
Sun Java System Application
Server Enterprise Edition 8.2
Upgrade and Migration Guide

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 819–4737

Copyright 2007 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No part of this
product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any. Third-party software,
including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other
countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, and Solaris are trademarks or registered trademarks of Sun Microsystems, Inc. in
the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and
other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and SunTM Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts
of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to
the Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN LOOK GUIs and otherwise comply with Sun's written license
agreements.

U.S. Government Rights – Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions
of the FAR and its supplements.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2007 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l'utilisation, la copie, la distribution, et la décompilation.
Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans l'autorisation préalable et écrite de Sun et
de ses bailleurs de licence, s'il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et
licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l'Université de Californie. UNIX est une marque déposée aux Etats-Unis et
dans d'autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, et Solaris sont des marques de fabrique ou des marques déposées, de Sun
Microsystems, Inc. aux Etats-Unis et dans d'autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques
déposées de SPARC International, Inc. aux Etats-Unis et dans d'autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par
Sun Microsystems, Inc.

L'interface d'utilisation graphique OPEN LOOK et Sun a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît les efforts de
pionniers de Xerox pour la recherche et le développement du concept des interfaces d'utilisation visuelle ou graphique pour l'industrie de l'informatique. Sun détient
une licence non exclusive de Xerox sur l'interface d'utilisation graphique Xerox, cette licence couvrant également les licenciés de Sun qui mettent en place l'interface
d'utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L'ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N'EST ACCORDEE, Y COMPRIS DES
GARANTIES CONCERNANT LA VALEUR MARCHANDE, L'APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION PARTICULIERE, OU
LE FAIT QU'ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE S'APPLIQUERAIT PAS, DANS LA MESURE OU
IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

070828@18135

Contents

Preface ...7

1 Application Server Compatibility Issues ...13
HTTP File Caching .. 14
domain.xml Elements ... 14
System Properties .. 14
Implicit URL Rewriting .. 14
Web Server Features .. 14
Realms ... 15
Default Value for the delegate Attribute .. 16
The encodeCookies Property .. 16
CORBA Performance Option .. 16
File Formats .. 16
Cluster Scripts .. 17
Primary Key Attribute Values .. 17
Command Line Interface: hadbm ... 19
Command Line Interface: start-appserv and stop-appserv .. 19
Command Line Interface: asadmin ... 20

asadmin Subcommands .. 20
Error Codes for Start and Stop Subcommands .. 21
Deprecated and Unsupported Options ... 21
Dotted Names ... 22
Tokens in Attribute Values ... 24
Nulls in Attribute Values ... 25

2 Upgrading an Application Server Installation ... 27
Upgrade Overview .. 27

3

Upgrade Tool Interfaces .. 28
Upgrade Terminology ... 28
Upgrade Tool Functionality ... 29

Upgrade Scenarios ... 30
Before You Upgrade .. 31
Upgrading from the Command Line .. 31
Upgrading Through the Wizard .. 34

▼ To Use the Upgrade Wizard ... 34
Upgrading Clusters ... 36

▼ To Upgrade a Node Agent from Application Server 7.x EE .. 37
▼ To Upgrade a Node Agent from Application Server 8.1 EE .. 37

Correcting Potential PE and EE Upgrade Problems ... 38
Running the --domaindir Option on Older Domains ... 38

▼ To Migrate Additional HTTP Listeners Defined on the Source Server to the Target PE
Server ... 39

▼ To Migrate Additional HTTP and IIOP Listeners Defined on the Source Server to the
Target EE Server ... 39
Eliminating Port Conflict Problems .. 40
Eliminating Problems Encountered When A Single Domain has Multiple Certificate
Database Passwords ... 40
Resolving Load balancer Plug-in Problems During Side-by-Side Upgrade 41
Resolving Problems with Shared Components During Side-by-Side Upgrade 41

Binary and Remote Upgrades .. 41

3 Migrating J2EE Applications ..43
Understanding Migration .. 43

J2EE Components and Standards .. 44
J2EE Application Components .. 44
Why is Migration Necessary? ... 45
What Needs to be Migrated .. 46
Migration Tool and Other Resources .. 46

Before Migrating the Application .. 47
Migrating the Application by Using the Migration Tool .. 48
Deploying Migrated Applications ... 49

Contents

Sun Java System Application Server Enterprise Edition 8.2 Upgrade and Migration Guide •4

4 Migrating from EJB 1.1 to EJB 2.0 ... 51
EJB Query Language ... 51
Local Interfaces .. 52
EJB 2.0 Container-Managed Persistence (CMP) ... 52

Defining Persistent Fields ... 53
Defining Entity Bean Relationships ... 53
Message-Driven Beans .. 53

Migrating EJB Client Applications .. 54
Declaring EJBs in the JNDI Context .. 54
Recap on Using EJB JNDI References ... 55

Migrating CMP Entity EJBs ... 56
▼ To Verify if a Bean Can be Migrated .. 56

Migrating the Bean Class .. 56
▼ To Migrate the Bean Class ... 57

Migration of ejb-jar.xml .. 58
▼ To Migrate the EJB Deployment Descriptor ... 59

Custom Finder Methods ... 59

5 J2EE 1.4 Compatibility Issues ..61
Binary Compatibility .. 61
Source Compatibility .. 61
Incompatibilities with the J2EE 1.4 Platform (since the J2EE 1.3 release) 62
JAXP and SAX Incompatibilities ... 64
The pass-by-reference Element .. 65

6 Migrating from Application Server 6.x/7.x ... 67
Migrating from Application Server 6.x ... 68

Migrating Deployment Descriptors .. 68
Migrating Web Applications .. 69
Migrating Enterprise EJB Modules .. 72
Migrating Enterprise Applications .. 77

▼ To Build an EAR File .. 77
Migrating Proprietary Extensions ... 80
Migrating UIF ... 80
Migrating JDBC Code ... 82

Contents

5

Migrating Rich Clients .. 84
Migrating Applications to Support HTTP Failover ... 86

▼ To Migrate and Enable Loadbalancing .. 86
Migrating Applications from Application Server 7 ... 89

Migrating Rich Clients .. 89
▼ To Migrate Rich Clients from 7 PE/SE to 8.2 EE .. 89
▼ To Migrate Rich Clients From 7 EE to 8.2 EE ... 90

Migrating EJB Applications to Support SFSB Failover .. 91

Index ..93

Contents

Sun Java System Application Server Enterprise Edition 8.2 Upgrade and Migration Guide •6

Preface

This guide explains how to upgrade and migrate applications to Sun Java System Application
Server 8.2 Enterprise Edition.

This Sun Java System Application Server Enterprise Edition 8.2 Upgrade and Migration Guide
describes how to upgrade from earlier versions of Application Server to the current version.
This guide also explains how to migrate JavaTM 2 Platform, Enterprise Edition (J2EETM platform)
applications from earlier versions of the Sun Java SystemApplication Server and other
competitive application servers to Sun Java SystemApplication Server 8.2 Enterprise Edition.

This guide also describes differences between Sun Java System Application Server 8.2 and
earlier releases of Application Server.

This preface contains information about and conventions for the entire Sun Java System
Application Server documentation set.

Application Server Documentation Set
The Application Server documentation set describes deployment planning and system
installation. The Uniform Resource Locator (URL) for stand-alone Application Server
documentation is http://docs.sun.com/app/docs/coll/1310.4. The URL for Sun Java
Enterprise System (Java ES) Application Server documentation is
http://docs.sun.com/app/docs/coll/1310.3. For an introduction to Application Server,
refer to the books in the order in which they are listed in the following table.

TABLE P–1 Books in the Application Server Documentation Set

Book Title Description

Release Notes Late-breaking information about the software and the documentation. Includes a
comprehensive, table-based summary of the supported hardware, operating system, Java
Development Kit (JDKTM), and database drivers.

Quick Start Guide How to get started with the Application Server product.

Installation Guide Installing the software and its components.

7

http://docs.sun.com/app/docs/coll/1310.4
http://docs.sun.com/app/docs/coll/1310.3

TABLE P–1 Books in the Application Server Documentation Set (Continued)
Book Title Description

Deployment Planning Guide Evaluating your system needs and enterprise to ensure that you deploy the Application Server
in a manner that best suits your site. General issues and concerns that you must be aware of
when deploying the server are also discussed.

Developer’s Guide Creating and implementing Java 2 Platform, Enterprise Edition (J2EE platform) applications
intended to run on the Application Server that follow the open Java standards model for J2EE
components and APIs. Includes information about developer tools, security, debugging,
deployment, and creating lifecycle modules.

J2EE 1.4 Tutorial Using J2EE 1.4 platform technologies and APIs to develop J2EE applications.

Administration Guide Configuring, managing, and deploying Application Server subsystems and components from
the Administration Console.

High Availability Administration
Guide

Post-installation configuration and administration instructions for the high-availability
database.

Administration Reference Editing the Application Server configuration file, domain.xml.

Upgrade and Migration Guide Migrating your applications to the new Application Server programming model, specifically
from Application Server 6.x and 7. This guide also describes differences between adjacent
product releases and configuration options that can result in incompatibility with the product
specifications.

Performance Tuning Guide Tuning the Application Server to improve performance.

Troubleshooting Guide Solving Application Server problems.

Error Message Reference Solving Application Server error messages.

Reference Manual Utility commands available with the Application Server; written in man page style. Includes
the asadmin command line interface.

Related Documentation
Application Server can be purchased by itself or as a component of Java ES, a software
infrastructure that supports enterprise applications distributed across a network or Internet
environment. If you purchased Application Server as a component of Java ES, you should be
familiar with the system documentation at http://docs.sun.com/coll/1286.3. The URL for
all documentation about Java ES and its components is
http://docs.sun.com/prod/entsys.5.

For other Sun Java System server documentation, go to the following:

■ Message Queue documentation
■ Directory Server documentation
■ Web Server documentation

Preface

Sun Java System Application Server Enterprise Edition 8.2 Upgrade and Migration Guide •8

http://docs.sun.com/coll/1286.3
http://docs.sun.com/prod/entsys.5

Additionally, the following resources might be useful:

■ The J2EE 1.4 Specifications (http://java.sun.com/j2ee/1.4/docs/index.html)
■ The J2EE 1.4 Tutorial

(http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html)
■ The J2EE Blueprints (http://java.sun.com/reference/blueprints/index.html)

Default Paths and File Names
The following table describes the default paths and file names that are used in this book.

TABLE P–2 Default Paths and File Names

Placeholder Description Default Value

install-dir Represents the base installation directory for
Application Server.

Sun Java Enterprise System (Java ES) installations on the
SolarisTM platform:

/opt/SUNWappserver/appserver

Java ES installations on the Linux platform:

/opt/sun/appserver/

Other Solaris and Linux installations, non-root user:

user’s home directory/SUNWappserver

Other Solaris and Linux installations, root user:

/opt/SUNWappserver

Windows, all installations:

SystemDrive:\Sun\AppServer

domain-root-dir Represents the directory containing all domains. Java ES installations on the Solaris platform:

/var/opt/SUNWappserver/domains/

Java ES installations on the Linux platform:

/var/opt/sun/appserver/domains/

All other installations:

install-dir/domains/

domain-dir Represents the directory for a domain.

In configuration files, you might see domain-dir
represented as follows:

${com.sun.aas.instanceRoot}

domain-root-dir/domain-dir

Preface

9

http://java.sun.com/j2ee/1.4/docs/index.html
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html
http://java.sun.com/reference/blueprints/index.html

TABLE P–2 Default Paths and File Names (Continued)
Placeholder Description Default Value

instance-dir Represents the directory for a server instance. domain-dir/instance-dir

Typographic Conventions
The following table describes the typographic changes that are used in this book.

TABLE P–3 Typographic Conventions

Typeface Meaning Example

AaBbCc123 The names of commands, files, and
directories, and onscreen computer
output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have mail.

AaBbCc123 What you type, contrasted with onscreen
computer output

machine_name% su

Password:

AaBbCc123 A placeholder to be replaced with a real
name or value

The command to remove a file is rm filename.

AaBbCc123 Book titles, new terms, and terms to be
emphasized (note that some emphasized
items appear bold online)

Read Chapter 6 in the User's Guide.

A cache is a copy that is stored locally.

Do not save the file.

Symbol Conventions
The following table explains symbols that might be used in this book.

TABLE P–4 Symbol Conventions

Symbol Description Example Meaning

[] Contains optional arguments
and command options.

ls [-l] The -l option is not required.

{ | } Contains a set of choices for a
required command option.

-d {y|n} The -d option requires that you use
either the y argument or the n
argument.

${ } Indicates a variable
reference.

${com.sun.javaRoot} References the value of the
com.sun.javaRoot variable.

Preface

Sun Java System Application Server Enterprise Edition 8.2 Upgrade and Migration Guide •10

TABLE P–4 Symbol Conventions (Continued)
Symbol Description Example Meaning

- Joins simultaneous multiple
keystrokes.

Control-A Press the Control key while you press
the A key.

+ Joins consecutive multiple
keystrokes.

Ctrl+A+N Press the Control key, release it, and
then press the subsequent keys.

→ Indicates menu item
selection in a graphical user
interface.

File → New → Templates From the File menu, choose New.
From the New submenu, choose
Templates.

Documentation, Support, and Training
The Sun web site provides information about the following additional resources:

■ Documentation (http://www.sun.com/documentation/)
■ Support (http://www.sun.com/support/)
■ Training (http://www.sun.com/training/)

Searching Sun Product Documentation
Besides searching Sun product documentation from the docs.sun.comSM web site, you can use a
search engine by typing the following syntax in the search field:

search-term site:docs.sun.com

For example, to search for “broker,” type the following:

broker site:docs.sun.com

To include other Sun web sites in your search (for example, java.sun.com, www.sun.com, and
developers.sun.com), use sun.com in place of docs.sun.com in the search field.

Third-Party Web Site References
Third-party URLs are referenced in this document and provide additional, related information.

Preface

11

http://www.sun.com/documentation/
http://www.sun.com/support/
http://www.sun.com/training/
http://java.sun.com
http://www.sun.com
http://developers.sun.com

Note – Sun is not responsible for the availability of third-party web sites mentioned in this
document. Sun does not endorse and is not responsible or liable for any content, advertising,
products, or other materials that are available on or through such sites or resources. Sun will not
be responsible or liable for any actual or alleged damage or loss caused or alleged to be caused by
or in connection with use of or reliance on any such content, goods, or services that are available
on or through such sites or resources.

Sun Welcomes Your Comments
Sun is interested in improving its documentation and welcomes your comments and
suggestions. To share your comments, go to http://docs.sun.com and click Send Comments.
In the online form, provide the full document title and part number. The part number is a
7-digit or 9-digit number that can be found on the book's title page or in the document's URL.
For example, the part number of this book is 819-4737.

Preface

Sun Java System Application Server Enterprise Edition 8.2 Upgrade and Migration Guide •12

http://docs.sun.com

Application Server Compatibility Issues

Application Server 8.2 Enterprise Edition is binary compatible with Application Server 8.1, 8.0,
and 7.x. J2EE applications that run on versions 8.1, 8.0, and 7.x also work on Application
Server8.2 except for the incompatibilities listed in this chapter.

The topics in this chapter discuss the incompatibilities in the following areas:

■ “HTTP File Caching” on page 14
■ “domain.xml Elements” on page 14
■ “System Properties” on page 14
■ “Implicit URL Rewriting” on page 14
■ “Web Server Features” on page 14
■ “Realms” on page 15
■ “Default Value for the delegate Attribute” on page 16
■ “The encodeCookies Property” on page 16
■ “CORBA Performance Option” on page 16
■ “File Formats” on page 16
■ “System Properties” on page 14
■ “Implicit URL Rewriting” on page 14
■ “Cluster Scripts” on page 17
■ “Primary Key Attribute Values” on page 17
■ “Command Line Interface: hadbm” on page 19
■ “Command Line Interface: start-appserv and stop-appserv” on page 19
■ “Command Line Interface: asadmin” on page 20

1C H A P T E R 1

13

HTTP File Caching
HTTP file caching, which was present in Application Server 8.1 Enterprise Edition, has been
discontinued in Application Server 8.2.

domain.xml Elements
If you have not configured message-level security providers for a server instance, Application
Server 8.1 applies default configurations from the Domain Administration Server (DAS).
Application Server 8.2 does not apply default configurations. You need to manually introduce
the message-level security providers — ClientProvider and ServerProvider — for each
server instance that wants to use message-level security. If you have upgraded from an older
version to Application Server 8.2, the Upgrade tool does not add these missing elements in the
domain.xml file.

System Properties
The default security policy of Application Server 8.2 does not allow you to change some system
properties. For example, in Application Server 7, the read/write permission of
java.util.PropertyPermission property is "*", "read,write";. In Application Server 8.2
the read/write permission for java.util.PropertyPermission is "*", "read";.

Implicit URL Rewriting
Application Server 6.x supported implicit URL rewriting, in which the web connector plugin
parsed the HTML stream being sent to the browser and appended session IDs to attributes such
as href= and frame=. In Application Server 7,8, and Application Server 8.2, this feature is not
available. You need to review your applications and use encodeURL and encodeRedirectURL on
every URL that the applications present to clients (such as mobile phones) that do not support
cookies.

Web Server Features
The following web-server-specific features are no longer supported in version Application
Server 8.2:

■ cgi-bin, shtml
■ Simple Network Management Protocol (SNMP) support
■ Netscape API (NSAPI) plugin APIs

HTTP File Caching

Sun Java System Application Server Enterprise Edition 8.2 Upgrade and Migration Guide •14

■ Native-content-handling features
■ Web server tools (flexanlg, htpasswd)
■ HTTP QoS
■ Web server configuration files (*.conf, *.acl, mime.types)
■ Web server-specific log rotation facility
■ Watch dog process (appserv-wdog)

Realms
The upgrade tool transfers the realms and role mapping configurations, any custom realm
classes, and file-based user keyfiles for each domain. The XML tag, security-service, defines
the realms and role mapping configuration. This tag is defined in sun-server_1_0.dtd and
sun-domain_1_0.dtd. For Application Server 7, the tag data resides in the server.xml and for
in Application Server 8.2, in domain.xml.

The upgrade tool locates the class file defined for custom realms and makes it available to the
Application Server 8.2 environment. The custom realm class is defined in the class name
attribute of tag auth-realm. In the security-service tag, the default-realm attribute points
to the realm the server is using. It must point to one of the configured auth-realm names. The
default realm is file If the class name for default-realm cannot be found, the upgrade tool will
log this as an error.

The package names of the security realm implementations have been renamed from
com.iplanet.ias.security.auth.realm in Application Server 7 to
com.sun.enterprise.security.auth.realm in Application Server 8.2. Custom realms written
using the com.iplanet.* classes must be modified.

The com.sun.enterprise.security.AuthenticationStatus class has been removed.

The com.sun.enterprise.security.auth.login.PasswordLoginModule authenticate
method implementation has changed as follows:

/**

* Perform authentication decision.

* <P> Note: AuthenticationStatus and AuthenticationStatusImpl

* classes have been removed.

* Method returns silently on success and returns a LoginException

* on failure.

*

* @return void authenticate returns silently on

* successful authentication.

* @throws LoginException on authentication failure.

*

*/

abstract protected void authenticate()

throws LoginException;

Realms

Chapter 1 • Application Server Compatibility Issues 15

Default Value for the delegateAttribute
In Application Server 7, the default value for the optional attribute delegate was false. In
Application Server 8.2, this attribute defaults to true. This change means that by default the
Web application classloader first delegates to the parent classloader before attempting to load a
class by itself.

The encodeCookiesProperty
URL encoding of cookies is performed, if the encodeCookies property of the sun-web-app
element in the sun-web.xml file is set to true. In Application Server 7, the default value of the
encodeCookies property was true. This property was not present in Application Server 8. In
Application Server 8.2, the default value is false.

URL encoding of cookies is unnecessary. Setting this property to true is strongly discouraged.
This property is provided only for those rare applications that depended on this behavior in
Application Server 7.

CORBA Performance Option
In Application Server 7, users were able to specify the following system property to optionally
turn on some Object Request Broker (ORB) performance optimization:

-Djavax.rmi.CORBA.UtilClass=com.iplanet.ias.util.orbutil.IasUtilDelegate

The ORB performance optimization is turned on, by default, in Application Server 8.2. If you
are using the preceding system property reference, you must remove it to avoid interfering with
the default optimization.

File Formats
In Application Server 8.2, domain.xml is the main server configuration file. In Application
Server 7, the main server configuration file was server.xml. The DTD file of domain.xml is
found in lib/dtds/sun-domain_1_1.dtd. The upgrade tool included in Application Server 8.2
can be used to move from server.xmlin Application Server 7 to domain.xml in Application
Server 8.2.

The lib/dtds/sun-domain_1_1.dtd file for Application Server 8.2 is fully backward
compatible with the corresponding file for Application Server 8, sun-domain_1_0.dtd.

In general, the configuration file formats are not backward compatible. The following
configuration files are not supported:

Default Value for the delegateAttribute

Sun Java System Application Server Enterprise Edition 8.2 Upgrade and Migration Guide •16

■ *.conf

■ *.acl

■ mime.types

■ server.xml (replaced by domain.xml)

Cluster Scripts
The clsetup and cladmin scripts in Application Server 7 are not supported in Application
Server 8.2. In Application Server 8.2, the asadmin configure-ha-cluster command replaces
the clsetup script, and asadmin commands that operate on clusters replace the commands
supported by the cladmin script. For more information about the asadmin commands, see the
Sun Java System Application Server Enterprise Edition 8.2 Reference Manual.

Primary Key Attribute Values
In Application Server 7, it was possible to change any field (in the Admin Console) or attribute
(in the Command Line Interface (CLI)). In Application Server 8.2, a field or attribute that is the
primary key of an item cannot be changed. However, an item can be deleted and then recreated
with a new primary key value. In most cases, the primary key is a name, ID, reference, or JNDI
name. The following table lists the primary keys that cannot be changed.

Note – In the domain.xml file, a field or attribute is called an attribute, and an item is called an
element. For more information about domain.xml, see the Sun Java System Application Server
Enterprise Edition 8.2 Administration Reference.

TABLE 1–1 Primary Key Attributes

Item Primary Key Field or Attribute

admin-object-resource jndi-name

alert-subscription name

appclient-module name

application-ref ref

audit-module name

auth-realm name

cluster-ref ref

cluster name

Primary Key Attribute Values

Chapter 1 • Application Server Compatibility Issues 17

TABLE 1–1 Primary Key Attributes (Continued)
Item Primary Key Field or Attribute

config name

connector-connection-pool name

connector-module name

connector-resource jndi-name

custom-resource jndi-name

ejb-module name

external-jndi-resource jndi-name

http-listener id

iiop-listener id

j2ee-application name

jacc-provider name

jdbc-connection-pool name

jdbc-resource jndi-name

jms-host name

jmx-connector name

lb-config name

lifecycle-module name

mail-resource jndi-name

message-security-config auth-layer

node-agent name

profiler name

element-property name

provider-config provider-id

resource-adapter-config resource-adapter-name

resource-ref ref

security-map name

server name

server-ref ref

Primary Key Attribute Values

Sun Java System Application Server Enterprise Edition 8.2 Upgrade and Migration Guide •18

TABLE 1–1 Primary Key Attributes (Continued)
Item Primary Key Field or Attribute

system-property name

thread-pool thread-pool-id

virtual-server id

web-module name

persistence-manager-factory-resource jndi-name

Command Line Interface: hadbm
The following table lists options for the command line utility hadbm that are no longer
supported. For more information about the hadbm commands, see the Sun Java System
Application Server Enterprise Edition 8.2 Reference Manual.

TABLE 1–2 Unsupported hadbmOptions

Option Unsupported in Subcommands

--inetdsetup Not supported for the addnodes subcommand.

--inetd Not supported for the create subcommand.

--inetdsetupdir Not supported for the create subcommand.

--configpath Not supported for the create subcommand.

--set managementProtocol Not supported for the create subcommand.

--set DataDeviceSize

--set TotalDatadeviceSizePerNode

Not supported for the create or set subcommand.

Command Line Interface: start-appserv and stop-appserv
The start-appserv and stop-appserv commands are deprecated. Use of these commands
results in a warning. Use asadmin start-domain and asadmin stop-domain instead.

In Application Server 8.2, the Log Messages to Standard Error field has been removed from the
Admin Console. The log-to-console attribute in the domain.xml file is deprecated and
ignored. The asadmin set command has no effect on the log-to-console attribute. Use the
---verbose option of the asadmin start-domain command to print messages to the window
in which you executed the asadmin start-domain command. This option works only if you
execute the asadmin start-domain command on the machine that has the domain you are
starting.

Command Line Interface: start-appserv and stop-appserv

Chapter 1 • Application Server Compatibility Issues 19

Command Line Interface: asadmin
The following sections describe changes to the command line utility asadmin:

■ “asadmin Subcommands” on page 20
■ “Error Codes for Start and Stop Subcommands” on page 21
■ “Deprecated and Unsupported Options” on page 21
■ “Dotted Names” on page 22
■ “Tokens in Attribute Values” on page 24
■ “Nulls in Attribute Values” on page 25

For more information about the asadmin commands, see the Sun Java System Application
Server Enterprise Edition 8.2 Reference Manual.

asadmin Subcommands
Subcommands are backward compatible except as noted below.

The reconfigsubcommand is deprecated and ignored.

The following subcommands are not supported in Application Server 8.2:

■ show-instance-status (use list-instances)
■ restart-instance (use stop-instance followed by start-instance)
■ configure-session-persistence (renamed to configure-ha-persistence)
■ create-session-store (renamed to create-ha-store)
■ clear-session-store (renamed to clear-ha-store)

The following subcommands are no longer supported in Application Server 8.2. The software
license key and web core were removed, and Application Server 8.2 no longer supports
controlled functions from web server features.

■ install-license

■ display-license

■ create-http-qos

■ delete-http-qos

■ create-mime

■ delete-mime

■ list-mime

■ create-authdb

■ delete-authdb

■ list-authdbs

■ create-acl

■ delete-acl

■ list-acls

Command Line Interface: asadmin

Sun Java System Application Server Enterprise Edition 8.2 Upgrade and Migration Guide •20

Error Codes for Start and Stop Subcommands
For Application Server 7, the error codes for the start and stop subcommands of the asadmin
command were based on the desired end state. For example, for asadmin start-domain, if the
domain was already running, the exit code was 0 (success). If domain startup failed, the exit
code was 1 (error).

For Application Server 8.2, the exit codes are based on whether the commands execute as
expected. For example, the asadmin start-domain command returns exit code 1 if the domain
is already running or if domain startup fails. Similarly, asadmin stop-domain returns exit code
1 if the domain is already not running or cannot be stopped.

Deprecated and Unsupported Options
Options in the following table are deprecated or no longer supported.

TABLE 1–3 Deprecated and Unsupported asadminOptions

Option Deprecated or Unsupported in Subcommands

--acceptlang Deprecated for the create-virtual-server subcommand.

--acls Deprecated for the create-virtual-server subcommand.

--adminpassword Deprecated for all relevant subcommands. Use --passwordfile instead.

--blockingenabled Deprecated for the create-http-listener subcommand.

--configfile Deprecated for the create-virtual-server subcommand.

--defaultobj Deprecated for the create-virtual-server subcommand.

--domain Deprecated for the stop-domain subcommand.

--family Deprecated for the create-http-listener subcommand.

--instance Deprecated for all remote subcommands. Use --target instead.

--mime Deprecated for the create-virtual-server subcommand.

--optionsfile No longer supported for any commands.

--password Deprecated for all remote subcommands. Use --passwordfile instead.

--path Deprecated for the create-domain subcommand. Use --domaindir instead.

--resourcetype Deprecated for all relevant subcommands. Use --restype instead.

--storeurl No longer supported for any commands.

Command Line Interface: asadmin

Chapter 1 • Application Server Compatibility Issues 21

TABLE 1–3 Deprecated and Unsupported asadminOptions (Continued)
Option Deprecated or Unsupported in Subcommands

--target Deprecated for all jdbc-connection-pool, connector-connection-pool,
connector-security-map, and resource-adapter-config subcommands.

--type Deprecated for all relevant subcommands.

Dotted Names
The following use of dotted names in asadmin get and set subcommands are not backward
compatible:

■ The default server name is server instead of server1.
■ server_instance.resource becomes domain.resources.resource.
■ server_instance.app-module becomes domain.applications.app-module.
■ Attributes names format is different. For example,poolResizeQuantity is now

pool-resize-quantity.
■ Some aliases supported in Application Server 7 are not supported in Application Server 8.2 .

In Application Server 8.2, the ---passwordfile option of the asadmin command does not read
the password.conf file, and the upgrade tool does not upgrade this file. For information about
creating a password file in Application Server 8.2, see the Sun Java System Application Server
Enterprise Edition 8.2 Administration Guide.

This table displays a one-to-one mapping of the incompatibilities in dotted names between
Application Server 7 and 8.2. The compatible dotted names are not listed in this table.

TABLE 1–4 Incompatible Dotted Names Between Versions

Application Server 7 Dotted Names Application Server 8.2 Dotted Names

server_instance.http-listener.
listener_idserver_instance.http-service.
http-listener.listener_id

server_instance.http-service
.http-listener.listener_id
config_name.http-service
.http-listener.listener_id

server_instance.orbserver_instance.iiop-service server_instance.iiop-serviceconfig_name
.iiop-service

server_instance.orblistenerserver_instance
.iiop-listener

server_instance.iiop-service
.iiop-listener.listener_id
config_name.iiop-service
.iiop-listener.listener_id

Command Line Interface: asadmin

Sun Java System Application Server Enterprise Edition 8.2 Upgrade and Migration Guide •22

TABLE 1–4 Incompatible Dotted Names Between Versions (Continued)
Application Server 7 Dotted Names Application Server 8.2 Dotted Names

server_instance.jdbc-resource.jndi_name server_instance.resources
.jdbc-resource.jndi_name
domain.resources.jdbc-resource.jndi_name

server_instance.jdbc-connection-pool.pool_id server_instance.resources.jdbc-connection-pool.
pool_iddomain.resources.
jdbc-connection-pool.pool_id

server_instance.external-jndi-resource.
jndi_nameserver_instance.
jndi-resource.jndi_name

server_instance.resources.
external-jndi-resource

.jndi_namedomain.resources

.external.jndi-resource.jndi_name

server_instance.custom-resource.jndi_name server_instance.resources.
custom-resource.jndi_name
domain.resources.custom-resource.jndi_name

server_instance.web-container.logLevel

(see note below)

server_instance.log-service.module-
log-levels.web-containerconfig_name
.log-service.module-log-levels.web-container

server_instance.web-container.
monitoringEnabled

(see note below)

server_instance.monitoring-service.module-
monitoring-levels.web-containerconfig_name
.monitoring-service.module

-monitoring-levels.web-container

server_instance.j2ee-application.
application_nameserver_instance.application.
application_name

server_instance.applications.j2ee-
application.application_name
domain.applications.j2ee-

application.application_name

server_instance.ejb-module.ejb-module_name server_instance.applications.ejb-module
.ejb-module_namedomain.
applications.ejb-module.ejb-module_name

server_instance.web-module.web-module_name server_instance.applications.web-module
.web-module_namedomain.
applications.web-module.web-module_name

server_instance.connector-
module.connector_module_name

server_instance.applications.connector
-module.connector_module_name
domain.applications

.connector-module.connector_module_name

server_instance.lifecycle-module.
lifecycle_module_name

server_instance.applications.lifecycle
-module.lifecycle_module_name
domain.application.lifecycle-

module.lifecycle_module_name

server_instance.virtual-server-class N/A*

Command Line Interface: asadmin

Chapter 1 • Application Server Compatibility Issues 23

TABLE 1–4 Incompatible Dotted Names Between Versions (Continued)
Application Server 7 Dotted Names Application Server 8.2 Dotted Names

server_instance.virtual-server.virtual-server_id server_instance.http-service.virtual-server.
virtual-server_idconfig_name
.http-service.virtual-server.virtual-server_id

server_instance.mime.mime_id N/A*

server_instance.acl.acl_id N/A*

server_instance.virtual-server
.virtual-server_id.auth-db.auth-db_id

N/A*

server_instance.authrealm.realm_idserver_instance.
security-service.authrealm.realm_id

server_instance.security-service.auth
-realm.realm_idconfig_name.security-
service-auth-realm.realm_id

server_instance.persistence-manager-
factory-resource.jndi_nameserver_instance
.resources.persistence-manager-

factory-resource.jndi_name

server_instance.resources.persistence-manager-
factory-resource.jndi_namedomain.resources.
persistence-manager-

factory-resource.jndi_name

server_instance.http-service.acl.acl_id N/A*

server_instance.mail-resource.jndi_name server_instance.resources.mail-resource
.jndi_namedomain.resources.mail
-resource.jndi_name

server_instance.profiler server_instance.java-config.profilerconfig_name
.java-config.profiler

* — These attribute names in Application Server 7 do not correspond directly with Application
Server 8.2 dotted names.

Tokens in Attribute Values
The asadmin get command shows raw values in Application Server 8.2 instead of resolved
values as in Application Server 8. These raw values may be tokens. For example, execute the
following command:

asadmin get domain.log-root

The preceding command displays the following value:

${com.sun.aas.instanceRoot}/logs

Command Line Interface: asadmin

Sun Java System Application Server Enterprise Edition 8.2 Upgrade and Migration Guide •24

Nulls in Attribute Values
In Application Server 8, attributes with no values contained null. This caused problems in
attributes that specified paths. In Application Server 8.2, attributes with no values contain
empty strings, as they did in Application Server 7.

Command Line Interface: asadmin

Chapter 1 • Application Server Compatibility Issues 25

26

Upgrading an Application Server Installation

The Upgrade tool, which is bundled with Application Server 8.2, replicates the configuration of
a previously installed server in the target installation. The Upgrade tool assists in upgrading the
configuration, applications, and certificate data from an earlier version of the Application
Server to Application Server 8.2. To view a list of the older Application Server versions from
which you can upgrade, refer Table 2–1

This chapter discusses the following topics:

■ “Upgrade Overview” on page 27
■ “Upgrade Scenarios” on page 30
■ “Upgrading from the Command Line” on page 31
■ “Upgrading Through the Wizard” on page 34
■ “Upgrading Clusters” on page 36
■ “Correcting Potential PE and EE Upgrade Problems” on page 38
■ “Binary and Remote Upgrades” on page 41

Upgrade Overview
The following table shows supported Sun Java System Application Server upgrades. In this
table, PE indicates Platform Edition and EE indicates Enterprise Edition.

TABLE 2–1 Supported Upgrade Paths

Source Installation 8.2 Platform Edition 8.2 Enterprise Edition

7.X PE Not supported Supported

7.XSE - Supported

7.XEE - Supported

2C H A P T E R 2

27

TABLE 2–1 Supported Upgrade Paths (Continued)
Source Installation 8.2 Platform Edition 8.2 Enterprise Edition

8.0PE Supported Supported

8.1PE Supported Supported

8.1EE - Supported

8.2PE - Supported

Note – Upgrading from 8.1 SE to 8.2 EE only involves installing the HADB packages. You do not
need to use the upgrade tool .

The Upgrade tool can be launched by issuing the asupgrade command or by choosing the
Upgrade option in the Application Server Installer.

Upgrade Tool Interfaces
You can use the tool through the command-line interface (CLI) or the GUI.

To use the Upgrade tool in GUI mode, issue the asupgrade command with no options.

To run the Upgrade tool in CLI mode, invoke the asupgrade command with the
--c/--console option. You can run the upgrade CLI in the interactive or non-interactive
mode. If you supply all required arguments when invoking asupgrade on the console, the
upgrade is performed in non-interactive mode and no further input is required. For a complete
list of asupgrade options, refer Table 2–2. If you invoke the tool only with the --c/--console
option, the tool enters the interactive CLI mode, where the user is asked for a series of inputs.

Upgrade Terminology
The following are important terms related to the upgrade process:

■ Source Server: the installation from which you are upgrading to the new version.
■ Target Server: the installation to which you are upgrading.
■ Domains Root : the directory where the domains are created. This directory, by default, is

the location specified as AS_DEF_DOMAINS_PATH in asenv.conf

■ Domain Directory or domain-dir: the directory (within the Domains Root) corresponding
to a specific domain. All the configuration and other data pertaining to the domain exists in
this directory.

■ Install Root: the directory where the Application Server is installed.

Upgrade Overview

Sun Java System Application Server Enterprise Edition 8.2 Upgrade and Migration Guide •28

■ Administration User Name: Name of the user who administers the server. This term refers
to the admin user of the Application Server installation from which you want to upgrade.

■ Password: Administration user’s password to access the Domain Administration Server
(DAS)(8-character minimum) of the Application Server installation from which you want
to upgrade.

■ Master Password: SSL certificate database password used in operations such as Domain
Administration Server startup. This term refers to the master password of the Application
Server installation from which you want to upgrade.

Upgrade Tool Functionality
The Upgrade Tool migrates the configuration, deployed applications, and certificate databases
from an earlier version of the Application Server to the current version. The Upgrade Tool does
not upgrade the binaries of the Application Server. The installer is responsible for upgrading the
binaries. Database migrations or conversions are also beyond the scope of this upgrade process.

Only those instances that do not use Sun Java System Web Server-specific features are upgraded
seamlessly. Configuration files related to HTTP path, CGI bin, SHTML, and NSAPI plug-ins
are not be upgraded.

Note – Before starting the upgrade process, make sure that both the source server (the server
from which you are upgrading) and the target server (the server to which you are upgrading)
are stopped.

Migration of Deployed Applications
Application archives (EAR files) and component archives (JAR, WAR, and RAR files) that are
deployed in the Application Server 7.x/ 8.0 environment do not require any modification to run
on Application Server 8.2.

Applications and components that are deployed in the source server are deployed on the target
server during the upgrade. Applications that do not deploy successfully on the target server
must be migrated using the Migration Tool or asmigrate command, and deployed again
manually. For information on migrating applications using the Migration Tool, refer Chapter 6,
“Migrating from Application Server 6.x/7.x.”

If a domain contains information about a deployed application and the installed application
components do not agree with the configuration information, the configuration is migrated as
is without any attempt to reconfigure the incorrect configurations.

Upgrade Overview

Chapter 2 • Upgrading an Application Server Installation 29

Upgrade of Clusters
While upgrading a configuration containing clusters inApplication Server 7.x, specify one or
more cluster files or the clinstance.conf files. In Application Server 8.x, the clusters are
defined in the domain.xml file and there is no need to specify separate clusters. Another notable
difference is that in Application Server 8.x, all the instances within a cluster reside within the
same domain and therefore, in the same domain.xml file. In Application Server 7.x, the instance
forming a cluster could span more than one domain.

Transfer of Certificates and Realm Files
The Upgrade tool transfers certificates from the source certificate database to the target. The
tool supports conversion of JKS certificates to NSS certificates. The tool transfers security
policies, password files from standard, file-based realms, and custom realm classes. Refer
“Before You Upgrade” on page 31 for specific requirements for providing passwords for the
certificate databases.

Upgrade Log
An upgrade log records the upgrade activity. The upgrade log file is named as the upgrade.log
and is created in the domains root where the upgrade is carried out.

Upgrade Rollback
If an upgrade in progress is cancelled, the configuration before the upgrade was started is
restored.

Upgrade Scenarios
The following are the three scenarios in which an upgrade is performed:

■ Side-by-side Upgrade: The source server and the target server are installed on the same
machine , but under different install locations. You can choose to perform this type of
upgrade if you wish to have the configuration corresponding to these installations on the
same machine in different locations.

■ In-place Upgrade: The target server is installed in the same installation location as the
source server. You can choose to perform this type of upgrade if you wish to install the
configuration (that is, the domains) in the same location as before. In this scenario, you
install the binaries in the same location as the existing binaries using the installer. After
installation, if you select the Upgrade checkbox during installation, the installer invokes the
upgrade tool , pre-populating it with the source domains directory and target server
directory. In this type of upgrade, you provide the source domains root and all the domains
under this domains root are upgraded. If you have created multiple domains roots that are
customized, you need to specify each of these domains root for upgrading the domains
under them.

Upgrade Scenarios

Sun Java System Application Server Enterprise Edition 8.2 Upgrade and Migration Guide •30

Before You Upgrade
You need to perform the following steps before upgrade in each of the following scenarios:
■ Upgrading from Application Server 7.x: You can perform only a side-by-side upgrade,

which involves installing the source application server installation and the target installation
on the same machine, under different install locations. Before upgrade, you need to:
1. Ensure that all the Application Server 7.x domains have the same admin credentials.
2. Use the same admin credentials as that of Application Server 7.x, if you create a domain

during the installation of Application Server 8.2 EE.
■ Upgrading from Application Server 8.x EE: You can perform a side-by-side upgrade or an

in-place upgrade. Before upgrade, you need to check if any of the keystore or certificate
databases have any other password other than changeit. You need to change all those
passwords to changeit. You can use the keytool utility for the JKS databases and the
certutil utility for the NSS databases.

Caution – Failure to change the keystore or certificate database passwords could result in the
Upgrade Tool certificate transfer process being aborted abnormally.

After the upgrade, if you wish to restore the values of the keystore or certificate database
passwords, you can do so manually by using the keytool and certutil utilities.

Upgrading from the Command Line
The upgrade utility is run from the command line using the following syntax:

asupgrade

[--console]

[--version]

[--help]

[--source applicationserver_7.x/8.x_installation]

[--target applicationserver_8.2_installation]

[--domain domain_name]

[--adminuser admin_user]

[--adminpassword admin_password]

[--masterpassword master_password]

[--targetnsspwdfile targetNSS_password_filepath]

[--nsspwdfile NSS_password_filepath]

[--jkspwdfile JKS_password_filepath]

[--capwdfile CA_password_filepath]

[--clinstancefiles file1 [, file2, file3, ... filen]]

The following table describes the command options in greater detail, including the short form,
the long form, and a description.

Upgrading from the Command Line

Chapter 2 • Upgrading an Application Server Installation 31

TABLE 2–2 asupgrade Utility Command Options

Short Form Long Form Description

-c --console Launches the upgrade command line utility.

-V --version The version of the Upgrade Tool.

-h or -? --help Displays the arguments for launching the upgrade utility.

-t --target The domains root directory of the Application Server 8.2 EE installation.

-s --source The installation directory when source is Application Server 7.x. Domains
root directory when the source is Application Server 8.x and an in-place
upgrade is done. Domain directory domain-dir when the source is Application
Server 8.x and a side-by-side upgrade is done.

-d --domain The domain name for the migrated certificates.

-a --adminuser The user name of the admin user

-w --adminpassword The admin password

-m --masterpassword Master password

-n --nsspwdfile The path to the NSS password file. This file is a plain text file that contains only
the password

-e --targetnsspwdfile The path to the target NSS password file. This file is a plain text file that
contains only the password

-j --jkspwdfile The path to the JKS password file. This file is a plain text file that contains only
the password

-p --capwdfile The path to the CA certificate password file. This file is a plain text file that
contains only the password.

-i --clinstancefiles The path to the cluster file, if the source installation is Application Server 7.x.
The default filename is $AS_INSTALL/conf/clinstance.conf.

The following examples show how to use the asupgrade command-line utility to upgrade an
existing application server installation to Application Server 8.2.

Example 1: Upgrading an Application Server 7 Installation to Application Server 8.2 EE with
Prompts for Certificate Migration.

This example shows how to perform a side-by-side upgrade of a Sun Java SystemApplication
Server 7 installation to Sun Java System Application Server 8.2. This command prompts you to
migrate certificates. If you reply no, certificates are not migrated.

asupgrade --source /home/sunas7 --target /home/sjsas8.2/domains

Upgrading from the Command Line

Sun Java System Application Server Enterprise Edition 8.2 Upgrade and Migration Guide •32

Example 2: Upgrading an Application Server 7.1 EE Installation with Clusters and NSS
Certificates to Application Server 8.2 EE

This example shows how to upgrade (side-by-side) a Sun Java System Application Server 7.1 EE
installation with a cluster to Sun Java System Application Server 8.2 EE. NSS certificates will be
migrated, as will the clinstance.conf cluster file.

asupgrade --source /home/sjsas7.1 --target /home/sjsas8.2/domains --domain domain1

--nsspwdfile /home/sjsas7.1/nsspassword.txt

--targetnsspwdfile /home/sjsas8.2/nsspassword.txt

--clinstancefiles /home/sjsas7.1/config/clinstance.conf

After upgrade, node agents for all remote instances are created on the target DAS. These node
agents have to copied to the respective host systems and started. For more information, refer
“To Upgrade a Node Agent from Application Server 7.x EE” on page 37

Example 3: Upgrading an Application Server 8.1 EE Installation (in-place) with Clusters and
NSS Certificates to Application Server 8.2 EE

This example shows how to perform an in-place upgrade of a Sun Java System Application
Server 8.1 EE installation with a cluster to Sun Java System Application Server 8.2 EE. NSS
certificates will be migrated, as will the clinstance.conf cluster file.

asupgrade --source /home/sjsas8.1/domains

--target /home/sjsas8.2/domains

--domain domain1

--nsspwdfile /home/sjsas8.1/nsspassword.txt

--targetnsspwdfile /home/sjsas8.2/nsspassword.txt

--clinstancefiles /home/sjsas8.1/config/clinstance.conf

After upgrade, node agents for all remote instances are created on the target DAS. These node
agents have to copied to the respective host systems and started. For more information, refer
“To Upgrade a Node Agent from Application Server 8.1 EE” on page 37

Example 4: Upgrading an Application Server 8.1 EE Installation (side—by—side) with Clusters
and NSS Certificates to Application Server 8.2 EE

This example shows how to perform a side-by-side upgrade of a Sun Java System Application
Server 8.1 EE installation with a cluster to Sun Java System Application Server 8.2 EE. NSS
certificates will be migrated, as will the clinstance.conf cluster file.

asupgrade --source /home/sjsas8.1/domains/domain1 --target /home/sjsas8.2/domains

--domain domain1 --nsspwdfile /home/sjsas8.1/nsspassword.txt

--targetnsspwdfile /home/sjsas8.2/nsspassword.txt

--clinstancefiles /home/sjsas8.1/config/clinstance.conf

Upgrading from the Command Line

Chapter 2 • Upgrading an Application Server Installation 33

Upgrading Through the Wizard
You can start the Upgrade wizard in GUI mode from the command line or from the desktop.

To start the wizard,

- On UNIX, change to the <install_dir>/bin directory and type asupgrade.

- On Windows, double click the asupgrade icon in the <install_dir>/bin directory.

If the Upgrade checkbox was selected during the Application Server installation process, the
Upgrade Wizard screen automatically displays after the installation completes.

▼ To Use the Upgrade Wizard
In the Source Installation Directory field, enter the location of the existing installation from
which to import the configuration.

Provide the appropriate value for the Source Installation Directory field depending on the
version of your older installation of Application Server and the type of upgrade you want to
perform. Valid values for this are:

■ Enter the install root of the Application Server 7.x, if you are upgrading from Application
Server 7.x. Example: /home/sunappserver7.1 for Solaris/Linux users or
C:\ProgramFiles\SunAppserver7.1 for Windows users. You can only perform a
side-by-side upgrade if you are upgrading from Application Server 7.x.

■ Enter the domains root if you are performing an in-place upgrade from Application Server
8.x. Example: /home/sunappserver7.1/domains for Solaris/Linux users or
C:\ProgramFiles\SunAppserver7.1\domains for Windows users.

■ Enter the domain directory if you are performing a side—by-side upgrade from Application
Server 8.x. Example: /home/sunappserver7.1/domains/domain1 for Solaris/Linux users or
C:\ProgramFiles\SunAppserver7.1\domains\domain1 for Windows users.

In the Target Installation Directory field, enter the location of the Application Server installation
to which to transfer the configuration.

If the upgrade wizard was started from the installation (the Upgrade from Previous Version
checkbox was checked during the Application Server installation), the default value for this field
is the directory to which the Application Server software was just installed. If the Upgrade tool
was not invoked through the installer or if you are upgrading from Application server 7.x, you
need to provide the domains root of the Application Server 8.2 EE installation as the input to
this field. Example: /home/sunappserver8.2/domains for Solaris/Linux users or
C:\ProgramFiles\SunAppserver8.2\domains for Windows users.

1

2

Upgrading Through the Wizard

Sun Java System Application Server Enterprise Edition 8.2 Upgrade and Migration Guide •34

If you are upgrading from Application Server 7.x, you need to enter the admin user name, admin
password, and master password that you used for theApplication Server 7.x installation. If you
have created a domain when you installed the target server (Application Server 8.2), you need
to have used the same admin credentials as that was used for Application Server 7.x. If you have
multiple Application Server 7.x domains, all of them need to have the same admin credentials. If
you are upgrading Application Server 8.x, you need to enter the following values: admin user as
admin, admin password as adminadmin, and master password as changeit. If you enter other
values, the Upgrade tool ignores those values and assigns the default values to the admin
credentials.

Note – Refer “Before You Upgrade” on page 31 to know what you need to before you upgrade.

If you are upgrading a Application Server 7.x Enterprise Edition installation with clusters and no
security certificates, click the Next button and continue with step 9 to enter the cluster files
information. If you are upgrading Application Server 8.x Enterprise Edition to Application
Server 8.2 Enterprise Edition, click the Next button to proceed with the upgrade. The Upgrade
tool automatically detects any clusters in the source installation. If security certificates need to
be transformed, continue with step 4.

If the source installation has security certificates that must be transferred, check the Transfer
Security Certificates checkbox, press the Next button.

The Transfer Security Certificates screen displays.

From the Transfer Security Certificates screen, press the Add Domain button to add domains
with certificates to be transferred.

The Add Domain dialog displays.

From the Add Domain dialog, select the domain name that contains the security certificates to
migrate and enter the appropriate passwords.

Click the OK button when done.

The Transfer Security Certificates screen will be displayed again.

Repeat steps 6 and 7 until all the domains that have certificates to be transferred have been
added. Click Next button when done.

If you are upgrading a Sun Java System Application Server 7.1 Enterprise Edition installation
with clusters to Sun Java System Application Server 8.2 Enterprise Edition, the Transfer Cluster
Configurations screen will be displayed. Click the Add Cluster button.

The Select clinstance.conf file dialog box will be displayed. Choose clinstance.conf file and
click the Open button. The clinstance.conf file will be added to the list.

3

4

5

6

7

8

9

10

Upgrading Through the Wizard

Chapter 2 • Upgrading an Application Server Installation 35

Repeat step 9 until all the cluster configuration files that need to be migrated have been added.
Press the Next button.
Repeat this process until all the cluster configuration files that need to be migrated have been
added, and press the Next button.

The Upgrade Results panel is displayed showing the status of the upgrade operation.

Click the Finish button to close the Upgrade Tool when the upgrade process is complete.

Upgrading Clusters
The Application Server's Upgrade Tool captures cluster details from the clinstance.conf file,
the cluster configuration file. If more than one cluster has been defined for the Application
Server 7.x, multiple .conf files could exist prior to the upgrade. The configuration files could
have any name, but all would have the .conf file extension. If clusters will be included in an
upgrade, consider the following points when you are defining clinstance.conf files. Instance
names in the clinstance.conf file must be unique. For example, in Application Server 7.x,
machine A could have server1 and server2 participating in a cluster. Machine B could also
have a server1 participating in the same cluster. Typically, the clinstance.conf file would
include server1 and server2 of machine A and server1 of machine B. Application Server 8.1
requires that instance names in a cluster be unique. Therefore, before you upgrade, in the
clinstance.conffile, you would need to rename server1 of machine B to a unique name, such
as server3or server1ofmachineB.

Note – You do not have to rename the server1 instance itself in machine B. You only need to
rename the server in the clinstance.conf file.

The expectation is that instances participating in the cluster are homogeneous, in the sense that
they would have same type of resources and same applications deployed in them. When the
upgrade process runs, the instance that is marked as the master instance is picked up for
transferring the configuration. If there is no instance marked as the master instance, one of the
instances is randomly picked up and used for transferring the configuration. A cluster is created
in the DAS, along with instances defined in the clinstance.conf file. All these instances
participating in this cluster share the same configuration named cluster_name-config, where
the cluster_name is cluster_0 for the first cluster, cluster_1 for the next cluster, and so on.
Each instance in the cluster has HTTP and IIOP ports set in their system properties. The HTTP
port is the port defined in the clinstance.conf file as the instance port. IIOP ports are selected
from the iiop-cluster configuration in the server.xml file.

When you are upgrading Application Server 8.x EE to Application Server 8.2 EE, the upgrade
tool automatically detects clusters, if any, on the source installation. There is no need to specify
the configuration files, in this case.

11

12

13

Upgrading Clusters

Sun Java System Application Server Enterprise Edition 8.2 Upgrade and Migration Guide •36

▼ To Upgrade a Node Agent from Application Server 7.x
EE
Server instances that participate in the cluster and that run on a machine that does not have
DAS running on it, are created with a node agent named <host-name>-<domain-name>, where
the host-name is the name given in the clinstance.conf file for that particular instance and the
domain-name is the name to which this cluster belongs.

After the upgrade process has been completed on the DAS, install Application Server 8.2 on the
other machines where clustered instances need to run.

Copy the node-agent directory from DAS machine to client machine
underinstall-dir/nodeagents/. For example, if your DAS is installed on HostA and client
machine name is HostB, the upgrade process would have created a node agent named
HostB_<domain_name> as the node agent for HostB. Therefore, copyHostB_<domain_name>
from HostA<AS82_install_dir>/nodeagents/HostB_<domain_name> directory to
HostB<AS82_install_dir>/nodeagents. After copying, delete the copied node agent directory
under HostA.

Start the DAS.

Start the node agent named HostB_<domain_name> on HostB. The node agent with
rendezvous with the DAS and the remote instances are created in HostBand the deployed
applications are copied over.

▼ To Upgrade a Node Agent from Application Server 8.1
EE
If you are performing an in-place upgrade , you do not have to upgrade the node agents. The
same node-agent directory can be used with the upgraded binaries. If you are performing a
side-by-side upgrade , perform the following steps:

Install Application Server 8.2 EE on Machine B in /opt/SUNWappserver8.2 with the default
node agent.

Perform a side-by-side upgrade from the install location of Application Server 8.1 EE.

Install Application Server 8.2 EE on Machine B which has a node agent with remote instances
referring to a DAS on machine A. You must install only the node gent on Machine B.

1

2

3

1

2

3

Upgrading Clusters

Chapter 2 • Upgrading an Application Server Installation 37

After upgrade, verify the nodeagent.properties file in Machine A and Machine B for the
agent.adminPortproperty . This file must reflect the same value as that of the jmx-connector
port in the corresponding node-agent element of the domain.xmlfile. If not, edit the
nodeagent.properties file accordingly.

Start the DAS on Machine A.

Start the default node agent on Machine A. It starts up with the instance, instance1. The
cluster1 cluster is partially started after this step.

On Machine B, start up the default node agent of that remote instance.

You can check the upgraded elements by running the asadmin
commands,list-node-agents(1), list-clusters(1), list-instances(1).

Correcting Potential PE and EE Upgrade Problems
This section addresses the following issues that could occur during an upgrade to Application
Server 8.2:

■ “Running the --domaindir Option on Older Domains” on page 38
■ “To Migrate Additional HTTP Listeners Defined on the Source Server to the Target PE

Server” on page 39
■ “To Migrate Additional HTTP and IIOP Listeners Defined on the Source Server to the Target

EE Server” on page 39
■ “Eliminating Port Conflict Problems” on page 40
■ “Eliminating Problems Encountered When A Single Domain has Multiple Certificate

Database Passwords” on page 40

■ “Resolving Load balancer Plug-in Problems During Side-by-Side Upgrade” on page 41

Running the --domaindirOption on Older Domains
If you have installed Application Server 8.2 and an older Application Server 8.1 in two separate
locations, you might want to use the --domaindir option on domains created with the previous
version of Application Server without actually upgrading the domains to the latest version. In
this scenario, you need to update the startserv and stopserv scripts to ensure that the
domains use the latest binaries of Application Server. Change the scripts to point to the
asenv.conf file from the latest location.

4

5

6

7

8

Correcting Potential PE and EE Upgrade Problems

Sun Java System Application Server Enterprise Edition 8.2 Upgrade and Migration Guide •38

▼ To Migrate Additional HTTP Listeners Defined on the
Source Server to the Target PE Server
If additional HTTP listeners have been defined in the PE source server, those listeners need to
be added to the PE target server after the upgrade:

Start the Admin Console.

Expand Configuration.

Expand HTTP Service.

Expand Virtual Servers.

Select <server>.

In the right hand pane, add the additional HTTP listener name to the HTTP Listeners field.

Click Save when done.

▼ To Migrate Additional HTTP and IIOP Listeners
Defined on the Source Server to the Target EE Server
If additional HTTP listeners or IIOP listeners have been defined in the source server, the IIOP
ports must be manually updated for the target EE servers before any clustered instances are
started. For example, MyHttpListener was defined as an additional HTTP listener in server1,
which is part of the cluster. The other instances in the cluster also have the same HTTP listener,
because server instances are symmetrical in a cluster. In the target configuration named
<cluster_name>-config, this listener must be added with its port set to a system property,
{myHttpListener_HTTP_LISTENER_PORT}. In the target server, each server instance in this
cluster that uses this configuration would have system property named
myHttpListener_HTTP_LISTENER_PORT. The value of this property for all server instances is set
to the port value in the source server, server1. These system properties for these server
instances must be manually updated with nonconflicting port numbers before the server is
started.

If additional HTTP listeners have been defined in the source server, those listeners need to be
added to the target server after the upgrade:

Start the Admin Console.

Expand Configuration and select the appropriate <server>-config configuration.

1

2

3

4

5

6

7

1

2

Correcting Potential PE and EE Upgrade Problems

Chapter 2 • Upgrading an Application Server Installation 39

Expand HTTP Service.

Expand Virtual Servers.

Select <server>.

In the right hand pane, add the additional HTTP listener name(s) to the HTTP Listeners field.

Click Save when done.

Eliminating Port Conflict Problems
After upgrading the source server to Application Server 8.2 EE, start the domain. Start the node
agent, which, by default, starts the server instances. Start the Admin Console and verify that
these servers are started. If any of the servers are not running, in the
install_dir/nodeagents/node-agent-name/server_name/logs/server.log file, check for
failures that are caused by port conflicts. If there any failures due to port conflicts, use the
Admin Console and modify the port numbers so there are no more conflicts. Stop and restart
the node agent and servers.

While upgrading from Application Server 7.x SE or EE , a port conflict occurs if one of the
instances in 7.x servers is the same as the default ports assigned to the default domain created by
Application Serve 8.2 installation. Refer the following list for the values of the ports assigned by
default when a domain is created in Application Server 8.2 EE If these conditions exist, start the
Admin Console after the upgrade and change the port for the server-config's listener to a
nonconflicting port number.

Note – The default ports in Application Server 8.2 EE are:
■ 8080 for HTTP Instance (DAS instance)
■ 7676 for JMS
■ 3700 for IIOP
■ 8181 for HTTP_SSL.
■ 3820 for IIOP_SSL
■ 3920 for IIOP_MUTUALAUTH
■ 8686 for JMX_ADMIN

Eliminating Problems Encountered When A Single
Domain has Multiple Certificate Database Passwords
If the upgrade includes certificates, provide the passwords for the source PKCS12 file and the
target JKS keyfile for each domain that contains certificates to be migrated. Since Application

3

4

5

6

7

Correcting Potential PE and EE Upgrade Problems

Sun Java System Application Server Enterprise Edition 8.2 Upgrade and Migration Guide •40

Server 7uses a different certificate store format (NSS) than that of Application Server 8 PE
(JSSE), the migration keys and certificates are converted to the new format. Only one certificate
database password per domain is supported. If multiple certificate database passwords are used
in a single domain, make all of the passwords the same before starting the upgrade. Reset the
passwords after the upgrade has been completed.

Resolving Load balancer Plug-in Problems During
Side-by-Side Upgrade
While upgrading from Application Server 7.1 EE to Application Server 8.2 EE, during a
side-by-side upgrade, you will not be able to point your new 8.2 load balancer plug-in to the old
7.1 web server installation, if the load balancer plug-in is colocated with other Application
server components on a single system. You need to install web server again and point the 8.2
load balancer plug-in installation to the instance belonging to the new installation.

Resolving Problems with Shared Components During
Side-by-Side Upgrade
If you have performed a side-by-side upgrade from Application Server 7.x with (MQ and
HADB) to Application Server 8.2 EE, do not uninstall the older version — Application Server
7.x. The uninstall process removes shared components, such as JAF, JavaMail, and MQ libraries.
The missing shared components will cause the Application Server 8.2 EE installation to
malfunction. If you want to uninstall Application Server 7.x, remove SUNWas* packages that
belong to Application Server 7.x by running the pkgrm command, and do not run the uninstall
script. If you have already uninstalled Application Server 7.x using the uninstall script, copy the
shared components manually by running the pkgadd command.

Binary and Remote Upgrades
The tool does not update the runtime binaries of the server. The Upgrade tool upgrades the
configuration information and deployed applications of a previously installed server. You need
to use the Application Server Installer to install the server binary packages. The first step in the
upgrade process is to use the Installer to install the target server binaries.

You cannot perform an upgrade if the source and target server file systems, specifically the
domain root file system, are not accessible from the same machine. Currently, most of the
upgrade is file based. To perform the upgrade, the user who runs the upgrade needs to have
Read permissions for the source and target directories and Write permission for the target
directory.

Binary and Remote Upgrades

Chapter 2 • Upgrading an Application Server Installation 41

42

Migrating J2EE Applications

You use the Migration Tool (http://www.java.sun.com/j2ee/tools/migration/) or the
asmigrate command to migrate applications from competitive application servers. You also
use this tool to migrate the applications that do not deploy successfully after upgrading from an
older version of Sun Java SystemApplication Server. This tool works on the input archive or
source code to translate the runtime deployment descriptors from the source application server
format to generate runtime deployment descriptors that are compliant with the latest version. It
also parses the JSP and Java source code files (in case of source code input) and provides
runtime support for certain custom JSP tags and proprietary APIs.

This chapter addresses the following topics:

■ “Understanding Migration” on page 43
■ “Migrating the Application by Using the Migration Tool” on page 48
■ “Deploying Migrated Applications” on page 49

Understanding Migration
This section describes the need to migrate J2EE applications and the particular files that must be
migrated. Following successful migration, a J2EE application is redeployed to the Application
Server.

The following topics are addressed:

■ “J2EE Components and Standards” on page 44
■ “J2EE Application Components” on page 44
■ “Why is Migration Necessary?” on page 45
■ “What Needs to be Migrated” on page 46
■ “Migration Tool and Other Resources” on page 46

3C H A P T E R 3

43

http://www.java.sun.com/j2ee/tools/migration/

J2EE Components and Standards
Sun Java System Application Server 8.2 (hereafter called Application Server) is a J2EE
v1.4-compliant server based on the component standards developed by the Java community. By
contrast, the Sun Java SystemApplication Server 7 (Application Server 7) is a J2EE
v1.3-compliant server and Sun ONE Application Server 6.x (Application Server 6.x) is a J2EE
v1.2-compliant server. Between the three J2EE versions, there are considerable differences with
the J2EE application component APIs.

The following table characterizes the differences between the component APIs used with the
J2EE v1.4-compliant Sun Java System Application Server 8.2, the J2EE v1.3-compliant Sun
ONE Application Server 7, and the J2EE v1.2-compliant Sun ONE Application Server 6.x.

TABLE 3–1 Application Server Version Comparison of APIs for J2EE Components

Component API Sun ONE Application Server 6.x Sun Java System Application Server 7 Sun Java System Application Server 8.2

JDK 1.2.2 1.4 1.4

Servlet 2.2 2.3 2.4

JSP 1.1 1.2 2.0

JDBC 2.0 2.0 2.1, 3.0

EJB 1.1 2.0 2.0

JNDI 1.2 1.2 1.2.1

JMS 1.0 1.1 1.1

JTA 1.0 1.01 1.01

J2EE Application Components
J2EE simplifies development of enterprise applications by basing them on standardized,
modular components, providing a complete set of services to those components, and handling
many details of application behavior automatically, without complex programming. J2EE v1.4
architecture includes several component APIs. Prominent J2EE components include:
■ Client Application
■ Web Application
■ Enterprise Java Beans (EJB)
■ Connector
■ Enterprise Application Archive (EAR)

J2EE components are packaged separately and bundled into a J2EE application for deployment.
Each component, its related files such as GIF and HTML files or server-side utility classes, and a
deployment descriptor are assembled into a module and added to the J2EE application. A J2EE

Understanding Migration

Sun Java System Application Server Enterprise Edition 8.2 Upgrade and Migration Guide •44

application is composed of one or more enterprise bean(s), Web, or application client
component modules. The final enterprise solution can use one J2EE application or be made up
of two or more J2EE applications, depending on design requirements.

A J2EE application and each of its modules has its own deployment descriptor. A deployment
descriptor is an XML document with a .xml extension that describes a component’s deployment
settings.

A J2EE application with all of its modules is delivered in an Enterprise Archive (EAR) file. An
EAR file is a standard Java Archive (JAR) file with a .ear extension. The EAR file contains EJB
JAR files, application client JAR files and/or Web Archive (WAR) files.

For more information on J2EE, see:

■ J2EE 1.4 tutorial
■ J2EE overview
■ J2EE website

Why is Migration Necessary?
Although J2EE specifications broadly cover requirements for applications, they are nonetheless
evolving standards. They either do not cover some aspects of applications or leave
implementation details to the application providers.

This leads to different implementations of the application servers, also well as difference in the
deployment of J2EE components on application servers. The array of available configuration
and deployment tools for use with any particular application server product also contributes to
the product implementation differences.

The evolutionary nature of the specifications itself presents challenges to application providers.
Each of the component APIs are also evolving. This leads to a varying degree of conformance by
products. In particular, an emerging product, such as the Application Server, has to contend
with differences in J2EE application components, modules, and files deployed on other
established application server platforms. Such differences require mappings between earlier
implementation details of the J2EE standard, such as file naming conventions, and messaging
syntax.

Moreover, product providers usually bundle additional features and services with their
products. These features are available as custom JSP tags or proprietary Java API libraries.
Unfortunately, using these proprietary features renders these applications non-portable.

Understanding Migration

Chapter 3 • Migrating J2EE Applications 45

http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html
http://java.sun.com/j2ee/overview.html
http://java.sun.com/j2ee

What Needs to be Migrated
The J2EE application consists of the following file categories that need to be migrated:

■ Deployment descriptors (XML files)
■ JSP source files that contain Proprietary APIs
■ Java source files that contain Proprietary APIs

Deployment descriptors (XML files)
Deployment is accomplished by specifying deployment descriptors for standalone enterprise
beans (EJB, JAR files), front-end Web components (WAR files) and enterprise applications
(EAR files). Deployment descriptors are used to resolve all external dependencies of the J2EE
components or applications. The J2EE specification for deployment descriptors is common
across all application server products. However, the specification leaves several deployment
aspects of components pertaining to an application dependent on product implementation.

JSP source files

J2EE specifies how to extend JSP by adding extra custom tags. Product vendors include some
custom JSP extensions in their products, simplifying some tasks for developers. However, usage
of these proprietary custom tags results in non-portability of JSP files. Additionally, JSP can
invoke methods defined in other Java source files as well. The JSPs containing proprietary APIs
need to be rewritten before they can be migrated.

Java source files

The Java source files can be EJBs, servlets, or other helper classes. The EJBs and servlets can
invoke standard J2EE services directly. They can also invoke methods defined in helper classes.
Java source files are used to encode the business layer of applications, such as EJBs. Vendors
bundle several services and proprietary Java API with their products. The use of proprietary
Java APIs is a major source of non-portability in applications. Since J2EE is an evolving
standard, different products can support different versions of J2EE component APIs.

Migration Tool and Other Resources
The Migration Tool for Sun Java System Application Server 8.2 (hereafter called Migration
Tool) migrates J2EE applications from other server platforms to Sun Java System Application
Server 8.2.

The following source platforms are supported for Sun Java System Application Server 8.2:

■ Sun ONE Application Server 6.x
■ Sun Java System Application Server 7
■ Sun Java System Application Server 8.0/8.1

Understanding Migration

Sun Java System Application Server Enterprise Edition 8.2 Upgrade and Migration Guide •46

■ J2EE Reference Implementation Application Server (RI) 1.3, 1.4 Beta1
■ WebLogic Application Server (WLS) 5.1, 6.0, 6.1, 8.1
■ WebSphere Application Server (WAS) 4.0, 5.x
■ Sun ONE Web Server 6.0
■ JBoss Application Server 3.0
■ TomCat Web Server 4.1

Migration Tool automates the migration of J2EE applications to Sun Java System Application
Server 8.2, without much modification to the source code.

The key features of the tool are:

■ Migration of application server-specific deployment descriptors
■ Runtime support for selected custom Java Server Pages (JSP) tags and proprietary APIs
■ Conversion of selected configuration parameters with equivalent functionality in

Application Server
■ Automatic generation of Ant based scripts for building and deploying the migrated

application to the target server, Application Server
■ Generation of comprehensive migration reports after achieving migration

Download the Migration Tool from the following location:

http://java.sun.com/j2ee/tools/migration/index.html
(http://java.sun.com/j2ee/tools/migration/index.html).

The Java Application Verification Kit (AVK) for the Enterprise helps build and test applications
to ensure that they are using the J2EE APIs correctly and to migrate to other J2EE compatible
application servers using specific guidelines and rules.

Download the Java Application Verification Kit (AVK) from the following location:

http://java.sun.com/j2ee/verified/ (http://java.sun.com/j2ee/verified/).

Before Migrating the Application
The Migration tool provides limited support for proprietary APIs and custom JSP tags. The rest
of the unsupported API usages show up in the Migration report and need to be manually
corrected before you can deploy your application. Therefore, before you start the migration, it is
recommended that you run the Application Verification Kit
(http://java.sun.com/j2ee/avk/)(AVK) to gauge the extent of J2EE compliance of your
application.

Before you actually begin the migration process, refer
http://java.sun.com/j2ee/tools/migration/doc/prerun.html for information on how to
prepare your application for migration.

Before Migrating the Application

Chapter 3 • Migrating J2EE Applications 47

http://java.sun.com/j2ee/tools/migration/index.html
http://java.sun.com/j2ee/tools/migration/index.html
http://java.sun.com/j2ee/verified/
http://java.sun.com/j2ee/avk/
http://java.sun.com/j2ee/avk/
http://java.sun.com/j2ee/tools/migration/doc/prerun.html

Migrating the Application by Using the Migration Tool
You can run the Migration Tool in GUI or command-line mode.

To start the Migration Tool on Solaris and Linux in GUI mode, type the following command at
the shell prompt:

<install-dir>/bin/asmigrate.sh -u

To start the Migration Tool on Solaris and Linux in command—line mode, type the following
command at the shell prompt:

<install-dir>/bin/asmigrate.sh -c -S <sourceserver> -t <targetdirectory> -T <targetserver> <operand>

or

install-dir>/bin/asmigrate.sh -c -S <sourceserver> -s <sourcedirectory> -t <targetdirectory> -T <targetserver>

To start the Migration Tool on Windows, perform the following steps:

1. Open a DOS command-prompt window.

2. Change to the directory in which you have installed the Application Server 8.2.

3. To start the Migration Tool in GUI mode, type the following command at the DOS prompt:

asmigrate.cmd -u

Or, to start the Migration Tool in command—line mode, type the following command at the
DOS prompt:

asmigrate.cmd -c -S <sourceserver> -t <targetdirectory> -T <targetserver> <operand>

or

asmigrate.cmd -c -S <sourceserver> -s <sourcedirectory> -t <targetdirectory> -T <targetserver>

For more information on the command-line options of the asmigrate command or the
Migration Tool, refer http://java.sun.com/j2ee/tools/migration/doc/run.html#CLI

For step-by-step instructions on how to use this tool to migrate your application, refer
http://java.sun.com/j2ee/tools/migration/doc/StepByStep.html or the Migration Tool
Online Help.

After the Migration Tool migrates your J2EE application, you need to analyze the Migration
report to know what additional changes you need to make to the generated output application.
You make these changes and then deploy the migrated application. For details on how to
perform these tasks, refer
http://java.sun.com/j2ee/tools/migration/doc/postrun.html.

Migrating the Application by Using the Migration Tool

Sun Java System Application Server Enterprise Edition 8.2 Upgrade and Migration Guide •48

http://java.sun.com/j2ee/tools/migration/doc/run.html#CLI
http://java.sun.com/j2ee/tools/migration/doc/StepByStep.html
http://java.sun.com/j2ee/tools/migration/doc/postrun.html

Deploying Migrated Applications
To be able to deploy your migrated applications on Application Server 8.2, it is important to
understand classloaders in Application Server 8.2 and changes to the architecture of
Application Server 8.2.

In Application Server 7, the DAS controls multiple local instances. The Common Classloader
loads the classes in the install-dir/<yourdomain>/<yourinstance>/lib/classes directory and
the install-dir/<yourdomain>/<yourinstance>/lib directory. All resources and configurations
correspond to a specific instance.

In Application Server 8.2, the DAS controls local and remote instances. The Common
Classloader loads the JAR and ZIP files in the domain-dir/lib directory and the classes in the
domain-dir/lib/classes directory.

In Application Server 8.2, any JAR file placed in the lib directory of the DAS is replicated to all
instances controlled by that DAS. The JAR files bundled with the Application Server reside in
the install-dir/lib directory.

For more information on the classloader hierarchy in Application Server 8.2, see “The
Classloader Hierarchy” in Sun Java System Application Server Enterprise Edition 8.2 Developer’s
Guide.

You can use the delegation inversion mechanism to use libraries bundled with your application
instead of those bundled with the Application Server. However, it is safe to use this mechanism
only for web modules that do not access EJB components and do not interact with other
applications. For more information on the delegation model of Application Server 8.2, see
“Classloader Delegation” in Sun Java System Application Server Enterprise Edition 8.2
Developer’s Guide.

Note – The default value of the delegate attribute is true in Application Server 8.2. See “Default
Value for the delegate Attribute” on page 16.

The JAXP 1.3 parser is bundled with Application Server 8.2. You cannot override the JAXP 1.3
parser for Application Server 8.2.

In Application Server 8.2, to share a library with all the applications and modules in a domain,
place the libraries (JAR files) in the domain-dir/lib directory and restart the Application Server.
The Common Classloader will load the new libraries. Use this approach to share commonly
shared libraries, such as JDBC drivers.

To share libraries across a specific cluster instead of over an entire domain, add the JAR files to
the domain-dir/config/<cluster-name>-config/lib directory and add the path to the JAR files
in the classpath-suffix attribute. For instructions on how to change this attribute, see “Using
the System Classloader” in Sun Java System Application Server Enterprise Edition 8.2 Developer’s
Guide.

Deploying Migrated Applications

Chapter 3 • Migrating J2EE Applications 49

Copy the JAR files to domain-dir/config/<cluster-name>-config/lib/ext directory to add to
java.ext.dirs. To create an optional package that can be shared across the domain, add the
JAR file to domain-dir/lib/ext directory and restart the Application Server.

Note – If multiple applications deployed on a single instance require different versions of the
same JAR file, ensure that those JAR files have different names.

Deploying Migrated Applications

Sun Java System Application Server Enterprise Edition 8.2 Upgrade and Migration Guide •50

Migrating from EJB 1.1 to EJB 2.0

Although the EJB 1.1 specification will continue to be supported in Sun Java System Application
Server 8.2, the use of the EJB 2.0 architecture is recommended, so that you can leverage its
enhanced capabilities.

To migrate EJB 1.1 to EJB 2.0 you need to make several modifications, including a few within
the source code of the components.

Essentially, the required modifications relate to the differences between EJB 1.1 and EJB 2.0, all
of which are described in the following topics.

■ “EJB Query Language” on page 51
■ “Local Interfaces” on page 52
■ “EJB 2.0 Container-Managed Persistence (CMP)” on page 52
■ “Migrating EJB Client Applications” on page 54
■ “Migrating CMP Entity EJBs” on page 56

EJB Query Language
The EJB 1.1 specification left the manner and language for forming and expressing queries for
finder methods to each individual application server. While many application server vendors let
developers form queries using SQL, others use their own proprietary language specific to their
particular application server product. This mixture of query implementations causes
inconsistencies between application servers.

The EJB 2.0 specification introduces a query language called EJB Query Language, or EJB QL to
correct many of these inconsistencies and shortcomings. EJB QL is based on SQL92. It defines
query methods, in the form of both finder and select methods, specifically for entity beans with
container-managed persistence. EJB QL’s principal advantage over SQL is its portability across
EJB containers and its ability to navigate entity bean relationships.

4C H A P T E R 4

51

Local Interfaces
In the EJB 1.1 architecture, session and entity beans have one type of interface, a remote
interface, through which they can be accessed by clients and other application components. The
remote interface is designed such that a bean instance has remote capabilities; the bean inherits
from RMI and can interact with distributed clients across the network.

With EJB 2.0, session beans and entity beans can expose their methods to clients through two
types of interfaces: a remote interface and a local interface. The 2.0 remote interface is identical
to the remote interface used in the 1.1 architecture, whereby, the bean inherits from RMI,
exposes its methods across the network tier, and has the same capability to interact with
distributed clients.

However, the local interfaces for session and entity beans provide support for lightweight access
from EJBs that are local clients; that is, clients co-located in the same EJB container. The EJB 2.0
specification further requires that EJBs that use local interfaces be within the same application.
That is, the deployment descriptors for an application’s EJBs using local interfaces must be
contained within one ejb-jar file.

The local interface is a standard Java interface. It does not inherit from RMI. An enterprise bean
uses the local interface to expose its methods to other beans that reside within the same
container. By using a local interface, a bean may be more tightly coupled with its clients and
may be directly accessed without the overhead of a remote method call.

In addition, local interfaces permit values to be passed between beans with pass by reference
semantics. Because you are now passing a reference to an object, rather than the object itself,
this reduces the overhead incurred when passing objects with large amounts of data, resulting
in a performance gain.

EJB 2.0 Container-Managed Persistence (CMP)
The EJB 2.0 specification expanded CMP to allow multiple entity beans to have relationships
among themselves. This is referred to as Container-Managed Relationships (CMR). The
container manages the relationships and the referential integrity of the relationships.

The EJB 1.1 specification presented a more limited CMP model. The EJB 1.1 architecture
limited CMP to data access that is independent of the database or resource manager type. It
allowed you to expose only an entity bean’s instance state through its remote interface; there is
no means to expose bean relationships. The EJB 1.1 version of CMP depends on mapping the
instance variables of an entity bean class to the data items representing their state in the
database or resource manager. The CMP instance fields are specified in the deployment
descriptor, and when the bean is deployed, the deployer uses tools to generate code that
implements the mapping of the instance fields to the data items.

Local Interfaces

Sun Java System Application Server Enterprise Edition 8.2 Upgrade and Migration Guide •52

You must also change the way you code the bean’s implementation class. According to the EJB
2.0 specification, the implementation class for an entity bean that uses CMP is now defined as
an abstract class.

The following topics are discussed in this section:

■ “Defining Persistent Fields” on page 53
■ “Defining Entity Bean Relationships” on page 53
■ “Message-Driven Beans” on page 53

Defining Persistent Fields
The EJB 2.0 specification lets you designate an entity bean’s instance variables as CMP fields or
CMR fields. You define these fields in the deployment descriptor. CMP fields are marked with
the element cmp-field, while container-managed relationship fields are marked with the
element cmr-field.

In the implementation class, note that you do not declare the CMP and CMR fields as public
variables. Instead, you define get and set methods in the entity bean to retrieve and set the
values of these CMP and CMR fields. In this sense, beans using the 2.0 CMP follow the
JavaBeans model: instead of accessing instance variables directly, clients use the entity bean’s
get and set methods to retrieve and set these instance variables. Keep in mind that the get and
set methods only pertain to variables that have been designated as CMP or CMR fields.

Defining Entity Bean Relationships
As noted previously, the EJB 1.1 architecture does not support CMRs between entity beans. The
EJB 2.0 architecture does support both one-to-one and one-to-many CMRs. Relationships are
expressed using CMR fields, and these fields are marked as such in the deployment descriptor.
You set up the CMR fields in the deployment descriptor using the appropriate deployment tool
for your application server.

Similar to CMP fields, the bean does not declare the CMR fields as instance variables. Instead,
the bean provides get and set methods for these fields.

Message-Driven Beans
Message-driven beans are another new feature introduced by the EJB 2.0 architecture.
Message-driven beans are transaction-aware components that process asynchronous messages
delivered through the Java Message Service (JMS). The JMS API is an integral part of the J2EE
1.3 and J2EE 1.4 platform.

EJB 2.0 Container-Managed Persistence (CMP)

Chapter 4 • Migrating from EJB 1.1 to EJB 2.0 53

Asynchronous messaging allows applications to communicate by exchanging messages so that
senders are independent of receivers. The sender sends its message and does not have to wait for
the receiver to receive or process that message. This differs from synchronous communication,
which requires the component that is invoking a method on another component to wait or
block until the processing completes and control returns to the caller component.

Migrating EJB Client Applications
This section includes the following topics:

■ “Declaring EJBs in the JNDI Context” on page 54
■ “Recap on Using EJB JNDI References” on page 55

Declaring EJBs in the JNDI Context
In Sun Java System Application Server 8.2, EJBs are systematically mapped to the JNDI
sub-context ejb/. If you attribute the JNDI name Account to an EJB, the Sun Java System
Application Server 8.2 automatically creates the reference ejb/Account in the global JNDI
context. The clients of this EJB therefore have to look up ejb/Account to retrieve the
corresponding home interface.

Let us examine the code for a servlet method deployed in Sun ONE Application Server 6.x.

The servlet presented here calls on a stateful session bean, BankTeller, mapped to the root of the
JNDI context. The method whose code you are considering is responsible for retrieving the
home interface of the EJB, to enable a BankTeller object to be instantiated, and a remote
interface for this object to be retrieved, so that you can make business method calls to this
component.

/**

* Look up the BankTellerHome interface using JNDI.

*/

private BankTellerHome lookupBankTellerHome(Context ctx)

throws NamingException

{

try

{

Object home = (BankTellerHome) ctx.lookup("ejb/BankTeller");

return (BankTellerHome) PortableRemoteObject.narrow(home,

BankTellerHome.class);

}

catch (NamingException ne)

{

log("lookupBankTellerHome: unable to lookup BankTellerHome" +

Migrating EJB Client Applications

Sun Java System Application Server Enterprise Edition 8.2 Upgrade and Migration Guide •54

"with JNDI name ’BankTeller’: " + ne.getMessage());

throw ne;

}

}

As the code already uses ejb/BankTeller as an argument for the lookup, there is no need for
modifying the code to be deployed on Sun Java System Application Server 8.2.

Recap on Using EJB JNDI References
This section summarizes the considerations when using EJB JNDI references. Where noted, the
consideration details are specific to a particular source application server platform.

Placing EJB References in the JNDI Context
It is only necessary to modify the name of the EJB references in the JNDI context mentioned
above (moving these references from the JNDI context root to the sub-context ejb/) when the
EJBs are mapped to the root of the JNDI context in the existing WebLogic application.

If these EJBs are already mapped to the JNDI sub-context ejb/ in the existing application, no
modification is required.

However, when configuring the JNDI names of EJBs in the deployment descriptor within the
Sun Java Studio IDE, it is important to avoid including the prefix ejb/ in the JNDI name of an
EJB. Remember that these EJB references are automatically placed in the JNDI ejb/
sub-context with Sun Java System Application Server 8.2. So, if an EJB is given to the JNDI
name BankTeller in its deployment descriptor, the reference to this EJB will be translated by Sun
Java System Application Server 8.2 into ejb/BankTeller, and this is the JNDI name that client
components of this EJB must use when carrying out a lookup.

Global JNDI context versus local JNDI context
Using the global JNDI context to obtain EJB references is a perfectly valid, feasible approach
with Sun Java System Application Server 8.2. Nonetheless, it is preferable to stay as close as
possible to the J2EE specification, and retrieve EJB references through the local JNDI context of
EJB client applications. When using the local JNDI context, you must first declare EJB resource
references in the deployment descriptor of the client part (web.xml for a Web application,
ejb-jar.xml for an EJB component).

Migrating EJB Client Applications

Chapter 4 • Migrating from EJB 1.1 to EJB 2.0 55

Migrating CMP Entity EJBs
This section describes the steps to migrate your application components from the EJB 1.1
architecture to the EJB 2.0 architecture.

In order to migrate a CMP 1.1 bean to CMP 2.0, we first need to verify if a particular bean can be
migrated. The steps to perform this verification are as follows.

▼ To Verify if a Bean Can be Migrated
From the ejb-jar.xml file, go to the <cmp-fields> names and check if the optional tag
<prim-key-field> is present in the ejb-jar.xml file and has an indicated value. If it does, go
to next step.
Look for the <prim-key-class> field name in the ejb-jar.xml, get the class name, and get the
public instance variables declared in the class. Now see if the signature (name and case) of
these variables matches with the <cmp-field> names above. Segregate the ones that are found.
In these segregated fields, check if some of them start with an upper case letter. If any of them
do, then migration cannot be performed.

Look into the bean class source code and obtain the java types of all the <cmp-field> variables.

Change all the <cmp-field>names to lowercase and construct accessors from them. For
example if the original field name is Name and its java type is String, the accessor method
signature is:
Public void setName(String name)Public String getName()

Compare these accessor method signatures with the method signatures in the bean class. If an
exact match is found, migration is not possible.

Get the custom finder methods signatures and their corresponding SQLs. Check if there is a Join,
Outer join, or an OrderBy in the SQL. If yes, you cannot migrate, because EJB QL does not
support Join, Outer join, orOrderBy.

Any CMP 1.1 finder, which used java.util.Enumeration,must now use
java.util.Collection. Change your code to reflect this. CMP2.0 finders cannot return
java.util.Enumeration.
“Migrating the Bean Class” on page 56 explains how to perform the actual migration process.

Migrating the Bean Class
This section describes the steps required to migrate the bean class to Sun Java System
Application Server 8.2.

1

2

3

4

5

6

Migrating CMP Entity EJBs

Sun Java System Application Server Enterprise Edition 8.2 Upgrade and Migration Guide •56

▼ To Migrate the Bean Class

Prepend the bean class declaration with the keyword abstract.

For example if the bean class declaration was:
public class CabinBean implements EntityBean

change it to:

abstract public class CabinBean implements EntityBean

Prefix the accessors with the keyword abstract.

Insert all the accessors after modification into the source (.java) file of the bean class at class
level.

Comment out all the cmpfields in the source file of the bean class.

Construct protected instance variable declarations from the cmp-fieldnames in lowercase and
insert them at the class level.

Read up all the ejbCreate()method bodies (there could be more than one ejbCreate).

Look for the pattern ”<cmp-field>=some value or local variable’, and replace it with the
expression ”abstract mutator method name (same value or local variable)’.

For example, if the ejbCreate body before migration is:
public MyPK ejbCreate(int id, String name) {

this.id = 10*id;

Name = name; //1

return null;

}

Change it to:

public MyPK ejbCreate(int id, String name) {

setId(10*id);

setName(name); //1

return null;

}

Note that the method signature of the abstract accessor in //1 is as per the Camel Case
convention mandated by the EJB 2.0 specification. Also, the keyword ”this’ may or may not be
present in the original source, but it must be removed from the modified source file.

1

2

3

4

5

6

Migrating CMP Entity EJBs

Chapter 4 • Migrating from EJB 1.1 to EJB 2.0 57

Initialize all the protected variables declared in the ejbPostCreate()methods in step 5.

The protected variables will be equal in number with the ejbCreate() methods. This
initialization will be done by inserting the initialization code in the following manner:
protected String name; //from step 5

protected int id; //from step 5

public void ejbPostCreate(int id, String name) {

name = getName(); /*abstract accessor*/ //inserted in this step

id = getId(); /*abstract accessor*/ //inserted in this step

}

Inside the ejbLoadmethod, set the protected variables to the beans’database state.

To do so, insert the following lines of code:
public void ejbLoad() {

name = getName(); // inserted in this step

id = getId(); // inserted in this step

... // existing code

}

Similarly, update the bean's state inside ejbStore()so that its database state gets updated.

But remember, you are not allowed to update the setters that correspond to the primary key
outside the ejbCreate(), so do not include them inside this method. Insert the following lines
of code:
public void ejbStore() {

setName(name); //inserted in this step

setId(id); //Do not insert this if

//it is a part of the

//primary key.

... //already present code

}

Replace all occurrences of any <cmp-field> variable names with the equivalent protected
variable name (as declared in step 5).

If you do not migrate the bean, at the minimum you need to insert the
<cmp-version>1.x</cmp-version> tag inside the ejb-jar.xml file at the appropriate place, so
that the unmigrated bean still works on Sun Java System Application Server 8.2.

Migration of ejb-jar.xml
To migrate the file ejb-jar.xml to Sun Java System Application Server 8.2, perform the
following steps:

7

8

9

10

Migrating CMP Entity EJBs

Sun Java System Application Server Enterprise Edition 8.2 Upgrade and Migration Guide •58

▼ To Migrate the EJB Deployment Descriptor
To migrate the EJB deployment descriptor file, ejb-jar.xml, edit the file and make the
following changes.

Convert all <cmp-fields> to lowercase.

Insert the tag <abstract-schema-name> after the <reentrant> tag.
The schema name will be the name of the bean as in the < ejb-name> tag, prefixed with ias_.

Insert the following tags after the <primkey-field> tag:
<security-identity>

<use-caller-identity/>

</security-identity>

Use the SQL obtained above to construct the EJB QL from SQL.

Insert the <query> tag and all its nested child tags with all the required information just after
the <security-identity> tag.

Custom Finder Methods
The custom finder methods are the findBy methods (other than the default findByPrimaryKey
method), which can be defined in the home interface of an entity bean. Since the EJB 1.1
specification does not stipulate a standard for defining the logic of these finder methods, EJB
server vendors are free to choose their implementations. As a result, the procedures used to
define the methods vary considerably between the different implementations chosen by
vendors.

Sun ONE Application Server 6.x uses standard SQL to specify the finder logic.

Information concerning the definition of this finder method is stored in the enterprise bean’s
persistence descriptor (Account-ias-cmp.xml) as follows:

<bean-property>

<property>

<name>findOrderedAccountsForCustomerSQL</name>

<type>java.lang.String</type>

<value>

SELECT BRANCH_CODE,ACC_NO FROM ACCOUNT where CUST_NO = ?

</value>

<delimiter>,</delimiter>

</property>

</bean-property>

<bean-property>

1

2

3

4

5

Migrating CMP Entity EJBs

Chapter 4 • Migrating from EJB 1.1 to EJB 2.0 59

<property>

<name>findOrderedAccountsForCustomerParms</name>

<type>java.lang.Vector</type>

<value>CustNo</value>

<delimiter>,</delimiter>

</property>

</bean-property>

Each findXXX finder method therefore has two corresponding entries in the deployment
descriptor (SQL code for the query, and the associated parameters).

In Sun Java System Application Server 8.2 the custom finder method logic is also declarative,
but is based on the EJB query language EJB QL.

The EJB-QL language cannot be used on its own. It has to be specified inside the file
ejb-jar.xml, in the <ejb-ql> tag. This tag is inside the <query> tag, which defines a query
(finder or select method) inside an EJB. The EJB container can transform each query into the
implementation of the finder or select method. Here is an example of an <ejb-ql> tag:

<ejb-jar>

<enterprise-beans>

<entity>

<ejb-name>hotelEJB</ejb-name>

...

<abstract-schema-name>TMBankSchemaName</abstract-schema-name>

<cmp-field>

...

<query>

<query-method>

<method-name>findByCity</method-name>

<method-params>

<method-param>java.lang.String</method-param>

</method-params>

</query-method>

<ejb-ql>

<![CDATA[SELECT OBJECT(t) FROM TMBankSchemaName AS t

WHERE t.city = ?1]]>

</ejb-ql>

</query>

</entity>

...

</enterprise-beans> ...

</ejb-jar>

Migrating CMP Entity EJBs

Sun Java System Application Server Enterprise Edition 8.2 Upgrade and Migration Guide •60

J2EE 1.4 Compatibility Issues

The following topics are covered in this chapter:

■ “Binary Compatibility” on page 61
■ “Source Compatibility” on page 61
■ “Incompatibilities with the J2EE 1.4 Platform (since the J2EE 1.3 release)” on page 62
■ “JAXP and SAX Incompatibilities” on page 64
■ “The pass-by-reference Element” on page 65

Binary Compatibility
The Java SDK included in Application Server 8.2 is the J2EE version 1.4 SDK. This version of
the J2EE SDK is compatible with J2EE SDK, v1.3.

Source Compatibility
Downward source compatibility is not supported. If source files use new J2EE APIs, they are not
usable with an earlier version of the J2EE platform.

In general, the policy is as follows:

■ Maintenance releases do not introduce any new APIs, so they maintain
source-compatibility with one another. However, since J2EE is based on J2SE, a new
Application Server release may include a new version of J2SE. For more information, refer
to the J2SE document on compatibility issues:
http://java.sun.com/j2se/1.4.2/compatibility.html
(http://java.sun.com/j2se/1.4.2/compatibility.html)

■ Functionality releases and major releases maintain upwards but not downwards
source-compatibility.

5C H A P T E R 5

61

http://java.sun.com/j2se/1.4.2/compatibility.html
http://java.sun.com/j2se/1.4.2/compatibility.html

Deprecated APIs are methods and classes that are supported only for backward compatibility,
and the compiler generates a warning message whenever one of these is used, unless the
-nowarn command-line option is used. It is recommended that programs be modified to
eliminate the use of deprecated methods and classes, though there are no plans to remove such
methods and classes entirely.

Incompatibilities with the J2EE 1.4 Platform (since the J2EE
1.3 release)

The Sun Java System Application Server 8.2 release is based on the Java 2 Platform, Enterprise
Edition, version 1.4. The Sun Java System Application Server 7 release is based on the Java 2
Platform, Enterprise Edition, version 1.3.

Almost all existing programs must run on the Sun Java System Application Server 8.2 release
without modification. However, there are some minor potential incompatibilities that involve
rare circumstances and corner cases that have been documented here for completeness.

■ Java Servlet Specification Version 2.4 ships with the Sun Java System Application Server 8.2
release, and can be downloaded from the following URL:
http://java.sun.com/products/servlet/ (http://java.sun.com/products/servlet/)
Version 2.3 of the specification shipped with the J2EE 1.3 SDK. The following items discuss
compatibility issues between these releases.
■ HttpSessionListener sessionDestroyed method was previously used to notify that a

session was invalidated. As of this release, this method is used to notify that a session is
about to be invalidated so that it notifies before the session invalidation. If the code
assumed the previous behavior, it must be modified to match the new behavior.

■ ServletRequest, getRemotePort, getLocalName, getLocalAddr, getLocalPort
The following methods are added in the ServletRequest interface in this version of the
specification. Be aware that this addition causes source incompatibility in some cases,
such as when a developer implements the ServletRequest interface. In this case, ensure
that all the new methods are implemented:
■ public int getRemotePort() returns the Internet Protocol (IP) source port of the

client or last proxy that sent the request.
■ public java.lang.String getLocalName() returns the host name of the IP

interface on which the request was received.
■ public java.lang.String getLocalAddr() returns the IP address of the interface

on which the request was received.
■ public int getLocalPort() returns the IP port number of the interface on which

the request was received.

Incompatibilities with the J2EE 1.4 Platform (since the J2EE 1.3 release)

Sun Java System Application Server Enterprise Edition 8.2 Upgrade and Migration Guide •62

http://java.sun.com/products/servlet/

Java Server Pages (JSP) Specification 2.0 ships with the Sun Java System Application
Server 8.2 release and is downloadable from the following URL:

http://java.sun.com/products/jsp/ (http://java.sun.com/products/jsp/)

JSP specification 1.2 shipped with the J2EE 1.3 SDK. Wherever possible, the JSP 2.0
specification attempts to be fully backward compatible with the JSP 1.2 specification. In
some cases, there are ambiguities in the JSP 1.2 specification that have been clarified in
the JSP 2.0 Specification. Because some JSP 1.2 containers behave differently, some
applications that rely on container-specific behavior may need to be adjusted to work
correctly in a JSP 2.0 environment.

The following is a list of known backward compatibility issues related to JSP:
■ Tag Library validators that are not namespace-aware and that rely solely on the prefix

parameter might not correctly validate some JSP 2.0 pages. This is because the XML view
might contain tag library declarations in elements other than jsp:root, and might
contain the same tag library declaration more than once, using different prefixes. The uri
parameter should always be used by tag library validators instead. Existing JSP pages
with existing tag libraries do not create any problems.

■ You may observe differences in I18N behavior on some containers primarily due to
ambiguity in the JSP 1.2 specification. Where possible, steps were taken to minimize the
impact on backward compatibility and overall, the I18N abilities of technology have
been greatly improved.
In the JSP specification versions previous to JSP 2.0, JSP pages in XML syntax and those
in standard syntax determined their page encoding in the same fashion, by examining
the pageEncoding or contentType attributes of their page directive, defaulting to
ISO-8859-1 if neither was present.
As of the JSP specification v2.0, the page encoding for JSP documents is determined as
described in section 4.3.3 and appendix F.1 of the XML specification, and the
pageEncoding attribute of those pages is only checked to make sure it is consistent with
the page encoding determined as per the XML specification.
As a result of this change, JSP documents that rely on their page encoding to be
determined from their pageEncoding attribute will no longer be decoded correctly.
These JSP documents must be changed to include an appropriate XML encoding
declaration.
Additionally, in the JSP 1.2 Specification, page encodings are determined on a per
translation unit basis whereas in the JSP 2.0 Specification, page encodings are
determined on a per-file basis. Therefore, if a.jsp statically includes b.jsp, and a page
encoding is specified in a.jsp but not in b.jsp, in the JSP 1.2 specification a.jsp’s encoding
is used for b.jsp, but in the JSP 2.0 Specification, the default encoding is used for b.jsp.

■ The type coercion rules (shown in Table JSP.1-11 in the JSP 2.0 specification) have been
reconciled with the EL coercion rules. There are some exceptional conditions that no
longer result in an exception in the JSP 2.0 specification. In particular, when passing an

Incompatibilities with the J2EE 1.4 Platform (since the J2EE 1.3 release)

Chapter 5 • J2EE 1.4 Compatibility Issues 63

http://java.sun.com/products/jsp/

empty String to an attribute of a numeric type, a translation error or a
NumberFormatException used to occur, whereas in the JSP 2.0 specification, a 0 is passed
in instead. See Table JSP.1-11 in the JSP 2.0 specification for details. In general, this is not
expected to cause any problems because these would have been exceptional conditions
in the JSP 1.2 specification and the specification allowed for these exceptions to occur at
translation time or request time.

■ The JSP container uses web.xml to determine the default behavior of various container
features. The following is a list of items of which JSP developers should be aware when
upgrading their web.xml file from Servlet version 2.3 Specification to Servlet version 2.4
Specification.
■ EL expressions are ignored by default in applications created with JSP 1.2

technology. When upgrading a Web application to the JSP 2.0 specification, EL
expressions are interpreted by default. The escape sequence \\$ can be used to escape
EL expressions that should not be interpreted by the container. Alternatively, the
isELIgnored page directive attribute, or the el-ignored configuration element can
deactivate EL for entire translation units. Users of JSTL 1.0 need to either upgrade
their taglib/ imports to the JSTL 1.1 URIs, or they need to use the _rt versions of
the tags (for example c_rt instead of c, or fmt_rt instead of fmt).

■ Files with an extension of .jspx are interpreted as JSP documents by default. Use the
JSP configuration element is-xml to treat .jspx files as regular JSP pages. There is
no way to disassociate .jspx from the JSP container.

■ The escape sequence \\$ was not reserved in the JSP 1.2 specification. Any template
text or attribute value that appeared as \\$ in the JSP 1.2 specification used to output
\\$ but now outputs just $.

JAXP and SAX Incompatibilities
Sun Java System Application Server 8.2 supports JAXP 1.3, which in turn supports SAX 2.0.2. In
SAX 2.0.2, DeclHandler.externalEntityDecl requires the parser to return the absolute
system identifier for consistency with DTDHandler.unparsedEntityDecl. This might cause
some incompatibilities when migrating applications that use SAX 2.0.0.

To migrate an application that uses SAX 2.0.0 to SAX 2.0.2 without changing the previous
behavior of externalEntityDecl, you can set the resolve-dtd-uris feature to false. For example:

SAXParserFactory spf = SAXParserFactory.newInstance();

spf.setFeature("http://xml.org/sax/features/resolve-dtd-uris",false);

Other incompatibilities between SAX 2.0.0 and SAX 2.0.2 are documented in the JAXP
Compatibility Guide.

JAXP and SAX Incompatibilities

Sun Java System Application Server Enterprise Edition 8.2 Upgrade and Migration Guide •64

http://java.sun.com/j2se/1.5.0/docs/guide/xml/jaxp/JAXP-Compatibility_150.html#SAX
http://java.sun.com/j2se/1.5.0/docs/guide/xml/jaxp/JAXP-Compatibility_150.html#SAX

The pass-by-reference Element
Sun Java System Application Server 8.2 is compatible with the Java 2 Platform, Enterprise
Edition specification by default. In this case, all portable J2EE programs run on the Application
Server without modification. However, as allowed by the J2EE compatibility requirements, it is
possible to configure applications to use features of the Sun Java System Application Server 8.2
that are not compatible with the J2EE specification.

The pass-by-reference element in the sun-ejb-jar.xml file only applies to remote calls. As
defined in the EJB 2.0 specification, section 5.4, calls to local interfaces use pass-by-reference
semantics.

If the pass-by-reference element is set to its default value of false, the parameter passing
semantics for calls to remote interfaces comply with the EJB 2.0 specification, section 5.4. If set
to true, remote calls involve pass-by-reference semantics instead of pass-by-value semantics,
contrary to this specification.

Portable programs cannot assume that a copy of the object is made during such a call, and thus
that it is safe to modify the original. Nor can they assume that a copy is not made, and thus that
changes to the object are visible to both caller and callee. When this flag is set to true,
parameters and return values are considered read-only. The behavior of a program that
modifies such parameters or return values is undefined. For more information about the
pass-by-reference element, see the Sun Java System Application Server Enterprise Edition 8.2
Developer’s Guide.

The pass-by-reference Element

Chapter 5 • J2EE 1.4 Compatibility Issues 65

66

Migrating from Application Server 6.x/7.x

This chapter describes the considerations and strategies that are needed when moving J2EE
applications to the Application Server Enterprise Edition 8.2 product line.

The sections that follow describe issues that arise while migrating the main components of a
typical J2EE application from Application Server 6.x/7.x to Application Server Enterprise
Edition 8.2.

This chapter contains the following sections:

■ “Migrating from Application Server 6.x” on page 68
■ “Migrating Applications from Application Server 7” on page 89

The migration issues described in this chapter are based on an actual migration that was
performed for a J2EE application called iBank, a simulated online banking service, from
Application Server 6.x/7.x to Sun Java System Application Server 8.2. This application reflects
all aspects of a traditional J2EE application.

The following areas of the J2EE specification are covered by the iBank application:

■ Servlets, especially with redirection to JSP pages (model-view-controller architecture)
■ JSP pages, especially with static and dynamic inclusion of pages
■ JSP custom tag libraries
■ Creation and management of HTTP sessions
■ Database access through the JDBC API
■ Enterprise Java Beans: Stateful and Stateless session beans, CMP and BMP entity beans.
■ Assembly and deployment in line with the standard packaging methods of the J2EE

application

6C H A P T E R 6

67

Migrating from Application Server 6.x
This section covers the following topics:

■ “Migrating Deployment Descriptors” on page 68
■ “Migrating Web Applications” on page 69
■ “Migrating Enterprise EJB Modules” on page 72
■ “Migrating Enterprise Applications” on page 77
■ “Migrating Proprietary Extensions” on page 80
■ “Migrating UIF” on page 80
■ “Migrating JDBC Code” on page 82
■ “Migrating Rich Clients” on page 84
■ “Migrating Applications to Support HTTP Failover” on page 86

Migrating Deployment Descriptors
There are two types of deployment descriptors, namely, Standard Deployment Descriptors and
Runtime Deployment Descriptors. Standard deployment descriptors are portable across J2EE
platform versions and vendors and does not require any modifications. Currently, there are
exceptions due to standards interpretation. The following table lists such deployment
descriptors.

Source Deployment Descriptor Target Deployment Descriptor

ejb-jar.xml - 1.1 ejb-jar.xml - 2.0

web.xml web.xml

application.xml application.xml

The J2EE standard deployment descriptors ejb-jar.xml, web.xml and application.xml are
not modified significantly. However, the ejb-jar.xml deployment descriptor is modified to
make it compliant with EJB 2.0 specification in order to make the application deployable on Sun
Java System Application Server 8.2.

Runtime deployment descriptors are vendor specific and product specific and are not portable
across application servers due to difference in their format. Hence, deployment descriptors
require migration. This section describes how you can manually create the runtime deployment
descriptors and migrate relevant information.

The following table summarizes the deployment descriptor migration mapping.

Migrating from Application Server 6.x

Sun Java System Application Server Enterprise Edition 8.2 Upgrade and Migration Guide •68

Source Deployment Descriptor Target Deployment Descriptor

ias-ejb-jar.xml sun-ejb-jar.xml

<bean-name>-ias-cmp.xml sun-cmp-mappings.xml

ias-web.xml sun-web.xml

The standard deployment descriptors of Application Server 6.x needs modification when
moving to Application Server 8.2 because of nonconformance with the DTDs.

A majority of the information required for creating sun-ejb-jar.xml and sun-web.xml comes
from ias-ejb-jar.xml and ias-web.xml respectively. However, there is some information
that is required and extracted from the home interface (.java file) of the CMP entity bean, in
case the sun-ejb-jar.xml being migrated declares one. This is required to build the
<query-filter> construct inside the sun-ejb-jar.xml, which requires information from
inside the home interface of that CMP entity bean. If the source file is not present during the
migration time, the <query-filter> construct is created, but with missing information (which
manifests itself in the form of REPLACE ME phrases in the migrated sun-ejb-jar.xml.

Additionally, if the ias-ejb-jar.xml contains a <message-driven> element, then information
from inside this element is picked up and used to fill up information inside both ejb-jar.xml

and sun-ejb-jar.xml. Also, inside the <message-driven> element of ias-ejb-jar.xml, there
is an element <destination-name>, which holds the JNDI name of the topic or queue to which
the MDB listens. In Application Server 6.5, the naming convention for this JNDI name is
cn=<SOME_NAME>. Since a JMS Topic or Queue with this name is not deployable on Application
Server, the application server changes this to <SOME_NAME>, and inserts this information in the
sun-ejb-jar.xml. This change must be reflected for all valid input files, namely, all .java,
.jsp and .xml files. Hence, this JNDI name change is propagated across the application, and if
some source files that contain reference to this JNDI name are unavailable, the administrator
must make the changes manually so that the application becomes deployable.

Migrating Web Applications
Application Server 6.x support servlets (Servlet API 2.2), and JSPs (JSP 1.1). Sun Java System
Application Server 8.2 supports Servlet API 2.4 and JSP 2.0.

Within these environments it is essential to group the different components of an application
(servlets, JSP and HTML pages and other resources) together within an archive file
(J2EE-standard Web application module) deploying it on the application server.

According to the J2EE specification, a Web application is an archive file (WAR file) with the
following structure:
■ A root directory containing the HTML pages, JSP, images and other static resources of the

application.

Migrating from Application Server 6.x

Chapter 6 • Migrating from Application Server 6.x/7.x 69

■ A META-INF/ directory containing the archive manifest file MANIFEST.MF containing the
version information for the SDK used and, optionally, a list of the files contained in the
archive.

■ A WEB-INF/ directory containing the application deployment descriptor (web.xml file) and
all the Java classes and libraries used by the application, organized as follows:
■ A classes/ sub-directory containing the tree-structure of the compiled classes of the

application (servlets, auxiliary classes), organized into packages
■ A lib/ directory containing any Java libraries (JAR files) used by the application

Migrating Java Server Pages and JSP Custom Tag Libraries
Application Server 6.x complies with the JSP 1.1 specification and Application Server 8.2
complies with the JSP 2.0 specification.

JSP 2.0 specification contains many new features, as well as updates to the JSP 1.1 specification.

These changes are enhancements and are not required to migrate to JSP pages from JSP 1.1 to
2.0.

The implementation of JSP custom tag libraries in Application Server 6.x complies with the
J2EE specification. Consequently, migrating JSP custom tag libraries to the Application Server
Enterprise Edition 8.2does not pose any particular problem, nor require any modifications.

Migrating Servlets
Application Server 6.x supports the Servlet 2.2 API. Sun Java System Application Server 8.2
supports the Servlet 2.4 API.

Servlet API 2.4 leaves the core of servlets relatively untouched. Most changes are concerned
with adding new features outside the core.

The most significant features are:

■ Servlets now require JDK 1.2 or later
■ Filter mechanisms have been created
■ Application lifecycle events have been added
■ Internationalization support has been added
■ Error and security attributes have been expanded
■ HttpUtils class has been deprecated
■ Several DTD behaviors have been expanded and clarified

These changes are enhancements and are not required to be made when migrating servlets from
Servlet API 2.2 to 2.4.

However, if the servlets in the application use JNDI to access resources in the J2EE application
(such as data sources or EJBs), some modifications might be needed in the source files or in the
deployment descriptor.

Migrating from Application Server 6.x

Sun Java System Application Server Enterprise Edition 8.2 Upgrade and Migration Guide •70

One last scenario might require modifications to the servlet code. Naming conflicts can occur
with Application Server 6.x if a JSP page has the same name as an existing Java class. In this case,
the conflict must be resolved by modifying the name of the JSP page in question. This in turn
can mean editing the code of the servlets that call this JSP page. This issue is resolved in
Application Server as it uses a new class loader hierarchy. In the new version of the application
server, for a given application, one class loader loads all EJB modules and another class loader
loads web module. As these two loaders do not talk with each other, there is no naming conflict.

To obtain a reference to a data source bound to the JNDI context, look up the data source’s
JNDI name from the initial context object. The object retrieved in this way is then be cast as a
DataSource type object:

ds = (DataSource)ctx.lookup(JndiDataSourceName);

For detailed information, refer to section “Migrating JDBC Code.”

The actual migration of the components of a Servlet or JSP application from Application Server
6.x to Application Server 8.2does not require any modifications to the component code.

If the Web application is using a server resource, such as a data source, the Application Server
requires that this resource to be declared inside the web.xml file and, correspondingly, inside
the sun-web.xml file. To declare a data source called jdbc/iBank, the <resource-ref> tag in
the web.xml file is as follows:

<resource-ref>

<res-ref-name>jdbc/iBank</res-ref-name>

<res-type>javax.sql.XADataSource</res-type>

<res-auth>Container</res-auth>

<res-sharing-scope>Shareable</res-sharing-scope>

</resource-ref>

The corresponding declaration inside the sun-web.xml file looks like this:

<?xml version="1.0" encoding="UTF-8"?>

<! DOCTYPE FIX ME: need confirmation on the DTD to be used for this file

<sun-web-app>

<resource-ref>

<res-ref-name>jdbc/iBank</res-ref-name>

<jndi-name>jdbc/iBank</jndi-name>

</resource-ref>

</sun-web-app>

Migrating Web Application Modules
Migrating applications from Application Server 6.x to Sun Java System Application Server 8.2
does not require any changes to the Java code or Java Server Pages. However, you must change
the following files:

Migrating from Application Server 6.x

Chapter 6 • Migrating from Application Server 6.x/7.x 71

■ web.xml

■ ias-web.xml

The Application Server adheres to J2EE 1.4 standards, according to which, the web.xml file
inside a WAR file must comply with the revised DTD at
http://java.sun.com/dtd/web-app_2_3.dtd. This DTD is a superset of the previous
versions’ DTD, hence only the <! DOCTYPE definition needs to be changed inside the web.xml
file, which is to be migrated. The modified <! DOCTYPE declaration looks like:

<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//

DTD Web Application 2.3//EN"

"http://java.sun.com/dtd/web-app_2_3.dtd">

In Application Server Enterprise Edition 8.2, the name of this file is changed to sun-web.xml.

This XML file must declare the Application Server-specific properties and resources that are
required by the Web application.

If the ias-web.xml of the Application Server 6.5 application is present and does declare
Application Server 6.5 specific properties, then this file needs to be migrated to Application
Server standards. The DTD file name has to be changed to sun-web.xml. For more details, see
URL http://wwws.sun.com/software/dtd/appserver/sun-web-app_2_4-1.dtd

Once you have made these changes to the web.xml and ias-web.xml files, the Web application
(WAR file) can be deployed from the Application Server’s deploytool GUI interface or from the
command line utility asadmin. The deployment command must specific the type of application
as web.

Invoke the asadmin command line utility by running asadmin.bat file or the asadmin.sh script
in the Application Server’s bin directory.

The command at the asadmin prompt is:

asadmin deploy -u username -w password

-H hostname

-p adminport

--type web

[--contextroot contextroot]

[--force=true]

[--name component-name]

[--upload=true] filepath

Migrating Enterprise EJB Modules
Application Server 6.x supports EJB 1.1, and the Application Server supports EJB 2.0. Therefore,
both can support:

■ Stateful or stateless session beans

Migrating from Application Server 6.x

Sun Java System Application Server Enterprise Edition 8.2 Upgrade and Migration Guide •72

http://java.sun.com/dtd/web-app_2_3.dtd
http://wwws.sun.com/software/dtd/appserver/sun-web-app_2_4-1.dtd

■ Entity beans with BMP or CMP

EJB 2.0, however, introduces a new type of enterprise bean, called an MDB.

J2EE 1.4 specification dictates that the different components of an EJB must be grouped
together in a JAR file with the following structure:

■ META-INF/ directory with an XML deployment descriptor named ejb-jar.xml

■ The .class files corresponding to the home interface, remote interface, the implementation
class, and the auxiliary classes of the bean with their package

Application Server 6.x use this archive structure. However, the EJB 1.1 specification leaves each
EJB container vendor to implement certain aspects as they see fit:

■ Database persistence of CMP EJBs (particularly the configuration of mapping between the
bean’s CMP fields and columns in a database table).

■ Implementation of the custom finder method logic for CMP beans.
■ Application Server 6.x andApplication Server 8.2do not handle migrations in the same way,

which means that some XML files must be modified:
■ The <!DOCTYPE definition must be modified to point to the latest DTD URL (in the case of

J2EE standard deployment descriptors, such as ejb-jar.xml).
■ Replace the ias-ejb-jar.xml file with the modified version of this file (for example, file

sun-ejb-jar.xml, which is created manually according to the DTDs). For more
information, see http://www.sun.com/software/dtd/appserver/sun-ejb-jar_2_1-1.dtd

■ Replace all the <ejb-name>-ias-cmp.xml files with one sun-cmp-mappings.xml file, which
is created manually. For more information, see
http://www.sun.com/software/dtd/appserver/sun-cmp-mapping_1_2.dtd

■ Optionally, for CMP entity beans, use the capture-schema utility in the Application Server’s
bin directory to generate the dbschema. Then place it above the META-INF directory for the
entity beans.

EJB Migration
As mentioned in Chapter 3, “Migrating J2EE Applications,” while Application Server 6.x
supports the EJB 1.1 specification, Application Server also supports the EJB 2.0 specification.
The EJB 2.0 specification introduces the following new features and functions to the
architecture:

■ MDBs
■ Improvements in CMP
■ Container-managed relationships for entity beans with CMP
■ Local interfaces
■ EJB Query Language (EJB QL)

Migrating from Application Server 6.x

Chapter 6 • Migrating from Application Server 6.x/7.x 73

http://wwws.sun.com/software/dtd/appserver/sun-ejb-jar_2_1-1.dtd
http://wwws.sun.com/software/dtd/appserver/sun-cmp-mapping_1_2.dtd

Although the EJB 1.1 specification continues to be supported in the Application Server, the use
of the EJB 2.0 architecture is recommended to leverage its enhanced capabilities.

For detailed information on migrating from EJB 1.1 to EJB 2.0, please refer to Chapter 4,
“Migrating from EJB 1.1 to EJB 2.0”

DTD Changes
Migrating EJBs from Application Server 6.x to Application Server 8.2 is done without making
any changes to the EJB code. However, the following DTD changes are required.

■ The <!DOCTYPE> definition must be modified to point to the latest DTDs with J2EE standard
deployment descriptors, such as ejb-jar.xml.

■ Replace ias-ejb-jar.xml file with the modified version of this file, named
sun-ejb-jar.xml,created manually according to the deployment descriptors. For more
details, see http://wwws.sun.com/software/dtd/appserver/sun-ejb-jar_2_1-1.dtd

■ In the sun-ejb-jar.xml file, the JNDI name for all the EJBs must be added before ”ejb/’ in
all the JNDI names. This is required because, in Application Server 6.5, the JNDI name of
the EJB can only be ejb/<ejb-name> where <ejb-name> is the name of the EJB as declared
inside the ejb-jar.xml file.
In the Application Server, a new tag has been introduced in the sun-ejb-jar.xml. This is
where the JNDI name of the EJB is declared.

Note – To avoid changing JNDI names throughout the application, declare the JNDI name of the
EJB as ejb/<ejb-name> inside the <jndi-name> tag.

Migrating EJB Applications that Support SFSB Failover
Sun ONE Application Server 6.5 supports failover of stateful session beans. To take advantage
of the SFSB failover in 6.5, the session bean need to be configured with failover and Distributed
Store or DSync. The DSync mechanism is used to save the session beans’s conversational state
during runtime.

Note – Sun ONE Application Server 6.5 does not support failover of stateful session beans for
rich clients on the RMI/IIOP path. Such applications can take advantage of SFSB failover on the
RMI/IIOP path in Sun Java System Application Server 8.2. For more information on SFSB
failover configuration, see “Stateful Session Bean Failover” in Sun Java System Application
Server Enterprise Edition 8.2 High Availability Administration Guide.

Sun Java System Application Server 8.2, Enterprise Edition supports failover of stateful session
beans. Application Server 8.2 uses the High Availability Database (HADB) for storing session
data. The principle followed in supporting SFSB failover in saving the conversational state of an

Migrating from Application Server 6.x

Sun Java System Application Server Enterprise Edition 8.2 Upgrade and Migration Guide •74

ttp://wwws.sun.com/software/dtd/appserver/sun-ejb-jar_2_1-1.dtd

SFSB at predefined points in its lifecycle to a persistent store. This mechanism is referred to as
checkpointing. In case of a server crash, the checkpointed state of an SFSB can be retrieved from
the persistent store. In order to use HADB for storing session data, you must configure HADB
as the persistent store. The underlying store for the HTTP sessions and stateful session beans is
same and the configuration of persistent store is exactly similar to configuration of session
store.

For information on configuring HADB for session failover, see Chapter 9, “Configuring High
Availability Session Persistence and Failover,” in Sun Java System Application Server Enterprise
Edition 8.2 High Availability Administration Guide.

Migration of stateful session beans deployed in Sun ONE Application Server 6.5 to Sun Java
System Application Server 8.2 does not require any changes in the EJB code. However, the
following steps must be performed:

■ Modify the <!DOCTYPE definition to point to the latest DTD URL in case of J2EE standard
deployment descriptors, such as ejb-jar.xml.

■ Replace ias-ejb-jar.xml with the modified version of this file, i.e., sun-ejb-jar.xml,
which is created manually according to the DTDs.

■ Replace all the <ejb-name>-ias-cmp.xml files with one sun-cmp-mappings.xml file, which
is created manually.

■ No changes are required in the application source code for taking advantage of the SFSB
state failover support. All configuration needed for checkpointing SFSBs will be applied at
the Application Server specific deployment descriptor (sun-ejb-jar.xml), or in the domain
configuration file (domain.xml).
However, if you are accessing the EJBs through servlets then you need to store the EJB home
and remote references in the session. The following is the code example to store ejbHome
and ejbRemote interfaces in the session:

session.setAttribute("ejbhome", ejbHome);

session.setAttribute("ejbremote", ejbRemote);

The following code example demonstrates how to retrieve the ejbHome and ejbRemote from
the session:

ejbHome = session.getAttribute("ejbhome");

ejbRemote = session.getAttribute("ejbremote");

■ In the domain.xml, make sure that the availability-enabled attribute of
availability-service element is set to TRUE. If availability-enabled attribute is set to
TRUE indicates that failover is enabled at the server instance level. That is, if a server
instance fails to process a request, the request is routed to the next available server instance.
SFSB checkpointing adds performance overhead on the EJB container, you may want to
restrict checkpointing to a list of SFSBs whose state failover is critical to the application.

Migrating from Application Server 6.x

Chapter 6 • Migrating from Application Server 6.x/7.x 75

You can enable/disable the checkpointing at the method level in sun-ejb-jar.xml. For
more details see “Specifying Methods to Be Checkpointed” in Sun Java System Application
Server Enterprise Edition 8.2 High Availability Administration Guide.
If, in the deployment descriptor for the SFSB EJB module in 6.5 (ias-ejb-jar.xml), the
failoverrequired attribute of the session element is set to TRUE, you might want to
enable availability-service for such EJB modules in the Application Server 8.2 environment.

Entity Beans
■ The <!DOCTYPE> definition must be modified to point to the latest DTDs containing J2EE

standard deployment descriptors, such as ejb-jar.xml.
■ Update the <cmp-version> tag with the value 1.1, for all CMPs in the ejb-jar.xml file.
■ Replace all the <ejb-name>-ias-cmp.xml files with the manually created

sun-cmp-mappings.xml file. For more information, see
http://wwws.sun.com/software/dtd/appserver/sun-cmp-mapping_1_2.dtd

■ Generate dbschema by using the capture-schema utility in the Application Server
installation’s bin directory and place it above META-INF folder for Entity beans.

■ Replace the ias-ejb-jar.xml with the sun-ejb.jar.xml in Application Server.
■ In Application Server 6.5, the finder's SQL was directly embedded into the

<ejb-name>-ias-cmp.xml. In Application Server, mathematical expressions are used to
declare the <query-filter> for the various finder methods.

Message Driven Beans
Application Server provides seamless Message Driven Support through the tight integration of
Sun Java System Message Queue with the Application Server, providing a native, built-in JMS
Service.

This installation provides Application Server with a JMS messaging system that supports any
number of Application Server instances. Each server instance, by default, has an associated
built-in JMS Service that supports all JMS clients running in the instance.

Both container-managed and bean-managed transactions, as defined in the Enterprise
JavaBeans Specification, v2.0, are supported.

Message Driven Bean support in iPlanet Application Server was restricted to developers, and
used many of the older proprietary APIs. Messaging services were provided by iPlanet Message
Queue for Java 2.0. An LDAP directory was also required under iPlanet Application Server to
configure the Queue Connection Factory object.

The QueueConnectionFactory, and other elements required to configure Message Driven
Beans in Application Server are now specified in the ejb-jar.xml file.

Migrating from Application Server 6.x

Sun Java System Application Server Enterprise Edition 8.2 Upgrade and Migration Guide •76

http://wwws.sun.com/software/dtd/appserver/sun-cmp-mapping_1_2.dtd

For more information on the changes to deployment descriptors, see “Migrating Enterprise
Applications” on page 77 For information on Message Driven Beans see “Using
Message-Driven Beans” in Sun Java System Application Server Enterprise Edition 8.2 Developer’s
Guide.

Migrating Enterprise Applications
According to the J2EE specifications, an enterprise application is an EAR file, which must have
the following structure:
■ A META-INF/ directory containing the XML deployment descriptor of the J2EE application

called application.xml

■ The JAR and WAR archive files for the EJB modules and Web module of the enterprise
application, respectively

In the application deployment descriptor, the modules that make up the enterprise application
and the Web application’s context root are defined.

Application server 6.x and the Application Server 8.2support the J2EE model wherein
applications are packaged in the form of an enterprise archive (EAR) file (extension .ear). The
application is further subdivided into a collection of J2EE modules, packaged into Java archives
(JAR files, which have a .jar file extension) and EJBs and Web archives (WAR files, which have
a .war file extension) for servlets and JSPs.

It is essential to follow the steps listed here before deploying an enterprise application:

▼ To Build an EAR File

Package EJBs in one or more EJB modules.

Package the components of the Web application in a Web module.

Assemble the EJB modules and Web modules in an enterprise application module.

Define the name of the enterprise application’s root context, which will determine the URL for
accessing the application.
The Application Server uses a newer class loader hierarchy than Application Server 6.x does. In
the new scheme, for a given application, one class loader loads all EJB modules and another
class loader loads Web modules. These two are related in a parent child hierarchy where the JAR
module class loader is the parent module of the WAR module class loader. All classes loaded by
the JAR class loader are available/accessible to the WAR module but the reverse is not true. If a
certain class is required by the JAR file as well as the WAR file, then the class file must be
packaged inside the JAR module only. If this guideline is not followed it can lead to class
conflicts.

1

2

3

4

Migrating from Application Server 6.x

Chapter 6 • Migrating from Application Server 6.x/7.x 77

Application Root Context and Access URL
There is a major difference between Application Server 6.x and the Application Server8.2,
concerning the applications access URL (root context of the application’s Web module). If
AppName is the name of the root context of an application deployed on a server called hostname,
the access URL for this application differs, depending on the application server used:
■ With Application Server 6.x, which is always used jointly with a Web front-end, the access

URL for the application takes the following form (assuming the Web server is configured on
the standard HTTP port, 80):

http://<hostname>/NASApp/AppName/
■ With the Application Server8.2, the URL takes the form:

http://<hostname>:<portnumber>/AppName/

The TCP port used as default by Application Server 8.2is port 8080.

Although the difference in access URLs between Application Server 6.x and the Application
Server might appear minor, it can be problematic when migrating applications that make use of
absolute URL references. In such cases, it is necessary to edit the code to update any absolute
URL references so that they are no longer prefixed with the specific marker used by the Web
Server plug-in for Application Server 6.x.

Applications With Form-based Authentication
Applications developed on Application Server 6.5 that use form-based authentication can pass
the request parameters to the Authentication Form or the Login page. The Login page could be
customized to display the authentication parameters based on the input parameters.

For example:

http://gatekeeper.uk.sun.com:8690/NASApp/test/secured/page.jsp?

arg1=test&arg2=m

Application Server 8.2 does not support the passing of request parameters while displaying the
Login page. The applications that uses form-based authentication, which passes the request
parameters can not be migrated to Application Server8.2. Porting such applications to
Application Server8.2 requires significant changes in the code. Instead, you can store the
request parameter information in the session, which can be retrieved while displaying the Login
page.

The following code example demonstrates the workaround:

Before changing the code in 6.5:

---------index-65.jsp -----------

<%@page contentType="text/html"%>

<html>

Migrating from Application Server 6.x

Sun Java System Application Server Enterprise Edition 8.2 Upgrade and Migration Guide •78

<head><title>JSP Page</title></head>

<body>

go to the secured a rea

</body>

</html>

----------login-65.jsp--------------

<%@page contentType="text/html"%>

<html>

<head> </head>

<body>

<!-- Print login form -->

<h3>Parameters</h3>

out.println("arg1 is " + request.getParameter("arg1"));

out.println("arg2 is " + request.getParameter("arg2"));

</body>

</html>

After changing the code in Application Server8.2:

---------index-81.jsp -----------

<%@page contentType="text/html"%>

<html>

<head><title>JSP Page</title></head>

<body>

<%session.setAttribute("arg1","test"); %>

<%session.setAttribute("arg2","me"); %>

go to the secured area

</body>

</html>

The index-81.jsp shows how you can store the request parameters in a session.

----------login-81.jsp--------------

<%@page contentType="text/html"%>

<html>

<head> </head>

<body>

<!-- Print login form -->

<h3>Parameters</h3>

<!--retrieving the parameters from the session -->

out.println("arg1 is"+(String)session.getAttribute("arg1"));

out.println("arg2 is” + (String)session.getAttribute("arg2"));

</body>

</html>

Migrating from Application Server 6.x

Chapter 6 • Migrating from Application Server 6.x/7.x 79

Migrating Proprietary Extensions
A number of classes proprietary to the Application Server 6.x environment might have been
used in applications. Some of the proprietary packages used by Application Server 6.x are listed
below:

■ com.iplanet.server.servlet.extension

■ com.kivasoft.dlm

■ com.iplanetiplanet.server.jdbc

■ com.kivasoft.util

■ com.netscape.server.servlet.extension

■ com.kivasoft

■ com.netscape.server

These APIs are not supported in the Application Server8.2. Applications using any classes
belonging to the above package must be rewritten to use standard J2EE APIs. Applications
using custom JSP tags and UIF framework also need to be rewritten to use standard J2EE APIs.

Migrating UIF
The Application Server 8.2does not support the use of Unified Integration Framework (UIF)
API for applications. Instead, it supports the use of J2EE Connector Architecture (JCA) for
integrating the applications. However, the applications developed in Application Server 6.5 use
the UIF. In order to deploy such applications to the Application Server8.2, migrate the UIF to
the J2EE Connector Architecture. This section discusses the prerequisites and steps to migrate
the applications using UIF to Application Server.

Before migrating the applications, ensure that the UIF is installed on Application Server 6.5. To
check for the installation, use the following approaches:

■ Checking in the Registry Files
■ Checking for UIF Binaries in Installation Directories

Checking in the Registry Files
UIF is installed as a set of application server extensions. They are registered in the application
server registry during the installation. Search for the following strings in the registry to check
whether UIF is installed.

Extension Name Set:

■ Extension DataObjectExt-cDataObject
■ Extension RepositoryExt-cLDAPRepository
■ Extension MetadataService-cMetadataService
■ Extension RepoValidator-cRepoValidator
■ Extension BSPRuntime-cBSPRuntime

Migrating from Application Server 6.x

Sun Java System Application Server Enterprise Edition 8.2 Upgrade and Migration Guide •80

■ Extension BSPErrorLogExt-cErrorLogMgr
■ Extension BSPUserMap-cBSPUserMap

The registry file on Solaris Operating Environment can be found at the following location:

AS_HOME/AS/registry/reg.dat

Checking for UIF Binaries in Installation Directories
UIF installers copy specific binary files in to the application server installation. Successfully
finding the files listed below, indicates that UIF is installed.

The location of the following files on Solaris and Windows is:

AS_HOME/AS/APPS/bin

List of files to be searched on Solaris:

■ libcBSPRlop.so

■ libcBSPRuntime.so

■ libcBSPUserMap.so

■ libcDataObject.so

■ libcErrorLogMgr.so

■ libcLDAPRepository.so

■ libcMetadataService.so

■ libcRepoValidator.so

■ libjx2cBSPRuntime.so

■ libjx2cDataObject.so

■ libjx2cLDAPRepository.so

■ libjx2cMetadataService.so

List of files to be searched on Windows:

■ cBSPRlop.dll

■ cBSPRuntime.dll

■ cBSPUserMap.dll

■ cDataObject.dll

■ ErrorLogMgr.dll

■ cLDAPRepository.dll

■ cMetadataService.dll

■ cRepoValidator.dll

■ jx2cBSPRuntime.dll

■ jx2cDataObject.dll

■ jx2cLDAPRepository.dll

■ jx2cMetadataService.dll

Before migrating the UIF to Application Server8.2, ensure that the UIF API is being used in the
applications. To verify its usage:

Migrating from Application Server 6.x

Chapter 6 • Migrating from Application Server 6.x/7.x 81

■ Check for the usage of netscape.bsp package name in the Java sources
■ Check for the usage of access_cBSPRuntime.getcBSPRuntime method in the sources. You

must call this method to acquire the UIF runtime.

Contact appserver-migration@sun.com for information about UIF migration to the
Application Server8.2.

Migrating JDBC Code
With the JDBC API, there are two methods of database access:

■ Establishing Connections Through the DriverManager Interface
(JDBC 1.0 API), by loading a specific driver and providing a connection URL. This method
is used by other Application Servers, such as IBM’s WebSphere 4.0

■ Using JDBC 2.0 Data Sources
The DataSource interface (JDBC 2.0 API) can be used via a configurable connection pool.
According to J2EE 1.2, a data source is accessed through the JNDI naming service

Note – Application Server8.2 does not support the Native Type 2 JDBC drivers bundled with
Application Server 6.x. Code that uses the Type 2 drivers to access third party JDBC drivers,
must be manually migrated.

Establishing Connections Through the DriverManager Interface
Although this database access method is not recommended, as it is obsolete and is not very
effective, there could be some applications that still use this approach.

In this case, the access code is similar to the following:

public static final String driver = "oracle.jdbc.driver.OracleDriver";

public static final String url =

"jdbc:oracle:thin:tmb_user/tmb_user@iben:1521:tmbank";

Class.forName(driver).newInstance();

Properties props = new Properties();

props.setProperty("user", "tmb_user");

props.setProperty("password", "tmb_user");

Connection conn = DriverManager.getConnection(url, props);

This code can be fully ported from Application Server 6.x to Application Server8.2, as long as
the Application Server8.2 is able to locate the classes needed to load the right JDBC driver. To
make the required classes accessible to the application deployed in the Application Server, place
the archive (JAR or ZIP) for the driver implementation in the /lib directory of the Application
Server installation directory.

Migrating from Application Server 6.x

Sun Java System Application Server Enterprise Edition 8.2 Upgrade and Migration Guide •82

Modify the CLASSPATH by setting the path for the driver through the Admin Console GUI.

■ Click the server instance server1.
■ Click the JVM Settings tab from the right pane.
■ Click the Path Settings option and add the path in the classpath suffix text entry box.
■ Once the changes are made, click Save.
■ Apply the new settings.
■ Restart the server to modify the configuration file, server.xml.

Using JDBC 2.0 data sources to access a database provides performance advantages, such as
transparent connection pooling, enhanced productivity by simplifying code and
implementation, and code portability.

If there is a data source by the name xyz on Application Server 6.x application and you do not
want any impact on your JNDI lookup code, make sure that the data source you create for
Application Server8.2 is prefixed with JDBC. For example: jdbc/xyz.

For information on configuring JDBC data sources, see Chapter 3, “JDBC Resources,” in Sun
Java System Application Server Enterprise Edition 8.2 Administration Guide.

▼ To Connect to a Data Source

Obtain the initial JNDI context.

To guarantee portability between different environments, the code used to retrieve an
InitialContext object (in a servlet, in a JSP page, or an EJB) is as follows:

InitialContext ctx = new InitialContext();

Use a JNDI lookup to obtain a data source reference.

To obtain a reference to a data source bound to the JNDI context, look up the data source’s
JNDI name from the initial context object. The object retrieved in this way is cast as a
DataSource type object:

ds = (DataSource)ctx.lookup(JndiDataSourceName);

Use the data source reference to obtain the connection.

This operation requires the following line of code:

conn = ds.getConnection();

Application Server 6.x and Application Server both follow these technique to obtain a
connection from the data source.

1

2

3

Migrating from Application Server 6.x

Chapter 6 • Migrating from Application Server 6.x/7.x 83

Migrating Rich Clients
This section describes the steps for migrating RMI/IIOP and ACC clients developed in Planet
Application Server 6.x to the Application Server8.2.

Authenticating a Client
Application Server 6.x provides a client-side callback mechanism that enables applications to
collect authentication data from the user, such as the username and the password. The
authentication data collected by the iPlanet CORBA infrastructure is propagated to the
application server via IIOP.

If ORBIX 2000 is the ORB used for RMI/IIOP, portable interceptors implement security by
providing hooks, or interception points, which define stages within the request and reply
sequence.

In Application Server 8.2, The authentication is done based on JAAS (Java Authorization and
Authentication System API). If a client does not provide a CallbackHandler, then the default
CallbackHandler, called the LoginModule, is used by the ACC to obtain the authentication
data.

For detailed instructions on using JAAS for authentication, see Chapter 9, “Configuring
Security,” in Sun Java System Application Server Enterprise Edition 8.2 Administration Guide.

Using ACC
In Application Server 6.x, no separate appclient script is provided. You are required to place
the iasacc.jar file in the classpath instead of the iascleint.jar file. The only benefit of using
the Application Client Container (ACC) for packaging application clients in 6.x is that the JNDI
names specified in the client application are indirectly mapped to the absolute JNDI names of
the EJBs.

In case of Application Server 6.x applications, a standalone client uses the absolute name of the
EJB in the JNDI lookup. That is, outside an ACC, the following approach is used to lookup the
JNDI:

initial.lookup(“ejb/ejb-name”);

initial.lookup(“ejb/module-name/ejb-name”);

If your application was developed using Application Server 6.5 SP3, you would have used the
prefix java:comp/env/ejb/ when performing lookups by using absolute references.

initial.lookup("java:comp/env/ejb/ejb-name");

In Sun Java System Application Server 8.2, the JNDI lookup is done on the jndi-name of the
EJB. The absolute name of the EJB must not be used. Also, the prefix, java:comp/env/ejb is not
supported in Sun Java System Application Server 8.2. Replace the iasclient.jar, iasacc.jar,
or javax.jar JAR files in the classpath with appserv-ext.jar.

Migrating from Application Server 6.x

Sun Java System Application Server Enterprise Edition 8.2 Upgrade and Migration Guide •84

If your application provides load balancing capabilities, in Sun Java System Application Server
8.2, load balancing capabilities are supported only in the form of S1ASCTXFactory as the
context factory on the client side and then specifying the alternate hosts and ports in the cluster
by setting the com.sun.appserv.iiop.loadbalancingpolicy system property as follows:

com.sun.appserv.iiop.loadbalancingpolicy=

roundrobin,host1:port1,host2:port2,...,

This property provides the administrator with a list of host:port combinations to round robin
the ORBs. These host names can also map to multiple IP addresses. If this property is used along
with org.omg.CORBA.ORBInitialHost and org.omg.CORBA.ORBInitialPort as system
properties, the round robin algorithm will round robin across all the values provided. If,
however, a host name and port number are provided in your code, in the environment object,
that value overrides any other system property settings.

The Provider URL to which the client is connected in Application Server 6.5 is the IIOP host
and port of the CORBA Executive Engine (CXS Engine). In case of Sun Java System Application
Server 8.2, the client needs to specify the IIOP listener Host and Port number of the instance. No
separate CXS engine exists in Sun Java System Application Server 8.2.

The default IIOP port is 3700 in Sun Java System Application Server 8.2; the actual value of the
IIOP Port can be found in the domain.xml configuration file.

Load balancing is handled implicitly by the CXS engine in Sun ONE Application Server 6.5
upon number of Java engines registered. In Application Server 8.2 Enterprise Edition, this
feature requires explicit configuration details from the clients.

After migrating the deployment descriptors from 6.x to 8.2, provide the configuration details in
the sun-acc.xml file to enable failover capabilities in your ACC client. See “Migrating
Enterprise Applications” on page 77 for information on migrating deployment descriptors.

Define the load balancing properties in the sun-acc.xml file to provide a highly available ACC
client. The properties are defined as property elements in the sun-acc.xml file.

■ com.sun.appserv.iiop.endpoints

This property defines the list of one or more IIOP endpoints. An endpoint is specified as
host:port where host is the name or IP address of the system where Application Server 8.2 is
running. Port is the IIOP port at which the server is listening for IIOP requests.

■ com.sun.appserv.iiop.loadbalancingpolicy

If the endpoint property is specified, then, this property is used to specify the load balancing
policy. The value for this property must be InitialContext-based.

For example:

Migrating from Application Server 6.x

Chapter 6 • Migrating from Application Server 6.x/7.x 85

<client-container>

<target-server name="qasol-e1" address="qasol-e1" port="3700">

<property name="com.sun.appserv.iiop.loadbalancingpolicy"

value="ic-based" />

<property name="com.sun.appserv.iiop.endpoints"

value="qasol-e1:3700,qasol-e1:3800" />

</client-container>

To failover an ACC client on the RMI/IIOP path, information about all the endpoints in a
cluster to which the RMI/ IIOP requests can be failed over must be available. You must have
defined the IIOP endpoints in the domain.xml file. The iiop-cluster element under the
availability-service element defines the IIOP endpoints.

For more information, see Chapter 5, “Configuring HTTP Load Balancing,” in Sun Java System
Application Server Enterprise Edition 8.2 High Availability Administration Guide.

Migrating Applications to Support HTTP Failover
Application Server, Enterprise Edition 8.2 supports load balancing and HTTP session
persistence. The primary goal of loadbalancing is to distribute the work load between multiple
server instances, thereby increasing overall throughput of the system.

For information on configuring HTTP session failover, see “HTTP Session Failover” in Sun
Java System Application Server Enterprise Edition 8.2 High Availability Administration Guide.

To migrate 6.x HTTP applications to Application Server 8.2 EE environment and enable
load-balancing capabilities, perform the following steps. Note that, no code changes will be
required in the application.

▼ To Migrate and Enable Loadbalancing

Make sure that at least two application server instances are created and configured.

Rename the ias-web-app.xml to sun-web.xml.

For more information on migrating the deployment descriptors, see the “Migrating Enterprise
Applications” on page 77.

Update the <DOCTYPE definition with the following code:
<!DOCTYPE web-app PUBLIC

’-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN’

’http://java.sun.com/j2ee/dtds/web-app_2_3-1.dtd’>

1

2

3

Migrating from Application Server 6.x

Sun Java System Application Server Enterprise Edition 8.2 Upgrade and Migration Guide •86

In Sun ONE Application Server 6.5, the failover of HTTP applications was based on Dsync
mechanism. The configuration for HTTP failover was done in the ias-web-app.xml file.
The <server-info> element defined under the <servlet-info> element, specifies whether the
server on which the servlet will be served from is enabled.

The <session-info> element defines the following:
■ dsync-type: This can take the value dsync-distributed or dsync-local.

dsync-distributed implies that the session is distributed and thus available on all
configured servers.
dsync-local implies that the session is available on available only on the server on which
the session was created.
■ impl: This can take the values distributed or lite.

distributed implies that the session on distributed.
lite implies that the session is local to the Java engine where the session was created. If
this value is set, the dsync-type setting is ignored.
In Sun Java System Application Server 8.2, to enable failover of applications on the
HTTP route, you define the following properties in the sun-specific web application
deployment descriptor file: sun-web.xml.

■ persistence-store - This can take the values memory, file, or ha. In 6.5, however, only
memory based persistence store was supported.

■ persistence-scope - define the scope of persistence.
■ session - For every session, the session information will be saved.
■ modified-session - Only the modified session data will be stored.
■ modified-attribute - Only the modified attribute data will be stored. In 6.5, only

modified-attribute scope was supported.

persistenceFrequency - The frequency can be for every web method or time based. In
6.5, only web-method was supported.
■ web-method - The session state is stored at the end of each web request prior to

sending a response back to the client. This mode provides the best guarantee that the
session state is fully updated in case of failure.

■ time-based - The session state is stored in the background at the specified frequency.
This mode provides less of a guarantee that the session state is fully updated.
However, it can provide a significant performance improvement because the state is
not stored after each request.
A sample of the sun-web.xml file is given below:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE

sun-web-app PUBLIC ’-//Sun Microsystems, Inc.//

4

Migrating from Application Server 6.x

Chapter 6 • Migrating from Application Server 6.x/7.x 87

DTD Sun ONE Application Server 7.1 Servlet 2.3//EN’

"http://www.sun.com/software/sunone/appserver/dtds/sun-web-app_2_3-1.dtd’>

<sun-web-app>

<session-config>

<seession-manager>

<manager-properties>

<property name="persistence-type" value "ha’>

<property name="persistenceFrequency" value ="web-based">

</manager-properties>

<store-properties>

<property name="persistenceScope" value="session">

</store-properties>

</session-manager>

</session-config>

</sun-web-app>

For more information on the sun-web.xml configuration file, see “The sun-web.xml
File” in Sun Java System Application Server Enterprise Edition 8.2 Developer’s Guide.

Sun Java System Application Server 8.2 requires the load balancer plug-in to be installed and
configured, in order to loadbalance the HTTP request and failover the requests to available
server instances in a cluster when there is a failure.

For more information about the load balancer, see Chapter 5, “Configuring HTTP Load
Balancing,” in Sun Java System Application Server Enterprise Edition 8.2 High Availability
Administration Guide.

In the load-balancer.xml file, make sure that the web-module enabled element is set to true.
<loadbalancer>

<cluster name=cluster1>

...

<web-module context-root="abc" enabled=true>

</cluster>

<property name="https-routing" value="true"/>

</loadbalancer>

enabled=true specifies that the web module is active (enabled) for requests to be load balanced
to it.

Define the https-routingproperty and set its value to true.

For more information on editing the load-balancer.xml file, see Chapter 5, “Configuring
HTTP Load Balancing,” in Sun Java System Application Server Enterprise Edition 8.2 High
Availability Administration Guide.

Deploy the applications on all server instances that is participating in load balancing.

5

6

7

Migrating from Application Server 6.x

Sun Java System Application Server Enterprise Edition 8.2 Upgrade and Migration Guide •88

Migrating Applications from Application Server 7
This sections contains the following topics:
■ “Migrating Rich Clients” on page 89
■ “Migrating EJB Applications to Support SFSB Failover” on page 91

Migrating Rich Clients
Migrating rich clients that are deployed in Application Server 7 PE/SE to Application Server 8.2
is rather simple. The deployment descriptors used in Application Server 7 can be used as is in
Application Server 8.2. However, if you wish to enable loadbalancing and failover features in
your client applications, you need to configure the loadbalancing and failover capabilities in the
deployment descriptors.

▼ To Migrate Rich Clients from 7 PE/SE to 8.2 EE

Identify the components which were installed previously.

Find out the server-instances, using asadmin command or through the directory listing.
The asadmin command requires administration instances to be running. However,
administration instances need not be running if the directory listing is used to identify the
instances.

In the server.xmlfile, add the following jvm-options under jvm-config element to enable
RMI/IIOP failover feature:
<jvm-config java-home=path...server-classpath=path>
<jvm-option>

Dorg.omg.PortableInterceptor.ORBInitializerClass.

com.sun.appserv.ee.iiop.EEORBInitializer

</jvm-option>

<jvm-option>

Dorg.omg.PortableInterceptor.ORBInitializerClass.

com.sun.appserv.ee.iiop.EEIORInterceptorInitializer

</jvm-option>

<jvm-option>

Dcom.sun.CORBA.connection.ORBSocketFactoryClass=

com.sun.appserv.enterprise.iiop.EEIIOPSocketFactory

</jvm-option>

</jvm-config>

Update the availability-service element with availability-enabled flag set to True:
<availability-service availability-enabled="true">

<persistence-store>

1

2

3

4

Migrating Applications from Application Server 7

Chapter 6 • Migrating from Application Server 6.x/7.x 89

<property-name="store-pool-jndi-name" value="" />

<property-name="cluster-id" value="cluster1" />

</persistence-store>

</availability-service>

Modify the server classpath entry under the java-config element to include:
install_dir/SUNWhads/4.2.2-17/lib/hadbjdbc.jar;

install_dir/lib/appserv-rt-ee.jar

Add the following jvm-option under the java-config element:
<jvm-option>

Dcom.sun.aas.hadbRoot=install-dir/SUNWhadb/4.2.2-17

</jvm-option>

Update the sun-acc.xmlwith the following new load-balancing properties:
<property-name="com.sun.appserv.iiop.loadbalancingpolicy"

value="ic-based" />

<property name="com.sun.appserv.iiop.endpoints" value=<host>:<port>" />

▼ To Migrate Rich Clients From 7 EE to 8.2 EE

Add the following jvm-option elements under the java-config element for enabling the
RMI/IIOP failover feature. (To make the class names of the following jvm-option elements fit on
the page, they have been split in two and carried to the next line. When adding them to your
project, do not split them in two as they are here.)
<jvm-config java-home=path...server-classpath=path>
<jvm-option>

Dorg.omg.PortableInterceptor.ORBInitializerClass.

com.sun.appserv.ee.iiop.EEORBInitializer

</jvm-option>

<jvm-option>

Dorg.omg.PortableInterceptor.ORBInitializerClass.

com.sun.appserv.ee.iiop.EEIORInterceptorInitializer

</jvm-option>

<jvm-option>

Dcom.sun.CORBA.connection.ORBSocketFactoryClass=

com.sun.appserv.enterprise.iiop.EEIIOPSocketFactory

</jvm-option>

</jvm-config>

Add the following entry in server.xml to setup the iiop-cluster.
<iiop-cluster>

<iiop-server-instance name=<server-name>>

5

6

7

1

2

Migrating Applications from Application Server 7

Sun Java System Application Server Enterprise Edition 8.2 Upgrade and Migration Guide •90

<iiop-endpoint id=orb-listener-id,
host=hostname,
port=orb-listener-port/>

</iiop-server-instance>

</iiop-cluster>

Update sun-acc.xmlwith the following new entries:
<property-name=ÂÂ[a8]com.sun.appserv.iiop.loadbalancingpolicy"

value="ic-based" />

<property name="com.sun.appserv.iiop.endpoints"

value="hostname:port" />

Migrating EJB Applications to Support SFSB Failover
Application Server 7 does not support failover of Stateful Session Beans (SFSB). Application
Server Enterprise Edition 8.2 supports failover of stateful session beans on the HTTP and
RMI/IIOP path. This section describes the procedure to migrate EJB applications from
Application Server 7 SE/PE/EE to Application Server 8.2 EE to support SFSB state failover.

Migrating EJB Applications From 7 SE/PE/EE to 8.2 EE
To achieve high availability of EJB applications that use stateful session beans to persist the data,
you need to configure a persistent store for each cluster of application servers, where client
session information can be maintained across potential failures of individual appserver
instances. In addition, the availability-enabled flag must be turned on for each server instance in
the cluster.

Application Server 8.2 EE supports the failover of stateful session beans. In order to enable this
feature in your EJB applications that were deployed to Application Server 8.2 EE, follow the
steps below:

To migrate Entity beans from previous releases of Sun’s Application Server, follow the
procedure described in “Entity Beans” on page 76.

SFSB failover is supported when the SFSB is accessed from EJBs, servlets, or Java Server Pages in
applications executing in the same application server process. The SFSB can be accessed
through either a local or remote interface.

To take advantage of SFSB state failover support, you need not edit the code. However, you
need to provide all the configuration parameters needed for checkpointing the SFSBs in the
Sun-specific deployment descriptor (sun-ejb-jar.xml) or in the server configuration file.

For detailed information on SFSB failover, see “Stateful Session Bean Failover” in Sun Java
System Application Server Enterprise Edition 8.2 High Availability Administration Guide.

3

Migrating Applications from Application Server 7

Chapter 6 • Migrating from Application Server 6.x/7.x 91

92

Index

A
Admin Password, 29, 31, 35
Admin User Name, 29
Admin Username, 35
Administration User Name, 31
Application Verification Kit, 47
asadmin, 20-25

configure-ha-cluster command, 17
Deprecated commands, 20
Deprecated options, 21
get, 24
---passwordfile option, 22
set, 19
start-domain, 19

Error codes, 21
stop-domain

Error codes, 21
Unsupported options, 21

asadmin command for deploying a Web
application, 72

asmigrate, 29, 43
asupgrade, 28, 31, 32, 34

C
certutil, 31
clinstance.conf files, 30, 35, 36, 37
Compatibility issues

between different versions of Application Server, 13
clsetup and cladmin scripts, 17
CORBA Performance Option, 16

Compatibility issues (Continued)
Custom Realms, 15
Deprecated commands, 19
domain.xml Elements, 14
Dotted names, 22
encodeCookies property, 16
File formats, 16
get command, 22
hadbm, 19
HTTP File Caching, 14
Implicit URL Rewriting, 14
Missing Elements, 14
Nulls in attribute values, 25
Primary Key Attribute Values, 17-19
set command, 22
sun-web.xml

delegate attribute, 16
System Properties, 14
URL encoding, 16
Web-server-specific features, 14

Custom Realms, 15

D
Deployment descriptors, 43, 45, 46
Deprecated APIs, 62
Domain Administration Server, 37
Domain Administration Server (DAS), 29
domain.xml, 14, 15, 16, 17-19, 19, 30
Domains Directory, 28, 34
Domains Root, 28, 34

93

Downward source compatibility, 61

E
EAR file, 46
EAR file contents, 45
EAR file definition, 45
EJB 1.1 to EJB 2.0

Defining Entity Bean Relationships, 53
EJB 2.0 Container-Managed Persistence

(CMP), 52-54
EJB Query Language, 51
Message-Driven Beans, 53-54
Migrating CMP Entity EJBs

Custom Finder Methods, 59-60
Migrating the Bean Class, 56-58
Migration of ejb-jar.xml, 58-59

Migrating EJB Client Applications, 54-55
Declaring EJBs in the JNDI Context, 54-55

Migration of ejb-jar.xml, 58-59
EL Expressions, 64
encodeCookies property, 16

F
File formats, 16

G
getLocalAddr, 62
getLocalName, 62
getLocalPort, 62
getRemotePort, 62

H
HTTP File Caching, 14
HttpSessionListener.sessionDestroyed, 62

I
I18N behavior, 63
iBank sample application, 67
Implicit URL Rewriting, 14
In-place upgrade, 37
In-place Upgrade, 31, 32
In—place Upgrade, 30, 31
Incompatibilities, See Compatibility issues
Install Root, 28
Installation Root, 34

J
J2EE

1.2, 44
1.3, 44
Components and standards, 44

J2EE applications
components, 44
Migrating, 43

JAR file, 46
JKS database, 31

K
keytool, 31

M
Master Password, 29, 31, 35
Message-level security providers, 14
Migration

Before you migrate, 47
Invoking the Migration Tool, 48
Post-migration tasks, 48
Pre-migration tasks, 47
Procedure, 48
Sample scenario — from Sun Java System

Application Server 6.x
Deployment descriptors, 68
Enterprise applications, 77
Enterprise EJB modules, 72

Index

Sun Java System Application Server Enterprise Edition 8.2 Upgrade and Migration Guide •94

Migration, Sample scenario — from Sun Java System
Application Server 6.x (Continued)

JDBC code, 82
Proprietary Extensions, 80
Rich clients, 84
Support for HTTP failover, 86
Unified Integration Framework (UIF), 80
Web applications, 69

Sample scenario — from Sun Java System
Application Server 6.x/7.x, 67

Sample scenario — from Sun Java System
Application Server 7.x
Migrating applications and rich clients, 89-91

Migration Tool, 29, 46
Command-line options, 48
Download location, 47
Supported source application servers, 46

N
Node agent, 37
NSS database, 31

O
ORB performance optimization, 16

P
Page encoding, 63
pass-by-reference, 65
---passwordfile option, 22

S
Security Policy, 14
server.xml, 15
Side-by-side Upgrade, 30, 31
Side—by—side upgrade, 37
Side—by—Side Upgrade, 31, 32
Source Server, 28, 34

sun-web.xml, 16
System Properties, 14

T
Tag Library validations, 63
Target Server, 28
Troubleshooting, 38

Port conflict, 40
Type coercion rules, 63

U
Unsupported options, hadbm, 19
Upgrade, 27-41

Before you upgrade, 31
Certificates and Realm files, 30
Clusters, 30, 35
HTTP and IIOP listeners, 39-40
HTTP listeners, 39
Log, 30
Node agent, 37
Rollback, 30
Scenarios

In-place Upgrade, 30
Side-by-side Upgrade, 30

Security certificates, 35
Source application servers, 27
Supported paths, 27
Troubleshooting, 38
Version from which upgrade is supported, 27

Upgrade tool, 27
options, 34
UI mode, 34

Upgrading, 27-41

Index

95

96

	Sun Java System Application Server Enterprise Edition 8.2 Upgrade and Migration Guide
	Preface
	Application Server Documentation Set
	Related Documentation
	Default Paths and File Names
	Typographic Conventions
	Symbol Conventions
	Documentation, Support, and Training
	Searching Sun Product Documentation
	Third-Party Web Site References
	Sun Welcomes Your Comments

	Application Server Compatibility Issues
	HTTP File Caching
	domain.xml Elements
	System Properties
	Implicit URL Rewriting
	Web Server Features
	Realms
	Default Value for the delegate Attribute
	The encodeCookies Property
	CORBA Performance Option
	File Formats
	Cluster Scripts
	Primary Key Attribute Values
	Command Line Interface: hadbm
	Command Line Interface: start-appserv and stop-appserv
	Command Line Interface: asadmin
	asadmin Subcommands
	Error Codes for Start and Stop Subcommands
	Deprecated and Unsupported Options
	Dotted Names
	Tokens in Attribute Values
	Nulls in Attribute Values

	Upgrading an Application Server Installation
	Upgrade Overview
	Upgrade Tool Interfaces
	Upgrade Terminology
	Upgrade Tool Functionality
	Migration of Deployed Applications
	Upgrade of Clusters
	Transfer of Certificates and Realm Files
	Upgrade Log
	Upgrade Rollback

	Upgrade Scenarios
	Before You Upgrade
	Upgrading from the Command Line
	Upgrading Through the Wizard
	To Use the Upgrade Wizard

	Upgrading Clusters
	To Upgrade a Node Agent from Application Server 7.x EE
	To Upgrade a Node Agent from Application Server 8.1 EE

	Correcting Potential PE and EE Upgrade Problems
	Running the --domaindir Option on Older Domains
	To Migrate Additional HTTP Listeners Defined on the Source Server to the Target PE Server
	To Migrate Additional HTTP and IIOP Listeners Defined on the Source Server to the Target EE Server
	Eliminating Port Conflict Problems
	Eliminating Problems Encountered When A Single Domain has Multiple Certificate Database Passwords
	Resolving Load balancer Plug-in Problems During Side-by-Side Upgrade
	Resolving Problems with Shared Components During Side-by-Side Upgrade

	Binary and Remote Upgrades

	Migrating J2EE Applications
	Understanding Migration
	J2EE Components and Standards
	J2EE Application Components
	Why is Migration Necessary?
	What Needs to be Migrated
	Deployment descriptors (XML files)
	JSP source files
	Java source files

	Migration Tool and Other Resources

	Before Migrating the Application
	Migrating the Application by Using the Migration Tool
	Deploying Migrated Applications

	Migrating from EJB 1.1 to EJB 2.0
	EJB Query Language
	Local Interfaces
	EJB 2.0 Container-Managed Persistence (CMP)
	Defining Persistent Fields
	Defining Entity Bean Relationships
	Message-Driven Beans

	Migrating EJB Client Applications
	Declaring EJBs in the JNDI Context
	Recap on Using EJB JNDI References
	Placing EJB References in the JNDI Context
	Global JNDI context versus local JNDI context

	Migrating CMP Entity EJBs
	To Verify if a Bean Can be Migrated
	Migrating the Bean Class
	To Migrate the Bean Class

	Migration of ejb-jar.xml
	To Migrate the EJB Deployment Descriptor

	Custom Finder Methods

	J2EE 1.4 Compatibility Issues
	Binary Compatibility
	Source Compatibility
	Incompatibilities with the J2EE 1.4 Platform (since the J2EE 1.3 release)
	JAXP and SAX Incompatibilities
	The pass-by-reference Element

	Migrating from Application Server 6.x/7.x
	Migrating from Application Server 6.x
	Migrating Deployment Descriptors
	Migrating Web Applications
	Migrating Java Server Pages and JSP Custom Tag Libraries
	Migrating Servlets
	Migrating Web Application Modules

	Migrating Enterprise EJB Modules
	EJB Migration
	DTD Changes
	Migrating EJB Applications that Support SFSB Failover
	Entity Beans
	Message Driven Beans

	Migrating Enterprise Applications
	To Build an EAR File
	Application Root Context and Access URL
	Applications With Form-based Authentication

	Migrating Proprietary Extensions
	Migrating UIF
	Checking in the Registry Files
	Checking for UIF Binaries in Installation Directories

	Migrating JDBC Code
	Establishing Connections Through the DriverManager Interface
	To Connect to a Data Source

	Migrating Rich Clients
	Authenticating a Client
	Using ACC

	Migrating Applications to Support HTTP Failover
	To Migrate and Enable Loadbalancing

	Migrating Applications from Application Server 7
	Migrating Rich Clients
	To Migrate Rich Clients from 7 PE/SE to 8.2 EE
	To Migrate Rich Clients From 7 EE to 8.2 EE

	Migrating EJB Applications to Support SFSB Failover
	Migrating EJB Applications From 7 SE/PE/EE to 8.2 EE

	Index

