NSAPI Programmer’s Guide

iPlanet Web Server, Enterprise Edition

Version 6.0

BXX-XXXX-XX
May 2001

Copyright © 2001 Sun Microsystems, Inc. Some preexisting portions Copyright © 2001 Netscape Communications Corporation.
All rights reserved.

Sun, Sun Microsystems, and the Sun logo are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States
and other countries. iPlanet and the iPlanet logo are trademarks of the Sun|] Netscape Alliance. Netscape and the Netscape N
logo are registered trademarks of Netscape Communications Corporation in the U.S. and other countries. Other Netscape logos,
product names, and service names are also trademarks of Netscape Communications Corporation, which may be registered in
other countries.

This product includes software developed by Apache Software Foundation (http://www.apache.org/). Copyright (c) 1999 The
Apache Software Foundation. All rights reserved.

This product includes software developed by the University of California, Berkeley and its contributors. Copyright (c) 1990,
1993, 1994 The Regents of the University of California. All rights reserved.

Federal Acquisitions: Commercial Software—Government Users Subject to Standard License Terms and Conditions

The product described in this document is distributed under licenses restricting its use, copying, distribution, and
decompilation. No part of the product or this document may be reproduced in any form by any means without prior written
authorization of the Sun-Netscape Alliance and its licensors, if any.

THIS DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS
AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE
HELD TO BE LEGALLY INVALID.

Copyright © 2001 Sun Microsystems, Inc. Pour certaines parties préexistantes, Copyright © 2001 Netscape Communication
Corp. Tous droits réserveés.

Sun, Sun Microsystems, et le logo Sun sont des marques de fabrique ou des marques déposées de Sun Microsystems, Inc. aux
Etats-Unis et d’autre pays. iPlanet et le logo iPlanet sont des marques de fabrique ou des marques déposées de Sun | Netscape.
Netscape et le logo Netscape N sont des marques déposées de Netscape Communications Corporation aux Etats-Unis et d’autre
pays. Les autres logos, les noms de produit, et les noms de service de Netscape sont des marques déposées de Netscape
Communications Corporation dans certains autres pays.

Le produit décrit dans ce document est distribué selon des conditions de licence qui en restreignent I'utilisation, la copie, la
distribution et la décompilation. Aucune partie de ce produit ni de ce document ne peut étre reproduite sous quelque forme ou
par quelque moyen que ce soit sans I’autorisation écrite préalable de I’Alliance Sun-Netscape et, le cas échéant, de ses bailleurs
de licence.

CETTE DOCUMENTATION EST FOURNIE “EN L'ETAT”, ET TOUTES CONDITIONS EXPRESSES OU IMPLICITES, TOUTES
REPRESENTATIONS ET TOUTES GARANTIES, Y COMPRIS TOUTE GARANTIE IMPLICITE D'APTITUDE A LA VENTE, OU
A UN BUT PARTICULIER OU DE NON CONTREFAGON SONT EXCLUES, EXCEPTE DANS LA MESURE OU DE TELLES
EXCLUSIONS SERAIENT CONTRAIRES A LA LOI.

Contents

AboUt ThisS BOOK 15
Chapter 1 Basics of Server Operationt e 19
ConfiguIration FIleS e 20
MAgNUS. CONT . o 20
SNV XIM L 20
0D CONT 21
0T T 1V 1= 21
Dynamic Reconfiguration e 22
How the Server Handles Requests from Clients it 22
HT TP BaSICS . oottt e e e 22
Steps in the Request Handling Processt e e e 24
Directives for Handling Requests o e 25
Writing New Server Application FUNCLIONS i e 25
Chapter 2 Syntax and Use of obj.conf 27
Server INStructions in ObJ.CONT 27
Summary of the DIreCtIVESo i e e e 28
The ODJECE TaQ . . . oo e ittt e e e e e e e e 31
Objects that Use the name Attribute e 31
Object that Use the ppath Attribute e 32
Variables Defined in server.Xml e 33
Flow of Control in 0bj.conf 34
AU T TANS . 34
NaMETTANS . .. 34
PathCNECK . .o 36
(0] o] 1= ox 1Y/ o - 37

Contents 3

4

AL . .o 42
0] 43
Syntax Rules for Editing obj.conf 43
Order Of DIreCtIVES e e e e e e e 43
P AMIE O S . . . 44
Case SENSITIVITY ... 44
ST 1= 1 (0] < T 44
QUOTES . ottt e 44
GBS .t e 44
Line ContinUatioN e e 44
Path NaMIES . .. 45
(0] o] 4 1=T o1 £ 45
About obj.conf Directive EXampPles 45
Chapter 3 Predefined SAFs and the Request Handling Process a7
The bucket Parameter 49
AUTNTIANS STAQEottt e e e e e e e e e e 50
DasiC-aUth . ..o 51
DaSIC-NCSA .. .o 52
Oet-SSli . .o 54
gOs-handler . .. o 54
NaAMETrANS STottt et et e 55
ASSION-NAIME . . ottt et e e e e 56
AOCUMEBNT-TOOLt e e e e e e e e 57
NOMIE-PagE . .. 58
P 2Air . 59
=T 11 =T o S 61
SEF - PANAIMS oot e 62
UNIX-N0MME 62
PathCheck Stageo 64
CheCK-aCl ... 64
AENY-EXISTENCE . .ottt e 65
FINA-INAeX . . 66
FINA-TINKS . o 67
find-pathinfo 68
Oet-ClIENt-CoI . o 68
10ad-CoNTig 70
NE-UN-CleaN . . 72
NECOICNECK . . oo 73
reqUIre-aUtn .. 74
SE-VIFtUAI-INAEX . . . oo 75
SSI-CNECK . o 75

iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide « May 2001

SSI-lOgOUL . . 76

UNIX-UF-ClEaN .. e e e e e 77
ObJeCtTYPE STAGE . . . oo ettt et e e e 77
FOFCE- Y P . oo 78
Set-default-typeo 79
ShtMI-haCKtY P .. . 80
Y P DY X . .o 80
YPe-DY-EXIENSIONo e 81
SEIVICE STAQE . . o ottt e 82
AA-TOOTEr . . . 85
Add-NEATEr . .. 86
APPENA-Trailler . . 87
(L= o T 0. =T o L 88
INAEX-COMMION . ..ttt e e e e e e e e 89
INAEX-SIMIPI .. 91
Key-toosmall 92
ISt-Air . . 93
MNAKE-AIT . oo 94
query-handler 94
FEMOVE-AIl . o e 95
FEMOVE-TIlE o 96
rename-file . . . 97
LT g o T o | 98
SeNd-Tile .. 100
LT o B U o T 101
send-shellcgi 102
SENA-WINCOI . .. ot ettt e e e e e e e e 103
SBIVICE-AUMID .ttt e e e e e 103
SHEML SENA ... e 104
StAS- XM L L 106
Upload-file .. 107
AdALOG Sta0Eot 108
COMMON-I0g . e e e 108
FlEX-10g . . 109
FECONA-USEIagENT . . . o ottt e e e e e 110
I Or StagE . . o 111
LT T =T o o 111
Lo 0 =T o] 112
Chapter 4 Creating CusStom SAFS e e 115
The SAF INterface o 116
SAF Parameters 116
pb (parameter blocK) 116

Contents 5

6

SN (SESSION) . ittt e e 117

L0 =T U T=1 117
RESUIL COOBS . .o i e 119
Creating and Using CUSEOM SAFS e e 119

Write the SOUrce Code 120

Compile and Link 121

Load and Initialize the SAF 124

Instruct the Server to Call the SAFS e 125

Reconfigure the SerVer 127

TSt e SAF 127
Overview of NSAPI C FUNCLIONSo e e e 127

Parameter Block Manipulation ROULINES e 128

Protocol Utilities for Service SAFS 128

Memory Management 129

File 1O 129

NEIWOIK 1O o 130

TrEAAS . 130

UtIItIES .o 131

ViUl SEIVEE o 131
Required Behavior of SAFs for Each Directive i 132

It S A RS o e 133

AUTNTEANS SARS . . o e 133

NaMETraNS SAFS . . .o 133

PathCheCK SAFS . . 134

Ol TYPE SARS ot e 134

SBIVICE SA RS . . 134

BN Or SA RS . o 135

AdALOG SAFS o 135
CGI 1o NSAPI CONVEISION . . . oottt et e e e e e e e e e e e e e e 135
Chapter 5 NSAPI Function Reference i i 139
NSAPI Functions (in Alphabetical Order) i i s 139

CALL O . 140

CINfO _fiNd ... 140

CONAVAr NIt o 141

condVar_NOtITY 142

CONAVAr _LBIMINALE e 142

CONAVAr Wt e 143

(o] R =T (] 143

CHIL BXIt o 144

CHIL NIt L 144

CHL ermMINAte . ..o e 145

daemMON _atrES At e 145

iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide « May 2001

FC 0PN . 146

FC ClOSE . .o e 147
filebuf buf2sd 147
filebUT ClOSE .. o e 148
filebUT _getC ... 148
filebUl OpeN .. 149
filebuf_open_nostat 149
FREE . 150
FUNC BXEC . .o e 151
UNC fINd .o e e 151
oo =1 ¢ (o) 152
M A L L O C .. 153
Nt IP2N0St . . 154
NEL TEA ... i e 154
B W L 155
netbuf bUf2sd 155
NEtOUT ClOSE . ..o e 156
NEtDUT QOTC . . e 156
NE UL grab . 157
NE DU 0PN 157
ParAM _CrEALE ottt e 158
ParAM _frEE . 158
PDIOCK _COPY ..ttt 159
PhIOCK CrEate . . . 159
PhIOCK _AUP . 160
PhIOCK _fiNd .. 160
pblock_findval 161
PhIOCK frEE . 161
PhIOCK NNINSEIT . . 162
PhIOCK _NVINSEIt . 162
PhIOCK _PD2enV . .. 163
Pblock_PbIOCK2Str 163
PhIOCK PINSEI . . 164
PhIOCK _FEMOVE . .. 164
pPblock_Str2pblock 165
PERM _CALLOC ... 166
PERM _FREE . . 166
PERM _MALLOC .. 167
PERM _REALLOC .. 168
PERM _STRDUP . 168
prepare_nsapi_thread 169
Protocol_dUMIPB22 . .. 170
protocol_set_finfo 170

Contents 7

ProtoCol_Start FESPONSE ettt e 171

ProtoCOl_StatUS o 172
ProtoCOl_UNI2UKT . . o 173
protocol_uri2url_dynamic e 173
REALLOC . .o 174
FEOUESE B VS ..ttt 175
FeQUESE NBaer . . .o 175
request_stat_path 176
request_translate Uri 177
SBSSION NS . o\ ittt e e e e 177
SESSION MAXANS . . oottt et e e e e 178
SN GBS I . . ottt 179
SN O . 179
ShEXP _MaAtCh . o e 180
SheXP _Valid . . 181
STRDUP . 181
SYSTEIM_BITIMIST . o . ottt ettt et e e e e e e e e e e e e e e e e 182
SYSEEM_fClOSE o 182
System_floCK 183
SYStem_fOPENRO 183
SYSteM _fOPENRWV . 184
SYStEM oDV A 184
SYStem_freado 185
SYS e W . oo 185
system_fwrite_atomico 186
SY S M _gMEIMIE . 187
SYStem_l0Caltime e 187
SYSEEM_ISEEK . . o o e 188
SYSTEIM _FBNAIMIE . . oottt et e e e e e e 189
SYStem _UIOCK . .. 189
SysStem_UNiX2l0cal 189
systhread_attach 190
SYStRread _CUITENt . o 190
systhread_getdata it 191
SYSthread _NeWKeY o 191
systhread_setdata i 192
SYStRrEad_SIEED ..o 192
SYStRread_Start 193
SYSthread _timMerSet o 193
UL AN BXBC ..ttt e e e e e 194
Util_chdir2path 194
Util_chdir2path 195
Util_cookie fiNd 195

8 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide « May 2001

UL enV fiNd ... e 196

UL BNV frBE .o e e 196
UL enV_replace 197
UL BNV St o 197
UL _getling . .o 198
UL NOStNamME ... o e e e 198
Ut s MOzilla 199
UL IS UMl L e e e 199
UL TE0@ .. e e 200
Ut ater than e e 200
ULIE SN BSCaPE . .o 201
UL SN PNt . 201
UL SNt L 202
UL S CaSECMID .. oo e 202
UL StrTImME .o e 203
L0 S g g Tor= TSy T o o 204
ULI U _BSCaPE . ..ottt e e e e 204
UL UK 0SBVl L 205
UL U ParSE oo e 205
UL U _UNBSCAPE . . o ottt e e e e e e e e e e e e e e 206
UL VSNt 206
UL VSNt 207
VS alloC SIOt .. e 208
VS _get data . ..ot 208
vs_get_default_httpd_object 209
VS_get_AOC FOOL . ..ottt e et e e e e e 209
VS_get_httpd_0bjset 210
VS get I . 210
VS _get MM B P . .o 211
VS_l0OKUP _CONFIg_Var . ..o e e 211
VS regISter Ch .. 212
VS SBE data ...t e e 212
VS IranSlate Ul ..o e 213
Chapter 6 Examples of CUStOmM SAFS e e 215
Examplesinthe Build 216
AUtNTrans EXample 217
Installing the Example o 217
SOUNCE GO .ottt e e 218
NameTrans EXamiple 219
Installing the Example 220
SOUNCE GO ..ttt e e 220
PathCheck EXample 223

Contents 9

10

Installing the Example 223

SOUNCE GO ..t e e e 224
ObjectType EXample 226
Installing the Example 227
SOUNCE GO ..ttt e e 227
Service EXample 228
Installing the Example 229
SOUNCE COOR ..t e e e 229
More Complex Service Example 231
AddLog EXample ... 232
Installing the Example 232
SOUNCE COOR ..ttt e e e e e 232
Quality of Service EXampPles 234
Installing the Example 234
SOUNCE GO ..ttt e e e e e 234
Chapter 7 Syntax and Use of magnus.conf i 241
It S A RS o 242
CINAEX-INIE . 243
define-perf-bucket 245
ANS-CaChe-INit 246
BTNt 246
FleX-rotate-INit 251
T oo 252
INTE-Cl L 253
INI-UNOME . 255
l0ad-MmOdUIES 255
NE-CONSOlE-INIt . . . o 256
=T 0 T 0 257
POOI-INIE L . 257
register-nttp-method 258
SEAES-INIt . o 259
thread-pool-iNit 260
Server INformation 261
L= L1 o 262
MEaHOS . . . 262
NEESIEROOT 262
ServerConfigurationFile 262
SV D .o 262
SBIVEIR OO . . 262
LI .11 0 5. 263
TemMPDIrSECUNILY . .ot e 263
U o 263

iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide « May 2001

LanguUAagE ISSUES oo e 264

AdMINLanQUAGE o oot 265
ClieNtLangUAagE et 265
DefaultCharSet 265
DefaultLanguUaget 265
DINS LOOKUD . ot e e e e e 265
ASYNCDINS . L 266
DN S o 266
Threads, Processes and CONNECLIONSttt ittt e et e e e 266
CONMNOQUEBUESIZE ..ttt it e e e e e 268
HeaderBufferSize 268
IOTIMEOUL . . o e e 268
KeepANIVETNIeadSo e 269
KeepALIVETIMEOULo e e e e e e e 269
KernelThreads o e 269
T =T 1 270
MaxKeepAliveCONNECLIONS e e e e e e 270
MaxProcs (UNiX ONlY) . ..o e e e e e 270
POStThreadsEarly 270
ROVBUTSIZE . . . 271
ROTNIOtElE . . 271
ROTNIOt e MIN . 271
SNABUTSIZE . . .o 271
StACKSIZE . .o 271
StrictHttPHEAdEIS e 272
TerminateTimeOUL e e e e e 272
ThreadlnCremeENt 272
UseNativePoll (UnixX only) e 272
Native Thread POOIS 273
NativePoolStackSize o 273
NativePoolMaxThreads 273
NativePooIMINThreads e 273
NatiVePOOIQUEUESIZE e e e 274
] 274
CGIEXPIratioNTiMeEOUL e e e e e e e e e e e 274
CGIStUbIAIETIMEOUL . . .o e e e e e e e 275
CGIWaIitPid (UNDX ONIY) .. oo e e e 275
MaxXC G IStUDS . .. 275
MINCGISTUDS 275
WINCOITIMEOULo e e e e e e e e e e e 276
Error Logging and Statistic Collection 276
g 0] 1o o P 276
ErrorLogDateFormat 277

Contents 11

LogFlushinterval 277

LOgVEIDOSE .« . o 277
LOgV Sl . . o 277
PIALOg . .. o 278
A C L o 278
ACLCacheLifetime 278
ACLUSErCacheSIZe 279
ACLGIroUPCaCheSIZE 279
S CUNIEY . oo e 279
S CUNIEY . . ottt 280
SSLCAChEENIIIES . .. 280
SSLClientAuthDatalimit 280
SSLCHENtAULNTIMEOULo e e e 281
SSLSESSIONTIMEOULottt e et e e e e e e e e e e e e e e e 281
SSL3SESSIONTIMEOULottt e e e e e e e e e e e e e 281
Chunked ENCOAING oot e 281
USeOULPULSTIEAMSIZE oottt e e e e e e e e e e e 282
ChunkedRequestBUTferSize 282
ChunkedRequeStTIMEOUL e e e e e 282
MISCRIlANEOUS 283
ChildRestartCallback 283
HT T PV ISION . e e e e e e e 283
MaXROHEAAEIS . . o 283
Umask (UNDX ONIY) ..o 284
Chapter 8 Virtual Server Configuration Files 285
The server.dtd File 285
The server Xml File 286
Variables . . 288
Using the Server Manager and Class Manageruii it 290
Elements in server.dtd and serverXml e 291
SERVER . o oo 291
VA RS 291
LS (LiSten SOCKEL)ottt e e e 292
CONNECTIONGROUP . .. e e 293
SSL P AR A L 294
MIMIE 295
A CLFILE . . 296
NS L A S S 296
VS (VirtUal SEIVEr) . . o 297
QOSPARAMS L 298
USERD B . ittt ittt 298
Virtual Server Selection for Request Processingt 299

12 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide * May 2001

User Database SeleCtion e 300

The iPlanet LDAP SChemao o e 301
The CoNVErgenCe Treettt e e e e e e e e e e e e e 301
The Domain Component (dC)TIee ot e e 302

Appendix A Data Structure Reference i 303

Privatization of Some Data StrUCTUIES ittt e s 304

SBSSIOM . . 304

]] oo 305

] 0 =1 | Y/ 306

] o 0 Y- - 12 1 306

SeSSION->CHIENT 306

P OUESE . oottt 307

L1 | 307

SN S Lo 308

CINTO L 309

Appendix B MIME Ty PeS ..ottt e e e 311

INTrOdUCTION . .. o e e e e e e e e e e 311

Determining the MIME TyYPe oo e e e 312

How the Type Affects the RESPONSE ot 312

What Does the Client Do with the MIME Type? e 313

Syntax of the MIME Types File e 313

Sample MIME Types File 314

Appendix C Wildcard Patterns e 315

Wildcard Patlernso 315

Wildcard EXampPles 316

Appendix D Time FOrmatst 317

Appendix E HyperText Transfer Protocol 319

COMPIIANCE .« . . 319

REQUESES . .o 320
Request Method, URI, and Protocol Version 320
Request Headerso 320
ReqUESE DAtao 321

RPN . . .ot 321
HTTP Protocol Version, Status Code, and Reason Phrase 321
RESPONSE HEaBIS e 323
RESPONSE Datao 323

Buffered Streams o 324

Contents 13

14

Appendix F Dynamic Results Caching Functions 327

dr_cache _destroy 328
Ar CaChe NIt ... e e 329
dr_cache refresh e 329
Ar Nt W oo e 330
O N W L e e e 332
Appendix G Alphabetical List of NSAPI Functions and Macros 335
Appendix H Alphabetical List of Directives in magnus.conf 341
Appendix | Alphabetical List of Pre-defined SAFs 347
A EX .o 353

iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide « May 2001

About This Book

This book was last updated 5/15/01.

This book discusses how to use Netscape Server Application Programmer’s
Interface (NSAPI) to build plugins that define Server Application Functions (SAFs)
to extend and modify iPlanet™ Web Server, Edition version 6.0. The book also
discusses the purpose and use of the configuration files obj . conf, magnus. conf,
server.xml, and nmi ne. t ypes, and provides comprehensive lists of the directives
and functions that can be used in these configuration files. It also provides a
reference of the NSAPI functions you can use to define new plugins.

This book has the following chapters and appendices:

= Chapter 1, “Basics of Server Operation”

This chapter discusses how the iPlanet Web Server uses configuration files to
perform initialization tasks and to process client requests.

= Chapter 2, “Syntax and Use of obj.conf”

This chapter goes into detail on the configuration file obj . conf . The chapter
discusses the syntax and use of directives in this file, which instruct the server
how to process requests.

= Chapter 3, “Predefined SAFs and the Request Handling Process”

This chapter discusses each of the stages in the request handling process, and
provides an API reference of the Server Application Functions (SAFs) that can
be invoked at each stage.

= Chapter 4, “Creating Custom SAFs”

This chapter discusses how to create your own plugins that define new SAFs to
modify or extend the way the server handles requests.

= Chapter 5, “NSAPI Function Reference”

This chapter presents a reference of the functions in the Netscape Server
Application Programming Interface (API). You use NSAPI functions to define
SAFs.

15

= Chapter 6, “Examples of Custom SAFs”

This chapter discusses examples of custom SAFs to use at each stage in the
request handling process.

= Chapter 7, “Syntax and Use of magnus.conf”

This appendix discusses the variables you can set in the configuration file
magnus. conf to configure the iPlanet Web Server during initialization.

= Chapter 8, “Virtual Server Configuration Files”

This appendix discusses the variables you can set in the configuration file
server. xnl to configure virtual servers in iPlanet Web Server.

= Appendix A, “Data Structure Reference”
This appendix discusses some of the commonly used NSAPI data structures.
< Appendix B, “MIME Types”

This appendix discusses the MIME types file, which maps file extensions to file
types.

= Appendix C, “Wildcard Patterns”

This appendix lists the wildcard patterns you can use when specifying values
in obj . conf, various predefined SAFs, and in some NSAPI functions.

= Appendix D, “Time Formats”
This appendix lists time formats.
= Appendix E, “HyperText Transfer Protocol”
This appendix gives an overview of HTTP.
= Appendix F, “Dynamic Results Caching Functions”
This appendix explains how to create a results caching plugin.

= Appendix G, “Alphabetical List of NSAPI Functions and Macros”
Appendix H, “Alphabetical List of Directives in magnus.conf”
Appendix I, “Alphabetical List of Pre-defined SAFs”

These appendices provide alphabetical lists for easy lookup of NSAPI
functions, predefined SAFs, and variables in nagnus. conf .

16 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide « May 2001

NOTE Throughout this manual, all Unix-specific descriptions apply to the
Linux operating system as well, except where Linux is specifically
mentioned.

About This Book 17

18 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide « May 2001

Chapter 1

Basics of Server Operation

The configuration and behavior of iPlanet Web Server is determined by a set of
configuration files. You can change the settings in these configuration files either
by using the Server Manager interface or by manually editing the files.

The configuration file that contains instructions for how the server processes
requests from clients is called obj . conf . You can modify and extend the request
handling process by adding or changing the instructions in obj . conf . You can use
the Netscape Server Application Programming Interface (API) to create new Server
Application Functions (SAFs) to use in instructions in obj . conf .

This chapter discusses the configuration files used by the iPlanet Web Server. Then
the chapter looks in more detail at the server’s process for handling requests. The
chapter closes by introducing the use of Netscape Server Application
Programming Interface (NSAPI) to define new functions to modify the
request-handling process.

This chapter has the following sections;

= Configuration Files

= Dynamic Reconfiguration

< How the Server Handles Requests from Clients

= Writing New Server Application Functions

19

Configuration Files

Configuration Files

The configuration and operation of the iPlanet Web Server is controlled by
configuration files. The configuration files reside in the directory

server-root/ server-id/ conf i g/ . This directory contains various configuration files for
controlling different components. The exact number and names of configuration
files depends on which components have been enabled or loaded into the server.

However, this directory always contains four configuration files that are essential
for the server to operate. These files are:

< magnus. conf -- contains global server initialization information.

e server.xnl --contains initialization information for virtual servers and listen
sockets.

= obj.conf --contains instructions for handling requests from clients.

= nine.types --contains information for determining the content type of
requested resources.

magnus.conf

This file sets values of variables that configure the server during initialization. The
server looks at this file and executes the settings on startup. The server does not
look at this file again until it is restarted.

See Chapter 7, “Syntax and Use of magnus.conf” for a list of all the variables and
I ni t directives that can be set in magnus. conf .

server.xml

This file configures the addresses and ports that the server listens on and assigns
virtual server classes and virtual servers to these listen sockets. A master file,
server . dt d, defines its format and content.

For more information about how the server uses server . dt d and server. xn , see
Chapter 8, “Virtual Server Configuration Files.”

NOTE Virtual servers are not the same thing as server instances. Each
server instance is a completely separate server that contains one or
more virtual servers.

20 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide ¢ May 2001

Configuration Files

obj.conf

This file contains instructions for the server about how to process requests from
clients (such as browsers). The server looks at the configuration defined by this file
every time it processes a request from a client.

There is one obj . conf file for each virtual server class, or grouping of virtual
servers. Whenever this guide refers to “the obj . conf file,” it refers to all obj . conf
files or to the obj . conf file for the virtual server class being described.

All the obj . conf files are located in the server_root/ server_id/ confi g directory.
They are typically named vsclass. obj . conf , where vsclass is the virtual server class
name.

The obj . conf file is essential to the operation of the iPlanet Web Server. When you
make changes to the server through the Server Manager interface, the system
automatically updates obj . conf.

The file obj . conf contains a series of instructions (directives) that tell the iPlanet
Web Server what to do at each stage in the request-response process. Each directive
invokes a Server Application Function (SAF). These functions are written using the
Netscape Server Application Programming Interface (NSAPI). The iPlanet Web
Server comes with a set of pre-defined SAFs, but you can also write your own
using NSAPI to create new instructions that modify the way the server handles
requests.

For more information about how the server uses obj . conf, see Chapter 2, “Syntax
and Use of obj.conf.”

mime.types

This file maps file extensions to MIME types to enable the server to determine the
content type of a requested resource. For example, requests for resources with

.ht M extensions indicate that the client is requesting an HTML file, while requests
for resources with . gi f extensions indicate that the client is requesting an image
file in GIF format.

For more information about how the server uses ni ne. t ypes, see Appendix B,
“MIME Types.”

Chapter 1 Basics of Server Operation 21

Dynamic Reconfiguration

Dynamic Reconfiguration

You do not have to restart the server for changes to obj . conf, mi ne. t ypes,
server. xni , and virtual-server-specific ACL files to take effect. All you need to do
is apply the changes by clicking the Apply link and then clicking the Load
Configuration Files button on the Apply Changes screen. If there are errors in
installing the new configuration, the previous configuration is restored.

When you edit obj . conf and apply the changes, a new configuration is loaded
into memory that contains all the information from the dynamically configurable
files.

Every new connection references the newest configuration. Once the last session
referencing a configuration ends, the now unused old configuration is deleted.

How the Server Handles Requests from Clients

iPlanet Web Server is a web server that accepts and responds to HyperText
Transfer Protocol (HTTP) requests. Browsers like Netscape Communicator
communicate using several protocols including HTTP, FTP, and gopher. The
iPlanet Web Server handles HTTP specifically.

For more information about the HTTP protocol refer to Appendix E, “HyperText
Transfer Protocol” and also the latest HTTP specification.

HTTP Basics

As a quick summary, the HTTP/1.1 protocol works as follows:

= the client (usually a browser) opens a connection to the server and sends a
request

= the server processes the request, generates a response, and closes the
connection if it finds a Connecti on: O ose header.

The request consists of a line indicating a method such as GET or POST, a Universal
Resource Identifier (URI) indicating which resource is being requested, and an
HTTP protocol version separated by spaces.

This is normally followed by a number of headers, a blank line indicating the end
of the headers, and sometimes body data. Headers may provide various
information about the request or the client Body data. Headers are typically only
sent for POST and PUT methods.

22 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide ¢ May 2001

How the Server Handles Requests from Clients

The example request shown below would be sent by a Netscape browser to request
the server f 0o. comto send back the resource in /i ndex. ht i . In this example, no

body data is sent because the method is GET (the point of the request is to get some
data, not to send it.)

GET /index.html HTTP/ 1.0

User-agent: Mozilla

Accept: text/htm, text/plain, image/jpeg, inmage/qgif, */*
Host: foo.com

The server receives the request and processes it. It handles each request
individually, although it may process many requests simultaneously. Each request
is broken down into a series of steps that together make up the request handling
process.

The server generates a response which includes the HTTP protocol version, HTTP
status code, and a reason phrase separated by spaces. This is normally followed by
a number of headers. The end of the headers is indicated by a blank line. The body
data of the response follows. A typical HTTP response might look like this:

HTTP/ 1.0 200 K

Server: Netscape-Enterprise/6.0
Content-type: text/htm

Content -1 engt h: 83

<HTM_>

<HEAD><TI TLE>Hel | o Wor | d</Ti t | e></ HEAD>
<BODY>Hel | o Wor | d</ BODY>

</ HTM_>

The status code and reason phrase tell the client how the server handled the
request. Normally the status code 200 is returned indicating that the request was
handled successfully and the body data contains the requested item. Other result
codes indicate redirection to another server or the browser’s cache, or various types
of HTTP errors such as “404 Not Found.”

Chapter 1 Basics of Server Operation 23

How the Server Handles Requests from Clients

Steps in the Request Handling Process

When the server first starts up it performs some initialization and then waits for an
HTTP request from a client (such as a browser). When it receives a request, it first
selects a virtual server. For details about how the virtual server is determined, see
“Virtual Server Selection for Request Processing,” on page 299.

After the virtual server is selected, the obj . conf file for the virtual server class
specifies how the request is handled in the following steps:

1.

AuthTrans (authorization translation)

verify any authorization information (such as name and password) sent in the
request.

NameTrans (name translation)
translate the logical URI into a local file system path.
PathCheck (path checking)

check the local file system path for validity and check that the requestor has
access privileges to the requested resource on the file system.

ObjectType (object typing)

determine the MIME-type (Multi-purpose Internet Mail Encoding) of the
requested resource (for example. t ext/ ht m , i mage/ gi f, and so on).

Service (generate the response)

generate and return the response to the client.
AddLog (adding log entries)

add entries to log file(s).

Error (service)

This step is executed only if an error occurs in the previous steps. If an error
occurs, the server logs an error message and aborts the process.

24 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide ¢ May 2001

Writing New Server Application Functions

Directives for Handling Requests

The file obj . conf contains a series of instructions, known as directives, that tell the
iPlanet Web Server what to do at each stage in the request handling process. Each
directive invokes a Server Application Function (SAF) with one or more
arguments. Each directive applies to a specific stage in the request handling
process. The stages are Aut hTr ans, NaneTr ans, Pat hCheck, Obj ect Type, Ser vi ce,
and AddLog.

For example, the following directive applies during the NaneTr ans stage. It calls
the docurent - r oot function with the r oot argument set to

D: / Net scape/ Server 4/ docs. (The docunent - r oot function translates the

htt p: // server_name/ part of the URL to the document root, which in this example
is D: / Net scape/ Ser ver 4/ docs.)

NanmeTrans fn="docunent-root" root="D:/Netscapel/ Server4/docs"

The functions invoked by the directives in obj . conf are known as Server
Application Functions (SAFs).

Writing New Server Application Functions

The iPlanet Web Server comes with a variety of pre-defined SAFs that you can use
to create more directives in obj . conf . You can also write your own SAF using the
functions provided by the NSAPI. After you write the SAF, you would add a
directive to obj . conf so that your new function gets invoked by the server at the
appropriate time.

Each SAF has its own arguments, which are passed to it by the directive in

obj . conf . Every SAF is also passed additional arguments that contain information
about the request (such as what resource was requested and what kind of client
requested it) and any other server variables created or modified by SAFs called by
previously invoked directives. Each SAF may examine, modify, or create server
variables.

Each SAF returns a result code which tells the server whether it succeeded, did
nothing, or failed.

For more information about obj . conf, see Chapter 2, “Syntax and Use of obj.conf.”

For more information on the pre-defined SAFs, see Chapter 3, “Predefined SAFs
and the Request Handling Process.”

For more information on writing your own SAFs, see Chapter 4, “Creating Custom
SAFs.”

Chapter 1 Basics of Server Operation 25

Writing New Server Application Functions

26 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide ¢ May 2001

Chapter 2

Syntax and Use of obj.conf

The obj . conf configuration file contains directives that instruct the iPlanet Web
Server how to handle requests from clients. This chapter discusses server
instructions in obj . conf ; the use of Cbj ect tags; the use of variables; the flow of
control in obj . conf ; the syntax rules for editing obj . conf ; and a note about
example directives.

The sections in this chapter are:

= Server Instructions in obj.conf

= The Object Tag

= Variables Defined in server.xml
< Flow of Control in obj.conf

= Syntax Rules for Editing obj.conf

= About obj.conf Directive Examples

Server Instructions in obj.conf

The obj . conf file contains directives that instruct the server how to handle
requests received from clients such as browser. These directives appear inside
OBJECT tags.

Each directive calls a function, indicating when to call it and specifying arguments
for it.

The syntax of each directive is:

Di rective fn=func-name namel="val uvel"...nameN="valueN"

27

Server Instructions in obj.conf

For example:
NameTr ans fn="docunent-root" root="D:/Netscape/ Server4/docs"

Di rect i ve indicates when this instruction is executed during the request handling
process. The value is one of Aut hTr ans, NameTr ans, Pat hCheck, Cbj ect Type,
Ser vi ce, Error, and AddLog.

The value of the f n argument is the name of the Server Application Function (SAF)
to execute. All directives must supply a value for the f n parameter -- if there’s no
function, the instruction won’t do anything.

The remaining parameters are the arguments needed by the function, and they
vary from function to function.

iPlanet Web Server is shipped with a set of built-in server application functions
(SAFs) that you can use to create and modify directives in obj . conf, as discussed
in Chapter 3, “Predefined SAFs and the Request Handling Process.” You can also
define new SAFs, as discussed in Chapter 4, “Creating Custom SAFs.”

The magnus. conf file contains | ni t directive SAFs that initialize the server. For
more information, see Chapter 7, “Syntax and Use of magnus.conf.”

Summary of the Directives

Here are the categories of server directives and a description of what each does.
Each category corresponds to a stage in the request handling process. The section
“Flow of Control in obj.conf,” on page 34 explains exactly how the server decides
which directive or directives to execute in at each stage.

e Aut hTrans

Verifies any authorization information (normally sent in the Authorization
header) provided in the HTTP request and translates it into a user and/or a
group. Server access control occurs in two stages. AuthTrans verifies the
authenticity of the user. Later, PathCheck tests the user’s access privileges for
the requested resource.

Aut hTrans fn=basi c-auth userfn=ntauth auth-type=basic
user db=none

This example calls the basi c- aut h function, which calls a custom function (in
this case nt aut h, to verify authorization information sent by the client. The
Authorization header is sent as part of the basic server authorization scheme.

* NanmeTrans

28 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide ¢ May 2001

Server Instructions in obj.conf

Translates the URL specified in the request from a logical URL to a physical file
system path for the requested resource. This may also result in redirection to
another site. For example:

NameTrans fn="docunent-root" root="D:/Netscape/ Server4/docs"

This example calls the document - r oot function with a r oot argument of

D: / Net scape/ Ser ver 4/ docs. The function docunent - r oot function translates
the ht t p: // server_name/ part of the requested to URL to the document root,
which in this case is D: / Net scape/ Ser ver 4/ docs. Thus a request for

ht t p: / / server-name/ doc1. ht m is translated to

D: / Net scape/ Server 4/ docs/ docl. htm .

Pat hCheck

Performs tests on the physical path determined by the NaneTr ans step. In
general, these tests determine whether the path is valid and whether the client
is allowed to access the requested resource. For example:

Pat hCheck fn="find-index" index-nanmes="index.htm , hone.htnl"

This example calls the f i nd- i ndex function with an i ndex- nanes argument of
i ndex. ht m , hone. ht nl . If the requested URL is a directory, this function
instructs the server to look for a file called either i ndex. ht i or hore. htni in
the requested directory.

hj ect Type

Determines the MIME (Multi-purpose Internet Mail Encoding) type of the
requested resource. The MIME type has attributes t ype (which indicates
content type), encodi ng and | anguage. The MIME type is sent in the headers
of the response to the client. The MIME type also helps determine which

Ser vi ce directive the server should execute.

The resulting type may be:

o Acommon document type such astext/htm orinmage/ gi f (for example,
the file name extension . gi f translates to the MIME type i mage/ gi f).

o Aninternal server type. Internal types always begin with
magnus-i nt er nal .

For example:
hj ect Type fn="type- by-extensi on"

This example calls the t ype- by- ext ensi on function which causes the server to
determine the MIME type according to the requested resource’s file extension.

Chapter 2 Syntax and Use of obj.conf 29

Server Instructions in obj.conf

e Service

Generates and sends the response to the client. This involves setting the HTTP
result status, setting up response headers (such as content-type and
content-length), and generating and sending the response data. The default
response is to invoke the send- fi | e function to send the contents of the
requested file along with the appropriate header files to the client.

The default Ser vi ce directive is:

Servi ce net hod="(GET| HEAD| POST) " type="*~nmagnus-internal /*"
fn="send-file"

This directive instructs the server to call the send- fi | e function in response to
any request whose method is GET, HEAD, or POST, and whose t ype does not
begin with magnus- i nt er nal / . (Note the use of the special characters *~ to
mean “does not match.”)

Another example is:

Servi ce net hod="(GET| HEAD)" type="magnus-i nternal /i magemap"
fn="i nagenmap"

In this case, if the method of the request is either GET or HEAD, and the type of
the requested resource is " magnus-i nt er nal / i magemap" , the function
i magemap is called.

= AddLog

Adds an entry to a log file to record information about the transaction. For
example:

AddLog fn="flex-log" nane="access"

This example calls the 1 ex- 1 og function to log information about the current
request in the log file named access.

e FError

Handles an HTTP error. This directive is invoked if a previous directive results
in an error. Typically the server handles an error by sending a custom HTML
document to the user describing the problem and possible solutions.

For example:

Error fn="send-error" reason="Unauthorized"
pat h="D: / net scape/ server 4/ errors/unaut hori zed. ht m "

In this example, the server sends the file in
D. / net scape/ server 4/ error s/ unaut hori zed. ht M whenever a client
requests a resource that it is not authorized to access.

30 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide ¢ May 2001

The Object Tag

The Object Tag

Directives in the obj . conf file are grouped into objects that begin with an
<Ohj ect > tag and end with a </ Obj ect > tag. The default object provides
instructions to the server about how to process requests by default. Each new
object modifies the default object’s behavior.

An Obj ect tag may have a nane attribute or a ppat h attribute. Either parameter
may be a wildcard pattern. For example:

<Cbj ect nanme="cgi ">
or
<Cbj ect ppath="/usr/ netscape/ server4/docs/private/*">

The server always starts handling a request by processing the directives in the
default object. However, the server switches to processing directives in another
object after the NaneTr ans stage of the default object if either of the following
conditions is true:

= The successful NaneTr ans directive specifies a nanme argument

= the physical pathname that results from the NaneTr ans stage matches the
ppat h attribute of another object

When the server has been alerted to use an object other than the default object, it
processes the directives in the other object before processing the directives in the
default object. For some steps in the process, the server stops processing directives
in that a particular stage (such as the Ser vi ce stage) as soon as one is successfully
executed, whereas for other stages the server processes all directives in that stage,
including the ones in the default object as well as those in the additional object. For
more details, see the section “Flow of Control in obj.conf,” on page 34.

Objects that Use the name Attribute

If a NameTr ans directive in the default object specifies a nanme argument, the server
switches to processing the directives in the object of that name before processing
the remaining directives in the default object.

For example, the following NameTr ans directive in the default object assigns the
name cgi to any request whose URL starts with ht t p: // server_name/ cgi / .

Chapter 2 Syntax and Use of obj.conf 31

The Object Tag

<(bj ect nane="defaul t">
NameTrans fn="pfx2dir" from="/cgi"
di r="D: / net scape/ server 4/ docs/ nycgi " nanme="cgi"

</ Obj ect >

When that NameTr ans directive is executed, the server starts processing directives
in the object named cgi :

<Cbj ect nanme="cgi ">
more directives...
</ Obj ect >

Object that Use the ppath Attribute

When the server finishes processing the NameTr ans directives in the default object,
the logical URL of the request will have been converted to a physical pathname. If
this physical pathname matches the ppat h attribute of another object in obj . conf,
the server switches to processing the directives in that object before processing the
remaining ones in the default object.

For example, the following NameTr ans directive translates the
htt p: // server_name/ part of the requested URL to D: / Net scape/ Ser ver 4/ docs/
(which is the document root directory).

<Cbj ect nane="defaul t">
NaneTrans fn="docunent-root" root="D/Netscape/ Server4/docs"

</ Obj ect >

The URL htt p: // server_name/ i nt er nal pl anl. ht i would be translated to
D: / Net scape/ Server 4/ docs/ i nt er nal pl anl. ht nl . However, suppose that
obj . conf contains the following additional object:

32 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide ¢ May 2001

Variables Defined in server.xml

<Cbj ect ppath="*internal *">
more directives...
</ Obj ect >

In this case, the partial path *i nt er nal * matches the path

D: / Net scape/ Server 4/ docs/ i nt er nal pl anl. ht mi . So now the server starts
processing the directives in this object before processing the remaining directives
in the default object.

Variables Defined in server.xml

You can define variables in the ser ver. xm file and reference them in an obj . conf
file. For example, the following ser ver . xml code defines and uses a variable called
docr oot :

<! DOCTYPE SERVER SYSTEM "server.dtd" [
<! ATTLI ST VARS
docr oot CDATA #I MPLI ED
>
1>

<VS id="a.com' connecti ons="nai ngroup" url hosts="a.cont
m me="m mel" aclids="std">
<VARS docr oot ="/ u/ server 6/ a/ docs" />
</ VS>

You can reference the variable in obj . conf as follows:
NameTr ans fn=docunent-root root="%$docroot"

Using this docr oot variable saves you from having to define document roots for
virtual server classes in the obj . conf files. It also allows you to define different
document roots for different virtual servers within the same virtual server class.

Chapter 2 Syntax and Use of obj.conf 33

Flow of Control in obj.conf

NOTE Variable substitution is allowed only in an obj . conf file. It is not
allowed in any other iPlanet Web Server configuration files.

Any variable referenced in an obj . conf file must be defined in the
server. xnl file at the SERVER, VSCLASS, or VS level. Defining
variables with default values at the SERVER or VSCLASS level and
overriding them in the VS is recommended.

For more information, see Chapter 8, “Virtual Server Configuration Files.”

Flow of Control in obj.conf

Before the server can process a request, it must direct the request to the correct
virtual server. For details about how the virtual server is determined, see “Virtual
Server Selection for Request Processing,” on page 299.

After the virtual server is determined, the server executes the obj . conf file for the
virtual server class to which the virtual server belongs. This section discusses how
the server decides which directives to execute in obj . conf.

AuthTrans

When the server receives a request, it executes the Aut hTr ans directives in the
default object to check that the client is authorized to access the server.

If there is more than one AuthTrans directive, the server executes them all (unless
one of them results in an error). If an error occurs, the server skips all other
directives except for Er r or directives.

NameTrans

Next, the server executes a NaneTr ans directive in the default object to map the
logical URL of the requested resource to a physical pathname on the server’s file
system. The server looks at each NaneTr ans directive in the default object in turn,
until it finds one that can be applied.

If there is more than one NaneTr ans directive in the default object, the server
considers each directive until one succeeds.

34 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide ¢ May 2001

Flow of Control in obj.conf

The NaneTr ans section in the default object must contain exactly one directive that
invokes the docunent - r oot function. This functions translates the

ht t p: // server_name/ part of the requested URL to a physical directory that has
been designated as the server’s document root. For example:

NameTrans fn="docunent-root" root="D:/Netscape/ Server4/docs"

The directive that invokes document - r oot must be the last directive in the
NanmeTr ans section so that it is executed if no other NaneTr ans directive is
applicable.

The pf x2di r (prefix to directory) function is used to set up additional mappings
between URLs and directories. For example, the following directive translates the
URL ht t p: // server_name/ cgi / into the directory pathname

D: / net scape/ server 4/ docs/ nycgi / :

NanmeTrans fn="pfx2dir" from="/cgi"
di r="D:/ net scape/ server 4/ docs/ nycgi "

Notice that if this directive appeared after the one that calls docunent - r oot , it
would never be executed, with the result that the resultant directory pathname
would be D: / net scape/ server 4/ docs/ cgi / (not nycgi). This illustrates why the
directive that invokes docunent - r oot must be the last one in the NameTr ans
section.

How the Server Knows to Process Other Objects

As a result of executing a NameTr ans directive, the server might start processing
directives in another object. This happens if the NaneTr ans directive that was
successfully executed specifies a name or generates a partial path that matches the
nane or ppat h attribute of another object.

If the successful NaneTr ans directive assigns a name by specifying a nane
argument, the server starts processing directives in the named object (defined with
the OBJECT tag) before processing directives in the default object for the rest of the
request handling process.

For example, the following NameTr ans directive in the default object assigns the
name cgi to any request whose URL starts with ht t p: // server_name/ cgi / .

<(bj ect nane="defaul t">

NameTrans fn="pfx2dir" from="/cgi"
di r="D: / net scape/ server 4/ docs/ nycgi " nanme="cgi"

</ Obj ect >

Chapter 2 Syntax and Use of obj.conf 35

Flow of Control in obj.conf

36

When that NameTr ans directive is executed, the server starts processing directives
in the object named cgi :

<Cbj ect nanme="cgi ">
more directives...
</ Obj ect >

When a NameTr ans directive has been successfully executed, there will be a
physical pathname associated with the requested resource. If the resultant
pathname matches the ppat h (partial path) attribute of another object, the server
starts processing directives in the other object before processing directives in the
default object for the rest of the request handling process.

For example, suppose obj . conf contains an object as follows:

<Cbj ect ppath="*internal *">
more directives...
</ Obj ect >

Now suppose the successful NameTr ans directive translates the requested URL to
the pathname D: / Net scape/ Ser ver 4/ docs/ i nt er nal pl anl. ht nl . In this case,
the partial path *i nt er nal * matches the path

D: / Net scape/ Ser ver 4/ docs/ i nt er nal pl anl. ht M . So now the server would
start processing the directives in this object before processing the remaining
directives in the default object.

PathCheck

After converting the logical URL of the requested resource to a physical pathname
in the NaneTr ans step, the server executes Pat hCheck directives to verify that the
client is allowed to access the requested resource.

If there is more than one Pat hCheck directive, the server executes all the directives
in the order in which they appear, unless one of the directives denies access. If
access is denied, the server switches to executing directives in the Error section.

iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide « May 2001

Flow of Control in obj.conf

If the NaneTr ans directive assigned a name or generated a physical pathname that
matches the nane or ppat h attribute of another object, the server first applies the
Pat hCheck directives in the matching object before applying the directives in the
default object.

ObjectType

Assuming that the Pat hCheck directives all approve access, the server next
executes the Qbj ect Type directives to determine the MIME type of the request. The
MIME type has three attributes: type, encoding, and language. When the server
sends the response to the client, the type, language, and encoding values are
transmitted in the headers of the response. The t ype also frequently helps the
server to determine which Ser vi ce directive to execute to generate the response to
the client.

If there is more than one Qbj ect Type directive, the server applies all the directives
in the order in which they appear. However, once a directive sets an attribute of the
MIME type, further attempts to set the same attribute are ignored. The reason that
all j ect Type directives are applied is that one directive may set one attribute, for
example t ype, while another directive sets a different attribute, such as | anguage.

As with the Pat hCheck directives, if another object has been matched to the request
as a result of the NameTr ans step, the server executes the Qbj ect Type directives in
the matching object before executing the Qoj ect Type directives in the default
object.

Setting the Type By File Extension

Usually the default way the server figures out the MIME type is by calling the

t ype- by- ext ensi on function. This function instructs the server to look up the
MIME type according to the requested resource’s file extension in the MIME types
table. This table was created during virtual server initialization by the MIME types
file, (which is usually called ni ne. t ypes) .

For example, the entry in the MIME types table for the extensions . ht M and. ht mis
usually:

type=text/htm exts=htm htm

which says that all files that have the extension . ht mor .ht M are text files
formatted as HTML and thetype istext/htmi .

Note that if you make changes to the MIME types file, you must reconfigure the
server before those changes can take effect.

Chapter 2 Syntax and Use of obj.conf 37

Flow of Control in obj.conf

For more information about MIME types, see Appendix B, “MIME Types.”

Forcing the Type

If no previous Obj ect Type directive has set the type, and the server does not find a
matching file extension in the M ME types table, the t ype still has no value even
after t ype- by- expr essi on has been executed. Usually if the server does not
recognize the file extension, it is a good idea to force the type to be t ext / pl ai n, so
that the content of the resource is treated as plain text. There are also other
situations where you might want to set the type regardless of the file extension,
such as forcing all resources in the designated CGI directory to have the MIME
type magnus-i nternal / cgi .

The function that forces the type isf or ce- t ype.

For example, the following directives first instruct the server to look in the MIME
types table for the MIME type, then if the t ype attribute has not been set (that is,
the file extension was not found in the MIME types table), set the t ype attribute to
text/ pl ain.

oj ect Type fn="type-by-extensi on"
oj ect Type fn="force-type" type="text/plain"

If the server receives a request for a file abc. dogs, it looks in the MIME types table,
does not find a mapping for the extension . dogs, and consequently does not set the
t ype attribute. Since the t ype attribute has not already been set, the second
directive is successful, forcing the t ype attribute to t ext / pl ai n.

The following example illustrates another use of f or ce- t ype. In this example, the
t ype is forced to magnus-i nt er nal / cgi before the server gets a chance to look in
the MIME types table. In this case, all requests for resources in

htt p: // server_name/ cgi / are translated into requests for resources in the
directory D: / net scape/ server 4/ docs/ nycgi / . Since a name is assigned to the
request, the server processes Obj ect Type directives in the object named cgi before
processing the ones in the default object. This object has one bj ect Type directive,
which forces the t ype to be magnus-i nt ernal / cgi .

38 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide ¢ May 2001

Flow of Control in obj.conf

NameTrans fn="pfx2dir" from="/cgi"

di r="D: / net scape/ server 4/ docs/ nycgi " name="cgi"

<Cbj ect nane="cgi ">

oj ect Type fn="force-type" type="magnus-internal/cgi"
Service fn="send-cgi "

</ Cbj ect >

The server continues processing all Qbj ect Type directives including those in the
default object, but since the t ype attribute has already been set, no other directive
can set it to another value.

Service

Next, the server needs to execute a Ser vi ce directive to generate the response to
send to the client. The server looks at each Ser vi ce directive in turn, to find the
first one that matches the type, method and query string. If a Ser vi ce directive
does not specify type, method, or query string, then the unspecified attribute
matches anything.

If there is more than one Ser vi ce directive, the server applies the first one that
matches the conditions of the request, and ignores all remaining Ser vi ce
directives.

As with the Pat hCheck and Qbj ect Type directives, if another object has been
matched to the request as a result of the NameTr ans step, the server considers the
Ser vi ce directives in the matching object before considering the ones in the default
object. If the server successfully executes a Ser vi ce directive in the matching
object, it will not get round to executing the Ser vi ce directives in the default
object, since it only executes one Ser vi ce directive.

Service Examples

For an example of how Ser vi ce directives work, consider what happens when the
server receives a request for the URL D: / server_name/ j os. ht ni . In this case, all
directives executed by the server are in the default object.

= The following NaneTr ans directive translates the requested URL to
D: / net scape/ server 4/ docs/jos. htm :

NameTrans fn="docunent-root" root="D:/Netscape/ Server4/docs"

Chapter 2 Syntax and Use of obj.conf 39

Flow of Control in obj.conf

= Assume that the Pat hCheck directives all succeed.

= The following Obj ect Type directive tells the server to look up the resource’s
MIME type in the MIME types table:

hj ect Type fn="type- by-extensi on"

= The server finds the following entry in the MIME types table, which sets the
type attribute to text/html:

type=text/htm exts=htm htnl

= The server invokes the following Ser vi ce directive. The value of the t ype
parameter matches anything that does not begin with magnus-i nt er nal / . (For
a list of all wildcard patterns, see Appendix C, “Wildcard Patterns.”) This
directive sends the requested file, j os. ht m , to the client.

Servi ce net hod="(GET| HEAD| POST) " type="*~nmagnus-internal /*"
fn="send-file""

For an example that involves using another object, consider what happens
when the server receives a request for

htt p: // server_name/ ser vl et/ doCal cul ati on. cl ass. This example assumes
that servlets have been activated and the directory

D: /I net scape/ server 4/ docs/ servl et/ has been registered as a servlet
directory (that is, the server treats all files in that directory as servlets).

= The following NaneTr ans directive translates the requested URL to
D: net scape/ Ser ver 4/ docs/ ser vl et/ doCal cul ati on. cl ass. This directive
also assigns the name Ser vl et ByExt to the request.

NameTrans fn="pfx2dir" from="/servlet"
di r="D:/ Net scape/ Server 4/ docs/ servl et" name="Servl et ByExt"

= Asaresult of the name assignment, the server switches to processing the
directives in the object named Ser vl et ByExt . This object is defined as:

40 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide ¢ May 2001

Flow of Control in obj.conf

<Cbj ect nane="Servl et ByExt" >

bj ect Type fn="force-type" type="magnus-internal/servlet"
Service type="magnus-internal/servlet" fn="NSServletService"
</ Obj ect >

= The Servl et ByExt object has no Pat hCheck directives, so the server processes
the Pat hCheck directives in the default object. Let’s assume that all Pat hCheck
directives succeed.

= Next, the server processes the Obj ect Type directives, starting with the one in
the Ser vl et ByExt object. This directive sets the t ype attribute to
magnus-i nternal / servl et.

hj ect Type fn="force-type" type="nmagnus-internal/servlet"

The server continues processing all the Obj ect Type directives in the default
object, but since the t ype attribute is already set its value cannot be changed.

= When processing Ser vi ce directives, the server starts by considering the
Servi ce directive in the Ser vl et ByExt object which is:

Service type="magnus-internal/servlet" fn="NSServletService"

= Thetype argument of this directive matches the t ype value that was set by the
(bj ect Type directive. So the server goes ahead and executes this Ser vi ce
directive which calls the NSSer vl et Ser vi ce function. This function invokes
the requested file as a servlet and sends the output from the servlet as the
response to the client. (If the requested resource is not a servlet, an error
occurs.)

Since a Ser vi ce directive has now been executed, the server does not process
any other Ser vi ce directives. (However, if the matching object had not had a
Ser vi ce directive that was executed, the server would continue looking at
Ser vi ce directives in the default object.)

Default Service Directive

There is usually a Ser vi ce directive that does the default thing (sends a file) if no
other Ser vi ce directive matches a request sent by a browser. This default directive
should come last in the list of Ser vi ce directives in the default object, to ensure it
only gets called if no other Ser vi ce directives have succeeded. The default

Servi ce directive is usually:

Chapter 2 Syntax and Use of obj.conf 41

Flow of Control in obj.conf

Servi ce met hod="(GET| HEAD| POST) " type="*~magnus-internal /*"
fn="send-file"

This directive matches requests whose method is GET, HEAD, or POST, which covers
nearly virtually all requests sent by browsers. The value of the t ype argument uses
special pattern-matching characters. For complete information about the special
pattern-matching characters, see Appendix C, “Wildcard Patterns.”

The characters “*~” mean “anything that doesn’t match the following characters,”
so the expression *~magnus- i nt er nal / means “anything that doesn’t match
magnus- i nt er nal /.” An asterisk by itself matches anything, so the whole
expression *~magnus- i nt er nal / * matches anything that does not begin with
magnus-internal /.

So if the server has not already executed a Ser vi ce directive when it reaches this
directive, it executes the directive so long as the request method is GET, HEAD or
PGOST, and the value of the t ype attribute does not begin with magnus-i nternal /.
The invoked function is send- fi | e, which simply sends the contents of the
requested file to the client.

AddLog

After the server generate the response and sends it to the client, it executes AddLog
directives to add entries to the log files.

All AddLog directives are executed. The server can add entries to multiple log files.

Depending on which log files are used and which format they use, the I ni t section
in magnus. conf may need to have directives that initialize the logs. For example, if
one of the AddLog directives calls f | ex- | og, which uses the extended log format,
the I ni t section must contain a directive that invokes f | ex-i ni t to initialize the
flexible logging system.

For more information about initializing logs, see the discussion of the functions
flex-init andinit-clf in Chapter 7, “Syntax and Use of magnus.conf.”

42 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide ¢ May 2001

Syntax Rules for Editing obj.conf

Error

If an error occurs during the request handling process, such as if a Pat hCheck or
Aut hTr ans directive denies access to the requested resource, or the requested
resource does not exist, then the server immediately stops executing all other
directives and immediately starts executing the Err or directives.

Syntax Rules for Editing obj.conf

Several rules are important in the obj . conf file. Be very careful when editing this
file. Simple mistakes can make the server fail to start or operate incorrectly.

Order of Directives

The order of directives is important, since the server executes them in the order
they appear in obj . conf . The outcome of some directives affect the execution of
other directives.

For Pat hCheck directives, the order within the Pat hCheck section is not so
important, since the server executes all Pat hCheck directives. However, in the

Obj ect Type section the order is very important, because if an Obj ect Type
directive sets an attribute value, no other (bj ect Type directive can change that
value. For example, if the default Obj ect Type directives were listed in the
following order (which is the wrong way round), every request would have its

t ype value set to t ext / pl ai n, and the server would never have a chance to set the
t ype according to the extension of the requested resource.

oj ect Type fn="force-type" type="text/plain"
oj ect Type fn="type-by-extension"

Similarly, the order of directives in the Ser vi ce section is very important. The
server executes the first Ser vi ce directive that matches the current request and
does not execute any others.

Chapter 2 Syntax and Use of obj.conf 43

Syntax Rules for Editing obj.conf

Parameters

The number and names of parameters depends on the function. The order of
parameters on the line is not important.

Case Sensitivity

Items in the obj . conf file are case-sensitive including function names, parameter
names, many parameter values, and path names.

Separators

The C language allows function names to be composed only of letters, digits, and
underscores. You may use the hyphen (-) character in the configuration file in place
of underscore () for your C code function names. This is only true for function
names.

Quotes

Quotes (") are only required around value strings when there is a space in the
string. Otherwise they are optional. Each open-quote must be matched by a
close-quote.

Spaces

Spaces are not allowed at the beginning of a line except when continuing the
previous line. Spaces are not allowed before or after the equal (=) sign that
separates the name and value. Spaces are not allowed at the end of a line or on a
blank line.

Line Continuation

A long line may be continued on the next line by beginning the next line with a
space or tab.

44 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide ¢ May 2001

About obj.conf Directive Examples

Path Names

Always use forward slashes (/) rather than back-slashes (\) in path names under
Windows NT. Back-slash escapes the next character.

Comments

Comments begin with a pound (#) sign. If you manually add comments to
obj . conf, then use the Server Manager interface to make changes to your server,
the Server Manager will wipe out your comments when it updates obj . conf .

About obj.conf Directive Examples

Every line in the obj . conf file begins with one of the following keywords:

Aut hTr ans
NaneTr ans
Pat hCheck
hj ect Type
Service
AddLog
Error

<(bj ect

</ Obj ect >

If any line of any example begins with a different word in the manual, the line is
wrapping in a way that it does not in the actual file. In some cases this is due to line
length limitations imposed by the PDF and HTML formats of the manuals.

For example, the following directive is all on one line in the actual obj . conf file:

NameTrans fn="pfx2dir" from"/cgi"
di r="D:/ net scape/ server 4/ docs/ nmycgi " nane="cgi "

Chapter 2 Syntax and Use of obj.conf 45

About obj.conf Directive Examples

46 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide ¢ May 2001

Chapter 3

Predefined SAFs and the Request
Handling Process

This chapter describes the standard directives and pre-defined Server Application
Functions (SAFs) that are used in the obj . conf file to give instructions to the
server. For a discussion of the use and syntax of obj . conf , see the previous
chapter, Chapter 2, “Syntax and Use of obj.conf.”

For a list of I ni t (initialization) SAFs, see Chapter 7, “Syntax and Use of
magnus.conf.”

This chapter includes functions that are part of the core functionality of iPlanet
Web Server. It does not include functions that are available only if additional
components, such as servlets and server-parsed HTML, are enabled.

This chapter contains a section for each directive which lists all the pre-defined
Server Application Functions that can be used with that directive.

The directives are:

e AuthTrans Stage
« NameTrans Stage
» PathCheck Stage
* ObjectType Stage
e Service Stage

e AddLog Stage

* Error Stage

For an alphabetical list of pre-defined SAFs, see Appendix H, “Alphabetical List of
Directives in magnus.conf.”

Table 3-1 lists the SAFs that can be used with each directive.

47

Table 3-1 Available Server Application Functions (SAFs) Per Directive

AuthTrans Stage basi c-aut h
basi c- ncsa
get-sslid
gos- handl er

NameTrans Stage assi gn- nane
docunent - r oot
hone- page
pfx2dir
redirect
stri p-parans
uni x- horre

PathCheck Stage check- acl
deny- exi st ence
find-index
find-1inks
find-pathinfo
get-client-cert
| oad-config
nt-uri-clean
nt cgi check
requi re-auth
set-virtual -i ndex
ssl - check
ssl -1 ogout
uni x-uri-cl ean

ObijectType Stage force-type
set-default-type
sht m - hackt ype
type- by- exp
type- by- ext ensi on

48 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide « May 2001

The bucket Parameter

Table 3-1 Available Server Application Functions (SAFs) Per Directive

Service Stage

AddLog Stage

Error Stage

add- f oot er
add- header
append-trailer
i magenap

i ndex- conmon
i ndex-si npl e
key-t oosmal |
list-dir
make-dir
query-handl er
renmove-dir
remove-file
renane-file
send- cgi
send-file
send-r ange
send- shel | cg
send- wi ncg
servi ce- dunp
shtm _send
st at s- xm

upl oad-file

conmon- | og
flex-1og
recor d- user agent

send-error
gqos- error

The bucket Parameter

The following performance buckets are predefined in iPlanet Web Server:

e Thedefaul t - bucket records statistics for the functions not associated with
any user-defined or built-in bucket.

e Theall-requests bucket records. perf statistics for all NSAPI SAFs,
including those in the def aul t - bucket .

You can define additional performance buckets in the magnus. conf file (see the
perf-init and defi ne-perf-bucket functions).

Chapter 3 Predefined SAFs and the Request Handling Process 49

AuthTrans Stage

You can measure the performance of any SAF in obj . conf by adding a
bucket =bucket-name parameter to the function, for example
bucket =cache- bucket .

To list the performance statistics, use the ser vi ce- dunp Service function.

As an alternative, you can use the st at s- xm Service function to generate
performance statistics; use of buckets is optional.

For more information about performance buckets, see the Performance Tuning,
Sizing, and Scaling Guide for iPlanet Web Server.

AuthTrans Stage

Aut hTr ans stands for Authorization Translation. Aut hTr ans directives give the
server instructions for checking authorization before allowing a client to access
resources. Aut hTr ans directives work in conjunction with Pat hCheck directives.
Generally, an Aut hTr ans function checks if the username and password associated
with the request are acceptable, but it does not allow or deny access to the request
-- it leaves that to a Pat hCheck function.

The server handles the authorization of client users in two steps.

= AuthTrans Directive - validates authorization information sent by the client in
the Authorization header.

= PathCheck Stage - checks that the authorized user is allowed access to the
requested resource.

The authorization process is split into two steps so that multiple authorization
schemes can be easily incorporated, as well as providing the flexibility to have
resources that record authorization information but do not require it.

Aut hTr ans functions get the username and password from the headers associated
with the request. When a client initially makes a request, the username and
password are unknown so the Aut hTr ans functions and Pat hCheck functions work
together to reject the request, since they can’t validate the username and password.
When the client receives the rejection, its usual response is to pop up a dialog box
asking for the username and password to enter the appropriate realm, and then the
client submits the request again, this time including the username and password in
the headers.

If there is more than one Aut hTr ans directive in obj . conf , each function is
executed in order until one succeeds in authorizing the user.

The following AuthTrans-class functions are described in detail in this section:

50 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide ¢ May 2001

AuthTrans Stage

= basi c-aut h calls a custom function to verify user name and password.
Optionally determines the user’s group.

= basi c- ncsa verifies user name and password against an NCSA-style or
system DBM database. Optionally determines the user’s group.

= get-sslid retrieves a string that is unique to the current SSL session and
stores it as the ssl - i d variable in the Sessi on- >cl i ent parameter block.

= qos- handl er handles the current quality of service statistics.

basic-auth

Applicable in Aut hTr ans-class directives.

The basi c- aut h function calls a custom function to verify authorization
information sent by the client. The Authorization header is sent as part of the basic
server authorization scheme.

This function is usually used in conjunction with the PathCheck-class function

require-auth.

Parameters

aut h-type

user db

userfn

groupdb

specifies the type of authorization to be used. This should
always be basi c.

(optional) specifies the full path and file name of the user
database to be used for user verification. This parameter will
be passed to the user function.

is the name of the user custom function to verify
authorization. This function must have been previously
loaded with | oad- nodul es. It has the same interface as all
the SAFs, but it is called with the user name (user),
password (pw), user database (user db), and group database
(gr oupdb) if supplied, in the pb parameter. The user
function should check the name and password using the
database and return REQ_NOACTI ONif they are not valid. It
should return REQ_PROCEED if the name and password are
valid. The basic-auth function will then add aut h- t ype,
aut h- user (user), aut h-db (user db), and

aut h- passwor d (pw, Windows NT only) to ther g- >var s
pbl ock.

(optional) specifies the full path and file name of the user
database. This parameter will be passed to the group
function.

Chapter 3 Predefined SAFs and the Request Handling Process

51

AuthTrans Stage

groupfn (optional) is the name of the group custom function that
must have been previously loaded with | oad- nodul es. It
has the same interface as all the SAFs, but it is called with
the user name (user), password (pw), user database
(user db), and group database (gr oupdb) in the pb
parameter. It also has access to the aut h- t ype, aut h- user
(user), aut h- db (user db), and aut h- passwor d (pw,
Windows NT only) parameters in ther g- >vars pbl ock.
The group function should determine the user’s group using
the group database, add ittor g- >var s as aut h- gr oup,
and return REQ_PROCEED if found. It should return
REQ_NOACTI ONif the user’s group is not found.

bucket optional, common to all obj . conf functions

Examples
in magnus. conf :

Init fn=l oad-nmodul es shlib=/path/to/ nycust omaut h. so
f uncs=har dcoded_aut h

inobj . conf:

Aut hTrans fn=basi c-auth aut h-type=basi c userfn=hardcoded_auth

Pat hCheck fn=require-auth auth-type=basic real m"Marketing Pl ans"

See Also
require-auth

basic-ncsa
Applicable in Aut hTr ans-class directives.
The basi c- ncsa function verifies authorization information sent by the client

against a database. The Authorization header is sent as part of the basic server
authorization scheme.

52 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide ¢ May 2001

AuthTrans Stage

This function is usually used in conjunction with the PathCheck-class function
require-auth.

Parameters

aut h-type specifies the type of authorization to be used. This should
always be basi c.

dbm (optional) specifies the full path and base file name of the
user database in the server’s native format. The native
format is a system DBM file, which is a hashed file format
allowing instantaneous access to billions of users. If you use
this parameter, don’t use the user f i | e parameter as well.

userfile (optional) specifies the full path name of the user database
in the NCSA-style HTTPD user file format. This format
consists of lines using the format name:password, where
password is encrypted. If you use this parameter, don’t use
dbm

grpfile (optional) specifies the NCSA-style HTTPD group file to be
used. Each line of a group file consists of group: userl user2
... userN where each user is separated by spaces.

bucket optional, common to all obj . conf functions

Examples

AuthTrans fn=basi c-ncsa auth-type=basic
dbm=/ net scape/ server 4/ userdb/rs

Pat hCheck fn=require-auth auth-type=basic real m=" Marketing Pl ans"
Aut hTrans fn=basi c-ncsa aut h-type=basic

userfil e=/ net scape/ server4/. ht passwd
grpfil e=/ netscape/server4/.grpfile

Pat hCheck fn=require-auth auth-type=basic real m=" Marketing Pl ans"

See Also
require-auth

Chapter 3 Predefined SAFs and the Request Handling Process 53

AuthTrans Stage

get-sslid

Applicable in Aut hTr ans-class directives.

NOTE This function is provided for backward compatibility only. The
functionality of get - ssl i d has been incorporated into the standard
processing of an SSL connection.

The get - ssl i d function retrieves a string that is unique to the current SSL session,
and stores it as the ssl -i d variable in the Sessi on- >cl i ent parameter block.

If the variable ssl - i d is present when a CGl is invoked, it is passed to the CGl as
the HTTPS_SESSI ONI D environment variable.

The get - ssl i d function has no parameters and always returns REQ NOACTI ON. It
has no effect if SSL is not enabled.

Parameters

bucket optional, common to all obj . conf functions

qos-handler
Applicable in Aut hTr ans-class directives.

The gos- handl er function examines the current quality of service statistics for the
virtual server, virtual server class, and global server, logs the statistics, and
enforces the QOS parameters by returning an error. This must be the first

Aut hTr ans function configured in the def aul t object in order to work properly.

The code for this SAF is one of the examples in Chapter 6, “Examples of Custom
SAFs.”

For more information, see the Performance Tuning, Sizing, and Scaling Guide for
iPlanet Web Server.

Parameters

bucket optional, common to all obj . conf functions

54 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide ¢ May 2001

NameTrans Stage

Example

Aut hTrans f n=qgos- handl er

See Also
gos-error

NameTrans Stage

NaneTr ans stands for Name Translation. NaneTr ans directives translate virtual
URLSs to physical directories on your server. For example, the URL

http://vww. test.com sone/file.html

could be translated to the full file-system path

[usr/ net scape/ server 4/ docs/ sone/file. htn

NanmeTr ans directives should appear in the default object. If there is more than one
NaneTr ans directive in an object, the server executes each one in order until one
succeeds.

The following NameTrans-class functions are described in detail in this section:

assi gn- name tells the server to process directives in a named object.

docunent - r oot translates a URL into a file system path by replacing the
htt p: // server-name/ part of the requested resource with the document root
directory.

hone- page translates a request for the server’s root home page (/) to a specific
file.

pf x2di r translates any URL beginning with a given prefix to a file system
directory and optionally enables directives in an additional named object.

redi rect redirects the client to a different URL.

strip-params removes embedded semicolon-delimited parameters from the
path.

uni x- home translates a URL to a specified directory within a user’s home
directory.

Chapter 3 Predefined SAFs and the Request Handling Process 55

NameTrans Stage

assign-name
Applicable in NameTr ans-class directives.

The assi gn- nane function specifies the name of an object in obj . conf that
matches the current request. The server then processes the directives in the named
object in preference to the ones in the default object.

For example, consider the following directive in the default object:

NaneTrans fn=assi gn- nane nane=per sonnel fron¥/ personnel

Let’s suppose the server receives a request for ht t p: / / server-name/ per sonnel .
After processing this NaneTr ans directive, the server looks for an object named
per sonnel in obj . conf, and continues by processing the directives in the

per sonnel object.

The assi gn- nanme function always returns REQ NOACTI ON.

Parameters
from is a wildcard pattern that specifies the path to be affected.
nane specifies an additional named object in obj . conf whose

directives will be applied to this request.

find-pat hi nfo-forward (optional) makes the server look for the PATHINFO
forward in the path right after the ntrans-base instead of
backward from the end of path as the server function
assi gn- nane does by default.

The value you assign to this parameter is ignored. If you
do not wish to use this parameter, leave it out.

The f i nd- pat hi nf o- f or war d parameter is ignored if
the nt r ans- base parameter is not setinr g- >var s. By
default, nt r ans- base is set.

This feature can improve performance for certain URLs by
reducing the number of stats performed.

56 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide ¢ May 2001

nost at

bucket

Example

NameTrans Stage

(optional) prevents the server from performing a stat on a
specified URL whenever possible.

The effect of nost at =" virtual-path” in the NameTr ans
function assi gn- nane is that the server assumes that a
stat on the specified virtual-path will fail. Therefore, use
nost at only when the path of the virtual-path does not
exist on the system, for example, for NSAPI plugin URLSs,
to improve performance by avoiding unnecessary stats on
those URLs.

When the default Pat hCheck server functions are used,
the server does not stat for the paths

/ ntrans-base/virtual-path and

/ ntrans-base/virtual-path/ * if ntrans-base is set (the
default condition); it does not stat for the URLs

/ virtual-path and / virtual-path/ * if ntrans-base is not
set.

optional, common to all obj . conf functions

This NaneTrans directive is in the default object.
NameTr ans fn=assi gn- nane name=per sonnel frome/ alb/c/pers

<(hj ect nane=per sonnel >

...additional

</ Cbj ect >

directives..

NameTrans fn="assi gn-name" from="/perf" find-pathinfo-forward=""

nanme="perf"

NameTrans fn="assi gn-name" from="/nsfc" nostat="/nsfc"

name="nsfc"

document-root

Applicable in NameTr ans-class directives.

The document - r oot function specifies the root document directory for the server.
If the physical path has not been set by a previous NameTr ans function, the

htt p: // server-name/ part of the path is replace by the physical pathname for the

document root.

Chapter 3 Predefined SAFs and the Request Handling Process

57

NameTrans Stage

When the server receives a request for ht t p: / / server-name/ sonepat h/ sonefi | e,
the document - r oot function replaces ht t p: // server-name/ with the value of its

r oot parameter. For example, if the document root directory is

/ usr/ net scape/ server 4/ docs, then when the server receives a request for

ht t p: // server-name/ a/ b/ fi |l e. ht nl , the document - r oot function translates the
pathname for the requested resource to

[usr/ netscape/ server4/docs/a/b/file. htnm.

This function always returns REQ PROCEED. NarmeTr ans directives listed after this
will never be called, so be sure that the directive that invokes docunent - r oot is the
last NanmeTr ans directive.

There can be only one root document directory. To specify additional document
directories, use the pf x2di r function to set up additional path name translations.

Parameters

r oot is the file system path to the server’s root document
directory.

bucket optional, common to all obj . conf functions

Examples

NameTr ans f n=document -root root=/usr/netscape/server4/docs

NanmeTr ans fn=docunent-r oot root=%docr oot

See also
pfx2dir

home-page
Applicable in NameTr ans-class directives.

The home- page function specifies the home page for your server. Whenever a client
requests the server’s home page (/), they’ll get the document specified.

58 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide ¢ May 2001

Parameters

pat h

bucket

Examples

NameTrans Stage

is the path and name of the home page file. If pat h starts
with a slash (/), it is assumed to be a full path to a file.

This function sets the server’s pat h variable and returns
REQ PROCEED. If pat h is a relative path, it is appended to
the URI and the function returns REQ NOACTI ON
continuing on to the other NameTrans directives.

optional, common to all obj . conf functions

NameTrans fn="hone- page” pat h="honepage. htni "
NameTr ans fn="hone-page" path="/httpd/docs/hone. htm "

pfx2dir

Applicable in NameTr ans-class directives.

The pf x2di r function replaces a directory prefix in the requested URL with a real
directory name. It also optionally allows you to specify the name of an object that
matches the current request. (See the discussion of assi gn- name for details of

using named objects.)

Parameters

from
dir

nane

is the URI prefix to convert. It should not have a trailing
slash (/).

is the local file system directory path that the prefix is
converted to. It should not have a trailing slash (/).

(optional) specifies an additional named object in
obj . conf whose directives will be applied to this
request.

Chapter 3 Predefined SAFs and the Request Handling Process 59

NameTrans Stage

60

find-pat hi nfo-forward (optional) makes the server look for the PATHINFO
forward in the path right after the ntrans-base instead of
backward from the end of path as the server function
fi nd- pat hi nf o does by default.

The value you assign to this parameter is ignored. If you
do not wish to use this parameter, leave it out.

The f i nd- pat hi nf o- f or war d parameter is ignored if
the nt r ans- base parameter is not setinr g- >var s
when the server function f i nd- pat hi nf o is called. By
default, nt rans- base is set.

This feature can improve performance for certain URLs by
reducing the number of stats performed in the server
function f i nd- pat hi nf o.

On NT, this feature can also be used to prevent the
PATHINFO from the server URL normalization process
(changing "\’ to ’/’) when the Pat hCheck server function
fi nd- pat hi nf o is used. Some double-byte characters
have hex values that may be parsed as URL separator
characters such as \ or ~. Using the

fi nd- pat hi nf o- f or war d parameter can sometimes
prevent incorrect parsing of URLs containing double-byte
characters.

bucket optional, common to all obj . conf functions

Examples

In the first example, the URL ht t p: / / server-name/ cgi - bi n/ resource (such as
http://x.y.z/cgi-bin/test.cgi)istranslated to the physical pathname

/ htt pd/ cgi - | ocal / resource, (such as/ htt pd/ cgi -1 ocal / t est . cgi) and the
server also starts processing the directives in the object named cgi .

NameTrans fn=pfx2dir frome/ cgi-bin dir=/httpd/cgi-Ilocal nane=cgi

In the second example, the URL ht t p: / / server-name/ i cons/ resource (such as
http://x.y.zlicons/ happy/sniley. gif)istranslated to the physical pathname
/ user s/ ni kki / i mages/ resource, (such as/ user s/ ni kki /i mages/ sni | ey. gi f)

iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide « May 2001

NameTrans Stage

NameTr ans fn=pfx2dir frome/icons/ happy dir=/users/nikki/imges

The third example shows the use of the f i nd- pat hi nf o- f or war d parameter. The
URL ht t p: // server-name/ cgi - bi n/ resource is translated to the physical pathname
[export/ hore/ cgi - bi n/ resource.

NameTr ans fn="pfx2dir" find-pathinfo-forward="" fronme"/cgi-bin"
di r="/export/hone/ cgi-bin" name="cgi"

redirect
Applicable in NameTr ans-class directives.
The redi rect function lets you change URLs and send the updated URL to the

client. When a client accesses your server with an old path, the server treats the
request as a request for the new URL.

Parameters

from specifies the prefix of the requested URI to match.

url (maybe optional) specifies a complete URL to return to the
client. If you use this parameter, don’t use ur | - prefi x
(and vice-versa).

url -prefix (maybe optional) is the new URL prefix to return to the
client. The f r omprefix is simply replaced by this URL
prefix. If you use this parameter, don’t use ur | (and
vice-versa).

escape (optional) is a flag which tells the server to
util _uri _escape the URL before sending it. It should be
yes or no. The defaultisyes.

bucket optional, common to all obj . conf functions

Chapter 3 Predefined SAFs and the Request Handling Process 61

NameTrans Stage

Examples
In the first example, any request for ht t p: / / server-name/ whatever is translated to a
request for htt p: // t npser ver / whatever.

NameTrans fn=redirect frone/ url-prefix=http://tnpserver

In the second example, any request for ht t p: / / server-name/ t oopopul ar / whatever
is translated to a request for
htt p: // bi gger/ better/stronger/ mor epopul ar/ whatever.

NameTrans fn=redirect frone/toopopul ar
url =http://bigger/better/stronger/ norepopul ar

strip-params
Applicable in NameTr ans-class directives.

The stri p- parans function removes embedded semicolon-delimited parameters
from the path. For example, a URI of / di r 1; par ami/ di r 2 would become a path of
/dirl/dir2. When used, the stri p- par ans function should be the first

NaneTr ans directive listed.

Parameters

bucket optional, common to all obj . conf functions
Example
NaneTrans fn=stri p-parans

unix-home
Applicable in NameTr ans-class directives.

62 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide ¢ May 2001

NameTrans Stage

Unix Only. The uni x- home function translates user names (typically of the form
~username) into the user’s home directory on the server’s Unix machine. You
specify a URL prefix that signals user directories. Any request that begins with the
prefix is translated to the user’s home directory.

You specify the list of users with either the / et c/ passwd file or a file with a similar
structure. Each line in the file should have this structure (elements in the passwd
file that are not needed are indicated with *):

usernane: *: *: groupi d: *: honedi r: *

If you want the server to scan the password file only once at startup, use the
Init-class function i ni t - uhone in magnus. conf .

Parameters

from is the URL prefix to translate, usually “/ ~”.

subdir is the subdirectory within the user’s home directory that
contains their web documents.

pwiile (optional) is the full path and file name of the password file if
it is different from/ et ¢/ passwd.

nane (optional) specifies an additional named object whose
directives will be applied to this request.

bucket optional, common to all obj . conf functions

Examples

NameTrans fn=uni x- home frome/ ~ subdi r=public_htni
NameTr ans f n=uni x-hone from/~ pwfil e=/nydir/passwd

subdi r=public_htm

See Also
i nit-uhone, find-links

Chapter 3 Predefined SAFs and the Request Handling Process 63

PathCheck Stage

PathCheck Stage

Pat hCheck directives check the local file system path that is returned after the
NanmeTr ans step. The path is checked for things such as CGI path information and
for dangerous elements suchas/./and/../ and//, and then any access
restriction is applied.

If there is more than one Pat hCheck directive, each of the functions are executed in
order.

The following PathCheck-class functions are described in detail in this section;
= check-acl checks an access control list for authorization.

< deny-exi st ence indicates that a resource was not found.

= find-index locates a default file when a directory is requested.

= find-1inks denies access to directories with certain file system links

= find- pat hi nf o locates extra path info beyond the file name for the
PATH_INFO CGI environment variable.

e get-client-cert getsthe authenticated client certificate from the SSL3
session.

= | oad-confi g finds and loads extra configuration information from afile in the
requested path

= nt-uri-cl ean denies access to requests with unsafe path names by indicating
not found.

= ntcgi check looks for a CGl file with a specified extension.

= require-auth denies access to unauthorized users or groups.
= set-virtual -i ndex specifies a virtual index for a directory.
= ssl - check checks the secret keysize.

= ssl -l ogout invalidates the current SSL session in the server's SSL session
cache.

= uni x-uri-cl ean denies access to requests with unsafe path names by
indicating not found.

check-acl
Applicable in Pat hCheck-class directives.

64 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide ¢ May 2001

PathCheck Stage

The check- acl function specifies an Access Control List (ACL) to use to check
whether the client is allowed to access the requested resource. An access control list
contains information about who is or is not allowed to access a resource, and under
what conditions access is allowed.

Regardless of the order of Pat hCheck directives in the object, check- acl functions
are executed first. They cause user authentication to be performed, if required by
the specified ACL, and will also update the access control state.

Parameters

acl is the name of an Access Control List.

pat h (optional) is a wildcard pattern that specifies the path for
which to apply the ACL.

bucket optional, common to all obj . conf functions

Examples

Pat hCheck fn=check-acl acl ="*HRonl y*"

deny-existence
Applicable in Pat hCheck-class directives.
The deny- exi st ence function sends a “not found” message when a client tries to

access a specified path. The server sends “not found” instead of “forbidden,” so the
user cannot tell whether the path exists or not.

Parameters

path (optional) is a wildcard pattern of the file-system path to
hide. If the path does not match, the function does nothing
and returns REQ_NQACTI ON. If the path is not provided, it is
assumed to match.

bong-file (optional) specifies a file to send rather than responding
with the “not found” message. It is a full file-system path.

bucket optional, common to all obj . conf functions

Chapter 3 Predefined SAFs and the Request Handling Process 65

PathCheck Stage

Examples

Pat hCheck fn=deny-exi stence

pat h=/ usr/ net scape/ server 4/ docs/ private
Pat hCheck fn=deny-exi stence bong-fil e=/svr/nsg/ go-away. ht m

find-index
Applicable in Pat hCheck-class directives.

The fi nd- i ndex function investigates whether the requested path is a directory. If
it is, the function searches for an index file in the directory, and then changes the
path to point to the index file. If no index file is found, the server generates a
directory listing.

Note that if the file obj . conf has a NameTr ans directive that calls hone- page, and
the requested directory is the root directory, then the home page rather than the
index page, is returned to the client.

The fi nd-i ndex function does nothing if there is a query string, if the HTTP
method is not GET, or if the path is that of a valid file.

Parameters

i ndex- nanmes is a comma-separated list of index file names to look for. Use
spaces only if they are part of a file name. Do not include
spaces before or after the commas. This list is case-sensitive if
the file system is case-sensitive.

bucket optional, common to all obj . conf functions

Examples

Pat hCheck fn=find-index i ndex-nanes=i ndex. htm , hone. htm

66 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide ¢ May 2001

find-links

PathCheck Stage

Applicable in Pat hCheck-class directives.

Unix Only. The fi nd- I i nks function searches the current path for symbolic or
hard links to other directories or file systems. If any are found, an error is returned.
This function is normally used for directories that are not trusted (such as user
home directories). It prevents someone from pointing to information that should

not be made public.

Parameters

di sabl e

dir

bucket

checkFi | eExi st ence

Examples

is a character string of links to disable:
« hishard links
= s issoft links

= 0 allows symbolic links from user home directories only if
the user owns the target of the link.

is the directory to begin checking. If you specify an absolute
path, any request to that path and its subdirectories is checked
for symbolic links. If you specify a partial path, any request
containing that partial path is checked for symbolic links. For
example, if you use / user/ and a request comes in for
sone/ user/ di rect ory, then that directory is checked for
symbolic links.

optional, common to all obj . conf functions

check linked file for existence and abort request with 403
(f or bi dden) if this check fails.

Pat hCheck fn=fin

nks di sabl e=sh dir=/foreign-dir

d-T1
Pat hCheck fn=find-Ilinks disable=so dir=public_htn

See Also

i nit-uhone, unix-hone

Chapter 3 Predefined SAFs and the Request Handling Process 67

PathCheck Stage

find-pathinfo

Applicable in Pat hCheck-class directives.

The fi nd- pat hi nf o function finds any extra path information after the file name in
the URL and stores it for use in the CGI environment variable PATH_INFO.

Parameters

bucket optional, common to all obj . conf functions

Examples

Pat hCheck fn=find-pathinfo
Pat hCheck fn=fi nd-pathinfo find-pathinfo-forward=""

get-client-cert
Applicable in Pat hCheck-class directives.

The get-client-cert function gets the authenticated client certificate from the
SSL3 session. It can apply to all HTTP methods, or only to those that match a
specified pattern. It only works when SSL is enabled on the server.

If the certificate is present or obtained from the SSL3 session, the function returns
REQ_NOACTI ON, allowing the request to proceed, otherwise it returns REQ ABORTED
and sets the protocol status to 403 FORBI DDEN, causing the request to fail and the
client to be given the FORBI DDEN status.

68 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide ¢ May 2001

Parameters

dor equest

require

net hod

bucket

Examples

PathCheck Stage

controls whether to actually try to get the certificate, or just test for its
presence. If dor equest is absent the default value is 0.

= 1 tells the function to redo the SSL3 handshake to get a client
certificate, if the server does not already have the client certificate.
This typically causes the client to present a dialog box to the user
to select a client certificate. The server may already have the client
certificate if it was requested on the initial handshake, or if a
cached SSL session has been resumed.

« (0 tells the function not to redo the SSL3 handshake if the server
does not already have the client certificate.

If a certificate is obtained from the client and verified successfully by
the server, the ASCII base64 encoding of the DER-encoded X.509
certificate is placed in the parameter aut h- cert in the

Request - >var s pblock, and the function returns REQ PROCEED,
allowing the request to proceed.

controls whether failure to get a client certificate will abort the HTTP
request. Ifr equi r e is absent the default value is 1.

= 1tells the function to abort the HTTP request if the client
certificate is not present after dor equest is handled. In this case,
the HTTP status is set to PROTOCOL_FORBI DDEN, and the
function returns REQ_ABORTED.

= 0 tells the function to return REQ_NQACTI ONif the client
certificate is not present after dorequest is handled.

(optional) specifies a wildcard pattern for the HTTP methods for
which the function will be applied. If mret hod is absent, the function is
applied to all requests.

optional, common to all obj . conf functions

Get the client certificate fromthe session.
If a certificate is not already associated with the

session,

request one.

The request fails if the client does not present a
valid certificate.

Pat hCheck fn="get-client-cert" dorequest="1"

Chapter 3 Predefined SAFs and the Request Handling Process

69

PathCheck Stage

load-config
Applicable in Pat hCheck-class directives.

The | oad- conf i g function searches for configuration files in document directories
and adds the file’s contents to the server’s existing configuration. These
configuration files (also known as dynamic configuration files) specify additional
access control information for the requested resource. Depending on the rules in
the dynamic configuration files, the server might or might not allow the client to
access the requested resource.

Each directive that invokes | oad- conf i g is associated with a base directory, which
is either stated explicitly through the basedi r parameter or derived from the root
directory for the requested resource. The base directory determines two things:

= the top-most directory for which requests will invoke this call to the
| oad- confi g function.

For example, if the base directory is D: / Net scape/ Ser ver 4/ docs/ ni kKki / ,
then only requests for resources in this directory or its subdirectories (and their
subdirectories and so on) trigger the search for dynamic configuration files. A
request for the resource D: / Net scape/ Ser ver 4/ docs/ sonefil e. ht Ml does
not trigger the search in this case, since the requested resource is in a parent
directory of the base directory.

= the top-most directory in which the server looks for dynamic configuration
files to apply to the requested resource.

If the base directory is D: / Net scape/ Ser ver 4/ docs/ ni kki /, the server starts
its search for dynamic configuration files in this directory. It may or may not
also search subdirectories (but never parent directories) depending on other
factors.

When you enable dynamic configuration files through the Server Manager
interface, the system writes additional objects with ppat h parameters into the
obj . conf file. If you manually add directives that invoke | oad- confi g to the
default object (rather than putting them in separate objects), the Server Manager
interface might not reflect your changes.

If you manually add Pat hCheck directives that invoke | oad- confi g to the file

obj . conf, put them in additional objects (created with the <OBJECT> tag) rather
than putting them in the default object. Use the ppat h attribute of the OBJECT tag to
specify the partial pathname for the resources to be affected by the access rules in
the dynamic configuration file. The partial pathname can be any pathname that
matches a pattern, which can include wildcard characters.

70 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide ¢ May 2001

PathCheck Stage

For example, the following <OBJECT> tag specifies that requests for resources in the
directory D: / Net scape/ Ser ver 4/ docs are subject to the access rules in the file

ny. nsconfi g.

<Cbj ect ppat h="D:/ Net scape/ Server 4/ docs/*" >
Pat hCheck fn="I|oad-config" file="ny.nsconfig" descend=1
basedi r =" D: / Net scape/ Ser ver 4/ docs"

</ Obj ect >

NOTE If the ppat h resolves to a resource or directory that is higher in the
directory tree (or is in a different branch of the tree) than the base
directory, the | oad- confi g function is not invoked. This is because
the base directory specifies the highest-level directory for which
requests will invoke the | oad- confi g function.

The |l oad- confi g function returns REQ PROCEED if configuration files were loaded,
REQ _ABORTED on error, or REQ NOACTI ONwhen no files are loaded.

Parameters

file

di sabl e-types

descend

(optional) is the name of the dynamic configuration file
containing the access rules to be applied to the requested
resource. If not provided, the file name is assumed to be
.nsconfig.

(optional) specifies a wildcard pattern of types to disable for the
base directory, such as magnus- i nt er nal / cgi . Requests for
resources matching these types are aborted.

(optional) if present, specifies that the server should search in
subdirectories of this directory for dynamic configuration files.
For example, descend=1 specifies that the server should search
subdirectories. No descend parameter specifies that the
function should search only the base directory.

Chapter 3 Predefined SAFs and the Request Handling Process 71

PathCheck Stage

basedir (optional) specifies base directory. This is the highest-level
directory for which requests will invoke the | oad- confi g
function and is also the directory where the server starts
searching for configuration files.

If basedi r is not specified, the base directory is assumed to be
the root directory that results from translating the requested
resource’s URL to a physical pathname. For example, if the
request was for ht t p: / / server-name/ a/ b/ fil e. ht m , the
physical file name would be

/ document-root/ a/ b/ file. htn.

bucket optional, common to all obj . conf functions

Examples

In this example, whenever the server receives a request for any resource containing
the substring secr et that resides in D: / Net scape/ Ser ver 4/ docs/ ni kki / or a
subdirectory thereof, it searches for a configuration file called

checkaccess. nsconfi g.

The server starts the search in the directory D: / Net scape/ Ser ver 4/ docs/ ni kki ,
and searches subdirectories too. It loads each instance of checkaccess. nsconfi g
that it finds, applying the access control rules contained therein to determine
whether the client is allowed to access the requested resource or not.

<(bj ect ppath="*secret*">

Pat hCheck fn="Iload-config" file="checkaccess.nsconfig"
basedi r="D: / Net scape/ Ser ver 4/ docs/ ni kki " descend="1"
</ Cbj ect >

nt-uri-clean
Applicable in Pat hCheck-class directives.
Windows NT Only. The nt - uri - cl ean function denies access to any resource

whose physical path contains\.\,\..\ or\\ (these are potential security
problems).

72 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide ¢ May 2001

PathCheck Stage

Parameters

bucket optional, common to all obj . conf functions

til deok if present, allows tilde”~" characters in URIs. This is a potential
security risk on the NT platform, where | ongfi ~1. ht m might
reference | ongfi | enane. ht m but does not go through the
proper ACL checking. If present, “//" sequences are allowed.

dotdirok If present, “//” sequences are allowed.

Examples

PathCheck fn=nt-uri-clean

See Also
uni x-uri-cl ean

ntcgicheck
Applicable in Pat hCheck-class directives.
Windows NT Only. The nt cgi check function specifies the file name extension to

be added to any file name that does not have an extension, or to be substituted for
any file name that has the extension . cgi .

Parameters

extension is the replacement file extension.

bucket optional, common to all obj.conf functions
Examples

PathCheck fn=ntcgicheck extension=pl

Chapter 3 Predefined SAFs and the Request Handling Process 73

PathCheck Stage

See Also
init-cgi, send-cgi, send-w ncgi, send-shellcgi

require-auth
Applicable in Pat hCheck-class directives.

The r equi r e- aut h function allows access to resources only if the user or group is
authorized. Before this function is called, an authorization function (such as
basi c- aut h) must be called in an Aut hTr ans directive.

If a user was authorized in an Aut hTr ans directive, and the aut h- user parameter
is provided, then the user’s name must match the aut h- user wildcard value. Also,
if the aut h- gr oup parameter is provided, the authorized user must belong to an
authorized group which must match the aut h- user wildcard value.

Parameters

path (optional) is a wildcard local file system path on which this
function should operate. If no path is provided, the function
applies to all paths.

aut h-type is the type of HTTP authorization used and must match the
auth-type from the previous authorization function in AuthTrans.
Currently, basi c is the only authorization type defined.

real m is a string sent to the browser indicating the secure area (or realm)
for which a user name and password are requested.

aut h- user (optional) specifies a wildcard list of users who are allowed access.
If this parameter is not provided, then any user authorized by the
authorization function is allowed access.

aut h- group (optional) specifies a wildcard list of groups that are allowed
access.

bucket optional, common to all obj . conf functions

Examples

Pat hCheck fn=require-auth auth-type=basic real m=" Marketing Pl ans"
aut h- gr oup=nkt g aut h-user =(j doe|j ohnd|j aned)

74 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide ¢ May 2001

PathCheck Stage

See Also
basi c-aut h, basic-ncsa

set-virtual-index
Applicable in Pat hCheck-class directives.

The set - vi rt ual -i ndex function specifies a virtual index for a directory, which
determines the URL forwarding. The index can refer to a LiveWire application, a
servlet in its own namespace, a Netscape Application Server applogic, and so on.

REQ _NOACTI ONis returned if none of the URIs listed in the from parameter match
the current URI. REQ ABORTED is returned if the file specified by the

vi rtual -i ndex parameter is missing or if the current URI cannot be found.

REQ RESTART is returned if the current URI matches any one of the URIs mentioned
in the f r omparameter or if there is no f r omparameter.

Parameters

vi rtual -i ndex is the URI of the content generator that acts as an index for the
URI the user enters.

from (optional) is a comma-separated list of URIs for which this
vi rtual -i ndex is applicable. If f r omis not specified, the
vi rtual -i ndex always applies.

bucket optional, common to all obj . conf functions

Examples

M/LWApp is a LiveWre application
Pat hCheck fn=set-virtual-index virtual -i ndex=M/LWApp

ssl-check
Applicable in Pat hCheck-class directives.

If a restriction is selected that is not consistent with the current cipher settings
under Security Preferences, this function opens a popup dialog which warns that
ciphers with larger secret keysizes need to be enabled. This function is designed to
be used together with a Client tag to limit access of certain directories to
non-exportable browsers.

Chapter 3 Predefined SAFs and the Request Handling Process 75

PathCheck Stage

The function returns REQ NOACTI ONif SSL is not enabled, or if the secr et - keysi ze
parameter is not specified. If the secret keysize for the current session is less than
the specified secr et - keysi ze and the bong-fi | e parameter is not specified, the
function returns REQ ABORTED with a status of PROTOCOL_FORBI DDEN. If the bong
file is specified, the function returns REQ _PROCEED, and the pat h variable is set to
the bong filename. Also, when a keysize restriction is not met, the SSL session
cache entry for the current session is invalidated, so that a full SSL handshake will
occur the next time the same client connects to the server.

Requests that use ssl - check are not cacheable in the accelerator file cache if
ssl - check returns something other than REQ NOACTI ON.

Parameters

secret - keysi ze (optional) is the minimum number of bits required in the
secret key.

bong-file (optional) is the name of a file (not a URI) to be served if the
restriction is not met

bucket optional, common to all obj . conf functions

ssl-logout

Applicable in Pat hCheck-class directives.

ssl -1 ogout invalidates the current SSL session in the server’s SSL session cache.
This does not affect the current request, but the next time the client connects, a new
SSL session will be created. If SSL is enabled, this function returns REQ PROCEED
after invalidating the session cache entry. If SSL is not enabled, it returns
REQ_NOACTI ON.

Parameters

bucket optional, common to all obj . conf functions

76 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide ¢ May 2001

ObjectType Stage

unix-uri-clean
Applicable in Pat hCheck-class directives.

Unix Only. The uni x- uri - cl ean function denies access to any resource whose
physical path contains/./,/../ or// (these are potential security problems).

Parameters

bucket optional, common to all obj . conf functions
dot di r ok If present, “//” sequences are allowed.
Examples

PathCheck fn=unix-uri-clean

See Also
nt-uri-clean

ObjectType Stage

(bj ect Type directives determine the MIME type of the file to send to the client in
response to a request. MIME attributes currently sent are t ype, encodi ng, and

| anguage. The MIME type sent to the client as the value of the cont ent - t ype
header.

(bj ect Type directives also set the t ype parameter, which is used by Ser vi ce
directives to determine how to process the request according to what kind of
content is being requested.

If there is more than one Qbj ect Type directive in an object, all the directives are
applied in the order they appear. If a directive sets an attribute and later directives
try to set that attribute to something else, the first setting is used and the
subsequent ones ignored.

The obj . conf file almost always has an Qbj ect Type directive that calls the

t ype- by- ext ensi on function. This function instructs the server to look in a
particular file (the MIME types file) to deduce the content type from the extension
of the requested resource.

Chapter 3 Predefined SAFs and the Request Handling Process 77

ObjectType Stage

The following bj ect Type-class functions are described in detail in this section:
= force-type sets the content-type header for the response to a specific type.

e set-defaul t-type allows you to define a default char set,
cont ent - encodi ng, and cont ent - | anguage for the response being sent back
to the client.

= shtnl-hackt ype requests that . ht mand . ht m files are parsed for
server-parsed html commands.

= type-by-exp sets the content-type header for the response based on the
requested path.

= type-by-extensi on sets the content-type header for the response based on the
files extension and the MIME types database.

force-type

Applicable in Qbj ect Type-class directives.

The f or ce- t ype function assigns a type to requests that do not already have a
MIME type. This is used to specify a default object type.

Make sure that the directive that calls this function comes last in the list of

Obj ect Type directives so that all other Obj ect Type directives have a chance to set
the MIME type first. If there is more than one bj ect Type directive in an object, all
the directives are applied in the order they appear. If a directive sets an attribute
and later directives try to set that attribute to something else, the first setting is
used and the subsequent ones ignored.

Parameters

type (optional) is the type assigned to a matching request (the
cont ent - t ype header).

enc (optional) is the encoding assigned to a matching request (the
cont ent - encodi ng header).

| ang (optional) is the language assigned to a matching request (the
cont ent - | anguage header).

char set (optional) is the character set for the nagnus- char set

parameter inr g- >sr vhdr s. If the browser sent the

Accept - char set header or its User - agent is mozilla/1.1
or newer, then append “; char set =charset” to content-type,
where charset is the value of the magnus- char set
parameter inr g- >sr vhdrs.

78 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide ¢ May 2001

bucket

Examples

ObjectType Stage

optional, common to all obj . conf functions

Obj ect Type fn=force-type type=text/plain
oj ect Type fn=force-type | ang=en_US

See Also

t ype- by- ext ensi on,

set-default-type

type- by- exp

Applicable in Qbj ect Type-class directives.

This function allows you to define a default char set , cont ent - encodi ng, and
cont ent - | anguage for the response being sent back to the client.

If the char set, cont ent - encodi ng, and cont ent - | anguage have not been set for a
response, then just before the headers are sent the defaults defined by

set - def aul t - t ype are used. Note that by placing this function in different objects
in obj . conf, you can define different defaults for different parts of the document

tree.

Parameters

enc

| ang

char set

bucket

(optional) is the encoding assigned to a matching request (the
cont ent - encodi ng header).

(optional) is the language assigned to a matching request (the
cont ent - | anguage header).

(optional) is the character set for the nagnus- char set
parameter inr g- >sr vhdr s. If the browser sent the

Accept - char set header or its User - agent is mozilla/1.1
or newer, then append “; char set =charset” to content-type,
where charset is the value of the magnus- char set
parameter inr g- >sr vhdrs.

optional, common to all obj . conf functions

Chapter 3 Predefined SAFs and the Request Handling Process 79

ObjectType Stage

Example

oj ect Type fn="set-default-type" charset="iso_8859-1"

shtml-hacktype

Applicable in Obj ect Type-class directives.

The sht nl - hackt ype function changes the content-type of any . ht mor . ht nl file
to nagnus-i nt er nal / par sed- ht M and returns REQ PROCEED. This provides
backward compatibility with server-side includes for files with . ht mor . ht m
extensions. The function may also check the execute bit for the file on Unix
systems. The use of this function is hot recommended.

Parameters

exec- hack (Unix only, optional) tells the function to change the
content-type only if the execute bit is enabled. The value of the
parameter is not important. It need only be provided. You
may use exec- hack=t r ue.

bucket optional, common to all obj . conf functions

Examples

oj ect Type fn=shtnl - hacktype exec-hack=true

type-by-exp

Applicable in Qbj ect Type-class directives.

The t ype- by- exp function matches the current path with a wildcard expression. If
the two match, the t ype parameter information is applied to the file. This is the

same ast ype- by- ext ensi on, except you use wildcard patterns for the files or
directories specified in the URLs.

80 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide ¢ May 2001

ObjectType Stage

Parameters

exp is the wildcard pattern of paths for which this function is
applied.

type (optional) is the type assigned to a matching request (the
cont ent - t ype header).

enc (optional) is the encoding assigned to a matching request (the
cont ent - encodi ng header).

| ang (optional) is the language assigned to a matching request (the
cont ent - | anguage header).

char set (optional) is the character set for the nagnus- char set
parameter inr g- >sr vhdr s. If the browser sent the
Accept - char set header or its User - agent is mozilla/1.1
or newer, then append “; char set =charset” to content-type,
where charset is the value of the magnus- char set
parameter inr g- >srvhdrs.

bucket optional, common to all obj . conf functions

Examples

oj ect Type fn=type-by-exp exp=*.test type=application/htm

See Also
type- by-extensi on, force-type

type-by-extension

Applicable in Obj ect Type-class directives.

This function instructs the server to look in a table of MIME type mappings to find
the MIME type of the requested resource according to the extension of the

requested resource. The MIME type is added to the cont ent - t ype header sent
back to the client.

Chapter 3 Predefined SAFs and the Request Handling Process 81

Service Stage

Service

The table of MIME type mappings is created by a M ME element in the ser ver . xni
file, which loads a MIME types file or list and creates the mappings. For more
information about ser ver . xnl , see Chapter 8, “Virtual Server Configuration
Files.” For more information about MIME types files, see Appendix B, “MIME
Types.”

For example, the following two lines are part of a MIME types file:

type=text/htn exts=htm ht mi
type=text/plain ext s=t xt

If the extension of the requested resource is ht mor ht m , the t ype- by- ext ensi on
file sets the type tot ext / ht ni . If the extension is . t xt , the function sets the type to
text/ pl ain.

Parameters

bucket optional, common to all obj . conf functions

Examples

hj ect Type fn=type-by-extension

See Also
type- by-exp, force-type

The Ser vi ce class of functions sends the response data to the client.

Every Ser vi ce directive has the following optional parameters to determine
whether the function is executed. All the optional parameters must match the
current request for the function to be executed.

* type

82 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide ¢ May 2001

Service Stage

(optional) specifies a wildcard pattern of MIME types for which this function
will be executed. The magnus-i nt er nal / * MIME types are used only to select
a Servi ce function to execute.

e et hod

(optional) specifies a wildcard pattern of HTTP methods for which this
function will be executed. Common HTTP methods are GET, HEAD, and POST.

e query

(optional) specifies a wildcard pattern of query strings for which this function
will be executed.

e UseQutput StreanSi ze

(optional) determines the default output stream buffer size, in bytes, for data
sent to the client. If this parameter is not specified, the default is 8192 bytes.

NOTE The UseQut put St reanti ze parameter can be set to zero in the
obj . conf file to disable output stream buffering. For the
magnus. conf file, setting UseQut put St r eanti ze to zero has no
effect.

e flushTinmer

(optional) determines the maximum number of milliseconds between write
operations in which buffering is enabled. If the interval between subsequent
write operations is greater than the f 1 ushTi mer value for an application,
further buffering is disabled. This is necessary for status monitoring CGI
applications that run continuously and generate periodic status update reports.
If this parameter is not specified, the default is 3000 milliseconds.

e ChunkedRequest Buf fer Si ze

(optional) determines the default buffer size, in bytes, for “un-chunking”
request data. If this parameter is not specified, the default is 8192 bytes.

e ChunkedRequest Ti meout

(optional) determines the default timeout, in seconds, for “un-chunking”
request data. If this parameter is not specified, the default is 60 seconds.

If there is more than one Ser vi ce-class function, the first one matching the optional
wildcard parameters (t ype, met hod, and quer y) is executed.

Chapter 3 Predefined SAFs and the Request Handling Process 83

Service Stage

For more information about the UseQut put St r eanti ze, f | ushTi nmer,
ChunkedRequest Buf f er Si ze, and ChunkedRequest Ti meout parameters, see
“Buffered Streams,” on page 324. The UseQut put St r eanSi ze,

ChunkedRequest Buf f er Si ze, and ChunkedRequest Ti meout parameters also have
equivalent magnus. conf directives; see “Chunked Encoding,” on page 281. The
obj . conf parameters override the magnus. conf directives.

By default, the server sends the requested file to the client by calling the send-fil e
function. The directive that sets the default is:

Servi ce net hod="(GET| HEAD| POST) " type="*~nmagnus-internal /*"
fn="send-file"

This directive usually comes last in the set of Ser vi ce-class directives to give all
other Service directives a chance to be invoked. This directive is invoked if the
method of the request is GET, HEAD, or POST, and the type does not start with
magnus- i nt er nal / . Note here that the pattern *~ means “does not match.” For a
list of characters that can be used in patterns, see Appendix C, “Wildcard Patterns.”

The following Service-class functions are described in detail in this section:

= add-f oot er appends a footer specified by a filename or URL to a an HTML
file.

« add- header prepends a header specified by a filename or URL to an HTML
file.

= append-trail er appends text to the end of an HTML file.
= i magemap handles server-side image maps.

= i ndex- common generates a fancy list of the files and directories in a requested
directory.

= index-si npl e generates a simple list of files and directories in a requested
directory.

= key-toosmal | indicates to the client that the provided certificate key size is too
small to accept.

e list-dir lists the contents of a directory.

= nmake-dir creates a directory.

e query-handl er handles the HTML ISINDEX tag.
= renove-dir deletes an empty directory.

e renove-fil e deletes afile.

e renane-fil e renames a file.

84 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide ¢ May 2001

Service Stage

= send-cgi setsup environment variables, launches a CGI program, and sends
the response to the client.

< send-filesendsa local file to the client.
= send-range sends a range of bytes of a file to the client.

= send-shel | cgi sets up environment variables, launches a shell CGI program,
and sends the response to the client.

= send-wi ncgi sets up environment variables, launches a WinCGlI program, and
sends the response to the client.

= service-dunp creates a performance report based on collected performance
bucket data.

= shtn _send parses an HTML file for server-parsed html commands.
= stats-xnl creates a performance report in XML format.

= upl oad-fil e uploads and saves a file.

add-footer
Applicable in Ser vi ce-class directives.
This function appends a footer to an HTML file that is sent to the client. The footer

is specified either as a filename or a URI -- thus the footer can be dynamically
generated. To specify static text as a footer, use the append- t r ai | er function.

Parameters

file (optional) The pathname to the file containing the
footer. Specify eitherfil e oruri .

By default the pathname is relative. If the pathname is
absolute, pass the NSI nt AbsFi | ePat h parameter as
yes.

uri (optional) A URI pointing to the resource containing
the footer. Specify eitherfil e oruri .

NSI nt AbsFi | ePat h (optional) if the file parameter is specified, the
NSI nt AbsFi | ePat h parameter determines whether
the file name is absolute or relative. The default is
relative. Set the value to yes to indicate an absolute
file path.

type optional, common to all Service-class functions

met hod optional, common to all Service-class functions

Chapter 3 Predefined SAFs and the Request Handling Process 85

Service Stage

query optional, common to all Service-class functions
UseQut put Streanfi ze optional, common to all Service-class functions
flushTi ner optional, common to all Service-class functions

ChunkedRequest Buf f er Si ze optional, common to all Service-class functions

ChunkedRequest Ti neout optional, common to all Service-class functions
bucket optional, common to all obj . conf functions
Examples

Service type=text/htnl nethod=GET fn=add-footer

file="footers/footerl. htm"
Service type=text/htm nethod=CET fn=add-f oot er

file="D:/netscapel/server4/footers/footerl. htm"
NSI nt AbsFi | ePat h="yes"

See Also
append-trail er, add-header

add-header
Applicable in Ser vi ce-class directives.
This function prepends a header to an HTML file that is sent to the client. The

header is specified either as a filename or a URI -- thus the header can be
dynamically generated.

Parameters

file (optional) The pathname to the file containing the
header. Specify eitherfil eoruri .
By default the pathname is relative. If the pathname is
absolute, pass the NSI nt AbsFi | ePat h parameter as
yes.

uri (optional) A URI pointing to the resource containing

the header. Specify either fil eoruri .

86 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide ¢ May 2001

Service Stage

NSI nt AbsFi | ePat h (optional) if the file parameter is specified, the
NSI nt AbsFi | ePat h parameter determines whether
the file name is absolute or relative. The default is
relative. Set the value to yes to indicate an absolute

file path.
type optional, common to all Service-class functions
met hod optional, common to all Service-class functions
query optional, common to all Service-class functions
UseQut put StreanSi ze optional, common to all Service-class functions
flushTi mer optional, common to all Service-class functions

ChunkedRequest Buf fer Si ze optional, common to all Service-class functions

ChunkedRequest Ti meout optional, common to all Service-class functions
bucket optional, common to all obj . conf functions
Examples

Service type=text/htm nethod=GET fn=add- header

file="headers/headerl. htm "
Service type=text/htm method=CET fn=add-f oot er

file="D:/netscapel/ server4/ headers/ header1. htm"
NSI nt AbsFi | ePat h="yes"

See Also
add-footer, append-trailer

append-trailer
Applicable in Ser vi ce-class directives.
The append-trail er function sends an HTML file and appends text to the end. It

only appends text to HTML files. This is typically used for author information and
copyright text. The date the file was last modified can be inserted.

Returns REQ ABORTEDif a required parameter is missing, if there is extra path
information after the file name in the URL, or if the file cannot be opened for
read-only access.

Chapter 3 Predefined SAFs and the Request Handling Process 87

Service Stage

Parameters

trailer is the text to append to HTML documents. The string
isunescaped withut i | _uri _unescape before being
sent. The text can contain HTML tags and can be up to
512 characters long after unescaping and inserting the
date.
If you use the string : LASTMOD: , which is replaced by
the date the file was last modified; you must also
specify a time format with t i mef nt .

timefnt (optional) is a time format string for : LASTMOD: . For
details about time formats refer to Appendix D, “Time
Formats.” Ift i mef nt is not provided, : LASTMOD:
will not be replaced with the time.

type optional, common to all Service-class functions

met hod optional, common to all Service-class functions

query optional, common to all Service-class functions

UseQut put StreanSi ze optional, common to all Service-class functions

fl ushTi ner optional, common to all Service-class functions

ChunkedRequest Buf f er Si ze optional, common to all Service-class functions

ChunkedRequest Ti meout optional, common to all Service-class functions
bucket optional, common to all obj . conf functions
Examples

Service type=text/htm method=CGET fn=append-trailer

trail er="<hr><ing src=/1ogo.gif> Copyright 1999"

Add a trailer with the date in the format: MV DD/ YY

Service type=text/htm nethod=CET fn=append-trailer timefnt="9%"
trailer="<HR>Fil e | ast updated on: :LASTMOD: "

See Also
add- f oot er, add- header

Imagemap
Applicable in Ser vi ce-class directives.

88 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide ¢ May 2001

Service Stage

The i magemap function responds to requests for imagemaps. Imagemaps are
images which are divided into multiple areas that each have an associated URL.
The information about which URL is associated with which area is stored in a
mapping file.

Parameters

type optional, common to all Service-class functions
met hod optional, common to all Service-class functions
query optional, common to all Service-class functions
UseQut put StreanSi ze optional, common to all Service-class functions
flushTi mer optional, common to all Service-class functions

ChunkedRequest Buf f er Si ze optional, common to all Service-class functions

ChunkedRequest Ti meout optional, common to all Service-class functions
bucket optional, common to all obj . conf functions
Examples

Servi ce type=nmagnus-internal /i magemap net hod=(GET| HEAD)
f n=i magenmap

index-common
Applicable in Ser vi ce-class directives.

The i ndex- conmon function generates a fancy (or common) list of files in the
requested directory. The list is sorted alphabetically. Files beginning with a period
() are not displayed. Each item appears as an HTML link. This function displays
more information than i ndex- si npl e including the size, date last modified, and
an icon for each file. It may also include a header and/or readme file into the
listing.

The I ni t -class function ci ndex-i ni t in magnus. conf specifies the format for the
index list, including where to look for the images.

If obj . conf contains a call to i ndex- common in the Ser vi ce stage, magnus. conf
must initialize fancy (or common) indexing by invoking ci ndex-i ni t during the
I nit stage.

Chapter 3 Predefined SAFs and the Request Handling Process 89

Service Stage

Indexing occurs when the requested resource is a directory that does not contain an
index file or a home page, or no index file or home page has been specified by the
functions f i nd- i ndex or hone- page.

The icons displayed are . gi f files dependent on the cont ent - t ype of the file:

"text/*" text.gif

"i mage/ *" i mage. gi f

"audi o/ *" sound. gi f

"vi deo/ *" novi e. gi f
"application/octet-streant bi nary. gif

directory menu. gi f

all others unknown. gi f

Parameters

header (optional) is the path (relative to the directory being

indexed) and name of a file (HTML or plain text)
which is included at the beginning of the directory
listing to introduce the contents of the directory. The
file is first tried with . ht m added to the end. If found,
it is incorporated near the top of the directory list as
HTML. If the file is not found, then it is tried without
the. ht m and incorporated as preformatted plain text
(bracketed by <PRE> and).

readme (optional) is the path (relative to the directory being
indexed) and name of a file (HTML or plain text) to
append to the directory listing. This file might give
more information about the contents of the directory,
indicate copyrights, authors, or other information. The
file is first tried with . ht 1 added to the end. If found,
it is incorporated at the bottom of the directory list as
HTML. If the file is not found, then it is tried without
the. ht M and incorporated as preformatted plain text
(enclosed by <PRE> and </ PRE>).

type optional, common to all Service-class functions
met hod optional, common to all Service-class functions
query optional, common to all Service-class functions

90 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide ¢ May 2001

Service Stage

UseQut put Streanfi ze optional, common to all Service-class functions
flushTi mer optional, common to all Service-class functions

ChunkedRequest Buf f er Si ze optional, common to all Service-class functions

ChunkedRequest Ti meout optional, common to all Service-class functions
bucket optional, common to all obj . conf functions
Examples

Servi ce fn=i ndex-comon type=magnus-internal/directory
met hod=(GET| HEAD) header =hdr readne=rdne.t xt

See Also
cindex-init, index-sinple, find-index, hone-page

index-simple
Applicable in Ser vi ce-class directives.

The i ndex- si npl e function generates a simple index of the files in the requested
directory. It scans a directory and returns an HTML page to the browser displaying
a bulleted list of the files and directories in the directory. The list is sorted
alphabetically. Files beginning with a period (.) are not displayed. Each item
appears as an HTML link.

Indexing occurs when the requested resource is a directory that does not contain
either an index file or a home page, or no index file or home page has been
specified by the functions f i nd- i ndex or hone- page.

Parameters

type optional, common to all Service-class functions
met hod optional, common to all Service-class functions
query optional, common to all Service-class functions
UseQut put Streanti ze optional, common to all Service-class functions
flushTi mer optional, common to all Service-class functions

ChunkedRequest Buf f er Si ze optional, common to all Service-class functions

Chapter 3 Predefined SAFs and the Request Handling Process 91

Service Stage

ChunkedRequest Ti meout optional, common to all Service-class functions
bucket optional, common to all obj . conf functions
Examples

Servi ce type=magnus-internal/directory fn=i ndex-sinple

See Also
ci ndex-init, index-combn

key-toosmall
Applicable in Ser vi ce-class directives.

NOTE This function is provided for backward compatibility only and was
deprecated in iPlanet Web Server 4.x. It is replaced by the
PathCheck-class SAF ssl - check.

The key-t oosmal | function returns a message to the client specifying that the
secret key size for SSL communications is too small. This function is designed to be
used together with a d i ent tag to limit access of certain directories to
non-exportable browsers.

Parameters

type optional, common to all Service-class functions
met hod optional, common to all Service-class functions
query optional, common to all Service-class functions
UseQut put StreanSi ze optional, common to all Service-class functions
flushTi mer optional, common to all Service-class functions

ChunkedRequest Buf f er Si ze optional, common to all Service-class functions
ChunkedRequest Ti meout optional, common to all Service-class functions

bucket optional, common to all obj . conf functions

92 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide ¢ May 2001

Service Stage

Examples

<(bj ect ppat h=/ nydocs/ secret/*>
Servi ce fn=key-toosmall
</ Obj ect >

list-dir

Applicable in Ser vi ce-class directives.

Thelist-dir function returns asequence of text lines to the client in response to a
request whose method is INDEX. The format of the returned lines is:

name type size mimetype

The name field is the name of the file or directory. It is relative to the directory being
indexed. It is URL-encoded, that is, any character might be represented by %xx,
where xx is the hexadecimal representation of the character’s ASCII number.

The type field is a MIME type such as t ext / ht m . Directories will be of type
di rect ory. A file for which the server doesn’t have a type will be of type unknown.

The size field is the size of the file, in bytes.

The mtime field is the numerical representation of the date of last modification of
the file. The number is the number of seconds since the epoch (Jan 1, 1970 00:00
UTC) since the last modification of the file.

When remote file manipulation is enabled in the server, the obj . conf file contains
a Ser vi ce-class function that calls | i st - di r for requests whose method is | NDEX.

Parameters

type optional, common to all Service-class functions
met hod optional, common to all Service-class functions
query optional, common to all Service-class functions
UseQut put StreanSi ze optional, common to all Service-class functions
flushTi mer optional, common to all Service-class functions

ChunkedRequest Buf f er Si ze optional, common to all Service-class functions
ChunkedRequest Ti meout optional, common to all Service-class functions

bucket optional, common to all obj . conf functions

Chapter 3 Predefined SAFs and the Request Handling Process 93

Service Stage

Examples

Service fn=list-dir nethod="|NDEX"

make-dir
Applicable in Ser vi ce-class directives.

The make- di r function creates a directory when the client sends a request whose
method is MKDIR. The function can fail if the server can’t write to that directory.

When remote file manipulation is enabled in the server, the obj . conf file contains
a Ser vi ce-class function that invokes make- di r when the request method is MKDI R.

Parameters

type optional, common to all Service-class functions
met hod optional, common to all Service-class functions
query optional, common to all Service-class functions
UseQut put Streanti ze optional, common to all Service-class functions
flushTi mer optional, common to all Service-class functions

ChunkedRequest Buf f er Si ze optional, common to all Service-class functions

ChunkedRequest Ti neout optional, common to all Service-class functions
bucket optional, common to all obj . conf functions
Examples

Service fn="nmake-dir" nethod="MDI R

query-handler

Applicable in Ser vi ce-class directives.

94 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide ¢ May 2001

Service Stage

NOTE This function is provided for backward compatibility only and is
used mainly to support the obsolete ISINDEX tag. If possible, use
an HTML form instead.

The quer y- handl er function runs a CGI program instead of referencing the path
requested.

Parameters
pat h is the full path and file name of the CGI program to
run.

type optional, common to all Service-class functions

nmet hod optional, common to all Service-class functions
query optional, common to all Service-class functions
UseQut put Streanfi ze optional, common to all Service-class functions
flushTi mer optional, common to all Service-class functions

ChunkedRequest Buf f er Si ze optional, common to all Service-class functions

ChunkedRequest Ti neout optional, common to all Service-class functions
bucket optional, common to all obj . conf functions
Examples

Servi ce query=* fn=query-handl er path=/http/cgi/do-grep
Servi ce query=* fn=query-handl er path=/http/cgi/proc-info

remove-dir

Applicable in Ser vi ce-class directives.

The renove-dir function removes a directory when the client sends an request
whose method is RVDI R The directory must be empty (have no files in it). The

function will fail if the directory is not empty or if the server doesn’t have the
privileges to remove the directory.

Chapter 3 Predefined SAFs and the Request Handling Process 95

Service Stage

When remote file manipulation is enabled in the server, the obj . conf file contains
a Ser vi ce-class function that invokes r enove- di r when the request method is
RVDI R

Parameters

type optional, common to all Service-class functions
met hod optional, common to all Service-class functions
query optional, common to all Service-class functions
UseQut put StreanSi ze optional, common to all Service-class functions
fl ushTi ner optional, common to all Service-class functions

ChunkedRequest Buf f er Si ze optional, common to all Service-class functions

ChunkedRequest Ti meout optional, common to all Service-class functions
bucket optional, common to all obj . conf functions
Examples

Service fn="renove-dir" nmethod="RMD R

remove-file
Applicable in Ser vi ce-class directives.

Therenove-fil e function deletes a file when the client sends a request whose
method is DELETE. It deletes the file indicated by the URL if the user is authorized
and the server has the needed file system privileges.

When remote file manipulation is enabled in the server, the obj . conf file contains
a Ser vi ce-class function that invokes r enove- f i | e when the request method is
DELETE.

Parameters

type optional, common to all Service-class functions
met hod optional, common to all Service-class functions
query optional, common to all Service-class functions

96 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide ¢ May 2001

Service Stage

UseQut put Streanti ze optional, common to all Service-class functions
flushTi mer optional, common to all Service-class functions

ChunkedRequest Buf f er Si ze optional, common to all Service-class functions

ChunkedRequest Ti neout optional, common to all Service-class functions
bucket optional, common to all obj . conf functions
Examples

Service fn="renove-file" nmethod="DELETE"

rename-file
Applicable in Ser vi ce-class directives.

The rename-fi | e function renames a file when the client sends a request with a
New URL header whose method is MOVE. It renames the file indicated by the URL to
New URL within the same directory if the user is authorized and the server has the
needed file system privileges.

When remote file manipulation is enabled in the server, the obj . conf file contains
a Ser vi ce-class function that invokes r enane- f i | e when the request method is
MOVE.

Parameters

type optional, common to all Service-class functions
met hod optional, common to all Service-class functions
query optional, common to all Service-class functions
UseQut put StreanSi ze optional, common to all Service-class functions
flushTi mer optional, common to all Service-class functions

ChunkedRequest Buf f er Si ze optional, common to all Service-class functions
ChunkedRequest Ti meout optional, common to all Service-class functions

bucket optional, common to all obj . conf functions

Chapter 3 Predefined SAFs and the Request Handling Process 97

Service Stage

Examples

Service fn="renane-file" nethod="MOVE"

send-cgi
Applicable in Ser vi ce-class directives.

The send- cgi function sets up the CGI environment variables, runs a file as a CGlI
program in a new process, and sends the results to the client.

For details about the CGI environment variables and their NSAPI equivalents, refer
to section “CGl to NSAPI Conversion,” on page 135.

For additional information about CGl, see the iPlanet Web Server Administrator’s
Guide and the Programmer’s Guide for iPlanet Web Server.

There are three ways to change the timing used to flush the CGI buffer:
= Adjust the interval between flushes using the f | ushTi mer parameter
= Adjust the buffer size using the UseCQut put St r eanSi ze parameter

= Force iPlanet Web Server to flush its buffer by forcing spaces into the buffer in
the CGl script

For more information about f | ushTi mer and UseQut put St r eanSi ze, see
“Buffered Streams,” on page 324.

Parameters

user (Unix only) Specifies the name of the user to execute
CGI programs as.

group (Unix only) Specifies the name of the group to execute
CGI programs as.

chr oot (Unix only) Specifies the directory to chroot to before
execution begins. This is relative to the chr oot
defined in nagnus. conf .

dir (Unix only) Specifies the directory to chdir to after

chroot but before execution begins.

98 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide « May 2001

Service Stage

rlimt_as (Unix only) Specifies the maximum CGI program
address space in bytes. You can supply both current
(soft) and maximum (hard) limits, separated by a
comma. The soft limit must be listed first. If only one
limit is specified, both limits are set to this value.

rlimt_core (Unix only) Specifies the maximum CGI program core
file size. A value of 0 disables writing cores. You can
supply both current (soft) and maximum (hard) limits,
separated by a comma. The soft limit must be listed
first. If only one limit is specified, both limits are set to
this value.

rlimt_nofile (Unix only) Specifies the maximum number of file
descriptors for the CGI program. You can supply both
current (soft) and maximum (hard) limits, separated
by a comma. The soft limit must be listed first. If only
one limit is specified, both limits are set to this value.

ni ce (Unix only) Accepts an increment that determines the
CGlI program’s priority relative to the server.
Typically, the server is run with a nice value of 0 and
the nice increment would be between 0 (the CGI
program runs at same priority as server) and 19 (the
CGlI program runs at much lower priority than server).
While it is possible to increase the priority of the CGlI
program above that of the server by specifying a nice
increment of -1, this is not recommended.

type optional, common to all Service-class functions
met hod optional, common to all Service-class functions
query optional, common to all Service-class functions
UseQut put StreanSi ze optional, common to all Service-class functions
flushTi mer optional, common to all Service-class functions

ChunkedRequest Buf f er Si ze optional, common to all Service-class functions

ChunkedRequest Ti meout optional, common to all Service-class functions
bucket optional, common to all obj . conf functions
Examples

The following example uses variables defined in the ser ver . xmi file for the
send- cgi parameters. For more information about defining variables, see Chapter
8, “Virtual Server Configuration Files.”

Chapter 3 Predefined SAFs and the Request Handling Process 99

Service Stage

<oj ect nane="default">

NameTrans fn="pfx2dir" from="/cgi-bin"
di r="/hone/ f oo. conm public_htm /cgi-bin" name="cgi"

</ Obj ect >

<Cbj ect nane="cgi ">

oj ect Type fn="force-type" type="magnus-internal/cgi"

Servi ce fn="send-cgi" user="$user" group="$group"” dir="$dir"

chroot ="$chroot" ni ce="$nice"
</ Obj ect >

send-file
Applicable in Ser vi ce-class directives.

The send- fi | e function sends the contents of the requested file to the client. It
provides the cont ent - t ype, cont ent - | engt h, and | ast - nodi fi ed headers.

Most requests are handled by this function using the following directive (which
usually comes last in the list of Ser vi ce-class directives in the default object so that
it acts as a default)

Servi ce net hod="(GET| HEAD| POST) " type="*~nmagnus-internal /*"
fn="send-file"

This directive is invoked if the method of the request is GET, HEAD, or POST, and the
type does not start with nagnus- i nt er nal /. Note here that the pattern *~ means
“does not match.” For a list of characters that can be used in patterns, see Appendix
C, “Wildcard Patterns.”

Parameters

nocache (optional) prevents the server from caching responses
to static file requests. For example, you can specify that
files in a particular directory are not to be cached,
which is useful for directories where the files change
frequently.

The value you assign to this parameter is ignored. If
you do not wish to use this parameter, leave it out.

type optional, common to all Service-class functions

met hod optional, common to all Service-class functions

100 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide « May 2001

Service Stage

query optional, common to all Service-class functions
UseQut put Streanfi ze optional, common to all Service-class functions
fl ushTi ner optional, common to all Service-class functions

ChunkedRequest Buf f er Si ze optional, common to all Service-class functions

ChunkedRequest Ti neout optional, common to all Service-class functions
bucket optional, common to all obj . conf functions
Examples

Servi ce type="*~magnus-internal /*" met hod="(GET| HEAD)"
fn="send-file"

In the following example, the server does not cache static files from
/ expor t/ somedi r/ when requested by the URL prefix / myur| .

<Cbj ect name=def aul t>

NameTrans fn="pfx2dir" from="/myurl" dir="/export/nmydir",
name="nynane"

Servi ce net hod=(GET| HEAD| PCST) type=*~magnus-internal/*
fn=send-file

</ Obj ect >

<bj ect nanme="nynane" >

Servi ce met hod=(GET| HEAD) type=*~magnus-internal/* fn=send-file
nocache=""

</ Obj ect >

send-range
Applicable in Ser vi ce-class directives.

When the client requests a portion of a document, by specifying HTTP byte ranges,
the send- r ange function returns that portion.

Chapter 3 Predefined SAFs and the Request Handling Process 101

Service Stage

Parameters

type optional, common to all Service-class functions
met hod optional, common to all Service-class functions
query optional, common to all Service-class functions
UseQut put StreanSi ze optional, common to all Service-class functions
fl ushTi ner optional, common to all Service-class functions

ChunkedRequest Buf f er Si ze optional, common to all Service-class functions

ChunkedRequest Ti meout optional, common to all Service-class functions
bucket optional, common to all obj . conf functions
Examples

Servi ce fn=send-range

send-shellcgi
Applicable in Ser vi ce-class directives.

Windows NT only. The send- shel | cgi function runs afile as ashell CGI program
and sends the results to the client. Shell CGl is a server configuration that lets you
run CGI applications using the file associations set in Windows NT. For
information about shell CGI programs, consult the iPlanet Web Server
Administrator’s Guide.

Parameters

type optional, common to all Service-class functions
met hod optional, common to all Service-class functions
query optional, common to all Service-class functions
UseQut put StreanSi ze optional, common to all Service-class functions
flushTi ner optional, common to all Service-class functions

ChunkedRequest Buf f er Si ze optional, common to all Service-class functions

ChunkedRequest Ti meout optional, common to all Service-class functions

102 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide ¢ May 2001

Service Stage

bucket optional, common to all obj . conf functions

Examples

Servi ce fn=send-shelTcgi
Servi ce type=nmagnus-internal /cgi fn=send-shellcgi

send-wincgi
Applicable in Ser vi ce-class directives.
Windows NT only. The send-wi ncgi function runs a file as a Windows CGI

program and sends the results to the client. For information about Windows CGlI
programs, consult the iPlanet Web Server Administrator’s Guide.

Parameters

type optional, common to all Service-class functions
met hod optional, common to all Service-class functions
query optional, common to all Service-class functions
UseQut put StreanSi ze optional, common to all Service-class functions
flushTi ner optional, common to all Service-class functions

ChunkedRequest Buf fer Si ze optional, common to all Service-class functions

ChunkedRequest Ti meout optional, common to all Service-class functions
bucket optional, common to all obj . conf functions
Examples

Servi ce fn=send-w ncgi
Servi ce type=nmagnus-internal /cgi fn=send-w ncgi

service-dump
Applicable in Ser vi ce-class directives.

Chapter 3 Predefined SAFs and the Request Handling Process 103

Service Stage

The ser vi ce- dunp function creates a performance report based on collected
performance bucket data (see “The bucket Parameter,” on page 49”).

To read the report, point the browser here:

htt p:// server_id: port/ . perf

Parameters

type must be per f for this function

met hod optional, common to all Service-class functions
query optional, common to all Service-class functions
UseQut put StreanSi ze optional, common to all Service-class functions
fl ushTi ner optional, common to all Service-class functions

ChunkedRequest Buf f er Si ze optional, common to all Service-class functions

ChunkedRequest Ti meout optional, common to all Service-class functions
bucket optional, common to all obj . conf functions
Examples

<Cbj ect nane=def aul t>

NameTr ans fn="assi gn-name" from="/.perf" name="perf"
</ Cbj ect >

<Cbhj ect nane=perf>

Service fn="service-dunp”
</ Obj ect >

See Also
st at s-xm

shtml_send
Applicable in Ser vi ce-class directives.

104 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide ¢ May 2001

Service Stage

The shtml _send function parses an HTML document, scanning for embedded
commands. These commands may provide information from the server, include
the contents of other files, or execute a CGI program. The sht ml _send function is
only available when the Shtml plugin (Ii bSht ml . so on Unix i bShtni.dl |l on
Windows NT) is loaded. Refer to the Programmer’s Guide for iPlanet Web Server for
server-parsed HTML commands.

Parameters

Sht m MaxDept h maximum depth of include nesting allowed. The
default value is 10.

addCgi I nitVars (Unix only) if present and equal to yes (the default is
no), adds the environment variables defined in the
init-cgi SAF tothe environment of any command
executed through the SHTML exec tag.

type optional, common to all Service-class functions

met hod optional, common to all Service-class functions

UseQut put StreanSi ze optional, common to all Service-class functions

flushTi mer optional, common to all Service-class functions

ChunkedRequest Buf fer Si ze optional, common to all Service-class functions

ChunkedRequest Ti meout optional, common to all Service-class functions
query optional, common to all Service-class functions
bucket optional, common to all obj . conf functions
Examples

Servi ce type=nmagnus-internal /shtm _send net hod=(GET| HEAD)
fn=shtm _send

Chapter 3 Predefined SAFs and the Request Handling Process 105

Service Stage

stats-xml
Applicable in Ser vi ce-class directives.

The st at s- xml function creates a performance report in XML format. If
performance buckets have been defined, this performance report includes them.

However, you do need to initialize this function using the st at s-i ni t function in
magnus. conf, then use a NaneTr ans function to direct requests to the st at s- xni
function. See the examples below.

The report is generated here:

http://server_id: port/ st at s-xm /i wsstats. xn
The associated DTD file is here:
http://server_id: port/ stats-xm /iwsstats.dtd

For more information about the format of the i wsst at s. xnml file, see the
Performance Tuning, Sizing, and Scaling Guide for iPlanet Web Server.

Parameters

type optional, common to all Service-class functions
met hod optional, common to all Service-class functions
query optional, common to all Service-class functions
UseQut put Streanti ze optional, common to all Service-class functions
flushTi ner optional, common to all Service-class functions

ChunkedRequest Buf fer Si ze optional, common to all Service-class functions

ChunkedRequest Ti neout optional, common to all Service-class functions
bucket optional, common to all obj . conf functions
Examples

in magnus. conf :

Init fn="stats-init" update-interval ="5" virtual -servers="2000"
profiling="yes"

106 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide ¢ May 2001

Service Stage

inobj . conf:

<(bj ect nane="defaul t">

i\l;a;reTr ans fn="assign-name" from="/stats-xm/*" name="stats-xm"
</ doj ect >

<OJ] ect name="stats-xm ">

Service fn="stats-xm"
</ Obj ect >

See Also
servi ce-dunp, stats-init

upload-file

Applicable in Ser vi ce-class directives.

The upl oad- fi | e function uploads and saves a new file when the client sends a
request whose method is PUT if the user is authorized and the server has the
needed file system privileges.

When remote file manipulation is enabled in the server, the obj . conf file contains
a Ser vi ce-class function that invokes upl oad- fi | e when the request method is
PUT.

Parameters

type optional, common to all Service-class functions
met hod optional, common to all Service-class functions
query optional, common to all Service-class functions
UseQut put StreanSi ze optional, common to all Service-class functions
flushTi ner optional, common to all Service-class functions

ChunkedRequest Buf fer Si ze optional, common to all Service-class functions
ChunkedRequest Ti meout optional, common to all Service-class functions

bucket optional, common to all obj . conf functions

Chapter 3 Predefined SAFs and the Request Handling Process 107

AddLog Stage

Examples

Service fn=upload-file

AddLog Stage

After the server has responded to the request, the AddLog directives are executed
to record information about the transaction.

If there is more than one AddLog directive, all are executed.
The following AddLog-class functions are described in detail in this section:
= comon- | og records information about the request in the common log format.

= flex-I og records information about the request in a flexible, configurable
format.

= record-useragent records the client’s ip address and user-agent header.

common-log
Applicable in AddLog-class directives.

This function records request-specific data in the common log format (used by
most HTTP servers). There is a log analyzer inthe/ extras/ | og_anl y directory for
iPlanet Web Server.

The common log must have been initialized previously by thei nit - cl f function.
For information about rotating logs, see fl ex-rotate-init.

There are also a number of free statistics generators for the common log format.

Parameters

name (optional) gives the name of a log file, which must have been
given as a parameter to thei ni t - cl f function in
magnus. conf . If no name is given, the entry is recorded in
the global log file.

i ponly (optional) instructs the server to log the IP address of the

remote client rather than looking up and logging the DNS
name. This will improve performance if DNS is off in the
magnus. conf file. The value of i ponl y has no significance,
as long as it exists; you may use i ponl y=1.

108 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide ¢ May 2001

AddLog Stage

bucket optional, common to all obj . conf functions

Examples

Log all accesses to the global log file

AddLog fn=conmon-1 og

Log accesses fromoutside our subnet (198.93.5.*) to
nonl ocal | og

<Cient ip="*~198.93.5.*">

AddLog f n=conmon-| og nane=nonl ocal | og

</dient>

See Also
flex-init,init-clf,record-useragent,flex-log,flex-rotate-init

flex-log

Applicable in AddLog-class directives.

This function records request-specific data in a flexible log format. It may also
record requests in the common log format. There is a log analyzer in the
/ extras/ fl exanl g directory for iPlanet Web Server.

There are also a number of free statistics generators for the common log format.

The log format is specified by the f | ex-i ni t function call. For information about
rotating logs, seefl ex-rotate-init.

Parameters

nane (optional) gives the name of a log file, which must have been
given as a parameter to the f | ex-i ni t functionin
magnus. conf . If no name is given, the entry is recorded in
the global log file.

i ponly (optional) instructs the server to log the IP address of the
remote client rather than looking up and logging the DNS
name. This will improve performance if DNS is off in the
magnus. conf file. The value of i ponl y has no significance,
as long as it exists; you may use i ponl y=1.

bucket optional, common to all obj . conf functions

Chapter 3 Predefined SAFs and the Request Handling Process 109

AddLog Stage

Examples

Log all accesses to the global log file

AddLog fn=fl ex-I|og

Log accesses from outside our subnet (198.93.5.*) to
nonl ocal | og

<Cient ip="*~198.93.5 *">

AddLog fn=fl ex-1og name=nonl ocal | og

</dient>

See Also
flex-init,init-clf,comon-I|og,record-useragent,flex-rotate-init

record-useragent
Applicable in AddLog-class directives.

The record-user agent function records the IP address of the client, followed by
its User-Agent HTTP header. This indicates what version of Netscape Navigator
(or other client) was used for this transaction.

For information about rotating logs, see f| ex-rotate-init.

Parameters

nane (optional) gives the name of a log file, which must have been
given as a parameter to thei ni t - ¢l f functionin
magnus. conf . If no name is given, the entry is recorded in
the global log file.

bucket optional, common to all obj . conf functions

Examples

Record the client ip address and user-agent to browserl og
AddLog f n=record-useragent nane=browserl og

110 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide ¢ May 2001

Error Stage

See Also
flex-init,init-clf,comon-log,flex-log,flex-rotate-init

Error Stage

If a server application function results in an error, it sets the HTTP response status
code and returns the value REQ ABORTED. When this happens, the server stops
processing the request. Instead, it searches for an Error directive matching the
HTTP response status code or its associated reason phrase, and executes the
directive’s function. If the server does not find a matching Error directive, it returns
the response status code to the client.

The following Error-class functions are described in detail in this section:

= send-error sends an HTML file to the client in place of a specific HTTP
response status.

= qos-error returns an error page stating which quality of service limits caused
the error and what the value of the QOS statistic was.

send-error
Applicable in Err or -class directives.

The send- error function sends an HTML file to the client in place of a specific
HTTP response status. This allows the server to present a friendly message
describing the problem. The HTML page may contain images and links to the
server’s home page or other pages.

Parameters

pat h specifies the full file system path of an HTML file to send to
the client. The file issentast ext / ht ml regardless of its name
or actual type. If the file does not exist, the server sends a
simple default error page.

reason (optional) is the text of one of the reason strings (such as
“Unauthorized” or “Forbidden”). The string is not case
sensitive.

Chapter 3 Predefined SAFs and the Request Handling Process 111

Error Stage

code (optional) is a three-digit number representing the HTTP
response status code, such as 401 or 407.

This can be any HTTP response status code or reason phrase
according to the HTTP specification.

The following is a list of common HTTP response status codes
and reason strings.

401 Unaut hori zed.
403 For bi dden.
404 Not Found.
500 Server Error.

bucket optional, common to all obj . conf functions

Examples

Error fn=send-error code=401
pat h=/ net scape/ server 4/ docs/ errors/401. ht m

qos-error

Applicable in Er r or -class directives.

The gos- error function returns an error page stating which quality of service
limits caused the error and what the value of the QOS statistic was.

The code for this SAF is one of the examples in Chapter 6, “Examples of Custom

SAFs.”

112 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide ¢ May 2001

Error Stage

For more information, see the performance chapter of the iPlanet Web Server
Administrator’s Guide.

Parameters

code (optional) is a three-digit number representing the HTTP
response status code, such as 401 or 407. The recommended
value is 503.
This can be any HTTP response status code or reason phrase
according to the HTTP specification.
The following is a list of common HTTP response status codes
and reason strings.
e 401 Unaut hori zed.
= 403 For bi dden.
< 404 Not Found.
= 500 Server Error.

bucket optional, common to all obj . conf functions

Examples

Error fn=qos-error code=503

See Also
gos- handl er

Chapter 3 Predefined SAFs and the Request Handling Process 113

Error Stage

114 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide ¢ May 2001

Chapter 4

Creating Custom SAFs

This chapter describes how to write your own NSAPI plugins that define custom
Server Application Functions (SAFs). Creating plugins allows you to modify or
extend the iPlanet Web Server’s built-in functionality. For example, you can
modify the server to handle user authorization in a special way or generate
dynamic HTML pages based on information in a database.

The sections in this chapter are:

= The SAF Interface

= SAF Parameters

* Result Codes

= Creating and Using Custom SAFs

= Overview of NSAPI C Functions

= Required Behavior of SAFs for Each Directive
= CGI to NSAPI Conversion

Before writing custom SAFs, you should familiarize yourself with the request
handling process, as described in Chapter 1, “Basics of Server Operation.” Also,
before writing a custom SAF, check if a built-in SAF already accomplishes the tasks
you have in mind.

See Chapter 7, “Syntax and Use of magnus.conf,” for a list of the pre-defined Init
SAFs. See Chapter 3, “Predefined SAFs and the Request Handling Process,” for a
list of the rest of the pre-defined SAFs.

For a complete list of the NSAPI routines for implementing custom SAFs, see
Chapter 5, “NSAPI Function Reference.”

115

The SAF Interface

The SAF Interface

All SAFs (custom and built-in) have the same C interface regardless of the
request-handling step for which they are written. They are small functions
designed for a specific purpose within a specific request-response step. They
receive parameters from the directive that invokes them in the obj . conf file, from
the server, and from previous SAFs.

Here is the C interface for a SAF:
int function(pbl ock *pb, Session *sn, Request *rq);
The next section discusses the parameters in detail.

The SAF returns a result code which indicates whether and how it succeeded. The
server uses the result code from each function to determine how to proceed with
processing the request. See the section “Result Codes,” on page 119 for details of
the result codes.

SAF Parameters

This section discusses the SAF parameters in detail. The parameters are:

e pb (paraneter bl ock)--contains the parameters from the directive that
invokes the SAF in the obj . conf file.

= sn (session)-- contains information relating to a single TCP/IP session.

= rq (request)--contains information relating to the current request.

pb (parameter block)

The pb parameter is a pointer to a pbl ock data structure that contains values
specified by the directive that invokes the SAF. A pbl ock data structure contains a
series of name/value pairs.

For example, a directive that invokes the basi c- nsca function might look like:

Aut hTrans fn=basi c-ncsa aut h-type=basic
dbm=/ net scape/ server 4/ userdb/rs

116 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide ¢ May 2001

SAF Parameters

In this case, the pb parameter passed to basi c- ncsa contains name/value pairs
that correspond to aut h- t ype=basi ¢ and dbm=/ net scape/ server 4/ userdb/rs.

NSAPI provides a set of functions for working with pbl ock data structures. For
example, pbl ock_fi ndval () returns the value for a given name in a pbl ock. See
“Parameter Block Manipulation Routines,” on page 128 for a summary of the most
commonly used functions for working with parameter blocks.

sn (session)

The sn parameter is a pointer to a Sessi on data structure. This parameter contains
variables related to an entire session (that is, the time between the opening and
closing of the TCP/IP connection between the client and the server). The same sn
pointer is passed to each SAF called within each request for an entire session. The
following list describes the most important fields in this data structure.

(See Chapter 5, “NSAPI Function Reference” for information about NSAPI routines
for manipulating the Sessi on data structure):

e sn->client

is a pointer to a pbl ock containing information about the client such as its IP
address, DNS name, or certificate. If the client does not have a DNS name or if
it cannot be found, it will be set to - none.

e sn->csd

is a platform-independent client socket descriptor. You will pass this to the
routines for reading from and writing to the client.

rq (request)

The r g parameter is a pointer to ar equest data structure. This parameter contains
variables related to the current request, such as the request headers, URI, and local
file system path. The same r equest pointer is passed to each SAF called in the
request-response process for an HTTP request.

Chapter 4 Creating Custom SAFs 117

SAF Parameters

The following list describes the most important fields in this data structure (See
Chapter 5, “NSAPI Function Reference,” for information about NSAPI routines for
manipulating the Request data structure).

e rg->vars

is a pointer to a pbl ock containing the server’s “working” variables. This
includes anything not specifically found in the following three pblocks. The
contents of this pbl ock vary depending on the specific request and the type of
SAF. For example, an AuthTrans SAF may insert an aut h- user parameter into
r g- >var s which can be used subsequently by a PathCheck SAF.

e rQg->reqpb

is a pointer to a pbl ock containing elements of the HTTP request. This includes
the HTTP method (GET, POST, ...), the URI, the protocol (normally HTTP/1.0),
and the query string. This pbl ock does not normally change throughout the
request-response process.

* rQ->headers

is a pointer to a pbl ock containing all the request headers (such as User-Agent,
If-Modified-Since, ...) received from the client in the HTTP request. See
Appendix E, “HyperText Transfer Protocol,” for more information about
request headers. This pbl ock does not normally change throughout the
request-response process.

e rg->srvhdrs

is a pointer to a pbl ock containing the response headers (such as Server, Date,
Content-type, Content-length,...) to be sent to the client in the HTTP response.
See Appendix E, “HyperText Transfer Protocol” for more information about
response headers.

The r g parameter is the primary mechanism for passing along information
throughout the request-response process. On input to a SAF, r g contains whatever
values were inserted or modified by previously executed SAFs. On output, r g
contains any modifications or additional information inserted by the SAF. Some
SAFs depend on the existence of specific information provided at an earlier step in
the process. For example, a PathCheck SAF retrieves values in r g- >var s which
were previously inserted by an AuthTrans SAF.

118 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide ¢ May 2001

Result Codes

Result Codes

Upon completion, a SAF returns a result code. The result code indicates what the
server should do next. The result codes are:

REQ_PROCCEED

indicates that the SAF achieved its objective. For some request-response steps
(AuthTrans, NameTrans, Service, and Error), this tells the server to proceed to
the next request-response step, skipping any other SAFs in the current step. For
the other request-response steps (PathCheck, ObjectType, and AddLog), the
server proceeds to the next SAF in the current step.

REQ_NOACTI ON

indicates the SAF took no action. The server continues with the next SAF in the
current server step.

REQ_ABCRTED

indicates that an error occurred and an HTTP response should be sent to the
client to indicate the cause of the error. A SAF returning REQ_ABORTED should
also set the HTTP response status code. If the server finds an Er r or directive
matching the status code or reason phrase, it executes the SAF specified. If not,
the server sends a default HTTP response with the status code and reason
phrase plus a short HTML page reflecting the status code and reason phrase
for the user. The server then goes to the first AddLog directive.

REQ EXI T

indicates the connection to the client was lost. This should be returned when
the SAF fails in reading or writing to the client. The server then goes to the first
AddLog directive.

Creating and Using Custom SAFs

Custom SAFs are functions in shared libraries that are loaded and called by the
server. Follow these steps to create a custom SAF:

1.

Write the Source Code
using the NSAPI functions. Each SAF is written for a specific directive.
Compile and Link

the source code to create a shared library (. so, .sl, or.dl) file.

Chapter 4 Creating Custom SAFs 119

Creating and Using Custom SAFs

3. Load and Initialize the SAF
by editing the obj . conf file to:
-- Load the shared library file containing your custom SAF(s).
-- Initialize the SAF if necessary.
4. Instruct the Server to Call the SAFs
by editing obj . conf to call your custom SAF(s) at the appropriate time.
5. Reconfigure the Server
6. Testthe SAF

by accessing your server from a browser with a URL that triggers your
function.

The following sections describe these steps in greater detail.

Write the Source Code

Write your custom SAFs using NSAPI functions. For a summary of some of the
most commonly used NSAPI functions, see the section “Overview of NSAPI C
Functions,” on page 127. Chapter 5, “NSAPI Function Reference,” provides
information about all of the routines available.

For examples of custom SAFs, see nsapi / exanpl es/ in the server root directory
and also see Chapter 6, “Examples of Custom SAFs.”

The signature for all SAFs is:
int function(pblock *pb, Session *sn, Request *rq);
For more details on the parameters, see the section “SAF Parameters,” on page 116.

The iPlanet Web Server runs as a multi-threaded single process. On Unix platforms
there are actually two processes (a parent and a child) for historical reasons. The
parent process performs some initialization and forks the child process. The child
process performs further initialization and handles all the HTTP requests.

Keep these things in mind when writing your SAF. Write thread-safe code.
Blocking may affect performance. Write small functions with parameters and
configure them in obj . conf . Carefully check and handle all errors. Also log them
so that you can determine the source of problems and fix them.

120 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide « May 2001

Creating and Using Custom SAFs

If necessary, write an initialization function that performs initialization tasks
required by your new SAFs. The initialization function has the same signature as
other SAFs:

int function(pblock *pb, Session *sn, Request *rq);

SAFs expect to be able to obtain certain types of information from their parameters.
In most cases, parameter block (pbl ock) data structures provide the fundamental
storage mechanism for these parameters A pbl ock maintains its data as a collection
of name-value pairs. For a summary of the most commonly used functions for
working with pbl ock structures, see “Parameter Block Manipulation Routines,” on
page 128.

When defining a SAF, you do not specifically state which directive it is written for.
However, each SAF must be written for a specific directive (such as Aut hTr ans,
Servi ce, and so on). Each directive expects its SAFs to do particular things, and
your SAF must conform to the expectations of the directive for which it was
written. For details of what each directive expects of its SAFs, see the section
“Required Behavior of SAFs for Each Directive,” on page 132.

Compile and Link

Compile and link your code with the native compiler for the target platform. For
UNIX, use the gnake command. For Windows NT, use the nmake command. For
Windows NT, use Microsoft Visual C++ 6.0 or newer. You must have an import list
that specifies all global variables and functions to access from the server binary.
Use the correct compiler and linker flags for your platform. Refer to the example
Makefile in the server_root/ pl ugi ns/ nsapi / exanpl es directory.

Follow these guidelines for compiling and linking.

Include Directory and nsapi.h File

Add the server_root/ pl ugi ns/ i ncl ude (UNIX) or server_root\ pl ugi ns\i ncl ude
(Windows NT) directory to your makefile to include the nsapi . h file.

Libraries

Add the server_root/ bi n/ htt ps/ 1i b (UNIX) or server_root\ bi n\ htt ps\ bi n
(Windows NT) library directory to your linker command.

Chapter 4 Creating Custom SAFs 121

Creating and Using Custom SAFs

Table 4-1 lists the library that you need to link to.

Table 4-1 Libraries

Platform Library

Windows NT ns- ht t pd40. dl | (in addition to the standard Windows
libraries)

HPUX |'i bns- htt pd40. sl

All other UNIX platforms | i bns- htt pd40. so

Linker Commands and Options for Generating a Shared Object
To generate a shared library, use the commands and options listed in Table 4-2.

Table 4-2 Linker commands and options

Platform Options

Solaris Sparc ld -Gorcc -G

Windows NT link -LD

HPUX cc +Z -b -W,+s -W, -B, synbolic

AIX cc -p O -berok -blibpath: $(LD_RPATH)
Compagq cc -shared

Linux gcc -shared

IRIX cc -shared

Additional Linker Flags

Use the linker flags in Table 4-3 to specify which directories should be searched for
shared objects during runtime to resolve symbols.

Table 4-3 Linker flags

Platform Flags
Solaris Sparc - R dir: dir
Windows NT (no flags, but the ns- ht t pd40. dI | file must be in the system

PATH variable)

122 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide ¢ May 2001

Creating and Using Custom SAFs

Table 4-3 Linker flags

Platform Flags

HPUX -W, +b, dir, dir

AIX - bl'i bpat h: dir: dir
Compaq -rpat h dir: dir
Linux -W, -rpat h, dir: dir
IRIX - W, -rpat h, dir: dir

On UNIX, you can also set the library search path using the LD_LIBRARY_PATH
environment variable, which must be set when you start the server.

Compiler Flags
Table 4-4 lists the flags and defines that you need to use for compilation of your

source code.

Table 4-4 Compiler flags and defines

Platform Flags/Defines

Solaris Sparc -DXP_UNI X - D_REENTRANT -KPI C - DSOLARI S
Windows NT -DXP_W N32 -DW N32 / MD

HP-UX - DXP_UNI X - D_REENTRANT - DHPUX

AlX -DXP_UNI X - D_REENTRANT - DAI X $(DEBUG)
Compaq -DXP_UNI X -KPI C

Linux -DLI NUX - D_REENTRANT -fPI C

IRIX -032 -exceptions -DXP_UNI X -KPI C

All Platforms - MCC_HTTPD - NET_SSL

Table 4-5 lists the optional flags and defines you can use.

Chapter 4 Creating Custom SAFs 123

Creating and Using Custom SAFs

Table 4-5 Optional flags and defines

Flag/Define Platforms Description

- DSPAPI 20 All Needed for the proxy utilities
function include fileputi | . h

Compiling 3.x Plugins on AlX

For AlIX only, plugins built for 3.x versions of the server must be relinked to work
with 4.x and 6.x versions. The files you need, which are in the
server_root/ pl ugi ns/ nsapi / exanpl es/ directory, are as follows:

= The Makefi | e file has the - Goption instead of the old - bM SRE - ber ok -brtl
- bnoent ry options.

= Ascript, rel i nk_36pl ugi n, modifies a plugin built for 3.x versions of the
server to work with 4.x and 6.x versions. The script’s comments explain its use.

iPlanet Web Server 4.x and 6.x versions are built on AlX 4.2, which natively
supports runtime-linking. Because of this, NSAPI plugins, which reference
symbols in the ns- ht t pd main executable, must be built with the - Goption, which
specifies that symbols must be resolved at runtime.

Previous versions of Netscape Enterprise Server, however, were built on AlX 4.1,
which did not support native runtime-linking. Enterprise Server had specific
additional software (provided by IBM AlX development to Netscape) to enable
plugins. No special runtime-linking directives were required to build plugins.
Because of this, plugins that have been built for previous server versions on AlX
will not work with iPlanet Web Server 4.x and 6.x versions as they are.

However, they can easily be relinked to work with iPlanet Web Server 4.x and 6.x
versions. The relink_36plugin script relinks existing plugins. Only the existing
plugin itself is required for the script; original source and .o files are not needed.
More specific comments are in the script itself. Since all AIX versions from 4.2
onward natively support runtime-linking, no plugins for iPlanet Web Server
versions 4.x and later will need to be relinked.

Load and Initialize the SAF

For each shared library (plugin) containing custom SAFs to be loaded into the
iPlanet Web Server, add an | ni t directive that invokes the | oad- modul es SAF to
magnus. conf .

124 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide ¢ May 2001

Creating and Using Custom SAFs

The syntax for a directive that calls | oad- nodul es is:
Init fn=l oad-nodul es shli b=[path]sharedlibname funcs="SAF1,....SAFn"
= shlibisthe local file system path to the shared library (plugin).

= funcs isa comma-separated list of function names to be loaded from the
shared library. Function names are case-sensitive. You may use dash (-) in
place of underscore () in function names. There should be no spaces in the
function name list.

If the new SAFs require initialization, be sure that the initialization function is
included in the f uncs list.

For example, if you created a shared library ani mat i ons. so that defines two SAFs
do_smal | _ani m() and do_bi g_ani m() and also defines the initialization function
init_nmy_ani mati ons, you would add the following directive to load the plugin:

Init fn=load-nodul es shlib=ani mati ons. so
funcs="do_snmal | _animdo_big_animinit_ny_ani mati ons”

If necessary, also add an I ni t directive that calls the initialization function for the
newly loaded plugin. For example, if you defined the function

init_my_new SAF() to perform an operation on the maxAni mLoop parameter, you
would a directive such as the following to nagnus. conf :

Init fn=init_my_ani mati ons naxAni mLoop=5

Instruct the Server to Call the SAFs

Next, add directives to obj . conf to instruct the server to call each custom SAF at
the appropriate time. The syntax for directives is:

Directive f n=function-name [namel="valuel"] ... [nameN="valueN"]

= Directive is one of the server directives, such as Aut hTr ans, Ser vi ce, and so on.
« function-name is the name of the SAF to execute.

< nameN="valueN" are the names and values of parameters which are passed to
the SAF.

Chapter 4 Creating Custom SAFs 125

Creating and Using Custom SAFs

Depending on what your new SAF does, you might need to add just one directive
to obj . conf or you might need to add more than one directive to provide complete
instructions for invoking the new SAF.

For example, if you define a new Aut hTr ans or Pat hCheck SAF you could just add
an appropriate directive in the default object. However, if you define a new

Servi ce SAF to be invoked only when the requested resource is in a particular
directory or has a new kind of file extension, you would need to take extra steps.

If your new Service SAF is to be invoked only when the requested resource has a
new kind of file extension, you might need to add an entry to the MIME types file
so that the t ype value gets set properly during the Obj ect Type stage. Then you
could add a Ser vi ce directive to the default object that specifies the desired t ype
value.

If your new Ser vi ce SAF is to be invoked only when the requested resource isin a
particular directory, you might need to define a NaneTr ans directive that generates
a name or ppat h value that matches another object, and then in the new object you
could invoke the new Ser vi ce function.

For example, suppose your plugin defines two new SAFs, do_smal | _ani m() and
do_bi g_ani m() which both take speed parameters. These functions run
animations. All files to be treated as small animations reside in the directory

D: / Net scape/ server 4/ docs/ ani mati ons/ smal | , while all files to be treated as
full screen animations reside in the directory

D: / Net scape/ server 4/ docs/ ani mati ons/ful | screen.

To ensure that the new animation functions are invoked whenever a client sends a
request for either a small or full screen animation, you would add NameTr ans
directives to the default object to translate the appropriate URLS to the
corresponding pathnames and also assign a name to the request.

NameTr ans fn=pfx2dir from="/ani mations/snall"

di r="D:/ Net scape/ server 4/ docs/ ani mati ons/ smal | " name="snal | _ani n{
NameTrans fn=pfx2dir from="/ani mati ons/fullscreen"

di r="D:/ Net scape/ server 4/ docs/ ani nati ons/ful | screen"

nane="ful | screen_ani nf

You also need to define objects that contain the Ser vi ce directives that run the
animations and specify the speed parameter.

126 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide ¢ May 2001

Overview of NSAPI C Functions

<Cbj ect nane="smal | _ani n'>

Servi ce fn=do_smal | _ani m speed=40
</ Obj ect >

<Cbj ect nane="ful |l screen_ani ni >
Servi ce fn=do_bi g_ani m speed=20
</ Obj ect >

Reconfigure the Server

After modifying obj . conf, you need to reconfigure the server. See “Dynamic
Reconfiguration,” on page 22 for details.

Test the SAF

Test your SAF by accessing your server from a browser with a URL that triggers
your function. For example, if your new SAF is triggered by requests to resources
in http://server-name/ ani mat i ons/ smal | , try requesting a valid resource that
starts with that URI.

You should disable caching in your browser so that the server is sure to be
accessed. In Navigator you may hold the shift key while clicking the Reload button
to ensure that the cache is not used. (Note that the shift-reload trick does not
always force the client to fetch images from source if the images are already in the
cache.)

You may also wish to disable the server cache using the cache-i nit SAF.

Examine the access log and error log to help with debugging.

Overview of NSAPI C Functions

NSAPI provides a set of C functions that are used to implement SAFs. They serve
several purposes. They provide platform-independence across Netscape Server
operating system and hardware platforms. They provide improved performance.
They are thread-safe which is a requirement for SAFs. They prevent memory leaks.
And they provide functionality necessary for implementing SAFs. You should
always use these NSAPI routines when defining new SAFs.

Chapter 4 Creating Custom SAFs 127

Overview of NSAPI C Functions

This section provides an overview of the function categories available and some of
the more commonly used routines. All the public routines are detailed in Chapter
5, “NSAPI Function Reference.”

The main categories of NSAPI functions are:
= Parameter Block Manipulation Routines
= Protocol Utilities for Service SAFs

= Memory Management

= Filel/O

= Network 170

e Threads

= Urtilities

= Virtual Server

Parameter Block Manipulation Routines

The parameter block manipulation functions provide routines for locating, adding,
and removing entries in a pbl ock data structure include:

= pbl ock_findval returnsthe value for a given name in a pbl ock.
= pbl ock_nvi nsert adds a new name-value entry to a pbl ock.

= pbl ock_renmove removes a pbl ock entry by name from a pbl ock. The entry is
not disposed. Use par am f r ee to free the memory used by the entry.

= param free frees the memory for the given pbl ock entry.

= pbl ock_pbl ock2str creates a new string containing all the name-value pairs
from a pbl ock in the form “name=value name=value.” This can be a useful
function for debugging.

Protocol Utilities for Service SAFs

Protocol utilities provide functionality necessary to implement Service SAFs:

= request_header returns the value for a given request header name, reading
the headers if necessary. This function must be used when requesting entries
from the browser header pbl ock (r g- >header s).

128 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide ¢ May 2001

Overview of NSAPI C Functions

= protocol _status setsthe HTTP response status code and reason phrase

e protocol _start_response sendsthe HTTP response and all HTTP headers to
the browser.

Memory Management

Memory management routines provide fast, platform-independent versions of the
standard memory management routines. They also prevent memory leaks by
allocating from a temporary memory (called “pooled” memory) for each request
and then disposing the entire pool after each request. There are wrappers for
standard memory routines for using permanent memory. To disable pooled
memory for debugging, see the built-in SAF pool -i ni t in Chapter 7, “Syntax and
Use of magnus.conf.”

* MALLOC
* FREE

» STRDUP
* REALLOC
« CALLOC

+ PERM_MALLOC
« PERM_FREE

» PERM_STRDUP
» PERM_REALLOC
» PERM_CALLOC

File 1/0

The file 170 functions provides platform-independent, thread-safe file 1/0
routines.

= system f openROopens a file for read-only access.

= system f openRWopens a file for read-write access, creating the file if
necessary.

= system f openWA opens a file for write-append access, creating the file if
necessary.

e system fcl ose closes a file.

Chapter 4 Creating Custom SAFs 129

Overview of NSAPI C Functions

e system fread reads from a file.
e system fwite writes to afile.

e systemfwite_atonic locks the given file before writing to it. This avoids
interference between simultaneous writes by multiple threads.

Network I/O

Network 170 functions provide platform-independent, thread-safe network 170
routines. These routines work with SSL when it’s enabled.

= net buf _grab reads from a network buffer’s socket into the network buffer.
= net buf _get ¢ gets a character from a network buffer.

e net_wite writes to the network socket.

Threads

Thread functions include functions for creating your own threads which are
compatible with the server’s threads. There are also routines for critical sections
and condition variables.

e systhread_start creates a new thread.

= systhread_sl eep puts a thread to sleep for a given time.

e crit_init createsanew critical section variable.

= crit_enter gains ownership of a critical section.

e crit_exit surrenders ownership of a critical section.

= crit_terninate disposes of a critical section variable.

e condvar _i nit creates a new condition variable.

= condvar _not i fy awakens any threads blocked on a condition variable.
e condvar _wait blocks on a condition variable.

= condvar _t er ni nat e disposes of a condition variable.

= prepare_nsapi _t hread allows threads that are not created by the server to act
like server-created threads.

130 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide ¢ May 2001

Overview of NSAPI C Functions

Utilities
Utility functions include platform-independent, thread-safe versions of many

standard library functions (such as string manipulation) as well as new utilities
useful for NSAPI.

daenon_at rest art (Unix only) registers a user function to be called when the
server is sent a restart signal (HUP) or at shutdown.

util _get!line getsthe next line (up to a LF or CRLF) from a buffer.

util _host nanme gets the local hostname as a fully qualified domain name.
uti | _l ater_t han compares two dates.

util _sprintf same as standard library routine sprintf ().

util _strftime same as standard library routine strfti me().

util _uri_escape converts the special characters in a string into URI escaped
format.

util _uri_unescape converts the URI escaped characters in a string back into
special characters.

NOTE You cannot use an embedded null in a string, because NSAPI

functions assume that a null is the end of the string. Therefore,
passing unicode-encoded content through an NSAPI plug-in
doesn’t work.

Virtual Server

The virtual server functions provide routines for retrieving information about
virtual servers.

request _get _vs finds the virtual server to which a request is directed.

vs_al | oc_sl ot allocates a new slot for storing a pointer to data specific to a
certain virtual server.

vs_get _dat a finds the value of a pointer to data for a given virtual server and
slot.

vs_get _default _htt pd_obj ect obtains a pointer to the default (or root)
object from the virtual server's virtual server class configuration.

Chapter 4 Creating Custom SAFs 131

Required Behavior of SAFs for Each Directive

e vs_get_doc_root finds the document root for a virtual server.

= vs_get_httpd_obj set obtains a pointer to the virtual server class
configuration for a given virtual server.

e vs_get _id finds the ID of a virtual server.

= vs_get_ni me_t ype determines the MIME type that would be returned in the
Cont ent - t ype: header for the given URI.

= vs_l ookup_config_var finds the value of a configuration variable for a given
virtual server.

= vs_regi ster_cb allows a plugin to register functions that will receive
notifications of virtual server initialization and destruction events.

= vs_set_dat a sets the value of a pointer to data for a given virtual server and
slot.

e vs_translate_uri translates a URI as though it were part of a request for a
specific virtual server.

Required Behavior of SAFs for Each Directive

When writing a new SAF, you should define it to do certain things, depending on

which stage of the request handling process will invoke it. For example, SAFs to be
invoked during the I ni t stage must conform to different requirements than SAFs

to be invoked during the Ser vi ce stage.

The r g parameter is the primary mechanism for passing along information
throughout the request-response process. On input to a SAF, r g contains whatever
values were inserted or modified by previously executed SAFs. On output, r g
contains any modifications or additional information inserted by the SAF. Some
SAFs depend on the existence of specific information provided at an earlier step in
the process. For example, a PathCheck SAF retrieves values in r g- >var s which
were previously inserted by an AuthTrans SAF.

This section outlines the expected behavior of SAFs used at each stage in the
request handling process.

e Init SAFs
e AuthTrans SAFs
e NameTrans SAFs

e PathCheck SAFs

132 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide ¢ May 2001

Required Behavior of SAFs for Each Directive

= ObjectType SAFs
= Service SAFs

= Error SAFs

< AddLog SAFs

Init SAFs

= Purpose: Initialize at startup.

« Called at server startup and restart.

e rgandsnare NULL.

= Initialize any shared resources such as files and global variables.

= Can register callback function with daenon_atrestart () to clean up.

< Onerror, insert err or parameter into pb describing the error and return
REQ ABORTED.

e |fsuccessful, return REQ PROCEED.

AuthTrans SAFs

= Purpose: Verify any authorization information. Only basic authorization is
currently defined in the HTTP/1.0 specification.

e Check for Aut hori zat i on header inr g- >header s which contains the
authorization type and uu-encoded user and password information. If header
was not sent return REQ_NOACTI ON.

= |If header exists, check authenticity of user and password.

= [Ifauthentic, create aut h- t ype, plus aut h- user and/or aut h- gr oup parameter
inrg->var s to be used later by Pat hCheck SAFs.

= Return REQ PROCEEDif the user was successfully authenticated, REQ NOACTI ON
otherwise.

NameTrans SAFs

= Purpose: Convert logical URI to physical path

Chapter 4 Creating Custom SAFs 133

Required Behavior of SAFs for Each Directive

= Perform operations on logical path (ppat h inr g- >var s) to convert it into a full
local file system path.

= Return REQ PROCEEDIf ppat h inr g- >var s contains the full local file system
path, or REQ NQOACTI ONif not.

= To redirect the client to another site, change ppat h inr g->vars to/ URL. Add
url torg->vars with full URL (for example., htt p: / / hone. net scape. con).
Return REQ PROCEED.

PathCheck SAFs

= Purpose: Check path validity and user’s access rights.
e Check aut h-type, aut h-user and/or aut h- group inr g- >vars.

= Return REQ PROCEED if user (and group) is authorized for this area (ppat h in
rg->vars).

= If not authorized, insert WAV Aut hent i cat e tor g- >sr vhdr s with a value such
as: Basic; Real mr\"Qur private area\". Call protocol _status() toset
HTTP response status to PROTOCOL_UNAUTHORI ZED. Return REQ _ABORTED.

ObjectType SAFs

= Purpose: Determine content-type of data.
e Ifcontent-typeinrg->srvhdrs already exists, return REQ NOACTI ON.
= Determine the MIME type and create cont ent -t ype inrg- >srvhdr s

e Return REQ PROCEED if cont ent -t ype is created, REQ NOACTI ON otherwise

Service SAFs

= Purpose: Generate and send the response to the client.

= AService SAF is only called if each of the optional parameters t ype, net hod,
and quer y specified in the directive in obj . conf match the request.

= Remove existing cont ent - t ype from r g- >sr vhdr s. Insert correct
content-typeinrg->srvhdrs.

= Create any other headers inr g- >sr vhdrs.

134 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide ¢ May 2001

CGI to NSAPI Conversion

e Call protocol _st at us to set HTTP response status.
e Callprotocol _start_response to send HTTP response and headers.
= Generate and send data to the client using net _wri te.

e Return REQ PROCEED if successful, REQ EXI T on write error, REQ ABORTED on
other failures.

Error SAFs

= Purpose: Respond to an HTTP status error condition.

= The Error SAF is only called if each of the optional parameters code and
r eason specified in the directive in obj . conf match the current error.

= Error SAFs do the same as Service SAFs, but only in response to an HTTP
status error condition.

AddLog SAFs

= Purpose: Log the transaction to a log file.
= AddLog SAFs can use any data available in pb, sn, or r g to log this transaction.

e Return REQ PROCEED.

CGI to NSAPI Conversion

You may have a need to convert a CGlI variable into a SAF using NSAPI. Since the
CGI environment variables are not available to NSAPI, you’ll retrieve them from
the NSAPI parameter blocks. The table below indicates how each CGI environment
variable can be obtained in NSAPI.

Keep in mind that your code must be thread-safe under NSAPI. You should use
NSAPI functions which are thread-safe. Also, you should use the NSAPI memory
management and other routines for speed and platform independence.

Table 4-6
CGl getenv() NSAPI
AUTH_TYPE pbl ock_findval ("aut h-type", rg->vars);

Chapter 4 Creating Custom SAFs 135

CGI to NSAPI Conversion

Table 4-6

CGl getenv()

NSAPI

AUTH_USER
CONTENT_LENGTH
CONTENT_TYPE
GATEVAY_| NTERFACE
HTTP_*

PATH_I NFO
PATH_TRANSLATED
QUERY_STRI NG

REMOTE_ADDR
REMOTE_HOST

REMOTE_| DENT

REMOTE_USER
REQUEST METHCD
SCRI PT_NAMVE
SERVER NAVE
SERVER_PORT

SERVER_PROTOCOL
SERVER_SOFTWARE
Netscape specific:
CLI ENT_CERT
HOST

HTTPS
HTTPS_KEYSI ZE

HTTPS_SECRETKEYSI ZE

pbl ock_fi ndval ("aut h-user",
pbl ock_fi ndval ("content-| ength",

pbl ock_fi ndval ("content-type",

"cad/1.1"

pbl ock_findval ("*"

pbl ock_fi ndval (" pat h-i nf o",
pbl ock_fi ndval ("pat h-transl ated",
pbl ock_fi ndval ("query",

rg->vars);
r g- >headers) ;

r g- >headers) ;

, rg->headers);
(* is lower-case, dash replaces underscore)

rqg->vars);
rg->vars);

rg->reqpb);

(GET only, POST puts query string in body data)

pbl ock_fi ndval ("ip",

sessi on_dns(sn) ? session_dns(sn)

sn->client);

pbl ock_findval ("front,

(not usually available)

pbl ock_fi ndval ("aut h-user",

pbl ock_fi ndval (" met hod",

pbl ock_fi ndval ("uri",

char *util _hostnane();

sn->client);

pbl ock_fi ndval ("ip",

r g- >headers) ;

rqg->vars);
req- >reqgpb);
rg->reqpb);

conf _get gl obal s()->Vport;

(as a string)

pbl ock_fi ndval (" protocol ",

MAGNUS_VERSI ON_STRI NG

pbl ock_fi ndval ("aut h-cert",

char *sessi on_nmaxdns(sn);

(may be null)

security_active ?

pbl ock_fi ndval ("keysi ze",

pbl ock_fi ndval ("secret-keysi ze",

rg->reqpb);
rg->vars)
" OFF";

sn->client);

sn->client);

136 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide ¢ May 2001

CGI to NSAPI Conversion

Table 4-6
CGl getenv() NSAPI
QUERY pbl ock_findval (query", rqg->reqpb);
(GET only, POST puts query string in entity-body data)
SERVER_URL http_uri2url _dynamic("","", sn, rq);

Chapter 4 Creating Custom SAFs 137

CGI to NSAPI Conversion

138 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide ¢ May 2001

Chapter 5

NSAPI Function Reference

This chapter lists all the public C functions and macros of the Netscape Server
Applications Programming Interface (NSAPI) in alphabetic order. These are the
functions you use when writing your own Server Application Functions (SAFs).

See Chapter 7, “Syntax and Use of magnus.conf,” for a list of the pre-defined Init
SAFs. See Chapter 3, “Predefined SAFs and the Request Handling Process,” for a
list of the rest of the pre-defined SAFs.

Each function provides the name, syntax, parameters, return value, a description of
what the function does, and sometimes an example of its use and a list of related
functions.

For more information on data structures, see Appendix A, “Data Structure
Reference,” and also look in the nsapi . h header file in the i ncl ude directory in the
build for iPlanet Web Server 6.0.

NSAPI Functions (in Alphabetical Order)

For an alphabetical list of function names, see Appendix G, “Alphabetical List of
NSAPI Functions and Macros.”

Cc D F L M N P R S U \

139

NSAPI Functions (in Alphabetical Order)

C

140

CALLOC

The CALLOC macro is a platform-independent substitute for the C library routine
cal | oc. It allocates nunt si ze bytes from the request’s memory pool. If pooled

memory has been disabled in the configuration file (with the pool -i ni t built-in
SAF), PERM _CALLOC and CALLQC both obtain their memory from the system heap.

Syntax
voi d *CALLOC(i nt num int size)

Returns
A void pointer to a block of memory.

Parameters
i nt num is the number of elements to allocate.

i nt size is the size in bytes of each element.

Example

/* Allocate space for an array of 100 char pointers */
char *nane;

name = (char *) CALLOC(100, sizeof(char *));

See also
FREE, REALLOC, STRDUP, PERM MALLOC, PERM FREE, PERM REALLCC,
PERM_STRDUP

cinfo_find

The cinfo_find() function uses the MIME types information to find the type,
encoding, and/or language based on the extension(s) of the Universal Resource
Identifier (URI) or local file name. Use this information to send headers

(r g- >sr vhdr s) to the client indicating the cont ent - t ype, cont ent - encodi ng, and
cont ent - | anguage of the data it will be receiving from the server.

The name used is everything after the last slash (/) or the whole string if no slash is
found. File name extensions are not case-sensitive. The name may contain multiple
extensions separated by period (.) to indicate type, encoding, or language. For
example, the URI a/ b/ fi | ename. j p. t xt. zi p could represent a Japanese
language, text/plain type, zip encoded file.

iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide « May 2001

NSAPI Functions (in Alphabetical Order)

Syntax
cinfo *cinfo_find(char *uri);

Returns
A pointer to a newly allocated ci nf o structure if content info was found or NULL
if no content was found

The ci nf o structure that is allocated and returned contains pointers to the
content-type, content-encoding, and content-language, if found. Each is a pointer
into static data in the types database, or NULL if not found. Do not free these
pointers. You should free the ci nf o structure when you are done using it.

Parameters
char *uri isa Universal Resource Identifier (URI) or local file name. Multiple file
name extensions should be separated by periods (.).

condvar _init

The condvar _i ni t function is a critical-section function that initializes and returns
a new condition variable associated with a specified critical-section variable. You
can use the condition variable to prevent interference between two threads of
execution.

Syntax
CONDVAR condvar _init (CRITI CAL id);

Returns
A newly allocated condition variable (CONDVAR).

Parameters
CRI TI CAL i d is a critical-section variable.

See also

condvar _notify, condvar_term nate, condvar_wait, crit_init,
crit_enter, crit_exit, crit_termnate.

Chapter 5 NSAPI Function Reference 141

NSAPI Functions (in Alphabetical Order)

condvar_notify

The condvar _noti f y function is a critical-section function that awakens any
threads that are blocked on the given critical-section variable. Use this function to
awaken threads of execution of a given critical section. First, use crit_enter to
gain ownership of the critical section. Then use the returned critical-section
variable to call condvar _noti f y to awaken the threads. Finally, when

condvar _noti fy returns, call crit_exi t to surrender ownership of the critical
section.

Syntax
voi d condvar _noti fy(CONDVAR cvV) ;

Returns
voi d

Parameters
CONDVAR cv is a condition variable.

See also
condvar _init, condvar_term nate, condvar_wait, crit_init,
crit_enter, crit_exit, crit_termnate.

condvar_terminate

The condvar_terminate function is a critical-section function that frees a condition
variable. Use this function to free a previously allocated condition variable.

Warning
Terminating a condition variable that is in use can lead to unpredictable results.

Syntax
voi d condvar _t erm nat e(CONDVAR cV) ;

Returns
voi d

Parameters
CONDVAR cv is a condition variable.

See also

condvar _init, condvar_notify, condvar_wait, crit_init, crit_enter,
crit _exit, crit_termnate.

142 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide ¢ May 2001

NSAPI Functions (in Alphabetical Order)

condvar_wait

Critical-section function that blocks on a given condition variable. Use this function
to wait for a critical section (specified by a condition variable argument) to become
available. The calling thread is blocked until another thread calls condvar _noti fy
with the same condition variable argument. The caller must have entered the
critical section associated with this condition variable before calling condvar _wai t .

Syntax
voi d condvar _wait (CONDVAR cV) ;

Returns
voi d

Parameters
CONDVAR cv is a condition variable.

See also
condvar _init, condvar_notify, condvar_termnate, crit_init,
crit_enter, crit_exit, crit_termnate.

crit_enter

Critical-section function that attempts to enter a critical section. Use this function to
gain ownership of a critical section. If another thread already owns the section, the
calling thread is blocked until the first thread surrenders ownership by calling

crit _exit.

Syntax
void crit_enter(CRI TICAL crvar);

Returns
voi d

Parameters
CRI TI CAL crvar is acritical-section variable.

See also
crit_init, crit_exit, crit_term nate.

Chapter 5 NSAPI Function Reference 143

NSAPI Functions (in Alphabetical Order)

crit_exit

Critical-section function that surrenders ownership of a critical section. Use this
function to surrender ownership of a critical section. If another thread is blocked
waiting for the section, the block will be removed and the waiting thread will be
given ownership of the section.

Syntax
void crit_exit(CRITICAL crvar);

Returns
voi d

Parameters
CRI TI CAL crvar is a critical-section variable.

See also
crit_init, crit_enter, crit_termnate.

crit_init

Critical-section function that creates and returns a new critical-section variable (a
variable of type CRI Tl CAL). Use this function to obtain a new instance of a variable
of type CRI TI CAL (a critical-section variable) to be used in managing the prevention
of interference between two threads of execution. At the time of its creation, no
thread owns the critical section.

Warning
Threads must not own or be waiting for the critical section whencrit _termni nate
is called.

Syntax
CRITICAL crit_init(void);

Returns
A newly allocated critical-section variable (CRI Tl CAL)

Parameters
none.

See also
crit_enter, crit_exit, crit_termnate.

144 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide ¢ May 2001

NSAPI Functions (in Alphabetical Order)

crit_terminate

Critical-section function that removes a previously-allocated critical-section
variable (a variable of type CRI TI CAL). Use this function to release a critical-section
variable previously obtained by acalltocrit_init.

Syntax
void crit_term nate(CRI TI CAL crvar);

Returns
voi d

Parameters
CRI TI CAL crvar is acritical-section variable.

See also
crit_init, crit_enter, crit_exit.

daemon_atrestart

The daenon_at rest art function lets you register a callback function named by f n
to be used when the server terminates. Use this function when you need a callback
function to deallocate resources allocated by an initialization function. The

daenon_at rest art function is a generalization of the magnus_at rest art function.

The magnus. conf directives Ter i nat eTi meout and Chi | dRest art Cal | back also
affect the callback of NSAPI functions.

Syntax
voi d daenon_atrestart(void (*fn)(void *), void *data);

Returns
voi d

Parameters
void (* fn) (void *) isthe callback function.

voi d *data is the parameter passed to the callback function when the server is
restarted.

Chapter 5 NSAPI Function Reference 145

NSAPI Functions (in Alphabetical Order)

Example

/* Register the log_close function, passing it NULL */
/* to close *a log file when the server is */

/* restarted or shutdown. */

daenon_atrestart(l og_cl ose, NULL);

NSAPI _PUBLI C voi d | og_cl ose(voi d *paraneter)

{

system f cl ose(gl obal _I ogfd);
}

fc_open

The fc_open function returns a pointer to PRFi | eDesc that refers to an open file
(fileName). The fileName must be the full pathname of an exisiting file. The file is
opened in Read Mode only. The application calling this function should not modify
the currency of the file pointed by the PRFi | eDesc * unless the DUP_FI LE_DESC is
also passed to this function. In other words, the application (at minimum) should
not issue a read operation based on this pointer that would modify the currency for
the PRFi | eDesc *. If such a read operation is required (that may change the
currency for the PRFi | eDesc *), then the application should call this function with
the argument DUP_FI LE_DESC.

On a successful call to this function a valid pointer to PRFileDesc is returned and
the handle 'FcHdI ’ is properly initialized. The size information for the file is stored
in the 'fileSize’ member of the handle.

Syntax
PRFi | eDesc *f c_open(const char *fil eNane, FcHdl *hD , PRU nt 32 fl ags,
Session *sn, Request *rq);

Returns
Pointer to PRFileDesc, NULL on failure

Parameters
const char *fil eNane is the full path name of the file to be opened

FcHdl *hDl is a valid pointer to a structure of type FcHdI
PRU nt32 flags canbe0Oor DUP_FILE_DESC

Sessi on *sn is a pointer to the session

146 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide ¢ May 2001

NSAPI Functions (in Alphabetical Order)

Request *rq is a pointer to the request

fc_close

The fc_close function closes a file opened using f c_open. This function should only
be called with files opened using f c_open.

Syntax
voi d fc_cl ose(PRFil eDesc *fd, FcHdl *hD;

Returns
void

Parameters
PRFi | eDesc *fd A valid pointer returned from a prior call to fc_open

FcHdl *hD is avalid pointer to a structure of type FcHdl this pointer must have
been initialized by a prior call to f c_open.

filebuf_buf2sd

The fil ebuf _buf 2sd function sends a file buffer to a socket (descriptor) and
returns the number of bytes sent.

Use this function to send the contents of an entire file to the client.

Syntax
int filebuf_buf2sd(filebuf *buf , SYS_NETFD sd);

Returns
The number of bytes sent to the socket, if successful, or the constant | O ERRORif the
file buffer could not be sent

Parameters
filebuf *buf isthe file buffer which must already have been opened.

SYS_NETFDsd is the platform-independent socket descriptor. Normally this will be
obtained from the csd (client socket descriptor) field of the sn (Session) structure.

Example
if (filebuf_buf2sd(buf, sn->csd) == | O ERROR)
return(REQ EXIT);

See also
filebuf_close, filebuf_open, filebuf_open_nostat, filebuf _getc.

Chapter 5 NSAPI Function Reference 147

NSAPI Functions (in Alphabetical Order)

filebuf close
The fil ebuf _cl ose function deallocates a file buffer and closes its associated file.

Generally, use fi | ebuf _open first to open a file buffer, and then fi | ebuf _getc to
access the information in the file. After you have finished using the file buffer, use
fil ebuf _cl ose to close it.

Syntax
void fil ebuf_close(filebuf *buf);

Returns
void

Parameters
filebuf *buf isthe file buffer previously opened with fi | ebuf _open.

Example
fil ebuf_cl ose(buf);

See also
fil ebuf _open, filebuf_open_nostat, filebuf_buf2sd, filebuf_getc

filebuf_getc

The fil ebuf _get ¢ function retrieves a character from the current file position and
returns it as an integer. It then increments the current file position.

Use fi | ebuf _get ¢ to sequentially read characters from a buffered file.

Syntax
filebuf_getc(filebuf b);

Returns
An integer containing the character retrieved, or the constant | O EOF or | O ERROR
upon an end of file or error.

Parameters
fil ebuf b isthe name of the file buffer.

See also
filebuf_close, filebuf_buf2sd, filebuf_open, filebuf_open_nostat

148 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide « May 2001

NSAPI Functions (in Alphabetical Order)

filebuf_open

Thefil ebuf _open function opens a new file buffer for a previously opened file. It
returns a new buffer structure. Buffered files provide more efficient file access by
guaranteeing the use of buffered file 1/0 in environments where it is not supported
by the operating system.

Syntax
filebuf *fil ebuf_open(SYS_FILE fd, int sz);

Returns
A pointer to a new buffer structure to hold the data, if successful or NULL if no
buffer could be opened.

Parameters
SYS FILE fd is the platform-independent file descriptor of the file which has
already been opened.

i nt sz is the size, in bytes, to be used for the buffer.

Example
filebuf *buf = fil ebuf_open(fd, FlILE BUFFERSI ZE);
if (!buf) {
system fcl ose(fd);
}
See also

filebuf_getc, filebuf_buf2sd, filebuf_close, filebuf_open_nostat

filebuf_open_nostat

The fil ebuf _open_nost at function opens a new file buffer for a previously
opened file. It returns a new buffer structure. Buffered files provide more efficient
file access by guaranteeing the use of buffered file I/0 in environments where it is
not supported by the operating system.

This function is the same fi | ebuf _open, but is more efficient, since it does not
need to call the request _st at _pat h function. It requires that the stat information
be passed in.

Syntax

filebuf* fil ebuf_open_nostat (SYS FILE fd, int sz,
struct stat *finfo);

Chapter 5 NSAPI Function Reference 149

NSAPI Functions (in Alphabetical Order)

Returns
A pointer to a new buffer structure to hold the data, if successful or NULL if no
buffer could be opened.

Parameters
SYS FILE fd is the platform-independent file descriptor of the file which has
already been opened.

int sz isthe size, in bytes, to be used for the buffer.

struct stat *finfo isthe file information of the file. Before calling the
fil ebuf _open_nost at function, you must call the r equest _st at _pat h function to
retrieve the file information.

Example
filebuf *buf = fil ebuf_open_nostat(fd, FlILE_BUFFERSIZE, &fi nfo);
if (!buf) {
system fcl ose(fd);
}
See also

filebuf_close, filebuf_open, filebuf_getc, filebuf_buf2sd

FREE

The FREE macro is a platform-independent substitute for the C library routine
fr ee. It deallocates the space previously allocated by MALLOC, CALLOC, or STRDUP
from the request’s memory pool.

Syntax
FREE(void *ptr);

Returns
voi d

Parameters
void *ptr isa(void *) pointer to a block of memory. If the pointer is not one
created by MALLOC, CALLOC, or STRDUP, the behavior is undefined.

Example
char *nane;

name = (char *) MALLOC(256);

FREE(nan®) ;

150 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide ¢ May 2001

NSAPI Functions (in Alphabetical Order)

See also
MALLOC, CALLOC, REALLQC, STRDUP, PERM MALLCC, PERM FREE,
PERM REALLOC, PERM STRDUP

func_exec

The f unc_exec function executes the function named by the f n entry in a specified
pbl ock. If the function name is not found, it logs the error and returns
REQ ABORTED.

You can use this function to execute a built-in server application function (SAF) by
identifying it in the pbl ock.

Syntax
int func_exec(pblock *pb, Session *sn, Request *rq);

Returns
The value returned by the executed function or the constant REQ ABORTED if no
function was executed.

Parameters
pbl ock pb is the pbl ock containing the function name (fn) and parameters.

Sessi on *sn is the Session.
Request *rq isthe Request.

The Session and Request parameters are the same as the ones passed into your
SAF.

See also
| og_error

func_find

The func_find function returns a pointer to the function specified by nane. If the
function does not exist, it returns NULL.

Syntax
FuncPtr func_find(char *nane);

Returns
A pointer to the chosen function, suitable for dereferencing or NULL if the function
could not be found.

Chapter 5 NSAPI Function Reference 151

NSAPI Functions (in Alphabetical Order)

Parameters
char *nane is the name of the function.

Example
/* this block of code does the same thing as func_exec */
char *afunc = pbl ock_findval ("afunction", pb);
FuncPtr afnptr = func_find(afunc);
if (afnptr)
return (afnptr)(pb, sn, rq);

See also
func_exec

log_error

The I og_error function creates an entry in an error log, recording the date, the
severity, and a specified text.

Syntax
int log_error(int degree, char *func, Session *sn, Request *rq,
char *fnt, ...);

Returns
0 if the log entry was created or -1 if the log entry was not created.

Parameters
i nt degree specifies the severity of the error. It must be one of the following
constants:

LOG_WARN—warning

LOG_M SCONFI G—a syntax error or permission violation
LOG_SECURI TY—an authentication failure or 403 error from a host
LOG_FAl LURE—an internal problem

LOG_CATASTROPHE—a hon-recoverable server error

LOG_| NFORM—an informational message

char *func is the name of the function where the error has occurred.
Sessi on *sn is the Session.

Request *rq isthe Request.

152 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide ¢ May 2001

NSAPI Functions (in Alphabetical Order)

The Session and Request parameters are the same as the ones passed into your
SAF.

char *fnt specifies the format for the pri ntf function that delivers the message.

. represents a sequence of parameters for the pri nt f function.

Example
|l og_error (LOG WARN, "send-file", sn, rq,
"error opening buffer from% (%)"), path,
systemerrnsg(fd));

See also
func_exec

MALLOC

The MALLOC macro is a platform-independent substitute for the C library routine
mal | oc. It normally allocates from the request’s memory pool. If pooled memory
has been disabled in the configuration file (with the pool -i ni t built-in SAF),
PERM_MALLOC and MALLCQC both obtain their memory from the system heap.

Syntax
voi d *MALLOC(i nt size)

Returns
A void pointer to a block of memory.

Parameters
int size isthe number of bytes to allocate.

Example

/* Allocate 256 bytes for a nane */
char *nane;

nane = (char *) MALLOC(256);

See also

FREE, CALLOC, REALLOC, STRDUP, PERM MALLOC, PERM FREE, PERM CALLCC,
PERM REALLOC, PERM _STRDUP

Chapter 5 NSAPI Function Reference 153

NSAPI Functions (in Alphabetical Order)

N

net_ip2host

The net _i p2host function transforms a textual IP address into a fully-qualified
domain name and returns it.

NOTE This function works only if the DNS directive is enabled in the
magnus. conf file. For more information, see Chapter 7, “Syntax
and Use of magnus.conf.”

Syntax
char *net _i p2host (char *ip, int verify);

Returns
A new string containing the fully-qualified domain name, if the transformation
was accomplished or NULL if the transformation was not accomplished.

Parameters
char *ip isthe IP (Internet Protocol) address as a character string in
dotted-decimal notation: nnn. nnn. nnn. nnn

int verify, if non-zero, specifies that the function should verify the
fully-qualified domain name. Though this requires an extra query, you should use
it when checking access control.

net_read

The net _read function reads bytes from a specified socket into a specified buffer.
The function waits to receive data from the socket until either at least one byte is
available in the socket or the specified time has elapsed.

Syntax
int net_read (SYS_NETFD sd, char *buf, int sz, int tineout);

Returns

The number of bytes read, which will not exceed the maximum size, sz. A negative
value is returned if an error has occurred, in which case er r no is set to the constant
ETI MEDQUT if the operation did not complete before t i neout seconds elapsed.

Parameters
SYS_NETFD sd is the platform-independent socket descriptor.

154 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide ¢ May 2001

NSAPI Functions (in Alphabetical Order)

char *buf is the buffer to receive the bytes.
int sz isthe maximum number of bytes to read.

int tineout isthe number of seconds to allow for the read operation before
returning. The purpose of t i meout is not to return because not enough bytes were
read in the given time, but to limit the amount of time devoted to waiting until
some data arrives.

See also
net_wite

net_write

The net _write function writes a specified number of bytes to a specified socket
from a specified buffer. It returns the number of bytes written.

Syntax
int net_wite(SYS_NETFD sd, char *buf, int sz);

Returns
The number of bytes written, which may be less than the requested size if an error
occurred.

Parameters
SYS NETFDsd is the platform-independent socket descriptor.

char *buf is the buffer containing the bytes.

int sz isthe number of bytes to write.

Example
if (net_wite(sn->csd, FIRSTMSG strlen(FIRSTMSG) == | O ERROR)
return REQ EXIT;

See also
net read

netbuf buf2sd

The net buf _buf 2sd function sends a buffer to a socket. You can use this function
to send data from IPC pipes to the client.

Syntax
i nt net buf _buf 2sd(net buf *buf, SYS NETFD sd, int len);

Chapter 5 NSAPI Function Reference 155

NSAPI Functions (in Alphabetical Order)

Returns
The number of bytes transferred to the socket, if successful or the constant
I O_ERRCRif unsuccessful

Parameters
net buf *buf is the buffer to send.
SYS_NETFDsd is the platform-independent identifier of the socket.

i nt | en isthe length of the buffer.

See also
net buf _cl ose, net buf _getc, netbuf_grab, net buf _open

netbuf close

The net buf _cl ose function deallocates a network buffer and closes its associated
files. Use this function when you need to deallocate the network buffer and close
the socket.

You should never close the net buf parameter in a Session structure.

Syntax
voi d net buf _cl ose(net buf *buf);

Returns
voi d

Parameters
net buf *buf is the buffer to close.

See also
net buf _buf 2sd, net buf _get c, net buf_grab, net buf _open

netbuf _getc

The net buf _get ¢ function retrieves a character from the cursor position of the
network buffer specified by b.

Syntax
net buf _get c(net buf b);

Returns
The integer representing the character, if one was retrieved or the constant | O_ECF
or 1 O_ERROR, for end of file or error

156 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide ¢ May 2001

NSAPI Functions (in Alphabetical Order)

Parameters
net buf b is the buffer from which to retrieve one character.

See also
net buf _buf 2sd, net buf _cl ose, net buf _gr ab, net buf _open

netbuf _grab

The net buf _gr ab function reads sz number of bytes from the network buffer’s
(buf) socket into the network buffer. If the buffer is not large enough it is resized.
The data can be retrieved from buf - >i nbuf on success.

This function is used by the function net buf _buf 2sd.

Syntax
i nt net buf_grab(netbuf *buf, int sz);

Returns
The number of bytes actually read (between 1 and sz), if the operation was
successful or the constant | O ECF or | O ERROR, for end of file or error

Parameters
net buf *buf isthe buffer to read into.

i nt sz isthe number of bytes to read.

See also
net buf _buf 2sd, net buf _cl ose, netbuf_getc, netbuf_open

netbuf_open

The net buf _open function opens a new network buffer and returns it. You can use
net buf _open to create a net buf structure and start using buffered 1/0 on a socket.

Syntax
net buf * net buf _open(SYS_NETFD sd, int sz);

Returns
A pointer to a new net buf structure (network buffer)

Parameters
SYS_NETFD sd is the platform-independent identifier of the socket.

i nt sz isthe number of characters to allocate for the network buffer.

Chapter 5 NSAPI Function Reference 157

NSAPI Functions (in Alphabetical Order)

See also
net buf _buf 2sd, net buf _cl ose, net buf _getc, netbuf_grab

param_create

The param cr eat e function creates a pb_par amstructure containing a specified
name and value. The name and value are copied. Use this function to prepare a
pb_par amstructure to be used in calls to pbl ock routines such as pbl ock_pi nsert.

Syntax
pb_param *param creat e(char *nanme, char *val ue);

Returns
A pointer to a new pb_par amstructure.

Parameters
char *nane is the string containing the name.

char *val ue is the string containing the value.

Example
pb_param *newpp = param create("content-type","text/plain");
pbl ock_pi nsert (newpp, rq->srvhdrs);

See also
param free, pblock_pinsert, pblock_remove

param_free

The par am free function frees the pb_param structure specified by pp and its
associated structures. Use the par am f r ee function to dispose a pb_par amafter
removing it from a pblock with pbl ock_r enove.

Syntax
i nt param free(pb_param *pp);

Returns
1 if the parameter was freed or 0 if the parameter was NULL.

158 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide ¢ May 2001

NSAPI Functions (in Alphabetical Order)

Parameters
pb_par am *pp is the name-value pair stored in a pblock.

Example
i f (paramfree(pbl ock_renove("content-type", rqg-srvhdrs)))
return; /* we renoved it */

See also
param create, pblock_pinsert, pblock_renove

pblock_copy

The pbl ock_copy function copies the entries of the source pbl ock and adds them
into the destination pbl ock. Any previous entries in the destination pbl ock are left
intact.

Syntax
voi d pbl ock_copy(pbl ock *src, pblock *dst);

Returns
voi d

Parameters
pbl ock *src isthe source pblock.
pbl ock *dst is the destination pblock.

Names and values are newly allocated so that the original pbl ock may be freed, or
the new pbl ock changed without affecting the original pbl ock.

See also
pbl ock_create, pblock_dup, pblock free, pblock find, pblock_findval,
pbl ock_renove, pbl ock_nvinsert

pblock_create

The pbl ock_cr eat e function creates a new pblock. The pblock maintains an
internal hash table for fast name-value pair lookups.

Syntax
pbl ock *pbl ock_create(int n);

Returns
A pointer to a newly allocated pbl ock.

Chapter 5 NSAPI Function Reference 159

NSAPI Functions (in Alphabetical Order)

Parameters
i nt n isthe size of the hash table (number of name-value pairs) for the pblock.

See also
pbl ock_copy, pbl ock_dup, pblock_find, pblock_findval, pblock free,
pbl ock_nvi nsert, pbl ock_renove

pblock_dup

The pbl ock_dup function duplicates a pblock. It is equivalent to a sequence of
pbl ock_creat e and pbl ock_copy.

Syntax
pbl ock *pbl ock_dup(pbl ock *src);

Returns
A pointer to a newly allocated pbl ock.

Parameters
pbl ock *src isthe source pblock.

See also
pbl ock_creat e, pbl ock_fi nd, pbl ock_fi ndval , pbl ock_free, pbl ock_fi nd,
pbl ock_renove, pbl ock_nvi nsert

pblock_find

The pbl ock_f i nd function finds a specified name-value pair entry in a pblock, and
returns the pb_par amstructure. If you only want the value associated with the
name, use the pbl ock_fi ndval function.

This function is implemented as a macro.

Syntax
pb_param *pbl ock_find(char *name, pblock *pb);

Returns
A pointer to the pb_par amstructure, if one was found or NULL if name was not
found.

Parameters
char *name isthe name of a name-value pair.

pbl ock *pb is the pbl ock to be searched.

160 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide ¢ May 2001

NSAPI Functions (in Alphabetical Order)

See also
pbl ock_copy, pbl ock_dup, pblock_findval, pblock_free,
pbl ock_nvi nsert, pbl ock_renove

pblock_findval

The pbl ock_fi ndval function finds the value of a specified name in a pblock. If
you just want the pb_par amstructure of the pblock, use the pbl ock_f i nd function.

The pointer returned is a pointer into the pblock. Do not FREE it. If you want to
modify it, do a STRDUP and modify the copy.

Syntax
char *pbl ock_findval (char *name, pblock *pb);

Returns
A string containing the value associated with the name or NULL if no match was
found

Parameters
char *nane is the name of a name-value pair.
pbl ock *pb is the pblock to be searched.

Example
see pbl ock_nvi nsert.

See also
pbl ock_create, pblock_copy, pblock find, pblock _free,
pbl ock_nvi nsert, pbl ock_renove, request_header

pblock free

The pbl ock_f r ee function frees a specified pbl ock and any entries inside it. If you
want to save a variable in the pbl ock, remove the variable using the function
pbl ock_r enpve and save the resulting pointer.

Syntax
voi d pbl ock_free(pbl ock *pb);

Returns
voi d

Parameters
pbl ock *pb is the pbl ock to be freed.

Chapter 5 NSAPI Function Reference 161

NSAPI Functions (in Alphabetical Order)

See also
pbl ock_copy, pbl ock_create, pblock_dup, pblock_find, pblock_findval,
pbl ock_nvi nsert, pbl ock_renove

pblock_nninsert

The pbl ock_nni nsert function creates a new entry with a given name and a
numeric value in the specified pbl ock. The numeric value is first converted into a
string. The name and value parameters are copied.

Syntax
pb_param *pbl ock_nni nsert (char *nanme, int value, pblock *pb);

Returns
A pointer to the new pb_par amstructure.

Parameters
char *nane isthe name of the new entry.

i nt val ue isthe numeric value being inserted into the pbl ock. This parameter
must be an integer. If the value you assign is not a number, then instead use the
function pbl ock_nvi nsert to create the parameter.

pbl ock *pb isthe pbl ock into which the insertion occurs.
See also

pbl ock_copy, pbl ock_creat e, pbl ock_fi nd, pbl ock_free, pbl ock_nvi nsert,
pbl ock_renove, pbl ock_str2pbl ock

pblock_nvinsert

The pbl ock_nvi nsert function creates a new entry with a given name and
character value in the specified pbl ock. The name and value parameters are
copied.

Syntax
pb_param *pbl ock_nvi nsert (char *nanme, char *val ue, pblock *pb);

Returns
A pointer to the newly allocated pb_par amstructure

Parameters
char *nane isthe name of the new entry.

char *val ue is the string value of the new entry.

162 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide ¢ May 2001

NSAPI Functions (in Alphabetical Order)

pbl ock *pb is the pbl ock into which the insertion occurs.

Example
pbl ock_nvi nsert ("content-type", "text/htm", rqg->srvhdrs);

See also
pbl ock_copy, pbl ock_create, pblock_find, pblock_free,
pbl ock_nni nsert, pbl ock_renmove, pbl ock_str2pbl ock

pblock_pb2env

The pbl ock_pb2env function copies a specified pbl ock into a specified
environment. The function creates one new environment entry for each
name-value pair in the pbl ock. Use this function to send pbl ock entries to a
program that you are going to execute.

Syntax
char **pbl ock_pb2env(pbl ock *pb, char **env);

Returns
A pointer to the environment.

Parameters
pbl ock *pb isthe pbl ock to be copied.

char **env isthe environment into which the pbl ock is to be copied.
See also

pbl ock_copy, pblock _create, pblock _find, pblock _free,
pbl ock_nvi nsert, pbl ock_remove, pblock_str2pbl ock

pblock pblock2str

The pbl ock_pbl ock2st r function copies all parameters of a specified pbl ock into a
specified string. The function allocates additional non-heap space for the string if

needed.

Use this function to stream the pbl ock for archival and other purposes.

Syntax
char *pbl ock_pbl ock2str (pbl ock *pb, char *str);

Chapter 5 NSAPI Function Reference

163

NSAPI Functions (in Alphabetical Order)

164

Returns

The new version of the st r parameter. If st r is NULL, this is a new string;
otherwise it is a reallocated string. In either case, it is allocated from the request’s
memory pool.

Parameters
pbl ock *pb isthe pbl ock to be copied.

char *str isthe string into which the pbl ock is to be copied. It must have been
allocated by MALLOC or REALLCC, not by PERM MALLOC or PERM_REALLOC (which
allocate from the system heap).

Each name-value pair in the string is separated from its neighbor pair by a space
and is in the format name="value" .

See also
pbl ock_copy, pblock _create, pblock _find, pblock _free,
pbl ock_nvi nsert, pbl ock_remove, pbl ock_str2pbl ock

pblock pinsert

The function pbl ock_pi nsert inserts a pb_par amstructure into a pbl ock.

Syntax
voi d pbl ock_pi nsert (pb_param *pp, pblock *pb);

Returns
voi d

Parameters
pb_param *pp isthe pb_par amstructure to insert.

pbl ock *pb isthe pbl ock.

See also
pbl ock_copy, pblock _create, pblock _find, pblock _free,
pbl ock_nvi nsert, pbl ock_renmove, pbl ock_str2pbl ock

pblock_remove

The pbl ock_r empve function removes a specified name-value entry from a
specified pbl ock. If you use this function you should eventually call par am f r ee
in order to deallocate the memory used by the pb_par amstructure.

iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide « May 2001

NSAPI Functions (in Alphabetical Order)

Syntax
pb_param *pbl ock_renmove(char *nane, pblock *pb);

Returns
A pointer to the named pb_par amstructure, if it was found or NULL if the named
pb_par amwas not found.

Parameters
char *nane isthe name of the pb_par amto be removed.

pbl ock *pb is the pbl ock from which the name-value entry is to be removed.

See also
pbl ock_copy, pblock_create, pblock_find, pblock_free,
pbl ock_nvi nsert, paramcreate, paramfree

pblock_str2pblock

The pbl ock_str2pbl ock function scans a string for parameter pairs, adds them to
a pbl ock, and returns the number of parameters added.

Syntax
i nt pbl ock_str2pbl ock(char *str, pblock *pb);

Returns
The number of parameter pairs added to the pbl ock, if any or -1 if an error
occurred

Parameters
char *str isthe string to be scanned.

The name-value pairs in the string can have the format name=value or
name="value" .

All back slashes (\) must be followed by a literal character. If string values are
found with no unescaped = signs (no nane=), it assumes the names 1, 2, 3, and so
on, depending on the string position. For example, if pbl ock_st r 2pbl ock finds
"sone strings together",the function treats the strings as if they appeared in
name-value pairs as 1="sone" 2="strings" 3="toget her".

pbl ock *pb isthe pbl ock into which the name-value pairs are stored.
See also

pbl ock_copy, pbl ock_create, pblock_find, pblock_free,
pbl ock_nvi nsert, pbl ock_renmove, pbl ock_pbl ock2str

Chapter 5 NSAPI Function Reference 165

NSAPI Functions (in Alphabetical Order)

PERM_CALLOC

The PERM_CALLOC macro is a platform-independent substitute for the C library
routine cal | oc. It allocates nunt si ze bytes of memory that persists after the
request that is being processed has been completed. If pooled memory has been
disabled in the configuration file (with the pool -i ni t built-in SAF), PERM CALLCC
and CALLOC both obtain their memory from the system heap.

Syntax
voi d *PERM CALLOC(i nt num int size)

Returns
A void pointer to a block of memory

Parameters
i nt num is the number of elements to allocate.

i nt size is the size in bytes of each element.

Example

/* Allocate 256 bytes for a nane */

char **nane;

nane = (char **) PERM CALLOC(100, sizeof(char *));

See also

PERM FREE, PERM STRDUP, PERM MALLOC, PERM REALLOC, MALLOC, FREE,
CALLCC, STRDUP, REALLCC

PERM_FREE

The PERM_FREE macro is a platform-independent substitute for the C library
routine f r ee. It deallocates the persistent space previously allocated by
PERM_MALLQC, PERM CALLOC, or PERM_STRDUP. If pooled memory has been disabled
in the configuration file (with the pool -i ni t built-in SAF), PERM FREE and FREE
both deallocate memory in the system heap.

Syntax
PERM FREE(void *ptr);

Returns
voi d

166 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide ¢ May 2001

NSAPI Functions (in Alphabetical Order)

Parameters

void *ptr isa(void *) pointer to block of memory. If the pointer is not one
created by PERM MALLOC, PERM CALLOC, or PERM STRDUP, the behavior is
undefined.

Example
char *nane;
name = (char *) PERM MALLOC(256);

PERM _FREE(nane) ;

See also

FREE, MALLOC, CALLOC, REALLOC, STRDUP, PERM MALLOC, PERM CALLCC,
PERM REALLOC, PERM STRDUP

PERM_MALLOC

The PERM_MALLOC macro is a platform-independent substitute for the C library
routine nal | oc. It provides allocation of memory that persists after the request that
is being processed has been completed. If pooled memory has been disabled in the
configuration file (with the pool -i ni t built-in SAF), PERM MALLOC and MALLOC
both obtain their memory from the system heap.

Syntax
voi d *PERM MALLOC(i nt size)

Returns
A void pointer to a block of memory

Parameters
i nt size isthe number of bytes to allocate.

Example

/* Allocate 256 bytes for a name */
char *name;

name = (char *) PERM_MALLOC(256);

See also

PERM FREE, PERM STRDUP, PERM CALLOC, PERM REALLOC, MALLOC, FREE,
CALLCC, STRDUP, REALLCC

Chapter 5 NSAPI Function Reference 167

NSAPI Functions (in Alphabetical Order)

PERM_REALLOC

The PERM_REALLOC macro is a platform-independent substitute for the C library
routine r eal | oc. It changes the size of a specified memory block that was
originally created by MALLOC, CALLCOC, or STRDUP. The contents of the object remains
unchanged up to the lesser of the old and new sizes. If the new size is larger, the
new space is uninitialized.

Warning
Calling PERM_REALLOC for a block that was allocated with MALLOC, CALLCC, or
STRDUP will not work.

Syntax
voi d *PERM REALLOC(vod *ptr, int size)

Returns
A void pointer to a block of memory

Parameters
voi d *ptr avoid pointer to a block of memory created by PERM MALLCC,
PERM_CALLCQOC, or PERM_STRDUP.

int size isthe number of bytes to which the memory block should be resized.

Example
char *name;
name = (char *) PERM_MALLOC(256);
if (NotBigEnough())
name = (char *) PERM_REALLOC(512);

See also
PERM MALLCC, PERM FREE, PERM CALLOC, PERM STRDUP, NALLCC, FREE,
STRDUP, CALLCC, REALLCC

PERM_STRDUP

The PERM_STRDUP macro is a platform-independent substitute for the C library
routine st r dup. It creates a new copy of a string in memory that persists after the
request that is being processed has been completed. If pooled memory has been
disabled in the configuration file (with the pool -i ni t built-in SAF), PERM_STRDUP
and STRDUP both obtain their memory from the system heap.

The PERM_STRDUP routine is functionally equivalent to

168 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide ¢ May 2001

NSAPI Functions (in Alphabetical Order)

newstr = (char *) PERM MALLOC(strlen(str) + 1);
strcpy(newstr, str);

A string created with PERM_STRDUP should be disposed with PERM FREE.

Syntax
char *PERM STRDUP(char *ptr);

Returns
A pointer to the new string

Parameters
char *ptr isa pointer to a string.

See also
PERM MALLCC, PERM FREE, PERM CALLOC, PERM REALLOC, MALLOC, FREE,
STRDUP, CALLCC, REALLCC

prepare_nsapi_thread

The pr epar e_nsapi _t hr ead function allows threads that are not created by the
server to act like server-created threads. This function must be called before any
NSAPI functions are called from a thread that is not server-created.

Syntax
voi d prepare_nsapi _t hread(Request *rq, Session *sn);

Returns
voi d

Parameters
Request *rq isthe Request.
Sessi on *sn is the Session.

The Request and Session parameters are the same as the ones passed into your
SAF.

See also
protocol _start_response

Chapter 5 NSAPI Function Reference 169

NSAPI Functions (in Alphabetical Order)

protocol _dump822

The protocol _dunp822 function prints headers from a specified pbl ock into a
specific buffer, with a specified size and position. Use this function to serialize the
headers so that they can be sent, for example, in a mail message.

Syntax
char *protocol _dunp822(pbl ock *pb, char *t, int *pos, int tsz);

Returns

A pointer to the buffer, which will be reallocated if necessary.

The function also modifies *pos to the end of the headers in the buffer.

Parameters

pbl ock *pb isthe pbl ock structure.

char *t isthe buffer, allocated with MALLOC, CALLCC, or STRDUP.

i nt *pos is the position within the buffer at which the headers are to be dumped.
int tsz isthe size of the buffer.

See also
protocol _start_response, protocol _status

protocol_set_finfo

The protocol _set _finfo function retrieves the cont ent - | engt h and

| ast - nodi f i ed date from a specified st at structure and adds them to the
response headers (r g- >sr vhdr s). Call pr ot ocol _set _f i nf o before calling
protocol _start_response.

Syntax
int protocol _set_finfo(Session *sn, Request *rq, struct stat
*finfo);

Returns

The constant REQ PROCEED if the request can proceed normally or the constant
REQ ABORTED if the function should treat the request normally, but not send any
output to the client

Parameters
Sessi on *sn is the Session.

Request *rq isthe Request.

170 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide ¢ May 2001

NSAPI Functions (in Alphabetical Order)

The Session and Request parameters are the same as the ones passed into your
SAF.

stat *finfo isthe stat structure for the file.

The st at structure contains the information about the file from the file system. You
can get the st at structure info using r equest _st at _pat h.

See also
protocol _start_response, protocol _status

protocol_start_response

The protocol _start_response function initiates the HTTP response for a
specified session and request. If the protocol version is HTTP/0.9, the function
does nothing, because that version has no concept of status. If the protocol version
is HTTP/1.0, the function sends a status line followed by the response headers. Use
this function to set up HTTP and prepare the client and server to receive the body
(or data) of the response.

Syntax
int protocol _start_response(Session *sn, Request *rq);

Returns
The constant REQ PROCEED if the operation succeeded, in which case you should
send the data you were preparing to send.

The constant REQ NOACTI ON if the operation succeeded, but the request method
was HEAD in which case no data should be sent to the client.

The constant REQ ABORTED if the operation did not succeed.

Parameters
Sessi on *sn is the Session.

Request *rq isthe Request.

The Sessi on and Request parameters are the same as the ones passed into your
SAF.

Chapter 5 NSAPI Function Reference 171

NSAPI Functions (in Alphabetical Order)

Example
/* A noaction response fromthis function neans the request was HEAD
*/
if (protocol _start_response(sn, rq) == REQ NOACTION) {
fil ebuf_close(groupbuf); /* close our file*/
return REQ _PROCEED;
}

See also
prot ocol _status

protocol_status

The protocol _st at us function sets the session status to indicate whether an error
condition occurred. If the reason string is NULL, the server attempts to find a
reason string for the given status code. If it finds none, it returns “Unknown
reason. ” The reason string is sent to the client in the HTTP response line. Use this
function to set the status of the response before calling the function

protocol _start_response.

For the complete list of valid status code constants, please refer to the file
"nsapi . h" in the server distribution

Syntax
voi d protocol _status(Session *sn, Request *rq, int n, char *r);

Returns
voi d, but it sets values in the Session/Request designated by sn/r q for the status
code and the reason string

Parameters
Sessi on *sn is the Session.

Request *rq isthe Request.

The Sessi on and Request parameters are the same as the ones passed into your
SAF.

i nt n is one of the status code constants above.

char *r isthe reason string.

172 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide ¢ May 2001

NSAPI Functions (in Alphabetical Order)

Example
/* if we find extra path-info, the URL was bad so tell the */
/* browser it was not found */
if (t = pblock_findval ("path-info", rg->vars)) {
protocol _status(sn, rqg, PROTOCOL_NOT_FOUND, NULL);
l og_error(LOG WARN, "function-nane", sn, rq, "% not found",
pat h);
return REQ ABORTED;
}

See also
protocol _start_response

protocol_uri2url

The protocol _uri2url function takes strings containing the given URI prefix and
URI suffix, and creates a newly-allocated fully qualified URL in the form
http://(server): (port)(prefix)(suffix).Seeprotocol _uri2url_dynanic.

If you want to omit either the URI prefix or suffix, use "" instead of NULL as the
value for either parameter.

Syntax
char *protocol _uri2url (char *prefix, char *suffix);

Returns
A new string containing the URL

Parameters
char *prefix isthe prefix.

char *suffix is the suffix.

See also
protocol _start_response, protocol _status, pblock_nvinsert,
protocol _uri2url _dynam c

protocol_uri2url_dynamic

The protocol _uri2url function takes strings containing the given URI prefix and
URI suffix, and creates a newly-allocated fully qualified URL in the form
http://(server): (port)(prefix)(suffix).

If you want to omit either the URI prefix or suffix, use "" instead of NULL as the
value for either parameter.

Chapter 5 NSAPI Function Reference 173

NSAPI Functions (in Alphabetical Order)

The prot ocol _uri 2url _dynani ¢ function is similar to the pr ot ocol _uri 2url
function but should be used whenever the Sessi on and Request structures are
available. This ensures that the URL that it constructs refers to the host that the
client specified.

Syntax

char *protocol _uri2url (char *prefix, char *suffix, Session *sn,
Request *rq);

Returns
A new string containing the URL

Parameters
char *prefix isthe prefix.

char *suffix is the suffix.
Session *sn is the Session.
Request *rq isthe Request.

The Sessi on and Request parameters are the same as the ones passed into your
SAF.

See also
protocol _start_response, protocol _status, protocol _uri2url

REALLOC

The REALLOC macro is a platform-independent substitute for the C library routine
real | oc. It changes the size of a specified memory block that was originally
created by MALLOC, CALLQC, or STRDUP. The contents of the object remains
unchanged up to the lesser of the old and new sizes. If the new size is larger, the
new space is uninitialized.

Warning
Calling REALLOCfor a block that was allocated with PERM_MALLOC, PERM CALLCQC, or
PERM_STRDUP will not work.

Syntax
voi d *REALLOC(void *ptr, int size);

174 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide « May 2001

NSAPI Functions (in Alphabetical Order)

Returns
A pointer to the new space if the request could be satisfied.

Parameters
voi d *ptr isa(void *) pointer to a block of memory. If the pointer is not one
created by MALLOC, CALLOC, or STRDUP, the behavior is undefined.

i nt size is the number of bytes to allocate.

Example
char *nane;
name = (char *) MALLOC(256);
i f (Not Bi gEnough())
nane = (char *) REALLOC(512);

See also
MALLOC, FREE, STRDUP, CALLOC, PERM MALLOC, PERM FREE, PERM REALLCC,
PERM CALLOC, PERM STRDUP

request_get_vs

The request _get _vs function finds the Vi rt ual Ser ver * to which a request is
directed.

The returned Vi rt ual Server * is valid only for the current request. To retrieve a
virtual server ID that is valid across requests, use vs_get _i d.

Syntax
const Virtual Server* request_get_vs(Request* rq);

Returns
The Vi rt ual Server* to which the request is directed.

Parameters
Request *r q is the request for which the Vi r t ual Server * is returned.

See also
vs_get _id

request_header

The request _header function finds an entry in the pbl ock containing the client’s
HTTP request headers (r g- >header s). You must use this function rather than

pbl ock_fi ndval when accessing the client headers since the server may begin
processing the request before the headers have been completely read.

Chapter 5 NSAPI Function Reference 175

NSAPI Functions (in Alphabetical Order)

Syntax
i nt request_header(char *name, char **val ue, Session *sn, Request
*ra);

Returns
A result code, REQ PROCEED if the header was found, REQ ABORTED if the header
was not found, REQ EXI T if there was an error reading from the client.

Parameters
char *nane is the name of the header.

char **val ue isthe address where the function will place the value of the
specified header. If none is found, the function stores a NULL.

Sessi on *sn is the Session.
Request *rq isthe Request.

The Sessi on and Request parameters are the same as the ones passed into your
SAF.

See also
request _create, request_free

request_stat path

The request _stat _pat h function returns the file information structure for a
specified path or, if none is specified, the pat h entry in the var s pblock in the
specified Request structure. If the resulting file name points to a file that the server
can read, request _st at _pat h returns a new file information structure. This
structure contains information on the size of the file, its owner, when it was
created, and when it was last modified.

You should use r equest _st at _pat h to retrieve information on the file you are
currently accessing (instead of calling st at directly), because this function keeps
track of previous calls for the same path and returns its cached information.

Syntax
struct stat *request_stat_path(char *path, Request *rq);

Returns

Returns a pointer to the file information structure for the file named by the pat h
parameter. Do not free this structure. Returns NULL if the file is not valid or the
server cannot read it. In this case, it also leaves an error message describing the
probleminrg->staterr.

176 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide ¢ May 2001

NSAPI Functions (in Alphabetical Order)

Parameters

char *pat h is the string containing the name of the path. If the value of pat h is
NULL, the function uses the pat h entry in the var s pblock in the Request structure
denoted by r q.

Request *rq is the request identifier for a server application function call.

Example
fi = request_stat_path(path, rq);

See also
request _create, request_free, request_header

request_translate_uri

The request _transl ate_uri function performs virtual to physical mapping on a
specified URI during a specified session. Use this function when you want to
determine which file would be sent back if a given URI is accessed.

Syntax
char *request_translate_uri(char *uri, Session *sn);

Returns
A path string, if it performed the mapping or NULL if it could not perform the
mapping

Parameters
char *uri isthe name of the URI.

Session *sn isthe Sessi on parameter that is passed into your SAF.

See also
request _create, request_free, request_header

session_dns

The sessi on_dns function resolves the IP address of the client associated with a
specified session into its DNS name. It returns a newly allocated string. You can
use sessi on_dns to change the numeric IP address into something more readable.

Chapter 5 NSAPI Function Reference 177

NSAPI Functions (in Alphabetical Order)

The sessi on_nmaxdns function verifies that the client is who it claims to be; the
sessi on_dns function does not perform this verification.

NOTE This function works only if the DNS directive is enabled in the
magnus. conf file. For more information, see Chapter 7, “Syntax
and Use of magnus.conf.”

Syntax
char *session_dns(Session *sn);

Returns
A string containing the host name or NULL if the DNS name cannot be found for
the IP address

Parameters
Session *sn is the Session.

The Sessi on is the same as the one passed to your SAF.

session_maxdns

The sessi on_maxdns function resolves the IP address of the client associated with
a specified session into its DNS name. It returns a newly allocated string. You can
use sessi on_nmaxdns to change the numeric IP address into something more

readable.

NOTE This function works only if the DNS directive is enabled in the
magnus. conf file. For more information, see Chapter 7, “Syntax
and Use of magnus.conf.”

Syntax

char *sessi on_maxdns(Session *sn);

Returns
A string containing the host name or NULL if the DNS name cannot be found for
the IP address

Parameters
Sessi on *sn is the Session.

The Sessi on is the same as the one passed to your SAF.

178 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide ¢ May 2001

NSAPI Functions (in Alphabetical Order)

shexp_casecmp

The shexp_casecnp function validates a specified shell expression and compares
it with a specified string. It returns one of three possible values representing match,
no match, and invalid comparison. The comparison (in contrast to that of the
shexp_cnp function) is not case-sensitive.

Use this function if you have a shell expression like *. net scape. comand you want
to make sure that a string matches it, such as f oo. net scape. com

Syntax
i nt shexp_casecnp(char *str, char *exp);

Returns
0 if a match was found.

1 if no match was found.

- 1 if the comparison resulted in an invalid expression.

Parameters
char *str isthe string to be compared.

char *exp is the shell expression (wildcard pattern) to compare against.

See also
shexp_cnp, shexp_match, shexp_valid

shexp_cmp

The shexp_casecnp function validates a specified shell expression and compares
it with a specified string. It returns one of three possible values representing match,
no match, and invalid comparison. The comparison (in contrast to that of the
shexp_casecnp function) is case-sensitive.

Use this function if you have a shell expression like *. net scape. comand you want
to make sure that a string matches it, such as f oo. net scape. com

Syntax
i nt shexp_cnp(char *str, char *exp);

Returns
0 if a match was found.

1 if no match was found.

- 1 if the comparison resulted in an invalid expression.

Chapter 5 NSAPI Function Reference 179

NSAPI Functions (in Alphabetical Order)

Parameters
char *str isthe string to be compared.

char *exp is the shell expression (wildcard pattern) to compare against.

Example

/* Use wildcard match to see if this path is one we want */
char *path;

char *match = "/usr/netscape/*";

if (shexp_cnp(path, match) !'= 0)
return REQ NOACTI ON; /* no match */

See also
shexp_casecnp, shexp_match, shexp_valid

shexp_match

The shexp_mat ch function compares a specified pre-validated shell expression
against a specified string. It returns one of three possible values representing
match, no match, and invalid comparison. The comparison (in contrast to that of
the shexp_casecnp function) is case-sensitive.

The shexp_mat ch function doesn’t perform validation of the shell expression;
instead the function assumes that you have already called shexp_val i d.

Use this function if you have a shell expression like *. net scape. comand you want
to make sure that a string matches it, such as f oo. net scape. com

Syntax
i nt shexp_match(char *str, char *exp);

Returns
0 if a match was found.

1 if no match was found.

-1 if the comparison resulted in an invalid expression.

Parameters
char *str isthe string to be compared.

char *exp is the pre-validated shell expression (wildcard pattern) to compare
against.

See also
shexp_casecnp, shexp_cnp, shexp_valid

180 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide ¢ May 2001

NSAPI Functions (in Alphabetical Order)

shexp_valid

The shexp_val i d function validates a specified shell expression named by exp.
Use this function to validate a shell expression before using the function
shexp_mat ch to compare the expression with a string.

Syntax
i nt shexp_valid(char *exp);

Returns
The constant NON_SXP if exp is a standard string.

The constant | NVALI D_SXP if exp is a shell expression, but invalid.

The constant VALI D_SXP if exp is a valid shell expression.

Parameters
char *exp is the shell expression (wildcard pattern) to be validated.

See also
shexp_casecnp, shexp_match, shexp_cnp

STRDUP

The STRDUP macro is a platform-independent substitute for the C library routine
st rdup. It creates a new copy of a string in the request’s memory pool.

The STRDUP routine is functionally equivalent to:

newstr = (char *) MALLOC(strlen(str) + 1);
strcpy(newstr, str);

A string created with STRDUP should be disposed with FREE.

Syntax
char *STRDUP(char *ptr);

Returns
A pointer to the new string.

Parameters
char *ptr isa pointer to a string.

Chapter 5 NSAPI Function Reference 181

NSAPI Functions (in Alphabetical Order)

Example
char *nanel
char *nane2

"MyNane";
STRDUP(nanel) ;

See also
MALLOC, FREE, CALLOC, REALLCC, PERM MALLOC, PERM FREE, PERM CALCC,
PERM REALLCC, PERM _STRDUP

system_errmsg

The syst em errnsg function returns the last error that occurred from the most
recent system call. This function is implemented as a macro that returns an entry
from the global array sys_errli st. Use this macro to help with 1/0 error
diagnostics.

Syntax
char *system errmsg(int parantl);

Returns
A string containing the text of the latest error message that resulted from a system
call. Do not FREE this string.

Parameters
i nt paraml isreserved, and should always have the value 0.

See also

system fopenRO, system fopenRW system fopenWA, system | seek,
system fread, systemfwite, systemfwite_atomc, systemfl ock,
system ul ock, system fclose

system_fclose

The syst em f cl ose function closes a specified file descriptor. The syst em f cl ose
function must be called for every file descriptor opened by any of the
syst em f open functions.

Syntax
int systemfcl ose(SYS FILE fd);

Returns
0 if the close succeeded or the constant | O ERRCR if the close failed.

Parameters
SYS FILE fd is the platform-independent file descriptor.

182 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide ¢ May 2001

NSAPI Functions (in Alphabetical Order)

Example
SYS_FI LE | ogf d;
system fcl ose(l ogfd);

See also

system errnsg, systemfopenRO systemfopenRW system fopenWA,
system | seek, systemfread, systemfwite, systemfwite_atomc,
system fl ock, system ul ock

system_flock

The syst em fl ock function locks the specified file against interference from other
processes. Use syst em f | ock if you do not want other processes using the file you
currently have open. Overusing file locking can cause performance degradation
and possibly lead to deadlocks.

Syntax
int systemflock(SYS FILE fd);

Returns
The constant | O_OKAY if the lock succeeded or the constant | O_ERRCRif the lock
failed

Parameters
SYS FILE fd is the platform-independent file descriptor.

See also

system errnsg, systemfopenRO systemfopenRW system fopenWA
system | seek, systemfread, systemfwite, systemfwite_atomc,
system ul ock, system fcl ose

system_fopenRO

The syst em f openROfunction opens the file identified by pat h in read-only mode
and returns a valid file descriptor. Use this function to open files that will not be
modified by your program. In addition, you can use syst em f openROto open a
new file buffer structure using f i | ebuf _open.

Syntax
SYS_FI LE system fopenRQ(char *path);

Returns
The system-independent file descriptor (SYS_FI LE) if the open succeeded or 0 if the
open failed

Chapter 5 NSAPI Function Reference 183

NSAPI Functions (in Alphabetical Order)

Parameters
char *path isthe file name.

See also

system errnsg, systemfopenRW system fopenWA, system | seek,
system fread, systemfwite, systemfwite_atomc, systemfl ock,
system ul ock, system fcl ose

system_fopenRW

The syst em f openRWfunction opens the file identified by pat h in read-write
mode and returns a valid file descriptor. If the file already exists, syst em f openRW
does not truncate it. Use this function to open files that will be read from and
written to by your program.

Syntax
SYS _FI LE system fopenRW char *path);

Returns
The system-independent file descriptor (SYS_FI LE) if the open succeeded or 0 if the
open failed.

Parameters
char *path is the file name.

Example
SYS_FI LE fd;
fd = system f openRQ(pat hnane) ;
if (fd == SYS_ERROR _FD)
br eak;

See also

system errnsg, systemfopenRO systemfopenWA system |l seek,
system fread, systemfwite, systemfwite_atomc, systemfl ock,
system ul ock, system fcl ose

system_fopenWA

The syst em f openWA function opens the file identified by pat h in write-append
mode and returns a valid file descriptor. Use this function to open those files that
your program will append data to.

Syntax
SYS_FI LE system fopenWA(char *path);

184 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide ¢ May 2001

NSAPI Functions (in Alphabetical Order)

Returns
The system-independent file descriptor (SYS_FI LE) if the open succeeded or 0 if the
open failed.

Parameters
char *path is the file name.

See also

system errnsg, systemfopenRO systemfopenRW system | seek,
system fread, systemfwite, systemfwite_atomc, systemfl ock,
system ul ock, system fcl ose

system_fread

The system f read function reads a specified number of bytes from a specified file
into a specified buffer. It returns the number of bytes read. Before syst em fr ead
can be used, you must open the file using any of the syst em f open functions,
except syst em f openWA.

Syntax
int system fread(SYS _FILE fd, char *buf, int sz);

Returns

The number of bytes read, which may be less than the requested size if an error
occurred or the end of the file was reached before that number of characters were
obtained.

Parameters
SYS FILE fd is the platform-independent file descriptor.
char *buf is the buffer to receive the bytes.

i nt sz isthe number of bytes to read.

See also

system errnsg, systemfopenRO systemfopenRW system fopenWA,
system | seek, systemfwite, systemfwite_atonmc, systemfl ock,
system ul ock, system fcl ose

system_fwrite
The system fwrite function writes a specified number of bytes from a specified
buffer into a specified file.

Chapter 5 NSAPI Function Reference 185

NSAPI Functions (in Alphabetical Order)

186

Before syst em fwri t e can be used, you must open the file using any of the
syst em f open functions, except syst em f openRQ.

Syntax
int systemfwite(SYS_FILE fd, char *buf, int sz);

Returns
The constant | O_OKAY if the write succeeded or the constant | O ERROR if the write
failed.

Parameters
SYS FILE fd is the platform-independent file descriptor.

char *buf is the buffer containing the bytes to be written.

i nt sz isthe number of bytes to write to the file.

See also

system errnsg, systemfopenRO systemfopenRW system fopenWA
system | seek, systemfread, systemfwite_atomc, systemfl ock,
system ul ock, system fcl ose

system_fwrite_atomic

The system fwrite_atoni c function writes a specified number of bytes from a
specified buffer into a specified file. The function also locks the file prior to
performing the write, and then unlocks it when done, thereby avoiding
interference between simultaneous write actions. Before system fwrite_atonic
can be used, you must open the file using any of the syst em f open functions,
except syst em f openRO.

Syntax
int systemfwite_atom c(SYS FILE fd, char *buf, int sz);

Returns
The constant | O_OKAY if the write/lock succeeded or the constant | O ERROR if the
write/lock failed.

Parameters
SYS FILE fd is the platform-independent file descriptor.

char *buf is the buffer containing the bytes to be written.

i nt sz isthe number of bytes to write to the file.

iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide « May 2001

NSAPI Functions (in Alphabetical Order)

Example
SYS_FI LE | ogf d;

char *lognsg = "An error occurred.”;
systemfwite_atom c(logfd, |ognsg, strlen(lognsg));

See also

system errnsg, systemfopenRO systemfopenRW system fopenWA,
system | seek, systemfread, systemfwite, systemfl ock,
system ul ock, system fcl ose

system_gmtime

The system gnti me function is a thread-safe version of the standard gnt i ne
function. It returns the current time adjusted to Greenwich Mean Time.

Syntax
struct tm *systemgmtime(const time_t *tp, const struct tm*res);

Returns

A pointer to a calendar time (t m) structure containing the GMT time. Depending on
your system, the pointer may point to the data item represented by the second
parameter, or it may point to a statically-allocated item. For portability, do not
assume either situation.

Parameters
tinme_t *tp isanarithmetic time.

tm *res is a pointer to a calendar time (t nj structure.

Example

time_t tp;

struct tmres, *resp;

tp = time(NULL);

resp = systemgntinme(&p, &res);

See also
system | ocaltime, util_strftime

system_localtime

The system | ocal ti me function is a thread-safe version of the standard
| ocal ti me function. It returns the current time in the local time zone.

Chapter 5 NSAPI Function Reference 187

NSAPI Functions (in Alphabetical Order)

Syntax
struct tm*system/localtine(const tine_t *tp, const struct tm*res);

Returns

A pointer to a calendar time (t m structure containing the local time. Depending on
your system, the pointer may point to the data item represented by the second
parameter, or it may point to a statically-allocated item. For portability, do not
assume either situation.

Parameters
tinme_t *tp isanarithmetic time.

tm *res is a pointer to a calendar time (t nj structure.

See also
systemgntime, util_strftime

system_Iseek

The system | seek function sets the file position of a file. This affects where data
from system fread or system fwrite isread or written.

Syntax
int systemlseek(SYS FILE fd, int offset, int whence);

Returns
the offset, in bytes, of the new position from the beginning of the file if the
operation succeeded or -1 if the operation failed.

Parameters
SYS FILE fd is the platform-independent file descriptor.

i nt of f set is a number of bytes relative to whence. It may be negative.
i nt whence is a one of the following constants:

SEEK_SET, from the beginning of the file.

SEEK_CUR, from the current file position.

SEEK_END, from the end of the file.
See also
system errnsg, systemfopenRO systemfopenRW system fopenWA,

system fread, systemfwite, systemfwite_atomc, systemfl ock,
system ul ock, system fcl ose

188 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide ¢ May 2001

NSAPI Functions (in Alphabetical Order)

system_rename

The system renane function renames a file. It may not work on directories if the
old and new directories are on different file systems.

Syntax
int systemrenanme(char *old, char *new);

Returns
0 if the operation succeeded or -1 if the operation failed.

Parameters
char *ol d is the old name of the file.

char *new is the new name for the file:

system_ulock

The syst em ul ock function unlocks the specified file that has been locked by the
function syst em | ock. For more information about locking, see syst em f | ock.

Syntax
int systemul ock(SYS _FILE fd);

Returns
The constant | O_OKAY if the operation succeeded or the constant | O ERROR if the
operation failed

Parameters
SYS FILE fd is the platform-independent file descriptor.

See also

system errnsg, systemfopenRO systemfopenRW system fopenWA,
system fread, systemfwite, systemfwite_atomc, systemfl ock,
system fcl ose

system_unix2local

The system uni x2l ocal function converts a specified Unix-style pathname to a
local file system pathname. Use this function when you have a file name in the
Unix format (such as one containing forward slashes), and you need to access a file
on another system like Windows NT. You can use syst em uni x2l ocal to convert
the Unix file name into the format that Windows NT accepts. In the Unix
environment, this function does nothing, but may be called for portability.

Chapter 5 NSAPI Function Reference 189

NSAPI Functions (in Alphabetical Order)

Syntax
char *system uni x2l ocal (char *path, char *Ip);

Returns
A pointer to the local file system path string

Parameters
char *pat h isthe Unix-style pathname to be converted.

char *1p isthe local pathname.

You must allocate the parameter | p, and it must contain enough space to hold the
local pathname.

See also
system fcl ose, systemflock, systemfopenRO system fopenRW
system fopenWA, systemfwite

systhread_attach

The systhread_attach function makes an existing thread into a
platform-independent thread.

Syntax
SYS_THREAD syst hread_attach(voi d);

Returns
A SYS_THREAD pointer to the platform-independent thread.

Parameters
none.

See also

systhread_current, systhread_getdata, systhread_init,
syst hread_newkey, systhread_setdata, systhread_sleep,
systhread_start, systhread_timerset

systhread_current
The systhread_current function returns a pointer to the current thread.

Syntax
SYS_THREAD syst hread_current (void);

190 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide ¢ May 2001

NSAPI Functions (in Alphabetical Order)

Returns
A SYS_THREAD pointer to the current thread

Parameters
none.

See also
syst hread_getdata, systhread_newkey, systhread_setdata,
systhread_sl eep, systhread_start, systhread_tinerset

systhread_getdata

The syst hread_get dat a function gets data that is associated with a specified key
in the current thread.

Syntax
voi d *syst hread_getdata(int key);

Returns

A pointer to the data that was earlier used with the syst hr ead_set key function
from the current thread, using the same value of key if the call succeeds. Returns
NULL if the call did not succeed, for example if the syst hr ead_set key function
was never called with the specified key during this session

Parameters
i nt key isthe value associated with the stored data by a syst hr ead_set dat a
function. Keys are assigned by the syst hr ead_newkey function.

See also
systhread_current, systhread_newkey, systhread_setdata,
systhread_sl eep, systhread_start, systhread_tinerset

systhread_newkey

The syst hread_newkey function allocates a new integer key (identifier) for
thread-private data. Use this key to identify a variable that you want to localize to
the current thread; then use the syst hr ead_set dat a function to associate a value
with the key.

Syntax
i nt systhread_newkey(void);

Returns
An integer key.

Chapter 5 NSAPI Function Reference 191

NSAPI Functions (in Alphabetical Order)

Parameters
none.

See also
systhread_current, systhread_getdata, systhread_setdata,
systhread_sl eep, systhread_start, systhread_tinerset

systhread_setdata

The syst hread_set dat a function associates data with a specified key number for
the current thread. Keys are assigned by the syst hr ead_newkey function.

Syntax
voi d systhread_setdata(int key, void *data);

Returns
voi d

Parameters
i nt key is the priority of the thread.
voi d *dat a is the pointer to the string of data to be associated with the value of

key.

See also
systhread_current, systhread_getdata, systhread_newkey,
systhread_sl eep, systhread_start, systhread_tinerset

systhread_sleep
The syst hread_sl eep function puts the calling thread to sleep for a given time.

Syntax
voi d systhread_sleep(int mlliseconds);

Returns
voi d

Parameters
int milliseconds isthe number of milliseconds the thread is to sleep.

See also

systhread_current, systhread_getdata, systhread_newkey,
systhread_setdata, systhread_start, systhread_timerset

192 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide ¢ May 2001

NSAPI Functions (in Alphabetical Order)

systhread_start

The systhread_start function creates a thread with the given priority, allocates
a stack of a specified number of bytes, and calls a specified function with a
specified argument.

Syntax
SYS _THREAD systhread_start(int prio, int stksz,
void (*fn)(void *), void *arg);

Returns
A new SYS_THREAD pointer if the call succeeded or the constant SYS_THREAD ERRCR
if the call did not succeed.

Parameters
int prio isthe priority of the thread. Priorities are system-dependent.

i nt stksz is the stack size in bytes. If st ksz is zero, the function allocates a default
size.

void (*fn)(void *) isthe function to call.
voi d *ar g is the argument for the f n function.
See also

systhread_current, systhread_getdata, systhread_newkey,
systhread_setdata, systhread_sleep, systhread_timerset

systhread_timerset

The systhread_timerset function starts or resets the interrupt timer interval for
a thread system.

Because most systems don’t allow the timer interval to be changed, this should be
considered a suggestion, rather than a command.

Syntax
voi d systhread_tinmerset(int usec);

Returns
void

Parameters
i nt usec is the time, in microseconds

Chapter 5 NSAPI Function Reference 193

NSAPI Functions (in Alphabetical Order)

See also
systhread_current, systhread_getdata, systhread_newkey,
systhread_setdata, systhread_sleep, systhread_start

util_can_exec

Unix only

The util _can_exec function checks that a specified file can be executed, returning
either a 1 (executable) or a 0. The function checks to see if the file can be executed
by the user with the given user and group ID.

Use this function before executing a program using the exec system call.

Syntax
int util_can_exec(struct stat *finfo, uid_t uid, gid_t gid);

Returns
1if the file is executable or 0 if the file is not executable.

Parameters
stat *finfo isthe stat structure associated with a file.

uid_t uid isthe Unix userid.

gid_t gid isthe Unix group id. Together with ui d, this determines the
permissions of the Unix user.

See also
util _env_create, util _getline, util_hostnane

util_chdir2path
The util _chdir2pat h function changes the current directory to a specified
directory, where you will access a file.

When running under Windows NT, use a critical section to ensure that more than
one thread does not call this function at the same time.

Use uti | _chdi r 2pat h when you want to make file access a little quicker, because
you do not need to use a full paths.

194 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide ¢ May 2001

NSAPI Functions (in Alphabetical Order)

Syntax
int util_chdir2path(char *path);

Returns
0 if the directory was changed or -1 if the directory could not be changed.

Parameters
char *pat h isthe name of a directory.

The parameter must be a writable string because it isn’t permanently modified.

util_chdir2path
The util _chdir2pat h function changes the current directory to a specified
directory, where you will access a file.

When running under Windows NT, use a critical section to ensure that more than
one thread does not call this function at the same time.

Use uti | _chdi r 2pat h when you want to make file access a little quicker, because
you do not need to use a full paths.

Syntax
int util_chdir2path(char *path);

Returns
0 if the directory was changed or -1 if the directory could not be changed.

Parameters
char *pat h isthe name of a directory.

The parameter must be a writable string because it isn’t permanently modified.

util_cookie_find
The util _cooki e_fi nd function finds a specific cookie in a cookie string and
returns its value.

Syntax
char *util _cookie_find(char *cookie, char *nane);

Returns

If successful, returns a pointer to the NULL-terminated value of the cookie.
Otherwise, returns NULL. This function modifies the cookie string parameter by
null-terminating the name and value.

Chapter 5 NSAPI Function Reference 195

NSAPI Functions (in Alphabetical Order)

Parameters
char *cooki e is the value of the Cookie: request header.

char *nane is the name of the cookie whose value is to be retrieved.

util_env_find
The util _env_find function locates the string denoted by a name in a specified

environment and returns the associated value. Use this function to find an entry in
an environment.

Syntax
char *util _env_find(char **env, char *nane);

Returns
The value of the environment variable if it is found or NULL if the string was not
found.

Parameters
char **env isthe environment.

char *nane isthe name of an environment variable in env.

See also
util _env_replace, util_env_str, util_env_free, util_env_create

util_env_free

The util _env_free function frees a specified environment. Use this function to
deallocate an environment you created using the function uti |l _env_create.

Syntax
void util _env_free(char **env);

Returns
voi d

Parameters
char **env isthe environment to be freed.

See also
util _env_replace, util_env_str, util_env_find, util_env_create

196 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide ¢ May 2001

NSAPI Functions (in Alphabetical Order)

util_env_replace

The util _env_repl ace function replaces the occurrence of the variable denoted
by a name in a specified environment with a specified value. Use this function to
change the value of a setting in an environment.

Syntax
void util _env_replace(char **env, char *nane, char *val ue);

Returns
voi d

Parameters
char **env isthe environment.
char *nane is the name of a name-value pair.

char *val ue is the new value to be stored.

See also
util _env_str, util_env_free, util_env_find, util _env_create

util_env_str

Theutil _env_str function creates an environment entry and returns it. This
function does not check for non alphanumeric symbols in the name (such as the
equal sign “=""). You can use this function to create a new environment entry.

Syntax
char *util _env_str(char *name, char *val ue);

Returns
A newly-allocated string containing the name-value pair

Parameters
char *name is the name of a name-value pair.

char *val ue is the new value to be stored.

See also
util _env_replace, util_env_free, util_env_find, util_env_create

Chapter 5 NSAPI Function Reference 197

NSAPI Functions (in Alphabetical Order)

util_getline

The util _getline function scans the specified file buffer to find a line-feed or
carriage-return/line-feed terminated string. The string is copied into the specified
buffer, and NULL-terminates it. The function returns a value that indicates
whether the operation stored a string in the buffer, encountered an error, or
reached the end of the file.

Use this function to scan lines out of a text file, such as a configuration file.

Syntax
int util_getline(filebuf *buf, int lineno, int maxlen, char *line);

Returns
0 if successful. | i ne contains the string.

1 if the end of file was reached. | i ne contains the string.

-1 if an error occurred. | i ne contains a description of the error.

Parameters
filebuf *buf isthe file buffer to be scanned.

i nt |ineno isused to include the line number in the error message when an error
occurs. The caller is responsible for making sure the line number is accurate.

i nt maxl en is the maximum number of characters that can be written into | .

char *| is the buffer in which to store the string. The user is responsible for
allocating and deallocating | i ne.

See also
util _can_exec, util_env_create, util_hostnane

util_hostname

The util _host name function retrieves the local host name and returns it as a
string. If the function cannot find a fully-qualified domain name, it returns NULL.
You may reallocate or free this string. Use this function to determine the name of
the system you are on.

Syntax
char *util _hostnane(void);

Returns
If a fully-qualified domain name was found, returns a string containing that name
otherwise returns NULL if the fully-qualified domain name was not found.

198 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide ¢ May 2001

NSAPI Functions (in Alphabetical Order)

Parameters
none.

util_is_mozilla
The util _i s_nozil |l a function checks whether a specified user-agent header
string is a Netscape browser of at least a specified revision level, returninga 1 if itis

and 0 otherwise. It uses strings to specify the revision level to avoid ambiguities
like 1.56 > 1.5.

Syntax
int util_is_mnozilla(char *ua, char *major, char *minor);

Returns
1 if the user-agent is a Netscape browser or 0 if the user-agent is not a Netscape
browser

Parameters
char *ua is the user-agent string from the request headers.

char *maj or isthe major release number (to the left of the decimal point).

char *mi nor isthe minor release number (to the right of the decimal point).

See also

util _is url, util _later_than

util_is_url

Theutil _is_url function checks whether a string is a URL, returning 1 if it is and

0 otherwise. The string is a URL if it begins with alphabetic characters followed by
acolon.

Syntax
int util _is_url(char *url);

Returns
1 if the string specified by ur | is a URL or 0 if the string specified by ur| is nota
URL.

Parameters
char *url isthe string to be examined.

See also
util _is_mozilla, util_later_than

Chapter 5 NSAPI Function Reference 199

NSAPI Functions (in Alphabetical Order)

util_itoa

The util _i t oa function converts a specified integer to a string, and returns the
length of the string. Use this function to create a textual representation of a
number.

Syntax
int util _itoa(int i, char *a);

Returns
The length of the string created

Parameters
int i istheinteger to be converted.

char *a isthe ASCII string that represents the value. The user is responsible for
the allocation and deallocation of a, and it should be at least 32 bytes long.

util_later_than

The util _I ater_t han function compares the date specified in a time structure
against a date specified in a string. If the date in the string is later than or equal to
the one in the time structure, the function returns 1. Use this function to handle
RFC 822, RFC 850, and ctime formats.

Syntax
int util_later_than(struct tm*Ins, char *ins);

Returns
1 if the date represented by i ns is the same as or later than that represented by the
I ms or 0 if the date represented by i s is earlier than that represented by the | ns.

Parameters
tm *1 s is the time structure containing a date.

char *ins is the string containing a date.

See also
util _strftine

200 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide « May 2001

NSAPI Functions (in Alphabetical Order)

util_sh_escape

The util _sh_escape function parses a specified string and places a backslash (\)
in front of any shell-special characters, returning the resultant string. Use this
function to ensure that strings from clients won’t cause a shell to do anything
unexpected.

The shell-special characters are the space plus the following characters:

&' *2~<>r () [1{)$\ #

Syntax
char *util _sh_escape(char *s);

Returns
A newly allocated string

Parameters
char *s is the string to be parsed.

See also
util _uri_escape

util_snprintf

The util _snprintf function formats a specified string, using a specified format,
into a specified buffer using the pri nt f -style syntax and performs bounds
checking. It returns the number of characters in the formatted buffer.

For more information, see the documentation on the pri nt f function for the
run-time library of your compiler.

Syntax
int util_snprintf(char *s, int n, char *fnmt, ...);

Returns
The number of characters formatted into the buffer.

Parameters
char *s is the buffer to receive the formatted string.

i nt n isthe maximum number of bytes allowed to be copied.

char *fnt isthe format string. The function handles only % and % strings; it
does not handle any width or precision strings.

. represents a sequence of parameters for the pri nt f function.

Chapter 5 NSAPI Function Reference 201

NSAPI Functions (in Alphabetical Order)

See also
util _sprintf, util_vsnprintf, util_vsprintf

util_sprintf

The util _sprintf function formats a specified string, using a specified format,
into a specified buffer using the pri nt f -style syntax without bounds checking. It
returns the number of characters in the formatted buffer.

Because uti | _sprintf doesn’t perform bounds checking, use this function only if
you are certain that the string fits the buffer. Otherwise, use the function

util _snprintf.For more information, see the documentation on the pri nt f
function for the run-time library of your compiler.

Syntax
int util_sprintf(char *s, char *fnt, ...);

Returns
The number of characters formatted into the buffer.

Parameters
char *s is the buffer to receive the formatted string.

char *fnt isthe format string. The function handles only % and % strings; it
does not handle any width or precision strings.

. represents a sequence of parameters for the pri nt f function.

Example

char *I| ognsg;

int |len;

| ognsg = (char *) MALLOC(256);

len = util _sprintf(lognsg, "% % %\n", ip, nethod, uri);
See also

util _snprintf, util_vsnprintf, util_vsprintf

util_strcasecmp

The util _strcasecnp function performs a comparison of two alpha-numeric
strings and returns a -1, 0, or 1 to signal which is larger or that they are identical.

The comparison is not case-sensitive.

202 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide « May 2001

NSAPI Functions (in Alphabetical Order)

Syntax
int util_strcasecnp(const char *sl1, const char *s2);

Returns
1ifslis greater than s2.

O0ifslisequal tos2.

-lifs1isless than s2.

Parameters
char *s1 isthe first string.

char *s2 is the second string.

See also
util _strncasecnp

util_strftime

The util _strftinme function translates at mstructure, which is a structure
describing a system time, into a textual representation. It is a thread-safe version of
the standard st rf ti me function

Syntax
int util_strftime(char *s, const char *format, const struct tm*t);

Returns
The number of characters placed into s, not counting the terminating NULL
character.

Parameters
char *s is the string buffer to put the text into. There is no bounds checking, so
you must make sure that your buffer is large enough for the text of the date.

const char *format isaformatstring, a bit like a pri nt f string in that it consists
of text with certain % substrings. You may use the constant HTTP_DATE_FMT to
create date strings in the standard internet format. For more information, see the
documentation on the pri nt f function for the run-time library of your compiler.
Refer to Appendix D, “Time Formats” for details on time formats.

const struct tm *t isa pointer to a calendar time (t m) struct, usually created by
the function system | ocal ti me or system gnti ne.

See also
system | ocal time, systemgntine

Chapter 5 NSAPI Function Reference 203

NSAPI Functions (in Alphabetical Order)

util_strncasecmp

The util _strncasecnp function performs a comparison of the first n characters in
the alpha-numeric strings and returns a -1, 0, or 1 to signal which is larger or that
they are identical.

The function’s comparison is not case-sensitive.

Syntax
int util_strncasecnp(const char *sl1, const char *s2, int n);

Returns
1if sl is greater than s2.

0ifslisequal tos2.
-1ifslisless thans2.
Parameters

char *s1 isthe first string.
char *s2 is the second string.

i nt n isthe number of initial characters to compare.

See also
util _strcasecnp

util_uri_escape

Theutil _uri_escape function converts any special characters in the URI into the
URI format (%XX where XX is the hexadecimal equivalent of the ASCII character),
and returns the escaped string. The special characters are %@#: +&* " <>, space,
carriage-return, and line-feed.

Use util _uri_escape before sending a URI back to the client.

Syntax
char *util _uri_escape(char *d, char *s);

Returns
The string (possibly newly allocated) with escaped characters replaced.

Parameters

char *d isastring. If d is not NULL, the function copies the formatted string into
d and returns it. If d is NULL, the function allocates a properly-sized string and
copies the formatted special characters into the new string, then returns it.

204 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide « May 2001

NSAPI Functions (in Alphabetical Order)

Theutil _uri_escape function does not check bounds for the parameter d.
Therefore, if d is not NULL, it should be at least three times as large as the string s.

char *s is the string containing the original unescaped URI.

See also
util _uri_is_evil, util_uri_parse, util_uri_unescape

util_uri_is_evil

The util _uri_is_evil function checks a specified URI for insecure path
characters. Insecure path characters include//,/./,/../ and/.,/.. (also for
NT. /) at the end of the URI. Use this function to see if a URI requested by the client
is insecure.

Syntax
int util _uri_is_evil(char *t);

Returns
1if the URI is insecure or 0 if the URI is OK.

Parameters
char *t isthe URI to be checked.

See also
util __uri_escape, util _uri_parse

util_uri_parse

The util _uri_parse functionconverts//,/./,and/*/../ into/ in the specified
URI (where * is any character other than /). You can use this function to convert a
URI’s bad sequences into valid ones. First use the functionutil _uri _is_evil to
determine whether the function has a bad sequence.

Syntax
void util _uri_parse(char *uri);

Returns
voi d

Parameters
char *uri isthe URI to be converted.

Chapter 5 NSAPI Function Reference 205

NSAPI Functions (in Alphabetical Order)

See also
util _uri_is_evil, util_uri_unescape

util_uri_unescape

The util _uri_unescape function converts the encoded characters of a URI into
their ASCII equivalents. Encoded characters appear as %XX where XX is a
hexadecimal equivalent of the character.

NOTE You cannot use an embedded null in a string, because NSAPI
functions assume that a null is the end of the string. Therefore,
passing unicode-encoded content through an NSAPI plug-in
doesn’t work.

Syntax
void util _uri_unescape(char *uri);

Returns
voi d

Parameters
char *uri isthe URI to be converted.

See also
util _uri_escape, util _uri_is_evil, util_uri_parse

util_vsnprintf

The util _vsnprintf function formats a specified string, using a specified format,
into a specified buffer using the vpri nt f -style syntax and performs bounds
checking. It returns the number of characters in the formatted buffer.

For more information, see the documentation on the pri nt f function for the
run-time library of your compiler.

Syntax
int util_vsnprintf(char *s, int n, register char *fnt, va_list
args);

Returns
The number of characters formatted into the buffer

206 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide « May 2001

NSAPI Functions (in Alphabetical Order)

Parameters
char *s is the buffer to receive the formatted string.

i nt n isthe maximum number of bytes allowed to be copied.

regi ster char *fnt isthe format string. The function handles only %d and %s
strings; it does not handle any width or precision strings.

va_l i st args isan STD argument variable obtained from a previous call to
va_start.

See also
util _sprintf, util _vsprintf

util_vsprintf

The util _vsprintf function formats a specified string, using a specified format,
into a specified buffer using the vpri nt f -style syntax without bounds checking. It
returns the number of characters in the formatted buffer.

For more information, see the documentation on the pri nt f function for the
run-time library of your compiler.

Syntax
int util_vsprintf(char *s, register char *fm, va_list args);

Returns
The number of characters formatted into the buffer.

Parameters
char *s isthe buffer to receive the formatted string.

regi ster char *fnt isthe format string. The function handles only %d and %s
strings; it does not handle any width or precision strings.

va_l i st args isan STD argument variable obtained from a previous call to
va_start.

See also
util _snprintf, util_vsnprintf

Chapter 5 NSAPI Function Reference 207

NSAPI Functions (in Alphabetical Order)

V

vs_alloc_slot

The vs_al | oc_sl ot function allocates a new slot for storing a pointer to data
specific to a certain Vi rt ual Server *. The returned slot number may be used in
subsequent vs_set _dat a and vs_get _dat a calls. The returned slot number is
valid for any Vi rt ual Server *.

The value of the pointer (which may be returned by a call tovs_set _dat a) defaults
to NULL for every Vi rt ual Server*.

Syntax
int vs_alloc_slot(void);

Returns
A slot number on success, or - 1 on failure.

See also
vs_get _data,vs_set_data

vs_get data

The vs_get _dat a function finds the value of a pointer to data for a given
Vi rtual Server* and sl ot . The sl ot must be a slot number returned from
vs_alloc_slot orvs_set data.

Syntax
voi d* vs_get _data(const Virtual Server* vs, int slot);

Returns
The value of the pointer previously stored via vs_set _dat a, or NULL on failure.

Parameters
const Virtual Server* vs represents the virtual server to query the pointer for.

i nt sl ot isthe slot number to retrieve the pointer from.

See also
vs_set data,vs_alloc_sl ot

208 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide « May 2001

NSAPI Functions (in Alphabetical Order)

vs_get_default_httpd_object

The vs_get _defaul t _httpd_obj ect function obtains a pointer to the default (or
root) ht t pd_obj ect from the virtual server’s htt pd_obj set (in the configuration
defined by the obj . conf file of the virtual server class). The default object is
typically named def aul t . Plugins may only modify the ht t pd_obj ect at

VSI ni t Func time (see vs_r egi st er _chb for an explanation of VSI ni t Func time).

Do not FREE the returned object.

Syntax
htt pd_obj ect* vs_get_default_httpd_object(Virtual Server* vs);

Returns
A pointer the default ht t pd_obj ect, or NULL on failure. Do not FREE this object.

Parameters
Vi rtual Server* vs represents the virtual server for which to find the default
object.

See also
vs_get _httpd_objset,vs_register_cb

vs_get _doc_root
Thevs_get _doc_r oot function finds the document root for a virtual server. The
returned string is the full operating system path to the document root.

The caller should FREE the returned string when done with it.

Syntax
char* vs_get_doc_root (const Virtual Server* vs);

Returns
A pointer to a string representing the full operating system path to the document
root. It is the caller’s responsibility to FREE this string.

Parameters

const Virtual Server* vs represents the virtual server for which to find the
document root.

Chapter 5 NSAPI Function Reference 209

NSAPI Functions (in Alphabetical Order)

vs_get_httpd_objset

The vs_get _htt pd_obj set function obtains a pointer to the ht t pd_obj set (the
configuration defined by the obj . conf file of the virtual server class) for a given
virtual server. Plugins may only modify the ht t pd_obj set at VSI ni t Func time
(see vs_regi st er _cb for an explanation of VSI ni t Func time).

Do not FREE the returned objset.

Syntax
htt pd_obj set* vs_get_httpd_objset (Virtual Server* vs);

Returns
A pointer to the ht t pd_obj set, or NULL on failure. Do not FREE this objset.

Parameters
Vi rtual Server* vs represents the virtual server for which to find the objset.

See also
vs_get default_httpd_object,vs_register_ch

vs_get id

The vs_get _i d function finds the ID of a Vi rt ual Server *.

The ID of a virtual server is a unique null-terminated string that remains constant
across configurations. Note that while IDs remain constant across configurations,
the value of Vi r t ual Server* pointers do not.

Do not FREE the virtual server ID string. If called during request processing, the
string will remain valid for the duration of the current request. If called during
VSI ni t Func processing, the string will remain valid until after the corresponding
VSDest r oyFunc function has returned (see vs_r egi st er _ch).

To retrieve a Vi rt ual Ser ver * that is valid only for the current request, use
request _get _vs.

Syntax
const char* vs_get _id(const Virtual Server* vs);

Returns
A pointer to a string representing the virtual server ID. Do not FREE this string.

Parameters
const Virtual Server* vs represents the virtual server of interest.

210 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide « May 2001

NSAPI Functions (in Alphabetical Order)

See also
Vs_regi ster_ch, request _get _vs

VvS_get_mime_type
The vs_get _mi me_t ype function determines the MIME type that would be
returned in the Cont ent - t ype: header for the given URI.

The caller should FREE the returned string when done with it.

Syntax
char* vs_get_m me_type(const Virtual Server* vs, const char* uri);

Returns
A pointer to a string representing the MIME type. It is the caller’s responsibility to
FREE this string.

Parameters
const Virtual Server* vs represents the virtual server of interest.

const char* uri isthe URI whose MIME type is of interest.

vs_lookup config_var

The vs_| ookup_confi g_var function finds the value of a configuration variable
for a given virtual server.

Do not FREE the returned string.

Syntax
const char* vs_| ookup_config_var(const Virtual Server* vs, const
char* nane);

Returns
A pointer to a string representing the value of variable name on success, or NULL if
variable name was not found. Do not FREE this string.

Parameters
const Virtual Server* vs represents the virtual server of interest.

const char* nane is the name of the configuration variable.

Chapter 5 NSAPI Function Reference 211

NSAPI Functions (in Alphabetical Order)

212

Vvs_register_cb

The vs_regi st er _cb function allows a plugin to register functions that will
receive notifications of virtual server initialization and destruction events. The
vs_regi st er _cb function would typically be called from an | ni t SAFin
magnus. conf .

When a new configuration is loaded, all registered VSI ni t Func (virtual server
initialization) callbacks are called for each of the virtual servers before any requests
are served from the new configuration. VSI ni t Func callbacks are called in the
same order they were registered; that is, the first callback registered is the first
called.

When the last request has been served from an old configuration, all registered
VSDest r oyFunc (virtual server destruction) callbacks are called for each of the
virtual servers before any virtual servers are destroyed. VSDest r oyFunc callbacks
are called in reverse order; that is, the first callback registered is the last called.

Either i ni t f n or dest r oyf n may be NULL if the caller is not interested in callbacks
for initialization or destruction, respectively.

Syntax
int vs_register_cb(VSInitFunc* initfn, VSDestroyFunc* destroyfn);

Returns
The constant REQ PROCEED if the operation succeeded.

The constant REQ ABORTED if the operation failed.

Parameters

VSI ni t Func* i nitfnisa pointer to the function to call at virtual server
initialization time, or NULL if the caller is not interested in virtual server
initialization events.

VSDest r oyFunc* dest royf n is a pointer to the function to call at virtual server
destruction time, or NULL if the caller is not interested in virtual server destruction
events.

vs_set_data

The vs_set _dat a function sets the value of a pointer to data for a given virtual
server and slot. The *sl ot must be - 1 or a slot number returned from
vs_alloc_slot.If*slot is-1,vs_set_datacallsvs_al | oc_sl ot implicitly and
returns the new slot number in *sl ot .

iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide « May 2001

NSAPI Functions (in Alphabetical Order)

Note that the stored pointer is maintained on a per-Vi rt ual Ser ver * basis, not a
per-ID basis. Distinct Vi r t ual Ser ver *s from different configurations may exist
simultaneously with the same virtual server IDs. However, since these are distinct
Vi rt ual Server *s, they each have their own Vi rt ual Ser ver *-specific data. As a
result, vs_set _dat a should generally not be called outside of VSI ni t Func
processing (see vs_r egi st er _cb for an explanation of VSI ni t Func processing).

Syntax
voi d* vs_set _data(const Virtual Server* vs, int* slot, void* data);

Returns
Data on success, NULL on failure.

Parameters
const Virtual Server* vs represents the virtual server to set the pointer for.

i nt* sl ot isthe slot number to store the pointer at.

voi d* dat a is the pointer to store.

See also
vs_get _data,vs_alloc_slot,vs_register_cb

vs_translate_uri

Thevs_transl ate_uri function translates a URI as though it were part of a
request for a specific virtual server. The returned string is the full operating system
path.

The caller should FREE the returned string when done with it.

Syntax
char* vs_translate_uri(const Virtual Server* vs, const char* uri);

Returns
A pointer to a string representing the full operating system path for the given URI.
It is the caller’s responsibility to FREE this string.

Parameters
const Virtual Server* vs represents the virtual server for which to translate the
URI.

const char* uri isthe URI to translate to an operating system path.

Chapter 5 NSAPI Function Reference 213

NSAPI Functions (in Alphabetical Order)

214 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide « May 2001

Chapter 6

Examples of Custom SAFs

This chapter discusses examples of custom Sever Application Functions (SAFs) for
each directive in the request-response process. You may wish to use these
examples as the basis for implementing your own custom SAFs. For more
information about creating your own custom SAFs, see Chapter 4, “Creating
Custom SAFs.”

Before writing custom SAFs, you should be familiar with the request-response
process (discussed in Chapter 1, “Basics of Server Operation”) and the role of the
configuration file obj . conf (discussed in Chapter 2, “Syntax and Use of obj.conf”).

Before writing your own SAF, check if an existing SAF serves your purpose. The
pre-defined SAFs are discussed in Chapter 3, “Predefined SAFs and the Request
Handling Process.”

For a list of the NSAPI functions for creating new SAFs, see Chapter 5, “NSAPI
Function Reference.”

This chapter has the following sections;

Examples in the Build
AuthTrans Example
NameTrans Example
PathCheck Example
ObjectType Example
Service Example
AddLog Example

Quiality of Service Examples

215

Examples in the Build

Examples in the Build

The nsapi / exanpl es/ or pl ugi ns/ nsapi / exanpl es subdirectory within the
server installation directory contains examples of source code for SAFs.

You can use the exanpl e. mak makefile in the same directory to compile the
examples and create a library containing the functions in all the example files.

To test an example, load the exanpl es shared library into the iPlanet Web Server
by adding the following directive in the | ni t section of magnus. conf :

Init fn=l oad-modul es shlib=exanpl es. so/dl |
f uncs=functionl,function2,function3

The f uncs parameter specifies the functions to load from the shared library.

If the example uses an initialization function, be sure to specify the initialization
function in the f uncs argument to | oad- nodul es, and also add an | ni t directive
to call the initialization function.

For example, the Pat hCheck example implements the restri ct - by- acf function,
which is initialized by the acf - i ni t function. The following directive loads both
these functions:

Init fn=l oad-nodul es yourlibrary funcs=acf-init,restrict-by-acf
The following directive calls the acf - i ni t function during server initialization:
Init fn=acf-init fil e=extra-arg

To invoke the new SAF at the appropriate step in the response handling process,
add an appropriate directive in the object to which it applies, for example:

Pat hCheck fn=restrict-by-acf

After adding new I ni t directives to magnus. conf, you always need to restart the
iPlanet Web Server to load the changes, since | ni t directives are only applied
during server initialization.

216 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide « May 2001

AuthTrans Example

AuthTrans Example

This simple example of an Aut hTr ans function demonstrate how to use your own
custom ways of verifying that the username and password that a remote client
provided is accurate. This program uses a hard coded table of usernames and
passwords and checks a given user’s password against the one in the static data
array. The userdb parameter is not used in this function.

Aut hTr ans directives work in conjunction with Pat hCheck directives. Generally,
an Aut hTr ans function checks if the username and password associated with the
request are acceptable, but it does not allow or deny access to the request -- it leaves
that to a Pat hCheck function.

Aut hTr ans functions get the username and password from the headers associated
with the request. When a client initially makes a request, the username and
password are unknown so the Aut hTr ans function and Pat hCheck function work
together to reject the request, since they can’t validate the username and password.
When the client receives the rejection, the usual response is for it to pop up a dialog
box asking the user for their username and password, and then the client submits
the request again, this time including the username and password in the headers.

In this example, the har dcoded- aut h function, which is invoked during the
Aut hTr ans step, checks if the username and password correspond to an entry in
the hard-coded table of users and passwords.

Installing the Example

To install the function on the iPlanet Web Server, add the following I ni t directive
to magnus. conf to load the compiled function:

Init fn=l oad-nodul es shli b=yourlibrary funcs=hardcoded- auth

Inside the default object in obj . conf add the following Aut hTr ans directive:

Aut hTrans fn=basi c-auth aut h-type="basi c" userfn=hardcoded-auth
user db=unused

Chapter 6 Examples of Custom SAFs 217

AuthTrans Example

Note that this function does not actually enforce authorization requirements, it
only takes given information and tells the server if it’s correct or not. The

Pat hCheck function r equi r e- aut h performs the enforcement, so add the
following Pat hCheck directive also:

Pat hCheck fn=require-auth real m="test real nf auth-type="basic"

Source Code

The source code for this example is in the aut h. c file in the nsapi / exanpl es/ or
pl ugi ns/ nsapi / exanpl es subdirectory of the server root directory.

#i ncl ude "nsapi.h"

typedef struct {
char *nane;
char *pw;

} user_s;

static user_s user_set[] = {
{"joe", "shnoe"},
{"suzy", "creantheese"},
{NULL, NULL}

H
#i nclude "frame/l og. h"

#i fdef __cpluspl us

extern "C'

#endi f

NSAPI _PUBLI C i nt hardcoded_aut h(pbl ock *param Session *sn, Request
*rq)

{

/* Parameters given to us by auth-basic */

char *pwfile = pblock_findval ("userdb", param;
char *user = pbl ock_findval ("user", paran);
char *pw = pbl ock_findval ("pw', paran;

[* Tenp variables */
register int x;

for(x = 0; user_set[x].name != NULL; ++x) {

/* If this isn't the user we want, keep going */
i f(strcnp(user, user_set[x].name) != 0) continue

218 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide « May 2001

NameTrans Example

/[* Verify password */
if(strcnp(pw, user_set[x].pw)) {
| og_error (LOG SECURI TY, "hardcoded-auth", sn, rq,
"user % entered wong password", user);
/* This will cause the enforcenment function to ask */
[* user again */
return REQ NOACTI ON,;
}

/* If we return REQ PROCEED, the usernane will be accepted */
return REQ _PROCEED;
}

/* No match, have it ask them again */

| og_error (LOG SECURI TY, "hardcoded-auth", sn, rq,
"unknown user %", user);

return REQ NOACTI ON,

NameTrans Example

The ntrans. c file in the nsapi / exanpl es/ or pl ugi ns/ nsapi / exanpl es
subdirectory of the server root directory contains source code for two example
NanmeTr ans functions:

explicit_pathinfo
This example allows the use of explicit extra path information in a URL.
https_redirect

This example redirects the URL if the client is a particular version of Netscape
Navigator.

This section discusses the first example. Look at the source code inntr ans. ¢ for
the second example.

NOTE The main thing that a NaneTr ans function usually does is to convert

the logical URL in ppath inrg- >vars to a physical pathname.
However, the example discussed here, expl i ci t _pat hi nf o, does
not translate the URL into a physical pathname, it changes the
value of the requested URL. See the second example,

htt ps_redirect, inntrans. c for an example of a NameTr ans
function that converts the value of ppat h inr g- >vars from a URL
to a physical pathname.

Chapter 6 Examples of Custom SAFs 219

NameTrans Example

The expl i ci t _pat hi nf o example allows URLSs to explicitly include extra path
information for use by a CGI program. The extra path information is delimited
from the main URL by a specified separator, such as a comma.

For example:
htt p: // server-name/ cgi / mar ket i ng, /j an/ r el eases/ har dwar e

In this case, the URL of the requested resource (which would be a CGI program) is
htt p: // server-name/ cgi / mar ket i ng and the extra path information to give to the
CGI program is/j an/ r el eases/ har dwar e.

When choosing a separator, be sure to pick a character that will never be used as
part of the real URL.

The expl i ci t _pat hi nf o function reads the URL, strips out everything following
the comma and puts it in the pat h-i nf o field of the var s field in the r equest
object (r g- >var s). CGI programs can access this information through the

PATH_| NFOenvironment variable.

One side effect of expl i ci t _pat hi nf o is that the SCRI PT_NAVME CGI environment
variable has the separator character tacked on the end.

Normally NaneTr ans directives return REQ PROCEED when they change the path so
that the server does not process any more NarmeTr ans directives. However, in this
case we want hame translation to continue after we have extracted the path info,
since we have not yet translated the URL to a physical pathname.

Installing the Example

To install the function on the iPlanet Web Server, add the following I ni t directive
to nagnus. conf to load the compiled function;

Init fn=load-nodul es shlib=yourlibrary funcs=explicit- pathinfo
Inside the default object in obj . conf add the following NaneTr ans directive:
NanmeTrans fn=explicit-pathinfo separator=","

This NameTr ans directive should appear before other NaneTr ans directives in the
default object.

Source Code

This example is in the nt r ans. c file in the nsapi / exanpl es/ or
pl ugi ns/ nsapi / exanpl es subdirectory of the server root directory.

220 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide « May 2001

NameTrans Example

#i ncl ude "nsapi.h"

#i nclude <string. h> [* strchr */

#i nclude "frane/l og. h" /* log_error */

#i fdef __cplusplus

extern "C'

#endi f

NSAPI _PUBLI C i nt explicit_pathinfo(pblock *pb, Session *sn
*rq)

{

/* Paraneter: The character to split the path by */
char *sep = pbl ock_findval ("separator"”, pb);

/* Server variables */
char *ppath = pbl ock_findval ("ppath", rqg->vars);

[* Tenp var */
char *t;

/* Verify correct usage */
if(!sep) {
| og_error (LOG_ M SCONFI G, "explicit-pathinfo", sn, rq
"m ssing paraneter (need root)")
/* When we abort, the default status code is 500 Server
Error */
return REQ ABORTED;

}

/* Check for separator. If not there, don’t do anything */
t = strchr(ppath, sep[0]);
if(lt)

return REQ NOACTI ON

/* Truncate path at the separator */

t++ = \O

/* Assign path information */

pbl ock_nvi nsert ("path-info", t, rqg->vars);

/* Normally NameTrans functions return REQ PROCEED when t hey
change the path. However, we want nanme translation to
continue after we’'re done. */

return REQ NOACTI ON

}

#i ncl ude "base/util.h" [* is_nmozilla */

#i ncl ude "frame/ protocol.h" /* protocol _status */
#i ncl ude "base/ shexp. h" /* shexp_cnmp */

Chapter 6 Examples of Custom SAFs

Request

221

NameTrans Example

#i fdef __cplusplus

extern "C'

#endi f

NSAPI _PUBLIC int https_redirect(pblock *pb, Session *sn, Request
*ra)

{

/* Server Variable */

char *ppath = pbl ock_findval ("ppath", rqg->vars);
/* Paranmeters */

char *from = pbl ock_findval ("froni, pb);

char *url = pblock_findval ("url", pb);

char *alt = pblock_findval ("alt", pb);

[* Work vars */

char *ua;

/* Check usage */
if((!'from || (turl)) {
|l og_error(LOG M SCONFI G, "https-redirect", sn, rq,
"m ssing paraneter (need from wurl)");
return REQ ABCORTED;
}
/* Use wildcard match to see if this path is one we shoul d
redirect */
i f(shexp_cnp(ppath, from != 0)
return REQ NOACTI ON, /* no match */

/* Sigh. The only way to check for SSL capability is to
check UA */

i f(request _header ("user-agent", &ua, sn, rq) == REQ _ABORTED)

return REQ ABORTED;

/* The is_nozilla function checks for Mzilla version 0.96
or greater */
if(util _is_nozilla(ua, "0", "96")) {
/* Set the return code to 302 Redirect */
protocol _status(sn, rq, PROTOCO._REDI RECT, NULL);
/* The error handling functions use this to set the
Location: */
pbl ock_nvinsert ("url", url, rg->vars);
return REQ ABORTED;
}

/* No match. AOd client. */

/* If there is an alternate docunent specified, use it. */
if(alt) {

pb_param *pp = pbl ock_fi nd("ppath", rg->vars);

[* Trash the old val ue */

FREE(pp- >val ue) ;

222 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide « May 2001

PathCheck Example

/* W rnust dup it because the library will later free
this pblock */

pp->val ue = STRDUP(al t);

return REQ _PROCEED;

}
/* Else do nothing */

return REQ NOACTI ON,;

PathCheck Example

The example in this section demonstrates how to implement a custom SAF for
performing path checks. This example simply checks if the requesting host is on a
list of allowed hosts.

The I nit function acf-i ni t loads a file containing a list of allowable IP addresses
with one IP address per line. The Pat hCheck functionrestri ct _by_acf getsthe IP
address of the host that is making the request and checks if it is on the list. If the
host is on the list, it is allowed access otherwise access is denied.

For simplicity, the stdio library is used to scan the IP addresses from the file.

Installing the Example

To load the shared object containing your functions add the following line in the
I ni t section of the magnus. conf file:

Init fn=load-nodul es yourlibrary funcs=acf-init,restrict-by-acf

To call acf -i ni t to read the list of allowable hosts, add the following line to the
I ni t section in magnus. conf . (This line must come after the one that loads the
library containing acf -i ni t).

Init fn=acf-init fil e=fileContainingHostsList

To execute your custom SAF during the request-response process for some object,
add the following line to that object in the obj . conf file:

Pat hCheck fn=restrict-by-acf

Chapter 6 Examples of Custom SAFs 223

PathCheck Example

Source Code

The source code for this example is in pcheck. c in the nsapi / exanpl es/ or
pl ugi ns/ nsapi / exanpl es subdirectory within the server root directory.

#i ncl ude "nsapi.h"

/* Set to NULL to prevent problenms wth people not calling
acf-init */
static char **hosts = NULL

#i ncl ude <stdio. h>

#i ncl ude "base/ daenon. h"

#i ncl ude "base/util.h" [* util_sprintf */

#i nclude "frame/l og. h" /* log_error */

#i nclude "frame/protocol.h" /* protocol _status */

/* The longest line we'll allow in an access control file */
#def i ne MAX_ACF_LI NE 256

/* Used to free static array on restart */
#i fdef __cplusplus

extern "C'
#endi f
NSAPI _PUBLI C voi d acf_free(void *unused)
{
register int x;
for(x = 0; hosts[x]; ++x)
FREE(hosts[x]);
FREE(host s) ;
hosts = NULL;
}
#i fdef __cplusplus
extern "C'
#endi f

NSAPI _PUBLI C i nt acf_init(pblock *pb, Session *sn, Request *rq)
{

/* Paranmeter */

char *acf_file = pblock_findval ("file", pb);

/* Working variables */

i nt num hosts;

FILE *f;

char err[MAGNUS _ERRCR LEN;
char buf[MAX_ACF_LI NE];

224 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide « May 2001

}

PathCheck Example

/* Check usage. Note that Init functions have speci al

error |ogging */
if(lacf_file) {

util _sprintf(err, "mssing paraneter to acf_init

(need file)");

pbl ock_nvinsert("error", err, pb);

return REQ ABORTED;
}
f = fopen(acf_file, "r");
/* Did we open it? */

if(1f) {

util _sprintf(err, "can't open access control file % (%)",

acf _file, systemerrnsg());
pbl ock_nvinsert("error", err, pb);
return REQ ABORTED;

}

/* Initialize hosts array */

num hosts = 0;

hosts = (char **) MALLOC(1 * sizeof(char *));
host s[0] = NULL;

whi | e(fgets(buf, MAX ACF_LINE, f)) {

/* Blast linefeed that stdio helpfully | eaves on there */

buf[strlen(buf) - 1] = '\0";

hosts = (char **) REALLOC(hosts, (numhosts + 2)
si zeof (char *));

host s[num _host s++] = STRDUP(buf);

host s[num_hosts] = NULL;

}
fcl ose(f);

/* At restart, free hosts array */
daenmon_atrestart (acf_free, NULL);

return REQ PROCEED

#i fdef __cplusplus
extern "C'
#endi f

NSAPI _PUBLI C i nt

*ra)

{

/* No paraneters */

*

restrict_by_acf(pblock *pb, Session *sn, Request

Chapter 6 Examples of Custom SAFs 225

ObjectType Example

/[* Working variables */
char *remp = pblock_findval ("ip", sn->client);
register int x;

i f(!'hosts) {
|l og_error(LOG M SCONFI G, "restrict-by-acf", sn, rq,
"restrict-by-acf called without call to acf-init");
/* When we abort, the default status code is 500 Server
Error */
return REQ ABORTED;

}

for(x = 0; hosts[x] !'= NULL; ++x) {
[* If they’'re on the list, they' re allowed */
if(!strcmp(rem p, hosts[x]))
return REQ NOACTI ON;

}

/* Set response code to forbidden and return an error. */
protocol _status(sn, rqg, PROTOCOL_FORBI DDEN, NULL);
return REQ ABORTED;

ObjectType Example

The example in this section demonstrates how to implement ht m 2sht nl , a custom
SAF that instructs the server to treata. ht m fileasa. shtni fileifa. sht m version
of the requested file exists.

A well-behaved bj ect Type function checks if the content type is already set, and
if so, does nothing except return REQ_NOACTI ON.

i f(pbl ock_findval ("content-type", rq->srvhdrs))
return REQ _NOACTI ON,

The main thing an Qbj ect Type directive needs to do is to set the content type (if it
is not already set). This example sets it to magnus- i nt er nal / par sed- ht m in the
following lines:

226 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide « May 2001

ObjectType Example

/* Set the content-type to magnus-internal/parsed-htm */
pbl ock_nvi nsert ("content-type", "magnus-internal/parsed-htm",
rg->srvhdrs);

The ht M 2sht M function looks at the requested file name. If it ends with . ht m |
the function looks for a file with the same base name, but with the extension
.shtm instead. If it finds one, it uses that path and informs the server that the file
is parsed HTML instead of regular HTML. Note that this requires an extra st at call
for every HTML file accessed.

Installing the Example

To load the shared object containing your function, add the following line in the
I ni t section of the magnus. conf file;

Init fn=load-nodul es shlib=yourlibrary funcs=htm 2shtm

To execute the custom SAF during the request-response process for some object,
add the following line to that object in the obj . conf file:

hj ect Type fn=htm 2sht n

Source Code

The source code for this example is in ot ype. ¢ in the nsapi / exanpl es/ or
pl ugi ns/ nsapi / exanpl es subdirectory within the server root directory.

#i ncl ude "nsapi.h"

#i nclude <string. h> /* strncpy */
#i ncl ude "base/util.h"

#i fdef __cpluspl us
extern "C'
#endi f

NSAPI _PUBLIC int htm 2shtm (pbl ock *pb, Session *sn, Request *rq)
{

/* No paraneters */

Chapter 6 Examples of Custom SAFs 227

Service Example

[* Work variables */

pb_param *path = pbl ock_find("path", rg->vars);
struct stat finfo;

char *npat h;

i nt basel en;

/* If the type has al ready been set, don’t do anything */
i f(pbl ock_findval ("content-type", rqg->srvhdrs))
return REQ NOACTI ON,;

[* |f path does not end in .htm, let nornmal object types
do their job */

basel en = strlen(path->value) - 5;

i f(strcasecnp(&pat h->val ue[baselen], ".htm") = 0)
return REQ NOACTI ON,;

/* 1 = Roomto convert htm to shtm */

npath = (char *) MALLOC((baselen + 5) + 1 + 1);
strncpy(npath, path->value, baselen);
strcpy(&npat h[basel en], ".shtm");

[* If it’s not there, don’'t do anything */
if(stat(npath, & info) == -1) {

FREE(npat h) ;

return REQ NOACTI ON,
}

/* Got it, do the switch */
FREE(pat h- >val ue) ;
pat h- >val ue = npat h;

/* The server caches the stat() of the current path.
Update it. */
(void) request_stat_path(NULL, rq);

pbl ock_nvi nsert ("content-type", "nmagnus-internal/parsed-htm",
rg->srvhdrs);
return REQ PROCEED;

Service Example

This section discusses a very simple Ser vi ce function called si npl e_servi ce. All
this function does is send a message in response to a client request. The message is
initialized by the i ni t _si npl e_ser vi ce function during server initialization.

228 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide « May 2001

Service Example

For a more complex example, see the file ser vi ce. ¢ in the exanpl es directory,
which is discussed in “More Complex Service Example.”

Installing the Example

To load the shared object containing your functions add the following line in the
I ni t section of the magnus. conf file;

Init fn=l oad-nmodul es shli b=yourlibrary
funcs=si npl e-service-init,sinple-service

To call the si npl e- servi ce-i ni t function to initialize the message representing
the generated output, add the following line to the I ni t section in magnus. conf.
(This line must come after the one that loads the library containing

si npl e-service-init).

Init fn=sinple-service-init
gener at ed- out put =" <HL>Generated output msg</ H1>"

To execute the custom SAF during the request-response process for some object,
add the following line to that object in the obj . conf file:

Service type="text/htm" fn=sinple-service

Thetype="text/htm " argument indicates that this function is invoked during
the Ser vi ce stage only if the cont ent - t ype has been settotext/htm .

Source Code

#i ncl ude <nsapi . h>

static char *sinple_nsg = "default custonized content”;

Chapter 6 Examples of Custom SAFs 229

Service Example

/* This is the initialization function.
* |t gets the value of the generated-output paraneter
* specified in the Init directive in nmagnus. conf
*/
NSAPI _PUBLIC int init-sinple-service(pblock *pb, Session *sn,
Request *rq)

/* CGet the message fromthe paranmeter in the directive in
* magnus. conf

*/

si npl e_nsg = pbl ock_findval ("generat ed-out put", pb);
return REQ PROCEED;

}

/* This is the custom zed Service SAF
* |t sends the "generated-output” nessage to the client.
*/
NSAPI _PUBLI C i nt sinpl e-service(pbl ock *pb, Session *sn, Request
*rq)
{
int return_val ue
char nsg_l ength[8];

/* Use the protocol status function to set the status of the
* response before calling protocol _start_response.

*/

protocol _status(sn, rq, PROTOCOL_OK, NULL);

/* Al though we woul d expect the ChjectType stage to

* set the content-type, set it here just to be

* conpletely sure that it gets set to text/htm.

*/

param free(pbl ock_renove("content-type", rqg->srvhdrs));
pbl ock_nvi nsert ("content-type", "text/htm", rqg->srvhdrs);

/* 1f you want to use keepalive, need to set content-I| ength header
* The util _itoa function converts a specified integer to a

* string, and returns the length of the string. Use this

* function to create a textual representation of a nunber.

*/

util _itoa(strlen(sinmple_nsg), nmsg_l ength);
pbl ock_nvi nsert ("content-length", nmsg_l ength, rqg->srvhdrs);

230 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide « May 2001

Service Example

/* Send the headers to the client*/
return_val ue = protocol _start_response(sn, rq);
if (return_value == REQ NOACTION) {
/* HTTP HEAD i nstead of GET */
return REQ _PROCEED;
}

/* Wite the output using net_wite*/
return_val ue = net_wite(sn->csd, sinple_nsg,
strlen(sinple_nsg));
if (return_value == | O ERROR) {
return REQ EXIT;
}

return REQ PROCEED;

More Complex Service Example

The send- i mages function is a custom SAF which replaces the doi t . cgi
demonstration available on the iPlanet home pages. When a file is accessed as
/dir1/dir2/something. pi cgroup, the send- i mages function checks if the file is
being accessed by a Mbzi | | a/ 1. 1 browser. If not, it sends a short error message.
The file soret hi ng. pi cgr oup contains a list of lines, each of which specifies a
filename followed by a content-type (for example, one. gi f i mage/ gi f).

To load the shared object containing your function, add the following line at the
beginning of the magnus. conf file:

Init fn=l oad-nodul es shlib=yourlibrary funcs=send-i nages
Also, add the following line to the i ne. t ypes file:
t ype=nagnus-i nternal / pi cgroup ext s=pi cgroup

To execute the custom SAF during the request-response process for some object,
add the following line to that object in the obj . conf file (send- i nages takes an
optional parameter, del ay, which is not used for this example):

Servi ce net hod=(CET| HEAD) type=nmagnus-i nternal/picgroup
f n=send- i mages

Chapter 6 Examples of Custom SAFs 231

AddLog Example

The source code isin servi ce. ¢ in the nsapi / exanpl es/ or
pl ugi ns/ nsapi / exanpl es subdirectory within the server root directory.

AddLog Example

The example in this section demonstrates how to implement bri ef - | og, a custom
SAF for logging only three items of information about a request: the IP address, the
method, and the URI (for example, 198. 93. 95. 99 GET

/'j ocel yn/ dogs/ honesneeded. ht).

Installing the Example

To load the shared object containing your functions add the following line in the
I ni t section of the magnus. conf file:

Init fn=l oad-nodul es shlib=yourlibrary f uncs=brief-init, brief-1og

Tocall bri ef -init toopen the log file, add the following line to the I ni t section in
magnus. conf . (This line must come after the one that loads the library containing
brief-init).

Init fn=brief-init file=/tnp/brief.log

To execute your custom SAF during the AddLog stage for some object, add the
following line to that object in the obj . conf file:

AddLog fn=brief-Iog

Source Code

The source code is in addl og. c is in the nsapi / exanpl es/ or
pl ugi ns/ nsapi / exanpl es subdirectory within the server root directory.

#i ncl ude "nsapi.h"

#i ncl ude "base/daenon. h" /* daenon_atrestart */
#i ncl ude "base/file.h" /* system fopenWA, system fclose */
#i ncl ude "base/util.h" /[* sprintf */

/* File descriptor to be shared between the processes */
static SYS FILE |l ogfd = SYS_ERROR FD,

232 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide « May 2001

AddLog Example

#i fdef __cplusplus

extern "C'
#endi f
NSAPI _PUBLI C voi d brief_term nate(void *paraneter)
{
system fcl ose(l ogfd);
| ogfd = SYS_ERROR FD;
}
#i fdef __cplusplus
extern "C'
#endi f

NSAPI _PUBLIC int brief_init(pblock *pb, Session *sn, Request *rq)
{

/* Paraneter */

char *fn = pblock_findval ("file", pb);

if(!'fn) {
pbl ock_nvinsert("error", "brief-init: please supply a
file name", pb);
return REQ ABORTED;
}

| ogfd = system fopenWA(fn);
i f(logfd == SYS_ERROR FD) {
pbl ock_nvinsert("error", "brief-init: please supply a
file name", pb);
return REQ ABORTED;
}

/* Close log file when server is restarted */
daenon_atrestart(brief_term nate, NULL);
return REQ _PROCEED;

}

#i fdef __cpluspl us
extern "C'

#endi f

NSAPI _PUBLIC int brief_log(pblock *pb, Session *sn, Request *rq)
{

/* No parameters */

/* Server data */

char *nethod = pbl ock_findval ("nethod", rqg->reqpb);
char *uri = pblock_findval ("uri", rqg->reqpb);

char *ip = pblock_findval ("ip", sn->client);

Chapter 6 Examples of Custom SAFs 233

Quality of Service Examples

[* Tenp vars */
char *I| ognsg;
int len;

| ognsg = (char *)

MALLOC(strlen(ip) + 1 + strlen(nethod) + 1 + strlen(uri) +
1+ 1);

len = util _sprintf(lognsg, "% % %\n", ip, nmethod, uri);

/* The atomi c version uses locking to prevent interference */

systemfwite_atom c(logfd, |ognsg, |en);

FREE(| ognsg) ;

return REQ _PROCEED;

Quality of Service Examples

The code for the qos- handl er and qos- error SAFs is provided as an example in
case you want to define your own SAFs for quality of service handling.

For more information, see the Performance Tuning, Sizing, and Scaling Guide for
iPlanet Web Server.

Installing the Example

Inside the default object in obj . conf , add the following Aut hTr ans and Er r or
directives:

Aut hTrans fn=qgos-handl er

Error fn=gos-error code=503

Source Code

The source code for this example is in the qos. c file in the
pl ugi ns/ nsapi / exanpl es subdirectory of the server root directory.

#i nclude "frame/l og. h"
#i nclude "frane/ http.h"
#i ncl ude "safs/qos. h"

234 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide « May 2001

Quiality of Service Examples

| o e e e o e —ea e
decode : internal function used for parsing of QOS values in pblock
___ * [
voi d decode(const char* val, PRInt32* var, pblock* pb)
{
char* pbval ;
it ((tvar) [(tval) [(!pb))
return;
pbval = pbl ock_findval (val, pb);
if (!pbval)
return;
*var = atoi (pbval);
}
| % o o o o o e o e e e e e e e e e e e e mmemeeee—oo -
gos_error

This function is nmeant to be an error handler for an HTTP 503 error code,

which is returned by qos_handler when QOS linmits are exceeded and enforced

This sanple function just prints out a message about which limts were exceeded.
... *
NSAPI _PUBLI C i nt qos_error(pblock *pb, Session *sn, Request *rq)

{
char error[1024] = "";

PRBool ours = PR _FALSE;
PRInt32 vs_bw =0, vs_bwim= 0, vs_bw ef =0,

vs_conn = 0, vs_connlim= 0, vs_conn_ef = 0,
vsc_bw = 0, vsc_bwim= 0, vsc_bwef =0,

vsc_conn = 0, vsc_connlim= 0, vsc_conn_ef = 0,
srv_bw =0, srv.bwlim= 0, srv_bwef =0,
srv_conn = 0, srv_connlim= 0, srv_conn_ef = 0;

pbl ock* apb = rg->vars;

decode("vs_bandwi dth", &vs_bw, apb);
decode("vs_connections", &vs_conn, apb);

decode("vs_bandwidth_|limt", &s_bwlim apb);
decode("vs_bandwi dt h_enforced", &vs_bw ef, apb);

decode("vs_connections_limt", &s_connlim apb);
decode("vs_connections_enforced", &s_conn_ef, apb);

decode("vscl ass_bandwi dt h", &vsc_bw, apb);
decode("vscl ass_connections", &vsc_conn, apb);

Chapter 6 Examples of Custom SAFs 235

Quality of Service Examples

236

decode("vscl ass_bandwidth_limt", &sc_bwim apb);
decode("vscl ass_bandwi dt h_enf orced", &vsc_bw ef, apb);

decode("vscl ass_connections_|limt", &sc_connlim apb);
decode("vscl ass_connecti ons_enforced", &sc_conn_ef, apb);

decode("server_bandwi dt h", &srv_bw, apb);
decode("server_connections”, &srv_conn, apb);

decode("server_bandwidth_ Iimt", &rv_bwim apb);
decode("server _bandwi dt h_enforced", &srv_bw ef, apb);

decode("server_connections_limt", &srv_connlim apb);
decode("server_connections_enforced", &srv_conn_ef, apb);

if ((vs_bwin && (vs_bwsvs_bwim)

{

/* VS bandwidth Iimt was exceeded, display it */

ours = PR _TRUE;

sprintf(error, "<P>Virtual server bandwidth limt of % .
Current VS bandwidth : % . <P>", &s_bwim vs_bw);

}s

if ((vs_connlinm && (vs_conn>vs_connlim)

{

/* VS connection limt was exceeded, display it */

ours = PR_TRUE;

sprintf(error, "<P>Virtual server connection limt of % .
Current VS connections : % . <P>", &s_connlim vs_conn);

}s

if ((vsc_bwim && (vsc_bwsvsc_bwim)

{

/* VSCLASS bandwidth limt was exceeded, display it */

ours = PR_TRUE;

sprintf(error, "<P>Virtual server class bandwidth [imt of %l
. Current VSCLASS bandwidth : % . <P>", &sc_bwlim vsc_bw);

};

if ((vsc_connlin && (vsc_conn>vsc_connlin))

{

/* VSCLASS connection limt was exceeded, display it */
ours = PR _TRUE;

sprintf(error, "<P>Virtual server class connection limt of
%l . Current VSCLASS connections : % . <P>", &sc_connlim
vsc_conn);

}

iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide « May 2001

Quiality of Service Examples

if ((srv_bwlim && (srv_bwssrv_bwiim)

{

/* SERVER bandwi dth limt was exceeded, display it */
ours = PR_TRUE;

sprintf(error, "<P>d obal bandwidth Iimt of %d . Current
bandwi dth : 9%d . <P>", &srv_bwim srv_bw);

b

if ((srv_connlim && (srv_conn>srv_connlim)

{

/* SERVER connection limt was exceeded, display it */
ours = PR _TRUE;

sprintf(error, "<P>d obal connection linmt of % . Current
connections : % . <P>", &srv_connlim srv_conn);

b
if (ours)
{
/* this was really a QOS failure, therefore send the error
page */
pbl ock_nvrepl ace("content-type", "text/htm", rqg->srvhdrs);
protocol _start_response(sn, rq);
net_wite(sn->csd, error, strlen(error));
return REQ PROCEED;
}
el se
{

/* this 503 didn’t conme froma QOS SAF failure, |et sonmeone
el se handle it */
return REQ PROCEED;

}s

gos_handl er

This is an NSAPI Aut hTrans function

It exam nes the QOS values in the request and conpare themto the Q0S limts.
It does several things :

1) It will log errors if the QOS limts are exceeded.

2) It will return REQ ABORTED with a 503 error code if the QOS linmts are

exceeded,
and the QOS limts are set to be enforced. Gherwise it will return REQ PROCEED

Chapter 6 Examples of Custom SAFs 237

Quality of Service Examples

NSAPI _PUBLI C i nt qos_handl er (pbl ock *pb, Session *sn, Request *rq)

{

238

PRBool ok = PR _TRUE;

PRINt32 vs bw =0, vs bwiim= 0, vs_bw ef = 0,
vs_conn = 0, vs_connlim= 0, vs_conn_ef = 0,
vsc_bw = 0, vsc_bwim= 0, vsc_bwef =0,

vsc_conn = 0, vsc_connlim= 0, vsc_conn_ef = 0,
srv_bw =0, srv.bwim= 0, srv_bwef =0,
srv_conn = 0, srv_connlim= 0, srv_conn_ef = 0;

pbl ock* apb = rqg->vars;

decode("vs_bandw dth", &vs_bw, apb);
decode("vs_connections", &s_conn, apb);

decode("vs_bandwidth_limt", &s_bwim apb);
decode("vs_bandw dt h_enforced", &s_bw ef, apb);

decode("vs_connections_limt", &s_connlim apb);
decode("vs_connecti ons_enforced", &s_conn_ef, apb);

decode("vscl ass_bandwi dt h", &sc_bw, apb);
decode("vscl ass_connections", &sc_conn, apb);

decode("vsclass_bandwidth_limt", &sc_bwim apb);
decode("vscl ass_bandwi dt h_enforced", &vsc_bw ef, apb);

decode("vscl ass_connections_limt", &sc_connlim apb);
decode("vscl ass_connecti ons_enforced", &sc_conn_ef, apb);

decode("server _bandw dth", &srv_bw, apb);
decode("server_connections", &srv_conn, apb);

decode("server_bandwidth_limt", &srv_bwlim apb);
decode("server _bandw dt h_enforced", &srv_bw ef, apb);

decode("server_connections_limt", &srv_connlim apb);
decode("server_connecti ons_enforced", &srv_conn_ef, apb);

if ((vs_bwim && (vs_bwsvs_bwim)
{

/* bandwidth limt was exceeded, log it */
ereport (LOG FAILURE, "Virtual server bandwidth limt of %

iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide « May 2001

Quiality of Service Examples

exceeded. Current VS bandwidth : %", &s_bwim vs_bw);

if (vs_bw ef)

{

/* and enforce it */
ok = PR _FALSE;

H
}s
if ((vs_connlinm && (vs_conn>vs_connlimn)
{
/* connection lint was exceeded, log it */
server connection I[imt of %

ereport (LOG FAI LURE, "Virtual
exceeded. Current VS connections :

vs_conn);

%", &s_connlim

if (vs_conn_ef)

{

/* and enforce it */
ok = PR _FALSE;

H
H
if ((vsc_bwlim && (vsc_bwsvsc_bwim)
{

/* bandwidth limt was exceeded, log it */
ereport (LOG FAI LURE, "Virtual server class bandwidth linmt of

%l exceeded. Current VSCLASS bandwidth : %", &sc_bwim
vsc_bw);
if (vsc_bw ef)
/* and enforce it */
ok = PR_FALSE;
3
b
if ((vsc_connlim && (vsc_conn>vsc_connlimn)
{
/* connection linmt was exceeded, log it */

ereport (LOG FAI LURE, "Virtual server class connection limt
of %l exceeded. Current VSCLASS connections : %",

&sc_connlim vsc_conn);
if (vsc_conn_ef)

/* and enforce it */

Chapter 6 Examples of Custom SAFs 239

Quality of Service Examples

ok = PR_FALSE;

if ((srv_bwlim && (srv_bwssrv_bwiim)
{

/* bandwidth limt was exceeded, log it */
ereport (LOG FAI LURE, "d obal bandwidth Iimt of % exceeded.

Current global bandwidth : %", &rv_bwim srv_bw);
if (srv_bw ef)

/* and enforce it */

ok = PR_FALSE;

3
}
if ((srv_connlim && (srv_conn>srv_connlimn)
{
/* connection linmt was exceeded, log it */
ereport (LOG _FAI LURE, "d obal connection Iimt of % exceeded.
Current global connections : %", &srv_connlim srv_conn);

if (srv_conn_ef)

{

/* and enforce it */
ok = PR_FALSE;

I
}s
if (ok)
{
return REQ PROCEED;
}
el se
{

/* one of the limts was exceeded
therefore, we set HTTP error 503 "server too busy" */
protocol _status(sn, rq, PROTOCOL_SERVI CE_UNAVAI LABLE, NULL);

return REQ ABORTED;
b

240 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide « May 2001

Chapter 7

Syntax and Use of magnus.conf

When the iPlanet Web Server starts up, it looks in a file called nagnus. conf in the
server-id/ conf i g directory to establish a set of global variable settings that affect
the server’s behavior and configuration. iPlanet Web Server executes all the
directives defined in magnus. conf .

Except for the | ni t SAFs, the directives in magnus. conf specify a variable and a
value, for example:

Server| D https-boots. ntcom com
#Server Root d:/ netscape/ server4/ https-boots. ntom com

The order of the directives is not important.

NOTE When you edit the magnus. conf file, you must restart the server for
the changes to take effect.

This chapter lists the global settings that can be specified in nagnus. conf iniPlanet
Web Server 6.0.

The categories are:

* Init SAFs

= Server Information
= Language Issues

< DNS Lookup

e Threads, Processes and Connections

241

Init SAFs

= Native Thread Pools

- Cal

= Error Logging and Statistic Collection
< ACL

= Security

e Chunked Encoding

= Miscellaneous

For an alphabetical list of directives, see Appendix H, “Alphabetical List of
Directives in magnus.conf.”

NOTE Much of the functionality of the file cache is controlled by a
configuration file called nsf c. conf . For information about
nsf c. conf, see the Performance Tuning, Sizing, and Scaling Guide for
iPlanet Web Server.

Init SAFs

The I nit directives initialize the server, for example they load and initialize
additional modules and plugins, and initialize log files.

The I ni t directives are SAFs, like obj . conf directives, and have SAF syntax rather
than the simpler variable value syntax of other nagnus. conf directives. They are
located in nagnus. conf because, like other magnus. conf directives, they are
executed only once at server startup.

Each I ni t directive has an optional Lat el ni t parameter. For the Unix platform, if
Latel nit is settoyes, the function is executed by the child process after it is
forked from the parent. If Lat el ni t is set to no or is not provided, the function is
executed by the parent process before the fork. When the server is started up by
user r oot but runs as another user, any activities that must be performed as the
user r oot (such as writing to a root-owned file) must be done before the fork.
Functions that create threads, with the exception of t hr ead- pool -i ni t, should
execute after the fork (that is, the relevant | ni t directive should have

Lat el ni t =yes set).

For all platforms, any function that requires access to a fully parsed configuration
should have Lat el ni t =yes set on its Init directive.

242 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide « May 2001

Init SAFs

Upon failure, I ni t -class functions return REQ ABORTED. The server logs the error
according to the instructions in the Er r or directives in obj . conf, and terminates.
Any other result code is considered a success.

The following I ni t -class functions are described in detail in this section:
= cindex-init changes the default characteristics for fancy indexing.
= define-perf-bucket creates a performance bucket.

« dns-cache-init configures DNS caching.

= flex-init initializes the flexible logging system.

e flex-rotate-init enablesrotation for flexible logs.

e init-cgi changes the default settings for CGI programs.

e init-clf initializes the Common Log subsystem.

e init-uhone loads user home directory information.

* | oad- nodul es loads shared libraries into the server.

= nt-consol e-i nit enables the NT console, which is the command-line shell
that displays standard output and error streams.

= perf-init enablessystem performance measurement via performance
buckets.

= pool -init configures pooled memory allocation.

= register-http-nethod lets you extend the HTTP protocol by registering new
HTTP methods.

= stats-init enables reporting of performance statistics in XML format.

= thread- pool -init configures an additional thread pool.

cindex-init
Applicable in I ni t -class directives.

The function ci ndex- i ni t sets the default settings for common indexing.
Common indexing (also known as fancy indexing) is performed by the Service
function i ndex- common. Indexing occurs when the requested URL translates to a
directory that does not contain an index file or home page, or no index file or home
page has been specified.

In common (fancy) indexing, the directory list shows the name, last modified date,
size and description for each indexed file or directory.

Chapter 7 Syntax and Use of magnus.conf 243

Init SAFs

244

Parameters:

opts

wi dt hs

timezone

f or mat

i gnore

icon-uri

(optional) is a string of letters specifying the options to activate.
Currently there is only one possible option:

s tells the server to scan each HTML file in the directory being
indexed for the contents of the HTML <TI TLE> tag to display in the
description field. The <TI TLE> tag must be within the first 255
characters of the file. This option is off by default.

The search for <Tl TLE> is not case-sensitive.

(optional) specifies the width for each column in the indexing
display. The string is a comma-separated list of numbers that specify
the column widths in characters for name, last-modified date, size,
and description respectively.

The default values for the widths parameter are 22,18,8,33.

The final three values (corresponding to last-modified date, size,
and description respectively) can each be set to 0 to turn the display
for that column off. The name column cannot be turned off. The
minimum size of a column (if the value is non-zero) is specified by
the length of its title -- for example, the minimum size of the Date
column is 5 (the length of “Date” plus one space). If you set a
non-zero value for a column which is less than the length of its title,
the width defaults to the minimum required to display the title.

(optional) This indicates whether the last-modified time is shown in
local time or in Greenwich Mean Time. The values are GMT or
| ocal . The defaultis | ocal .

(optional) This parameter determines the format of the last modified
date display. It uses the format specification for the UNIX function
strftinme().

The default is %a- %b- %Y % %V

(optional) specifies a wildcard pattern for file names the server
should ignore while indexing. File names starting with a period (.)
are always ignored. The default is to only ignore file names starting
with a period (.).

(optional) specifies the URI prefix the i ndex- common function uses
when generating URLSs for file icons (. gi f files). By default, it is

/ nt-icons/.Ifi con-uri isdifferent from the default, the

pf x2di r function in the NaneTr ans directive must be changed so
that the server can find these icons.

iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide « May 2001

Example:

Init SAFs

I'nit fn=cindex-1nit wdiths=50,1,1,0
Init fn=cindex-init ignore=*private*
Init fn=cindex-init w dths=22,0, 0, 50

See Also
i ndex- common, find-index, hone-page

define-perf-bucket

Applicable in I ni t -class directives.

The def i ne- perf - bucket function creates a performance bucket, which you can
use to measure the performance of SAFs in obj . conf see “The bucket Parameter,”
on page 49 and the ser vi ce- dunp function). This function works only if the

per f-init function is enabled.

For more information about performance buckets, see the Performance Tuning,

Sizing, and Scaling Guide for iPlanet Web Server.

Parameters
name A name for the bucket, for example cgi - bucket .
description A description of what the bucket measures, for example CA
St at s.
Example:

St at s"

Init fn="define-perf-bucket" name="cgi - bucket" descri pti on="Cd

See Also
perf-init

Chapter 7

Syntax and Use of magnus.conf 245

Init SAFs

dns-cache-init
Applicable in I ni t -class directives.

The dns- cache-i ni t function specifies that DNS lookups should be cached when
DNS lookups are enabled. If DNS lookups are cached, then when the server gets a
client’s host name information, it stores that information in the DNS cache. If the
server needs information about the client in the future, the information is available
in the DNS cache.

You may specify the size of the DNS cache and the time it takes before a cache
entry becomes invalid. The DNS cache can contain 32 to 32768 entries; the default
value is 1024 entries. Values for the time it takes for a cache entry to expire
(specified in seconds) can range from 1 second to 1 year; the default value is

1200 seconds (20 minutes).

Parameters
cache-si ze (optional) specifies how many entries are contained in the
cache. Acceptable values are 32 to 32768; the default value is
1024.
expire (optional) specifies how long (in seconds) it takes for a cache
entry to expire. Acceptable values are 1 to 31536000 (1 year);
the default is 1200 seconds (20 minutes).
Example:

Init fn="dns-cache-init" cache-size="2140" expi r e="600"

flex-init
Applicable in I ni t -class directives.

The fl ex-init function opens the named log file to be used for flexible logging
and establishes a record format for it. The log format is recorded in the first line of
the log file. You cannot change the log format while the log file is in use by the
server.

The f | ex- | og function writes entries into the log file during the AddLog stage of
the request handling process.

246 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide « May 2001

Init SAFs

The log file stays open until the server is shut down or restarted (at which time all
logs are closed and reopened).

NOTE If the server has AddLog stage directives that call f| ex- 1 og, the
flexible log file must be initialized by f | ex-i ni t during server
initialization.

You may specify multiple log file names in the same f | ex-i ni t function call. Then
use multiple AddLog directives with the f | ex- | og function to log transactions to
each log file.

Thefl ex-ini t function may be called more than once. Each new log file name and
format will be added to the list of log files.

If you move, remove, or change the currently active log file without shutting down
or restarting the server, client accesses might not be recorded. To save or backup
the currently active log file, you need to rename the file and then restart the server.
The server first looks for the log file by name, and if it doesn’t find it, creates a new
one (the renamed original log file is left for you to use).

For information on rotating log files, see fl ex-rotate-init.

The f1 ex-i ni t function has three parameters: one that names the log file, one that
specifies the format of each record in that file, and one that specifies the logging
mode.

Parameters

logFileName The name of the parameter is the name of the log file. The
value of the parameter specifies either the full path to the
log file or a file name relative to the server’s | ogs directory.
For example:

access="/usr/ netscape/ server4/ https-servern
ane/ | ogs/ access"

nyl ogfile = "l ogl"

You will use the log file name later, as a parameter to the
f I ex- 1 og function.

f or mat . logFileName specifies the format of each log entry in the log file.

For information about the format, see the “More on Log
Format” section below.

Chapter 7 Syntax and Use of magnus.conf 247

Init SAFs

buf fer-si ze Specifies the size of the global log buffer. The default is
8192. See the third f | ex-i ni t example below.

num buf fers Specifies the maximum number of logging buffers to use.
The default is 1000. See the third f | ex-i ni t example
below.

More on Log Format

The fl ex-i nit function recognizes anything contained between percent signs (%)
as the name portion of a name-value pair stored in a parameter block in the server.
(The one exception to this rule is the “8YSDATE%component which delivers the
current system date.) “SYSDATE%is formatted using the time format

9/ %o/ % % 9%t S plus the offset from GMT.

(See Chapter 4, “Creating Custom SAFs” for more information about parameter
blocks and Chapter 5, “NSAPI Function Reference,” for functions to manipulate
pblocks.)

Any additional text is treated as literal text, so you can add to the line to make it
more readable. Typical components of the formatting parameter are listed in Table
7-1. Certain components might contain spaces, so they should be bounded by
escaped quotes (\).

If no format parameter is specified for a log file, the common log format is used:

"oUSes->client.ip%- YReq->vars. aut h-user % [¥SYSDATEY
\ " %Req- >reqgpb. cl f-request %" %Req- >srvhdrs. cl f-status%
%Req- >srvhdrs. cont ent -1 engt h%

You can now log cookies by logging the Req- >header s. cooki e. name component.

In the following table, the components that are enclosed in escaped double quotes
(\") are the ones that could potentially resolve to values that have white spaces.

Table 7-1 Typical components of flex-init formatting

Flex-log option

Component

Client Host name

(unlessi ponl y is %Ses->client.ip%

specified in flex-log or DNS name is
not available) or IP address

Client DNS name
System date

%Ses->client.dns%

USYSDATEY%

Full HTTP request line \ " %Req- >reqpb. cl f-request % "

248 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide « May 2001

Init SAFs

Table 7-1 Typical components of flex-init formatting

Flex-log option

Component

Status

Response content length
Response content type
Referer header
User-agent header

HTTP Method

HTTP URI

HTTP query string
HTTP protocol version
Accept header

Date header
If-Modified-Since header
Authorization header
Any header value

Name of authorized user
Value of a cookie

Value of any variable
in Req- >var s

Virtual Server ID

%Req- >srvhdrs. cl f-status%
%Req- >srvhdrs. cont ent -1 engt h%
%Req- >srvhdrs. content-type%

\ "%Req- >headers.referer "

\ " %Req- >headers. user-agent % "
%Req- >r eqpb. met hod%

%Req- >r eqpb. uri %

%Req- >r eqpb. quer y%

%Req- >r eqpb. prot ocol %

%Req- >headers. accept %

%Req- >header s. dat e%

%Req- >headers.if-nodified-since%
%Req- >header s. aut hori zati on%
9Req- >header s. headername%

%Req- >vars. aut h-user %

%Req- >header s. cooki e. name%

%Req- >var s. varname%

%vsi d%

Examples
The first example below initializes flexible logging into the file
[usr/ net scape/ server 4/ https-servernane/ | ogs/ access.

Init fn=flex-init

access="/usr/ net scape/ server4/ https-servernane/ | ogs/ access"

format. access="%Bes->client.ip%- %Req->vars. aut h-user%

[“USYSDATEXW \ " %Req- >reqpb. cl f-request %" %Req- >srvhdrs. cl f-status%
%Reqg- >srvhdrs. cont ent - | engt h%

Chapter 7 Syntax and Use of magnus.conf 249

Init SAFs

This will record the following items

= ip or hostname, followed by the three characters “ -

= the user name, followed by the two characters “ [
= the system date, followed by the two characters “] ”

= the full HTTP request in quotes, followed by a single space
= the HTTP result status in quotes, followed by a single space

= the content length

This is the default format, which corresponds to the Common Log Format (CLF).

It is advisable that the first six elements of any log always be in exactly this format,
because a number of log analyzers expect that as output.

The second example initializes flexible logging into the file
luser/ net scape/ server 4/ htt ps-servernane/ | ogs/ ext ended.

Init fn=flex-init

ext ended="/usr/ net scape/ server 4/ htt ps-servernane/ | ogs/ ext ended"
format. ext ended="%Ses->client.ip%- %eq->vars. aut h-user %

[“USYSDATEX \ " %Req- >reqpb. cl f-request %" %Req- >srvhdrs. cl f-status%
%Req- >srvhdrs. cont ent - | engt h% %Req- >headers. referer%

\ "9Req- >header s. user - agent % " %Req- >r eqpb. net hod% ¥Req- >r eqpb. uri %
%Req- >r eqpb. quer y% YReq- >r eqpb. pr ot ocol %

The third example shows how logging can be tuned to prevent request handling
threads from making blocking calls when writing to log files, instead delegating
these calls to the log flush thread.

Doubling the size of the buf f er - si ze and num buf f er s parameters from their
defaults and lowering the value of the LogFl ushi nt er val magnus. conf directive
to 4 seconds (see Chapter 7, “Syntax and Use of magnus.conf”) frees the request
handling threads to quickly write the log data.

250 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide « May 2001

Init SAFs

Init fn=flex-init buffer-size=16384 num buffers=2000

access="/usr/ net scape/ server4/ https-servernane/ | ogs/ access"

format. access="%Bes->client.ip%- %eq->vars. aut h-user%

[USYSDATEY \" 9%Req- >r eqpb. cl f-request %" %Req->srvhdrs. cl f-status%
%Reqg- >srvhdrs. cont ent - | engt h%

See Also
flex-rotate-init, flex-1og

flex-rotate-init
Applicable in I ni t -class directives.

Thefl ex-rotate-init function configures log rotation for all log files on the
server, including error logs and the common- | og, f | ex- 1 og, and

recor d- user agent AddLog SAFs. Call this function in the I ni t section of

magnus. conf before callingfl ex-init.Thefl ex-rotate-init function allows
you to specify a time interval for rotating log files. At the specified time interval,
the server moves the log file to a file whose name indicates the time of moving. The
log functions in the AddLog stage in obj . conf then start logging entries in a new
log file. The server does not need to be shut down while the log files are being
rotated.

NOTE The server keeps all rotated log files forever, so you will need to
clean them up as necessary to free up disk space.

By default, log rotation is disabled.

Parameters

rotate-start Indicates the time to start rotation. This value is a 4 digit string
indicating the time in 24 hour format, for example, 0900
indicates 9 am while 1800 indicates 9 pm.

rotate-interval Indicates the number of minutes to elapse between each log
rotation.

rot at e- access (optional) determines whether conmon- | og, f | ex- 1 og, and

recor d- user agent logs are rotated. Values are yes (the
default) and no.

Chapter 7 Syntax and Use of magnus.conf 251

Init SAFs

rotate-error (optional) determines whether error logs are rotated. Values
are yes (the default) and no.

rot at e-cal | back (optional) specifies the file name of a user-supplied program
to execute following log file rotation. The program is passed
the post-rotation name of the rotated log file as its parameter.

Example
This example enables log rotation, starting at midnight and occurring every hour.

Init fn=flex-rotate-init rotate-start=2400 rotate-interval =60

See Also
flex-init,comon-I|og,flex-|og,record-useragent

Init-cgi
Applicable in I ni t -class directives.
Theinit-cgi function performs certain initialization tasks for CGI execution.

Two options are provided: timeout of the execution of the CGlI script, and
establishment of environment variables.

Parameters

ti meout (optional) specifies how many seconds the server waits for
CGl output. If the CGl script has not delivered any output in
that many seconds, the server terminates the script. The
default is 300 seconds.

252 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide « May 2001

Init SAFs

cgi stub-path (optional) specifies the path to the CGI stub binary. If not
specified, iPlanet Web Server looks in the following
directories, in the following order, relative to the server
instance’s conf i g directory:. ./ pri vat e/ Cgi st ub, then
../../bin/https/bin/Cgistub.

Use the first directory to house an suid Cgistub (that is, a
Cgistub owned by root which has the set-user-ID-on-exec
bit set). Use the second directory to house a non-suid
Cgistub. The second directory is the location used by iPlanet
Web Server 4.x servers.

If present, the . . / pri vat e directory must be owned by the
server user and have permissions d??x- - - - - - . This
prevents other users (for example, users with shell accounts
or CGl access) from using Cgistub to set their uid.

For information about installing an suid Cgistub, see the
iPlanet Web Server Programmer’s Guide.

env-variable (optional) specifies the name and value for an environment
variable that the server places into the environment for the
CGl. You can set any humber of environment variables in a
singlei ni t-cgi function.

Example

Init fn=init-cgi LD LIBRARY_PATH=/usr/lib;/usr/local/lib

See Also
send-cgi, send-w ncgi, send-shell cgi

init-clf
Applicable in I ni t -class directives.

Theinit-clf function opens the named log files to be used for common logging.
The conmon- | og function writes entries into the log files during the AddLog stage of
the request handling process. The log files stay open until the server is shut down
(at which time the log files are closed) or restarted (at which time the log files are
closed and reopened).

Chapter 7 Syntax and Use of magnus.conf 253

Init SAFs

NOTE If the server has an AddLog stage directive that calls common- | og,
common log files must be initialized by i ni t - cl f during
initialization.

NOTE This function should only be called once. If it is called again, the

new call will replace log file names from all previous calls.

If you move, remove, or change the log file without shutting down or restarting the
server, client accesses might not be recorded. To save or backup a log file, you need
to rename the file (and for Unix, send the - HUP signhal) and then restart the server.
The server first looks for the log file by name, and if it doesn’t find it, creates a new
one (the renamed original log file is left for you to use).

For information on rotating log files, see fl ex-rotate-init.

Parameters

logFileName The name of the parameter is the name of the log file. The
value of the parameter specifies either the full path to the log
file or a file name relative to the server’s | ogs directory. For
example:
access="/usr/ net scape/ server 4/ https-servernam
e/ | ogs/ access"
nmyl ogfile = "l ogl”
You will use the log file name later, as a parameter to the
conmon- | og function.

Examples

Imit fn=init-clf
access=/ usr/ net scape/ server 4/ htt ps- boot s/ | ogs/ access
Init fnzinit-clf tenplog=/tnp/nytenpl og tenpl og2=/tnp/ nytenpl og2

See Also
common-| og, record-useragent,flex-rotate-init

254 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide « May 2001

Init SAFs

init-uhome
Applicable in I ni t -class directives.
Unix Only. Thei ni t - uhone function loads information about the system’s user

home directories into internal hash tables. This increases memory usage slightly,
but improves performance for servers that have a lot of traffic to home directories.

Parameters

pwile (optional) specifies the full file system path to a file other
than/ et ¢/ passwd. If not provided, the default Unix path
(/ et ¢/ passwd) is used.

Examples

I'nit fn=Init-uhone

Init fn=init-uhome pwile=/etc/passwd-http

See Also

uni x- home, find-Ilinks

load-modules
Applicable in I ni t -class directives.

The | oad- nodul es function loads a shared library or Dynamic Link Library into
the server code. Specified functions from the library can then be executed from any
subsequent directives. Use this function to load new plugins or SAFs.

If you define your own Server Application Functions, you get the server to load
them by using the | oad- nodul es function and specifying the shared library or dll
to load.

Parameters

shlib specifies either the full path to the shared library or dynamic
link library or a file name relative to the server configuration
directory.

Chapter 7 Syntax and Use of magnus.conf 255

Init SAFs

funcs

Nat i veThr ead

pool

Examples

is a comma separated list of the names of the functions in the
shared library or dynamic link library to be made available
for use by other | ni t directives or by Ser vi ce directivesin
obj . conf . The list should not contain any spaces. The dash
(-) character may be used in place of the underscore ()
character in function names.

(optional) specifies which threading model to use.

no causes the routines in the library to use user-level
threading.

yes enables kernel-level threading. The default is yes.

the name of a custom thread pool, as specified in
t hr ead- pool -init.

I'nit fn=load-nmodul es shi1b="C /nysrvins/corpfns.dll"

funcs="noveit"
Init fn=load-nodul es shlib="/nysrvfns/corpfns.so"

funcs="nyinit, myservice"
Init fn=nyinit

nt-console-init

Applicable in I ni t -class directives.

The nt - consol e-i nit function enables the NT console, which is the
command-line shell that displays standard output and error streams.

Parameters

stderr

st dout

Directs error messages to the NT console. The required and
only value is consol e.

Directs output to the NT console. The required and only
value isconsol e.

256 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide « May 2001

Init SAFs

Example

Init fn="nt-console-init" stdout=consol e stderr=consol e

perf-init

Applicable in I ni t -class directives.

The perf-init function enables system performance measurement via
performance buckets.

For more information about performance buckets, see the Performance Tuning,
Sizing, and Scaling Guide for iPlanet Web Server.

Parameters

di sabl e flag to disable the use of system performance measurement
via performance buckets. Should have a value of true or
false. Default value is true.

Example

Init fn=perf-init disable=false

See Also
defi ne- perf - bucket

pool-init
Applicable in I ni t -class directives.

The pool -i ni t function changes the default values of pooled memory settings.
The size of the free block list may be changed or pooled memory may be entirely
disabled.

Chapter 7 Syntax and Use of magnus.conf 257

Init SAFs

Memory allocation pools allow the server to run significantly faster. If you are
programming with the NSAPI, note that MALLOC, REALLOC, CALLOC, STRDUP, and
FREE work slightly differently if pooled memory is disabled. If pooling is enabled,
the server automatically cleans up all memory allocated by these routines when
each request completes. In most cases, this will improve performance and prevent
memory leaks. If pooling is disabled, all memory is global and there is no clean-up.

If you want persistent memory allocation, add the prefix PERM_to the name of each
routine (PERM_MALLOC, PERM REALLCC, PERM CALLOC, PERM STRDUP, and
PERM FREE).

NOTE Any memory you allocate from Init-class functions will be allocated
as persistent memory, even if you use MALLCC. The server cleans up
only the memory that is allocated while processing a request, and
because Init-class functions are run before processing any requests,
their memory is allocated globally.

Parameters

free-size (optional) maximum size in bytes of free block list. May not
be greater than 1048576.

di sabl e (optional) flag to disable the use of pooled memory. Should
have a value of true or false. Default value is false.

Example

Init fn=pool-init disable=true

register-http-method
Applicable in I ni t -class directives.

This function lets you extend the HTTP protocol by registering new HTTP
methods. (You do not need to register the default HTTP methods.)

Upon accepting a connection, the server checks to see if the method that it received
is known to it. If the server does not recognize the method, it returns a “501 Method
Not Implemented” error message.

258 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide ¢ May 2001

Init SAFs

Parameters

nmet hods is a comma separated list of the names of the methods you
are registering.

Example

The following example shows the use of r egi st er- ht t p- met hod and a Ser vi ce
function for one of the methods.

Init fn="register-http-nethod" nethods="M_METHOD1, MY_METHOD2"
Servi ce fn="MyHandl er" net hod="My_METHCDL"

stats-init
Applicable in I ni t -class directives.

This function enables reporting of performance statistics in XML format. The actual
report is generated by the st at s- xnl function in obj . conf.

Parameters

updat e-i nt erval period in seconds between statistics updates within the
server. Set higher for better performance, lower for more
frequent updates. The minimum value is 1; the default is 5.

virtual -servers maximum number of virtual servers for which statistics are
tracked. This number should be set higher than the number
of virtual servers configured. Smaller numbers result in
lower memory usage. The minimum value is 1; the default is
1000.

profiling enables NSAPI performance profiling using buckets if set to
yes. This can also be enabled through the per f-i ni t Init
SAF. The default is no, which results in slightly better server
performance.

Chapter 7 Syntax and Use of magnus.conf 259

Init SAFs

Example

Init fn="stats-init" update-interval ="5" virtual -servers="2000"
profiling="yes"

See also
st at s-xmi

thread-pool-init
Applicable in I ni t -class directives.

This function creates a new pool of user threads. A pool must be declared before
it’s used. To tell a plugin to use the new pool, specify the pool parameter when
loading the plugin with the Init-class function | oad- nodul es.

One reason to create a custom thread pool would be if a plugin is not thread-aware,
in which case you can set the maximum number of threads in the pool to 1.

The older parameter Nat i veThr ead=yes always engages one default native pool,
called Nat i vePool .

The native pool on Unix is normally not engaged, as all threads are OS-level
threads. Using native pools on Unix may introduce a small performance overhead
as they’ll require an additional context switch; however, they can be used to
localize the j vim st i ckyAt t ach effect or for other purposes, such as resource
control and management or to emulate single-threaded behavior for plug-ins.

On Windows NT, the default native pool is always being used and iPlanet Web
Server uses fibers (user-scheduled threads) for initial request processing. Using
custom additional pools on Windows NT introduces no additional overhead.

In addition, native thread pool parameters can be added to the nagnus. conf file
for convenience. For more information, see “Native Thread Pools,” on page 273 in
Chapter 7, “Syntax and Use of magnus.conf.”

Parameters

name name of the thread pool.

maxt hr eads maximum number of threads in the pool.
nm nt hr eads minimum number of threads in the pool.

260 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide « May 2001

gueueSi ze

st ackSi ze

Example

Server Information

size of the queue for the pool. If all the threads in the pool
are busy, further request-handling threads that want to get a
thread from the pool will wait in the pool queue. The
number of request-handling threads that can wait in the
queue is limited by the queue size. If the queue is full, the
next request-handling thread that comes to the queue is
turned away, with the result that the request is turned
down, but the request-handling thread remains free to
handle another request instead of becoming locked up in the
queue.

stack size of each thread in the native (kernel) thread pool.

funcs="tracker"

I'nit fn=thread-pool-init name="my-custom pool ™ maxthreads=5
m nt hr eads=1 queuesi ze=200

Init fn=l oad-nodul es shlib="C:/nydir/nyplugin.dlIl"
pool =" ny- cust om pool "

See also
| oad- nodul es

Server Information

This sub-section lists the directives in magnus. conf that specify information about

the server. They are:
= ExtraPath

= MtaHost

= NetSiteRoot

= ServerConfigurationFile

e ServerlD
e ServerRoot

e TempDir

< TempDirSecurity

Chapter 7 Syntax and Use of magnus.conf

261

Server Information

e User

ExtraPath

Appends the specified directory name to the PATHenvironment variable. This is
used for configuring Java on Windows NT. There is no default value; you must
specify a value.

Syntax
ExtraPat h path

MtaHost

Specifies the name of the SMTP mail server used by the server’s agents. This value
must be specified before reports can be sent to a mailing address.

NetSiteRoot

Specifies the absolute pathname to the top-level directory under which server
instances can be found. This directive is used by the Administration Server. There
is no default value; you must specify a value.

Syntax
Net Si t eRoot path

ServerConfigurationFile
Specifies the location of the virtual server configuration file.

Syntax
Server Confi gurationFil e path

Default
Server Confi gurationFil e server_root/ server_id/ confi g/ server. xm

ServerlD
Specifies the server ID, such as ht t ps- boot s. ntom com

ServerRoot

Specifies the server root. This directive is set during installation and is commented
out. Unlike other directives, the server expects this directive to start with#. Do not
change this directive. If you do, the Server Manager may not function properly.

262 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide « May 2001

Server Information

Syntax
#Ser ver Root path

Example
#Ser ver Root d:/ netscape/ server4/ https-boots. ntcom com

TempDir

Specifies the directory on the local volume that the server uses for its temporary
files. On Unix, this directory must be owned by, and writable by, the user the
server runs as. See also the directives User and TempDirSecurity.

Syntax
TenpDi r path
Default
/tp (Unix)

TEMP (environment variable for Windows NT)

TempDirSecurity

Determines whether the server checks if the TempDir directory is secure. On Unix,
specifying TenpDi r Securi ty of f allows the server to use /t np as a temporary
directory.

CAUTION Specifying TenpDi r Security of f orusing /t np as a temporary
directory on Unix is highly discouraged. Using/t np asatemporary
directory opens a number of potential security risks.

Syntax
TenmpDi r Security [on]|off]

Default
on

User

Windows NT: The User directive specifies the user account the server runs with.
By using a specific user account (other than LocalSystem), you can restrict or
enable system features for the server. For example, you can use a user account that
can mount files from another machine.

Chapter 7 Syntax and Use of magnus.conf 263

Language Issues

Unix: The User directive specifies the Unix user account for the server. If the
server is started by the superuser or root user, the server binds to the Port you
specify and then switches its user ID to the user account specified with the User
directive. This directive is ignored if the server isn’t started as r oot . The user
account you specify should have read permission to the server’s root and
subdirectories. The user account should have write access to the | ogs directory and
execute permissions to any CGI programs. The user account should not have write
access to the configuration files. This ensures that in the unlikely event that
someone compromises the server, they won’t be able to change configuration files
and gain broader access to your machine. Although you can use the nobody user, it
isn’t recommended.

Syntax
User name

nane is the 8-character (or less) login name for the user account.

Default

If there is no User directive, the server runs with the user account it was started
with.

Examples
User http

User server

User nobody

Language Issues

This section lists the directives in magnus. conf related to language issues. The
directives are:

< AdminLanguage
« ClientLanguage
e DefaultCharSet

= DefaultLanguage

264 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide « May 2001

DNS Lookup

AdminLanguage

For an international version of the server, this directive specifies the language for
the Server Manager. Values are en (English), f r (French), de (German) orj a
(Japanese).

Default
The default is en.

ClientLanguage

For an international version of the server, this directive specifies the language for
client messages (such as File Not Found). Values are en (English), f r (French), de
(German) or j a (Japanese).

Default
The default is en.

DefaultCharSet

For an international version of the server, this directive specifies the default
character set for the server. The default character set is used for both the client
responses and administration.

Default
The default isi so- 8859- 1.

DefaultLanguage

For an international version of the server, this directive specifies the default
language for the server. The default language is used for both the client responses
and administration. Values are en (English), f r (French), de (German) orj a
(Japanese).

Default
The default is en.

DNS Lookup

This section lists the directives in magnus. conf that affect DNS lookup. The
directives are:

< AsyncDNS

Chapter 7 Syntax and Use of magnus.conf 265

Threads, Processes and Connections

= DNS

AsyncDNS

Specifies whether asynchronous DNS is allowed. The DNS directive must be set to
on for this directive to take effect. The value is either on or of f . If DNS is enabled,
enabling asynchronous DNS improves server performance.

Default
The default is of f .

DNS

The DNS directive specifies whether the server performs DNS lookups on clients
that access the server. When a client connects to your server, the server knows the
client’s IP address but not its host name (for example, it knows the client as
198.95.251.30, rather than its host name www. a. com). The server will resolve the
client’s IP address into a host name for operations like access control, CGl, error
reporting, and access logging.

If your server responds to many requests per day, you might want (or need) to stop
host name resolution; doing so can reduce the load on the DNS or NIS server.

Syntax
DNS [on] of f]

Default
DNS host name resolution is on as a default.

Example
DNS on

Threads, Processes and Connections

In iPlanet Web Server 6.0, acceptor threads on a listen socket accept connections
and put them onto a connection queue. Session threads then pick up connections
from the queue and service the requests. The session threads post more session
threads if required at the end of the request. The policy for adding new threads is
based on the connection queue state:

266 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide « May 2001

Threads, Processes and Connections

Each time a new connection is returned, the number of connections waiting in
the queue (the backlog of connections) is compared to the number of session
threads already created. If it is greater than the number of threads, more
threads are scheduled to be added the next time a request completes.

The previous backlog is tracked, so that if it is seen to be increasing over time,
and if the increase is greater than the Thr eadl ncr enent value, and the number
of session threads minus the backlog is less than the Thr eadl ncr enent value,
then another Thr eadl ncr ement number of threads are scheduled to be added.

The process of adding new session threads is strictly limited by the
RqThrott | e value.

To avoid creating too many threads when the backlog increases suddenly
(such as the startup of benchmark loads), the decision whether more threads
are needed is made only once every 16 or 32 times a connection is made based
on how many session threads already exist.

This subsection lists the directives in magnus. conf that affect the number and
timeout of threads, processes, and connections. They are;

ConnQueueSize
HeaderBufferSize
I0Timeout
KeepAliveThreads
KeepAliveTimeout
KernelThreads
ListenQ
MaxKeepAliveConnections
MaxProcs (Unix Only)
PostThreadsEarly
RevBufSize
RqThrottle
RqgThrottleMin
SndBufSize

StackSize
StrictHttpHeaders

Chapter 7 Syntax and Use of magnus.conf 267

Threads, Processes and Connections

e TerminateTimeout
e Threadlncrement
= UseNativePoll (Unix only)

Also see the section “Native Thread Pools,” on page 273 for directives for
controlling the pool of native kernel threads.

ConnQueueSize

Specifies the number of outstanding (yet to be serviced) connections that the web
server can have. It is recommended that this value always be greater than the
operating system limit for the maximum number of open file descriptors per
process.

Default
The default value is 5000.

HeaderBufferSize

The size (in bytes) of the buffer used by each of the request processing threads for
reading the request data from the client. The maximum number of request
processing threads is controlled by the RgThrottle setting.

Default
The default value is 8192 (8 KB).

IOTimeout

Specifies the number of seconds the server waits for data to arrive from the client. If
data does not arrive before the timeout expires then the connection is closed. By
setting it to less than the default 30 seconds, you can free up threads sooner.
However, you may also disconnect users with slower connections.

Syntax
I0Timeout seconds

Default
30 seconds for servers that don't use hardware encryption devices and 300 seconds
for those that do.

268 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide « May 2001

Threads, Processes and Connections

KeepAliveThreads

This directive determines the number of threads in the keep-alive subsystem. It is
recommended that this number be a small multiple of the number of processors on
the system. (for example, a 2 CPU system should have 2 or 4 keep alive threads).
The maximum number of keep-alive connections allowed

(MaxKeepAl i veConnect i ons) should also be taken into consideration when
choosing a value for this setting.

Default
1

KeepAliveTimeout

This directive determines the maximum time that the server holds open an HTTP
Keep-Alive connection or a persistent connection between the client and the server.
The Keep-Alive feature for earlier versions of the server allows the client/server
connection to stay open while the server processes the client request. The default
connection is a persistent connection that remains open until the server closes it or
the connection has been open for longer than the time allowed by

KeepAl i veTi neout .

The timeout countdown starts when the connection is handed over to the
keep-alive subsystem. If there is no activity on the connection when the timeout
expires, the connection is closed.

Default
The default value is 30 seconds. The maximum value is 300 seconds (5 minutes).

KernelThreads

iPlanet Web Server can support both kernel-level and user-level threads whenever
the operating system supports kernel-level threads. Local threads are scheduled by
NSPR within the process whereas kernel threads are scheduled by the host
operating system. Usually, the standard debugger and compiler are intended for
use with kernel-level threads. By setting Ker nel Thr eads to 1 (on), you ensure that
the server uses only kernel-level threads, not user-level threads. By setting

Ker nel Thr eads to 0 (off), you ensure that the server uses only user-level threads,
which may improve performance.

Default
The default is 0 (off).

Chapter 7 Syntax and Use of magnus.conf 269

Threads, Processes and Connections

ListenQ

Specifies the maximum number of pending connections on a listen socket.
Connections that time out on a listen socket whose backlog queue is full will fail.

Default
The default value is platform-specific: 4096 (AIX), 200 (NT), 128 (all others).

MaxKeepAliveConnections

Specifies the maximum number of Keep-Alive and persistent connections that the
server can have open simultaneously. Values range from 0 to 32768.

Default

MaxProcs (Unix Only)

Specifies the maximum number of processes that the server can have running
simultaneously. If you don’t include MaxPr ocs in your magnus. conf file, the server
defaults to running a single process.

One process per processor is recommended if you are running in multi-process
mode. In iPlanet Web Server 6.0, there is always a primordial process in addition to
the number of active processes specified by this setting.

There is additional discussion of this and other server configuration and
performance tuning issues in the Performance Tuning, Sizing, and Scaling Guide for
iPlanet Web Server.

Default
1

PostThreadsEarly

If this directive is set to 1 (on), the server checks the whether the minimum number
of threads are available at a listen socket after accepting a connection but before
sending the response to the request. Use this directive when the server will be
handling requests that take a long time to handle, such as those that do long
database connections.

Default
0 (off)

270 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide « May 2001

Threads, Processes and Connections

RcvBufSize

Specifies the size (in bytes) of the receive buffer used by sockets. Allowed values
are determined by the operating system.

Default
The default value is determined by the operating system. Typical defaults are 4096
(4K), 8192 (8K).

RgThrottle

Specifies the maximum number of request processing threads that the server can
handle simultaneously. Each request runs in its own thread.

There is additional discussion of this and other server configuration and
performance tuning issues in the Performance Tuning, Sizing, and Scaling Guide for
iPlanet Web Server.

Default

RgThrottleMin

Specifies the number of request processing threads that are created when the server
is started. As the load on the server increases, more request processing threads are
created (up to a maximum of RqThr ot t | e threads).

Default

SndBufSize

Specifies the size (in bytes) of the send buffer used by sockets.
Default

The default value is determined by the operating system. Typical defaults are 4096
(4K), 8192 (8K).

StackSize

Determines the maximum stack size for each request handling thread.

Chapter 7 Syntax and Use of magnus.conf 271

Threads, Processes and Connections

Default
The most favorable machine-specific stack size.

StrictHttpHeaders

Controls strict HTTP header checking. If strict HTTP header checking is on, the
server rejects connections that include inappropriately duplicated headers.

Syntax
StrictHttpHeaders [on| of f]

Default
on

TerminateTimeout

Specifies the time that the server waits for all existing connections to terminate
before it shuts down.

Default
30 seconds

Threadlncrement

The number of additional or new request processing threads created to handle an
increase in the load on the server, for example when the number of pending
connections (in the request processing queue) exceeds the number of idle request
processing threads.

When a server starts up, it creates RqThr ot t | eM n humber of request processing
threads. As the load increases, it creates Thr eadl ncr ement additional request
processing threads until RqThr ot t | e request processing threads have been created.

Default
The default value is 10.

UseNativePoll (Unix only)

Uses a platform-specific poll interface when set to 1(on). Uses the NSPR poll
interface in the KeepAlive subsystem when set to 0 (off).

Default
1 (on)

272 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide « May 2001

Native Thread Pools

Native Thread Pools

This section lists the directives for controlling the size of the native kernel thread
pool. You can also control the native thread pool by setting the system variables
NSCP_POOL_STACKSI ZE, NSCP_POOL_ THREADNMAX, and NSCP_POOL WORKQUEUEMAX. If
you have set these values as environment variables and also in nagnus. conf , the
environment variable values will take precedence.

The native pool on Unix is normally not engaged, as all threads are OS-level
threads. Using native pools on Unix may introduce a small performance overhead
as they’ll require an additional context switch; however, they can be used to
localize the j vim st i ckyAt t ach effect or for other purposes, such as resource
control and management or to emulate single-threaded behavior for plug-ins.

On Windows NT, the default native pool is always being used and iPlanet Web
Server uses fibers (user-scheduled threads) for initial request processing. Using
custom additional pools on Windows NT introduces no additional overhead.

The directives are:

= NativePoolStackSize

= NativePoolMaxThreads
= NativePoolMinThreads

< NativePoolQueueSize
NativePoolStackSize
Determines the stack size of each thread in the native (kernel) thread pool.

Default
0

NativePoolMaxThreads

Determines the maximum number of threads in the native (kernel) thread pool.

Default

NativePoolMinThreads

Determines the minimum number of threads in the native (kernel) thread pool.

Chapter 7 Syntax and Use of magnus.conf 273

CGl

CGl

Default
1

NativePoolQueueSize

Determines the number of threads that can wait in the queue for the thread pool. If
all threads in the pool are busy, then the next request-handling thread that needs to
use a thread in the native pool must wait in the queue. If the queue is full, the next
request-handling thread that tries to get in the queue is rejected, with the result that
it returns a busy response to the client. It is then free to handle another incoming
request instead of being tied up waiting in the queue.

Default
0

This section lists the directives in magnus. conf that affect requests for CGI
programs. The directives are:

= CGlIExpirationTimeout

= CGlIStubldleTimeout

e CGIWaitPid (UNIX Only)
= MaxCGIStubs

< MinCGIStubs

CGlIExpirationTimeout

This directive specifies the maximum time in seconds that CGI processes are
allowed to run before being killed.

The value of CA Expi rat i onTi meout should not be set too low - 300 seconds (5
minutes) would be a good value for most interactive CGls; but if you have CGls
that are expected to take longer without misbehaving, then you should set it to the
maximum duration you expect a CGI program to run normally. A value of 0
disables CGI expiration, which means that there is no time limit for CGI processes.

Note that on Windows NT platformsi ni t - cgi time-out does not work, so you
must use CA Expi rati onTi meout .

274 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide « May 2001

CGl

Default
0

CGIStubldleTimeout

This directive causes the server to kill any CGIStub processes that have been idle
for the number of seconds set by this directive. Once the number of processes is at
M nCd St ubs, the server does not kill any more processes.

Default
30

CGIWaitPid (UNIX Only)

For UNIX platforms, when CGQ Wi t Pi d is set to on, the action for the SIGCHLD
signal is the system default action for the signal. If a NSAPI plugin fork/execs a
child process, it should call wai t pi d with its child process pi d when CG Wi t Pi d is
enabled to avoid leaving “defunct” processes when its child process terminates.
When CGA Wi t Pi d is enabled, the SHTML engine waits explicitly on its exec cmd
child processes. Note that this directive has no effect on CGI.

Default
on

MaxCGIStubs

Controls the maximum number of CGIStub processes the server can spawn. This is
the maximum concurrent CGIStub processes in execution, not the maximum
number of pending requests. The default value should be adequate for most
systems. Setting this too high may actually reduce throughput.

Default
10

MInCGIStubs

Controls the number of processes that are started by default. The first CGIStub
process is not started until a CGI program has been accessed. Note that if you have
aninit-cgi directive inthe magnus. conf file, the minimum number of CGIStub
processes are spawned at startup. The value must be less than the MaxCGd St ubs
value.

Default
2

Chapter 7 Syntax and Use of magnus.conf 275

Error Logging and Statistic Collection

WincgiTimeout
WinCGI processes that take longer than this value are terminated when this
timeout (in seconds) expires.

Default
60

Error Logging and Statistic Collection

This section lists the directives in magnus. conf that affect error logging and the
collection of server statistics. They are:

< ErrorLog
= ErrorLogDateFormat
« LogFlushinterval

= LogVerbose

< LogVsid
< PidLog
ErrorLog

The Error Log directive specifies the directory where the server logs its errors. If
errors are reported to a file, then the file and directory in which the log is kept must
be writable by whatever user account the server runs as.

Unix: You can also use the sysl og facility.

Syntax
ErrorLog logfile

The logfile can be either a full path or file name.

On Unix systems, it can be the keyword SYSLOG (it must be in all capital letters).

Default
There is no default error log.

Examples
Windows NT:

276 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide « May 2001

Error Logging and Statistic Collection

ErrorLog C:\ Netscape\ns-home\Logs\Errors
Unix:
ErrorLog /var/ns-server/logs/errors

ErrorLog SYSLOG

ErrorLogDateFormat

The ErrorLogDat eFor mat directive specifies the date format that the server logs
use.

Syntax
Err or LogDat eFor mat format

The format can be any format valid for the C library function st rfti ne. See
Appendix D, “Time Formats.”

Default
%/ Yo/ %Y: % %Vt 9S8

LogFlushinterval
This directive determines the log flush interval, in seconds, of the log flush thread.

Default
30

LogVerbose

This directive determines whether verbose logging occurs or not. If the value is on,
the server logs all server messages including those that are not logged by default.

Default
off

LogVslid

This directive determines whether or not virtual server IDs are displayed in the
error log. You should enable LogVsl d when multiple virtual servers share the
same log file.

Default
off

Chapter 7 Syntax and Use of magnus.conf 277

ACL

ACL

PidLog

Pi dLog specifies a file in which to record the process ID (pid) of the base server
process. Some of the server support programs assume that this log is in the server
root, in | ogs/ pi d.

To shut down your server, Kill the base server process listed in the pid log file by
using a - TERMsignal. To tell your server to reread its configuration files and reopen
its log files, use ki | I with the - HUP signal.

If the Pi dLog file isn’t writable by the user account that the server uses, the server
does not log its process ID anywhere. The server won’t start if it can’t log the
process ID.

Syntax
Pi dLog file
The file is the full path name and file name where the process ID is stored.

Default
There is no default.

Examples
Pi dLog /var/ns-server/logs/pid

Pi dLog /tnp/ ns-server.pid

This section lists the directives in magnus. conf relevant to access control lists
(ACLS). They are:

e ACLCacheLifetime
e ACLUserCacheSize
e ACLGroupCacheSize

ACLCacheLifetime

ACLCacheli f et i me determines the number of seconds before cache entries expire.
Each time an entry in the cache is referenced, its age is calculated and checked
against ACLCachelLi f et i me. The entry is not used if its age is greater than or equal
to the ACLCacheli f et i me. If this value is set to 0, the cache is turned off.

278 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide « May 2001

Security

If you use a large number for this value, you may need to restart the iPlanet Web
Server when you make changes to the LDAP entries. For example, if this value is
set to 120 seconds, the iPlanet Web Server might be out of sync with the LDAP
server for as long as two minutes. If your LDAP is not likely to change often, use a
large number.

Default
120

ACLUserCacheSize

ACLUser CacheSi ze determines the number of users in the User Cache.

Default
200

ACLGroupCacheSize

ACLG oupCacheSi ze determines how many group IDs can be cached for a single
UlID/cache entry.

Default
4

Security

This section lists the directives in magnus. conf that affect server access and
security issues for iPlanet Web Server. They are:

= Security

* SSLCacheEntries

« SSLClientAuthDataLimit
* SSLClientAuthTimeout
= SSLSessionTimeout

e SSL3SessionTimeout

Chapter 7 Syntax and Use of magnus.conf 279

Security

Security

The Security directive globally enables or disables SSL by making certificates
available to the server instance. It must be on for virtual servers to use SSL. If
enabled, the user is prompted for the administrator password (in order to access
certificates, and so on).

NOTE When you create a secure listen socket through the Server Manager,
security is automatically turned on globally in magnus. conf. When
you create a secure listen socket manually in server . xni , security
must be turned on by editing magnus. conf .

For more information about enabling SSL for individual virtual servers, see
Chapter 8, “Virtual Server Configuration Files.”

Syntax
Security [on]|off]

Default
of f

Example
Security off

SSLCacheEntries

Specifies the number of SSL sessions that can be cached. There is no upper limit.

Syntax
SSLCacheEntri es number

If the number is 0, the default value, which is 10000, is used.

SSLClientAuthDataLimit

Specifies the maximum amount of application data, in bytes, that is buffered
during the client certificate handshake phase.

Default
The default value is 1048576 (1 MB).

280 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide « May 2001

Chunked Encoding

SSLClientAuthTimeout

Specifies the number of seconds after which the client certificate handshake phase
times out.

Default
60

SSLSessionTimeout
The SSLSessi onTi meout directive controls SSL2 session caching.

Syntax
SSLSessi onTi meout seconds

The seconds value is the number of seconds until a cached SSL2 session becomes
invalid. If the SSLSessi onTi neout directive is specified, the value of seconds is
silently constrained to be between 5 and 100 seconds.

Default
The default value is 100.

SSL3SessionTimeout
The SSL3Sessi onTi meout directive controls SSL3 session caching.

Syntax
SSL3Sessi onTi neout seconds

The seconds value is the number of seconds until a cached SSL3 session becomes
invalid. The default value is 86400 (24 hours). If the SSL3Sessi onTi neout directive
is specified, the value of seconds is silently constrained to be between 5 and 86400
seconds.

Chunked Encoding

This section lists directives that control chunked encoding. For more information,
see “Buffered Streams,” on page 324.

= UseOutputStreamSize
= ChunkedRequestBufferSize

e ChunkedRequestTimeout

Chapter 7 Syntax and Use of magnus.conf 281

Chunked Encoding

These directives have equivalent Service SAF parameters inobj . conf. The
obj . conf parameters override these directives. For more information, see “Service
Stage,” on page 82.

UseOutputStreamSize

The UseCQut put St reansi ze directive determines the default output stream buffer
size for the net _r ead and net buf _gr ab NSAPI functions.

NOTE The UseQut put St reanti ze parameter can be set to zero in the
obj . conf file to disable output stream buffering. For the
magnus. conf file, setting UseQut put St r eanti ze to zero has no
effect.

Syntax
UseQut put St reansi ze size

The size value is the number of bytes.

Default
The default value is 8192 (8 KB).

ChunkedRequestBufferSize

The ChunkedRequest Buf f er Si ze directive determines the default buffer size for
“un-chunking” request data.

Syntax
ChunkedRequest Buf f er Si ze size
The size value is the number of bytes.

Default
The default value is 8192.

ChunkedRequestTimeout

The ChunkedRequest Ti neout directive determines the default timeout for
“un-chunking” request data.

Syntax
ChunkedRequest Ti meout seconds

282 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide « May 2001

Miscellaneous

The seconds value is the number of seconds.

Default
The default value is 60 (1 minute).

Miscellaneous
This section lists miscellaneous other directives in magnus. conf .
« ChildRestartCallback
e HTTPVersion
< MaxRgHeaders
= Umask (UNIX only)

NOTE Directives noted with boolean values have the following equivalent
values: on/yes/true and of f/ no/ f al se.

ChildRestartCallback

This directive forces the callback of NSAPI functions that were registered using the
daenon_at rest art function when the server is restarting or shutting down.
Values are on, of f, yes, no, true, or f al se.

Default
no

HTTPVersion

The current HTTP version used by the server in the form m.n, where m is the major
version number and n the minor version number.

Default
The default value is 1. 1.

MaxRgHeaders

Specifies the maximum number of header lines in a request. Values range from 0 to
32.

Chapter 7 Syntax and Use of magnus.conf 283

Miscellaneous

Default
32

Umask (UNIX only)

This directive specifies the umask value used by the NSAPI functions
Syst em f openWA() and Syst em f openRW) to open files in different modes. Valid
values for this directive are standard UNIX umask values.

For more information on these functions, see syst em f openWA and
syst em f openRWin Chapter 5, “NSAPI Function Reference.”

284 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide « May 2001

Chapter 8

Virtual Server Configuration Files

The server. xm file configures virtual servers. A master file, server . dtd,
determines the format and content of the server. xm file. This chapter describes
both these files and contains the following sections:

= The server.dtd File

e The server.xml File

« Elements in server.dtd and server.xml

= Virtual Server Selection for Request Processing
= User Database Selection

e The iPlanet LDAP Schema

The server.dtd File

The ser ver. dt d file defines the various elements that the ser ver. xni file can
contain and the attributes these elements can have. The ser ver. dt d file is located
in the server_root/ server_id/ confi g directory.

NOTE Do not edit the ser ver. dt d file. Its contents change only with new
versions of iPlanet Web Server.

285

The server.xml File

For example, the following code defines the VSCLASS (or virtual server class)
element. The first line specifies that a VS element can contain VARS, VS, or
QOSPARANE elements (if this element could not contain other elements, you would
see EMPTY instead of a list of element names in parentheses). The remaining lines
specify that a VSCLASS element can contain i d, connecti ons, obj ectfil e, or

r oot obj ect attributes, but only the i d attribute is required.

<! ELEMENT VSCLASS (VARS?, VS*, QOSPARAMS?) >
<! ATTLI ST VSCLASS
id | D #REQUJ RED
obj ectfil e CDATA #l MPLI ED
r oot obj ect CDATA #l MPLI ED
accept | anguage (yes| no|on|off]|1]0) #l MPLIED

Labels such as | Dand CDATA are XML data types. For more information about
XML, see the XML specification at:

http://ww. w3. or g/ TR/ REC- xm

The server.xml File

The server. xm file configures the addresses and ports that the server listens on
and assigns virtual servers to these listen sockets. The encoding is UTF-8 to
maintain compatibility with regular UNIX text editors. The server . xni file is
located in the server_root/ ht t ps-server_id/ conf i g directory.

Here is a simple server. xni file. It contains two listen sockets (LS), two virtual
server classes (VSCLASS), and three virtual servers (VS).

<?xm version="1.0" encodi ng="UTF-8"?>

<l-- declare any variables to be used in the server.xm file in the
ATTLI ST bel ow -->
<! DOCTYPE SERVER SYSTEM "server.dtd" [
<! ATTLI ST VARS
docr oot CDATA #I MPLI ED
adm nusers CDATA #| MPLI ED
webapps_fil e CDATA #l MPLI ED
webapps_enabl e CDATA #| MPLI ED
accessl og CDATA #l MPLI ED
user CDATA #| MPLI ED
group CDATA #| MPLI ED
chroot CDATA #l MPLI ED
di r CDATA #l MPLI ED

286 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide « May 2001

The server.xml File

ni ce CDATA #| MPLI ED
>
1>

<SERVER | egacyl s="1s1">
<VARS accessl og="/iws60/ htt ps-server.iplanet.conll ogs/access"/>
<LS id="Is1" ip="1.1.1.1" port="80" security="off"
acceptorthreads="1">
<CONNECTI ONGROUP i d="gr oupl" matchi ngi p="defaul t"
servernane="server.ipl anet. conf
def aul tvs="server.ipl anet.conl/>
</ LS>
<LS id="1s2" ip="any" port="80" security="of f"
acceptorthreads="1">
<CONNECTI ONGROUP i d="gr oup2" mat chi ngi p="defaul t"
servernane="server 2. i pl anet. cont
defaul tvs="server2.ipl anet.cont/>
</ LS>
<M ME id="mimel" file="mnme.types" />
<ACLFI LE id="acl 1"
file="/iws60/httpacl/generated. https-server.iplanet.comacl" />
<VSCLASS i d="defaul tcl ass" objectfil e="obj.conf"
root obj ect="default" >
<VARS docr oot ="/iws60/docs" />
<VS i d="server.iplanet.cont connecti ons="groupl" m me="mi nel"
aclids="acl 1">
<VARS webapps_fil e="web-apps. xm " webapps_enabl e="on" />
<USERDB i d="defaul t" database="default" />
</ VS>
</ VSCLASS>
<VSCLASS i d="cl ass2" objectfil e="cl ass2.obj.conf"
root obj ect="default" >
<VARS docr oot ="/iws60/ docs/ cl ass2" />
<VS id="server2.iplanet.conf connections="group2"
m me="m nel" aclids="acl 1">
<VARS webapps_fil e="web- apps. xm " webapps_enabl e="on" />
<USERDB i d="default" database="default" />
</ VS>
<VS id="acne. con' connecti ons="group2"
m me="m nel" aclids="acl 1">
<VARS docr oot ="/iws60/ docs/ cl ass2/ acne"
webapps_fil e="web-apps. xm " webapps_enabl e="on" />
<USERDB i d="default" database="default" />
</ VS>
</ VSCLASS>
</ SERVER>

Chapter 8 Virtual Server Configuration Files 287

The server.xml File

If no virtual server (VS) can be found that matches an IP address or Host header,
requests are processed using the default VS defined in the CONNECTI ONGROUP. This
VS could be made to output a customized error message, or even handle the
request using a special document root.

Variables

Defining variables for use in the obj . conf file is not required, but it is sometimes
useful. The following code defines and uses a docr oot variable:

<?xm version="1.0" encodi ng="UTF-8""?>

<l-- declare any variables to be used in the server.xm file in the
ATTLI ST bel ow -->
<! DOCTYPE SERVER SYSTEM "server.dtd" [
<! ATTLI ST VARS
docr oot CDATA #| MPLI ED

<VS id="acne. com' connecti ons="group2"

m me="m nel" aclids="acl 1">
<VARS docr oot ="/iws60/ docs/ cl ass2/ acne"
webapps_fil e="web-apps. xm " webapps_enabl e="on" />
<USERDB i d="default" dat abase="default" />

</ VS>

This variable allows different document root directories to be assigned for different
virtual servers. The variable can then be used in the obj . conf file. For example:

NaneTr ans fn=docunent-root root="%$docroot"

Using this docr oot variable saves you from having to define document roots for
virtual server classes in the obj . conf files. It also allows you to define different
document roots for different virtual servers within the same virtual server class.

NOTE Variable substitution is allowed only in an obj . conf file. It is not
allowed in any other iPlanet Web Server configuration files.

Any variable referenced in an obj . conf file must be defined in the
server. xn file at the SERVER, VSCLASS, or VS level. Defining
variables with default values at the SERVER or VSCLASS level and
overriding them in the VS is recommended.

288 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide « May 2001

The server.xml File

Format of a Variable
A variable is found when the following regular expression matches:

\$[A-Za-z][A-Za-z0-9_]*

This expression represents a $ followed by one or more alphanumeric characters. A
delimited version (“${VARS}”) is not supported. To get a regular $ character, use $$
in files to have variable substitution.

The id Variable

A special variable, i d, is always available within a VS element and refers to the
value of the i d attribute. It is predefined and cannot be overridden. Thei d
attribute uniquely identifies a virtual server. For example:

<VARS
docr oot ="/ export/ $i d"
/>

If the i d attribute of the containing VS is nyser ver, the docr oot variable is set to
the value / export/ nyserver.

Variables Used in the Interface

The following variables are used by the Administration Server, Server Manager,
Class Manager, and Virtual Server Manager. Unlike the $i d variable, they are not
predefined in the server, and they can be overridden.

$docr oot The document root of the virtual server. Typically evaluated
as the value of the docunent - r oot parameter in the
obj . conf file.

$webapps_file The path and name of the web application configuration file,
which is usually web- apps. xm . For more information about
web- apps. xm , see the Programmer’s Guide to Servlets for
iPlanet Web Server.

$webapps_enabl e A flag that indicates whether web applications are enabled for
a VS. Allowed values are on and of f . If the webapps_fil e
variable has a value for a VS, this variable need not be defined
and is assumed to be on.

$accessl og The log file for a virtual server.

$user The value of the user parameter of the send- cgi SAF.
$group The value of the gr oup parameter of the send- cgi SAF.
$chr oot The value of the chr oot parameter of the send- cgi SAF.

Chapter 8 Virtual Server Configuration Files 289

The server.xml File

$dir The value of the di r parameter of the send- cgi SAF

$ni ce The value of the ni ce parameter of the send- cgi SAF

Variable Evaluation

Variables are evaluated when generating specific objset for individual virtual
servers.

Evaluation is recursive: variable values can contain other variables. For example:
<SERVER>
<VARS docr oot base = "/export" />

<VSCLASS ...>
<VARS docr oot = "$docr oot base/ nonj ava/ $i d" />

</ VSCLASS>
<VSCLASS ...>
<VARS docroot = "$docroot base/javal/ $id" />
</ VSCLASS>
</ SERVER>
Variables lower in the tree override variables from above. For example, it is

possible to set a variable for a class of virtual servers and override it with a
definition of the same variable in an individual virtual server.

Using the Server Manager and Class Manager

You can add virtual server classes and virtual servers to iPlanet Web Server
through the Server Manager and Class Manager interface, as described in the
iPlanet Web Server Administrator’s Guide.

290 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide ¢ May 2001

Elements in server.dtd and server.xml

Elements in server.dtd and server.xml

This section describes the XML elements in the server. dt d and server. xm files.
Subelements must be defined in the order in which they are listed.

SERVER

Defines a server. There can only be one of this element in a server. xnl file.

Subelements: VARS, LS, M ME, ACLFI LE, VSCLASS, QCSPARAMS

Attributes:

gosactive Enables quality of service features, which let you set limits
on server entities or view server statistics for bandwidth
and connections. Allowed values areyes, no,on, of f,1, 0.
The default is no.

qosnetri csinterval (optional) The interval in seconds during which the traffic is

measured. The default is 30.

gosreconput ei nterval (optional) The period in milliseconds in which the
bandwidth gets recomputed for all server entities. The
default is 100 ms.

| egacyl s The i d attribute of the listen socket for legacy (4.x)
applications. This LS should contain only one
CONNECT! ONGROUP, which should be configured to only
one VS, itsdef aul t vs. All legacy applications must run on
this virtual server, which is the default virtual server for the
entire server.

VARS

Defines variables that can be given values in server. xm and referenced in

obj . conf. “Variables,” on page 288. For a list of variables commonly defined in
server.xml, see “Variables Used in the Interface,” on page 289.“Variables Used in
the Interface” on page 289

Subelements: none

Attributes: none

Chapter 8 Virtual Server Configuration Files 291

Elements in server.dtd and server.xml

292

LS (Listen Socket)

Defines a listen socket.

NOTE

When you create a secure listen socket through the Server Manager,
security is automatically turned on globally in magnus. conf. When
you create a secure listen socket manually in server . xni , security
must be turned on by editing magnus. conf .

Subelements: CONNECTI ONGROUP

Attributes:

id

port

security

(optional) The socket family type. A socket family type cannot
begin with a number.

When you create a secure listen socket in the

server. xnl file, Security mustbe turned onin
magnus. conf . When you create a secure listen socket in
the Server Manager, security is automatically turned on
globally in magnus. conf . A listen socket name cannot
begin with a number.

IP address of the listen socket. Can be in dotted-pair or IPv6
notation. Can also be any for | NADDR_ANY. Configuring a
listen socket to listen on any is required if more than one
CONNECTI ONGROUP is configured to it.

Port number to create the listen socket on. Legal values are 1 -
65535. On Unix, creating sockets that listen on ports 1 - 1024
requires superuser privileges. Configuring an SSL listen
socket to listen on port 443 is recommended. Two different IP
addresses can’t use the same port.

(optional) Determines whether the listen socket runs SSL.
Legal values are on, of f , yes, no, 1, 0. The defaultis no. You
can turn SSL2 or SSL3 on or off and set ciphers using an
SSLPARANS object in a CONNECTI ONGROUP object.

The Securi ty setting in the magnus. conf file globally

enables or disables SSL by making certificates available to the
server instance. Therefore, Securi ty in magnus. conf must
beonorsecurityinserver.xm does notwork. For more
information, see Chapter 7, “Syntax and Use of magnus.conf.”

iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide « May 2001

accept ort hr eads

famly

bl ocki ng

Elements in server.dtd and server.xml

(optional) Number of acceptor threads for the listen socket.
The recommended value is the number of processors in the
machine. The default is 1, legal values are 1 - 1024.

(optional) The socket family type. The defaultis i net, legal
valuesareinet, inet6, and nca.Usethevaluei net 6
for IPv6 listen sockets. When using the value of i net 6, IPv4
addresses will be prefixed with: : ffff: in the log file.
Specify nca to make use of the Solaris Network Cache and
Accelerator.

(optional) Determines whether the listen socket and the
accepted socket are put in to blocking mode. Use of blocking
mode may improve benchmark scores. Legal values are on,
of f,yes, no, 1, 0. The default is no.

CAUTION Blocking mode sockets should not be used in real world deployments. Use
of blocking mode sockets precludes dynamic reconfiguration and exposes
the server to denial of service attacks.

CONNECTIONGROUP

Defines a group of connection properties to which you can assign virtual servers.
See “Virtual Server Selection for Request Processing,” on page 299 for more

information.

Subelements: SSLPARANS

Attributes:
id

mat chi ngi p

def aul tvs

Internal name for the connection group. A
CONNECTIONGROUP name cannot begin with a number.

IP address that the associated virtual servers use or the value
def aul t . Can be in dotted-pair or IPv6 notation. Cannot be
any for | NADDR_ANY. Must be def aul t if the containing LS
does not have i p=any.

If the containing LS has i p=any, can be a specific IP address
or def aul t. In this case, def aul t means any IP addresses
not specified in other LS or CONNECTI ONGROUP elements.

The i d attribute of the default virtual server for this particular
connection group.

Chapter 8 Virtual Server Configuration Files 293

Elements in server.dtd and server.xml

server nane

SSLPARAMS

Tells the server what to put in the host name section of any
URLs it sends to the client. This affects URLs the server
automatically generates; it doesn’t affect the URLs for
directories and files stored in the server. This name should be
the alias name if your server uses an alias.

If you append a colon and port number, that port will be used
in URLs the server sends to the client.

Defines SSL parameters of a connection group.

An SSLPARAMS element is required inside, and only allowed inside, a
CONNECTI ONGROUP element contained by a listen socket that has its securi ty

attribute set to on.
Subelements: none

Attributes:

servercertni cknane

ssl 2

ssl 2ci phers

ssl 3

The nickname of the server certificate in the certificate
database or the PKCS#11 token. In the certificate, the name
format is tokenname: nickname. Including the tokenname: part
of the name in this attribute is optional.

(optional) Determines whether SSL2 is enabled. Legal values
are on, of f, yes, no, 1, 0. The default is no.

If both SSL2 and SSL3 are enabled for a virtual server, the
server tries SSL3 encryption first. If that fails, the server tries
SSL2 encryption.

(optional) A space-separated list of the SSL2 ciphers used,
with the prefix + to enable or - to disable, for example +r c4.
Allowed values are r c4export,rc2export,i dea, des.

(optional) Determines whether SSL3 is enabled. Legal values
are on, of f ,yes, no, 1, 0. The default is yes.

If both SSL2 and SSL3 are enabled for a virtual server, the
server tries SSL3 encryption first. If that fails, the server tries
SSL2 encryption.

294 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide « May 2001

Elements in server.dtd and server.xml

ssl 3t sci phers (optional) A space-separated list of the SSL3 ciphers used,
with the prefix + to enable or - to disable, for example
+r sa_des_sha. Allowed SSL3 values are r sa_des_sha,
rsa_rc4_40_nmd5,rsa_rc2_40_nd5,rsa_nul | _nd5.
Allowed TLS values arer sa_des_56_sha,
rsa rc4 56 sha.

tls (optional) Determines whether TLS is enabled. Legal values
are on, of f , yes, no, 1, 0. The default is on.

tlsroll back (optional) Determines whether TLS rollback is enabled. Legal
values are on, of f , yes, no, 1, 0. The default is on. TLS
rollback should be enabled for Microsoft Internet Explorer 5.0
and 5.5. For more information, see the iPlanet Web Server
Administrator’s Guide.

clientauth (optional) Determines whether SSL3 client authentication is
performed on every request, independent of ACL-based
access control. Legal values are on, of f, yes, no, 1, 0. The
default is no.

MIME

Defines MIME types.

The most common way that the server determines the MIME type of a requested
resource is by invoking the t ype- by- ext ensi on directive in the Obj ect Type

section of the obj . conf file. The t ype- by- ext ensi on function does not work if no
M ME element has been defined in the SERVER element.

Subelements: none

Attributes:

id Internal name for the MIME types listing. Used in a VS
element to define the MIME types used by the virtual server.
The MIME types name cannot begin with a number.

file The name of a MIME types file. For information about the

format of this file, see Appendix B, “MIME Types.”

Chapter 8 Virtual Server Configuration Files 295

Elements in server.dtd and server.xml

ACLFILE

References one or more ACL files.
Subelements: none

Attributes:

id Internal name for the ACL file listing. Used in a VS element to
define the ACL file used by the virtual server. An ACL file
listing name cannot begin with a number.

file A space-separated list of ACL files. Each ACL file must have a
unique name. For information about the format of an ACL
file, see the iPlanet Web Server Administrator’s Guide.

The name of the default ACL file is

gener at ed. ht t ps- server_id. acl , and the file resides in the
server_root/ server_id/ ht t pacl directory. To use this file, you
must reference it in server. xm .

VSCLASS

Defines a virtual server class.

Subelements: VARS, VS, QOSPARANS

Attributes:

id Virtual server class ID. This is a unique ID that allows lookup
of a specific virtual server class. A virtual server class ID
cannot begin with a number.

objectfile The file name of the obj . conf file for this class of virtual
servers. Cannot be overridden in a VS element.

r oot obj ect (optional) Tells the server which object loaded from an

obj . conf file is the default. The default object is expected to
have all the name translation (NanmeTr ans) directives for the
virtual server; any server behavior that is configured in the
default object affects the entire server. The default value is
defaul t.

If you specify an object that doesn’t exist, the server doesn’t
report an error until a client tries to retrieve a document. The
Server Manager assumes the default to be the object named
def aul t . Don’t deviate from this convention if you use (or
plan to use) the Server Manager.

296 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide « May 2001

accept | anguage

Elements in server.dtd and server.xml

(optional) If on, the server parses the Accept - Language
header and sends an appropriate language version based on
which language the client can accept. You should set this
value to on only if the server supports multiple languages.
The default is of f . Can be overridden in a VS element.

VS (Virtual Server)

Defines a virtual server.

Subelements: VARS, QOSPARAMS, USERDB

Attributes:

id

connecti ons

url hosts

m nme

state

aclids

errorl og

Virtual server ID. This is a unique ID that allows lookup of a
specific virtual server. Can also be referred to as the variable
$i dinan obj . conf file. A virtual server ID cannot begin
with a number.

(optional) A space-separated list of CONNECTI ONGROUP i ds
that specify the connection(s) the virtual server uses. Required
only for a VS that is not the def aul t vs of a

CONNECT! ONGROUP.

A space-separated list of values allowed in the Host request
header to select the current virtual server. Each VS that is
configured to the same CONNECTI ONGROUP must have a
unique ur | host s value for that group.

The i d of the M ME element used by the virtual server.

(optional) Determines whether a VS is active (on) or inactive
(of f, di sabl e). The default is on (active). When inactive, a
VS does not service requests.

If aVSis di sabl e, only the global server administrator can
turniton.

(optional) One or more i d attributes of ACLFI LE elements,
separated by spaces. Specifies the ACL file(s) used by the
virtual server.

(optional) Specifies a log file for virtual-server-specific error
messages.

Chapter 8 Virtual Server Configuration Files 297

Elements in server.dtd and server.xml

298

accept | anguage (optional) If on, the server parses the Accept - Language
header and sends an appropriate language version based on
which language the client can accept. You should set this
value to on only if the server supports multiple languages.
The default is of f .

QOSPARAMS

Defines quality of service parameters of a SERVER, VSCLASS, or VS.

Attributes of the SERVER element activate the quality of service features. In
addition, the qos- handl er and qos- err or SAFs must be included in the obj . conf
file.

For more information, see the Performance Tuning, Sizing, and Scaling Guide for
iPlanet Web Server.

Subelements: none

Attributes:

maxbps (optional) The maximum bandwidth limit for the SERVER,
VSCLASS, or VS in bytes per second.

enf or cebandwi dt h (optional) Specifies whether the bandwidth limit should be
enforced or not. Allowed values are yes, no,on,of f, 1, 0.
The default is no.

maxconn (optional) The maximum number of concurrent connections

for the SERVER, VSCLASS, or VS.

enforceconnections (optional) Specifies whether the connection limit should be
enforced or not. Allowed values are yes, no, on,of f, 1, 0.
The default is no.

USERDB

Defines the user database used by the virtual server.

See “User Database Selection,” on page 300 for more information about how a user
database is selected for a given virtual server.

iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide « May 2001

Subelements: none

Attributes:

id

dat abase

basedn

cert maps

Virtual Server Selection for Request Processing

The user database name in the virtual server’s ACL file. A
user database name cannot begin with a number.

The user database name in the dbswi t ch. conf file.

(optional) Overrides the base DN lookup in the

dbswi t ch. conf file. However, the basedn value is still
relative to the base DN value from the dbswi t ch. conf
entry.

(optional) Specifies which certificate to LDAP entry mappings
(defined in cert map. conf) to use. If not present, all
mappings are used. All lookups based on mappings in
certmap. conf are relative to the final base DN of the VS.

Virtual Server Selection for Request Processing

Before the server can process a request, it must accept the request via a listen
socket, then direct the request to the correct connection group and virtual server.
This section discusses how the virtual server is determined.

After the virtual server is determined, the server executes the obj . conf file for the
virtual server class to which the virtual server belongs. For details about how the
server decides which directives to execute in obj . conf, see “Flow of Control in

obj.conf,” on page 34.

A connection group is first selected as follows:

= If the listen socket is configured to listen on a particular IP address, it can
contain only one connection group, and that group is selected.

= If the listen socket is configured to listen on any, the IP address to which the
client connected is matched to the mat chi ngi p attribute of a connection group
contained by that listen socket. If no mat chi ngi p attribute matches, the
connection group with mat chi ngi p=def aul t is selected.

A virtual server is then selected as follows:

= |Ifthe connection group is configured to only a default virtual server, that
virtual server is selected.

Chapter 8 Virtual Server Configuration Files 299

User Database Selection

= |f the connection group has more than one virtual server configured to it, the
request Host header is matched to the ur | host s attribute of a virtual server. If
no Host header is present or no ur | host s attribute matches, the default virtual
server for the connection group is selected.

If a virtual server is configured to an SSL listen socket, its ur | host s attribute is
checked against the subject pattern of the certificate at server startup, and a
warning is generated and written to the error log if they don’t match.

User Database Selection

A USERDB object selects a user database for the containing virtual server. How this
selection occurs depends on the virtual server’s ACL file and the dbswi t ch. conf
file.

The ACL file format is unchanged from previous iPlanet Web Server versions.
However, the following changes have been made in iPlanet Web Server 6.0:

= Virtual serversinserver.xm reference ACL files. The nagnus. conf file no
longer references ACL files.

= The ACL file’s dat abase attribute does not map to a dbswi t ch. conf entry
directly, but instead maps to an i d attribute of a USERDB element. The
dat abase attribute of the USERDB element then maps to a dbswi t ch. conf
entry. This extra layer between the ACL file and the dbswi t ch. conf file gives
the server administrator full control over which databases virtual server
administrators and users have access to.

iPlanet Web Server 6.0 introduces the following changes to the dbswi t ch. conf file
and LDAP databases:

= The base DN in the LDAP URL in dbswi t ch. conf defines a root object for all
further DN specifications. So, for most new installations, it can be empty,
because the final base DN is determined in other ways -- either through a DC
tree lookup or an explicit “basedn” value in the USERDB tag.

= Anewdbswi t ch. conf attribute for LDAP databases, dcsuf fi x, defines the
root of the DC tree. This root is relative to the base DN in the LDAP URL. You
can use dcsuf fi x if the database is schema compliant. Requirements for schema
compliance are listed in “The iPlanet LDAP Schema,” on page 301.

A user database is selected for a virtual server as follows:

< |Ifa VS has no USERDB subelement, user- or group-based ACLs fail.

300 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide « May 2001

The iPlanet LDAP Schema

= When no dat abase attribute is present in a virtual server’s ACL definition, the
VS must have a USERDB subelement with an i d attribute of def aul t . The
dat abase attribute of the USERDB then points to a database in dbswi t ch. conf.
If no “database” attribute is present, “default” is used.

< Ifan LDAP database is schema compliant, the base DN of the access is
computed using a DC tree lookup of the ser ver nane attribute of the
CONNECTIONGROUP. The DC tree lookup is based at the dcsuf fi x DN. The
result must contain an i net Domai nBaseDN attribute that contains the base DN.
This base DN is taken as is and is not relative to any of the base DN values.

= Ifthe basedn attribute of the USERDB element is not present and the database
is not schema compliant, the accesses happen relative to the base DN in the
dbswi t ch. conf entry, as in previous iPlanet Web Server versions.

The iIPlanet LDAP Schema

You can use the dcsuf f i x attribute in the dbswi t ch. conf file if your LDAP
database meets the requirements outlined in this section.

The subtree rooted at an ISP entry (for example, o=i sp) is called the convergence
tree. It contains all the directory data related to organizations (customers) served by
an ISP.

The subtree rooted at o=i nt er net is called the domain component tree or dc tree. It
contains a sparse DNS tree with entries for the customer domains served. These
entries are links to the appropriate location in the convergence tree where the data
for that domain is located.

The directory tree may be single rooted, which is recommended (for example,
o=r oot may have o=i sp and o=i nt er net under it), or have two separate roots, one
for the convergence tree and one for the dc tree.

The Convergence Tree

The top level of the convergence tree must have one organization entry for each
customer (or organization), and one for the ISP itself.

Underneath each organization, there must be two or gani zat i onal Uni t entries:
ou=Peopl e and ou=G oups. A third, ou=Devi ces, can be present if device data is to
be stored for the organization.

Chapter 8 Virtual Server Configuration Files 301

The iPlanet LDAP Schema

Each user entry must have a unique ui d value within a given organization. The
namespace under this subtree can be partitioned into various ou entries that
aggregate user entries in convenient groups (for example, ou=eng, ou=cor p). User
ui d values must still be unique within the entire Peopl e subtree.

User entries in the convergence tree are of type i net Or gPer son. The ¢n, sn, and

ui d attributes must be present. The ui d attribute must be a valid e-mail name
(specifically, it must be a valid local-part as defined in RFC822). It is recommended
that the cn contain name initial sn. It is recommended that the RDN of the user entry
be the ui d value. User entries must contain the auxiliary class i net User if they are
to be considered enabled for service or valid.

User entries can also contain the auxiliary class i net Subscri ber, which is used for
account management purposes. If an i net User St at us attribute is present in an
entry and has a value of i nact i ve or del et ed, the entry is ignored.

Groups are located under the G- oups subtree and consist of LDAP entries of type
gr oupOf Uni queNanes.

The Domain Component (dc)Tree

The dc tree contains hierarchical domai n entries, each of which is a DNS name
component.

Entries that represent the domain name of a customer are overlaid with the LDAP
auxiliary class i net Domai n. For example, the two LDAP entries

dc=cust omer 1, dc=com o=I nt er net, o=r oot and

dc=cust onmer 2, dc=com o=l nt er net, o=r oot contain the i net Domai n class, but
dc=com o=l nt er net, o=r oot does not. The latter is present only to provide
structure to the tree.

Entries with an i net Donai n attribute are called virtual domains. These must have
the attribute i net Domai nBaseDN filled with the DN of the top level organization
entry where the data of this domain is stored in the convergence tree. For example,
the virtual domain entry in dc=cust 2, dc=com o=l nt er net, o=r oot would contain
the attribute i net Domai nBaseDN with value o=Cust 2, o=i sp, o=r oot .

If an i net Domai nSt at us attribute is present in an entry and has a value of
i nacti ve or del et ed, the entry is ignored.

302 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide « May 2001

Appendix A

Data Structure Reference

NSAPI uses many data structures which are defined in the nsapi . h header file,
which is in the directory server-root/ pl ugi ns/ i ncl ude.

The NSAPI functions described in Chapter 5, “NSAPI Function Reference,”
provide access to most of the data structures and data fields. Before directly
accessing a data structure in naspi . h, check if an accessor function exists for it.

For information about the privatization of some data structures in iPlanet Web
Server 4.x, see “Privatization of Some Data Structures,” on page 304.

The rest of this chapter describes some of the frequently used public data
structures in nsapi . h for your convenience. Note that only the most commonly
used fields are documented here for each data structure; for complete details look
innsapi . h.

® session

= pbl ock

e pb_entry

® pb_param

= Session->client
= request

e stat

e shnmems

e cinfo

303

Privatization of Some Data Structures

Privatization of Some Data Structures

session

In iPlanet Web Server 4.x, some data structures were moved from nsapi . h to
nsapi _pvt. h. The data structures in nsapi _pvt . h are now considered to be
private data structures, and you should not write code that accesses them directly.
Instead, use accessor functions. We expect that very few people have written
plugins that access these data structures directly, so this change should have very
little impact on customer-defined plugins. Look innsapi _pvt . h to see which data
structures have been removed from the public domain and to see the accessor
functions you can use to access them from now on.

Plugins written for Enterprise Server 3.x that access contents of data structures
defined in nsapi _pvt. h will not be source compatible with In iPlanet Web Server
4.x and 6.x, that is, it will be necessary to #i ncl ude "nsapi _pvt. h" inorder to
build such plugins from source. There is also a small chance that these programs
will not be binary compatible with iPlanet Web Server 4.x and 6.x, because some of
the data structures in nsapi _pvt . h have changed size. In particular, the di rect i ve
structure is larger, which means that a plugin that indexes through the directives in
a dt abl e will not work without being rebuilt (with nsapi _pvt . h included).

We hope that the majority of plugins do not reference the internals of data
structures in nsapi _pvt . h, and therefore that most existing NSAPI plugins will be
both binary and source compatible with iPlanet Web Server 6.0.

A session is the time between the opening and closing of the connection between the
client and the server. The Sessi on data structure holds variables that apply session
wide, regardless of the requests being sent, as shown here:

304 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide ¢ May 2001

pblock

pblock

typedef struct {
/* Informati on about the renote client */
pbl ock *client;

/* The socket descriptor to the renpte client */
SYS_NETFD csd;

/* The input buffer for that socket descriptor */
net buf *i nbuf;

/* Raw socket information about the renote */
/* client (for internal use) */
struct in_addr iaddr;

} Session;

The parameter block is the hash table that holds pb_ent ry structures. Its contents
are transparent to most code. This data structure is frequently used in NSAPI; it
provides the basic mechanism for packaging up parameters and values. There are
many functions for creating and managing parameter blocks, and for extracting,
adding, and deleting entries. See the functions whose names start with pbl ock_ in
Chapter 5, “NSAPI Function Reference.” You should not need to write code that
access pbl ock data fields directly.

typedef struct {

int hsize;

struct pb_entry **ht;
} pbl ock;

Appendix A Data Structure Reference 305

pb_entry

pb_entry

The pb_ent ry is a single element in the parameter block.

struct pb_entry {
pb_par am *par am
struct pb_entry *next;

pb_param

The pb_par amrepresents a name-value pair, as stored in a pb_entry.

typedef struct {
char *nane, *val ue;
} pb_param

Session->client

The Sessi on->cl i ent parameter block structure contains two entries:
= Thei p entry is the IP address of the client machine.

= The dns entry is the DNS name of the remote machine. This member must be
accessed through the sessi on_dns function call:

/*

* session_dns returns the DNS host nanme of the client for this
* session and inserts it into the client pblock. Returns NULL if
* unavail abl e.

*/

char *sessi on_dns(Session *sn);

306 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide « May 2001

request

Stat

request

Under HTTP protocol, there is only one request per session. The Request structure
contains the variables that apply to the request in that session (for example, the
variables include the client’s HTTP headers).

typedef struct {
/* Server working variables */
pbl ock *vars;

/* The nethod, URI, and protocol revision of this request */
bl ock *reqpb;

/* Protocol specific headers */
int | oadhdrs;
pbl ock *headers;

[* Server’s response headers */
pblock *srvhdrs;

/* The object set constructed to fulfill this request */
httpd_objset *os;

/* The stat last returned by request_stat_path */
char *statpath;
struct stat *finfo;

} Request;

When a program calls the st at () function for a given file, the system returns a
structure that provides information about the file. The specific details of the
structure should be obtained from your platform’s implementation, but the basic
outline of the structure is as follows:

Appendix A Data Structure Reference 307

shmem_s

struct stat {

dev _t st _dev; /* device of inode */
inot _t st _ino; /* inode number */
short st _node; /* nmode bits */

short st _nlink; /* nunber of links to file /*
short st_uid; /* owner’s user id */

short st_gid; /* owner’s group id */

dev_t st_rdev; [* for special files */

off t st_size; [* file size in characters */

time_t st_atime; /* time last accessed */

time_t st_mtime; /* time last modified */

time_t st_ctime; [* time inode last changed*/

The elements that are most significant for server plug-in APl activities are st _si ze,
st _atime,st_ntinme,andst_ctine.

shmem_s

typedef struct {
void *data; /* the data */
HANDLE fdmap;
int size; /* the maximum length of the data */
char *name; /* internal use: filename to unlink if
exposed */
SYS _FILE fd; /* internal use: file descriptor for
region */
} shmem_s;

308 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide « May 2001

cinfo

The ci nf o data structure records the content information for a file.

cinfo

typedef struct {

char

char

char

} cinfo;

*type;

/* ldentifies what kind of data is in the file*/
*encodi ng;

/* encoding identifies any conpression or other /[*
/* content-independent transformation that's been /*

/* applied to the file, such as uuencode)*/
*language;

/* Identifies the language a text document is in. */

Appendix A Data Structure Reference

309

cinfo

310 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide « May 2001

Appendix B

MIME Types

This appendix discusses the MIME types file. The sections are:
= Introduction

= Determining the MIME Type

= How the Type Affects the Response

= What Does the Client Do with the MIME Type?

« Syntax of the MIME Types File

= Sample MIME Types File

Introduction

The MIME types file in the conf i g directory contains mappings between MIME
(Multipurpose Internet Mail Extensions) types and file extensions. For example,
the MIME types file maps the extensions . ht ml and . ht mto the type text/htmn :

type=text/htm exts=htm htm

When the iPlanet Web Server receives a request for a resource from a client, it uses
the MIME type mappings to determine what kind of resource is being requested.

MIME types are defined by three attributes: language (I ang), encoding (enc), and
content-type (t ype). At least one of these attributes must be present for each type.
The most commonly used attribute is t ype. The server frequently considers the

t ype when deciding how to generate the response to the client. (The enc and | ang
attributes are rarely used.)

The default MIME types file is called ni ne. t ypes.

311

Determining the MIME Type

Determining the MIME Type

During the Qbj ect Type step in the request handling process, the server determines
the MIME type attributes of the resource requested by the client. Several different
server application functions (SAFs) can be used to determine the MIME type, but
the most commonly used one is t ype- by- ext ensi on. This function tells the server
to look up the MIME type according to the requested resource’s file extension in
the MIME types table.

The directive in obj . conf that tells the server to look up the MIME type according
to the extension is:

hj ect Type fn=type-by-extension

If the server uses a different SAF, such as f or ce-t ype, to determine the t ype, then
the MIME types table is not used for that particular request.

For more details of the ObjectType step, see Chapter 2, “Syntax and Use of
obj.conf.”

How the Type Affects the Response

312

The server considers the value of the t ype attribute when deciding which Ser vi ce
directive in obj . conf to use to generate the response to the client.

By default, if the t ype does not start with magnus- i nt er nal / , the server just sends
the requested file to the client. The directive in obj . conf that contains this
instruction is:

Servi ce met hod=(GET| HEAD| POST) type=*~magnus-internal/* fn=send-file

Note here the use of the special characters * ~ to mean “does not match.” See
Appendix C, “Wildcard Patterns” for details of special characters.

By convention, all values of t ype that require the server to do something other than
just send the requested resource to the client start with magnus-i nternal /.

For example, if the requested resource’s file extension is. map, the type is mapped
to magnus-i nt er nal / i magemap. If the extensionis. cgi, . exe, or. bat, the type is
set to nagnus-i nternal /cgqi:

type=magnus-i nt er nal / i magenmap ext s=map
type=magnus-i nternal / cgi ext s=cgi , exe, bat

iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide « May 2001

What Does the Client Do with the MIME Type?

If the t ype starts with magnus-i nt er nal /, the server executes whichever Ser vi ce
directive in obj . conf matches the specified type. For example, if the type is
magnus- i nt er nal / i magenap, the server uses the i magemap function to generate
the response to the client, as indicated by the following directive;

Servi ce met hod=(GET| HEAD) type=nmagnus-i nternal /i magemap f n=i magemap

If the type is magnus-i nter nal / ser vl et, the server uses the NSSer vl et Ser vi ce
function to generate the response to the client, as indicated by the following
directive:

Service type="magnus-internal/servlet" fn="NSServl|etService"

What Does the Client Do with the MIME Type?

The Ser vi ce function generates the data and sends it to the client that made the
request. When the server sends the data to the client, it also sends headers. These
headers include whichever MIME type attributes are known (which is usually

type).

When the client receives the data, it uses the MIME type to decide what to do with
the data. For browser clients, the usual thing is to display the data in the browser
window.

If the requested resource cannot be displayed in a browser but needs to be handled
by another application, its t ype starts with appl i cati on/, for example

appl i cati on/ oct et - st ream(for . bi n file extensions) or appl i cati on/ x- maker
(for . f mfile extensions). The client has its own set of user-editable mappings that
tells it which application to use to handle which types of data.

For example, if the type is appl i cati on/ x- maker , the client usually handles it by
opening Adobe FrameMaker to display the file.

Syntax of the MIME Types File

The first line in the MIME types file identifies the file format and must read:
#- - Net scape Communi cati ons Corporation M ME | nformation

Other non-comment lines have the following format:

type=type/ subtype exts=[fil e extensions]

= type/subtype isthe type and subtype.

Appendix B MIME Types 313

Sample MIME Types File

= exts are the file extensions associated with this type.

Sample MIME Types File

Here is an example of a MIME types file:

Do not delete the above line.

type=appl i cation/octet-stream
type=appl i cati on/ oda

type=appl i cati on/ pdf

type=appl i cati on/ postscri pt
type=application/rtf
type=application/x-mf
type=appl i cati on/ x- gt ar
type=appl i cati on/ x- shar
type=appl i cation/x-tar

t ype=appl i cati on/ mac- bi nhex40

t ype=audi o/ basi c
t ype=audi o/ x- ai f f
t ype=audi o/ x- wav

t ype=i nage/ gi f

type=i mage/ i ef

t ype=i nage/ j peg

type=i mage/ tiff

type=i mage/ x- r gb

t ype=i mage/ x- xbi t map

t ype=i mage/ x- xpi xmap

t ype=i mage/ x- xwi ndowdunp

type=text/htni

type=text/plain
type=text/richtext

type=t ext/t ab- separ at ed- val ues
type=t ext/x- set ext

t ype=vi deo/ npeg
type=vi deo/ qui ckti me
type=vi deo/ x- msvi deo

enc=x-gzip
enc=x- conpr ess
enc=x- uuencode

t ype=nagnus-i nt ernal /i magemap

t ype=nagnus-i nt er nal / par sed- ht m
type=nmagnus-i nternal / cgi
type=nmagnus-internal /jsp

It

#- - Net scape Communi cati ons Corporation M ME | nformation

is used to identify the file type.
ext s=bi n, exe
ext s=oda

ext s=pdf

ext s=ai, eps, ps
exts=rtf
exts=mf,fm
ext s=gt ar

ext s=shar

ext s=tar

ext s=hgx

ext s=au, snd
exts=aif,aiff,aifc
ext s=wav

exts=gif

ext s=i ef

ext s=j peg, j pg, j pe
exts=tiff,tif

ext s=rgb

ext s=xbm

ext s=xpm

ext s=xwd

ext s=ht m ht i
ext s=t xt
exts=rtx
exts=tsv
ext s=et x

ext s=npeg, npg, npe
ext s=qt, nov
ext s=avi

ext s=gz
exts=z
ext s=uu, uue

ext s=map

ext s=sht ni

ext s=cgi , exe, bat
exts=j sp

314

iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide « May 2001

Appendix C

Wildcard Patterns

This appendix describes the format of wildcard patterns used by the iPlanet Web
Server.

These wildcards are used in:

= directives in the configuration file obj . conf (see Chapter 2, “Syntax and Use
of obj.conf”)

= various built-in SAFs (see Chapter 3, “Predefined SAFs and the Request
Handling Process™)

= some NSAPI functions (see Chapter 5, “NSAPI Function Reference”)

Wildcard patterns use special characters. If you want to use one of these characters
without the special meaning, precede it with a backslash (\) character.

Wildcard Patterns

Table C-1 Wildcard patterns

Pattern Use
* Match zero or more characters.
? Match exactly one occurrence of any character.

An or expression. The substrings used with this operator can contain other special characters
such as * or $. The substrings must be enclosed in parentheses, for example, (a]b|c), but the
parentheses cannot be nested.

$ Match the end of the string. This is useful in or expressions.

[abc] Match one occurrence of the characters a, b, or c. Within these expressions, the only character
that needs to be treated as a special character is]; all others are not special.

315

Wildcard Examples

Table C-1 Wildcard patterns

Pattern Use

[a-z] Match one occurrence of a character between a and z.

[~az] Match any character except a or z.

* e~ This expression, followed by another expression, removes any pattern matching the second

expression.

Wildcard Examples

Table C-2 Wildcard examples

Pattern

Result

* . net scape. com

(quar k| ener gy) . net scape. com

198. 93. 9[23] . ?2??

*. *
*~net scape- *

* . net scape. com-quar k. net scap
e.com

*_ net scape. com-(quar k| ener gy
| neutrino). netscape. com

, com-. net scape. com

type=*~magnus-internal / *

Matches any string ending with the characters . net scape. com

Matches either quar k. net scape. comor
ener gy. net scape. com

Matches a numeric string starting with either 198. 93. 92 or
198. 93. 93 and ending with any 3 characters.

Matches any string with a period in it.
Matches any string except those starting with net scape- .

Matches any host from domain net scape. comexcept for a single
host quar k. net scape. com

Matches any host from domain .net scape. comexcept for hosts
quar k. net scape. com ener gy. net scape. com and
neutrino. net scape. com

Matches any host from domain . comexcept for hosts from
subdomain net scape. com

Matches any type that does not start with magnus-i nt ernal /.

This wildcard pattern is used in the file obj . conf in the catch-all
Ser vi ce directive.

316 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide ¢ May 2001

Appendix D

Time Formats

This appendix describes the format strings used for dates and times. These formats
are used by the NSAPI function uti | _strftine, by some built-in SAFs such as
append-trail er, and by server-parsed HTML (par se- ht m).

The formats are similar to those used by the st rfti me C library routine, but not

identical.

Table D-1

Symbol Meaning

%a Abbreviated weekday name (3 chars)
%d Day of month as decimal number (01-31)
%S Second as decimal number (00-59)

%M Minute as decimal number (00-59)

%H Hour in 24-hour format (00-23)

%Y Year with century, as decimal number, up to 2099
%b Abbreviated month name (3 chars)

%h Abbreviated month name (3 chars)

%T Time "HH:MM:SS"

%X Time "HH:MM:SS"

%A Full weekday name

%B Full month name

%C "%a %b %e %H:%M:%S %Y"

%c Date & time "%m/%d/%y %H:%M:%S"
%D Date "%m/%d/%y"

317

318

Table D-1

Symbol

Meaning

%e
%I
%j
%k
%I
%m
%n
%p
%R
Y%r
%t
%U

%w

%W

%X
%y
%%

Day of month as decimal number (1-31) without leading zeros
Hour in 12-hour format (01-12)

Day of year as decimal number (001-366)

Hour in 24-hour format (0-23) without leading zeros
Hour in 12-hour format (1-12) without leading zeros
Month as decimal number (01-12)

line feed

AM./P.M. indicator for 12-hour clock

Time "%H:%M"

Time "%I:%M:%S %p"

tab

Week of year as decimal number, with Sunday as first day of week
(00-51)

Weekday as decimal number (0-6; Sunday is 0)

Week of year as decimal number, with Monday as first day of week
(00-51)

Date "%m/%d/%y"
Year without century, as decimal number (00-99)

Percent sign

iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide « May 2001

Appendix E

HyperText Transfer Protocol

The HyperText Transfer Protocol (HTTP) is a protocol (a set of rules that describes
how information is exchanged) that allows a client (such as a web browser) and a
web server to communicate with each other.

HTTP is based on a request/response model. The browser opens a connection to
the server and sends a request to the server.

The server processes the request and generates a response which it sends to the
browser. The server then closes the connection.

This appendix provides a short introduction to a few HTTP basics. For more
information on HTTP, see the IETF home page at:

http://ww. ietf.org/ hone. htm

This appendix has the following sections:
< Compliance

= Requests

= Responses

« Buffered Streams

Compliance

iPlanet Web Server 6.0 supports HTTP 1.1. Previous versions of the server
supported HTTP 1.0. The server is conditionally compliant with the HTTP 1.1
proposed standard, as approved by the Internet Engineering Steering Group
(IESG) and the Internet Engineering Task Force (IETF) HTTP working group.

319

Requests

For more information on the criteria for being conditionally compliant, see the
Hypertext Transfer Protocol—HTTP/1.1 specification (RFC 2068) at:

http://wwv.ietf.org/rfc/rfc2068.txt?nunmber =2068

Requests

A request from a browser to a server includes the following information:
= Request Method, URI, and Protocol Version
= Request Headers

= Request Data

Request Method, URI, and Protocol Version

A browser can request information using a number of methods. The commonly
used methods include the following:

= CGET—Requests the specified resource (such as a document or image)
= HEAD—Requests only the header information for the document

= POST—Requests that the server accept some data from the browser, such as
form input for a CGI program

= PUT—Replaces the contents of a server’s document with data from the browser

Request Headers

The browser can send headers to the server. Most are optional. Some commonly
used request headers are shown in Table E-1.

Table E-1 Common request headers

Request header Description

Accept The file types the browser can accept.

Aut hori zation Used if the browser wants to authenticate itself with a
server; information such as the username and password are
included.

320 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide « May 2001

Responses

Table E-1 Common request headers

Request header Description

User - agent The name and version of the browser software.

Ref erer The URL of the document where the user clicked on the link.

Host The Internet host and port number of the resource being
requested.

Request Data

If the browser has made a POST or PUT request, it sends data after the blank line
following the request headers. If the browser sends a GET or HEAD request, there is
no data to send.

Responses

The server’s response includes the following:
= HTTP Protocol Version, Status Code, and Reason Phrase
= Response Headers

= Response Data

HTTP Protocol Version, Status Code, and
Reason Phrase

The server sends back a status code, which is a three-digit numeric code. The five
categories of status codes are:

= 100-199 a provisional response.

* 200-299 a successful transaction.

= 300-399 the requested resource should be retrieved from a different location.
= 400-499 an error was caused by the browser.

e 500-599 a serious error occurred in the server.

Appendix E HyperText Transfer Protocol 321

Responses

Some common status codes are shown in Table E-2.

Table E-2 Common HTTP status codes

Status code

Meaning

200
201

206
302

304

400

401

403
404

408

411

413

414
416

OK; request has succeeded for the method used (GET, POST, HEAD).

The request has resulted in the creation of a new resource reference by the
returned URI.

The server has sent a response to byte range requests.

Found. Redirection to a new URL. The original URL has moved. This is
not an error; most browsers will get the new page.

Use a local copy. If a browser already has a page in its cache, and the page
is requested again, some browsers (such as Netscape Navigator) relay to
the web server the “last-modified” timestamp on the browser’s cached
copy. If the copy on the server is not newer than the browser’s copy, the
server returns a 304 code instead of returning the page, reducing
unnecessary network traffic. This is not an error.

Sent if the request is not a valid HTTP/1.0 or HTTP/1.1 request. For
example HTTP/1.1 requires a host to be specified either in the Host
header or as part of the URI on the request line.

Unauthorized. The user requested a document but didn’t provide a valid
username or password.

Forbidden. Access to this URL is forbidden.

Not found. The document requested isn’t on the server. This code can also
be sent if the server has been told to protect the document by telling
unauthorized people that it doesn’t exist.

If the client starts a request but does not complete it within the keep-alive
timeout configured in the server, then this reponse will be sent and the
connection closed. The request can be repeated with another open
connection.

The client submitted a POST request with chunked-encoding, which is of
variable length. However, the resource or application on the server
requires a fixed length - a "content-length" header to be present. This code
tells the client to resubmit its request with content-length.

Some applications (eg. certain NSAPI plug-ins) cannot handle very large
amounts of data, so they will return this code.

The URI is longer than the maximum the web server is willing to serve.

Data was requested outside the range of a file.

322 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide « May 2001

Responses

Table E-2 Common HTTP status codes (Continued)

Status code Meaning

500 Server error. A server-related error occurred. The server administrator
should check the server’s error log to see what happened.

503 Sent if the quality of service mechanism was enabled and bandwidth or
connection limits were attained. The server will then serve requests with
that code. See the "quality of service" section.

Response Headers

The response headers contain information about the server and the response data.
Common response headers are shown in Table E-3.

Table E-3 Common response headers

Response header Description

Server The name and version of the web server.

Dat e The current date (in Greenwich Mean Time).

Last - modi fi ed The date when the document was last modified.

Expires The date when the document expires.

Content-length The length of the data that follows (in bytes).

Cont ent -t ype The MIME type of the following data.

WA aut henti cat e Used during authentication and includes information that

tells the browser software what is necessary for
authentication (such as username and password).

Response Data

The server sends a blank line after the last header. It then sends the response data
such as an image or an HTML page.

Appendix E HyperText Transfer Protocol 323

Buffered Streams

Buffered Streams

Buffered streams improve the efficiency of network 1/0 (for example the exchange
of HTTP requests and responses) especially for dynamic content generation.
Buffered streams are implemented as transparent NSPR /0 layers, which means
even existing NSAPI modules can use them without any change.

The buffered streams layer adds following features to the iPlanet Web Server:

= Enhanced keep-alive support: When the response is smaller than the buffer
size, the buffering layer generates the cont ent - | engt h header so that client
can detect the end of the response and re-use the connection for subsequent
requests.

= Response length determination; If the buffering layer cannot determine the
length of the response, it uses HTTP 1.1 chunked encoding instead of the
cont ent - | engt h header to convey the delineation information. If the client
only understands HTTP 1.0, the server must close the connection to indicate
the end of the response.

= Deferred header writing: Response headers are written out as late as possible
to give the servlets a chance to generate their own headers (for example, the
session management header set - cooki e).

= Ability to understand request entity bodies with chunked encoding: Though
popular clients do not use chunked encoding for sending POST request data,
this feature is mandatory for HTTP 1.1 compliance.

The improved connection handling and response length header generation
provided by buffered streams also addresses the HTTP 1.1 protocol compliance
issues where absence of the response length headers is regarded as a category 1
failure. In previous Enterprise Server versions it was the responsibility of the
dynamic content generation programs to send the length headers. If a CGI script
did not generate the cont ent - | engt h header, the server had to close the
connection to indicate the end of the response, breaking the keep-alive mechanism.
However, it is often very inconvenient to keep track of response length in CGI
scripts or servlets, and as an application platform provider, the web server is
expected to handle such low-level protocol issues.

Output buffering has been built in to the functions that transmit data, such as

net _write (see Chapter 5, “NSAPI Function Reference.”). You can specify the
following Service SAF parameters that affect stream buffering, which are described
in detail in Chapter 3, “Predefined SAFs and the Request Handling Process.”

e UseCQut put St reansi ze

e flushTi ner

324 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide « May 2001

Buffered Streams

e ChunkedRequest Buf ferSi ze
e ChunkedRequest Ti meout

The UseQut put St r eanti ze, ChunkedRequest Buf f er Si ze, and
ChunkedRequest Ti meout parameters also have equivalent magnus. conf
directives; see “Chunked Encoding,” on page 281. The obj . conf parameters
override the magnus. conf directives.

NOTE The UseCut put St reanti ze parameter can be set to zero in the
obj . conf file to disable output stream buffering. For the
magnus. conf file, setting UseQut put St r eanti ze to zero has no
effect.

To override the default behavior when invoking an SAF that uses one of the
functions net _r ead or net buf _gr ab, you can specify the value of the parameter in
obj . conf, for example:

Service fn="ny-service-saf" type=perf UseCQut put Strean5i ze=8192

Appendix E HyperText Transfer Protocol 325

Buffered Streams

326 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide « May 2001

Appendix F

Dynamic Results Caching Functions

The functions described in this appendix allow you to write a results caching
plugin for iPlanet Web Server. A results caching plugin, which is a Ser vi ce SAF,
caches data, a page, or part of a page in the web server address space, which the
web server can refresh periodically on demand. An | ni t SAF initializes the
callback function that performs the refresh.

A results caching plugin can generate a page for a request in three parts:
= A header, such as a page banner, which changes for every request

= A body, which changes less frequently

= Afooter, which also changes for every request

Without this feature, a plugin would have to generate the whole page for every
request (unless an IFRAME is used, where the header or footer is sent in the first
response along with an IFRAME pointing to the body; in this case the browser
must send another request for the IFRAME).

If the body of a page has not changed, the plugin needs to generate only the header
and footer and to call the dr _net _wri t e function (instead of net _wri t €) with the
following arguments:

« header

- footer

= handle to cache

= key to identify the cached object

The web server constructs the whole page by fetching the body from the cache. If
the cache has expired, it calls the refresh function and sends the refreshed page
back to the client.

327

An | ni t SAF that is visible to the plugin creates the handle to the cache. The I ni t
SAF must pass the following parameters to the dr _cache_i ni t function:

= RefreshFuncti onPoi nt er

= FreeFuncti onPoi nt er

= KeyConpar at or Functi onPtr
e Refershlnterval

The Ref er shl nt erval value must be a Printerval Ti me type. For more
information, see the NSPR reference at:

http://ww. nozilla.org/projects/nspr/reference/htm /index. htm

As an alternative, if the body is a file that is present in a directory within the web
server system machine, the plugin can generate the header and footer and call the
fc_net _writ e function along with the file name.

This appendix lists the most important functions a results caching plugin can use.
For more information, see the following file:

server_root/ pl ugi ns/ i ncl ude/ drnsapi . h

dr_cache_destroy

The dr _cache_dest r oy function destroys and frees resources associated with a
previously created and used cache handle. This handle can no longer be used in
subsequent calls to any of the above functions unless another dr _cache_init is
performed.

Syntax
voi d dr_cache_destroy(DrHdl *hdl);

Parameters
DrHdl *hdl is a pointer to a previously initialized handle to a cache (see
dr_cache_init).

Returns
voi d

Example
dr _cache_dest roy(&nyHdl);

328 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide « May 2001

dr_cache_init
The dr_cache_i ni t function creates a persistent handle to the cache, or NULL on
failure. Itis called by an I ni t SAF.

Syntax
PRI nt32 dr _cache_init(DrHdl *hdl, RefreshFunc_t ref, FreeFunc_t fre,
ConpareFunc_t cnp, PRU nt32 naxEntries, PRI nterval Ti mre maxAge);

Returns
1 if successful.

0 if an error occurs.

Parameters
Dr Hdl hdl is a pointer to an unallocated handle.

Ref reshFunc_t ref isa pointer to a cache refresh function. This can be NULL; see
the DR_CHECK flag and DR_EXPI Rreturn value for dr_net _write.

FreeFunc_t fre isa pointer to a function that frees an entry.
Conpar eFunc_t cnp is is a pointer to a key comparator function.

PRUI nt 32 maxEntri esp is the maximum number of entries possible in the cache
for a given hdl .

PRI nt er val Ti me nmaxAgep is the maximum amount of time that an entry is valid. If
0, the cache never expires.

Example

i f(!dr_cache_init(&hdl, (RefreshFunc_t)FnRefresh,
(FreeFunc_t) FnFree, (ConpareFunc_t)FnConpare, 150000,
PR_SecondsTol nt erval (7200)))

{
ereport (LOG _FAI LURE, "dr_cache_init() failed");
r et ur n(REQ_ABORTED) ;

dr_cache_refresh

The dr _cache_r ef r esh function provides a way of refreshing a cache entry when
the plugin requires it. This can be achieved by passing NULL for ther ef parameter
indr_cache_i nit and by passing DR_CHECKinadr_net _write call. If DR_CHECK is
passed to dr _net _write and it returns with DR_EXPI R, the plugin should generate
a new content in the entry and call dr _cache_r ef r esh with that entry before
calling dr _net _wri t e again to send the response.

Appendix F Dynamic Results Caching Functions 329

The plugin may simply decide to replace the cached entry even if it has not expired
(based on some other business logic). The dr _cache_r ef r esh function is useful in
this case. This way the plugin does the cache refresh management actively by itself.

Syntax
PRI nt 32 dr_cache_refresh(DrHdl hdl, const char *key, PRU nt32 klen,
PRInterval Tinme tineout, Entry *entry, Request *rqg, Session *sn);

Returns
1 if successful.

0 if an error occurs.

Parameters
Dr Hdl hdl is a persistent handle created by the dr _cache_i ni t function.

const char *key is the key to cache, search, or refresh.
PRUI nt 32 kl en is the length of the key in bytes.

PRI nt erval Ti me ti nmeout is the expiration time of this entry. If a value of 0 is
passed, the maxAge value passed to dr _cache_i ni t is used.

Entry *entry is the not NULL entry to be cached.
Request *rq is a pointer to the request.

Sessi on *sn is a pointer to the session.

Example

Entry entry;

char *key = "MW ES"

GenNewMbvi eLi st (&entry. data, &entry.datalLen); // |nplenmented by
/1 plugin devel oper

i f(!dr_cache_refresh(hdl, key, strlen(key), 0, &entry, rqg, sn))

{
ereport (LOG_FAI LURE, "dr_cache_refresh() failed");

return REQ ABORTED;

dr_net_write

The dr _net _writ e function sends a response back to the requestor after
constructing the full page with hdr, the content of the cached entry as the body
(located using the key),and ftr. The hdr, ftr, or hdl can be NULL, but not all of
them can be NULL. If hdl is NULL, no cache lookup is done; the caller must pass
DR_NONE as the flag.

330 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide « May 2001

By default, this function refreshes the cache entry if it has expired by making a call
to the ref function passed to dr _cache_i ni t. If no cache entry is found with the
specified key, this function adds a new cache entry by calling the r ef function
before sending out the response. However if the DR_CHECK flag is passed in the

f1 ags parameter and if either the cache entry has expired or the cache entry
corresponding to the key does not exist, dr _net _wri t e does not send any data out.
Instead it returns with DR_EXPI R.

If ref (passedtodr_cache_init)is NULL, the DR_CHECK flag is not passed in
the f | ags parameter, and the cache entry corresponding to the key has expired or
does not exist, dr _net _writ e fails with DR_ERROR. However, dr _net _wite
refreshes the cache if r ef is not NULL and DR_CHECK is not passed.

If ref (passedtodr_cache_init)is NULL and the DR_CHECK flag is not passed but
DR_| GNORE is passed and the entry is present in the cache, dr _net _wri t e sends out
the response even if the entry has expired. However, if the entry is not found,

dr _net_writereturns DR_ERROR

If ref (passed todr_cache_init)is not NULL and the DR_CHECK flag is not passed
but DR_I GNORE is passed and the entry is present in the cache, dr _net _wri t e sends
out the response even if the entry has expired. However, if the entry is not found,
dr_net _write callstheref function and stores the new entry returned from r ef
before sending out the response.

Syntax

PRInt32 dr_net_wite(DrHdl hdl, const char *key, PRU nt32 klen,
const char *hdr, const char *ftr, PRU nt32 hlen, PRU nt32 flen,
PRI nterval Time tinmeout, PRU nt32 flags, Request *rq, Session *sn);

Returns
| O_OKAY if successful.

| O ERRORIf an error occurs.
DR_ERRCRIf an error in cache handling occurs.

DR_EXPI Rif the cache has expired.

Parameters
Dr Hdl hdl is a persistent handle created by the dr _cache_i ni t function.

const char *key is the key to cache, search, or refresh.
PRUI nt 32 kl en is the length of the key in bytes.
const char *hdr is any header data (which can be NULL).

const char *ftr isany footer data (which can be NULL).

Appendix F Dynamic Results Caching Functions 331

PRUI nt 32 hl en is the length of the header data in bytes (which can be 0).
PRUI nt 32 f1 en is the length of the footer data in bytes (which can be 0).
PRI nterval Ti me ti meout is the timeout before this function aborts.
PRUI nt 32 f1l ags is ORed directives for this function (see Flags).

Request *rq is a pointer to the request.

Sessi on *sn is a pointer to the session.

Flags

DR_NONE specifies that no cache is used, so the function works as net _wri t e does;
Dr Hdl can be NULL.

DR_FORCE forces the cache to refresh even if it has not expired.

DR_CHECK returns DR_EXPI R if the cache has expired. If the calling function has not
provided a refresh function and this flag is not used, DR_ERRCR is returned.

DR_| GNORE ignores cache expiration and sends out the cache entry even if it has
expired.

DR_CNTLEN supplies the Content-length header and does a
PROTOCOL_ START_RESPONSE.

DR_PROTOdOes a PROTOCOL_START RESPONSE.

Example

if(dr_net_wite(Dr, szFileNane, ilLenK, NULL, NULL, O, O, O,
DR _CNTLEN | DR_PROTO rqg, sn) == | O ERROR)

{

return(REQ EXI T);
}

fc_net_write
The fc_net _write function is used to send a header and/or footer and a file that

exists somewhere in the system. The fi | eNane should be the full path name of a
file.

Syntax

PRInt32 fc_net_wite(const char *fileNanme, const char *hdr, const
char *ftr, PRU nt32 hlen, PRU nt32 flen, PRU nt32 flags,

PRI nterval Time tineout, Session *sn, Request *rq);

332 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide « May 2001

Returns
| O_OKAY if successful.

| O_ERRORIf an error occurs.

FC_ERRORIf an error in file handling occurs.

Parameters
const char *fil eName is the file to be inserted.

const char *hdr is any header data (which can be NULL).

const char *ftr isany footer data (which can be NULL).

PRUI nt 32 hl en is the length of the header data in bytes (which can be 0).
PRUI nt 32 f1 en is the length of the footer data in bytes (which can be 0).
PRUI nt 32 f1 ags is ORed directives for this function (see Flags).

PRI nterval Ti me ti meout is the timeout before this function aborts.
Request *rq is a pointer to the request.

Sessi on *sn is a pointer to the session.

Flags

FC_CNTLEN supplies the Content-length header and does a
PROTOCOL_ START_RESPONSE.

FC_PROTOdOes a PROTOCOL_START RESPONSE.

Example

const char *fileName = "/docs/nyads/filel.ad";
char *hdr = GenHdr(); // Inplemented by plugin
char *ftr = GenFtr(); // Inplemented by plugin

if(fc_net_wite(fileNane, hdr, ftr, strlen(hdr), strlien(ftr),

FC_CNTLEN, PR_I NTERVAL_NO TI MEQUT, sn, rq) != 10 _OKEY)
{

ereport (LOG_FAILURE, "fc_net_wite() failed");

return REQ ABORTED;
}

Appendix F Dynamic Results Caching Functions 333

334 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide « May 2001

Appendix G

Alphabetical List of NSAPI Functions

CALLOC 138
cinfo_find 138
condvar_init 139
condvar_notify 140
condvar_terminate 140
condvar_wait 141
crit_enter 141

crit_exit 142

crit_init 142

crit_terminate 143

daemon_atrestart 143

fc_close 145

and Macros

335

fc_open 144
filebuf_buf2sd 145
filebuf_close 146
filebuf_getc 146
filebuf_open 147
filebuf_open_nostat 147
FREE 148

func_exec 149

func_find 149

L
log_error 150

M
magnus_atrestart 151
MALLOC 151

N

net_ip2host 152
net_read 153
net_write 153
netbuf _buf2sd 154
netbuf close 154
netbuf getc 154
netbuf_grab 155
netbuf_open 156

336 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide « May 2001

param_create 156
param_free 156
pblock_copy 157
pblock_create 158
pblock_dup 158
pblock_find 158
pblock_findval 159
pblock_free 159
pblock_nninsert 160
pblock_nvinsert 160
pblock_pb2env 161
pblock_pblock2str 161
pblock_pinsert 162
pblock_remove 162
pblock_str2pblock 163
PERM_CALLOC 164
PERM_FREE 164
PERM_MALLOC 165
PERM_REALLOC 165
PERM_STRDUP 166
prepare_nsapi_thread 167
protocol_dump822 168
protocol_set_finfo 168
protocol_start_response 169
protocol_status 170
protocol_uri2url 171

protocol_uri2url_dynamic 171

Appendix G Alphabetical List of NSAPI Functions and Macros

337

REALLOC 172
request_get vs 173
request_header 173
request_stat_path 174

request_translate_uri 175

session_dns 175
session_maxdns 176
shexp_casecmp 177
shexp_cmp 177
shexp_match 178
shexp_valid 179
STRDUP 179
system_errmsg 180
system_fclose 180
system_flock 181
system_fopenRO 181
system_fopenRW 182
system_fopenWA 182
system_fread 183
system_fwrite 183
system_fwrite_atomic 184
system_gmtime 185
system_localtime 185

system_Iseek 186

338 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide « May 2001

system_rename 187
system_ulock 187
system_unix2local 187
systhread_attach 188
systhread_current 188
systhread_getdata 189
systhread_newkey 189
systhread_setdata 190
systhread_sleep 190
systhread_start 191
systhread_timerset 191

util_can_exec 192
util_chdir2path 193
util_cookie_find 193
util_env_find 194
util_env_free 194
util_env_replace 195
util_env_str 195
util_getline 196
util_hostname 196
util_is_mozilla 197
util_is_url 197
util_itoa 198
util_later_than 198

util_sh_escape 199

Appendix G Alphabetical List of NSAPI Functions and Macros

339

util_snprintf 199
util_sprintf 200
util_strcasecmp 200
util_strftime 201
util_strncasecmp 202
util_uri_escape 202
util_uri_is_evil 203
util_uri_parse 203
util_uri_unescape 204
util_vsnprintf 204
util_vsprintf 205

vs_alloc_slot 206

vs_get_data 206
vs_get_default_httpd_object 207
vs_get_doc_root 207
vs_get_httpd_objset 208
vs_get_id 208
vs_get_mime_type 209
vs_lookup_config_var 209
vs_register_cb 210

vs_set data 210

vs_translate_uri 211

340 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide « May 2001

Appendix H

Alphabetical List of Directives in

ACLCacheLifetime 276
ACLGroupCacheSize 277
ACLUserCacheSize 277
AdminLanguage 263
AsyncDNS 264

CGlIExpirationTimeout 272
CGIStubldleTimeout 273
CGIWaitPid (UNIX Only) 273
ChildRestartCallback 281
ChunkedRequestBufferSize 280
ChunkedRequestTimeout 280
cindex-init 241

ClientLanguage 263
ConnQueueSize 266

magnus.conf

341

DefaultCharSet 263
DefaultLanguage 263
define-perf-bucket 243
DNS 264
dns-cache-init 244

E
Earlylnit 246
ErrorLog 276
ErrorLogDateFormat 275
ExtraPath 260

F
flex-init 244
flex-rotate-init 249

H

HeaderBufferSize 266
HTTPVersion 281

init-cgi 250

342 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide « May 2001

init-clf 251
init-uhome 253

I0Timeout 266

KeepAliveThreads 267
KeepAliveTimeout 267
KernelThreads 267

Latelnit 255

ListenQ 268
load-modules 253
LogFlushinterval 275
LogVerbose 275
LogVsld 275

MaxCGIStubs 273
MaxKeepAliveConnections 268
MaxProcs (Unix Only) 268
MaxRqHeaders 281
MinCGIStubs 273

MtaHost 260

Appendix H

Alphabetical List of Directives in magnus.conf

343

NativePoolMaxThreads 271
NativePoolMinThreads 271
NativePoolQueueSize 272
NativePoolStackSize 271
NetSiteRoot 260

nt-console-init 254

perf-init 255

PidLog 276

pool-init 255
PostThreadsEarly 268

RevBufSize 269
register-http-method 256
RqgThrottle 269
RgThrottleMin 269

Security 278
ServerConfigurationFile 260

ServerlID 260

344 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide « May 2001

ServerRoot 260

SndBufSize 269
SSL3SessionTimeout 281
SSLCacheEntries 278
SSLClientAuthDataLimit 278
SSLClientAuthTimeout 279
SSLSessionTimeout 279
StackSize 269

stats-init 257
StrictHttpHeaders 270

TempDir 261
TempDirSecurity 261
TerminateTimeout 270
Threadlncrement 270

thread-pool-init 258

Umask (UNIX only) 282
UseNativePoll (Unix only) 270
UseOutputStreamSize 280
User 261

Appendix H

Alphabetical List of Directives in magnus.conf

345

WincgiTimeout 274

346 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide « May 2001

Appendix |

Alphabetical List of Pre-defined SAFs

For I ni t SAFs, see Appendix H, “Alphabetical List of Directives in magnus.conf.”

add-footer 85
add-header 86
append-trailer 87

assign-name 55

basic-auth 51

basic-ncsa 52

check-acl 64

common-log 107

347

deny-existence 65

document-root 57

find-index 66
find-links 67
find-pathinfo 67
flex-log 108
force-type 78

get-client-cert 68
get-sslid 54

home-page 58

imagemap 88
index-common 89

index-simple 91

348 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide « May 2001

key-toosmall 91

list-dir 92
load-config 70

make-dir 93

nt-uri-clean 73

ntcgicheck 73

pfx2dir 58

qos-error 111
gos-handler 54
query-handler 95

record-useragent 109

Appendix |

Alphabetical List of Pre-defined SAFs

349

redirect 60

remove-dir 96
remove-file 97
rename-file 97

require-auth 74

send-cgi 98
send-error 110
send-file 100
send-range 102
send-shellcgi 103
send-wincgi 103
service-dump 104
set-default-type 79
set-virtual-index 75
shtml-hacktype 80
shtml_send 103
ssl-check 75
ssl-logout 76
stats-xml 105

strip-params 61

type-by-exp 80
type-by-extension 81

350 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide « May 2001

unix-home 61
unix-uri-clean 76

upload-file 106

Appendix | Alphabetical List of Pre-defined SAFs 351

352 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide « May 2001

A

about this book 15
acceptlanguage attribute 297, 298
acceptorthreads attribute 293
accesslog variable 289
ACL

magnus.conf directives 278

related to USERDB object 300
acl parameter 65
ACLCacheLifetime

magnus.conf directive 278
ACLFILE element 296
ACLGroupCacheSize

magnus.conf directive 279
aclids attribute 297
ACLUserCacheSize

magnus.conf directive 279
addCagilnitVars parameter 105
add-footer function 85
add-header function 86
AddLog 24

example of custom SAF 232

flow of control 42

function descriptions 108

requirements for SAFs 135

summary 30
AdminLanguage

magnus.conf directive 265

Index

alphabetical reference

magnus.conf variables 341
NSAPI functions 139
SAFs 347

API functions

CALLOC 140
cinfo_find 140
condvar_init 141
condvar_notify 142
condvar_terminate 142
condvar_wait 143
crit_enter 143

crit_exit 144

crit_init 144
crit_terminate 145
daemon_atrestart 145
dr_cache_init 329
dr_cache_refresh 329
dr_net_write 330
fc_close 147
fc_net_write 332
filebuf_buf2sd 146, 147
filebuf_close 148
filebuf_getc 148
filebuf_open 149
filebuf_open_nostat 149
FREE 150

func_exec 151
func_find 151
log_error 152

Index

353

354

MALLOC 153
net_ip2host 154
net_read 154

net_write 155
netbuf_buf2sd 155
netbuf close 156
netbuf_getc 156
netbuf_grab 157
netbuf_open 157
param_create 158
param_free 158
pblock_copy 159
pblock_create 159
pblock_dup 160
pblock_find 160
pblock_findval 161
pblock_free 161
pblock_nninsert 162
pblock_nvinsert 162
pblock_pb2env 163
pblock_pblock2str 163
pblock_pinsert 164
pblock_remove 164
pblock_str2pblock 165
PERM_FREE 166
PERM_MALLOC 166, 167, 168
PERM_STRDUP 168
prepare_nsapi_thread 169
protocol_dump822 170
protocol_set_finfo 170
protocol_start_response 171
protocol_status 172
protocol_uri2url 173
REALLOC 174
request_get_vs 175
request_header 175
request_stat_path 176
request_translate_uri 177
session_dns 177
session_maxdns 178
shexp_casecmp 179
shexp_cmp 179
shexp_match 180
shexp_valid 181
STRDUP 181
system_errmsg 182
system_fclose 182

system_flock 183
system_fopenRO 183
system_fopenRW 184
system_fopenWA 184
system_fread 185
system_fwrite 185
system_fwrite_atomic 186
system_gmtime 187
system_localtime 187
system_lseek 188
system_rename 189
system_ulock 188, 189
system_unix2local 189
systhread_attach 190
systhread_current 190
systhread_getdata 191
systhread_newkey 191
systhread_setdata 192
systhread_sleep 192
systhread_start 193
systhread_timerset 193
util_can_exec 194
util_chdir2path 194, 195
util_cookie_find 195
util_env_find 196
util_env_free 196
util_env_replace 197
util_env_str 197
util_getline 198
util_hostname 198
util_is_mozilla 199
util_is_url 199
util_itoa 200
util_later_than 200
util_sh_escape 201
util_snprintf 201
util_strcasecmp 202
util_strftime 203
util_strncasecmp 204
util_uri_escape 204
util_uri_is_evil 205
util_uri_parse 205
util_uri_unescape 206
util_vsnprintf 206
util_vsprintf 207
util-cookie_find 195
util-sprintf 202

iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide « May 2001

vs_alloc_slot 208

vs_get_data 208

vs_get_default_httpd_object 209

vs_get_doc_root 209

vs_get_httpd_objset 210

vs_get_id 210

vs_get_mime_type 211

vs_lookup_config_var 211

vs_register_ch 212

vs_set_data 212

vs_translate_uri 213
append-trailer function 87
assign-name function 56
AsyncDNS

magnus.conf directive 266
AUTH_TYPE environment variable 135
AUTH_USER environment variable 136
auth-group parameter 74
AuthTrans 24

example of custom SAF 217

flow of control 34

function descriptions 50

requirements for SAFs 133

summary 28
auth-type parameter 51, 53, 74
auth-user parameter 74

B

basedir parameter 72
basedn attribute 299
basic-auth function 51
basic-ncsa function 52
basics

of server operation 19
blocking attribute 293
bong-file parameter 65
browsers 22
bucket parameter 49
buffered streams 324
builtin SAFs 47

C

cache
enabling memory allocation pool 257
CALLOC API function 140
case sensitivity
in obj.conf 44
certificates
settings in magnus.conf 279
certmaps attribute 299
CGl
environment variables in NSAPI 135
settings in magnus.conf 274
to NSAPI conversion 135
CGl execution 252
CGIExpirationTimeout
magnus.conf directive 274
CGlStubldleTimeout
magnus.conf directive 275
CGIWaitPid
magnus.conf directive 275
charset parameter 78, 79, 81
check-acl function 64
checkFileExistence parameter 67
ChildRestartCallback
magnus.conf directive 283
chroot parameter 98
chroot variable 289
chunked encoding 281
ChunkedRequestBufferSize
magnus.conf directive 282
obj.conf Service parameter 83
ChunkedRequestTimeout
magnus.conf directive 282
obj.conf Service parameter 83
cindex-init function 243
cinfo
NSAPI data structure 309
cinfo_find API function 140
client
field in session parameter 117
getting DNS name for 306
getting IP address for 306
requests 22

Index

355

sessions and 304
CLIENT_CERT environment variable 136
clientauth attribute 295
ClientLanguage

magnus.conf directive 265
code parameter 112, 113
comments

in obj.conf 45
Common Log subsystem, initializing 253
common-log function 108
compiling

custom SAFs 121
condvar_init API function 141
condvar_notify

API function 142
condvar_terminate

API function 142
condvar_wait

API function 143
config directory

location 20
configuration files 20

location 20
configuration, dynamic 22
CONNECTIONGROUP element 293
connections attribute 297
connectons

settings in magnus.conf 266
ConnQueueSize

magnus.conf directive 268
CONTENT_LENGTH environment variable 136
CONTENT_TYPE environment variable 136
convergence tree

auxiliary class inetSubscriber 302

in LDAP schema 301

organization of 301

user entries are called inetOrgPerson 302
core SAFs 47
creating

custom SAFs 115
crit_enter

API function 143
crit_exit

API function 144

crit_init

API function 144
crit_terminate

API function 145
csd

field in session parameter 117
custom SAFs

creating 115

D

daemon_atrestart
API function 145
data structures
NSAPI reference 303
database attribute 299
day of month 317
dbm parameter 53
default
Service directive 41
default virtual server
for a connection group 293
DefaultCharSet
magnus.conf directive 265
DefaultLanguage
magnus.conf directive 265
defaultvs attribute 293
define-perf-bucket function 245
defining
custom SAFs 115
deny-existence function 65
descend parameter 71
dir parameter 59, 67, 98
dir variable 290
directives
for handling requests 25
magnus.conf 241
obj.conf 47
order of 43
SAF behavior for 132
summary for obj.conf 28
syntax in obj.conf 27

356 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide « May 2001

disable parameter 67
disable-types parameter 71

DNS
magnus.conf directive 266

DNS lookup
directives in magnus.conf 265

DNS names

getting clients 306
dns-cache-init function 246
docroot variable 289
document-root function 57
domain component tree (dc) 302
dorequest parameter 69
dotdirok parameter 73, 77
dr_cache_init

API function 329

dr_cache_refresh

API function 329
dr_net_write

API function 330
dynamic link library, loading 255
dynamic reconfiguration 22

E

enc parameter 78, 79, 81, 311
encoding

chunked 281
enforcebandwidth attribute 298
enforceconnections attribute 298
Enterprise Server

see server
environment variables

and init-cgi function 252

CGI to NSAPI conversion 135
Error directive 24

flow of control 43

function descriptions 111

requirements for SAFs 135

summary 30
error logging

settings in magnus.conf 276

ErrorLog
magnus.conf directive 276
errorlog attribute 297
ErrorLogDateFormat
magnus.conf directive 277
errors
finding most recent system error 182
sending customized messages 112, 113
escape parameter 61
examples
location in the build 216
of custom SAFs (plugins) 215
of custom SAFs in the build 216
quality of service 234
wildcard patterns 316
exec-hack parameter 80
exp parameter 81
extension parameter 73
ExtraPath
magnus.conf directive 262

F

family attribute 293
fancy indexing 243
fc_close
API function 147
fc_net_write
API function 332
file attribute
for ACLFILE element 296
for MIME element 295
file descriptor
closing 182
locking 183
opening read-only 183
opening read-write 184
opening write-append 184
reading into a buffer 185
unlocking 188, 189
writing from a buffer 185
writing without interruption 186
file 1/0 routines 129

Index

357

file name extensions
MIME types 311
object type 37

file parameter 71, 85, 86

filebuf_buf2sd
API function 146, 147

filebuf_close
API function 148

filebuf_getc

API function 148
filebuf_open

API function 149

filebuf_open_nostat
API function 149

files
mapping types of 311

find-index function 66

find-links function 67

find-pathinfo function 68
find-pathinfo-forward parameter 56, 60
flexible logging 246

flex-init function 246

flex-log function 109

flex-rotate-init function 251

flow of control 34

flushTimer parameter 83

fn argument
in directives in obj.conf 28

force-type 38
example 38

force-type function 78

forcing
object type 38

formats
time 317

forward slashes 45

FREE
API function 150

from parameter 56, 59, 61, 63, 75
func_exec

API function 151
func_find

API function 151

funcs parameter 125, 256
functions
NSAPI
reference 139
pre-defined SAFs 47
see also SAFs

G

-G option 124

GATEWAY _INTERFACE environment variable 136
get-client-cert function 68

get-sslid function 54

GMT time
getting thread-safe value 187

group parameter 98
group variable 289
groupdb parameter 51
groupfn parameter 52
grpfile parameter 53

H

hard links, finding 67
header files
nsapi.h 121, 303
header parameter 90
HeaderBufferSize
magnus.conf directive 268
headers 22
field in request parameter 118
home-page function 58
HOST environment variable 136
HTTP 22, 319
compliance with 1.1 319
registering methods 258
requests 320
responses 321
HTTP_* environment variable 136
HTTPS environment variable 136

358 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide « May 2001

HTTPS_KEYSIZE environment variable 136
HTTPS_SECRETKEYSIZE environment variable 136
HTTPVersion

magnus.conf directive 283
HUP signal

PidLog and 278
HyperText Transfer Protocol

see HTTP

id attribute
for ACLFILE element 296
for CONNECTIONGROUP element 293
for LS (Listen Socket) element 292
for MIME element 295
for USERDB element 299
for VS (Virtual Server) element 297
for VSCLASS element 296
id variable 289
imagemap function 88
include directory
for SAFs 121
index-common function 89
indexing
fancy 243
index-names parameter 66
index-simple function 91
inetOrgPerson
in convergence tree 302
Init
function descriptions 242
requirements for SAFs 133
init-cgi function 252
init-clf function 253
initializing
global settings 241
plugins 124
SAFs 124
initializing for CGI 252
init-uhome function 255
IP address

getting clients 306
ip attribute 292
iPlanet Web Server
see server
iponly function 108, 109

K

KeepAliveTimeout
magnus.conf directive 269
KernelThreads
magnus.conf directive 269
key-toosmall function 92

L

lang parameter 78, 79, 81, 311

language issues
directives in magnus.conf 264
Latelnit parameter 242
LDAP
iPlanet schema 301
specifying which certificate mapping to use 299
legacy applications
where run 291
legacyls attribute 291
line continuation 44
linking
SAFs 121
list-dir function 93
ListenQ
magnus.conf directive 270
load-config function 70
loading
custom SAFs 124
plugins 124
SAFs 124
load-modules function 255
example 125
localtime

Index 359

getting thread-safe value 187
log analyzer 108, 109
log file

analyzer for 108, 109
log file format 248
log_error

API function 152
logfileName parameter 247
LogFlushinterval

magnus.conf directive 277
logging

cookies 248

flexible 246

rotating logs 251

settings in magnus.conf 276
LogVerbose

magnus.conf directive 277
LogVsld

magnus.conf directive 277
LS (Listen Socket) element 292

M

magnus.conf 20, 241

alphabetical list of directives 341

directives in 241

miscellaneous directives 283
make-dir function 94
Makefile file 124
MALLOC

API function 153
matching

special characters 315
matchingip attribute 293
maxbps attribute 298
MaxCGIStubs

magnus.conf directive 275
maxconn attribute 298
MaxKeepAliveConnections

magnus.conf directive 270
MaxProcs

magnus.conf directive 270

MaxRgHeaders
magnus.conf directive 283
memory allocation
pool-init function 257
memory management routines 129
method parameter 69, 83
mime attribute 297
MIME element 295
MIME types 311
mime.types file 21, 311
sample of 314
syntax 313
MinCGlIStubs
magnus.conf directive 275
month name 317
MtaHost
magnus.conf directive 262

N

name attribute
in obj.conf objects 31
in objects 31
name parameter 56, 59, 63, 108, 109
NameTrans 24
example of custom SAF 219
flow of control 34
function descriptions 55
requirements for SAFs 133
summary 28
native thread pools
defining in obj.conf 260
settings in magnus.conf 273
NativePoolMaxThreads
magnus.conf directive 273
NativePoolMinThreads
magnus.conf directive 273
NativePoolQueueSize
magnus.conf directive 274
NativePoolStackSize
magnus.conf directive 273
NativeThread parameter 256, 260

360 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide « May 2001

net_ip2host
API function 154

net_read
API function 154

net_write
API function 155

netbuf_buf2sd
API function 155

netbuf _close
API function 156

netbuf_getc
API function 156

netbuf_grab
API function 157

netbuf_open
API function 157
NetSiteRoot
magnus.conf directive 262
network 170 routines 130
nice parameter 99
nice variable 290
nocache parameter 100
nostat parameter 57
NSAPI
alphabetical function reference 139
CGl environment variables 135
data structures reference 303
functions
overview 127
using 25
NSAPI functions 139
nsapi.h 121, 303
location 121
overview of data structures 303
NSCP_POOL_STACKSIZE 273
NSCP_POOL_THREADMAX 273
NSCP_POOL_WORKQUEUEMAX 273
NSIntAbsFilePath parameter 85, 87
ntcgicheck function 73
nt-console-init function 256
ntrans-base 56, 57, 60
nt-uri-clean function 72

O

obj.conf 21
adding directives for new SAFs 125
case sensitivity 44
comments 45
directive syntax 27
directives 27, 47
directives summary 28
flow of control 34
OBJECT tag 31
parameters for directives 44
processinng other objects 35
server instructions 27
syntax rules 43
use 27
OBJECT tag 31
name attribute 31
ppath attribute 31
object type
forcing 38
setting by file extension 37
objectfile attribute 296
objects
processing non-default objects 35
ObjectType 24
example of custom SAF 226
flow of control 37
function descriptions 77
requirements for SAFs 134
summary 29
order
of directives in obj.conf 43
OTimeout
magnus.conf directive 268
overview
server operation 19

P

param_create

API function 158
param_free

API function 158

Index

361

parameter block
manipulation routines 128
SAF parameter 116
parameters
for obj.conf directives 44
for SAFs 116

path name

converting Unix-style to local 189

path names 45
path parameter 59, 65, 74, 95, 111

PATH_INFO environment variable 136
PATH_TRANSLATED environment variable 136

PathCheck 24

example of custom SAF 223

flow of control 36

function descriptions 64

requirements for SAFs 134

summary 29
patterns 315
pb

SAF parameter 116
pb_entry

NSAPI data structure 306
pb_param

NSAPI data structure 306
pblock

NSAPI data structure 305

see parameter block
pblock_copy

API function 159
pblock_create

API function 159
pblock_dup

API function 160
pblock_find

API function 160
pblock_findval

API function 161
pblock_free

API function 161
pblock_nninsert

API function 162
pblock_nvinsert

API function 162

pblock_pb2env
API function 163

pblock_pblock2str

API function 163
pblock_pinsert

API function 164
pblock_remove

API function 164
pblock_str2pblock

API function 165
perf-init function 257
PERM_FREE

API function 166
PERM_MALLOC

API function 166, 167, 168
PERM_STRDUP

API function 168
pfx2dir

example 35
pfx2dir function 59
PidLog

magnus.conf directive 278
plugins

creating 115

example of new plugins 215

instructing the server to use 125

loading and initializing 124
pool-init function 257
port attribute 292
PostThreadsEarly

magnus.conf directive 270
ppath attribute

in obj.conf objects 31

in objects 32
predefined SAFs 47
preface 15
prepare_nsapi_thread

API function 169
processes

settings in magnus.conf 266
processing

non-default objects 35
protocol utility routines 128
protocol_dump822

362 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide « May 2001

API function 170

protocol_set_finfo
API function 170

protocol_start_response
API function 171

protocol_status
API function 172

protocol_uri2url
API function 173

pwfile parameter 63

Q

gos.c file 234

gosactive attribute 291

gos-error function 112

gos-handler function 54
gosmetricsinterval attribute 291
QOSPARAMS element 298
gosrecomputeinterval attribute 291

quality of service
example code 234

QUERY environment variable 137

query parameter 83

QUERY_STRING environment variable 136
guery-handler function 94

quotes 44

R

RcvBufSize

magnus.conf directive 271
readme parameter 90
REALLOC

API function 174
realm parameter 74
reason parameter 111
record-useragent function 110
redirect function 61

reference

NSAPI

functions 139

NSAPI data structures 303
register-http-method function 258
relink_36plugin file 124
REMOTE_ADDR environment variable 136
REMOTE_HOST environment variable 136
REMOTE_IDENT environment variable 136
REMOTE_USER environment variable 136
remove-dir function 95
remove-file function 96
rename-file function 97
REQ_ABORTED

init-class function failure 243

response code 119
REQ_EXIT

response code 119
REQ_NOACTION

response code 119
REQ_PROCEED

response code 119
regpb

field in request parameter 118
request

NSAPI data structure 307

SAF parameter 117
request_get_vs

API function 175
request_header

API function 175
REQUEST_METHOD environment variable 136
request_stat_path

API function 176
request_translate_uri

API function 177
request-handling process 21

flow of control 34

steps 24
request-response process 21

see request-handling process
requests

directives for handling 25

how server handles 22

Index

363

HTTP 320

methods 22

steps in handling 24
require parameter 69
require-auth function 74
responses, HTTP 321
result codes 119
results caching plugin 327
rlimit_as parameter 99
rlimit_core parameter 99
rlimit_nofile parameter 99
root parameter 58
rootobject attribute 296
rotating logs 251
rq

SAF parameter 117
rg->headers 118
rg->reqpb 118
rg->srvhdrs 118
rg->vars 118
RqThrottle

magnus.conf directive 271
RqThrottleMin

magnus.conf directive 271
rules

for editing obj.conf 43

S

SAF behavior
for each directive 132
SAFs
alphabetical list 347
compiling and linking 121
creating 115

examples of custom SAFs 215

include directory 121

Init 242

interface 116

loading and initializing 124
parameters 116

predefined 47

result codes 119
return values 119
signature 116
writing new 25
SCRIPT_NAME environment variable 136
search patterns 315
secret-keysize parameter 76
Secuity
magnus.conf directive 280
security
settings in mangus.conf 279
security attribute 292
send-cgi function 98
send-error function 111
send-file function 100
send-range function 101
send-shellcgi function 102
send-wincgi function 103
separators 44
server
flow of control 34
handling of authorization of client users 50
HUP signal 278
initialization directives in magnus.conf 241
instructions for using plugins 125
instructions in obj.conf 27
killing process of 278
modifying 19
processing non-default objects 35
request handling 22
TERM signal 278
Server Application Functions
see SAFs
SERVER element 291
server information
magnus.conf directives 261
server.dtd file 285
elements in 291
server.xml file 286
creating a secure listen socket 292
elements in 291
SERVER_NAME environment variable 136
SERVER_PORT environment variable 136
SERVER_PROTOCOL environment variable 136

364 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide ¢ May 2001

SERVER_SOFTWARE environment variable 136
SERVER_URL environment variable 137
servercertnickname attribute 294
ServerConfigurationFile
magnus.conf directive 262
ServerlD
magnus.conf directive 262
servername attribute 294
ServerRoot
magnus.conf directive 262
Service 24
default directive 41
directives for new SAFs (plugins) 126
example of custom SAF 228
examples 39
flow of control 39
function descriptions 82
requirements for SAFs 134
summary 30
service-dump function 103
session
defined 304
NSAPI data structure 304
resolving the IP address of 177, 178
SAF parameter 117
Session->client
NSAPI data structure 306
session_dns
API function 177
session_maxdns
API function 178
set-default-type function 79
set-virtual-index function 75
shared library, loading 255
shell expression
comparing (case-blind) to a string 179
comparing (case-sensitive) to a string 179, 180
validating 181
shexp_casecmp
API function 179
shexp_cmp
API function 179
shexp_match
API function 180

shexp_valid

API function 181
shlib parameter 125, 255
shmem_s

NSAPI data structure 308
shtml_send function 104
shtml-hacktype function 80
ShtmIMaxDepth parameter 105
sn

SAF parameter 117
sn->client 117
sn->csd 117
SndBufSize

magnus.conf directive 271
socket

closing 156

reading from 154

sending a buffer to 155

sending file buffer to 147

writing to 155
spaces 44
special characters 315
sprintf, see util_sprintf
srvhdrs

field in request parameter 118
SSL

settings in magnus.conf 279
SSL2

determining if enabled 294
ssl2 attribute 294
ssl2ciphers attribute 294
SSL3

determining if client authentication is performed

295

ssl3 attribute 294
SSL3SessionTimeout

magnus.conf directive 281
ssl3tlsciphers attribute 295
SSLCacheEntries

magnus.conf directive 280
ssl-check function 75
SSLClientAuthDataLimit

magnus.conf directive 280
SSLClientAuthTimeout

Index 365

magnus.conf directive 281
ssl-logout function 76
SSLPARAMS element 294
SSLSessionTimeout

magnus.conf directive 281
StackSize

magnus.conf directive 271
stat

structure 307
state attribute 297
statistic collection

settings in magnus.conf 276
stats-init function 259

STRDUP

API function 181
streams

buffered 324
StrictHttpHeaders

magnus.conf directive 272
string

creating a copy of 181
strip-params function 62
subdir parameter 63
symbolic links

finding 67
syntax

directives in obj.conf 27

for editing obj.conf 43

mime.types file 313

system_errmsg
API function 182

system_fclose
API function 182

system_flock
API function 183

system_fopenRO
API function 183

system_fopenRW
API function 184

system_fopenWA
API function 184

system_fread
API function 185

system_fwrite

API function 185
system_fwrite_atomic
API function 186

system_gmtime
API function 187

system_localtime
API function 187

system_lseek
API function 188

system_rename

API function 189
system_ulock

API function 188, 189

system_unix2local
API function 189

systhread_attach
API function 190

systhread_current
API function 190

systhread_getdata
API function 191

systhread_newkey
API function 191

systhread_setdata
API function 192

systhread_sleep
API function 192

systhread_start
API function 193

systhread_timerset
API function 193

T

TempDir
magnus.conf directive 263
TempDirSecurity
magnus.conf directive 263
TERM signal 278
TerminateTimeout
magnus.conf directive 272
thread

366 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide « May 2001

allocating a key for 191
creating 193

getting a pointer to 190
getting data belonging to 191
putting to sleep 192

setting data belonging to 192
setting interrupt timer 193

thread pools

defining in obj.conf 260

settings in magnus.conf 273
thread routines 130
ThreadlIncrement

magnus.conf directive 272
thread-pool-init function 260
threads

settings in magnus.conf 266
tildeok parameter 73
time formats 317
timefmt parameter 88
TLS

determining if enabled 295
tls attribute 295
TLS rollback

determining if enabled 295
tisrollback attribute 295
trailer parameter 88
type parameter 78, 81, 82, 311
type-by-exp function 80
type-by-extension 312
type-by-extension function 81

U

Umask

magnus.conf directive 284
unicode 131, 206
Unix user account

specifying 263
unix-home function 62
unix-uri-clean function 77
upload-file function 107
uri parameter 85, 86

URL
mapping to other servers 59
translated to file path 29
url parameter 61
urlhosts attribute 297
checking against subject pattern 300
url-prefix parameter 61
UseNativePoll
magnus.conf directive 272
UseOutputStreamSize
magnus.conf directive 282
obj.conf Service parameter 83
User
magnus.conf directive 263
user account
specifying 263
User Database Selection 300
user home directories
symbolic links and 67
user parameter 98
user variable 289
userdb parameter 51
USERDBUSERDB element 298
userfile parameter 53
userfn parameter 51

util_can_exec

API function 194
util_chdir2path

API function 194, 195
util_cookie_find

API function 195
util_env_find

API function 196

util_env_free
API function 196
util_env_replace
API function 197

util_env_str
API function 197

util_getline
API function 198

util_hostname
API function 198

util_is_mozilla

Index

367

API function 199

util_is_url
API function 199
util_itoa

API function 200
util_later_than

API function 200
util_sh_escape

API function 201
util_snprintf

API function 201
util_sprintf

API function 202
util_strcasecmp

API function 202
util_strftime 317

API function 203
util_strncasecmp

API function 204
util_uri_escape

API function 204
util_uri_is_evil

API function 205
util_uri_parse

API function 205
util_uri_unescape

API function 206
util_vsnprintf

API function 206
util_vsprintf

API function 207
utility routines 131

Vv

variables 288
evaluation 290
format of 289
referencing in obj.conf 288
substitution, where allowed 288
used in the interfaces 289

vars
field in request parameter 118

VARS element 291
Virtual Server

selection for request processing 299

virtual server routines 131
virtual-index parameter 75
VS (Virtual Server) element 297

vs_alloc_slot
API function 208

vs_get_data
API function 208

vs_get_default_httpd_object
API function 209

vs_get_doc_root
API function 209
vs_get_httpd_objset
API function 210
vs_get_id
API function 210
vs_get_mime_type
API function 211

vs_lookup_config_var
API function 211
vs_register_cb
API function 212

vs_set_data
API function 212

vs_translate_uri
API function 213

VSCLASS element 296
definition in server.dtd file 286

vsnprintf, see util_vsnprintf
vsprintf, see util_vsprintf

W

webapps_enable variable 289
webapps_file variable 289
weekday 317
wildcard patterns 315
WincgiTimeout

magnus.conf directive 276

368 iPlanet Web Server, Enterprise Edition NSAPI Programmer’s Guide « May 2001

	NSAPI Programmer’s Guide
	iPlanet Web Server, Enterprise Edition
	Contents
	About This Book 15
	Chapter�1

	Basics of Server Operation 19
	Chapter�2

	Syntax and Use of obj.conf 27
	Chapter�3

	Predefined SAFs and the Request Handling Process 47
	Chapter�4

	Creating Custom SAFs 115
	Chapter�5

	NSAPI Function Reference 139
	Chapter�6

	Examples of Custom SAFs 215
	Chapter�7

	Syntax and Use of magnus.conf 241
	Chapter�8

	Virtual Server Configuration Files 285
	Appendix�A
	Data Structure Reference 303
	Appendix�B

	MIME Types 311
	Appendix�C

	Wildcard Patterns 315
	Appendix�D

	Time Formats 317
	Appendix�E

	HyperText Transfer Protocol 319
	Appendix�F

	Dynamic Results Caching Functions 327
	Appendix�G

	Alphabetical List of NSAPI Functions and Macros 335
	Appendix�H

	Alphabetical List of Directives in magnus.conf 341
	Appendix�I

	Alphabetical List of Pre-defined SAFs 347

	About This Book
	Basics of Server Operation
	Configuration Files
	magnus.conf
	server.xml
	obj.conf
	mime.types

	Dynamic Reconfiguration
	How the Server Handles Requests from Clients
	HTTP Basics
	Steps in the Request Handling Process
	Directives for Handling Requests

	Writing New Server Application Functions

	Syntax and Use of obj.conf
	Server Instructions in obj.conf
	Summary of the Directives

	The Object Tag
	Objects that Use the name Attribute
	Object that Use the ppath Attribute

	Variables Defined in server.xml
	Flow of Control in obj.conf
	AuthTrans
	NameTrans
	How the Server Knows to Process Other Objects

	PathCheck
	ObjectType
	Setting the Type By File Extension
	Forcing the Type

	Service
	Service Examples
	Default Service Directive

	AddLog
	Error

	Syntax Rules for Editing obj.conf
	Order of Directives
	Parameters
	Case Sensitivity
	Separators
	Quotes
	Spaces
	Line Continuation
	Path Names
	Comments

	About obj.conf Directive Examples

	Predefined SAFs and the Request Handling Process
	The bucket Parameter
	AuthTrans Stage
	NameTrans Stage
	PathCheck Stage
	ObjectType Stage
	Service Stage
	AddLog Stage
	Error Stage

	Creating Custom SAFs
	The SAF Interface
	SAF Parameters
	pb (parameter block)
	sn (session)
	rq (request)

	Result Codes
	Creating and Using Custom SAFs
	Write the Source Code
	Compile and Link
	Include Directory and nsapi.h File
	Libraries
	Linker Commands and Options for Generating a Shared Object
	Additional Linker Flags
	Compiler Flags
	Compiling 3.x Plugins on AIX

	Load and Initialize the SAF
	Instruct the Server to Call the SAFs
	Reconfigure the Server
	Test the SAF

	Overview of NSAPI C Functions
	Parameter Block Manipulation Routines
	Protocol Utilities for Service SAFs
	Memory Management
	File I/O
	Network I/O
	Threads
	Utilities
	Virtual Server

	Required Behavior of SAFs for Each Directive
	Init SAFs
	AuthTrans SAFs
	NameTrans SAFs
	PathCheck SAFs
	ObjectType SAFs
	Service SAFs
	Error SAFs
	AddLog SAFs

	CGI to NSAPI Conversion

	NSAPI Function Reference
	NSAPI Functions (in Alphabetical Order)

	Examples of Custom SAFs
	Examples in the Build
	AuthTrans Example
	Installing the Example
	Source Code

	NameTrans Example
	Installing the Example
	Source Code

	PathCheck Example
	Installing the Example
	Source Code

	ObjectType Example
	Installing the Example
	Source Code

	Service Example
	Installing the Example
	Source Code
	More Complex Service Example

	AddLog Example
	Installing the Example
	Source Code

	Quality of Service Examples
	Installing the Example
	Source Code

	Syntax and Use of magnus.conf
	Init SAFs
	Server Information
	Language Issues
	DNS Lookup
	Threads, Processes and Connections
	Native Thread Pools
	CGI
	Error Logging and Statistic Collection
	ACL
	Security
	Chunked Encoding
	Miscellaneous

	Virtual Server Configuration Files
	The server.dtd File
	The server.xml File
	Variables
	Format of a Variable
	The id Variable
	Variables Used in the Interface
	Variable Evaluation

	Using the Server Manager and Class Manager

	Elements in server.dtd and server.xml
	Virtual Server Selection for Request Processing
	User Database Selection
	The iPlanet LDAP Schema
	The Convergence Tree
	The Domain Component (dc)Tree

	Data Structure Reference
	Privatization of Some Data Structures
	session
	pblock
	pb_entry
	pb_param
	Session->client
	request
	stat
	shmem_s
	cinfo

	MIME Types
	Introduction
	Determining the MIME Type
	How the Type Affects the Response
	What Does the Client Do with the MIME Type?
	Syntax of the MIME Types File
	Sample MIME Types File

	Wildcard Patterns
	Wildcard Patterns
	Wildcard Examples

	Time Formats
	HyperText Transfer Protocol
	Compliance
	Requests
	Request Method, URI, and Protocol Version
	Request Headers
	Request Data

	Responses
	HTTP Protocol Version, Status Code, and Reason Phrase
	Response Headers
	Response Data

	Buffered Streams

	Dynamic Results Caching Functions
	Alphabetical List of NSAPI Functions and Macros
	Alphabetical List of Directives in magnus.conf
	Alphabetical List of Pre-defined SAFs
	Index

