
Sun™ Identity Manager 8.0
Technical Deployment Overview

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 820-2961-10

Copyright © 2008 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.
Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In
particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at
http://www.sun.com/patents and one or more additional patents or pending patent applications in the U.S. and in other countries.
THIS PRODUCT CONTAINS CONFIDENTIAL INFORMATION AND TRADE SECRETS OF SUN MICROSYSTEMS, INC. USE, DISCLOSURE
OR REPRODUCTION IS PROHIBITED WITHOUT THE PRIOR EXPRESS WRITTEN PERMISSION OF SUN MICROSYSTEMS, INC.
U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.
Use is subject to license terms.
This distribution may include materials developed by third parties.
Sun, Sun Microsystems, the Sun logo, Java, Solaris, Sun Java System Identity Manager, Sun Java System Identity Manager Service Provider
Edition services, Sun Java System Identity Manager Service Provider Edition software and Sun Identity Manager are trademarks or registered
trademarks of Sun Microsystems, Inc. in the U.S. and other countries.
All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other
countries. Products bearing SPARC trademarks are based upon architecture developed by Sun Microsystems, Inc.
UNIX is a registered trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.
This product is covered and controlled by U.S. Export Control laws and may be subject to the export or import laws in other countries. Nuclear,
missile, chemical biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export or
reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied
persons and specially designated nationals lists is strictly prohibited

iii

Contents

Preface . ix

Who Should Use This Book . ix
How This Book Is Organized . x
Conventions Used in This Book . x

Typographic Conventions . xi
Symbols . xi
Shell Prompts . xii

Related Documentation and Help . xii
Accessing Sun Resources Online . xiii
Contacting Sun Technical Support . xiii
Related Third-Party Web Site References . xiv
Sun Welcomes Your Comments . xiv

Chapter 1 Working with Attributes . 1
Related Chapters . 1
What are Attributes? . 1

Types of Attributes . 2
Using Attribute Conditions . 8

Attribute Condition Operators . 8
Implicitly ANDed . 10

Using Secret Attributes . 12

Chapter 2 Working with Authorization Types . 13
What are Authorization Types? . 13
How Identity Manager Uses Authorization Types . 14
Why Use Authorization Types? . 15
Architectural Features . 15

Configuration:AuthorizationTypes Object . 15
AuthType Element . 16
Authorization Subtype Permissions . 17

iv Identity Manager 8.0 • Technical Deployment Overview

Authorization Types and Capabilities . 17
AdminGroups . 17
EndUser Capability . 18

Creating an Authorization Type . 18
Assigning an Authorization Type to a Repository . 19
Example: Setting End-User Authorization Types . 19
Example: Using Authorization Types to Restrict Visibility on Resources . 19
Example: Granting Access to a Specific Part of Identity Manager . 21

Chapter 3 Data Loading and Synchronization . 23
Types of Data Loading . 24

Discovery . 24
Reconciliation . 27
Active Sync . 28
Summary of Data Loading Types . 29

Load Operation Context . 30
Managing Reconciliation . 30

Reconciliation Policy . 31
Resource Scheduling . 37
Reconcile Configuration Object . 38

Managing Active Sync . 39
How Active Sync-Enabled Adapters Work . 39
Using Forms . 44

Chapter 4 Dataloading Scenario . 53
Assessing Your Environment . 53
Choosing the First Resource . 54
Choosing the First Data Loading Process . 56

Load from File . 57
Load from Resource . 59
Create Bulk Actions . 60
Reconciliation . 61

Preparing for Data Loading . 61
Configuring an Adapter . 61
Setting Account ID and Password Policies . 62
Creating a Data Loading Account . 63
Assigning User Forms . 63

Linking to Accounts on Other Resources . 65
Defining Custom Correlation Keys . 67
Creating Custom Rules . 68
Manually Linking Accounts . 69

v

Example Scenarios . 71
Active Directory, SecurID, and Solaris . 71
LDAP, PeopleSoft, and Remedy . 76
Expedited Bulk Add Scenario . 82

Chapter 5 Data Exporter . 85
What is Data Exporter? . 85
Exportable Data Types . 86
Data Exporter Architecture . 87
Planning for Data Exporter . 89

Database Considerations . 90
Export Server Considerations . 92

Loading the Default DDL . 93
DB2 . 93
MySQL . 94
Oracle . 94
SQL Server . 95

Customizing Data Exporter . 96
Identity Manager ObjectClass Schema . 96
Export Schema . 96
Modifying the Warehouse Interface Code . 98
Generating a New Factory Class . 99
Adding Localization Support for the WIC . 100

Troubleshooting . 100
Beans and Other Tools . 100
Model Serialization Limits . 101
Repository Polling Configuration . 101
Tracing and Logging . 101

Chapter 6 Configuring User Actions . 103
Adding Custom Tasks . 103

Setting Up Custom Task Authorization . 104
Adding a Task to the Repository . 106

Configuring User Actions . 109

Chapter 7 Private Labeling of Identity Manager . 115
Private Labeling Tasks . 115
Architectural Features . 116

Style Sheets . 116
Default Text . 117
Text Attributes . 117
Default Style Settings . 117

vi Identity Manager 8.0 • Technical Deployment Overview

Customized File . 117
JSP Files . 118
WPMessages_en.properties File . 118

Customizing Headers . 118
Changing Header Appearance . 118

Customizing Identity Manager Pages . 119
Customizing the Home Page . 119
Changing Default Information Displayed in the Identity Manager User Interface Home Page . 123
Changing the Appearance of the User Interface Navigation Menus . 124
Changing Font Characteristics . 124

Sample Labeling Exercises . 125
Replacing the Identity Manager Logo with a Custom Logo . 126
Changing Masthead Appearance . 126
Changing Navigation Tabs . 128
Changing Tab Panel Tabs . 129
Changing Sorting Table Header . 130
Changing User / Resource Table Component . 130
Changing Identity Manager Behavior on Commonly Used Pages . 132

Chapter 8 Customizing Message Catalogs . 135
Advantages of Custom Message Catalogs . 135
How Identity Manager Retrieves Message Catalog Entries . 135
Message Catalog Format . 136
Creating a Customized Message Catalog . 136
Example . 138

Appendix A Editing Configuration Objects . 139
Data Storage . 140
Viewing and Editing Configuration Objects . 142

IDM Schema Configuration Object . 143
UserUIConfig Object . 146
RepositoryConfiguration Object . 146
WorkItemTypes Configuration Object . 148
SystemConfiguration Object . 149
Role Configuration Object . 150
End User Tasks Object . 154

Refreshing User Objects . 154

Appendix B Enabling Internationalization . 157
Architectural Overview . 157

Typical Entry . 158

vii

Enabling Support for Multiple Languages . 159
Step One: Download and Install Localized Files . 159
Step Two: Edit the Waveset.properties File . 161

Maintaining ASCII Account IDs and Email Addresses During Anonymous Enrollment Processing . .
161

Index . 163

viii Identity Manager 8.0 • Technical Deployment Overview

ix

Preface

This Sun Java™ System Identity Manager Technical Deployment Overview publication
provides an overview of the reference and procedural information you will use to
customize Sun Java™ System Identity Manager for your environment.

Who Should Use This Book
Sun Java™ System Identity Manager Technical Deployment Overview was designed for
deployers and administrators who will create and update workflows, views, rules,
system configurations and other configuration files necessary to customize Identity
Manager for a customer installation during different phases of product
deployment.

Deployers should have a background in programming and should be comfortable
with XML, Java, Emacs and/or IDEs such as Eclipse or NetBeans.

x Identity Manager 8.0 • Technical Deployment Overview

How This Book Is Organized
Identity Manager Technical Deployment Overview is organized into these chapters:

• Chapter 1, Working with Attributes — Introduces Identity attributes and how
to use this feature to streamline the data flow through your Identity Manager
deployment.

• Chapter 2, Data Loading and Synchronization — Presents an overview of the
reconciliation and other mechanisms for loading account information into
Identity Manager. Reconciliation compares the set of users defined in Identity
Manager to the set of accounts that are defined on an Identity Manager
resource.

• Chapter 3, Dataloading Scenario — Provides tips to consider when preparing
to load account information into Identity Manager, including sample scenarios
that illustrate some of the issues that you might encounter.

• Chapter 4, Data Exporter — Describes how to plan for and implement the Data
Exporter feature.

• Chapter 5, Configuring User Actions — Details how to add custom tasks to the
Identity Manager Administrator Interface and configure user actions that you
can execute from two areas of the interface.

• Chapter 6, Private Labeling of Identity Manager — Describes how to customize
IDM colors, logos, and header and footer content to meet the style standards of
your organization.

• Appendix A, Editing Configuration Objects — Provides an overview of
configuration objects and a discussion of the UserUIConfig object.

• Appendix B, Enabling Internationalization — Provides information on
configuring Identity Manager to use multiple languages or display a language
other than English.

Conventions Used in This Book
The tables in this section describe the conventions used in this book including:

• Typographic Conventions

• Symbols

• Shell Prompts

xi

Typographic Conventions
The following table describes the typographic conventions used in this book.

Symbols
The following table describes the symbol conventions used in this book.

Table 1 Typographic Conventions

Typeface Meaning Examples

AaBbCc123
(Monospace)

API and language elements, HTML tags,
Web site URLs, command names, file
names, directory path names, on-screen
computer output, sample code.

Edit your.login file.

Use ls -a to list all files.

% You have mail.

AaBbCc123
(Monospace bold)

What you type, when contrasted with
onscreen computer output.

% su
Password:

AaBbCc123
(Italic)

Book titles, new terms, words to be
emphasized.

A placeholder in a command or path name
to be replaced with a real name or value.

Read Chapter 6 in the User’s Guide.

These are called class options.

Do not save the file.

The file is located in the install-dir/bin directory.

Table 2 Symbol Conventions

Symbol Description Example Meaning

[] Contains optional command
options.

ls [-l] The -l option is not
required.

- Joins simultaneous multiple
keystrokes.

Control-A Press the Control key while
you press the A key.

+ Joins consecutive multiple
keystrokes.

Ctrl+A+N Press the Control key,
release it, and then press
the subsequent keys.

> Indicates menu item
selection in a graphical user
interface.

File > New > Templates From the File menu, choose
New. From the New
submenu, choose
Templates.

xii Identity Manager 8.0 • Technical Deployment Overview

Shell Prompts
The following table describes the shell prompts used in this book.

Related Documentation and Help
Sun Microsystems provides additional documentation and information to help you
install, use, and configure Identity Manager:

• Identity Manager Installation: Step-by-step instructions and reference
information to help you install and configure Identity Manager and associated
software.

• Identity Manager Upgrade: Step-by-step instructions and reference information
to help you upgrade and configure Identity Manager and associated software.

• Identity Manager Administration: Procedures, tutorials, and examples that
describe how to use Identity Manager to provide secure user access to your
enterprise information systems.

• Identity Manager Deployment Tools: Reference and procedural information that
describes how to use different Identity Manager deployment tool. This
information addresses rules and rules libraries, common tasks and processes,
dictionary support, and the SOAP-based web service interface provided by the
Identity Manager server.

• Identity Manager Workflows, Forms, and Views: Reference and procedural
information that describes how to use the Identity Manager workflows, forms,
and views — including information about the tools you need to customize
these objects.

Table 3 Shell Prompts

Shell Prompt

C shell on UNIX or Linux machine-name%

C shell superuser on UNIX or Linux machine-name#

Bourne shell and Korn shell on UNIX or Linux $

Bourne shell and Korn shell superuser on UNIX or Linux #

Windows command line C:\

xiii

• Identity Manager Resources Reference: Reference and procedural information that
describes how to load and synchronize account information from a resource
into Sun Java™ System Identity Manager.

• Identity Manager Tuning, Troubleshooting, and Error Messages: Reference and
procedural information that provides guidance for tuning Sun Java™ System
Identity Manager, provide instructions for tracing and troubleshooting
problems, and describe the error messages and exceptions you might
encounter as you work with the product.

• Identity Manager Service Provider Edition Deployment: Reference and procedural
information that describes how to plan and implement Sun Java™ System
Identity Manager Service Provider Edition.

• Identity Manager Help: Online guidance and information that offer complete
procedural, reference, and terminology information about Identity Manager.
You can access help by clicking the Help link from the Identity Manager menu
bar. Guidance (field-specific information) is available on key fields.

Accessing Sun Resources Online
For product downloads, professional services, patches and support, and additional
developer information, go to the following:

• Download Center
http://wwws.sun.com/software/download/

• Professional Services
http://www.sun.com/service/sunps/sunone/index.html

• Sun Enterprise Services, Solaris Patches, and Support
http://sunsolve.sun.com/

• Developer Information
http://developers.sun.com/prodtech/index.html

Contacting Sun Technical Support
If you have technical questions about this product that are not answered in the
product documentation, contact customer support using one of the following
mechanisms:

• The online support Web site at http://www.sun.com/service/online/us

xiv Identity Manager 8.0 • Technical Deployment Overview

• The telephone dispatch number associated with your maintenance contract

Related Third-Party Web Site References
Sun is not responsible for the availability of third-party Web sites mentioned in this
document. Sun does not endorse and is not responsible or liable for any content,
advertising, products, or other materials that are available on or through such sites
or resources. Sun will not be responsible or liable for any actual or alleged damage
or loss caused or alleged to be caused by or in connection with use of or reliance on
any such content, goods, or services that are available on or through such sites or
resources.

Sun Welcomes Your Comments
Sun is interested in improving its documentation and welcomes your comments
and suggestions.

To share your comments, go to http://docs.sun.com and click Send Comments. In
the online form, provide the document title and part number. The part number is a
seven-digit or nine-digit number that can be found on the title page of the book or
at the top of the document.

For example, the title of this book is Sun Java™ System Identity Manager Technical
Deployment Overview, and the part number is 820-2961-10.

1

Chapter 1

Working with Attributes

This chapter presents a conceptual overview of attributes as used in Identity
Manager deployments. The topics in this chapter include

• Related Chapters

• What are Attributes?

• Using Attribute Conditions

• Using Secret Attributes

Related Chapters
Attributes are manipulated as part of many Identity Manager operations and are
discussed throughout the documentation set. The following chapters contain a
substantial amount of information related to attributes:

• Views chapter of Identity Manager Workflows, Forms, and Views provides an
extensive discussion of view attributes, registering attributes, and deferred
attributes.

• Identity Manager Resources Reference provides information about resource
attributes.

What are Attributes?
Attributes are name-value pairs that are used to define and manipulate
characteristics of Identity Manager objects as well as external resources. Identity
Manager components such as forms, workflows, and rules call attributes as an
essential part of accessing and transforming data in their regular operations.

What are Attributes?

2 Identity Manager 8.0 • Technical Deployment Overview

Types of Attributes
Although objects in an Identity Manager deployment can contain a variety of
attributes, you typically work with the attribute types described in the following
sections:

• Summary Attributes

• Queryable Attributes

• Inline Attributes

• Extended Attributes

• Operational Attributes

• View Attributes

• Resource User Attributes

• Identity System User Attributes

• Other Standard Attributes

Summary Attributes
Every persistent object exposes a set of summary attributes. Summary attributes are
configured in the Identity Manager Schema Configuration object and contain the
values that are returned for each item in the result of a list operation. Each
PersistentObject subclass can extend the default set of attributes by overriding
the getSummaryAttributes method.

Summary attributes are typically single-valued, because there is a limit to the total
length of summary attributes when serialized to a string.

You configure these attributes for user objects directly through the Identity
Manager Schema Configuration object. For more information, see “IDM Schema
Configuration Object” on page 143.

NOTE The SummaryAttrNames section of UserUIConfig is no longer used in
Identity Manager.

What are Attributes?

Chapter 1 Working with Attributes 3

Queryable Attributes
Every persistent object exposes a set of queryable attributes. Queryable attributes
contain the set of values used for filtering and matching, and these attributes are
configured in the Identity Manager Schema Configuration object. Queryable
attributes can be multi-valued.

Inline Attributes
You can designate up to five queryable attributes for each object type as inline
attributes. Inline attributes are configured in the Identity Manager Repository
Configuration object.

Designating an attribute as inline asks the data store to optimize the performance of
queries against that attribute.

Identity Manager typically stores each value of a queryable attribute as a row in an
attribute table that is separate from the main object table. The attribute table can be
joined to the object table to select objects that match an AttributeCondition.

Identity Manager stores the value of an inline attribute, however, directly in the
object table for that type. Designating an attribute as inline allows Identity
Manager to generate more efficient SQL. A column expression on the main object
table is faster than a JOIN to (or an EXISTS predicate against) the corresponding
attribute table. This improves the performance of any query against the attribute.

You can characterize inline attributes as follows:

• An inline attribute must be single-valued because its value is stored in a
single column of the parent row in the object table.

• Up to five queryable attributes can be inline for a type because the object
table contains only five columns that can be used to store arbitrary attribute
values.

NOTE The QueryableAttrNames section of UserUIConfig is no longer used
in Identity Manager.

NOTE Inline attributes are no longer configured in UserUIConfig.

What are Attributes?

4 Identity Manager 8.0 • Technical Deployment Overview

• The same set of queryable attributes is designated as inline for every
instance of a type because the correspondence between the column value and
the name of an attribute is specified only by the configuration. That is, the
configuration of inline attributes for a type is the only way the repository
knows which attribute is stored in which column.

Extended Attributes
Extended attributes are just attributes that are not built-in, such as employeeNumber
for User. Most customers want to be able to query by employeeNumber, so you can
add this attribute as a queryable extended attribute through the configuration.

Because extended attributes are not built-in, these attributes must be in the
<IDMAttributeConfigurations> section of the IDM Schema Configuration object.
This section captures the attribute names, syntax (string, int, date, etc.), and
whether the attribute is single-valued or multi-valued. The
IDMObjectClassConfiguration captures which attributes are in which object
classes because named attributes can actually be in more than one object class, such
as MemberObjectGroups.

NOTE It is a best practice to prefix extended attributes with a
deployment-specific prefix to prevent potential conflicts with new
core attributes in future releases of Identity Manager.

For example, when adding an extended attribute to User to record
the employeeNumber, use a prefix associated with the company, such
as acme_employeeNumber. If a future Identity Manager release
incorporates a built-in user attribute named employeeNumber, the
two attributes will remain distinct. Otherwise the built-in attribute
takes precedence.

NOTE The IDM Schema Configuration object is protected with the
IDMSchemaConfig authType.

Administrators needing to view or edit the Identity Manager
schema for Users or Roles must have the IDMSchemaConfig
AdminGroup (capability) assigned. The Configurator user has this
AdminGroup assigned by default.

What are Attributes?

Chapter 1 Working with Attributes 5

For more information about User extended attributes, see the discussion about the
accounts[lighthouse] attribute of the User view in the Views chapter of Identity
Manager Workflows, Forms, and Views.

You can expose built-in attributes and extended attributes as queryable or summary.
Some built-in attributes have REFERENCE syntax, but extended attributes are not
allowed to be REFERENCE.

The <Comments> section of the effective schema contains information about
available internal attributes, as well as extended attributes for relevant
objectclasses. You can view this information from the Identity Manager Debug
pages by clicking the Display Schema button and selecting ObjectClass Schema
from the list.

NOTE Extended attributes are supported for User, Role, and extensions of
Role only.

Some built-in attribute references for User and Role are not
queryable or summary by default, but you can expose the following
attributes:

• For User:

❍ MemberAdminGroups

❍ adminRoles

❍ adminGroupsRule

• For Role and extensions of Role: role_applications

For attribute definitions, click the Display Schema button on the
Debug Pages to view the IDMObjectClass schema. Administrators
must have View rights for IDMSchemaConfig to view the
IDMObjectClass schema.

What are Attributes?

6 Identity Manager 8.0 • Technical Deployment Overview

Operational Attributes
Identity Manager predefines several attributes that are required for the repository
to work correctly. ID, type, and name are especially important.

Every PersistentObject stored in the repository has a globally unique internal
identifier (ID). An ID value is unique across time and space, and a generated ID
value is never re-used. (Some predefined Identity Manager objects have well
known identifiers that are defined as program constants. These are known as fake
IDs.) The repository ensures that an object's ID will never change.

Objects of the same type typically map to the same Java class. That is, they are
constructed as instances of the same Java class when deserialized. Where there is not
a one-to-one correspondence between type and Java class, every object of the same
type at least uses the same mechanism to look up the corresponding Java class. (For
example, some types of objects expose a class attribute that contains the fully
qualified class name.)

An object's name must be unique within type. That is, only one object of a type can
have a particular name. (However, another object of a different type can have the
same name.) Thus, each type effectively defines a subordinate namespace. You can
change an object's name, but you cannot change an object's ID.

View Attributes
A view is a collection of name/value pairs that are assembled from one or more
objects stored in the repository, or read from resources. The value of a view
attribute can be atomic, such as a string, a collection such as a list, or reference to
another object.

Whenever you create or modify a user account from the Identity Manager
Administrator or User Interfaces, you are indirectly working with the User view.
Workflow processes also interact with the User view. When a request is passed to a
workflow process, the attributes are sent to the process as a view. When a manual
process is requested during a workflow process, the attributes in the user view can
be displayed and modified further.

Working with views is extensively documented in the Views chapter of Identity
Manager Workflows, Forms, and Views.

What are Attributes?

Chapter 1 Working with Attributes 7

Resource User Attributes
Resource User attributes map Identity Manager account attributes to resource
account attributes in a schema map (right side). The list of attributes varies for each
resource. You can remove unused attributes from the schema map page. However,
adding attributes might require editing the adapter code.

The Resource User attributes are used only when the adapter communicates with
the resource.

Working with Resource User attributes is extensively documented in Identity
Manager Resources Reference.

Identity System User Attributes
Identity System User attributes define an internal Identity Manager value that
corresponds to a Resource User attribute. The Identity System User attributes can
be used in rules, forms, and other Identity Manager-specific functions. Identity
Manager displays these attributes on the left side of the schema map.

Working with Identity System User attributes is extensively documented in Identity
Manager Resources Reference.

Other Standard Attributes
You can use some of the other standard attributes to restrict access to objects (such
as MemberObjectGroups, subType, or authType) or to represent historical
information (such as the creator, date created, etc.).

MemberObjectGroups
Every persistent object belongs to at least one object group. Each value of this
multi-valued attribute is the ID of an ObjectGroup object.

ObjectGroups are exposed as Organizations in the Identity Manager Administrator
and User Interfaces. ObjectGroup membership governs Session-level authorization
(that is, administrator and user access to repository objects), but the repository
itself ignores object group membership.

creator, createDate, lastModifier and lastModDate
These values record historical information about each object. These attributes are
maintained (but are not used) by the repository.

PropertyList
Every persistent object can contain an arbitrary list of Properties. This feature is not
widely used.

Using Attribute Conditions

8 Identity Manager 8.0 • Technical Deployment Overview

subType
Every persistent object can have a subType attribute. For example, Identity
Manager uses Attribute.SUBTYPE to select separate lists of the available
correlation rules and confirmation rules.

authType
The authType attribute allows fine-grain authorization to be performed (that is,
access to be scoped or restricted) for users who do not control any organization
(object group). These subjects would otherwise have no access in Identity
Manager’s standard authorization scheme.

Using Attribute Conditions
An attribute condition is an expression that tests the value(s) of an attribute.
Attribute conditions are commonly used to select the subset of objects that match
certain criteria.

Each attribute condition expresses a single criterion and consists of:

• Attribute name (of a queryable attribute)

• Operator (a kind of check or comparison to be made)

• Operand (a specified set of values)

Attribute Condition Operators
AttributeCondition defines operators including:

Table 1-1 Attribute Condition Operators

Operator Description

EQ, EQUALS Object has at least one value for the specified attribute that is lexically equal to (ignoring
case) the operand.

NE, NOT_EQUALS Object has no value for the specified attribute that is lexically equal to (ignoring case) the
operand.

GT, GREATER_THAN Object has at least one value for the specified attribute that is lexically greater than (ignoring
case) the operand.

GE Object has at least one value for the specified attribute that is lexically greater than or equal
to (ignoring case) the operand.

Using Attribute Conditions

Chapter 1 Working with Attributes 9

An attribute condition applies to each value of an attribute. (Specifically, operator NE
is true if, and only if, an object has no value for the specified attribute that equals
the specified operand. Operator EQ is true if an object has at least one value for the
specified attribute that matches the specified operand.)

GT, GREATER_THAN Object has at least one value for the specified attribute that is lexically greater than (ignoring
case) the operand.

GE Object has at least one value for the specified attribute that is lexically greater than or equal
to (ignoring case) the operand.

LE Object has at least one value for the specified attribute that is lexically less than or equal to
(ignoring case) the operand.

LT, LESS_THAN Object has at least one value for the specified attribute that is lexically less than (ignoring
case) the operand.

STARTS_WITH Object has at least one value for the specified attribute that is an initial substring (ignoring
case) of the operand.

ENDS_WITH Object has at least one value for the specified attribute that is a final substring (ignoring
case) of the operand.

CONTAINS Object has at least one value for the specified attribute that is a substring (ignoring case) of
the operand.

IS_PRESENT Object has at least one value for the specified attribute. (This operator takes no operand.)

NOT_PRESENT Object has no value for the specified attribute. (This operator takes no operand.)

IN, IS_ONE_OF Object has at least one value for the specified attribute that is lexically equal to (ignoring
case) one of the values in the (list) operand.

NOTE RelationalDataStore optimizes evaluation by translating each
attribute condition into an appropriate predicate that becomes part
of the WHERE clause for the operation. However, no special logic is
required to handle multi-valued attributes. RelationalDataStore
automatically generates appropriate SQL DML to handle this.

Table 1-1 Attribute Condition Operators (Continued)

Operator Description

Using Attribute Conditions

10 Identity Manager 8.0 • Technical Deployment Overview

Implicitly ANDed
A set of attribute conditions is implicitly ANDed. This means that a set of attribute
conditions evaluates to true if, and only if, every attribute condition in the set
evaluates to true. Conversely, a set of attribute conditions evaluates to false as
soon as any attribute condition in the set evaluates to false.

Identity Manager attribute conditions expose operators that are generally useful.
Typically, you can express a set of selection criteria using Identity Manager
attribute conditions. A few criteria cannot be expressed, but even these are often
better addressed by adding (or changing the representation of) a queryable
attribute.

Example Scenario: Populating Organizations with User Member
Rules
You can use the following attributes to determine the set of users in a given
organization:

• External (to Identity Manager) resource account attributes. In this case, you
need both the resource account ID and the resource name (for example,
acctid:resname) to find the matching Identity Manager user because more
than one Identity Manager user might have the same acctid but on different
resources.

• Identity Manager user account attributes (for example, name, location,
manager)

To get the “or'ed” effect, do not use multiple attribute conditions. Instead, use the
“is one of” operator with a list of operands, as follows:

<list>
 <new class='com.waveset.object.AttributeCondition'>
 <s>firstname</s>
 <s>is one of</s>
 <list>
 <s>Nicola</s>
 <s>Paolo</s>
 </list>
 </new>
</list>

Using Attribute Conditions

Chapter 1 Working with Attributes 11

Example Scenario: Including All Users Without Administrative Roles
You need a rule to include all users except those with specified administrative
roles.

Because attribute conditions are implicitly ANDed together, you can use two
attribute conditions:

• Condition that selects users with at least one admin role (which in effect
excludes non-administrative users). This condition specifies that a matching
user has at least one value for the adminRoles attribute.

• Condition that excludes users with any of a set of specific admin roles. This
condition specifies that no value of the adminRoles attribute is ar1 or ar2.

Taken together, these conditions specify that the user must have an admin role that
is not in the specified list.

<AttributeCondition>
 <s>adminRoles</s>
 <s>exists</s>
 </AttributeCondition>

<AttributeCondition>
 <s>adminRoles</s>
 <s>is not</s>
 <list>
 <s>ar1</s>
 <s>ar2</s>
 </list>
 </AttributeCondition>

Using Secret Attributes

12 Identity Manager 8.0 • Technical Deployment Overview

Using Secret Attributes
Identity Manager displays attribute values in clear text on the Results pages —
even when you have set the attribute for display with asterisks in an Edit form. To
prevent attribute valued from being displayed in the cache, you can register the
attribute as secret. Secret attribute values are not displayed in clear text in the
browser cache, but these attributes are processed by Identity Manager just like any
other attribute.

For example, a social security number is an attribute that administrators typically
register as a secret attribute.

When rendering the results table, Identity Manager checks to determine whether
any of the attributes are registered as secret, and displays the values of secret
attributes with asterisks only.

To register a secret attribute, add that attribute to the System Configuration object
as follows:

<Attribute name='secretAttributes'>
<List>
<String>email</String>
<String>myAttribute</String>

</List>
</Attribute>

13

Chapter 2

Working with Authorization Types

This chapter presents a conceptual overview of authorization types (AuthTypes) as
used in Identity Manager deployments. Topics in this chapter include

• What are Authorization Types?

• How Identity Manager Uses Authorization Types

• Why Use Authorization Types?

• Architectural Features

• Authorization Types and Capabilities

• Creating an Authorization Type

What are Authorization Types?
Identity Manager provides authorization types as a mechanism for assigning
authorization rights to objects without requiring code changes. This extensible
mechanism is independent of the repository storage type, and is especially useful
for TaskDefinition and Configuration objects. Although these objects share the
same repository type, each object type can perform vastly different functions that
consequently require different authorization.For example, rules must have an
authorization type of UserMembersRule to appear in the User Members Rules
drop-down list. Both default and custom authorization types reside in the
Configuration:AuthorizationTypes object.

Authorization types are repository-type independent, which means that you can
define one authorization type and assign it to, for example, both Configuration and
Rule objects. This allows you to use authorization types to filter lists of objects of a
single type, or as a means of granting access to a related set of objects to a subset of
Identity Manager administrators with a specific capability.

How Identity Manager Uses Authorization Types

14 Identity Manager 8.0 • Technical Deployment Overview

How Identity Manager Uses Authorization Types
Identity Manager uses authorization types during access checks when comparing
the caller's capabilities against an object’s authorization type. When an
authorization type extends an existing repository type, access control follows the
implied 'inheritance' change. Specifically, if an administrator has rights on the
parent type, he has the same rights on the child type. However, if an administrator
has rights on the child type, but no rights on the parent, then the administrator can
access objects of the child type only.

For example, consider the following authorization types, administrators and
objects:

Authorization settings:

Configuration (repository type)

<AuthType name='Fruit' extends='Configuration'/>

<AuthType name='Vegetable' extends='Configuration'/>

Rights are assigned as follows:

AdminA (has Right.VIEW on Configuration)

AdminB (has Right.VIEW on Fruit)

AdminC (has Right.VIEW on Vegetable)

ObjectA of type Configuration, no authtype

ObjectB of type Configuration, authtype == Fruit

ObjectC of type Configuration, authtype == Vegetable

The preceding authorization settings determine the following access privileges on
the specified objects:

• AdminA can view ObjectA, ObjectB and ObjectC

• AdminB can view ObjectB only

• AdminC can view ObjectC only

Why Use Authorization Types?

Chapter 2 Working with Authorization Types 15

Why Use Authorization Types?
You use authorization types within your deployment to accomplish the following:

• Restrict a list of a single type of objects to those specific for a purpose (very
similar to SubType). For example, <AuthType name='foo' extends='moo'/>

• Group objects of different types to make them available to a specific class of
administrators. For example, <AuthType name='foo'
extends='red,green,blue'/>

This second approach is much harder to configure because administrators with
rights on the parent types (red, green, blue) will also have access to type 'foo'.

Architectural Features
The primary architectural feature of authorization types is the
Configuration:AuthorizationTypes object. You can add or remove authorization
types by modifying this object.

Configuration:AuthorizationTypes Object
The Configuration:AuthorizationTypes object defines valid authorization types.
Each authorization type is declared in an <AuthType> element:

<AuthType name='SPML' extends='Configuration'/>

The AuthTypes element contains a list of AuthType elements. Each AuthType has, at
minimum, a name attribute and typically an extends attribute. The value of the
extends attribute must be the name of another authorization type or
repository type.

Architectural Features

16 Identity Manager 8.0 • Technical Deployment Overview

AuthType Element
This element requires the name property. The example below displays the correct
syntax for an <AuthType> element. The following example shows how to add a
custom task to move multiple users into a new organization.

The AuthType element supports the following attributes.

<Configuration name='AuthorizationTypes'>
<Extension>

<AuthTypes>
<AuthType name='Move User'

extends='TaskDefinition,TaskInstance,TaskTemplate'/>
</AuthTypes>

</Extension>
</Configuration>

Table 2-1 AuthType Attributes

AuthType Object Attributes Description

name Identifies the authorization type.

extends Specifies the name of an authorization type repository type that is the supertype of this
type.

displayName Provides an alternate display name for this type, typically a message catalog key.

auditKey Identifies the audit log key to be used for audit records associated with objects of this
type. If none is specified, the audit key of the base type is used.

allowedRights Provides a comma delimited list of right names. This defines the rights that can be
used with this authorization type in a permission definition. If not specified, all rights
are allowed.

Authorization Types and Capabilities

Chapter 2 Working with Authorization Types 17

Authorization Subtype Permissions
Identity Manager uses the extends attribute to define the supertype of an
authorization type. Supertype permissions are inherited by the subtype. For
example, if a user has view rights on TaskDefinition, they would also have view
rights on UsageReportTask and all other subtypes of TaskDefinition.

Although you can edit the AuthorizationTypes object only in XML, you can define
permissions that reference authorization types from the Capability page. (You can
access this page under the Capabilities subtab of the Security tab.)

Authorization Types and Capabilities
Authorization types are a key component of the End User authorization model.
With authorization types, you can define capabilities, or AdminGroups, and then
assign those capabilities to users.

AdminGroups
After defining an authorization type, you can reference it in the Permission objects
stored within AdminGroup objects. The following XML example defines an
AdminGroup (called a capability) that you can assign to a user.

Code Example 2-1

<AdminGroup name='EndUser'>
<Permissions>

 <Permission type='EndUserTask' rights='View'/>
 <Permission type='EndUserRule' rights='View'/>

</Permissions>
 <MemberObjectGroups>
 <ObjectRef type='ObjectGroup' id='#ID#All' name='All'/>
 </MemberObjectGroups>
</AdminGroup>

Creating an Authorization Type

18 Identity Manager 8.0 • Technical Deployment Overview

In this example, the two Permission elements both use type names that are
authorization types rather than repository types. Only TaskDefinition objects that
are assigned an EndUserTask authorization type will be accessible to a user that
holds this capability. (A capability conveys set of rights to one or more authorization
types or repository types.) Because authorization types are essentially hierarchical
with other authorization types and repository types, having rights on a parent in
the 'type hierarchy' grants the same rights to all children.

EndUser Capability
You can use the AdminGroup EndUser capability to assign permissions to
non-administrative users that typically do not have assigned capabilities and do
not control any organizations. The default definition of this capability was given in
the example in the Permission Extensions section.

Identity Manager implicitly assigns all users the EndUser capability. This capability
permits users to view several types of objects, including tasks, rules, roles, and
resources. Although you can assign capabilities to end users, you may prefer not
to. Identity Manager defines a user with explicitly assigned capabilities as an
administrator, and the system caches information about administrators that results
in an effective upper limit on the number of administrators an installation can
have.

You can use the EndUserLibrary authorization type. The EndUser capability (or
AdminGroup) has List and View access to Libraries with the EndUserLibrary
authType.

To give users access to the contents of a Library, set authType=’EndUserLibrary’
and ensure that the Library’s MemberObjectGroup is set to All.

Creating an Authorization Type
You can create a new authorization type by extending the existing
TaskDefinition, TaskInstance, and TaskTemplate authorization types. You can
use one of the following methods to add an authorization type:

• Create a new authorization type using the <AuthType> element.

• Edit the Authorization Types Configuration object in the repository by adding
the new authorization type element (AuthType) for your task.

Creating an Authorization Type

Chapter 2 Working with Authorization Types 19

Assigning an Authorization Type to a Repository
By setting an authorization type on a respiratory, you can restrict which users can
see, modify, or delete particular object types. To define an authorization type for a
repository type, set the authorization type name to the name of a repository type
and omit the extends attribute.

Example: Setting End-User Authorization Types
Identity Manager implements the User Admin role and assigns it to all users by
default. This role encapsulates the EndUser AdminGroup that provides two end-user
authorization types (AuthTypes) and several list permissions for various object
types.

These end-user authorization types include:

• EndUserRule – Allows access to rule objects that have the EndUserRule
AuthType specified in the object, as follows:

<Rule authType='EndUserRule' ...>

• EndUserTask – Allows access to TaskDefinition objects that have the
EndUserTask AuthType specified in the object, as follows:

<TaskDefinition authType='EndUserTask' ...>

• EndUserLibrary -- Allows access to the contents of a Library object.

To implement this AuthType, set the AuthType to EndUserLibrary and
ensure the Library's MemberObjectGroup is All. (The EndUser capability
(AdminGroup) has List and View access to Libraries whose authorization type is
EndUserLibrary.)

Example: Using Authorization Types to Restrict
Visibility on Resources
You can use authorization types to restrict visibility on resources on the resource
level. Rather than move resources into special organizations, you can

• Define an authorization type for each resource (for example,
Resource-Corporate-LDAP)

• Build capabilities with rights for those resource types

Creating an Authorization Type

20 Identity Manager 8.0 • Technical Deployment Overview

When assigning capabilities to users, do not assign a capability that includes rights
to a generic resource type. Instead, assign users a capability with rights for a
specific resource type.

To define a resource-specific authorization type,

1. Add an entry to Configuration:AuthorizationTypes object.

<AuthType name='Resource-Corporate-LDAP' extends='Resource'/>

2. Derive a variant of one of the standard capabilities, such as Resource
Administrator. Note that the only difference between this capability and the
standard AdminGroup is the type name in the Permission, which is
Resource-Corporate-LDAP instead of Resource.

NOTE For an example of stock authorization types defined in the system,
see the admingroups.xml file.

Code Example 2-2 Defining a Resource-Specific Authorization Type

<AdminGroup name='Corporate LDAP Resource Administrator'
 protected='true'
 displayName='UI_ADMINGROUP_RESOURCE_ADMIN'
 description='UI_ADMINGROUP_RESOURCE_ADMIN_DESCRIPTION'>
 <AdminGroups>
 <ObjectRef type='AdminGroup' id='#ID#Resource Group Administrator'/>
 <ObjectRef type='AdminGroup' id='#ID#Resource Report Administrator'/>
 <ObjectRef type='AdminGroup' id='#ID#Connect Organizations'/>
 <ObjectRef type='AdminGroup' id='#ID#Connect Policies'/>
 </AdminGroups>
 <Permissions>
 <Permission type='AttributeDefinition' rights='View'/>
 <Permission type='Resource-Corporate-LDAP'
rights='View,List,Create,Modify,Delete,Execute'/>
 <Permission type='ResourceUIConfig' rights='Create,Modify'/>
 <Permission type='Rule' rights='View'/>
 <Permission type='User' rights='View,List'/>
 </Permissions>
 <MemberObjectGroups>
 <ObjectRef type='ObjectGroup' id='#ID#All' name='All'/>
 </MemberObjectGroups>
</AdminGroup>
<ObjectRef type='AdminGroup' id='#ID#Connect Resource Groups'/>

Creating an Authorization Type

Chapter 2 Working with Authorization Types 21

Example: Granting Access to a Specific Part of
Identity Manager
You can also use authorization types to grant fine-grained administrative control of
a very specific part of Identity Manager to a set of users.

You create an AuthType, assign objects to that AuthType, and then create a
capability that grants that AuthType. When you assign this capability to a set of
users, they can only see the area of the system that the authorization type and
capability allow them to see.

The following example assigns the LimitedReportType authorization type to a
TaskDefinition, and the Run Limited Report capability to a user. Consequently,
that user can only execute reports where TaskDefinition is the
LimitedReportType authorization type.

<AuthType name='LimitedReportType' extends='TaskDefinition'/>
<AuthType name='LimitedReportType' extends='TaskInstance'/>
<AdminGroup name='Run Limited Report' ...>
...
<Permissions type='LimitedReportType' rights='View,Execute'/>
 ...
</AdminGroup>

Creating an Authorization Type

22 Identity Manager 8.0 • Technical Deployment Overview

23

Chapter 3

Data Loading and Synchronization

This chapter presents an overview of the techniques that can be used to load and
synchronize account information from a resource into Identity Manager.

It is important to clearly distinguish between Identity system users and resource
accounts. The following definitions make it easier to understand the topic:

• User — A virtual identity that is managed by Identity Manager. An Identity
Manager user may refer to any number of accounts.

• Account — A concrete identity that is managed by a resource (or, more
precisely, by an external system or application that is represented as a
Resource object in Identity Manager). For example, an entry in /etc/passwd on
a UNIX system, an entry in the SAM database on a Windows system, and a
UserProfile in RACF all represent accounts.

• Administrator — A person with responsibility for configuring and
maintaining the Identity Manager system.

Identity Manager stores information about known resource accounts and users in
the account index. At a minimum, each entry in the account index contains an
account ID and an Identity Manager resource ID. An entry might also contain
additional information, such as the native GUID or the status (enabled/disabled)
of an account. An entry might also record the ID of an Identity Manager user as the
owner of the account, or it might record a list of possible owners.

Topics discussed in this chapter include:

• Types of Data Loading

• Load Operation Context

• Managing Reconciliation

• Managing Active Sync

Types of Data Loading

24 Identity Manager 8.0 • Technical Deployment Overview

Types of Data Loading
Data loading is the process of importing account information from resources into
Identity Manager and assigning these accounts to Identity Manager users. Identity
Manager supports the following features that load account data from resources:

• Discovery — Provides basic functions that initially load resource accounts into
Identity Manager.

• Reconciliation — Periodically loads resource account information into Identity
Manager, taking action on each account according to configured policy.

• Active Sync—Allows information that is stored in an “authoritative” external
resource (such as an application or database) to synchronize with Identity
Manager user data. An Active Sync-enabled adapter “listens” or polls for
changes to the authoritative resource.

Each of these concepts is discussed in detail. A table comparing the types of data
loading can be found in Summary of Data Loading Types.

Discovery
The discovery processes are designed to be used when a resource is being
deployed for the first time. They provide a means to load account information into
Identity Manager quickly. As a result, they do not provide all the features found in
reconciliation or Active Sync. For example, the discovery process does not add
entries to the Account Index. Nor can you run workflows before or after discovery.
However, the discovery processes allow you to determine more quickly whether
correlation rules are working as expected.

When you begin a discovery process, Identity Manager determines whether an
input account matches (or correlates with) an existing user. If it does, the discovery
process merges the account into the user. The process will create a new Identity
Manager user from any input account that does not match.

Identity Manager provides the following discovery functions:

• Load From File — Reads accounts listed in a file and loads them into Identity
Manager.

• Load From Resource — Extracts accounts from a resource and loads them
directly into Identity Manager.

• Create Bulk Action — Executes user creation commands listed in a file.

See the following sections for more information about these discovery processes.

Types of Data Loading

Chapter 3 Data Loading and Synchronization 25

Load from File
The Load from File discovery process reads account information that has been
written into an XML or CSV (comma-separated values) file.

Some resources, such as Active Directory, have the ability to export native account
information into a comma-separated values (CSV) format. These CSV files can be
used to create Identity Manager accounts. See Identity Manager Administration for
more information about CSV formatting.

When you load from a file, you must specify which account correlation and
confirmation rules to use. See Correlation and Confirmation Rules for more
information.

Load from Resource
The Load from Resource feature scans a target system and returns information on
all users. Identity Manager then creates and updates users. An adapter must have
been configured for the resource before you can load from the resource.

When you load from a resource, you must specify which account correlation and
confirmation rules to use. See Correlation and Confirmation Rules for more
information.

Create Bulk Action
Bulk actions allow you to act on multiple accounts at the same time. You can use
bulk actions to create, update, and delete Identity Manager and resource accounts,
but this discussion will be limited to Identity Manager creating accounts. See
Identity Manager Administration for a full description of bulk actions.

Bulk actions are specified using comma-separated values (CSV). The structure of
these values differs from those specified in a Load from File process.

The CSV format consists of two or more input lines. Each line consists of a list of
values separated by commas. The first line contains field names. The remaining
lines each correspond to an action to be performed on an Identity Manager user,
the user's resource accounts, or both. Each line should contain the same number of
values. Empty values will leave the corresponding field value unchanged.

Two fields are required in any bulk action CSV input:

• user — Contains the name of the Identity Manager user.

• command — Contains the action taken on the Identity Manager user. For
creating Identity Manager users, this value must be Create.

Types of Data Loading

26 Identity Manager 8.0 • Technical Deployment Overview

The third and subsequent fields are from the User view. The field names used are
the path expressions for the attributes in the views. See Understanding the User
View in Identity Manager Workflows, Forms, and Views for information on the
attributes that are available in the User View. If you are using a customized User
Form, then the field names in the form contain some of the path expressions that
you can use.

Following is a list of some of the more common path expressions used in bulk
actions:

• waveset.roles — A list of one or more role names to assign to the Identity
Manager account.

• waveset.resources — A list of one or more resource names to assign to the
Identity Manager account.

• waveset.applications — A list of one or more resource groups to assign to
the Identity Manager account.

• waveset.organization — The organization name in which to place the
Identity Manager account.

• accounts[resource_name].attribute_name — A resource account attribute. The
names of the attributes are listed in the schema for the resource.

Some fields can have multiple values. For example, the waveset.resources field
can be used to assign multiple resources to a user. You can use the vertical bar (|)
character (also known as the “pipe” character), to separate multiple values in a
field. The syntax for multiple values can be specified like this:

value0 | value1 [| value2 ...]

The following example illustrates Create bulk actions:

The Create bulk action is more versatile than the from Load from File process. Bulk
actions can work with multiple resources, while Load from File loads information
from one resource at a time.

command,user,waveset.resources,password.password,password.confirmPassword,a
ccounts[AD].description,accounts[Solaris].comment
Create,John Doe,AD|Solaris,changeit,changeit,John Doe,John Doe
Create,Jane Smith,AD,changeit,changeit,Jane Smith,

Types of Data Loading

Chapter 3 Data Loading and Synchronization 27

Reconciliation
Reconciliation compares the contents of the account index to what each resource
currently contains. Reconciliation can perform the following functions:

• Detect new and deleted accounts

• Detect changes in account attribute values

• Correlate accounts with Identity Manager users

• Detect accounts that are not associated with Identity Manager users

• Run a workflow in response to each account situation that it detects

• Detect when a user has been moved from one container on a resource to
another container on a resource

There are two types of reconciliation: full and incremental.

Full Reconciliation
Full reconciliation recalculates the existence, ownership, and situation for each
account ID listed by the adapter. It examines each Identity Manager user that
claims the resource to recalculate ownership.

An Identity Manager user can claim a resource by:

• Having a role that implies the resource

• Having a direct resource assignment

• Referring to an account on that resource

• Having a resource group

For each account, reconciliation process confirms that any Identity Manager owner
recorded in the Account Index still exists and still claims the account. Any account
that does not have an owner is correlated with Identity Manager users (as long as
reconciliation policy for that resource specifies a correlation rule). If a correlation
rule suggests one or more possible owners, then each of them will be
double-checked in a confirmation rule (if one is specified). See Correlation and
Confirmation Rules for more information about rules.

NOTE An adapter must have been configured for the resource before you
can reconcile. See Identity Manager Resources Reference for more
information about adapters.

Types of Data Loading

28 Identity Manager 8.0 • Technical Deployment Overview

Once a situation has been determined for the account, reconciliation will perform
any response that is configured in the reconciliation policy for that resource. If the
reconciliation policy specifies a workflow to be performed per-account, full
reconciliation will perform this for each account that is reconciled, after the
situation action is performed. See Reconciliation Workflows for more information
about workflows.

Incremental Reconciliation
Incremental reconciliation is analogous to incremental backup: it is faster than full
reconciliation, and does most of what you need, but is not as complete as full
reconciliation.

Incremental reconciliation trusts that the information maintained in the account
index is correct. Trusting that the list of known account IDs is correct, and that
ownership of the account by any Identity Manager owner is correctly recorded,
allows incremental reconciliation to skip or shorten several processing phases.

Incremental reconciliation skips the step of examining Identity Manager users that
claim the resource. Incremental reconciliation also calculates a situation only for
accounts that have been added or deleted since the resource was last reconciled. It
does this by comparing the list of account IDs in the account index for that resource
to the list of account IDs returned by the resource adapter. New accounts are
recorded as existing, deleted accounts are recorded as no longer existing, and only
these two sets of accounts are processed further.

Because incremental reconciliation is much faster and uses fewer processing cycles
than full reconciliation, you may want to schedule incremental reconciliation more
frequently and schedule full reconciliation less often.

Active Sync
Active Sync “listens” or polls for changes to a resource, detecting incremental
changes in real time. Because Active Sync is designed to detect changes, it should
not be used to load account information into Identity Manager for the first time.
Instead, use reconciliation or a discovery process.

In general, you run reconciliation on an Active Sync resource in the following
circumstances:

• To perform an initial load on the resource.

• To detect any attributes that have not been updated in Identity Manager
because Active Sync has been configured to ignore or filter out the attributes.

Types of Data Loading

Chapter 3 Data Loading and Synchronization 29

Active Sync differs from reconciliation in the following ways:

• Active Sync allows an administrator to specify a user form that ensures
attributes across multiple accounts are kept synchronized.

• A process rule can be implemented that fully controls all Active Sync
processing. This is typically enabled when extraordinary actions need to be
performed when an account on a resource changes, such as editing multiple
objects in the repository.

Active Sync requires the use of an Active Sync-enabled adapter that has been
properly configured. See Identity Manager Administration for more information
about configuring a resource to implement Active Sync.

Summary of Data Loading Types
The following table compares the capabilities of discovery and reconciliation.

Table 3-1 Summary of Data Loading Types

Function Discovery Reconciliation Active Sync

Detect new accounts Yes Yes Yes

Detect deleted accounts No Yes Yes

Detect changes in account attribute values No Yes Yes

Detect accounts that are not associated with Identity
Manager users

Yes Yes Yes

Detect when a user has been moved from one container
on a resource to another container on a resource

No Yes Yes

Correlate accounts with Identity Manager users Yes Yes Yes

Run a workflow in response to each account situation
that it detects

No Yes Yes

Can be scheduled No Yes Yes

Incremental mode No Yes Not applicable

Add entries to the account index No Yes Yes

Synchronize attributes on multiple resources No No Yes

Load Operation Context

30 Identity Manager 8.0 • Technical Deployment Overview

Load Operation Context
The following table provides information about the common Identity Manager
processes or tasks related to the load operations category:

Managing Reconciliation
The reconciliation process is primarily managed through the Administrator
Interface. However, there are some aspects of reconciliation that cannot be
accomplished from this interface. For example, you might need to create new
correlation and confirmation rules, reconciliation workflows, or edit the Reconcile
configuration object. The following sections describe these features, and others. For
general information about defining reconciliation policy, see Identity Manager
Administration.

Table 3-2 Load Operations Processes/Tasks

Process or Task How it is Used Namespace

Load from File Retrieves account information from a CVS or XML
file (invoked through Administrator Interface).

Identity Manager reads a WSUser object from a file,
converts it to the User view, and applies the form.
The attributes are processed as if they were
extended attributes of the Identity Manager user.
Attributes are put in accounts[Lighthouse] and
will only be put under the global attribute if the
form defines global fields for each of them.

All attribute values for each line in the file
are pulled into the global namespace:

global.<attr name>

Note: Applies to create operations only.

Load from Resource Retrieves account information from a particular
resource (invoked through Administrator Interface
and uses an adapter to list and fetch accounts).

All attribute values for each account on
the resource are pulled into the global
namespace.

global.<LHS Attr Name>

Note: Applies to create operations only.

Bulk Operations Retrieves commands and User view data from a
CVS file (invoked through Administrator
Interface).

You can specify any attribute in the User view
namespace. Attribute names are specified using
the view path syntax. See “Understanding the
User View” in the Identity Manager Technical
Deployment Overview for more information about
the User view namespace and view path syntax

Attribute values from the file are pulled
into the global namespace:

• accounts[*].*

• waveset.*

• accountInfo.*

• global.*

Note: There is no authorized session
available.

Managing Reconciliation

Chapter 3 Data Loading and Synchronization 31

Reconciliation Policy
Reconciliation policies allow you to establish a set of responses, by resource, for
each reconciliation task. Within a policy, you select the server to run reconciliation,
determine how often and when reconciliation takes place, and set responses to
each situation encountered during reconciliation. You can also configure
reconciliation to detect changes made natively (not made through Identity
Manager) to account attributes.

Each of these policy settings can be defined at several scopes:

• Globally (for all resource types)

• For a specific resource type

• For an individual resource instance

The value at each scope becomes the default for each sub-scope. Thus,
reconciliation policy defines an inheritance tree:

• The global value becomes the default for every resource type.

• Each resource type can inherit the global value or specify a value.

• The resource type value is the default for every resource instance of that type.

• Each resource instance can inherit value of its parent resource type, or specify a
value.

Inheritance makes it easier to manage policy for a large number of resources
(especially if many of them will have the same settings).

For example, if you want to treat all resources in the same way, you need to
manage only one set of policy settings, at the global level. If you want to treat all
Windows resources one way and all Solaris resources another way, you need to
manage policy settings at only two scopes: one for each of these two resource
types. If there are exceptions to the policy defined at the resource type level for a
few specific resource instances, the necessary policy settings can be overridden
(specified) for those individual resources. Since each policy setting is inherited
separately, only the settings that differ need to be specified; the other policy
settings may still inherit their values from above.

Managing Reconciliation

32 Identity Manager 8.0 • Technical Deployment Overview

Correlation and Confirmation Rules
Identity Manager matches resource accounts that are not linked to a user with
Identity Manager users in two phases:

• Correlation — Finding potential owners

• Confirmation — Testing each potential owner

A correlation rule looks for Identity Manager users that might own an account. A
confirmation rule tests an Identity Manager user against an account to determine
whether the user actually does own the account. This two-stage approach allows
Identity Manager to optimize correlation, by quickly finding possible owners
(based on name or attributes), and by performing expensive checks only on the
possible owners.

Reconciliation policy allows you to select a correlation rule and a confirmation rule
for each resource. (You may also specify No Confirmation Rule.) The default
correlation rule is to look for a user with a name that exactly matches the account
ID of the input account. By default, no confirmation rule is used.

Identity Manager predefines a number of correlation and confirmation rules in
sample/reconRules.xml. You can also write your own correlation and
confirmation rules. Any rule object with a subtype of
SUBTYPE_ACCOUNT_CORRELATION_RULE or SUBTYPE_ACCOUNT_CONFIRMATION_RULE
automatically appears in the appropriate Reconciliation Policy selection list.

Correlation Rules
A correlation rule can generate a list of user names based on values of the attributes
of the resource account. A correlation rule may also generate a list of attribute
conditions (referring to queryable attributes of a user object) that will be used to
select users.

A correlation rule is run once for each unclaimed account.

NOTE Correlation and confirmation rules are also used for discovery and Active Sync.

NOTE A correlation rule should be relatively “inexpensive” but as selective
as possible. If possible, defer expensive processing to a confirmation
rule.

Managing Reconciliation

Chapter 3 Data Loading and Synchronization 33

Identity Manager predefines several correlation rules in sample/reconRules.xml:

• User Name Matches AccountId — Returns the value of the accountId
attribute. It selects as a possible owner any Identity Manager user with a name
that matches the resource account ID. This is the default correlation rule.

• User Owns Matching AccountId — Returns a list of attribute conditions. This
will select as a possible owner any Identity Manager user that owns a resource
account that matches the same accountId value.

• User Email Matches Account Email — Returns a list of attribute conditions
that will select Identity Manager users based on the account's email attribute.

Input for any correlation rule is a map of the account attributes. Output must be
one of:

• String (containing user name or ID)

• List of String elements (each a user name or ID)

• List of WSAttribute elements

• List of AttributeCondition elements

A more complicated rule might combine or manipulate account attribute values to
generate a list of names or a list of attribute conditions.

For example, reconRules.xml contains a fourth sample correlation rule, User
FullName Matches Account FullName. XML comments disable this rule, because it
will not work correctly without additional configuration. This rule looks for
Identity Manager users based on fullname, but this attribute is not queryable by
default.

Correlating on an extended attribute requires special configuration:

• The extended attribute must be specified as queryable in UserUIConfig (added
to the list of QueryableAttrNames).

• The Identity Manager application (or the application server) may need to be
restarted for the UserUIConfig change to take effect.

NOTE Attribute conditions must refer to queryable attributes, which are
configured as QueryableAttrNames in the UserUIConfig object.

Managing Reconciliation

34 Identity Manager 8.0 • Technical Deployment Overview

Confirmation Rules
A confirmation rule is run once for each matching user returned by the correlation
rule.

A typical confirmation rule compares internal values from the user view to the
values of account attributes. As an optional second stage in correlation processing,
the confirmation rule performs checks that cannot be expressed in a correlation
rule (or that are too expensive to evaluate in a correlation rule). In general, you
need a confirmation rule only in the following circumstances:

• The correlation rule may return more than one matching user

• User values that must be compared are not queryable

Identity Manager predefines two confirmation rules in sample/reconRules.xml:

• User Email Matches Account Email — Returns a value of true if the user's
email matches the account's email. This illustrates the fact that many
ownership decisions could be expressed with either a correlation rule or a
confirmation rule. However, since the email attribute of an Identity Manager
user is automatically queryable, it would almost always be more efficient to
express this as a correlation rule.

• User First And Last Names Match Account — Uses the XPRESS language to
compare the user's first and last name to the same values of the account.

Inputs to any confirmation rule are:

• userview — Full view of an Identity Manager user.

• account — Map of resource account attributes

A confirmation rule returns a string-form Boolean value of true if the user owns the
account; otherwise, it returns a value of false.

The default confirmation rule is No Confirmation Rule. This assumes that the
correlation rule is selective enough to find at most one user for each account. If the
correlation rule selects more than one user, the account situation will be
DISPUTED.

Reconciliation Workflows
You can extend typical reconciliation processing by exposing a number of
attachment points for user-defined workflows.

If you are using expensive (that is, long running) per-account workflows, consider
modifying your default workflow configuration as described in the Configuring
Workflow Properties section of Identity Manager Workflows, Forms, and Views.

Managing Reconciliation

Chapter 3 Data Loading and Synchronization 35

Pre-Resource Workflow
A pre-resource workflow can be launched before any other reconciliation
processing is started. The Notify Reconcile Start workflow is an example of a
pre-resource workflow.

The Notify Reconcile Start workflow e-mails an administrator with notice that a
reconcile has started for a resource. You must configure the Notify Reconcile Start
e-mail template before running this workflow.

The following parameters are passed to the pre-resource workflow:

• resourceName — Name of the resource that will be reconciled.

• resourceId — Object ID of the resource that will be reconciled.

Per-Account Workflow
The per-account workflow is launched for each account processed by
reconciliation, after the response (if any) has completed. The type of response and
the response result do not affect this workflow.

The Notify Reconcile Response workflow is an example of a per-account workflow.
It e-mails an administrator when the reconcile process attempts to automatically
respond to a discovered situation.You must configure the Notify Reconcile
Response e-mail template before running this workflow.

The following parameters are passed to the per-account workflow:

• accountId — Name of the resource account that was reconciled.

• resourceId — Object ID of the resource being reconciled.

• resourceName — Name of the resource being reconciled.

• userID —- Object ID of the Identity Manager user identified as the account
owner (by claim or correlation, depending on the situation). If no user is
associated with the account, this is null.

• userName — Name of the Identity Manager user identified as the account
owner (by claim or correlation, depending on the situation). If no user is
associated with the account, this is null.

• initialSituation —- The situation that was initially discovered for the
account, triggering the response. The value is a valid message key.

Managing Reconciliation

36 Identity Manager 8.0 • Technical Deployment Overview

• responseSuccess — Boolean value indicating whether the response completed
successfully. If no response was performed, this is null.

• finalSituation — Reconciliation situation the account was in after applying
the response. If the account no longer exists and Identity Manager contains no
references to it, this is null.

Post-Resource Workflow
A post-resource workflow can be launched after all other reconciliation processing
is complete. The Notify Reconcile Finish workflow is an example post-resource
workflow.

The Notify Reconcile Finish workflow e-mails an administrator with notice that a
reconcile has finished for a resource. You must configure the Notify Reconcile
Finish e-mail template before running this workflow.

The following parameters are passed into the post-resource workflow:

• resourceName — Name of the resource that was reconciled.

• resourceId — Object ID of the resource just reconciled.

Auditing Native Changes
The Audit Native Change To Account Attributes workflow is launched when
reconciliation or the provisioner detects a change to the attributes of a resource
account that was not initiated through Identity Manager. Only user-specified
attributes are monitored for changes. By default, no attributes are monitored.

The following parameters are passed to the workflow:

• resource — Resource object where the account was changed natively.

• accountID — Name of the resource account that was changed natively.

• prevAttributes — Map containing the monitored resource account attributes
recorded by Identity Manager.

• newAttributes — Map containing the monitored resource account attributes
currently set on the resource.

• attributeChanges — Map containing the List of generic objects that indicate
which attributes have changed. Each object contains the previous and new
values.

• formattedChanges — String representing the attribute changes in compact
format, suitable for an audit record.

Managing Reconciliation

Chapter 3 Data Loading and Synchronization 37

To audit native changes, you must do the following:

• On the Edit Reconciliation Policy page, select the Detect native changes to
account attributes option from the Attribute-level reconciliation drop-down
menu. You might need to uncheck the Inherit resource type policy check box
to display a list of attributes. Select the attributes to audit.

• Add Changes Outside Identity Manager to the list of audit events. To do this,
select the Configure tab, then Audit Events on the left.

Resource Scheduling
Reconciliation maintains two separate schedules for each resource: one for
incremental reconciliation, and another for full reconciliation.

Each resource is scheduled by a separate “requester” task. Configuring a
reconciliation schedule for a resource in the reconciliation policy GUI configures
the TaskSchedule for the requester task. This allows reconciliation to be controlled
by an external task scheduler, if desired. It also minimizes the overhead of the
reconciliation task. A reconciliation daemon that is not doing anything consumes
very few resources, since it periodically polls an in-memory queue (rather than
querying the database for resources that are ready to reconcile).

Reconciliation accesses each resource through a resource adapter. Reconciliation
calls the adapter directly to list accounts, iterate accounts, or fetch an individual
resource account. Reconciliation also accesses resources indirectly through
Provisioner, and uses Provisioner to create a resource account or Identity Manager
user from a resource account.

Reconciliation and Provisioner both maintain the account index. Also, reconciling a
resource prunes the Account Index each time. The reconciliation task automatically
removes any entry for an account that no longer exists on the resource, unless that
account is owned by an Identity Manager user. Therefore, it should not be
necessary to attempt to manually clear the Account Index for a resource.

Each Identity Manager server runs reconciliation as a daemon task. This means
that the Identity Manager scheduler starts the reconciliation task immediately and
automatically restarts the task if it dies.

Managing Reconciliation

38 Identity Manager 8.0 • Technical Deployment Overview

Reconcile Configuration Object
The ReconcileConfiguration object contains several attributes that cannot be edited
from the Edit Reconciliation Policy page.

The following table defines the reconciliation attributes. Use the debug pages to
edit the attribute values in the ReconcileConfiguration object
(#ID#Configuration:ReconcileConfiguration)

NOTE Resource reconciliation is not automatically restarted. The
ReconTask daemon itself is automatically restarted, which enables it
to respond to any new request; but any request in process when the
host server dies (or when the application server is shut down) is lost.
The daemon does not restart resource reconciliation because it may
be inappropriate to reconcile the resource at a time other than when
requested.

Table 3-3 Primary Attributes of ReconcileConfiguration Object

Attribute Description

fetchTimeout The number of milliseconds the reconciliation process should wait for a response from a
resource when fetching an account. The default value is 1 minute (60000 milliseconds).

listTimeout The number of milliseconds the reconciliation process should wait for a response from a
resource when listing accounts. The default value is 10 minutes (600000 milliseconds).

maxConcurrentResources The maximum number of resources that a server should reconcile concurrently. The
default value is 3.

maxQueueSize The maximum number of entries in a reconciliation server's work queue. The default
value is 1000.

Managing Active Sync

Chapter 3 Data Loading and Synchronization 39

The following example shows the default values for the ReconcileConfiguration
object.

Managing Active Sync
Active Sync-enabled adapters can be managed in the Administrator Interface. This
interface contains a wizard that allows an administrator to fully configure most
aspects of Active Sync on a single adapter. The wizard also allows the
administrator to construct a resource, or input, form, without using the Identity
Manager IDE. For more details about the Active Sync wizard, see Identity Manager
Administration.

How Active Sync-Enabled Adapters Work
This section describes:

• Overview of the basic steps of adapter processing

• Active Sync variable context

• Using rules

• Using forms

• Launching workflow processes

Code Example 3-1 Default Values for the ReconcileConfiguration Object

<Configuration id='#ID#Configuration:ReconcileConfiguration'
name='Reconcile Configuration'>
<Extension>
<Object>
<Attribute name='listTimeout' value='600000' />
<Attribute name='fetchTimeout' value='60000' />
<Attribute name='maxConcurrentResources' value='3' />
<Attribute name='maxQueueSize' value='1000' />

</Object>
</Extension>
<MemberObjectGroups>
<ObjectRef type='ObjectGroup' id='#ID#All' name='All'/>
</MemberObjectGroups>
</Configuration>

Managing Active Sync

40 Identity Manager 8.0 • Technical Deployment Overview

Basic Steps of Adapter Processing
All Active Sync-enabled adapters follow the following basic steps when listening
or polling for changes to the resource defined in Identity Manager. When the
adapter detects that a resource has changed, the Active Sync-enabled adapter:

1. Extracts the changed information from the resource.

2. Determines which Identity Manager object is affected.

3. Builds a map of user attributes to pass to the system, along with a reference to
the adapter and a map of any additional options, which creates an Identity
Application Programming Interface (IAPI) object.

4. Submits the IAPI object to the ActiveSync Manager.

5. ActiveSync Manager processes the object and returns to the adapter a
WavesetResult object that informs the Active Sync-enabled adapter if the
operation succeeds. This object can contain many results from the various steps
that the Identity Manager system uses to update the identity. Typically, a
workflow also handles errors within Identity Manager, often ending up as an
Approval for a managing administrator.

Active Sync Namespace

The following table provides information about the common Identity Manager
processes or tasks related to the Active Sync category.

Managing Active Sync

Chapter 3 Data Loading and Synchronization 41

Using Rules
When the Active Sync-enabled adapter detects a change to an account on a
resource, it either maps the incoming attributes to an Identity Manager user, or
creates an Identity Manager user account if none can be matched and if the Active
Sync resource has been configured to do so.

The Active Sync wizard allows you to specify rules to control what happens when
various conditions occur. The following table describes each type of rule.

Table 3-4 Active Sync Processes/Tasks

Process or Task Running How it is Used Namespace

ActiveSync IAPIUser • Processes user-related changes on
a particular resource.

• Performs actions directly on the full
User view before launching the
designated workflow process.

Merges attributes from the ActiveSync event
into the User view.

Typical attributes on the Input Form include:

• accounts[*].*

• waveset.*

• accountInfo.*

• activeSync.<LHS Attr Name>

• activeSync.resourceName

• activeSync.resourceId

• activeSync.resource

• display.session
(session for Proxy Admin)

• global.<LHS Attr Name>
(if set globals flag is set on resource)

ActiveSync IAPIProcess • Processes generic events on a
resource by creating a Process
view.

• Top-level fields in Process view are
arbitrary inputs to the task.

• Collects attributes related to
launching the task under the global
attribute.

• Writes the workflow to retrieve
inputs from under global rather than
as top-level attributes.

Launches the specified task with ActiveSync
poll attributes dumped into top-level
workflow global attribute.

Workflow attributes assume the form:
global.<LHS Attr Name>

Managing Active Sync

42 Identity Manager 8.0 • Technical Deployment Overview

Table 3-5 Rule Types

Parameter Description

Process Rule Either the name of a TaskDefinition, or a rule that returns the name of a
TaskDefinition, to run for every record in the feed. The process rule gets the
resource account attributes in the activeSync namespace, as well as the resource ID
and name.

A process rule controls all functionality that occurs when the system detects any
change on the resource. It is used when full control of the account processing is
required. As a result, a process rule overrides all other rules.

If a process rule is specified, the process will be run for every row regardless of any
other settings on this adapter.

At minimum, a process rule must perform the following functions:

• Query for a matching User view.

• If the User exists, checkout the view. If not, create the User.

• Update or populate the view.

• Checkin the User view.

It is possible to synchronize objects other than User, such as LDAP Roles.

Correlation Rule If no Identity Manager user's resource info is determined to own the resource
account, Identity Manager invokes the Correlation Rule to determine a list of
potentially matching users/accountIDs or Attribute Conditions, used to match the
user, based on the resource account attributes (in the account namespace).

The rule returns one of the following pieces of information that can be used to
correlate the entry with an existing Identity Manager account:

• Identity Manager user name

• WSAttributes object (used for attribute-based search)

• List of items of type AttributeCondition or WSAttribute (AND-ed attribute-based
search)

• List of items of type String (each item is the Identity Manager ID or the user name
of an Identity Manager account)

If more than one Identity Manager account can be identified by the correlation rule,
you need a confirmation rule or resolve process rule to handle the matches.

For the Database Table, Flat File, and PeopleSoft Component Active Sync adapters,
the default correlation rule is inherited from the reconciliation policy on the resource.

The same correlation rule can be used for reconciliation and Active Sync. See
Correlation and Confirmation Rules for more information.

Managing Active Sync

Chapter 3 Data Loading and Synchronization 43

If the Adapter Does Not Find the User
If Identity Manager cannot find a match with an existing Identity Manager user, it
turns an update operation into a create operation if the Create Unmatched
Accounts setting is true, or the Resolve Process workflow indicates a feedOp of
create.

Confirmation Rule Rule that is evaluated for all users that are returned by a correlation rule. For each
user, the full User view of the correlation Identity Manager identity and the resource
account information (placed under the “account.” namespace) are passed to the
confirmation rule. The confirmation rule is then expected to return a value that can be
expressed like a Boolean value. For example, “true” or “1” or “yes” and “false” or “0”
or null.

For the Database Table, Flat File, and PeopleSoft Component Active Sync adapters,
the default confirmation rule is inherited from the reconciliation policy on the
resource.

The same confirmation rule can be used for reconciliation and Active Sync. See
Correlation and Confirmation Rules for more information.

Delete Rule A rule that can expect a map of all values with keys of the form activeSync. or
account. A LighthouseContext object (display.session) based on the proxy
administrator’s session is made available to the context of the rule. The rule is then
expected to return a value that can be expressed like a Boolean value. For example,
“true” or “1” or “yes” and “false” or “0” or null.

If the rule returns true for an entry, the account deletion request will be processed
through forms and workflow, depending on how the adapter is configured.

Resolve Process Rule Either the name of the TaskDefinition or a rule that returns the name of a
TaskDefinition to run in case of multiple matches to a record in the feed. The
Resolve Process rule gets the resource account attributes as well as the resource ID
and name.

This rule is also needed if there were no matches and Create Unmatched Accounts
is not selected.

This workflow could be a process that prompts an administrator for manual action.

Create Unmatched Accounts If set to true, creates an account on the resource when no matching Identity Manager
user is found. If false, Identity Manager does not create the account unless the
process rule is set and the workflow it identifies determines that a new account is
warranted. The default is true.

Populate Global If set to true, populates the global namespace in addition to the activeSync
namespace. The default value is false.

Table 3-5 Rule Types (Continued)

Parameter Description

Managing Active Sync

44 Identity Manager 8.0 • Technical Deployment Overview

The feedOp field is available to forms that contain logic to create, delete, or update
users. You can use this field to disable or enable fields that are specific to one kind
of event (for example, the generation of a password when the feedOp field is set to
create).

This example feedOp field creates a password only when the Active Sync-enabled
adapter detects a user on the resource that is not matched by a user in Identity
Manager, and creates the user in Identity Manager.

Using Forms
Active Sync-enabled adapters typically use two types of forms during processing: a
resource form and a user form.

Form processing occurs in three steps:

1. Active Sync fields are filled in with attribute and resource information. Use the
activeSync namespace to retrieve and set attributes on the resource.

2. The resource form is expanded and derived. During this expansion, all user
view attributes are available.

3. The user form is expanded and derived.

Code Example 3-2 Example feedOp Field

<Field name='waveset.password'>
<Disable>

<neq>
<ref>feedOp</ref>
<s>create</s>

</neq>
</Disable>
<expression>

<cond>
<notnull>

<ref>activeSync.password</ref>
</notnull>
<ref>activeSync.password</ref>
<s>change12345</s>

</cond>
</expression>

</Field>

Managing Active Sync

Chapter 3 Data Loading and Synchronization 45

The $WSHOME/sample/forms directory provides sample forms that end with
ActiveSyncForm.xml. They include logic for handling the cases of new and existing
users, as well as logic for disabling or deleting the Identity Manager user when a
deletion is detected on the resource.

Resource Form
The resource form is the form that the administrator selects from a pull-down menu
when the resource is created or edited. A reference to a selected form is stored in
the resource object.

Resource forms are used with Active Sync-enabled adapters in the following ways:

• Translate incoming attributes from the schema map

• Generate fields such as password, role, and organization

• Provide simple control logic for custom processing, including logic for
handling the cases of new and existing users, as well as logic for disabling or
deleting the Identity Manager user when a deletion has been detected

• Copy and optionally transform attributes from activeSync to fields that the
user form takes as inputs. The required fields for a creation operation are
waveset.accountId and waveset.password. Other field can be set, too, (for
example, accounts[AD].email or waveset.resources).

• Cancel the processing of the user by setting IAPI.cancel to true. This is often
used to ignore updates to certain users.

NOTE Place only resource-specific logic in the resource form and include
common logic in the user form, possibly enabled when the feedop
field is not null. If the resource form is set to none, all of the Active
Sync attributes (except accountId) are named global and will
propagate automatically.

Managing Active Sync

46 Identity Manager 8.0 • Technical Deployment Overview

The following example shows a simple field that will ignore all users with the
last name Doe.

Resource forms include logic for handling the cases of new and existing users, as
well as logic for disabling or deleting the Identity Manager user when a deletion
has been detected.

User Form
The user form is used for editing from the Identity Manager interface. You assign it
by assigning a proxy administrator to the adapter. If the proxy administrator has a
user form associated with him, this form is applied to the user view at processing
time.

Proxy Administrator and the User Form
You set a proxy administrator for an adapter through the ProxyAdministrator
attribute, which you can set to any Identity Manager administrator. All Active
Sync-enabled adapter operations are performed as though the Proxy
Administrator was performing them. If no proxy administrator is assigned, the
default user form is specified.

Code Example 3-3 Field Ignores All Users with Last Name Doe

<Field name='IAPI.cancel'>
<Disable>

<neq>
<ref>activeSync.lastName</ref>
<s>Doe</s>

</neq>
</Disable>
<expression>

<s>true</s>
</expression>

</Field>

Managing Active Sync

Chapter 3 Data Loading and Synchronization 47

Alternative Form to Process Attributes
Best practice suggests keeping common changes, such as deriving a fullname from
the first and last name, in the user form. The resource form should contain
resource-specific changes, such as disabling the user when their HR status changes.
However, you can alternatively place it in an included form after the desired
attributes are placed in a common path, such as incoming.

Subsequently, in the common form, reference incoming.xxx for the common logic:

Process Cancel Action
To cancel the processing of a user, set IAPI.cancel to true in the resource form.
You can use this to ignore updates to certain users.

<Form>
<Field name='incoming.lastname'>

<ref>activeSync.lastname</ref>
</Field>
<Field name='incoming.firstname'>

<ref>activeSync.firstname</ref>
</Field>

</Form>

<Form>
<Field name='fullname'>

<concat>
<ref>incoming.firstname</ref>
<s> </s>
<ref>incoming.lastname</ref>

</concat>
</Field>

</Form>

NOTE .If IAPI.cancel is set to a value of true in an Active Sync form, then
the process associated with an IAPIUser or IAPIProcess event will
not be launched.

Managing Active Sync

48 Identity Manager 8.0 • Technical Deployment Overview

The following example shows a simple field in the resource form that ignores all
users with the last name Doe.

Launching Workflow Processes
The Active Sync wizard allows an administrator to specify a pre-poll and post-poll
workflow. These workflows are similar in concept to the workflows discussed in
Reconciliation Workflows.

Some Active Sync-enabled adapters support a resource attribute that runs a
specified workflow instead of checking the pulled changes into the user view. This
workflow is run with an input variable of only the Active Sync data. For adapters
that do not support a separate process, or one where you want to use the standard
user form and then launch a process, you can override the process by setting
options.

The workflow specified through the form is called just like a standard provisioning
workflow. Sun strongly recommends that you base your custom workflow on the
standard create and update workflow. Consult the create and update user
workflows in workflow.xml.

<Field name='IAPI.cancel'>
<Disable>

<eq><ref>activeSync.lastName</ref><s>Doe</s></eq>
</Disable>
<Expansion>

<s>true</s>
</Expansion>

</Field>

<Form>
<Field name='sourceOptions.Process'>

<Expansion>
<s>My workflow process name</s>

</Expansion>
</Field>

</Form>

Managing Active Sync

Chapter 3 Data Loading and Synchronization 49

Example: Disabling Accounts through Active Sync-Enabled Adapters
In this example, the resource (an HR database) can be updated with an employee’s
current status at the company. Based on the input from this HR database, the
Active Sync-enabled adapter can disable, delete, create, or perform other actions on
the user’s accounts across the enterprise by updating the Identity Manager
repository.

The following code example disables all accounts for an employee if there is an
incoming attribute called Status and it is not active (“A”). The following table
identifies the four states of this attribute.

Based on the value of the Status attribute, the account can be disabled or enabled.

Table 3-6 Attribute States

State Description

A active

T terminated

L laid off

S pending change

Code Example 3-4 Disabling Accounts for Incoming, Inactive Status Attribute

<?xml version='1.0' encoding='UTF-8'?>
<!DOCTYPE Configuration PUBLIC 'waveset.dtd' 'waveset.dtd'>
<Configuration wstype='UserForm' name='PeopleSoft ActiveSync Form'>

<Extension>
<Form>

<!-- this is a sample of how to map the accountID to a different
field than the one from the schema map
Commented out because we want to use the default account
ID mapped from the resource Schema Map.

<Field name='waveset.accountId'>
<Disable><neq><ref>feedOp</ref><s>create</s></neq></Disable>
<Expansion>

<concat><s>ps</s><ref>waveset.accountId</ref></concat>
</Expansion>

</Field>
 -->

 <!-- this is the real one, limited to create -->

Managing Active Sync

50 Identity Manager 8.0 • Technical Deployment Overview

<Field name='waveset.accountId'>
<Disable><neq><ref>feedOp</ref><s>create</s></neq></Disable>
<Expansion>

<ref>activeSync.EMPLID</ref>
</Expansion>

</Field>

 <!-- we need to make up a password for accounts that are being
 created. This picks the last six digits of the SSN.
 -->

<Field name='waveset.password'>
<Disable><neq><ref>feedOp</ref><s>create</s></neq></Disable>
<expression>

<s>change123456</s>
</expression>

</Field>

<Field name='waveset.resources'>
<!-- <Disable><neq><ref>feedOp</ref><s>create</s></neq></Disable> -->
<!-- Don't change the resources list if it already contains peoplesoft -->

<Disable>
<member>

<ref>activeSync.resourceName</ref>
<ref>waveset.resources</ref>

</member>
</Disable>

<expression>

<appendAll>
<ref>waveset.resources</ref>
<ref>activeSync.resourceName</ref>

</appendAll>
</expression>

</Field>

 <!-- Status is mapped by the schema map to PS_JOB.EMPL_STATUS which
has at least four states - A for active, T terminated,
L laid off, and S which is a pending change.
The audit data tells us what the state was, and the global
data tells us what it is. Based on the change we can disable
or enable the account
Note that this can happen on a create also!
 -->

<Field>
<Disable><eq><ref>activeSync.Status</ref><s>A</s></eq></Disable>

<Field name='waveset.disabled'>

Code Example 3-4 Disabling Accounts for Incoming, Inactive Status Attribute (Continued)

Managing Active Sync

Chapter 3 Data Loading and Synchronization 51

<Expansion>
<s>true</s>

</Expansion>
</Field>
<FieldLoop for='name' in='waveset.accounts[*].name'>
<Field name='accounts[$(name)].disable'>

<expression>
<s>true</s>

</expression>
</Field>
</FieldLoop>

</Field>

<!-- Status is mapped by the schema map to PS_JOB.EMPL_STATUS which has at least four states
- A for active, T terminated, L laid off, and S which is a pending change.

This is the enable logic. It is disabled if the account status is <> A or is already enabled
-->

<Field>
<Disable>

<neq>
<ref>activeSync.Status</ref>
<s>A</s>

</neq>
</Disable>

<Field name='waveset.disabled'>
<Disable><eq><ref>waveset.disabled</ref><s>false</s></eq></Disable>

<Expansion>
<s>false</s>

</Expansion>
</Field>

<FieldLoop for='name' in='waveset.accounts[*].name'>
<Field name='accounts[$(name)].disable'>

<Expansion>
<s>false</s>

</Expansion>
</Field>

</FieldLoop>
</Field>

Code Example 3-4 Disabling Accounts for Incoming, Inactive Status Attribute (Continued)

Managing Active Sync

52 Identity Manager 8.0 • Technical Deployment Overview

</Form>
</Extension>
<MemberObjectGroups>

<ObjectRef type='ObjectGroup' id='#ID#Top' name='Top'/>
</MemberObjectGroups>

</Configuration>

Code Example 3-4 Disabling Accounts for Incoming, Inactive Status Attribute (Continued)

53

Chapter 4

Dataloading Scenario

This chapter provides tips to consider when preparing to load account information
into Identity Manager. It also includes sample scenarios that illustrate some issues
that you might encounter.

Assessing Your Environment
Before you can begin loading user account information into Identity Manager, you
determine which know the following questions applies to your environment:

• Is there an authoritative resource for all user IDs?

If yes, then loading user accounts into Identity Manager should be
straightforward. Use that resource as your first resource, then load accounts
from other resources, using correlation rules to link the accounts together.

• Can a complete list of users be obtained from resources that overlap, but for
which there is a correlation key?

If yes, then the process of loading user accounts will be similar. Be sure that the
user accounts are loaded from the overlapping resources into Identity Manager
before loading accounts from other resources.

• Can a list of users be obtained from overlapping resources that do not have a
correlation key?

If yes, then determine how a unique set of users can be discovered from those
resources most easily. You will probably need to manually correlate and delete
users for each resource.

If the answer is no to all these questions, then the process of loading accounts is
problematic. Load user accounts as best you can, and plan to delegate creation of
other Identity Manager users to departmental administrators or end-users.

Choosing the First Resource

54 Identity Manager 8.0 • Technical Deployment Overview

Choosing the First Resource
Ideally, the first resource you use to load accounts into Identity Manager has the
following characteristics:

• References a comprehensive set of users. The goal of an initial load is get as
many accounts into Identity Manager as possible. Thus, the following
applications might be a good choice:

❍ A Human Resources application, such as PeopleSoft or SAP. (If the
application does not contain contractors and other temporary workers, be
sure to load those accounts separately.)

❍ A directory-based application, such as LDAP or Active Directory. A
majority of users are often defined in a central organization or organization
unit.

• Contains enough information to construct an Identity Manager account ID.
Each Identity Manager account ID must be unique. Ideally, your resource will
have an attribute that is guaranteed to be unique and can be used as a Identity
Manager account ID. Examples include an employee IDs or Active Directory
sAMAccountName attributes. First and last names can also be concatenated to
produce an account ID, but this technique might not guarantee a unique
Identity Manager account will be generated.

• Stores user attributes that can be used correlation keys. To link resource
accounts in Identity Manager, you must have attributes that have the same
values across two or more resources. Ideally, the values on the secondary
resources will always perfectly match values on the first resource. In addition,
it would be ideal if the values on the secondary resource are unique within that
resource. The best attributes include employee ID and full name, but any other
attribute that is present and consistent across multiple resources is acceptable.

• Contains data that can be considered authoritative. If users can edit their own
account data, then the data might not be consistent across systems.

NOTE The Lighthouse account is now called the Identity Manager
account. You can override this name change through the use of
a custom catalog.

See Appendix B, “Enabling Internationalization” for
information about custom catalogs.

Choosing the First Resource

Chapter 4 Dataloading Scenario 55

The following diagram illustrates a small scenario in which a company has three
types of resources. Most of the company’s workers are defined in a Human
Resources application, such as PeopleSoft or SAP. However, the company does not
enter contractors in the HR application, so the contractors cannot be loaded into
Identity Manager using this application. The Active Directory also defines most,
but not all, users. (These users might be factory workers with no need for computer
access.) Thus, the majority of users are defined in both resources, but neither
contains all the users. Some workers also have UNIX accounts.

Figure 4-1 Small Dataloading Scenario

Choosing the First Data Loading Process

56 Identity Manager 8.0 • Technical Deployment Overview

Which resource should be selected as the first resource? The UNIX resource can be
safely eliminated, because it does not contain a comprehensive set of users. Active
Directory and the HR application contain about the same number of users, so
neither has a clear advantage.

Factors that can help determine whether the Active Directory or HR application
should be loaded first include the following:

• Urgency to manage accounts within Identity Manager. If the workers not
defined in Active Directory (that is, they are defined in the HR application
only) do not have any additional resource accounts, such as UNIX or other
systems, then the HR application might not be as crucial as the Active
Directory resource.

• Correlation keys. If one resource has attributes that are also on the UNIX
accounts, then that attribute might be a better choice.

• Identity Manager login names. If one resource creates a more desirable login
name of Identity Manager, then this can be a deciding factor.

Choosing the First Data Loading Process
After you have chosen which resource will be used as the starting point for loading
user data into Identity Manager, you must decide which process to use. The
following table provides a summary of the benefits and drawbacks of each data
loading process. A discussion of each data loading process follows.

Table 4-1 Overview of Data Loading Processes

Data Loading Process Advantages Disadvantages

Load from File • Quickest loading process.

• Easy to control which
attributes are loaded.

• Easier to configure and faster
than reconciliation.

• Requires customer time to generate a CSV file
from a resource.

• Requires a full reconciliation before production.

• Cannot be used to update accounts.

Load from Resource • Works with all resources

• Easier to configure than
reconciliation

• Cannot pick and choose which resource
accounts will be loaded.

• Requires a full reconciliation before production.

Choosing the First Data Loading Process

Chapter 4 Dataloading Scenario 57

Load from File
The Load from File process seeds Identity Manager accounts with basic values,
such as account ID, first and last name, and e-mail address. The account ID is the
only required attribute.

The Load from File process imports the contents of a comma-separated values
(CSV) file into Identity Manager. The top line of this file contains a list of attribute
names, separated by commas. Each subsequent line contains a series of
corresponding attribute values. All attributes must also be separated by commas.

Load from File also accepts XML files, but the syntax of an XML file must match
the syntax generated by the Extract to File feature. This format is beyond the scope
of this discussion.

Create bulk action Allows you to add multiple
accounts simultaneously to an
Identity Manager user.

• Slower than loading from resource or
reconciliation.

• Cannot easily generate the CSV file from
resources.

• Requires detailed knowledge of Identity
Manager to make full use of this feature.

• Requires a full reconciliation before production.

Reconciliation • Can implement all aspects of
reconciliation policy

• Using reconciliation up-front
prevents last-minute
surprises

• Cannot pick and choose which resource
accounts will be loaded.

• Can take a large amount of time to load all
accounts in large environments (over 50,000
employees)

ActiveSync If at all possible, avoid choosing ActiveSync as the means to load account information.
ActiveSync is designed to detect changes, and as a result, initial loads are slow.

NOTE .Load from File also accepts XML files, but the syntax of an XML file
must match the syntax generated by the Extract to File feature. This
format is beyond the scope of this discussion.

Table 4-1 Overview of Data Loading Processes

Data Loading Process Advantages Disadvantages

Choosing the First Data Loading Process

58 Identity Manager 8.0 • Technical Deployment Overview

The data in a CSV file is often exported from a resource. For example, the Active
Directory Users and Computers MMC (Microsoft Management Console) allows
you to export the contents of an organization unit directly into a CSV file. The
console exports all users defined in the organization unit as well as the displayed
attributes. Therefore, you should verify only attributes that will be managed by
Identity Manager are displayed in the Active Directory Users and Computers
MMC. Including extraneous attributes will cause loading times to increase.

Some resources are not capable of directly exporting user account information to
CSV format. If you wish to use to this method of data loading, you might need to
extract the information programmatically or add data manually.

For example, the first three lines of a CSV file might look like this:

accountId,firstname,lastname,EmployeeID

Josie.Smith,Josie,Smith,1436

AJ.Harris,Anthony,Harris,c310

The attributes listed in the CSV file must be pre-defined as user view attributes.
Basic attributes such as accountId, email, password, and confirmpassword are
pre-defined. Others are defined in the extended user attributes configuration
object. By default, this object adds firstname, lastname, and fullname to the list of
available attributes.

If you want to retain values for attributes that are not pre-defined in Identity
Manager, such as an employee ID, you must add them to the Extended User
Attributes Configuration object.

The Load from File process configuration page prompts for a correlation and
confirmation rules. Since this is the first attempt to load data, select the User Name
Matches AccountId correlation rule. You do not need a confirmation rule.

It is important to remember that the data contained in the CSV file is used for
Identity Manager accounts only. Even if the data is exported directly from Active
Directory, for example, the data is not linked to any Active Directory accounts or
resources unless you have created a custom user form to do this. Without a custom
user form, a different data loading mechanism must be used to link resource
account data to an Identity Manager user. User forms are discussed briefly in
Assigning User Forms.

NOTE .The Load from File process does not add entries into the Identity
Manager account index. Therefore, you must perform a full
reconciliation, or update the users, before your Identity Manager
deployment is complete. In addition, the Load from File does not
run any workflows when creating users in Identity Manager.

Choosing the First Data Loading Process

Chapter 4 Dataloading Scenario 59

The Load from File process does not add entries into the Identity Manager account
index. Therefore, you must perform a full reconciliation, or update the users,
before your Identity Manager deployment is complete. In addition, the Load from
File does not run any workflows when creating users in Identity Manager.

Load from Resource
Although the configuration pages for the Load from Resource and Load from File
processes are almost identical, the Load from Resource is functionally closer to
reconciliation. The Load from Resource and reconciliation processes pull data from
the resource, and then adds the accounts it finds to Identity Manager. Therefore,
the adapter must be configured before you perform either of these operations.

Load from Resource is faster on the initial run than reconcile but does not populate
the Account Index. Reconcile on the second execution running in Incremental
mode should be faster than Load from Resource. If reconciliation is the desired tool
as the long-term solution, then use reconciliation for the initial load of users.

A user form can be used to set the account ID, place users in an Organizations, and
perform other related tasks related to creating users. See Assigning User Forms for
more information.

When you seed Identity Manager accounts for the first resource using Load from
Resource, the correlation and confirmation rules are not very meaningful. Select
the User Name Matches AccountId correlations rule. You do not need a
confirmation rule.

NOTE .The Load from Resource process does not add entries into the
Identity Manager account index. Therefore, you must perform a full
reconciliation, or update the users, before your Identity Manager
deployment is complete. In addition, the Load from File does not
run any workflows when creating users in Identity Manager.

Choosing the First Data Loading Process

60 Identity Manager 8.0 • Technical Deployment Overview

Create Bulk Actions
The Create bulk action loads data from a CSV file. Unlike the Load from File
process, the create bulk action allows you to define any writable attribute in the
user view, including Identity Manager-specific attributes, global attributes, and
resource account attributes. This flexibility means that it will probably be more
difficult to assemble a bulk actions CSV file. If your bulk actions affect multiple
resources, you will need to find a way to merge resource data into a single CSV file.
However, you could also define a simpler bulk action file and use subsequent
update actions to load data into Identity Manager user accounts.

Bulk actions runs the default workflows for create, update, and delete actions. This
slows down the process of loading user accounts, but add greater flexibility.

The following example illustrates the use of Create bulk actions only. The
command and user attributes are required.

The following example illustrates how the Create and Update bulk actions can be
used in two separate files.

command,user,waveset.resources,password.password,password.confirmPassword,a
ccounts[MyAD].description,accounts[MySolaris].comment

Create,John Doe,MyAD|MySolaris,changeit,changeit,John Doe,John Doe
Create,Jane Smith,MyAD,changeit,changeit,Jane Smith

command,user,waveset.resources,password.password,password.confirmPassword,a
ccounts[MyAD].description,
Create,John Doe,MyAD,changeit,changeit,John Doe,John Doe
Create,Jane Smith,MyAD,changeit,changeit,
Jane Smith

command,user,waveset.resources,password.password,password.confirmPassword,a
ccounts[MySolaris].comment
Update,John Doe,MySolaris,changeit,changeit,John Doe
Update,Jane Smith,MySolaris,changeit,changeit,Jane Smith

Preparing for Data Loading

Chapter 4 Dataloading Scenario 61

Creating accounts using bulk actions does not add entries into the Identity
Manager account index. Therefore, you must perform a full reconciliation before
your Identity Manager deployment is complete.

Reconciliation
The first reconciliation of a resource will probably take longer than any subsequent
reconciliation. You can expect the first reconciliation of a resource to add a large
number of Account Index entries.

Preparing for Data Loading
Review the following sections before you begin the process of loading account
information into Identity Manager:

• Configuring an Adapter

• Setting Account ID and Password Policies

• Creating a Data Loading Account

• Assigning Forms

Configuring an Adapter
To manage accounts on resources, you must configure an adapter for each source
of account information. If you are using the Load from File process or bulk actions,
then the adapter configuration can wait until you are ready to reconcile. Otherwise,
the adapter must be configured before you can load data into Identity Manager.

For general information about configuring an adapter, see Identity Manager
Administration. For detailed information about a specific adapter, refer to the
Identity Manager Resources Reference or the online help.

NOTE . Creating accounts using bulk actions does not add entries into the
Identity Manager account index. Therefore, you must perform a full
reconciliation before your Identity Manager deployment is
complete.

Preparing for Data Loading

62 Identity Manager 8.0 • Technical Deployment Overview

Setting Account ID and Password Policies
When you load account data from a resource via Load from Resource,
reconciliation, or Active Sync, Identity Manager does not obtain the password from
the resource. (It would be a security breach on the part of the resource if it yielded
the password.) Therefore, the Identity Manager account passwords will not be the
same as the those on the resource. By default, Identity Manager generates a
random password that must be reset. However, you can also use the password
view in the user form to specify a temporary password, such as a literal string that
is the same for everyone, or is the same as the Identity Manager account ID. See
Assigning User Forms and the chapter titled Identity Manager Views for more
information.

For bulk actions, and Load from File, you can specify password values in the CSV
file. These should be considered temporary passwords that users must change.

Policies establish limitations for Identity Manager accounts, and are categorized as:

• Identity Manager account policies -- Use these to establish user, password, and
authentication policy options. Identity Manager account policies are assigned
to organizations or users.

• Resource password and account ID policies -- Use these to set or select length
rules, character type rules, and allowed words and attribute values.

Make sure you make any updates to the default policies before you begin loading
account information into Identity Manager.

The following table lists the policies provided with Identity Manager as well as the
default settings.

Table 4-2 Default Identity Manager Policies

Policy Name Default Characteristics

AccountId Policy Account IDs must have a minimum length of 4 characters and a maximum
length of 16 characters.

Default Lighthouse Account Policy Sets the account ID and password policies to AccountId Policy, and
Password Policy. Passwords are generated by Identity Manager, rather
than by users.

Password Policy Passwords must have a minimum length of 4 characters and a maximum
length of 16 characters.The password cannot contain the user’s e-mail, first
name, last name, or full name.

Preparing for Data Loading

Chapter 4 Dataloading Scenario 63

See the chapter titled Identity Manager Users in Identity Manager Administration for
more information about account and password policies.

Creating a Data Loading Account
It is recommended that you create a separate administrator account to perform
data loading for the following reasons:

• Data loading actions can be tracked more easily when auditing is enabled.

• Every Identity Manager administrator is assigned a user form that creates and
edits Identity Manager users. When you create an account for data loading,
you can specify a streamlined form that runs quicker than the default forms.
See the next section for information.

See Identity Manager Administration for more information about creating accounts.

Assigning User Forms
In the context of data loading, user forms are used to perform background
processing. For example, forms can work in conjunction with resource adapters to
process information from an external resource before storing it in the Identity
Manager repository. They can also be used to place users in the correct
Organization based on input user data.

Windows 2000 Password Policy Passwords must have a minimum length of 6 characters. Passwords must
have 3 of the following characteristics:

• 1 numeric character

• 1 uppercase letter

• 1 lowercase letter

• 1 special character

In addition, the password cannot contain the account ID.

Table 4-2 Default Identity Manager Policies (Continued)

Policy Name Default Characteristics

Preparing for Data Loading

64 Identity Manager 8.0 • Technical Deployment Overview

The user view is a data structure that contains all available information about an
Identity Manager user. It includes:

• Attributes stored in the Identity Manager repository

• Attributes fetched from resource accounts

• Information derived from other sources such as resources, roles, and
organizations

Views contain many attributes, and a view attribute is a named value within the
view (for example, waveset.accountId is the attribute in the user view whose
value is the Identity Manager account name).

Most form field names are associated with a view attribute. You associate a field
with a view attribute by specifying the name of the view attribute as the name of
the form field. For more information on the user view, including a reference for all
attributes in the user view, see the chapter titled Views.

The following fields are often in a user form that loads users.

• firstname

• lastname

• fullname

• email

• waveset.accountId

• waveset.organization

• EmployeeId

The waveset.accountId and waveset.organization are values specific to Identity
Manager. The EmployeeId attribute is a customized attribute. Its use is illustrated in
Defining Custom Correlation Keys.

Identity Manager provides numerous forms that are pre-loaded into the system.
Additional forms are also available in the $WSHOME/sample/forms directory. Many
of the forms in this directory are resource-specific. You might wish to review these
forms with the Identity Manager IDE to determine whether they should be used in
production.

Linking to Accounts on Other Resources

Chapter 4 Dataloading Scenario 65

To increase performance during bulk operations, the user form assigned to an
administrator should be as simple as possible. If you want to create a form for data
loading, then you can remove code that is designed to display data. Another
example of simplifying the form would be if you use bulk add actions. Your CSV
file could define basic attributes such as firstname and lastname. These attributes
could then be removed from the administrator’s user form. See the chapter titled
Identity Manager Forms for more information about creating and editing forms.

Linking to Accounts on Other Resources
Identity Manager uses correlation and confirmation rules to link accounts. A
correlation rule looks for Identity Manager users that might own an account. It
returns a list of users that match the criteria defined in the correlation rule. A
confirmation rule tests an Identity Manager user against an account to determine
whether the user actually does own the account. It returns true or false values. This
two-stage approach allows Identity Manager to optimize correlation, by quickly
finding possible owners (based on name or other attributes), and by performing
expensive checks only on the possible owners.

Before you begin using correlation and confirmation rules, you must be familiar
with the data that is present from the first data load. The Identity Manager
accountId will always be present. If you performed a Load from File or a Create
bulk action, then the values in the heading row of the CSV file are also present. If
you performed a Load from Resource or reconciliation, some key attributes found
on the resource will be present, but others will be present only if they are
explicitly saved.

In addition, you must be familiar with the account data stored on the secondary
resources as well. Ideally, a secondary resource contains data that overlaps with
data that has already present in Identity Manager.

This can be more difficult than it sounds. Different resources often have varying
requirements for user accounts. As an example, the following table compares the
requirements and restrictions for a Windows account name and a Solaris
account name.

NOTE Do not directly modify a form provided with Identity Manager.
Instead, you should make a copy of the form, give it a unique name,
and edit the renamed copy. This will prevent your customized copy
from being overwritten during upgrades and service pack updates.

Linking to Accounts on Other Resources

66 Identity Manager 8.0 • Technical Deployment Overview

The differences between Windows and Solaris account names highlight some of
the difficulties in linking accounts:

• Because of the differences in maximum length, the account names will usually
be different on these two systems. On Windows, users often have an account
name that matches their first and last name. On Solaris, account names might
be the concatenation of the first letter of the first name plus the first seven
digits of the last name. Therefore, a correlation rule that compares account IDs
will probably not be enough to link a Solaris account to a Windows account.

• To create a user account on Windows, the administrator must supply a display
name. Solaris user accounts do not require display names, although the
optional GECOS field can be used to specify a user’s name. There are no
guidelines about the contents or format of this field. A user’s GECOS field
might be blank or contain text unrelated to the user’s Windows display name.
Therefore, a correlation rule that compares full names might not trigger as
often as you would expect.

Consider the following questions as you prepare to link accounts:

• Do you have users with similar names, such as Mary A. Jones vs. Mary B.
Jones, or John Doe Jr. vs. John Doe III? If so, how will you distinguish between
them?

• Were account names on each resource defined in a consistent manner? If yes,
then it will be easier to define a rule that compares an account ID on a resource
with a value stored in Identity Manager.

• Did users have the ability to edit resource account data? If yes, then the data
might not match values that are stored on a system that users cannot change.

Table 4-3 Comparison of Windows Account Name and Solaris Account Name Requirements

Characteristics Windows Solaris

Maximum length 20 characters 8 characters

Special characters permitted All but " / \ [] : ; | = , + * ? < > period (.), underscore (_), and hyphen (-) only

Able to specify a full name Yes There is one comment field. Traditionally, the
comment field lists the user’s full name, but
other information could be included.

Able to specify additional
comments, such as employee ID?

Yes

Linking to Accounts on Other Resources

Chapter 4 Dataloading Scenario 67

Defining Custom Correlation Keys
A rule cannot compare an account value on a resource with an Identity Manager
value unless the value is stored in the system. The accounts[Lighthouse] attribute
stores many of these values, but additional values must be added with the
Extended User Attributes Configuration object. The system does not save attributes
that are not registered in the configuration object.

By default, the following attributes are included as extended user attributes:

• firstname

• lastname

• fullname

If you want to use a different attribute, such as an employee ID as part of a
correlation rule, then you must add it to the User Extended Attributes
configuration object. Use the following steps to do this:

1. Access the Identity Manager debug page at http://PathToIDM/debug. The
System Settings page is displayed.

2. Select Configuration from the List Objects pull-down menu. The List Objects
of type: Configuration page is displayed.

3. Select the edit link for User Extended Attributes.

4. Add the new attributes to the List element, for example:

<String>EmployeeId</String>

5. The attribute must be defined as an Identity Manager attribute on the Account
Attributes (schema map) page for the resource.

6. Save your changes. Identity Manager returns to the System Settings debug
page.

NOTE The fullname extended user attribute must be added to the list of
QueryableAttrNames.

Linking to Accounts on Other Resources

68 Identity Manager 8.0 • Technical Deployment Overview

The custom attribute must also be added to the QueryableAttrNames element in the
UserUIConfig configuration object.

1. Select Configuration from the List Objects pull-down menu. The List Objects
of type: Configuration page is displayed.

2. Select the edit link for UserUIConfig.

3. Add the new attributes to the <QueryableAttrNames><List> element, for
example:

<String>EmployeeId</String>

4. Save your changes. Identity Manager returns to the System Settings debug
page.

5. Restart your application server.

Creating Custom Rules
Identity Manager predefines a number of correlation and confirmation rules in
sample/reconRules.xml. You can use these as a basis for your own rules. Rules
must be assigned a subtype of SUBTYPE_ACCOUNT_CORRELATION_RULE or
SUBTYPE_ACCOUNT_CONFIRMATION_RULE.

The following rule compares the account.EmployeeId attribute, which is defined
on the secondary resource, with the EmployeeId attribute that was previously
loaded into Identity Manager. If the secondary resource has an
account.EmployeeId value, then the correlation rule returns a list of users that
match the EmployeeId.

<Rule subtype='SUBTYPE_ACCOUNT_CORRELATION_RULE' name='Correlate Employee
IDs'

<cond>
<ref>account.EmployeeId</ref>
<list>

<new class='com.waveset.object.AttributeCondition'>
<s>EmployeeId</s>
<s>equals</s>
<ref>account.EmployeeId</ref>

</new>
</list>

</cond>
</Rule>

Linking to Accounts on Other Resources

Chapter 4 Dataloading Scenario 69

In this example, the EmployeeId attribute has been previously added to the User
Extended Attributes and UserUIConfig configuration objects. If this attribute has
was not included as a default Identity Manager attribute name for the resource, it
must also be added or edited on the schema map for the resource.

Correlation rules return a list of possible matches. If the results are expected to
return only one match, such as an employee ID, then no confirmation rule would
be needed. However, if there could be multiple matches, which could be the case if
correlation found accounts that matched by first and last name, then a confirmation
rule would be needed to further identify the match.

Rules can be added to Identity Manager by using the Identity Manager IDE,
importing an XML file, or editing and renaming an existing rule via the debug
page.

Manually Linking Accounts
Identity Manager provides several mechanisms that can be used to assign accounts
when correlation and confirmation rules do not find a match.

Using the Account Index
The Account Index records the last known state of each resource account known to
Identity Manager. It is primarily maintained by reconciliation, but other Identity
Manager functions will also update the Account Index, as needed.

To view the account index, click the Resources tab, then click the Account Index
link on the left. Then navigate to a resource to display the status of all accounts on
that resource.

When you right-click on an uncorrelated account (represented in the Account
Index table with a situation of “UNMATCHED” and an Owner of
“_UNKNOWN_”), Identity Manager displays a menu that presents you with the
options of creating a new Identity Manager user account, running reconciliation on
a single account using the reconciliation policy in effect for the resource, specifying
an owner, or deleting or disabling the resource account. If you select the “Specify
Owner” option, Identity Manager displays a screen that allows you to search for
owners that might criteria that you specify. Refer to Identity Manager Administration
for more information.

NOTE Load from resource, load from file, and bulk actions do not update
the Account Index.

Linking to Accounts on Other Resources

70 Identity Manager 8.0 • Technical Deployment Overview

Enabling Self-Discovery
The Identity Manager User Interface can be configured to allow Identity Manager
users to discover their own resource accounts. This means that a user with an
Identity Manager identity can associate it with an existing, but unassociated,
resource account. Self-discovery can be enabled only on resources that support
pass-through authentication.

To enable self-discovery, you must edit the End User Resources configuration
object, and add to it the name of each resource on which the user will be allowed to
discover accounts. To do this:

1. Access the Identity Manager debug page at http://PathToIDM/debug. The
System Settings page is displayed.

2. Select Configuration from the List Objects pull-down menu. The List Objects
of type: Configuration page is displayed.

3. Select the edit link for End User Resources.

4. After the <List> element, add <String>Resource</String>, where Resource
matches the name of a resource object in the repository. For example, to allow
users to self-discover their accounts on resources AD and Solaris, edit the
<List> element as follows:

<List>

<String>AD</String>

<String>Solaris</String>

</List>

5. Save your changes. Identity Manager returns to the System Settings debug
page.

When self-discovery is enabled, the user is presented with a new menu item on the
Identity Manager User Interface (Inform Identity Manager of Other Accounts)
This area allows him to select a resource from an available list, and then enter the
resource account ID and password to link the account with his Identity Manager
identity.

Example Scenarios

Chapter 4 Dataloading Scenario 71

Example Scenarios
This section provides scenarios that illustrate the process of loading accounts from
one or more resources. The following scenarios discuss issues that might arise in
your environment.

• Active Directory, SecurID, and Solaris

• LDAP, PeopleSoft, and Remedy

• Expedited Bulk Add

Active Directory, SecurID, and Solaris
A company wants to use Identity Manager to manage Active Directory, SecurID,
and Solaris accounts. All workers have an Active Directory account, and most
employees have a SecurID account. Only a fraction of employees have a Solaris
account. After examining the account data on each resource, the Identity Manager
administrator has determined the following attributes can be used as correlation
keys:

Because all employees have an Active Directory account, it will be used as the first
data loading resource. SecurID will be loaded second, because the account IDs on
this resource match those on Active Directory. Account IDs are always unique,
therefore this is a better correlation key than full name. The Active Directory and
SecurID accounts are expected to correlate without problems.

Correlating the Solaris accounts will be difficult. The only correlation attribute that
exists on Solaris accounts is the user’s full name. Solaris does not have individual
attributes for defining first name and last name. As a result, the correlation rule
will be a comparison of the string defined in the Solaris useradd -c command with
the fullname value in Active Directory. The comparison will often fail, due to
factors such as use of nicknames or extraneous spaces and punctuation.

Table 4-4 Possible Correlation Keys

Possible Correlation Keys Active
Directory

SecurID Solaris

Account ID matches AD N/A Yes No

Employee ID Yes No No

Full name Yes Yes Yes (Description attribute)

Example Scenarios

72 Identity Manager 8.0 • Technical Deployment Overview

Example Users
In this scenario, the following users demonstrate some of the possible problems
you might encounter when loading accounts.

Loading Active Directory Accounts
Use the following steps as a guideline for using reconciliation to load Active
Directory accounts into Identity Manager.

1. From the Resources page in the Administrator Interface, select the Windows
2000/ Active Directory resource from the New Resource pull-down menu.
Then configure the adapter.

Make sure you do not delete the accountId or fullname Identity Manager user
attribute from schema map. Also make sure the identity template is correct. See
the online help and the Identity Manager Resources Reference for more
information about configuring the adapter.

2. (Optional) Edit the account and password policies as desired. See Setting
Account ID and Password Policies for more information.

3. (Optional) Create a user form that will be used for reconciliation. See Assigning
User Forms for more information.

4. (Optional) Create an Identity Manager user for performing data loading.
Assign the user form created in the previous step to the user.

5. Configure the reconciliation policy for the resource. On the first resource, the
correlation rule is not important, and the confirmation rule is not used when
creating Identity Manager users. Since this is the first resource, you probably
want to assign the UNMATCHED situation to the value “Create new Identity
Manager user based on resource account.”

Table 4-5 Dataloading Scenario: Potential Problems during Account Loading

Worker name AD and SecurID
Logon Name

AD Full Name Solaris Account
Name

Solaris
Description

Anthony Harris AJ Harris Anthony J Harris ajharris A.J. Harris

Isabelle Moreno Isabelle Moreno Isabelle Moreno imoreno Isabelle Moreno

John Thomas (Sr.) John Thomas John Thomas jthomas John Thomas

John Thomas (Jr.) John P. Thomas John P. Thomas jthomas2 John Thomas

Robert Blinn Robert Blinn Bob Blinn rblinn Bob Blinn

Theodore Benjamin Theodore Benjamin Theodore Benjamin tbenjami Ted Benjamin

Example Scenarios

Chapter 4 Dataloading Scenario 73

6. If you created a user to perform data loading, log in as that user. This step is
not necessary for reconciliation, but would be for Load from File, Load from
Resource, or Bulk actions.

7. Reconcile the Active Directory resource.

Results
If you used the default Identity Manager account policy and default Active
Directory identity template, Identity Manager will not create an Identity Manager
user that links to Theodore Benjamin’s Active Directory account, because his name
contains more than 16 characters. For this example, the account ID policy was set to
25 characters.

Identity Manager creates user accounts for all resource accounts with a situation
status of CONFIRMED. This should include all users that passed the password and
account ID policies. Unless your user form specified otherwise, the Identity
Manager account name will be the same as Active Directory login name.

Loading SecurID Accounts
When SecurID is implemented, SecurID user records are usually imported from a
Microsoft Security Accounts Manager (SAM) database or from an LDAP server. As
a result, the SecurID account IDs match those from the source. This makes
correlating users a relatively simple task, because there is a one-to-one correlation
between SecurID and Active Directory accounts. The User Name Matches Account
ID correlation rule can be used to quickly link these accounts.

To load SecurID accounts, perform the procedure described in Loading Active
Directory Accounts, with the following modifications:

• When you are configuring the SecurID adapter, ensure that you do not delete
the accountId Identity Manager user attribute.

• Configure the reconciliation policy as follows:

❍ Set the correlation rule to “User Name Matches Account ID.”

❍ Since Active Directory is considered to be an authoritative source, and
SecurID relies on Active Directory account information, you might want to
set the UNMATCHED situation option to “Delete Resource Account” or
“Disable Resource Account.” The UNASSIGNED situation should be set to
“Link resource account to Identity Manager user.”

Example Scenarios

74 Identity Manager 8.0 • Technical Deployment Overview

Results
All SecurID accounts should correlate with the Active Directory account. Perform
any additional steps to resolve UNMATCHED or DISPUTED situations.

Loading Solaris Accounts
In this scenario, the fullname attribute is the only correlation key. This is a weak
correlation key, because differences in spacing and punctuation guarantee matches
will fail. In addition, users can change their display names with the Solaris chfn
command. Even if full names once matched, they might not agree if any users have
run the chfn command.

By default, the fullname attribute is not queryable. To enable this feature, you must
edit the UserUIConfig configuration object, and add the fullname attribute to the
<QueryableAttrNames><List> element. See Defining Custom Correlation Keys for
more information.

You will also need to create a custom rule to correlate fullname attributes. The
following example, which is named “Correlate Full Names”, performs the
correlation. It compares the value of the account.Description attribute from the
Solaris resource to the fullname attribute, a system attribute that was populated
from Active Directory.

This rule compares the Description attribute from the Solaris resource with the
Identity Manager fullname attribute. If the two attributes match, the accounts are
correlated, with a situation of CONFIRMED.

<Rule subtype='SUBTYPE_ACCOUNT_CORRELATION_RULE' name='Correlate Full Names'
<cond>

<ref>account.Description</ref>
<list>

<new class='com.waveset.object.AttributeCondition'>
<s>fullname</s>
<s>equals</s>
<ref>account.Description</ref>

</new>
</list>

</cond>
</Rule>

Example Scenarios

Chapter 4 Dataloading Scenario 75

To load Solaris accounts, perform the procedure described in Loading Active
Directory Accounts, with the following modifications:

• When you are configuring the Solaris adapter, ensure that you do not delete
the accountId or Description Identity Manager user attribute.

• Configure the reconciliation policy as follows:

❍ Set the correlation rule to “Correlate Full Names” (the example rule).

❍ There could be numerous Solaris accounts that do not correlate with the
accounts already loaded into Identity Manager. Set the UNASSIGNED
situation to “Link resource account to Identity Manager user”. In most
cases, you should set the UNMATCHED situation to “Do nothing”.
Deleting or disabling unmatched users could result with a loss of data or
productivity.

Results

In this example, we can expect that only accounts for Isabelle Moreno will
correlate.

• The accounts for Anthony Harris, John Thomas (Jr.), Robert Blinn, and
Theodore Benjamin will not correlate because the Active Directory fullname
attributes do not exactly match the Solaris Description attributes. These
accounts will have a situation of UNMATCHED. In this scenario, the Solaris
account names are based on first initial plus last name. With the exception of
the John Thomas account, assigning these unmatched Solaris accounts is easy.

Table 4-6 Users in Dataloading Scenario

Worker name AD Full Name Solaris Account Name Solaris Description

Anthony Harris Anthony J Harris ajharris A.J. Harris

Isabelle Moreno Isabelle Moreno imoreno Isabelle Moreno

John Thomas (Sr.) John Thomas jthoma John Thomas

John Thomas (Jr.) John P. Thomas jthomas2 John Thomas

Robert Blinn Bob Blinn rblinn Bob Blinn

Theodore Benjamin Theodore Benjamin tbenjami Ted Benjamin

Example Scenarios

76 Identity Manager 8.0 • Technical Deployment Overview

• The Solaris accounts jthomas and jthomas2 will have a situation of DISPUTED.
Both of these accounts have a Description value of John Thomas. You must
find another means to determine which user Solaris accounts jthomas and
jthomas2 belong to. Ideally, you could use a confirmation rule to distinguish
between the two accounts. However, Solaris and Active Directory accounts do
not contain enough intersecting attributes to create a confirmation rule.

LDAP, PeopleSoft, and Remedy
In this scenario, the LDAP or PeopleSoft resource could theoretically be the
primary resource.

• If all employees and contractors are tracked in PeopleSoft, then this application
can be considered an authoritative resource.

• If all employees have LDAP accounts, then LDAP could be considered an
authoritative resource.

Remedy is not a candidate to be the primary resource, because only a small
percentage of workers have a Remedy account.

In many cases, if you have multiple authoritative resources, then any of those
resources can be loaded first. However, the PeopleSoft Component adapter
performs Active Sync functions only. (There is another PeopleSoft adapter
available, but it is limited in scope.) The PeopleSoft Component adapter does not
perform reconciliation, and as a result, reconciliation policy cannot be set for the
resource. There are no correlation rules available, so the PeopleSoft accounts must
be loaded first. The Identity Manager account names will match PeopleSoft
EMPLID (employee ID) values.

The PeopleSoft employee ID is ideal as a correlation key, because it is unique for all
users defined in the system. The LDAP inetOrgPerson object contains an
employeeNumber attribute. An employee ID could also be stored in an attribute
with a label such as Description, or in a custom attribute. This scenario assumes the
employeeNumber LDAP attribute is in use.

The Remedy adapter does not provide default attributes. You must customize the
adapter to fit your environment. Because the Remedy application is often
configured to send email when a request enters the system, we’ll assume the e-mail
attribute is available. The LDAP inetOrgPerson object also contains the mail
attribute. Therefore, the e-mail address will be the correlation key.

Example Scenarios

Chapter 4 Dataloading Scenario 77

The following table lists the correlation keys for each resource in this scenario.

Example Users
In this scenario, the following users demonstrate some of the possible problems
you might encounter when loading accounts.

Loading PeopleSoft Users
Use the following steps as a guideline for using reconciliation to load PeopleSoft
accounts using Active Sync into Identity Manager.

1. From the Resources page in the Identity Manager Administrator Interface,
select the PeopleSoft Component resource from the New Resource pull-down
menu. If this resource is not displayed, click the Configure Managed
Resources button and add
com.waveset.adapter.PeopleSoftComponentActiveSyncAdapter as a custom
resource. This adapter requires the installation of a JAR file provided by
PeopleSoft. See the Identity Manager Resources Reference for more information.

Table 4-7 Dataloading Scenario: Correlation Keys for Each Resource

Possible Correlation Keys PeopleSoft LDAP Remedy

Employee ID Yes Yes No

E-mail address No Yes Yes

Table 4-8 Deployment Scenario: Possible Problems during Account Loading

Worker name PeopleSoft EMPLI
LDAP Employee
Number

LDAP Email
(@example.com)

Remedy Email
(@example.com)

Robert Blinn 945 945 Bob.Blinn bblinn

William Cady None None William.Cady William.Cady

Eric D’Angelo 1096 1096 Eric.D’Angelo Eric.D’Angelo

Renée LeBec 891 None None None

Josie Smith 1436 1463 Josie.Smith None

John Thomas 509 509 John.Thomas None

John P. Thomas None None John.P.Thomas John.P.Thomas

Example Scenarios

78 Identity Manager 8.0 • Technical Deployment Overview

2. Configure the adapter. Make sure you do not delete the accountId or fullname
Identity Manager user attribute from schema map. Also make sure the identity
template is correct.

3. (Optional) Edit the account and password policies as desired. See Setting
Account ID and Password Policies for more information.

4. (Optional) Create a user form that will be used for data loading. The
$WSHOME/sample/forms/PeopleSoftForm.xml file can be used as a foundation.
See Assigning User Forms for more information.

5. Start ActiveSync on the PeopleSoft adapter.

Results
Identity Manager loads all users unless the user form indicates that an account
should not be loaded. In this scenario, Renée LeBec does not have an LDAP or
Remedy account. Presumably, she no longer works for the company. If you used
the default PeopleSoft form, then Identity Manager disables PeopleSoft accounts
for terminated employees.

The accounts for William Cady and John P. Thomas are not created because they
are not defined within PeopleSoft.

Loading LDAP Users
In this scenario, the employeeNumber attribute in the LDAP inetOrgPerson object is
the correlation key. This attribute is not listed by default in the schema map for the
LDAP adapter, so you must add it manually. For this example, add the attribute
EmployeeId to the Identity Manager User Attribute side of the schema map, and
employeeNumber to the Resource User Attribute side.

NOTE The PeopleSoft adapter uses the Identity Manager attribute name
EmployeeId by default. This value was chosen to maintain
consistency between LDAP and PeopleSoft, although this is not
required.

Example Scenarios

Chapter 4 Dataloading Scenario 79

The e-mail address will be the correlation key for the Remedy resource, but it must
be set-up and configured before you load LDAP accounts. The inetOrgPerson
object contains the mail attribute, which will be the correlation key for loading
Remedy accounts. The mail attribute also must be added to the schema map. Add
the email attribute to the Identity Manager User Attribute side of the schema map,
and mail to the Resource User Attribute side. email is a predefined Identity
Manager attribute, so it is easier to user this attribute, rather than editing the User
Extended Attributes or UserUIConfig configuration objects to include a mail
attribute.

Identity Manager stores account IDs in the User object in the attribute
resourceAccountIds. This is a multi-valued attribute, with each value taking the
form accountId@objectId. You can create a rule that will compare the EmployeeId
value from LDAP to the PeopleSoft accountId using the following rule:

Code Example 4-1 Comparing EmployeeId value from LDAP to PeopleSoft accountId

<Rule subtype='SUBTYPE_ACCOUNT_CORRELATION_RULE' name='Correlate EmployeeId with
accountId'>

<cond>
<ref>account.EmployeeId</ref>
<list>

<new class='com.waveset.object.AttributeCondition'>
<s>resourceAccountIds</s>
<s>startsWith</s>
<concat>

<ref>account.EmployeeId</ref>
<s>@</s>

</concat>
</new>

</list>
</cond>

</Rule>

NOTE In this scenario, it is not necessary to add attributes to the User
Extended Attributes or UserUIConfig configuration objects, because
the accountId and email attributes are always available to the
system.

Example Scenarios

80 Identity Manager 8.0 • Technical Deployment Overview

To load LDAP accounts, perform the following procedure:

1. From the Resources page in the Administrator Interface, select the LDAP
resource from the New Resource pull-down menu. Then configure the adapter
as follows:

a. Add the EmployeeId and email Identity Manager User attributes.

b. Make sure you do not delete the accountId Identity Manager user
attribute from the schema map.

c. Ensure that the identity template is correct.

See the online help and the Identity Manager Resources Reference for more
information about configuring the adapter.

2. Configure the reconciliation policy for the resource as follows.

a. Set the Correlation Rule to Correlate EmployeeId with accountId.

b. Set the following situation values:

Set the UNASSIGNED situation to “Link resource account to Identity
Manager user”.

Set the UNMATCHED situation to an appropriate action. You might need
to discuss with the PeopleSoft administrator about the possibility of
adding users who are discovered on other resources. If you select the
“Create new Identity Manager user based on resource account” option, the
Identity Manager user will have, by default, an account name based on the
LDAP cn attribute.

3. Reconcile the LDAP resource.

Results
In this scenario, accounts for William Cady, Josie Smith, and John P. Thomas will
be in the UNMATCHED state. For Josie Smith, the employee ID values on the
PeopleSoft and LDAP resources do not match. Because employee IDs are
generated by PeopleSoft, then LDAP value is incorrect. Correct the mistake and
reconcile again.

William Cady and John P. Thomas are not defined in PeopleSoft. As mentioned in
step 2 of loading LDAP account procedure, you should consider whether the
accounts need to be added to PeopleSoft.

Example Scenarios

Chapter 4 Dataloading Scenario 81

Loading Remedy Users
The Remedy adapter does not have predefined account attributes. You must add
these attributes to the schema map. Remedy uses integers to uniquely identify each
attribute that it tracks. For example, the Remedy account ID might be assigned a
value such as 1002000100. These Remedy attribute numbers must be added as
Resource User Attributes on the schema map. At minimum, you must add the
following Identity Manager User attributes:

• accountId

• email (the correlation key)

The USER_EMAIL_MATCHES_ACCOUNT_EMAIL_CORR correlation rule will
link the Remedy accounts to the Identity Manager accounts.

To load Remedy accounts, perform the following procedure:

1. From the Resources page in the Identity Manager Administrator Interface,
select the Remedy resource from the New Resource pull-down menu. Then
configure the adapter as follows:

At minimum, add the accountId and email Identity Manager User attributes.
Other attributes can also be added.

See the online help and the Identity Manager Resources Reference for more
information about configuring the adapter.

2. Configure the reconciliation policy for the resource as follows.

a. Set the Correlation Rule to USER_EMAIL_MATCHES_ACCOUNT_EMAIL_CORR.

b. Set the following situation values:

I. Set the UNASSIGNED situation to “Link resource account to Identity
Manager user”.

II. Set the UNMATCHED situation to an appropriate action.

3. Reconcile the Remedy resource.

Results
The Remedy accounts for William Cady, Eric D’Angelo, and John P. Thomas
correlated successfully because the email addresses defined in LDAP and Remedy
matched. The Remedy account for Robert Blinn did not correlate. The e-mail
address on Remedy was an alias. The other users in this scenario do not have
Remedy accounts.

Example Scenarios

82 Identity Manager 8.0 • Technical Deployment Overview

Expedited Bulk Add Scenario
The following procedure illustrates how a few users can be quickly added to
Identity Manager using Create actions. Any resources referenced in the CSV file
must be defined within Identity Manager before the CSV file is loaded into the
system.

1. Generate a CSV file that contains information needed to perform a Create bulk
action. See Create Bulk Actions for more information about the format of the
CSV file.

2. If your CSV file does not contain passwords, set the default Password Policy
Options so that passwords are generated by the system. To do this, click the
Configure tab, then Policies on the left. Click the Default Lighthouse Account
Policy link. Then select the Generated option from Password Provided by
drop-menu.

3. Create a new provisioning task based on the default Create User provisioning
task.

From the XML view, in the TaskDefinition tag, edit the value of the
resultLimit parameter to 0. This value determines the number of seconds the
results of the task is to be retained.

Then delete the following sections from the task:

<Activity id='1' name='Approve'>

...

</Activity>

<Activity id='3' name='Notify'>

...

</Activity>

Be sure to rename the task, to a value such as Fast Create User.

NOTE The activity calling to the provisioner must remain, or users will not
be created properly.

Example Scenarios

Chapter 4 Dataloading Scenario 83

4. Create a new user form based on the default User form.

From the XML view, replace the entire <Form>... </Form> structure with the
following:

Be sure to rename the user form, to a value such as Fast User Form.

5. Create an Identity Manager account that will be used to load accounts into
Identity Manager. Assign the user form created in Step 4 to this user.

6. Log in to Identity Manager using the account created in the previous step.

7. Run the Create bulk action.

<Form help='account/modify-help.xml'>
<Field name="viewOptions.Process">

<Expansion>
<s>Fast Create User</s>

</Expansion>
</Field>

</Form>

Example Scenarios

84 Identity Manager 8.0 • Technical Deployment Overview

85

Chapter 5

Data Exporter

This chapter describes the Data Exporter feature and provides information
required to deploy it.

What is Data Exporter?
Identity Manager processes user account information on a wide range of systems
and applications, providing a controlled, audited environment useful for making
changes that remain in compliance with corporate policies. Identity Manager is a
“data light” architecture. It locally stores a minimal amount of account information
on the systems and applications that it manages and fetches the data from the
actual system or application when necessary.

This architecture helps reduce data duplication and minimizes the risks of
transferring stale data during provisioning operations, but there are times when
having the account data stored locally is desirable. For example, being able to
query account information without accessing the underlying system or application
can bring significant performance improvements for some operations, such as
identifying all accounts that have a specific attribute value. Typically, the use of
system or application account data is related to reporting operations rather than
provisioning operations, but in some cases the data does have value to the
organization.

In addition to being a “data light” architecture, Identity Manager uses a “current
data only” data model, which means it does not keep historical records (other than
the audit and system logs). The advantage of this model is that the size of the
operational repository tends to be proportional to the number of accounts, systems,
and applications being managed. As a result, the provisioning system itself needs
less maintenance. However, the data processed by Identity Manager may be
valuable for historical processing.

Exportable Data Types

86 Sun™ Identity Manager 8.0 • Technical Deployment Overview

For example, questions similar to the following rely on historical data:

• Who had access to system X between time A and B, and who approved of that
access?

• How many provisioning requests have been processed in the last 48 hours, and
how long did each request take?

Data Exporter allows you to selectively capture a large amount of the information
processed by Identity Manager, including the account and workflow data
necessary to answer questions like those listed above. Identity Manager produces
this data in a form that can flow into a data warehouse to be further processed or
used as a basis for queries and transformations using commercial database
transformation, reporting, and analysis tools.

You are not required to export data from Identity Manager. If you do not need to
track this type of the historical data, you are not required to keep it. If you require
this data, you are free to establish your own data aging and retention policies
without impact to Identity Manager.

Exportable Data Types
Data Exporter can export both persistent and transient data. Persistent refers to the
data Identity Manager stores in the repository. Transient data is data that is either
not stored in the Identity Manager repository by default, or data that has a lifecycle
that precludes periodic fetching of changed records. Some types of data are both
transient and persistent, such as Task Instances and WorkItems. These data types
are considered transient because they are deleted by Identity Manager at times that
are not externally predictable.

Identity Manager exports the following data types:

Table 5-1 Supported Data Types

Data Type Persistence Description

Account Persistent Record containing the linkage between a User and a
ResourceAccount

Entitlement Persistent A record containing the list of attestations for a specific User

LogRecord Persistent A record containing a single audit record

ObjectGroup Persistent A security container that is modeled as an organization

Resource Persistent A system/application on which accounts are provisioned.

Data Exporter Architecture

Chapter 5 Data Exporter 87

Data Exporter allows you to define strategies for exporting each type of data,
depending on the exact needs of the warehouse. For example, some data types may
need to export every change to an object while other data types may be satisfied
with exporting at a fixed interval, potentially skipping intermediate changes to the
data.

You can select which types will be exported. Once a type is selected, all new and
modified instances of that type will be exported. Persistent data types can also be
configured to export deleted objects.

Data Exporter Architecture
When Data Exporter is enabled, Identity Manager stores each detected change to a
specified object (data type) as a record in a table in the repository. At a configurable
interval for each data type, the system executes two queries that select the records
to export.

• The first query looks for persistent objects of the specified type in the
repository that have changed since the last export. The Warehouse Task
exports these records, determines the timestamp of the most recently-changed
record, and uses this value as the starting point the next time the query is run.

• The second query searches the queue table. It locates all records of the specified
data type, exports them, then deletes the records from the queue. Any records
added after the query completes will be exported at the next cycle.

ResourceAccount Transient A set of attributes that comprise an account on a specific
Resource.

Role Persistent A logical container for access

Rule Persistent A block of logic that can be executed by Identity Manager

TaskInstance Transient and persistent A record indicating an executing or completed process

User Persistent A logical user that includes zero or more accounts.

WorkflowActivity Transient A single activity of an Identity Manager workflow

WorkItem Transient and persistent A manual action from an Identity Manager workflow

Table 5-1 Supported Data Types (Continued)

Data Type Persistence Description

Data Exporter Architecture

88 Sun™ Identity Manager 8.0 • Technical Deployment Overview

The exported records are not ordered. However, there are fields in the exported
data that allow a subsequent query of the warehouse to put the data in
chronological order.

In a typical deployment, Data Exporter writes data to a set of staging tables.
Identity Manager provides SQL scripts that define these tables for each type of
supported database. You do not need to modify these tables, unless your Identity
Manager deployment contains extended attributes that need to be exported.
However, if you have extended attributes that will be exported, then you must
customize your export schema and compile your own factory class for handling
these attributes. For more information, see “Customizing Data Exporter” on
page 96.

Exporting data to staging tables allows you to write your own Extract, Transform,
and Load (ETL) infrastructure so that the data can be processed for storage in a
data warehouse, and ultimately, in a datamart. Timestamp manipulation is a
commonly-implemented transformation. The system uses the java.sql.Timestamp
format of YYYY-MM-DD hh:mm:ss. Although the day of the week is not explicitly
specified in the timestamp, it can be extracted using a transformation.

If you do not need to transfer information to a warehouse and datamart, then you
can consider the staging tables to be the final destination. In this case, be sure to use
the same connection information for read and write operations. See the Identity
Manager Administration for information about configuring Data Exporter.

Forensic queries allow Identity Manager to read data that has been stored in the
data warehouse (or staging tables in a simple environment). They can identify
users or roles based on current or historical values of the user, role, or related data
types. A forensic query is similar to a Find User or Find Role report, but it differs in
that the matching criteria can be evaluated against historical data, and because it
allows you to search attributes that are of data types other than the user or role
being queried. See the Identity Manager Administration for information about
defining forensic query.

Planning for Data Exporter

Chapter 5 Data Exporter 89

The following diagram illustrates the data flow when Data Exporter is enabled.

Figure 5-1

Planning for Data Exporter
Before you begin deploying Data Exporter, you need to plan for the following:

• How much data will you export? The number of exported data types
determines how many database tables will be required. If you choose to queue
all changes to a data type, or even to export object deletions, the database
requirements grow. See “Database Considerations” on page 90 for more
information.

• Do you need to have a dedicated export server? Performance can be
diminished if you export data on the same server that performs complex
workflows. See “Export Server Considerations” on page 92 for more
information.

• Do you have custom extended attributes that need to be exported? If yes, you
must update the export schema and recompile the Warehouse Interface Code
(WIC) and update the export schema. See “Customizing Data Exporter” on
page 96 for more information.

Planning for Data Exporter

90 Sun™ Identity Manager 8.0 • Technical Deployment Overview

Database Considerations
Data Exporter can export to any database that is supported as an Identity Manager
repository. In addition, Data Exporter should also work with any RDBMS
supported by Hibernate 3.2.

Hibernate Support
Data Exporter uses Hibernate 3.2 for the bi-directional mapping between Identity
Manager Java objects and RDBMS tables. Identity Manager provides a set of files
(one for each data type) that control the mapping between warehouse beans and
RDBMS tables. These files are located in the $WSHOME/exporter/hbm directory.

See “Customizing Data Exporter” on page 96 for more details.

Hibernate uses C3P0 as its connection pool. C3P0 sends its log entries to the JRE
logging system, which has INFO-level logging enabled by default. To restrict what
is logged, add the following lines to the bottom of the
$JRE/lib/logging.properties file:

com.mchange.v2.c3p0.impl.level=SEVERE
com.mchange.v2.c3p0.level=SEVERE
com.mchange.v2.log.level=SEVERE

Object/Relational Mapping
Identity Manager uses (Java) objects to perform its work, but when these objects
are to be exported to a set of relational database tables, the objects must undergo a
transformation commonly called object/relational mapping. This transformation is
necessary because there are differences between the types of data that can be
expressed in a RDBMS relationship and the types of data that can be expressed in
an arbitrary Java object. For example, consider the following Java class:

class Widget {
 private String _id;
 private Map<String,Widget> _subWidgets;
 ...
}

Planning for Data Exporter

Chapter 5 Data Exporter 91

This class presents a problem when expressed in relational terms, because the
_subWidgets field is a nested structure. If you try decomposing two hierarchies of
Widget objects that have shared subWidgets into a set of RDBMS tables, and delete
one of the hierarchies, you quickly end up with a reference-counting problem.

To address the representational differences, Identity Manager places some
constraints on what type of data can be exported. Specifically, the limit allows for
the top-level Java object to contain scalar attributes, lists of scalar attributes, and
maps of scalar attributes. In a few instances, Identity Manager needs a slightly
richer expression — and to resolve these cases Identity Manager has introduced the
PseudoModel. A PseudoModel is conceptually a data structure containing only
scalar attributes. A top-level Java object can contain attributes that are
PseudoModels or Lists of PseudoModels. PseudoModels are Identity Manager
structures that cannot be extended. The following is an example of a PseudoModel.

Identity Manager can properly perform the object/relational transformation of
TopLevelModel because PseudoModelPoint only contains scalar attributes. In
query-notation, the color attribute of the PseudoModel is addressable as:

TopLevelModel.points[].color

When inspecting the Identity Manager Data Export schema, you will find a few
PseudoModel types. These types represent some of the more complex data in the
top-level export models. You cannot query for a PseudoModel directly because a
PseudoModel is not exported directly. A PseudoModel is simply structured data
held by an attribute of a top-level model.

class TopLevelModel
{
 private String _name;
 private List<PseudoModelPoint> _points;
}
class PseudoModelPoint
{
 private String _name;
 private String _color;
 private int _x;
 private int _y;
 private int _z;
}

Planning for Data Exporter

92 Sun™ Identity Manager 8.0 • Technical Deployment Overview

Database Tables
The number of RDBMS tables defined in the warehouse DDL depends on the
number of model types being exported, and what types of attributes each model is
exporting. In general, each model requires three to five tables, with list/map
valued attributes stored in their own table. The default DDL contains about 50
tables. After studying the export schema, you may choose to modify the Hibernate
mapping files to exclude some attributes tables.

Space Requirements
The amount of space required in the exporter warehouse depends on

• Which objects are to be exported

• How long the records are to stay in the export warehouse

• How busy the Identity Manager servers are

WorkflowActivity and ResourceAccount are usually the highest-volume exported
models. For example, a single workflow could contain multiple activities, and as
each workflow is executed, Identity Manager could create dozens of new records to
be written to the warehouse. Editing a User object may result in one
ResourceAccount record per account linked to the User. TaskInstance, WorkItem
and LogRecord are also high-volume models. A single Identity Manager server can
produce over 50,000 object changes to be exported in one hour of operation.

Export Server Considerations
You should consider running the export task on a dedicated server, especially if
you expect to export a large amount of data. The export task is efficient at
transferring data from Identity Manager to the warehouse and will consume as
much CPU as possible during the export operation. If you do not use a dedicated
server, you should restrict the server from handling interactive traffic, because the
response time will degrade dramatically during a large export.

The Export Task primarily performs input/output operations between the Identity
Manager repository and the staging tables. The memory requirements of the export
task are modest, although the memory needs increase as the number of queued
records increases. The export task is typically constrained by the speed of the
input/output and uses multiple concurrent threads to increase throughput.

Loading the Default DDL

Chapter 5 Data Exporter 93

Choosing the appropriate server requires experimentation. If the transfer rates of
the input (Identity Manager repository) or the output (staging tables) are slow, the
export task will not saturate a modern CPU. The query speed of the input path will
not be an issue, as the export operation only issues a query at the beginning of the
export cycle. The majority of the time is spent reading and writing records.

Identity Manager provides JMX MBeans to determine the input and output data
rates. See Identity Manager Administration for more information about these
MBeans.

Loading the Default DDL
This section lists the commands needed to create a database and load the default
Data Definition Language (DDL). The export DDL is generated by tools provided
with Identity Manager to match the current export schema.

The create_warehouse scripts are located in the $WSHOME/exporter directory.
Identity Manager also includes corresponding drop_warehouse scripts in the same
directory.

DB2
Execute a script similar to the following as the system DBA. Be sure to create the
idm_warehouse database and the idm_warehouse/idm_warehouse user before
running the script.

CONNECT TO idm_warehouse USER idm_warehouse using 'idm_warehouse'
CREATE SCHEMA idm_warehouse AUTHORIZATION idm_warehouse
GRANT CONNECT ON DATABASE TO USER idm_warehouse

To load the DDL, add the following line to the
%WSHOME%\exporter\create_warehouse.db2 file:

CONNECT TO idm_warehouse USER idm_warehouse using 'idm_warehouse'

Then run the following command (assuming a Windows DB2 server):

db2cmd db2setcp.bat db2 -f create_warehouse.db2

Loading the Default DDL

94 Sun™ Identity Manager 8.0 • Technical Deployment Overview

MySQL
Execute a script similar to the following as the system DBA.

Create the database (Schema in MySQL terms)

CREATE DATABASE IF NOT EXISTS idm_warehouse CHARACTER SET utf8 COLLATE
utf8_bin;

Give permissions to the "idm_warehouse" userid logging in from any host.

GRANT ALL PRIVILEGES on idm_warehouse.* TO idm_warehouse IDENTIFIED BY
'idm_warehouse';

Give permissions to the "idm_warehouse" userid logging in from any host.

GRANT ALL PRIVILEGES on idm_warehouse.* TO idm_warehouse@'%' IDENTIFIED BY
'idm_warehouse';

Give permissions to the "idm_warehouse" user when it logs in from the
localhost.

GRANT ALL PRIVILEGES on idm_warehouse.* TO idm_warehouse@localhost
IDENTIFIED BY 'idm_warehouse';

To load the DDL, execute the following command:

mysql -uidm_warehouse -pidm_warehouse -Didm_warehouse <
create_warehouse.mysql

Oracle
Execute a script similar to the following as the system DBA.

-- Create tablespace and a user for warehouse

CREATE TABLESPACE idm_warehouse_ts
DATAFILE 'D:/Oracle/warehouse/idm_warehouse.dbf' SIZE 10M
AUTOEXTEND ON NEXT 10M
DEFAULT STORAGE (INITIAL 10M NEXT 10M);

CREATE USER idm_warehouse IDENTIFIED BY idm_warehouse
DEFAULT TABLESPACE idm_warehouse_ts
QUOTA UNLIMITED ON idm_warehouse_ts;

GRANT CREATE SESSION to idm_warehouse;

To load the DDL, execute the following command

sqlplus idm_warehouse/idm_warehouse@idm_warehouse < create_warehouse.oracle

Loading the Default DDL

Chapter 5 Data Exporter 95

SQL Server
Execute a script similar to the following as the system DBA. Uncomment lines as
necessary.

CREATE DATABASE idm_warehouse
GO

--For SQL Server authentication:
-- sp_addlogin user, password, defaultdb
--For Windows authentication:
-- sp_grantlogin <domain\user>

--For SQL Server 2005:
--CREATE LOGIN idm_warehouse WITH PASSWORD = 'idm_warehouse',
DEFAULT_DATABASE = idm_warehouse sp_addlogin 'idm_warehouse',
'idm_warehouse', 'idm_warehouse'

USE idm_warehouse
GO

--For SQL Server 2005 SP2 create a schema - not needed in other versions:
--CREATE SCHEMA idm_warehouse
--GO

--For SQL Server 2005 SP2 use CREATE user instead of sp_grantdbaccess
--CREATE USER idm_warehouse FOR LOGIN idm_warehouse with DEFAULT_SCHEMA =
idm_warehouse

sp_grantdbaccess 'idm_warehouse'
GO

To load the DDL, execute the following command:

osql -d idm_warehouse -U idm_warehouse -P idm_warehouse <
create_warehouse.sqlserver

Customizing Data Exporter

96 Sun™ Identity Manager 8.0 • Technical Deployment Overview

Customizing Data Exporter
Data exporting has two levels of schema in effect, the internal (ObjectClass) and the
external (Export) schemas. These schemas provide a data “interface” that can be
proven to be compliant over multiple releases of the Identity Manager. Compliant
means that the attribute names, data types, and data meanings will not change. An
attribute may be removed, but the attribute name cannot be re-used to mean
something different. Attributes may be added at any time. A compliant schema
allows reports to be written against a version of the schema and run without
modification against any later version.

The ObjectClass schema tells programs in the Identity Manager server what the
data should look like, while the external schema tells the warehouse what the data
should look like. The internal schema will vary from release to release, but the
external schema will stay compliant across releases.

Identity Manager ObjectClass Schema
The ObjectClass schema can be extended for User and Role types, but otherwise
cannot be changed. The ObjectClass schema is used by programs executing on the
Identity Manager servers to provide access to the data objects themselves. This
schema is compiled into Identity Manager and represents the data that is stored
and operated on within Identity Manager.

This schema may change between versions of Identity Manager, but is abstract to
the data warehouse because of the export schema. The ObjectClass schema
provides a schema abstraction on top of the Identity Manager Persistent Object
layer, which are the data objects stored in the Identity Manager repository.

Custom User and Role attributes, also known as extended attributes, are defined in
the IDMSchemaConfiguration object. See “Editing Configuration Objects” on
page 139 for information about adding extended attributes to the ObjectClass
schema.

Export Schema
The export schema defines what data can be written to the warehouse. By default,
it is limited to a subset of the ObjectClass schema, although the difference between
the two is very small. The ObjectClass schema is represented by Java objects, but
the export schema must have a bi-directional mapping between Java objects and
RDBMS tables.

Customizing Data Exporter

Chapter 5 Data Exporter 97

After you have added an extended attribute to the IDMSchemaConfiguration object,
you must define the same attribute in the export schema, which is defined in the
$WSHOME/model-export.xml file. Locate the Role or User model in this file and add
a field element that defines the attribute. The field element can contain the
following parameters:

Table 5-2 Export attribute parameters

Parameter Description

name The name of the attribute. This value must match the name
assigned in the IDMSchemaConfiguration object.

type The data type of the attribute. You must specify the full Java class
name, such as java.lang.String or java.util.List.

introduced Optional. Specifies the release that the attribute was added to the
schema.

friendlyName The label that is displayed on the Data Exporter configuration
pages.

elementType If the type parameter is java.util.List, then this parameter
specifies the data type of the items in the list. Common values
include java.lang.String and
com.sun.idm.object.ReferenceBean.

referenceType If the elementType parameter is
com.sun.idm.object.ReferenceBean, then this parameter
references to another Identity Manager object or pseudo-object.

forensic Indicates the attribute is used to determine relationships. Possible
values are User and Role.

exported When set to false, the attribute is not exported. If you want to hide a
default attribute from the Data Exporter data type configuration
page, add exported=’false’ to the attribute definition.

You must create a custom WIC library to be able to export an
attribute in the default schema that has exporting disabled.

queryable When set to false, the field is not available for forensic queries.

max-length The maximum length of a value.

Customizing Data Exporter

98 Sun™ Identity Manager 8.0 • Technical Deployment Overview

The following example adds an extended attribute named telno to the export
schema as part of the User model:

<field name='telno'
type='java.lang.String'
introduced='8.0'
max-length='20'
friendlyName='Telephone Number'>
<description>The phone number assigned to the user.</description>

</field>

Modifying the Warehouse Interface Code
The Warehouse Interface Code (WIC) is provided in binary and source form in
Identity Manager. Many deployments will be able to use the WIC code in binary
form (no modifications), but some deployments may want to make other changes.
The WIC code must implement two interfaces to be used for exporting, and a third
interface to be used by the Forensic Query interface.

The default WIC implementation writes to a set of RDBMS tables. For many
applications this is sufficient, but you could create custom WIC code to write the
date to a JMS queue or to some other consumer.

The com.sun.idm.exporter.Factory and com.sun.idm.exporter.Exporter classes
are used to export data. The export code is responsible for converting models (Java
data objects) to a form suitable for storage. Typically, this means writing to a
relational database. As a result, the WIC code is responsible for Object to Relational
transformation.

The default WIC implementation uses Hibernate to provide the Object/Relational
mapping. This mapping is controlled by the Hibernate .hbm.xml mapping files,
which are in turn generated based on the export schema. Hibernate prefers to use a
Java bean-style data object for its work, and has various get and set methods to
accomplish this. The WIC code generates the corresponding Bean and hibernate
files that match the export schema. If Hibernate provides the necessary mapping
features, there may be no need to modify any WIC code manually.

The WIC files are located in the InstallationDirectory/REF/exporter directory.

Customizing Data Exporter

Chapter 5 Data Exporter 99

Generating a New Factory Class
Identity Manager allows you to add custom User and Role attributes to the
ObjectClass schema. These attributes, known as extended attributes, cannot be
exported unless you also add them to the export schema, regenerate the
Warehouse Interface Code (WIC), and deploy the code.

When extended attributes are added, you will need to edit the export schema
control file and add the attributes. If attributes are to be excluded from the
exporter, then you can simply mark the schema fields with exported='false' and
regenerate the WIC code.

To modify the WIC code you will need the following installed on your system

• An installation of Identity Manager

• Java 1.5 SDK

• ant 1.7 (or later)

• A text editor

The steps required to export extended attributes are as follows:

1. Get the WIC source code from the REF kit

2. Set the WSHOME environment variable to the installation directory of Identity
Manager

3. Back-up the export schema control file $WSHOME/model-export.xml then edit it.

4. Change directories to the WIC source top-level directory. This directory should
contain files named build.xml, BeanGenerator.java, and HbmGenerator.java.

5. Stop the application server.

6. Remove CLASSPATH from the environment.

7. Rebuild the WIC code with the ant rebuild command.

NOTE You must remove CLASSPATH from the environment before
performing executing ant rebuild in the next step.

Troubleshooting

100 Sun™ Identity Manager 8.0 • Technical Deployment Overview

8. Deploy the modified WIC code to the application server with the ant deploy
command.

9. Restart the application server.

Adding Localization Support for the WIC
The export schema contains numerous strings that are displayed on the Data
Exporter Type Configuration pages. By default, these strings are in English. Use
the following procedure to display the strings in another language:

1. Extract the contents of the $WSHOME/WEB-INF/lib/wicmessages.jar file.

2. Navigate to the com/sun/idm/warehouse/msgcat directory.

3. Translate the contents of WICMessages.properties file. Make sure the final
results are saved in a file that contains the locale. For example, if you translate
into German, the file name should be WICMessages_de_DE.properties.

You do not need to save the message catalog to the System Configuration object.

Troubleshooting
The volume and variety of data flowing through the exporter increase the
possibility of problems occurring during data export.

Beans and Other Tools
Data Exporter performance and throughput can be monitored through the JMX
management beans provided in Identity Manager. To minimize the performance
impact of exporting data, Identity Manager uses some memory-based queues that
are volatile. If the server terminates unexpectedly, the data in these queues will be
lost. You can monitor the size of these queues over a period of time to judge your
exposure to this risk.

NOTE If you change model-export.xml and rebuild the WIC as shown in
the preceding steps, a new warehouse DDL is generated. You must
drop the old tables and load the new DDL, which deletes any data
that is already in the tables.

Troubleshooting

Chapter 5 Data Exporter 101

Model Serialization Limits
Data Exporter must queue some objects to ensure they are available for export at
the appropriate time. Queuing these objects is done by Java serialization. However,
it is possible to include data in an exported object that is not serializable. In this
case, the exporter code should detect the non-serializable data and replace it with
tokens that indicate the problem, allowing the rest of the object to be exported.

Repository Polling Configuration
Each type may specify an independent export cycle. The administrator interface
provides an easy way to define the simpler cycles which will be sufficient for most
purposes. However, the export cycles can also be specified in the native cron style,
which supports even more flexibility.

Tracing and Logging
The default WIC code uses Hibernate to provide object/RDBMS mapping for the
exported data objects, but using the Hibernate library means the tracing and
logging is not fully integrated. The actual WIC code can be traced by using the
com.sun.idm.warehouse.* package. However, enabling Hibernate logging requires
a different technique.

To pass a Hibernate property to the code that initiates the Hibernate sessions, add
an attribute to the DatabaseConnection configuration object. You must prefix the
attribute name with an “X”. For example, if the native property name is
hibernate.show_sql, you must define it in the configuration object as
Xhibernate.show_sql. The following example causes Hibernate to print any
generated SQL to the application server’s standard output.

<Attribute name=’Xhibernate.show_sql’ value=’true’>

By default, Hibernate uses C3P0 for connection pooling. C3P0 uses the
java.logging facility for its logging, which is controlled by the
$JRE/lib/logging.properties file.

Troubleshooting

102 Sun™ Identity Manager 8.0 • Technical Deployment Overview

103

Chapter 6

Configuring User Actions

This chapter details how to add custom tasks to the Identity Manager
Administrator Interface and configure user actions that you can execute from two
areas of the interface:

• User Account Search Results page

• User applet on the Accounts page

Adding Custom Tasks
Follow these general steps to add custom tasks:

• Set up authorization for the task

• Add the task to the repository

NOTE To add a custom task, you must edit an existing TaskDefinition
You can use the Identity Manager IDE to view and edit task
definitions. Instructions for installing and configuring the Identity
Manager IDE are provided on
https://identitymanageride.dev.java.net.

Adding Custom Tasks

104 Identity Manager 8.0 • Technical Deployment Overview

Setting Up Custom Task Authorization
Typically, you set authorization for custom tasks to restrict access to the task to a
certain set of administrators. To set up authorization:

1. Add a new authorization type (AuthType) to the repository for the task

2. Create a new AdminGroup (capability) for the task

3. Grant the new capability to one or more administrators

Step 1: Create an AuthType
The new authorization type you create should extend the existing TaskDefinition,
TaskInstance, and TaskTemplate AuthTypes. To add the authorization type, edit
the Authorization Types Configuration object in the repository and add a new
authorization type element for your task.

Use the <AuthType> element to create a new authorization type. This element has
one required property: name. The example below displays the correct syntax for an
<AuthType> element.

After creating the authorization type, you must edit the Authorization Types
Configuration object in the repository, and add the new <AuthType> element.

The following example shows how to add a custom task to move multiple users
into a new organization.

Code Example 6-1 Moving Multiple Users into a New Organization

<Configuration name='AuthorizationTypes'>
 <Extension>
 <AuthTypes>
 <AuthType name='Move User'
extends='TaskDefinition,TaskInstance,TaskTemplate'/>
 </AuthTypes>
 </Extension>
</Configuration>

Adding Custom Tasks

Chapter 6 Configuring User Actions 105

Step 2: Create an AdminGroup
Next, create an AdminGroup that grants Right.VIEW for the newly created
AuthType. To do this, you must create an XML file with the new administrator
group, and then import it into the Identity Manager repository.

Step 3: Grant Capabilities to Administrators
Finally, you must grant administrators access to execute the newly defined task.
You can accomplish this in one of two ways:

• Directly assign the new capability, or

• Add the new capability to an Admin Role (either directly or by using a
capabilities rule), and then assign it.

Code Example 6-2 Creating an AdminGroup

<?xml version='1.0' encoding='UTF-8'?>
 <!DOCTYPE Waveset PUBLIC 'waveset.dtd' 'waveset.dtd'>
 <Waveset>
 <AdminGroup name='Move User'
 protected='true'
 displayName='UI_ADMINGROUP_MOVE_USER'
 description='UI_ADMINGROUP_MOVE_USER_DESCRIPTION'>
 <Permissions>
 <Permission type='Move User' rights='View'/>
 </Permissions>
 <MemberObjectGroups>
 <ObjectRef type='ObjectGroup' id='#ID#All' name='All'/>
 </MemberObjectGroups>
 </AdminGroup>
 </Waveset>

NOTE The displayName and description attributes are message catalog
keys. If these are not found in a message catalog, they are displayed
as they are found in the attributes. If message catalog keys are used,
you must add the messages either into WPMessages.properties or a
custom message catalog.

Adding Custom Tasks

106 Identity Manager 8.0 • Technical Deployment Overview

Adding a Task to the Repository
After you set up task authorization, you can add the task to the repository. The task
is a typical TaskDefinition that can be defined through the Identity Manager IDE
or imported as XML. For example, a task to change the organization for multiple
users would resemble the following example (which is included in the samples
directory).

Code Example 6-3 Changing the Organization for Multiple Users

<?xml version='1.0' encoding='UTF-8'?>
<!DOCTYPE TaskDefinition PUBLIC 'waveset.dtd' 'waveset.dtd'>

<!-- MemberObjectGroups="#ID#Top" authType="Move User" name="Change Organizations"
taskType="Workflow" visibility="runschedule"-->

<TaskDefinition authType='MoveUser'
name='Change Organizations' taskType='Workflow'
executor='com.waveset.workflow.WorkflowExecutor'
suspendable='true'
syncControlAllowed='true' execMode='sync'
execLimit='0' resultLimit='0'

 resultOption='delete' visibility='runschedule'
progressInterval='0'>

<Form name='Change Organization Form'
title='Change Organization Form'>
<Display class='EditForm'/>
<Include>

<ObjectRef type='UserForm' name='User Library'/>
<ObjectRef type='UserForm' name='Organization Library'/>

</Include>
FieldRef name='namesList'/>
<FieldRef name='orgsList'/>
<FieldRef name='waveset.organization'/>

</Form>
<Extension>
<WFProcess name='Change Organizations' title='Change Organizations'>

<Variable name='waveset.organization'/>
<Variable name='userObjectIds' input='true'>
<Comments>The names of the accounts to change the organization on.</Comments>
</Variable>

Adding Custom Tasks

Chapter 6 Configuring User Actions 107

About the Example
Note these features of the preceding example:

• The task's authType attribute is set to Move User. This will restrict access to this
task to users that are assigned the capability to execute this authorization type.

• The form contains FieldRefs to namesList and orgsList. These fields are
defined in the User Library and Organization Library, respectively. Including
these fields will display lists of the names of all selected users and all selected
organizations. For potentially dangerous tasks, you should include one or both of
these fields so the user is aware of the potential effects of running the task.

• The task has an input variable named userObjectIds. This variable contains a
list of the names or IDs of the users selected in the User Account Search Results
page or in the user applet on the Accounts page. Iterate over this variable to
perform the desired action on all selected users.

Activity id='0' name='start'>
<ReportTitle>

<s>start</s>
</ReportTitle>
<Transition to='Process Org Moves'/>

</Activity>
<Activity id='1' name='Process Org Moves'>

<Action id='0' process='Move User'>
<Iterate for='currentAccount' in='userObjectIds'/>
<Argument name='userId' value='$(currentAccount)'/>
<Argument name='organizationId'

value='$(waveset.organization)'/>
</Action>
<Transition to='end'/>

</Activity>

 <Activity id='2' name='end'/>
</WFProcess>
</Extension>

<MemberObjectGroups>
<ObjectRef type='ObjectGroup' id='#ID#Top' name='Top'/>

</MemberObjectGroups>
</TaskDefinition>

Code Example 6-3 Changing the Organization for Multiple Users (Continued)

<?xml version='1.0' encoding='UTF-8'?>

Adding Custom Tasks

108 Identity Manager 8.0 • Technical Deployment Overview

The following table lists the variables that are available for input to the task.

To enable this workflow, you must also add to the repository a sub-process to
change a user's organization, as shown in the following example.

Table 6-1 Task Variables

Variable Description

userObjectIds List of IDs of the selected users. Available from the User Account Search
Results and Accounts pages. When invoked from the User Account Search
Results page, this list contains the names of the selected users.

userNames List of names of the selected users. Available from the User Account Search
Results and Accounts pages.

orgObjectIds A List of IDs of the selected organizations. Available only from the Accounts
page.

orgNames A List of names of the selected organizations. Available only from the
Accounts page.

Code Example 6-4 Changing a User's Organization

<?xml version='1.0' encoding='UTF-8'?>
 <!DOCTYPE Configuration PUBLIC 'waveset.dtd' 'waveset.dtd'>
 <!-- MemberObjectGroups="#ID#Top" configType="WFProcess" name="Move
User"-->
 <Configuration name='Move User' createDate='1083353996807'>
 <Extension>
 <WFProcess name='Move User' title='Move User'>
 <Variable name='userId' input='true'>
 <Comments>The accountId of the user to move.</Comments>
 </Variable>
 <Variable name='organizationId' input='true'>
 <Comments>The ID of the organization to move the user
into.</Comments>
 </Variable>

 <Activity id='0' name='Start'>
 <Transition to='Update Organization'/>
 </Activity>

Configuring User Actions

Chapter 6 Configuring User Actions 109

Configuring User Actions
You must configure definitions for the buttons and actions menu selections that
initiate custom actions. Definitions for the buttons and actions menu items that
appear on the User Account Search Results and Accounts pages are contained in
the User Actions Configuration configuration object.

Do not directly edit the User Actions Configuration object. Rather, best practice for
configuring user actions is to:

• Copy the User Actions Configuration configuration object into a new
configuration object.

• Modify the System Configuration object to point to the new configuration
object.

Generally, the steps for configuring user actions are as follows:

1. Copy the User Actions Configuration configuration object into a new XML file.

2. Change the name of the new object to My User Actions Configuration.

3. Make any desired modifications to My User Actions Configuration.

 <Activity id='1' name='Update Organization'>
 <Action id='0' process='Update User View'>
 <Argument name='accountId' value='$(userId)'/>
 <Argument name='updates'>
 <map>
 <s>waveset.organization</s>
 <ref>organizationId</ref>
 </map>
 </Argument>
 </Action>
 <Transition to='End'/>
 </Activity>

 <Activity id='2' name='End'/>
 </WFProcess>
 </Extension>
 <MemberObjectGroups>
 <ObjectRef type='ObjectGroup' id='#ID#Top' name='Top'/>
 </MemberObjectGroups>
 </Configuration>

Code Example 6-4 Changing a User's Organization (Continued)

Configuring User Actions

110 Identity Manager 8.0 • Technical Deployment Overview

4. Import the XML file into Identity Manager from the Import Exchange File page

5. Modify SystemConfiguration to change the userActionsConfigMapping
attribute's value to My User Actions Configuration

The configuration object consists of these configuration sections.

Each section contains a list of user actions to display in the interface. The button
and menu configuration items have the same basic properties. Both include several
extensions unique to the interface.

The following excerpt is an example of the user action configuration customized to
add the Change Organization task to each list.

Table 6-2 User Actions Configuration Attributes

Attribute Description

findUsersButtons Contains a list of button definitions for the Administrator
Interface User Account Search Results page.

userApplet.userMenu Contains a list of menu item definitions for the user actions
menu. This menu displays when you right-click a user in the
applet on the Administrator Interface Accounts page.

userApplet.organizationMenu Contains a list of menu item definitions for the organization
actions menu. This menu displays when you right-click an
organization in the applet on the Accounts page.

Code Example 6-5 Adding Change Organization Task to Each List

<?xml version='1.0' encoding='UTF-8'?>
<!DOCTYPE Waveset PUBLIC 'waveset.dtd' 'waveset.dtd'>
<Waveset>

<Configuration name='My User Actions Configuration'>
 <Extension>
 <Object>
 <!-- Buttons for the find users results page. -->
 <Attribute name='findUsersButtons'>
 <List>
 <Object>
 <Attribute name='textKey' value='UI_NEW_LABEL' />
 <Attribute name='commandName' value='New' />
 <Attribute name='requiredPermission'>
 <Object>
 <Attribute name='objectType' value='User' />
 <Attribute name='rights' value='Create' />
 </Object>

Configuring User Actions

Chapter 6 Configuring User Actions 111

 </Attribute>
 <Attribute name='alwaysDisplay' value='true' />
 </Object>
 ...
 <Object>
 <Attribute name='textKey' value='UI_CHANGE_ORGANIZATIONS_LABEL' />
 <Attribute name='commandName'
value='Change Organizations' />
 </Object>
 </List>
</Attribute>
 <Attribute name='userApplet'>
 <Object>
 <!-- The menu to display when a user is selected. -->
 <Attribute name='userMenu'>
 <List>
 <Object>
 <Attribute name='textKey'
value='UI_ACCT_JAVA_MENU_NEW_ORG' />
 <Attribute name='commandName'
value='New Organization' />
 <Attribute name='requiredPermission'>
 <Object>
 <Attribute name='objectType' value='ObjectGroup' />
 <Attribute name='rights' value='Create' />
 </Object>
 </Attribute>
 </Object>
 ...
 <Object>
 <Attribute name='separator' value='separator' />
 </Object>
 <Object>
 <Attribute name='textKey'
value='UI_CHANGE_ORGANIZATIONS_MENU_LABEL' />
 <Attribute name='commandName'
value='Change Organizations' />
 </Object>
 </List>
</Attribute>
 <!-- The menu to display when an organization is selected. -->
 <Attribute name='organizationMenu'>
 <List>
 <Object>
 <Attribute name='textKey'
value='UI_ACCT_JAVA_MENU_NEW_JUNCTION' />
 <Attribute name='commandName'
value='New Directory Junction' />
 <Attribute name='requiredPermission'>
 <Object>
 <Attribute name='objectType' value='ObjectGroup' />
 <Attribute name='rights' value='Create' />
 </Object>
 </Attribute>

Code Example 6-5 Adding Change Organization Task to Each List (Continued)

Configuring User Actions

112 Identity Manager 8.0 • Technical Deployment Overview

User action definitions support these core attributes.

 <Attribute name='orgTypes' value='normal,dynamic' />
 </Object>
 ...
 <Object>
 <Attribute name='separator' value='separator' />
 </Object>
 <Object>
 <Attribute name='textKey'
value='UI_CHANGE_ORGANIZATIONS_MENU_LABEL' />
 <Attribute name='commandName'
value='Change Organizations' />
 </Object>
 </List>
 </Attribute>
 </Object>
 </Attribute>
 </Object>
 </Extension>
 <MemberObjectGroups>
 <ObjectRef type='ObjectGroup' name='All'/>
</MemberObjectGroups>
</Configuration>
</Waveset>

Table 6-3 Supported Core Attributes

Attribute Description

textKey Message catalog key for the text of the button or menu item.

commandName Name of the command to execute. This can be a command that is natively
supported (such as New or Delete User), or the name of a TaskDefinition to
execute.

requiredPermission.objectType Type of object that the rights are required on in order to display this item. This is
applicable only for natively supported commands. Task Definitions should use
AuthTypes for controlling access.

requiredPermission.rights Comma-separated list of Right names required on the specified objectType to
display this item. This is applicable only for natively supported commands. Task
Definitions should use AuthTypes for controlling access.

alwaysDisplay Optional. Specifies whether to always display this button. If set to a value of true,
the button is displayed even if user search returns no results. The default value
for this attribute is false.

Applies to findUsersButtons section only.

Code Example 6-5 Adding Change Organization Task to Each List (Continued)

Configuring User Actions

Chapter 6 Configuring User Actions 113

User actions definitions in the userApplet section also support the attributes in the
following table.

Table 6-4 userApplet User Action Supported Attributes

Attribute Description

orgTypes Comma-separated list of organization types for which to display the item in the
organization menu. Possible values are normal, dynamic, and virtual for
normal organizations, dynamic organizations, and virtual organizations,
respectively.

If this attribute is not specified, the menu item is displayed for all organization
types.

separator Special item in the format <Object><Attribute name='separator'
value='separator'/></Object>. Separators are displayed as horizontal bars
in the Administrator Interface menus, and cannot be selected.

Configuring User Actions

114 Identity Manager 8.0 • Technical Deployment Overview

115

Chapter 7

Private Labeling of Identity Manager

This chapter identifies the basic components you will need to rebrand the Identity
Manager interface to match your company’s intranet or corporate style guidelines.
Private labeling is the customization of the interface to meet these corporate
guidelines.

Private Labeling Tasks
There are three general categories of private labeling tasks:

• Changing default header content by incorporating your corporate logo,
changing default text, and altering colors in both the User and Administrator
interfaces.

• Changing display fonts and component colors throughout the application
through the use of a style sheet located in styles\customStyle.css.

• Changing Identity Manager behavior on commonly used pages by editing
the System Configuration object. These tasks, which include disabling the
Forgot Your Password? button, are frequently performed by users while
rebranding the product interface.

Architectural Features

116 Identity Manager 8.0 • Technical Deployment Overview

Architectural Features
Private labeling includes editing the components listed in the following table.

Style Sheets
Four style sheets affect the display characteristics of text in the product interface:

• lockhart.css — Contains Sun corporate interface styles for web applications.

• style.css — Defines the display attributes of pages throughout both
interfaces. This file also controls the images contained in the headers.

• customStyle.css — Contains any changes to the default settings contained in
style.css. and lockhart.css. Settings in this file override the settings in
style.css and lockhart.css. Customers should not edit the preceding files,
but instead put their customizations into customStyle.css.

• Styles-Help.css — Defines style classes used in online help and pop-up help
(i-Help).

Table 7-1 Customizable Components

Component Interface

$WSHOME/styles/customStyle.css Administrator and User

$WSHOME/WEB-INF/lib/idmcommon.jar Administrator and User

$WSHOME/user/userFooter_beforeFirstTableRowTag.jsp User Interface

$WSHOME/user/userFooter_beforeEndBodyTag.jsp User Interface

$WSHOME/user/userFooter_beforeLastEndTableRowTag.jsp User Interface

$WSHOME/includes/bodyEnd_beforeFirstTableRowTag.jsp Administrator Interface

$WSHOME/includes/bodyEnd_beforeEndBodyTag.jsp Administrator Interface

$WSHOME/includes/bodyEnd_beforeLastEndTableRowTag.jsp Administrator Interface

$WSHOME/index_quickLinks.jsp Administrator and User

Architectural Features

Chapter 7 Private Labeling of Identity Manager 117

Default Text
Default text occurs throughout the product interface in the following:

• form titles, subtitles, buttons, odd and even rows, section heads

• general text

• warning messages

• navigation button text, including both available and selected navigation
buttons

• table header/body text

Text Attributes
Display attributes include

• title — font-family, font-size, font-weight, color

• button — text-alignment, background-color

• text — same as title, text-decoration, white-space

Default Style Settings
The $WSHOME/styles/style.css and lockhart.css files contains default style
settings. Do not edit these files.

Customized File
The customStyle.css file contains customizations and is not overwritten during
product upgrades. Settings defined there will override the default settings in
style.css and lockhart.css. Include all your customizations in customStyle.css.

Customizing Headers

118 Identity Manager 8.0 • Technical Deployment Overview

JSP Files
Several JSP files contain the default settings for headers: userHeader.jsp,
bodyEnd.jsp, and bodyStart.jsp. Do not edit these files. Instead, to preserve your
customizations during product upgrade, edit only the JSPs listed in Architectural
Features.

WPMessages_en.properties File
The $WSHOME/WEB-INF/lib/idmcommon.jar file contains the message catalog entries
that you can extract into a WPMessages_en.properties file for editing.

Customizing Headers
Customization tasks are identical for both interfaces, although you must edit
different files.

Changing Header Appearance
The most typical labeling tasks involve

• Changing the image referenced in the header section of the page from the
default Sun logo to corporate standards. Replace or remove images by editing
customStyle.css.

• Suppressing the Identity Manager logo

• Using corporate internal look and feel guidelines, specifically borders, header,
and background colors

• Changing “logged in as ...” txt. You cannot change this through .jsps. You can
edit the custom message catalog. See “Changing Default Information
Displayed in the Identity Manager User Interface Home Page” on page 123.

NOTE Avoid editing any .jsp file other than the specified files. If you must
edit one, first back up the .jsp to a safe location before copying,
editing, and renaming it.

Customizing Identity Manager Pages

Chapter 7 Private Labeling of Identity Manager 119

Customizing Identity Manager Pages
Typical customizations include:

• Customizing the home page

• Changing Default Strings in the Identity Manager User Interface Home Page

Customizing the Home Page
• Adding a list of quick links

• Changing the default login text

• Changing page title and subtitle

• Customizing the browser title bar

Adding a List of Quick Links
A typical customization to the home page involves adding a custom list of links to
tasks or resources that users frequently access in your environment. These quick
links offer a shortcut through the product interface to frequent destinations.

To add a list of quick links

1. Add links to the list in index_quickLinks.jsp.

2. Uncomment the list section by removing the surrounding <%-- and --%> tags.

3. Save the file. You do not need to restart your application server.

Customizing Identity Manager Pages

120 Identity Manager 8.0 • Technical Deployment Overview

Changing the Default “Logged in as ..” Text
1. Imported the following XML file:

2. Add the following line to the System Configuration object within the
<Configuration><Extension><Object> element:

<Attribute name='customMessageCatalog' value='AltMsgCatalog'/>

3. Add the following line:

<msg id=’UI_NAV_FOOT_LOG’>mytext{0}</msg>

4. Save change and restart your application server.

Changing Page Title and Subtitle
To change the default Login page title and subtitle and welcome message, change
the following entries in the custom message catalog:

• UI_LOGIN_TITLE

• UI_LOGIN_TITLE_TO_RESOURCE

• UI_LOGIN_WELCOME2

<?xml version='1.0' encoding='UTF-8'?>
<!DOCTYPE Configuration PUBLIC 'waveset.dtd' 'waveset.dtd'>
<Configuration name='AltMsgCatalog'>
 <Extension>
 <CustomCatalog id='AltMsgCatalog' enabled='true'>
 <MessageSet language='en' country='US'>
 <Msg id='UI_BROWSER_TITLE_PROD_NAME_OVERRIDE'>Override Name</Msg>
 </MessageSet>
 </CustomCatalog>
 </Extension>
</Configuration>

Customizing Identity Manager Pages

Chapter 7 Private Labeling of Identity Manager 121

To change this text, follow the procedure for extracting and editing the
WPMessages_en.properties file detailed in “Changing the Default “Logged in as
..” Text” on page 120.

Changing Background Image on the Login Page
You can change the background image by editing customStyle.css as follows:

div#loginFormDiv {

background:

url(.../images/other/login-backimage2.jpg)

no-repeat;

margin-left: -10px;

padding: 0px 0px 280px;

height: 435px;

Code Example 7-1 Default Message Catalog Settings

UI_LOGIN_IN_PROGRESS_TITLE=Log In (In Progress)
UI_LOGIN_CHALLENGE=Enter Your {0} Password
UI_LOGIN_CHALLENGE_INFO=You are required to enter the password you logged into
[PRODUCT_NAME] with before the requested action can be completed.
UI_LOGIN_TITLE_LONG=[PRODUCT_NAME] LogIn
UI_LOGIN_WELCOME=Welcome to the Sun Java™ System [PRODUCT_NAME] system.
Enter the requested information, and then click Login.
UI_LOGIN_WELCOME2=Welcome to the Sun Java™ System [PRODUCT_NAME] system.
Enter your user ID and password, and then click Login. If you can't remember your
password, click Forgot Your Password?
UI_LOGIN_TITLE=Log In
UI_LOGIN_TITLE_TO_RESOURCE=Log In to {0}

Customizing Identity Manager Pages

122 Identity Manager 8.0 • Technical Deployment Overview

Customizing the Browser Title Bar
You can now replace the product name string in the browser title bar with a
localizable string of your choice.

1. Import the following XML file:

2. Using the Identity Manager IDE, load the System Configuration object for
editing. Add the following line inside the
<Configuration><Extension><Object> element:

<Attribute name='customMessageCatalog' value='AltMsgCatalog'/>

3. Also in the System Configuration object, you must change
ui.web.browserTitleProdNameOverride to true.

4. Save this change to the System Configuration object, and restart your
application server.

Code Example 7-2 XML to Import

<?xml version='1.0' encoding='UTF-8'?>
<!DOCTYPE Configuration PUBLIC 'waveset.dtd' 'waveset.dtd'>
<Configuration name='AltMsgCatalog'>
 <Extension>
 <CustomCatalog id='AltMsgCatalog' enabled='true'>
 <MessageSet language='en' country='US'>
 <Msg id='UI_BROWSER_TITLE_PROD_NAME_OVERRIDE'>Override Name</Msg>
 </MessageSet>
 </CustomCatalog>
 </Extension>
</Configuration>

Customizing Identity Manager Pages

Chapter 7 Private Labeling of Identity Manager 123

Changing Default Information Displayed in the
Identity Manager User Interface Home Page
The Identity Manager User Interface home page provides a “dashboard” area that
summarizes basic information about the logged-in account, including the default
strings listed in the following table.

All attributes belong to the ui.web.user.dashboard object.

By default, the value of the preceding configuration objects is set to true, and these
strings will appear in the Identity Manager User Interface. To suppress the display
of any string, set it to false in the System Configuration object.

You can edit the System Configuration object through the Identity Manager IDE.
For information on using the Identity Manager IDE, see Using the Identity Manager
IDE in Identity Manager Deployment Tools. For general information about the System
Configuration object, see Appendix A, “Editing Configuration Objects.”

Table 7-2 Default Settings of ui.web.user.dashboard Object

Default Configuration Object Setting Description

displayLoginFailures Displays the number of unsuccessful password or authentication question
login attempts if a maximum login attempts value has been configured in an
account’s account policy.

displayPasswordExpirationWarning Displays messages related to password expiration if password policy is
applied to an account.

displayApprovals

displayAttestationReviews

displayOtherWorkItems

displayRemediations

Enable the display of the following work item types for all users: Approvals,
Attestations, Remediations, and Other.

Note: Even if the configuration object is true for a particular type, the
interface string may not appear based on the permissions granted to a user
for his account.

displayRequests Specifies the number of outstanding requests for role, group, or resource
updates for an account

displayDelegations Displays a string that indicates that the user has defined an approval
delegation. Options include enabled or disabled.

Customizing Identity Manager Pages

124 Identity Manager 8.0 • Technical Deployment Overview

Changing the Appearance of the User Interface
Navigation Menus
The navigation menus of the User Interface requires two settings in the system
configuration object:

• ui.web.user.showMenu must be set to true

• When ui.web.user.menuLayout is set to horizontal (default) renders
horizontal tabs for the navigation menu. A value of vertical renders a menu
in a vertical tree menu.

Changing Font Characteristics
Display attributes typically specify the following basic font display characteristics:

Certain components can be further defined by additional characteristics. For
example, buttons can be defined with a background color. The alignment of the
text and button label is another characteristic.

Editing Font Characteristics
To edit, copy from styles.css and paste into customStyle.css. Then, modify the
selected setting in customStyle.css.

Table 7-3 Font-related Display Characteristics

Display Attribute Description

family For example, Helvetica or Arial

size Specified in point size (for example, 14 point)

weight Unspecified indicates normal weight. When specified, typically bold

color Typically specified as black (title -- font-family, font-size,
font-weight, color

Sample Labeling Exercises

Chapter 7 Private Labeling of Identity Manager 125

Example
The following entry represents the default settings for each page title:

.title {

 font-family: Arial, Helvetica, sans-serif;

 font-size: 16pt;

 font-weight: bold;

 color: C;

Sample Labeling Exercises
The following example illustrates how to suppress the Identity Manager logo and
reference a custom image in the masthead of the page. Consult the example files
located in the sample/rebranding directory.

• Changing product name

• Changing masthead colors

• Changing navigation tab colors

• Changing Identity Manager behavior on commonly used pages

Sample Labeling Exercises

126 Identity Manager 8.0 • Technical Deployment Overview

Replacing the Identity Manager Logo with a
Custom Logo
To change the logo in the Administrator or User interfaces, copy the following
snippets from styles/style.css into customStyle.css and replace the Identity
Manager logo image with your .image file:

Changing Masthead Appearance
To change the look-and-feel of Identity Manager,

1. Edit the styles/customStyle.css file.

2. Copy the following sections from styles.css into customStyle.css and
modify as appropriate.

td.MstTdLogo {
width: 31px;
height: 55px;
background: url(../images/other/logo.jpg) no-repeat 5px;

}

td.MstTdTtlProdNam {
background: url(../images/other/xyz_masthead.jpg) no-repeat 10px 30px;
padding:10px 10px 0px 10px;
vertical-align:top;
white-space:nowrap;
height: 75px;
width: 350px;

}

NOTE For best results, create logo images between 50 and 60 pixels high.

Sample Labeling Exercises

Chapter 7 Private Labeling of Identity Manager 127

Code Example 7-3 styles/customStyle.css File

MstDiv {background-image:url(../images/other/dot.gif);background-repeat:repeat-x;
background-position:left top;background-color:#000033}
.MstTblEnd {background: url(../images/other/dot.gif);background-color: #666;height: 1px;}
td.MstTblEndImg {

background-color: #666;
height: 1px;
background: url(../images/other/dot.gif);
font-size:1px;

}
td.MstTdLogo {

width: 31px;
height: 55px;
background: url(../images/other/logo.jpg) no-repeat 5px;

}
td.MstTdSep {

width: 1px;
height: 61px;
background: url(../images/other/dot.gif) no-repeat center;

}
td.MstTdTtlProdNam {

background: url(../images/other/xyz_masthead.jpg) no-repeat 10px 30px;
padding:10px 10px 0px 10px;
vertical-align:top;
white-space:nowrap;
height: 75px;
width: 350px;

}

Sample Labeling Exercises

128 Identity Manager 8.0 • Technical Deployment Overview

Changing Navigation Tabs

Customizing the Identity Manager User Interface Navigation Bar
The Identity Manager User Interface implements a second XPRESS form that
contains the navigation bar. This means that the rendered page has two <FORM>
tags, each with a different name attribute:

<form name="endUserNavigation">

and

<form name="mainform">

When you insert JavaScript code into the Identity Manager User Interface
navigation bar, be sure that you are referring the correct form. To do so, use the
name attribute to specify which <FORM> tag you want to reference:
document.mainform or document.endUserNavigation.

Customizing Navigation Links
Copy and edit the following code to customize the navigation links across the top
of the page. Change the background-color to an appropriate color.

Code Example 7-4 Customizing Navigation Links

* LEVEL 1 TABS */
.TabLvl1Div {

background-image:url(../images/other/dot.gif);
background-repeat:repeat-x;
background-position:left bottom;
background-color:#333366;
padding:6px 10px 0px;

}
a.TabLvl1Lnk:link, a.TabLvl1Lnk:visited {

display:block;
padding:4px 10px 3px;
font: bold 0.95em sans-serif;
color:#FFF;
text-decoration:none;
text-align:center;

}
table.TabLvl1Tbl td {

background-image:url(../images/other/dot.gif);
background-repeat:repeat-x;
background-position:left top;
background-color:#666699;
border:solid 1px #aba1b5;

}
table.TabLvl1Tbl td.TabLvl1TblSelTd {

Sample Labeling Exercises

Chapter 7 Private Labeling of Identity Manager 129

Changing Tab Panel Tabs

background-color:#9999CC;
background-image:url(../images/other/dot.gif);
background-repeat:repeat-x;
background-position:left bottom;
border-bottom:none;

Code Example 7-5 Changing Tab Panel Tabs Identity Manager

.TabLvl2Div {
background-image:url(../images/other/dot.gif);
background-repeat:repeat-x;
background-position:left bottom;
background-color:#9999CC;
padding:6px 0px 0px 10px

}
a.TabLvl2Lnk:link, a.TabLvl2Lnk:visited{

display:block;
padding:3px 6px 2px;
font: 0.8em sans-serif;
color:#333;
text-decoration:none;
text-align:center;

}
table.TabLvl2Tbl div.TabLvl2SelTxt {

display:block;
padding:3px 6px 2px;
font: 0.8em sans-serif;
color:#333;
font-weight:normal;
text-align:center;

}
table.TabLvl2Tbl td {

background-image:url(../images/other/dot.gif);
background-repeat:repeat-x;
background-position:left top;
background-color:#CCCCFF;
border:solid 1px #aba1b5;

}
table.TabLvl2Tbl td.TabLvl2TblSelTd {

border-bottom:none;
background-image:url(../images/other/dot.gif);
background-repeat:repeat-x;
background-position:left bottom;
background-color:#FFF;
border-left:solid 1px #aba1b5;
border-right:solid 1px #aba1b5;

Code Example 7-4 Customizing Navigation Links (Continued)

Sample Labeling Exercises

130 Identity Manager 8.0 • Technical Deployment Overview

Changing Sorting Table Header

Changing User / Resource Table Component

border-top:solid 1px #aba1b5;

table.Tab2TblNew td
{background-image:url(../images/other/dot.gif);background-repeat:repeat-x;background-positi
on:left top;background-color:#CCCCFF;border:solid 1px #8f989f}
table.Tab2TblNew td.Tab2TblSelTd
{border-bottom:none;background-image:url(../images/other/dot.gif);background-repeat:repeat-
x;background-position:left bottom;background-color:#FFF;border-left:solid 1px
#8f989f;border-right:solid 1px #8f989f;border-top:solid 1px #8f989f}

.tablehdr {
background-image: url(../images/other/dot.gif);
background-repeat: repeat-x;
background-position: left bottom;
background-color: #9999CC;

}

Code Example 7-6 Changing User / Resource Table Component

.tablesorthdr {
 /*background-color: #BEC7CC;*/

background-image:url(../images/other/dot.gif);
background-repeat:repeat-x;
background-position:left bottom;
background-color:#CCCCFF;
border:solid 1px #aba1b5;

}

.treeContentLayout {
 background-color: #9999CC;
}

.treeBaseRow {
 padding-top: 0px;
 padding-left: 10px;
 padding-right: 10px;

Code Example 7-5 Changing Tab Panel Tabs Identity Manager(Continued)

Sample Labeling Exercises

Chapter 7 Private Labeling of Identity Manager 131

You can customize many other options (including text style and size, alignment,
and the colors and configurations of other objects) by following the same
procedures.

 padding-bottom: 0px;
 background-color: #fff;
 border-left: solid 1px #8F989F;
 border-right: solid 1px #8F989F;
 border-bottom: solid 1px #8F989F;
}

.treeButtonCell {
 background-image:url(../images/other/dot.gif);
 background-color:#666699;
 color: #fff;
}

}

.treeMastHeadRow {
 background-color: #333366;
}

.treeMastHeadRow {
 background-color: #333366;
}

.treeMastHeadText {
 background-color: #333366;
 background-image: url(../images/other/dot.gif);
}

NOTE To see the changes without rebooting your server or browser,
perform a Ctrl-Refresh on a page.

Code Example 7-6 Changing User / Resource Table Component (Continued)

Sample Labeling Exercises

132 Identity Manager 8.0 • Technical Deployment Overview

Changing Identity Manager Behavior on
Commonly Used Pages
To customize Identity Manager behavior on commonly used pages, you can alter
settings in the System Configuration object.

Customizing with the System Configuration Object
You can customize many commonly altered properties of the User or
Administrator interfaces can by editing the System Configuration object. The
attribute <Attribute name='ui'> and its subobjects control the product interface.
Modifying the attributes under this attribute can change the behavior of Identity
Manager.

Miscellaneous Modifications: Admin Section of File
The admin section of System Configuration object file contains several attributes
that are related to the Administrator Interface.

• To disable the Forgot Your Password? button on the Administrator login page,
set disableForgotPassword to true.

• Setting supressHostName to true will suppress the display of the hostname for
processes on the Task Details page.

Code Example 7-7 Modifying the Admin Section of a File

<Attribute name='admin'>
<Object>

<Attribute name='disableForgotPassword'>
<Boolean>false</Boolean>

</Attribute>
<Attribute name='workflowResults'>

<Object>
<Attribute name='suppressHostName'>

<Boolean>false</Boolean>
</Attribute>

</Object>
</Attribute>

</Object>
</Attribute>

Sample Labeling Exercises

Chapter 7 Private Labeling of Identity Manager 133

Miscellaneous Changes: User Section of the File
The user section of the System Configuration object file includes options for the
User Interface.

• Disable the Forgot Your Password? button by setting disableForgotPassword
to true.

The workflowResults attribute contains attributes for customizing the display of
workflows for non-administrative users, as indicated below:

Table 7-4 Attributes for Customizing Workflows for Non-Administrative Users

Attribute Description

anonSuppressReports Controls whether the workflow diagram is displayed in the anonymous
user workflow status pages (anonProcessStatus.jsp).

suppressHostName Controls whether the hostname is included in workflow status pages for
end-users (processStatus.jsp).

suppressReports Controls whether workflow diagrams is displayed to all non-anonymous
users (processStatus.jsp).

Code Example 7-8 Customizing Workflows for Non-Administrative Users

<Attribute name='user'>
<Object>
<Attribute name='disableForgotPassword'>
<Boolean>false</Boolean>

</Attribute>
<Attribute name='workflowResults'>
<Object>

<Attribute name='anonSuppressReports'>
<Boolean>false</Boolean>

</Attribute>
<Attribute name='suppressHostName'>

<Boolean>false</Boolean>
</Attribute>
<Attribute name='suppressReports'>

<Boolean>false</Boolean>
</Attribute>
</Object>

</Attribute>
</Object>

</Attribute>

Sample Labeling Exercises

134 Identity Manager 8.0 • Technical Deployment Overview

• To block the display of password and authentication question answers, set
obfuscateAnswers to true. This setting causes answers to be displayed as
asterisks in both the Administrator Interface and User Interface.

<Attribute name="obfuscateAnswers">

<Boolean>true</Boolean>

</Attribute>

135

Chapter 8

Customizing Message Catalogs

To add message catalog entries or modify entries provided with the system, you
can create a customized message catalog.

Advantages of Custom Message Catalogs
Custom message catalogs provide the following benefits:

• Reduced maintenance in a clustered environment. Maintaining a separate
message catalog means that you do not have to edit multiple copies of the
WPMessages.properties file.

• Simplified version control. It is easier to track changes and back up revisions if
the customized messages are located in one place.

• Upgrades to the product message catalog will not clash with any changes
made to the customized entries.

How Identity Manager Retrieves Message
Catalog Entries
Identity Manager retrieves message catalog entries in the following order:

• User-defined message catalog (Only one user-defined message catalog is
permitted.)

• System-defined defaultCustomCatalog message catalog

• config/WPMessages.properties file

• WPMessages.properties file in the idmcommon.jar file.

136 Identity Manager 8.0 • Technical Deployment Overview

Message Catalog Format
In the WPMessages.properties file, entries are defined in the format
KeyName=MessageText. In a customized message catalog, each entry is specified in
a separate Msg element. The KeyName is specified in the id attribute, while the
MessageText is text between the <Msg> and </Msg> tags. The following example
illustrates a message catalog entry:

<Msg id='UI_REMEMBER_PASSWORD'>Remember to set your password.</Msg>

The message text can contain HTML tags to control how the text is rendered,
although this is not recommended. If you need to use HTML tags, use codes such
as < and > instead symbols such as < and >.

Message text can also contain variables for data that Identity Manager will insert
into the string when the string is displayed. The following example is the default
message for the AR_CORRELATED_USER key:

Correlated account with user {0}.

The rendered version could appear as

Correlated account with user jdoe.

Creating a Customized Message Catalog
The following procedure describes how to create a user-defined message catalog.

1. If you are overriding default message catalog entries, locate the appropriate
error message keys in the WPMessages.properties file. These keys must be
specified in the customized message catalog.

If you are creating new messages, confirm that the keys do not appear in the
WPMessages.properties file

Chapter 8 Customizing Message Catalogs 137

2. Create an XML file or block with the following structure:

where:

CatalogName is the name of the message catalog. This value will also be used to
define the catalog in the System Configuration object.

KeyName is the message key name.

MessageText is a string that will be displayed on the graphical user interface.
This text can contain HTML tags and variables.

If you are supporting a locale other than en_US, change the language and
country attributes. If you are supporting multiple locales, create a separate
MessageSet element for each locale.

See the Example section for a working sample.

3. Import the file or block into Identity Manager.

4. Load the System Configuration object and add the following line within the
<Configuration><Extension><Object> element:

<Attribute name='customMessageCatalog' value='CatalogName'/>

5. Save the changes to the System Configuration object.

6. Restart the application server. The new message catalog entries are now
available to the system.

<?xml version='1.0' encoding='UTF-8'?>
<!DOCTYPE Configuration PUBLIC 'waveset.dtd' 'waveset.dtd'>
<Configuration name='CatalogName'>
<Extension>
<CustomCatalog id='CatalogName' enabled='true'>
<MessageSet language='en' country='US'>
<Msg id='KeyName'>MessageText</Msg>
<Msg id='KeyName'>MessageText</Msg>
...

</MessageSet>
</CustomCatalog>

</Extension>
</Configuration>

138 Identity Manager 8.0 • Technical Deployment Overview

Example
The following example creates a customized message catalog named
myCustomCatalog. It replaces the label and help text for the Import Exchange File
subtab.

Code Example 8-1 Creating Customized myCustomCatalog Message Catalog

<?xml version='1.0' encoding='UTF-8'?>
<!DOCTYPE Configuration PUBLIC 'waveset.dtd' 'waveset.dtd'>
<Configuration name='myCustomCatalog'>
<Extension>
<CustomCatalog id='myCustomCatalog' enabled='true'>
<MessageSet language='en' country='US'>
<Msg id='UI_SUBNAV_CONFIGURE_IMPORT_EXCHANGE'>Import XML File</Msg>
<Msg id='UI_SUBNAV_CONFIGURE_IMPORT_EXCHANGE_HELP'>Loads the

specified XML file.</Msg>
</MessageSet>

</CustomCatalog>
</Extension>

</Configuration>

139

Appendix A

Editing Configuration Objects

This chapter introduces an Identity Manager component called a configuration
object. Configuration objects store persistent customizations to Identity Manager.
They are cached object types, which means that all configuration objects are
brought into memory, and the cache is subsequently flushed, whenever a
configuration object is changed. Speaking broadly, with the large exception of User
objects and TaskInstances, most objects in the Identity Manager repository are
configuration objects.

Editing configuration object properties is one way of implementing persistent
changes to Identity Manager behavior. This appendix describes how to view and
edit configuration objects. The information is organized as follows:

• Data Storage

• Viewing and Editing Configuration Objects

• Refreshing User Objects

Data Storage

140 Identity Manager 8.0 • Technical Deployment Overview

Data Storage
Sun Identity Manager repository stores configuration object data in the
following tables:

• object – Stores most of the Identity Manager application’s configuration
objects, which include:

❍ SystemConfiguration objects

❍ TaskDefinition objects

❍ WorkItem objects

❍ Form objects

❍ Resource objects

• task – Stores TaskInstances and WorkItems (in other words, the nonstatic
instances of Workflows).

• org – Stores all Identity Manager organizational information.

• userobj – Stores all the Identity Manager enterprise identities. These identities
are simply containers for accounts on managed systems.

• account – Stores the accounts identified on a managed system.

• log – Stores all audit events and log type information.

A key concept to understand in the Identity Manager repository is that all data is
stored in two ways, where each table has indexed and keyed columns used to
query objects and each table has an XML column used to store the entire ASCII
representation of the object (depending on the database engine this is typically a
BLOB or MEDIUM TEXT data type). Identity Manager stores data in this way because
all Identity Manager objects are de-serialized from Java objects to ASCII XML for
storage in the repository.

NOTE This is not a comprehensive list of tables; only relevant tables are
listed here.

NOTE This is the table being referenced when someone “builds the
account index.” Each managed system has a set number of
accounts in this table after reconciliation or account linking.

Data Storage

Appendix A Editing Configuration Objects 141

The application, at a high level, queries by the indexed columns, pulls back XML
ASCII text and then serializes the XML into Java objects. These objects are usually
made available through the use of Views (such as UserView, PasswordView, etc.).

Object Naming Conventions
Do not use the following characters in any Identity Manager object names:

Avoid using other special characters in object names, such as the following, to
prevent potential errors:

Character Description

' single quotation mark

= equal sign

. period

| vertical bar

[left bracket

] right bright

, comma

: colon

$ dollar sign

\ backslash

" double quotation mark

Character Description

_ underscore

% percent sign

* asterisk

number sign

^ caret

Viewing and Editing Configuration Objects

142 Identity Manager 8.0 • Technical Deployment Overview

Viewing and Editing Configuration Objects
Editing configuration object properties is one way of implementing persistent
changes to Identity Manager behavior.

You can use the Sun Identity Manager Integrated Development Environment
(Identity Manager IDE) to view and edit Identity Manager objects for your
deployment. Instructions for installing and configuring the Identity Manager
Integrated Development Environment (Identity Manager IDE) are now provided
on https://identitymanageride.dev.java.net.

This section describes how to view and edit the following configuration objects:

• IDM Schema Configuration Object

• UserUIConfig Object

• RepositoryConfiguration Object

• WorkItemTypes Configuration Object

• SystemConfiguration Object

• Role Configuration Object

• End User Tasks Object

NOTE An object’s authType determines who can view or edit the
configuration object.

To assign an authorization type to an object, you set a new field
defined in the PersistentObject class. From the Java API, you can
access the authorization type using these methods:

public void setAuthType(String name);

public String getAuthType();

In the XML for an object, you can set the authType attribute in the
root element. For example:

<TaskDefinition name='Request More Space'
authType='EndUserTask'

 executor='com.waveset.workflow.WorkflowExecutor' ...>

 ...

</TaskDefinition>

Viewing and Editing Configuration Objects

Appendix A Editing Configuration Objects 143

IDM Schema Configuration Object
You configure User and Role extended, queryable, and summary attributes in the
IDM Schema Configuration configuration object.

Edit the IDM Schema Configuration configuration object to add extended
attributes to multiple object types during deployment. Specifically, you can

• Configure extended, queryable and summary attributes for Users, Roles,
Business Roles, IT Roles, Application Roles, Asset Roles, and any custom roles.

• Mark extended and built-in attributes as queryable or summary

NOTE If you change the inline or queryable attributes for Type.USER, you
must refresh all User objects.

For more information, see “Refreshing User Objects” on page 154.

NOTE The schema customizations provided in the IDM ObjectClass
Configuration object are loaded at server startup. Whenever you
modify the schema, you must restart the server to load the changes.

Identity Manager records any problems loading the schema in the
system log messages. Use one of the following methods to view
these messages:

• Run the lh syslog command

• Run the 'Recent System Messages' report from the IDM
Administrator Interface (Reports tab).

A sample of the schema can be found in the schema.xml file in the
sample directory.

NOTE The IDM Schema Configuration object is protected with the
IDMSchemaConfig authType.

Administrators needing to view or edit the Identity Manager
schema for Users or Roles must have the IDMSchemaConfig
AdminGroup (capability) assigned. The Configurator user has this
AdminGroup assigned by default.

Viewing and Editing Configuration Objects

144 Identity Manager 8.0 • Technical Deployment Overview

Adding an Extended Attribute to an Object
To add an extended attribute, you must define the attribute with an
IDMAttributeConfiguration (unless the attribute is a built-in attribute).

IDMAttributeConfigurations require a name and syntax. The valid syntax options
are BOOLEAN, DATE, INT, or STRING. Optionally, an IDMAttributeConfiguration can
specify whether the attribute is multivalued, and can provide a display name
(currently not used), and a description.

To add an extended attribute, or mark an attribute (either extended or built-in) as
queryable or summary, specify an IDMObjectClassAttributeConfiguration in the
appropriate IDMObjectClassConfiguration, such as User. You must specify a
name that matches an existing (built-in or configured in the same configuration
object) IDMAttributeConfiguration. You can also mark the
IDMObjectClassAttributeConfiguration as queryable or summary.

In the following example, firstname, lastname, and fullname are extended
attributes. The firstname and lastname User attributes are queryable and
summary, but fullname is not.

Figure A-1 Extended Attributes Example

<?xml version='1.0' encoding='UTF-8'?>
<!DOCTYPE Waveset PUBLIC 'waveset.dtd' 'waveset.dtd'>
<Waveset>
 <Configuration name="IDM Schema Configuration"
 id='#ID#Configuration:IDM_Schema_Configuration'
 authType='IDMSchemaConfig'>
 <IDMSchemaConfiguration>
 <IDMAttributeConfigurations>
...
 <IDMAttributeConfiguration name='firstname'
 description='User's first name'
 syntax='STRING'/>
 <IDMAttributeConfiguration name='lastname'
 description='User's last name'
 syntax='STRING'/>
 <IDMAttributeConfiguration name='fullname'
 description='User's full name'
 syntax='STRING'/>
...
 </IDMAttributeConfigurations>
 <IDMObjectClassConfigurations>
...
 <IDMObjectClassConfiguration name='User'
 extends='Principal'>
...
 <IDMObjectClassAttributeConfiguration name='firstname'
 queryable='true'

Viewing and Editing Configuration Objects

Appendix A Editing Configuration Objects 145

Extending the Role ObjectClass
You can extend Role using an IDMObjectClassConfiguration. The following
built-in Role extensions all extend the Role objectclass:

• BusinessRole

• ITRole

• AssetRole

• ApplicationRole

To add an extended attribute to a particular role extension, such as AssetRole, add
the IDMObjectClassAttributeConfiguration to the AssetRole
IDMObjectClassConfiguration. To add an extended attribute to all kinds of roles,
add the IDMObjectClassAttributeConfiguration to the Role
IDMObjectClassConfiguration, and it will be inherited by all extensions of Role.

 summary='true'/>Configuration
list/read/write.
 <IDMObjectClassAttributeConfiguration name='lastname'
 queryable='true'
 summary='true'/>
 <IDMObjectClassAttributeConfiguration name='fullname'/>
...
 </IDMObjectClassConfiguration>
 </IDMObjectClassConfigurations>
 </IDMSchemaConfiguration>
 </Configuration>
</Waveset>

NOTE To prevent potential conflicts with new core attributes in future releases of
Sun Identity Manager, prefix extended attributes with a
deployment-specific prefix.

For example, to add an extended attribute to User to record the
employeeNumber, prefer a prefix associated with the company, such
as acme_employeeNumber. If a future release of Identity Manager
incorporates a built-in user attribute named employeeNumber, the
two attributes will remain distinct. Otherwise the built-in attribute
takes precedence.

Figure A-1 Extended Attributes Example (Continued)

Viewing and Editing Configuration Objects

146 Identity Manager 8.0 • Technical Deployment Overview

You can define custom extensions of Role or any extension of Role.
For example, to add a custom extension of AssetRole, define a new
IDMObjectClassConfiguration (in the IDM Schema Configuration) for the new
role, and use the extends field to specify the parent role, as shown in the following
example:

When you add a new Role objectclass, you must add a new Role type to the Role
Configuration object. In addition, the new Role type’s name must match the name
of the new Role objectclass. For more information, see “Role Configuration
Object” on page 150.

UserUIConfig Object

SummaryAttrRoleCountLimit
Controls the number of roles that appear in the summary attribute string for a user.
To control this number, specify a value here. If you do not specify a value in this
object, Identity Manager will list at most three roles.

RepositoryConfiguration Object
The RepositoryConfiguration object contains settings that control the behavior of
the Identity Manager Repository. Each XML attribute of the top-level
<RepositoryConfiguration> element configures some aspect of overall Repository
behavior.

<IDMObjectClassConfiguration name='MyAssetRole'
 extends='AssetRole'
 description='My Asset Role Description'/>

NOTE You now configure extended, queryable, and summary attributes
for Users (WSUser) in the schema configuration instead of in the
UserUIConfig object. For more information, see “IDM Schema
Configuration Object.”

Viewing and Editing Configuration Objects

Appendix A Editing Configuration Objects 147

For example, the following line specifies that repository locks expire in five
minutes by default.

<RepositoryConfiguration ... lockTimeoutMillis='300000' ... >

The RepositoryConfiguration object also contains some settings that are specific
to User objects. For example, the TypeDataStore element for User objects specifies
the inline attributes for User objects.

Inline attributes are single-valued attributes that the Repository stores directly in
the main object table for each type — in this case, in columns attr1 through attr5
of the USEROBJ table. Most attribute values are stored in the USERATTR table (which
requires a separate join for each attribute). Inlining an attribute improves the
performance of queries that use the attribute.

The sample RepositoryConfiguration object specifies default inline attributes for
User objects, as follows:

<TypeDataStore typeName='User' ... attr1='MemberObjectGroups' \

attr2='lastname' attr3='firstname' attr4='' attr5='' />

Do not change the value of attr1, which is set to attr1='MemberObjectGroups'.
You can, however, specify the name of any attribute that is queryable and
single-valued as the value of any of the remaining inline columns (attr2
through attr5).

CAUTION Do not modify any RepositoryConfiguration setting unless you
understand its effects.

NOTE If you change the inline attributes for Type.USER, you must refresh
all User objects.

For more information, see “Refreshing User Objects” on page 154.

NOTE Changes to the RepositoryConfiguration object do not take effect
until you restart each Identity Manager server. Restarting an
Identity Manager server restarts the Repository on that server,
which causes the Repository to re-read the
RepositoryConfiguration object.

Viewing and Editing Configuration Objects

148 Identity Manager 8.0 • Technical Deployment Overview

To view or edit the RepositoryConfiguration object, you must have Debug and
Security Administrator capabilities.

For more information, see the “Upgrade Issues” section of the Release Notes, and
the Identity Manager Tuning, Troubleshooting, and Error Messages guide.

WorkItemTypes Configuration Object
This configuration object is defined in sample/workItemTypes.xml, which is
imported by init.xml and update.xml. This object enumerates the supported
work item type names, extensions, and display names.

The extends attribute allows for a hierarchy of work item types (workItem Types).
When Identity Manager creates a work item, it delegates the work item to the
specified users if its workItem type is:

• The type delegated

• One of the subordinate workItem types of the type being delegated.

t

Table A-1 workItem Types
Type extends Display Name

workItem none All Work Items

approval workitem Approval

organizationApproval approval Organization Approval

resourceApproval approval Resource Approval

roleApproval approval Role Approval

roleChangeApproval approval Role Change Approval

applicationRoleApproval roleApproval Application Approval

applicationRoleChangeApproval roleChangeApproval Application Change Approval

assetRoleApproval roleApproval Asset Approval

assetRoleChangeApproval roleChangeApproval Asset Change Approval

businessRoleApproval roleApproval Business Role Approval

businessRoleChangeApproval roleChangeApproval Business Role Change Approval

itRoleApproval roleApproval IT Role Approval

itRoleChangeApproval roleChangeApproval IT Role Change Approval

attestation workItem Access Review Attestation

accessReviewRemediation workItem Access

review workItem Remediation

Viewing and Editing Configuration Objects

Appendix A Editing Configuration Objects 149

SystemConfiguration Object
The SystemConfiguration object provides a central control point for many system
behaviors and provides a means of storing persistent customizations to system
behavior. Given its importance, and the frequency with deployers customize it, we
do not document the full range of possible customizations here. Some common
customizations are documented here.

Controlling the Display of the Password Confirmation Popup
The forgotPasswordChangeResults attribute in the System Configuration object
controls whether Identity Manager displays a confirmation page after a user or
administrator has initiated a password change by clicking the Forgot My Password
button during log in.

• The default value of forgotPasswordChangeResults.User is true.

• The default value of forgotPasswordChangeResults.Admin is false.

Configuring Delegate History List Length
The delegation.historyLength attribute controls the size of the list of both
current and completed delegations displayed by the End User View workItem
Delegation form. This attribute specifies the maximum number of delegations that
can appear in the delegation table. Note that the table will show all current
delegations, no matter which value you set here.

The SystemConfiguration object contains the
security.delegation.historyLength attribute, which controls the number of
previous delegations that are recorded.

Registering Scheduler Startup (for Clustered Environments)
The scheduler.hosts attribute registers startup behavior for the scheduler for each
Identity Manager application instance.

The value of scheduler.hosts is a map that contains an entry for each host that
you want to control. The key is the hostname for the Identity Manager application
instance.

NOTE To see the hostname value, go to the debug/GetStatus.jsp page in
your Identity Manager installation.

Viewing and Editing Configuration Objects

150 Identity Manager 8.0 • Technical Deployment Overview

The following values are valid:

• enabled (default)

• disabled

• manual (suspended)

The default value is used if no value or an invalid value is specified.

Following is an example of the scheduler attribute from Configuration:System
Configuration:

Role Configuration Object
The Role Configuration object defines the supported Role Types, Actions, and
List Columns. The following sections describe the supported elements of a Role
Type definition:

• Types

• Actions

• List Columns

NOTE The task.scheduler.enabled and task.scheduler.suspended
properties in the Waveset.properties file override the value set in
the System Configuration object.

<Attribute name='scheduler'>
<Object>

<Attribute name='hosts'>
<Map>

<MapEntry key='goliad' value='enabled'/>
<MapEntry key='sanjacinto' value='manual'/>
<MapEntry key='washington' value='disabled'/>

</Map>
</Attribute>

</Object>
</Attribute>

Viewing and Editing Configuration Objects

Appendix A Editing Configuration Objects 151

Types
Role type attributes are configured in the types section of the Role Configuration
object. For each type of role in the list, for example business or IT roles, you must
specify the following attributes:

• displayName

• authType

• workItemTypes

• features

displayName
Specifies the type’s display name whose value is a message catalog key.

authType
Specifies the authorization type associated with the role type. An authorization
type enables fine-grain authorization for who is allowed to view and manage this
role type. If you have not yet defined an authType, add one to the
AuthorizationTypes configuration object. You must reference that authType
within an AdminGroup (capability) as a type within a Permission that grants access
to roles of this authType.

workItemTypes
The type of work items that can be created for role assignment approval and role
change approval. If you have not yet defined the specified workItem types, add
them to the WorkItemTypes configuration object.

features
The features attribute includes the following features:

• changeApproval – If specified, indicates that Owners specified in the Role must
approve any changes to a Role of this type. If no Owners are specified, then no
approvals occur.

• changeNotification – If specified, indicates that any changes to a Role of this
type will send email notifications to the owners of the specified Role.

NOTE All roles have an authorization type. If you load a role without an
authorization type, the authorization type defaults to ITRole.

Viewing and Editing Configuration Objects

152 Identity Manager 8.0 • Technical Deployment Overview

• containedTypes – Required feature whose value is the list of Role types that
can be contained in this type, where the allowed values are:

❍ BusinessRole
❍ ITRole
❍ ApplicationRole
❍ AssetRole
❍ Custom role types

• assignResources – If specified, indicates that Resources and ResourceGroups
can be assigned to Roles of this type. If not specified, defaults to no Resources
can be assigned to Roles of this type.

• userAssignment – If specified, indicates whether Roles of this type can be
directly assigned to Users. If this Role type can be assigned directly to Users,
this feature also specifies whether the Users can be assigned manually and
automatically. If not specified, defaults to user assignment not allowed.

❍ manual – If specified (for example true or false), indicates whether you
can manually assign Roles of this type to Users.

❍ activateDate – If specified (for example true or false), indicates whether
you can specify a future activation (start) date for Roles of this type when
assigned to a User. Note that this feature is valid only if
userAssignment.manual is true.

❍ deactivateDate – If specified (for example true or false), indicates
whether you can specify a future deactivation (end) date for Roles of this
type when assigned to a User. Note that this feature is valid only if
userAssignment.manual is true.

• roleExclusions – If specified, indicates that Roles of this type allow the Role
editor to specify a list of Roles that cannot be assigned to a user if this Role is
assigned; an exclusion list.

NOTE Automatic assignment is not supported in this release, but will
be in a future release.

NOTE You can set both activateDate and deactivateDate to
true, even if userAssignment.manual is not. If you set both
attributes to true for a roleType, and if the role is contained
by another role optionally, then you can specify activate and
deactivate dates when assigning the optional role to a user.

Viewing and Editing Configuration Objects

Appendix A Editing Configuration Objects 153

Actions
The Actions attribute defines a set of actions that a Role administrator can take on
one or more Roles in the list Roles table and when adding role exclusions to
contained roles to an existing role.

Three sets of actions are specified in role configuration:

• actions – Actions displayed in the main role list and on the Find Role Results
pages.

• addContainedRoleActions – Actions displayed as an administrator is adding
contained roles to a role.

• addRoleExclusionsActions – Actions displayed as an administrator is adding
a role exclusion to a role.

Each action is defined with the following attributes:

• action – Specifies the command

• label – Specifies the display name message key

• requiredPermissions – Permissions that control whether the action is
displayed, depending on the administrator’s permissions.

❍ Type – Type of object to which an administrator must have the given rights.

❍ Rights – List of rights that an administrator must have for the given object
type

• selectionRequired – Indicates that a role must be selected for this action

• type – Specifies the role action type, which can be create, update, delete,
or task

• view – Copies the contents of this attribute onto the role view during the
execution of the action for create, update, and delete role action types

• task – Specifies the task to launch for task action types

• skipTaskLaunchForm – If set to true, skips the task launch form. Otherwise the
task launch form (if present) is displayed. Applies to task action types.

Refreshing User Objects

154 Identity Manager 8.0 • Technical Deployment Overview

List Columns
The List Columns attribute defines the set of attribute names and labels to display
as column headings when viewing lists of Roles (for example, List roles and find
role results).

You can specify unique sets of attributes to display as list column headings. The
attributes for each defined column are

• name– Name of the role attribute to display

• displayName – Display name to appear in the column header

• rule – Optional rule that might format the attribute value. The rule is invoked
for each row in the list, and the value returned by the rule is what displays in
each table cell.

Other Options
You can also set the following options in the Role Configuration object:

• roleListMaxRows – The maximum number or roles to list.

• roleListPageSize – The number of roles to display on a single page.

End User Tasks Object
The End User Tasks object defines the tasks that you can run from the Identity
Manager user interface. You can assign the EndUserTask authorization type to any
TaskDefinition object., and you can assign the EndUserRule authorization type to
any Rule objects that must be exposed.

Refreshing User Objects
Certain types of changes require an administrator to refresh all User objects. For
example, you must refresh all User objects when you change the inline attributes
for Type.USER in RepositoryConfiguration. Whenever you mark an attribute as
queryable or summary in the IDMSchemaConfiguration object, you must refresh all
User objects for the change to affect older, unmodified objects. The same logic
applies when a new version of Identity Manager adds a new attribute, or when a
new version of Identity Manager changes the values of an existing attribute — the
upgrade process or an administrator must refresh all User objects for the change to
affect older, unmodified objects.

Refreshing User Objects

Appendix A Editing Configuration Objects 155

There are three ways to reserialize existing users:

• Modify an individual User object during normal operations.

For example, opening a user account through the user interface and saving it
with or without modifications.

Disadvantage: This method is time-consuming, and the administrator must be
meticulous to ensure all existing users are reserialized.

• Use the lh refreshType utility to reserialize all users. The refreshType utility’s
output is a refreshed list of users.

lh console

refreshType User

Disadvantage: Because the refreshType utility runs in the foreground and not
the background, this process can be time-consuming. If you have a lot of users,
reserializing them all takes a long time.

• Use the Deferred Task Scanner.

Disadvantage: This method causes the next Deferred Task Scanner run to take
a long time because it examines and rewrites almost every User object.
However, subsequent Deferred Task Scanner runs should execute at normal
speed and duration.

NOTE Before running the Deferred Task Scanner process, you must edit
the System Configuration object using the Identity Manager
Integrated Development Environment (Identity Manager IDE) or
some other method.

Search for 'refreshOfType' and remove the attributes for
'2005Q4M3refreshOfTypeUserIsComplete' and
'2005Q4M3refreshOfTypeUserUpperBound'.

After editing the System Configuration object, you must import
that object to repository for your changes to be present.

Refreshing User Objects

156 Identity Manager 8.0 • Technical Deployment Overview

157

Appendix B

Enabling Internationalization

This appendix describes how to configure Identity Manager to use multiple
languages or to display a language other than English.

Architectural Overview
Table B-1 Components of Identity Manager Internationalization

File Description

WPMessages.properties Default message file located in
$WSHOME/idm/web/WEB-INF/classes/com/waveset/msgcat.
Shipped as part of the idmcommon.jar file.

Displays message text in English and loads by default unless you’ve customized
your Identity Manager installation to behave otherwise.

Waveset.properties Located in $WSHOME/config.

To enable support for multiple languages, you must set
Internationalization.enabled to true. (Default is true.)

System Configuration Object Specify a custom message catalog

Additional message file for each
supported language

Additional supported languages each require their own message file.
WPMessages_xx_XX.properties, where xx represents the language and XX
represents the country. For example, WPMessages_en_US.properties contains
messages in American English. Each international catalog has its own .jar.

Architectural Overview

158 Identity Manager 8.0 • Technical Deployment Overview

The following catalog entries control how the product name is displayed:

PRODUCT_NAME=Identity Manager

LIGHTHOUSE_DISPLAY_NAME=[PRODUCT_NAME]

LIGHTHOUSE_TYPE_DISPLAY_NAME=[PRODUCT_NAME]

LIGHTHOUSE_DEFAULT_POLICY=Default [PRODUCT_NAME] Account Policy

Typical Entry
Messages are contained in key/text pairs and contain three parts:

• A text string, or key, that is an identifier used by the code to retrieve data. Do
not translate this required component. This component is used in the product
configuration, and acts as a placeholder for the translation.

• An equals (“=”) sign separating the key and text. This entry is required.

• A string containing data that is displayed when running the application. This
entry is the translation, used in place of the key whenever the page is rendered
in the browser.

Each line in the resource array contains two strings. Translate the second quoted
string on each line.

Certain strings to be translated contain special codes for data that is inserted into
the string when it is displayed. For example, if you have the following string to
translate:

UI_USER_CONNECT={0}, connected at 100 mbs

the rendered version could appear as jfaux, connected at 100 mb

NOTE • If you loaded a new catalog in /config that uses the same name
as the default catalog, the new catalog takes precedence over the
default.

• If you have more than one message file, you can specify the
catalog from which a message key is derived by specifying
catalogname:keyname.

Enabling Support for Multiple Languages

Appendix B Enabling Internationalization 159

Translations typically appear inside a browser, so it is appropriate to add HTML
tags to format the string, as shown below:

_FM_ACCOUNT_ID_HELP=Account ID
Enter a name for this user. This
field is required.

Enabling Support for Multiple Languages
Use the instructions described in this section to enable multiple language support
for Identity Manager.

Step One: Download and Install Localized Files

Before You Install
Perform the following tasks before you install localized files:

1. Install Identity Manager. See Identity Manager Installation for detailed
installation procedures.

2. Make sure the following locales on the application server have been set to
UTF-8.

❍ Application server instance

❍ Database

❍ Java Virtual Machine (JVM)

Refer to the documentation for these products for information about setting the
locale.

Enabling Support for Multiple Languages

160 Identity Manager 8.0 • Technical Deployment Overview

Download Message Catalog Files
The Identity Manager software download website provides the following localized
message catalogs. Download the appropriate message catalog jar file and place that
file in the WEB-INF/lib directory.

Download the ZIP file to a temporary location. By default, the contents of the ZIP
file are extracted to the FileName\IDM_8_0_l10n directory, where FileName
matches the name of the downloaded file, minus the ZIP extension.

Zip File Contents
Every extracted ZIP file contains the following:

• A JAR file containing localized message catalogs, help files, and other essential
files. The JAR file is named IDM_5_0_l10n_Locale.jar.

• Identity Manager Localization README

Additional translated publications might also be available.

Table B-2 Message Catalog Files

File Name (.zip) Language Locale

IDM__8_0_l10n_de German de_DE

IDM__8_0_l10n_es Spanish es_ES

IDM__8_0_l10n_fr French (France and Canada) fr_FR

IDM__8_0_l10n_it Italian it_IT

IDM__8_0_l10n_ja Japanese ja_JP

IDM__8_0_l10n_ko Korean ko_KR

IDM__8_0_l10n_pt Brazilian Portuguese pt_BR

IDM__8_0_l10n_zh Simplified Chinese zh_CN

IDM__8_0_l10n_zh_TW Traditional Chinese zh_TW

Maintaining ASCII Account IDs and Email Addresses During Anonymous Enrollment Processing

Appendix B Enabling Internationalization 161

Install Localized Files
Use the following steps to install localized files on your application server.

1. Copy the JAR file from the temporary location to the
IdentityManagerInstallation/WEB-INF/lib directory.

Step Two: Edit the Waveset.properties File
To edit the Waveset.properties file,

1. Open the IdentityManagerInstallation/config/
Waveset.properties file with your editor of choice.

2. Change the Internationalization.enabled property to true.

3. Save your changes and close the file.

4. Either restart Identity Manager or click Reload Properties on the Debug pages
available at the following location:

http://host:port/idm/debug.url

Maintaining ASCII Account IDs and Email
Addresses During Anonymous Enrollment
Processing

By default, Identity Manager’s anonymous enrollment processing generates values
for accountId and emailAddress by using user-supplied first (firstName) and last
names (lastName) as well as employeeId. Because anonymous enrollment
processing can result in the inclusion of non-ASCII characters in email addresses
and account IDs, international users must modify EndUserRuleLibrary rules so
that Identity Manager maintains ASCII account IDs and email addresses during
anonymous enrollment processing.

Maintaining ASCII Account IDs and Email Addresses During Anonymous Enrollment Processing

162 Identity Manager 8.0 • Technical Deployment Overview

To maintain account ID and email address values in ASCII during anonymous
enrollment processing, follow these two steps:

1. Edit the following rules in the EndUserRuleLibrary as indicated in the
following table:

2. Edit EndUserAnonEnrollmentCompletionForm to remove the firstName and
lastName arguments from calls to the getAccountId and
getEmailAddress rules.

Table B-3 Editing the EndUserRuleLibrary rules

Edit this rule To make this change...

getAccountId To use employeeId only (and remove firstName and lastName)

getEmailAddress To use employeeId only (remove firstName, lastName, and “.”)

verifyFirstname To change length check from 2 to 1 to allow for single character Asian
first names

163

Index

A
account ID policies 62
account index 23

bulk actions and 61
linking accounts with 69
load from file and 58, 59
load from resource and 59
reconciliation and 61

account reconciliation 27
Active Directory 54, 71, 72

Users and Computers MMC 58
Active Sync

IAPIProcess 41
IAPIUser 41
loading account data 57

adapters
account disabling example 49
configuring 61
form processing 44

AdminGroups 17
Attribute Condition Operators 8
attribute conditions 8
attributes

description 1
extended 4
extends 17
Identity System 7
inline 3
operational 6
other, standard 7
queryable 3
Resource User 7

secret 12
summary 2
types 2
user view 58, 64
view 6

authorization types
architectural features 15
creating 18
description 13
using 15

AuthType elements 15

B
built-in attributes 5

exposing 5
marking as queryable or summary 143
precedence 4

bulk action, creating 60, 82
bulk operations 30

C
capabilities

adding to roles 105
assigning 18, 20
Debug 148
defining 17
discovery and reconciliation 29

Section

164 Identity Manager 8.0 • Technical Deployment Overview

EndUser 18
granting 105
Security Administrator 148

comma-separated values file. See CSV file
Configuration

AuthorizationTypes object 15
configuring an adapter 61
confirmation rules

custom 68
linking accounts with 65
load from file and 58
load from resource and 59

correlation keys, custom 67
correlation rules

custom 68
linking accounts with 65
load from file and 58
load from resource and 59

create bulk action 60, 82
CSV file 57, 60, 82
custom correlaton keys 67
custom rules 68
customizations file 117
customizing

Data Exporter 96
headers and footers 118
Identity Manager pages 119
logo 126
system configuration object 132

customStyle.css 116, 117

D
Data Exporter

architecture 87
connection pooling 90
customizing 96
data types 86
database requirements 90
export schema 96
export server 92
factory classes 99
Hibernate support 90

localization support 100
logging 101
ObjectClass schema 96
overview 85
planning for 89
space requirements 92
task 92
tracing 101
troubleshooting 100
Warehouse Interface Code 98

data loading
account, creating 63
preparing for 61
processes 56
types 29

data types 86
data types, supported 86
DB2 DDL 93
default style settings 117
default text 117
delegation.historyLength attribute 149

E
EndUser Capability 18
environment, assessing 53
example labeling exercises 125
export attribute parameters 97
export schema 96
export task 92
extended attributes 143

adding to ObjectClass schema 99
description 4
marking as queryable or summary 143
where supported 5

Extended User Attributes Configuration object 67
extending Role objectClass 145
extends attributes 17

Section

165

F
font characteristics, changing 124
footer

chanigng bar colors 126
customizing 118

forensic queries 88
forgotPasswordChangeResults attribute

attribute 149

H
header

changing bar colors 126
customizing 118

Hibernate support 90

I
IAPIProcess 41
IAPIUser 41
Identity Manager

logo, replacing 126
password policies 62

Identity System attributes
description 7

IDM Schema Configuration configuration object 143
inline attributes

description 3

J
JSP files 118

L
labeling exercises, sample 125
language support, enabling 159
language support,maintaining ASCII account IDs

and email addresses during anonymous user
enrollment 161

LDAP 54, 76, 78
linking accounts

manually 69
overview 65
using account index 69
using self-discovery 70

Load from File 56, 57
load from file 30
Load from Resource 56, 59
load from resource 30
load operations 30
loading data, example scenarios 71
logo, customizing 126

M
MBeans 93
message catalog files 160
messages, internationalizing 158
MMC 58
MySQL DDL 94

O
ObjectClass schema 96

adding custom attributes 99
description 96
extending for User and Role types 96

objects
Configuration

AuthorizationTypes 15

Section

166 Identity Manager 8.0 • Technical Deployment Overview

operational attributes
description 6

Oracle DDL 94
other, standard attributes

description 7

P
page title and subtitle, changing 120
password policies 62
PeopleSoft 54, 76, 77
permissions

subType 17
superType 17

Q
queryable attributes 143

description 3
quick links, adding to login page 119

R
reconcile configuration object 38
reconciliation 27

auditing native changes 36
confirmation rules 32
correlation rules 32
daemon task 37
overview 57, 61
policy settings 31
resource schedules 37
workflows 34

reconciliation process 30
reconRules.xml 68
RelationalDataStore 9
Remedy 76, 81
resource

choosing initial to load 54

resource timeout settings 38
Resource User attributes

description 7
Role

defining custom extensions 146
extending the objectClass 145

Role types
ObjectClass schema 96

Roles
adding new capabilities 105
configuring attributes 143
editing schema for 4, 143
extended attributes 5

roles
controlling the number of 146
description 87
viewing 18

rules
custom 68

S
SAP 54
scheduler.hosts attribute 149
schema, editing 4, 143
schemas

export 96
ObjectClass 96

secret attributes 12
SecurID 71, 73
self-discovery 70
Solaris 71, 74

patches xiii
support xiii

SQL Server DDL 95
style settings, default 117
style sheets, modifying 116
style.css 116
summary attributes 143
SummaryAttrRoleCountLimit 146
support

Solaris xiii

Section

167

supported
data types 86

syntax
view path 30

system configuration object
customizing 132
internationalizing 157

SystemConfiguration object 149

T
text attributes 117
text, default 117

U
user forms 63
User Name Matches AccountId 58, 59
user view 64

attributes 58
Users

editing schema for 4, 143

V
view attributes 64

description 6
view path syntax 30
viewing objects 18

W
Warehouse Interface Code 98

generating classes 99
localization support 100

waveset.accountId 64

waveset.organization 64
Waveset.properties file 157, 161
WIC source code 99
workItem Types 148
WPMessages.properties file 157
WPMessages_en.properties 118, 121

X
XML files 57

Section

168 Identity Manager 8.0 • Technical Deployment Overview

	Sun™ Identity Manager 8.0 Technical Deployment Overview
	Contents
	Preface
	Who Should Use This Book
	How This Book Is Organized
	Conventions Used in This Book
	Typographic Conventions
	Symbols
	Shell Prompts

	Related Documentation and Help
	Accessing Sun Resources Online
	Contacting Sun Technical Support
	Related Third-Party Web Site References
	Sun Welcomes Your Comments

	Working with Attributes
	Related Chapters
	What are Attributes?
	Types of Attributes
	Summary Attributes
	Queryable Attributes
	Inline Attributes
	Extended Attributes
	Operational Attributes
	View Attributes
	Resource User Attributes
	Identity System User Attributes
	Other Standard Attributes

	Using Attribute Conditions
	Attribute Condition Operators
	Implicitly ANDed
	Example Scenario: Populating Organizations with User Member Rules
	Example Scenario: Including All Users Without Administrative Roles

	Using Secret Attributes

	Working with Authorization Types
	What are Authorization Types?
	How Identity Manager Uses Authorization Types
	Why Use Authorization Types?
	Architectural Features
	Configuration:AuthorizationTypes Object
	AuthType Element
	Authorization Subtype Permissions

	Authorization Types and Capabilities
	AdminGroups
	EndUser Capability

	Creating an Authorization Type
	Assigning an Authorization Type to a Repository
	Example: Setting End-User Authorization Types
	Example: Using Authorization Types to Restrict Visibility on Resources
	Example: Granting Access to a Specific Part of Identity Manager

	Data Loading and Synchronization
	Types of Data Loading
	Discovery
	Load from File
	Load from Resource
	Create Bulk Action

	Reconciliation
	Full Reconciliation
	Incremental Reconciliation

	Active Sync
	Summary of Data Loading Types

	Load Operation Context
	Managing Reconciliation
	Reconciliation Policy
	Correlation and Confirmation Rules
	Reconciliation Workflows
	Auditing Native Changes

	Resource Scheduling
	Reconcile Configuration Object

	Managing Active Sync
	How Active Sync-Enabled Adapters Work
	Basic Steps of Adapter Processing
	Using Rules

	Using Forms
	Resource Form
	User Form
	Launching Workflow Processes
	Example: Disabling Accounts through Active Sync-Enabled Adapters

	Dataloading Scenario
	Assessing Your Environment
	Choosing the First Resource
	Choosing the First Data Loading Process
	Load from File
	Load from Resource
	Create Bulk Actions
	Reconciliation

	Preparing for Data Loading
	Configuring an Adapter
	Setting Account ID and Password Policies
	Creating a Data Loading Account
	Assigning User Forms

	Linking to Accounts on Other Resources
	Defining Custom Correlation Keys
	Creating Custom Rules
	Manually Linking Accounts
	Using the Account Index
	Enabling Self-Discovery

	Example Scenarios
	Active Directory, SecurID, and Solaris
	Example Users
	Loading Active Directory Accounts
	Loading SecurID Accounts
	Loading Solaris Accounts

	LDAP, PeopleSoft, and Remedy
	Example Users
	Loading PeopleSoft Users
	Loading LDAP Users
	Loading Remedy Users

	Expedited Bulk Add Scenario

	Data Exporter
	What is Data Exporter?
	Exportable Data Types
	Data Exporter Architecture
	Planning for Data Exporter
	Database Considerations
	Hibernate Support
	Object/Relational Mapping
	Database Tables
	Space Requirements

	Export Server Considerations

	Loading the Default DDL
	DB2
	MySQL
	Oracle
	SQL Server

	Customizing Data Exporter
	Identity Manager ObjectClass Schema
	Export Schema
	Modifying the Warehouse Interface Code
	Generating a New Factory Class
	Adding Localization Support for the WIC

	Troubleshooting
	Beans and Other Tools
	Model Serialization Limits
	Repository Polling Configuration
	Tracing and Logging

	Configuring User Actions
	Adding Custom Tasks
	Setting Up Custom Task Authorization
	Step 1: Create an AuthType
	Step 2: Create an AdminGroup
	Step 3: Grant Capabilities to Administrators

	Adding a Task to the Repository
	About the Example

	Configuring User Actions

	Private Labeling of Identity Manager
	Private Labeling Tasks
	Architectural Features
	Style Sheets
	Default Text
	Text Attributes
	Default Style Settings
	Customized File
	JSP Files
	WPMessages_en.properties File

	Customizing Headers
	Changing Header Appearance

	Customizing Identity Manager Pages
	Customizing the Home Page
	Adding a List of Quick Links
	Changing the Default “Logged in as ..” Text
	Changing Page Title and Subtitle
	Changing Background Image on the Login Page
	Customizing the Browser Title Bar

	Changing Default Information Displayed in the Identity Manager User Interface Home Page
	Changing the Appearance of the User Interface Navigation Menus
	Changing Font Characteristics
	Editing Font Characteristics
	Example

	Sample Labeling Exercises
	Replacing the Identity Manager Logo with a Custom Logo
	Changing Masthead Appearance
	Changing Navigation Tabs
	Customizing the Identity Manager User Interface Navigation Bar
	Customizing Navigation Links

	Changing Tab Panel Tabs
	Changing Sorting Table Header
	Changing User / Resource Table Component
	Changing Identity Manager Behavior on Commonly Used Pages
	Customizing with the System Configuration Object

	Customizing Message Catalogs
	Advantages of Custom Message Catalogs
	How Identity Manager Retrieves Message Catalog Entries
	Message Catalog Format
	Creating a Customized Message Catalog
	Example

	Editing Configuration Objects
	Data Storage
	Object Naming Conventions

	Viewing and Editing Configuration Objects
	IDM Schema Configuration Object
	Adding an Extended Attribute to an Object
	Extending the Role ObjectClass

	UserUIConfig Object
	SummaryAttrRoleCountLimit

	RepositoryConfiguration Object
	WorkItemTypes Configuration Object
	SystemConfiguration Object
	Controlling the Display of the Password Confirmation Popup
	Configuring Delegate History List Length
	Registering Scheduler Startup (for Clustered Environments)

	Role Configuration Object
	Types
	Actions
	List Columns
	Other Options

	End User Tasks Object

	Refreshing User Objects

	Enabling Internationalization
	Architectural Overview
	Typical Entry

	Enabling Support for Multiple Languages
	Step One: Download and Install Localized Files
	Before You Install
	Download Message Catalog Files
	Install Localized Files

	Step Two: Edit the Waveset.properties File

	Maintaining ASCII Account IDs and Email Addresses During Anonymous Enrollment Processing

	Index

