service.”

Provides classes to implement an identity service on
top of the Access Manager framework. See Chapter 7,
“Data Services” for information about a service built
using this API.

Provides a handler class that can be used by any
generic identity data service. See Chapter 7, “Data
Services” for information on data services.

Defines plug-in interfaces for the Liberty Personal
Profile Service.

254 Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

Public Interfaces

TABLE11-1 Access Manager Public APIs

(Continued)

Package Name

Description

com.sun.identity.liberty.ws.interaction

com.

com.

com.

com.

com.

com.

com.

com.

com.

com.

com.

sun.

sun

sun.

sun.

sun.

sun.

sun.

sun.

sun.

sun.

sun.

identity.

.identity.

identity.

identity.

identity.

identity.

identity.

identity

identity.

identity.

liberty

liberty.ws.interfaces

liberty.ws.paos

liberty.ws.security

liberty.ws.soapbinding

saml

saml.

saml.

.saml.

saml.

saml.

assertion

common

plugins

protocol

xmlsig

Provides classes to support the Liberty-based
Interaction RequestRedirect Profile. See “Interaction
Service” on page 259.

Provides interfaces common to all Access Manager
Liberty-based web service components. See Chapter 7,
“Data Services” and Chapter 8, “Discovery Service”
for information about default implementations. See
“Common Service Interfaces” on page 256 for more
general information.

Provides classes for web applications to construct and
process PAOS requests and responses. See “PAOS
Binding” on page 262.

Provides an interface to manage Liberty-based web
service security mechanisms. See “Common Security
API” on page 258.

Provides classes to construct SOAP requests and
responses and to change the contact point for the
SOAP binding. See Chapter 9, “SOAP Binding
Service”

Provides an SPI in which proprietary XML signature
implementations can be plugged in. See Chapter 10,
“SAML Administration.”

Provides classes that manage assertions and profiles.
See Chapter 10, “SAML Administration”

Provides classes common to all SAML elements. See
Chapter 10, “SAML Administration.”

Provides SPIs to integrate SAML into custom services.
See Chapter 10, “SAML Administration”

Provides classes that parse the XML messages used to
exchange assertions and information. See Chapter 10,
“SAML Administration.”

Provides an SPIin which proprietary XML signature
implementations can be plugged in. See Chapter 10,
“SAML Administration.”

Provides interfaces common to the Access Manager
Federation Management module. See Chapter 3,
“Federation.”

Chapter 11

« Application Programming Interfaces

255

Common Service Interfaces

Common Service Interfaces

This section summarizes classes that can be used by all Liberty-based Access Manager service
components, as well as interfaces common to all Liberty-based Access Manager services. The
packages that contain the classes and interfaces are:

= “com.sun.identity.liberty.ws.common Package” on page 256
= “com.sun.identity.liberty.ws.interfaces Package” on page 256

com.sun.identity.liberty.ws.common Package

This package includes classes common to all Liberty-based Access Manager service
components.

TABLE11-2 com.sun.identity.liberty.ws.common Classes

Class Description

LogUtil Defines methods that are used by the Liberty component of Access
Manager to write logs.

Status Represents a common status object.

For more information, including methods and their syntax and parameters, see the Java API
Reference in / AccessManager-base/SUNWam/docs or on docs.sun.com.

com.sun.identity.liberty.ws.interfaces Package

This package includes interfaces that can be implemented to add their corresponding
functionality to each Liberty-based Access Manager web service.

TABLE11-3 com.sun.identity.liberty.ws.interfaces Interfaces

Interface Description
Authorizer Interface for identity service to check authorization of a WSC.
ResourceIDMapper Interface used to map between a user ID and the Resource ID

associated with it.

ServiceInstanceUpdate Interface used to include a SOAP header
(ServiceInstanceUpdateHeader) when sendinga SOAP

response.

256 Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

Common Service Interfaces

com.sun.identity.liberty.ws.interfaces.Authorizer Interface

This interface, once implemented, can be used by each Liberty-based web service component
for access control.

Note - The com.sun.identity.liberty.ws.disco.plugins.DefaultDiscoAuthorizer class
is the implementation of this interface for the Discovery Service. For more information, see
Chapter 8, “Discovery Service” The
com.sun.identity.liberty.ws.idpp.plugin.IDPPAuthorizer class isthe implementation
for the Liberty Personal Profile Service. For more information, see Chapter 7, “Data Services.”

The Authorizer interface enables a web service to check whether a web service consumer
(WSCQ) is allowed to access the requested resource. When a WSC contacts a web service
provider (WSP), the WSC conveys a sender identity and an invocation identity. Note that the
invocation identity is always the subject of the SAML assertion. These conveyances enable the
WSP to make an authorization decision based on one or both identities. The Access Manager
Policy Service performs the authorization based on defined policies.

Note - See the Sun Java System Access Manager 7.1 Technical Overview for more information
about policy management, single sign-on, and user sessions. See the Sun Java System Access
Manager 7.1 Administration Guide for information about creating policy.

com.sun.identity.liberty.ws.interfaces.ResourceIDMapper
Interface

This interface is used to map a user DN to the resource identifier associated with it. Access
Manager provides implementations of this interface.

® com.sun.identity.liberty.ws.disco.plugins.Default64ResourceIDMapper assumes
the Resource ID format to be: providerID +"/" + the Base64 encoded userIDs.

® com.sun.identity.liberty.ws.disco.plugins.DefaultHexResourceIDMapper assumes
the Resource ID format to be: providerID +"/" + the hex string of userID.

® com.sun.identity.liberty.ws.idpp.plugin.IDPPResourceIDMapper assumes the
Resource ID format to be: providerID + "/" + the Base64 encoded userIDs.

A different implementation of the interface may be developed. The implementation class
should be given to the provider that hosts the Discovery Service. The mapping between the
providerID and the implementation class can be configured through the Classes For
ResourceIDMapper Plugin attribute.

Chapter 11 « Application Programming Interfaces 257

Common Security API

Common Security API

The Liberty-based security APIs are included in the com.sun.identity.liberty.ws.security
package and the com.sun.identity.liberty.ws.common.wsse package.

com.sun.identity.liberty.ws.security Package

The com.sun.identity.liberty.ws.security package includes the SecurityTokenProvider
interface for managing Web Service Security (WSS) type tokens and the
SecurityAttributePlugin interface for inserting security attributes, via an
AttributeStatement, into the assertion during the Discovery Service token generation. The
following table describes the classes used to manage Liberty-based security mechanisms.

TABLE11-4 com.sun.identity.liberty.ws.security Classes

Class Description

ProxySubject Represents the identity of a proxy, the confirmation key, and
confirmation obligation the proxy must possess and
demonstrate for authentication purposes.

ResourceAccessStatement Conveys information regarding the accessing entities and
the resource for which access is being attempted.

SecurityAssertion Provides an extension to the Assertion class to support
ID-WSF ResourceAccessStatement and
SessionContextStatement.

SecurityTokenManager An entry class for the security package
com.sun.identity.liberty.ws.security. You can call its
methods to generate X.509 and SAML tokens for message
authentication or authorization. It is designed as a provider
model, so different implementations can be plugged in if the
default implementation does not meet your requirements.

SecurityUtils Defines methods that are used to get certificates and sign
messages.

SessionContext Represents the session status of an entity to another system
entity.

SessionContextStatement Conveys the session status of an entity to another system

entity within the body of an <saml:assertion> element.

SessionSubject Represents a Liberty subject with its associated session
status.

For more information, including methods and their syntax and parameters, see the Java API
Reference in / AccessManager-base/SUNWam/docs or on docs.sun.com.

258 Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

Interaction Service

com.sun.identity.liberty.ws.common.wsse
Package

This package includes classes for creating security tokens used for authentication and
authorization in accordance with the Liberty ID-WSF Security Mechanisms. Both WSS X.509
and SAML tokens are supported.

TABLE11-5 com.sun.identity.liberty.ws.common.wsse Classes

Class Description

BinarySecurityToken Provides an interface to parse and create the X.509
Security Token depicted by Web Service Security: X.509

WSSEConstants Defines constants used in security packages.

For more information, including methods and their syntax and parameters, see the Java API
Reference in / AccessManager-base/SUNWam/docs or on docs.sun.com.

Interaction Service

Providers of identity services often need to interact with the owner of a resource to get
additional information, or to get their consent to expose data. The Liberty Alliance Project has
defined the Liberty ID-WSF Interaction Service Specification to specify how these interactions
can be carried out. Of the options defined in the specification, Access Manager has
implemented the Interaction RequestRedirect Profile. In this profile, the WSP requests the
connecting WSC to redirect the user agent (principal) to an interaction resource (URL) at the
WSP. When the user agent sends an HT'TP request to get the URL, the WSP has the opportunity
to present one or more pages to the principal with questions for other information. After the
WSP obtains the information it needs to serve the WSC, it redirects the user agent back to the
WSC, which can now reissue its original request to the WSP.

Configuring the Interaction Service

While there is no XML service file for the Interaction Service, this service does have properties.
The properties are configured upon installation in the AMConfig. properties file located in
/AccessManager-base/SUNWam/lib and are described in the following table.

Chapter 11 « Application Programming Interfaces 259

http://www.projectliberty.org/specs/liberty-idwsf-security-mechanisms-v1.1.pdf
http://www.projectliberty.org/specs/liberty-idwsf-interaction-svc-v1.1.pdf

Interaction Service

TABLE11-6 Interaction Service Propertiesin AMConfig.properties

Property

Description

com.sun.identity.liberty.interaction.

wspRedirectHandler

com.sun.identity.liberty.interaction.

wscSpecifiedInteractionChoice

com.sun.identity.liberty.interaction.

wscWillIncludeUserInteractionHeader

com.sun.identity.liberty.
interaction.wscWillRedirect

com.sun.identity.liberty.interaction.

wscSpecifiedMaxInteractionTime

com.sun.identity.liberty.interaction.

wscWillEnforceHttpsCheck

com.sun.identity.liberty.
interaction.wspWillRedirect

com.sun.identity.liberty.
interaction.wspWillRedirectForData

Points to the URL where the WSPRedirectHandler
servlet is deployed. The servlet handles the service
provider side of interactions for user redirects.

Indicates the level of interaction in which the WSC
will participate if the WSC participates in user
redirects. Possible values include interactIfNeeded,
doNotInteract,and doNotInteractForData. The
affirmative interactIfNeeded is the default.

Indicates whether the WSC will include a SOAP
header to indicate certain preferences for interaction
based on the Liberty specifications. The default value
isyes.

Indicates whether the WSC will participate in user
redirections. The default value is yes.

Indicates the maximum length of time (in seconds)
the WSC is willing to wait for the WSP to complete its
portion of the interaction. The WSP will not initiate
an interaction if the interaction is likely to take more
time than . For example, the WSP receives a request
where this property is set to a maximum 30 seconds. If
the WSP property com.sun.identity.liberty.
interaction.wspRedirectTime is set to 40 seconds,
the WSP returns a SOAP fault (timeNotSufficient),
indicating that the time is insufficient for interaction.

Indicates whether the WSC will enforce HTTPS in
redirected URLs. The Liberty Alliance Project
specifications state that, the value of this property is
always yes, which indicates that the WSP will not
redirect the user when the value of redirectURL
(specified by the WSP) is not an HTTPS URL. The
false value is primarily meant for ease of deployment
in a phased manner.

Initiates an interaction to get user consent for
something or to collect additional data. This property
indicates whether the WSP will redirect the user for
consent. The default value is yes.

Initiates an interaction to get user consent for
something or to collect additional data. This property
indicates whether the WSP will redirect the user to
collect additional data. The default value is yes.

Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

Interaction Service

TABLE11-6 Interaction Service Properties in AMConfig.properties (Continued)

Property

Description

com.sun.identity.liberty.
interaction.wspRedirectTime

com.sun.identity.liberty.interaction.
wspWillEnforceHttpsCheck

com.sun.identity.liberty.
interaction.
wspWillEnforceReturnToHost
EqualsRequestHost

com.sun.identity.liberty.
interaction.htmlStyleSheetLocation

com.sun.identity.liberty.
interaction.wmlStyleSheetLocation

Indicates the length of time (in seconds) that the WSP
expects to take to complete an interaction and return
control back to the WSC. For example, the WSP
receives a request indicating that the WSC will wait a
maximum 30 seconds (set in
com.sun.identity.liberty.
interaction.wscSpecifiedMaxInteractionTime)
for interaction. If the wspRedirectTime is set to 40
seconds, the WSP returns a SOAP fault
(timeNotSufficient), indicating that the time is
insufficient for interaction.

Indicates whether the WSP will enforce a HTTPS
returnToURL specified by the WSC. The Liberty
Alliance Project specifications state that the value of
this property is always yes. The false value is
primarily meant for ease of deployment in a phased
manner.

Indicates whether the WSP would enforce the address
values of returnToHost and requestHost if they are
the same. The Liberty Alliance Project specifications
state that the value of this property is always yes. The
false value is primarily meant for ease of deployment
in a phased manner.

Points to the location of the style sheet that is used to
render the interaction page in HTML.

Points to the location of the style sheet that is used to
render the interaction page in WML.

Interaction Service API

The Access Manager Interaction Service includes a Java package named
com.sun.identity.liberty.ws.interaction. WSCsand WSPs use the classes in this package
to interact with a resource owner. The following table describes the classes.

TABLE11-7 Interaction Service Classes

Class

Description

InteractionManager

Provides the interface and implementation for
resource owner interaction.

Chapter 11 « Application Programming Interfaces

261

PAOS Binding

TABLE 11-7 Interaction Service Classes (Continued)
Class Description
InteractionUtils Provides some utility methods related to resource
owner interaction.
JAXBObjectFactory Contains factory methods that enable you to construct
new instances of the Java representation for XML
content.

For more information, including methods and their syntax and parameters, see the Java API
Reference in /AccessManager-base/SUNWam/docs or on docs.sun.com.

PAOS Binding

262

Access Manager has implemented the optional Liberty Reverse HT TP Binding for SOAP
Specification. This specification defines a message exchange protocol that permits an HTTP
client to be a SOAP responder. HTTP clients are no longer necessarily equipped with HTTP
servers. For example, mobile terminals and personal computers contain web browsers yet they
do not operate HT'TP servers. These clients, though, can use their browsers to interact with an
identity service, possibly a personal profile service or a calendar service. These identity services
could also be beneficial when the client devices interact with an HTTP server. The use of PAOS
makes it possible to exchange information between user agent-hosted services and remote
servers. This is why the reverse HTTP for SOAP binding is also known as PAOS; the spelling of
SOAP is reversed.

Comparison of PAOS and SOAP

In a typical SOAP binding, an HTTP client interacts with an identity service through a client
request and a server response. For example, a cell phone user (client) can contact the phone
service provider (service) to retrieve stock quotes and weather information. The service verifies
the user’s identity and responds with the requested information.

In areverse HTTP for SOAP binding, the phone service provider plays the client role, and the
cell phone client plays the server role. The initial SOAP request from the server is actually
bound to an HTTP response. The subsequent response from the client is bound to a request.

PAOS Binding API

The Access Manager implementation of PAOS binding includes a Java package named
com.sun.identity.liberty.ws.paos. This package provides classes to parse a PAOS header,
make a PAOS request, and receive a PAOS response.

Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

http://www.projectliberty.org/specs/liberty-paos-v1.1.pdf
http://www.projectliberty.org/specs/liberty-paos-v1.1.pdf

PAOS Binding

Note - This APIis used by PAOS clients on the HTTP server side. An API for PAOS servers on
the HTTP client side would be developed by the manufacturers of the HTTP client side
products, for example, cell phone manufacturers.

The following table describes the available classes in com.sun.identity.liberty.ws.paos.
For more detailed API documentation, see the Java API Reference in
/AccessManager-base/SUNWam/docs or on docs.sun.com.

TABLE11-8 PAOS Binding Classes

Class Description

PAOSHeader Used by a web application on the HTTP server side to parse a
PAOS header in an HTTP request from the user agent side.

PAOSRequest Used by a web application on the HTTP server side to construct
a PAOS request message and send it via an HTTP response to the
user agent side.

Note - PAOSRequest is made available in PAOSResponse to
provide correlation, if needed, by APT users.

PAOSResponse Used by a web application on the HTTP server side to receive
and parse a PAOS response using an HTTP request from the user
agent side.

PAOSException Represents an error occurring while processing a SOAP request
and response.

For more information, including methods and their syntax and parameters, see the Java API
Reference in / AccessManager-base/SUNWam/docs or on docs.sun.com.

PAOS Binding Sample

A sample that demonstrates PAOS service interaction between an HTTP client and server is
provided in the /AccessManager-base/SUNWam/samples/phase2/paos directory. The PAOS
client is a servlet, and the PAOS server is a stand-alone Java program. Instructions on how to
run the sample can be found in the Readme . html or Readme . txt file. Both files are included in
the paos directory. The following code example is the PAOS client servlet.

EXAMPLE 11-1 PAOS Client Servlet From PAOS Sample

import java.util.*;
import java.io.*;

Chapter 11 « Application Programming Interfaces 263

PAOS Binding

EXAMPLE 11-1 PAOS Client Servlet From PAOS Sample (Continued)

import javax.servlet.*;
import javax.servlet.http.*;

import com.sun.identity.liberty.ws.paos.*;
import com.sun.identity.liberty.ws.idpp.jaxb.*;
public class PAOSClientServlet extends HttpServlet {

public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

PAOSHeader paosHeader = null;
try {
paosHeader = new PAOSHeader(req);
} catch (PAOSException pel) {
pel.printStackTrace();

String msg = "No PAOS header\\n";
res.setContentType("text/plain");
res.setContentLength(1l+msg.length());

PrintWriter out = new PrintWriter(res.getOutputStream());
out.println(msg);

out.close();

throw new ServletException(pel.getMessage());

}
HashMap servicesAndOptions = paosHeader.getServicesAndOptions();
Set services = servicesAndOptions.keySet();

String thisURL = req.getRequestURL().toString();
String[] queryItems = { "/IDPP/Demographics/Birthday" };
PAOSRequest paosReq = null;
try {
paosReq = new PAOSRequest(thisURL,
(String) (services.iterator().next()),
thisURL,
queryItems);
} catch (PAOSException pe2) {
pe2.printStackTrace();
throw new ServletException(pe2.getMessage());
}
System.out.println("PAOS request to User Agent side ---------------
System.out.println(paosReq.toString());

264 Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

PAOS Binding

EXAMPLE 11-1 PAOS Client Servlet From PAOS Sample (Continued)

paosReq.send(res, true);

public void doPost(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

PAOSResponse paosRes = null;

try {
paosRes = new PAOSResponse(req);

} catch (PAOSException pe) {
pe.printStackTrace();
throw new ServletException(pe.getMessage());

}

System.out.println("PAOS response from User Agent side -------------- >");
System.out.println(paosRes.toString());

System.out.println("Data output after parsing -------------- >");
String dataStr = null;
try {
dataStr = paosRes.getPPResponseStr();
} catch (PAOSException paose) {
paose.printStackTrace();
throw new ServletException(paose.getMessage());
}
System.out.println(dataStr);
String msg = "Got the data: \\n" + dataStr;

res.setContentType("text/plain");
res.setContentLength(1l+msg.length());

PrintWriter out = new PrintWriter(res.getOutputStream());
out.println(msg);

out.close();

See Appendix A, “Liberty-based and SAML Samples” for information about all the sample code
and files included with Access Manager.

Chapter 11 « Application Programming Interfaces 265

266

L K R 4 APPENDIX A

Liberty-based and SAML Samples

Sun Java System Access Manager contains a number of samples that make use of the Access
Manager implementation of the Liberty Alliance Project specifications. This appendix contains
information about the samples. The samples are located in
/AccessManager-base/SUNWam/samples. This directory includes samples for the entire Access
Manager product as well as two directories specific to the Liberty-based features: liberty and
phase2.

This appendix covers the following samples:

= “Federation Framework Samples” on page 267
= “Web Services Framework Samples” on page 269
= “SAML Samples” on page 271

Federation Framework Samples

Access Manager 7.1 supports the Liberty Alliance Identity Federation Framework 1.2
Specifications. The Federation Framework samples are located in
/AccessManager-base/SUNWam/samples/liberty. To demonstrate the different Liberty-based
federation protocols featured in Access Manager, three sample applications are included. They
are located in the following subdirectories:

= “samplel Directory” on page 267
= “sample2 Directory” on page 268
= “sample3 Directory” on page 268

samplel Directory

The samplel directory provides a collection of files to configure a basic environment for
creating and managing a federation. The sample demonstrates the basic use of various
Liberty-based federation protocols, including account federation, SSO, single logout, and

267

Federation Framework Samples

268

federation termination. The scenario includes a service provider (SP), an identity provider
(IDP), and configuration information for the two required servers. Each server must be
deployed and configured on different installations of Access Manager.

TABLEA-1 Configuration Information for samplel Servers

Variable Placeholder Host Name Components Deployed on This Host

machinel www.spl.com ®m Service Provider

m Web Service Consumer

machine2 www.idpl.com " Identity Provider
= Discovery Service
® Liberty Alliance Project

The Readme. html file in the samplel directory provides detailed steps on how to deploy and
configure this sample. samplel also contains instructions for configuring a common domain.
For information on common domains, see Chapter 4, “Common Domain Services for
Federation Management.”

sample2 Directory

The sample2 directory also provides a collection of files to configure a basic environment for
creating and managing a federation. However, in this sample, the resources of the SP are
deployed on a Sun Java System Web Server that is protected by a Sun Java System Policy Agent.
Asin “samplel Directory” on page 267, the SP and IDP are deployed and configured on
different Access Manager installations. Besides demonstrating account federation, SSO, single
logout, and federation termination, this sample also shows how different authentication
contexts can be configured by associating different authentication levels with different
protected pages. This association is made by creating policies for the protected resources. The
Readme.html file in the sample2 directory provides detailed steps on how to deploy and
configure this sample.

sample3 Directory

The sample3 directory provides a collection of files to configure an environment for creating
and managing a federation that includes two SPs and two IDPs. In this case, though, all hosted
providers are deployed on a single installation of Access Manager. You need to host the same IP
address (the one on which Access Manager is installed) in four different DNS domains. Thus,
four virtual server instances are created on a Sun Java System Web Server, one for each of the
providers.

Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

Web Services Framework Samples

Note - Virtual server instances can be simulated by adding entries in the /etc/hosts file for the
fully qualified host names of the virtual servers.

Because this scenario involves multiple IPs, you also need to install a common domain. You can
install the Common Domain Services for Federation Management on the same machine as the
Access Manager software or on a different machine. The Readme. htm1 file in the sample3
directory provides detailed steps on how to deploy and configure this sample. You can also find
information about common domains in Chapter 4, “Common Domain Services for Federation
Management.”

Web Services Framework Samples

Access Manager 7.1 supports both the Liberty Alliance Identity Web Services Framework 1.0
Specifications and the Liberty Alliance Identity Services Interface Specifications 1.0. The web
services samples are located in / AccessManager-base/SUNWam/samples/phase2. To
demonstrate the different Liberty-based web services protocols featured in Access Manager,
four sample applications are included. They are located in the following sub-directories:

“wsc Directory” on page 269
“sis-ep Directory” on page 270
“paos Directory” on page 270
“authnsvc Directory” on page 270

wsc Directory

The wsc directory contains a collection of files to deploy and run a web service consumer
(WSC).

Note - Before implementing this sample, you must have two instances of Access Manager
installed, and running, and Liberty-enabled. Completing the procedure in “samplel Directory”
on page 267 will accomplish this.

In addition, this sample illustrates how to use the Discovery Service and Data Services Template
client APIs to allow the WSC to communicate with a web service provider (WSP). This sample
describes the flow of the Liberty-based Web Service Framework (ID-WSF) and how the security
mechanisms and interaction service are integrated. The Readme . html file in the wsc directory
provides detailed steps on how to deploy and configure this sample. For more information, see
also Chapter 7, “Data Services” and Chapter 8, “Discovery Service”

Appendix A - Liberty-based and SAML Samples 269

Web Services Framework Samples

270

sis-ep Directory

The sis-ep directory contains a collection of files to develop, deploy, and invoke a new
Liberty-based web service to Access Manager. The sample implements the Liberty Employee
Profile Service.

Note - Before implementing this sample, you must have two instances of Access Manager
installed, and running, and Liberty-enabled. Completing the procedure in “samplel Directory”
on page 267 will accomplish this.

The Liberty Employee Profile Service is a deployment of the Liberty ID-SIS Employee Profile
Service Specification (ID-SIS-EP), which is one of the Liberty Alliance ID-SIS 1.0 Specifications.
The Readme. htmt file in the sample directory provides detailed steps on how to deploy and
configure this sample. For more information, see also Chapter 7, “Data Services”

paos Directory

The paos directory contains a collection of files that demonstrate how to set up and invoke a
PAOS Service interaction between a client and server. The sample is based on the following
scenario: a cell phone user subscribes to a news service offered by the cell phone’s manufacturer.
The news service automatically provides stocks and weather information to the user’s cell
phone at regular intervals. In this scenario, the manufacturer is the news service provider, and
the individual cell phone user is the consumer. After running the sample, you will see the output
from the PAOSServer program.

You can also see the output from PAOSClientServlet program in the log file of the Web Server.
For example, when using Sun Java System Web Server, look in the log subdirectory for the
errors file.

The Readme. html file in the sample directory provides detailed steps on how to deploy and
configure this sample. In addition, see “PAOS Binding Sample” on page 263.

Note - In an actual deployment, the server-side code would be developed by a service provider.

authnsvc Directory

The authnsvc directory contains a collection of files to illustrate the use of the Access Manager
Authentication Web Service. This sample program authenticates against the service and
extracts the resource offering of a discovery bootstrap. The Readme . htm1 file in the sample
directory provides detailed steps on how to deploy and configure this sample. In addition, see
Chapter 6, “Authentication Web Service”

Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

SAML Samples

SAML Samples

For information on the samples related to the SAML component of Access Manager, see
“SAML Samples” on page 250.

Appendix A - Liberty-based and SAML Samples 271

272

L K R 4 APPENDIX B

Key Management

A public key infrastructure enables users on a public network to securely and privately
exchange data through the use of a public and a private key pair that is shared using a trusted
authority. For example, the PKI allows the data from a client, such as a web browser, to be
encrypted prior to transmission. The private key is used to decrypt text that has been encrypted
with the public key. The public key is made publicly available (as part of a digital certificate) in a
directory which all parties can access. This appendix contains information on how to create a
keystore and generate public and private keys. It includes the following sections:

= “Public Key Infrastructure Basics” on page 273
= “keytool Command Line Interface” on page 275
= “Setting Up a Keystore” on page 276

Public Key Infrastructure Basics

Web containers support the use of keystores to manage keys and certificates. The keystore file is
a database that contains both public and private keys. Public and private keys are created
simultaneously using the same algorithm (for example, RSA). A public key is used for
encrypting or decrypting information. This key is made known to the world with no
restrictions, but it cannot be used to decrypt information that the same key has encrypted. A
private key is never revealed to anyone except it's owner and does not need to be communicated
to third parties. The private key might never leave the machine or hardware token that
originally generated it. The private key can encrypt information that can later be decrypted by
using the public key. Also the private key can be used to decrypt information that was
previously encrypted using the public key.

A public key infrastructure (PKI) is a framework for creating a secure method of exchanging
information on an unsecure network. This ensures that the information being sent is not open
to eavesdropping, tampering, or impersonation. It supports the distribution, management,
expiration, rollover, backup, and revoking of the public and private keys used for public key
cryptography. Public key cryptography is the most common method for encrypting and

273

Public Key Infrastructure Basics

274

decrypting a message. It secures the data involved in the communications by using a private key
and its public counterpart. Each entity protects its own private key while disseminating its
public key for all to use. Public and private keys operate inversely; an operation performed by
one key can be reversed, or checked, only by its partner key.

Note - The Internet X.509 Public Key Infrastructure Certificate and CRL Profile is a PKI.

Digital Signatures

So, a private key and a public key can be used for simple message encryption and decryption.
This ensures that the message can not be read (as in eavesdropping) but, it does not ensure that
the message has not been tampered with. For this, a one-way hash (a number of fixed length that
is unique for the data to be hashed) is used to generate a digital signature. A digital signature is
basically data that has been encrypted using a one-way hash and the signer's private key. To
validate the integrity of the data, the server receiving the communication uses the signer's
public key to decrypt the hash. It then uses the same hashing algorithm that generated the
original hash (sent with the digital signature) to generate a new one-way hash of the same data.
Finally, the new hash and the received hash are compared. If the two hashes match, the data has
not changed since it was signed and the recipient can be certain that the public key used to
decrypt the digital signature corresponds to the private key used to create the digital signature.
If they don't match, the data may have been tampered with since it was signed, or the signature
may have been created with a private key that doesn't correspond to the public key presented by
the signer. This interaction ensures that any change in the data, even deleting or altering a single
character, results in a different value.

Digital Certificates

A digital certificate is an electronic document used to identify an individual, a server, a
company, or other entity and to bind that entity to a public key by providing information
regarding the entity, the validity of the certificate, and applications and services that can use the
certificate. The process of signing the certificate involves tying the private key to the data being
signed using a mathematical formula. The widely disseminated public counterpart can then be
used to verify that the data is associated with the sender of the data. Digital certificates are issued
by a certificate authority (CA) to authenticate the identity of the certificate-holder both before
the certificate is issued and when the certificate is used. The CA can be either independent third
parties or certificate-issuing server software specific to an enterprise. (Both types issue, verify,
revoke and distribute digital certificates.) The methods used to authenticate an identity are
dependant on the policies of the specific CA. In general, before issuing a certificate, the CA must
use its published verification procedures for that type of certificate to ensure that an entity
requesting a certificate is in fact who it claims to be.

Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

http://www.ietf.org/rfc/rfc2459.txt

keytool Command Line Interface

Certificates help prevent the use of fake public keys for impersonation. Only the public key
certified by the certificate will work with the corresponding private key possessed by the entity
identified by the certificate. Digital certificates automate the process of distributing public keys
and exchanging secure information. When one is installed on your machine, the public key is
freely available. When another computer wants to exchange information with your computer, it
accesses your digital certificate, which contains your public key, and uses it to validate your
identity and to encrypt the information it wants to share with you. Only your private key can
decrypt this information, so it remains secure from interception or tampering while traveling
across the Internet.

Note - You can get a digital certificate by sending a request for one to a CA. Certificate requests
are generated by the certificate management tool used. In this case, we are using the keytool
command line interface. When keytool generates a certificate request, it also generates a
private key.

keytool Command Line Interface

keytool is a key and certificate management utility used to create the keys. It also manages a
.keystore file containing private keys and the associated X.509 certificate chains
authenticating the corresponding public keys, issues certificate requests (which you send to the
appropriate CA), imports certificate replies (obtained from the contacted CA), designates
public keys belonging to other parties as trusted, and generates a unique key alias for each
keystore entry. There are two types of entries in a keystore:

= A keystore entry holds sensitive cryptographic key information, stored in a protected format
to prevent unauthorized access. Typically, a key stored in this type of entry is a secret or
private key accompanied by a certificate chain for the corresponding public key.

= A trusted certificate entry contains a single public key certificate belonging to another party.
Itis called a trusted certificate because the keystore owner trusts that the public key in the
certificate indeed belongs to the identity identified by the subject of the certificate. The issuer
of the certificate vouches for this, by signing the certificate.

To create a keystore and default key entry in . keystore, you must use keytool, available from
the Java Development Kit (JDK), version 1.3.1 and above. For more details, see keytool — Key
and Certificate Management Tool.

AppendixB - Key Management 275

http://java.sun.com/j2se/1.3/docs/tooldocs/win32/keytool.html
http://java.sun.com/j2se/1.3/docs/tooldocs/win32/keytool.html

Setting Up a Keystore

Setting Up a Keystore

The following procedure illustrates how to create a keystore file and default key entry using
keytool.

v To Set Up a Keystore

Be sure to use the keytool provided with the JDK bundled with Access Manager. It is located in
JAVA_HOME/bin/keytool. When installed using the Java Enterprise System installer,
JAVA_HOME is AccessManager-baseSUNWam/ java.

Note - The italicized option values in the commands used in this procedure may be changed to
reflect your deployment.

1 Generate a certificate using one of the following procedures.

= Generate a keystore with a public and private key pair and a self-signed certificate for your
server using the following command.

keytool -genkey -keyalg rsa -alias test -dname "cn=sun-unix,ou=SUN Java System Access Manager,o=Sun,c=US" -keypass 1111

This command will generate a keystore called .mykeystore in the directory from which itis
run. A private key entry with the alias test is created and stored in .mykeystore. If you do
not specify a path to the keystore, a file named . keystore will be generated in your home
directory. If you do not specify an alias for the default key entry, mykey is created as the
default alias. To generate a DSA key, change the value of - keyalg to dsa. This step generates
a self-signed certificate.

= Createarequestand import asigned certificate from a CA (to authenticate your public key)
using the following procedure.

a. Createarequest to retrieve a signed certificate from a CA (to authenticate your public
key) using the following command:

keytool -certreq -alias test -file request.csr -keypass 11111111 -keystore .mykeystore -storepass 11111111 -storetype JKS
.mykeystore must also contain a self-signed certificate authenticating the server's
generated public key. This step will generate the certificate request file, request.csr,
under the directory from which the command is run. By submitting request.csrtoa
CA, the requestor will be authenticated and a signed certificate authenticating the public

key will be returned. Save this root certificate to a file named myroot. cer and save the
server certificate generated in the previous step to a file named mycert. cer.

b. Importthe certificate returned from the CA using the following command:
keytool -import -alias fest -trustcacerts -file mycert.cer -keypass 11111111 -keystore .mykeystore -storepass 11111111

276 Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

Setting Up a Keystore

keytool -import

c. Import the certificates of any trusted sites (from which you will receive assertions,
requests and responses) into your keystore using the following command:

-file myroot.cer -keypass 11111111 -keystore .mykeystore -storepass 11111111

The data to be imported must be provided either in binary encoding format, or in
printable encoding format (also known as Base64) as defined by the Internet RFC 1421
standard. In the latter case, the encoding must be bounded at the beginning by a string
that starts with - - - - - BEGIN and bounded at the end by a string that starts with - - - - - END.

Change to the AccessManager-base/SUNWam/bin directory and run the following command:
ampassword -e original password

This encrypts the password. The command will return something like
AQICKuUNVNcOWXxiUyd8j90/BR22szk8u69ME.

Create anew file named . storepass and put the encrypted password in it.
Create a new file named . keypass and put the encrypted password in it.

Copy .mykeystore to the location specified in AMConfig.properties.

For example, if
com.sun.identity.saml.xmlsig.keystore=/etc/opt/SUNWam/lib/keystore.jks, copy
.mykeystore to /etc/opt/SUNWam/1lib/ and rename the file to keystore. jks.

Copy .storepass and . keypass to the location specified in AMConfig.properties.

For example, if
com.sun.identity.saml.xmlsig.storepass=/etc/opt/SUNWam/config/.storepass and
com.sun.identity.saml.xmlsig.keypass=/etc/opt/SUNWam/config/.keypass, copy both
files to /etc/opt/SUNWam/config/.

Define avalue for the com.sun.identity.saml.xmlsig.certalias propertyin
AMConfig.properties.

For this example, the value would be test.

(Optional) If the private key was encrypted using the DSA algorithm, change
xmlsigalgorithm=http://www.w3.0rg/2000/09/xmldsig#rsa-shalin
AccessManager-base/1locale/amSAML. properties to
xmlsigalgorithm=http://www.w3.0rg/2000/09/xmldsig#dsa-shal.

(Optional) Change the canonicalization method for signing or the transform algorithm for
signing by modifying amSAML . properties, located in AccessManager-base/1locale/.

a. Change canonicalizationMethod=http://www.w3.0rg/2001/10/xml-exc-cl4n# toany
valid canonicalization method specified in Apache XML security package Version 1.0.5.

AppendixB - Key Management 277

Setting Up a Keystore

Note - If this entry is deleted or left empty, we will use
SAMLConstants.ALGO_ID_C14N_OMIT_COMMENTS (required by the XML Signature
specification) will be used.

b. ChangetransformAlgorithm=http://www.w3.0rg/2001/10/xml-exc-cl4n# to any valid
transform algorithm specified in Apache XML security package Version 1.0.5.

Note - If this entry is deleted or left empty, the operation will not be performed.

10 Restart Access Manager.

278 Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

Index

A
access
Authentication Web Service, 157
Discovery Service, 203
Liberty Personal Profile Service, 169-170
Access Manager
and federation, 57-62
architecture, 55-57
documentation, 20-21
implementation of Liberty Alliance Project, 53-57
Liberty-based web services, 63-66
account federation, definition, 34
affiliate entity
See also entities
configuring, 101-104
definition, 81
affiliation, definition, 34
amadmin, create entities, 105-108
ambulkfed, See bulk federation
amDisco add.xml, 177
amDisco.xml, 177
amSAML . xml, 232-233
API
Authentication Web Service, 156
client for Discovery Service, 198-199
common security, 258-259
common service, 256-257
Data Services Template, 160-162,170-172
Discovery Service, 198-203
extract, 67-69
federation, 113-115
Interaction Service, 259-262

API (Continued)
PAOS binding, 262-265
public interfaces, 67-69
SAML, 240-246
SOAP Binding Service, 209-210
Application Server, documentation, 23
architecture
Discovery Service, 178
Liberty Alliance Project in Access Manager, 55-57
SAML, 214-217
Artifact Timeout, 239
asserting party, 213-217
assertion consumer, 213-217
Assertion Skew Factor For notBefore Time, 239
Assertion Timeout, 239
assertion types, and SAML, 219-221
Attribute Mapper, 166
attribute provider, definition, 34
attributes
authentication context classes, 96
Authentication Web Service, 155-156
communication profiles, 95
communication URLs, 95
context reference, 89
default authentication context, 90
Discovery Service, 180-184
identity provider attribute mapping, 91
Liberty Personal Profile Service, 164-169
protocol support enumeration, 86
proxy configuration, 99
server name identifier mapping binding, 86
SOAP Binding Service, 207-209

279

Index

authentication context, 96
attribute, 89,90
definition, 34-35
overview, 59-61
authentication domain
create, 80-111
definition, 35
authentication domains
configure or modify, 110
create, 109
delete, 110-111
overview, 108-111
Authentication Service (non-Liberty), 152-154
Authentication Service Specification, overview, 49
authentication services
Authentication Service (non-Liberty), 152-154
Authentication Web Service (Liberty), 152-154
Authentication Web Service
accessing, 157
API, 156
attribute, 155-156
extract, 66
or Authentication Service (non-Liberty), 152-154
overview, 151-154
process, 154
sample, 157,270
XML service file, 152
Authorizer, 165-166
Authorizer interface, 200-202
Authorizer interface, 257
auto-federation, 59,115-116

B

basic authentication, 231-232

binding, definition, 35

bootstrapping discovery service, 184
bootstrapping Discovery Service, 193-195
bulk federation, 59,116-117

business agreements, 32

C

circle of trust, definition, 35
client, definition, 35
client API
Data Services Template, 170-171
Discovery Service, 198-199
Client Profiles Specification, overview, 49
com.sun.identity.federation.plugins, 114
com.sun.identity.federation.services, 114
com.sun.identity.liberty.wsf.version, 144-149
com.sun.liberty, 114-115
common domain
definition, 36
overview, 123-124
common domain cookie, 124-125
common domain services
configure properties, 126
configure URLs, 125
installation, 126-127
common security API, 258-259
common service interfaces, 256-257
communication profiles, 95
communication URLs, 95
containers, 166-167
context reference attribute, 89
cookie, common domain, 124-125
create
authentication domains, 109
entities, 82-83
create entities, with amadmin, 105-108
customize
federation, 77-80
graphical user interface, 77-80

D

data services
See also Data Services Template
API, 170-172
developing, 172
Liberty Employee Profile Service, 170
Liberty Personal Profile Service, 162-170
overview, 159-162

Data Services Template, 160-162

280 Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

Index

Data Services Template (Continued)

API, 170-172

client API, 170-171
Data Services Template Specification, overview, 49
default authentication context attribute, 90
Default64ResourceIDMapper, 202-203
DefaultDiscoAuthorizer class, 200-202
DefaultHexResourceIDMapper, 202-203
defederation, definition, 36
definitions

federation, 31-32

identity, 30-31

identity federation, 31-32

Liberty Alliance Project terms, 33-40

provider federation, 32
develop web services

hosting, 134-141

invoke, 141-143

process, 134-143
developing data services, 172
digital certificates, 274-275
digital signatures, 274
Directory Server, documentation, 22
DiscoEntryHandler interface, 199-200
Discovery Service

accessing, 203

and policy creation, 200-202

and security tokens, 195-198

API, 198-203

architecture, 178

attributes, 180-184

bootstrapping, 193-195
discovery service, bootstrapping, 184
Discovery Service

client API, 198-199

extract, 66

overview, 173-178

process, 179-180

resource offerings, 184-195

sample, 203

XML service files, 177
Discovery Service Specification, overview, 48
documentation

Access Manager, 20-21

documentation (Continued)
Application Server, 23
Directory Server, 22
Sun Java Enterprise System, 21-22
Sun Java System, 22-23
Web Proxy Server, 23
Web Server, 22
dynamic identity provider proxying, 62,120-121

E
employee profile service sample, 270
entities
configuring affiliate, 101-104
configuring provider, 83-101
creating, 82-83
creating with amadmin, 105-108
overview, 80-108
populate, 80-111
entity descriptors, See entities

F
federated identity, definition, 36
federation
affiliate entity
configuring, 101-104
and single sign-on, 76-77
API, 113-115
authentication domains, 108-111
auto-federation, 115-116
bulk federation, 116-117
configure global logout, 113
configure pre-login, 113
definition, 31-32,36
dynamic identity provider proxying, 120-121
entities, 80-108
creating, 82-83
creating with amadmin, 105-108
entities and authentication domains, 80-111
graphical user interface, 77-80
identity provider metadata sample, 107-108
in Access Manager, 57-62

281

Index

federation (Continued)
pre-login process, 74-76
pre-login URL, 111-113
process of, 73-77
provider entity
configuring, 83-101
sample environment, 122
samples, 267-269
service provider metadata sample, 106-107
signing, 119
federation API, 113-115
federation cookie, definition, 36
federation termination, definition, 37
Federation Termination Notification Protocol,
overview, 45
FSConfig.properties, 126

G
globallogout, 62
configure, 113
Glossary, Java ES, 22
graphical user interface, federation, 77-80

identifiers and name registration, 62
identity
definition, 30-31,37
identity-based web service, 173
identity federation, 58-59
definition, 31-32,37
identity provider
definition, 37
metadata sample, 107-108
identity provider attribute mapping, 91
identity providers, trust between, 117-118
identity service
definition, 37,47-50
installation, common domain services, 126-127
Interaction Service, 259-262
Interaction Service Specification, overview, 49

interfaces
Authentication Web Service, 156
Authorizer, 200-202
Authorizer, 165-166
common service, 256-257
DiscoEntryHandler, 199-200
Discovery Service, 198-203
request handler, 209-210
ResourceIDMapper, 202-203
ResourceIDMapper, 165

K

key management, 273-278
keystore entry, 275
overview, 273-275
setting up keystore, 276-278
trusted certificate entry, 275

keystore, setting up, 276-278

keystore entry, 275

keytool, 275

L
Liberty Alliance Project
architecture in Access Manager, 55-57
Liberty Identity Federation Framework, 41-47
Liberty Identity Service Interface
Specifications, 50-51
Liberty Identity Web Services Framework, 47-50
overview, 29-30
SAML comparison, 214
specifications, 41-51
terms, 33-40
Liberty-based API, 67-69
Liberty-based web services, Access Manager, 63-66
Liberty Employee Profile Service, 170
Liberty-enabled client, definition, 37
Liberty-enabled proxy, definition, 38
Liberty ID-FF Bindings and Profiles, overview, 46
Liberty ID-FF Protocols and Schema, overview, 43-46
Liberty ID-SIS Employee Profile Service Specification,
overview, 51

282 Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

Index

Liberty ID-SIS Personal Profile Service Specification,
overview, 50

Liberty ID-WSE, implementation, 131-133

Liberty ID-WSF 1.1 profiles, 144-149

Liberty Identity Federation Framework
convergence with SAML, 42-43
overview, 41-47

Liberty Identity Service Interface Specifications,
overview, 50-51

Liberty Identity Web Services Framework,
overview, 47-50

Liberty Personal Profile Service, 162-170
accessing, 169-170
attributes, 164-169
extract, 65

Liberty process sample, 54-55

M

metadata, 80
identity provider sample, 107-108
service provider sample, 106-107

N

name identifier, definition, 38

Name Identifier Mapping Protocol, overview, 46
name registration, 62

Name Registration Protocol, overview, 45

o

overview
authentication and authentication context, 59-61
authentication domains, 108-111
Authentication Service Specification, 49
Authentication Web Service, 151-154
auto-federation, 59,115-116
bulk federation, 59,116-117
Client Profiles Specification, 49
common domain, 123-124
common domain cookie, 124-125

overview (Continued)

common domain services
properties, 126
URLs, 125
data services, 159-162
Data Services Template, 160-162
Data Services Template Specification, 49
Discovery Service, 173-178
Discovery Service Specification, 48
dynamic identity provider proxying, 62,120-121
entities, 80-108
federation API, 113-115
federation management, 80-111
federation process, 73-77
Federation Termination Notification Protocol, 45
global logout, 62
identifiers and name registration, 62
identity federation and single sign-on, 58-59
implementation of Liberty Alliance Project, 53-57
Interaction Service, 259-262
Interaction Service Specification, 49
Liberty Alliance Project, 29-30
Liberty Alliance Project specifications, 41-51
Liberty Employee Profile Service, 170
Liberty ID-FF Bindings and Profiles, 46
Liberty ID-FF Protocols and Schema, 43-46
Liberty ID-SIS Employee Profile Service
Specification, 51
Liberty ID-SIS Personal Profile Service
Specification, 50
Liberty Identity Federation Framework, 41-47
Liberty Identity Service Interface
Specifications, 50-51
Liberty Identity Web Services Framework, 47-50
Liberty Personal Profile Service, 162-170
Name Identifier Mapping Protocol, 46
Name Registration Protocol, 45
PAOS binding, 262-265
pre-login URL, 111-113
public interfaces, 253-256
SAML, 213-217
samples, 267-271
Security Mechanisms Specification, 48
signing Liberty ID-FE, 119

283

Index

overview (Continued)
Single Logout Protocol, 46
Single Sign-On and Federation Protocol, 43-45
SOAP Binding Service, 205-206
SOAP Binding Specification, 48

P
PAOS binding, 262-265
PAOS or SOAP, 262
sample, 263-265,270
parameters, pre-login URL, 111-112
patches, Solaris, 23
PKI, 273-275
digital certificates, 274-275
digital signatures, 274
policy creation, and Discovery Service, 200-202
pre-login, configure, 113
pre-login process, 74-76
pre-login URL, 111-113
configure, 113
parameters, 111-112
principal, definition, 38
procedures
create policy for
DefaultDiscoAuthorizer, 200-202
store resource offerings, 185-187,187-192,193-195
process
Authentication Web Service, 154
Discovery Service, 179-180
federation, 73-77
federation and single sign-on, 76-77
pre-login, 74-76
SOAP Binding Service, 206-207
profile, definition, 38
profile types
and SAML, 221-226
web artifact profile, 221-223
web POST profile, 223-226
profiles, set up Liberty ID-WSE, 144-149
protocol, definition, 38
protocol support enumeration, 86
provider entity
See also entities

provider entity (Continued)
configuring, 83-101
definition, 81
provider federation
definition, 32,38
enable, 80-111
provider trust, 32,117-118
proxy configuration, 99
pseudonym
definition
See name identifier
public interfaces, 253-256
public key infrastructure, See PKI

Q

query parameter, 111

R
reader service URL, 109, 125
receiver, definition, 39
relying party, 213-217
request handler, 207-208
RequestHandler interface, 171
resource offering, 173

definition, 39

for bootstrapping, 193-195
resource offerings

as dynamic attributes, 187-192

as user attributes, 185-187

storing, 184-195
resource offerings for bootstrapping, 184
ResourcelD Mapper, 165
ResourceIDMapper interface, 202-203
ResourceIDMapper interface, 257

S

SAML, 213-251
amSAML.xml, 232-233
API, 240-246

284 Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

Index

SAML (Continued)
architecture, 214-217
Artifact Timeout, 239
Assertion Skew Factor For notBefore Time, 239
assertion types, 219-221
AssertionTimeout, 239
convergence with Liberty ID-FF, 42-43
Liberty comparison, 214
overview, 213-217
profile types, 221-226
web artifact profile, 221-223
web POST profile, 223-226
SAML Artifact Name, 239
SAML SOAP receiver, 226-232
SOAP messages, 226-230
samples, 250-251
Sign SAML Assertion, 240
Sign SAML Request, 240
Sign SAML Response, 240
site Identifiers, 234
Target Specifier, 233
target URLs, 238
trusted partners, 234-235
using, 217
SAML Artifact Name, 239
SAML authority, 213-217
SAML SOAP receiver, 226-232
SOAP messages, 226-230
sample use case, 54-55
samples
Authentication Web Service, 157,270
Discovery Service, 203
employee profile service, 270
federation, 122,267-269
PAOS binding, 263-265,270
SAML, 250-251
security tokens, 195-198
use case process, 54-55
web service consumer, 269
samples overview, 267-271
security, web services, 134
Security Mechanisms Specification, overview, 48
security tokens
and Discovery Service, 195-198

security tokens (Continued)
generating, 195-198
sender, definition, 39
server, definition, 39
server name identifier mapping binding, 86
service provider
definition, 39
metadata sample, 106-107
service providers, trust between, 117-118
Sign SAML Assertion, 240
Sign SAML Request, 240
Sign SAML Response, 240
signing Liberty ID-FF, 119
single logout, definition, 40
Single Logout Protocol, overview, 46
single sign-on, 58-59
definition, 40
Single Sign-On and Federation Protocol,
overview, 43-45
single sign—on, and federation, 76-77
site identifiers, 234
SOAP Binding, extract, 66
SOAP Binding Service
API, 209-210
attributes, 207-209
overview, 205-206
PAOS or SOAP, 262
process, 206-207
request handler, 207-208
SOAPReceiver, 206
XML service file, 206
SOAP Binding Specification, overview, 48
SOAP messages, 226-230
SOAPReceiver, 206
SOAP Binding process, 206-207
Solaris
patches, 23
support, 23
specifications (Liberty Alliance Project), 41-51
Liberty Identity Federation Framework, 41-47
Liberty Identity Service Interface
Specifications, 50-51
Liberty Identity Web Services Framework, 47-50
support, Solaris, 23

285

Index

T

Target Specifier, 233

target URLs, 238

terms, Liberty Alliance Project, 33-40
trust, between providers, 117-118
trusted certificate entry, 275

trusted partners, 234-235

trusted provider, definition, 40

U

use cases, sample process, 54-55

w
web artifact profile, 221-223
web POST profile, 223-226
Web Proxy Server, documentation, 23
Web Server, documentation, 22
web service consumer, definition, 40
web service consumer sample, 269
web service provider, definition, 40
web services
developing, 134-143
hosting, 134-141
invoking, 141-143
security, 134
web services (Liberty-based), Access Manager, 63-66
Web Services Description Language, See WSDL
writer service URL, 109,125
WSDL, 173-178

X

XML service files
amSAML . xml, 232-233
Authentication Web Service, 152
Discovery Service, 177
SOAP Binding Service, 206

286 Sun Java System Access Manager 7.1 Federation and SAML Administration Guide « March 2007

	Sun Java System Access Manager 7.1 Federation and SAML Administration Guide
	Preface
	Before You Read This Book
	Related Books
	Access Manager Core Documentation
	Sun Java Enterprise System Documentation
	Other Sun Java System Products Documentation

	Searching Sun Product Documentation
	Accessing Sun Resources Online
	Contacting Sun Technical Support
	Documentation, Support, and Training
	Third-Party Web Site References
	Sun Welcomes Your Comments
	Typographic Conventions
	Symbol Conventions
	Shell Prompts in Command Examples

	The Liberty Alliance Project Specifications and Access Manager
	Introduction to the Liberty Alliance Project
	Overview of the Liberty Alliance Project
	Members of the Liberty Alliance Project
	Objectives of the Liberty Alliance Project Specifications

	Concept of Identity
	Concept of Federation
	Identity Federation
	Provider Federation

	Concept of Trust
	Liberty Alliance Project Terms
	Account Federation
	Affiliation
	Attribute Provider
	Authentication Context
	Authentication Domain
	Binding
	Circle of Trust
	Client
	Common Domain
	Defederation
	Federation
	Federation Cookie
	Federated Identity
	Federation Termination
	Identity
	Identity Federation
	Identity Provider
	Identity Service
	Liberty-Enabled Client
	Liberty-Enabled Proxy
	Name Identifier
	Principal
	Profile
	Protocol
	Provider Federation
	Pseudonym
	Receiver
	Resource Offering
	Sender
	Server
	Service Provider
	Single Logout
	Single Sign-On
	Trusted Provider
	Web Service Consumer
	Web Service Provider

	Liberty Alliance Project Specifications
	Liberty Identity Federation Framework
	The Liberty ID-FF Model
	The Liberty ID-FF Convergence
	Liberty ID-FF Protocols and Schema
	Single Sign-On and Federation Protocol
	Name Registration Protocol
	Federation Termination Notification Protocol
	Single Logout Protocol
	Name Identifier Mapping Protocol

	Liberty ID-FF Bindings and Profiles
	Additional Liberty ID-FF Documents

	Liberty Identity Web Services Framework
	SOAP Binding Specification
	Discovery Service Specification
	Security Mechanisms Specification
	Data Services Template Specification
	Interaction Service Specification
	Authentication Service Specification
	Client Profiles Specification
	Additional Liberty ID-WSF Documents

	Liberty Identity Service Interface Specifications
	Liberty ID-SIS Personal Profile Service Specification
	Liberty ID-SIS Employee Profile Service Specification
	Additional Liberty ID-SIS Service Specifications

	Schema Files and Service Definition Documents
	Support Documents

	Implementation of the Liberty Alliance Project Specifications
	Overview
	Sample Use Case
	Liberty Alliance Project Architecture in Access Manager

	The Federation Module
	Identity Federation and Single Sign-On
	Auto-Federation
	Bulk Federation

	Authentication and Authentication Context
	Identifiers and Name Registration
	Global Logout
	Dynamic Identity Provider Proxying

	The Liberty-based Web Services Modules
	Liberty Personal Profile Service
	Discovery Service
	SOAP Binding Service
	Authentication Web Service

	The Liberty-based Application Programming Interfaces
	The SAML Service
	Liberty-Based Samples

	Federation Management
	Federation
	Process of Federation
	Pre-login Process
	Federation and Single Sign-On

	Federation Graphical User Interface
	Entities and Authentication Domains
	Entities
	Creating Entities
	To Create a Provider Entity or an Affiliate Entity

	Configuring Provider Entities
	To Configure a Provider Entity
	To Configure General Attributes for a Provider Entity
	To Configure Hosted or Remote Identity Provider Attributes for a Provider Entity
	To Configure Hosted or Remote Service Provider Attributes for a Provider Entity

	Configuring Affiliate Entities
	To Configure an Affiliate Entity
	To Configure General Attributes for an Affiliate Entity
	To Configure Affiliate Attributes for an Affiliate Entity

	Deleting Entities
	To Delete a Provider or Affiliate Entity

	Creating and Configuring Entities using amadmin
	Loading Standard Metadata Using amadmin
	Loading Proprietary Metadata Using amadmin

	Authentication Domains
	To Create An Authentication Domain
	To Configure or Modify an Authentication Domain
	To Delete an Authentication Domain

	The Pre-login URL
	To Configure for Pre-login
	To Configure for Global Logout

	Federation API
	com.sun.identity.federation.plugins
	com.sun.identity.federation.services
	com.sun.liberty

	Liberty ID-FF Operations
	Auto-Federation
	To Enable Auto Federation

	Bulk Federation
	Configuring Trust Between Providers
	To Configure Trust Between Service Providers and Identity Providers

	Signing Liberty ID-FF Requests and Responses
	To Enable Signing of Service Provider Authentication Requests

	Dynamic Identity Provider Proxying
	To Configure and Test Dynamic Identity Provider Proxying

	Sample Federation Environment

	Common Domain Services for Federation Management
	Common Domain
	Common Domain Cookie
	Configuring the Common Domain Services for Federation Management URLs
	Writer Service URL
	Reader Service URL

	Configuring the Common Domain Services for Federation Management Properties
	Installing the Common Domain Services for Federation Management
	To Test a Common Domain Services for Federation Management Installation

	Supported Web Services
	Liberty Alliance Project Web Services Framework
	Web Services
	Authentication Web Service
	Liberty Personal Profile Service
	Discovery Service
	SOAP Binding Service

	Liberty ID-WSF Architecture in Access Manager
	Web Services and Security
	Developing New Web Services
	To Host a Custom Service
	To Invoke the Custom Service

	Setting Up Liberty ID-WSF 1.1 Profiles
	To Configure Access Manager to Use Liberty ID-WSF 1.1 Profiles

	Authentication Web Service
	Authentication Web Service Overview
	XML Service File
	Authentication Web Service APIs
	Which Authentication Service to Use?

	Authentication Web Service Process
	Authentication Web Service Attribute
	Mechanism Handlers List
	key Parameter
	class Parameter

	Authentication Web Service API
	com.sun.identity.liberty.ws.authnsvc Package
	com.sun.identity.liberty.ws.authnsvc.mechanism Package
	com.sun.identity.liberty.ws.authnsvc.protocol Package

	Access the Authentication Web Service
	Authentication Web Service Sample

	Data Services
	Data Services Overview
	Liberty ID-WSF Data Services Template Specification
	Liberty Personal Profile Service
	XML Service File
	XSD Schema Definition

	Liberty Employee Profile Service
	XML Service File
	XSD Schema Definition

	Data Services API

	Liberty Personal Profile Service
	Liberty Personal Profile Service Process
	Liberty Personal Profile Service Attributes
	ResourceID Mapper
	Authorizer
	Attribute Mapper
	Provider ID
	Name Scheme
	Namespace Prefix
	Supported Containers
	PPLDAP Attribute Map List
	Require Query PolicyEval
	Require Modify PolicyEval
	Extension Container Attributes
	Extension Attributes Namespace Prefix
	Service Update
	Service Instance Update Class
	Alternate Endpoint
	Alternate Security Mechanisms

	Access the Liberty Personal Profile Service

	Liberty Employee Profile Service
	Data Services Template API
	com.sun.identity.liberty.ws.dst Package
	com.sun.identity.liberty.ws.dst.service Package

	Developing A New Data Service

	Discovery Service
	Discovery Service Overview
	Discovery Service WSDL
	amDisco XML Service Files
	Discovery Service Architecture

	Discovery Service Process
	Discovery Service Attributes
	Provider ID
	Supported Authentication Mechanisms
	Supported Directives
	Policy Evaluation for Discovery Lookup
	Policy Evaluation for Discovery Update
	Authorizer Plug-in Class
	Entry Handler Plug-in Class
	Classes For ResourceIDMapper Plug-in
	Authenticate Response Message
	SessionContextStatement for Bootstrapping
	Encrypt NameIdentifier in Session Context for Bootstrapping
	Implied Resource
	Resource Offerings for Bootstrapping

	Storing Resource Offerings
	Storing Resource Offerings as User Attributes
	To Store a Resource Offering as a User Attribute

	Storing Resource Offerings as Dynamic Attributes
	To Store Resource Offerings as Dynamic Attributes in a Realm
	To Store Resource Offerings as Dynamic Attributes in a Role

	Storing a Resource Offering for Discovery Service Bootstrapping
	To Store a Resource Offering for Discovery Service Bootstrapping

	Generating Security Tokens
	To Configure the Discovery Service to Generate Security Tokens

	Discovery Service APIs
	Client APIs in com.sun.identity.liberty.ws.disco
	com.sun.identity.liberty.ws.disco.plugins.DiscoEntryHandler Interface
	com.sun.identity.liberty.ws.interfaces.Authorizer Interface
	To Configure Discovery Service Policy Definitions

	com.sun.identity.liberty.ws.interfaces.ResourceIDMapper Interface

	Access the Discovery Service
	Discovery Service Sample

	SOAP Binding Service
	SOAP Binding Service Overview
	XML Service File
	SOAPReceiver Servlet
	SOAP Binding Service APIs

	SOAP Binding Process
	SOAP Binding Service Attributes
	Request Handler List
	Key Parameter
	Class Parameter
	SOAP Action Parameter

	Web Service Authenticator
	Supported Authentication Mechanisms

	SOAP Binding Service Package

	SAML Administration and Application Programming Interfaces
	SAML Administration
	SAML Overview
	Comparison of SAML and Liberty Specifications
	SAML Architecture in Access Manager
	Using the SAML Service

	Elements of SAML
	Queries and Responses
	Queries
	Responses

	Assertions
	Profiles
	Web Browser Artifact Profile
	Web Browser POST Profile
	Single-Use Policy With POST Profile

	SAML SOAP Receiver
	SOAP Messages
	Protecting SAML SOAP Receiver
	To Configure Access Manager for Basic Authentication

	SAML Attributes
	amSAML.xml Attributes
	To Modify Attributes in the amSAML.xml File

	Console Attributes
	Properties Group
	Target Specifier
	Site Identifiers
	To Configure a Site Identifier
	Trusted Partners
	To Configure a Trusted Partner
	Target URLs

	Assertion
	Assertion Timeout
	Assertion Skew Factor For notBefore Time

	Artifact
	Artifact Timeout
	SAML Artifact Name

	Signing
	Sign SAML Assertion
	Sign SAML Request
	Sign SAML Response

	SAML API
	com.sun.identity.saml Package
	AssertionManager Class
	SAMLClient Class

	com.sun.identity.saml.assertion Package
	com.sun.identity.saml.common Package
	com.sun.identity.saml.plugins Package
	ActionMapper Interface
	AttributeMapper Interface
	NameIdentifierMapper Interface
	PartnerAccountMapper Interface
	PartnerSiteAttributeMapper Interface
	How to Set Up a PartnerSiteAttributeMapper

	com.sun.identity.saml.protocol Package
	AuthenticationQuery Class
	AttributeQuery Class
	AuthorizationDecisionQuery Class

	com.sun.identity.saml.xmlsig Package

	SAML Operations
	Setting Up SAML Single Sign-on
	To Set Up SAML Single Sign-on
	To Verify the SAML Single Sign-on Configurations

	SAML Samples

	Application Programming Interfaces
	Public Interfaces
	Common Service Interfaces
	com.sun.identity.liberty.ws.common Package
	com.sun.identity.liberty.ws.interfaces Package
	com.sun.identity.liberty.ws.interfaces.Authorizer Interface
	com.sun.identity.liberty.ws.interfaces.ResourceIDMapper Interface

	Common Security API
	com.sun.identity.liberty.ws.security Package
	com.sun.identity.liberty.ws.common.wsse Package

	Interaction Service
	Configuring the Interaction Service
	Interaction Service API

	PAOS Binding
	Comparison of PAOS and SOAP
	PAOS Binding API
	PAOS Binding Sample

	Liberty-based and SAML Samples
	Federation Framework Samples
	sample1 Directory
	sample2 Directory
	sample3 Directory

	Web Services Framework Samples
	wsc Directory
	sis-ep Directory
	paos Directory
	authnsvc Directory

	SAML Samples

	Key Management
	Public Key Infrastructure Basics
	Digital Signatures
	Digital Certificates

	keytool Command Line Interface
	Setting Up a Keystore
	To Set Up a Keystore

	Index

