
Sun™ Identity Manager 8.0
Deployment Tools

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 820-2962-10

Copyright © 2008 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.
Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In
particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at
http://www.sun.com/patents and one or more additional patents or pending patent applications in the U.S. and in other countries.
THIS PRODUCT CONTAINS CONFIDENTIAL INFORMATION AND TRADE SECRETS OF SUN MICROSYSTEMS, INC. USE, DISCLOSURE
OR REPRODUCTION IS PROHIBITED WITHOUT THE PRIOR EXPRESS WRITTEN PERMISSION OF SUN MICROSYSTEMS, INC.
U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.
Use is subject to license terms.
This distribution may include materials developed by third parties.
Sun, Sun Microsystems, the Sun logo, Java, Solaris, Sun Java System Identity Manager, Sun Java System Identity Manager Service Provider
Edition services, Sun Java System Identity Manager Service Provider Edition software and Sun Identity Manager are trademarks or registered
trademarks of Sun Microsystems, Inc. in the U.S. and other countries.
All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other
countries. Products bearing SPARC trademarks are based upon architecture developed by Sun Microsystems, Inc.
UNIX is a registered trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.
This product is covered and controlled by U.S. Export Control laws and may be subject to the export or import laws in other countries. Nuclear,
missile, chemical biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export or
reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied
persons and specially designated nationals lists is strictly prohibited.

iii

Contents

List of Figures . vii

List of Tables . xi

Preface . xv

Who Should Use This Book . xv
How This Book Is Organized . xvi
Conventions Used in This Book . xvii

Typographic Conventions . xvii
Symbols . xvii
Shell Prompts . xviii

Related Documentation and Help . xix
Accessing Sun Resources Online . xx
Contacting Sun Technical Support . xx
Related Third-Party Web Site References . xx
Sun Welcomes Your Comments . xxi

Chapter 1 Working with Rules . 1
Before You Begin . 2

Intended Audience . 2
Related Documentation and Web Sites . 2

Understanding Rules and Rule Libraries . 4
What is a Rule? . 4
Why Use Rules? . 6
What is a Rule Library? . 10

Developing New Rules and Rule Libraries . 12
Understanding Rule Syntax . 13
Writing Rules in JavaScript . 19

iv Identity Manager 8.0 • Deployment Tools

Referencing Rules . 19
Basic Rule Call Syntax . 20
Invoking Rules in a Library . 21
Resolving Rule Arguments . 21

Securing Rules . 28
Put Rules in an Appropriate Organization . 28
Use Authorization Types to Secure Rules . 28
Control Access to Rules that Reference More Secure Rules . 29

Customizing Default Rules and Rule Libraries . 29
Identity Manager Rules . 30
Auditor Rules . 79
Audit Policy Rules . 97
Service Provider Rules . 98

Chapter 2 Developing Custom Adapters . 101
Before You Begin . 102

Intended Audience . 102
Important Notes . 102
Related Documentation . 103

What is a Resource Adapter? . 103
What Are Standard Resource Adapters? . 104
What Are Active Sync-Enabled Resource Adapters? . 105
What is a Resource Object? . 110
What is a Resource Adapter Class? . 111

Preparing for Adapter Development . 111
Become Familiar with Adapter Source Code . 111
Profile the Resource . 128
Decide Which Classes and Methods to Include . 132
Review the REF Kit . 132
Set Up the Build Environment . 134

Writing Custom Adapters . 135
Process Overview . 136
Rename the Skeleton File . 137
Edit the Source File . 138
Map the Attributes . 139
Specify the Identity Template . 141
Write the Adapter Methods . 141
Configure the Adapter to Support Pass-Through Authentication . 154
Define the Resource Object Components . 156

Installing Custom Adapters . 164

Contents v

Testing Custom Adapters . 165
Unit Testing Your Adapter . 165
Compatibility Testing Your Adapter . 166
Testing the Resource Object . 185

Troubleshooting Custom Adapters . 187
Maintaining Custom Adapters . 188

Chapter 3 Working with Firewalls or Proxy Servers . 189
Servlet APIs . 189

Chapter 4 Using SPML 1.0 with Identity Manager Web Services . 191
Before You Begin . 192

Intended Audience . 192
Important Notes . 192
Related Documentation and Web Sites . 193

Configuring SPML . 193
Installing and Modifying Repository Objects . 194
Editing the Waveset.properties File . 195
Editing Configuration Objects . 198

Starting the SPML Browser . 208
Connecting to the Identity Manager Server . 208
Testing and Troubleshooting Your SPML Configuration . 209
Developing SPML Applications . 209

ExtendedRequest Examples . 211
Example Form . 216
Using Trace with SPML . 217

Example Methods for Implementing SPML . 217
Add Request . 217
Modify Request . 218
Search Request . 219

Chapter 5 Using SPML 2.0 with Identity Manager Web Services . 221
Before You Begin . 222

Intended Audience . 222
Important Notes . 222
Related Documentation and Web Sites . 223

Overview . 223
How SPML 2.0 Compares to SPML 1.0 . 223
How SPML 2.0 Concepts Are Mapped to Identity Manager . 225
Supported SPML 2.0 Capabilities . 227

vi Identity Manager 8.0 • Deployment Tools

Configuring Identity Manager to Use SPML 2.0 . 237
Deciding Which Attributes to Manage . 237
Configuring the SPML2 Configuration Object . 238
Configuring web.xml . 239
Configuring SPML Tracing . 241

Extending the System . 241
Sample SPML 2.0 Adapter . 242

Appendix A Using the Business Process Editor . 243
Overview . 243
Starting and Configuring the BPE . 244

Starting the BPE . 244
Specifying a Workspace . 245
Enabling JDIC . 249
Using SSL in the BPE . 251

Navigating the Business Process Editor . 251
Working with the BPE Interface . 252
Loading Processes or Objects . 254
Setting Editor Options . 256
Validating Workflow Revisions . 257
Saving Changes . 258
Inserting XPRESS . 259
Using Keyboard Shortcuts . 260

Accessing JavaDocs . 261
Inserting a Method Reference . 262

Working with Generic and Configuration Objects . 262
Common Persistent Object Classes . 263
Viewing and Editing Objects . 263
Creating a New Object . 266
Validating a New Configuration Object . 267

Creating and Editing Rules . 268
Using the BPE Interface . 268
Creating a New Rule . 281
Editing a Rule . 289
Rule Libraries . 291

Customizing a Workflow Process . 293
Step 1: Create a Custom Email Template . 294
Step 2: Customize the Workflow Process . 296

Debugging Workflows, Forms, and Rules . 300
Recommendations for Use . 301
Using the Debugger Main Window . 302
Stepping through an Executing Process . 308
Getting Started . 310

Contents vii

Debugging Workflows . 316
Debugging Forms . 334

Index . 337

viii Identity Manager 8.0 • Deployment Tools

vii

List of Figures

Figure 4-1 Example OpenSPML Browser . 208

Figure 5-1 OpenSPML 2.0 Toolkit Architecture . 241

Figure A-1 BPE Workspace Location Dialog . 245

Figure A-2 BPE Connection Information Dialog . 247

Figure A-3 Editor Options Dialog . 250

Figure A-4 BPE Tree View . 252

Figure A-5 Diagram View (Workflow) . 253

Figure A-6 Property View (Form) . 254

Figure A-7 Editor Options Dialog . 256

Figure A-8 Menu for Inserting XPRESS Functions into XML . 259

Figure A-9 Inserting XPRESS Function . 260

Figure A-10 Opening a Javadoc . 261

Figure A-11 Selecting the getUser Method . 262

Figure A-12 BPE Tree Display of the Configuration Object . 264

Figure A-13 User Extended Attributes Object Dialog . 264

Figure A-14 BPE XML Display of Reconcile Configuration Object . 265

Figure A-15 BPE Attribute Display of Generic Object (System Configuration) 265

Figure A-16 BPE New Generic Object Display . 266

Figure A-17 BPE New Configuration Object Display . 266

Figure A-18 New Attribute of BPE Generic Object Display . 267

Figure A-19 Rule Display in Tree View . 269

Figure A-20 Rule Source Pane . 270

Figure A-21 Input Tab Pane . 271

Figure A-22 Result Tab Pane . 272

Figure A-23 Trace Tab Pane . 272

Figure A-24 Rule Dialog (Main Tab View) . 273

Figure A-25 Rule Argument Dialog . 274

viii Identity Manager 8.0 • Deployment Tools

Figure A-26 XML Display . 274

Figure A-27 Graphical Display . 275

Figure A-28 Property Sheet Display . 275

Figure A-29 Configuration Display . 276

Figure A-30 Select Rule Dialog . 277

Figure A-31 Main Tab Display . 278

Figure A-32 Repository Tab Display . 279

Figure A-33 XML Tab Display . 280

Figure A-34 New Rule Dialog . 281

Figure A-35 Argument Dialog . 282

Figure A-36 Double-Click an Argument Node . 283

Figure A-37 Argument Popup Dialog (Method) . 283

Figure A-38 Select Type Dialog . 284

Figure A-39 Element Popup for the address Variable . 285

Figure A-40 concat Dialog . 286

Figure A-41 new Dialog . 287

Figure A-42 ref Dialog . 288

Figure A-43 Rule Library (XML View) . 293

Figure A-44 Selecting an Email Template . 294

Figure A-45 Renaming the New Template . 295

Figure A-46 Customizing the User Creation Notification Email Template 295

Figure A-47 Loading the Workflow Process . 296

Figure A-48 Creating and Naming an Activity . 297

Figure A-49 Creating and Modifying Transitions . 298

Figure A-50 Creating an Action . 299

Figure A-51 Creating an Action . 299

Figure A-52 BPE Debugger: Main Window . 303

Figure A-53 BPE Debugger Main Window Source Panel . 304

Figure A-54 BPE Debugger Main Window Execution Stack Panel . 304

Figure A-55 BPE Main Window Variables Panel . 305

Figure A-56 BPE Debugger Main Window Last result Panel . 305

Figure A-57 BPE Debugger Breakpoints Panel: Global Tab . 307

Figure A-58 BPE Debugger Breakpoints Panel: View Cycle Tab . 307

Figure A-59 BPE Debugger Breakpoints Panel: Form Cycle Tab . 308

Figure A-60 Example 1: Debugging Suspended on Before Refresh View Breakpoint 312

Figure A-61 Example 1: Debugging Suspended on After Refresh View Breakpoint 313

Figure A-62 Example 1: Debugging Suspended Before First Expansion Pass 313

List of Figures ix

Figure A-63 Example 1: Stepping-into the Start of Tabbed User Form . 314

Figure A-64 Example 1: Completed Debugging of Tabbed User Form . 315

Figure A-65 Setting the First Breakpoint . 317

Figure A-66 Debugging Halted at Breakpoint . 318

Figure A-67 Stepping-into the Execution of the First Virtual Thread . 320

Figure A-68 Example 2: Stepping-into the Execution of getFirstName . 321

Figure A-69 Debugger Transitioning from getFirstName to computeFullName 323

Figure A-70 Stepping Into computeFullName Processing . 323

Figure A-71 Example 2: Completion of Check-in View Operation . 325

Figure A-72 Stepping Into a Manual Action . 326

Figure A-73 Stepping Into Manual Action Dialog . 326

Figure A-74 Breakpoint Marking Start of Form . 327

Figure A-75 Debugger Displaying Manual Action Processing . 328

Figure A-76 Form Processing Confirmation Phase . 330

Figure A-77 Stepping Into Rule Processing . 331

Figure A-78 Debugger Displaying Completed Execution of variable.fullName 332

Figure A-79 Debugger Displaying the Result of Expansion Processing . 332

x Identity Manager 8.0 • Deployment Tools

xi

List of Tables

Table 1 Typographic Conventions . xvii

Table 2 Symbol Conventions . xvii

Table 3 Shell Prompts . xviii

Table 1-1 Useful Web Sites . 3

Table 1-2 Example AccessEnforcerLibrary Rules . 32

Table 1-3 Example ADRules Rules . 35

Table 1-4 Example Alphanumeric Rules . 36

Table 1-5 Example DateLibrary Rules . 42

Table 1-6 Example EndUserRuleLibrary Rules . 45

Table 1-7 Example EndUserRuleLibrary Rules for Anonymous Enrollment 46

Table 1-8 Example NamingRules . 57

Table 1-9 Example OS400UserFormRules . 60

Table 1-10 Example RACFUserFormRules . 61

Table 1-11 Example Regional Constants Rules . 63

Table 1-12 Example ResourceFormRules . 66

Table 1-13 Example SAP Portal User Form Default Values Rules . 71

Table 1-14 Example TopSecretUserFormRules . 73

Table 1-15 Auditor Rule Types Quick Reference . 79

Table 1-16 Example Service Provider Confirmation Rules . 98

Table 1-17 Example Service Provider Correlation Rules . 99

Table 1-18 Example Service Provider Account Locking Rules . 100

Table 2-1 Related Documentation . 103

Table 2-2 Active Sync-Enabled Adapter Rules and Parameters . 108

Table 2-3 Information Defined by Resource Objects . 110

Table 2-4 prototypeXML Information Types . 112

Table 2-5 <ResourceAttribute> Element Keywords . 115

Table 2-6 Resource Attributes in Skeleton Adapter Files . 116

xii Identity Manager 8.0 • Deployment Tools

Table 2-7 Active Sync-Specific Attributes Defined in ACTIVE_SYNC_STD_RES_ATTRS_XML 117

Table 2-8 Active Sync-Specific Attributes Defined in ACTIVE_SYNC_EVENT_RES_ATTRS_XML . . 118

Table 2-9 accountID Examples . 121

Table 2-10 Hierarchical Namespace Examples . 122

Table 2-11 Resource Methods Categories . 123

Table 2-12 <AuthnProperty> Element Attributes . 125

Table 2-13 REF Kit Components . 132

Table 2-14 <AttributeDefinitionRef> Element Fields . 140

Table 2-15 Methods Used to Create a Resource Instance . 142

Table 2-16 Methods Used to Check Communication . 143

Table 2-17 General Features . 144

Table 2-18 Account Features . 144

Table 2-19 Group Features . 146

Table 2-20 Organizational Unit Features . 146

Table 2-21 Creating Accounts on the Resource . 147

Table 2-22 Deleting Accounts on the Resource . 147

Table 2-23 Updating Accounts on the Resource . 147

Table 2-24 Getting User Information . 147

Table 2-25 List Methods . 148

Table 2-26 Enable and Disable Methods . 149

Table 2-27 Sample Polling Scenarios . 153

Table 2-28 Supported <ObjectType> Element Attributes . 159

Table 2-29 Object Feature Mappings . 160

Table 2-30 Required Attributes for <ObjectAttributes> . 161

Table 2-31 <ObjectAttribute> Attributes . 162

Table 2-32 Top-Level Namespace Attributes . 163

Table 2-33 List Resource Performance Characteristics . 186

Table 2-34 Find Resources Performance Characteristics . 187

Table 4-1 Repository Objects Used to Configure SPML . 194

Table 4-2 Optional Entries in Waveset.properties . 195

Table 4-3 Classes Provided by OpenSPML Toolkit . 210

Table 4-4 ExtendedRequest Classes for Sending and Receiving Messages 211

Table 5-1 SPML Capabilities . 224

Table 5-2 Core Capabilities . 228

Table 5-3 Async Capabilities . 233

Table 5-4 Batch Capability . 234

Table 5-5 Bulk Capabilities . 234

List of Tables xiii

Table 5-6 Password Capabilities . 234

Table 5-7 Suspend Capabilities . 236

Table A-1 BPE Keyboard Shortcuts . 260

Table A-2 Fields on the Repository Tab . 279

Table A-3 Valid Argument Types . 284

Table A-4 Element Types Representing XPRESS Function Categories . 285

Table A-5 Object Access Options . 287

Table A-6 Trace Options . 289

Table A-7 Example Debugging Process . 309

Table A-8 Virtual Thread States . 316

xiv Identity Manager 8.0 • Deployment Tools

xv

Preface

This Sun Java™ System Identity Manager Deployment Tools publication provides
reference and procedural information to help you use different Identity Manager
deployment tools. This information is organized as follows:

• Who Should Use This Book

• How This Book Is Organized

• Conventions Used in This Book

• Related Documentation and Help

• Accessing Sun Resources Online

• Contacting Sun Technical Support

• Related Third-Party Web Site References

• Sun Welcomes Your Comments

Who Should Use This Book
Sun Java™ System Identity Manager Deployment Tools was designed for deployers
and administrators who will create and update workflows, views, rules, system
configurations and other configuration files necessary to customize Identity
Manager for a customer installation during different phases of product
deployment.

Deployers should have a background in programming and should be comfortable
with XML, Java, Emacs and/or IDEs such as Eclipse or NetBeans.

Administrators do not need a programming background, but should be highly
skilled in one or more resource domains such as LDAP, Active Directory, or SQL.

How This Book Is Organized

xvi Identity Manager 8.0 • Deployment Tools

How This Book Is Organized
Identity Manager Deployment Tools is organized into these chapters:

• Chapter 1, “Working with Rules” — Describes functions that typically consist
of XML, or alternatively JavaScript, in an XPRESS wrapper. Rules provide a
mechanism for storing frequently used XPRESS logic or static variables for
easy reuse within forms, workflows, and roles.

• Chapter 2, “Developing Custom Adapters” — Describes how to create custom
Identity Manager resource adapters that are tailored to your company or
customers.

• Chapter 3, “Working with Firewalls or Proxy Servers” — Describes how
Identity Manager uses Uniform Resource Locators (URLs) and how to obtain
accurate URL data when firewalls or proxy servers are in place

• Chapter 4, “Using SPML 1.0 with Identity Manager Web Services” — Provides
details about using the SOAP-based Web service interface provided by the
Identity Manager server. Describes the SPML 1.0 classes used to format request
messages and parse response messages.

• Chapter 5, “Using SPML 2.0 with Identity Manager Web Services” — Provides
details about using the SOAP-based Web service interface provided by the
Identity Manager server. Describes the SPML 2.0 classes used to format request
messages and parse response messages.

• Appendix A, “Using the Business Process Editor” — Describes the Identity
Manager Business Process Editor (BPE), and provides instructions for using
this application.

NOTE • The “Using the Identity Manager IDE” chapter (provided in previous releases)
has been removed from this book. Instructions for installing and configuring the
Identity Manager Integrated Development Environment (Identity Manager IDE)
are now provided on https://identitymanageride.dev.java.net.

For your convenience, instructions for using Identity Manager’s Profiler and the
Identity Manager FAQ are provided in the “Identity Manager Deployment
Tools” section of the “Documentation Additions and Corrections” chapter of the
Sun Java™ System Identity Manager 8.0 Release Notes.

• The Business Process Editor (BPE) is deprecated, and will be removed in the next
Identity Manager release. Please use the Identity Manager IDE instead.

Conventions Used in This Book

Preface xvii

Conventions Used in This Book
The tables in this section describe the conventions used in this book including:

• Typographic Conventions

• Symbols

• Shell Prompts

Typographic Conventions
The following table describes the typographic conventions used in this book.

Symbols
The following table describes the symbol conventions used in this book.

Table 1 Typographic Conventions

Typeface Meaning Examples

AaBbCc123
(Monospace)

API and language elements, HTML tags,
Web site URLs, command names, file
names, directory path names, on-screen
computer output, sample code.

Edit your.login file.

Use ls -a to list all files.

% You have mail.

AaBbCc123
(Monospace bold)

What you type, when contrasted with
onscreen computer output.

% su
Password:

AaBbCc123
(Italic)

Book titles, new terms, words to be
emphasized.

A placeholder in a command or path name
to be replaced with a real name or value.

Read Chapter 6 in the User’s Guide.

These are called class options.

Do not save the file.

The file is located in the install-dir/bin directory.

Table 2 Symbol Conventions

Symbol Description Example Meaning

[] Contains optional command
options.

ls [-l] The -l option is not
required.

- Joins simultaneous multiple
keystrokes.

Control-A Press the Control key while
you press the A key.

Conventions Used in This Book

xviii Identity Manager 8.0 • Deployment Tools

Shell Prompts
The following table describes the shell prompts used in this book.

+ Joins consecutive multiple
keystrokes.

Ctrl+A+N Press the Control key,
release it, and then press
the subsequent keys.

> Indicates menu item
selection in a graphical user
interface.

File > New > Templates From the File menu, choose
New. From the New
submenu, choose
Templates.

Table 3 Shell Prompts

Shell Prompt

C shell on UNIX or Linux machine-name%

C shell superuser on UNIX or Linux machine-name#

Bourne shell and Korn shell on UNIX or Linux $

Bourne shell and Korn shell superuser on UNIX or Linux #

Windows command line C:\

Table 2 Symbol Conventions(Continued)

Symbol Description Example Meaning

Related Documentation and Help

Preface xix

Related Documentation and Help
Sun Microsystems provides additional documentation and information to help you
install, use, and configure Identity Manager:

• Identity Manager Installation: Step-by-step instructions and reference
information to help you install and configure Identity Manager and associated
software.

• Identity Manager Upgrade: Step-by-step instructions and reference information
to help you upgrade and configure Identity Manager and associated software.

• Identity Manager Administration: Procedures, tutorials, and examples that
describe how to use Identity Manager to provide secure user access to your
enterprise information systems.

• Identity Manager Technical Deployment Overview: Conceptual overview of the
Identity Manager product (including object architectures) with an introduction
to basic product components.

• Identity Manager Workflows, Forms, and Views: Reference and procedural
information that describes how to use the Identity Manager workflows, forms,
and views — including information about the tools you need to customize
these objects.

• Identity Manager Resources Reference: Reference and procedural information that
describes how to load and synchronize account information from a resource
into Sun Java™ System Identity Manager.

• Identity Manager Tuning, Troubleshooting, and Error Messages: Reference and
procedural information that provides guidance for tuning Sun Java™ System
Identity Manager, provide instructions for tracing and troubleshooting
problems, and describe the error messages and exceptions you might
encounter as you work with the product.

• Identity Manager Service Provider Deployment: Reference and procedural
information that describes how to plan and implement Sun Java™ System
Identity Manager Service Provider.

• Identity Manager Help: Online guidance and information that offer complete
procedural, reference, and terminology information about Identity Manager.
You can access help by clicking the Help link from the Identity Manager menu
bar. Guidance (field-specific information) is available on key fields.

Accessing Sun Resources Online

xx Identity Manager 8.0 • Deployment Tools

Accessing Sun Resources Online
For product downloads, professional services, patches and support, and additional
developer information, go to the following:

• Download Center
http://wwws.sun.com/software/download/

• Professional Services
http://www.sun.com/service/sunps/sunone/index.html

• Sun Enterprise Services, Solaris Patches, and Support
http://sunsolve.sun.com/

• Developer Information
http://developers.sun.com/prodtech/index.html

Contacting Sun Technical Support
If you have technical questions about this product that are not answered in the
product documentation, contact customer support using one of the following
mechanisms:

• The online support Web site at http://www.sun.com/service/online/us

• The telephone dispatch number associated with your maintenance contract

Related Third-Party Web Site References
Sun is not responsible for the availability of third-party Web sites mentioned in this
document. Sun does not endorse and is not responsible or liable for any content,
advertising, products, or other materials that are available on or through such sites
or resources. Sun will not be responsible or liable for any actual or alleged damage
or loss caused or alleged to be caused by or in connection with use of or reliance on
any such content, goods, or services that are available on or through such sites or
resources.

Sun Welcomes Your Comments

Preface xxi

Sun Welcomes Your Comments
Sun is interested in improving its documentation and welcomes your comments
and suggestions.

To share your comments, go to http://docs.sun.com and click Send Comments. In
the online form, provide the document title and part number. The part number is a
seven-digit or nine-digit number that can be found on the title page of the book or
at the top of the document.

For example, the title of this book is Sun Java™ System Identity Manager Deployment
Tools, and the part number is 820-2955-10.

Sun Welcomes Your Comments

xxii Identity Manager 8.0 • Deployment Tools

1

Chapter 1

Working with Rules

Identity Manager rules and rule libraries are repository objects that are used to
encapsulate frequently used programming logic and static variables for reuse in
many locations throughout your deployment. Rules and rule libraries enable you
to manage data more efficiently.

This chapter explains how to work with Identity Manager rules and rule libraries
and describes how to customize the default rules and rule libraries supplied with
Identity Manager. This information is organized into the following sections:

• Before You Begin

• Understanding Rules and Rule Libraries

• Developing New Rules and Rule Libraries

• Referencing Rules

• Securing Rules

• Customizing Default Rules and Rule Libraries

NOTE You can use the Identity Manager Integrated Development
Environment (Identity Manager IDE) to create, edit, and test rules
for your deployment.

Instructions for installing and configuring the Identity Manager
IDE are provided on https://identitymanageride.dev.java.net.

Before You Begin

2 Identity Manager 8.0 • Deployment Tools

Before You Begin
Review the information in these sections before working with Identity Manager
rules and rule libraries:

• Intended Audience

• Related Documentation and Web Sites

Intended Audience
This chapter is intended for individuals who create, edit, and test rules for an
Identity Manager deployment. Before working with Identity Manager rules and
rule libraries, you must

• Have basic programming knowledge

• Understand the XPRESS and XML Object languages

For detailed information about using XPRESS, see Sun™ Identity Manager
Workflows, Forms, and Views.

• Understand some Java and Javascript

Related Documentation and Web Sites
In addition to the information provided in this chapter, consult the publications
and web sites listed in this section for information related to working with Identity
Manager rules and rule libraries.

Recommended Reading
See the following chapters in Sun™ Identity Manager Workflows, Forms, and Views
for information related to Identity Manager rules.

• Chapter 4, “XPRESS Language” describes the XPRESS language.

• Chapter 5, “XML Object Language” describes XML Object syntax.

Before You Begin

Chapter 1 Working with Rules 3

Useful Web Sites
The following table describes some web sites you might find useful when trying to
work with Identity Manager rules and rule libraries.

Table 1-1 Useful Web Sites

Web Site URL Description

 https://identitymanageride.dev.java.net Open source Identity Manager Integrated Development
Environment (Identity Manager IDE) project. Includes
instructions for installing and configuring Identity Manager IDE.

http://sunsolve.sun.com/ Sun web site containing diagnostic tools, forums, features and
articles, security information, and patch contents.

Note: The information on this site is partitioned into three
areas,

• Internal: Sun employees only

• Contract: Available only to customers with contract access

• Public: Available to everyone

http://forum.java.sun.com/ Sun Developer Network (SDN) web site where you can browse
forums and post questions.

https://sharespace.sun.com/gm/folder-1.11.60181? Identity Manager link on Sun’s Share Space.

Note: You must sign up for a Share Space ID to access
information provided on this site.

http://sharespace.sun.com/gm/document-1.26.2296 Identity Manager FAQ on Sun’s Share Space.

Note: You must sign up for a Share Space ID to access
this FAQ.

Understanding Rules and Rule Libraries

4 Identity Manager 8.0 • Deployment Tools

Understanding Rules and Rule Libraries
This section provides the following information:

• What is a Rule?

• Why Use Rules?

• What is a Rule Library?

What is a Rule?
A rule is an object in the Identity Manager repository that contains a function
written in the XPRESS, XML Object, or JavaScript languages. Within Identity
Manager, rules provide a mechanism for storing and executing frequently used
programming logic or static variables for reuse. Rules are semantically similar to a
programming subroutine or function. A rule can take input parameters, execute
some logic, and return a value to a caller.

You can pass arguments to a rule to control its behavior, and a rule can reference
and modify variables maintained by a form or workflow.

Rules are primarily referenced within forms and workflows, but you can also
reference rules in other user-data related areas, such as

• Roles: Use a role-assignment rule to dynamically assign owners and approvers
to a role.

• Active Sync: Use Process or Correction rules to control what happens when an
Active Sync-enabled adapter detects changes to a resource account.

• Reconciliation: Use special rule subtypes (such as confirmation and
correlation rules) during reconciliation. These subtypes are described later in
this chapter.

NOTE Because the XPRESS and XML Object languages are both written in
XML, the XPRESS and XML Object code examples used in this
chapter are similar.

For information about writing rules in JavaScript, see “Writing
Rules in JavaScript” on page 19.

Understanding Rules and Rule Libraries

Chapter 1 Working with Rules 5

The following example shows how to use the <Rule> element to define a basic rule
expression, in which the rule definition name is getApprover, the rule argument
name is department, the argument’s default value is Tampa, and the rule body
returns the Sales Manager or HR Manager string values.

Code Example 1-1 Example XML Rule

<Rule name='getApprover'>
<Comments> This rule determines the appropriate approver for a particular department.</Comment>
<RuleArgument name=’department’/>
<RuleArgument name=’location’ value=’Tampa’/>
<cond>
<eq><ref>department</ref><String>sales</String></eq>
<cond>

<eq><ref>location</ref><String>Tampa</String></eq>
<String>Tampa Sales Manager</String>
<String>Sales Manager</String>

</cond>
<String>HR Manager</String>

</cond>
<MemberObjectGroups>
ObjectRef type=’ObjectGroup’ name=ExampleChoc’/>

</MemberObjectGroups>
</Rule>

NOTE When defining a rule, use the <Rule> element with an uppercase R as
in <Rule name='rulename'>. When calling a rule, use the XPRESS
<rule> element with lowercase r, as in <rule name='rulename'>.

Understanding Rules and Rule Libraries

6 Identity Manager 8.0 • Deployment Tools

Why Use Rules?
You can call a rule wherever XPRESS is allowed — most notably in forms, Java
code, and workflows. Rules allow you to encapsulate data, such as a fragment of
logic or a static value, that can then be reused in many locations.

The benefits of organizing XPRESS logic or static values for reuse include:

• Easy maintenance. You can modify a rule by changing a single object instead
of changing each form or workflow that references the rule. You can also more
effectively manage

❍ Frequently used and shared expressions

❍ Frequently changing lists and business logic

• Distributed development. Users can develop rules that focus on rule
requirements without having to be aware of all forms, Java code, roles, or
workflows that reference that rule.

• Hiding complexity. More advanced developers can write rules with more
complex logic while other users see only the interface without the underlying
complexity.

You can secure rules to protect sensitive data, such as user credentials or personal
information from being accessed by unauthorized administrators. For more
information, see “Securing Rules” on page 28.

Using Rules in Forms
You typically call a rule in forms to calculate the value of a field or to control field
visibility within a <Disable> expression. Within forms, rules could be the most
efficient mechanism for storing and reusing:

• A list of corporate departments

• Default values

• A list of office buildings

When calling rules from forms, it is particularly important that you properly secure
those rules. Imagine a rule used in a critical form, but the implementation of the
rule could be modified by anyIdentity Manager user! For information about
securing rules, see “Securing Rules” on page 28.

Understanding Rules and Rule Libraries

Chapter 1 Working with Rules 7

The following example rule returns a list of job titles.

Rules such as this are often used in Identity Manager forms to calculate lists of
names for selection. To add or change a new job title, you only have to modify this
rule instead of modifying each form that references the rule.

In the next example, the global.jobTitle field calls the Job Titles rule defined in
Code Example 1-2 to use the job titles list in a select box:

Code Example 1-2 Returning a Job Titles List

<Rule name='Job Titles'>
<List>

<String>Sales</String>
<String>Accounting Manager</String>
<String>Customer Service Representative</String>

</List>
</Rule>

NOTE This example uses a lowercase r in the rule element because you
are calling a rule, not defining a rule.

Code Example 1-3 Using a Job Titles List in a Select Box

<Field name='global.jobTitle'>
<Display class='Select'>

<Property name='title' value='Job Title'/>
<Property name='allowedValues'>

<rule name='Job Titles'/>
</Property>

</Display>
</Field>

Understanding Rules and Rule Libraries

8 Identity Manager 8.0 • Deployment Tools

Identity Manager forms also support rules that dynamically calculate the name of
another rule to call. The following example shows how a form field calls a rule that
calculates a department code:

Using Rules in Roles
In Identity Manager, a role is an object that allows you to efficiently group and
assign resources to users. Roles have designated owners and approvers, where:

• Only role owners can authorize changes to the parameters that define the role.

• Only role approvers can authorize the assignment of end-users to the role.

You can directly assign role owners and approvers to a role or use a
role-assignment rule to dynamically assign them to a role.

You can use a rule to set the value of any resource attribute in a role definition.
When Identity Manager evaluates the rule, it can reference any attribute of the
user view.

Code Example 1-4 Calling a Rule that Calculates a Department Code

<Field name='DepartmentCode'>
<Display class='Text'>
<Property name='title' value='DepartmentCode'/>

</Display>
<Expansion>

<rule>
<cond>
<eq>

<ref>var1</ref>
<s>Admin</s>

</eq>
<s>AdminRule</s>
<s>DefaultRule</s>

</cond>
</rule>

</Expansion>
</Field>

NOTE For more information about roles, see Sun™ Identity Manager
Administration.

Understanding Rules and Rule Libraries

Chapter 1 Working with Rules 9

The following example shows how to use a rule to set an attribute value for a
particular resource. When you create a user and associate this rule with that user’s
role, the rule automatically sets the description value.

Using Rules in Workflows
In general terms, an Identity Manager workflow is a logical, repeatable process
during which documents, information, or tasks are passed from one participant to
another for action, according to a defined set of procedural rules. A participant is a
person, machine, or both.

In workflow, you can use a rule anywhere you can use an expression. You can use
rules in a workflow to:

• Calculate an approver

• Calculate the name of another rule

• Add a condition to a transition

• Implement an action

• Calculate an approval escalation timeout

For example, you can use a manual action to send an approval request to an
administrator, specify a timeout value for this action. If the administrator does not
respond within the specified time, you can terminate the action, and escalate the
workflow approval to a different administrator.

Code Example 1-5 Setting the Value for a User’s Resource Description

<Rule name='account description'>
 <concat>
 <string>Account for </string>
 <ref>global.firstname</ref>
 <string>.</string>
 <ref>global.lastname</ref>

 </concat>
</Rule>

Understanding Rules and Rule Libraries

10 Identity Manager 8.0 • Deployment Tools

Workflow activities can also contain subprocesses containing a rule that
dynamically calculates a subprocess name. For example.

What is a Rule Library?
A rule library is an XML configuration object that is stored in the Identity Manager
repository. The configuration object contains a library object, which in turn contains
one or more rule objects.

Creating rule libraries is a convenient way to organize closely related rules into a
single object. Add rules to a rule library when you want to provide a grouping of
related functionality. Using libraries simplifies rule maintenance by reducing the
number of objects in the Repository. Using libraries also makes it easier to identify
and call useful rules when you are designing forms and workflows.

Code Example 1-6 Calculating a Rule Name Dynamically

<Activity id='0' name='activity1'>
<Variable name='ValueSetByRule'>
<rule>
<cond>

<eq><ref>var2</ref><s>specialCase</s></eq>
<s>Rule2</s>
<s>Rule1</s>

</cond>
<argument name='arg1'>

<ref>variable</ref>
</argument>

</rule>
</Variable>

</Activity>

NOTE Instructions for invoking rules in a rule library are provided in
“Invoking Rules in a Library” on page 21.

Understanding Rules and Rule Libraries

Chapter 1 Working with Rules 11

The following example shows a library containing two different account ID
generation rules:

Code Example 1-7 Using a Rule Library with Two Account ID Generation Rules

<Configuration name='Account ID Rules'>
<Extension>

<Library>
<Rule name='First Initial Last'>

<expression>
<concat>

<substr>
<ref>firstname</ref>
<i>0</i>
<i>1</i>

</substr>
<ref>lastname</ref>

</concat>
</expression>

</Rule>
<Rule name='First Dot Last'>

<expression>
<concat>

<ref>firstname</ref>
<s>.</s>
<ref>lastname</ref>

</concat>
</expression>

</Rule>
</Library>

</Extension>
</Configuration>

NOTE You can use the open source Identity Manager Integrated
Development Environment (Identity Manager IDE) to view and edit
the default rule libraries or to add new rules to an existing library
object. See https://identitymanageride.dev.java.net for more
information.

Developing New Rules and Rule Libraries

12 Identity Manager 8.0 • Deployment Tools

Developing New Rules and Rule Libraries
This section describes how to develop rules for your deployment, and provides the
following information:

• Understanding Rule Syntax

• Writing Rules in JavaScript

NOTE • For information about applying rules to a roles, see “Using
Rules in Roles” on page 8 and Sun™ Identity Manager
Administration.

• For information about adding rules to an existing rule library,
see “Customizing Default Rules and Rule Libraries” on page 29.

• For information about using XPRESS to write a rule, see the
XPRESS Language chapter in Sun™ Identity Manager Workflows,
Forms, and Views.

➤ Best Practice:

When designing a rule, try to maximize the ease with which a less-experienced
user could further customize the rule using the Identity Manager IDE.

A complex rule, with well chosen rule arguments, can be extensively
customized by changing default values, without ever having to expose XPRESS
or JavaScript to the user.

Developing New Rules and Rule Libraries

Chapter 1 Working with Rules 13

Understanding Rule Syntax
Identity Manager rules are typically written in XML and encapsulated in the
<Rule> element.

This section covers the following topics:

• Using the <Rule> Element

• Returning Static Values

• Referencing Variables

• Declaring a Rule with Arguments

• Rules with Side Effects

Using the <Rule> Element
Code Example 1-8 shows the use of the <Rule> element to define a basic rule
expression. The name property identifies the name of the rule. The rule is written
in XPRESS.

Code Example 1-8 Using the <Rule> Element to Define a Basic Rule Expression

<Rule name='getApprover'>
<cond><eq><ref>department></ref><s>sales</s></eq>

<s>Sales Manager</s>
<s>HR Manager</s>

</cond>
</Rule>

NOTE When defining a rule, use the <Rule> element with an uppercase R as
in <Rule name='rulename'>. When calling a rule, use the XPRESS
<rule> element with lowercase r, as in <rule name='rulename'>.

Developing New Rules and Rule Libraries

14 Identity Manager 8.0 • Deployment Tools

Returning Static Values
If the rule returns a static value, you can write it using XML Object syntax.
The following example returns a list of strings.

Referencing Variables
You can use <ref> expressions in a rule to reference the values of external
variables. The context in which the rule is used determines the names of the
available variables.

• In forms, you can reference any form field, view attribute, or variable defined
with <defvar>.

• In workflows, you can reference any variable defined within the workflow
process.

Code Example 1-9 Returning a List of Strings

<Rule name='UnixHostList'>
<List>

<String>aas</String>
<String>ablox</String>
<String>aboupdt</String>

</List>
</Rule>

NOTE For more information about XML Object syntax, see the “XML
Object Language” chapter in Sun™ Identity Manager Workflows,
Forms, and Views.

Developing New Rules and Rule Libraries

Chapter 1 Working with Rules 15

In the following example, the form uses a rule to calculate an email address. The
form defines the global.firstname and global.lastname fields, and the rule
references those fields. The email address is calculated by concatenating the first
letter of global.firstname with global.lastname and the @example.com string.

The next example shows how a workflow uses a rule to test whether a transition to
a particular activity should be taken. This workflow defines a user variable that
contains the User view. The rule returns true if any simulated resources are
assigned to this user or returns null if no simulated resources are assigned. The
workflow engine interprets null as false and would consequently not take the
transition.

Code Example 1-10 Calculating an Email Address

<Rule name='Build Email'>
<concat>

<substr> <ref>global.firstname</ref> <i>0</i> <i>1</i> </substr>
<ref>global.lastname</ref>
<s>@example.com</s>

</concat>
</Rule>

Code Example 1-11 Testing a Transition

<Rule name='Has Simulated Resources'>
<notnull>

<ref>user.accountInfo.types[simulated].accounts</ref>
</notnull>

</Rule>

Developing New Rules and Rule Libraries

16 Identity Manager 8.0 • Deployment Tools

Declaring a Rule with Arguments

Declaring arguments in a rule provides documentation to rule users, allows
reference validation in the Identity Manager IDE, and allows the rule to be used in
forms and workflows that might not use the same naming convention.

You can use the <RuleArgument> element to declare rule arguments, and set a
default value for the argument by specifying a value after the argument name.
For example, the following rule specifies “Austin” as the default value for the
location RuleArgument.

You can use this rule in user forms, but UserId and location are not attributes of
the User view. You must use the <argument> element in the rule call to pass the
expected arguments into the rule. Note that passing an argument whose name is
location overrides the default value declared in the RuleArgument element in the
rule definition.

➤ Best Practice:

You are not required to declare arguments for a rule, but it is considered a best
practice to do so. If a rule uses a variable that is “in scope” at the time of the
rule’s execution, then the rule becomes less reusable.

Code Example 1-12 Setting a Default Value

<Rule name='description'>
<RuleArgument name='UserId'/>
<RuleArgument name='location' value='Austin'/>
<concat>

<ref>UserId</ref>
<s>@</s>
<ref>location</ref>

</concat>
</Rule>

Developing New Rules and Rule Libraries

Chapter 1 Working with Rules 17

For more information about calling rules, see “Referencing Rules” on page 19.

There is no formal way to declare an argument type, but you can specify type in a
comment field. Use the <Comment> element to include comments in your rule:

Rules with Side Effects
Rules typically return a single value, but in some cases you may want a rule to
return several values or to take an action other than returning a value. You can use
the following XPRESS expressions in a rule to assign values to external variables:

• <setvar>: Use to specify a variable value.

• <setlist> : Use to assign a value into a specified position in a list, overwriting
the current value.

• <putmap> Use to specify map elements to an object.

Code Example 1-13 Overriding a Default Value Declared in RuleArgument

<rule name='description'>
<argument name='UserId' value='$(waveset.accountId)'/>
<argument name='location' value='global.location'/>

</rule>

Code Example 1-14 Using <Comment> to Include Comments in a Rule

<Comments>
Description rule is expecting 2 arguments. A string value
UserId, which is the employees’ ID number, and a string
value location that describes the building location for
the employee
</Comments>

TIP If you are using the Identity Manager IDE to edit rules, you might
find it helpful to formally define a list of rule arguments. This list
would consist of the names of variables that are expected to be
available to the rule. You can use them afterwards to perform
validation in the Identity Manager IDE.

Developing New Rules and Rule Libraries

18 Identity Manager 8.0 • Deployment Tools

The following example shows how the rule tests the value of external variable
named department and assigns values to two other variables.

In the preceding example, the variables global.location and global.mailServer
are both set according to the value of the variable department. In this case, the
return value of the rule is ignored, and the rule is called only for its side effects.

Code Example 1-15 Testing the department Variable and Assigning Other Variables

<Rule name='Check Department'>
 <switch>
 <ref>global.department</ref>
 <case>
 <s>Engineering</s>
 <block>
 <setvar name='global.location'>
 <s>Building 1</s>

 </setvar>

 <setvar name='global.mailServer'>
 <s>mailserver.somecompany.com</s>

 </setvar>
 </block>

 </case>
 <case>
 <s>Marketing</s>
 <block>
 <setvar name='global.location'>
 <s>Building 2</s>

 </setvar> <setvar name='global.mailServer'>
 <s>mailserver2.somecompany.com</s>

 </setvar>
 </block>

 </case>
 </switch>

</Rule>

Referencing Rules

Chapter 1 Working with Rules 19

Writing Rules in JavaScript
When rules become complex, you might find it more convenient to write those
rules in JavaScript rather than XPRESS, and then wrap the JavaScript in an XPRESS
<script> element.

The following example references the values of form and workflow variables, calls
the env.get function, and passes the variable name. The example uses the env.put
function to assign variable names, and the value of the last statement in the script
becomes the value of the rule. The rule returns the value in the email variable.

You can call other rules with the env.call function.

Referencing Rules
This section provides information about referencing rules. The information is
organized as follows:

• Basic Rule Call Syntax

• Invoking Rules in a Library

• Resolving Rule Arguments

Code Example 1-16 Wrapping JavaScript in a <script> Element

<Rule name='Build Email'>
<script>

var firstname = env.get('firstname');
var lastname = env.get('lastname');
var email = firstname.substring(0, 1) + lastname + "@example.com";
email;

</script>
</Rule>

Referencing Rules

20 Identity Manager 8.0 • Deployment Tools

Basic Rule Call Syntax
Rules can be called from anywhere XPRESS is allowed, which includes forms,
workflows, or even another rule.

Use the XPRESS <rule> expression to call a rule. For example:

When the XPRESS interpreter evaluates this expression, the interpreter assumes
the value of the name attribute is the name of a rule object in the repository. The
interpreter automatically loads the rule from the repository and evaluates that rule.
The value returned by the rule becomes the result of the <rule> expression.

In the previous example, no arguments are passed explicitly to the rule. The next
example uses an argument element to pass an accountId argument to the rule. In
addition, the argument value is passed as a static string, jsmith.

You can also use an expression to calculate the value of an argument, as follows.
In this example, the argument value is calculated by evaluating a simple <ref>
expression that returns the value of the view attribute user.waveset.accountId.

Because calculating argument values by referencing attributes is so common, an
alternate syntax is also provided.

Both of the previous examples pass the value of the user.waveset.account view
attribute as the value of the argument.

<rule name='Build Email'/>

<rule name='getEmployeeId'>
<argument name='accountId' value='jsmith'/>

</rule>

<rule name='getEmployeeId'>
<argument name='accountId'>

<ref>user.waveset.accountId</ref>
</argument>

</rule>

<rule name='getEmployeeId'>
<argument name='accountId' value='$(user.waveset.accountId)'/>

</rule>

Referencing Rules

Chapter 1 Working with Rules 21

Invoking Rules in a Library
You reference rules in a library using an XPRESS <rule> expression. The value of
the name attribute is formed by combining the name of the configuration object
containing the library, followed by a colon, followed by the name of a rule within
the library. Therefore, each rule name in a library must be unique.

For example, the following expression calls the rule named First Dot Last
contained in a library named Account ID Rules:

<rule name='Account ID Rules:First Dot Last'/>

Resolving Rule Arguments
Most rules contain XPRESS <ref> expressions or JavaScript env.get calls to
retrieve variable values. Several options are available for controlling how the
values of these variables are obtained.

In the simplest case, the application calling the rule attempts to resolve all
references.

• For rules called from forms, the form processor assumes all references are to
attributes in a view.

• For rules called from workflows, the workflow processor assumes all
references are to workflow variables.

• Rules can call other rules by dynamically resolving the called rule’s name.
You can use the optional <RuleArgument> element, which is described in
“Declaring a Rule with Arguments” on page 16.

This section provides the following information:

• Calling Scope or Explicit Arguments in Forms

• Using the LocalScope Option in Workflows

• Using Rule Argument Declarations

• Using Locked Arguments

Referencing Rules

22 Identity Manager 8.0 • Deployment Tools

Calling Scope or Explicit Arguments in Forms
This section provides examples that illustrate how rule arguments are resolved in
forms.

The following example shows how to add a rule to a form. You can use this form
with the User view because there are attribute names in the view.

This rule references two variables:

• global.firstname

• global.lastname

You can call this rule in a Field, as shown in the following example:

This method can be a convenient way to write simple rules that are used in user
forms only — similar to the concept of global variables in a programming language.
But there are two problems with this style of rule design. First, it is unclear to the
form designer which variables the rule will be referencing. Second, the rule can be
called only from user forms because it references attributes of the User view. The
rule cannot be called from most workflows because workflows usually do not
define variables named global.firstname and global.lastname.

<Rule name='generateEmail'>
<concat>

<ref>global.firstname</ref>
<s>.</s>
<ref>global.lastname</ref>
<s>@example.com</s>

</concat>
</Rule>

Code Example 1-17 Calling the Rule in a Field

<Field name='global.email'>
<Expansion>

<rule name='generateEmail'/>
</Expansion>

</Field>

Referencing Rules

Chapter 1 Working with Rules 23

You can address these problems by passing rule arguments explicitly, and by
writing the rule to use names that are not dependent on any particular view.

The following example shows a modified version of the rule that references the
variables firstname and lastname:

The following examples shows a rule that is simpler and more general. The
example does not assume that the rule will be called from a user form, but that the
rule must be called with explicit arguments.

The name attribute of the argument elements correspond to the variables referenced
in the rule. The values for these arguments are assigned to values of global
attributes in the User view, which keeps the rule isolated from the naming
conventions used by the calling application and makes the rule usable in other
contexts.

Code Example 1-18 Rule Referencing firstname and lastname Variables

<Rule name='generateEmail'>
<RuleArgument name='firstname'/>
<RuleArgument name='lastname'/>

<concat>
<ref>firstname</ref>
<s>.</s>
<ref>lastname</ref>
<s>@example.com</s>

</concat>
</Rule>

Code Example 1-19 Calling the Rule with Explicit Arguments

<Field name='global.email'>
<Expansion>

<rule name='generateEmail'>
<argument name='firstname' value='$(global.firstname)'/>
<argument name='lastname' value='$(global.lastname)'/>

</rule>
</Expansion>

</Field>

Referencing Rules

24 Identity Manager 8.0 • Deployment Tools

Using the LocalScope Option in Workflows
Even when arguments are passed explicitly to a rule, the system by default allows
references to other variables that are not passed as explicit arguments. The
following example shows a workflow action calling the rule but passing only one
argument:

When the rule is evaluated, the workflow processor is asked to supply a value for
the variable lastname. Even if there is a workflow variable with this name, it may
not have been intended to be used with this rule. To prevent unintended variable
references, rules should be defined with the localScope option.

You enable this option by setting the localScope attribute to true in the Rule
element:

By setting this option, the rule is only allowed to reference values that were passed
explicitly as arguments in the call. When called from the previous workflow action
example, the reference to the lastname variable would return null.

Rules intended for general use in a variety of contexts must use the localScope
option.

Code Example 1-20 Workflow Action Calling the Rule and Passing a Single Argument

<Action>
<expression>

<setvar name='email'>
<rule name='generateEmail'>

<argument name='firstname' value='$(employeeFirstname)'/>
</rule>

</setvar>
</expression>

</Action>

Code Example 1-21 Setting localScope Attribute to true in a Rule Element

<Rule name='generateEmail' localScope='true'>
<concat>

<ref>firstname</ref>
<s>.</s>
<ref>lastname</ref>
<s>@example.com</s>

</concat>
</Rule>

Referencing Rules

Chapter 1 Working with Rules 25

Using Rule Argument Declarations

Using argument declarations offers the following advantages:

• Declarations can serve as documentation for the caller of the rule

• Declarations can define default values

• Declarations can enable the Identity Manager IDE to check for misspelled
references within the rule

• Declarations can enable the Identity Manager IDE to simplify the configuration
of a rule call

For example, you could rewrite the generateEmail rule as follows:

The Comments element can contain any amount of text that might be useful to
someone examining the rule.

➤ Best Practice:

You are not required to include explicit declarations for all arguments that can
be referenced by a rule within the rule definition, but it is considered a best
practice to do so.

Code Example 1-22 Rewriting the generateEmail Rule

<Rule name='generateEmail' localScope='true'>
<RuleArgument name='firstname'>

<Comments>The first name of a user</Comments>
</RuleArgument>
<RuleArgument name='lastname'>

<Comments>The last name of a user</Comments>
</RuleArgument>
<RuleArgument name='domain' value='example.com'>

<Comments>The corporate domain name</Comments>
</RuleArgument>
<concat>

<ref>firstname</ref>
<s>.</s>
<ref>lastname</ref>
<s>@</s>
<ref>domain</ref>

</concat>
</Rule>

Referencing Rules

26 Identity Manager 8.0 • Deployment Tools

In this example, the rule was modified to define another argument named domain,
which was given a default value of example.com. This rule uses the default value
unless the caller passes an explicit argument named domain.

The next example shows a call that produces the john.smith@example.com string:

The next example shows a call that produces the john.smith@yourcompany.com
string:

This example shows a call that produces the john.smith@ string:

Code Example 1-23 Producing john.smith@example.com String

<rule name='generateEmail'>
<argument name='firstname' value='john'/>
<argument name='lastname' value='smith'/>

</rule>

Code Example 1-24 Producing john.smith@yourcompany.com String

<rule name='generateEmail'>
<argument name='firstname' value='john'/>
<argument name='lastname' value='smith'/>
<argument name='domain' value='yourcompany.com'/>

</rule>

Code Example 1-25 Producing john.smith@ String

<rule name='generateEmail'>
<argument name='firstname' value='john'/>
<argument name='lastname' value='smith'/>
<argument name='domain'/>

</rule>

NOTE In the previous example, a null value is passed for the domain
argument, but the default value is not used. If you specify an explicit
argument in the call, that value is used even if it is null.

Referencing Rules

Chapter 1 Working with Rules 27

Using Locked Arguments
Declaring arguments with default values can be a useful technique for simplifying
the development and customization of rules. If you have a constant value in a rule
that might occasionally change, it is easier to locate and change that value if it is
defined in an argument rather than embedded deep within a rule expression.

The Identity Manager IDE provides a simplified user interface for configuring
rules. You can change the default values of arguments in the Identity Manager IDE,
which is much easier than editing the entire rule expression.

After an argument is declared, it is possible for the caller of the rule to override the
default value by passing an explicit argument. However, if you do not want the
caller to have any control over the argument value, include a locked attribute with
a value of true in the RuleArgument element to lock the argument. For example,

The domain argument is locked in this example, which means the argument value
will always be example.com — even if the caller tries passing a value for the
argument. If you are going to use this rule at a site where the domain name is not
example.com, the administrator only has to edit the rule to change the argument
value. The administrator does not have to understand or modify the rule
expression.

Code Example 1-26 Locking an Argument

<Rule name='generateEmail' localScope='true'>
<RuleArgument name='firstname'>

<Comments>The first name of a user</Comments>
</RuleArgument>
<RuleArgument name='lastname'>

<Comments>The last name of a user</Comments>
</RuleArgument>
<RuleArgument name='domain' value='example.com' locked='true'>

<Comments>The corporate domain name</Comments>
</RuleArgument>
<concat>

<ref>firstname</ref>
<s>.</s>
<ref>lastname</ref>
<s>@</s>
<ref>domain</ref>

</concat>
</Rule>

Securing Rules

28 Identity Manager 8.0 • Deployment Tools

Securing Rules
If a rule contains sensitive information, such as credentials or calls to a Java utility
that might have dangerous side effects, you must secure the rule to prevent anyone
from using that rule in an unintended way.

Securing rules is especially important if the rules are called from forms. Form rules
run above the session, so exposed rules are available to anyone who is capable of
creating a session through the API or a SOAP request.

This section provides the following information:

• Put Rules in an Appropriate Organization

• Use Authorization Types to Secure Rules

• Control Access to Rules that Reference More Secure Rules

Put Rules in an Appropriate Organization
As a convenience, most administrators put simple rules, such as those that perform
calculations but have no side effects, in the All organization so that everyone
granted rights to view rules can access those rules.

However, if you want to provide more security for a rule

• Do not put sensitive rules in the All organization.

• Put the rule in an appropriate organization such as Top (or another suitably
high-level organization) so that only high-level administrators can execute that
rule directly.

Use Authorization Types to Secure Rules
You can use authorization types (AuthType) to further scope or restrict access to a
subset of objects for a given Identity Manager objectType, such as a rule. For
example, you might not want your users to have access to all rules within their
scope of control when populating rules to select in a user form.

For information about using authorization types, see “Using Authorization Types
to Secure Objects“ in Sun™ Identity Manager Administration.

Customizing Default Rules and Rule Libraries

Chapter 1 Working with Rules 29

Control Access to Rules that Reference More
Secure Rules
Users can call, view, and modify the content of a secure rule if they have been
given access to a rule that references that secure rule.

Identity Manager runs an authorization check in which a wrapper calls all of the
users who have a right to edit that rule. Authorized users can use that rule to call
other rules without further authorization checking, which can give them indirect
access to secure rules.

When you create a rule that references a secure rule and give users access rights to
the less secure rule, be careful that you are not inadvertently giving them
inappropriate access to the secure rule.

Customizing Default Rules and Rule Libraries
This section describes the default rules and rule libraries supplied with Identity
Manager. The information is organized as follows:

• Identity Manager Rules

• Auditor Rules

• Audit Policy Rules

• Service Provider Rules

NOTE To create a rule that references a more secure rule, you must control
both organizations containing those rules. You also must have rights
to run the first rule and call the secure rule.

NOTE You can use the Identity Manager IDE to customize these rules and
rule libraries.

Customizing Default Rules and Rule Libraries

30 Identity Manager 8.0 • Deployment Tools

Identity Manager Rules
You can use the following rules and rule libraries to customize Identity Manager.

• AccessEnforcerLibrary

• ActiveSync Rules

• ADRules Library

• AlphaNumeric Rules Library

• Approval Transaction Message

• Approval Transaction Message Helper

• Attestation Remediation Transaction Message

• Attestation Remediation Transaction Message Helper

• Attestation Transaction Message

• Attestation Transaction Message Helper

• CheckDictionaryWord

• DateLibrary

• End User Controlled Organizations

• EndUserRuleLibrary

• ExcludedAccountsRule

• getAvailableServerOptions

• InsertDictionaryWord

• Is Manager

• LoginCorrelationRules

• My Direct Reports

• NamingRules Library

• NewUsernameRules

• Object Approvers As Attestors

• Object Owners As Attestors

• Organization Names

Customizing Default Rules and Rule Libraries

Chapter 1 Working with Rules 31

• OS400UserFormRules

• IS_DELETE

• RACFUserFormRules

• Reconciliation Rules

• RegionalConstants Library

• Remediation Transaction Message

• Remediation Transaction Message Helper

• ResourceFormRules

• Resource Names

• Role Approvers

• Role Notifications

• Role Owners

• Sample On Local Network

• SAP Portal User Form Default Values

• ShellRules

• SIEBEL_NAV_RULE

• TestDictionary

• TopSecretUserFormRules

• User Members Rule

• USER_EMAIL_MATCHES_ACCOUNT_EMAIL_CONF

• USER_EMAIL_MATCHES_ACCOUNT_EMAIL_CORR

• USER_FIRST_AND_LAST_NAMES_MATCH_ACCOUNT

• USER_NAME_MATCHES_ACCOUNT_ID

• USER_OWNS_MATCHING_ACCOUNT_ID

• Users Without a Manager

• Use SubjectDN Common Name

Customizing Default Rules and Rule Libraries

32 Identity Manager 8.0 • Deployment Tools

AccessEnforcerLibrary
The AccessEnforcerLibrary is a default library of rules that enable you to manage
certain types of objects because the Access Enforcer resource adapter does not
provide a way for you to fetch these objects.

Inputs: See Table 1-2.

You must specify the following for a custom AccessEnforcerLibrary rule:

AuthType: Library

SubType: listRules

Returns: See Table 1-2

Predefined Rules: Not specified

The following table describes the example AccessEnforcerLibrary rules.

Table 1-2 Example AccessEnforcerLibrary Rules

Rule Name Input Variables Description

getApplications • resName (Resource name)

• Specify Access Enforcer object
names by manually entering the
names as strings.

Returns a list of applications that are available in
SAP GRC Access Enforcer. If resName was
specified, fetches the applications from Access
Enforcer. Otherwise, returns the list specified
statically.

getRoles resName (Resource name) Returns a list of roles that are available in SAP
GRC Access Enforcer that are the same as the
roles available in the back-end system.

These values are manually created and must be
in sync with the corresponding values in SAP GRC
Access Enforcer.

getRequestTypes None Returns a list of Request types that are available in
SAP GRC Access Enforcer.

These values are manually created and must be
in sync with the corresponding values in SAP GRC
Access Enforcer.

getPriorities None Returns a list of Priority values that are available in
SAP GRC Access Enforcer

These values are manually created and must be
in sync with the corresponding values in SAP GRC
Access Enforcer.

Customizing Default Rules and Rule Libraries

Chapter 1 Working with Rules 33

getEmployeeTypes None Returns a list of Employee types that are available
in SAP GRC Access Enforcer.

These values are manually created and must be
in sync with the corresponding values in SAP GRC
Access Enforcer.

getSLAs None Returns a list of Service Levels that are available
in SAP GRC Access Enforcer.

These values are manually created and must be
in sync with the corresponding values in SAP GRC
Access Enforcer.

getSupporttedVersions resName (Resource name) Returns a list of SAP GRC Access Enforcer
versions that are supported by Identity Manager.
These values must be the same as values that the
adapter facet understands.

Table 1-2 Example AccessEnforcerLibrary Rules

Rule Name Input Variables Description

Customizing Default Rules and Rule Libraries

34 Identity Manager 8.0 • Deployment Tools

ActiveSync Rules
When the Flat File Active Sync adapter detects a change to an account on a
resource, it either maps the incoming attributes to an Identity Manager user, or it
creates an Identity Manager user account. The adapter uses process, correlation,
and delete rules to determine what to do with the user.

Inputs: Accepts resource account attributes in the activeSync namespace.
For example, activeSync.firstname.

You must specify the following for a custom ActiveSync rule:

AuthType: Not specified

SubType: Not specified

Namespace: Provide resource account attributes in the activeSync namespace.
For example,

activeSync.firstname

Predefined Rules: ActiveSyncRules’ predefined rules include:

• ActiveSync has isDeleted set: Used by migration from resources when you set
the Process deletes as updates parameter to false.

• No Correlation Rule: Use this default rule if you do not want correlation.

• No Confirmation Rule: Use this default rule if you do not want confirmation.

NOTE Active Sync rules must use context, not display.session.
Correlation and Delete rules do not get a session, but Confirmation
rules do. For more information, see “Correlation Rule” on page 61
and “Confirmation Rule” on page 62.

NOTE Do not change this rule name. If you want to use a different rule
name, duplicate the rule content and rename the new rule.

Customizing Default Rules and Rule Libraries

Chapter 1 Working with Rules 35

ADRules Library
The default library of ADRules enables you to create a list of the servers

Inputs: None

You must specify the following for a custom ADRules rule:

AuthType: Not specified

SubType: Not specified

Called:

Returns: A list of zero or more string values.

Predefined Rule: None

Table 1-3 Example ADRules Rules

Rule Name Description

Exchange Servers Returns a list of the Exchange servers in your environment.

You can update this list to include the Exchange servers in your environment.

Home Directory Servers Returns a list of the Home Directory Servers in your environment.

You can update this list to include the systems that serve home directory drives in your
environment.

AD Login Scripts Returns a list of the user login scripts being used in your environment.

You can update this list to include the login batch scripts in your environment.

Home Directory Drive Letter Returns a list of the home directory mapped drive letters in your environment.

You can update this list to include the common home directory map drive letters in your
environment.

Home Directory Volumes Returns a list of the home directory volume names in your environment.

You can update this list to include the common home directory volume names in your
environment. Identity Manager uses this value with the Home Directory Server to
create a user’s home directory. This volume must exist and be shared on the selected
home directory server.

Customizing Default Rules and Rule Libraries

36 Identity Manager 8.0 • Deployment Tools

AlphaNumeric Rules Library
The AlphaNumeric Rules Library is a default library of rules that enable you to
control how numbers and letters are ordered and displayed in Identity Manager
forms and workflows.

Inputs: See Table 1-4.

You must specify the following for a custom rule:

AuthType: EndUserRule

SubType: Not specified

Returns: A list of zero or more strings

The following table describes rules in the AlphaNumeric Rules library.

NOTE This library is displayed as the Alpha Numeric Rules library object
in the Identity Manager IDE.

Table 1-4 Example Alphanumeric Rules

Rule Name Input Variable Description

AlphaCapital None Returns a list of English capital alpha characters

AlphaLower None Returns a list of English lowercase alpha characters

Numeric None Returns a list of numeric characters

WhiteSpace None Returns a list of white space characters

SpecialCharacters None Returns a list of common special characters

legalEmailCharacters None Returns a list of legal special characters for email

stringToChars testStr Converts the given string to a list composed of the string’s individual
characters

isNumeric testStr Tests to see if testStr contains all numeric characters

isAlpha testStr Tests to see if testStr contains only alpha characters

hasSpecialChar testStr Tests to see if testStr contains any special characters

hasWhiteSpace testStr Tests to see if testStr contains any white space characters

isLegalEmail testStr Tests to see if testStr consists of only legal email address characters

StripNonAlphaNumeric testStr Removes any non-alpha or non-numeric characters from testStr

Customizing Default Rules and Rule Libraries

Chapter 1 Working with Rules 37

Approval Transaction Message
The Approval Transaction Message rule is a default rule used to format approval
transaction text. You can customize this rule to provide more information for a user
to sign.

Inputs: Accepts the following arguments:

• workItemList: A set of workitems that are being approved.

• variablesList: A set of variables corresponding to each workitem in
workitemList.

• approverName: User being asked to approve the workitems.

You must specify the following for a custom Approval Transaction Message rule:

AuthType: Not Specified

SubType: Not Specified

Returns: Formatted transaction text for the list of workitems in workItemList

Predefined Rule: None

Approval Transaction Message Helper
The Approval Transaction Message Helper rule returns the formatted transaction
text for the approval of a single workitem.

Inputs: Accepts the following arguments:

• workItem: The workitem that is being approved.

• variables: The workitem variables.

You must specify the following for a custom Approval Transaction Message
Helper rule:

AuthType: Not Specified

SubType: Not Specified

Returns: Formatted transaction text for the approval of a single workitem

Predefined Rule: None

Customizing Default Rules and Rule Libraries

38 Identity Manager 8.0 • Deployment Tools

Attestation Remediation Transaction Message
The Attestation Remediation Transaction Message rule is a default rule used to
format attestation remediation transaction text. You can customize this rule to
provide more information for the user to sign.

Inputs: Accepts the following arguments:

• workItemList: A set of workitems that are being approved.

• variablesList: A set of variables corresponding to each workitem in
workitemList.

• approverName: User being asked to approve the workitems.

• action: Expected to be remediate.

• actionComments: Comments that are entered as part of the remediation.

You must specify the following for a custom Attestation Remediation Transaction
Message rule:

AuthType: EndUserAuditorRule

SubType: Not Specified

Returns: Formatted attestation remediation transaction text

Predefined Rule: None

Customizing Default Rules and Rule Libraries

Chapter 1 Working with Rules 39

Attestation Remediation Transaction Message Helper
The Attestation Remediation Transaction Message Helper rule returns the
formatted transaction text for the attestation remediation of a single workitem.

Inputs: Accepts the following arguments:

• workItem: The workitem that is being approved.

• variables: The workitem variables.

You must specify the following for a custom Attestation Remediation Transaction
Message Helper rule:

AuthType: EndUserAuditorRule

SubType: Not Specified

Called:

Returns: Formatted transaction text for the attestation remediation of a single
workitem.

Predefined Rule: None

Attestation Transaction Message
The Attestation Transaction Message rule a default rule used to format attestation
transaction text. You can customize this rule to provide more information for the
user to sign.

Inputs: Accepts the following arguments:

• workItemList: A set of workitems that are being approved.

• variablesList: A set of variables corresponding to each workitem in
workitemList.

• approverName: User being asked to approve the workitems.

• action: Expected to be aproved or approve.

• actionComments: Comments that are entered as part of the attestation.

You must specify the following for a custom Attestation Transaction Message rule:

AuthType: EndUserAuditorRule

SubType: Not Specified

Customizing Default Rules and Rule Libraries

40 Identity Manager 8.0 • Deployment Tools

Called:

Returns: Formatted attestation transaction text

Predefined Rule: None

Attestation Transaction Message Helper
The Attestation Transaction Message Helper rule returns the formatted transaction
text for the a single attestation.

Inputs: Accepts the following arguments:

• workItem: The workitem that is being approved.

• variables: The workitem variables.

You must specify the following for a custom Attestation Transaction Message
Helper rule:

AuthType: EndUserAuditorRule

SubType: Not Specified

Called:

Returns: Formatted transaction text for the a single attestation

Predefined Rule: None

CheckDictionaryWord
Use the CheckDictionaryWord rule to run a JDBC query against a dictionary to
check if a password exists in the dictionary.

Inputs: Accepts the following arguments:

• type
• driverClass
• driverPrefix
• url
• host
• port
• database
• context
• user
• password

Customizing Default Rules and Rule Libraries

Chapter 1 Working with Rules 41

• sql
• arg1

You must specify the following for a custom CheckDictionaryWord rule:

AuthType: Not Specified

SubType: Not Specified

Called:

Returns: A list of zero or more strings.

Predefined Rule: None

DateLibrary
The DateLibrary is a default library of rules that control how dates and times are
displayed in a deployment.

Inputs: See Table 1-5.

You must specify the following for a custom DateLibrary rule:

AuthType: Rule

SubType: Not specified

Returns: Boolean values of true or false. See Table 1-5.

NOTE This library is displayed as the Date Library library object in the
Identity Manager IDE.

Customizing Default Rules and Rule Libraries

42 Identity Manager 8.0 • Deployment Tools

The following table describes the example DateLibrary rules.

Table 1-5 Example DateLibrary Rules

Rule Input Variables Description

Date Validation mm/dd/yy yy Determines valid date strings.
If month or day values are provided in with single digits, the rule
accounts for them appropriately.

• true if the string provided contains valid date components.

• false if the string provided contains invalid date components.

Validate Day Month Year • month
• day
• year

Determines valid day, month, and year strings. If the month or the
day values are provided in with single digits, the rule accounts for
them appropriately.

• true if the string provided is a valid date.

• false if the string provided is a invalid date.

Validate Time HH:mm:ss Determines valid time strings.
If the time string is not in this format, or the components are out of
bounds (for example, if the hour is less than zero or greater than
23), the rule returns a false.

• true if the string provided is a valid time.

• false if the string provided is a invalid time.

Customizing Default Rules and Rule Libraries

Chapter 1 Working with Rules 43

End User Controlled Organizations
The End User Controlled Organizations rule determines the set of organizations
that are controlled by a user logging into the End User interface. These
organizations, together with the End User organization, define the scope of control
over which a user is granted the permissions specified in the EndUser capability
(AdminGroup). Because this is a rule, it allows the scope of control to vary
depending on which user is logging into the End User interface.

Inputs: User view of the authenticating end user

You must specify the following for a custom End User Controlled
Organizations rule:

AuthType: EndUserControlledOrganizationsRule

SubType: Not Specified

Returns: A single controlled organization (string) or a list of controlled
organizations. Each value can be an organization name or ID. If an organization
name is returned, it must be fully qualified up to Top (for example,
Top:Marketing:South)

Predefined Rule: Defaults to returning the organization of which the user is a
member (for example, waveset.organization)

Customizing Default Rules and Rule Libraries

44 Identity Manager 8.0 • Deployment Tools

EndUserRuleLibrary
The EndUserRuleLibrary is a default library of rules that Identity Manager uses to
determine or to verify end-user account information.

Inputs: See Table 1-6 and Table 1-7.

You must specify the following for a custom EndUserLibrary rule:

AuthType: EndUserLibrary

SubType: Not specified

NOTE By default, Identity Manager’s End User Anonymous Enrollment processing generates
values for accountId and emailAddress by using user-supplied first names
(firstName), last names (lastName) and employee IDs (employeeID). Anonymous
enrollment can cause non-ASCII characters to display in email addresses and account
IDs.

To ensure that Identity Manager maintains ASCII accountIds and email addresses
during anonymous enrollment processing, international users must perform
these steps:

1. Modify the following EndUserRuleLibrary rules:

❍ getAccountId: Remove firstName, lastName, and letter substr. Use
employeeId only.

❍ getEmailAddress: Remove firstName, lastName, and "."
Use employeeId only.

❍ verifyFirstname: Change length check from 2 to 1 to allow single character
Asian first names.

2. Edit the End User Anon Enrollment Completion form to remove the firstName and
lastName arguments from calls to the getAccountId and getEmailAddress rules.

NOTE This library is displayed as the EndUserRuleLibrary library object in
the Identity Manager IDE.

Customizing Default Rules and Rule Libraries

Chapter 1 Working with Rules 45

The following table describes the example EndUserRuleLibrary rules.

Table 1-6 Example EndUserRuleLibrary Rules

Rule Input Variable Description

getCallerSession None Returns the internal session context (Lighthouse
context) for the user executing a form.

getUserView • resourceTargets list

• accountId string

• includeAvailableRoleInfos
boolean

Returns the User view of the specified accountId,
including a list of resource targets, and whether or
not to include Role information.

getView • nameOrId string

• type string

• options map

Returns a view of an object specified by the name
or GUID, type of object, and a map of options.

getUnassignedResources • roles list

• currentResources list

• groups list

Determines which resources are currently
unassigned.

getDirectReports • manager string

• options map

Returns a list of direct reports for a specified
manager. For example, a list of users whose
idmManager attribute is specified by the manager
input variable.

getIndirectReports • manager string

• options map

Returns a list of indirect reports for a specified
manager. For example, a list of users who are in
the reporting structure of the user specified by the
manager input variable, excluding direct reports.

getResourceObject
ParentId

• resourceName string

• resObjectName string

• objType string

• objAttr string

Returns a GenericObject of the parent of a
resource specified by the name, object type, and
object attribute.

getObjectsByType • type string

• attributeVal string

• attributeName string

Returns a list of GenericObjects specified by type
and that match the attributeName=attributeVal
condition.

Customizing Default Rules and Rule Libraries

46 Identity Manager 8.0 • Deployment Tools

The next table describes the example EndUserRuleLibrary rules used for
anonymous enrollment.

getRealName • accountId string

• addAccountId boolean

Determines a user’s “real name,” such as
FirstName <space> LastName, when an
accountId has been provided.

• If the addAccountId argument is true, Identity
Manager returns the FirstName LastName
(accountId) string.

• If the FirstName or LastName attributes cannot
be determined, the rule returns just the
accountId.

NOTES:

• You can easily modify this rule if you want the
real name to display as LastName, FirstName.

• The user must have the appropriate
permissions to be able to search for other
users.

Table 1-7 Example EndUserRuleLibrary Rules for Anonymous Enrollment

getAccountId • firstName string

• lastName string

• employeeId string

Generates an account ID from the first name, last
name, and employee ID.
First initial + last intial + employee ID

Note: International users must modify this rule to
ensure that Identity Manager maintains ASCII
accountIds and email addresses during
anonymous enrollment processing. See page 44
for instructions.

getEmailAddress • firstName string

• lastName string

• emailDomain string

Generates an email address from the first name,
last name, and email domain provided.
firstname.lastname@emailDomain

Note: International users must modify this rule to
ensure that Identity Manager maintains ASCII
accountIds and email addresses during
anonymous enrollment processing. See page 44
for instructions.

Table 1-6 Example EndUserRuleLibrary Rules (Continued)

Rule Input Variable Description

Customizing Default Rules and Rule Libraries

Chapter 1 Working with Rules 47

getIdmManager employeeId string Returns the account ID of the Identity Manager
manager associated with an employee ID for a
user being created. You must customize this rule
for your deployment environment.
(Default is configurator.)

getOrganization None Returns the name of the organization to which a
user will be assigned. You must customize this
rule for your deployment environment.
(Default is Top.)

runValidation None Invokes verifyFirstname, verifyLastname,
verifyEmployeeId, and verifyEligibility
rules.

verifyFirstname firstName string Validates the first name provided by a user for the
End User Anonymous Enrollment process. This
sample rule verifies a first name is not null. You
must customize this rule for your deployment
environment.

Note: International users must modify this rule to
ensure that Identity Manager maintains ASCII
accountIds and email addresses during
anonymous enrollment processing. See page 44
for instructions.

verifyLastname lastName string Validates the last name provided by a user for the
End User Anonymous Enrollment process. This
sample rule verifies a last name is not null. You
must customize this rule for your deployment
environment.

verifyEmployeeId employeeId string Validates the employee ID provided by a user for
the End User Anonymous Enrollment process.
This sample rule verifies that an employee ID is
valid. You must customize this rule for your
deployment environment.

verifyEligibility • firstName string

• lastName string

• employeeId string

Can be used to validate the employee ID provided
by a user for the End User Anonymous
Enrollment process. This rule must be customized
for deployment.

Table 1-7 Example EndUserRuleLibrary Rules for Anonymous Enrollment(Continued)

Customizing Default Rules and Rule Libraries

48 Identity Manager 8.0 • Deployment Tools

ExcludedAccountsRule
The ExcludedAccountsRule supports the exclusion of resource accounts from
resource operations.

Inputs: Accepts the following arguments:

• accountId: String account ID being tested.

You can compare the accountId argument to one or more resource accounts
that should be excluded from Identity Manager.

• operation: Resource operation to be performed.

The rule can use the operation argument to have finer control over which
resource accounts are exempt from the actions specified by the operation
parameter. If an operation parameter is not used within the rule, every
account identified by the rule is excluded from all of the listed operations.

The operation parameter can contain the following values:

❍ create
❍ update
❍ delete
❍ rename (used when the only detected change is a new account ID)
❍ rename_with_update
❍ list
❍ iapi_create (only used within Active Sync)
❍ iapi_update (only used within Active Sync)
❍ iapi_delete (only used within Active Sync)

You must specify the following for a custom ExcludedAccountsRule rule:

AuthType: ExcludedAccountsRule

SubType: Not specified

Predefined Rules:

• Microsoft SQL Server Excluded Resource Accounts

• Sun Access Manager Excluded Resource Accounts

• Unix Excluded Resource Accounts

• Windows Excluded Resource Accounts

Customizing Default Rules and Rule Libraries

Chapter 1 Working with Rules 49

The following example exemplifies subType use and excludes specified resource
accounts for UNIX adapters.

The next example shows how to use the operation parameter. This parameter
allows you to manipulate the “Test User” resource account — without impacting
Identity Manager — if Active Sync is running against the resource.

Code Example 1-27 Exemplifying authType Use

<Rule name='ExcludedResourceAccounts' authType='ExcludedAccountsRule'>
<RuleArgument name='accountID'/>
<defvar name 'excludedList'>

<List>
<String>root</String>
<String>daemon</String>
<String>bin</String>
<String>sys</String>
<String>adm</String>
<String>uucp</String>
<String>nuucp</String>
<String>listen</String>
<String>lp</String>

</List>
</defvar>
<cond>

<eq>
<contains>

<ref>excludedList</ref>
<ref>accountID</ref>

</contains>
<i>1</i>

</eq>
<Boolean>true</Boolean>
<Boolean>false</Boolean>

</cond>
</Rule>

Code Example 1-28 Example Using operation Parameter

<Rule name='Example Excluded Resource Accounts' authType='ExcludedAccountsRule'>
<!--
Exclude all operations on 'Administrator' account
Exclude activeSync events on 'Test User' account
-->

<RuleArgument name='accountID'/>
<RuleArgument name='operation'/>

<!-- List of IAPI Operations -->
<defvar name='iapiOperations'>

<List>

Customizing Default Rules and Rule Libraries

50 Identity Manager 8.0 • Deployment Tools

<String>iapi_create</String>
<String>iapi_update</String>
<String>iapi_delete</String>

</List>
</defvar>
<or>
<!-- Always ignore the administrator account. -->

<cond>
<eq>

<s>Administrator</s>
<ref>accountID</ref>

</eq>
<Boolean>true</Boolean>
<Boolean>false</Boolean>

</cond>
<!-- Ignore IAPI events for the 'Test User' account -->

<and>
<cond>

<eq>
<contains>

<ref>iapiOperations</ref>
<ref>operation</ref>

</contains>
<i>1</i>

</eq>
<Boolean>true</Boolean>
<Boolean>false</Boolean>

</cond>
<cond>

<eq>
<ref>accountID</ref>
<s>Test User</s>

</eq>
<Boolean>true</Boolean>
<Boolean>false</Boolean>

</cond>
</and>

</or>
</Rule>

Code Example 1-28 Example Using operation Parameter (Continued)

Customizing Default Rules and Rule Libraries

Chapter 1 Working with Rules 51

This example shows an ExcludedAccountsRule for RACF.

Code Example 1-29 ExcludedAccountsRule for RACF

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE Waveset PUBLIC "waveset.dtd" "waveset.dtd">
<Waveset>
 <Rule name="RACF EAR" authType="ExcludedAccountsRule">
 <RuleArgument name="accountID"/>
 <block>
 <defvar name="excludedList">
 <List>
 <String>irrcerta</String>
 <String>irrmulti</String>
 <String>irrsitec</String>
 <String>IBMUSER</String>
 </List>
 </defvar>
 <cond>
 <eq>
 <containsAny>
 <ref>excludedList</ref>
 <list>
 <upcase>
 <ref>accountID</ref>
 </upcase>
 <ref>accountID</ref>
 </list>
 </containsAny>
 <i>1</i>
 </eq>
 <Boolean>true</Boolean>
 <Boolean>false</Boolean>
 </cond>
 </block>
 <MemberObjectGroups>
 <ObjectRef type="ObjectGroup" id="#ID#Top" name="Top"/>
 </MemberObjectGroups>
 </Rule>
</Waveset>

Customizing Default Rules and Rule Libraries

52 Identity Manager 8.0 • Deployment Tools

This final example shows an ExcludedAccountsRule for RACF LDAP.

Code Example 1-30 Excluded Accounts Rule for RACF LDAP

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE Waveset PUBLIC "waveset.dtd" "waveset.dtd">
<Waveset>
<Rule name="Test RACF_LDAP Case Insensitive Excluded Resource Accounts"
authType="ExcludedAccountsRule">
 <RuleArgument name="accountID"/>
 <block>
 <defvar name="excludedList">
 <List>
 <String>irrcerta</String>
 <String>irrmulti</String>
 <String>irrsitec</String>
 <String>IBMUSER</String>
 </List>
 </defvar>
 <defvar name="convertedId">
 <get>
 <split>
 <get>
 <split>
 <ref>accountID</ref>
 <s>,</s>
 </split>
 <i>0</i>
 </get>
 <s>=</s>
 </split>
 <i>1</i>
 </get>
 </defvar>
 <cond>
 <eq>
 <containsAny>
 <ref>excludedList</ref>
 <list>
 <upcase>
 <ref>convertedId</ref>
 </upcase>
 <ref>convertedId</ref>

Customizing Default Rules and Rule Libraries

Chapter 1 Working with Rules 53

getAvailableServerOptions
The getAvailableServerOptions rule determines the list of available server
configuration options for the specified synchronization mechanism. Using the
settings in Waveset.properties applies only for ActiveSync, and is a
backwards-compatibility option.

Inputs: Accepts the targetObjectType argument

You must specify the following for a custom getAvailableServerOptions rule:

AuthType: Not Specified

SubType: Not Specified

Predefined Rule: None

InsertDictionaryWord
Use the InsertDictionaryWord rule to run a JDBC command against the Identity
Manager dictionary to load new words into the database.

Inputs: Accepts the following arguments:

• type
• driverClass
• driverPrefix
• url
• host
• port
• database
• context
• user
• password
• sql
• arg1
• argList

NOTE If IDMXUser, then viaWavesetProperties is not returned in the list.

Customizing Default Rules and Rule Libraries

54 Identity Manager 8.0 • Deployment Tools

You must specify the following for a custom InsertDictionaryWord rule:

AuthType: Not Specified

SubType: Not Specified

Called:

Returns: A list of zero or more strings.

Predefined Rule: None

IS_DELETE
The IS_DELETE rule is a sample rule, written for the PeopleSoft Active Sync
adapter, that determines whether the Active Sync event should delete a user.

Inputs: None

You must specify the following for a custom IS_DELETE rule:

AuthType: Not specified

SubType: Not specified

Predefined Rule: None

Is Manager
The Is Manager rule tests specified accountIds to see whether they are managers
for any other users in the system.

Inputs: Accepts the managerId argument (<RuleArgument name='managerId'/>)

You must specify the following for a custom Is Manager rule:

AuthType: RoleConditionRule

SubType: Not Specified

Called:

Returns: True if managerId is declared as the idmManager for any user in the
system, otherwise returns false.

Customizing Default Rules and Rule Libraries

Chapter 1 Working with Rules 55

This rule issues a query in the repository using the caller's display.session
session, meaning this rule can only be called from a Form. The check only matches
users that are within organizations controlled by the caller, so the rule might return
false if the managerId is the manager of users outside of the callers scope of
control.

Predefined Rule: None

LoginCorrelationRules
The LoginCorrelationRules map user login information to an Identity Manager
user. You specify logic in LoginCorrelationRules that enables the rule to search for
an Identity Manager user and return a list of one or more AttributeConditions.

Inputs: None

You must specify the following for a custom LoginCorrelationRules rule:

AuthType: LoginCorrelationRule

SubType: Not specified

Called: By a LoginModule to map login information to the Identity Manager user

Returns: A list of one or more AttributeConditions

Predefined Rules:

• Correlate via X509 Certificate SubjectDN

• Correlate via LDAP Uid

Customizing Default Rules and Rule Libraries

56 Identity Manager 8.0 • Deployment Tools

My Direct Reports
The My Direct Reports rule returns the names of all Identity Manager users that are
direct reports of the caller. Management is typically a hierarchical structure,
however this rule only returns the names of users that have the caller specified as
their manager. The management hierarchy is not traversed by this rule.

Inputs: None

You must specify the following for a custom My Direct Reports rule:

AuthType: AccessScanRule

SubType: USER_SCOPE_RULE

Called:

Returns: A list of Identity Manager user names that have the caller specified as
their manager.

Predefined Rule: None

NamingRules Library
The NamingRules Library is a default library of rules that enable you to control
how names are displayed after rule processing.

Inputs: None

You must specify the following for a custom NamingRulesLibrary rule:

AuthType: Not specified

SubType: Not specified

Called:

Returns:

Predefined Rule: None

NOTE This library is displayed as the NamingRules library object in the
Identity Manager IDE.

Customizing Default Rules and Rule Libraries

Chapter 1 Working with Rules 57

The following table lists the example NamingRules.

NewUsernameRules
The NewUsernameRule is a standard repository initialization file that you can use
to extract the value of a user distinguished name’s (DN) left most relative
distinguished name (RDN).

Inputs: None

You must specify the following for a custom NewUsernameRules rule:

AuthType: NewUserNameRule

SubType: Not specified

Called:

Returns: A proposed user name for new users upon registration.
For example, Use SubjectDN Common Name extracts the jsmith from
cn=jsmith,ou=engineering,dc=acme,dc=com.

Predefined Rule: Use SubjectDN Common Name

Table 1-8 Example NamingRules

Rule Name Description/Output

AccountName — First dot Last Marcus.Aurelius

AccountName — First initial Last MAurelius

AccountName — First underscore Last Marcus_Aurelius

Email marcus.aurelius@example.com
Note: You must append an AccountName rule to
the mail domain.

Fullname — First space Last Marcus Aurelius

Fullname — First space MI space Last Marcus A Aurelius

Fullname — Last comma First Aurelius, Marcus

Customizing Default Rules and Rule Libraries

58 Identity Manager 8.0 • Deployment Tools

Object Approvers As Attestors
The Object Approvers As Attestors rule returns the provided objectapprovers
parameter value if it is not null. If the objectapprovers list is not provided, this
rule creates a new list and includes the Configurator user.

Inputs: Accepts the following arguments:

• userEntitlement: View of a UserEntitlement object

• lhcontext: LighthouseContext of the caller

• objectowners: List of Identity Manager user names that are considered owners

• objectapprovers: List of Identity Manager user names that are considered
approvers

You must specify the following for a custom Object Approvers As Attestors rule:

AuthType: AccessScanRule

SubType: ATTESTORS_RULE

Called: By a running Access Review

Returns:

Predefined Rule: None

Object Owners As Attestors
The Object Approvers As Attestors rule returns the objectowners parameter if it is
not null. If the objectowners list is not provided, the rule creates a new list and
includes the Configurator user.

Inputs: Accepts the following arguments:

• userEntitlement: View of a UserEntitlement object

• lhcontext: LighthouseContext of the caller

• objectowners: List of Identity Manager user names that are considered owners

• objectapprovers: List of Identity Manager user names that are considered
approvers

Customizing Default Rules and Rule Libraries

Chapter 1 Working with Rules 59

You must specify the following for a custom Object Approvers As Attestors rule:

AuthType: AccessScanRule

SubType: ATTESTORS_RULE

Called: By a running Access Review

Returns: A list of Identity Manager user names

Predefined Rule: None

Organization Names
The Organization Names rule returns a List of Display Names for all organizations
within the current context.

Inputs: None

You must specify the following for a custom Organization Names rule:

AuthType: Not specified

SubType: Not specified

Called:

Returns:

Predefined Rule: None

OS400UserFormRules
Use the OS400UserFormRules to manage the default User Form values for an
OS400 resource.

Inputs: None

You must specify the following for a custom OS400UserFormRules rule:

AuthType: EndUserLibrary

SubType: Not specified

Called:

Returns: See Table 1-9

Predefined Rule: OS400 User Form Default Values

Customizing Default Rules and Rule Libraries

60 Identity Manager 8.0 • Deployment Tools

The following table lists the example OS400UserFormRules.

RACFUserFormRules
Use the RACFUserFormRules to specify default settings for your RACF resource
account.

Inputs: None

You must specify the following for a custom RACFUserFormRules rule:

AuthType: EndUserLibrary

SubType: Not specified

Called: From RACF User Form

Returns: A list of zero or more string values.

Predefined Rule: RACF User Form Default Values

Table 1-9 Example OS400UserFormRules

Rule Name Description

Default Password Expiration Interval Returns the default value for the password expiration interval.
The returned value is 90.

Default Initial Program Call Returns the default initial program called for a user.
The returned value is *LIB/CCTC00CLP.

Max Storage List Choices Returns a list of Max Storage Defaults. The values are in Kilobytes and
equate to: No maximum, 10MB, 50MB, 100MB.

Initial Menu Default Returns the initial menu default value.
The returned value is *SIGNOFF.

Language ID Default Returns the default language ID value.
The returned value is *SYSVAL.

Country ID Default Returns the default country ID value.
The returned value is *SYSVAL.

Character Set Default Returns a list of the default character set values.
The returned value is *SYSVAL.

UID Default Returns the UID default value.
The returned value is *GEN.

Home Directory Prepend Path to prepend to user ID to form home directory.

Customizing Default Rules and Rule Libraries

Chapter 1 Working with Rules 61

The following table lists the example RACFUserFormRules.

Reconciliation Rules
The following table provides information about the common Identity Manager
processes or tasks related to the reconciliation rules category:

• Correlation Rule

• Confirmation Rule

Correlation Rule
Identity Manager invokes the Correlation rule during reconciliation to associate a
resource account with one or more Identity Manager users.

Inputs: Accepts a WSUser representing a resource account as returned by
ResourceAdapter#getUser(WSUser)

You must specify the following for a custom Correlation rule:

AuthType: Not specified

SubType: SUBTYPE_ACCOUNT_CORRELATION_RULE

Namespace: All attribute values for the resource account defined in the schema
are provided in the following format:

account. LHS Attr Name

Called: During reconciliation

Table 1-10 Example RACFUserFormRules

Rule Name Description

Prepend RACF Home Dir Path Path prepended to accountId to form home directory.

RACF OMVS Program Specify a default OMVS program value.

RACF TSO Command Specify a default OMVS TSO value.

RACF Master Catalog Specify a default OMVS program value.

RACF User Catalog Specify a default OMVS program value.

RACF Delete TSO Segment Specify a default Delete TSO Segment value.

Customizing Default Rules and Rule Libraries

62 Identity Manager 8.0 • Deployment Tools

Returns: Criteria you can use to select existing users that might own the specified
account. A correlation rule can return criteria in any of the following forms:

• A string that is interpreted as a WSUser NAME

• A list of string elements that are each interpreted as a WSUser NAME

• A list of com.waveset.object.WSAttribute elements

• A list of com.waveset.object.AttributeCondition elements

Identity Manager uses any set of criteria returned by a correlation rule to query the
repository for matching users.

Predefined Rule: Default Correlation

Confirmation Rule
Identity Manager invokes the Confirmation rule during reconciliation to compare a
resource account with one or more Identity Manager users.

Inputs: Accepts the following arguments:

• A WSUser representing an existing IDM user

• A WSUser representing a resource account as returned by
ResourceAdapter#getUser(WSUser)

You must specify the following for a custom Confirmation rule:

AuthType: None

SubType: SUBTYPE_ACCOUNT_CONFIRMATION_RULE

Namespace: All attribute values for the resource account and all attributes in the
User view are provided in the following format:

• account.LHS Attr Name

• user.accounts[*].*

• user.waveset.*

• user.accountInfo.*

Called: During reconciliation

Returns: Logical true or false (1 or 0) depending on whether there is a match.

Predefined Rule: Default Confirmation

Customizing Default Rules and Rule Libraries

Chapter 1 Working with Rules 63

RegionalConstants Library
The RegionalConstants Library is a default library of rules that enable you to
control how states, days, months, countries, and provinces are displayed.

Inputs: See Table 1-11.

You must specify the following for a custom RegionalConstants Library rule:

AuthType: EndUserRule

SubType: Not specified

Called:

Returns: A list of strings.

Predefined Rule: Regional Constants

The following table lists the example RegionalConstants rules.

NOTE This library is displayed as the RegionalConstants Rules library
object in the Identity Manager IDE.

Table 1-11 Example Regional Constants Rules

Rule Name Input Variable Description

US States None Returns a list of the US state names.

US State Abbreviations None Returns a list of the standard US state
abbreviations.

Days of the Week None Returns a list of the full names of the seven
days of the week.

Work Days None Returns a list of the five work days of the week
(U.S.).

Months of the Year None Returns a list of the full names of the months of
the year.

Month Abbreviations None Returns a list of the standard abbreviation for
the selected month.

Numeric Months of the Year None Returns a list of 12 months.

Days of the Month None Returns a list of 31 days.

Customizing Default Rules and Rule Libraries

64 Identity Manager 8.0 • Deployment Tools

Remediation Transaction Message
The Remediation Transaction Message rule is a default rule that is used to format
the remediation or mitigation transaction text. You can customize this rule to
provide more information for the user to sign.

Inputs: Accepts the following arguments:

• workItemList: A set of workitems that are being approved.

• variablesList: A set of variables corresponding to each workitem in
workitemList.

• approverName: User being asked to approve the workitems.

• action: Expected to be remediate or mitigate.

• Comments: Comments that are entered as part of the remediation.

• expiration: ISO date string for the remediation end date, which is needed only
if the action is mitigate.

You must specify the following for a custom Remediation Transaction
Message rule:

AuthType: EndUserAuditorRule

SubType: Not specified

Called:

Returns: Formatted remediation or mitigation transaction text

Predefined Rule: None

Smart Days of the Month • month: Month whose dates are
to be calculated.

• year: Year for the month whose
dates are to be calculated.

Returns a list based on a numeric month and
four-digit year.

Countries None Lists the names, in English, of the countries of
the world.

Canadian Provinces None Lists the names, in English, of the Canadian
provinces.

Table 1-11 Example Regional Constants Rules (Continued)

Rule Name Input Variable Description

Customizing Default Rules and Rule Libraries

Chapter 1 Working with Rules 65

Remediation Transaction Message Helper
The Remediation Transaction Message Helper rule returns the formatted
transaction text for the remediation or mitigation of a single workitem.

Inputs: Accepts the following arguments:

• workItem: The workitem that is being approved.

• variables: The workitem variables.

You must specify the following for a custom Remediation Transaction Message
Helper rule:

AuthType: EndUserAuditorRule

SubType: Not specified

Returns: Formatted remediation or mitigation transaction text

Predefined Rule: None

ResourceFormRules
The ResourceFormRules library is a default library of rules that enable you to
customize values and choices used in several of the UserForms, which in turn are
frequently used to select user attributes for resources.

Inputs: See Table 1-12.

You must specify the following for a custom ResourceFormRules rule:

AuthType: EndUserLibrary

SubType: Not specified

Called: By UserForms, specifically

• sample\forms\AccessEnforcerUserForm.xml

• sample\forms\ADUserForm.xml

• sample\forms\AIXUserForm.xml

• sample\forms\HP-UXUserForm.xml

• sample\forms\NDSUserForm.xml

• sample\forms\RedHatLinuxUserForm.xml

Customizing Default Rules and Rule Libraries

66 Identity Manager 8.0 • Deployment Tools

• sample\forms\SolarisUserForm.xml

• sample\forms\SUSELinuxUserForm.xml

Returns: A list of strings

Predefined Rule: ResourceFormRuleLibrary

The following table describes the example ResourceFormRules.

Table 1-12 Example ResourceFormRules

Rule Name Input Variable Description

ListObjects • resourceType

• resourceName

• resourceInstance

Returns a list of resource objects, such as groups, that can be
used by multiple forms.

ListGroups • resourceName

• resourceInstance

Returns a list of groups that can be used by multiple forms.
NOTE: This rule is provided for backward compatibility.

getDefaultShell resourceType Returns a the default shell for a particular resourceType that can
be used by multiple forms. Ensure that each resourceType has
the same default shell as specified in the ResourceAdapter.

Exchange Servers None Returns a list of Exchange servers.

You can update this list to include the Exchange servers in your
environment.

Home Directory
Servers

None Returns a list of systems serving user home directories.

You can update this list to include the systems that serve home
directory drives in your environment.

AD Login Scripts None Returns a list of user login scripts.

You can update this list to include the login batch scripts in your
environment.

Home Directory Drive
Letters

None Returns a list of home directory mapped drive letters.

You can update this list to include the common home directory
map drive letters in your environment.

Home Directory
Volumes

None Returns a list of home directory volume names.

You can update this list to include the common home directory
volume names in your environment. Identity Manager uses this
value with the Home Directory server to create a user’s home
directory. The volume must exist and it must be shared on the
selected home directory server.

Customizing Default Rules and Rule Libraries

Chapter 1 Working with Rules 67

NDS Home Directory
Servers

None Returns a list of systems serving user home directories.

You can update this list to include the systems that serve home
directory drives in your environment.

NDS Home Directory
Types

None Returns a list of home directory mapped drive letters.

You can update this list to include the common home directory
map drive letters in your environment.

NDS Home Directory
Volumes

None Returns a list of home directory volume names.

You can update this list to include the common home directory
volume names in your environment. Identity Manager uses this
value with the Home Directory server to create a user’s home
directory. The volume must exist and it must be shared on the
selected home directory server.

NDS Template • resourceName

• ndsTemplate

• attrList

Returns an NDS Template object.

Is Mail User objectClasses Returns 1 if the objectClasses list contains all the following
classes, otherwise returns 0:

• inetuser

• ipuser

• inetmailuser

• inetlocalmailrecipient

• userpresenceprofile

getResourceAttribute • resName

• attrNam

Returns the value of the requested resource attribute.

Table 1-12 Example ResourceFormRules

Rule Name Input Variable Description

Customizing Default Rules and Rule Libraries

68 Identity Manager 8.0 • Deployment Tools

Resource Names
The Resource Name rule returns a list of Resources within the current context.

Inputs: None

You must specify the following for a custom Resource Names rule:

AuthType: Not specified

SubType: Not specified

Called:

Returns: A list of Resources

Predefined Rule: None

Role Approvers
The Role Approvers rule provides a list of users who are approvers for a
specified role.

Inputs: Accepts the roleName argument

You must specify the following for a custom Role Approvers rule:

AuthType: RoleUserRule

SubType: Not specified

Called:

Returns: A list of the statically defined approvers for a given role

Predefined Rule: None

Customizing Default Rules and Rule Libraries

Chapter 1 Working with Rules 69

Role Notifications
The Role Notifications rule provides a list of users who are designated to be
notified when a role is assigned to a user.

Inputs: Accepts the roleName argument

You must specify the following for a custom Role Notifications rule:

AuthType: RoleUserRule

SubType: Not specified

Called:

Returns: A list of the statically defined administrators to notify for a given role

Predefined Rule: None

Role Owners
The Role Owners rule provides a list of users who are the owners of a
specified role.

Inputs: Accepts the roleName argument

You must specify the following for a custom Role Owners rule:

AuthType: RoleUserRule

SubType: Not specified

Called:

Returns: A list of the statically defined owners for a given role

Predefined Rule: None

Customizing Default Rules and Rule Libraries

70 Identity Manager 8.0 • Deployment Tools

Sample On Local Network
The Sample On Local Network rule is an example of a LoginConstraintRule
evaluated during login to determine if the login module group will be applied to
the user login.

Inputs: None

You must specify the following for a custom Sample On Local Network rule:

AuthType: LoginConstraintRule

SubType: Not specified

Called: During login processing by the login module group

Returns:

• Returns 1 (true) if the user IP address matches a specific subnet so the login
module group should be applied.

• Returns 0 (false) if the user IP address does not match a specific subnet.

Predefined Rule: None

SAP Portal User Form Default Values
The SAP Portal User Form Default Values library is a default library of rules that
provide default values for the SAP Portal User Form.

Inputs: None

You must specify the following for a custom SAP Portal User Form Default Values
rule:

AuthType: Library

SubType: Not specified

Returns: See Table 1-13.

Predefined Rule: None

Customizing Default Rules and Rule Libraries

Chapter 1 Working with Rules 71

The following table describes the example SAP Portal User Form Default Values.

ShellRules
The ShellRules library consists of one rule, called getDefaultShell. Multiple forms
use the getDefaultShell rule to return the default shell for a particular Unix
resourceType.

Inputs: Accepts the resourceType argument.

The only valid resourceTypes are Solaris, AIX, HP-UX, and Red Hat Linux

You must specify the following for a custom ShellRules rule:

AuthType: Not specified

SubType: Not specified

Returns: A string that contains the default shell for the specified resourceType.

Predefined Rule: None

Table 1-13 Example SAP Portal User Form Default Values Rules

Rule Name Input Variable Description

Countries-ISO3166 Map None Returns a map of ISO3166 country codes.

Currency Code Map None Returns a map of country codes.

Locale Map None Returns a map of locales.

TimeZones None Returns a list of timezone IDs.

NOTE Each resourceType must have the same default shell as specified in
the ResourceAdapter.

Customizing Default Rules and Rule Libraries

72 Identity Manager 8.0 • Deployment Tools

SIEBEL_NAV_RULE
The SIEBEL_NAV_RULE is a sample navigation rule that could be specified as the
AdvancedNavRule, as discussed in the “Advanced Navigation” section of the Siebel
CRM documentation.

Inputs: None

You must specify the following for a custom SiebelNavigationRule:

AuthType: Not specified

SubType: Not specified

Predefined Rule: None

TestDictionary
Use the TestDictionary rule to run a JDBC query against the Identity Manager
dictionary to test the connection.

Inputs: Accepts the following arguments:

• type
• driverClass
• driverPrefix
• url
• host
• port
• database
• context
• user
• password
• sql
• arg1

You must specify the following for a custom TestDictionary rule:

AuthType: Not Specified

SubType: Not Specified

Called:

Returns:

Predefined Rule: None

Customizing Default Rules and Rule Libraries

Chapter 1 Working with Rules 73

TopSecretUserFormRules
Use the TopSecretUserFormRules to specify default settings for your TopSecret
resource account.

Inputs: None

You must specify the following for a custom TopSecretUserFormRules rule:

AuthType: EndUserLibrary

SubType: Not specified

Called: From TopSecret User Form

Returns: See Table 1-14.

Predefined Rule: None

The following table describes the example TopSecretUserFormRules.

Table 1-14 Example TopSecretUserFormRules

Rule Name Description

TopSecret Default OMVS Determines the default OMVS shell.

TopSecret Default TSO Determines the default TSO Process.

TopSecret Home Prepend Path Path to prepend to accountId to create home directory.

TopSecret Attribute List Returns a list of attributes that can be assigned to a user.

Customizing Default Rules and Rule Libraries

74 Identity Manager 8.0 • Deployment Tools

User Members Rule
The User Members Rule enables you to dynamically control a single organization's
user membership, based on who is logged in. For example, if you assign the User
Members Rule to the My Employees organization, the rule dynamically controls the
organization’s user membership as follows:

• If Bob logs in and controls the My Employees organization, then Bob can only
see and manage his employees in the My Employees organization.

• If Mary logs in and also controls the My Employees organization, she can only
see and manage her employees. She cannot see or manage Bob's or anyone
else’s employees.

Inputs: User view of the authenticated admin user, context or Identity Manager
session of authenticated administrator user

You must specify the following for a custom User Members Rule rule:

AuthType: UserMembersRule

SubType: Not specified

Called:

Returns:

• A list of resource accountIds

You can return resource accountids by invoking the
FormUtil.getResourceObjects call to, for example, return all user entries in a
specified directory OU.

Returned resource accountIds must be in one of the following formats:

❍ resourceId:accountId

❍ resourceId@accountId

 <list>
 <s>res1:stevel</s>
 <s>res1:joem</s>
 <s>res1:sallyp</s>
 </list>

Customizing Default Rules and Rule Libraries

Chapter 1 Working with Rules 75

• A list of Identity Manager AttributeConditions used to query the Identity
Manager repository for users matching the specified condition.

Predefined Rule: None

USER_EMAIL_MATCHES_ACCOUNT_EMAIL_CONF
The USER_EMAIL_MATCHES_ACCOUNT_EMAIL_CONF rule is a confirmation
rule that compares an Identity Manager user to an account.

Inputs: None

You must specify the following for a custom
USER_EMAIL_MATCHES_ACCOUNT_EMAIL_CONF rule:

AuthType: Not specified

SubType: SUBTYPE_ACCOUNT_CONFIRMATION_RULE

Returns: True if the email attribute values match

Predefined Rule: None

<list>
 <new class='com.waveset.object.AttributeCondition>
 <s>idmManager</s>
 <s>equals</s>
 <ref>waveset.accountId</s>
 </new>
 </list>

Customizing Default Rules and Rule Libraries

76 Identity Manager 8.0 • Deployment Tools

USER_EMAIL_MATCHES_ACCOUNT_EMAIL_CORR
The USER_EMAIL_MATCHES_ACCOUNT_EMAIL_CORR rule is a correlation
rule that searches for a Identity Manager user with an email attribute value that
matches the email attribute value in the specified account.

Inputs: None

You must specify the following for a custom
USER_EMAIL_MATCHES_ACCOUNT_EMAIL_CORR rule:

AuthType: Not specified

SubType: SUBTYPE_ACCOUNT_CORRELATION_RULE

Returns: A list of attribute conditions

Predefined Rule: None

USER_FIRST_AND_LAST_NAMES_MATCH_ACCOUNT
The USER_FIRST_AND_LAST_NAMES_MATCH_ACCOUNT rule is a
confirmation rule that compares an Identity Manager user to an account by looking
for a fullname attribute.

Inputs: None

You must specify the following for a custom
USER_FIRST_AND_LAST_NAMES_MATCH_ACCOUNT rule:

AuthType: Not specified

SubType: SUBTYPE_ACCOUNT_CONFIRMATION_RULE

Returns: True if first name and last name values match, otherwise
returns false

Predefined Rule: None

Customizing Default Rules and Rule Libraries

Chapter 1 Working with Rules 77

USER_NAME_MATCHES_ACCOUNT_ID
The USER_NAME_MATCHES_ACCOUNT_ID rule is a correlation rule that
searches for an Identity Manager user with the same name as the user in the
specified account.

Inputs: None

You must specify the following for a custom
USER_NAME_MATCHES_ACCOUNT_ID rule:

AuthType: Not specified

SubType: SUBTYPE_ACCOUNT_CORRELATION_RULE

Returns: Returns a string value

Predefined Rule: None

USER_OWNS_MATCHING_ACCOUNT_ID
The USER_OWNS_MATCHING_ACCOUNT_ID rule is a correlation rule that
searches for any Identity Manager user that owns an accountId matching the name
of the specified account.

Inputs: None

You must specify the following for a custom
USER_OWNS_MATCHING_ACCOUNT_ID rule:

AuthType: Not specified

SubType: SUBTYPE_ACCOUNT_CORRELATION_RULE

Returns: Returns a list of attribute conditions

Predefined Rule:

Customizing Default Rules and Rule Libraries

78 Identity Manager 8.0 • Deployment Tools

Users Without a Manager
The Users Without a Manager rule determines which Identity Manager users are
administrators.

Inputs: None

You must specify the following for a custom Users Without a Manager rule:

AuthType: AccessScanRule

SubType: USER_SCOPE_RULE

Called:

Returns: A list of user names that do not have a manager defined.

Predefined Rule: None

Use SubjectDN Common Name
The Use SubjectDN Common Name rule to return a subject’s common name from
the subject’s DN.

Inputs: None

You must specify the following for a custom Use SubjectDN Common Name rule:

AuthType: NewUserNameRule

SubType: Not specified

Called:

Returns: A common name

Predefined Rule: None

NOTE This rule uses the lhcontext variable from the calling scope.

Customizing Default Rules and Rule Libraries

Chapter 1 Working with Rules 79

Auditor Rules
To achieve a high level of configurability with minimal complexity, Identity
Auditor makes judicious use of rules in audit policy and access scan object
configuration.

Table 1-15 provides an overview of the rules you can use to customize how audit
policy remediation works and how access scans operate.

Table 1-15 Auditor Rule Types Quick Reference

Rule Type Example Rules subTypes and authTypes Purpose

Attestor Default Attestor SubType: ATTESTORS_RULE

AuthType: AccessScanRule

Automates the attestation process by
specifying a default attestor for
manual entitlements.

Attestor
Escalation

Default
EscalationAttestor

SubType:
AttestorEscalationRule

AuthType: AccessScanRule

Automates the attestation process by
specifying a default escalation user for
manual attestation.

Audit Policy Compare Accounts
to Roles

SubType:
SUBTYPE_AUDIT_POLICY_RULE

SubType:
SUBTYPE_AUDIT_POLICY_SOD_RULE

AuthType: AuditPolicyRule

Compares user accounts to accounts
specified by current Roles.

Compare Roles to
Actual Resource
Values

SubType:
SUBTYPE_AUDIT_POLICY_RULE

SubType:
SUBTYPE_AUDIT_POLICY_SOD_RULE

AuthType: AuditPolicyRule

Compares current resource attributes
with those specified by current Roles.

Remediation
User Form

SubType: USER_FORM_RULE

AuthType: Not specified

Automates the attestation process by
allowing audit policy authors to
constrain which part of a User view is
visible when responding to a particular
policy violation.

Remediator Default Remediator SubType: REMEDIATORS_RULE

AuthType: AccessScanRule

Automates the remediation process
by specifying a remediator for any
entitlements created in remediating
state.

Customizing Default Rules and Rule Libraries

80 Identity Manager 8.0 • Deployment Tools

Review
Determination

Reject Changed
User

SubType:
REVIEW_REQUIRED_RULE

AuthType: AccessScanRule

Automates the attestation process by
automatically rejecting user
entitlement records.

Review Changed
Users

SubType:
REVIEW_REQUIRED_RULE

AuthType: AccessScanRule

Automates the attestation process by
automatically approving user
entitlement records.

Review Everyone SubType:
REVIEW_REQUIRED_RULE

AuthType: AccessScanRule

Automates the attestation process by
requiring manual attestation for some
user entitlement records.

User Scope All Administrators SubType: USER_SCOPE_RULE

AuthType: AccessScanRule

Provides flexibility in selecting a list of
users to be scanned by an access
scan.

All
Non-Administrators

SubType: USER_SCOPE_RULE

AuthType: AccessScanRule

Provides flexibility in selecting a list of
users to be scanned by an access
scan.

Users Without a
Manager

SubType: USER_SCOPE_RULE

AuthType: AccessScanRule

Provides flexibility in selecting a list of
users to be scanned by an access
scan.

ViolationPriority ViolationPriority SubType: Not specified

AuthType:
EndUserAuditorRule

Customization — allows the
deployment to specify what are valid
violation priorities and the
corresponding display strings.

ViolationSeverity ViolationSeverity SubType: Not specified

AuthType:
EndUserAuditorRule

Customization — allows the
deployment to specify what are valid
violation severities and the
corresponding display strings.

Table 1-15 Auditor Rule Types Quick Reference(Continued)

Rule Type Example Rules subTypes and authTypes Purpose

Customizing Default Rules and Rule Libraries

Chapter 1 Working with Rules 81

The following sections provide information about these Identity Auditor rules,
how you might customize them, and why:

• Attestor Rule

• Attestor Escalation Rule

• Audit Policy Rule

• Remediation User Form Rule

• Remediator Rule

• Review Determination Rule

• User Scope Rules

• ViolationPriority Rule

• ViolationSeverity Rule

• Sample Auditor Rule Multiple Account Types

Attestor Rule
Every user entitlement that is created in a pending state must be attested by
someone. During an access review, Identity Auditor passes each User view to the
Attestor rule to determine who gets the initial attestation requests.

The idmManager attribute on the WSUser object contains the Identity Manager
account name and ID of the user’s manager.

• If you define a value for idmManager, the Attestor rule returns idmManager as
the attestor for the user represented by the entitlement record.

• If the idmManager value is null, the Attestor rule returns Configurator as the
attestor.

You can use alternate implementations to designate both IdmManager and any
Resource owners as attestors (for Resources included in the view). This rule takes
the current User view and a LighthouseContext object as inputs, so you can use
any data known to Identity Manager.

Inputs: Accepts the following arguments:

• userEntitlement: Current User view

• lhcontext: LighthouseContext

Customizing Default Rules and Rule Libraries

82 Identity Manager 8.0 • Deployment Tools

• objectowners:

• objectapprovers:

You must specify the following for a custom Attestor rule:

AuthType: AccessScanRule

SubType: ATTESTORS_RULE

Called: During access scan; after evaluating all audit policies, but before
dispatching the user entitlement

Returns: A list of zero or more Identity Manager attestor names (users
responsible for attesting a particular user entitlement) or NamedValue pairs.

• If the result is a string, it must resolve to an Identity Manager account ID.
If delegation is enabled for the access scan, the access scan will use the
delegation settings of the Identity Manager user returned by the code.

• If the result is a NamedValue, it assumed to be a bound delegation pair
[Delegator, Delegatee], and the access scan will not resolve any further.

• If the result is not a valid Identity Manager user name, the rule appends errors
to the scan task results, but the scan thread continues.

• If the result is a zero-length list, the attestation request remains in pending
state because nobody will process the request.

• If the result is neither a string or a NamedValue, an exception results and the
scan thread aborts.

Predefined Rule: Default Attestor

Location: Compliance > Manage Policies > Access Scan > Attestor Rule

NOTE If the rule returns NamedValue pair elements, they are passed on
without validation.

Customizing Default Rules and Rule Libraries

Chapter 1 Working with Rules 83

Attestor Escalation Rule
A workflow calls the Attestor Escalation rule when an attestation times out because
the attestor did not take action within a specified period of time. This rule returns
the next person in the escalation chain based on the cycle count.

Inputs: Accepts the following arguments:

• wfcontext: WorkflowContext

• userEntitlement: Current view of user entitlement, including User view

• cycle: Escalation level. For the first escalation, the cycle is 1.

• attestor: Name of attestor who failed to attest before the attestation request
timed out.

You must specify the following for a custom Attestor Escalation rule:

AuthType: AccessScanRule

SubType: AttestorEscalationRule

Called: During an attestation workflow when a workitem times out.
(Default timeout is 0 — never times out).

Returns: A single attestor name or a list of attestor names, which must be valid
Identity Manager account names.

• If the attestor does not have a manager, the Attestor Escalation rule returns
Configurator.

• If the result is an invalid account name or null, the attestation workitem is not
escalated.

Predefined Rule: Default EscalationAttestor

Location: Compliance > Manage Policies > Access Scan > Attestor
Escalation Rule

Customizing Default Rules and Rule Libraries

84 Identity Manager 8.0 • Deployment Tools

Audit Policy Rule
An audit policy contains a set of rules that it applies to data representing an object
being audited. Each rule can return a boolean value (plus some optional
information).

To determine whether a policy has been violated, the audit policy evaluates a
logical operation on the results of each rule. If the audit policy has been violated, a
compliance violation object might result, with (typically) one compliance violation
object per policy, rule, or whatever was being audited. For example, an audit policy
with five rules might result in five violations.

Inputs: None

You must specify the following for a custom Audit Policy rule:

AuthType: AuditPolicyRule

SubTypes:

• SUBTYPE_AUDIT_POLICY_RULE (for an audit policy rule)

• SUBTYPE_AUDIT_POLICY_SOD_RULE (for an audit policy SOD rule)

SOD (separation of duties or segregation of duties) rules differ from regular rules in
that they are expected to produce a list element in the rule output. A list
element is not required; but if one is not present, it causes any corresponding
violations to be ignored in SOD reporting.

Called: During an Audit Policy Evaluation

Returns: An audit policy rule must return an integer value, but the value can be
expressed as one of the following:

• A pure integer:

NOTE When you use the Audit Policy Wizard to create an Audit
Policy rule, the wizard uses the AuditPolicyRule authType by
default.

If you use the Identity Manager IDE or the Identity Manager
Business Process Editor (BPE) to create an Audit Policy rule, be
sure to specify the AuditPolicyRule authType.

<i>1</i>

Customizing Default Rules and Rule Libraries

Chapter 1 Working with Rules 85

• An integer within a map of additional data:

If the audit policy returns a map, other elements can affect the resulting
compliance violation. These elements include:

❍ resources element: Causes the compliance violation to refer to two
resources, resource one and resource two. These values must be real
resource names because the compliance violation contains actual object
references (so the names are resolved to IDs). (Default is no resource.)

❍ severity element: Causes the compliance violation to have the specified
severity. (Default is 1.)

❍ priority element: Causes the compliance violation to have the specified
priority. (Default is 1.)

<map>
 <s>result</s>
 <i>1</i>
 ...
</map>

<s>resources</s>
<list>
 <s>resource one</s>
 <s>resource two</s>
</list>

<s>severity</s>
<i>3</i>

<s>priority</s>
<i>2</i>

Customizing Default Rules and Rule Libraries

86 Identity Manager 8.0 • Deployment Tools

❍ violation element: Prevents the audit scanner from creating a rule
violation — even if the audit policy evaluates to true.

By default, if the audit policy evaluates to true, it creates compliance
violations for each rule that returns a non-zero. Setting this element to zero
allows the rule to return true, but does not create a violation for the rule.

Predefined Rules:

• Compare Accounts to Roles: Compares user accounts to accounts specified by
roles. Any account not referenced by a role is considered an error.

• Compare Roles to Actual Resource Values: Compares current resource
attributes with those specified by current Roles. Any differences are considered
errors, and any resources or resource attributes not specified by a role are
ignored.

<s>violation</s>
<i>0</i>

NOTE The Audit Policy Wizard only creates rules that reference a single
resource and return an integer value (not a map).

To use any of the preceding map-related features, you must write
the rule yourself. Some very sophisticated audit policy rule
examples are provided in sample/auditordemo.xml.

NOTE The RULE_EVAL_COUNT value equals the number of rules that were evaluated during a
policy scan. Identity Manager calculates this value as follows:

RULE_EVAL_COUNT = # of users scanned x (# of rules in policy + 1)

The +1 is included in the calculation because Identity Manager also counts the policy
rule, which is the rule that actually decides if a policy is violated. The policy rule
inspects the audit rule results, and performs the boolean logic to come up with a
policy result.

For example, if you have Policy A with three rules and Policy B with two rules, and
you scanned ten users, the RULE_EVAL_COUNT value equals 70 because

10 users x (3 + 1 + 2 + 1 rules)

Customizing Default Rules and Rule Libraries

Chapter 1 Working with Rules 87

Remediation User Form Rule
The Remediation User Form rule allows audit policy authors to constrain which
part of a User view is visible when they are responding to a particular policy
violation.

When a remediator edits a user during entitlement remediation processing, a JSP
(approval/remModifyUser.jsp) calls the Remediation User Form rule. This rule
allows the access scan to specify an appropriate form for editing a user. If the
remediator has already specified a user form, then the access scan uses that form
instead.

Inputs: Accepts the item argument (Remediation WorkItem)

You must specify the following for a custom Remediation User Form rule:

AuthType: Not specified

Subtype: USER_FORM_RULE

Called: During JSP form processing after the remediator clicks Edit User on the
remediation form.

Returns: The name of a User Form or a null.

Predefined Rule: None

Locations:

• Compliance > Manage Policies > Access Scan > Remediation User Form Rule

• Compliance > Manage Policies > Audit Policy > Remediation User Form Rule

Customizing Default Rules and Rule Libraries

88 Identity Manager 8.0 • Deployment Tools

Remediator Rule
During an access review, every User view is passed to the Remediator rule to
determine who should get the initial remediation requests. This rule is analogous
to the Attestors rule, except the Remediator rule is called when a workitem is
created in the remediating state.

Inputs: Accepts the following arguments:

• lhcontext: LighthouseContext

• userEntitlement: Current User view

You must specify the following for a custom Remediator rule:

AuthType: AccessScanRule

SubType: REMEDIATORS_RULE

Called: During access scan, after evaluating all audit policies and before
dispatching the user entitlement

Returns: A list of zero or more Identity Manager remediator names or
NamedValue pairs.

• If the result is a string, it is resolved to a Identity Manager user, and if
delegation is enabled for the access scan, the user's delegation data is used.

• If the result is a NamedValue, it is assumed to be a bound delegation pair
[Delegator, Delegatee].

• If the result is one or more invalid Identity Manager user names, errors
indicating a problem are appended to the scan task results, but the scan thread
continues.

• If the result is not a string or NamedValue, an exception occurs and the scan
thread aborts.

• If the results are a zero-length list, the remediation request remains in a
pending state because nobody will process it.

Predefined Rule: Default Remediator

Location: Compliance > Manage Policies > Access Scan > Remediator Rule

NOTE If the rule returns NamedValue pair elements, they are passed on
without validation.

Customizing Default Rules and Rule Libraries

Chapter 1 Working with Rules 89

Review Determination Rule
During an access review, every User view is passed to the Review Determination
rule to determine whether the corresponding user entitlement record can be
automatically approved or rejected, automatically placed into remediation state, or
if the record must be manually attested. A user entitlement is a complete User view
(in which some resources might be omitted) and some tracking data.

You can use the Review Determination rule to significantly increase the efficiency
of an access review by

• Encapsulating any institutional knowledge that would allow a user to be
automatically approved or rejected. If you express that knowledge in this rule,
you reduce the number of manual attestations needed and improve overall
review performance.

• Configuring this rule to return information that is visible to the attestors as a
“hint.” For example, when the rule determines that a user has privilege access
to a resource, the rule provides a hint to the attestor, as shown in the following
example:

• Configuring the rule to access the User view (including any Compliance
Violations) and compare the user’s previous user entitlements, which allows
the rule to approve or reject all user entitlements that are the same as (or
different from) a previously approved user entitlement.

<map>
<result>
<i>1</i>
<s>reason</s>
<s><reason the attestation was auto-approved/rejected></s>
<s>attestorHint</s>
<s><hint to attestor></s>

</map>

Customizing Default Rules and Rule Libraries

90 Identity Manager 8.0 • Deployment Tools

You can add an argument that allows the rule to compare subsets of the User
view. For example:

This argument compares User views and allows the caller to specify a subpath
of the complete User view using GenericObject path expressions. If you just
want to compare particular account data, the subpath can specify that data. If
you compare just the accounts subpath of the User view, you are less likely to
encounter differences that are not reflected on a real resource.

Differences found in the User view comparison are returned in the reason
element of the output map. The audit log captures this difference data if the
rule returns 0 (reject attestation) or 2 (approve attestation), just as the
predefined Reject Changed Users rule does.

You can use the Reject Changed Users rule to verify exactly what Identity
Manager thinks is different and you can look at the auditable attributes in the
resulting audit log records.

Inputs: Accepts the following arguments:

• context: LighthouseContext

• review.scanId: Current access scan ID

• review.username: Identity Manager account name of user being scanned

• review.userId: Identity Manager ID of user being scanned

• attestors: Attestors’ Identity Manager account names

• userView: Current User view

You must specify the following for a custom Review Determination rule:

AuthType: AccessScanRule

SubType: REVIEW_REQUIRED_RULE

<set name='viewCompare'>
<!-- compare the entire view (3rd argument can specify sub-path) -->
<invoke name='compareUserViews' class='com.sun.idm.auditor.ui.FormUtil'>
<ref>userView</ref>
<ref>lastUserView</ref>
<s>accounts</s>
</invoke>
</set>

Customizing Default Rules and Rule Libraries

Chapter 1 Working with Rules 91

Called: During access scan, after evaluating all audit policies and before
dispatching the user entitlement

Returns: An integer or a map

• If the rule returns an integer, its value is interpreted as follows:

❍ -1: No attestation required
❍ 0: Automatically reject attestation
❍ 1: Manual attestation
❍ 2: Automatically approve attestation
❍ 3: Automatically remediate attestation

When the attestation is set to auto-remediating mode, Identity Manager
creates an AccessReviewRemediation work item and routes the work item
through the Remediator rule associated with the access scan.

• If the rule returns a map, the output must be similar to one of the following
examples:

Example 1: Manually attests the user entitlement, and the rule provides a hint
to the manual attestor.

<map>
<result>
<i>1</i>
<s>reason</s>
<s><reason that the attestation was auto-approved/rejected></s>
<s>attestorHint</s>
<s><hint to attestor></s>

</map>

NOTE The attestorHint value in the output map must be a string or a
list of strings.

Customizing Default Rules and Rule Libraries

92 Identity Manager 8.0 • Deployment Tools

Example 2: Automatically rejects the user entitlement. The rejection comment
indicates that group membership is disallowed.

Predefined Rules:

• Reject Changed Users: Automatically rejects user entitlements that have
changed since the last approval state, and automatically approves user
entitlements that are unchanged. The rule only compares the accounts section
of the User view.

Each unknown User view is forwarded for manual attestation.

• Review Changed Users: Automatically approves any users whose account
data has not changed since their last approved entitlement. The rule only
compares the accounts section of the User view.

Users with changed account data or no approved data must be manually
attested.

• Review Everyone: Forwards all user entitlement records for manual
attestation.

Location: Compliance > Manage Access Scans > Access Scan > Review
Determination Rule

<map>
 <s>result</s>
 <i>0</i>
 <s>reason</s>
 <s>User belongs to group Domain Administrators</s>
</map>

NOTE The value of attestorHint is shown to the attestor through the
user interface. The value of reason is recorded in the attestation
history.

Customizing Default Rules and Rule Libraries

Chapter 1 Working with Rules 93

User Scope Rules
If an access scan has users scoped by a rule, the User Scope rule is evaluated to
determine a list of users to scan.

Inputs: Accepts the lhcontext argument

You must specify the following for a custom User Scope rule:

AuthType: AccessScanRule

SubType: USER_SCOPE_RULE

Called: At the beginning of an access scan

Returns: An Identity Manager user name or a list of Identity Manager user
names. Each name must be a valid Identity Manager user name.

• If the results contain any names that cannot be resolved to valid Identity
Manager user names, the rule returns an error.

• If the results contain any duplicate user names, the rule returns an error.

Predefined Rules:

• All Administrators: Returns all users with administrative capabilities
assigned.

• All Non-Administrators: Returns all users with no administrative capabilities
assigned.

• Users Without Manager: Returns all user accounts with no manager
(idmManager) assigned.

Location: Compliance > Manage Access Scans > Access Scan > User Scope Rule

NOTE • An access scan that scans the same user multiple times might
fail to create the attestation workflow for a subsequent instance
of the same user. Therefore, a customized implementation of the
User Scope rule should provide checks to avoid duplicate users
in the output.

• This rule can return accounts that are not available to the
administrator running the scan. In this case, the scan will
attempt to get the account’s User view and fail; resulting in an
error in the scan task.

Customizing Default Rules and Rule Libraries

94 Identity Manager 8.0 • Deployment Tools

ViolationPriority Rule
Use the ViolationPriority rule to allow a deployment to specify what the valid
violation priorities are, and what the corresponding display strings will be.

Inputs: None

You must specify the following for a custom ViolationPriority rule:

AuthType: EndUserAuditorRule

SubType: Not specified

Called: When displaying the violation list and when changing violation priority.

Returns: A list of key/value pairs indicating priority integer value and a
corresponding string. The integer values must be contiguous because the rule
returns a list, not a map.

Predefined Rule: ViolationPriority

Location: Called from the Remediation List Form

NOTE You can customize this rule to change the display value for any
priority setting.

When a ComplianceViolation is created, you can change priority
values in the Remediation WorkItem list viewer. Select one or more
Remediation WorkItems, and then select Prioritize, which enables
you to change priority values.

To see these values in the Remediation WorkItem list view, you
must change the approval/remediate.jsp page by setting the
includeCV option to true (default is false). However, enabling the
more detailed view affects performance, which may be unacceptable
for deployments with lots of Remediations.

The custom value expects the ViolationPriority rule to be an array
rather than a map. So, if you use 100 as the integer value, the rule
must have 200 elements (alternate int/string). The list provides both
string mapping for the integer and populates the selection in the
form where you changed it.

Customizing Default Rules and Rule Libraries

Chapter 1 Working with Rules 95

ViolationSeverity Rule
Use the ViolationSeverity rule to allow a deployment to specify what the valid
violation severities are, and what the corresponding display strings will be.

Inputs: None

You must specify the following for a custom ViolationSeverity rule:

AuthType: EndUserAuditorRule

SubType: Not specified

Called: When displaying the violation list and when changing violation severity.

Returns: A list of key/value pairs indicating severity integer value and a
corresponding string. The integer values must be contiguous because the rule
returns a list, not a map.

Predefined Rule: ViolationSeverity

Location: Called from the Remediation List Form

NOTE You can customize this rule to change the display value for any
priority setting.

When a ComplianceViolation is created, you can change severity
values in the Remediation WorkItem list viewer. Select one or more
Remediation WorkItems, and then select Priority, which enables
you to change severity values.

To see these values in the Remediation WorkItem list view, you
must change the approval/remediate.jsp page by setting the
includeCV option to true (default is false). However, enabling the
more detailed view affects performance, which may be unacceptable
for deployments with lots of Remediations.

The custom value expects the ViolationSeverity rule to be an array
rather than a map. So, if you use 100 as the integer value, the rule
must have 200 elements (alternate int/string). The list provides both
string mapping for the integer and populates the selection in the
form where you changed it.

Customizing Default Rules and Rule Libraries

96 Identity Manager 8.0 • Deployment Tools

Sample Auditor Rule Multiple Account Types
You can use the Sample Auditor Rule Multiple Account Types rule to dynamically
test multiple user accounts per resource. For example,

1. Set up a resource with multiple account types (see Code Example 1-31).

2. Add a user with two accounts on the resource and set up a user form so that
the new resource attributes are directly assigned separately:

account[Simulated Resource].department

account[Simulated Resource|admin].department

3. Assign different values for each account and test the policy rule.

Location: sample/rules/SampleAuditorRuleMultipleAccountTypes.xml

Code Example 1-31 Sample Auditor Rule Multiple Account Types Rule

<?xml version='1.0' encoding='UTF-8'?>
<!DOCTYPE Waveset PUBLIC 'waveset.dtd' 'waveset.dtd'>
<Waveset>
<Rule subtype='IdentityRule' name='Administrator Identity'>
 <concat>
 <s>adm</s>
 <ref>attributes.accountId</ref>
 </concat>
</Rule>
</Waveset>

Customizing Default Rules and Rule Libraries

Chapter 1 Working with Rules 97

Audit Policy Rules
ComplianceViolations support numeric severity and priority attributes that enable
you to distinguish between violations by severity or priority. You can assign these
attributes to the violation, based on Audit rule output.

For example, if the Audit rule provides the following output, the resulting
ComplianceViolation will have a severity of 3 and a priority of 4.

The following rules map between a ComplianceViolation’s numeric value and its
display string value:

• ViolationSeverity: Indicates the seriousness of the violation.

• ViolationPriority: Indicates the order in which a ComplianceViolation would
be addressed.

Identity Auditor allows you to customize these rules by changing the display value
for any severity or priority setting.

After creating a ComplianceViolation, you can view and change the severity and
priority values in the Remediation WorkItem list viewer by selecting one or more
Remediation WorkItems, and then clicking Prioritize.

<map>
 <s>result</s>
 <i>1</i>
 <s>severity</s>
 <i>3</i>
 <s>priority</s>
 <i>4</i>
</map>

NOTE To view severity and priority values in the Remediation WorkItem
list viewer, you must change the approval/remediate.jsp page to
set the includeCV option to true (default is false).

However, be aware that enabling a more-detailed view affects
performance, which may be unacceptable for deployments with lots
of Remediations.

Customizing Default Rules and Rule Libraries

98 Identity Manager 8.0 • Deployment Tools

Service Provider Rules
This section describes the following example Service Provider rules:

• Service Provider Confirmation Rules

• Service Provider Correlation Rules

• Service Provider Account Locking Rules

Service Provider Confirmation Rules
The example Service Provider confirmation rules have access to the list of
candidate accountIds under the candidates path and to the Service Provider User
view under the view path.

Inputs: None

You must specify the following for a custom Service Provider confirmation rule:

AuthType: SPERule

SubType: SUBTYPE_SPE_LINK_CONFIRMATION_RULE

Returns: A null or a string representing the confirmed accountId

Predefined Rule: None

The following table describes the example confirmation rules you can use to
customize Service Provider.

Table 1-16 Example Service Provider Confirmation Rules

Rule Name Description

Service Provider Example Confirmation Rule
Rejecting All Candidates

Rejects all candidates from a link correlation rule.
Returns a null.

Service Provider Example Confirmation Rule
Returning First Candidate

Returns the first accountId from the candidate list.

Service Provider Example Confirmation Rule
Selecting Candidates Using AccountId

Returns the candidate that matches the accountId in the view.
If the rule cannot find the accountId from the view in the
candidate list, then the rule returns a null.

Customizing Default Rules and Rule Libraries

Chapter 1 Working with Rules 99

Service Provider Correlation Rules
The example Service Provider correlation rules have access to the Service Provider
User view.

Inputs: None

You must specify the following for a custom Service Provider correlation rule:

AuthType: SPERule

SubType: SUBTYPE_SPE_LINK_CORRELATION_RULE

Returns: A single accountId, a list of accountIds, or an option map

• If the rule returns a list of accountIds, then you must set a confirmation rule to
determine the selected accountId.

• If the rule returns an option map, then the view handler first retrieves a list of
identities from the resource adapter by invoking the listResourceObjects
context call with the provided option map.

Predefined Rule: None

The following table describes the example correlation rules you can use to
customize Service Provider.

Table 1-17 Example Service Provider Correlation Rules

Rule Name Description

Service Provider Example Correlation Rule for
LDAP Returning Option Map

Returns an option map with a search filter to be used with an
LDAP adapter. The LDAP Resource Adapter allows a filter to be
passed to scope the search operation. The filter is expected to be
an LDAP search filter.

Service Provider Example Correlation Rule for
Simulated Returning Option Map

Returns an option map with a search filter to be used with a
Simulated Resource Adapter. The Simulated Resource Adapter
allows a filter to be passed to scope the search operation. This
adapter expects the search filter to be an AttributeExpression.

Service Provider Example Correlation Rule
Returning List of Identities

Returns a list of accountIds in LDAP DN format that are
composed from the accountId in the view.

Service Provider Example Correlation Rule
Returning Single Identity

Returns a single accountId in LDAP DN format composed from
the account Id in the view.

Customizing Default Rules and Rule Libraries

100 Identity Manager 8.0 • Deployment Tools

Service Provider Account Locking Rules
The example Service Provider account locking rules have access to the Service
Provider User view and they lock or unlock accounts in a Sun Directory Server.

Inputs: See Table 1-18.

You must specify the following for a custom Service Provider account locking rule:

AuthType: SPERule

SubType: Not specified

Returns: Nothing

Predefined Rule: None

The following table describes the example account locking rules you can use to
customize Service Provider.

Table 1-18 Example Service Provider Account Locking Rules

Rule Name Input Variable Description

Service Provider Example Lock
Account Rule

lockExpirationDate: A possibly
null java.util.Date at which the
lock should expire.

Locks an account in a Sun Directory Server.
This rule modifies top-level attributes in the
Service Provider user view.

Service Provider Example
Unlock Account Rule

None Unlocks an account in a Sun Directory Server.
This rule modifies top-level attributes in the
Service Provider user view.

101

Chapter 2

Developing Custom Adapters

Identity Manager’s open architecture enables you to create custom resource
adapters to manage external resources that are not already supported by the
resource adapters provided with Identity Manager. These custom adapters define
essential characteristics and methods needed to transform requests from Identity
Manager into actions performed on a resource.

This chapter describes how to create, test, and load a custom Identity Manager
resource adapter. This information is organized as follows:

• Before You Begin

• What is a Resource Adapter?

• What is a Resource Object?

• Write the Adapter Methods

• Installing Custom Adapters

• Testing Custom Adapters

• Troubleshooting Custom Adapters

• Maintaining Custom Adapters

NOTE Identity Manager contains sample adapters or skeleton adapters that
are intended to be used as a basis for creating custom adapters. To
enhance your understanding of these valuable starter files, this
chapter uses them frequently to exemplify particular characteristics
of resource adapter files.

Before You Begin

102 Identity Manager 8.0 • Deployment Tools

Before You Begin
Review the information in these sections before you start developing custom
adapters:

• Intended Audience
• Important Notes
• Related Documentation

Intended Audience
This chapter provides background information about resource adapter design and
operation for:

• Developers who need to create custom resource adapters

• Identity Manager administrators who are learning how the Identity Manager
system works or who need to troubleshoot problems with resource adapters.

This chapter assumes that you are familiar with creating and using the built-in
Identity Manager resources and that you have read the Resources chapter of Sun
Java™ System Identity Manager Administration.

Important Notes
Be sure to read the following information before trying to write custom resource
adapters for Identity Manager:

• Do not create custom adapters in the com.waveset.adapter package. Instead,
create custom adapters in a customer-specific package to be sure the adapter
uses package-level classes and methods that are included in the supported
public API. For example, use com.customer_name.adapter.

Also, all package names must be lowercase.

• Do not use import .*. Although Java supports this mechanism, using
import .* is generally considered bad practice because this mechanism

❍ Obscures the actual location of referenced classes to readers

❍ Can result in incorrect or ambiguous references (such as compiler errors)
in certain situations following internal refactoring

Instead, insert an explicit import statement for every referenced class or
interface.

What is a Resource Adapter?

Chapter 2 Developing Custom Adapters 103

Related Documentation
In addition to the information provided in this chapter, see the following
publications related to resource adapters:

You can download these publications from http://docs.sun.com.

What is a Resource Adapter?
A resource adapter serves as a proxy between Identity Manager and an external
resource, such as an application or database. The adapter defines the essential
characteristics of the resource type, and this information is saved in the Identity
Manager repository as a resource object. Identity Manager resource adapters are
standard or Active Sync-enabled adapters.

This section contains the following topics:

• What Are Standard Resource Adapters?

• What Are Active Sync-Enabled Resource Adapters?

• What is a Resource Object?

• What is a Resource Adapter Class?

Table 2-1 Related Documentation

Publication Title Description

Identity Manager Resource Reference Describes how to load and synchronize account information from
a resource into Sun™ Identity Manager.

Identity Manager Administration Contains additional information about customizing and
managing resources supplied by Identity Manager.

What is a Resource Adapter?

104 Identity Manager 8.0 • Deployment Tools

What Are Standard Resource Adapters?
Standard resource adapters provide a generic interface to resource types that are
supported by Identity Manager; such as Web servers, Web applications, databases,
and even legacy applications and operating systems. In Java terms, standard
resource adapters extend the ResourceAdapterBase class.

These adapters push account information changes from Identity Manager to their
managed, external resources and typically perform the following administrative
activities:

• Connect to and disconnect from a resource

• Create, delete, or modify users

• Enable, disable, or get users

• Authenticate users

• Manage objects such as group membership or directory organization structure

Standard resource adapters generally follow these steps when pushing
information from Identity Manager to the resource managed by Identity Manager:

1. Identity Manager server initializes the resource manager.

All available resource types are registered through the Resource Adapter
interface. As part of the registration process, the resource adapter provides a
prototype XML definition.

2. User initiates process of creating a new resource.

When an Identity Manager administrator creates a new resource, the task that
creates the form to display the resource type’s prototype definition is queried
for the resource attribute fields. Identity Manager uses these attributes to
display a form in the browser. The user who is creating the new resource fills
in the information and clicks Save.

3. Identity Manager saves the information provided, along with the other
resource fields in the resource object repository under the name of the new
resource object.

When the user clicks Save during resource creation, the creation task gathers
the entered data, executes any necessary validation, then serializes the data via
XML before writing the serialized object to the object repository.

What is a Resource Adapter?

Chapter 2 Developing Custom Adapters 105

4. Identity Manager displays the list of available resources in a multi-selection
box when an Identity Manager user is created or modified.

Selecting a resource causes Identity Manager to query the resource object for
the available account attribute fields. Identity Manager uses these field
descriptions to display a form that contains the attribute fields, which the user
can fill in with the appropriate data.

5. The resource object is queried for the connection information when this form is
saved, and a connection is established with the resource.

6. The adapter sends the command to perform the intended action on the account
on the resource over this connection.

7. If this request is a create request, the adapter updates the Identity Manager
user object with the resource account information.

When user account information is displayed, Identity Manager requests the list
of resources on which the user has accounts from the saved account object. For
each resource, Identity Manager queries the resource object and uses the
connection information to establish a connection to the resource.

The adapter sends a command over this connection to retrieve account
information for the user, and it uses the retrieved information to fill in the
attribute fields that are defined in the resource object. The system creates a
form to display these values.

What Are Active Sync-Enabled Resource
Adapters?
Active Sync-enabled adapters are an extension of a standard resource adapter and
they are used to implement the Active Sync interface for some common resources,
such as Active Directory. These adapters pull data changes directly from the
resource to initiate the following activities in Identity Manager:

• Polling or receiving change event notification

• Issuing actions to create, update, or delete resource accounts

• Editing or creating users with a custom form

• Saving the resource changes

• Logging progress information and errors

What is a Resource Adapter?

106 Identity Manager 8.0 • Deployment Tools

Active Sync-enabled adapters are particularly suitable for supporting the following
resource types:

• Applications with audit or notification interfaces

Some applications, such as Microsoft Active Directory and PeopleSoft, have
external interfaces. You can configure these application interfaces to add
events to an audit log or to notify other applications when certain changes
occur.

For example, you can configure the interface to record an transaction in the
audit log whenever a user account is modified natively on the Active Directory
server. You can configure the Identity Manager Active Directory resource to
review this log every 30 minutes and trigger events in Identity Manager when
any changes occur. You can register other Active Sync-enabled adapters with
the resource through an API, and use event messages to notify the adapter
when changes occur. These event messages can reference the item that
changed, the information that was updated, and frequently the user who made
the change.

• Databases populated with update information

You can manage database resources by generating a table of deltas and
generate this table in several different ways. For example, you can compare a
snapshot of the database to current values and create a new table with the
differences. The adapter pulls rows from the table of deltas, processes them,
and subsequently marks them when completed.

• Databases with modification timestamps

You can create Active Sync-enabled queries for database entries that have been
modified after a particular time. The adapters run updates and then poll for
new queries. By storing the last successfully processed row, Identity Manager
can perform a “starts with” query to minimize the polling impact. Only those
changes made to the resource since the previous set of modifications were
made are returned for processing.

• Resources with change-log entries.

Most LDAP servers provide a change-log mechanism that you can use to track
changes, optionally constrained to sections of interest in the DIT. By
periodically querying the change-log entries, the LDAP resource adapter can
update Identity Manager with detected changes; including creates, deletes, and
updates.

What is a Resource Adapter?

Chapter 2 Developing Custom Adapters 107

Active Sync-enabled adapters generally follow these steps when listening or
polling for changes to the resource managed by Identity Manager. When the
adapter detects that a resource has changed, the Active Sync-enabled adapter:

1. Extracts the changed information from the resource.

2. Determines which Identity Manager object is affected.

3. Builds a map of user attributes to pass to the IAPIFactory.getIAPI method,
along with a reference to the adapter and a map of any additional options,
which creates an Identity Application Programming Interface (IAPI) object.

4. Sets the logger on the IAPI event to the adapter’s Active Sync logger.

5. Submits the IAPI object to the Active Sync Manager.

6. Active Sync Manager processes the IAPI object and returns a WavesetResult
object to the adapter. The WavesetResult object informs the Active
Sync-enabled adapter if the operation succeeds.

The WavesetResult object might contain many results from the various steps
the Identity Manager system used to update the identity. Typically, a
workflow also handles errors within Identity Manager, often ending up as an
Approval for a managing administrator.

7. Exceptions are logged in the Active Sync and Identity Manager tracing logs
with the ActiveSyncUtil.logResourceException method.

When Active Sync-enabled adapters detect a change to an account on a resource,
the adapter maps the incoming attributes to an Identity Manager user or, if the
adapter cannot match the user account, creates an Identity Manager user account.

What is a Resource Adapter?

108 Identity Manager 8.0 • Deployment Tools

The following rules and parameters determine what happens when a change is
detected.

Table 2-2 Active Sync-Enabled Adapter Rules and Parameters

Parameter Description

Confirmation Rule Rule that is evaluated for all users returned by a correlation rule. For each user, the full User
view of the correlation Identity Manager identity and the resource account information (placed
under the “account.” namespace) are passed to the confirmation rule. The confirmation rule is
then expected to return a value which may be expressed like a Boolean value. For example,
“true” or “1” or “yes” and “false” or “0” or null.

For the Database Table, Flat File, and PeopleSoft Component Active Sync adapters, the default
confirmation rule is inherited from the reconciliation policy on the resource.

The same confirmation rule can be used for reconciliation and Active Sync.

Correlation Rule If no Identity Manager user's resource information is determined to own the resource account,
the Correlation Rule is invoked to determine a list of potentially matching users/accountIDs or
attribute conditions, used to match the user, based on the resource account attributes (in the
account namespace).

Returns one of the following types of information that can be used to correlate the entry with an
existing Identity Manager account:

• Identity Manager user name

• WSAttributes object (used for attribute-based search)

• List of AttributeCondition or WSAttribute-type items (AND-ed attribute-based search)

• List of String-type items (each item is the Identity Manager ID or the user name of an
Identity Manager account)

If more than one Identity Manager account can be identified by the correlation rule, a
confirmation rule or resolve process rule is required to handle the matches.

For the Database Table, Flat File, and PeopleSoft Component Active Sync adapters, the default
correlation rule is inherited from the reconciliation policy on the resource.

The same correlation rule can be used for reconciliation and Active Sync.

Create Unmatched
Accounts

If set to true, creates an account on the resource when no matching Identity Manager user is
found. If false, the account is not created unless the process rule is set and the workflow it
identifies determines that a new account is warranted. The default is true.

Delete Rule A rule that can expect a map of all values with keys of the form activeSync. or account. pulled
from an entry or line in the flat file. A LighthouseContext object (display.session) based on the
proxy administrator’s session is made available to the context of the rule. The rule is then
expected to return a value which may be expressed like a Boolean value. For example, “true” or
“1” or “yes” and “false” or “0” or null.

If the rule returns true for an entry, the account deletion request will be processed through forms
and workflow, depending on how the adapter is configured.

Populate Global If set to true, populates the global namespace in addition to the ActiveSync namespace. The
default value is false.

What is a Resource Adapter?

Chapter 2 Developing Custom Adapters 109

Process Rule Either the name of a TaskDefinition or a rule that returns the name of a TaskDefinition, to run for
every record in the feed. The Process rule gets the resource account attributes in the Active
Sync namespace, as well as the resource ID and name.

A Process rule controls all functionality that occurs when the system detects any change on the
resource. It is used when full control of the account processing is required. As a result, a process
rule overrides all other rules.

If a Process rule is specified, the process will be run for every row regardless of any other
settings on this adapter.

At minimum, a process rule must perform the following functions:

• Query for a matching User view.

• If the User exists, checkout the view. If not, create the User.

• Update or populate the view.

• Checkin the User view.

It is possible to synchronize objects other than User, such as LDAP Roles.

Resolve Process
Rule

Name of the TaskDefinition or a rule that returns the name of a TaskDefinition to run in case of
multiple matches to a record in the feed. The Resolve Process rule gets the resource account
attributes as well as the resource ID and name.

This rule is also needed if there were no matches and Create Unmatched Accounts was not
selected.

This workflow can be a process that prompts an administrator for manual action.

NOTE If present, a Process rule determines whether the adapter uses IAPIProcess or
attempts to use IAPIUser. If the adapter cannot use IAPIUser because a Correlation
or Confirmation rule does not uniquely identify an Identity Manager user for the
event (given the other parameter settings), and a Resolve Process rule is configured,
the adapter uses the Resolve Process rule to create an IAPIProcess event. Otherwise,
the adapter reports an error condition.

IAPIUser checks out a view and makes this view available to the User form.

• For creates and updates, IAPIUser checks out the User view.

• For deletes, IAPIUser checks out the Deprovision view.

However, a User view is not checked out or available with IAPIProcess. Either a
Process rule has been set or a Resolve Process rule is invoked.

Table 2-2 Active Sync-Enabled Adapter Rules and Parameters (Continued)

Parameter Description

What is a Resource Adapter?

110 Identity Manager 8.0 • Deployment Tools

What is a Resource Object?
Resource objects define the capabilities and configuration of the resource you are
managing in Identity Manager — including the information described in the
following table.

You must define a resource object in Identity Manager for every resource that
Identity Manager communicates with or manages.

Table 2-3 Information Defined by Resource Objects

Type of Information Sample Attributes

Connection information • Host name

• Administrative account name

• Administrative account Password

User attributes • First name

• Last name

• Phone numbers

Identity Manager attributes • List of approvers

• Password policy for the resource

• How many times to repeat attempts when contacting the
resource

NOTE You can view resource objects from Identity Manager’s Debug pages:

http://host:port/idm/debug/

Where:

• host is the local server on which Identity Manager is running.

• port is the TCP port number on which the server is listening.

The session.jsp page gives you the option of listing objects of
type Resource. See “Viewing and Editing a Resource Object” on
page 185 for more information.

Preparing for Adapter Development

Chapter 2 Developing Custom Adapters 111

What is a Resource Adapter Class?
A resource adapter class implements methods that

• Register the resource object in the Identity Manager repository

• Enable you to manage the external resource

• Push information from Identity Manager to the resource

• (Optional) Pull information from the resource into Identity Manager

This optional pull capability is known as Active Sync, and a resource adapter
with Active Sync capability is referred to as Active Sync-enabled. See “What Are
Active Sync-Enabled Resource Adapters?” on page 105 for more information.

Preparing for Adapter Development
Some preparation is necessary before you actually start writing a custom adapter.
This section describes how to prepare for adapter development, and the tasks
include:

• Become Familiar with Adapter Source Code

• Profile the Resource

• Decide Which Classes and Methods to Include

• Review the REF Kit

• Set Up the Build Environment

Become Familiar with Adapter Source Code
Before you can create a custom adapter, you must become familiar with the
components in a resource adapter’s source code. This section describes the
following components, which are common to most adapters:

• Standard Java Header Information

• PrototypeXML String

• Resource Methods

Preparing for Adapter Development

112 Identity Manager 8.0 • Deployment Tools

Standard Java Header Information
Standard Java header information identifies the parent class of the new adapter
class file you are creating, constructors, and imported files.

This header information is representative of the standard Java files (including
public class declaration and class constructors). You must edit the sections of the
file that list the constructors and public classes, and, if necessary, the
imported files.

PrototypeXML String
The prototypeXML string in the adapter Java file is the XML definition of a
resource. This string must contain the resource name and all of the resource
attributes that you want to display in the Identity Manager user interface. The
prototypeXML string also defines resource objects stored in the Identity Manager
repository.

The following table describes the different prototypeXML information types that
you use to define a resource in Identity Manager.

NOTE Some of these information types are specific to Active Sync-enabled
adapters.

Table 2-4 prototypeXML Information Types

Type Description

Resource Defines top-level characteristics of the resource.
Keywords include:

• syncSource: If true, then adapter must be Active Sync-enabled.

• facets: Specifies the modes enabled for this resource.

Resource attributes XML elements that are defined with the <ResourceAttribute> element and used by Identity
Manager to configure the resource.

For more information, see “Resource Attributes” on page 113.

Account attributes Defines the default schema map for basic user attributes.

You use the <AccountAttribute> element to define account attributes. You map standard
Identity Manager account attribute types differently than you map custom attributes.

For more information about mapping account attributes to resource attributes, see “Map the
Attributes ” on page 139.

Preparing for Adapter Development

Chapter 2 Developing Custom Adapters 113

Resource Attributes
Only available to Administrators defining the resource.

Resource attributes define the connection information on the resource being
managed. Resource attributes typically include the resource host name, resource
administrator name and password, and the container information for
directory-based resources. Identity Manager attributes such as the list of resource
approvers and the number of times to retry operations on the resource are also
considered resource attributes.

When writing custom adapters, you use resource attributes to define:

• Resources you want to manage, along with other connection and resource
characteristics.

From the perspective of an administrator using the Identity Manager
Administrator interface, these attributes define the field names that are visible
in the Identity Manager interface and prompt the user for values.

Identity template Defines how the account name for the user is built.
Use the <Template> tag to define this template. Account names are typically in one of the
following forms:

• An accountId is typically used for resources with a flat namespace such as Oracle.

• A complete distinguished name (DN) of the user in the form:
cn=accountId,ou=sub-org,ou=org,o=company. Use this form for hierarchical namespaces
such as directories.

For more information, see “Identity Template” on page 121.

Login configuration (Standard resource adapter only)
Defines values to support pass-through authentication for the resource.
Use the <LoginConfigEntry> element to define this value.

For more information about pass-through authentication, see the Sun™ Identity Manager
Resources Reference.

Form (Active Sync-enabled adapters only)
Designates a form object that processes data from the Active Sync-enabled adapter before the
data is integrated into Identity Manager. A form is optional, but in most cases a form provides
flexible changes in the future and can be used to transform incoming data, map data to other
user attributes on other resource accounts, and cause other actions in Identity Manager
to occur.

Table 2-4 prototypeXML Information Types(Continued)

Type Description

Preparing for Adapter Development

114 Identity Manager 8.0 • Deployment Tools

For Active Directory resources, attributes can include source name, host name,
port number, user, password, and domain. For example, the Create/Edit
Resource page for a resource type requires a host field in which administrators
creating a resource identify the host on which the resource resides. This field
(not the contents of the field) is defined in this adapter file.

• Authorized account that has rights to create users on the resource.
For an Active Directory resource, this includes the user and password fields.

• Source attributes including the form, the Identity Manager administrator that
the adapter will run as, scheduling and logging information, and additional
attributes used only in Active Sync methods.

Defining Resource Attributes. You use the <ResourceAttribute> element, as
shown in the following example, to define resource attributes in the prototypeXML
string of the adapter Java file:

Where the description field identifies the item-level help for the RA_HOST field and
must not contain the < character. In the preceding example, the < characters are
replaced by < and '.

<ResourceAttribute name='"+RA_HOST+"' type='string' multi='false'\n"+
description='host
Enter the resource host
name.'>\n"+

Preparing for Adapter Development

Chapter 2 Developing Custom Adapters 115

The following table describes the keywords you can use in <ResourceAttribute>
element.

You can modify these values from the Identity Manager interface when creating a
specific instance of this resource type.

Overwriting Resource Attributes. When you are working with resource
adapters and adapter parameters, you can use one of the following strategies to
overwrite resource attributes:

• Use the adapter’s Attribute page to set a resource attribute value once for all
users

• Set a default attribute value on the adapter, then subsequently override its
value, as needed, within your user form

Table 2-5 <ResourceAttribute> Element Keywords

Keyword Description

name Identifies the name of the attribute.

NOTE: The name keyword is a reserved word in views and should not be used as a Identity System
User Attribute on resource schema maps.

type Identifies the data type used.

multi Specifies whether multiple values can be accepted for the attribute. If true, a multi-line box displays.

description Identifies the item-level help for the RA_HOST field. Identity Manager displays help with the item being
described (host in this case) in bold text. Because the HTML brackets necessary to do this (< and >)
interfere with XML parsing, they are replaced by < and >. After the binary is translated, the
description value looks like:

Description=’host Enter the resource host name.’

facets Specifies the usage of this resource attribute. Valid values are

• provision: Used in standard processing (default value).

• activesync: Used in Active Sync processing for an Active Sync-enabled adapter.

Preparing for Adapter Development

116 Identity Manager 8.0 • Deployment Tools

In the following example, the user form must override the resource attribute value
for template during the creation of each user. When implementing similar code in
a production environment, you would probably include more detailed logic to
calculate this template value within your user form.

Required Resource Attributes. The following table describes required resource
attributes that are supplied in the skeleton adapter files.

Code Example 2-1 Overwriting the Resource Attribute Value for template

<Field name='template'>
<Display class='Text'>

<Property name='title' value='NDS User Template'/>
</Display

</Field>

<!-- Change NDS for the name of your NDS resource -->
<!-- The word Template is the name of the attribute field, as viewed in the
resource xml -->
<Field name='accounts[NDS].resourceAttributes.Template'>

<Expansion>
<ref>template</ref>

</Expansion>
</Field>

Table 2-6 Resource Attributes in Skeleton Adapter Files

Required Resource Attribute Description

RA_HOST Resource host name. This attribute corresponds to the Host field on the Resource
Parameters page.

RA_PORT Port number used to communicate with the resource. This attribute corresponds to
the Port field on the Resource Parameters page.

RA_USER Name of a user account that has permission to connect to the resource. The field
name varies on the Resource Parameters page.

RA_PASSWORD Password for the account specified by RA_USER. This attribute corresponds to the
Host field on the Resource Parameters page.

Preparing for Adapter Development

Chapter 2 Developing Custom Adapters 117

The next table describes required Active Sync-specific attributes that are defined in
the ACTIVE_SYNC_STD_RES_ATTRS_XML string of the Active Sync class.

Table 2-7 Active Sync-Specific Attributes Defined in ACTIVE_SYNC_STD_RES_ATTRS_XML

Required Resource Attribute Description

RA_PROXY_ADMINISTRATOR Identity Manager administrator for authorization and logging. This attribute
corresponds to the Proxy Administrator field in the Identity Manager display. You do
not define this value in the adapter Java file. Instead, an administrator enters this
information when defining a specific instance of this resource type.

RA_FORM Form that processes incoming attributes and maps them to view attributes. This
attribute corresponds to the Input Form field.

RA_MAX_ARCHIVES Specifies the number of log files to retain.

• If you specify 0, then a single log file is re-used.

• If you specify -1, then log files are never discarded.

RA_MAX_AGE_LENGTH Specifies the maximum time before a log file is archived.

• If you specify zero, then no time-based archival occurs.

• If the RA_MAX_ARCHIVES value is zero, then the active log is truncated and
reused after this time period.

RA_MAX_AGE_UNIT Specify seconds, minutes, hours, days, weeks, or months. Use this value with
RA_MAX_AGE_LENGTH.

RA_LOG_LEVEL Logging level (0 disabled; 4 very verbose). This attribute corresponds to the Log
Level field in the Identity Manager display.

RA_LOG_PATH Absolute or relative path for the log file. This attribute corresponds to the Log File
Path field in the Identity Manager display.

RA_LOG_SIZE Maximum log file size. This attribute corresponds to the Maximum Log File Size
field in the Identity Manager display.

RA_SCHEDULE_INTERVAL Pop-up menu of the supported scheduling intervals (second, minute, hour, day,
week, month).

RA_SCHEDULE_INTERVAL_COUNT Number of intervals between scheduled periods (for example, 10 minutes has an
interval count of 10 and an interval of minute). Not necessary for Active
Sync-enabled adapters.

RA_SCHEDULE_START_TIME Time of the day to run. For example, if you specify 13:00 and set the interval to
week, the adapter runs at 1 P.M. once a week. Not necessary for Active
Sync-enabled adapters.

RA_SCHEDULE_START_DATE Date to start scheduling. Setting date to 20020601, the interval to month, and the
time to 13:00 starts the adapter on June 1st and runs once a month at 1 P.M. Not
necessary for Active Sync-enabled adapters.

Preparing for Adapter Development

118 Identity Manager 8.0 • Deployment Tools

This table describes required Active Sync-specific attributes that are defined in the
ACTIVE_SYNC_EVENT_RES_ATTRS_XML string of the Active Sync class.

Identity Manager Account Attributes
Only available to Administrators defining the resource.

Identity Manager account attributes describe the default user attributes supported
for the resource.

With an Active Sync-enabled adapter, account attributes are the attributes that are
available to update the Identity Manager user account. The Active Sync-enabled
adapter collects these attributes and stores them in the global area for the input
form.

Identity Manager supports the following types of account attributes:

• string

• integer

• boolean

• encrypted

• binary

Table 2-8 Active Sync-Specific Attributes Defined in ACTIVE_SYNC_EVENT_RES_ATTRS_XML

Required Resource Attribute Description

RA_PROCESS_RULE Name of a TaskDefinition or a rule that returns the name of a TaskDefinition to
run for every record in the feed. This attribute overrides all others.

RA_CORRELATION_RULE Rule that returns a list of strings of potentially matching users/accountIDs, based on
the resource account attributes in the account namespace.

RA_CONFIRMATION_RULE Rule that confirms whether a user is a match.

RA_DELETE_RULE Rule that determines whether a delete detected on the resource is processed as an
IAPI delete event, or as an IAPI update event.

RA_CREATE_UNMATCHED • If set to true, creates unmatched accounts.

• If false, do not create the account unless the process rule is set and the
workflow it identifies determines that a create is warranted. Default is true.

RA_RESOLVE_PROCESS_RULE Rule that determines the workflow to run when there are multiple matches using the
confirmation rule on the results of the correlation rule.

RA_POPULATE_GLOBAL Indicates whether to populate the global namespace in addition to the activeSync
namespace. Default is false.

Preparing for Adapter Development

Chapter 2 Developing Custom Adapters 119

Binary attributes include graphic files, audio files, or certificates. Not all adapters
support binary account attributes. Generally, only certain directory, flat file, and
database adapters can process binary attributes.

You define Identity Manager account attributes in the AttributeDefinition object
of the resource’s schema map, and use the prototypeXML string in the adapter file
to map incoming resource attributes to account attributes in Identity Manager.
For example, you would map the LDAP sn resource attribute to the lastname
attribute in Identity Manager. Identity Manager account attributes include

• accountId

• email

• firstname

• fullname

• lastname

• password

Standard Adapter Schema Maps. You use the Account Attributes page, or
schema map, to map Identity Manager account attributes to resource account
attributes. The list of attributes varies for each resource. You generally remove all
unused attributes from the schema map page. If you add attributes, you will
probably need to edit user forms or other code.

The attribute mappings specified in the resource schema map determine which
account attributes can be requested when you are creating a user. Based on the role
selected for a user, you will be prompted for a set of account attributes that are the
union of attributes of all resources in the selected role.

NOTE • Consult the “Account Attributes” section of the adapter
documentation to determine if your adapter supports binary
attributes.

• Keep the size of any file referenced in a binary attribute as small
as possible. For example, loading extremely large graphics files
can affect Identity Manager’s performance.

NOTE To view or edit the Identity Manager schema for users or roles, you
must be a member of the IDM Schema Configuration AdminGroup
and you must have the IDM Schema Configuration capability.

Preparing for Adapter Development

120 Identity Manager 8.0 • Deployment Tools

Active Sync-Enabled Adapter Schema Maps. The Active Sync resource schema
map is an optional utility that enables you to edit inputs to an Active Sync-enabled
adapter, which are often database column names or directory attribute names.
Using the schema map and an Active Sync form, you can implement Java code to
handle a resource type, defining details of the resource configuration in the map
and form.

Identity Manager uses an Active Sync resource’s schema map in the same way that
it uses a typical schema map. The schema map specifies which attributes to fetch
from the resource and their local names. All attribute names that are listed in the
schema map (that is, all attributes that exist on the resource) are made available to
the Active Sync form and the user form with the activeSync.name attribute. If the
Active Sync resource does not use a form, all attributes are named global to ensure
that all attributes automatically propagate to attributes with the same name on all
resources. Use a form rather than the global namespace.

For example, if a new Identity Manager user is created through the Active
Sync-enabled adapter and that user has an LDAP account assigned to it, the LDAP
accountID will match the global.accountId instead of the correct DN from the
DN template.

Using the Schema Map. After creating a resource instance, administrators can
subsequently use a schema map to:

• Limit resource attributes to only those that are essential for your company.

• Map Identity Manager attributes to resource attributes.

• Create common Identity Manager attribute names to use with multiple
resources.

• Identify required user attributes and attribute types.

You can view Identity Manager account attributes from the Edit Schema page in
the Identity Manager user interface by clicking the Edit Schema button located at
the bottom of the Edit/Create Resource page.

For more information about creating a resource or editing a resource schema map,
see Sun Java™ System Identity Manager Administration.

TIP Do not put the accountId attribute in the global namespace because
this special attribute is used to identify waveset.account.global.

If you are creating the resource account for the first time, the
accountId attribute also becomes a resource's accountId directly
and it bypasses the identity template.

Preparing for Adapter Development

Chapter 2 Developing Custom Adapters 121

Identity Template

You use the identity template (or account DN) to define a user’s default account
name syntax when creating the account on the resource. The identity template
translates the Identity Manager user account information to account information
on the external resource.

You can use any schema map attribute (an attribute listed on the left side of the
schema map) in the identity template, and you can overwrite the user identity
template from the User form, which is commonly done to substitute organization
names.

Identity Manager users have an identity for each of their accounts, and this identity
can be the same for some or for all of these accounts. The system sets the identity
for an account when the account is provisioned. The Identity Manager user object
maintains a mapping between a user's identities and the resources to which they
correspond.

The user has a primary accountId in Identity Manager that is used as a key and as
a separate accountId for each of the resources on which that user has an account.
The accountId is denoted in the form of accountId:<resource name>, as shown in
the following table.

NOTE An identity template is only available to Administrators who are
defining the resource.

To view or edit the Identity Manager schema for Users or Roles, you
must be a member of the IDM Schema Configuration AdminGroup
and you must have the IDM Schema Configuration capability.

Table 2-9 accountID Examples

Attribute Example

accountId maurelius

accountId:NT_Res1 marcus_aurelius

accountId:LDAP_Res1 uid=maurelius,ou=marketing,ou=employees,o=abc_company

accountId:AIX_Res1 maurelius

Preparing for Adapter Development

122 Identity Manager 8.0 • Deployment Tools

Account user names are in one of two forms:

• Flat namespaces

• Hierarchical namespaces

Flat Namespaces. You typically use the accountId attribute for systems with a
flat namespace, which include:

• UNIX systems (Solaris, AIX, or HP-UX)

• Oracle and Sybase relational databases

For resources with flat namespaces, the identity template can simply specify that
the Identity Manager account name be used.

Hierarchical Namespaces. You use distinguished names (DNs) for systems with
a hierarchical namespace. DNs can include the account name, organizational units,
and organizations.

Account name syntax is especially important for hierarchical namespaces. For
resources with hierarchical namespaces, the identity template can be more
complicated than that of a flat namespace, which allows you to build the full,
hierarchical name. The following table shows examples of hierarchical namespaces
and how they represent DNs.

For example, you can specify the following for a resource identity template with a
hierarchical namespace such as LDAP:

uid=$accountID,ou=$department,ou=People,cn=waveset,cn=com

Where:

• accountID is the Identity Manager account name

• department is the user's department name

Table 2-10 Hierarchical Namespace Examples

System Distinguished Name String

LDAP cn=$accountId,ou=austin,ou=central,ou=sales,o=comp

Novell NDS cn=$accountId.ou=accounting.o=comp

Microsoft Windows 2000 CN=$fullname,CN=Users,DC=mydomain,DC=com

Preparing for Adapter Development

Chapter 2 Developing Custom Adapters 123

Login Configuration
Login Configuration defines parameters that are used if you are going to use the
resource for pass-through authentication. Typically, these parameters are username
and password, but some resources use different parameters. For example, SecurId
uses user name and passcode.

The Login Configuration information type helps define the resource, but it is not
easily modified by administrators.

For more information about pass-through authentication, see “Enabling
Pass-Through Authentication for Resource Types” on page 150 and the Sun™
Identity Manager Resources Reference.

Resource Methods
Resource methods write information from Identity Manager into the external
resource.

You categorize resource methods by task. When developing your own custom
adapters, you must determine which categories your adapter needs to meet the
goals of your development. For example,

• Is your adapter going to be a standard or an Active Sync-enabled adapter?

• Will the first phase of your deployment support password reset only?

How you answer these questions determines which resource methods must be
completed.

The following table describes resource methods categories. (Additional
information about each functional category is discussed later in this chapter.)

NOTE You must be familiar with the resource to write customized
methods.

Table 2-11 Resource Methods Categories
Category Description

Basic Provide the basic methods for connecting to the resource and
performing simple actions

Bulk operations Provide bulk operations to get all the users from the resource

Active Sync Provides the methods to schedule the adapter.

Object management Provides the methods to manage groups and organizations on your
resources. Helps define the resource, but is not easily modified by
administrators.

Preparing for Adapter Development

124 Identity Manager 8.0 • Deployment Tools

In Active Sync-enabled adapters, resource methods

• Create a feed from the resource into Identity Manager. Presents methods that
search the resource for changes or receive updates. To write these methods,
you must understand how to register or search for changes on the resource,
and communicate with the resource.

• Run update operations in the Identity Manager repository by performing the
feed from the resource into Identity Manager.

Considerations for Standard Resource Adapters
The following considerations are specific to account attributes in standard resource
adapters:

• User identity template

• Creating an identity template out of multiple user attributes

• Login configuration and pass-through authentication

User Identity Template

The user identity template establishes the account name to use when creating the
account on the resource. This template translates Identity Manager user account
information to account information on the external resource.

You can use any schema map attribute (an attribute listed on the left side of the
schema map) in the identity template.

You can overwrite the user identity template from the User form, which is
commonly done to substitute organization names.

Creating an Identity Template Out of Multiple User Attributes
You can create an identity template out of a portion of multiple user attributes. For
example, a template might consist of the first letter of the first name plus seven
characters of the last name. In this case, you can customize the user form to
perform the desired logic and then override the identity template that is defined on
the resource.

NOTE To view or edit the Identity Manager schema for Users or Roles you
must be a member of the IDM Schema Configuration AdminGroup
and you must have the IDM Schema Configuration capability.

Preparing for Adapter Development

Chapter 2 Developing Custom Adapters 125

Login Configuration and Pass-Through Authentication
The <LoginConfigEntry> element specifies the name and type of login module as
well as the set of authentication properties required by this resource type to
complete successful user authentication.

The <LoginConfig> and <SupportedApplications> sections of the adapter file
specify whether the resource will be included in the options list on the Login
Module configuration pages. Do not change this section of the file if you want the
resource to appear in the options list.

Each <AuthnProperty> element contains the following attributes:

Table 2-12 <AuthnProperty> Element Attributes

Attribute Description

dataSource Specifies the source for the value of this property. Data sources for this property value include:

• user (Default): Value provided by the user at login time.

• http attribute: Value provided by the specified http session attribute.

• http header: Value provided by the specified http header.

• http remote user: Value provided by the http request’s remote user property.

• http request: Value provided by the specified http request parameter.

• resource attribute (Active Directory only): Value allows you to specify an extra
authentication attribute for the specific adapter. This attribute is only valid for the resource on
which it is defined, and it cannot be manipulated by the user.

• x509 certificate: Value is the X509 client certificate (only valid for requests made using
https).

displayName Specifies the value to use when this property is added as an HTML item to the Login form.

doNotMap Specifies whether to map to a LoginConfigEntry.

formFieldType Specifies the data type that can be either text or password. This type is used to control whether
data input in the HTML field associated with this property is visible (text) or not (password)s

isId Specifies whether this property value should be mapped to the Identity Manager accountID.
For example, a property should not be mapped if the property value is an X509 certificate.

name Identifies the internal authentication property name.

Preparing for Adapter Development

126 Identity Manager 8.0 • Deployment Tools

User management across forests is only possible when multiple gateways, one for
each forest, are deployed. In this case, you can configure the adapters to use a
predefined domain for authentication per adapter without requiring the user to
specify a domain as follows:

1. Add the following authentication property to the <AuthnProperties> element
in the resource object’s XML:

<AuthnProperty name='w2k_domain' dataSource='resource attribute'
value='MyDomainName'/>

2. Replace MyDomainName with the domain that authenticates users.

Most resource login modules support both the Identity Manager Administrative
interface and User interface. The following example shows how
SkeletonResourceAdapter.java implements the <LoginConfigEntry> element:

The following example defines the supported LoginModule DATA_SOURCE options.
In this example, a LoginConfig entry is taken from the LDAP resource adapter
supplied by Identity Manager. The entry defines two authentication properties
whose dataSource value, if not specified, is supplied by the user.

NOTE For more information about this property, see the Active Directory
resource adapter documentation in Identity Manager Resources
Reference.

Code Example 2-2 SkeletonResourceAdapter.java Implementing <LoginConfigEntry>

<LoginConfigEntry name='"+Constants.WS_RESOURCE_LOGIN_MODULE+"' type='"+RESOURCE_NAME+"'
displayName='"+RESOURCE_LOGIN_MODULE+"'>\n"+

" <AuthnProperties>\n"+
" <AuthnProperty name='"+LOGIN_USER+"' displayName='"+DISPLAY_USER+"'

formFieldType='text' isId='true'/>\n"+
" <AuthnProperty name='"+LOGIN_PASSWORD+"' displayName='"+DISPLAY_PASSWORD+"'

formFieldType='password'/>\n"+
" </AuthnProperties>\n"+
" <SupportedApplications>\n"+
" <SupportedApplication name='"+Constants.ADMINCONSOLE+"'/>\n"+
" <SupportedApplication name='"+Constants.SELFPROVISION+"'/>\n"+
" </SupportedApplications>\n"+

"</LoginConfigEntry>\n"+

Preparing for Adapter Development

Chapter 2 Developing Custom Adapters 127

The next example shows a Login Config entry where the authentication property’s
dataSource value is not supplied by the user. In this case, the value is derived from
the HTTP request header.

Code Example 2-3 Defining Supported Login Module DATA_SOURCE Options

public static final String USER_DATA_SOURCE = "user";
public static final String HTTP_REMOTE_USER_DATA_SOURCE = "http remote user";
public static final String HTTP_ATTRIBUTE_DATA_SOURCE = "http attribute";
public static final String HTTP_REQUEST_DATA_SOURCE = "http request";
public static final String HTTP_HEADER_DATA_SOURCE = "http header";
public static final String HTTPS_X509_CERTIFICATE_DATA_SOURCE = "x509 certificate";
" <LoginConfigEntry name='"+WS_RESOURCE_LOGIN_MODULE+"'
type='"+LDAP_RESOURCE_TYPE+"'
displayName='"+Messages.RES_LOGIN_MOD_LDAP+"'>\n"+
" <AuthnProperties>\n"+
" <AuthnProperty name='"+LDAP_UID+"' displayName='"+Messages.UI_USERID_LABEL+"'
formFieldType='text' isId='true'/>\n"+
" <AuthnProperty name='"+LDAP_PASSWORD+"'
displayName='"+Messages.UI_PWD_LABEL+"'
formFieldType='password'/>\n"+
" </AuthnProperties>\n"+
" </LoginConfigEntry>\n"+

Code Example 2-4 Login Config Entry

" <LoginConfigEntry name='"+Constants.WS_RESOURCE_LOGIN_MODULE+"'
|type='"+RESOURCE_NAME+"'
displayName='"+RESOURCE_LOGIN_MODULE+"'>\n"+
" <AuthnProperties>\n"+
" <AuthnProperty name='"+LOGIN_USER+"' displayName='"+DISPLAY_USER+"'
formFieldType='text'
isId='true' dataSource='http header'/>\n"+
" </AuthnProperties>\n"+|
" </LoginConfigEntry>\n"+

Preparing for Adapter Development

128 Identity Manager 8.0 • Deployment Tools

Example Object Resource Attribute Declaration
The following example shows how prototypeXML defines fields displayed on the
Create/Edit Resource page.

The Identity Manager Administrative interface displays the resource attributes for
the default resource as specified.

Profile the Resource
The following sections describe how to profile and define prerequisites for
standard resource adapters and Active Sync-enabled adapters.

• Profiling a Standard Resource Adapter

• Profiling an Active Sync-Enabled Resource Adapter

Code Example 2-5 prototypeXML Defining Fields Displayed on Create/Edit Resource Page

<ResourceAttributes>
<ResourceAttribute name='Host' description='The host name running the resource

agent.' multi='false' value='n'>
</ResourceAttribute>
<ResourceAttribute name='TCP Port' description='The TCP/IP port used to communicate

with the LDAP server.' multi='false' value='9278'>
</ResourceAttribute>
<ResourceAttribute name='user' description='The administrator user name with which

the system should authenticate.' multi='false' value='Administrator'>
</ResourceAttribute>
<ResourceAttribute name='password' type='encrypted' description='The password that

should be used when authenticating.' multi='false' value='VhXrkGkfDKw='>
</ResourceAttribute>
<ResourceAttribute name='domain' description='The name of the domain in which

accounts will be created.' multi='false' value='AD'>
</ResourceAttribute>

</ResourceAttributes>

Preparing for Adapter Development

Chapter 2 Developing Custom Adapters 129

Profiling a Standard Resource Adapter
Use the following information to create a profile and define prerequisites for a
standard resource adapter:

• Select an Identity Manager adapter file that most closely resembles the
resource type to which you are connecting.

See Table 2-13 on page 132 for a brief description of the default Identity
Manager resource adapter files supplied with a standard Identity Manager
configuration.

• Research user account characteristics and how these tasks are performed on
the remote resource:

❍ Authenticate access to the remote resource

❍ Update users

❍ Get details about the changed users

❍ List all users on the system

❍ List other system objects, such as groups, that are used in the
listAllObjects method

• Identify the minimum attributes needed to perform an action and all
supported attributes.

• Verify that you have the appropriate tools to support connection to the
resource.

Many resources ship with a published set of APIs or a complete toolkit that can
be used to integrate outside applications to the resource. Determine whether
your resource has a set of APIs or whether the toolkit provides documentation
and tools to speed up integration with Identity Manager. For example, you
must connect to a database through JDBC.

• Determine who can log in and search for users on the resource

Most resource adapters require and run an administrative account to perform
tasks such as searching for users and retrieving attributes. This account is
typically a highly privileged or super user account, but can be a delegated
administration account with read-only access.

Preparing for Adapter Development

130 Identity Manager 8.0 • Deployment Tools

• Determine whether you can extend the resource’s built-in attributes.

For example, Active Directory and LDAP both allow you to create extended
schema attributes, which are attributes other than the standard Identity
Manager attributes.

Decide which attributes you want to maintain in Identity Manager, determine
what the attribute names are on the resource, and decide what to name the
attributes in Identity Manager. These attribute names go in the schema map
and are used as inputs to forms that are used to create a resource of that type.

Profiling an Active Sync-Enabled Resource Adapter
When profiling an Active Sync-Enabled resource adapter, use the following
information in addition to the considerations described in “Profiling a Standard
Resource Adapter” on page 129:

• When researching user account characteristics and how these tasks are
performed on the remote resource, you must also:

❍ Search for changes to users

❍ Identify ways to search for changed users only

• Determine which resource attributes or actions create events.

If the resource supports subscribing to notification messages when changes are
made, identify which attribute changes you want to trigger the notification and
which attributes you want in the message.

• Decide which of the following actions Identity Manager should perform when
the adapter detects an event on the source.

❍ Create, update, or delete a user

❍ Disable or enable an account

❍ Update the answers used to authenticate a user

❍ Update a phone number

Preparing for Adapter Development

Chapter 2 Developing Custom Adapters 131

• Decide whether you want the adapter to be driven by events in the external
resource or driven by specified polling intervals.

Choose one of the following approaches:

❍ Set up polling intervals where an Active Sync Manager thread calls the poll
interface at a configurable interval or on a specified schedule. You can set
polling parameters, including settings such as faster polling if work was
received, thread-per-adapter or common thread, and limits on the amount
of concurrent operations.

❍ Set up an event-driven environment where the adapter sets up a listening
connection, such as an LDAP listener, and waits for messages from the
remote system. You can implement the poll method to do nothing, and set
the polling interval to an arbitrary value, such as once a week. If updates
are event-driven, the updates must have a guaranteed delivery
mechanism, such as MQ Series, or synchronization is lost.

❍ Implement a hybrid solution where external events trigger smart polling
and the regular poll routine can recover from missed messages.

Smart polling adapts the poll rate to the change rate and polls infrequently
unless changes are being made often. Smart polling balances the
performance impact of frequent polling with the update delays of
infrequent polling.

In this model, incoming messages are queued and multiple updates for a
single object are collapsed into a single update, which increases efficiency.
For example, multiple attributes can be updated on a directory, and each
attribute triggers a message. The poll routine examines the message queue
and removes all duplicates. The routine then fetches the complete object to
ensure that the latest data is synchronized and that updates are handled
efficiently.

NOTE Before making your decision, you must understand how polling
works in typical Identity Manager installations. Although some
installations implement or are driven by external events, most
Identity Manager deployment environments use a hybrid
method.

Preparing for Adapter Development

132 Identity Manager 8.0 • Deployment Tools

Decide Which Classes and Methods to Include
After profiling the resource, identify classes and methods needed in your adapter:

• Review the relevant Javadoc to determine which base classes and methods you
can use as is and which you must extend. This javadoc is available on your
Identity Manager CD in the REF/javadoc directory:

• Create a list of methods that you must write and include in the Java file based
on the resource to which you are connecting.

When creating an adapter, the most time-intensive task is writing your own
methods to push information from Identity Manager to the resource or to
create a feed from the resource to Identity Manager.

Review the REF Kit
The Sun Resource Extension Facility Kit (REF Kit) is supplied in the /REF directory
on the Identity Manager CD or install image. You can use the sample files and
other tools in this REF Kit to jump-start the process of creating your own custom
adapter.

The following table describes the contents of the REF Kit.

Table 2-13 REF Kit Components

Component Location Description

audit REF/audit Sample custom audit publishers.

exporter REF/exporter Warehouse interface code source code that allows you to rebuild the
warehouse interface to let Data Exporter export to something other
than the warehouse relational database.

javadoc REF/javadoc Generated javadoc that describes the classes you need to write a
custom adapter. To view the javadoc, point your browser to:

/waveset/image/REF/javadoc/index.html

lib REF/lib Jar files that you need to compile and test a custom adapter.

Preparing for Adapter Development

Chapter 2 Developing Custom Adapters 133

src REF/src Examples of commonly developed resource adapter source files and
skeleton files to use as a basis for adapter development and testing,
including:

• MySQLResourceAdapter.java for Database accounts

• ExampleTableResourceAdapter.java for Database tables1

• XMLResourceAdapter.java for File-based accounts

• LDAPResourceAdapter.java for simple methods when
developing custom LDAP resource adapters

• LDAPResourceAdapterBase.java for complex changes when
developing custom LDAP resource adapters

• AIXResourceAdapter.java for developing UNIX accounts

• SkeletonStandardResourceAdapter.java for standard
resources

• SkeletonStandardAndActiveSyncResourceAdapter.java for
standard and Active Sync-enabled resources

• SkeletonActiveSyncResourceAdapter.java for Active Sync-only
resources

• test.SkeletonResourceTest.java to create unit tests for a
custom adapter

test REF/test Sample resource adapter test source files that you can use as a
basis for a custom adapter.

thirdpartysource REF/
thirdpartysource

transactionsigner REF/
transactionsigner

Sample implementation of a transactionsigner
PKCS11KeyProvider.

BeforeYouBegin.
README

REF Outlines information you must collect before you customize an
adapter.

build.xml REF Sample Ant Build script for building, testing, and distributing a
project.

Design-for-Resource-
Adapters.htm

REF Document that describes the basic architecture and design of a
resource adapter.

README REF Document describing the Sun Identity Manager REF Kit.

Waveset.properties REF/config Copy of the properties file you need to test a custom adapter.

1. You can use the Resource Adapter Wizard to create an adapters for table-based resources instead of writing a custom adapter.
See the “Configuration” chapter in Identity Manager Administration for more information about using this wizard.

Table 2-13 REF Kit Components (Continued)

Component Location Description

Preparing for Adapter Development

134 Identity Manager 8.0 • Deployment Tools

Set Up the Build Environment
This section contains instructions for setting up your build environment.

• On Windows

• On UNIX

On Windows
If you are working on Microsoft Windows operating system, use the following
steps to set up your build environment:

1. Change directories to a new directory.

2. Create a file called ws.bat.

3. Add the following lines to this file:

:

Where you set:

❍ WSHOME to the path to where the REF Kit is installed.

❍ JAVA_HOME to the path to where the JDK is installed.

4. Save and close the file.

➤ Prerequisites:

You must install the JDK version required for your Identity Manager version.
See “Supported Software and Environments” in the Identity Manager Release
Notes for information.

After installing the JDK, you must install the REF Kit by copying the entire
/REF directory to your system.

set WSHOME=<Path where REF Kit is installed>
set JAVA_HOME=<Path where JDK is installed>
set PATH=%PATH%;%JAVA_HOME%\bin

Writing Custom Adapters

Chapter 2 Developing Custom Adapters 135

On UNIX
If you are working on a UNIX operating system, use the following steps to set up
your build environment:

1. Change directories to a new directory.

2. Create a file called ws.sh.

3. Add the following lines to this file:

:

Where you set:

❍ WSHOME to the path to where the REF Kit is installed.

❍ JAVA_HOME to the path to where JDK is installed.

4. Save and close the file.

Writing Custom Adapters
After finishing the preparation work described in “Preparing for Adapter
Development,” you are ready to start writing your custom adapter.

This section describes how to write a custom adapter, including:

• Process Overview

• Rename the Skeleton File

• Edit the Source File

• Map the Attributes

• Specify the Identity Template

• Write the Adapter Methods

• Configure the Adapter to Support Pass-Through Authentication

• Define the Resource Object Components

WSHOME=<path_where_REF_is_installed>
JAVA_HOME=<path_where_JDK_is_installed>
PATH=$JAVA_HOME/bin:$PATH

export WSHOME JAVA_HOME PATH

Writing Custom Adapters

136 Identity Manager 8.0 • Deployment Tools

Process Overview
The following sections provide a high-level overview of the steps you perform to
create a custom adapter:

• How To Write a Standard Resource Adapter

• How To Write an Active Sync-Enabled Resource Adapter

How To Write a Standard Resource Adapter
This section describes the processes to follow when creating a standard adapter or
an Active Sync-enabled adapter.

Use the following steps to create a standard adapter:

1. Open a command window and go to the following directory:

\waveset\idm\adapter\src

2. Rename the SkeletonStandardResourceAdapter.java skeleton file to a file
name of your choice. See “Rename the Skeleton File” on page 137 for more
information.

3. Edit the new adapter’s source file as described in “Edit the Source File” on
page 138.

4. Source the file you created previously to set up your environment:

❍ For Windows: Source the ws.bat file.

❍ For Unix: Source the ws.sh file.

5. Type the following command to compile your source files:

❍ For Windows: javac -d . -classpath %CLASSPATH% yourfile.java

❍ For Unix: javac -d . -classpath $CLASSPATH yourfile.java

NOTE The steps for writing a standard adapter are slightly different based
on which operating system you are using.

Writing Custom Adapters

Chapter 2 Developing Custom Adapters 137

How To Write an Active Sync-Enabled Resource Adapter
This section describes the general steps you follow to create a custom Active
Sync-Enabled adapter

If you are working on Microsoft Windows operating system, use the following
steps to create a custom Active Sync-Enabled adapter:

1. Open a command window and change to the following directory:

\waveset\idm\adapter\src

2. Rename (or copy) one of the following skeleton files to a file name of your
choice. See “Rename the Skeleton File” on page 137 for more information.

❍ SkeletonStandardAndActiveSyncResourceAdapter.java (for standard
and Active Sync-enabled resources)

❍ SkeletonActiveSyncResourceAdapter.java (for Active Sync-only
resources)

3. Edit the new adapter’s source file as described in “Edit the Source File” on
page 138.

4. Source the file you created previously to set up your environment:

❍ For Windows: Source the ws.bat file.

❍ For Unix: Source the ws.sh file.

5. Type the following command to compile your source files:

❍ For Windows: javac -d . -classpath %CLASSPATH% yourfile.java

❍ For Unix: javac -d . -classpath $CLASSPATH yourfile.java

Rename the Skeleton File
You must rename the skeleton adapter to a name that is appropriate for your new
adapter. Perform the following actions:

• Rename the sample java file to match your new class name.

• Edit the source code to replace the sample class name with the new class name.

Writing Custom Adapters

138 Identity Manager 8.0 • Deployment Tools

Edit the Source File
After renaming the skeleton file, you must edit the new adapter’s source code to
replace specific text strings and to define default values you want the adapter to
support.

Edit the adapter source file as follows:

1. Search for, and replace, the following text strings to determine where you must
make adapter-specific modifications in the code.

❍ change-value-here strings indicate where you must enter a substitution.

❍ @todo strings indicates where you must rewrite a method for a particular
scenario you are supporting.

2. Name the resource adapter type.

This name displays in the New Resources menu in the Identity Manager
Administrator interface.

3. Map the incoming resource attributes to Identity Manager account attributes
by replacing default values in the prototypeXML string with your own default
values for this adapter type. For example, you might want to delete the
RA_GROUPS attribute from your adapter type.

See “Map the Attributes ” on page 139 for more information.

4. Add or delete methods from the skeleton file. In particular, you must add Java
code to support join, leave, and move operations, which are not supported in
this example file.

See “Write the Adapter Methods” on page 141 for more information.

5. After editing the adapter file, you can load it into Identity Manager.

Writing Custom Adapters

Chapter 2 Developing Custom Adapters 139

Map the Attributes
Generally, you set options for the adapter type by mapping the incoming resource
attributes to the standard Identity Manager account attributes or by creating your
own custom attributes (called extended schema attributes).

Your resource must define resource attributes and set default values for resource
attributes for which it makes sense to have default. The resource does not have to
present the prototypeXML object.

Mapping Resource Attributes to Standard Account Attributes
To map incoming resource attributes to one of the standard Identity Manager
account attributes, use the syntax shown in the following example.

Where:

• The <AccountAttributesTypes> element surrounds the prototypeXML string
where you map the resource attribute to the Identity Manager account
attribute.

• The <AttributeDefinitionRef> element identifies the Identity Manager
account attribute.

NOTE The attributes in SkeletonActiveSyncResourceAdapter are
mandatory. Do not delete these attribute definitions when
customizing the file.

Code Example 2-6 Mapping a Resource Attribute

"<AccountAttributeTypes>\n"+
<AccountAttributeType name='accountId' mapName='change-value-here'

mapType='string' required='true'>\n"+
"<AttributeDefinitionRef>\nt"+
<ObjectRef type='AttributeDefinition' name='accountId'/>\n"+
"</AttributeDefinitionRef>\n"+

"</AccountAttributeType>\n"+
"</AccountAttributeTypes>\n"+

Writing Custom Adapters

140 Identity Manager 8.0 • Deployment Tools

The following table describes the <AttributeDefinitionRef> element fields.

For more information on mapping resource attributes to account attributes, see
“Map the Attributes ” on page 139.

Mapping Resource Attributes to Extended Schema Attributes
To map incoming resource attributes to attributes other than a standard Identity
Manager attribute, you must create an extended schema attribute. The following
example illustrates how to map a resource attribute to an extended schema
attribute.

You do not have to declare an ObjectRef type. The mapName field identifies the
custom account attribute HomeDirectory. You define the mapType field the same as
you would when mapping an attribute to a standard account attribute.

Table 2-14 <AttributeDefinitionRef> Element Fields

Element Field Description

name Identifies the Identity Manager account attribute to which the resource attribute
is being mapped. (The left column on the resource schema page in the Identity
Manager User Interface.)

mapName Identifies the name of the incoming resource attribute. When editing the
skeleton file, replace change-value-here with the resource attribute name.

mapType Identifies the incoming attribute type, which can be string, int, or encrypted.

Code Example 2-7 Mapping a Resource Attribute to an Extended Schema Attribute

<AccountAttributeType name='HomeDirectory' type='string'
mapName='HomeDirectory' mapType='string'>\n"+

</AccountAttributeType>\n"+

Writing Custom Adapters

Chapter 2 Developing Custom Adapters 141

Specify the Identity Template
You must use an identity template (or an account DN) to uniquely identify every
user and group in your enterprise.

DNs display on the following Identity Manager User interface pages:

• Resources

• Distinguished Name Template

• Edit Schema

For more information about identity templates, see “Identity Template” on
page 121.

Write the Adapter Methods
The Identity Manager adapter interface provides general methods that you must
customize to suit your particular environment. This section briefly describes:

• How to Write Standard Resource Adapter-Specific Methods

• How to Write Active Sync-Enabled Adapter Methods

How to Write Standard Resource Adapter-Specific Methods
Standard resource adapter-specific methods are specific to the resource you are
updating to synchronize with Identity Manager.

The body of a resource adapter consists of resource-specific methods.
Consequently, the resource adapter provides methods that are only generic
placeholders for the specific methods that you will write.

This section describes how the methods used to implement operations are
categorized. The information is organized into the following sections:

• Creating the Prototype Resource

• Connecting with the Resource

• Checking Connections and Operations

• Defining Features

Writing Custom Adapters

142 Identity Manager 8.0 • Deployment Tools

Creating the Prototype Resource
The following table describes the methods used to create a Resource instance.

Connecting with the Resource
The following methods are responsible for establishing connections and
disconnections as an authorized user. All resource adapters must implement these
methods.

• startConnection

• stopConnection

NOTE When writing a custom adapter

• Call the setdisabled() method on any WSUser object that is
returned by a custom method.

• If the adapter implements the AsynchronousResourceAdapter
class, then note that this adapter might be working with users
that are partially initialized. (These users are created outside
Identity Manager, but not fully populated with attributes.) The
Provisioner does not automatically convert a Create operation to
an Update operation if the WSUser already exists on the
resource. Your resource adapter must distinguish this case.

Table 2-15 Methods Used to Create a Resource Instance

Method Description

staticCreatePrototypeResource Creates a Resource instance, usually from the predefined prototypeXML string
defined in the resource adapter. Because it is a static method, it can be called
knowing only the path to the Java class which is the resource adapter.

createPrototypeResource A local method that can be executed only if you already have an instance of a
Java object of the resource adapter class. Typically, the implementation of
createPrototypeResource() is to just call the
staticCreatePrototypeResource() method.

If extending an existing adapter, you can add resource attributes to specify
different default values programmatically based on the super class’s prototype
resource.

Writing Custom Adapters

Chapter 2 Developing Custom Adapters 143

Checking Connections and Operations
ResourceAdapterBase provides methods that you can use to check the validity of
an operation, such as whether the connection to the resource is working, before the
adapter attempts the actual operation.

The following table describes methods you can use to verify that your adapter is
communicating with the resource and that the authorized account has access.

Table 2-16 Methods Used to Check Communication

Method Description

checkCreateAccount Checks to see if an account can be created on the resource. The following features can be
checked:

• Can basic connectivity to the resource be established?

• Does the account already exist?

• Do the account attribute values comply with all (if any) resource-specific restrictions or
policies that have not been checked at a higher level?

This method does not check whether the account already exists. It contains the account
attribute information needed to create the user account such as account name, password,
and user name.

After confirming that the account can be created, the method closes the connection to the
resource.

checkUpdateAccount Establishes a connection and checks to see if the account can be updated.

This method receives a user object as input. It contains the account attribute information
needed to create the user account such as account name, password, and user name.

The user object specifies the account attributes that have been added or modified. Only these
attributes are checked.

checkDeleteAccount Checks to see if an account exists and can deleted. The following features can be checked:

• Can basic connectivity to the resource be established?

• Does the account already exist?

• Do the account attribute values comply with all (if any) resource-specific restrictions or
policies that haven't been checked at a higher level?

This method does not check whether the account already exists. It receives a user object as
input. It contains the account attribute information needed to delete the user account such as
account name, password, and user name.

After checking to see if the account can be deleted, the method closes the connection to the
resource

Writing Custom Adapters

144 Identity Manager 8.0 • Deployment Tools

Defining Features
The getFeatures() method specifies which features are supported by an adapter.
The features can be categorized as follows:

• General features

• Account features

• Group features

• Organizational unit features

The ResourceAdapterBase class defines a base implementation of the
getFeatures() method. The Enabled in Base? column in the following tables
indicates whether the feature is defined as enabled in the base implementation in
ResourceAdapterBase.

Table 2-17 General Features

Feature Name Enabled in Base? Comments

ACTIONS No Indicates whether before and after actions are supported. To
enable, override the supportsActions method with a true
value.

RESOURCE_PASSWORD_CHANGE No Indicates whether the resource adapter supports password
changes. To enable, override the supportsResourceAccount
method.

Table 2-18 Account Features

Feature Name Enabled in Base? Comments

ACCOUNT_CASE_
INSENSITIVE_IDS

Yes Indicates whether user account names are
case-insensitive. Override the
supportsCaseInsensitiveAccountIds method with a
false value to make account IDs case-sensitive.

ACCOUNT_CREATE Yes Indicates whether accounts can be created. Use the
remove operation to disable this feature.

ACCOUNT_DELETE Yes Indicates whether accounts can be deleted. Use the
remove operation to disable this feature.

ACCOUNT_DISABLE No Indicates whether accounts can be disabled on the
resource. Override the supportsAccountDisable
method with a true value to enable this feature.

Writing Custom Adapters

Chapter 2 Developing Custom Adapters 145

ACCOUNT_EXCLUDE No Determines whether administrative accounts can be
excluded from Identity Manager. Override the
supportsExcludedAccounts method with a true
value to enable this feature.

ACCOUNT_ENABLE No Indicates whether accounts can be enabled on the
resource. Override the supportsAccountDisable
method with a true value if accounts can be enabled
on the resource.

ACCOUNT_EXPIRE_
PASSWORD

Yes Enabled if the expirePassword Identity Manager User
attribute is present in the schema map for the
adapter. Use the remove operation to disable this
feature.

ACCOUNT_GUID No If a GUID is present on the resource, use the put
operation to enable this feature.

ACCOUNT_ITERATOR Yes Indicates whether the adapter uses an account
iterator. Use the remove operation to disable this
feature.

ACCOUNT_LIST Yes Indicates whether the adapter can list accounts. Use
the remove operation to disable this feature.

ACCOUNT_LOGIN Yes Indicates whether a user can login to an account. Use
the remove operation if logins can be disabled.

ACCOUNT_PASSWORD Yes Indicates whether an account requires a password.
Use the remove operation if passwords can be
disabled.

ACCOUNT_RENAME No Indicates whether an account can be renamed. Use
the put operation to enable this feature.

ACCOUNT_REPORTS_DISABLED No Indicates whether the resource reports if an account
is disabled. Use the put operation to enable this
feature.

ACCOUNT_UNLOCK No Indicates whether an account can be unlocked. Use
the put operation if accounts can be unlocked.

ACCOUNT_UPDATE Yes Indicates whether an account can be modified. Use
the remove operation if accounts cannot be updated.

ACCOUNT_USER_PASSWORD_ON_CHANGE No Indicates whether the user’s current password must
be specified when changing the password. Use the
put operations if the user’s current password is
required.

Table 2-18 Account Features (Continued)

Feature Name Enabled in Base? Comments

Writing Custom Adapters

146 Identity Manager 8.0 • Deployment Tools

If your custom adapter overrides the ResourceAdapterBase implementation of the
getFeatures method, add code similar to the following:

To disable a feature by overriding a different method (such as supportsActions)
add code similar to the following:

Table 2-19 Group Features

Feature Name Enabled in Base? Comments

GROUP_CREATE,
GROUP_DELETE
GROUP_UPDATE

No Indicates whether groups can be created, deleted, or
updated. Use the put operation to if these features
are supported on the resource.

Table 2-20 Organizational Unit Features

Feature Name Enabled in Base? Comments

ORGUNIT_CREATE,
ORGUNIT_DELETE
ORGUNIT_UPDATE

No Indicates whether organizational units can be
created, deleted, or updated. Use the put operation to
if these features are supported on the resource.

public GenericObject getFeatures() {
GenericObject genObj = super.getFeatures();
genObj.put(Features.ACCOUNT_RENAME, Features.ACCOUNT_RENAME);
genObj.remove(Features.ACCOUNT_UPDATE, Features.ACCOUNT_UPDATE);
.. other features supported by this Resource Adapter …
return genObj;
}

public boolean supportsActions() {
return true;

}

Writing Custom Adapters

Chapter 2 Developing Custom Adapters 147

The following tables describe the methods used to create, delete, and update
accounts on Resources.

Table 2-21 Creating Accounts on the Resource

Method Description

realCreate() Creates the account on the resource.

Receives a user object as input, and contains the account attribute information needed to create
the user account (such as account name, password, and user name)

Table 2-22 Deleting Accounts on the Resource

Method Description

realDelete() Deletes an account(s) on the resource.

Receives a user object or list of user objects as input. By default, this method creates a
connection, calls realDelete, closes the connection for each user object in the list.

Table 2-23 Updating Accounts on the Resource

Method Description

realUpdate() Updates a subset of the account attributes.

By default, this method creates a connection, calls realUpdate, and closes the connection for
each user object in the list.

NOTE: User account attributes from the resource are merged with any new changes from Identity
Manager.

Table 2-24 Getting User Information

Method Description

getUser() Retrieves information from the resource about user attributes.

Receives a user object as input (typically with only an account identity set), and returns a new user
object with values set for any attribute defined in resource schema map.

Writing Custom Adapters

148 Identity Manager 8.0 • Deployment Tools

You can use list methods to establish processes that adapters use to retrieve user
information from the resource.

Table 2-25 List Methods

Method Description

getAccountIterator() Used to discover or import all the users from a resource.

Implements the Account Iterator interface to iterate over all users of a resource.

listAllObjects () Given a resource object type (such as accountID or group), returns a list of that type from
the resource.

Implement this method to generate lists that are used by the resource, such as a list of
resource groups or distribution lists.

This method is called from the user form (not called by provisioning engine).

➤ Best Practice

When writing an AccountIterator interface implementation for a custom adapter, try to do the
following:

• Have the AccountIterator.next() method return a user that contains all attributes in the
schema map when getAccountIterator() is called.
The reconciler will trim the schema (in a cloned resource used for the
getAccountIterator() request) to request only those attributes the reconciler needs.
Generally, the reconciler needs only the accountId attribute; but there are cases when the
reconciler has additional attributes in the schema. Other getAccountIterator() users, such
as Load From Resource, potentially need all of the schema attributes.

Try to create a “smart” adapter that does the right thing based on what is in the schema
map. If your adapter can just list the accounts and get the requested information, then the
adapter should just do those tasks. Otherwise, the adapter might have to fetch an account to
get the required attributes. Adapters that are not smart always get all the attributes.

• Make your adapter as scalable as possible, which generally means the adapter does not list
or fetch all of the accounts at once. Instead, your adapter should iterate over the accounts as
the AccountIterator.next() method is called. Avoid having your adapter do much in the
AccountIterator constructor.

Writing Custom Adapters

Chapter 2 Developing Custom Adapters 149

The following example shows code for retrieving information from a resource and
converting that information into information that Identity Manager can work with.

Disabling User Accounts
You can disable an account by using the disable utilities supported by the resource
or the account disable utility provided by Identity Manager.

Code Example 2-8 Resource Adapters: Retrieving Information on a Resource

public WSUser getUser(WSUser user)
throws WavesetException {

String identity = getIdentity(user);
WSUser newUser = null;
try {

startConnection();
Map attributes = fetchUser(user);
if (attributes != null) {

newUser = makeWavesetUser(attributes);
}

} finally {
stopConnection();

}
return newUser;

}

Table 2-26 Enable and Disable Methods

Method Description

supportsAccountDisable() Returns true or false depending on whether the resource supports native account
disable.

realEnable() Implements native calls that are needed to enable the user account on the resource.

realDisable() Implements native calls that are needed to disable the user account on the resource.

NOTE Use native disable utilities whenever possible.

Writing Custom Adapters

150 Identity Manager 8.0 • Deployment Tools

• Native support for disabling an account: Certain resources provide a separate
flag that, when set, prevents users from logging in. Example utilities include
User Manager for Active Directory Users and Computers for Active
Directory, and ConsoleOne or Netware Administrator for NDS/Netware.
When an account is enabled, the user’s original password is still valid. You can
determine whether native support for account disable is available on your
resource by implementing the supportsAccountDisable method.

• Identity Manager disable utility: If the resource does not support disabling an
account, or supports disable by means of resetting the user’s password, the
Identity Manager provisioning engine disables the account. You can perform
the disable by setting the user account to a randomly generated,
non-displayed, non-retained password. When the account is enabled, the
system randomly generates a new password, which is displayed in the Identity
Manager Administrative interface or emailed to the user

Enabling Pass-Through Authentication for Resource Types
Use the following general steps to enable pass-through authentication in a
resource type:

1. Ensure that the adapter’s getFeatures() method returns
ResourceAdapter.ACCOUNT_LOGIN as a supported feature.

❍ If your custom adapter overrides the ResourceAdapterBase
implementation, add the following code:

❍ If your custom adapter does not override the getFeatures()
implementation in the ResourceAdapterBase class, it will inherit the
getFeatures() implementation that is exported for ACCOUNT_LOGIN by
default.

2. Add the <LoginConfigEntry> element to the adapter’s prototypeXML.

3. Implement the adapter’s authenticate() method.

public GenericObject getFeatures() {
GenericObject genObj = super.getFeatures();
genObj.put(Features.ACCOUNT_RENAME, Features.ACCOUNT_RENAME);
.. other features supported by this Resource Adapter …
return genObj;
}

Writing Custom Adapters

Chapter 2 Developing Custom Adapters 151

The authenticate() method authenticates the user against the resource by
using the authentication property name/value pairs provided in the
loginInfo map. If authentication succeeds, be sure that the authenticated
unique ID is returned in the WavesetResult by adding a result as follows:

result.addResult(Constants.AUTHENTICATED_IDENTITY, accountID);

If authentication succeeded, but the user's password was expired, then in
addition to the identity added above, also add the password expired indicator
to the result to be returned. This will ensure that the user will be forced to
change their password on at least resource upon next login to Identity
Manager.

result.addResult(Constants.RESOURCE_PASSWORD_EXPIRED, new
Boolean(true));

If authentication fails (because the user name or password is invalid), then:

throw new WavesetException("Authentication failed for " + uid + ".");

How to Write Active Sync-Enabled Adapter Methods
Active Sync-specific methods provide the mechanism for updating Identity
Manager, which is the primary purpose of your Active Sync-enabled adapter
adapter. These methods are based on pulling information from the authoritative
resource. In addition, you use these methods to start, stop, and schedule the
adapter.

The methods you are going to write in this section of the adapter are based on
generic methods supplied with the skeleton adapter file. You must edit some of
these methods, which are categorized by task.

The following sections describe general guidelines for creating Active
Sync-enabled adapter methods:

• Initializing and Scheduling the Adapter

• Polling the Resource

• Storing and Retrieving Adapter Attributes

• Updating the Identity Manager Repository

• Shutting Down the Adapter

Writing Custom Adapters

152 Identity Manager 8.0 • Deployment Tools

Initializing and Scheduling the Adapter
You initialize and schedule the adapter by implementing the init() and poll()
methods.

The init() method is called when the adapter manager loads the adapter. There
are two methods for loading the adapter:

• The manager can load the adapter at system startup if the adapter startup type
is automatic.

• An administrator loads the adapter by clicking Start on the Resources page if
the adapter startup type is manual.

In the initialization process, the adapter can perform its own initialization.
Typically, this involves initializing logging (with the ActiveSyncUtil class), and
any adapter-specific initialization such as registering with a resource to receive
update events.

If an exception is thrown, the adapter is shut down and unloaded.

Polling the Resource
All of the adapter’s work is performed by the poll() method. Scheduling the
adapter requires setting up a poll() method to search for and retrieve changed
information on the resource.

This method is the main method of the Active Sync-enabled adapter. The adapter
manager calls the poll() method to poll the remote resource for changes. The call
then converts the changes into IAPI calls and posts them back to a server. This
method is called on its own thread and can block for as long as needed.

It should call its ActiveSyncUtil instance’s isStopRequested method and return
when true. Check isStopRequested as part of the loop condition when looping
through changes.

To configure defaults for polling, you can set the polling-related resource attributes
in the adapter file. Setting these polling-related attributes provides administrators
with a means to later use the Identity Manager interface to set the start time and
date for the poll interval and the length of the interval.

Scheduling Parameters You use the following scheduling parameters in Active
Sync-enabled adapters:

• RA_SCHEDULE_INTERVAL

• RA_SCHEDULE_INTERVAL_COUNT

Writing Custom Adapters

Chapter 2 Developing Custom Adapters 153

• RA_SCHEDULE_START_TIME

• RA_SCHEDULE_START_DATE

See Table 2-7 on page 117 for a description of these parameters.

Scheduling Parameters in the prototypeXML The scheduling parameters are
present in the string constant ActiveSync. ACTIVE_SYNC_STD_RES_ATTRS_XML, along
with all other general Active Sync-related resource attributes.

The following table describes the usage of scheduling parameters using some
sample polling scenarios.

Storing and Retrieving Adapter Attributes
Most Active Sync-enabled adapters are also standard adapters, where a single Java
class both extends ResourceAdapterBase (or AgentResourceAdapter) and
implements the Active Sync interface.

The following example shows how to retrieve the attribute and pass the update
through to the base.

Table 2-27 Sample Polling Scenarios

Polling Scenario Parameters

Daily at 2 A.M. Interval = day, count =1, start_time=0200

Four times daily Interval=hour, count=6.

Poll once every two weeks
on Thursday at 5 P.M

Interval = week, count=2, start date = 20020705
(a Thursday), time = 17:00.

Code Example 2-9 Attribute Retrieval and Update

public Object getAttributeValue(String name) throws WavesetException {
return getResource().getResourceAttributeVal(name);

}
public void setAttributeValue(String name, Object value) throws WavesetException {

getResource().setResourceAttributeVal(name,value);

Writing Custom Adapters

154 Identity Manager 8.0 • Deployment Tools

Updating the Identity Manager Repository
When an update is received, the adapter uses the IAPI classes, notably
IAPIFactory to:

• Collect the changed attributes

• Map the changes to a unique Identity Manager object.

• Update that object with the changed information

Mapping the Changes to the Identity Manager Object
Using the Active Sync event parameter configurator for the resource,
IAPIFactory.getIAPI constructs an IAPI object, either IAPIUser or IAPIProcess
from a map of changed attributes. If an exclusion rule (iapi_create, iapi_delete,
or iapi_update) is configured for the resource, IAPIFactory checks if the account
is excluded. If a non-null object is created and returned by the Factory, the adapter
can modify the IAPI object (for example, by adding a logger), then submits it.

When the object is submitted, the form associated with the resource is expanded
with the object view before the view is checked in. For more information about
forms and views, see Identity Manager Workflows, Forms, and Views.

In SkeletonActiveSyncResourceAdapter, this process is handled in the
buildEvent and processUpdates methods.

Shutting Down the Adapter
No system requirements are associated with adapter shutdown. Identity Manager
calls the shutdown method, which is an opportunity for your adapter to cleanup
any objects still in use from the polling loop.

Configure the Adapter to Support Pass-Through
Authentication
Identity Manager uses pass-through authentication to grant users and
administrators access through one or more different passwords. Identity Manager
manages pass-through authentication through the implementation of:

• Login applications (collection of login module groups)

• Login module groups (ordered set of login modules)

• Login modules (sets authentication for each assigned resource and specify one
of several success requirements for authentication)

Writing Custom Adapters

Chapter 2 Developing Custom Adapters 155

You configure a custom adapter to support pass-through authentication by

• Implementing the authenticate() method appropriately

• Including the account.LOGIN feature in the getFeatures() method map
(com.waveset.adapter.ResourceAdapter.ACCOUNT_LOGIN)

• Including the <LoginConfigEntry> section in the resource’s prototypeXML

When configuring a custom resource adapter to support an interactive login, you
must enable the adapter to request additional information from a user during
log in and after that user submits the initial login page.

The adapter authenticate() method controls whether the login becomes
interactive. The authenticate() method’s return values trigger the interactive
login so the authenticate() is called again with the results of the next login page
until the authenticate() method decides the login

• Fails by throwing an exception

• Succeeds by returning the account ID of the authenticated account in the
WavesetResult as usual

To be interactive, the adapter must return a WavesetResult that

• Does not contain ResultItems with a Constants.AUTHENTICATED_GUID type or
Constants.AUTHENTICATED_IDENTITY type

• Does contain ResultItems that are used to dynamically build a form for the
next page of the login

Each ResultItem corresponds to a field in the form. ResultItems must have the
Constants.CONTINUE_AUTHENTICATION_ATTR type with values in the following
format:

label|attrName|displayType|prompt|'isId'

Where

• label is a string containing a label or none.

• attrName is the login attribute name that is passed into the next
authenticate() method call as a key in the loginInfo HashMap.

• displayType describes the type of form field to use. displayType values include

❍ text
❍ secret
❍ label
❍ checkbox

Writing Custom Adapters

156 Identity Manager 8.0 • Deployment Tools

• prompt corresponds to the title or label of the form field.

• isId is an optional string.

If you use the isId string, the value of the form field is added to the loginInfo
HashMap with the key Constants.ACCOUNT_ID and the value of the field.

The following ResultItem types are also “round-tripped” and returned in the
loginInfo HashMap on the next authenticate() call:

• Constants.CONTINUE_AUTHENTICATION_ACCOUNT_HANDLE keep track of which
user or account is in the process of being authenticated.

• Constants.CONTINUE_AUTHENTICATION_PREVIOUS_ATTR remove previous
authentication attributes from the loginInfo, so the loginInfo does not
contain an “old” authentication attr.

Define the Resource Object Components
This section describes how to define the following resource object components:

• Defining Resource Object Classes

• Defining Resource ObjectTypes

• Defining Resource Object Features

• Defining Resource Object Attributes

Defining Resource Object Classes
Object classes are handled differently for LDAP-based resource objects than for
other resource objects.

LDAP-Based Resource Objects
LDAP-based resource objects can consist of more than one LDAP object class,
where each object class is an extension of its parent object class. However, within
LDAP, the complete set of these object classes is viewed and managed as a single
object type within LDAP.

To manage this type of resource object within Identity Manager, include the XML
element <ObjectClasses> within the <ObjectType> definition. The
<ObjectClasses> element allows you to define the set of object classes that is
associated with this <ObjectType> as well as the relationship of classes to
each other.

Writing Custom Adapters

Chapter 2 Developing Custom Adapters 157

Non-LDAP-Based Resource Objects
For non-LDAP-based resource objects, you can use the <ObjectType> to represent
information other than the resource object type name.

In the following example, the primary attribute defines the object class to be used
when creating and updating an object of this type. In this case, inetorgperson is
the object class that is defined as the primary one because it is a subclass of the
other listed object classes. The operator attribute specifies whether the list of object
classes should be treated as one (logical AND) or treated as unique classes (logical
OR) when listing or getting an object of this type. In this case, Identity Manager
performs an AND operation on these object classes prior to any list or get requests
for this object type.

In the next example, all requests to create and/or update resource objects of this
type are done using the groupOfUniqueNames object class. All list and get requests
will query for all objects whose object class is either groupOfNames or
groupOfUniqueNames.

Code Example 2-10 Using inetorgperson Object Class

<ObjectClasses primary='inetorgperson' operator='AND'>\n"+
<ObjectClass name='person'/>\n"+
<ObjectClass name='organizationalPerson'/>\n"+
<ObjectClass name='inetorgperson'/>\n"+

</ObjectClasses>\n"+

Code Example 2-11 Using groupOfUniqueNames Object Class

<ObjectClasses primary='groupOfUniqueNames' operator='OR'>\n"+
<ObjectClass name='groupOfNames'/>\n"+
<ObjectClass name='groupOfUniqueNames'/>\n"+

</ObjectClasses>\n"+

Writing Custom Adapters

158 Identity Manager 8.0 • Deployment Tools

In this example, only one object class is defined so all create, get, list, and update
operations are performed using object class organizationalUnit.

Because there is only one object class, you can exclude the <ObjectClasses>
section. If you exclude the <ObjectClasses> section, the object class defaults to the
<ObjectType> name attribute value. However, if you want the object type name to
differ from the resource object class name, you must include the <ObjectClasses>
section with the single <ObjectClass> entry.

Defining Resource ObjectTypes
Resource Object types uniquely define a specific type of resource, and you define
object types in the adapter’s prototypeXML string.

The XML <ObjectTypes> element is a container within the adapter’s prototypeXML
string that contains one or more object type definitions to be managed on that
resource. This <ObjectTypes> element fully describes the resource-specific object to
Identity Manager, including the following:

• A list of specific object classes contained in the object type (required only for
LDAP-compliant directories)

• A list of supported features

• A list of object type-specific attributes that are available within Identity
Manager for editing and searching.

Code Example 2-12 Using organizationalUnit Object Class

<ObjectClasses operator='AND'>\n"+
<ObjectClass name='organizationalUnit'/>\n"+

</ObjectClasses>\n"+

Writing Custom Adapters

Chapter 2 Developing Custom Adapters 159

The following table describes the supported attributes of the <ObjectType>
element.

The following example shows ObjectType definitions:

Table 2-28 Supported <ObjectType> Element Attributes

Attribute Description

name Defines the name by which this object type is displayed and referred to within Identity Manager
(required).

icon Defines the name of the .gif file to display in the Identity Manager interface for objects of this type. You
must install this .gif file in idm/applet/images for use by Identity Manager.

container Defines whether this type of resource object can contain other resource objects of the same type or of a
different type.

• If true, this resource object type can contain other resource objects.

• If false, this resource object type cannot contain other resource objects.

Code Example 2-13 Example ObjectType Definitions

static final String prototypeXml ="<Resource name='Skeleton' class=
'com.waveset.adapter.sample.SkeletonStandardResourceAdapter'

typeString='Skeleton of a resource adapter'
typeDisplayString='"+Messages.RESTYPE_SKELETON+"'>\n"+

" <ObjectTypes>\n"+
" <ObjectType name='Group' icon='group'>\n"+

… other content defined below will go here …
“ </ObjectType>\n”+
“ <ObjectType name=’Role’ icon=’ldap_role’>\n”+
… other content defined below will go here …
“ </ObjectType>\n”+
“ <ObjectType name=’Organization’ icon=’folder_with_org’ container=’true’>\n”+
… other content defined below will go here …
“ </ObjectType>\n”+
“ </ObjectTypes>\n”+

Writing Custom Adapters

160 Identity Manager 8.0 • Deployment Tools

Defining Resource Object Features
The <ObjectFeatures> section specifies a list of one or more features supported by
this object type, where each object feature is directly tied to the implementation of
the associated object type method in the resource adapter.

Each ObjectFeature definition must contain the name attribute, which specifies a
feature name. The create and update features can specify a form attribute, which
defines the resource form used to process create and update features. If you do not
specify a form attribute, Identity Manager processes the create and update
features with the same form used by all resources of a given type.

The following table describes the object feature mappings.

In the following example, the <ObjectFeatures> section includes all supported
object features. Your resource adapter can support all of these features or just a
subset of features. The more object features your adapter supports, the richer the
object management function within Identity Manager.

Table 2-29 Object Feature Mappings

Object Feature Method Supports Form Attribute?

create createObject Yes

delete deleteObject No

find listObjects No

list listObjects No

rename updateObject No

saveas createObject No

update updateObject Yes

view getObject No

Writing Custom Adapters

Chapter 2 Developing Custom Adapters 161

Defining Resource Object Attributes
The <ObjectAttributes> section specifies the set of attributes to be managed and
queried in Identity Manager. Each <ObjectAttribute> element name should be the
same as the native resource attribute name. Unlike user attributes in Identity
Manager, no attribute mapping is specified. Use only the native attribute names.

The following table describes attributes that are required for <ObjectAttributes>.

Code Example 2-14 <ObjectFeatures> Section Including all Supported Object Features

 <ObjectFeatures>\n"+
<ObjectFeature name='create' form='My Create Position Form'/>
<ObjectFeature name='update' form='My Update Position Form'/>

<ObjectFeature name='create'/>\n"+
<ObjectFeature name='delete'/>\n"+
<ObjectFeature name='rename'/>\n"+
<ObjectFeature name='saveas'/>\n"+
<ObjectFeature name='find'/>\n"+
<ObjectFeature name='list'/>\n"+
<ObjectFeature name='view'/>\n"+

</ObjectFeatures>\n"+

Table 2-30 Required Attributes for <ObjectAttributes>

Attribute Description

idAttr The value of this attribute should be the resource object attribute name that uniquely
identifies this object within the resource’s object namespace (for example, dn, uid)

displayNameAttr The value of this attribute should be the resource object attribute name whose value is the
name you want displayed when objects of this type are viewed within Identity Manager (for
example, cn, samAccountName).

descriptionAttr (Optional) This value of this attribute should be the resource object attribute name whose
value you want displayed in the Description column of the Resources page.

Writing Custom Adapters

162 Identity Manager 8.0 • Deployment Tools

The following example shows an <ObjectAttributes> section defined in an
<ObjectType>.

The following table describes the <ObjectAttribute> attributes.

Defining Resource Forms
You must provide the following resource forms:

• A ResourceForm named <resource type> Create <object type> Form for each
resource <ObjectType> that supports the Create feature.

For example, AIX Create Group Form or LDAP Create Organizational Unit Form

• A ResourceForm named <resource type> Update <object type> Form for each
resource <ObjectType> that supports the Update feature.

For example, AIX Update Group Form or LDAP Update Organizational Unit Form

Code Example 2-15 <ObjectAttributes> Section Defined in an <ObjectType>

<ObjectAttributes idAttr='dn' displayNameAttr='cn' descriptionAttr=
'description'>\n"+

<ObjectAttribute name='cn' type='string'/>\n"+
<ObjectAttribute name='description' type='string'/>\n"+
<ObjectAttribute name='owner' type='distinguishedname' namingAttr=

'cn'/>\n"+
<ObjectAttribute name='uniqueMember' type='dn' namingAttr='cn' />\n"+

</ObjectAttributes>\n"+

Table 2-31 <ObjectAttribute> Attributes

 Attribute Description

name Identifies the resource object type attribute name (required)

type Identifies the type of object. Valid types include string or distinguishedname / ‘dn’ (defaults to
string)

namingAttr If object type is distinguishedname or dn, this value specifies the attribute whose value should
be used to display an instance of this object type referred to by the dn within Identity Manager

NOTE The methods in the resource adapter object type implementation are
responsible for coercing all string values into the appropriate type
based on the resource attribute name.

Writing Custom Adapters

Chapter 2 Developing Custom Adapters 163

You can also assign an optional form that processes incoming data before storing it
in Identity Manager. This resource form is a mechanism that transforms incoming
data from the schema map and applies the transformed data to the User view. The
sample form also performs actions, such as enabling and disabling an account, that
are based on specific incoming data values such as employee status.

The following table describes attributes contained in the top-level namespace.

NOTE All values are strings unless otherwise specified.

Table 2-32 Top-Level Namespace Attributes

Attribute Description

<objectType>.resourceType Identity Manager resource type name (for example, LDAP, Active Directory)

<objectType>.resourceName Identity Manager resource name

<objectType>.resourceId Identity Manager resource ID

<objectType>.objectType Resource-specific object type (for example, Group)

<objectType>.objectName Name of resource object (for example, cn or samAccountName)

<objectType>.objectId Fully qualified name of resource object (for example, dn)

<objectType>.requestor ID of user requesting view

<objectType>.attributes Resource object attribute name/value pairs (object)

<objectType>.organization Identity Manager member organization

<objectType>.attrsToGet List of object type specific attributes to return when requesting an object through
checkoutView or getView (list)

<objectType>.searchContex Context used to search for non-fully qualified names in form input

<objectType>.searchAttributes List of resource object type-specific attribute names that will be used to search
within the specified searchContext for names input to the form (list).

<objectType>.searchTimeLimit Maximum time spent searching where <objectType> is the lowercase name of a
resource specific object type. For example, group, organizationalunit,
organization.

<objectType>.attributes
<resource attribute name>

Used to get or set the value of specified resource attribute (for example,
<objectType>.attributes.cn, where cn is the resource attribute name). When
resource attributes are distinguished names, the name returned when getting the
value is the value of the namingAttr specified in the <ObjectAttribute> section
of the <ObjectType> description.

Installing Custom Adapters

164 Identity Manager 8.0 • Deployment Tools

Installing Custom Adapters
To install a customized resource adapter:

1. If necessary, create the following directory:

idm/WEB-INF/classes/package_path

Where package_path is the package where your class is defined. For example,

com/waveset/adapter/sample

2. Copy your NewResourceAdapter.class file into the directory you just created.

3. Create a gif image that is 18x18 pixels and 72 DPI in size to represent your
adapter. Identity Manager displays this .gif file image next to the resource
name on the List Resources page.

You must use the following format when naming your .gif file:

YourAdapterName.gif

You must replace any spaces in your adapter name with underscores.
For example, look at some of the existing adapter names in

\waveset\idm\web\applet\images

4. Copy the .gif file to idm/applet/images.

5. Stop and restart the application server.
For information about working with application servers, see Identity Manager
Installation.

6. Create an HTML help file for your resource.

7. From the Managed Resources page of the Administrator interface, click the
Custom Adapter button and enter the full class name of your adapter class.
For example

com.waveset.adapter.sample.NewResourceAdapter

8. Create a resource in Identity Manager using your adapter.

NOTE The idm.jar in the com/waveset/msgcat/help/resources
directory contains example help files.

See Identity Manager Workflows, Forms, and Views for information
about including online help with an application.

Testing Custom Adapters

Chapter 2 Developing Custom Adapters 165

9. Ensure your native managed system is operational.

10. Test the connectivity of your new Identity Manager resource, as described in
“Checking Connections and Operations” on page 143.

Testing Custom Adapters
After writing a custom resource adapter, you must test the validity of that adapter.
In particular, you must test the connection to the resource.

Topics covered in this section include:

• Unit Testing Your Adapter

• Compatibility Testing Your Adapter

Unit Testing Your Adapter
Use the following steps to unit-test the validity of a custom adapter (in particular,
to test the connection to the resource):

1. Save the adapter.

2. Run unit tests on that adapter from your own machine.

3. Load the adapter into Identity Manager.

4. Test the adapter in Identity Manager, as follows:

a. Log into the Identity Manager Administrator interface.

b. Click the Resources > List Resources tabs.

c. Click Start on the List Resources page.

The Start button is enabled only if the resource start-up type is Automatic
or Manual.

Testing Custom Adapters

166 Identity Manager 8.0 • Deployment Tools

Compatibility Testing Your Adapter
Writing and maintaining a custom resource adapter can be a very complex process.
Developers commonly discover that their custom adapters do not perform as
expected, or that the adapters do not perform the functions expected by Identity
Manager. Even well-written resource adapters will sometimes not work well after
the external resource has been upgraded.

Identity Manager provides a compatibility testing mechanism that you can use to
verify the quality of a custom resource adapter. This tester

• Makes it easier for you to write, publish, and maintain a custom adapter

• Makes it easier for you to run the adapter and interpret results

• Focuses on testing the adapter's supported features as fully as possible in an
adapter-independent manner

• Simplifies troubleshooting an adapter

This section describes how to use Identity Manager’s Compatibility Test Suite. The
information is organized as follows:

• How the Compatibility Test Suite Works

• How to Run the Compatibility Tests

• Example 1: Using the Default DataProvider to Run Compatibility Tests

• Example 2: Adding More Data

• Example 3: Finishing the Test Configuration

• Example 4: Executing Javascript or Beanshell Script

• Example 5: Running Tests from Inside the Web Container

How the Compatibility Test Suite Works
Identity Manager’s Compatibility Test Suite performs a set of standard tests to
check the adapter’s supported features. If a particular test requires a feature not
provided by the adapter, Identity Manager skips that test.

The Compatibility Test Suite requires certain information, such as a valid user
name and password to run a compatibility test on a resource adapter. You can
typically use the standard DataProvider (provided with Identity Manager) to
supply the data required for the test.

Testing Custom Adapters

Chapter 2 Developing Custom Adapters 167

How to Run the Compatibility Tests
To run the Identity Manager Compatibility Test Suite, use the following steps:

1. Open a command window.

2. At the command prompt, type the lh command using the following format:

$WSHOME/bin/lh com.sun.idm.testing.adapter.CompatibilitySuite [Options] [testName]

Where:

❍ [options] include:

• -h: Use to access usage information

For example:

Usage: CompatibilitySuite [arguments]

Valid arguments:

• -propsFile file: Use to specify a properties file name.

• -formatter type,path: Use to specify XML, HTML, or plain text and a
path in which to put this file.

❍ [testName] is a comma-separated list of the tests to run.

NOTE For special circumstances, such as when you want to provide
information in a class instead of as an expression in XML, you can
write a custom DataProvider.

-propsFile value Path to properties files

-formatter value Formatter to use for formatting output of tests

-user value Name of user to execute test as

-pass value Plain Text password used to log user on

-import value Comma separated list of files (on server) to import

-toDir value Directory to put test output in

-v Echos all arguments passed in to screen

-h Displays usage message

Testing Custom Adapters

168 Identity Manager 8.0 • Deployment Tools

The following properties control how tests are executed:

You can specify these properties directly from the command line, or add them to a
properties file specified from the command line. For example,

lh -DpropName=propValue

Where properties conflict, properties in the property file specified by propsFile
are used.

In most cases, the framework provided by Identity Manager is flexible enough to
test the resource adapter. However, you can easily extend the functionality in two
places if necessary:

• You can implement the DataProvider interface to create a custom
DataProvider. A custom DataProvider allows data to come from any source.

• You can implement the CompatibilityHelper interface to provide a
CompatibilityHelper. A CompatibilityHelper provides a way to initialize a
resource before running tests.

See the Javadoc for more information about implementing these interfaces and the
required naming conventions.

Property Description

adapter Classname of the adapter to test

dp Name of a custom DataProvider

importScript Comma-separated list of paths to the scripts to execute

Note: These scripts return a string of imported XML.

ns DataProvider namespace

includedTests Comma-separated list of tests to include

excludedTests Comma-separated list of tests to exclude

import Comma-separated list of files to import

NOTE When you use the [testName] command, the Compatibility Test
Suite ignores the includedTests and excludedTests options.

Testing Custom Adapters

Chapter 2 Developing Custom Adapters 169

Example 1: Using the Default DataProvider to Run Compatibility
Tests
This example illustrates how to run compatibility tests on a
SimulatedResourceAdapter using the default DataProvider.

To Prepare the Test
To prepare this compatibility test,

1. Set up the following files:

sample/compat/example.1/example.properties

sample/compat/example.1/SimulatedCompatibilityConfig.xml

2. Before executing the example, copy ant-junit.jar from Apache ant 1.6.5 to
your $WSHOME/WEB-INF/lib directory.

To Execute the Test
Execute the compatibility test as follows:

1. Open a command window.

2. At the prompt, type

cd $WSHOME

bin/lh com.sun.idm.testing.adapter.CompatibilitySuite -propsFile
sample/compat/example.1/example.properties

NOTE The default path to the simulated resource in
SimulatedCompatibilityConfig is
/tmp/mySimulatedResource.xml.

You can edit this path if you want to specify a different location.

Testing Custom Adapters

170 Identity Manager 8.0 • Deployment Tools

Your output should look similar to the following example:

What Happened
In Code Example 2-16, the lh command runs the compatibility test with the
following argument:

-propsFile sample/compat/example.1/example.properties

Both the adapter and ns properties are required to run the test.

• The adapter property provides the adapter class name to be tested.

• The ns property provides a namespace for the test.

The DataProvider can use the namespace to set up multiple configurations.

Code Example 2-16 also uses the import property, which imports a list of files into
the repository. The import property is similar to lh import filename.

When you start the compatibility test, the tester retrieves the adapter and ns
properties from the specified properties.

Code Example 2-16 Compatibility Test Results Using the Default DataProvider

TestSuite: com.sun.idm.testing.adapter.CompatibilitySuite
Starting internal database server ...
DB Server @ jdbc:hsqldb:hsql://127.0.0.1:57022/idm
Importing file sample/compat/example.1/SimulatedCompatibilityConfig.xml
'Create(com.sun.idm.testing.adapter.compatibility.Create)' skipped (unknown)
'Authenticate(com.sun.idm.testing.adapter.compatibility.AuthenticateUser)' skipped
(unknown)
'DeleteExisting(com.sun.idm.testing.adapter.compatibility.DeleteExisting)' skipped
(unknown)
'UpdateExisting(com.sun.idm.testing.adapter.compatibility.UpdateExisting)' skipped
(unknown)
'RenameExisting(com.sun.idm.testing.adapter.compatibility.RenameExisting)' skipped
(unknown)
'EnableExisting(com.sun.idm.testing.adapter.compatibility.EnableExisting)' skipped
(unknown)
'DisableExisting(com.sun.idm.testing.adapter.compatibility.DisableExisting)' skipped
(unknown)
'Iterate(com.sun.idm.testing.adapter.compatibility.Iterate)' skipped (unknown)
'DeleteMissing(com.sun.idm.testing.adapter.compatibility.DeleteMissing)' passed (77 ms)

Tests run: 9, failures: 0, errors: 0, skipped: 8, Time elapsed: 10864 ms

Testing Custom Adapters

Chapter 2 Developing Custom Adapters 171

The default DataProvider retrieves data from the extension element of a
namespace#TestData configuration object, which in this example was
SimulatedCompatibilityConfig#TestData.

The DataProvider retrieves this SimulatedCompatibilityConfig#TestData
configuration object from the repository.

To get the configuration object into the repository, you must define the object in the
following file, which is specified in the import property:

sample/compat/example.1/SimulatedCompatibilityConfig.xml

To simplify configuration in Code Example 2-16, only one test was run with the
includedTests=DeleteMissing parameter.

Example 2: Adding More Data
To run the creation tests, and other tests that create users, you must add more data
to the configuration object. In this next example, you must use the default
DataProvider again and import an XML file.

To Prepare the Test
To prepare this compatibility test,

1. Set up the following files:

sample/compat/example.2/example.properties

sample/compat/example.2/SimulatedCompatibilityConfig.xml

NOTE If you do not specify a DataProvider when setting up a test, Identity
Manager used the default DataProvider.

NOTE See the Javadoc for more information about which parameters are
available and which parameters are required for the different tests.

NOTE The default path to the simulated resource in
SimulatedCompatibilityConfig is
/tmp/mySimulatedResource.xml.

You can edit this path if you want to specify a different location.

Testing Custom Adapters

172 Identity Manager 8.0 • Deployment Tools

2. Before executing the example, copy ant-junit.jar from Apache ant 1.6.5 to
your $WSHOME/WEB-INF/lib directory.

To Execute the Test
Execute the compatibility test as follows:

1. Open a command window.

2. At the prompt, type

cd $WSHOME

bin/lh com.sun.idm.testing.adapter.CompatibilitySuite -propsFile
sample/compat/example.2/example.properties

Your output should look similar to the following example:

Code Example 2-17 Compatibility Test Results After Adding Tests

TestSuite: com.sun.idm.testing.adapter.CompatibilitySuite
Starting internal database server ...
DB Server @ jdbc:hsqldb:hsql://127.0.0.1:57022/idm
Importing file ./sample/compat/example.2/SimulatedCompatibilityConfig.xml
'Authenticate(com.sun.idm.testing.adapter.compatibility.AuthenticateUser)' skipped
(unknown)
'UpdateExisting(com.sun.idm.testing.adapter.compatibility.UpdateExisting)' skipped
(unknown)
'RenameExisting(com.sun.idm.testing.adapter.compatibility.RenameExisting)' skipped
(unknown)
'Iterate(com.sun.idm.testing.adapter.compatibility.Iterate)' skipped (unknown)
'DeleteMissing(com.sun.idm.testing.adapter.compatibility.DeleteMissing)' passed (15 ms)
'EnableExisting(com.sun.idm.testing.adapter.compatibility.EnableExisting)' passed (259 ms)
'DisableExisting(com.sun.idm.testing.adapter.compatibility.DisableExisting)' passed (7 ms)
'DeleteExisting(com.sun.idm.testing.adapter.compatibility.DeleteExisting)' passed (3 ms)
'Create(com.sun.idm.testing.adapter.compatibility.Create)' passed (3 ms)

Tests run: 9, failures: 0, errors: 0, skipped: 4, Time elapsed: 10178 ms

Testing Custom Adapters

Chapter 2 Developing Custom Adapters 173

What Happened
You requested additional tests by setting the following property in the
properties file:

IncludedTests=DeleteMissing,Create,EnableExisting,DisableExisting,DeleteExisting

These tests required more data from the DataProvider.

To provide this new data, several changes were made to the configuration object
specified by SimulatedCompatibilityConfig.xml.

The SimulatedCompatibilityConfig.xml file added a create attribute containing
a username, password, and list of user attributes. The default DataProvider uses
the create attribute when the compatibility tests ask for the username, password,
and attributes required to create a single user.

The SimulatedCompatibilityConfig.xml file also added a schema map.

Example 3: Finishing the Test Configuration
In this next example, you finish the test configuration.

To Prepare the Test
To finish the compatibility test configuration,

1. Set up the following files:

sample/compat/example.3/example.properties

sample/compat/example.3/SimulatedCompatibilityConfig.xml

2. Before executing the example, copy ant-junit.jar from Apache ant 1.6.5 to
your $WSHOME/WEB-INF/lib directory.

3. You must initialize the repository to run the encrypt command.

NOTE The default path to the simulated resource in
SimulatedCompatibilityConfig is
/tmp/mySimulatedResource.xml.

You can edit this path to specify a different location by changing
two lines in the file.

Testing Custom Adapters

174 Identity Manager 8.0 • Deployment Tools

For example, use the lh import sample/init.xml command to initialize the
repository, where the original file looks like the following:

4. In each case, use an encrypt command from the lh console to get an
encrypted password that can be decrypted in your environment.

Run lh console and at the console prompt, type the text in single quotes for
each of the preceding EncryptedData entries (for example, encrypt ctPass)
and replace the text between <EncryptedData> and </EncryptedData> with
the result.

<Attribute name="login_infos">
 <List>
 <Object>
 <Attribute name="sim_user" value="ctUser" />
 <Attribute name="sim_password" value="ctPass" />
 <Attribute name="shouldfail" value="no" />
 </Object>
 <Object>
 <Attribute name="sim_user" value="ctUser" />
 <Attribute name="sim_password" value="wrongPass" />
 <Attribute name="shouldfail" value="yes" />
 </Object>
 <Object>
 <Attribute name="sim_user" value="ctUser" />
 <Attribute name="sim_password">
 <!-- result of 'encrypt ctPass' from lh console -->

<EncryptedData>11D1DEF534EA1BE0:-32DFBF32:1165DC91D73:-7FFA|mDBIkSQB3xg=</EncryptedData>
 </Attribute>
 <Attribute name="shouldfail" value="no" />
 </Object>
 <Object>
 <Attribute name="sim_user" value="ctUser" />
 <Attribute name="sim_password">
 <!-- result of 'encrypt wrongPass' from lh console -->

<EncryptedData>11D1DEF534EA1BE0:-32DFBF32:1165DC91D73:-7FFA|m0n9bAaMx+sKpqs5PmH3eQ==
</EncryptedData>
 </Attribute>
 <Attribute name="shouldfail" value="yes" />
 </Object>
 </List>
 </Attribute>

Testing Custom Adapters

Chapter 2 Developing Custom Adapters 175

See the following example:

Alternatively, you can have the DataProvider skip the two login info entries
by commenting out the whole block as follows:

5. Next, copy the new data and paste it inside the <EncryptedData> tag to replace
the old data. Be certain there are no extra spaces or line breaks inside the tag.

<!-- result of 'encrypt ctPass' from lh console -->
<EncryptedData>11D1DEF534EA1BE0:-65F64461:1163AB5A7B2:-7FFA|iMm4Tcqck+M=</EncryptedData>

<!-- result of 'encrypt wrongPass' from lh console -->
<EncryptedData>11D1DEF534EA1BE0:-65F64461:1163AB5A7B2:-7FFA|d1/PheqRok+J3uaggtj9Gw==
</EncryptedData>

<!-- commented out
 <Attribute name="login_infos">
 <List>
 <Object>
 <Attribute name="sim_user" value="ctUser" />
 <Attribute name="sim_password" value="ctPass" />
 <Attribute name="shouldfail" value="no" />
 </Object>
 <Object>
 <Attribute name="sim_user" value="ctUser" />
 <Attribute name="sim_password" value="wrongPass" />
 <Attribute name="shouldfail" value="yes" />
 </Object>
 <Object>
 <Attribute name="sim_user" value="ctUser" />
 <Attribute name="sim_password">

<EncryptedData>11D1DEF534EA1BE0:-32DFBF32:1165DC91D73:-7FFA|mDBIkSQB3xg=</EncryptedData>
 </Attribute>
 <Attribute name="shouldfail" value="no" />
 </Object>
 <Object>
 <Attribute name="sim_user" value="ctUser" />
 <Attribute name="sim_password">

<EncryptedData>11D1DEF534EA1BE0:-32DFBF32:1165DC91D73:-7FFA|m0n9bAaMx+sKpqs5PmH3eQ==
</EncryptedData>
 </Attribute>
 <Attribute name="shouldfail" value="yes" />
 </Object>
 </List>
 </Attribute>
-->

Testing Custom Adapters

176 Identity Manager 8.0 • Deployment Tools

To Execute the Tests
Run the tests again as follows:

1. Open a command window.

2. At the prompt, type

cd $WSHOME

bin/lh com.sun.idm.testing.adapter.CompatibilitySuite -propsFile
sample/compat/example.3/example.properties

Your output should look similar to the following example:

What Happened
The line specifying the included tests was removed from the example.properties
file, which should run the entire suite.

Additional data is required for the remaining tests, so the
SimulatedCompatibilityConfig.xml file was modified to include update, rename,
and iterate attributes. These attributes modify users, rename users, and create a
set of users over which to iterate. In addition, the file added an login_info
attribute that specifies a list of items used to authenticate a user if authentication is
supported by the resource adapter.

Finally, the shouldfail attribute, provided in the file under the login info entries,
allows negative tests. The tests in the suite should now complete with no errors or
skipped tests.

Code Example 2-18 Compatibility Test Results After Finishing the Test Configuration

TestSuite: com.sun.idm.testing.adapter.CompatibilitySuite
Starting internal database server ...
DB Server @ jdbc:hsqldb:hsql://127.0.0.1:57022/idm
Importing file ./sample/compat/example.3/SimulatedCompatibilityConfig.xml
'Create(com.sun.idm.testing.adapter.compatibility.Create)' passed (31 ms)
'Authenticate(com.sun.idm.testing.adapter.compatibility.AuthenticateUser)' passed (12 ms)
'DeleteExisting(com.sun.idm.testing.adapter.compatibility.DeleteExisting)' passed (1 ms)
'DeleteMissing(com.sun.idm.testing.adapter.compatibility.DeleteMissing)' passed (1 ms)
'UpdateExisting(com.sun.idm.testing.adapter.compatibility.UpdateExisting)' passed (33 ms)
'RenameExisting(com.sun.idm.testing.adapter.compatibility.RenameExisting)' passed (5 ms)
'EnableExisting(com.sun.idm.testing.adapter.compatibility.EnableExisting)' passed (10 ms)
'DisableExisting(com.sun.idm.testing.adapter.compatibility.DisableExisting)' passed (5 ms)
'Iterate(com.sun.idm.testing.adapter.compatibility.Iterate)' passed (352 ms)

Tests run: 9, failures: 0, errors: 0, skipped: 0, Time elapsed: 10262 ms

Testing Custom Adapters

Chapter 2 Developing Custom Adapters 177

Example 4: Executing Javascript or Beanshell Script
The compatibility tests enable you to execute a javascript or beanshell script and
then import the script results into the repository. Either script must return a string
that contains the XML to be imported.

Identity Manager provides an example Apache Velocity template and some
supporting beanshell script that uses the template. The beanshell script was created
just to fill in the required variables, which makes it very easy to work with the
default DataProvider.

To Prepare the Test
To prepare the compatibility test to execute with a beanshell script

1. Set up the following files:

sample/compat/example.4/example.properties

sample/compat/example.4/SimulatedCompatibilityConfig.bsh

2. Before executing the example, copy ant-junit.jar from Apache ant 1.6.5 to
your $WSHOME/WEB-INF/lib directory.

To Execute the Tests
Execute the compatibility tests as follows:

1. Open a command window.

2. At the prompt, type

cd $WSHOME

bin/lh com.sun.idm.testing.adapter.CompatibilitySuite -propsFile
sample/compat/example.4/example.properties

NOTE The default path to the simulated resource in
SimulatedCompatibilityConfig is
/tmp/mySimulatedResource.xml.

You can edit this path if you want to specify a different location.

You must change two lines in the file.

Testing Custom Adapters

178 Identity Manager 8.0 • Deployment Tools

Your output should look similar to the following example:

What Happened
The DataProvider supplied an importScript property, which caused the
SimulatedCompatibilityConfig.bsh script to run. This script returns an XML
string that is imported into the repository as a configuration object. The script
specified the necessary items, and the velocity template creates the string.

You can use one of the following methods to debug the import script:

• Use lh console to turn on tracing and then check the generated log files for the
script’s return value. For example, type:

trace 4 com.sun.idm.testing.adapter.CompatibilitySuite

• Use the excludedTests property and exclude each test. No tests run, but the
script executes.

Code Example 2-19 Compatibility Test Results After Executing Beanshell Script

TestSuite: com.sun.idm.testing.adapter.CompatibilitySuite
Starting internal database server ...
DB Server @ jdbc:hsqldb:hsql://127.0.0.1:57022/idm
Executing script
/opt/build/dv207518/adapterTestsTemp/waveset/export/pipeline/./sample/compat/example.4/Simu
latedCompatibilityConfig.bsh
Importing results
'Create(com.sun.idm.testing.adapter.compatibility.Create)' passed (25 ms)
'Authenticate(com.sun.idm.testing.adapter.compatibility.AuthenticateUser)' passed (11 ms)
'DeleteExisting(com.sun.idm.testing.adapter.compatibility.DeleteExisting)' passed (5 ms)
'DeleteMissing(com.sun.idm.testing.adapter.compatibility.DeleteMissing)' passed (4 ms)
'UpdateExisting(com.sun.idm.testing.adapter.compatibility.UpdateExisting)' passed (4 ms)
'RenameExisting(com.sun.idm.testing.adapter.compatibility.RenameExisting)' passed (3 ms)
'EnableExisting(com.sun.idm.testing.adapter.compatibility.EnableExisting)' passed (11 ms)
'DisableExisting(com.sun.idm.testing.adapter.compatibility.DisableExisting)' passed (5 ms)
'Iterate(com.sun.idm.testing.adapter.compatibility.Iterate)' passed (22 ms)

Tests run: 9, failures: 0, errors: 0, skipped: 0, Time elapsed: 11354 ms

NOTE This example used beanshell scripting, but you can also use
Javascript.

Testing Custom Adapters

Chapter 2 Developing Custom Adapters 179

Several beanshell helpers are provided in the sample/compat/beanshell directory
to make scripting easier by using the Apache Velocity template engine.

To use the templates, add the following code at the top of your beanshell script:

Using the helpers is optional.

When using a script, the only requirement is that the script must return a string
containing XML. The script can access any of the parameters that were passed into
the CompatibilitySuite using _params.

Where _params can contain any of the following properties.

NOTE Commented examples are included to help you use the beanshell
helpers.

// import helpers
String wavesetHome = Util.getWavesetHome();

if(wavesetHome != null) {
if (wavesetHome.startsWith("file:")) {
 wavesetHome = wavesetHome.substring("file:".length());
}

addClassPath(wavesetHome + "./sample/compat/");
}

importCommands("beanshell");

Property Description

adapter Classname of the adapter to test

dp Name of a custom DataProvider

importScript Comma-separated list of paths to the scripts to execute

Note: These scripts return a string of imported XML.

ns DataProvider namespace

includedTests Comma-separated list of tests to include

excludedTests Comma-separated list of tests to exclude

import Comma-separated list of files to import

Testing Custom Adapters

180 Identity Manager 8.0 • Deployment Tools

In beanshell, you can use a call to params.get(“parameter_name”) to retrieve these
parameters.

If the beanshell script needs to know how the namespace parameter was set so that
the script could form the name of the configuration object, the parameter would be
retrieved as follows:

String namespace = _params.get("ns");

Example 5: Running Tests from Inside the Web Container
Use the following process to run compatibility tests from inside the web container.

To Prepare the Test
Before executing the example,

1. Copy ant-junit.jar from Apache ant 1.6.5 to your $WSHOME/WEB-INF/lib
directory.

2. Enable the com.sun.idm.testing.adapter.compatibility.CTServlet by
uncommenting the following in the web.xml file:

❍ Uncomment servlet definition:

NOTE These properties are not provided in the _params map unless you set
them in the properties file or used the -D command from the
command line to add these properties to the _params map.

<servlet>
 <servlet-name>CompatibilityTests</servlet-name>

<servlet-class>com.sun.idm.testing.adapter.compatibility.CTServlet<
/servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>

Testing Custom Adapters

Chapter 2 Developing Custom Adapters 181

❍ Uncomment servlet mapping:

3. You can specify the following parameters to the Compatibility Suite:

<servlet-mapping>
 <servlet-name>CompatibilityTests</servlet-name>
 <url-pattern>/servlet/CTServlet</url-pattern>
 </servlet-mapping>

NOTE • You might have to restart your computer to use the new servlet.

• The servlet accepts POST requests with certain parameters.
Some parameters, such as imported files, allow you to specify
multiples.

Property Description

adapter Classname of the adapter to test

dp Name of a custom DataProvider

excludedTests Comma-separated list of tests to exclude

import Comma-separated list of files to import

importScript Comma-separated list of paths to the scripts to execute

Note: These scripts return a string of imported XML.

includedTests Comma-separated list of tests to include

ns DataProvider namespace

pass Plain Text password used to log user on

Note: This password is sent in plain text, which may influence your
decision on whether or not to enable the servlet.

user Name of user who executes test

Testing Custom Adapters

182 Identity Manager 8.0 • Deployment Tools

Additional, remote-only parameters include:

You can access the servlet through debug/CompatTests.jsp or the command
line Java program, CTContainerTest.java.

4. To prepare for running the tests remotely, copy the file idmtesting.jar and
the example folders under sample/compat to the remote system.

To Execute the Tests
To run the tests from the CompatTests.jsp page,

1. Open a browser and navigate to your idm instance/debug/CompatTests.jsp.
For example,

http://example.com:8080/idm/debug/CompatTests.jsp

2. To run the example, you must provide the following values:

Namespace = SimulatedAdapterTests

Adapter = com.waveset.adapter.SimulatedResourceAdapter

User Name to Run Test as = configurator

Password for User to Run Test as = configurator's password

Script type = Beanshell radio button

Import Result of this Script Text = SimulatedCompatibilityConfig.bsh file
contents

Property Description

importXMLText String containing XML to import

importScriptText String containing script to run

importScriptSuffix Specify bsh if the script is a beanshell script

Specify js if the script is javascript.

Note: If you specify multiple scripts to the servlet, the scripts must
all be javascript or all beanshell, you cannot specify one of each.

Testing Custom Adapters

Chapter 2 Developing Custom Adapters 183

3. Copy the contents of the SimulatedCompatibilityConfig.bsh file from the
sample/compat/example.4 directory and paste them into this text field.

You can also run the compatibility test remotely from a command line Java
program called CTContainerTest. The usage is as follows:

CTContainerTest -url url [-v] [-parm1_name parm1_value -parm2_name
parm2_value ... -parmx_name parmx_value]

Where:

• Parameter names are the same as parameters accepted by the servlet.

• Parameter values are the same as values accepted by the servlet.

The servlet does not support the following parameters as a command line
argument:

• importScriptText

You can use the importLocalScriptFile parameter to send the
importScriptText parameter to the servlet. The importLocalScriptFile
option reads the contents of the file specified by the parameter value, and
submits the content of that file to the servlet with the importScriptText
parameter name.

• importXMLText

You can use the importLocalXMLFile parameter to send the importXMLText
parameter to the servlet. The importLocalXMLFile option reads the contents of
the file specified by the parameter value, and submits the content of that file to
the servlet with the importXMLText parameter name.

For more information about the available parameters and their use, run the
CTContainerTest program with no arguments, as follows:

java -cp idmtesting.jar com.sun.idm.testing.adapter.CTContainerTest

NOTE This script runs Example 4, but you can run the other examples in
the same way. The other parameters are available too, but the names
are slightly altered in the jsp file.

Testing Custom Adapters

184 Identity Manager 8.0 • Deployment Tools

The following examples illustrate different ways to run this command.

NOTE To run these examples in a Windows environment, you must adjust
the hostname and port, change the classpath separation character
from a colon (:) to a semicolon (;), and change the path separator
from a backward slash (/) to a forward slash (\).

Code Example 2-20 Running a Compatibility Test Using the Default DataProvider

java -cp idmtesting.jar:idmcommon.jar
com.sun.idm.testing.adapter.CTContainerTest -url
"http://host:port/idm/servlet/CTServlet" -adapter
com.waveset.adapter.SimulatedResourceAdapter -ns SimulatedAdapterTests
-importLocalXMLFile ./example.1/SimulatedCompatibilityConfig.xml
-includedTests DeleteMissing

Code Example 2-21 Running a Compatibility Test with Added Tests

java -cp idmtesting.jar:idmcommon.jar
com.sun.idm.testing.adapter.CTContainerTest -url
"http://host:port/idm/servlet/CTServlet" -adapter
com.waveset.adapter.SimulatedResourceAdapter -ns SimulatedAdapterTests
-importLocalXMLFile ./example.2/SimulatedCompatibilityConfig.xml
-includedTests
DeleteMissing,EnableExisting,DisableExisting,DeleteExisting,Create

Code Example 2-22 Running a Compatibility Test After Finishing the Test
Configuration

java -cp idmtesting.jar:idmcommon.jar
com.sun.idm.testing.adapter.CTContainerTest -url
"http://host:port/idm/servlet/CTServlet" -adapter
com.waveset.adapter.SimulatedResourceAdapter -ns SimulatedAdapterTests
-importLocalXMLFile ./example.3/SimulatedCompatibilityConfig.xml

Testing Custom Adapters

Chapter 2 Developing Custom Adapters 185

Testing the Resource Object
This section describes the following methods for testing the resource object:

• Viewing and Editing a Resource Object

• Testing the Resource Object in Identity Manager

Viewing and Editing a Resource Object
You can confirm the configuration of your resource by viewing the raw XML in the
repository.

Use the following steps to view and edit a resource object:

1. Log into the Administrator user interface.

2. Open the Identity Manager Debug pages by entering
http://host:port/idm/debug in the browser.

3. Choose Resource from the pull-down menu located next to the List Objects
button.

4. Click the List Objects button.

The List Objects of Type: Resource page displays with a list of all resource
adapters and Active Sync-enabled adapters.

Code Example 2-23 Running a Compatibility Test After Executing Beanshell Script

java -cp idmtesting.jar:idmcommon.jar
com.sun.idm.testing.adapter.CTContainerTest -url
"http://host:port/idm/servlet/CTServlet" -adapter
com.waveset.adapter.SimulatedResourceAdapter -ns SimulatedAdapterTests
-importLocalScriptFile ./example.4/SimulatedCompatibilityConfig.bsh

NOTE All resource adapter and Active Sync-enabled adapter classes
are based on existing Identity Manager Resource classes.

http://localhost:8080/lighthouse/debug

Testing Custom Adapters

186 Identity Manager 8.0 • Deployment Tools

5. Find the resource object you want to see.

❍ To view the resource object, click the View link.

❍ To edit the resource object, click the Edit link.

6. When you are finished, click Back.

Testing the Resource Object in Identity Manager
You can use the Find Resources and List Resources pages in the Identity Manager
Administrative interface to test your implementation of a resource object.

• Select Resource > List Resource to confirm the following performance
characteristics:

Table 2-33 List Resource Performance Characteristics

Expected Behavior in Interface If not...

Identity Manager includes your resource type in the
drop-down list of possible new resources.

Confirm that you have added it to the resource.adapters
attribute in the Waveset.properties file.

When you open the resource folder, its contents reflect all
the <ObjectType> elements that are defined in your
resource adapter’s <ObjectTypes> section.

Review the <ObjectType> elements in the adapter’s
prototypeXML.

When you right-click on one of your resource object
types, all the supported features specified in your
resource adapter’s <ObjectFeatures> section per
<ObjectType> is available from the menu.

Go to the Debug page and view or edit the resource in
question to ensure that its list of <ObjectFeatures> for
the <ObjectType> in question is correct.

You can create new resources and update existing
resource objects.

Verify that your resource adapter code is in
WEB-INF/classes/com/waveset/adapter/sample

The correct ResourceForms have been loaded for each
type of operation.

• Confirm that you have checked in all needed
resource forms

• Verify that the forms are correctly referenced
(including the correct case) in the section for forms in
the System configuration object.

Troubleshooting Custom Adapters

Chapter 2 Developing Custom Adapters 187

• Select Resource > Find Resources to confirm the following performance
characteristics:

Troubleshooting Custom Adapters
You can use Identity Manager Debug pages to trace methods in your custom
adapter. You must first enable tracing and identify the methods for which tracing is
requested. You must also provide calls to create log entries for new methods in
your custom adapter.

To debug your adapter, review the log file that is generated by the adapter. If you
enabled tracing and identified the methods you wanted to trace, your adapter will
write its resource settings to the log file. Use this information to validate that the
adapter was started and that all setting changes were saved.

Table 2-34 Find Resources Performance Characteristics

Expected Behavior in the Interface If not...

You can set all attributes you expect from
the Resources > Find Resources page

Check all <ObjectType> elements and associated <ObjectAttribute>
elements.

A find resource request returns the
appropriate resource objects

Double-check the query arguments to ensure that the appropriate set of
resource objects will match that query. If it still doesn’t work, try the same
query through another LDAP browser to ensure that it is not a problem
with the query.

You can edit and/or delete objects
returned from your find request.

Check to ensure that the <ObjectFeatures> section of the <ObjectType>
in question includes the Update feature, which enables editing or the
Delete feature, which enables deletion.

NOTE See Identity Manager Tuning, Troubleshooting, and Error Messages for
detailed information about tracing and debugging custom adapters.

Maintaining Custom Adapters

188 Identity Manager 8.0 • Deployment Tools

Maintaining Custom Adapters
Any time you install a new Identity Manager patch or service pack you must test
your custom resources with the new idmcommon.jar and idmformui.jar files. You
might have to modify or enhance your adapters so they adapt to changes made in
the new release. Alternatively, you might just need to rebuild or refresh your
resource adapter in your installation.

When you upgrade to a new release, you might have to recompile all of your
custom resource adapters, depending on the target Identity Manager version. All
custom Java that uses Identity Manager APIs (including custom resource adapters)
require a recompile during upgrading. Also, consider other Java classes that use
the Identity Manager library.

For more information about upgrading, see Identity Manager Upgrade.

NOTE If your current Identity Manager installation has a large amount of
custom work, contact your Sun Account Representative or Sun
Customer Support for assistance with your upgrade.

189

Chapter 3

Working with Firewalls or
Proxy Servers

This chapter describes how Identity Manager uses Uniform Resource Locators
(URLs) and how to configure Identity Manager to obtain accurate URL data when
firewalls or proxy servers are in place.

Servlet APIs
The Web-based Identity Manager user interface is highly dependent on Uniform
Resource Locators (URLs) to specify the location of pages to be retrieved by the
Web client.

Identity Manager depends on the Servlet APIs provided by an application server
(such as Apache Tomcat, IBM WebSphere, or BEA WebLogic) to determine the
fully qualified URL in the current HTTP request so that a valid URL can be placed
in the generated HTML and HTTP response.

Some configurations prevent the application server from determining the URL the
Web client uses for an HTTP request. Examples include:

• A port-forwarding or Network Address Translation (NAT) firewall placed
between the Web client and Web server, or between the Web server and
application server

• A proxy server (such as Tivoli Policy Director WebSEAL) placed between the
Web client and Web server, or between the Web server and application server

For instances in which the Servlet APIs do not provide accurate URL data from an
HTTP request, the correct data can be configured in the Waveset.properties file
(located in your Identity Manager installation config directory).

Servlet APIs

190 Identity Manager 8.0 • Deployment Tools

The following attributes control Identity Manager’s Web-based documentation
root and whether Identity Manager uses the HTML BASE HREF tag:

• ui.web.useBaseHref (Default value: true) — Set this attribute to one of the
following values:

m true — Identity Manager uses the HTML BASE HREF tag to indicate the
root of all relative URL paths

m false — All URLs placed into HTML contain fully qualified paths;
including scheme, host, and port

• ui.web.baseHrefURL — Set this attribute to a non-empty value to define the
BASE HREF used in generated HTML, which overrides the value that is
calculated using servlet APIs.

Overriding this calculated value can be useful when those APIs do not return
the whole truth, which occurs when:

m The application server is behind a firewall using port forwarding or NAT

m The connector between the application server and Web server does not
provide accurate information

m The application server is front-ended by a proxy server

191

Chapter 4

Using SPML 1.0 with Identity
Manager Web Services

Service Provisioning Markup Language (SPML) 1.0 is an OASIS standard used to
provide an open interface for communicating with service provisioning activities.
You access Identity Manager Web services using SPML requests for HTTP.

This chapter describes SPML 1.0 support in Identity Manager and Identity
Manager Service Provider and includes information about which features are
supported and why, how to configure SPML 1.0 support, and how to extend
support in the field.

The information is organized as follows:

• Before You Begin

• Configuring SPML

• Starting the SPML Browser

• Connecting to the Identity Manager Server

• Testing and Troubleshooting Your SPML Configuration

• Developing SPML Applications

• Example Methods for Implementing SPML

NOTE Identity Manager supports both SPML version 1.0 and version 2.0.

The concepts in this chapter relate specifically to SPML 1.0, but
reading this chapter provides a good basis for understanding
concepts described in Chapter 5, “Using SPML 2.0 with Identity
Manager Web Services.”

Before You Begin

192 Identity Manager 8.0 • Deployment Tools

Before You Begin
Review the following sections before you start working with Identity Manager
Web Services:

• Intended Audience

• Important Notes

• Related Documentation and Web Sites

Intended Audience
This chapter is intended for application developers and developers that are
responsible for deploying Identity Manager, implementing procedural logic, and
using SPML 1.0 classes to format service provisioning request messages and to
parse response messages.

Important Notes
You should be aware of the following information before working with SPML 1.0:

• For optimal performance when you are working with the Identity Manager
Web Service Interfaces, use the OpenSPML Toolkit that is co-packaged with
Identity Manager. Using the openspml.jar file from the
http://www.openspml.org/ web site might cause memory leaks.

• The Service Provider REF Kit contains an SpmlUsage.java file that
demonstrates how to use the Service Provider SPML interface.

• You can access Identity Manager Service Provider (Service Provider) features
through SPML 1.0. (These features are not available with SPML version 2.0.)

The Service Provider SPML interface is very similar to the Identity Manager
SPML interface. Differences in configuration and operation are noted in this
chapter where appropriate.

Configuring SPML

Chapter 4 Using SPML 1.0 with Identity Manager Web Services 193

Related Documentation and Web Sites
In addition to the information provided in this chapter, consult the publications
and web sites listed in this section for information related to using SPML.

Recommended Reading
See Chapter 5, “Using SPML 2.0 with Identity Manager Web Services,” in this book
for information about using SPML version 2.0.

Useful Web Sites
Visit the following web site for information about using OpenSPML and to
download the OpenSPML 1.0 Toolkit.

http://www.openspml.org

Configuring SPML
To expose the SPML interface, you must properly configure the Identity Manager
server by installing and modifying specific repository objects and by editing the
Waveset.properties file.

Instructions for configuring the SPML interface are provided in the following
sections:

• Installing and Modifying Repository Objects

• Editing the Waveset.properties File

• Editing Configuration Objects

Configuring SPML

194 Identity Manager 8.0 • Deployment Tools

Installing and Modifying Repository Objects
The following table describes the repository objects you must install and modify to
configure SPML for Identity Manager.

Identity Manager includes a sample set of SPML configuration objects in the
sample/spml.xml file. You must manually import the sample/spml.xml file
because the file is not imported by default when the repository is initialized.

The sample configuration defines a person class to track the evolving standard
schema defined by the SPML working group. Do not customize this class. Keep the
person class consistent with the standard schema, except in the following situation.

Table 4-1 Repository Objects Used to Configure SPML

Object Description

Configuration:SPML Contains the definitions of the SPML schemas supported by the server,
and rules for converting between the SPML schema and the internal
view model. Each SPML schema typically has an associated form.

SPML Forms Contains one or more form objects that encapsulate the rules for
transforming between the external model defined by an SPML schema,
and the internal model defined by an Identity Manager view. Typically,
you define one SPML form for each object class defined in the SPML
schema.

Configuration:IDM Schema Configuration Defines user attributes that can be stored in the Identity Manager
repository for access through an SPML filter, and which are queryable
and summary attributes for Identity Manager user objects.

• Define a queryable attribute for attributes you want to use in an
SPML filter.

• Define a summary attribute for attributes you want returned in an
optimized search.

TaskDefinition:SPMLRequest System task used to process asynchronous SPML requests.

You should not have to customize this object.

Configuring SPML

Chapter 4 Using SPML 1.0 with Identity Manager Web Services 195

When configuring the Service Provider SPML interface, you must install and
modify the Configuration:SPE SPML configuration object as follows:

• Configure the person class (the only objectclass defined by default) to use the
Service Provider-specific view handler (IDMXUser).

• Use the form attribute to define a user form that translates between the SPML
request or SPML response and the view.

The form attribute can take a special value (view): in which no form
processing is applied to the view. (For example, the view is passed directly
between the client and Identity Manager.)

You access the Service Provider SPML interface from the following (default) path:

/servlet/spespml

For example, if you deploy Identity Manager in the /idm context on host:port,
you can access the interface at the following URL:

http://host:port/idm/servlet/spespml

Where:

• host is the machine on which you are running Identity Manager.

• port is the number of the TCP port on which the server is listening.

Editing the Waveset.properties File
The following table describes three optional entries in the Waveset.properties file
that you can use to control how SPML requests are authorized.

NOTE See the SPML 1.0 Specification at http://www.openspml.org/ for the
most current information about the standard SPML schema.

Table 4-2 Optional Entries in Waveset.properties

Entry Name Description

soap.username The name of an Identity Manager user that is to be used as the effective
user for performing SPML requests

soap.password The clear text password for the user specified by soap.username

soap.epassword The base-64 representation of the encrypted password for the user
specified by soap.username

Configuring SPML

196 Identity Manager 8.0 • Deployment Tools

Editing soap.epassword and soap.password Properties
A user specified in soap.username is known as the proxy user.

You can define a proxy user in soap.username and specify only one of the
following password properties:

• Specifying soap.password is the simplest option, but this property exposes a
clear text password in the properties file.

• Specifying soap.epassword is a more secure option, but you must perform
extra steps to generate an encrypted password.

Establishing a proxy user is convenient for clients because authentication is not
required by the web service. This configuration is common for portal environments
where the Identity Manager server is only accessed by other applications that
handle user authentication.

The SPML standard does not specify how to perform authentication and
authorization. Several related web standards are available for authentication, but
these standards are not yet in common use. At this time, the most common
approach for authentication is to use SSL between applications and the server.
Identity Manager does not dictate how to configure SSL.

If you cannot use a proxy user or SSL, Identity Manager supports a vendor-specific
extension to SPML that allows the client to log in and maintain a session token,
which can be used to authenticate subsequent requests. You can use the
LighthouseClient class (an extension of the SpmlClient class that includes
support for specifying credentials) to perform a log in request and pass a session
token in all SPML requests.

CAUTION Using a proxy user can be dangerous if the HTTP port on which the
responding server resides is generally accessible. Anyone who
knows the Identity Manager server’s URL, and understands how to
build SPML requests, can configure Identity Manager operations for
the proxy user to perform.

Configuring SPML

Chapter 4 Using SPML 1.0 with Identity Manager Web Services 197

Creating an Encrypted Password
Use one of the following methods to create an encrypted password:

• Open the Identity Manager console and use the encrypt command.

• Open the Identity Manager Debug pages or console and view the XML for the
proxy user. Find the WSUser element for the password attribute value and use
that value for the soap.epassword property.

NOTE The Service Provider SPML interface does not support
authentication and authorization, however you can configure the
Identity Manager SPML interface to use the IDMXUser view instead
of using Service Provider SPML.

Service Provider assumes that clients accessing Identity Manager
have been authenticated and authorized by an access management
application. The client has all possible rights when using the Service
Provider SPML interface.

To prevent sensitive data from being exposed between the client and
Identity Manager, consider accessing the Service Provider SPML
interface over SSL.

Configuring SPML

198 Identity Manager 8.0 • Deployment Tools

Editing Configuration Objects
Applications require a mechanism to send SPML messages and receive SPML
responses.

To configure SPML for Identity Manager, you must configure the following
configuration objects:

• Configuration: SPML Object

• Configuration: SPMLPerson Object

• Configuration: IDM Schema Configuration Object

• TaskDefinition: SPMLRequest Object

• Deployment Descriptor

Configuration: SPML Object
The SPML object contains definitions for the SPML schemas you want to expose
and information about how those SPML schemas are mapped into Identity
Manager views. This information is represented by using a GenericObject that is
stored as an extension of the Configuration object.

The following attributes are defined in GenericObject: schemas and classes:

• Schemas: A list of strings, where each string contains the escaped XML for one
SPML <schema> element. Because the SPML elements are not defined in
waveset.dtd, you cannot directly include them in an Identity Manager XML
document. Instead, you must include them as escaped text.

• Classes: A list of objects containing information about the supported SPML
classes and how those classes are mapped onto views. Define one object on this
list for each class defined by the SPML schemas on the schemas list.

Initially, the distinction between the two lists might be confusing. The information
about the schemas list defines what Identity Manager returns in response to an
SPML SchemaRequest message. This information can be used by the client to
understand which attributes can be included in other messages such as
AddRequest. Identity Manager does not care about the contents of the schemas list.
This list is simply returned verbatim to the client.

NOTE The Service Provider SPML interface has only one configuration
object, Configuration:SPE SPML, which is similar to the
Configuration:SPML object in structure.

Configuring SPML

Chapter 4 Using SPML 1.0 with Identity Manager Web Services 199

You are not required to define SPML schemas. Identity Manager works without
schemas. If you have not defined an SPML schema, Identity Manager returns an
empty response after receiving a schema request message. Without a schema,
clients must rely on pre-existing knowledge about the supported classes and
attributes.

Default SPML Configuration
The following example shows the default SPML configuration. The text of the
SPML schema definitions have been omitted for brevity.

➤ Best Practice:

Writing SPML schemas is considered a best practice, so you can use general
purpose tools (such as the OpenSPML Browser) to build requests.

Code Example 4-1 Default SPML Configuration

<Configuration name='SPML' authType='SPML'>
<Extension>
<Object>
 <Attribute name='classes'>
 <List>
 <Object name='person'>
 <Attribute name='type' value='User'/>
 <Attribute name='form' value='SPMLPerson'/>
 <Attribute name='default' value='true'/>
 <Attribute name='identifier' value='uid'/>
 </Object>
 <!-- Class 'user' defines no form so we'll default to a builtin simplified schema. I
don't really like this but SimpleRpc currently depends on it.
 -->
 <Object name='user'>
 <Attribute name='type' value='User'/>
 <Attribute name='identifier' value='waveset.accountId'/>
 </Object>
 <!-- Class 'userview' defines the form "view" which causes the view to pass through
unmodified
 -->
 <Object name='userview'>
 <Attribute name='type' value='User'/>
 <Attribute name='form' value='view'/>
 <Attribute name='identifier' value='waveset.accountId'/>
 <Attribute name='multiValuedAttributes'>
 <List>
 <String>waveset.resources</String>
 <String>waveset.roles</String>

Configuring SPML

200 Identity Manager 8.0 • Deployment Tools

Two classes are defined in this example:

• The standard person

• An Identity Manager extension named request

The following attributes are supported in a class definition:

• name: Identifies the name of the class. The name value can correspond to an
<ObjectClassDefinition> element in an SPML schema, although this value is
not required. You can use this name as the value for the objectclass attribute
in an Add request or Search request.

• type: Defines the Identity Manager view type used to manage instances of this
class. Generally, this attribute is User, but can be any repository type that is
accessible through a view. For information about views, see Sun Java™ System
Identity Manager Workflows, Forms, and Views.

• form: Identifies the name of a configuration object containing a form. This
attribute contains the rules for transforming between the external attributes
defined by the class and the internal view attributes.

• default: Specify true to indicate that this attribute is the default class for this
type only. For more than one SPML class implemented on the same type, you
must designate one class as the default.

• identifier: Each class typically defines one attribute that is considered to be the
identity of the object. Where possible, the value of this attribute is used as the
name of the corresponding repository object that you create to represent the
instance. The identifier attribute in the class definition specifies which attribute
represents the identity.

 <String>waveset.applications</String>
 </List>
 </Attribute>
 </Object>

 <Object name='role'>
 <Attribute name='type' value='Role'/>
 <Attribute name='form' value='SPMLRole'/>
 <Attribute name='default' value='true'/>
 <Attribute name='identifier' value='name'/> <!-- attribute ...for now? -->
 </Object>
</Configuration>

</Waveset>

Code Example 4-1 Default SPML Configuration (Continued)

Configuring SPML

Chapter 4 Using SPML 1.0 with Identity Manager Web Services 201

• filter: When evaluating an SPML search request for a class, you typically
include all repository objects associated with that class in that search. This
approach is fine for User objects, but some classes might be implemented by
using generic types such as TaskDefinition or Configuration, not all of which
are considered instances of the SPML class.

To prevent unwanted objects from being included in the search, you can
specify the filter attribute. The value is expected to be an
<AttributeCondition> element or a <List> of <AttributeCondition>
elements. Because custom classes are typically created for the User type, using
a filter is uncommon. The default configuration uses them to expose a subset of
the TaskInstance objects that are known to have been created to handle
asynchronous SPML requests.

Default Schemas
The schemas attribute contains a list of strings that contain the escaped XML for an
SPML <schema> element. If you examine the spml.xml file, note that the schema
elements are surrounded by a CDATA-marked section. Using CDATA-marked sections
is convenient for escaping long strings of XML. When Identity Manager normalizes
the spml.xml file, the CDATA-marked sections are converted into strings containing
< and > character entities.

The default configuration includes two schemas:

• Standard schema being defined by the SPML working group

• Custom schema defined by Identity Manager. Do not customize these
schemas.The Identity Manager schema contains a class definition for request
and various extended requests for common account management operations.

Configuration: SPMLPerson Object
Each class defined in Configuration:SPML typically has an associated form object
that contains the rules for transforming between the external attribute model
defined by the class and the internal model defined by the associated view.

Configuring SPML

202 Identity Manager 8.0 • Deployment Tools

The following example shows how the standard person class references a form.

Code Example 4-2 Standard Person Class References Form

<Configuration name='SPMLPerson'>
<Extension>

<Form>
<Field name='cn'>

<Derivation><ref>global.fullname</ref></Derivation>
</Field>
<Field name='global.fullname'>

<Expansion><ref>cn</ref></Expansion>
</Field>
<Field name='email'>

<Derivation><ref>global.email</ref></Derivation>
</Field>
<Field name='global.email'>

<Expansion><ref>email</ref></Expansion>
</Field>
<Field name='description'>

<Derivation>
<ref>accounts[Lighthouse].description</ref>

</Derivation>
</Field>
<Field name='accounts[Lighthouse].description'>

<Expansion><ref>description</ref></Expansion>
</Field>
<Field name='password'>

<Derivation><ref>password.password</ref></Derivation>
</Field>
<Field name='password.password'>

<Expansion><ref>password</ref></Expansion>
</Field>
<Field name='sn'>

<Derivation><ref>global.lastname</ref></Derivation>
</Field>
<Field name='global.lastname'>

<Expansion><ref>sn</ref></Expansion>
</Field>
<Field name='gn'>

<Derivation><ref>global.firstname</ref></Derivation>
</Field>
<Field name='global.firstname'>

<Expansion><ref>gn</ref></Expansion>
</Field>

Configuring SPML

Chapter 4 Using SPML 1.0 with Identity Manager Web Services 203

For each attribute in a class definition there is a pair of field definitions. One field
uses a <Derivation> expression to transform the internal view attribute name to the
external name. One field uses an <Expansion> expression to transform the external
name to the internal name.

The form is processed in such a way that when attributes are returned to the client,
only the result of the <Derivation> expressions are included. When attributes are
being sent from the client to the server, only the results of the <Expansion>
expressions are assimilated back into the view. The effect is similar to the schema
map of a Resource definition.

Configuration: IDM Schema Configuration Object
If you want to use attributes in an SPML search filter, you must define those
attributes as extended attributes for Identity Manager users. Identity Manager stores
extended attribute values in the repository, even when that value is also stored as a
resource account attribute.

<Field name='telephone'>
<Derivation>

<ref>accounts[Lighthouse].telephone</ref>
</Derivation>

</Field>
<Field name='accounts[Lighthouse].telephone'>

<Expansion><ref>telephone</ref></Expansion>
</Field>

</Form>
</Extension>

</Configuration>

NOTE SPML class forms

• Contain no <Display> elements

• Are defined only for data transformation

• Are not intended for interactive editing

Code Example 4-2 Standard Person Class References Form (Continued)

Configuring SPML

204 Identity Manager 8.0 • Deployment Tools

Try to minimize the number of extended attributes. Too many extended attributes
can increase the repository size and might cause consistency problems between
attributes stored in Identity Manager and the real value of the attribute stored on a
resource. To use an attribute in an Identity Manager query, the attribute must be
declared as extended so that the value is accessible when the repository query
indexes are built.

If you want to include attributes in a user’s set of summary attributes, you must
define those attributes as extended attributes. You can use summary attributes to
optimize searches by avoiding deserialization of the object XML, and instead
return only a few of the most important user attributes. In the Identity Manager
SPML implementation, summary attributes are returned when you do not
explicitly provide a list of return attributes in the search request.

In the following example, firstname, lastname, fullname, description, and
telephone are extended attributes that are present on the User
IDMObjectClassConfiguration after being defined in the
IDMAttributeConfigurations. Only firstname, lastname, and telephone are
queryable and summary attributes.

Code Example 4-3 telephone and description Declared as Extended Attributes

<Configuration name="IDM Schema Configuration"
 id='#ID#Configuration:IDM_Schema_Configuration'
 authType='IDMSchemaConfig'>
 <IDMSchemaConfiguration>
 <IDMAttributeConfigurations>
 <!-- this is the standard set -->
 <IDMAttributeConfiguration name='firstname'
 syntax='STRING'/>
 <IDMAttributeConfiguration name='lastname'
 syntax='STRING'/>
 <IDMAttributeConfiguration name='fullname'
 syntax='STRING'/>
 <!-- these are the SPML extensions -->
 <IDMAttributeConfiguration name='description'
 syntax='STRING'/>
 <IDMAttributeConfiguration name='telephone'
 syntax='STRING'/>
 </IDMAttributeConfigurations>
 <IDMObjectClassConfigurations>
 <IDMObjectClassConfiguration name='User'
 extends='Principal'
 description='User description'>
 <IDMObjectClassAttributeConfiguration name='firstname'
 queryable='true'
 summary='true'/>
 <IDMObjectClassAttributeConfiguration name='lastname'
 queryable='true'
 summary='true'/>

Configuring SPML

Chapter 4 Using SPML 1.0 with Identity Manager Web Services 205

You can customize the list of attributes according to the needs of your site.

The names you choose for the extended attributes depend on the mappings
performed in the class form. Because the default SPMLPerson form maps sn into
lastname, the extended attribute must be declared as lastname. Because the form
does not transform the name of telephone or description, the extended attribute
name comes directly from the SPML schema.

Beyond declaring extended attributes, you must also modify the same
Configuration: object to declare which of the attributes are to be queryable (that
is, usable in an SPML filter) and which are to be summary attributes (returned by
an optimized search result).

TaskDefinition: SPMLRequest Object
The spml.xml file also includes a brief definition for a new system task named
SpmlRequest. This task is used to implement asynchronous SPML requests. When
the server receives an asynchronous request, it launches a new instance of this task
and passes the SPML message as an input variable for the task. The server then
returns the task instance repository ID in the SPML response for later status
requests.

 <IDMObjectClassAttributeConfiguration name='fullname'/>
 <IDMObjectClassAttributeConfiguration name='description'/>
 <IDMObjectClassAttributeConfiguration name='telephone'
 queryable='true'
 summary='true'/>
 </IDMObjectClassConfiguration>
 </IDMObjectClassConfigurations>
 </IDMSchemaConfiguration>
 </Configuration>

<TaskDefinition name='SPMLRequest'
executor='com.waveset.rpc.SpmlExecutor'
execMode='asyncImmediate'
resultLimit='86400'>

</TaskDefinition>

Code Example 4-3 telephone and description Declared as Extended Attributes

Configuring SPML

206 Identity Manager 8.0 • Deployment Tools

You must not change the name of the definition, the name of the executor, or the
execution mode. However, you might want to change the resultLimit value.
When asynchronous requests have completed, the system typically retains the
result value for a specified time so the client can issue an SPML status request to
obtain the results. How long to retain these results is site-specific.

Use a positive resultLimit value to specify how long (in seconds) the system can
retain results after completing a task. The default value for SPMLRequests is
typically 3600 seconds, or approximately one hour. Other tasks default to 0 seconds
unless you change the task name to a different value.

If negative, the request instance is never removed automatically.

TIP Set the value of resultLimit to the shortest possible time to avoid
cluttering the repository.

NOTE The Service Provider SPML interface does not support
asynchronous requests.

Configuring SPML

Chapter 4 Using SPML 1.0 with Identity Manager Web Services 207

Deployment Descriptor
You must edit the Identity Manager deployment descriptor, typically found in the
file WEB-INF/web.xml, to contain a declaration for the servlet that receives SPML
requests.

If you are having difficulty contacting the SPML web service, look in the web.xml
file for a servlet declaration. The following example shows a servlet declaration.

This declaration allows you to access the addRequest, modifyRequest, and
searchRequest web services through the URL:

http://<host>:<port>/idm/servlet/rpcrouter2

Where

• host is the machine on which you are running Identity Manager.

• port is the number of the TCP port on which the server is listening.

Although you can, you are not required to define a <servlet-mapping>. Do not
modify the contents of this servlet declaration.

Code Example 4-4 Servlet Declaration

<servlet>
<servlet-name>rpcrouter2</servlet-name>
<display-name>OpenSPML SOAP Router</display-name>
<description>no description</description>
<servlet-class>

org.openspml.server.SOAPRouter
</servlet-class>
<init-param>

<param-name>handlers</param-name>
<param-value>com.waveset.rpc.SimpleRpcHandler</param-value>

</init-param>
<init-param>

<param-name>spmlHandler</param-name>
<param-value>com.waveset.rpc.SpmlHandler</param-value>

</init-param>
<init-param>

<param-name>rpcHandler</param-name>
<param-value>com.waveset.rpc.RemoteSessionHandler</param-value>

</init-param>
</servlet>

Starting the SPML Browser

208 Identity Manager 8.0 • Deployment Tools

Starting the SPML Browser
You can use the OpenSPML Browser application to test the Identity Manager
SPML configuration.

To start the browser,

1. Open a command window.

2. At the command prompt, type the following command:

lh spml

Connecting to the Identity Manager Server
To connect to the Identity Manager server,

1. Open the OpenSPML browser and select the Connect tab.

Figure 4-1 Example OpenSPML Browser

2. Type the URL of the Identity Manager server.

For example, if the server is running on port 8080 on a local machine, the URL
would be:

http://host:8080/idm/servlet/rpcrouter2

Testing and Troubleshooting Your SPML Configuration

Chapter 4 Using SPML 1.0 with Identity Manager Web Services 209

Testing and Troubleshooting Your SPML
Configuration

To test your SPML configuration:

1. Select the Connect tab and click Test.

A dialog displays to indicate the connection was successful.

2. Select the Schema tab and click Submit.

The system displays a tree view of the schemas supported by the Identity
Manager server.

If you cannot establish a successful connection

• Verify that you typed the URL correctly.

• If the error you receive contains phrases such as “no response” or
“connection refused,” then the problem is most likely the host or port used in
the connection URL.

• If the error suggests that a connection was made, but the web application or
servlet could not be located, the problem is most likely in the
WEB-INF/web.xml file. See “Deployment Descriptor” on page 43 for more
information.

Developing SPML Applications
After configuring the server, your SPML application requires a mechanism for
sending SPML messages and receiving SPML responses. For Java applications, use
the OpenSPML Toolkit to configure this mechanism.

NOTE For optimal performance when you are working with the Identity
Manager Web Service Interfaces, use the OpenSPML Toolkit that is
co-packaged with Identity Manager.

Using the openspml.jar file from the http://www.openspml.org/
web site might cause memory leaks.

Developing SPML Applications

210 Identity Manager 8.0 • Deployment Tools

The toolkit can provide the following components:

• Java class model for SPML messages

• Classes to send and receive messages on the client

• Classes to receive and process requests on the server

The following table describes the most important classes provided by the
OpenSPML Toolkit. Each request type has a corresponding class. Consult the
JavaDocs distributed with the toolkit for complete information.

The Service Provider REF Kit contains an SpmlUsage.java file that demonstrates
how to use the Service Provider SPML interface. This REF Kit also contains an ant
script that compiles the SpmlUsage class.

Usage:

java [-Dtrace=true] com.sun.idm.idmx.example.SpmlUsage [URL]

Table 4-3 Classes Provided by OpenSPML Toolkit

Class Description

AddRequest Constructs a message to request creation of a new object.
You define the object type by passing an objectclass attribute. Other passed attributes must
adhere to the schema associated with the object class. SPML does not yet define standard
schemas, but you can configure Identity Manager to support almost all schemas.

BatchRequest Constructs a message that can contain more than one SPML request.

CancelRequest Constructs a message to cancel a request that was formerly executed asynchronously.

DeleteRequest Constructs a message to request the deletion of an object.

ModifyRequest Constructs a message to request modification of an object. Include only those attributes that you
want to modify in the request. Attributes not included in the request retain their current value.

SchemaRequest Constructs a message to request information about SPML object classes supported by the server.

SearchRequest Constructs a message to request object attributes that match certain criteria.

SpmlClient Presents a simple interface for sending and receiving SPML messages.

SpmlResponse Includes the base class for objects representing response messages sent back from the server.
Each request class has a corresponding response class. For example, AddResponse and
ModifyResponse.

StatusRequest Constructs a message to request the status of a request that was formerly executed
asynchronously.

Developing SPML Applications

Chapter 4 Using SPML 1.0 with Identity Manager Web Services 211

Where URL points to the Service Provider SPML interface and defaults to

http://host:port/idm/spespml

Where

• host is the machine on which you are running Identity Manager Service
Provider.

• port is the number of the TCP port on which the server is listening.

You can enable trace for Service Provider to print Service Provider SPML messages
to standard output.

ExtendedRequest Examples
The following table describes the different ExtendedRequest classes you can use to
send messages to and receive messages from the client.

The server code converts the ExtendedRequests into view operations.

Table 4-4 ExtendedRequest Classes for Sending and Receiving Messages

ExtendedRequest Description

changeUserPassword Constructs a message to request a user password change.

deleteUser Constructs a message to request the deletion of a user.

disableUser Constructs a message to request the disabling of a user.

enableUser Constructs a message to request the enabling of a user.

launchProcess Constructs a message to request the launch of a process.

listResourceobjects Constructs a message to request the name of a resource object in the
Identity Manager repository, and the type of object supported by that
resource. The request returns a list of names.

resetUserPassword Constructs a message to request the reset of a user password.

runForm Allows you to create custom SPML requests that return information
obtained by calling the Identity Manager Session API.

Developing SPML Applications

212 Identity Manager 8.0 • Deployment Tools

Examples using the typical formats for these classes are presented in the following
sections:

• ExtendedRequest Example

• deleteUser Example

• disableUser Example

• enableUser Example

• launchProcess Example

• listResourceObjects Example

• resetUserPassword Example

• runForm Example

ExtendedRequest Example
The following example shows the typical format for an ExtendedRequest.

Most SPML ExtendedRequests accept the following arguments:

• accountId: Identifies the Identity Manager user name

• accounts: Presents resource names in a comma-delimited list

If you do not pass an accounts attribute, the operation updates all resource
accounts linked to the user, including the Identity Manager user account. If you do
pass accounts, the specified SPML operation only updates the specified resources.
You must include Lighthouse in a non-null accounts list if you want to update the
Identity Manager user in addition to specific resource accounts.

Code Example 4-5 ExtendedRequest Format

ExtendedRequest req = new ExtendedRequest();
req.setOperationIdentifier("changeUserPassword");
req.setAttribute("accountId", "exampleuser");
req.setAttribute("password", "xyzzy");
req.setAttribute("accounts","Lighthouse,LDAP,RACF");
ExtendedResponse res = (ExtendedResponse) client.send(req);

Developing SPML Applications

Chapter 4 Using SPML 1.0 with Identity Manager Web Services 213

deleteUser Example
The following example shows the typical format for a deleteUser request
(View > Deprovision view).

disableUser Example
The following example shows the typical format for a disableUser request
(View > Disable view).

enableUser Example
The following example shows the typical format for an enableUser request
(View > Enable view).

NOTE If you customize this request, there might be side effects.

Code Example 4-6 deleteUser Request

ExtendedRequest req = new ExtendedRequest();
req.setOperationIdentifier("deleteUser");
req.setAttribute("accountId","exampleuser");
req.setAttribute("accounts","Lighthouse,LDAP,RACF");
ExtendedResponse res = (ExtendedResponse) client.send(req);

Code Example 4-7 disableUser Request

ExtendedRequest req = new ExtendedRequest();
req.setOperationIdentifier("disableUser");
req.setAttribute("accountId","exampleuser");
req.setAttribute("accounts","Lighthouse,LDAP,RACF");
ExtendedResponse res = (ExtendedResponse) client.send(req);

Code Example 4-8 enableUser Request

ExtendedRequest req = new ExtendedRequest();
req.setOperationIdentifier("enableUser");
req.setAttribute("accountId","exampleuser");
req.setAttribute("accounts","Lighthouse,LDAP,RACF");
ExtendedResponse res = (ExtendedResponse) client.send(req);

Developing SPML Applications

214 Identity Manager 8.0 • Deployment Tools

launchProcess Example
The following example shows the typical format for a launchProcess request.
(View > Process view).

Where:

• launchProcess: Starts custom processes.

• process : Name of the TaskDefinition object in the Identity Manager
repository to start.

• taskName: Name of the task needed to start the workflow.

The task instance object holds the runtime state of the process.

The remaining attributes are arbitrary and they are passed into the task.

listResourceObjects Example
The following example shows the typical format for a listResourceObjects
request.

Code Example 4-9 launchProcess Request

ExtendedRequest req = new ExtendedRequest();
req.setOperationIdentifier("launchProcess");
req.setAttribute("process", "my custom process");
req.setAttribute("taskName", "my task instance");
ExtendedResponse res = (ExtendedResponse) client.send(req);

Code Example 4-10 listResourceObjects Request

ExtendedRequest req = new ExtendedRequest();
req.setOperationIdentifier("listResourceObjects");
req.setAttribute("resource", "LDAP");
req.setAttribute("type", "group");
ExtendedResponse res = (ExtendedResponse) client.send(req);

Developing SPML Applications

Chapter 4 Using SPML 1.0 with Identity Manager Web Services 215

Where:

• resource: Specifies the name of a Resource object in the Identity Manager
repository

• type: Specifies the type of an object supported by that resource

resetUserPassword Example
The following example shows the typical format for a resetUserPassword request
(View > Reset User Password view).

runForm Example
The following example shows the typical format for a runForm request.

Where form is the name of a Configuration object containing a form.

Code Example 4-11 resetUserPassword Request

ExtendedRequest req = new ExtendedRequest();
req.setOperationIdentifier("resetUserPassword");
req.setAttribute("accountId","exampleuser");
req.setAttribute("accounts","Lighthouse,LDAP,RACF");
ExtendedResponse res = (ExtendedResponse) client.send(req);

Code Example 4-12 runForm Request

ExtendedRequest req = new ExtendedRequest();
req.setOperationIdentifier("runForm");
req.setAttribute("form", "SPML Get Object Names");
ExtendedResponse res = (ExtendedResponse) client.send(req);

Developing SPML Applications

216 Identity Manager 8.0 • Deployment Tools

Example Form
The following example shows a form that runs queries and returns a list of the
Role, Resource, and Organization names accessible to the current user.

You use the runForm request to create custom SPML requests that return
information obtained by calling the Identity Manager Session API. For example,
when configuring a user interface for editing users, you might want to provide a
selector that displays the names of the organizations, roles, resources, and policies
that can be assigned to a user.

You can configure the SPML interface to expose these objects as SPML object
classes and use a searchRequest to query for their names. However, this
configuration requires four searchRequests to gather the information. To reduce
the number of SPML requests, encode the queries in a form by using a single
runForm request to perform the queries, and returning the combined results.

Code Example 4-13 Query Form

<Configuration name='SPML Get Object Names'>
<Extension>
<Form>
<Field name='roles'>

 <Derivation>
 <invoke class='com.waveset.ui.FormUtil'>
 <ref>display.session</ref>
 <s>Role</s>
 </invoke>
 </Derivation>
 </Field>
 <Field name='resources'>
 <Derivation>
 <invoke class='com.waveset.ui.FormUtil'>
 <ref>display.session</ref>
 <s>Resource</s>
 </invoke>
 </Derivation>
 </Field>
 <Field name='organizations'>

<Derivation>
 <invoke class='com.waveset.ui.FormUtil'>
 <ref>display.session</ref>

<s>ObjectGroup</s>
 </invoke>

</Derivation>
 </Field>
 </Form>
 </Extension>
</Configuration>

Example Methods for Implementing SPML

Chapter 4 Using SPML 1.0 with Identity Manager Web Services 217

Using Trace with SPML
SPML includes options for turning on trace output so you can log Identity
Manager’s SPML traffic and diagnose problems.

For more information about tracing SPML, see the “Tracing and Troubleshooting
Identity Manager” chapter in the Identity Manager Tuning, Troubleshooting, and Error
Messages book.

Example Methods for Implementing SPML
This section presents examples that show several common methods for
implementing SPML:

• Add Request

• Modify Request

• Search Request

Add Request
An example Add Request is shown in Code Example 4-14:

Code Example 4-14 Add Request

SpmlClient client = new SpmlClient();
client.setURL("http://example.com:8080/idm/spml");

AddRequest req = new AddRequest();

req.setObjectClass("person");
req.setIdentifier("maurelius");
req.setAttribute("gn", "Marcus");
req.setAttribute("sn", "Aurelius");
req.setAttribute("email", "maurelius@example.com");

SpmlResponse res = client.request(req);

if (res.getResult() .equals(SpmlResponse.RESULT_SUCCESS))
System.out.println("Person was successfully created");

Example Methods for Implementing SPML

218 Identity Manager 8.0 • Deployment Tools

Modify Request
This section contains two, example Authenticated SPML Modify Requests.

The only difference between these examples is that the Code Example 4-16 uses the
LighthouseClient class and two additional method calls to client.setUser and
client.setPassword. For example, you could use this example to avoid setting a
proxy user in Waveset.properties, which results in the audit log reflecting the
specified user instead of the proxy user.

This example is authenticated by client.setUser and client.setPassword when
the request is sent.

Code Example 4-15 Authenticated SPML Request

SpmlClient client = new SpmlClient();
client.setURL("http://example.com:8080/idm/spml");
ModifyRequest req = new ModifyRequest();
req.setIdentifier("maurelius");
req.setModification("email", "marcus.aurelius@example.com");
SpmlResponse res = client.request(req);
if (res.getResult() .equals(SpmlResponse.RESULT_SUCCESS))

System.out.println("Person was successfully modified");

Code Example 4-16 Authenticated SPML Request with LighthouseClient

LighthouseClient client = new LighthouseClient();
client.setURL("http://example.com:8080/idm/spml");
client.setUser("maurelius");
client.setPassword("xyzzy");
ModifyRequest req = new ModifyRequest();
req.setIdentifier("maurelius");
req.setModification("email", "marcus.aurelius@example.com");
SpmlResponse res = client.request(req);
if (res.getResult() .equals(SpmlResponse.RESULT_SUCCESS))

System.out.println("Person was successfully modified");

Example Methods for Implementing SPML

Chapter 4 Using SPML 1.0 with Identity Manager Web Services 219

Search Request
An example Search Request is shown in Code Example 4-17:

Code Example 4-17 Search Request

SpmlClient client = new SpmlClient();
client.setURL("http://example.com:8080/idm/spml");
SearchRequst req = new SearchRequest();
// specify the attributes to return
req.addAttribute("sn");
req.addAttribute("email");
// specify the filter
FilterTerm ft = new FilterTerm();
ft.setOperation(FilterTerm.OP_EQUAL);
ft.setName("gn");
ft.setValue("Jeff");
req.addFilter(ft);
SearchResponse res = (SearchResponse)client.request(req);
// display the results
List results = res.getResults();
if (results != null) {

for (int i = 0 ; i < results.size() ; i++) {
SearchResult sr = (SearchResult)results.get(i);
System.out.println("Identifier=" +

sr.getIdentifierString() +
" sn=" +
sr.getAttribute("sn") +
" email=" +
sr.getAttribute("email"));

}
}

Example Methods for Implementing SPML

220 Identity Manager 8.0 • Deployment Tools

221

Chapter 5

Using SPML 2.0 with Identity
Manager Web Services

This chapter describes SPML 2.0 support in Identity Manager 8.0; including which
features are supported and why, how to configure SPML 2.0 support, and how to
extend support in the field.

This information is organized as follows:

• Before You Begin

• Overview

• Configuring Identity Manager to Use SPML 2.0

• Extending the System

• Sample SPML 2.0 Adapter

NOTE This chapter focuses exclusively on SPML 2.0. Unless noted
otherwise, all references to SPML in this chapter indicate the 2.0
version.

You should also read Chapter 4, “Using SPML 1.0 with Identity
Manager Web Services,” which also contains useful information
about using SPML.

Before You Begin

222 Identity Manager 8.0 • Deployment Tools

Before You Begin
Review the following sections before you start working with Identity Manager
Web Services:

• Intended Audience

• Important Notes

• Related Documentation and Web Sites

Intended Audience
This chapter is intended for application developers and developers who are
responsible for deploying Identity Manager, implementing procedural logic, and
using SPML 2.0 classes to format service provisioning request messages and to
parse response messages.

Important Notes
You should be aware of the following information before working with SPML 2.0:

• For best performance when working with the Identity Manager Web Service
Interfaces, use the OpenSPML Toolkit supplied with Identity Manager. Using
the openspml.jar file from the http://www.openspml.org/ web site might
cause memory leaks.

• When implementing SPML 2.0, you must modify the configuration to add the
spml2ObjectClass attribute to your schema. The objectclass attribute value
provided in previous releases is now maintained in the spml2ObjectClass
attribute.

• You cannot access Identity Manager Service Provider (Service Provider)
features through SPML 2.0. (These features are available with SPML
version 1.0.)

Overview

Chapter 5 Using SPML 2.0 with Identity Manager Web Services 223

Related Documentation and Web Sites
In addition to the information provided in this chapter, consult the publications
and web sites listed in this section for information related to using SPML.

Recommended Reading
See Chapter 4, “Using SPML 1.0 with Identity Manager Web Services,” in this book
for information about using SPML version 1.0.

Useful Web Sites
Visit the following web site for information about using OpenSPML, to read
SPML 2.0 Specifications, and to download the OpenSPML 2.0 Toolkit.

http://www.openspml.org

Overview
This section explains some basic concepts about SPML 2.0:

• How SPML 2.0 Compares to SPML 1.0

• How SPML 2.0 Concepts Are Mapped to Identity Manager

• Supported SPML 2.0 Capabilities

How SPML 2.0 Compares to SPML 1.0
Identity Manager Web services support both SPML version 1.0 and version 2.0
protocols (open standards for service provisioning using XML) for communication
with provisioning systems.

NOTE See Chapter 4, “Using SPML 1.0 with Identity Manager Web
Services” for information about using SPML version 1.0 with
Identity Manager.

Overview

224 Identity Manager 8.0 • Deployment Tools

SPML 2.0 offers many improvements over SPML 1.0, including:

• Where SPML 1.0 has been called a slightly improved DSML, SPML 2.0 defines
an extensible protocol (through Capabilities) with support for a DSML profile,
as well as XML Schema profiles. SPML 2.0 differentiates between the protocol
and the data it carries.

• The SPML 2.0 protocol enables better interoperability between vendors —
especially for the Core capabilities (those found in 1.0).

You can “extend” SPML 1.0 using ExtendedRequest, but there is no guidance
about what those requests can be. SPML 2.0 defines a set of “standard
capabilities” that allow you to add support in well-defined ways.

• SPML 2.0 provides additional capabilities (see Table 5-1) that will make it
possible for you to extend capabilities or add new capabilities in the future.

Table 5-1 SPML Capabilities

SPML 1.0 SPML 2.0

Add Add

Modify Modify

Delete Delete

Lookup Lookup

SchemaRequest ListTargets

Search Search as a “standard” Capability (not supported this release)

ExtendedRequest Captured in “standard” Capabilities:

• Async: Asynchronous processing of requirements

• Batch: Process a batch of requests

• Bulk: Process modifies or deletes using iteration

• Password: Change, set, reset, validate, or expire passwords

• Reference: Refer to PSOs between targets

• Suspend: Enable or disable PSOs

• Update: Find change records for objects that have been updated (can also be
captured in “custom” Capabilities.)

Overview

Chapter 5 Using SPML 2.0 with Identity Manager Web Services 225

How SPML 2.0 Concepts Are Mapped to Identity
Manager
SPML 2.0 uses its own terminology to discuss the objects that are managed by a
provisioning system.

This section describes how the following SPML 2.0 concepts are mapped into
Identity Manager:

• Target

• PSO

• PSOIdentifier

• Open Content and Operational Attributes

Target
A target is a logical end-point in the server. Each target is named and declares the
schema of the objects (see the following “PSO” section) that it manages. The target
also declares which capabilities (set of requests) are supported.

Currently, Identity Manager supports only one target — you cannot declare
multiple targets. You can name this target anything you want, but the data objects’
format must conform to the DSML-profile.

A supported target is the one target defined in the spml2.xml file
(Configuration:SPML2 object). For example, in Code Example 5-6 on page 232
ListTargetResponse returns one target, spml2-DSML-Target.

NOTE See the OASIS SPML 2.0 Specifications at http://www.openspml.org/.

Overview

226 Identity Manager 8.0 • Deployment Tools

PSO
As mentioned in the previous section, targets manage PSOs. A PSO (Provisioning
Service Object) is somewhat analogous to a view in Identity Manager, but without
behavior. Consequently, you can think of a PSO as the data portion of an Identity
Manager view; a User view in particular.

For Identity Manager’s purposes, a PSO is a collection of attributes that are
mapped (via a form) to and from a User view. Each object specifies an objectclass
attribute that is used to map the object to an objectclass definition in the schema
defined for the target. This attribute is used in turn to find

• A repoType that is provided to support additional targets later.

• A form that maps the attributes to and from the Identity Manager view.

PSOIdentifier
SPML includes an object ID that is called a PsoID.

OASIS SPML 2.0 Specifications recommend that PSOIdentifiers (PsoID) should be
opaque to a requestor (client). Consequently, Identity Manager uses repository IDs
(repoIDs) as the PsoID when adding PSOs to the system.

The repoID is distinct and it is not meant for presentation to a user. When a
requestor displays a PSO to a user, it should use the equivalent of the
waveset.accountid (or whatever attributes are used in the Identity template) to
present the object’s ID.

When identifying the PSO (as in a ModifyRequest), the requestor should use the
repoID and not the waveset.accountId. Although the requestor can use the
waveset.accountId as a PSOIdentifier, doing so is not recommended and it may
change in a future release. Requestors should try to keep the PsoID opaque.

PSOs use an objectclass attribute to specify the object type. If this attribute is not
there when a request is made, Identity Manager allows you to specify and use a
“default” objectclass, such as SPMLUser. Internally, the objectclass value is
maintained as an spml2ObjectClass attribute for users. For Identity Manager this
attribute must be a user extended attribute. You might not see an
spml2ObjectClass attribute for users that existed before you enabled SPML 2.0.

NOTE Identity Manager only manages Users and requires you to define a
user extended attribute called spml2ObjectClass.

Overview

Chapter 5 Using SPML 2.0 with Identity Manager Web Services 227

Open Content and Operational Attributes
SPML makes heavy use of xsd:any in the .xsds to provide what the specification
refers to as Open Content. In SPML, Open Content means that most elements can
contain elements of any type. Identity Manager uses this idea to provide
OperationalNVPs (NameValuePairs) and OperationalAttributes that control
processing. OperationalNVPs appear as elements in the XML, while Operational
Attributes appear as attributes. See the OpenSPML 2.0 Toolkit at
http://www.openspml.org for more information.

OperationalNVPs and Operational Attributes are discussed further in
the“Supported SPML 2.0 Capabilities,” section; however, you use one NVP in all
requests (except ListTargets) and in all responses. Identity Manager stores a
sessionToken in an OperationalNVP called session, which allows the system to
cache sessions on behalf of the user and improves efficiency.

Supported SPML 2.0 Capabilities
Identity Manager supports all Core capabilities in the SPML 2.0 Specification that
use the DSML profile. Identity Manager also supports some of the optional
Standard capabilities (such as Batch and Async) and partially supports some
Standard capabilities (such as Bulk).

This section describes which SPML 2.0 capabilities are supported in Identity
Manager, where Identity Manager (knowingly) varies from the specification and
profile document, and which operational attributes are required by Identity
Manager.

This information is organized into the following sections:

• Core Capabilities

• Async Capabilities

• Batch Capability

• Bulk Capabilities

• Password Capabilities

• Suspend Capabilities

Overview

228 Identity Manager 8.0 • Deployment Tools

Core Capabilities
Identity Manager supports the following Core capabilities:

NOTE Identity Manager does not support the Reference capability, the
Search capability, the Updates capability, or the CapabilityData
class.

None of the supported capabilities use the CapabilityData class, so
Identity Manager does not support it. (The CapabilityData class is
used to implement custom capabilities.)

The OpenSPML 2.0 Toolkit supports CapabilityData in the
marshallers, unmarshallers, and so forth.

Table 5-2 Core Capabilities

Capability Description Caveats

AddRequest Adds a specified PSO to the
system.

Identity Manager officially supports only a single target.

DeleteRequest Deletes a specified PSO
from the system.

Identity Manager officially supports only a single target.

ListTargetsRequest Lists the targets that are
available through Identity
Manager.

• Identity Manager officially supports a single target.

• Identity Manager does not require you to use listTargets
as the first call in a conversation; however, it does allow
operationalAttributes on this request to specify a
username/password pair for establishing a session with the
server. (You can also use Waveset.properties.)

In general, it is more efficient to login and use the session
token. Identity Manager provides a class called
SessionAwareSpml2Client for this purpose.

LookupRequest Finds and returns the
attributes of the named PSO.

None

ModifyRequest Modifies specified PSO
attributes.

Due to a discrepancy between the main SPML 2.0
specification and the DSML Profile specification, Identity
Manager does not support select (and component, etc.).
Instead Identity Manager uses the DSML Modification Mode
and elements according to the DSML Profile.

Overview

Chapter 5 Using SPML 2.0 with Identity Manager Web Services 229

AddRequest and ListTargetRequest examples follow.

AddRequest Examples
This section provides several AddRequest examples.

The following example shows a .jsp that invokes a ListTargetsRequest through
Identity Manager's SessionAwareSpml2Client class.

NOTE General caveats include:

• You can provide username and password values for the ListTargetsRequest
request. These values are used as credentials to establish a session, which is
identified by the session token value returned in theListTargetsRequest
response. This session is the context for all following requests that include that
session token value as an operational attribute.

Another way to set up the session is to provide values for the soap.username
and soap.password attributes in Waveset.properties. In this case, no session
token is required.

• Identity Manager supports only the DSML Profile.

Code Example 5-1 Example Client Code

<%@page contentType="text/html"%>
<%@page import="org.openspml.v2.client.*,
 com.sun.idm.rpc.spml2.SessionAwareSpml2Client"%>
<%@page import="org.openspml.v2.profiles.dsml.*"%>
<%@page import="org.openspml.v2.profiles.*"%>
<%@page import="org.openspml.v2.util.xml.*"%>
<%@page import="org.openspml.v2.msg.*"%>
<%@page import="org.openspml.v2.msg.spml.*"%>
<%@page import="org.openspml.v2.util.*"%>

<%
final String url = "http://host:port/idm/servlet/openspml2";
%>

<html>
<head><title>SPML2 Test</title></head>
<body>
<%

 // need a client.
 SessionAwareSpml2Client client = new SessionAwareSpml2Client(url);

 // login
 client.login("configurator", "password");

Overview

230 Identity Manager 8.0 • Deployment Tools

Code Example 5-2 shows the SPML 2.0 request that was sent.

 // AddRequest
 String rid = "rid-spmlv2"; // The RequestId is not strictly required.

 Extensible data = new Extensible();
 data.addOpenContentElement(new DSMLAttr("accountId", user));
 data.addOpenContentElement(new DSMLAttr("objectclass", "spml2Person"));
 data.addOpenContentElement(new DSMLAttr("credentials", password));

 AddRequest add = new AddRequest(rid, // String requestId,
 ExecutionMode.SYNCHRONOUS, // ExecutionMode executionMode,
 null, // PSOIdentifier type,
 null, // PSOIdentifier containerID,
 data, // Extensible data,
 null, // CapabilityData[] capabilityData,
 null, // String targetId,
 null // ReturnData returnData
);

 // Submit the request
 Response res = client.send(add);
%>
<%= res.toString()%>
</body>
</html>

Code Example 5-2 Example Request XML

<addRequest xmlns='urn:oasis:names:tc:SPML:2:0' requestID='rid-spmlv2'
executionMode='synchronous'>

 <openspml:operationalNameValuePair xmlns:openspml='urn:org:openspml:v2:util:xml'
name='session' value='AAALPgAAYD0A...'/>

 <data>
 <dsml:attr xmlns:dsml='urn:oasis:names:tc:DSML:2:0:core' name='accountId'>
 <dsml:value>exampleSpml2Person</dsml:value>
 </dsml:attr>
 <dsml:attr xmlns:dsml='urn:oasis:names:tc:DSML:2:0:core' name='objectclass'>
 <dsml:value>spml2Person</dsml:value>
 </dsml:attr>
 <dsml:attr xmlns:dsml='urn:oasis:names:tc:DSML:2:0:core' name='credentials'>
 <dsml:value>pwdpwd</dsml:value>
 </dsml:attr>
 </data>
</addRequest>

Code Example 5-1 Example Client Code (Continued)

Overview

Chapter 5 Using SPML 2.0 with Identity Manager Web Services 231

Code Example 5-3 shows the body of the SPML request that is returned to the
client.

ListTargetsRequest Examples
The following examples show ListsTargetRequest that are available via Identity
Manager.

Code Example 5-4 shows a .jsp invokes a ListTargetsRequest via Identity
Manager's SessionAwareSpml2Client class.

Code Example 5-3 Example Response XML

<addResponse xmlns='urn:oasis:names:tc:SPML:2:0' status='success' requestID='rid-spmlv2'>
 <openspml:operationalNameValuePair xmlns:openspml='urn:org:openspml:v2:util:xml'

name='session' value='AAALPgAAYD0A...'/>
 <pso>
 <psoID ID='anSpml2Person'/>
 <data>
 <dsml:attr xmlns:dsml='urn:oasis:names:tc:DSML:2:0:core' name='accountId'>
 <dsml:value>anSpml2Person</dsml:value>
 </dsml:attr>
 <dsml:attr xmlns:dsml='urn:oasis:names:tc:DSML:2:0:core' name='objectclass'>
 <dsml:value>spml2Person</dsml:value>
 </dsml:attr>
 <dsml:attr xmlns:dsml='urn:oasis:names:tc:DSML:2:0:core' name='credentials'>
 <dsml:value>pwdpwd</dsml:value>
 </dsml:attr>
 </data>
 </pso>
</addResponse>

Code Example 5-4 Example Client Code

<%@page contentType="text/html"%>
<%@page import="org.openspml.v2.client.*,
 com.sun.idm.rpc.spml2.SessionAwareSpml2Client"%>
<%@page import="org.openspml.v2.profiles.dsml.*"%>
<%@page import="org.openspml.v2.profiles.*"%>
<%@page import="org.openspml.v2.util.xml.*"%>
<%@page import="org.openspml.v2.msg.*"%>
<%@page import="org.openspml.v2.msg.spml.*"%>
<%@page import="org.openspml.v2.util.*"%>

<%
final String url = "http://host:port/idm/servlet/openspml2";
%>

Overview

232 Identity Manager 8.0 • Deployment Tools

Code Example 5-5 shows the body of the SPML request that is sent.

Code Example 5-6 shows the body of the SPML request that is received by or
returned to the client.

<html>
<head><title>SPML2 Test</title></head>
<body>
<%

 // need a client.
 SessionAwareSpml2Client client = new SessionAwareSpml2Client(url);

 // login (sends a ListTargetsRequest)
 Response res = client.login("configurator", "password");

%>
<%= res.toString()%>
</body>
</html>

Code Example 5-5 Example Request XML

<listTargetsRequest xmlns='urn:oasis:names:tc:SPML:2:0' requestID='rid[7013]'
executionMode='synchronous'>

 <openspml:operationalNameValuePair xmlns:openspml='urn:org:openspml:v2:util:xml'
name='accountId' value='configurator'/>

 <openspml:operationalNameValuePair xmlns:openspml='urn:org:openspml:v2:util:xml'
name='password' value='password'/>

</listTargetsRequest>

Code Example 5-6 Example Response XML

<listTargetsResponse xmlns='urn:oasis:names:tc:SPML:2:0' status='success' requestID='rid[6843]'>
 <openspml:operationalNameValuePair xmlns:openspml='urn:org:openspml:v2:util:xml'

name='session' value='AAALPgAAYD0A...'/>
 <target targetID='spml2-DSML-Target' profile='urn:oasis:names:tc:SPML:2:0:DSML'>
 <schema>
 <spmldsml:schema xmlns:spmldsml='urn:oasis:names:tc:SPML:2:0:DSML'>
 <spmldsml:objectClassDefinition name='spml2Person'>
 <spmldsml:memberAttributes>
 <spmldsml:attributeDefinitionReference required='true' name='objectclass'/>

Code Example 5-4 Example Client Code(Continued)

Overview

Chapter 5 Using SPML 2.0 with Identity Manager Web Services 233

Async Capabilities
Identity Manager supports the Async capabilities described in Table 5-3:

 <spmldsml:attributeDefinitionReference required='true' name='accountId'/>
 <spmldsml:attributeDefinitionReference required='true' name='credentials'/>
 <spmldsml:attributeDefinitionReference name='firstname'/>
 <spmldsml:attributeDefinitionReference name='lastname'/>
 <spmldsml:attributeDefinitionReference name='emailAddress'/>
 </spmldsml:memberAttributes>
 </spmldsml:objectClassDefinition>
 <spmldsml:attributeDefinition name='objectclass'/>
 <spmldsml:attributeDefinition description='Account Id' name='accountId'/>
 <spmldsml:attributeDefinition description='Credentials, e.g. password'

name='credentials'/>
 <spmldsml:attributeDefinition description='First Name' name='firstname'/>
 <spmldsml:attributeDefinition description='Last Name' name='lastname'/>
 <spmldsml:attributeDefinition description='Email Address' name='emailAddress'/>
 </spmldsml:schema>
 <supportedSchemaEntity entityName='spml2Person'/>
 </schema>
 <capabilities>
 <capability namespaceURI='urn:oasis:names:tc:SPML:2:0:async'/>
 <capability namespaceURI='urn:oasis:names:tc:SPML:2:0:batch'/>
 <capability namespaceURI='urn:oasis:names:tc:SPML:2:0:bulk'/>
 <capability namespaceURI='urn:oasis:names:tc:SPML:2:0:pass'/>
 <capability namespaceURI='urn:oasis:names:tc:SPML:2:0:suspend'/>
 </capabilities>
 </target>
</listTargetsResponse>

Table 5-3 Async Capabilities

Capability Description Operational Attributes Caveats

CancelRequest Cancels a request, using the
request ID.

None

StatusRequest Returns the status of a
request, using the request ID.

None

Code Example 5-6 Example Response XML(Continued)

Overview

234 Identity Manager 8.0 • Deployment Tools

Batch Capability
Identity Manager supports the Batch capability described in Table 5-4.

Bulk Capabilities
Identity Manager supports the Bulk capabilities described in Table 5-5:

Password Capabilities
Identity Manager supports the Password capabilities described in Table 5-6:

Table 5-4 Batch Capability

Capability Description Operational Attributes Caveats

BatchRequest Executes a batch of requests. None

Table 5-5 Bulk Capabilities

Capability Description Operational Attributes Caveats

BulkDeleteRequest Executes a bulk delete of PSOs. None

BulkModifyRequest Executes a bulk modify of matching PSOs. None

Table 5-6 Password Capabilities

Capability Description
Operational
Attributes Caveats

ExpirePasswordRequest Expires a password. None • You cannot specify resources/targets.
Doing so causes the Identity Manager
User object password to expire; which then
causes the password on all user's
resources to expire.

• Identity Manager does not support the
remainingLogins attribute.

If you set this attribute to anything other
than the default (1 or less), an
OperationNotSupported error occurs.

ResetPasswordRequest Resets the password
and returns the new
value on all accounts.

None Passwords are sensitive. Use SSL or some
other secure transport.

Overview

Chapter 5 Using SPML 2.0 with Identity Manager Web Services 235

Example Password capabilities follow.

ResetPasswordRequest Example
Code Example 5-7 is an example ResetPasswordRequest.

SetPasswordRequest Example
Code Example 5-8 is an example SetPasswordRequest.

SetPasswordRequest Sets the password. None Passwords are sensitive. Use SSL or some
other secure transport.

ValidatePasswordRequest Determines whether
the given password is
valid.

None Passwords are sensitive. Use SSL or some
other secure transport.

Code Example 5-7 Example ResetPasswordRequest

 ResetPasswordRequest rpr = new ResetPasswordRequest();
 ...
 PSOIdentifier psoId = new PSOIdentifier(accountId, null, null);
 rpr.setPsoID(psoId);
 ...

Code Example 5-8 Example SetPasswordRequest

 SetPasswordRequest spr = new SetPasswordRequest();
 ...
 PSOIdentifier psoId = new PSOIdentifier(accountId, null, null);
 spr.setPsoID(psoId);
 spr.setPassword("newpassword");
 spr.setCurrentPassword("oldpassword");
 ...

Table 5-6 Password Capabilities (Continued)

Capability Description
Operational
Attributes Caveats

Overview

236 Identity Manager 8.0 • Deployment Tools

ValidatePasswordRequest Example
Code Example 5-9 is an example ValidatePasswordRequest.

Suspend Capabilities
Identity Manager supports the Suspend capabilities described in Table 5-7.

Code Example 5-9 Example ValidatePasswordRequest

 ValidatePasswordRequest vpr = new ValidatePasswordRequest();
 ...
 PSOIdentifier psoId = new PSOIdentifier(accountId, null, null);
 vpr.setPsoID(psoId);
 vpr.setPassword("apassword");
 ...

Table 5-7 Suspend Capabilities

Capability Description Operational Attributes Caveats

ResumeRequest Resumes (enables) a PSO
User.

None Does not support
EffectiveDate.

If you set EffectiveDate,
Identity Manager returns an
OperationNotSupported error.

SuspendRequest Suspends an accounts/PSO
(disable)

None Does not support
EffectiveDate.

If you set EffectiveDate,
Identity Manager returns an
OperationNotSupported error.

Configuring Identity Manager to Use SPML 2.0

Chapter 5 Using SPML 2.0 with Identity Manager Web Services 237

Configuring Identity Manager to Use SPML 2.0
This section describes how to configure to use Identity Manager to use SPML 2.0.
The topics include:

• Deciding Which Attributes to Manage

• Configuring the SPML2 Configuration Object

• Configuring web.xml

• Configuring SPML Tracing

Deciding Which Attributes to Manage
When configuring an Identity Manager server to use SPML 2.0, the first step is to
decide which attributes you want to manage through your target.

Decide which attribute sets (objectclasses) the interface clients will use when
managing users in the Identity Manager instance that uses this interface. This set of
attributes is a PSO. You must also know how to map those attributes to and from a
User view using a form.

This section describes how to configure a system that uses PSOs containing the
following attributes for a DSML objectclass called spml2Person:

• accountId

• objectclass

• credentials

• firstname

• lastname

• emailAddress

You must map these attributes to the User view.

This section also provides short examples that demonstrate how to manage PSOs
using SPML 2.0 support in Identity Manager.

NOTE You can have more than one attribute in the target.

Configuring Identity Manager to Use SPML 2.0

238 Identity Manager 8.0 • Deployment Tools

Identity Manager provides a sample set of SPML configuration objects in the
sample/spml2.xml file. You must manually import the sample/spml2.xml file
because it is not imported by default when the repository is initialized. See the
contents of this file for detailed information.

After deciding on the format of a PSO; enable the service as described in the next
section, which discusses web.xml and what has been added for SPML 2.0.

Configuring the SPML2 Configuration Object
The sample/spml2.xml file contains an out-of-the-box configuration for SPML 2.0
support. You can import this file, or one derived from this file, to define the objects
that Identity Manager needs to support SPML 2.0.

You can use the SPML2 configuration type object to change how SPML 2.0 support
behaves or to extend the system.

NOTE The spml2ObjectClass attribute is not present in the User schema
by default. If this attribute is not already enabled, you must
manually add the spml2ObjectClass attribute to your schema
before Identity Manager can function as an SPML 2.0 server.

The spml2ObjectClass attribute has been defined in the schema.xml
supplied with Identity Manager, but the section where you add this
attribute to the configuration is commented out. Assuming that your
production schema is in a file derived from that original, you can
uncomment that section, import or re-import the schema file, and
restart Identity Manager to enable use of the SPML 2.0 feature.

NOTE See “Extending the System” on page 241 for more information about
extensions.

Configuring Identity Manager to Use SPML 2.0

Chapter 5 Using SPML 2.0 with Identity Manager Web Services 239

Configuring web.xml
If you are using a servlet container like Tomcat, you use web.xml to set up the
openspmlRouter servlet, which is the servlet that handles SPML 2.0 requests.

The web.xml file contains an optional init-param that you can use to open a
monitor window (in Swing) that displays the flow of SPML 2.0 messages. You can
use this window to monitor the flow of SPML 2.0 messages, which is useful for
debugging purposes.

The following example shows how to add the init-param.

The following example contains a commented section and contains information
about other init-params.

NOTE The web.xml file ships with a default installation and no action is
required for this component.

<init-param>
 <param-name>monitor</param-name>
 <param-value>org.openspml.v2.util.SwingRPCRouterMonitor</param-value>
</init-param>

Code Example 5-10 Commented Example

<servlet>
 <servlet-name>openspmlRouter</servlet-name>
 <display-name>OpenSPML SOAP Router</display-name>
 <description>A router of RPC traffic - nominally SPML 2.0 over SOAP</description>
 <servlet-class>
 org.openspml.v2.transport.RPCRouterServlet
 </servlet-class>

 <!--
 The Router uses dispatchers to process SOAP messages. This is one that is in the

toolkit that knows about SOAP. It has its own parameters, via naming convention.
See below.

 -->

 <init-param>
 <param-name>dispatchers</param-name>
 <param-value>org.openspml.v2.transport.SPMLViaSoapDispatcher</param-value>
 </init-param>

Configuring Identity Manager to Use SPML 2.0

240 Identity Manager 8.0 • Deployment Tools

 <!--
 Turn on trace to have the servlet write informational messages to the log.
 -->

 <init-param>
 <param-name>trace</param-name>
 <param-value>false</param-value>
 </init-param>

 <!--
 The SpmlViaSOAPDispatcher (yes, the one above) uses marshallers; there can be

a chain, to move XML to SPML objects and back. We use one; we implemented
UberMarshaller for this purpose. It's really a composition of toolkit classes.

 -->
 <init-param>
 <param-name>SpmlViaSoap.spmlMarshallers</param-name>
 <param-value>com.sun.idm.rpc.spml2.UberMarshaller</param-value>
 </init-param>

 <!--
 Our marshaller (UberMarshaller) has its own trace setting; which doesn't really

do anything in this release
 -->

 <init-param>
 <param-name>SpmlViaSoap.spmlMarshallers.UberMarshaller.trace</param-name>
 <param-value>true</param-value>
 </init-param>

 <!--
 Finally, the dispatcher has a list of executors that actually implement the

functionality. So, it sees a request, takes the SOAP envelope off, take the body
from XML to OpenSPML Request classes, and then asks the list of executors if they can
process it. We provided one, UberExecutor. It will redispatch the request to our
other executors. Those are specified in spml2.xml (Configuration:SPML2).

 -->

 <init-param>
 <param-name>SpmlViaSoap.spmlExecutors</param-name>
 <param-value>com.sun.idm.rpc.spml2.UberExecutor</param-value>
 </init-param>
</servlet>

Code Example 5-10 Commented Example(Continued)

Extending the System

Chapter 5 Using SPML 2.0 with Identity Manager Web Services 241

Configuring SPML Tracing
SPML provides options for turning on trace output so you can log Identity
Manager’s SPML traffic and diagnose problems.

For more information about tracing SPML, see the “Tracing and Troubleshooting
Identity Manager” chapter in the Identity Manager Tuning, Troubleshooting, and Error
Messages book.

Extending the System
You extend the schema by modifying the configuration object, and you can add
executors for requests by changing the section. Using forms, you can map DSML to
Views and back.

It is less obvious, but you can also replace the dispatcher, marshaller, and the
UberExecutor, with those of your own devising.

• If you do not want to use SOAP, just replace the dispatcher in the first case.

• If you do not want to use HTTP, replace the router with a different kind of
servlet.

• If you want different XML parsing, replace the Marshaller with your own.

SPML 2.0 provides a wide-open array of pluggability, which is due to Identity
Manager's use of the OpenSPML 2.0 Toolkit. The following figure shows the
OpenSPML 2.0 Toolkit architecture.

Figure 5-1 OpenSPML 2.0 Toolkit Architecture

Sample SPML 2.0 Adapter

242 Identity Manager 8.0 • Deployment Tools

Sample SPML 2.0 Adapter
Identity Manager provides a sample SPML 2.0 resource adapter. Using this adapter
as a starting point, you can modify the content to communicate with Identity
Manager installations or third-party resources that support SPML 2.0 core
operations.

NOTE You will find this sample adapter in the Sun Resource Extension
Facility Kit on your product CD or in your install image located
in /REF.

243

Appendix A

Using the Business Process Editor

This appendix provides instructions for using the Business Process Editor (BPE).
The information in this chapter is organized as follows:

• Overview

• Starting and Configuring the BPE

• Navigating the Business Process Editor

• Accessing JavaDocs

• Working with Generic and Configuration Objects

• Creating and Editing Rules

• Customizing a Workflow Process

• Debugging Workflows, Forms, and Rules

Overview
The Business Process Editor (BPE) is a standalone, Swing-based Java application
that provides a graphical and forms-based view of Identity Manager workflows,
forms, rules, generic and configuration objects, and views.

You use the BPE to customize Identity Manager for your environment as follows:

• View, edit, and create forms, workflows, rules, email templates, and rule
libraries

NOTE The Business Process Editor (BPE) is deprecated, and will be
removed in the next Identity Manager release. Please use the
Identity Manager IDE instead.

Starting and Configuring the BPE

244 Identity Manager 8.0 • Deployment Tools

• View and edit configuration objects and generic objects

• View JavaDocs for the classes that comprise the Identity Manager public APIs

• Debug forms, workflows, and rules

• Create workspaces that are associated with specific repositories

Starting and Configuring the BPE

This section provides instructions for starting and configuring the BPE, including:

• Starting the BPE

• Specifying a Workspace

• Enabling JDIC

• Using SSL in the BPE

Starting the BPE
To start the BPE from the command line:

1. Change to the Identity Manager installation directory.

2. Set environment variables with these commands:

set WSHOME=<Path_to_idm_directory>
set JAVA_HOME=<path_to_jdk>

To start the BPE on a UNIX system, you must also enter

export WSHOME JAVA_HOME

3. Change to the idm\bin directory and type lh config to start the BPE.
The Workspace location dialog displays, as shown in Figure A-1.

NOTE To run the BPE, you must have Identity Manager installed on your
local system and Configurator-level access to Identity Manager.

Starting and Configuring the BPE

Appendix A Using the Business Process Editor 245

Figure A-1 BPE Workspace Location Dialog

Use the Workspace location dialog to create a new workspace or to select an
existing workspace. Instructions for both actions are provided in the next section.

Specifying a Workspace
A workspace is a mechanism for saving repository connection information (such as
the default server and password), options, breakpoints set by the BPE debugger,
open sources, and automatically saved files.

A workspace is tied to a specific repository. You can have more than one
workspace associated with a repository, but only one repository per workspace.

The BPE has two different connections to the Identity Manager repository:

• Editor Connection — This connection is used by the classic Editor portion of
the BPE.

The Editor can connect in the following ways:

❍ LOCAL: The Editor connects the directory to the repository using the
ServerRepository.xml in WSHOME.

You can use the LOCAL connection to edit objects in the repository when
the application server is not running.

❍ SOAP: The Editor connects to the application server using SOAP.

• Debugger Connection — This connection is used by the Debugger portion of
the BPE to:

❍ Fetch source code from the application server

❍ Receive the current debugging state (variables, current location)

Starting and Configuring the BPE

246 Identity Manager 8.0 • Deployment Tools

❍ Send commands to the debugger agent, which runs within the application
server (setting breakpoints, sending step commands).

Because sending commands to the debugger agent requires a connection to a
live application server, the only valid setting for the Debugger connection is
SOAP. If you choose SOAP for the Editor connection, the debugger will use the
same connection as the editor.

This section contains instructions for

• Creating New Workspace

• Selecting a Workspace

• Troubleshooting Start-Up

Creating New Workspace
To create a new workspace, use the following instructions:

1. In the Workspace location dialog, enter a unique name for the new workspace
in the Workspace Directory field, and then click OK.

When you provide the name of a workspace that does not yet exist, the Create
new workspace wizard displays and instructs you to provide a directory for
the workspace.

2. Enter a directory name in the Workspace directory field, and then click Next.

The Connection Information dialog displays so you can specify connection
information for your workspace.

Starting and Configuring the BPE

Appendix A Using the Business Process Editor 247

Figure A-2 BPE Connection Information Dialog

Starting and Configuring the BPE

248 Identity Manager 8.0 • Deployment Tools

3. Specify the Editor connection information as follows:

a. Select a connection type:

• Local (selected by default): Select to enable the BPE to work on objects
in a local repository.

When you specify a Local connection, BPE connects to the repository
using the ServerRepository.xml found in WSHOME. (The SOAP URL
field will be greyed out.)

• SOAP: Select to enable the BPE to work on objects in a different
repository.

When you specify a SOAP connection, you will also be specifying
SOAP as the default connection type for the BPE debugger.

b. If you are using a SOAP connection, enter a fully qualified URL in the
SOAP URL field. For example, http://host:port/idm/servlet/rpcrouter2,
where <idm> is the directory where you installed Identity Manager.

c. Enable the Test Connection option if you want Identity Manager to test this
connection to the repository.

4. Specify the Debugger connection information for the BPE debugger as follows:

As mentioned previously, if you selected SOAP for the Editor connection type, you
set the default debugger connection type to SOAP by default. All of the options in
the Debugger connection area will be greyed out.

a. Select the connection type and SOAP URL (if necessary).

b. Enable the Test Connection option if you want Identity Manager to test this
connection to the repository.

5. Provide the following credentials:

a. Enter a User login name and Password.

b. Enable the Remember Password option if you want the BPE to use these
credentials by default whenever you log into BPE.

6. Click Finish to create the new workspace and the BPE main window displays.

Starting and Configuring the BPE

Appendix A Using the Business Process Editor 249

Selecting a Workspace
Use one of the following methods to select an existing workspace from the
Workspace location dialog,

• Select a workspace name from the Workspace directory menu list.

• Click Browse to locate and select a workspace.

After selecting a workspace, click OK and the BPE main window will display.

Troubleshooting Start-Up
When BPE tries to connect to the underlying server, you may receive the following
error message:

If you get this connection error, check the URL field in the browser instance in
which you are running Identity Manager. The first part of the URL listed there
must be the same as the URL that you entered as the debugger connection. For
example, http://host:port/idm.

Enabling JDIC
If you want to embed the Web browser panel in the Form Preview panel, you must
select JDIC as the preferred Web browser. Otherwise, the Web Browser panel will
use the External webbrowser command to launch the Web browser externally.

HTTP 404 - /idm/servlet/rpcrouter2
Type Status report
message /idm/servlet/rpcrouter2 description
The requested resource (/idm/servlet/rpcrouter2) is not available

Starting and Configuring the BPE

250 Identity Manager 8.0 • Deployment Tools

To specify JDIC, use the following steps:

1. Select Tools > Options to open the Editor Options dialog.

Figure A-3 Editor Options Dialog

2. Enable the JDIC option as the Preferred webbrowser. (This option does not
display if the application is running a version of JRE less than 1.4.)

NOTE • To enable JDIC for Windows, you must install Internet Explorer.
(Mozilla is not currently supported on Windows.)

• To enable JDIC on Linux or Solaris, you must install Mozilla. At
present, GNOME is the only supported desktop.

In addition, you must set the MOZILLA_FIVE_HOME environment
variable to the root directory of your Mozilla installation.

Navigating the Business Process Editor

Appendix A Using the Business Process Editor 251

To configure JDIC for Solaris 10+x86:

1. Download jdic-0.9.1-bin-cross-platform.zip from
https://jdic.dev.java.net.

2. Extract the zipped files.

3. Replace the <wshome>/WEB-INF/lib/jdic.jar
with the jdic-0.9.1-bin-cross-platform/jdic.jar.

4. Copy jdic-0.9.1-bin-cross-platform/sunos/x86/*
to <wshome>/bin/solaris/x86.

Using SSL in the BPE
To use SSL. in the BPE, open the Create new workspace wizard and change the
SOAP URL protocol to https and the port number to your application’s SSL port.

Navigating the Business Process Editor
Before you start customizing Identity Manager processes or objects, you should
know how to work with, view, and enter information and how to make selections
in the BPE.

This information is organized into the following sections:

• Working with the BPE Interface

• Loading Processes or Objects

• Setting Editor Options

• Validating Workflow Revisions

• Saving Changes

• Inserting XPRESS

• Using Keyboard Shortcuts

Navigating the Business Process Editor

252 Identity Manager 8.0 • Deployment Tools

Working with the BPE Interface
The BPE interface includes a menu bar and dialogs for selections. The primary
display is divided into two main panes:

• Tree view

• Additional display views, which include

❍ Diagram view

❍ Graphical view

❍ Property view

Working in Tree View
Tree view (in the left pane) provides a hierarchical view of tasks, forms, views, or
rules. This view lists each variable, activity, and subprocess in order — nesting
actions and transitions under each activity. Figure A-4 shows a sample tree view
highlighting workflow.

Figure A-4 BPE Tree View

Navigating the Business Process Editor

Appendix A Using the Business Process Editor 253

Working with Additional Display Views
BPE provides the following additional display views:

• Diagram View

• Graphical View

• Property View

The availability of these views depend upon the object type or process you select.
For example, the BPE presents a graphical display of a form as it would appear in a
browser. This view complements the property view and XML display of unique
form elements.

These views are introduced in the following sections.

Diagram View
For workflow, the Diagram view displays in the right interface pane, and provides
a graphical representation of a process. Each icon represents a particular process
activity.

Figure A-5 Diagram View (Workflow)

Graphical View
The Graphical view displays in the lower right pane of the BPE display and shows
the currently selected form as seen in a browser window.

NOTE For more detailed information about which display types are
available for each Identity Manager object or workflow process, and
how to work with these additional views, see Sun Java™ System
Identity Manager Workflows, Forms, and Views.

Navigating the Business Process Editor

254 Identity Manager 8.0 • Deployment Tools

Property View
The Property view displays in the upper right pane of the BPE display and
provides information about elements in the currently selected form.

Figure A-6 Property View (Form)

Loading Processes or Objects
To load an Identity Manager process or object use the following steps:

1. Select File > Open Repository Object from the menu bar.

2. If prompted, enter the Identity Manager Configurator name and password in
the login dialog, and then click Login.

The Select objects to edit dialog displays and it contains a list of objects, which
can include the following object types.

❍ Workflow Processes
❍ Libraries
❍ Workflow Sub-processes
❍ Generic Objects
❍ Forms
❍ Configuration Objects
❍ Rules
❍ Email Templates

Items displayed may vary based on your Identity Manager implementation.

TIP You can also use the Ctrl-O shortcut. (See “Using Keyboard
Shortcuts” on page 260, for a complete list of BPE shortcuts.)

Navigating the Business Process Editor

Appendix A Using the Business Process Editor 255

3. Double-click an object type to display all of the objects that you have
permission to view for that type.

4. Select a process or object, and then click OK.

Navigating the Business Process Editor

256 Identity Manager 8.0 • Deployment Tools

Setting Editor Options
You can set several options so that your preferences are reflected each time you
launch the BPE. You can also set these options individually each time you work in
the editor.

To set editor options, select Tools > Options to open the Editor Options dialog.

Figure A-7 Editor Options Dialog

You can use the options on this dialog to specify the following preferences:

• Form Server Port — Specifies the default port for the HTML Preview page.
You use this page when you are editing forms.

• Default Expression Style — Controls the display option for expressions in
forms, rules, and workflows (Graphical or XML).

• Initial Dialog Tab — Controls the tab that appears on top (Main or XML).

• List Editor Style — Controls the default display of list expressions.
You can display lists in a table or as text boxes.

• Disable Type Selector — Disables the Type Selector option that appears next
to text boxes. The option to change types will still be available through the
Edit dialog.

Navigating the Business Process Editor

Appendix A Using the Business Process Editor 257

• Automatic Workflow Layout — Enables automatic layout of workflow
activities the first time it is opened.

• Workflow Toolbox Style — Specifies where the Workflow Toolbox will be
displayed relative to the main BPE window. Options include

❍ Docked Right (Default): Select to dock the toolbox to the right side of the
BPE window.

❍ Docked Left: Select to dock the toolbox to the left side of the BPE window.

❍ Floating: Select if you want the ability to move the toolbox around the BPE
window.

• Preview Panel Context — Identifies the context in which information
displayed in the Preview pane is rendered. Options include

❍ Editor Connection — Select if you want the BPE to try and connect to the
repository.

❍ Simulated — Select to work on forms off-line.

• Auto-save interval (in seconds) — Specifies how many seconds the BPE will
wait before auto-saving a session. (Default is 30 seconds)

• Preferred webbrowser — Specifies how to launch the Web browser.
Options include:

❍ External (Default): Select to have BPE use the External webbrowser
command to launch the Web browser externally.

❍ JDIC: Select to launch the Web browser panel in the Form Preview panel.

• External webbrowser command — Specifies the External webbrowser
command to invoke the external Web browser.

Validating Workflow Revisions
You can validate your workflow revisions at different stages of the customization
process:

• If you are working with XML display values, when adding or customizing
variables, activities, actions, or transitions, click Validate to validate each
change.

• After making changes, select the object or process in the tree view, and then
select Tools > Validate to test it.

Navigating the Business Process Editor

258 Identity Manager 8.0 • Deployment Tools

The BPE displays validation messages that indicate the status of the process:

• Warning indicator (yellow dot) – Indicates that the process action is valid, but
that the syntax style is not optimal.

• Error indicator (red dot) – Indicates that the process will not run correctly. You
must correct the process action.

Validate your workflow revisions as follows:

1. Click an indicator to display its process action.

2. After making changes, click Re-validate to re-test the process, confirm that the
error is corrected, and check for additional errors.

3. Drag your cursor into the Workflow diagram view.

The activity appears in the view.

Saving Changes
To save your changes to a process or object and check it into the repository, select
File > Save in Repository from the menu bar. When you select Save, the BPE saves
the object in the location in which it was last saved (either in the repository or the
file in which it was last saved). You can have multiple copies of the same object
open in varying states and in different files or repositories.

TIP Any activities you create after the first activity are numbered.
Re-number similar activities before creating more than two.

NOTE You can also use File > Save As File to save the object or process as
an XML text file. Save the file in the form Filename.xml.

Navigating the Business Process Editor

Appendix A Using the Business Process Editor 259

Inserting XPRESS
If you are editing a rule, workflow, configuration or generic object, or form in the
BPE XML pane, you can quickly insert an XML template for an XPRESS element
wherever you have positioned the cursor.

1. Position the cursor where you want to add the new XPRESS statement.

2. Click the right mouse button to display the New menu.

3. Select the type of XPRESS statement you want to add to the XML.

For example, select New > Logical > cond to add an empty cond statement at
the cursor insertion point. The BPE displays the content-free cond statement, as
illustrated in the following figure.

Figure A-8 Menu for Inserting XPRESS Functions into XML

4. Complete the statement as needed.

Navigating the Business Process Editor

260 Identity Manager 8.0 • Deployment Tools

If you insert the XPRESS element in an invalid location, one or two red dots
(indicators) display immediately to the left of the new code lines that mark the first
and last lines of the inserted code. See Validating Workflow Revisions for
information about these indicators.

Figure A-9 Inserting XPRESS Function

Using Keyboard Shortcuts
The BPE supports these keyboard shortcuts for performing tasks.

Table A-1 BPE Keyboard Shortcuts

Keyboard Command/Key Action

Ctrl-C Copy

Ctrl-O Open (repository object)

Ctrl-R Refresh Sources

Ctrl-S Save (repository object)

Ctrl-V Paste

Ctrl-X Cut

Delete Delete

F5 Select Current Line

F6 Step out

F7 Step into

F8 Step over

F9 Continue (Debugging)

Accessing JavaDocs

Appendix A Using the Business Process Editor 261

Accessing JavaDocs
You can access JavaDocs for all public method classes from any BPE window that
displays XML, as follows:

1. Right-click in an XML window to display the cascading menu.

2. Select New > Browse Javadoc.

Figure A-10 Opening a Javadoc

3. Select one of the following options from the cascading menu, which includes
the following packages, subsequently broken down into component classes:

❍ com.waveset.object: Lists all the classes subordinate to this parent class.

❍ com.waveset.ui: Lists all the classes subordinate to this parent class.

❍ com.waveset.util: Lists all the classes subordinate to this parent class.

❍ com.waveset.util.jms: Lists all the classes subordinate to this parent class.

Working with Generic and Configuration Objects

262 Identity Manager 8.0 • Deployment Tools

❍ All Classes: Displays the frames view of the JavaDoc classes, from which
you can navigate through each class in the browser.

Selecting one of these menu options opens a browser window that displays the
class Javadoc.

Inserting a Method Reference
To insert a method invocation in the XML, access the method summary section of
the class Javadoc. Click the Select button that precedes the method name under the
Method Summary.

Figure A-11 Selecting the getUser Method

At the cursor insertion point, BPE inserts the <invoke> element that you need to
call the method from the XML.

Working with Generic and Configuration Objects
The fundamental object model for Identity Manager is the persistent object model.
Because you perform almost all Identity Manager operations by creating an object,
the persistent object API is the fundamental object model for customizing and
controlling Lighthouse.

This section provides information about working with persistent objects.
The information is organized as follows:

• Common Persistent Object Classes

• Viewing and Editing Objects

• Creating a New Object

• Validating a New Configuration Object

TIP Click Validate for preliminary confirmation of the invoke statement
syntax and XML.

Working with Generic and Configuration Objects

Appendix A Using the Business Process Editor 263

Common Persistent Object Classes
PersistentObject is the common base class of all persistent objects, and provides
the fundamental object model for customizing and controlling Identity Manager.
PersistentObject consists of a set of Java classes that are part of the infrastructure
that is common to all persistent objects.

These common PersistentObject classes include:

• Type: A set of constants used in many methods to indicate the type of object
being referenced.

• PersistentObject: The common base class of all repository objects. The most
significant properties are the identity, member object groups and the property list.

• ObjectRef: When an object references another, the reference is encoded in this
object. The reference includes the object type, name, and repository identifier.

• Constants: A collection of random constants for many different system
components.

• ObjectGroup: A group representing an organization in the Identity Manager
interface. All persistent objects must belong to at least one object group. If you
do not specify otherwise, the object is placed in the Top group.

• Attribute: A collection of constant objects that represents common attributes
that are supported by objects. Often used internally when building object
queries. When a method accepts an Attribute argument, there is usually a
corresponding method that takes a string containing the attribute name.

Viewing and Editing Objects
You can use the BPE to view and edit the two of the most commonly customized
persistent object types:

• Configuration objects: A type of persistent object that contains forms and
workflow processes.

• Generic objects: A configuration object that has an <Extension> of type
<Object>. (In contrast to workflows, which are Configuration objects that have
an <Extension> of type <WFProcess>.) You typically use Generic objects to
represent views, and they are simple collections of name/value pairs. You can
access these attributes externally through path expressions.

Working with Generic and Configuration Objects

264 Identity Manager 8.0 • Deployment Tools

The following sections provide an introduction to the Configuration and Generic
object types. For more detailed information, see Sun Java™ System Identity Manager
Workflows, Forms, and Views.

Configuration Objects
You can directly access forms and workflows in the BPE; however, the BPE also
provides access to other configuration objects that are not associated with a custom
viewer. You can access these miscellaneous configuration objects from the BPE
under the Configuration Object category.

The BPE lists these miscellaneous configuration objects in the left pane (tree view),
as shown in the following figure:

Figure A-12 BPE Tree Display of the Configuration Object

Double-clicking on an object name in tree view displays the Object window, which
provides the following object views (tabs): Main, Repository, and XML.

For example, if you double-click User Extended Attributes in tree view, the
following dialog displays:

Figure A-13 User Extended Attributes Object Dialog

Working with Generic and Configuration Objects

Appendix A Using the Business Process Editor 265

The BPE also displays configuration objects as unfiltered XML in the left pane of
the BPE window. For example, see the following figure:

Figure A-14 BPE XML Display of Reconcile Configuration Object

Generic Objects
Generic objects are simple collections of name/value pairs you can use to represent
views. BPE displays these name/value pairs in column form and lists the
attribute’s data type. Valid data types include Boolean, int, string, and xmlobject.

Figure A-15 BPE Attribute Display of Generic Object (System Configuration)

Many customizations involve editing the System Configuration object, which is a
type of generic object.

Working with Generic and Configuration Objects

266 Identity Manager 8.0 • Deployment Tools

Creating a New Object
To create a new Configuration or Generic object

1. Select File > New > GenericObject or Configuration Object.

The Configuration:New GenericObject or Configuration:New Configuration
dialog opens, with the Main panel displayed.

2. Enter the new object name in the Name field.

The BPE main window adds the new object name to the tree view. In addition,

❍ If you created a generic object, a blank Attributes pane displays as follows:

Figure A-16 BPE New Generic Object Display

❍ If you created a configuration object, the BPE displays the following
window, which contains a template for the new XML object.

Figure A-17 BPE New Configuration Object Display

Working with Generic and Configuration Objects

Appendix A Using the Business Process Editor 267

3. If you are creating a generic object, add an attribute as follows, repeating as
necessary:

a. Click New at the bottom of the Attributes pane. The BPE displays a new
attribute field at the bottom of the list of attributes. Select New Attribute,
then enter the name of the attribute.

b. Assign a data type by clicking null in the Type column, and selecting a
data type from the drop-down menu.

Figure A-18 New Attribute of BPE Generic Object Display

4. Select File > Save in Repository to save the new object to the repository.

Validating a New Configuration Object
You can immediately validate the new configuration object XML by clicking
Validate, in the right pane of the main BPE window.

NOTE To delete an attribute, click the attribute name, and then
click Delete.

Creating and Editing Rules

268 Identity Manager 8.0 • Deployment Tools

Creating and Editing Rules
You can use the BPE to

• View, create, and edit rules

• Test rules with a Lighthouse context

• Define data passed into the rule

• Save rule definitions to a file

• Retrieve information about a selected rule such as attribute types

• Display view attributes for reference while you customize rules

This section provides information and instructions for using the BPE to create and
edit rules. The information is organized as follows:

• Creating a New Rule

• Saving Changes

• Validating Workflow Revisions

• Defining Rule Elements

Using the BPE Interface
Before you start customizing rules, you must understand the basics of navigating
and using the BPE interface. When you are working with rules, the initial BPE
interface consists of display panes, a menu bar, Action menus, and Rule dialogs.

NOTE Instructions for starting the BPE application are provided in
“Starting and Configuring the BPE” on page 244.

NOTE The BPE interface changes based on the object type or process
selection.

Creating and Editing Rules

Appendix A Using the Business Process Editor 269

This section describes the interface related to creating and editing rules.
The information is organized as follows:

• BPE Display Panes

• Menu Selections

• Rule Dialogs

• Browsing Rules

• Reviewing Rule Summary Details

• Loading a Rule

BPE Display Panes
When you are working with rules, the BPE interface provides the following
display panes:

• Tree view

• Rule source

• Input tab

• Trace tab

• Result tab

 Tree View
The tree view (in the left interface pane) lists selected rules as standalone icons.

Figure A-19 Rule Display in Tree View

Typically, the tree view shows a hierarchical view of tasks, forms, or views —
listing each element in order with sub-elements nested under their parent.

Creating and Editing Rules

270 Identity Manager 8.0 • Deployment Tools

However, rules do not reside in hierarchies within Identity Manager (unless
already incorporated into a rule library object, workflow, or form), so there are no
hierarchical relationships among rules to display in tree view. Instead, rules that
are not incorporated into a library, workflow, or form appear in tree view as
single icons.

Rule Source
The Rule source pane (in the upper right interface pane) provides the source
information of a rule.

Figure A-20 Rule Source Pane

From this pane, you can right-click to access a cascading menu that enables you to
perform any of the following tasks:

• Create a new rule or add new values to the selected rule

• Browse and select existing rules and libraries

• Browse and view existing JavaDocs

• Change the display to view the rule source in XML, Graphical, Property Sheet,
or Configuration format.

You can also use the buttons located above this pane to perform any of the
following actions:

• Validate: Validates the rule with the current set of arguments

• Run: Executes the rule with the current set of arguments

• Clear the input: Resets the input arguments to their defaults

• Clear the output: Clears the Result and Trace panes

Creating and Editing Rules

Appendix A Using the Business Process Editor 271

Input Tab
The Input tab pane (located in the lower right corner of the window) displays by
default.

Figure A-21 Input Tab Pane

You can use this tab to control the arguments that are passed to the rule for testing.
This tab is basically the same as the BPE's GenericObject Editor (see “Generic
Objects” on page 265).

From this pane, you can:

• Double-click the argument name, the Arguments dialog displays so you can
Validate the argument.

• Right-click an argument name to access a cascading menu that enables you to
import test data from a view or a file. Specifically, you can perform any of the
following tasks:

❍ Insert the argument into a List, GenericObject, Map, or Test data

❍ Edit the argument

❍ Copy the argument

❍ Paste the copied argument to another location

❍ Import test data from a file

❍ Export test data to a file

• Click New to create new arguments by specifying a name, type, and value.

• Click Delete to delete a selected argument.

Creating and Editing Rules

272 Identity Manager 8.0 • Deployment Tools

Result Tab
Select the Result tab and click Run (above the Rule source pane) to execute the
selected rule. The rule’s return value displays in the Result tab pane in XML
format.

Figure A-22 Result Tab Pane

Trace Tab
Select the Trace tab to capture XPRESS tracing during execution of the rule.

Figure A-23 Trace Tab Pane

Menu Selections
You can use the menu bar or the action (right-click) menu to work in the interface.

Select an item in the tree or diagram view, and then right-click to display the action
menu selections that are available for that item.

Creating and Editing Rules

Appendix A Using the Business Process Editor 273

Rule Dialogs
Each rule and rule element has an associated dialog that you can use to define the
element type and its characteristics.

To access these dialogs, double-click the rule name in the tree view. The rule dialog
for the selected rule displays, with the Main tab in front by default. For example,
see the following figure:

Figure A-24 Rule Dialog (Main Tab View)

You use the options on this dialog to define a rule, as follows:

• Name: Automatically displays the selected rule name, which is the name
displayed in the Identity Manager interface.

• Description (optional): Specify text describing the purpose of the rule.

• Comments: Specify text inserted into the rule body with a <Comment> element.

• Arguments: Specify any required arguments.

Creating and Editing Rules

274 Identity Manager 8.0 • Deployment Tools

Editing Rule Elements (Changing Field Value Type)
Some dialog fields behave differently depending on the field value type you
selected.

• If the value type is String, you can type text directly into the field.

• If the value type is Expression, Rule, or Reference, click Edit to edit the value.

Figure A-25 Rule Argument Dialog

You can use one of the following methods to change a value type:

• Click Edit, and then click Change Type (if the current value is String).

• Right-click to access the actions menu, then select Change Type (if the current
value is Expression, Rule, or Reference).

Changing Display Type
To change the way information displays in diagram view

1. Right-click to display the action menu.

2. Select Display > <view_type>.

The view types include:

❍ XML – Displays XPRESS or JavaScript source. You may prefer this display
type if you are comfortable with XML.

Figure A-26 XML Display

Creating and Editing Rules

Appendix A Using the Business Process Editor 275

❍ Graphical – Displays a tree of expression nodes. This display type
provides a structural overview.

Figure A-27 Graphical Display

❍ Property Sheet – Displays a list of properties, some of which can be edited
directly.

You may be required to launch another dialog for other properties.
For efficiency, use the Property Sheet display type when creating new
expressions. (You can enter expression arguments more rapidly in this
view compared to using the graphical view.)

Figure A-28 Property Sheet Display

NOTE To conserve space, Figure A-27 shows only part of the
selected rule.

Creating and Editing Rules

276 Identity Manager 8.0 • Deployment Tools

❍ Configuration – Displays argument information listed in a property-sheet
style. (See Figure A-29.) Also lists any comments that the rule creator used
to describe the rule in the database.

Figure A-29 Configuration Display

Browsing Rules
Use one of the following methods to browse and select the rules that you can access
through Identity Manager:

• Select File > New Repository Object from the main menu bar. When the Select
objects to edit dialog displays, expand the Rules node to display the available
rules.

• Right-click in the Rule source pane and select New > Browse Rules from the
actions menu.

Creating and Editing Rules

Appendix A Using the Business Process Editor 277

When the Select Rule dialog opens (Figure A-30), expand the Rules node to
display the available rules.

Figure A-30 Select Rule Dialog

Reviewing Rule Summary Details
Double-click a rule name in the tree pane to view, at a glance, rule elements.
The Rule dialog contains the following tabs:

• Main

• Repository

• XML

Creating and Editing Rules

278 Identity Manager 8.0 • Deployment Tools

Main Tab
Select this tab to access argument properties for this element (including each
argument’s name and value). It also lets you re-order arguments for better visual
organization. (Reordering in this list does not change interpretation of the rule.)

The Main tab displays the same information about the rule as the Main view of the
Rule dialog (see Figure A-31).

Figure A-31 Main Tab Display

Creating and Editing Rules

Appendix A Using the Business Process Editor 279

Repository Tab

Select the Repository tab to view the following information about the selected rule:

Figure A-32 Repository Tab Display

NOTE Rules that are not included in a Rule library have a Repository tab.

Table A-2 Fields on the Repository Tab

Field Description

Type Identifies the type of repository object. This value is Rule.

Subtype Identifies a subtype, if relevant. Rule subtypes are currently implemented within the
Reconciliation interface only.

The default is None.

Name Assigned in the Rule dialog name field.

Id Identification number assigned by Identity Manager.

Creator Lists the account by which the rule was created.

CreateDate Date assigned by Identity Manager when the object was created.

Modification Date Date on which the object was last modified.

Organization Identifies the organization in which the rule is stored.

Authorization Type (Optional) Grants finer-grain permissions for users who do not have Admin privileges.
The EndUserRule authorization type, for example, grants a user the ability to call a rule from
a form in the Identity Manager User Interface.

Creating and Editing Rules

280 Identity Manager 8.0 • Deployment Tools

The Repository tab primarily contains read-only information, but you can change
the following values:

• Subtype: Select a new subtype assignment from the menu.

Rules have no subtype by default. Consequently; when you create a rule, the
Subtype value defaults to None.

However, to display this rule in the Reconciliation interface, you must set this
value to Account Correlation or Account Confirmation, depending upon
which selection list in the Reconciliation graphical user interface you would
like this rule to appear.

• Organization: Enter a new organization assignment into the text field.

• Authorization Type: Enter a new authorization type into the text field.

XML Tab
Select the XML tab to view and edit raw XML for the selected rule. You can then
click Validate to validate your changes before clicking OK to save. The XML parser
validates the rule XML against the waveset.dtd.

Figure A-33 XML Tab Display

NOTE For an example rule subtype, see “ExcludedAccountsRule” on
page 48.

Creating and Editing Rules

Appendix A Using the Business Process Editor 281

Creating a New Rule
Use the following steps to create a new rule:

1. Select File > New > Rule. and the Rule: New Rule dialog displays, with the
Main tab in front by default.

Figure A-34 New Rule Dialog

2. Specify the following parameters for the new rule:

❍ Name — Enter a name for the rule. (This name is displayed in the Identity
Manager interface.)

❍ Description (Optional) — Enter text to describe the purpose of the rule.

❍ Comments — Enter text to be inserted into the rule body with a <Comment>
element.

3. Click New to add arguments to the new rule.

4. When the Argument: Null dialog displays, enter text into the Name, Value,
and Comments fields, and then click OK.

This text displays in the Arguments table and will be inserted into the rule as a
<RuleArgument> element.

5. When you are finished click OK to save your changes.

NOTE • To remove an argument, click Delete.

• To change the arguments location in the Arguments table, click
Move Up or Move Down.

Creating and Editing Rules

282 Identity Manager 8.0 • Deployment Tools

Defining Rule Elements
The XML elements that comprise rules can be functions, XPRESS statements, one of
several data types. You can use the following BPE Rule Element dialogs to create or
edit rule elements:

• Argument dialog — Use to view or define argument characteristics.

• Element dialog — Use to view or define selected elements.

• Object Access dialog — Use to manipulate objects or call Java methods that
manipulate objects.

• Diagnostics dialog — Use to debug or examine JavaScript, trace, print, and
breakpoints.

Additional information about these dialogs is provided in the following sections.

Argument Dialogs
You use an Argument dialog to access and define rule arguments.

Figure A-35 Argument Dialog

Use one of the following methods to open an Argument dialog:

• From the Tree view pane, double-click a rule name to open the Rule dialog,
and then double-click the argument name on the Main tab.

• From the Rule source pane (in Graphical View only), right-click and select
New > Rule > argument.

• From the Rule source pane (in Graphical view only), double-click an
argument node.

NOTE For more information about rule structure, see “Understanding Rule
Syntax” on page 13.

Creating and Editing Rules

Appendix A Using the Business Process Editor 283

Figure A-36 Double-Click an Argument Node

The Argument dialog provides the following basic options:

• Name — Specify a name for the argument. You can change the name from
this dialog.

• Value — Specify the value of the selected argument.

• Comments — Specify optional comments.

In addition to the preceding options, the Argument dialog may also display other
fields depending upon the type of element you are viewing/editing.

For example, if you are viewing a method element, an Argument dialog similar to
the one displayed for the Query method dialog opens:

Figure A-37 Argument Popup Dialog (Method)

You can change the argument’s data type by clicking the Change Type button,
which displays the Select Type dialog.

Creating and Editing Rules

284 Identity Manager 8.0 • Deployment Tools

Figure A-38 Select Type Dialog

Valid argument types are listed in the following table.

Table A-3 Valid Argument Types

Data Type Description

String Simple string constant.

Reference Simple reference to a variable.

Rule Simple reference to a rule.

List Static list, such as an XML object list. This type is infrequently used in
workflows (but used occasionally in forms).

Expression Complex expression.

Map Static map, such as an XML object map. Used rarely.

Integer Integer constant. Can be used to make clearer the semantics of a value. Can
be specified as String; the BPE coerces the string into the correct type.

Boolean Boolean constant. Can be used to make clearer the semantics of a value. Can
be specified as String. The BPE coerces the string into the correct type.
Boolean values are specified with the strings true and false.

XML Object Complex object that allows you to specify any of a number of complex objects
with an XML representation. Some examples include EncryptedData, Date,
Message, TimePeriod, and WavesetResult.

Creating and Editing Rules

Appendix A Using the Business Process Editor 285

Element Dialogs
The Element dialog displays the name and value of an argument.

Figure A-39 Element Popup for the address Variable

Use one of the following methods to display an Element dialog from the Rule
source pane (in Graphical view only):

• Double-click an element icon

• Right-click an element icon and select Edit from the action menu.

If you open a dialog by clicking the argument name, you can change the
argument’s data type and style (simple or calculated).

You can define several types of elements (see Table A-4). To change the data type
of the element, click the Change Type button. The Select Type popup opens,
displaying a list of the data types you can assign to the selected rule element.

To create a new element, right-click in the Graphical view and select
New > <element_type> from the menu. The element types listed on this menu
represent categories of XPRESS functions.

Table A-4 Element Types Representing XPRESS Function Categories

Menu Options XPRESS Functions/Additional Actions You Can Invoke...

Values string, integer, list, map, message, null

Logical if, eq, neq, gt, lt, gte, lte, and, or, not, cmp, ncmp, isnull, notnull,
isTrue, isFalse

String concat, substr, upcase, downcase, indexOf, match, length, split, trim,
ltrim, rtrim, ztrim, pad

Lists list, map, get, set, append, appendAll, contains, containsAny,
containsAll, insert, remove, removeAll, filterdup, filternull, length,
indexOf

Variables • Define a variable

• Create a reference

• Assign a value to a variable or an attribute of an object

Creating and Editing Rules

286 Identity Manager 8.0 • Deployment Tools

You can also access the element types most recently created in a BPE session
through the Recent options of the actions menu.

The following figure shows the window that displays when you select
New > Strings > concat.

Figure A-40 concat Dialog

Math add, sub, mult, div, mod

Control switch, case, break, while, dolist, block

Rule • Create new rule

• Create argument

Other

(functions, object
access, diagnostics)

Displays further options:

• Functions includes define function, define argument, and call function

• Object access includes the new, invoke, getobject, get, and set
functions.

• Diagnostic includes options for creating or invoking Javascript, trace,
print, and breakpoint functions.

NOTE For more information about these functions, see Sun Java™ System
Identity Manager Workflows, Forms, and Views.

Table A-4 Element Types Representing XPRESS Function Categories (Continued)

Menu Options XPRESS Functions/Additional Actions You Can Invoke...

Creating and Editing Rules

Appendix A Using the Business Process Editor 287

Object Access Dialogs
Use an Object Access dialog to manipulate objects or call Java methods that
manipulate objects.

To open an Object Access dialog, right-click anywhere in the graphical display and
select New > Other > Object Access > option from the pop-up menu.

Where option can be any of the following options described in Table A-5:

To create an object, right-click to access the action menu, and select New > Other >
Object Access > new.

Figure A-41 new Dialog

Table A-5 Object Access Options

Option: Description

new Creates a new Java object. Arguments are passed to the class constructor

invoke Displays the invoke dialog. Use to invoke a Java method on a Java object or class

getobj Displays the getobj dialog. Use to retrieve an object from the repository

get Retrieves a value from within an object.

The first argument must be a List, GenericObject, or Object, and the second
argument must be a String or Integer.

• If the first argument is a List, the second argument is coerced to an integer and
used as a list index.

• If the first argument is a GenericObject, the second argument is coerced to a
String and then used as a path expression.

• If the first argument is any other object, the second argument is assumed to be
the name of a JavaBean property.

set Assigns a value to a variable or an attribute of an object.

Creating and Editing Rules

288 Identity Manager 8.0 • Deployment Tools

Editing Element Details
From the Argument dialog, you can define values for the variable. Use the Value
field to enter a simple string value as the initial variable value. Alternatively, you
can select a value type (such as Expression or Rule), and then click Edit to enter
values.

Figure A-42 shows the variable window for a ref statement.

Figure A-42 ref Dialog

To identifying argument types (simple or complex), select Simple when you can
enter the argument value in a text field (for example, string, Boolean, or integer). If
you are working with a List, XML Object, or other expressions that requires an
additional popup, select Calculated.

Diagnostics Dialogs
You can use Diagnostics dialogs to debug or examine the following:

• JavaScript

• Trace

• Print

• Breakpoint

Creating and Editing Rules

Appendix A Using the Business Process Editor 289

To access the Diagnostics dialog, select New > Other > Diagnostics > trace from the
actions menu in the right pane. Select an option described in Table A-6 to debug
that item.

Editing a Rule
If you customize a rule, you must save and validate your changes to ensure that the
rule completes correctly and as expected. After saving, import the modified rule for
use in Identity Manager.

This section provides instructions for the following:

• Loading a Rule

• Saving Changes

• Validating Workflow Revisions

Loading a Rule
Use the following steps to load a rule in the BPE:

1. Select File > Open Repository Object from the menu bar.

2. If prompted, enter the Identity Manager Configurator name and password in
the displayed login dialog, and then click Login.

Table A-6 Trace Options

Option Description

JavaScript Displays the Script dialog so you can enter your own JavaScript.

trace Inserts a <trace> XPRESS function into the rule. This function turns XPRESS trace
on or off when this rule is evaluated. Set to true to enable trace or false (or just
null) to disable.

print Displays the Print dialog so you can enter the name of tan argument. This function
is similar to the block function in that it contains any number of expressions and
returns the result of the last expression.

Enter an argument name in the Argument field, and select the type from the menu
located next to the field. Default is String.

breakpoint Displays the Breakpoint popup. Click OK to raise a debugging breakpoint.

Creating and Editing Rules

290 Identity Manager 8.0 • Deployment Tools

The following items display:

❍ Workflow Processes

❍ Workflow Sub-processes

❍ Forms

❍ Rules

❍ Email Templates

❍ Libraries

❍ Generic Objects

❍ Configuration Objects

3. Expand the Rule node to view all existing rules.

4. Select the rule you want to load, and then click OK.

Saving Changes
To save changes to a rule and check it into the repository, select File > Save in
Repository from the menu bar.

NOTE Items displayed may vary for your Identity Manager
implementation.

NOTE If you are loading a rule for the first time, the rule components
displayed in the right pane may not display correctly.
Right-click in the right pane and select Layout to re-display the
diagram.

NOTE You can also use File > Save As File to save the rule as an XML text
file. Save the file in the form Filename.xml.

Creating and Editing Rules

Appendix A Using the Business Process Editor 291

Validating Changes
You can validate changes to rules at different stages of the customization process:

• From the Rule source pane, click the Validate button to validate the rule with
the current set of arguments.

• If you are working with XML display values, when adding or customizing
arguments, click Validate to validate each change to the rule.

• After making changes, select the rule in the tree view, and then select Tools >
Validate to test it.

The BPE displays validation messages that indicate the status of the rule:

• Warning indicator (yellow dot) — Indicates that the process action is valid,
but that the syntax style is not optimal.

• Error indicator (red dot) — Indicates that the process will not run correctly.
You must correct the process action.

Rule Libraries
A rule library serves as a convenient way to organize closely related rules into a
single object in the Identity Manager repository. Using libraries can ease rule
maintenance by reducing the number of objects in the repository and making it
easier for form and workflow designers to identify and call useful rules.

A rule library is defined as an XML Configuration object. The Configuration object
contains a Library object, which in turn contains one or more Rule objects. Code
Example A-1 shows a library containing two different account ID generation rules:

Code Example A-1 Library with Two Account ID Generation Rules

<Configuration name='Account ID Rules'>
<Extension>

<Library>
<Rule name='First Initial Last'>

<expression>
<concat>

<substr>
<ref>firstname</ref>
<i>0</i>
<i>1</i>

</substr>
<ref>lastname</ref>

</concat>
</expression>

Creating and Editing Rules

292 Identity Manager 8.0 • Deployment Tools

You reference rules in a library using an XPRESS <rule> expression. The value of
the name attribute is formed by combining the name of the Configuration object
containing the library, followed by a colon, followed by the name of a rule within
the library.

For example, the following expression calls the rule named First Dot Last
contained in a library named Account ID Rules:

<rule name='Account ID Rules:First Dot Last'/>

Selecting a Library to View or Customize
Perform the following steps to select a rule library to view or edit:

1. From the Business Process Editor, select File > Open Repository Object.

Rule libraries are represented in the BPE with this icon :

2. Select the rule library object in the Tree view, and select Edit.

3. Right-click inside the right edit pane, and then select the XML tab.

</Rule>
<Rule name='First Dot Last'>

<expression>
<concat>

<ref>firstname</ref>
<s>.</s>
<ref>lastname</ref>

</concat>
</expression>

</Rule>
</Library>

</Extension>
</Configuration>

Code Example A-1 Library with Two Account ID Generation Rules (Continued)

Customizing a Workflow Process

Appendix A Using the Business Process Editor 293

Figure A-43 Rule Library (XML View)

You can now edit the rule library XML.

Adding a Rule to an Existing Library Object
Once a rule library has been checked out, you can add a new rule by inserting the
<Rule> element somewhere within the <Library> element. The position of the Rule
within the library is not significant.

Customizing a Workflow Process
This section uses an Email Notification example to illustrate the end-to-end steps
you follow to customize a workflow process. Specifically, you will:

1. Create a custom Identity Manager email template

2. Customize the Identity Manager Create User workflow process to use the new
template and to send an email welcoming the new user to the company

NOTE • Illustrations provided in this example may differ slightly from
those you see when you load a process. Discrepancies can result
in different component positioning or the selective removal of
process actions that are unimportant to the example.

• Though you can perform many tasks from the tree view or
diagram view, this example primarily uses BPE’s tree view.

Customizing a Workflow Process

294 Identity Manager 8.0 • Deployment Tools

Step 1: Create a Custom Email Template
To create the custom email template, open and modify an existing Identity
Manager email template as follows:

1. From the BPE menu bar, select File > Open Repository Object > Email
Templates.

2. When the selection dialog displays (Figure A-44), select the Account Creation
Notification template and then click OK.

Figure A-44 Selecting an Email Template

3. When the selected email template displays in the BPE, right-click the template
name and select Copy from the pop-up menu.

4. Right-click again and select Paste.

A copy of the email template appears in the list view.

5. Double-click the new email template in list view to open the template.

TIP When pasting, be sure the mouse does not cover an item and
that no items are selected (or the paste action will be ignored).

Customizing a Workflow Process

Appendix A Using the Business Process Editor 295

6. Change the template name by typing User Creation Notification in the
Name field.

Figure A-45 Renaming the New Template

7. In the newly created User Creation Notification template, modify the Subject
and Body fields as needed.

Figure A-46 Customizing the User Creation Notification Email Template

You can also add a comma-separated list of Identity Manager accounts or
email addresses to the Cc field.

8. When you are finished, click OK.

9. To save the template and check it into the repository, select File > Save in the
Repository from the menu bar.

Now you are ready to modify the Create User workflow process. Continue to the
next section for instructions.

Customizing a Workflow Process

296 Identity Manager 8.0 • Deployment Tools

Step 2: Customize the Workflow Process
Use the following steps to modify the Create User workflow process to use the new
email template:

1. Load the workflow process from the BPE by selecting File > Open Repository
Object > Workflow Processes.

A dialog appears that contains the Identity Manager objects you can edit.

2. Select the Create User workflow process, and then click OK.

Figure A-47 Loading the Workflow Process

The Create User workflow displays.

Customizing a Workflow Process

Appendix A Using the Business Process Editor 297

3. In tree view, right-click the Create User process and select New > Activity from
the pop-up menu.

Figure A-48 Creating and Naming an Activity

A new activity, named activity1, displays at the bottom of the activities list in
the tree view.

4. Double-click activity1 to open the activity dialog.

5. Type Email User in the Name field to change the activity name.

In the default Create User workflow, the step that notifies account requestors
that an account was created (Notify) transitions directly to end.

To include a new step in the workflow, you must delete this transition and
create new transitions (between Notify and Email User, and from Email User
to end) to send email to the new user before the process ends.

6. Right-click Notify, and then select Edit.

7. In the Activity dialog Transitions area, select end and then click Delete to
delete that transition.

8. In the Transitions area, click New to add a transition.

Customizing a Workflow Process

298 Identity Manager 8.0 • Deployment Tools

9. When the Transition dialog displays, select Email User from the list and then
click Done.

Figure A-49 Creating and Modifying Transitions

10. In the BPE tree view, right-click Email User, and then select New > Transition
to create a transition and open the Transition dialog.

11. Select end, and then click OK.

12. Next, you must create an action for the new Email User activity that defines the
email action and its recipient. In the tree view, right-click Email User, and then
select New > Action to open the Action dialog.

13. Enable the Application button for the Type option.

14. Type a name for the new action in the Name field.

Customizing a Workflow Process

Appendix A Using the Business Process Editor 299

15. Select email from the Application menu.

Figure A-50 Creating an Action

16. New selections display in the Arguments table. Enter the following
information:

❍ template: Enter the new email template name, User Creation
Notification.

❍ toAddress: Enter the $(user.waveset.email) variable for the user.

17. Click New to add an argument to the table. Name the argument accountId and
enter the $(accountId) value for this argument.

Figure A-51 Creating an Action

18. When you are finished, click OK.

Debugging Workflows, Forms, and Rules

300 Identity Manager 8.0 • Deployment Tools

19. Select File > Save in the Repository from the BPE menu bar to save the process
and check it back into the repository.

After saving, you can use Identity Manager to test the new process by creating a
user. For simplicity and speed, do not select approvers or resources for the new
user. Use your own email address (or one that you can access) so that, upon
creation, you can verify receipt of the new welcome message.

Debugging Workflows, Forms, and Rules
The BPE includes a graphical debugger for workflows, rules, and forms. You can
use the BPE debugger to set breakpoints visually, execute a workflow or form to a
breakpoint, then stop process execution and examine the variables.

If you have previously used a code debugger for a procedural programming
language, you will be familiar with the terms used in this section.

For more information about views, workflow, forms see the relevant chapters in
Sun Java™ System Identity Manager Workflows, Forms, and Views.

This section describes how to use the BPE Debugger, and is organized into the
following sections:

• Recommendations for Use

• Using the Debugger Main Window

• Stepping through an Executing Process

• Getting Started

• Debugging Workflows

• Debugging Forms

Debugging Workflows, Forms, and Rules

Appendix A Using the Business Process Editor 301

Recommendations for Use
Use the BPE debugger under the following conditions only:

• Use in a development or test environment. Do not use the debugger in a
production environment. Because setting a breakpoint is a global setting,
incoming request threads are suspended when that breakpoint is reached.

• Assign user the Run Debugger right. (This right is granted as part of the
Waveset Administrator capability.) The debugger can suspend threads
(thereby potentially locking other users out of the system) and display
variables, which possibly contain sensitive data, of other users’ sessions. Given
the powerful repercussions of misusing this right, exercise caution when
assigning it.

• Assign user a private copy of the application server. If two users are
developing on the same application server and one user connects a debugger
to it, the other user will hit their breakpoints during usage, and will be
locked out.

Clusters are not supported for use with the BPE debugger.

Running the Debugger Outside a Test Environment
If you find a problem in production that requires debugging, reproduce and debug
it in a test environment. Setting breakpoint in the debugger can quickly bring down
the application server in a production environment, where a large volume of traffic
occurs. In addition depending on where breakpoints are set, users can be blocked
from using the system.

If you cannot debug in a separate test environment, follow this procedure:

1. Divert all live traffic to a subset of your cluster by taking one of the nodes in
your cluster offline. (For the purpose of this task, call this node server-a.)

2. Use the BPE to edit the System Configuration object by setting the
SystemConfiguration serverSettings.server-a.debugger.enabled
property to true.

See “Step Two: Edit the System Configuration Object” on page 310 for more
information about accessing the System Configuration object with the BPE.

3. Restart server-a so that the change to the System Configuration
property setting can take effect.

4. Launch the debugger by selecting Tools > Debugger.

Debugging Workflows, Forms, and Rules

302 Identity Manager 8.0 • Deployment Tools

5. Create a new workspace, where the debugger connection uses the
following URL:

server-a:<port>

When you have finished debugging

6. Set serverSettings.server-a.debugger.enabled to false and restart server-a
to prevent the debugger from connecting to your live production environment.

7. Reintegrate server-a into your on-line cluster.

Disabling the Debugger
You must disable the serverSettings.server-a.debugger.enabled property in
production to prevent someone from accidently connecting a debugger to the
application server.

To disable the debugger, set the System Configuration object property
serverSettings.<server>.debugger. to enabled=false.

Using the Debugger Main Window
The main debugger window displays the XML of the selected object and provides
information about its execution. From this window, you can

• Start and stop the debugging process

• Navigate through the process execution

• Set distinct stopping points in process execution, or breakpoints. For more
information about breakpoints, see Setting Breakpoints.

Debugging Workflows, Forms, and Rules

Appendix A Using the Business Process Editor 303

Figure A-52 BPE Debugger: Main Window

The main window contains the following areas, which are described below:

• Sources Area

• Execution Stack

• Variables Area

• Variables Not Available

• Last Result

NOTE The BPE debugger provides numerous keyboard shortcuts for
performing tasks. See “Using Keyboard Shortcuts” on page 260 for a
list of these shortcuts.

Debugging Workflows, Forms, and Rules

304 Identity Manager 8.0 • Deployment Tools

• Last Result Not Available

• Setting Breakpoints

Sources Area
The Sources area displays the unfiltered XML of the selected object.

The left margin of the XML panel displays a series of boxes that indicate points in
the code where breakpoints can be set. Click the box immediately adjacent to the
<WFProcess...> tag to set a breakpoint at the start of the workflow.

Figure A-53 BPE Debugger Main Window Source Panel

Execution Stack
The Execution Stack identifies which function in the selected object is under
execution. This area lists the executing function’s name and the name of the
function that called it.

If additional functions appear in the call chain, these functions are listed in order.
This list is also called a stack trace, and displays the structure of the execution stack
at this point in the program's life.

Figure A-54 BPE Debugger Main Window Execution Stack Panel

Debugging Workflows, Forms, and Rules

Appendix A Using the Business Process Editor 305

Variables Area
The Variables area lists all variables that are currently in scope at the current point
of execution. Click on the variable object name to expand it and display the names
of each variable.

Figure A-55 BPE Main Window Variables Panel

Variables Not Available
The Variables Not Available area displays if debugging is inactive or if the selected
stack frame is not the current stack frame.

Last Result
If the current element is an XPRESS end tag, the Last Result area contains the result
of that evaluation. Also applies to other tags for which last value makes sense. For
example, as <Argument>'s to workflow subprocesses are evaluated, this area has the
value of that argument. This area is not available if debugging is not currently in
progress.

Figure A-56 BPE Debugger Main Window Last result Panel

Last Result Not Available
The Last Result Not Available area displays if debugging is inactive.

Debugging Workflows, Forms, and Rules

306 Identity Manager 8.0 • Deployment Tools

Setting Breakpoints
A breakpoint is a command that the debugger uses to halt the execution of the object
before executing a specific line of code. In the Identity Manager debugger, code
breakpoints apply regardless of where the form or workflow is launched from.

While most debuggers allow you to set breakpoints only on source locations, the
BPE debugger permits you to also set breakpoints at conceptual execution points,
such as Refresh view. In this case, the debugger will suspend when a Refresh view
operation occurs. You can then step-into the refresh view and see the underlying
form processing in progress.

Setting a breakpoint is a global setting. That is, it causes the incoming request
threads to suspend when the designated breakpoint is reached. This happens
regardless of which user is making the request.

Setting a Breakpoint
To view a summary of all source breakpoints, click the Sources tab. The
Breakpoints pane lists all source breakpoints. Navigate to a particular breakpoint
by clicking the breakpoint in.

Types of Breakpoints
The Breakpoints area provides the following types of breakpoint settings:

• Global breakpoints (Global tab)

• Breakpoints associated with commonly used views (View cycle tab)

• Breakpoints associated with stages of form processing (Form cycle tab)

Access these breakpoint types by selecting the designated tab.

• Select the Global tab to set code breakpoints by:

❍ All anonymous breakpoints: Sets a breakpoint on an anonymous source.

❍ All named breakpoints: Turns step-over and step-out into step-into
processing.

Breakpoints supersede step-over and step-out functionality. Consequently,
if you enable this setting, you have effectively turned step-over and
step-out into step-into processing. In typical use, set All named
breakpoints only if you do not know which form or workflow a given page
uses. If you turn on this setting, turn if off immediately after the debug
process identifies the form or workflow. Otherwise, you will be forced to
step through every point of execution.

❍ Enabling both settings, results in the debugger checking all breakpoints.

Debugging Workflows, Forms, and Rules

Appendix A Using the Business Process Editor 307

(Optional) Select a global setting, and click OK.

Figure A-57 BPE Debugger Breakpoints Panel: Global Tab

• Select the View cycle tab to set code breakpoints based on the view processing
that occurs during process execution. The most commonly invoked view
operations are listed in this dialog. Each of the listed view operations are
available on each view.

Figure A-58 BPE Debugger Breakpoints Panel: View Cycle Tab

Debugging Workflows, Forms, and Rules

308 Identity Manager 8.0 • Deployment Tools

• Select the Form cycle tab to set code breakpoints based on a designated stage of
form processing. For information about the stages of form processing, see Sun
Java™ System Identity Manager Workflows, Forms, and Views.

Figure A-59 BPE Debugger Breakpoints Panel: Form Cycle Tab

Stepping through an Executing Process
Stepping through describes the sequential, deliberate analysis of an executing
process’ functions.

Terminology
Step into, step over, and step out are terms borrowed from debuggers of procedural
programming languages, in which the execution order is implied by the structure
of the language. However, in Identity Manager forms and workflow, the order in
which elements occur in the code do not reflect the order in which they are
executed.

Consequently, these terms have slightly different meanings when used in the
Business Process Editor:

• Step-into: Describes moving to the next point of execution on the current
thread. Step-into must be the smallest amount by which you can proceed
through a process in the debugger XML display.

• Step over: Describes moving from the current begin tag to the current end tag
without stopping at an interim element. Stepping over permits you skip almost
everything between a start and end tag. However, if the next point of
execution does not occur between the start and end tags of the current
element, debugging halts there instead.

Debugging Workflows, Forms, and Rules

Appendix A Using the Business Process Editor 309

For example, in a workflow containing multiple active virtual threads, you can
step to the start tag of an action, but the next element to be executed is a
different action. In this case, the process stops executing at a different point.
Thus, you avoid accidently skipping over a potentially significant element.

• Step out: Describes moving incrementally until the execution stack is one less
than the current. Similar to step-over. If the next point of execution has a
different parent execution stack, it will stop there instead.

General Hints
Following is a list of hints to help you successfully step through an executing
process:

• Set up stepping in the debugger to be as granular as feasible in the context of
your debugging task. This practice helps you avoid missing anything
potentially critical to debugging.

• Stepping does not change the execution order of your program. The program’s
execution order is the same as it would be if the debugger were not attached.
You can skip seeing portions of the execution (but they still execute regardless).

• Click step-into when you want the smallest step possible through the code.

• Click step-over when you feel that no probable problem exists with the content
between the start and end tag. The debugger then skips this element although
the code in between these tags still executes.

Table A-7 provides a snapshot of how the BPE debugger would proceed through
the following code sample:

<A>

<D/>
(A, B, and D are some xml elements)

Table A-7 Example Debugging Process

Execution Order Result

<A>, , , <D/> If you are clicking step-into, the debugger highlights the lines in that execution order.

If you are clicking step-over, the debugger highlights <A>, (skipping B), <D/>

<A>, <D/>, , If you are clicking step-over, you will see code lines in the order <A>, <D/>, , .
(Step-over is equivalent to step-into for this case.)

Debugging Workflows, Forms, and Rules

310 Identity Manager 8.0 • Deployment Tools

Getting Started
The BPE includes a tutorial on using the debugger with workflow, forms, and
rules. The debugger ships with sample/debugger-tutorial.xml, which contains
some sample workflows, rules, and forms. These samples are used throughout this
chapter for tutorial purposes.

Step One: Import Tutorial File
Use one of the following methods to import the tutorial file:

• From Identity Manager, select Configure > Import Exchange File. Then either
enter sample/debugger-tutorial.xml into the File to Upload field or click
Browse to navigate to this file.

• From the Console, enter import -v sample/debugger-tutorial.xml.

After importing the file successfully, continue to the next section.

Step Two: Edit the System Configuration Object
To edit the system configuration object, use the following steps:

1. From the BPE, open the System Configuration object for editing by selecting
File > Open Repository Object > Generic Objects > System Configuration.

2. In the tree view, expand serverSettings and the default attribute, and then
select debugger.

3. In the Attributes panel, click the Value column to enable debugging.

4. Select File > Save In Repository to save your change.

5. Restart your application server.

Step Three: Launch the Debugger
After restarting the application server, you can select Tools > Debugger to launch
the BPE debugger.

CAUTION Do not enable this property in production.

Debugging Workflows, Forms, and Rules

Appendix A Using the Business Process Editor 311

Example: Debugging the Tabbed User Form and Refresh View
This section provides a sample debugging procedure to illustrate how debugger
breakpoints apply regardless of from where you launched a form or workflow.

The sample procedure includes the following steps:

1. Setting a Breakpoint

2. Creating New User

3. Viewing Before Refresh View Results

4. Viewing After Refresh View Results

5. Stepping Through the Form

6. Completing the Form Processing

Setting a Breakpoint
To set a breakpoint:

1. Click the View cycle tab in the Breakpoints panel.

2. Check Refresh View. The debugger now executes a breakpoint whenever a
view is refreshed during execution.

Creating New User
To create a new user:

1. In Identity Manager, select Accounts > New... User.

2. Enter a first name (for example, jean) and a last name (for example, faux).

3. Click the Identity tab to trigger a refresh view operation.

Debugging Workflows, Forms, and Rules

312 Identity Manager 8.0 • Deployment Tools

Viewing Before Refresh View Results
Return to the debugger frame, which is now suspended on the Refresh view
breakpoint that you set. The Execution Stack lists Before Refresh View, which
indicates the state of the view just before the refresh operation occurred. The
Variables panel displays the view just before it has been refreshed.

Figure A-60 Example 1: Debugging Suspended on Before Refresh View Breakpoint

Expand the global subtree and locate the firstname and lastname values that you
typed in the form. Note that the fullname is currently null.

Viewing After Refresh View Results
To view the After Refresh view results,

1. Click Continue.

The Execution Stack lists After Refresh View, which indicates that it now
displays the state of the view just after refresh has occurred. Note that the
fullname value is now jean faux.

Debugging Workflows, Forms, and Rules

Appendix A Using the Business Process Editor 313

Figure A-61 Example 1: Debugging Suspended on After Refresh View Breakpoint

2. Click Continue again.

The form has resumed execution. Return to the browser window. Change First
Name to jean2 and click the Identity tab again to trigger another refresh.

3. Return to the debugger frame.

Form processing is suspended at Before Refresh View.

Stepping Through the Form
To Step Through the form,

1. Click Step-Into to reveal the fullname expansion in execution.

The debugger displays Before Expansion, which indicates that the form
variables have not been expanded.

Figure A-62 Example 1: Debugging Suspended Before First Expansion Pass

Debugging Workflows, Forms, and Rules

314 Identity Manager 8.0 • Deployment Tools

2. Click Step-Into again.

The debugger displays Before Expansion, iteration=0, indicating that you
will see the form variables before the first Expansion pass.

3. Click Step-Into again.

The debugger is now on an anonymous source. The anonymous source is a
wrapper form created on the fly and is related to the MissingFields form.

Figure A-63 Example 1: Stepping-into the Start of Tabbed User Form

4. Click Step-Into two more times until you reach the beginning of Tabbed
User Form.

5. Continue to click Step-Into until you reach <Field name='global.fullName'>
(Approximately 20 to 30 step-into operations.)

6. Click Step-into 15 times or until you have reached the </Field> element.

While stepping, the Last result at the </concat> tag is jean2 faux.

The form_outputs contains global.fullname: jean2 faux.

Debugging Workflows, Forms, and Rules

Appendix A Using the Business Process Editor 315

Figure A-64 Example 1: Completed Debugging of Tabbed User Form

Complete Form Processing
To complete form processing:

1. Click Step-out seven times.

At this point, your stack should indicate:

Refresh View (User)
After Expansion

The Variables panel reflects the state of the form variables after all expansions
have run.

2. Click Step-out again.

You have now reached After refresh view. The variables now displayed are the
view variables.

3. Expand the global subtree.

Note that fullname is now jean2 faux.

4. Click Continue.

Debugging Workflows, Forms, and Rules

316 Identity Manager 8.0 • Deployment Tools

Debugging Workflows
This section provides information about debugging your workflows.

The Workflow Execution Model
Workflows are executed by a single Java thread and are represented in the
Execution Stack panel by a single Java thread. However, within a workflow, each
activity becomes its own virtual thread.

During workflow execution, the workflow engine cycles through a queue of virtual
threads. Each virtual thread is in one of the states described in the following table.

After all transitions have completed, the workflow process subsequently begins
executing.

Example 1: Debugging a Workflow and a Rule
The example provided in this section shows how to use the BPE debugger to debug
a sample workflow and rule using a workflow provided in
debugger-tutorial-workflow1 (supplied with Identity Manager). This example
exemplifies how to step-into and step-through workflow debugging and rule
execution.

Table A-8 Virtual Thread States

Workflow Activity State Definition

ready Identifies an activity that has just been transitioned to. (This state is very temporary, as
actions typically start executing immediately after being designated ready.)

executing Identifies an activity that contains one or more actions that are currently being executed or
have yet to run.

This is a logical state, which does not mean that the Java thread is currently executing it.
The action currently being executed is the action that is highlighted in the debugger.

pending outbound Identifies an activity after all actions within an activity have been run, it goes to the
pending outbound state. In this state, it awaits an outbound transition to be taken. In the
case of an or-split, it is in this state until one transition is taken. In the case of an and-split,
it will be in this state until all transitions whose conditions evaluate to true are taken.

inactive Identifies an activity in which all transitions have been taken.

pending inbound Identifies a virtual thread whose activity is an and-join. That is, one transition to this virtual
thread has occurred, but the process is still waiting for other transitions.

Debugging Workflows, Forms, and Rules

Appendix A Using the Business Process Editor 317

For this example, you perform the following steps:

1. Launch the process.

2. Start execution.

3. Step through the getFirstName thread.

4. Step into and over the getlastname thread.

5. Step into computefullname processing.

6. Step through rule processing.

7. Conclude workflow processing.

Step One: Launch the Process
To launch the workflow debugging process:

1. From the debugger main window, select File > Open Repository Object.

2. Click debugger-tutorial-workflow1.

Note the small boxes in the left margin of the XML display. These boxes
identify potential breakpoints that you can insert into the code.

Figure A-65 Setting the First Breakpoint

3. Click the box adjacent to the <WFProcess> tag to set a breakpoint at the start of
the workflow.

4. Log in to Identity Manager and select Tasks > Run Tasks.

Debugging Workflows, Forms, and Rules

318 Identity Manager 8.0 • Deployment Tools

5. Click debugger-tutorial-workflow1.

The debugger frame indicates that debugging has halted at your breakpoint.

Figure A-66 Debugging Halted at Breakpoint

Note the following:

❍ Execution Stack Panel — At the top of the Execution Stack panel, you see
Thread [thread name] (suspended), which indicates that this workflow is
currently being run by the thread of the given name, and that it is
suspended at the breakpoint you set.

Below the Thread is your execution stack. This stack is an upside-down
stack trace, with the calling function on top and the called function at the
bottom. (It is upside down compared with how most debuggers represent
execution stacks.)

Debugging Workflows, Forms, and Rules

Appendix A Using the Business Process Editor 319

The top most frame in the stack says Checkin View (ProcessViewer), which
indicates that the workflow is being called by the checkinView method of
the ProcessViewer. Because you do not have access to the Java source code
for this stack frame, clicking on it will not display new information.
However, the stack frame does provide context about where the workflow
is being launched from.

The next frame in the stack is highlighted because it corresponds to the
current point of execution, which is the beginning of the workflow process
(<WFProcess>).

❍ Variables panel — Lists all variables that are currently in scope at the
current point of execution. You will see

• Interactive — This variable is passed in by the view as an input to the
process.

• WF_CASE_OWNER, WF_CASE_RESULT, WF_CONTEXT — These
variables are implicit workflow variables.

• firstName, fullname, and lastName — These variables are declared in
the workflow using <Variable> declarations.

6. Select Debug > Select Current Line (F5) to re-highlight your current line of
execution.

Step Two: Start Execution
To start execution:

1. Click Step-Into.

At this point, the debugger moves to the start activity. Notice that the
execution stack contains a Virtual Thread [start, step=0] (executing), which
indicates there is a Virtual Thread for the start activity that is currently in the
executing state.

Debugging Workflows, Forms, and Rules

320 Identity Manager 8.0 • Deployment Tools

Figure A-67 Stepping-into the Execution of the First Virtual Thread

2. Click two levels up on the debugger-tutorial-workflow-1 frame to highlight
the WFProcess, showing you the location of the caller.

3. Press F5 to return to the current line.

4. Click Step-Into.

At this point, the debugger moves to the </Activity> and the start virtual
thread is now pending outbound.

Debugging Workflows, Forms, and Rules

Appendix A Using the Business Process Editor 321

Step Three: Step Through the getFirstName Thread
Use the following procedure to step-through the getFirstName thread:

1. Click Step-Into.

At this point, the debugger has highlighted the transition to getFirstName.

2. Click Step-Into.

A new Virtual Thread for getFirstName has been created as a result of this
transition. This Virtual Thread is currently in the ready state. The start virtual
thread is still pending outbound (because this is an and-split operation, it must
take all possible transitions).

Figure A-68 Example 2: Stepping-into the Execution of getFirstName

3. Click Step-Into again.

The debugger jumps to the getFirstName activity. The state changes from
ready to executing.

Debugging Workflows, Forms, and Rules

322 Identity Manager 8.0 • Deployment Tools

4. Click Step-Into.

The debugger moves to the get action.

5. Click Step-Into three more times or until the debugger reaches the </set> tag.

The variables panel indicates that firstName has been set to myfirstname as a
result of the </set>.

Step Four: Step Into and Over the getLastName Thread
Use the following procedure to step-into and over the getLastName thread:

1. Click Step-Into three more times or until the debugger reaches the </Activity>
for getFirstName.

The getFirstName virtual thread is now pending outbound.

2. Click Step-Into.

The debugger returns to the start virtual thread, and is about to process the
transition to getLastName.

3. Click Step-Into.

The start has gone to inactive because all transitions have been processed.
getLastName is now in the ready state because of this transition.

4. Click Step-Into.

At this point, the start virtual thread will go away because it is inactive.
Debugging moves to the getLastName virtual thread, which is now in the
executing state.

5. Click Step-Over to skip to the end of getLastName.

The lastName variable in the variables panel has been set to mylastname. Both
the getFirstName and getLastName virtual threads are pending outbound.

6. Click Step-Into.

The debugger is on the transition from getFirstName to computeFullName.

7. Click Step-Into.

getFirstName goes to inactive and a new virtual thread, computeFullName is
created. This thread is in the pending inbound state because it is still waiting
on the inbound transition from getLastName. (The wait occurs because it is an
and-join operation. If it were an or-join operation, process status would
immediately go to ready.)

8. Click Step-Into.

Debugging Workflows, Forms, and Rules

Appendix A Using the Business Process Editor 323

The debugger is now on the transition from getLastName to computeFullName.

Figure A-69 Debugger Transitioning from getFirstName to computeFullName

Step Five: Step Into computeFullName Processing
Use the following procedure to step-into computeFullName processing:

1. Click Step-Into.

The computeFullName virtual thread goes from pending inbound to ready
because of this transition.

2. Click Step-Into.

computeFullName is now executing.

3. Click Step-Into five more times.

The debugger is now on the </argument> tag for firstName. The last result
panel shows <String>myfirstname</String>. This value is passed for the
firstName argument.

Figure A-70 Stepping Into computeFullName Processing

Debugging Workflows, Forms, and Rules

324 Identity Manager 8.0 • Deployment Tools

Step Six: Step Through Rule Processing
To Step Through rule processing:

1. Click Step-Into three more times.

The debugger steps into the Compute-Full-Name rule. In the execution stack,
click the frame to move up one frame. The <rule> call in
debugger-tutorial-workflow-1 is highlighted to indicate from where the rule is
being called. Press F5 to re-select your current line.

2. Click Step-Into three more times or until the debugger reaches the </ref> tag.

The last result panel shows <String>myfirstname</String>, which is the
result of the <ref>firstName</ref>.

3. Click Step-Into three more times or until the debugger reaches the
</concat> tag.

The Last result panel displays the result of the <concat> expression.

<String>myfirstname mylastname</String>

4. Click Step-Into twice more and Debugging returns to the </rule> tag.

Step Seven: Concluding Workflow Processing
To conclude workflow processing:

5. Click Step-Into until you reach the </set> element.

The fullname variable has been updated to myfirstname mylastname.

6. Click Step-Into twice more.

computeFullName is now pending outbound.

7. Click Step-Into four more times. end goes to ready, then executing.

The debugger reaches the </WFProcess> tag, indicating that the process has
now completed.

Debugging Workflows, Forms, and Rules

Appendix A Using the Business Process Editor 325

8. Click Step-Into.

The Execution Stack displays After Checkin view, meaning that the
checkin-view operation that launched this workflow has completed.

Figure A-71 Example 2: Completion of Check-in View Operation

9. Click Continue to resume execution.

If the browser request has not timed out, the Task Results diagram with the
process diagram is displayed.

Example 2: Debugging a Workflow Containing a Manual Action
and a Form
This section provides an example that shows how to debug a sample workflow
containing a manual action and a form.

Use workflow2 from the debugger tutorial files and perform the following steps:

1. Select File > Open Repository Object.

2. Expand Workflow Processes, and select debugger-tutorial-workflow2.

3. Set a breakpoint on the <WFProcess...> tag.

4. Log in to Identity Manager, and navigate to Tasks > Run Tasks.

5. Click debugger-tutorial-workflow2.

The debugger has stopped at the breakpoint you set.

Debugging Workflows, Forms, and Rules

326 Identity Manager 8.0 • Deployment Tools

6. Click Step-Into six times or until the debugger marks <ManualAction...
name='getNameAction'>).

Figure A-72 Stepping Into a Manual Action

7. Click Step-Into.

8. When a dialog displays to explain that form processing occurs in a different
thread, set a breakpoint on the <Form> tag to see the processing occur.

Figure A-73 Stepping Into Manual Action Dialog

Debugging Workflows, Forms, and Rules

Appendix A Using the Business Process Editor 327

9. Click Yes or Always.

After form processing has completed, the workflow continues execution in a
separate thread. Consequently, you must set a breakpoint on the
</ManualAction> to observe workflow processing after the form has
completed processing.

Figure A-74 Breakpoint Marking Start of Form

Note that the debugger has set breakpoints on the <Form> and
</ManualAction> tags as indicated. In addition, the execution stack indicates
After checkin view... and you have stepped out of the workflow process
because workflow processing has proceeded as far as possible (until the
manual action completes).

10. Click Continue, and the debugger stops processing at the breakpoint set on the
<Form> element.

Debugging Workflows, Forms, and Rules

328 Identity Manager 8.0 • Deployment Tools

Figure A-75 Debugger Displaying Manual Action Processing

Note the following In the Execution Stack area:

❍ Checkout View (WorkItem:...) — Indicates that processing is occurring in
the context of a checkout view for the given work item.

❍ ManualAction forms — Operate against the work item view and
manipulate workflow variables through the variables object. Expand the
variables object to see the non-null workflow variables.

❍ Derivation — Indicates that form execution is on the Derivation pass.

11. Because this form contains no <Derivation> expressions, proceed to the next
phase or processing by clicking Continue. The HTML Generation (root
component) pass of form processing begins.

Debugging Workflows, Forms, and Rules

Appendix A Using the Business Process Editor 329

HTML Generation Phase (Root Component)
To generate HTML for the root component:

1. Click Step-Into twice.

The debugger has just processed the title <Property> element. The Last result
panel contains the value of this property.

2. Click Step-Into three more times.

The debugger skips the fields in the form and goes directly to the </Form>
element because this pass focuses only building the root component of the
page.

3. Click Continue.

The HTML Generation (subcomponents) pass of form processing begins.

HTML Generation (Subcomponents)
To generate HTML for the subcomponents:

1. Click Step-Into 13 times or until the debugger reaches the </Form> tag.

The debugger iterates over each of these fields and evaluates their display
properties.

2. Click Continue.

The debugger displays No suspended threads because execution has resumed.
Control has now returned to your browser window.

3. Return to your browser window, and enter your first and last name as
prompted, and click Save.

Return to your debugger frame. The debugger is now suspended on your
breakpoint.

4. Expand the Variables subtree.

The firstName and lastName are the values that you just entered. The
debugger is currently in the Confirmation phase of form processing.

Debugging Workflows, Forms, and Rules

330 Identity Manager 8.0 • Deployment Tools

Figure A-76 Form Processing Confirmation Phase

Confirmation
Because this form has no confirmation fields, no processing occurs.
Click Continue to begin the Validation phase of form processing.

Validation and Expansion
Because this form contains no Validation expressions, no obvious processing
occurs.

1. Click Continue to skip the Validation phase.

You are now on the Expansion phase of form processing.

2. Click Step-Into six times.

The debugger is now on the <rule> tag of the <Expansion> of the
variables.fullName field.

Debugging Workflows, Forms, and Rules

Appendix A Using the Business Process Editor 331

Figure A-77 Stepping Into Rule Processing

3. Click Step-Into five times, and the debugger has now stepped into the <rule>
element.

4. Click Step-Into seven times or until the debugger reaches the </Rule> element.

The Last result contains the full name.

5. Click Step-Into again and processing resumes in the form.

6. Click Step-Into again.

The top-level variables.fullName has the value of the Expansion expression
that just ran. This is top-level entity rather that a child of the variables data
structure because during form processing, form outputs are kept in their own
temporary form_outputs data structure, with path expressions flattened.

After form processing, form outputs are assimilated back into the view. In the
implicit variables form_inputs and form_outputs, form_inputs shows the
unmodified workitem view, and form_outputs shows the output fields that are
assimilated back into the view after form processing completes.

Debugging Workflows, Forms, and Rules

332 Identity Manager 8.0 • Deployment Tools

Figure A-78 Debugger Displaying Completed Execution of variable.fullName

In general, form_inputs identifies the view, and form_outputs contains data to
be assimilated back into the view. However, not all forms are necessarily tied
to a view (for example, Active Sync forms). The form engine is a general data
mapping engine, mapping from form inputs to form outputs. The view
handler is responsible for passing the view into the form engine and
assimilating the outputs back into the view.

7. Click Continue.

The debugger reaches the </ManualAction> breakpoint, which was set before
when the debugger stepped into the Manual Action. The variables firstName
and lastName are the values that you entered. fullName is the result of the
Expansion expression that was just run.

Figure A-79 Debugger Displaying the Result of Expansion Processing

Debugging Workflows, Forms, and Rules

Appendix A Using the Business Process Editor 333

8. Click Step-Into five times until <ManualAction...
name='displayNameAction'>.

9. Click Step-Into again. (Click Yes or Always, if prompted.)

10. Click Continue.

The debugger is now on the Derivation pass for displayNameForm.

Derivation and HTML Generation (Root Component)
To complete the derivation and HTML generate phase

1. Click Continue to begin the HTML Generation (root component) processing for
displayNameForm.

2. Click Step-Into eight times or until the debugger reaches the </Property>
element for subTitle.

3. Click Continue twice.

The debugger displays the following message:

No suspended threads because execution has resumed. Control has now
returned to the browser window.

4. Return to your browser window.

The information displayed is the same you entered.

5. Click Save and return to your debugger frame.

The debugger is now on the Confirmation pass, processing the
displayNameForm.

Validation and Expansion
To begin validation and expansion,

1. Click Continue to begin the Validation pass.

2. Click Continue to begin the Expansion pass.

3. Click Continue again.

The debugger is now on the </ManualAction> tag because the manual action is
complete. At this point, workflow processing has resumed.

4. Click Step-Into five times or until the debugger reaches the </WFProcess> tag,
indicating that the workflow has completed execution.

Debugging Workflows, Forms, and Rules

334 Identity Manager 8.0 • Deployment Tools

5. Click Continue.

The debugger displays the following message:

No suspended threads because resumed execution has resumed. Control has
now returned to your browser window.

6. Return to your browser window to observe the workflow process diagram.

Debugging Forms
Forms are processed in a series of passes. Depending on which pass is in progress,
certain elements are processed and others are ignored. The execution stack in the
debugger main window indicates the current phase of form processing. The
execution stack frame preceding the outermost form has the pass name.

Derivation
During Derivation phase of form execution, the form engine iterates over each field
and it processes each <Disable> expression.

The form engine also processes the <Derivation> expression, for fields whose
<Disable> expressions return false.

Expansion
The debugger iterates over each field and processes each <Disable> expression.
For those fields whose <Disable> expressions return false, it processes the
<Expansion> expression.

The Expansion processing phase continues to run until either

• No more changes occur.

• maxIterations has been exceeded. maxIterations is a parameter that is
passed into the form engine form Expansion element processing.

By default, maxIterations is set to one. Consequently, the debugger makes only
one pass, which is why the Execution stack panel displays Expansion,
iteration=0 when expansions are run.

Validation
The debugger iterates over each field, processing each <Disable> expression.
For those fields whose <Disable> expressions return false, the form engine also
processes the following:

Debugging Workflows, Forms, and Rules

Appendix A Using the Business Process Editor 335

• If the field has a <Display> expression with a required property, it evaluates
that property expression

• If the field has a <Validation> expression, it evaluates that validation
expression

Confirmation
The debugger iterates over each field, processing each <Disable> expression. For
those fields whose <Disable> expressions return false and that also have a
confirm attribute, the debugger confirms that the field referenced by confirm
matches this field. If the fields do not match, it adds an error to display.errors in
the Variables panel.

Assimilation
The debugger iterates over each field and processes each <Disable> expression.
For those fields whose <Disable> expressions return false, the debugger
processes the <Property> objects of the field's <Display> element.

Note that this phase is typically skipped. It is relevant only for certain forms (such
as the login form) that do not contain display.mementos. This is necessary for these
forms to reconstruct the HTML components during post data assimilation.

HTML Generation (Root Component)
The debugger iterates over only the top level form and the form's <FieldDisplay>
element. The goal of this pass is to build the top-level HTML component. HTML
Generation (subcomponents) pass follows immediately.

HTML Generation (Subcomponents)
The debugger iterates over each field. It also processes each <Disable> expression.
For those fields whose <Disable> expressions return false, the debugger
processes the <Property> elements of the field's <Display> element.

Custom View Processing
Certain views require additional passes over the form. During these passes, the
debugger iterates over each field and processes each <Disable> expression.

Debugging Workflows, Forms, and Rules

336 Identity Manager 8.0 • Deployment Tools

Working with Anonymous Sources
When stepping through forms, the debugger can identify an anonymous source.
An anonymous source is a form (or portion of a form) that is generated on the fly. As
a result, an anonymous source does not correspond to a persistent form that
resides in the Identity Manager repository. (Examples of anonymous sources
include the login forms and the MissingFields form.)

You cannot set individual breakpoints on an anonymous source because they do
not reside in the Identity Manager repository and thus lack a unique identifier.

However, you can step through an anonymous source.

To set a breakpoint on all anonymous sources, select the Global tab in the
Breakpoints panel. The debugger subsequently breaks any time it encounters a line
from an anonymous source. For example, to debug the login form, select this
option, and go to the login page.

337

Index

SYMBOLS
<AccountAttribute> 112
<AccountAttributesTypes> 139
<addRequest> 230
<argument> 10, 16
<AttributeDefinitionRef> 139
<AuthnProperty> 125
<Comment> 17
<defvar> 14, 49, 50
<Derivation> expressions 203
<Disable> 6
<Expansion> expressions 203
<LoginConfig> 125
<LoginConfigEntry> 113, 125, 126, 127, 150
<ObjectAttributes> 161
<ObjectClasses> 156
<ObjectFeatures> 160
<ObjectTypes> 158
<putmap> 17
<ref> 21
<ResourceAttribute> 112, 114
<Rule> 5, 13
<rule> 5, 13, 20, 21
<RuleArgument> 16, 21
<script> 19
<setlist> 17
<setvar> 17, 18, 24
<SupportedApplications> 125, 126

<Template> 113
@todo 138

A
AccessEnforcerLibrary and example rules 32
accessing

Identity Manager Web Services 191
accessing Identity Manager Web Services 191
account attributes

defining 112, 118
description 118
mapping resource attributes 138, 139
standard Identity Manager 118, 119
using Correlation rule 108
using process rule 109
using Resolve Process rule 109

account DN 121
account name syntax 121
accountID 108, 118, 125
accountId 48, 113, 119, 120, 121, 122, 212, 237
accounts

disabling 149
enabling 145, 149

accounts attribute 212
Actions

workflow 24
Active Sync

IAPIProcess 109
IAPIUser 109

Section A

338 Identity Manager 8.0 • Deployment Tools

interface 105
overview 111
resource attributes 117
rules 34

Active Sync-enabled adapters 120
event-driven 131
identifying Identity Manager user 107
initializing 152
methods, writing 151
overview 103
polling 131, 152
storing and retrieving attributes 153
updating the Identity Manager repository 154

ActiveSyncUtil class 152
adapters

Active Sync-enabled. See Active Sync-enabled
adapters

build environment 134
creating custom 101, 136
debugging 165
defining features 144
defining resource forms 162
experience requirements 102
important notes 102
initializing 152
installing custom 164
maintaining custom 188
methods. See methods, adapter
overview 103
recommended reading 103
registering 106
sample files for creating 129, 132
scheduling 152
setting options and attributes 139
SPML 2.0 sample 242
standard 103, 104
testing custom 165
writing methods 141

Add requests 200
AddRequest examples 229
administrative capabilities 93
ADRules library and example rules 35
AIXResourceAdapter.java file 133
AlphaNumeric Rules Library and example rules 36

APIs
Identity Manager Session 211, 216
registering adapters 106
requests 28

APIs, Identity Manager 188
application servers

determining URLs 189
approval requests 9
arguments

declarations 25
in rules 16
locked 27
referencing 25
resolution 21

Async capabilities 233
asynchronous SPML 1.0 requests 194, 201
asynchronous SPML requests 205
attestation requests 81, 82
attributes

account. See account attributes
custom 139
extended schema 130
Identity Manager 110
LocalScope 24
managing 161
mapping syntax 139
process 214
resource. See resource attributes
schema 201
user 110

Auditor rules 66, 79
authenticate() method 151
authentication

and SPML 1.0 196
pass-through. See pass-through authentication

authorizing requests
SPML 1.0 195

Section B

Index 339

B
Batch capabilities 234
Best practices 12
browsers

OpenSPML 199, 208
starting the SPML 1.0 208

build environment for adapters 134
Bulk capabilities 234
Business Process Editor (BPE), using 243–336

C
calculating allowedValues display properties 6
calling

functions 19
Identity Manager Session API 211, 216
methods 142, 152
rules 6
syntax 20

capabilities
administrative 93
Async 233
Batch 234
Bulk 234
Core 224, 228
declaring 225
defining 110, 224
extending 224
not supported in SPML 2.0 228
Password 234
Reference 228
Search 228
SPML 2.0 224, 227
supported in SPML 2.0 227
Suspend 236
Updates 228

classes
ActiveSyncUtil 152
editing public 112
ExtendedRequest 212
IAPI 154
Java 142
object 156, 194, 210, 216

provided with OpenSPML Toolkit 210
recompiling 188
resource adapter 111
ResourceAdapterBase 104, 144

configuration objects 10, 238
editing for SPML 1.0 198
SPML 1.0 194

configuration SPMLPerson object 201
configuration, login 113
configuring, SPML 1.0 193
confirmation rule 62, 108
connecting with resource 142
connection information 110
connection settings, checking 143
controlling field visibility in <Disable>

expressions 6
Core capabilities 224, 228
correlation rule 108
create requests 157
Create Unmatched Accounts 108
credentials

securing rules 28
specifying 196

credentials attribute 237
custom adapter

installing 164
maintaining 188
recompiling 188
testing 165

custom attributes 139
customizing rule libraries 29

D
database accounts adapter files 133
database tables adapter files 133
DateLibrary and example rules 41
Debug pages, Identity Manager 187
debugging custom adapters 165
default rules 29
default schemas 201

Section E

340 Identity Manager 8.0 • Deployment Tools

delete rule 108
deletion requests 108
deployment descriptor 207
developing SPML 1.0 applications 209
disableUser requests 213
disabling

PSO users 236
PSOs 224

distinguished name, setting 141
documentation, related 2, 103, 193, 223

E
elements

<Rule> 13
list 84
priority 85
resources 85
severity 85
violation 86

email account attributes 119
emailAddress attributes 237
enableUser request 213
enabling

accounts 145
LocalScope attribute 24
Pass-Through Authentication 150
PSO users 236
PSOs 224

encrypted passwords 197
EndUserRuleLibrary and example rules 44
example methods, SPML 1.0 217
examples

LocalScope option 24
login configuration 126
object resource attribute declarations 126
object type definitions 159
rule call syntax 20
rules 5, 9, 49

ExampleTableResourceAdapter.java file 133
excluded resource accounts rule 48
executing batch requests 234

experience requirements
for developing custom adapters 102
for working with rules 2
for working with SPML 1.0 192
for working with SPML 2.0 222

expressions
<Derivation> 203
<Expansion> 203

extended attributes object 203
extended requests 212
extended schema attributes 130, 139, 140
ExtendedRequest 224
ExtendedRequest classes 211, 212

F
features

account 144
general 144
getFeatures() method 144
group 146
organizational unit 146

file-based accounts adapter files 133
find requests 187
firewalls 189
firstname attributes 119, 237
fixed values, returning in rules 14
flat namespaces 122
form objects

designating 113
in SPML 1.0 forms 194
SPML 1.0 forms 201

forms
assigning 162
referencing 186, 202
using rules in 6

fullname attributes 119
functions, calling 19

Section G

Index 341

G
getFeatures() methods 144, 150

H
header information, adapter source code 112
hierarchical namespaces 122
HTTP requests 189

I
IAPI classes 154
IAPI objects 107, 154
IAPIFactory.getIAPI methods 107, 154
IAPIProcess 109, 154
IAPIUser 109, 154
Identity Application Programming Interface

(IAPI) 107
Identity Manager

account attributes. See account attributes
attributes 110
repository 154
rules 1
server, connecting to 208
standard account attributes 119
user, identifying 107
web services 221

Identity Manager Debug pages 187
Identity Manager Web Services. See Web Services
identity template 113, 121, 124
important notes

for developing custom adapters 102
for SPML 1.0 192
for SPML 2.0 222

init() method 152
initializing an adapter 152
installing

custom adapters 164
REF Kit 134

J
Java

class model for SPML 1.0 messages 210
classes 142
defining resource attributes 114
header information 112
resource adapters 104, 133
using OpenSPML Toolkit to send/receive SPML

1.0 messages 209
Java classes, recompiling 188
JAVA_HOME 134, 135
JavaDocs 132
JavaScript

retrieving variable values 21
wrapping 19
writing rules in 4, 19

L
lastname attributes 119, 237
launchProcess request 214
LDAP-based resource objects 156
libraries

AccessEnforcerLibrary 32, 35
AlphaNumeric Rules Library 36
customizing 29
DateLibrary 41
description/purpose 10
EndUserRuleLibrary 44
invoking rules 21
NamingRules Library 56
referencing rules 21
RegionalConstants Library 63
ResourceFormRules 65
rule 10

library objects 10
Alpha Numeric Rules 36
Date Library 41
EndUserRuleLibrary 44
NamingRules 56
RegionalConstants Rules 63

list elements 84
list method 148

Section M

342 Identity Manager 8.0 • Deployment Tools

listResourceObjects request 214
ListsTargetRequest examples 231
LocalScope attribute 24
LocalScope option 24
locked arguments 27
login configuration 113, 123, 125, 126

M
managing

attributes 161
groups and organizations 123
resources 104, 106, 110, 113

manual actions 9
map, schema. See schema map
mapping, resource attributes 139
methods

calling 142, 152
getFeatures() 144
IAPIFactory.getIAPI 107, 154
startConnection 142
stopConnection 142

methods, adapter
Active Sync-specific 151
checking connections and operations 143
connecting with resource 142
creating an account on a resource 147
creating the prototype resource 142
defining features 144
deleting accounts on a resource 147
enabling and disabling accounts 149
enabling pass-through authentication 150
getting user information 147
initializing and scheduling the adapter 152
list methods 148
overview 123
polling the resource 152
standard resource adapter-specific 141
storing and retrieving adapter attributes 153
updating accounts on the resource 147
updating the Identity Manager repository 154
writing, overview 141

MySQLResourceAdapter.java file 133

N
namespaces 122
naming rules library 56
NamingRules Library and example rules 56
native disable utilities 149

O
object attributes 161
object classes 156, 194, 210, 216
object features 160
object types 158
objectclass attributes 237
objects

library 10
resource. See resource objects
Rule 10
XML Configuration 10

OpenSPML browser 208
building SPML requests 199

OpenSPML Toolkit
architecture 241
provided classes 210
using bundled 192, 209, 222
using to send/receive SPML 1.0 messages 209

openspml.jar file 192
openspmlRouter servlet 239
operation parameter 49

P
pass-through authentication 123, 125, 150
password attributes 119
Password capabilities 234
passwords, encrypted 197
periodic access review rules 79
poll() method 152
polling a resource 152
polling scenarios 153

Section R

Index 343

Populate Global 108
predefined rules 86
priority elements 85
process attributes 214
process rule 109
properties

authentication 125
soap.epassword and soap.password 196
Waveset.properties 133, 193, 195

prototype resource, creating 142
prototypeXML

description/purpose 112
resource type 114
standard resource adapter issues 124

proxy servers 189
proxy user 196
PSO users

disabling 236
enabling 236

PSOs
disabling 224
enabling 224

R
README files 133
recommended reading

related to adapters 103
related to rules 2
related to SPML 1.0 193
related to SPML 2.0 223

recompiling custom resource adapters 188
REF Kit

files/directories 132
installing 134
location 132
sample adapter files 132
sample files 132
sample SPML 2.0 adapter 242
Service Provider 192, 210

Reference capability 228
reference validation 16

referencing
arguments 25
forms 186, 202
rules 19
secure rules 29
variables 14, 19, 24

regional constant rules library 63
RegionalConstants Library and example rules 63
related documentation 2, 103, 193, 223
remediation requests 88
repository

SPML 1.0 configuration 194
updating 154

repository objects
used to configure SPML 1.0 194

requests
Add 200
API 28
approval 9
asynchronous SPML 205
asynchronous SPML 1.0 194, 201
attestation 81, 82
authorizing for SPML 1.0 195
canceling 233
create 157
deletion 108
disableUser 213
enableUser 213
executing 234
find 187
HTTP 189
launchProcess 214
listResourceObjects 214
remediation 88
resetUser 215
returning status 233
runForm 215, 216
Search 200, 201, 204
service provisioning 192, 222
SOAP 28
SPML 239
SPML 1.0 extended 212
update 157

requirements, experience
for developing custom adapters 102
for working with rules 2

Section R

344 Identity Manager 8.0 • Deployment Tools

for working with SPML 1.0 192
for working with SPML 2.0 222

ResetPasswordRequest example 235
resetUser request 215
resolve process rule 109
resource

adapters. See adapters
attributes

Active Sync-specific 117
defining 114
mapping to account attributes 139
overview 112, 113, 114
overwriting 115
required 116

connecting with 142
creating account on 147
forms 162, 163
instance, creating 142
methods. See methods, adapter
objects 110

attributes 161
classes 156
features 160
LDAP-based 156
non-LDAP-based 157
testing in Identity Manager 186
types 158
viewing 185

schema map. See schema map
XML definition 112

resource adapter classes 111
Resource Adapter Wizard 133
resource attributes

defining 114
mapping account attributes 139
mapping extended schema attributes 140
mapping to account attributes 138

Resource Extension Facility kit. See REF Kit
resource objects

defining capabilities 110
description/purpose 110

ResourceAdapterBase class 104, 144
ResourceFormRules library and example rules 65
resources elements 85
resources, managing 104, 106, 110, 113

roles
approving 8
role owners 8

rule libraries
AccessEnforcerLibrary 32, 35
AlphaNumeric Rules Library 36
customizing 29
DateLibrary 41
description/purpose 10
EndUserRuleLibrary 44
NamingRules Library 56
RegionalConstants Library 63
ResourceFormRules 65

Rule objects 10
rules

AccessEnforcerLibrary 32, 35
Active Sync 34
AlphaNumeric 36
argument declarations 25
argument resolution 21
Auditor 66, 79
calculating the name dynamically 8
call syntax 20
calling 6
Correlation 108
DateLibrary 41
default 29
definition 4
EndUserRuleLibrary 44
example 5
excluded resource accounts 48
fixed values 14
in forms 6
in roles 8
in workflows 9
invoking 21
libraries 10
locked arguments 27
naming library 56
NamingRules Library 56
overview 1
periodic access review 79
predefined 86
process 109
recommended reading 2
referencing 19, 21
referencing secure 29

Section S

Index 345

referencing variables 14
regional constants 63
RegionalConstants Library 63
ResourceFormRules 65
securing 28
syntax 13
understanding 12
using arguments 16
with side effects 17
writing 4
writing in JavaScript 19

runForm requests 215, 216

S
scenarios, polling 153
scheduling an adapter 152
scheduling parameters 152
schema map 120, 139
schemas attribute 201
Search capability 228
Search requests 200, 201, 204
securing rules 28
servers

configuring Identity Manager 193, 196
connection settings 110, 195
working with proxy 189

Service Provider REF Kit 192, 210
Service Provider SPML 197
Service Provisioning Markup Language. See SPML

1.0 or SPML 2.0.
service provisioning requests 192, 222
servlet declarations 207
servlets

declarations 207
openspmlRouter 239

session token 196
SetPasswordRequest example 235
severity elements 85
side effects, rules with 17

Section S

346 Identity Manager 8.0 • Deployment Tools

skeleton files, adapter
editing 138
login configuration 126
overview 136, 137

SOAP requests 28
soap.epassword 196
soap.password 196
Solaris

patches xx
support xx

source code for adapters 111
special considerations

for developing custom adapters 102
for SPML 1.0 192
for SPML 2.0 222

SPML 1.0
asynchronous requests 194, 201
authorizing requests 195
configuration objects 194
configuration SPMLPerson object 201
configuring 193
default configuration 199
deployment descriptor 207
developing applications 209
editing configuration objects 198
editing properties 196
example methods 217
extended attributes object 203
extended requests 212
form objects 194, 201
important notes 192
installing and modifying repository objects 194
openspml.jar file 192
recommended reading 193
sending/receiving messages 209
spml.xml file 194, 205
SpmlRequest object 205
starting the browser 208
tracing messages 217
troubleshooting 209
Waveset.properties 195

SPML 2.0
AddRequest examples 229
Async capabilities 233
Batch capabilities 234
Bulk capabilities 234

capabilities 224, 227
configuration objects 238
Core capabilities 224, 228
declaring capabilities 225
extending capabilities 224
important notes 222
improvements over SPML 1.0 224
ListsTargetRequest examples 231
Password capabilities 234
recommended reading 223
ResetPasswordRequest example 235
sample adapter 242
SetPasswordRequest example 235
Suspend capabilities 236
tracing messages 241
unsupported capabilities 228
ValidatePasswordRequest example 236

SPML requests
asynchronous 205
opensplmRouter servlet 239

spml.xml file 194, 205
SpmlRequest object 205
SSL

using for Service Provider SPML 197
using for SPML 234
using in Web Services 196

standard adapters 103
See also adapters

startConnection methods 142
stopConnection methods 142
Sun Resource Extension Facility Kit. See REF Kit.
support

Solaris xx
Suspend capabilities 236
syntax

<rule> 13, 20
account name 121
mapping attributes 139
XML Object language 14

Section T

Index 347

T
testing

custom adapters 165
resource object in Identity Manager 186

tracing
SPML 1.0 messages 217
SPML 2.0 messages 241

U
UNIX accounts adapter files 133
update requests 157
Updates capability 228
updating accounts on a resource 147
URLs, how Identity Manager uses 189
user attributes

defined by resource objects 110
retrieving 147

user identity template. See identity template
user names 121
utilities, native disable 149

V
ValidatePasswordRequest example 236
validating references 16
variables

referencing 14, 19, 24
referencing in rules 14
retrieving values 21

violation elements 86

W
Waveset.properties 133, 189, 193, 195, 229
Web Services

accessing 191
SPML 1.0 191
SPML 2.0 221

web.xml 239
workflow actions 24
workflows

 See also workflow process.
description/purpose 9
using in rules 9

wrapping JavaScript 19
WSHOME 134, 135

X
XML

Configuration object 10
resource definition. See prototypeXML.
rules 13

XML Object language
syntax 14
writing rules in 4

XMLResourceAdapter.java file 133
XPRESS

<ref> expressions 21
<rule> expressions 20, 21
calling rules 6, 20
referencing rules in libraries 21
retrieving variable values 21
writing rules in 4, 5, 13, 17, 20

Section X

348 Identity Manager 8.0 • Deployment Tools

	Sun™ Identity Manager 8.0 Deployment Tools
	Contents
	List of Figures
	List of Tables
	Preface
	Who Should Use This Book
	How This Book Is Organized
	Conventions Used in This Book
	Typographic Conventions
	Symbols
	Shell Prompts

	Related Documentation and Help
	Accessing Sun Resources Online
	Contacting Sun Technical Support
	Related Third-Party Web Site References
	Sun Welcomes Your Comments

	Working with Rules
	Before You Begin
	Intended Audience
	Related Documentation and Web Sites

	Understanding Rules and Rule Libraries
	What is a Rule?
	Why Use Rules?
	What is a Rule Library?

	Developing New Rules and Rule Libraries
	Understanding Rule Syntax
	Writing Rules in JavaScript

	Referencing Rules
	Basic Rule Call Syntax
	Invoking Rules in a Library
	Resolving Rule Arguments

	Securing Rules
	Put Rules in an Appropriate Organization
	Use Authorization Types to Secure Rules
	Control Access to Rules that Reference More Secure Rules

	Customizing Default Rules and Rule Libraries
	Identity Manager Rules
	Auditor Rules
	Audit Policy Rules
	Service Provider Rules

	Developing Custom Adapters
	Before You Begin
	Intended Audience
	Important Notes
	Related Documentation

	What is a Resource Adapter?
	What Are Standard Resource Adapters?
	What Are Active Sync-Enabled Resource Adapters?
	What is a Resource Object?
	What is a Resource Adapter Class?

	Preparing for Adapter Development
	Become Familiar with Adapter Source Code
	Profile the Resource
	Decide Which Classes and Methods to Include
	Review the REF Kit
	Set Up the Build Environment

	Writing Custom Adapters
	Process Overview
	Rename the Skeleton File
	Edit the Source File
	Map the Attributes
	Specify the Identity Template
	Write the Adapter Methods
	Configure the Adapter to Support Pass-Through Authentication
	Define the Resource Object Components

	Installing Custom Adapters
	Testing Custom Adapters
	Unit Testing Your Adapter
	Compatibility Testing Your Adapter
	Testing the Resource Object

	Troubleshooting Custom Adapters
	Maintaining Custom Adapters

	Working with Firewalls or Proxy Servers
	Servlet APIs

	Using SPML 1.0 with Identity Manager Web Services
	Before You Begin
	Intended Audience
	Important Notes
	Related Documentation and Web Sites

	Configuring SPML
	Installing and Modifying Repository Objects
	Editing the Waveset.properties File
	Editing Configuration Objects

	Starting the SPML Browser
	Connecting to the Identity Manager Server
	Testing and Troubleshooting Your SPML Configuration
	Developing SPML Applications
	ExtendedRequest Examples
	Example Form
	Using Trace with SPML

	Example Methods for Implementing SPML
	Add Request
	Modify Request
	Search Request

	Using SPML 2.0 with Identity Manager Web Services
	Before You Begin
	Intended Audience
	Important Notes
	Related Documentation and Web Sites

	Overview
	How SPML 2.0 Compares to SPML 1.0
	How SPML 2.0 Concepts Are Mapped to Identity Manager
	Supported SPML 2.0 Capabilities

	Configuring Identity Manager to Use SPML 2.0
	Deciding Which Attributes to Manage
	Configuring the SPML2 Configuration Object
	Configuring web.xml
	Configuring SPML Tracing

	Extending the System
	Sample SPML 2.0 Adapter

	Using the Business Process Editor
	Overview
	Starting and Configuring the BPE
	Starting the BPE
	Specifying a Workspace
	Enabling JDIC
	Using SSL in the BPE

	Navigating the Business Process Editor
	Working with the BPE Interface
	Loading Processes or Objects
	Setting Editor Options
	Validating Workflow Revisions
	Saving Changes
	Inserting XPRESS
	Using Keyboard Shortcuts

	Accessing JavaDocs
	Inserting a Method Reference

	Working with Generic and Configuration Objects
	Common Persistent Object Classes
	Viewing and Editing Objects
	Creating a New Object
	Validating a New Configuration Object

	Creating and Editing Rules
	Using the BPE Interface
	Creating a New Rule
	Editing a Rule
	Rule Libraries

	Customizing a Workflow Process
	Step 1: Create a Custom Email Template
	Step 2: Customize the Workflow Process

	Debugging Workflows, Forms, and Rules
	Recommendations for Use
	Using the Debugger Main Window
	Stepping through an Executing Process
	Getting Started
	Debugging Workflows
	Debugging Forms

	Index

