
Sun OpenSSO Enterprise 8.0
Deployment Planning Guide

Part No: 820–3746–13
February 2009

Copyright ©2010 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In particular, and without
limitation, these intellectual property rights may include one or more U.S. patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights – Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions
of the FAR and its supplements.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other
countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, the Solaris logo, the Java Coffee Cup logo, docs.sun.com, Java, and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. or its subsidiaries in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of
SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts of
Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the
Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN LOOK GUIs and otherwise comply with Sun's written license
agreements.

Products covered by and information contained in this publication are controlled by U.S. Export Control laws and may be subject to the export or import laws in
other countries. Nuclear, missile, chemical or biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export
or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied persons and specially
designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright ©2010 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Sun Microsystems, Inc. détient les droits de propriété intellectuelle relatifs à la technologie incorporée dans le produit qui est décrit dans ce document. En particulier,
et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plusieurs brevets américains ou des applications de brevet en attente aux Etats-Unis
et dans d'autres pays.

Cette distribution peut comprendre des composants développés par des tierces personnes.

Certaines composants de ce produit peuvent être dérivées du logiciel Berkeley BSD, licenciés par l'Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d'autres pays; elle est licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, le logo Solaris, le logo Java Coffee Cup, docs.sun.com, Java et Solaris sont des marques de fabrique ou des marques déposées de
Sun Microsystems, Inc., ou ses filiales, aux Etats-Unis et dans d'autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou
des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d'autres pays. Les produits portant les marques SPARC sont basés sur une architecture
développée par Sun Microsystems, Inc.

L'interface d'utilisation graphique OPEN LOOK et Sun a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît les efforts de
pionniers de Xerox pour la recherche et le développement du concept des interfaces d'utilisation visuelle ou graphique pour l'industrie de l'informatique. Sun détient
une licence non exclusive de Xerox sur l'interface d'utilisation graphique Xerox, cette licence couvrant également les licenciés de Sun qui mettent en place l'interface
d'utilisation graphique OPEN LOOK et qui, en outre, se conforment aux licences écrites de Sun.

Les produits qui font l'objet de cette publication et les informations qu'il contient sont régis par la legislation américaine en matière de contrôle des exportations et
peuvent être soumis au droit d'autres pays dans le domaine des exportations et importations. Les utilisations finales, ou utilisateurs finaux, pour des armes nucléaires,
des missiles, des armes chimiques ou biologiques ou pour le nucléaire maritime, directement ou indirectement, sont strictement interdites. Les exportations ou
réexportations vers des pays sous embargo des Etats-Unis, ou vers des entités figurant sur les listes d'exclusion d'exportation américaines, y compris, mais de manière
non exclusive, la liste de personnes qui font objet d'un ordre de ne pas participer, d'une façon directe ou indirecte, aux exportations des produits ou des services qui
sont régis par la legislation américaine en matière de contrôle des exportations et la liste de ressortissants spécifiquement designés, sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE "EN L'ETAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES OU TACITES
SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT TOUTE GARANTIE
IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE UTILISATION PARTICULIERE OU A L'ABSENCE DE CONTREFACON.

100216@23474

Contents

Preface ...15

Part I Planning the Overall Deployment .. 23

1 Seeing the Big Picture ..25
Understanding Identity and Access Management .. 25

Dealing with Widely Distributed Identity Information .. 26
Eliminating Ad Hoc Security Strategies .. 26
Reducing Operational Inefficiency .. 27
Enabling Effective Access Management .. 27

Leveraging Identity Federation .. 28
Why We Need It ... 28
How It Works ... 28
How Identity Federation Can Benefit Your Business .. 29

Securing Web Services .. 29
Web Services Security Industry Specifications ... 31
Security Infrastructure Requirements ... 32

Using Identity as a Service .. 35
Simplifying Deployment and System Administration .. 36

2 Building the Deployment Architecture ...37
Setting Deployment Goals .. 37

Security .. 38
High Availability .. 38
Scalability .. 39
Dedicated Data Stores ... 39

Examining a Single Sign-On Deployment Example ... 43

3

Identifying the Major Components ... 43
Designing the Single Sign-On Deployment Architecture ... 46

Examining a SAMLv2 Identity Federation Deployment Example .. 47
Identifying the Major Components ... 47
Designing the SAMLv2 Identity Federation Architecture .. 51

Designing the Deployment Architecture ... 52

3 Building the Implementation Plan ...53
Contacting Sun .. 53

Part II Determining Which Features to Deploy .. 55

4 Using a Policy Agent and the Client SDK to Integrate Applications with OpenSSO
Enterprise ..57
About the OpenSSO Enterprise Client SDK .. 57
About the Centralized Policy Agent Configuration .. 58
Analyzing the Deployment .. 59
Considering Assumptions, Dependencies, and Constraints ... 62
Understanding Typical Business Use Cases ... 63

Using Non-Intrusive, Policy Agent-Based Approaches to Web Resources 63
Leveraging Fat Clients, Custom Web Applications, and Enterprise JavaBeans 64
Complementing Policy Agent Functionality .. 64
Enabling Identity Federation .. 64
Enabling Web Services Security ... 65
Enabling Identity Services ... 65
Coexisting with Non-Sun Deployments ... 65

Setting Up and Configuring the Integrated Environment ... 66
Deployment Planning ... 66
Required Hardware and Software .. 66
Downloading the Client SDK ... 67
Downloading the OpenSSO Enterprise Policy Agent 3.0 ... 67

Evaluating Benefits and Tradeoffs ... 68
Benefits of Using the Client SDK ... 68
Tradeoffs Using the Client SDK ... 69
Benefits of Using a Policy Agent ... 69

Contents

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 20094

Finding More Information ... 70

5 Using the OpenSSO Enterprise Fedlet to Enable Identity Federation ...71
About the OpenSSO Enterprise Fedlet ... 71

Using The Fedlet with Multiple Identity Providers ... 72
Using an Identity Provider Discovery Service with Multiple Identity Providers 73

Analyzing the Deployment Architecture ... 77
Identity Provider-Initiated Single Sign-On .. 77
Fedlet Service Provider-Initiated Single Sign-On .. 79

Considering Deployment Assumptions, Dependencies, and Constraints 80
Assumptions and Dependencies .. 81
Constraints ... 81

Understanding Typical Business Use Cases ... 81
Saving Time and Reducing Overhead ... 81
Customizing Content Based on User Attributes .. 82

Setting Up and Configuring the Fedlet ... 83
Technical Requirements ... 83
Obtaining and Deploying the OpenSSO Fedlet Bundle .. 83

▼ To Set Up the Workflow-based Fedlet ... 84
▼ To Use the Pre-Built Fedlet ... 85
▼ To Use the Fedlet with Multiple Identity Providers ... 86
▼ To Use the Fedlet with an Identity Discovery Service .. 86

Embedding the Fedlet into Service Provider Applications ... 87
Evaluating Benefits and Tradeoffs ... 88

Benefits .. 88
Tradeoffs ... 89

Finding More Information ... 89

6 Implementing a Virtual Federation Proxy (Secure Attributes Exchange) 91
About Virtual Federation Proxy (Secure Attributes Exchange) .. 91
Analyzing the Deployment .. 93
Considering Assumptions, Dependencies, and Constraints ... 97

Assumptions ... 98
Constraints ... 98

Secure Attributes Exchange Client APIs ... 98

Contents

5

Understanding Typical Business Use Cases ... 99
Authentication at Identity Provider ... 99
Secure Attribute Exchange at the Identity Provider ... 99
Secure Attribute Exchange at the Service Provider .. 100
Global Single Logout ... 100

Setting Up and Configuring Secure Attributes Exchange .. 100
About Cryptography Type .. 101
Overview of Setup Steps .. 101

Configuring Secure Attributes Exchange ... 102
About the Software Binaries ... 102
High-level Configuration Steps .. 102

Evaluating Benefits and Tradeoffs ... 103
Benefits .. 103
Tradeoffs ... 104

7 Implementing a SAMLv2 Identity Provider Proxy ... 105
About the SAMLv2 Identity Provider Proxy Specification ... 105
About the OpenSSO Enterprise Identity Provider Proxy ... 106
Analyzing the Deployment Architecture ... 107
Considering Assumptions, Dependencies, and Constraints ... 108

Assumptions and Dependencies .. 108
Constraints ... 109

Understanding Typical Business Cases .. 109
Single Sign-On, Introduction Cookie is Not Enabled ... 109
Single Sign-On (SSO) with Introduction Cookie Enabled .. 110
Single SAMLv2 Identity Provider Proxy Logout .. 112

Setting Up and Configuring SAMLv2 Identity Provider Proxy ... 113
Setting Up a SAMLv2 Identity Provider Proxy ... 113
Configuring the SAMLv2 Identity Provider Proxy with No Introduction Cookie 113
Configuring the SAMLv2 Identity Provider Proxy with the Introduction Cookie 115

Evaluating Benefits and Tradeoffs ... 117
Benefits .. 117
Tradeoffs ... 118

Contents

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 20096

8 Using a Multi-Federation Protocol Hub ... 119
About Identity and Web Services Federation Protocols ... 119
Analyzing the Deployment .. 120
Considering Assumptions, Dependencies, and Constraints ... 121

Constraints ... 121
Assumptions and Dependencies .. 122

Understanding Typical Business Use Cases ... 122
Setting Up and Configuring a Multi-Federation Protocol Hub ... 125
Using the Sample JSP .. 125
Evaluating Benefits and Tradeoffs ... 126

9 Enabling Web Services Federation Between Active Directory Federation Service and
OpenSSO Enterprise ..127
Analyzing the Deployment Architecture ... 127
Considering Assumptions, Dependencies, and Constraints ... 130

Assumptions and Dependencies .. 130
Constraints ... 130

Understanding Typical Business Use Cases ... 130
OpenSSO Enterprise Acts as Service Provider ... 130
OpenSSO Enterprise Acts as Identity Provider .. 131

Setting up and Configuring Single Sign-On Among OpenSSO Enterprise and ADFS
Environments .. 131

Configuring OpenSSO Enterprise to Act as a Service Provider ... 132
Configuring OpenSSO Enterprise to Act as an Identity Provider .. 132

Evaluating Benefits and Tradeoffs ... 133
Benefits .. 133
Tradeoffs ... 133

Finding More Information ... 134
Specifications .. 134
Guides and Overviews ... 134
Case Study ... 134

10 Securing Web Services Using ID-WSF (Liberty Alliance Specifications) 135
About the Identity Web Services Framework .. 135
Analyzing the Deployments ... 138

Contents

7

Browser-based ID-WSF Deployment ... 138
Desktop ID-WSF Deployment ... 140

Considering Assumptions, Dependencies and Constraints .. 142
Assumptions and Dependencies .. 142
Constraints ... 143

Understanding Typical Business Use Cases ... 143
Setting Up and Configuring ID-WSF ... 145
Evaluating Benefits and Tradeoffs ... 145

Benefits .. 145
Tradeoffs ... 145

Finding More Information ... 146

11 Securing Web Services Using the Security Token Service (WS-* Specifications)147
About Web Services Security Models .. 147
About OpenSSO Enterprise Web Services Security .. 149

Security Token Service .. 149
Web Service Security Provider ... 149

Analyzing the Deployment Architecture ... 150
Understanding Typical Business Use Cases ... 154

Use Case 1 ... 155
Use Case 2 ... 156
Use Case 3 ... 158

Considering Assumptions, Dependencies, and Constraints ... 159
Assumptions and Dependencies .. 159
Constraints ... 159

Setting Up and Configuring Web Services Security Using Security Token Service 160
Evaluating Benefits and Tradeoffs ... 161

Benefits .. 161
Tradeoff ... 161

12 Enabling Single Sign-On Between Sun Identity Manager and OpenSSO Enterprise163
About Sun Identity Manager .. 163
Analyzing the Deployment Architecture ... 164
Considering the Deployment Assumptions, Dependencies, and Constraints 167

Assumptions ... 167

Contents

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 20098

Dependencies ... 168
Constraints ... 168

Understanding Typical Business Use Cases ... 169
Setting Up and Configuring Single Sign-On Between Identity Manager and OpenSSO
Enterprise ... 169
Evaluating Benefits and Tradeoffs ... 170

Benefits .. 170
Tradeoffs ... 171

Finding More Information ... 171

13 Enabling Single Sign-On Using CA SiteMinder and OpenSSO Enterprise173
About CA SiteMinder ... 173
Analyzing the Deployment Architecture Options .. 174
Considering Assumptions, Dependencies, and Constraints ... 174
Understanding Typical Business Use Cases ... 175

Simple Single Sign-On ... 175
Federated Single Sign-On ... 178

Setting Up and Configuring Single Sign-On with SiteMinder and OpenSSO Enterprise 184
Evaluating Benefits and Tradeoffs ... 185

Benefits .. 185
Tradeoffs ... 186

Finding More Information ... 186

14 Enabling Single Sign-On Using Oracle Access Manager and OpenSSO Enterprise187
About Oracle Access Manager ... 187
Analyzing the Deployment Architecture Options .. 188
Considering Assumptions, Dependencies, and Constraints ... 188
Understanding Typical Business Use Cases ... 189

Simple Single Sign-On Use Case .. 189
Federated Single Sign-On Use Cases ... 191

Setting Up and Configuring Single Sign-On Using Oracle Access Manager and OpenSSO
Enterprise ... 198
Evaluating Benefits and Tradeoffs ... 199

Benefits .. 199
Tradeoffs ... 199

Contents

9

15 Using the Embedded Configuration Data Store for OpenSSO Enterprise201
Analyzing the Deployment Architecture ... 201

Single-Server and Multiple-Servers Modes ... 202
Replication Structure ... 203
Summary of Actual Replication Test Results .. 205

Understanding Typical Business Use Cases ... 205
Considering Assumptions, Dependencies, and Constraints ... 205

Assumptions ... 205
Dependencies and Constraints .. 206

Configuring the Embedded Configuration Data Store for OpenSSO Enterprise 207
Evaluating Benefits and Tradeoffs ... 207

Benefits .. 207
Tradeoffs ... 208

Finding More Information ... 208

16 Implementing Cross-Domain Single Sign-On with Cookie Hijacking Prevention 209
About Cross-Domain Single Sign-On .. 209
The Policy Agent's Role in CDSSO .. 211

The Java EE Policy Agent's Role ... 211
The Web Policy Agent's Role in CDSSO ... 213

About Cookie Hijacking Prevention ... 214
Key Cookie Hijacking Security Issues and Solutions ... 214
OpenSSO Enterprise Session Cookies Involved in Issuing Unique SSO Tokens 216

Analyzing the Deployment Architecture ... 218
Considering Assumptions, Dependencies, and Constraints ... 218

Assumptions and Dependencies .. 218
Constraints ... 219

Understanding Typical Business Use Cases ... 219
Java EE Policy Agent Use Case 1: Accessing a Protected Resource in the Primary Domain
First .. 220
Java EE Policy Agent Use Case 2: Accessing a Protected Resource in a Non-Primary
Domain First ... 223
Web Policy Agent Use Case 1: Accessing a Protected Resource in the Primary Domain
First .. 224
Web Policy Agent Use Case 2: Accessing a Protected Resource in the Non-Primary Domain
First .. 227

Contents

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 200910

Configuring CDSSO and Cookie Hijacking Prevention .. 228
▼ To Enable CDSSO and Cookie Hijacking Prevention in Java EE Policy Agent 228
▼ To Enable CDSSO and Cookie Hijacking Prevention in the Web Policy Agent 230

Evaluating Benefits and Trade-offs ... 231

17 Configuring System Failover and Session Failover for High Availability233
About High Availability .. 233

System Failover ... 233
Session Failover .. 234
OpenSSO Enterprise Sites ... 234

Analyzing the Deployment Architecture ... 235
Understanding a Typical High-Availability Transaction .. 238

Understanding High Availability Configuration Examples ... 240
Single OpenSSO Enterprise Server Load Balancer in Single Site, No Session Failover 241
Multiple OpenSSO Enterprise Server Load Balancers in a Single Site, No Session Failover
... 243
Multiple OpenSSO Enterprise Server Load Balancers in Multiple Sites, No Session Failover
... 245
Single OpenSSO Enterprise Server Load Balancer in a Single Site with Session Failover . 248
Multiple OpenSSO Enterprise Server Load Balancers in a Single Site with Session
Failover .. 250
Multiple OpenSSO Enterprise Server Load Balancers in Multiple Sites with Session
Failover .. 253

Considering Assumptions and Dependencies ... 257
Assumptions ... 257
Using Java Message Queue Broker and Berkeley Database for Session Failover 257

Configuring OpenSSO Enterprise for High Availability .. 258
Evaluating Benefits and Trade-Offs .. 258

Benefits .. 258
Trade-Offs ... 259

18 Using the Windows Desktop Single Sign-On Authentication Module 261
About Kerberos Authentication and the SPNEGO Protocol ... 261
About the OpenSSO Windows Desktop SSO Authentication Module 262
Analyzing the Deployment Architecture ... 262
Considering Dependencies and Constraints ... 265

Contents

11

Understanding Typical Business Use Cases ... 265
Evaluating Benefits and Tradeoffs ... 265
Configuring Basic Windows Desktop SSO Authentication ... 266

Configuring a Kerberos Domain Controller on Windows or UNIX 266
▼ To Configure a UNIX Kerberos Domain Controller ... 267
▼ To Configure Windows Active Directory and Domain Controller 270

To Synchronize the OpenSSO Enterprise and Kerberos Domain Controller Clocks 272
Configuring the Domain Controller ... 272

▼ To Configure an Windows XP Workstation to Join an Active Directory Domain Controller
During Installation .. 273
To Create the Windows XP User's Local Account ... 274
To Configure an Existing Windows XP Workstation to Join an Active Directory Controller
... 274

▼ To Configure an Existing Window XP Workstation to Join a UNIX Kerberos Domain .. 274
Configuring the Browser ... 275

▼ To Configure the OpenSSO Enterprise Windows Desktop SSO Authentication Module 276
Complex Configurations .. 277

Chaining Multiple Authentication Modules .. 277
▼ To Configure Authentication Chaining .. 277
▼ To Test Authentication Chaining .. 278
▼ To Use the Windows Desktop SSO Authentication Module with a Load Balancer 278

Using the Windows Desktop SSO Authentication Module with Multiple Kerberos Domain
Controllers .. 279

Using the Debugging Tools .. 281
Network Identity Manager .. 281
kinit .. 281
klist ... 282
ktpass ... 283
ksetup .. 284

Troubleshooting Windows Desktop SSO Authentication Issues .. 286
Error Message: Unauthorized Access .. 286
Error Message: Service Login Error ... 287
LoginException: Clock skew too great .. 287
LoginException: kdc.example.com ... 288
LoginException: Client not found in Kerberos database .. 288
GSSException: Failure unspecified at GSS-API level ... 288

Contents

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 200912

Exception: Pre-authentication information was invalid ... 289
Error Message: Cannot establish context .. 289
Error Message: Authentication failed .. 290
Error Message: User has no profile in this organization .. 290
Authentication Doesn't Work with Load Balancer .. 290

19 Accessing OpenSSO from Outside a Secure Intranet .. 291
Using OpenSSO Distributed Authentication User Interface ... 291
Using a Reverse Proxy ... 293
Using Policy Agents with Reverse Proxy .. 295

Using a Single Policy Agent .. 296
Using Multiple Policy Agents ... 296

Contents

13

14

Preface

The SunTM OpenSSO Enterprise Deployment Planning Guide provides information to help you
determine which OpenSSO Enterprise features to use in your deployment. This guide contains
deployment architecture diagrams, process flow diagrams, and benefits/trade-off analysis for
various OpenSSO Enterprise features.

The following topics are contained in this Preface:

■ “Who Should Use This Guide” on page 15
■ “Before You Read This Guide” on page 16
■ “How This Guide Is Organized” on page 16
■ “Related Documentation” on page 17
■ “Searching Sun Product Documentation” on page 19
■ “Related Third-Party Web Site References” on page 19
■ “Default Paths and Directory Names” on page 21
■ “Sun Welcomes Your Comments” on page 21

Who Should Use This Guide
This guide is intended for a wide audience including: system administrators, system integrators,
and others who architect the OpenSSO Enterprise environment and deploy OpenSSO
Enterprise and related components.

■ IT professionals responsible for architecting enterprise solutions.
■ Company executives responsible for evaluating enterprise solutions and for approving IT

vendors and purchases.
■ System integrator and administrators responsible for deploying OpenSSO Enterprise and

related components.

15

Before You Read This Guide
Readers should be familiar with the following components and concepts:

■ OpenSSO Enterprise technical concepts, as described in the Sun OpenSSO Enterprise 8.0
Technical Overview

■ Deployment platform: SolarisTM, Linux, or Windows operating system
■ Web container that will run OpenSSO Enterprise, such as Sun Java System Application

Server, Sun Java System Web Server, BEA WebLogic, or IBM WebSphere Application
Server

■ Technical concepts: Lightweight Directory Access Protocol (LDAP), JavaTM technology,
JavaServer PagesTM (JSPTM) technology, HyperText Transfer Protocol (HTTP), HyperText
Markup Language (HTML), and eXtensible Markup Language (XML)

How This Guide Is Organized
This guide is organized in two parts as follows:

Part I: Planning the Overall Deployment

■ Chapter 1, “Seeing the Big Picture”
■ Chapter 2, “Building the Deployment Architecture”
■ Chapter 3, “Building the Implementation Plan”

Part II: Determining Which Features to Deploy

■ Chapter 4, “Using a Policy Agent and the Client SDK to Integrate Applications with
OpenSSO Enterprise”

■ Chapter 5, “Using the OpenSSO Enterprise Fedlet to Enable Identity Federation”
■ Chapter 6, “Implementing a Virtual Federation Proxy (Secure Attributes Exchange) ”
■ Chapter 7, “Implementing a SAMLv2 Identity Provider Proxy”
■ Chapter 8, “Using a Multi-Federation Protocol Hub”
■ Chapter 9, “Enabling Web Services Federation Between Active Directory Federation Service

and OpenSSO Enterprise”
■ Chapter 10, “Securing Web Services Using ID-WSF (Liberty Alliance Specifications)”
■ Chapter 11, “Securing Web Services Using the Security Token Service (WS-*

Specifications)”
■ Chapter 12, “Enabling Single Sign-On Between Sun Identity Manager and OpenSSO

Enterprise”
■ Chapter 13, “Enabling Single Sign-On Using CA SiteMinder and OpenSSO Enterprise”
■ Chapter 14, “Enabling Single Sign-On Using Oracle Access Manager and OpenSSO

Enterprise”
■ Chapter 15, “Using the Embedded Configuration Data Store for OpenSSO Enterprise”

Preface

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 200916

http://docs.sun.com/doc/820-3740
http://docs.sun.com/doc/820-3740

Related Documentation
Related documentation is available as follows:

■ “OpenSSO Enterprise Documentation Set” on page 17
■ “Related Product Documentation” on page 18

OpenSSO Enterprise Documentation Set
The following table describes the OpenSSO Enterprise documentation set.

TABLE P–1 OpenSSO Enterprise Documentation Set

Title Description

Sun OpenSSO Enterprise 8.0 Release Notes Describes new features, installation notes, and known issues and
limitations. The Release Notes are updated periodically after the
initial release to describe any new features, patches, or problems.

Sun OpenSSO Enterprise 8.0 Installation
and Configuration Guide

Provides information about installing and configuring OpenSSO
Enterprise including OpenSSO Enterprise server,
Administration Console only, client SDK, scripts and utilities,
Distributed Authentication UI server, and session failover.

Sun OpenSSO Enterprise 8.0 Technical
Overview

Provides an overview of how components work together to
consolidate access control functions, and to protect enterprise
assets and web-based applications. It also explains basic concepts
and terminology.

Sun OpenSSO Enterprise 8.0 Deployment
Planning Guide(This book)

(This book) Provides planning and deployment solutions for
OpenSSO Enterprise.

Deployment Example: Single Sign-On, Load
Balancing and Failover Using Sun OpenSSO
Enterprise 8.0

Provides step-by-step instructions for deploying OpenSSO
Enterprise in a single sign-on environment using load balancers
and redundant systems for high availability.

Deployment Example: SAML v2 Using Sun
OpenSSO Enterprise 8.0

Provides step-by-step instructions for deploying OpenSSO
Enterprise to achieve identity federation among an Identity
Provider and multiple Service Providers.

Sun OpenSSO Enterprise 8.0
Administration Guide

Describes how to use the OpenSSO Enterprise Administration
Console as well as how to manage user and service data using the
command-line interface (CLI).

Sun OpenSSO Enterprise 8.0
Administration Reference

Provides reference information for the OpenSSO Enterprise
command-line interface (CLI), configuration attributes, log files,
and error codes.

Preface

17

http://docs.sun.com/doc/820-3745
http://docs.sun.com/doc/820-3320
http://docs.sun.com/doc/820-3320
http://docs.sun.com/doc/820-3740
http://docs.sun.com/doc/820-3740
http://docs.sun.com/doc/820-3746
http://docs.sun.com/doc/820-3746
http://docs.sun.com/doc/820-5985
http://docs.sun.com/doc/820-5985
http://docs.sun.com/doc/820-5985
http://docs.sun.com/doc/820-5986
http://docs.sun.com/doc/820-5986
http://docs.sun.com/doc/820-3885
http://docs.sun.com/doc/820-3885
http://docs.sun.com/doc/820-3886
http://docs.sun.com/doc/820-3886

TABLE P–1 OpenSSO Enterprise Documentation Set (Continued)
Title Description

Sun OpenSSO Enterprise 8.0 Developer’s
Guide

Provides information about customizing OpenSSO Enterprise
and integrating its functionality into an organization’s current
technical infrastructure. It also provides details about the
programmatic aspects of the product and its API.

Sun OpenSSO Enterprise 8.0 C API
Reference for Application and Web Policy
Agent Developers

Provides summaries of data types, structures, and functions that
make up the public OpenSSO Enterprise C APIs.

Sun OpenSSO Enterprise 8.0 Java API
Reference

Provides information about the implementation of Java packages
in OpenSSO Enterprise.

Sun OpenSSO Enterprise 8.0 Performance
Tuning Guide

Provides information about how to tune OpenSSO Enterprise
and its related components for optimal performance.

Sun OpenSSO Enterprise 8.0 Integration
Guide

Provides information about how to integrate Sun Identity
Manager, CA SiteMinder, or Oracle Access Manager with
OpenSSO Enterprise.

Sun OpenSSO Enterprise Policy Agent 3.0
User’s Guide for J2EE Agents

Provides an overview of version 3.0 policy agents.

Related Product Documentation
The following table provides links to documentation collections for related products.

TABLE P–2 Related Product Documentation

Product Link

Sun Java System Directory Server 6.3 http://docs.sun.com/coll/1224.4

Sun Java System Web Server 7.0 Update 3 http://docs.sun.com/coll/1653.3

Sun Java System Application Server 9.1 http://docs.sun.com/coll/1343.4

Sun Java System Message Queue 4.1 http://docs.sun.com/coll/1307.3

Sun Java System Web Proxy Server 4.0.6 http://docs.sun.com/coll/1311.6

Sun Identity Manager 8.0 http://docs.sun.com/app/docs/coll/1514.5

Preface

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 200918

http://docs.sun.com/doc/820-3748
http://docs.sun.com/doc/820-3748
http://docs.sun.com/doc/820-3738
http://docs.sun.com/doc/820-3738
http://docs.sun.com/doc/820-3738
http://docs.sun.com/doc/820-3739
http://docs.sun.com/doc/820-3739
http://docs.sun.com/doc/820-3747
http://docs.sun.com/doc/820-3747
http://docs.sun.com/doc/820-4729
http://docs.sun.com/doc/820-4729
http://docs.sun.com/doc/820-4803
http://docs.sun.com/doc/820-4803
http://docs.sun.com/coll/1224.4
http://docs.sun.com/coll/1653.3
http://docs.sun.com/coll/1343.4
http://docs.sun.com/coll/1307.3
http://docs.sun.com/coll/1311.6
http://docs.sun.com/app/docs/coll/1514.5

Searching Sun Product Documentation
Besides searching Sun product documentation from the docs.sun.comSM web site, you can use a
search engine by typing the following syntax in the search field:

search-term site:docs.sun.com

For example, to search for “broker,” type the following:

broker site:docs.sun.com

To include other Sun web sites in your search (for example, java.sun.com, www.sun.com, and
developers.sun.com), use sun.com in place of docs.sun.com in the search field.

Related Third-Party Web Site References
Third-party URLs are referenced in this document and provide additional, related information.

Note – Sun is not responsible for the availability of third-party web sites mentioned in this
document. Sun does not endorse and is not responsible or liable for any content, advertising,
products, or other materials that are available on or through such sites or resources. Sun will not
be responsible or liable for any actual or alleged damage or loss caused or alleged to be caused by
or in connection with use of or reliance on any such content, goods, or services that are available
on or through such sites or resources.

Documentation, Support, and Training
The Sun web site provides information about the following additional resources:

■ Documentation (http://www.sun.com/documentation/)
■ Support (http://www.sun.com/support/)
■ Training (http://www.sun.com/training/)

Sun Welcomes Your Comments
Sun is interested in improving its documentation and welcomes your comments and
suggestions. To share your comments, go to http://docs.sun.com and click Feedback.

Preface

19

http://java.sun.com
http://www.sun.com
http://developers.sun.com
http://www.sun.com/documentation/
http://www.sun.com/support/
http://www.sun.com/training/
http://docs.sun.com

Typographic Conventions
The following table describes the typographic conventions that are used in this book.

TABLE P–3 Typographic Conventions

Typeface Meaning Example

AaBbCc123 The names of commands, files, and directories,
and onscreen computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have mail.

AaBbCc123 What you type, contrasted with onscreen
computer output

machine_name% su

Password:

aabbcc123 Placeholder: replace with a real name or value The command to remove a file is rm
filename.

AaBbCc123 Book titles, new terms, and terms to be
emphasized

Read Chapter 6 in the User's Guide.

A cache is a copy that is stored
locally.

Do not save the file.

Note: Some emphasized items
appear bold online.

Shell Prompts in Command Examples
The following table shows the default UNIX® system prompt and superuser prompt for the C
shell, Bourne shell, and Korn shell.

TABLE P–4 Shell Prompts

Shell Prompt

C shell machine_name%

C shell for superuser machine_name#

Bourne shell and Korn shell $

Bourne shell and Korn shell for superuser #

Preface

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 200920

Default Paths and Directory Names
The OpenSSO Enterprise documentation uses the following terms to represent default paths
and directory names:

TABLE P–5 Default Paths and Directory Names

Term Description

zip-root Represents the directory where the opensso_enterprise_80.zip file is
unzipped.

OpenSSO-Deploy-base Represents the deployment directory where the web container deploys the
opensso.war file.

This value varies depending on the web container. To determine the value of
OpenSSO-Deploy-base, view the file name in the .openssocfg directory, which
resides in the home directory of the user who deployed the opensso.war file. For
example, consider this scenario with Application Server 9.1 as the web container:
■ Application Server 9.1 is installed in the default directory:

/opt/SUNWappserver.

■ The opensso.war file is deployed by super user (root) on Application Server
9.1.

The .openssocfg directory is in the root home directory (/), and the file name in
.openssocfg is:

AMConfig_opt_SUNWappserver_domains_domain1_applications_j2ee-modules_opensso_

Then, the value for OpenSSO-Deploy-base is:

/opt/SUNWappserver/domains/domain1/applications/j2ee-modules/opensso

ConfigurationDirectory Represents the name of the configuration directory specified during the initial
configuration of OpenSSO Enterprise server instance using the Configurator.

The default is opensso in the home directory of the user running the
Configurator. Thus, if the Configurator is run by root, ConfigurationDirectory is
/opensso.

Sun Welcomes Your Comments
Sun is interested in improving its documentation and welcomes your comments and
suggestions.

To share your comments, go to http://docs.sun.com and click Send comments. In the online
form, provide the document title and part number. The part number is a seven-digit or
nine-digit number that can be found on the title page of the guide or at the top of the document.

Preface

21

http://docs.sun.com

For example, the title of this guide is the Sun OpenSSO Enterprise Deployment Planning Guide,
and the part number is 820-3746-10.

Preface

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 200922

Planning the Overall Deployment
■ Chapter 1, “Seeing the Big Picture”
■ Chapter 2, “Building the Deployment Architecture”
■ Chapter 3, “Building the Implementation Plan”

P A R T I

23

24

Seeing the Big Picture

Sun OpenSSO Enterprise 8.0 provides secure and centralized access control and single sign-on
(SSO) in a unified solution. OpenSSO Enterprise is one component of the Sun Identity
Management infrastructure. The Sun Identity Management infrastructure enables your
organization to manage secure access to web applications and other resources both within your
enterprise and across business-to-business (B2B) value chains.

This chapter provides an introduction to the core OpenSSO Enterprise functions that will form
your deployment. The information in this chapter is designed help you envision how OpenSSO
Enterprise can meet your business needs. Topics contained in this chapter are:

■ “Understanding Identity and Access Management” on page 25
■ “Leveraging Identity Federation” on page 28
■ “Securing Web Services” on page 29
■ “Using Identity as a Service” on page 35

Understanding Identity and Access Management
The growing number of web-enabled applications and the changing roles of different user
communities creates challenges for the modern enterprise. These challenges include
controlling access to network resources, maintaining the consistency of user identity between
different applications, and making new applications easy to manage.

Companies typically develop and implement network applications in individual silos. Each
application is deployed with its own provisioning and identity-management interfaces, and
with its own security systems. This method of deployment results in a heterogeneous
environment with no centralized management systems and no flexibility to scale as the
enterprise changes. The silo approach to deployment can negate the benefits of Internet
applications, and instead increase the costs of deployment, administration, and ownership. The
silo approach can also expose the enterprise to security risks.

1C H A P T E R 1

25

As companies deploy electronic business applications and services, management costs for
existing information technology systems escalate. Identity information and security policies are
distributed across many applications, and repositories are controlled by a variety of internal and
external groups. The need for more flexible access and stronger security is hampered by
administration redundancies. Administration redundancies can result in inconsistent identity
data across the enterprise, increased operating costs, and an ad hoc security strategy.

OpenSSO Enterprise can help to ease the problems associated with the silo approach to
deployment.

Dealing with Widely Distributed Identity Information
Environments with disparate sources of identity information have different approaches for
organizing user entries, security practices, access control, and other essential aspects of
information architecture. As complicated as internal identity issues can be, identity
management issues also extend outside the individual enterprise. Enterprises with affiliate
business and consumer relationships potentially have user populations that reach into the tens
or hundreds of millions. You can use OpenSSO Enterprise in a federated identity management
model to manage your business affiliate's users, and to ensure efficient and secure operating
policies between your company and its business partners. The enterprise must also extend
privacy and ease of use to the consumer and must consider the scalability requirements
necessary to effectively manage hundreds of millions of users

Eliminating Ad Hoc Security Strategies
When new applications are deployed without a common identity infrastructure, security
decisions are often made in an ad hoc manner by developers and system administrators.
Line-of-business managers cannot ensure that the right people see the right content at the right
time. Managers must enforce security policies centrally and apply them locally. Security policies
define how users are identified or authenticated, and also which users are authorized to access
specific information.

Some services or transactions require stronger forms of authentication than others. For some
applications, a name and password might be sufficient. Other applications, for example, those
that enable high-value financial transactions, can require increased levels of security. These
stronger levels of security can be in the form of a digital certificate and personal identification
number (PIN), depending on the information and transactions involved.

Authorization to view certain uniform resource locators (URLs) should be restricted to
different sets of users based on the users roles. When roles change, changes to privileges should
be propagated across all systems. For example, when an employee changes departments or
leaves the company, information about that user should be modified or deleted across all
accounts immediately. Inconsistent processes for account deactivation is one of the major

Understanding Identity and Access Management

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 200926

security risks that enterprises face every day. When you develop applications with your own
individual security and access controls, OpenSSO Enterprise provides a centralized security
policy and infrastructure to mitigate the risks from both internal users and external threats.

Reducing Operational Inefficiency
Scattered identity data, duplication of identity infrastructure functions across multiple
applications, and random security contribute to operational inefficiencies across the enterprise.
As companies bring new applications and services online, they often create a separate identity
infrastructure for each one. This duplication of effort increases costs, delays time to market, and
reduces revenues.

New applications must be able to leverage the identity infrastructure easily and quickly, without
affecting how existing services or systems work. As your company delivers new products and
services, you can count on OpenSSO Enterprise to update role definitions and access privileges
across multiple partners, suppliers, and customers. OpenSSO Enterprise provides an integrated
identity management infrastructure solution that delivers economies of scale that lead to better
overall operational efficiencies.

Enabling Effective Access Management
When you use OpenSSO Enterprise to extend your current infrastructure, you can bring
together disparate identity data into a managed network identity to better serve customers,
suppliers, employees, and partners.

■ For the enterprise, network identity enables employees who have single sign-on (SSO)
capability to access disparate applications, such as benefits registration and provisioning. At
the same time, network identity simplifies integration between applications, and sets
security levels across all of them.

■ For customer management, network identity can assist in capturing customer interactions.
This ensures tighter one-to-one relationships, including access to custom offerings, affinity
marketing, and data mining.

■ For the business partner, network identity helps provide integrated enterprise relationships
with reduced risk of fraudulent transactions.

Common identity infrastructures enable administrators to consolidate redundant tasks that
normally occur across many applications by multiple administrators. This consolidation of
administration makes it possible to consistently delegate management tasks to partners,
customers, and internal company departments based on business requirements. The result is an
environment that is integrated, flexible, easy to manage, and secure. Security implementations
and access control rules that are typically contained within each application can be consolidated
to provide centralized authentication and authorization to resources.

Understanding Identity and Access Management

Chapter 1 • Seeing the Big Picture 27

The transition to an intelligent applications infrastructure requires you to implement a system
that incorporates access management and user management. This implementation lets you
centralize the administration or management of user identity and security policy information
across multiple resources and enterprise applications. You can expect to respond to the
ever-changing network environments and applications with an integrated, cost-effective
solution.

Leveraging Identity Federation
Identity federation enables partner organizations to trust and share digital identities and
attributes of employees, customers, and suppliers across domains. Identity federation is the
means to providing single sign-on among partner sites.

Through identity federation, transactions involving multiple organizations can be managed
and completed using a single identity. Customers or members can access a variety of online
services through just one organization, using just one password. And employees of that
organization and its partners can be given secure, as-needed access to selected information on
partner sites. A federated identity allows a user from one federation partner to seamlessly access
resources from another partner in a secure and trusted manner.

Why We Need It
Industries such as telecommunications or financial services are eager to meet customers'
demands for online services. To meet these needs, companies seek partnerships with other
companies to deliver the widest variety of services to customers. The growing customer
demand for everything from ringtones to on-demand video, from online banking to
investments, and much more requires partners to join forces to compete successfully.

How It Works
Service providers and other companies have agreed to a common set of rules for sharing
identity information securely and privately. Identity federation is based on these standards.
They allow multiple partners to access one personal identity on multiple sites at the same time
and to authenticate that identity in order to deliver services securely. A common set of
standards allows partnerships to repeat the same information-sharing processes with every
partner. Otherwise, anytime a company wanted to create a partnership, it would have to create a
whole new set of processes, based on the prospective partner's IT infrastructure, security
policies, and other unique characteristics. This quickly becomes impossible as the number of
partners increases. But with standards, the ability to partner is infinitely scalable. Using
federation standards, organizations can create circles of trust in which a given provider at the
center of the circle, such as an wireless provider, is surrounded by and connected to a multitude
of other companies that offer value-added services the provider wants to deliver to customers.

Leveraging Identity Federation

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 200928

How Identity Federation Can Benefit Your Business
The following are ways in which OpenSSO Enterprise identity federation can create a wide
variety of new business opportunities for your company.
■ Creates new revenue streams

Identity federation means being able to create new sources of revenue by quickly meeting
customers' ever-growing demand for online services. In addition to applying a standard set
of protocols across partner domains, identity federation automates many manual processes
within a secure identity framework, helping to deliver revenue-enhancing services to
customers more quickly

■ Improves allocation of resources
Some organizations may want to outsource certain operations so that they can focus their
resources on core competencies. Identity federation enables organizations to easily turn
over such operations to partners without fear of breaching information security or privacy.

■ Reduces operational cost and complexity
Identity federation enables organizations to collaborate freely without the cost, complexity,
and limitations of compiling and sharing manual lists of users or using proprietary web
access management tools. It also makes it easier to ensure the security and privacy of shared
information.

■ Improves user experience
Identity federation promotes loyalty by enabling users such as customers, employees, and
suppliers to enjoy more services and products, more quickly and easily than ever before. In
particular, single sign-on enables an exceptional online experience, eliminating the need to
use multiple passwords for access to online services and products.

■ Enhances enterprise security
Identity federation enables employees of partner organizations use only one login. When a
user has just one password to remember, he or she is less likely to have two write down that
password, thus reducing the risk of the password being used by unauthorized entities.

Securing Web Services
Your enterprise solution must include a means for securing your web services from
unauthorized use. OpenSSO Enterprise supports web services security using the Identity Web
Services Framework (ID-WSF), part of the Liberty Specification. OpenSSO Enterprise also
supports web services security using the Secure Token Service, which is defined in the WS-*
Specification.

Web services are self-contained, modular applications that can be described, published, located,
and invoked over a network. Web services perform encapsulated business functions, ranging
from a simple request-reply to complete business process interactions. Web services based on
the following allow data and applications to interact without manual intervention:

Securing Web Services

Chapter 1 • Seeing the Big Picture 29

■ eXtensible Markup Language (XML), SOAP (previously known as Simple Object Access
Protocol), and related open standards

■ Service Oriented Architectures (SOA)

A typical Web services application consists of a service consumer, a service provider, and
optionally a registry for storing the Web services definitions. Web services are accessible over
standard Internet protocols that are independent of platforms and programming languages.
Web services technology can be implemented in a wide variety of architectures, can co-exist
with other technologies and software design approaches, and can be adopted in an evolutionary
manner without requiring major transformations to legacy applications and databases.

A number of technologies such as Remote Procedure Call (RPC) Common Object Requesting
Broker Architecture (CORBA), Microsoft Distributed Component Object Model (DCOM)
have been developed for application integration. However, the web services technology based
on XML, SOAP and HTTP(S) has been accepted as an industry standard and has seen wide
industry adoption. Interoperability has been a key reason for the success of web services because
it is based on open standards. Enhancements to web services should preserve the
interoperability and should be based on open standards.

Many of the features that make Web services attractive, including greater accessibility of data,
dynamic application-to-application connections, and relative autonomy or lack of human
intervention are at odds with traditional security models and controls. Network security
technologies such as firewalls are inadequate to protect SOAs for the following reasons:
■ SOAs are dynamic and can seldom be fully constrained to the physical boundaries of a single

network.
■ SOAP is transmitted over HyperText Transfer Protocol (HTTP), which is allowed to flow

without restriction through most firewalls.
■ Transport Layer Security technologies (like SSL/TLS) and Network Layer Security

technologies (like TLS), which are used to authenticate and encrypt Web-based messages,
are inadequate for protecting SOAP messages because they are designed to operate between
two endpoints.

■ SSL/TLS cannot accommodate Web services' inherent ability to forward messages to
multiple other Web services simultaneously.

The Web service processing model requires the ability to secure SOAP messages and XML
documents as they are forwarded along potentially long and complex chains of consumer,
provider, and intermediary services. The nature of Web services processing makes those
services subject to unique attacks, as well as variations on familiar attacks. According to WS-I,
the top threats facing Web services are:

■ Message alteration
An attacker inserts, removes or modifies information within a message to deceive the
receiver.

■ Loss of confidentiality

Securing Web Services

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 200930

Information within a message is disclosed to an unauthorized individual
■ Falsified messages

Fictitious messages that an attacker intends the receiver to believe are sent from a valid
sender.

■ Man in the middle

A third party sits between the sender and provider and forwards messages such that the two
participants are unaware, allowing the attacker to view and modify all messages

■ Principal spoofing

An attacker constructs and sends a message with credentials such that it appears to be from
a different, authorized principal

■ Forged claims

An attacker constructs a message with false credentials that appear valid to the receiver.
■ Replay of message

An attacker resends a previously sent message
■ Replay of message parts

An attacker includes portions of one or more previously sent messages in a new message
■ Denial of service.

An attacker causes the system to expend resources disproportionately such that valid
requests cannot be met.

The importance of these threats varies depending upon your company's needs and purpose. For
most companies, internal messages must be kept confidential and loss of confidentiality is a
primary concern. However, many companies offer web services to the public at large. For some
services, identity authentication is not a significant concern. For example, a web service
provider that serves information about the current weather forecast need not be concerned if a
request is from a falsified sender. Regardless, it is important to understand these threats and
what technologies are available to mitigate them.

Web Services Security Industry Specifications
OpenSSO Enterprise is based upon the following industry-recognized specifications:

■ Confidentiality of Web Service Messages Using XML Encryption

Produced by the World Wide Web Consortium (W3C). Describes a mechanism to encrypt
XML documents.

■ Web Service Authentication and Authorization Using XML Signature

Securing Web Services

Chapter 1 • Seeing the Big Picture 31

Describes Secure Assertion Markup Language (SAML) and eXtensible Access Control
Markup Language (XACML) as proposed by the Organization for Advancement of
Structured Information Standards (OASIS) group. SAML and XACML provide
mechanisms for authentication and authorization in a Web services environment.

■ Integrity of Web Service Messages Using XML SignatureProduced jointly by the W3C and the
Internet Engineering Task Force (IETF). The power of XML Signature is in it ability to
selective sign XML data.

■ Web Services (WS)-Security

Produced by OASIS. Defines a set of SOAP header extensions for end-to-end SOAP
messaging security. WS-Security supports message integrity and confidentiality by allowing
communicating partners to exchange signed encrypted messages in a web services
environment.

■ Security for Universal Description, Discovery and Integration (UDDI)

Produced by OASIS. UDDI enables web services to be easily located and subsequently
invoked. Security for UDDI enables publishers, inquirers and subscribers to authenticate
themselves and to authorize the information published in the directory.

Security Infrastructure Requirements
In a simple web service transaction, a request is sent from the Web Service Client to a Web
Service Provider through intermediaries such as load balancers and firewalls. Similarly, the
response from the Web Service Provider to the Web Service Client is also sent through the same
intermediaries. In order to protect the web service request, application-level end-to-end
security must be enabled in addition to transport-level security.

The following diagram shows a simple web service call between the Web Service Client and
Web Service Provider.

In order to secure the message, the Web Service Client must determine which security
mechanisms are required by the Web Service Provider. One solution is to pre-configure the
Web Service Client with the security requirements for Web Service Provider. Although simple,
this approach would not scale and could lead to other misconfigured Web Service Clients.

Web Service
Client

Intermediatory
Web Service

Provider

FIGURE 1–1 Simple Web Service Call

Securing Web Services

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 200932

An alternative architecture for web service security is an architecture based on Security Token
Service (STS). The Liberty Alliance Discovery Service and WS-Trust are examples. A security
token service that coordinates security-based interactions between a Web Service Client and
Web Service Provider.

First, the Web Service Provider registers its acceptable security mechanisms with the security
token service. Then, before making a call to the Web Service Provider, the Web Service Client
connects with the Security Token Service to determine the required security mechanisms. The
Web Service Client might also obtain the security tokens required by the Web Service Provider.
Before validating the incoming SOAP request, Web Service Provider checks with the security
token service to determine its security mechanisms. The following figure illustrates interactions
between the Web Service Client, Web Service Provider, and Security Token Service.

Although this security model requires the security token service, it helps in coordinating
security mechanisms between the Web Service Client and Web Service Provider. Additionally,
it enables runtime decisions for both Web Service Client and Web Service Provider. This makes
the configuration dynamic and more responsive than a static configuration. However it does
introduce the extra overhead of the Web Service Client and the Web Service Provider to
communicating with the security token service. It also introduces the complexities of
notification mechanisms when the Web Service Provider changes its security mechanisms.
Your decision to either the static or dynamic configuration of Web Service Clients must be
based on your deployment environment. The architecture proposed in this document addresses
both the scenarios.

Security Token Service
The purpose of the security token service is to orchestrate secure communications between the
Web Service Client and Web Service Provider with minimal performance penalties. The
following are required for a security token service:

Web Service
Client

Intermediatory
Web Service

Provider

Security Token
Service

FIGURE 1–2 Web Service Call with Security Token Service Enabled

Securing Web Services

Chapter 1 • Seeing the Big Picture 33

■ Interfaces that enable the Web Service Provider to manage its entry, or resource offering.
This includes interfaces that enable the Web Service Provider to store supported security
mechanisms, and optionally the service end points.

■ Interfaces that enable the Web Service Client to query for security mechanisms supported
by a Web Service Provider.

■ Interfaces that enable a Web Service Client to obtain security tokens for communicating
with the Web Service Provider.

Liberty Alliance's Discovery Service and WS-Trust are the emerging standards specifications,
and either one can play the role of the security token service. Both the specifications define the
wire protocols for the Web Service Client to query and obtain the security tokens to
communicate with the Web Service Provider. One important difference exists between the two.
The Liberty Alliance Discovery Service provides the interfaces for the Web Service Provider to
manage its entry in the secure token service. In WS-Trust specification, the WS-Trust entry is
managed by the Web Service Provider itself. The WS-Trust entry is provided to the Web Service
Client through a WS-Trust Meta-Data Exchange (MEX) Protocol.

Web Service Client
The Web Service Client which makes the web service call provides support for securing the
outgoing communication, and also validates the incoming response for Web Service Provider.
The Web Service Client security infrastructure requires the following:
■ Configurations to determine STS and credentials to authenticate and obtain WSP resource

offerings.
Optionally there should be provision to statically configure the resource offering locally

■ Interfaces to obtain WSP resource offering either from STS or optionally from the local
configuration

■ Interfaces to secure the request. This could be accomplished by calling the STS for the
security token or should be locally generated. The security token generated could be either
that of the WSC itself or it could be that of the authenticated entity (impersonalization)

■ In addition to adding the security token it should be possible to add additional attributes of
the identity, for example roles and memberships

■ Interface to validate the response received from WSP.

Two kinds of interfaces are needed at the Web Service Client. One interface is needed for
configuration and administration. One interface is used at run time for securing requests and
validating responses.

Web Service Provider
The Web Service Provider provides support for validating the incoming request, and also
secures the outgoing responses. The Web Service Provider security infrastructure requires the
following:

Securing Web Services

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 200934

■ Configuration for its supported security mechanisms. This configuration can be optionally
stored in STS, thereby providing dynamic discovery for WSCs. This is supported by Liberty
Alliance's Discovery Service, but it in the case of WS-Trust this would have to locally
configured for WS-Trust MEX calls.

■ Interfaces to authenticate the incoming request from the Web Service Client
■ After authentication, if configured, the Web Service Provider should also authorize the

request for the web service operation by calling the policy component.
■ Interfaces to secure the response back to the Web Service Client

Similar to interfaces needed by Web Service Client, the Web Service Provider also requires two
kinds of interfaces. One interface is needed for configuration, and another interface is needed
for validating requests and securing responses. Supporting a Web Service Client and Web
Service Provider security infrastructure should be accomplished in either a pluggable manner
such that it does not require reconfiguring the existing web services framework. Or it can be
accomplished programmatically by calling well-defined interfaces to secure requests and
validate responses. Additionally, the infrastructure should enable customers to easily build and
configure interoperable solutions using heterogeneous systems.

Using Identity as a Service
OpenSSO Enterprise enables you to use Identity as a Service in your environment. Identity as a
Service is a set of reusable, standardized services that provide applications with identity
management. Typically based on the service-oriented architecture (SOA), Identity as a Service
is system of discrete functional components of identity management. It is derived from the
traditional set of functionally overlapping applications such as authentication, authorization,
work flow, policy management, attribute management, provisioning, and password
management.

The Identity As A Service environment contains these simplified services and makes them
openly available to systems and applications. The services exist independently of one another,
but together comprise a foundation of identity services upon which the overall IT environment
relies. The primary advantage of Identity as a Service model is that the components can work in
an independent fashion, or can be coupled together in the manner of an Enterprise Service Bus.
Examples of Identity As a Service include:

■ Authentication and Authorization Services
■ Provisioning Services
■ Taskflow/Workflow Services
■ Role Management Services
■ Audit Services

Using Identity as a Service

Chapter 1 • Seeing the Big Picture 35

Simplifying Deployment and System Administration
Identity As a Service provides both IT and business benefits to enterprises. The IT benefits
include:

■ Easier Administration
Performing administrative tasks and adding newer tasks is simplified as appropriate
modular components can be invoked with ease.

■ Flexible Deployment Architecture
Allows deployments to effectively unify duplicate code and services and put forth a flexible
and unified services.

■ Simplified Outsourced and Federated Identity and Access Management
Allows enterprises to leverage and outsource identity management services to system
integrators and partners with core competency in the area.

Business benefits of Identity as a Service include:

■ Reduced Operational risk and Maintenance Cost
The Identity services layer is useful when adding new applications or services to an existing
deployment, reconciling different identity management solutions acquired through mergers
and acquisitions. It also allows you to centralize various Identity Management functions
such as access management, resulting in reduced operational risk.

■ Increased compliance
With all applications using the same set of auditing services, audit log aggregation, and
detection of violations of regulatory compliance, rules become easier to manage. With a
common policy framework that spans applications, Identity as a Service simplify the
management and improves the enforcement of complex segregation of duties policies.

■ More Business Insight into Identity Management
The traditional developer centric nomenclature used in identity management products has
long been found hard by common users. With prevalent use of Identity As A Service and
easy to use available interfaces, the deployments will be simpler to manage.

Using Identity as a Service

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 200936

Building the Deployment Architecture

A deployment architecture identifies the software components needed to meet your company's
enterprise requirements, showing the interrelationships among the components. This chapter
provides an overview of a typical OpenSSO Enterprise environment, and the technical
requirements you need to consider as you plan your OpenSSO Enterprise deployment
architecture.

The following topics are contained in this chapter:

■ “Setting Deployment Goals” on page 37
■ “Examining a Single Sign-On Deployment Example” on page 43
■ “Examining a SAMLv2 Identity Federation Deployment Example” on page 47
■ “Designing the Deployment Architecture” on page 52

Setting Deployment Goals
You should consider several key factors when planning OpenSSO Enterprise deployment.
These considerations generally deal with risk assessment and a growth strategy. For example:

■ How many users is your deployment expected to support, and what is your projected
growth rate?
It is critical that user growth and system usage are monitored and that this data is compared
with the projected data to ensure that the current capacity is capable of handling the
projected growth.

■ Do you have plans to add additional services that might impact the current design?
The architecture you have in place now may be optimized for your company's current
needs. Examine your future needs as well.

The following sections describe some basic functionality you should also consider when
planning your OpenSSO Enterprise deployment.

2C H A P T E R 2

37

Security
Consider the following options when you are planning for a secure internal and external
OpenSSO Enterprise environment:

■ Server-based firewalls provide an additional layer of security by locking down port-level
access to the servers. As with standard firewalls, server-based firewalls lock down incoming
and outgoing TCP/IP traffic.

■ Minimization refers to removing all unnecessary software and services from the server in
order to minimize the opportunity for exploitation of the vulnerabilities of a system.

■ A Split-DNS infrastructure has two zones that are created in one domain. One zone is used
by an organization’s internal network clients, and the other is used by external network
clients. This approach is recommended to ensure a higher level of security. The DNS servers
can also use load balancers to improved performance.

High Availability
High availability refers to a system or component in the OpenSSO Enterprise environment that
is continuously operational for a specified length of time. It is generally accomplished with
multiple host servers that appear to the user as a single highly available system. Successful
deployments strive for no single point of failure as well as for continuos availability to its users.
Different products achieve availability in different ways. For example, clustering is the use of
multiple computers to form a single, highly available system. Clustering is often crucial for the
Sun Directory Server data store. A clustered multi-master replication (MMR) server pair can
increase the availability of each master instance by ensuring availability.

In an OpenSSO Enterprise deployment that meets the minimal requirements, the single points
of failure might include:

■ OpenSSO Enterprise web container
■ Directory Server
■ JavaTM Virtual Machine (JVM)
■ Directory Server hard disk
■ OpenSSO Enterprise hard disk
■ Policy agents

Planning for high availability centers around backup and failover processing as well as data
storage and access. OpenSSO Enterprise provides session failover and SAML assertion failover
functionality. For storage, a redundant array of independent disks (RAID) is one approach. For
any system to be highly available, the parts of the system should be well-designed and
thoroughly tested before they are used. A new application program that has not been
thoroughly tested is likely to become a frequent point-of-breakdown in a production system.

Setting Deployment Goals

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 200938

Scalability
Horizontal scaling is achieved in the OpenSSO Enterprise environment by connecting multiple
host servers so they work as one unit. A load-balanced service is considered horizontally scaled
because it increases the speed and availability of the service. Vertical scaling, on the other hand,
is increasing the capacity of existing hardware by adding resources within a single host server.
The types of resources that can be scaled include CPUs, memory, and storage. Horizontal
scaling and vertical scaling are not mutually exclusive; they can work together for a deployment
solution. Typically, servers in an environment are not installed at full capacity, so vertical
scaling is used to improve performance. When a server approaches full capacity, horizontal
scaling can be used to distribute the load among other servers.

Dedicated Data Stores
OpenSSO Enterprise requires two data stores. During installation, you must specify the location
of each data store. For detailed information, see Chapter 4, “Configuring OpenSSO Enterprise
Using the GUI Configurator,” in Sun OpenSSO Enterprise 8.0 Installation and Configuration
Guide.

Configuration Data Store
The configuration data store contains information about how users are authenticated, which
resources users can access, and what information is available to applications after users are
given access to resources. You can use the OpenSSO Enterprise configuration store that is
automatically embedded in each OpenSSO Enterprise. Or you can use the Sun Directory Server
configuration data store.

User Data Store
During OpenSSO Enterprise installation, you must specify which user data store you want to
use.

OpenSSO Enterprise User Data Store Use this option when you want to store user data in
the OpenSSO Enterprise user data store.

Other User Data Store Use this option when you want to store user data in a
data store such as Sun Java System Directory Server.

OpenSSO Enterprise uses an identity repository to store user data such as users and groups.
You can use Sun Directory Server or a supported LDAPv3 compliant directory server as the
identity repository. Use the tables in this section to help you determine which user data store
meets your needs.

In the following table, a Policy Subject refers to the “who” part of the policy definition. The
Policy Subject specifies the members or entities to which the policy applies. Policy Condition

Setting Deployment Goals

Chapter 2 • Building the Deployment Architecture 39

http://docs.sun.com/doc/820-3320/gfsgz?a=view
http://docs.sun.com/doc/820-3320/gfsgz?a=view
http://docs.sun.com/doc/820-3320/gfsgz?a=view

refers to the additional restrictions with which the policy applies. Examples are a specified
window of time in a day, a specified IP address, or a specified authentication method.

TABLE 2–1 Supported Features for Various Directory Servers

OpenSSO Enterprise
Feature

Sun Directory Server
LDAPv3

Microsoft Active
Directory LDAPv3 IBM Tivoli Directory Generic LDAPv3

User Data Storage Yes Yes Yes No

Configuration Data
Storage

Yes No No No

AMSDK (legacy) Yes No No No

LDAP
Authentication

Yes Yes Yes Yes

Membership
Authentication

Yes No No No

AD Authentication Not Applicable Yes, with
limitations

Not Applicable Not Applicable

Policy Subjects and
Policy LDAP Filter
Condition

Yes Yes Yes Yes

Password Reset Yes (with OpenSSO
Enterprise SDK
only)

No No No

Account Lockout Yes No No No

Cert Authentication Yes Yes Yes Yes

MSISDN
Authentication

Yes Yes Yes Yes

Data Store
Authentication
(through LDAPv3
user store
configuration)

Yes Yes Yes Yes

User creation with
Password and
Password
Management

Yes No Yes Yes

The following table summarizes the user management operations supported through the
IDRepo interface for various user data stores. An interface has been implemented specifically

Setting Deployment Goals

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 200940

for Sun Directory Server and Microsoft Active Directory. The default implementation of this
interface can be used and supported for any LDAPv3 user repository.

TABLE 2–2 Data Stores and Supported Operations

Feature
Sun Directory
Server LDAPv3

Microsoft Active
Directory LDAPv3 IBM Tivoli Directory Generic LDAPv3 AMSDK (Legacy)

Create User Yes Yes* Yes No Yes

Modify User Yes Yes* Yes No Yes

Delete User Yes Yes* Yes No Yes

Create Role Yes No No No Yes

Modify Role Yes No No No Yes

Delete Role Yes No No No Yes

Assign Role Yes No No No Yes

Evaluate Role
for Membership

Yes No No No Yes

Create Group Yes Yes* Yes** No Yes

Modify Group Yes Yes* Yes** No Yes

Delete Group Yes Yes* Yes** No Yes

Evaluate Group
for Membership

Yes Yes* Yes** No Yes

Create Agent Yes No No No No

Delete Agent Yes No No No No

Modify Agent Yes No No No No

Federation
Attributes

Yes Yes Yes No Yes

*Some limitations exist, or additional configuration is required.

** See limitations in the next section “Additional Information About Using IBM Tivoli
Directory Server Configured as the IDRepo Data Store.”

Setting Deployment Goals

Chapter 2 • Building the Deployment Architecture 41

Additional Information About Using IBM Tivoli Directory Server Configured as
the IDRepo Data Store

IBM Tivoli Directory Server's groups can be Static, Dynamic, and Nested. However, the
OpenSSO Enterprise IDRepo framework (IDRepo DataStore) supports only the Static group. A
Static group defines each member individually using either of the following:
■ Structural ObjectClass: groupofNames, groupOfUniqueNames, accessGroup, or accessRole
■ Auxiliary ObjectClass: ibm-staticgroup or ibm-globalAdminGroup

A Static group using the Structural ObjectClass groupOfNames and groupOfUniqueNames

requires at least one member for ObjectClass groupOfNames or one uniquemember for
groupOfUniqueNames. The Static group using the ObjectClass ibm-staticgroup does not have
this requirement. The ObjectClass ibm-staticgroup is the only ObjectClass for which
members are optional; all other object classes require at least one member.

OpenSSO Enterprise supports only one ObjectClass for groups. If you choose a type of group
with an ObjectClass that requires at leas one member, then a user value must be present. This
user will automatically be added to the group when a group is created. You can remove this user
from the group afterward if you don't want this user to be a member of the group.

The value for the filter for searching of groups must the value specified by the chosen LDAP
Group ObjectClass.

Most IBM Tivoli groups require at least one member when the group is created. When a group
is created using the OpenSSO Enterprise console, no users are assigned to the group by default.
Since IBM Tivoli has this restriction, when a group is created, the default user or member
cn=auser1,dc=opensso,dc=java,dc=net is always automatically created and added to the
group.

Additional Information for Determining Which User Data Store to Use
■ Account Lockout locks a user account based on the policies defined in the Directory Server.

For example, the user account can be locked when a specified number of login failures
occurs.

■ The key difference between using a policy LDAP subject and the IDRepo interface subject is
that policy LDAP subjects don't provide caching and notification updates. The AMIdentity
Subject does provide caching an notification updates.
The policy LDAP subjects provide LDAP Organization, Role (if Sun Directory Server),
Group, and User subjects to evaluate membership of a user and determine if the user
belongs to one of these subjects. The same result can be obtained using the Identity
Repository (IDRepo) interface subject named AMIdentity Subject. This interface subject
was introduced when the product was named Access Manager 7.0. You can develop a policy
subject for a JDBC user store. Authentication also supports the JDBC repository through the
JDBC authentication module.

Setting Deployment Goals

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 200942

■ The IDRepo interface provides basic user management features for user, group, role, and
OpenSSO Enterprise policy agent entities.

This interface enables OpenSSO Enterprise to support any user repository through the
development of new plug-ins. Although limited to Sun Directory Server, Microsoft Active
Directory, and IBM Tivoli Directory today, the IDRepo interface could potentially be
expanded to include any LDAPv3 directory server such as OpenLDAP or Novel Directory
for JDBC, flat files, and so forth.

■ Prior to Access Manager 7.0, user management was supported using Access Manager object
classes and attributes in addition to using specific features from Sun Directory Server. This
support still exists through the legacy AMSDK interface. But this support is deprecated and
will be removed future releases.

Notification Support for the User Data Store
The data change in the directory server must be propagated to OpenSSO Enterprise in a timely
manner to ensure that OpenSSO Enterprise represents the correct data. The data in OpenSSO
Enterprise is updated two ways. One way is by receiving notifications from the directory
servers, and the other way is by polling the directory servers. For notification, directory servers
typically provide persistent search notifications which OpenSSO Enterprise subscribes to. For
polling, OpenSSO Enterprise provides configurable parameters to specify the intervals.
OpenSSO Enterprise supports persistent search notifications with Sun Directory Server,
Microsoft Active Directory, and IBM Tivoli Directory.

Examining a Single Sign-On Deployment Example
The most basic OpenSSO Enterprise deployment is designed to achieve single sign-on in a
secure, highly-available, and scalable environment that includes dedicated configuration and
user data stores. Keep these goals in mind as you build your deployment architecture.

Use the following deployment example to get a sense of how you can map your enterprise
requirements to a deployment architecture.

Identifying the Major Components
The following figure illustrates the most basic deployment architecture for OpenSSO Enterprise
in single sign-on environment. A list of the components that comprise the architecture follows.

Examining a Single Sign-On Deployment Example

Chapter 2 • Building the Deployment Architecture 43

Sun OpenSSO Enterprise
Two instances of OpenSSO Enterprise provide the core functionality. Each instance is
configured with its own embedded configuration data store. Configuration data includes

OpenSSO
Enterprise 2

Embedded
Configuration
Data Store 2

Distributed
Authentication

User Interface 1

Distributed
Authentication

User Interface 2

OpenSSO
Enterprise 1

Web Container J2EE Container

Protected Resource 1

Message
Queue 1

Multi-Master Replication
of User Data

Message
Queue 2

Message Queue Broker Cluster

Directory
Server 1

Embedded
Configuration
Data Store 1

Directory
Server 2

Load Balancer 3

Load Balancer 2

Load Balancer 4

Load Balancer 1

Load Balancer 5

Firewall 3

Web Policy Agent 1 J2EE Policy Agent 1

Web Container J2EE Container

Protected Resource 2

Web Policy Agent 2 J2EE Policy Agent 2

Internet

Intranet

Firewall 2

Firewall 1

FIGURE 2–1 Single Sign-On Deployment Architecture Example

Examining a Single Sign-On Deployment Example

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 200944

information about services, administrative users, realms, policies, and more. User data is
accessed through a single load balancer deployed in front of two instances of Sun Java
System Directory Server.

Distributed Authentication User Interface
The Distributed Authentication User Interface is a component of OpenSSO Enterprise that
provides a thin presentation layer for user authentication. During user authentication, the
Distributed Authentication User Interface interacts with OpenSSO Enterprise to retrieve
credentials from the user data store, thus protecting the OpenSSO Enterprise servers from
direct user access. The Distributed Authentication User Interface does not directly interact
with the user data store.

Sun Java System Directory Server
Two instances of Directory Server provide storage for the OpenSSO Enterprise user data.
Both instances of Directory Server are masters that engage in multi-master replication.
Multi-master replication allows data to be synchronized in real time between two directories,
providing high availability to the OpenSSO Enterprise layer.

Sun OpenSSO Enterprise Policy Agents 3.0
Policy agents are used to restrict access to hosted content or applications. The policy agents
intercept HTTP requests from external users and redirect the request to OpenSSO
Enterprise for authentication. Web policy agents protect any resources under the doc root of
the web container. J2EE policy agents protect a variety of hosted J2EE applications; in this
deployment, agentsample is used. The agents communicate with the OpenSSO Enterprise
instances through one of two configured load balancers.

Protected Resource Host Machines
The protected resources host machines contain the content for which access is restricted.
Towards this end, web servers, application servers and policy agents will be installed. Two
load balancers are configured in front of the host machines to balance traffic passing through
the policy agents.

Sun Java System Message Queue
OpenSSO Enterprise uses two instances of Message Queue to form a cluster for distributing
client connections and delivering messages. The Berkeley Database by Sleepycat Software,
Inc. is the session store database. When an instance of OpenSSO Enterprise goes down and
session failover is enabled, the user's session token can be retrieved from one of the Message
Queues by the available instance of OpenSSO Enterprise. This ensures that the user remains
continuously authenticated, allowing access to the protected resources without having to
reauthenticate.

Load Balancers
The load balancer hardware and software used for this deployment is BIG-IP® manufactured
by F5 Networks. They are configured for simple persistence and deployed as follows:

Distributed Authentication User Interface Load Balancer. This external-facing load
balancer exposes the remote, web-based Distributed Authentication User Interface for user
authentication and self-registration.

Examining a Single Sign-On Deployment Example

Chapter 2 • Building the Deployment Architecture 45

OpenSSO Enterprise Load Balancer. This internal-facing load balancer exposes the
web-based OpenSSO Enterprise console to internal administrators. Alternatively, internal
administrators can bypass this load balancer and log in directly.

J2EE Policy Agents Load Balancer. The load balancer in front of the J2EE policy agents
installed on the Protected Resource machines provides round-robin load balancing and a
single virtual server by balancing traffic passing through the agents.

Web Policy Agents Load Balancer. The load balancer in front of the web policy agents
installed on the Protected Resource machines provides round-robin load balancing and a
single virtual server by balancing traffic passing through the agents.

Directory Server Load Balancer. The load balancer in front of the Directory Server
instances provide round-robin load balancing and a single virtual Directory Server host
name for the instances of OpenSSO Enterprise. It detects individual Directory Server failures
and recoveries, taking failed servers off the load balancer list.

For detailed instructions on how to deploy these components, see Deployment Example: Single
Sign-On, Load Balancing and Failover Using Sun OpenSSO Enterprise 8.0.

Designing the Single Sign-On Deployment
Architecture
Once you've identified the major components you need in your environment, you can build
your deployment architecture to map to your enterprise needs. In this deployment example, the
deployment architecture is designed to meet the goals of the most basic OpenSSO Enterprise
single sign-on environment:

■ All components (including installations of OpenSSO Enterprise and Directory Server, the
Distributed Authentication User Interface, and policy agents) are redundant to achieve high
availability.

■ All components use load-balancing for session failover and high performance.
■ Each instance of OpenSSO Enterprise is installed with an embedded configuration data

store.
■ Each instance of Directory Server contains am-users to serve as the user data store.
■ The environment is configured for system failover capability, ensuring that when one

instance of OpenSSO Enterprise goes down, requests are redirected to the second instance.
■ The environment is configured for session failover capability. Session failover ensures that

when the instance of OpenSSO Enterprise where the user's session was created goes down,
the user's session token can still be retrieved from a backend session database. Thus, the user
is continuously authenticated, and does not have to log into the system again unless the
session is invalidated as a result of logout or session expiration.

Examining a Single Sign-On Deployment Example

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 200946

http://docs.sun.com/doc/820-5985
http://docs.sun.com/doc/820-5985

■ Communications to the OpenSSO Enterprise load balancer, to the Distributed
Authentication User Interface load balancer, and to the Directory Server load balancer are
in Secure Sockets Layer (SSL).

■ Policy agents are configured with a unique agent profile to authenticate to OpenSSO
Enterprise.

■ The Distributed Authentication User Interface uses a custom user profile to authenticate to
OpenSSO Enterprise instead of the default amadmin or UrlAccessAgent.

Examining a SAMLv2 Identity Federation Deployment
Example

In a deployment configured for communication using SAMLv2, a Service Provider and an
Identity Provider must be created within a circle of trust. The circle of trust enables business
providers to easily conduct cross-network transactions for an individual while protecting the
individual's identity.

Use the following deployment example to get a sense of how you can map your enterprise
requirements to a SAMLv2 Identity Federation deployment architecture.

Identifying the Major Components
■ “Identity Provider Deployment” on page 47
■ “Service Provider Deployment” on page 49

Identity Provider Deployment
An identity provider specializes in providing authentication services. As the administrating
service for authentication, an identity provider maintains and manages identity information. It
establishes trust with a service provider in order to exchange user credentials, enabling single
sign-on between the providers. Authentication by an identity provider is honored by all service
providers with whom the identity provider is partnered. The following image illustrates the
identity provider architecture in this deployment.

Examining a SAMLv2 Identity Federation Deployment Example

Chapter 2 • Building the Deployment Architecture 47

The identity provider domain in this deployment is idp-example.com. The identity provider
application represents a legacy system which relies on OpenSSO Enterprise to act as a secure
gateway through which identity information can be transferred to another application in a
different domain. This functionality is provided by the Secure Attribute Exchange feature of
OpenSSO Enterprise which uses SAMLv2 without having to deal with federation protocol and
processing.

The following list of components will be installed and configured in the Identity Provider
environment.

Sun OpenSSO Enterprise
Two instances of OpenSSO Enterprise provide the core functionality. Each instance is
created with a configuration data store. Configuration data includes information about
services, administrative users, realms, policies, and more. Two instances of Sun Java System
Application Server are installed on the OpenSSO Enterprise host machines into which the
OpenSSO Enterprise WAR is then deployed.

User data is accessed through a single load balancer deployed in front of two instances of Sun
Java System Directory Server.

OpenSSO
Enterprise 2

Embedded
Configuration
Data Store 2

OpenSSO
Enterprise 1

Multi-Master Replication
of User Data

Directory
Server 1

Embedded
Configuration
Data Store 1

Directory
Server 2

Load Balancer 2

Load Balancer 1

Internet

Replication of Configuration Data

Secure Attribute Exchange SAMLv2

Identity Provider
Application

Service
Provider

FIGURE 2–2 Identity Provider Deployment Architecture

Examining a SAMLv2 Identity Federation Deployment Example

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 200948

Sun Java System Directory Server
Two instances of Directory Server provide storage for user entries that will be created for
testing this deployment. Both instances of Directory Server are masters that engage in
multi-master replication, providing high availability to the OpenSSO Enterprise layer.

Load Balancers
The load balancer hardware and software used for this deployment is BIG-IP® manufactured
by F5 Networks. They are configured for simple persistence and deployed as follows:
■ OpenSSO Enterprise Load Balancer.

This load balancer exposes the web-based OpenSSO Enterprise console to internal
administrators. Alternatively, internal administrators can bypass this load balancer and
log in directly.

■ Directory Server Load Balancer.

The load balancer in front of the Directory Server instances provide round-robin load
balancing and a single virtual Directory Server host name. It detects individual Directory
Server failures and recoveries, taking failed servers off the load balancer list.

Service Provider Deployment
A service provider offers web-based services to an identity. This broad category can include
portals, retailers, transportation providers, financial institutions, entertainment companies,
libraries, universities, governmental agencies, and other organizations that consume identity
information for purposes of access. The following figure illustrates the Service Provider
architecture in this deployment.

Examining a SAMLv2 Identity Federation Deployment Example

Chapter 2 • Building the Deployment Architecture 49

The service provider domain in this deployment is sp-example.com. The service provider
application represents a legacy system which relies on OpenSSO Enterprise to act as a secure
gateway through which identity information can be received from the identity provider. This
functionality is provided by the Secure Attribute Exchange feature of OpenSSO Enterprise
which uses SAMLv2 without having to deal with federation protocol and processing.

The following list of components will be installed and configured using the procedures
documented in Deployment Example: SAML v2 Using Sun OpenSSO Enterprise 8.0.

Sun OpenSSO Enterprise
Two instances of OpenSSO Enterprise provide the core functionality. Each instance is
created with a configuration data store. Configuration data includes information about
services, administrative users, realms, policies, and more.

Sun Java System Directory Server
Two instances of Directory Server provide storage for user entries that will be created for
testing this deployment. User data is accessed through a single load balancer deployed in

OpenSSO
Enterprise 2

Embedded
Configuration
Data Store 2

OpenSSO
Enterprise 1

Multi-Master Replication
of User Data

Directory
Server 1

Embedded
Configuration
Data Store 1

Directory
Server 2

Load Balancer 4

Load Balancer 3

Replication of Configuration Data

SAMLv2Secure Attribute Exchange

Internet

Service Provider
Application

Identity
Provider

FIGURE 2–3 Service Provider Deployment Architecture

Examining a SAMLv2 Identity Federation Deployment Example

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 200950

http://docs.sun.com/doc/820-5986

front of two instances of Sun Java System Directory Server. Both instances of Directory
Server are masters that engage in multi-master replication, providing high availability to the
OpenSSO Enterprise layer.

Sun Java System Application Server
Two instances of Sun Java System Application Server are installed on the OpenSSO
Enterprise host machines into which the OpenSSO Enterprise WAR is then deployed.

Load Balancers
The load balancer hardware and software used for this deployment is BIG-IP® manufactured
by F5 Networks. They are deployed as follows:
■ OpenSSO Enterprise Load Balancer

This load balancer exposes the web-based OpenSSO Enterprise console to internal
administrators. Alternatively, internal administrators can bypass this load balancer and
log in directly.

■ Directory Server Load Balancer

The load balancer in front of the Directory Server instances provides round-robin load
balancing and a single virtual Directory Server host name. It detects individual Directory
Server failures and recoveries, taking failed servers off the load balancer list.

Sun OpenSSO Enterprise Policy Agents
Policy agents are used to restrict access to hosted content or applications. The policy agents
intercept HTTP requests from external users and redirect the request to OpenSSO
Enterprise for authentication. Web policy agents protect any resources under the doc root of
the web container. J2EE policy agents protect a variety of hosted J2EE applications; in this
deployment, agentsample is used. The agents communicate with the OpenSSO Enterprise
instances through the configured load balancer.

Protected Resource Host Machine
The protected resource host machine contains the content for which access is restricted.
BEA WebLogic Server and a J2EE policy agent is installed. Sun Java System Web Server a
web policy agent is also installed. Additionally, a sample JSP is installed to act as the legacy
application for purposes of demonstrating the Secure Attribute Exchange feature.

For step-by-step instructions for deploying these components as illustrated in this chapter, see
Deployment Example: SAML v2 Using Sun OpenSSO Enterprise 8.0.

Designing the SAMLv2 Identity Federation
Architecture
Once you've identified the major components you need in the Service Provider and Identity
Provider environments, you can build your deployment architecture to map to your enterprise

Examining a SAMLv2 Identity Federation Deployment Example

Chapter 2 • Building the Deployment Architecture 51

http://docs.sun.com/doc/820-5986

needs. In this deployment example, the deployment architecture is designed to achieve the most
basic OpenSSO Enterprise circle of trust. The architecture is designed to meet the following
enterprise requirements:

■ All instances of OpenSSO Enterprise are deployed behind a load balancer for
high-availability.

■ Instances of OpenSSO Enterprise acting as an identity provider are configured to work with
instances of Sun Directory Server configured as the user data store.

■ XML Signing is enabled for all SAMLv2 protocols.
■ The SAMLv2 URL end points are exposed through load balancers with SSL termination and

regeneration configuration.
■ A web policy agent and a J2EE policy agent are deployed in front of the service provider

instances of OpenSSO Enterprise; the policy agents work in single sign-on mode only.

Designing the Deployment Architecture
Once you've designed your basic deployment architecture, then you can determine which
additional OpenSSO Enterprise features you want to deploy. The chapters in Part II of this
manual are designed to help you determine which OpenSSO Enterprise features are suitable for
your enterprise. Each chapter in Part II contains the following:

■ Brief overview of an OpenSSO Enterprise feature
■ Diagram depicting the feature's role in a deployment example
■ Diagram illustrating how the feature works
■ High-level configuration requirements
■ Dependencies, constraints, benefits and tradeoffs you should consider
■ Typical business use cases

Once you've developed a deployment architecture that includes the OpenSSO Enterprise
features you need, you can proceed to develop your detailed implementation plan.

Designing the Deployment Architecture

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 200952

Building the Implementation Plan

A deployment architecture identifies the software components needed to implement a secure,
scalable, high-availability enterprise. The main purpose of a deployment architecture is to
illustrate the interrelationships among the major components in the network environment.
This Deployment Planning Guide provides information to help you evaluate OpenSSO
Enterprise solutions, and to build a deployment architecture.

An implementation plan describes both hardware and software components needed to meet
specific quality of service requirements. For example, in your network needs assessment, you
may have identified quality of service requirements based on a number of factors such as:
■ Number and types of users in your enterprise
■ Levels of access accorded to various user types
■ Geographic locations of your users
■ Usage levels and usage trends

Building an implementation plan to address such issues is beyond the scope of this Deployment
Planning Guide. To build your detailed implementation plan, you need additional system sizing
information and specific low-level implementation guidance. Contact your Sun Sales
engineering representative for more information.

Contacting Sun
■ Sun Sales Offices

Contact a Sun sales office in your area.
http://www.sun.com/contact/office_locations.jsp

■ Sun Services and Solutions
Find out about consulting, IT services, and Sun's complete technology solutions.
http://www.sun.com/contact/services_solutions.jsp

■ Sun Support Services

3C H A P T E R 3

53

http://www.sun.com/contact/office_locations.jsp
http://www.sun.com/contact/services_solutions.jsp

Get quick answers to your system support, management and service contract questions.
http://www.sun.com/contact/support.jsp

Contacting Sun

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 200954

http://www.sun.com/contact/support.jsp

Determining Which Features to Deploy
The chapters in Part II of this manual are designed to help you determine which OpenSSO
Enterprise features are suitable for your enterprise. Each chapter contains a brief overview
of an OpenSSO Enterprise feature, a deployment architecture diagram, a process flow
diagram, and high-level configuration requirements. Each chapter also describes
dependencies, constraints, benefits, tradeoffs, and typical business use cases to further help
you plan various solutions to meet your business needs.

Part II of this book contains the following chapters.

■ Chapter 4, “Using a Policy Agent and the Client SDK to Integrate Applications with
OpenSSO Enterprise”

■ Chapter 5, “Using the OpenSSO Enterprise Fedlet to Enable Identity Federation”
■ Chapter 6, “Implementing a Virtual Federation Proxy (Secure Attributes Exchange) ”
■ Chapter 7, “Implementing a SAMLv2 Identity Provider Proxy”
■ Chapter 8, “Using a Multi-Federation Protocol Hub”
■ Chapter 9, “Enabling Web Services Federation Between Active Directory Federation

Service and OpenSSO Enterprise”
■ Chapter 10, “Securing Web Services Using ID-WSF (Liberty Alliance Specifications)”
■ Chapter 11, “Securing Web Services Using the Security Token Service (WS-*

Specifications)”
■ Chapter 12, “Enabling Single Sign-On Between Sun Identity Manager and OpenSSO

Enterprise”
■ Chapter 13, “Enabling Single Sign-On Using CA SiteMinder and OpenSSO Enterprise”

P A R T I I

55

■ Chapter 14, “Enabling Single Sign-On Using Oracle Access Manager and OpenSSO
Enterprise”

■ Chapter 15, “Using the Embedded Configuration Data Store for OpenSSO Enterprise”
■ Chapter 16, “Implementing Cross-Domain Single Sign-On with Cookie Hijacking

Prevention”
■ Chapter 17, “Configuring System Failover and Session Failover for High Availability”
■ Chapter 19, “Accessing OpenSSO from Outside a Secure Intranet”

Determining Which Features to Deploy

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 200956

Using a Policy Agent and the Client SDK to
Integrate Applications with OpenSSO
Enterprise

This chapter provides a quick overview of the various ways in which new and existing
applications can be integrated with an existing OpenSSO Enterprise deployment for
Authentication, Authorization, Auditing and Single Sign-On (AAA) services, Federation, Web
Services, Web Services Security and Identity Services.

The following topics are contained in this chapter:

■ “About the OpenSSO Enterprise Client SDK” on page 57
■ “About the Centralized Policy Agent Configuration” on page 58
■ “Analyzing the Deployment” on page 59
■ “Considering Assumptions, Dependencies, and Constraints” on page 62
■ “Understanding Typical Business Use Cases” on page 63
■ “Setting Up and Configuring the Integrated Environment” on page 66
■ “Evaluating Benefits and Tradeoffs” on page 68
■ “Finding More Information” on page 70

About the OpenSSO Enterprise Client SDK
The OpenSSO Enterprise Client SDK is the core software component that enables you to
integrate OpenSSO Enterprise with other applications. The Client SDK is supplied by OpenSSO
Enterprise and provides APIs you can use to access each service hosted by the OpenSSO
Enterprise server. The following are common ways of using the Client SDK :

1. Embedded directly in the business logic of a standalone application.
2. Embedded directly in a container-hosted application such as a .Net or a J2EE application

server.
3. Embedded in the container either directly or using a container-provided security plug-in

mechanism.
4. Embedded in a proxy server installed in front of the protected application.

4C H A P T E R 4

57

OpenSSO Enterprise Policy Agents are prepackaged client software that implement options 3
and 4 above.

About the Centralized Policy Agent Configuration
The Centralized Policy Agent Configuration is new in OpenSSO Enterprise 8.0. This feature
provides a policy agent interface for managing multiple policy agent configurations from a
single, centralized place. The policy agent configurations are stored in the OpenSSO Enterprise
data store. A policy agent administrator can use either the OpenSSO Enterprise command-line
interface (CLI), or the administration console to manage stored data.

Most policy agent configuration changes are conveyed to the participating policy agents
without requiring the policy agents to be restarted. The policy agents respond to the changes
based on the nature of the updated properties.

In the Centralized Policy Agent Configuration, policy agent configurations are separated into
two sets. One set contains a few policy agent properties that are absolutely required for the
policy agent start and to initialize itself properly. A file that contains these properties remains at
the local host on which the policy agent is installed. This properties file acts as bootstrapping file
for the policy agent.

The other set of policy agent configurations contains all remaining agent configuration
properties. These configuration properties are stored either at the local policy agent host, or at a
centralized data store managed by the OpenSSO Enterprisebased on the agent configuration
repository type.

You can configure OpenSSO Enterprise to store policy agent configurations in a local
repository or in a remote repository. A local policy agent configuration repository is a property
file that contains all the policy agent configuration data. This option is supported for backward
compatibility with legacy deployments. A remote policy agent configuration repository is the
newer, more efficient option. When the policy agent configuration is stored in a remote,
centralized data store managed by the OpenSSO Enterprise server, during server startup, the
policy agent reads the bootstrapping file first to initialize itself. Then the policy agent makes an
attribute service request to the OpenSSO Enterprise server to retrieve the policy agent
configuration. The policy agent configuration returned by the OpenSSO Enterprise server
contains a property that determines the location of the policy agent configuration.

If the property value is centralized, the policy agent uses the configuration just returned. If the
property value is local, then the policy agent retrieves the remaining configuration properties
from the local policy agent configuration repository and performs its functions accordingly.

The policy agent configuration must be totally stored in either a remote repository or a local
repository. Mixed configurations are not supported.

About the Centralized Policy Agent Configuration

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 200958

Analyzing the Deployment
The following figure illustrates the deployment architecture for standards-based federated
single sign-on using federated web services among independent, trusted partners. The
OpenSSO Enterprise Client SDK pictured here includes advanced APIs to enable applications
to directly invoke federation features. These APIs are available in the OpenSSO Enterprise
Fedlet, a streamlined federation tool. For more information on the OpenSSO Enterprise Fedlet,
see Chapter 5, “Using the OpenSSO Enterprise Fedlet to Enable Identity Federation.”

IDENTITY PROVIDER SERVICE PROVIDER

OpenSSO EnterpriseContainer

Application

OpenSSO
Client SDK

OpenSSO Enterprise

Authentication
Policy
Single Sign-On
Auditing
Identity Repository
Federation
Web Services Security
Secure Token Service

Container

Application

OpenSSO Enterprise
Client SDK and Policy Agent

Application

OpenSSO
Client SDK

Container

Application

OpenSSO
Client SDK

Proxy Server

Container

Application

OpenSSO
Client SDK

Container

Application

OpenSSO Enterprise
Client SDK and Policy Agent

Application

OpenSSO
Client SDK

Proxy Server

Container

Application

OpenSSO
Client SDK

Authentication
Policy
Single Sign-On
Auditing
Identity Repository
Federation
Web Services Security
Secure Token Service

--

FIGURE 4–1 Deployment Architecture for the Client SDK in Federated Single Sign-On

Analyzing the Deployment

Chapter 4 • Using a Policy Agent and the Client SDK to Integrate Applications with OpenSSO Enterprise 59

The following figures illustrate the process flow among the OpenSSO Enterprise server, the
OpenSSO Enterprise policy agent, and the Centralized Policy Agent Configuration
components.

Analyzing the Deployment

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 200960

3.The OpenSSO Enterprise session management
service retrieves authentication information
from the Centralized Policy Agent Configuration Data.

Policy
Agent

Policy Agent
Local

Configuration
Data

OpenSSO
Enterprise

Server

Centralized
Policy Agent
Configuration

Data

Policy Agent
Bootstrap

Data

4. The OpenSSO Enterprise authentication service completes
the Policy Agent authentication and sends an SSO token
back to the Policy Agent.

1. The Policy Agent reads it bootstrapping information from the
OpenSSOAgentBootstrap.properties file.

The Policy Agent uses the OpenSSO Enterprise REST attribute
service to retrieve its configuration repository location. The REST
attribute requires the requester’s SSO token.

The authentication service calls the Identity Repository service to
retrieve the Policy Agent authentication information.

The Identity Repository service calls the service management
service (SMS).

2. The Policy Agent authenticates to the OpenSSO Enterprise
authentication service to get an SSO token.

FIGURE 4–2 Process flow for Centralized Policy Agent Configuration

Analyzing the Deployment

Chapter 4 • Using a Policy Agent and the Client SDK to Integrate Applications with OpenSSO Enterprise 61

Considering Assumptions, Dependencies, and Constraints
You must use the OpenSSO Enterprise administration console or the OpenSSO Enterprise
command—line tools to create, delete, and manage the policy agent configurations.

6. The OpenSSO Enterprise Identity
Repository service retrieves the
OpenSSO Enterprise configuration
information from the Policy Agent
Configuration repository.

8. The Policy Agent determines that its configuration is local, so it reads
the rest of its configuration from the Local Configuration repository.

Policy
Agent

Policy Agent
Local

Configuration
Data

OpenSSO
Enterprise

Server

Centralized
Policy Agent
Configuration

Data

Policy Agent
Bootstrap

Data

7. The OpenSSO Enterprise attribute service sends the Policy Agent
configuration data back to the Policy agent.

5. Using the SSO token, the Policy Agent calls the OpenSSO
Enterprise attribute service to retrieve it configuration.

The attribute service calls the Identity Repository service
to retrieve the agent configuration information.

The Policy Agent configuration contains the Policy Agent
configuration repository location.

If the location is centralized, then the Policy Agent uses the
configuration data returned from the OpenSSO REST attribute
service. The Policy Agent performs its functions as usual.

If the location is local or is not present, then go to the next step.

FIGURE 4–3 Process flow for Centralized Policy Agent Configuration (continued)

Considering Assumptions, Dependencies, and Constraints

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 200962

Understanding Typical Business Use Cases
The following are typical use cases for using Policy Agents and the Client SDK to integrate
OpenSSO Enterprise with applications in an existing deployment:

■ “Using Non-Intrusive, Policy Agent-Based Approaches to Web Resources” on page 63
■ “Leveraging Fat Clients, Custom Web Applications, and Enterprise JavaBeans” on page 64
■ “Complementing Policy Agent Functionality” on page 64
■ “Enabling Identity Federation” on page 64
■ “Enabling Web Services Security” on page 65
■ “Enabling Identity Services” on page 65
■ “Coexisting with Non-Sun Deployments” on page 65

Using Non-Intrusive, Policy Agent-Based Approaches
to Web Resources
The following are examples of capabilities that can be leveraged by using the Policy Agents to
integrate OpenSSO Enterprise with other applications:

■ Pure J2EE applications

Pure J2EE applications are deployed as WARs installed on J2EE compliant application
servers. The resources to be protected include servlets, JavaServer Pages and Enterprise
JavaBeans.

■ Apache or Sun Web Server-based web applications

These applications can be HTML pages, multimedia content, and CGIs such as PHP, Perl,
JSP, and servlets hosted on the web server.

■ .Net /IIS server-based web applications

These include .Net/ASP or ASPX applications such as Visual Basic and C#, HTML pages
and content accessible via the HTTP protocol.

■ Enterprise applications

These include SAP, Siebel, Domino, PeopleSoft, and Portal middleware.
■ Proxied applications

This use case can include all web applications deployed with a reverse proxy server in front
of it. No policy agents or added software are required be deployed on the application and its
container. A proxy is installed separately from the application, and the policy agent
installation also stays separate. Multiple applications can be proxied by the same proxy
server, enabling a single agent to protect them all.

Understanding Typical Business Use Cases

Chapter 4 • Using a Policy Agent and the Client SDK to Integrate Applications with OpenSSO Enterprise 63

Leveraging Fat Clients, Custom Web Applications, and
Enterprise JavaBeans
The following are examples of capabilities that can be leveraged by using the Client SDK to
integrate OpenSSO Enterprise with other applications:

■ Java or C /C++

Applications can be enabled to directly invoke the Client SDK for authentication,
authorization, and auditing services.

■ Password Replay

This use case is for legacy applications that require the user to submit credentials directly to
the application before access to services is allowed.

■ Application-initiated Authentication

In this use case, the authentication authority is the application itself. Once the user is
authenticated, the remaining security services such as single sign-on, policy evaluation, and
identity federation are provided by OpenSSO Enterprise.

Complementing Policy Agent Functionality
In this use case, an OpenSSO Enterprise policy agent is deployed and the Client SDK is
embedded in the application or its container. The following are ways in which this
configuration helps to complement policy agent functionality:

■ Custom service-based access control is automatically in place.
■ Policy agents can handle only URL—based policy. The Client SDK can handle various

non-URL based policies.
■ The Client SDK provides more finely-grained security control that is not possible with

policy agents alone.

Enabling Identity Federation
Companies integrate applications with OpenSSO Enterprise to implement identity federation
in various ways.

■ OpenSSO Enterprise passes attributes from an Identity Provider application to a Service
Provider. In this use case, the Identity Provider passes user attribute value pairs to the
Service Provider so the Service Provider can provide services to the user based on those
attributes.

Understanding Typical Business Use Cases

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 200964

■ OpenSSO Enterprise receives Identity Provider-asserted attributes in a Service Provider
application. In this use case the Service Provider verifies the authenticity of the attributes
asserted by the Identity Provider. The Service Provider then updates its session with those
attributes.

■ The OpenSSO Enterprise Fedlet quickly enables federation without having to install a
full-featured OpenSSO Enterprise sever at the Service Provider. In this use case, the Service
Provider can participate in Federation with an Identity Provider that does have the
full-featured OpenSSO Enterprise server installed on it.

Enabling Web Services Security
Companies integrate applications with OpenSSO Enterprise to take advantage of the following
OpenSSO Enterprise Web Services Security measures:

■ Protecting a web services provider endpoint
■ Protecting a web services client invocation

Enabling Identity Services
Applications integrated with OpenSSO Enterprise are able to consume simple OpenSSO
Enterprise services in both the SOAP/WSDL style and the REST style. OpenSSO Enterprise may
include one or more of the following:

■ Authentication
■ Authorization of an authenticated identity to access a resource
■ Retrieval of an authenticated identity's attributes
■ Logging

Coexisting with Non-Sun Deployments
Companies typically integrate OpenSSO Enterprise with non-Sun identity services for two
purposes:

■ To maintain backward compatibility with legacy applications in an existing environment
In this use case, legacy non-Sun applications for authentication, authorization, and auditing
have already been deployed and will continue to be used in the environment. OpenSSO
Enterprise is used primarily to execute federation among both legacy and future
applications. OpenSSO Enterprise may also be used for identity services when new
applications are added to the environment.

■ To facilitate complete migration from the non-Sun identity services to OpenSSO Enterprise

Understanding Typical Business Use Cases

Chapter 4 • Using a Policy Agent and the Client SDK to Integrate Applications with OpenSSO Enterprise 65

In this use case, legacy non-Sun applications for authentication, authorization. and auditing
have already been deployed. These applications must be maintained until OpenSSO
Enterprise can be deployed and tested. Once OpenSSO Enterprise is successfully deployed,
the legacy non-Sun identity services are phased out of the environment.

Setting Up and Configuring the Integrated Environment
Before you can integrate other applications with OpenSSO Enterprise, you must resolve the
following issues:
■ “Deployment Planning ” on page 66
■ “Required Hardware and Software” on page 66
■ “Downloading the Client SDK” on page 67
■ “Downloading the OpenSSO Enterprise Policy Agent 3.0” on page 67

Deployment Planning
The following steps form a very general and high-level guide to determine what approach is best
for you.

1. Determine if an OpenSSO Enterprise Policy Agent is available for the container or
application you want to use.

2. Determine if the proxy OpenSSO Enterprise Policy Agent is usable in front of the
application.

3. Determine if the application or container plug-ins that externalizes security (independent of
the application business logic) are available and pluggable. Consider using the Client SDK to
implement these plug-ins. This is how an OpenSSO Enterprise policy agent typically starts
out.

4. Determine if a signed and encrypted query, post, or XML API is applicable.
5. Determine if you need to embed the Client SDK in your application or container. The

obvious example is when “no” is the answer in the all of the four previous steps. You may
still need to use this approach if certain functionality is not supplied by an available policy
agent. An example is when you must use fine-grained, application-specific policies.

6. Consider using Server SPIs to customize the OpenSSO Enterprise server behavior to your
needs.

Required Hardware and Software
The following software components are required to integrate OpenSSO Enterprise with other
applications:
■ Sun OpenSSO Enterprise 8.0

Setting Up and Configuring the Integrated Environment

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 200966

■ Sun OpenSSO Enterprise 8.0 Client SDK
■ Sun OpenSSO Enterprise Policy Agent 3.0

Some programming effort using the OpenSSO Enterprise Client SDK is required to implement
the following business use cases:

■ “Leveraging Fat Clients, Custom Web Applications, and Enterprise JavaBeans” on page 64
■ “Complementing Policy Agent Functionality” on page 64
■ “Enabling Identity Federation” on page 64
■ “Enabling Web Services Security” on page 65

Installing and configuring an OpenSSO Enterprise Policy Agent is required to implement the
following business use cases:

■ “Using Non-Intrusive, Policy Agent-Based Approaches to Web Resources” on page 63
■ “Enabling Identity Services” on page 65
■ “Coexisting with Non-Sun Deployments” on page 65

In OpenSSO Enterprise Policy Agent 3.0 the Centralized Agent Configuration feature enables
centralized Policy Agent management. In earlier versions, the Policy Agent configuration is
local to the server being protected.

Downloading the Client SDK
Download the OpenSSO Enterprise Client SDK from the following URL:

https://opensso.dev.java.net/public/use/index.html

The OpenSSO Enterprise Client SDK is part of the opensso_enterprise_80.zip distribution,
and is present in the samples/opensso-client.zip file within that distribution. See the
README files inside the opensso-client.zip file for instructions on installing the OpenSSO
Enterprise SDK. The OpenSSO Enterprise API Javadoc is available in the
docs/opensso-public-javadocs.jar file.

Downloading the OpenSSO Enterprise Policy Agent
3.0
For download and installation information, go to the OpenSSO Enterprise Policy Agent 3.0
website at the following URL: (http://wikis.sun.com/display/OpenSSO/PolicyAgents3).

You will also find other useful articles about Policy Agent troubleshooting.

The OpenSSO Enterprise command-line interface tool ssoadmin supports the following Policy
Agent operations through it sub-commands:

Setting Up and Configuring the Integrated Environment

Chapter 4 • Using a Policy Agent and the Client SDK to Integrate Applications with OpenSSO Enterprise 67

https://opensso.dev.java.net/public/use/index.html
http://wikis.sun.com/display/OpenSSO/PolicyAgents3

■ Create a Policy Agent configuration
■ Delete a Policy Agent configuration
■ Update a Policy Agent configuration
■ List Policy Agent configurations
■ Display a Policy Agent configuration
■ Create a Policy Agent group
■ Delete a Policy Agent group
■ List agent groups
■ List Policy Agent group members
■ Add a Policy Agent to a group
■ Remove a Policy Agent from a group

The OpenSSO Enterprise administration console supports all of the above operations. The table
below summarizes the compatibility between the various versions of OpenSSO Enterprise and
the OpenSSO Enterprise Policy Agent.

TABLE 4–1 OpenSSO Enterprise Server Compatibility with OpenSSO Enterprise Policy Agents

OpenSSO Enterprise Policy Agent

OpenSSO Enterprise 8.0 (OpenSSO v1) Policy Agent 3.0, 2.2

Access Manager 7.0, 7.1 Policy Agent 3.0, 2.2

Access Manager 6.3 Policy Agent 2.2

Evaluating Benefits and Tradeoffs
The following lists may help you determine whether using the Client SDK or using a policy
agent is suitable in your environment:

■ “Benefits of Using the Client SDK” on page 68
■ “Tradeoffs Using the Client SDK” on page 69
■ “Benefits of Using a Policy Agent” on page 69

Benefits of Using the Client SDK
■ Using the Client SDK at the container or proxy server is a non-intrusive technique.
■ Using the proxy-based approach is the least intrusive of all options presented in this chapter.

The proxy-based technique does not require interaction with the application container or
machine at all. It also has the added advantage of proxying multiple applications with the
same proxy server.

Evaluating Benefits and Tradeoffs

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 200968

Tradeoffs Using the Client SDK
■ Embedding the Client SDK directly in a standalone application's business logic is an

intrusive technique.
■ Embedding the Client SDK directly in a container-hosted application is an intrusive

technique.

Benefits of Using a Policy Agent
The Centralized Policy Agent Configuration moves most of the Policy Agent configuration to
the OpenSSO Enterprise data repository. Using the Centralized Policy Agent Configuration
results in the following benefits:

■ Using Policy Agents is a less intrusive approach to application integration than embedding
the OpenSSO Enterprise Client SDK in the application.

■ Using the proxy-based approach the least intrusive of all options presented in this chapter.
The proxy-based approach does not require interaction with the application container or
host machine at all. It also has the added advantage of proxying multiple applications with
the same proxy server.

■ The Centralized Policy Agent Configuration supports all existing Policy Agent functionality
including Policy Agent installation and uninstallation options. Using this feature allows
separation between agent initialization data and agent configuration data.

■ An agent administrator can manage multiple Policy Agent configurations from one central
location, and can use either the OpenSSO Enterprise administration console or the
command-line interface to do this.

■ Any Policy Agent configuration changes are automatically conveyed to the affected agents,
and the agents react to changes accordingly based on the nature of the updated properties.
The administrator is not required to access the agent server to make this happen.

■ Most of the Policy Agent configuration properties are hot-swappable. This means that when
any Policy Agent configuration properties are changed in the centralized agent
configuration, the affected agent will use the changed property values without having to
restart itself. The Policy Agent makes calls to the OpenSSO Enterprise attribute service
periodically to retrieve its configuration data.

■ Centralized Policy Agent Configuration significantly reduces the time and resources spent
on Policy Agent configuration management and Policy Agent patching.

Evaluating Benefits and Tradeoffs

Chapter 4 • Using a Policy Agent and the Client SDK to Integrate Applications with OpenSSO Enterprise 69

Finding More Information
■ Policy Agents 3.0

http://wikis.sun.com/display/OpenSSO/PolicyAgents3

■ OpenSSO Enterprise Wiki Home
http://wikis.sun.com/display/OpenSSO

■ Download OpenSSO Software
https://opensso.dev.java.net/public/use/index.html

■ "Representational State Transfer" (REST)
By Roy Fielding, who introduced the concept in 2000
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

Finding More Information

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 200970

http://wikis.sun.com/display/OpenSSO/PolicyAgents3
http://wikis.sun.com/display/OpenSSO
https://opensso.dev.java.net/public/use/index.html
http://www.ics.uci.edu/|P5fielding/pubs/dissertation/rest_arch_style.htm

Using the OpenSSO Enterprise Fedlet to Enable
Identity Federation

The OpenSSO Enterprise Fedlet is a streamlined Service Provider implementation of SAMLv2
single sign-on (SSO) protocols. The OpenSSO Enterprise Fedlet is designed to be used by
Service Providers when a full-featured federation solution is not required, and when the
primary goals are to achieve single sign-on with an Identity Provider while also retrieving some
user attributes from the Identity Provider.

The following topics are contained in this chapter:

■ “About the OpenSSO Enterprise Fedlet ” on page 71
■ “Analyzing the Deployment Architecture” on page 77
■ “Considering Deployment Assumptions, Dependencies, and Constraints” on page 80
■ “Understanding Typical Business Use Cases” on page 81
■ “Setting Up and Configuring the Fedlet” on page 83
■ “Evaluating Benefits and Tradeoffs” on page 88
■ “Finding More Information” on page 89

About the OpenSSO Enterprise Fedlet
The OpenSSO Enterprise Fedlet is compliant with SAMLv2 standards so you can embed the
Fedlet in a J2EE web application. You can embed the Fedlet SDK into a Service Provider
application, and enable the application to accept SAML POSTs from an Identity Provider. The
application can then use the Fedlet SDK to pull user attributes into the Service Provider
application. The user attributes become part of the SAML Response from the Identity Provider.
After the user has successfully authenticated to the Identity Provider, the Identity Provider
sends the SAML Response to the Fedlet .

The following figures illustrates how OpenSSO Enterprise, as the Identity Provider, determines
which user attributes to include in the SAMLv2 Response to the Service Provider.

5C H A P T E R 5

71

Using The Fedlet with Multiple Identity Providers
You can install multiple Fedlet instances at the Service Provider so that each Fedlet instance
talks to a different Identity Provider. Or you can deploy a single OpenSSO Enterprise instance
at the Service Provider.

START

Check Fedlet
extended metadata

Does extended
metadata for Fedlet

specify attribute-
mapping?

Select
attributes

specified by
IDP metadata

Select
attributes

specified by
Fedlet metadata

Insert user
attributes into

SAML
Response

No merge takes place between
attributes specified by IDP
metadata and Fedlet metadata

No Yes

END

FIGURE 5–1 OpenSSO Enterprise Determines Which User Attributes to Include in the SAML Response

About the OpenSSO Enterprise Fedlet

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 200972

If you want to install multiple Fedlet instances so that each Fedlet instance talks to a different
Identity Provider, use caution with this approach. Consider the following example. A ringtone
provider acts as a Service Provider and conducts business with multiple telecommunications
companies. Each telecommunications company acts as its own Identity Provider. The Service
Provider might have to deploy multiple instances of its Ringtone Application, each with its own
Fedlet instance. Each Fedlet instance would communicate with a different telecommunications
company Identity Provider. The result is that each Identity Provider would be using a different
instance of the Ringtone Application.

Consider another example. The Fedlet is deployed on Sun Application Server, and the Fedlet
home-directory is configured in the Application Server domain configuration file, domain.xml.
So for each new Fedlet instance, a new Application Server domain must be set up, and an
instance of the Ringtone Application must be deployed on this new Application Server domain.
Now the Service Provider has to maintain two Application Server domains for the same
Ringtone Application. This presents two possibilities. One possibility is that the same Ringtone
Application is run on different ports for different Identity Providers. The second possibility is
that the same Ringtone Application is run on the same port on different machines. This could
also translate into different Ringtone Application URLs that each Identity Provider will use with
the Service Provider. Or the Service Provider would have to implement some logic to route to
the correct Ringtone Application based on the particular Identity Provider requesting it.

Using an Identity Provider Discovery Service with
Multiple Identity Providers
The Fedlet supports multiple Identity Providers. Additionally, the Fedlet supports the use of a
separate Identity Provider Discovery Service to allow the user to select a preferred Identity
Provider to authenticate against. When configured this way, the Identity Provider Discovery
Service will remember the user's preferred Identity Provider, and communicate this to the
Fedlet. The Fedlet will then be able to determine which Identity Provider to have the user
authenticate to. You can deploy an OpenSSO Enterprise instance as an Identity Provider
Discovery Service. However, the Fedlet can work with any Identity Provider Discovery Service.
The figure below illustrates the process flow in a Fedlet deployment when the Identity Provider
Discovery Service is used to set the user's preferred Identity Provider.

About the OpenSSO Enterprise Fedlet

Chapter 5 • Using the OpenSSO Enterprise Fedlet to Enable Identity Federation 73

1. User accesses
the Fedlet.

User Fedlet
Preferred
Identity
Provider

Identity Provider
Discovery
Service

2. The Fedlet asks user to select an Identity Provider
as the preferred Identity Provider from the list of
configured Identity Providers.

3. User selects his preferred Identity Provider from
the list of configured Identity Providers; an http parameter
Identity ProviderEntityID gets set with the
selected Identity Provider.

9. The browser follows the redirect to the Discovery Service’s Writer URL.

11. The Identity Provider redirects the user track to the Fedlet.

5. The browser follows the redirect to the selected Identity Provider.

7. The user enters his or her credentials for login to the Identity Provider.

6. If the user is not logged into the Identity Provider,
the Identity Provder presents the login page.

8. The Identity Provider logs the user in, and forwards the request to the
Discovery Service’s Writer URL.

12. The user accesses the Fedlet; the cookie has been
set that identifies his preferred Identity Provider.

4. The Fedlet forwards the user to the Identity Provider
specified in the Identity ProviderEntityID parameter.

10. The Discovery Service’s SAML Writer sets a
cookie _saml_Identity Provider with the
Identity Provider’s entity-id.

FIGURE 5–2 Identity Provider Discover Services is Set to User's Preferred Identity Provider

About the OpenSSO Enterprise Fedlet

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 200974

The following figure illustrates the process flow in a Fedlet deployment when the Identity
Provider Discovery Service is used to retrieve the user's preferred Identity Provider.

About the OpenSSO Enterprise Fedlet

Chapter 5 • Using the OpenSSO Enterprise Fedlet to Enable Identity Federation 75

1. User accesses
the Fedlet.

User Fedlet
Preferred
Identity
Provider

Identity Provider
Discovery
Service

2. The Fedlet forwards the user request to the Discovery Service’s Reader URL.

3. The browser follows the redirect to the Discovery Service’s Reader URL.

10. The browser follows the redirect to the Discovery Service’s Writer URL.

12. The Identity Provider redirects the user track to the Fedlet.

6. The browser follows the redirect to the preferred Identity Provider.

8. The user enters his or her credentials to log into the Identity Provider.

7. If the user is not logged into the Identity Provider,
the Identity Provder presents the main page.

9. The Identity Provider logs the user in and forwards the request to the
Discovery Service Writer URL.

13. The user accesses the Fedlet.

5. The Fedlet redirects
the user to the preferred
Identity Provider.

4. The Discovery Service’s SAML Reader
extracts the entity-id of the preferred Identity
Provider from the _saml_idp cookie, and
sends this information to the Fedlet.

11. The Discovery Service’s SAML Writer sets a cookie
_saml_idp with the Identity Provider’s entity-id.

FIGURE 5–3 Identity Provider Discovery Service Retrieves the User's Preferred Identity Provider

About the OpenSSO Enterprise Fedlet

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 200976

Analyzing the Deployment Architecture
The main components of the circle of trust described in this chapter are the
telecommunications company which acts as and Identity Provider, and a ringtone Service
Provider. The following two use cases are supported by the Fedlet:

■ “Identity Provider-Initiated Single Sign-On” on page 77
■ “Fedlet Service Provider-Initiated Single Sign-On” on page 79

The following table provides a simple comparison of the two use cases.

TABLE 5–1 Comparison of Fedlet Use Cases

Identity Provider-Initiated Single Sign-On Service Provider-Initiated Single Sign-On

1. Mobile phone user authenticates with
Telecommunications Company.

1. Mobile phone user attempts to access the ringtone
Service Provider portal.

2. Upon authentication, mobile phone user accesses
the ringtone Service Provider portal.

2. Ringtone Service Provider detects whether or not
the mobile phone user has been authenticated by the
Telecommunications Company. If not, then the
ringtone Service Provider redirects the mobile phone
user to the Telecommunications Identity Provider.

3. Telecommunications Company challenges mobile
phone user's credentials. Mobile user presents
credentials.

4. Upon authentication, mobile phone user accesses
the ringtone Service Provider portal.

Identity Provider-Initiated Single Sign-On
The following illustrates the flow of communication in a federation scenario between a
telecommunications company acting as the Identity Provider, and a ringtone provider
company acting as the Service Provider.

Analyzing the Deployment Architecture

Chapter 5 • Using the OpenSSO Enterprise Fedlet to Enable Identity Federation 77

In an Identity Provider-initiated single sign-on scenario, the Identity Provider is configured
with specialized links to specific Service Providers. These links actually refer to the local Identity
Provider single sign-on service and pass parameters to the service identifying the remote
Service Provider. So instead of directly visiting the Service Provider, the user goes to the Identity

1. Consumer requests access to a service link representing the Ringtone
Service at the Telecommunictions Company site.

2. Telecommunications Company challenges the Consumer for credentials.

3. Consumer sends credentials to the Telecommunications Company.

4. Consumer requests access to ringtones.

5. Teleommunications company redirects Consumer to
Ringtone Service Provider with a signed <Response>.

6. Consumer POSTs the signed <Response> to the Ringtone Service Provider.

7. The Ringtone Service Provider
supplies ringtones to the Consumer.

Ringtone Service Provider

OpenSSO Enterprise Fedlet

Consumer

Mobile Phone

Identity Provider

Telecommunications Company

FIGURE 5–4 Process Flow for the Fedlet in Identity Provider-initiated Single Sign-On

Analyzing the Deployment Architecture

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 200978

Provider site and clicks on one of the links to gain access to the remote Service Provider. This
triggers the creation of a SAML assertion that is subsequently transported to the Service
Provider.

Fedlet Service Provider-Initiated Single Sign-On
In a Service Provider-initiated single sign-on scenario, the user attempts to access a resource on
the Service Provider. However the user does not have a current logon session on this site, and
the user's federated identity is managed by the Identity Provider. The user is sent to the Identity
Provider to log on. The Identity Provider creates a SAML assertion for the user's federated
identity and sends it back to the Service Provider. The following figure illustrates the process
flow.

Analyzing the Deployment Architecture

Chapter 5 • Using the OpenSSO Enterprise Fedlet to Enable Identity Federation 79

Considering Deployment Assumptions, Dependencies, and
Constraints

As you plan your deployment, consider the following assumptions, dependencies, and
constraints to determine if your environment is appropriate for using the Fedlet.

FIGURE 5–5 Process Flow for Fedlet Service Provider-initiated Single Sign-On

Considering Deployment Assumptions, Dependencies, and Constraints

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 200980

Assumptions and Dependencies
■ The configuration file and the metadata for the Fedlet is stored in a flat-file repository at the

Service Provider.
■ This solution uses the HTTP POST bindings for transport between the Identity Provider

and the Service Provider.
■ The Fedlet supports the verification of the XML signature carried in the SAML Assertion

from Identity Provider. XML signature verification is done using the Identity Provider
public certificate included in the Identity Provider metadata XML file. If the Identity
Provider signing certificate is changed, the Identity Provider metadata in the Fedlet
configuration directory must be updated to include the new signing certificate information.
Otherwise XML signature verification will fail on the Fedlet side. At this time, the Fedlet
does not support XML encryption, XML decryption, or XML signing such as signing the
AuthnRequest on the Fedlet side.

Constraints
■ The Fedlet supports Identity Provider-initiated single sign-on using only HTTP POST

bindings.
■ The Fedlet supports Fedlet Service Provider-initiated single sign-on using only HTTP POST

bindings.
■ In this deployment, no keystore exists to store certificates used for encrypting and signing

SAMLv2 message elements. The Fedlet does not support the encryption and signing of
SAMLv2 message elements. This capability may be implemented in a future release of
OpenSSO Enterprise. This constraint has implications about ensuring the confidentiality
and integrity of messages. Until the Fedlet can support the encryption and signing of
SAMLv2 message elements, you are encouraged to use SSL/TLS at the message transport
layer to secure exchanges between browser and server. The ensures that exchanges are
secured at least while the SAML messages are in-transit. The Fedlet does support the
verification of XML signature in the SAMLv2 Response from Identity Provider.

Understanding Typical Business Use Cases
The following use cases illustrate why companies might choose to use the Fedlet in their
environment.

Saving Time and Reducing Overhead
In this use case, the Service Provider needs to single sign-on with an Identity Provider that has
OpenSSO Enterprise installed in the Identity Provider environment. But the Service Provider

Understanding Typical Business Use Cases

Chapter 5 • Using the OpenSSO Enterprise Fedlet to Enable Identity Federation 81

does not want to install the full-featured OpenSSO Enterprise just to enable federation. The
Service Provider cites one or more of the following reasons for not installing OpenSSO
Enterprise:

■ The Service Provider is small company that provides one application as only part of their
service.

■ The Service Provider wants identity federation at minimum cost.
■ Installing OpenSSO Enterprise would require investments in hardware, services, and

human resources that the Service Provider does not want to make.
■ Installing OpenSSO Enterprise would require the Service Provider system administrators to

be proficient in implementing identity federation protocols in order to configure and
maintain the OpenSSO Enterprise federation deployment.

■ The Service Provider wants to quickly enable federation in their environment in a very short
timeframe.

■ The Service Provider wants only to implement single sign-on with the Identity Provider and
retrieve some user attributes for customizing the service to the user. The Service Provider
does not want to install a full-featured federation solution and just to use two features.

Customizing Content Based on User Attributes
In this use case, a telecommunications company acts as an Identity Provider. The
telecommunications company subscribers use the custom telecommunications company user
portal to receive personalized content. The content is received by the telecommunications
company from its business partners such as StockService.com, Weather.com, and so forth.
OnCast, a new partner of the telecommunications company, uses Fedlets for its portal user
single sign-on. Through the Fedlets, OnCast retrieves specific user attributes over SAML from
the telecommunications company. OnCast then uses the user attribute data to customize its
content deliver.

Understanding Typical Business Use Cases

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 200982

See the demonstration of this business use case at
http://blogs.sun.com/sid/resource/fedlet.html .

Setting Up and Configuring the Fedlet
This section describes the high-level tasks to setup the Fedlet at the Service Provider. For more
detailed instructions, see the README file contained in the Fedlet.zip and
Fedlet-unconfigured.zip files.

Technical Requirements
■ Any J2EE-complaint server on which to deploy the Fedlet
■ JDK 1.5 or higher

Obtaining and Deploying the OpenSSO Fedlet Bundle
You can choose one of two methods for obtaining and deploying the Fedlet Bundle.

USER

SERVICE PROVIDER

OnCast.com

OpenSSO Enterprise
Fedlet

IDENTITY PROVIDER

Telecommunications Company
Portal

SERVICE PROVIDER

Weather

SERVICE PROVIDER

StockService.com

FIGURE 5–6 Fedlet Service Provider Customizes Content Based on User Attributes

Setting Up and Configuring the Fedlet

Chapter 5 • Using the OpenSSO Enterprise Fedlet to Enable Identity Federation 83

If OpenSSO is deployed as an Identity Provider, then use the OpenSSO Enterprise console to
create the Fedlet bundle. In this scenario, using the console is the faster and easier method
because the Identity Provider follows the same workflow to integrate with any Service Provider.

If multiple Identity Providers exist in the Service Provider circle of trust, and not all Identity
Providers use OpenSSO Enterprise, then use the Fedlet Demo. The Fedlet Demo contains a
sample JSP is packaged in the fedlet.war. The fedlet.war file emulates the Service Provider
web application. Using the fedlet.war file makes it easy to demonstrate a simple JSP receiving
the SAMLv2 POST from the Identity Provider.

To Use the OpenSSO Enterprise Console to Create the Fedlet bundle
In the OpenSSO Enterprise console, navigate through a taskflow and provide the following:

1. Name of the Service Provider
2. Destination URL of the Service Provider that will include the Fedlet
3. The circle of trust in which to place the Service Provider

At the end of the taskflow, a Fedlet.zip bundle is automatically created. The bundle consists of
the fedlet.war file and a README file that contains instructions for deploying the Fedlet.
Follow the instructions to deploy the Fedlet.

To Use the Pre-Built Fedlet
As the Service Provider, download the opensso_enterprise_80.zip file. Then follow the
instructions in the README file contained in the Fedlet-unconfigured.zip file to deploy and
configure the Fedlet. The Fedlet-unconfigured.zip file is bundled into the
opensso_enterprise_80.zip.

▼ To Set Up the Workflow-based Fedlet
Install and Configure OpenSSO Enterprise on the Identity Provider.

On the Identity Provider, navigate through the Workflow on the OpenSSO Enterprise console to
create the Fedlet.zipfile.
The Fedlet.zip file contains:
■ README.txt: A text file that contains instructions for deploying the fedlet.war and for

integrating the Fedlet into an existing application.
■ fedlet.war: The Fedlet ready-to-deploy WAR file.

Send the Fedlet.zipfile to the Service Provider.

Deploy and configure the fedlet.warfile, on the Service Provider.

1

2

3

4

Setting Up and Configuring the Fedlet

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 200984

Verify that the Fedlet was successfully installed.

a. Access the index.jsp file on the Fedlet deployment.

b. Click the link to create the Fedlet configuration automatically.

c. Follow the two links in the page to test the following use-cases :

■ (Fedlet) Service Provider-initiated single sign-on
■ Identity Provider-initiated single sign-on through the hyperlinks present on the page.

▼ To Use the Pre-Built Fedlet
Download the Fedlet-unconfigured.zip.

Fedlet-unconfigured.zip is contained in the opensso_enterprise_80.zip distribution. The
Fedlet-unconfigured.zip file contains:

■ fedlet.war

The Fedlet ready-to-deploy WAR file
■ conf

A directory containing the Fedlet metadata template, circle of trust template, and various
configuration files

■ README.txt

A text file that provides instructions for using the \conf files to configure the Fedlet

Extract the Fedlet-unconfigured.zip file.

Follow the instructions in the README file to set local configuration files for the Fedlet.

Send tag-swapped Service Provider metadata files to the Identity Provider, and request the
Identity Provider metadata files from the Identity Provider.

Verify that the Fedlet is successfully installed.

Access the index.jsp file on the Fedlet deployment, and test the following use-cases : Fedlet
(SP)-initiated SSO IDP-initiated SSO through the hyperlinks present on the page.

■ (Fedlet) Service Provider-initiated single sign-on
■ Identity Provider-initiated single sign-on through the hyperlinks present on the page

5

1

2

3

4

Setting Up and Configuring the Fedlet

Chapter 5 • Using the OpenSSO Enterprise Fedlet to Enable Identity Federation 85

▼ To Use the Fedlet with Multiple Identity Providers
The Service Provider installs and configures the Fedlet and sets up the Fedlet with one Identity
Provider.
Install and configure the Fedlet using instructions in either “To Set Up the Workflow-based
Fedlet ” on page 84 or “To Use the Pre-Built Fedlet” on page 85.

To use a second Identity Provider with the Fedlet, the Service Provider requests the Identity
Provider metadata files from the second Identity Provider.

Update the Fedlet configuration directory with the Identity Provider metadata files, and update
the Fedlet's configuration with the Identity Provider entity ID.

The second Identity Provider registers the Fedlet in its configuration.

To add more Identity Providers to the Fedlet, repeat steps 2 through 4.

Access the index.jsp file on the Fedlet deployment where you are presented a list of registered
multiple Identity Providers. Choose an Identity Provider.

For the selected Identity Provider, you are presented the option to test the following use cases
through the hyperlinks on the page:

■ Fedlet Service Provider-initiated single sign-on
■ Identity Provider-initiated single sign-on

The README file included in the Fedlet.zipand the Fedlet-unconfigured.zip contains
instructions for setting up the Fedlet with multiple Identity Providers.

▼ To Use the Fedlet with an Identity Discovery Service
The Service Provider configures the Fedlet with multiple Identity Providers.
See “Using the Fedlet with Multiple Identity Providers.”

Deploy and configure an Identity Provider Discovery Service.

Set the SAML2 Reader and Writer Service URLs on each of the configured Identity Providers.

Set the SAML2 Reader and Writer Service URLs in the Fedlet configuration.

Access the index.jsp file on the Fedlet deployment where you will be presented with a list of
the registered multiple Identity Providers. Choose your preferred Identity Provider.

1

2

3

4

5

6

7

8

1

2

3

4

5

Setting Up and Configuring the Fedlet

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 200986

You will be directed to your selected Identity Provider for login.
A cookie _saml_idp that identifies your preferred Identity Provider will be written by your
browser.

From this point on, you can elect to use the Identity Provider Discovery service after you access
the index.jsp on the Fedlet deployment.

The Identity provider Discovery Service will remember your preferred Identity Provider and will
automatically redirect you to that Identity Provider for login.

The README file included in the Fedlet.zip and the Fedlet-unconfigured.zip contains
instructions on how to set up the Fedlet with an Identity Provider Discovery Service.

Embedding the Fedlet into Service Provider
Applications
The README file contained in the Fedlet.zip and the Fedlet-unconfigured.zip files
provides instructions for integrating the Fedlet demo into the Service Provider application. You
need to embed all the properties/jars/JSPs/images and so forth in the demo fedlet.war

into your existing application WAR. Merge the fedlet.war with your existing application
WAR. The Fedlet provides a default Assertion Consumer endpoint named
fedletSampleApp.jsp to process the SAMLv2 Assertion from the Identity Provider.

Use one of the following approaches to embed the Fedlet into the Service Provider applications:

■ Use fedletSampleApp.jsp as the endpoint on Fedlet side, and modify
fedletSampleApp.jsp to add the Service Provider application logic.

■ Use fedletSampleApp.jsp as the endpoint on Fedlet side, and modify
fedletSampleApp.jsp to forward the request to the Service Provider application URL.

Fedlet Sample
Application

Service Provider
Application Logic

6

7

8

9

Setting Up and Configuring the Fedlet

Chapter 5 • Using the OpenSSO Enterprise Fedlet to Enable Identity Federation 87

■ Create a new endpoint, for example servlet.jsp URL, on the Fedlet side to replace the
fedletSampleApp.jsp or to embed the Fedlet into the Service Provider application. You
can copy some of the code in the fedletSampleApp.jsp to the new endpoint code. Details
of the actual code you can transfer are described in the README file.

Evaluating Benefits and Tradeoffs
As you design your deployment architecture, be sure to consider the benefits, tradeoffs. The
following lists may help you determine if the Fedlet is appropriate to meet your business needs.

Benefits
■ The Fedlet does not require additional hardware, thus reducing the cost to the Service

Provider and increasing the return on investment on existing hardware.
■ The Fedlet is easy to deploy and to embed into the Service Provider application.

Configuration on the Fedlet, if needed at all, requires modifying only three to four
parameters. This enables you to go live with the application much more quickly than
deploying a full-featured federation solution.

Service Provider
J2EE Container

Service Provider
Application

Fedlet Sample
Application

Service Provider
Application

Fedlet Sample
Application

Evaluating Benefits and Tradeoffs

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 200988

■ The Fedlet enables the Service Provider to quickly enable federation into their applications,
resulting in shorter time-to-market for their applications with the Identity Provider.

■ The Fedlet does not require the Service Provider to install any full-featured federation
software. This reduces the amount of training required, thus reducing training costs for the
Service Provider.

■ The Fedlet is ideal for a Service Provider that wants only to achieve single sign-on with an
Identity Provider, and to be able to retrieve user attributes from the Identity Provider.

■ The Fedlet is compliant with SAMLv2 standards.
■ A single instance of the Fedlet can be set up to work with more than one Identity Provider.
■ The Fedlet can be configured to use an Identity Provider Discovery Service to set and find

the user's preferred Identity Provider.

Tradeoffs
■ The Fedlet will not perform session management on the Service Provider. The application

or container must perform session management.
■ The Fedlet supports single sign-on using the SAMLv2 protocol only. Other federation

protocols such as Liberty ID-FF, WS-Federation, and SAML 1.x, are not supported.
■ The Fedlet solution enables only single sign-on with an IDP and retrieval of user attributes.

Advanced features, typically available in a full-featured federation product such as
OpenSSO Enterprise, are not available in the Fedlet:
■ IDP Proxying
■ Single Logout
■ Auto Federation
■ Account Linking Auto-creation of users on the SP
■ Declarative policy integration with roles asserted from the IDP

Finding More Information
■ OpenSSO Homepage

http://opensso.org

■ SAML v2.0 Technical Overview
http://www.oasis-open.org/

committees/download.php/27819/sstc-saml-tech-overview-2.0-cd-02.pdf

■ Identity Provider Discovery Service Protocol and Profile
http://docs.oasis-open.org/

security/saml/Post2.0/sstc-saml-idp-discovery.pdf

Finding More Information

Chapter 5 • Using the OpenSSO Enterprise Fedlet to Enable Identity Federation 89

http://opensso.org
http://www.oasis-open.org/committees/download.php/27819/sstc-saml-tech-overview-2.0-cd-02.pdf
http://www.oasis-open.org/committees/download.php/27819/sstc-saml-tech-overview-2.0-cd-02.pdf
http://docs.oasis-open.org/security/saml/Post2.0/sstc-saml-idp-discovery.pdf
http://docs.oasis-open.org/security/saml/Post2.0/sstc-saml-idp-discovery.pdf

90

Implementing a Virtual Federation Proxy
(Secure Attributes Exchange)

Secure Attributes Exchange, also known as Virtual Federation Proxy, is a new feature in Sun
OpenSSO Enterprise 8.0. Secure Attributes Exchange provides the means for an application to
securely transfer identity information to another application located in a different domain.
Secure Attributes Exchange enables legacy applications to leverage standards-based federation
to communicate with other existing applications and services without having to set up and
configure federation protocols and processes for each application.

This chapter provides information to help you determine whether Secure Attributes Exchange
is appropriate for your environment. The following topics are contained in this chapter:

■ “About Virtual Federation Proxy (Secure Attributes Exchange)” on page 91
■ “Analyzing the Deployment” on page 93
■ “Considering Assumptions, Dependencies, and Constraints” on page 97
■ “Secure Attributes Exchange Client APIs” on page 98
■ “Understanding Typical Business Use Cases” on page 99
■ “Setting Up and Configuring Secure Attributes Exchange” on page 100
■ “Configuring Secure Attributes Exchange” on page 102
■ “Evaluating Benefits and Tradeoffs” on page 103

About Virtual Federation Proxy (Secure Attributes Exchange)
Multiple authentication systems often exist in typical legacy environments. Although these
authentication systems would work more efficiently if they were federated, implementing single
sign-on often requires deploying one federation software instance for each of the authentication
systems in the environment (see the following figure). The complexities of such deployments
usually impose additional constraints in selecting federation solutions, and impede any
progress toward enabling federation among the many authentication systems.

6C H A P T E R 6

91

SAMLv2 and other federation protocols may provide quick, standards-based federation
enablement. But legacy identity systems on the enterprise end and existing Identity Provider
applications cannot pass user authentication, user profile, and other transaction related data to
the local Identity Provider instance. Similarly, the existing framework also limits the ways in
which Service Provider applications consume user authentication, profile, and transaction
information.

The Secure Attributes Exchange feature introduced in OpenSSO Enterprise 8.0 is designed to
meet these business needs. OpenSSO Enterprise enables an OpenSSO Enterprise instance in
either the Identity Provider role or in the Service Provider role to act like a pure SAMLv2
protocol gateway. Simple, default security mechanisms are implemented to allow a loose
coupling between the existing applications and OpenSSO Enterprise instances. The following
figure illustrates how a streamlined solution enables federation among multiple legacy
authorization systems with a centralized configuration.

Legacy Environment

Authentication
System

1

Federation
Application

Service
Provider

Service
Provider

Service
Provider

Authentication
System

2

Federation
Application

Authentication
System

3

Federation
Application

FIGURE 6–1 Multiple Authentication Systems in a Legacy Environment

About Virtual Federation Proxy (Secure Attributes Exchange)

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 200992

A Secure Attributes Exchange interaction enables the following:

■ Identity Provider applications push user authentication, user profile, and transaction
information to a local instance of OpenSSO Enterprise. The local instance of OpenSSO
Enterprise, using federation protocols, passes the data to a remote instance of OpenSSO
Enterprise at the Service Provider.

■ Service Provider applications consume the received information in a secure manner.

In this first offering of Secure Attributes Exchange, only OASIS SAMLv2 protocol is supported.
However, the solution can be extended in the future to be completely protocol-neutral so that
other single sign-on protocols such as Liberty ID-FF and WS-Federation can also be supported.

Analyzing the Deployment
Secure Attributes Exchange uses the SAMLv2 protocol to transfer identity data between the
communicating entities. The Secure Attributes Exchange client APIs, including both Java and
.NET interfaces, run independently of the OpenSSO Enterprise instance. The Secure Attributes
Exchange client APIs enable existing applications to handle the SAMLv2 interactions.

The following figure illustrates the deployment architecture for Secure Attributes Exchange.

Legacy Environment

Authentication
System

1

Service
Provider

Service
Provider

Service
Provider

Authentication
System

2

Authentication
System

3

Virtual Federation Proxy
(Secure Attributes Exchange)

FIGURE 6–2 Multiple Authentication Systems Using Secure Attributes Exchange

Analyzing the Deployment

Chapter 6 • Implementing a Virtual Federation Proxy (Secure Attributes Exchange) 93

In this Secure Attributes Exchange example:

■ Secure Attributes Exchange acts as a pure SAMLv2 protocol gateway, relying entirely on the
existing applications for user authentication and retrieval of the user profile attributes.

■ From the perspective of Identity Provider applications and Service Provider applications,
Secure Attributes Exchange implements a push-model solution to securely transfer
authentication and attributes data.

Identity Provider Service Provider

Cheque Image
Application

Browser

OpenSSO Enterprise
Service Provider

SA_SP.jsp

Session
Service

SAML2

Secure
Authentication

APIs

Authentication
Service

SA_IDP.jsp SAMLv2

Authentication
Service

Secure
Authentication

APIs

Session
Service

OpenSSO Enterprise
Identity Provider

Cheque
Validation

Application

SAMLv2Single
Sign-On

FIGURE 6–3 Deployment Architecture for Secure Attributes Exchange

Analyzing the Deployment

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 200994

■ Secure Attributes Exchange uses simple HTTP GET/POST and data signing and encryption
to securely transfer authentication and attributes data from and to legacy applications.

■ Secure Attributes Exchange supports both symmetric-key and asymmetric-key based
cryptography to secure authentication and attributes data

■ Secure Attributes Exchange supports application-initiated single sign-on and single logout.

The figures Figure 6–4 and Figure 6–5 illustrate the process flow in a typical Secure Attributes
Exchange interaction. In this example, bank employees each have a user account in a bank's
employee identity system. Employees routinely access an internal application that validates
bank customers' personal checks. The bank employees are required to authenticate themselves
before accessing the Cheque Validation application. Validating checks involves retrieving the
check images which are stored and processed by the Cheque Image application. The Cheque
Image application which is hosted by a business partner at a remote site. User identity and
attribute data must be supplied by the local Cheque Validation application and passed to the
remote Cheque Image application in a secure manner.

Analyzing the Deployment

Chapter 6 • Implementing a Virtual Federation Proxy (Secure Attributes Exchange) 95

OpenSSO
Enterprise

Cheque
Validation
Application

1. Bank employee authenticates to the local identity system.
This can be done by the Identity Provider application, or it can
be delegated to an authentication authority.

Cheque Image
Application

OpenSSO
EnterpriseBrowser

Assembles the user authentication and user profile data.

Uses com.sun.identity.sae.api.SecureAttrs to encode and sign the
user profile data.

2. Authenticated bank employee uses the Cheque Valication
application, then accesses a link representing a Cheque Image
Application. The link is provided by a remote application in a
different domain.

Determines whether the user is authenticated.

Determines which Service Provider to invoke.

Uses the SAMLv2 module to initiate SAMLv2 single sign-on.

If authenticated, invokes Virtual Federation APIs to validate
attribute data.
If not authenticated: 1) invokes Virtual Federation APIs to verify
authenticity and validate data; 2) creates user session;
3) sets user information to session.

4. The Virtual Federation authentication module verifies the authenticity
of the attributes and initiates the appropriate SAMLv2 single sign-on protocol.

The SA_IDP.jsp:

Posts the secure data to the local instance of OpenSSO Enterprise.
The API, provided by OpenSSO Enterprise, carries the user
identifier and the Service Provider destination.

Identity Provider Service Provider

3. Cheque Validation Application:

FIGURE 6–4 Process Flow for Secure Attributes Exchange (Continued on next page)

Analyzing the Deployment

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 200996

Considering Assumptions, Dependencies, and Constraints
Before you can implement Secure Attributes Exchange, you must consider the following
assumptions and constraints.

6. The Cheque Image Application retrieves the corresponding
cheque image from the repository based on the attributes
previeously received. The application then responds to the original
request from the Cheque Validation Application.

OpenSSO
Enterprise

Cheque
Validation
Application

7. The Cheque Image Application displays information to the
bank employee.

5. OpenSSO Enterprise secures the user attributes,
and sends them to the Cheque Image Application.

Uses SAMLv2 authentication module to validate the
SAMLv2 assertion.

Creates OpenSSO Enterprise session and updates it
with attributes from the SAMLv2 assertion.

Redirects to the target URL.

SA_SP.jsp calls the Virtual Federation API to generate a
signed or encrypted query string.

Cheque Image
Application

Identity Provider Service Provider

OpenSSO
EnterpriseBrowser

OpenSSO Enterprise:

FIGURE 6–5 Process Flow for Secure Attributes Exchange (Continued)

Considering Assumptions, Dependencies, and Constraints

Chapter 6 • Implementing a Virtual Federation Proxy (Secure Attributes Exchange) 97

Assumptions
■ The implementation will automatically use the authn=Force functionality to allow Identity

Provider applications to repeatedly invoke the secure attribute transfer feature.
■ The mappings between the Service Provider application URL prefix to the Service Provider

id have been explicitly defined in the product configuration.
■ Local Service Provider single logout functionality relies on OpenSSO Enterprise be able to

redirect to an external URL during SAMLv2 single logout processing, and then resume the
original SAMLv2 single logout when redirected back.

■ Cryptography APIs are assumed to be available on all targeted platforms and programming
languages.

Constraints
■ The scope of the current OpenSSO Enterprise implementation is limited to SAMLv2–based

single sign-on only. However, it is possible for you to extend this to other single sign-on
protocols such as the Liberty Identity Federation Framework (ID-FF) and Web Service
Federation (WS-F) specifications.

■ The existing implementation supports only simple HTTP GET and POST based
mechanisms. However, you should be able to use the same APIs to do XML-based attribute
transfer as well.

■ Integration with specific proprietary application server technologies such as WebSphere
LTPA and WebLogic for single sign-on as well as single logout are not addressed in this
document.

■ Limited single logout functionality is implemented. Logout from multiple Identity Provider
applications and multiple Service Provider applications is not directly addressed in this
document. The Identity Provider and Service Provider must implement logout
appropriately to meet their own needs.

Secure Attributes Exchange Client APIs
The Secure Attributes Exchange feature provides a set of client APIs in both Java and .NET
interfaces. the client APIs are used to enable following:

■ Identity Provider applications push user authentication, user profile, and transaction related
information to the local OpenSSO Enterprise instance. The information is then passed over
to the Service Provider side using the federation protocols,

■ Service Provider applications consume the same user profile and transaction information.

The details of Secure Attributes Exchange client APIs are described in detail in the Sun
OpenSSO Enterprise 8.0 Java API Reference .

Secure Attributes Exchange Client APIs

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 200998

http://docs.sun.com/doc/820-3739
http://docs.sun.com/doc/820-3739

Understanding Typical Business Use Cases
Secure Attributes Exchange is used by three types of users:
■ Developers

As application owners, developers use the Secure Attributes Exchange client APIs to
connect to a local OpenSSO Enterprise instance.

■ Administrators
Administrators are responsible for configuring Secure Attributes Exchange, setting up and
maintaining provision keys, configuring authorization of each application, and so forth.

■ End users
End users access the deployed applications.

The figures Figure 6–4 and Figure 6–5 illustrate a typical process flow for Secure Attributes
Exchange.

The process flow can be described as the sum of four separate uses cases:

■ “Authentication at Identity Provider” on page 99
■ “Secure Attribute Exchange at the Identity Provider ” on page 99
■ “Secure Attribute Exchange at the Service Provider ” on page 100
■ “Global Single Logout” on page 100

It is not absolutely required for service providers to implement the Secure Attributes Exchange
functionality. This is certainly a valid business use case as long as the receiving end is a SAMLv2
compliant Service Provider that is capable of using the information originating from the
Identity Provider application and sent by the Identity Provider.

Authentication at Identity Provider
When a user is already authenticated in an enterprise, the legacy identity provider application
sends a secure HTTP GET/POST message to OpenSSO Enterprise asserting the identity of the
user. OpenSSO Enterprise then verifies the authenticity of the message and establishes a session
for the authenticated user. Secure Attributes Exchange can be used to transfer the user's
authentication information to the local instance of OpenSSO Enterprise in order to create a new
session.

Secure Attribute Exchange at the Identity Provider
When a user is already authenticated by, and attempts access to, a legacy identity provider
application, the legacy application sends a secure HTTP POST message to the local instance
ofOpenSSO Enterprise. The HTTP POST message asserts the user's identity and contains a set

Understanding Typical Business Use Cases

Chapter 6 • Implementing a Virtual Federation Proxy (Secure Attributes Exchange) 99

of attribute-value pairs related to the user. For example, the attribute-value pairs may contain
data from the persistent store, and the data may represent certain transactional states in the
application. OpenSSO Enterprise verifies the authenticity of the message, establishes a session
for the authenticated user, and then populates the session with the user attributes.

Secure Attribute Exchange at the Service Provider
When a user is already authenticated by the instance of OpenSSO Enterprise at the Identity
Provider, and OpenSSO Enterprise invokes an Identity Provider application that calls for
redirection to a Service Provider, the Identity Provider invokes secure attribute exchange at
either the Service Provider or Identity Provider as described above. OpenSSO Enterprise
encodes a SAMLv2 single sign-on URL as a part of the request. The Identity Provider instance
of OpenSSO Enterprise then initiates SAMLv2 single sign-on with the instance of OpenSSO
Enterprise at the Service Provider. The Service Provider instance of OpenSSO Enterprise then
verifies the SAMLv2 assertion and the included attributes, and redirects to the Service Provider
application. The user attributes are securely transferred using a secure HTTP POST message.
The Service Provider application consumes the attributes, establishes a session, and then offers
the service to the user.

Global Single Logout
Global single logout can be implemented in various ways. In this example, a user is already
authenticated and has established single sign-on with the Service Provider instance of OpenSSO
Enterprise. The user clicks on a Global Logout link. The Identity Provider will then invalidate
its local session, if it's already created, and trigger SAMLv2 single logout by invoking a provided
OpenSSO Enterprise URL. The OpenSSO Enterprise Identity Provider executes the SAMLv2
single logout, terminating the session on both Identity Provider and Service Provider instances
of OpenSSO Enterprise.

Setting Up and Configuring Secure Attributes Exchange
Before configuring and using the Secure Attributes Exchange, administrators must make some
decisions regarding security-related settings such as cryptography type, applicable keys, and
application identifiers. Administrators must be familiar with basic SAMLv2 concepts and the
SAMLv2 samples bundled with OpenSSO Enterprise.

This section provides a high-level summary you need to resolve before configuring Secure
Attributes Exchange.

Setting Up and Configuring Secure Attributes Exchange

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 2009100

About Cryptography Type
Secure Attributes Exchange provides symmetric and asymmetric cryptography types to secure
identity attributes between an instance of OpenSSO Enterprise and an application.

■ Symmetric cryptography
Involves the use of a shared secret key known only to the participants in the communication.
The key is agreed upon beforehand and is used to encrypt and decrypt the message.

■ Asymmetric cryptography
Uses two separate keys for encryption and the corresponding decryption - one public key
and one private key. The information is encrypted with a public key known to all, and then
decrypted by the recipient only, using a private key to which no one else has access.
This process is known as a public key infrastructure (PKI). On the Identity Provider side, the
public key must be added to the OpenSSO Enterprise keystore. The private key must be
stored in a protected keystore such as a Hardware Security Module (HSM) for access by the
Identity Provider application. On the Service Provider side, the private key must be added to
the OpenSSO Enterprise keystore, and the public key stored in a keystore that is local to the
Service Provider application.

Overview of Setup Steps
1. Establish trust among the application or multiple applications and the instance of OpenSSO

Enterprise on the Identity Provider. This includes the configuring the cryptography type,
applicable keys, and application identifiers.

2. Establish trust among the application or multiple applications and the instance of OpenSSO
Enterprise on the Service Provider side. This includes configuring the cryptography type,
applicable keys, and application identifiers.

3. (Optional) The following steps are specific to using SAMLv2 with auto-federation.
a. Determine which identity attributes you want transferred as part of the SAMLv2 single

sign-on interaction.
b. Determine which attribute you will use to identify the user on the Service Provider side.

4. Determine which URL on the Service Provider will be responsible for handling logout
requests from the Identity Provider.

Setting Up and Configuring Secure Attributes Exchange

Chapter 6 • Implementing a Virtual Federation Proxy (Secure Attributes Exchange) 101

Configuring Secure Attributes Exchange
Secure Attributes Exchange configuration involves modifying two different OpenSSO
Enterprise installations: one OpenSSO Enterprise instance on the Identity Provider side, and
one OpenSSO Enterprise instance on the Service Provider side. Before proceeding with the
instructions in this chapter, you must download and deploy the OpenSSO Enterprise WAR file
to a supported web container.

A SAMLv2 provider with Secure Attributes Exchange can be configured by using one of the
following alternatives:

■ In the administration console, use the OpenSSO Enterprise Common Tasks interface to
configure SAML configuration and to configure Secure Attribute Exchange.

■ Import the metadata using the command-line interface.

About the Software Binaries
The software binaries for Secure Attributes Exchange in OpenSSO Enterprise are included in
the following components. Locations are relative within the opensso_enterprise_80.zip file.

■ Deployable opensso.war
The OpenSSO Enterprise server

■ libraries/jars/openssoclientsdk.jar

For client applications using Java APIs
■ libraries/dll/famsae.dll

For client applications using .NET APIs

High-level Configuration Steps
For detailed instructions for configuring Secure Attributes Exchange, see the Administration
Guide. For deployment planning purposes, the following provides a high-level overview of steps
to configure Secure Attributes Exchange:

1. Configure the instance of OpenSSO Enterprise on the Identity Provider side for the hosted
Identity Provider.
a. Set up trust between the Identity Provider application and the OpenSSO Enterprise

Identity Provider instance.
Determine and configure the cryptography type, applicable keys, and application
identifiers.

b. Determine the Identity Provider application name.
c. Determine the Identity Provider Secure Attributes Exchange handler URL.

Configuring Secure Attributes Exchange

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 2009102

d. Set up attribute mapping.

2. Configure the instance of OpenSSO Enterprise on the Identity Provider side for the remote
Service Provider.

a. Set up the attribute mapping.
b. Determine the Service Provider Virtual Federation handler URL.

3. Configure the instance of OpenSSO Enterprise on the Service Provider side for the hosted
Service Provider.

a. Set up trust between Service Provider application and OpenSSO Enterprise Service
Provider instance.

Determine and configure the cryptography type, applicable keys, and application
identifiers.

b. Turn on auto-federation and specify the attribute that will identify the user's identity

c. Determine the Service Provider Application URL.

d. Set up attribute mapping.

e. Determine the Service Provider logout URL.

Evaluating Benefits and Tradeoffs
Most enterprises today have to deal with various legacy applications and identity systems. It is
challenging to make any major infrastructure change simply to accommodate identity
federation.

Benefits
■ Secure Attributes Exchange allows businesses to quickly implement standards-based

federation without having to invest in expensive tooling to bridge incompatibilities.
■ The Secure Attributes Exchange feature provides a very simple mechanism that enables an

application to communicate identity information with a partner application in two different
domains. Communication can take place within a circle of trust using the SAMLv2 protocol.
This functionality can be extended to support other federation specifications as well.

■ The Secure Attributes Exchange is a major step forward in the direction of identity
federation enabling the legacy systems. Secure Attributes Exchange provides integration
points, adapters and deployment guidance that can help facilitate the adoption of federation
solutions.

Evaluating Benefits and Tradeoffs

Chapter 6 • Implementing a Virtual Federation Proxy (Secure Attributes Exchange) 103

Tradeoffs
Although the Secure Attributes Exchange feature in OpenSSO Enterprise makes it easier to
implement identity federation among legacy applications, a SAMLv2–compliant Service
Provider must already be in place. The Service Provider can be OpenSSO Enterprise or any
other vendor solution. But even a small Service Provider requires an identity federation-aware
software infrastructure in order to make use of Secure Attributes Exchange.

An alternative to Secure Attributes Exchange is to enable identity federation using the
OpenSSO Enterprise Fedlet. The Fedlet is a streamlined Service Provider implementation used
to quickly and simply enable identity federation. The Fedlet does not require the installation of
any other identity federation software components such as the OpenSSO Enterprise server. For
more information about the Fedlet, see Chapter 5, “Using the OpenSSO Enterprise Fedlet to
Enable Identity Federation”

Evaluating Benefits and Tradeoffs

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 2009104

Implementing a SAMLv2 Identity Provider
Proxy

A SAMLv2 Identity Provider Proxy acts as a conduit connecting federated identity providers
with federated services providers. In OpenSSO Enterprise, Identity Provider Proxy enables an
Identity Provider to proxy authentication requests from federated Service Providers to various
Identity Providers to which the user has previously authenticated.

This chapter provides information to help you determine if Identity Provider Proxy is suitable
for your environment. The following topics are contained in this chapter:

■ “About the SAMLv2 Identity Provider Proxy Specification” on page 105
■ “About the OpenSSO Enterprise Identity Provider Proxy” on page 106
■ “Analyzing the Deployment Architecture” on page 107
■ “Considering Assumptions, Dependencies, and Constraints” on page 108
■ “Understanding Typical Business Cases” on page 109
■ “Setting Up and Configuring SAMLv2 Identity Provider Proxy” on page 113
■ “Evaluating Benefits and Tradeoffs” on page 117

About the SAMLv2 Identity Provider Proxy Specification
The OpenSSO Enterprise Identity Provider Proxy is based on the SAMLv2 specification which
states the following:

If an identity provider that receives an <AuthnRequest> has not yet authenticated the presenter
or cannot directly authenticate the presenter, but believes that the presenter has already
authenticated to another identity provider or a non-SAML equivalent, it may respond to the
request by issuing a new <AuthnRequest> on its own behalf to be presented to the other identity
provider, or a request in whatever non-SAML format the entity recognizes. The original identity
provider is termed the proxying identity provider.

Upon the successful return of a <Response> (or non-SAML equivalent) to the proxying provider,
the enclosed assertion or non-SAML equivalent MAY be used to authenticate the presenter so that

7C H A P T E R 7

105

the proxying provider can issue an assertion of its own in response to the original
<AuthnRequest>, completing the overall message exchange.

See the complete SAMLv2 specifications at http://saml.xml.org/saml-specifications.

About the OpenSSO Enterprise Identity Provider Proxy
The OpenSSO Enterprise Identity Provider Proxy is designed to enable the following:

■ Identity Providers can proxy an authentication request from a Service Provider to a different
Identity Provider that has already authenticated the user.

■ Multiple Identity Provider Proxies can be configured between the Service Provider and the
actual Identity Provider.

■ Existing SAMLv2 single sign-on and single logout process flows are seamlessly integrated.
■ Users can turn off identity proxying per each connection request. This is done by specifying

a special URL parameter idpproxy=false.
■ Administrators can use customized SPI plug-ins with the Identity Provider Proxy to

determine the user's preferred Identity Provider.

OpenSSO Enterprise provides the SPI com.sun.identity.SAMLv2.profile.SAMLv2IDPProxy
and SPI which enables an administrator to customize the plug-in used to find a preferred
identity provider. If the Introduction Cookie is enabled, the Identity Provider Proxy relies on
the plug-in to determine the user's preferred Identity Provider. The default implementation of
this plug-in interface in OpenSSO Enterprise is based on the Identity Provider Discovery
Service. The Identity Provider Discovery Service can help retrieve information about the
preferred Identity Provider. The details of this SPI are described in the Sun OpenSSO
Enterprise 8.0 Java API Reference.

In this first offering of Identity Provider Proxy, the same protocol (for example OASIS SAMLv2
or Liberty ID-FF) must be used for all communications between the participating entities.
Participating entities may include service providers, intermediate identity provider proxies, and
the actual Identity Provider. However, Identity Provider Proxy is planned to be extended in the
future to support heterogeneous environments with multiple identity federation protocols. For
example, in the future, Identity Provider Proxy may be used in an environment using SAMLv2
between Service Provider and Identity Provider Proxy. In the same environment, Liberty ID-FF
might be used between the Identity Provider Proxy and the actual Identity Provider.

About the OpenSSO Enterprise Identity Provider Proxy

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 2009106

http://saml.xml.org/saml-specifications
http://docs.sun.com/doc/820-3739
http://docs.sun.com/doc/820-3739

Analyzing the Deployment Architecture
Identity Provider Proxy uses the SAMLv2 protocol to transfer identity data among the
communicating entities. The following figure illustrates the major components in a typical
deployment using Identity Provider Proxy.

In this deployment, the mobile device user is from France and has an account with Telecom1.
The mobile device user travels to the United States and wants to access the global positioning
service (GPS) provided by Telecom2 . Telecom2 is a United States service provider . The
Telecom2 Identity Provider is the sole identity provider with which Telecom2 has a business
affiliation.

Telecom2 receives and processes the authentication requests coming from Telecom2 Global
Positioning Service, and responds with the required authentication information. Telecom2, like
so many other wireless phone service providers in the world, always maintains the trust
relationship with other carriers in different countries. Telecom1 is one such trusted partner
which provides roaming services to their customers based on bilateral agreements. In this
illustration, because of an established business relationship, Telecom2 doesn't need to know the
mobile user at all. Telecom2 can process the authentication request from Telecom2 Global
Positioning Service on behalf of Telecom1 based on the following trust relationships:

■ Telecom2 Global Positioning Service trusts Telecom2 for user authentication.
■ Telecom2 and Telecom1 trust each other for authentication and for the roaming services.

Analyzing the Deployment Architecture

Chapter 7 • Implementing a SAMLv2 Identity Provider Proxy 107

Considering Assumptions, Dependencies, and Constraints

Assumptions and Dependencies
■ Both Service Provider and Identity Provider can set up the trust base.
■ Service Provider and Identity Provider both achieve single sign-on using the SAMLv2

protocol (persistent and transient).
■ Service Provider and Identity Provider must achieve single logout using SAMLv2 protocol.
■ The extended configuration metadata define the attributes needed for this feature.
■ Required APIs are provided to access the attributes defined in the extended configuration

metadata.

Mobile Device
User

Service Provider

Navigation Global
Positioning Service

SAMLv2
Service Provider

Identity Provider Proxy

Telecom 2

Identity Provider

Telecom 1

SAMLv2
Identity Provider

SAMLv2
Service
Provider

SAMLv2
Identity
Provider

SAMLv2
Single Sign-On

SAMLv2
Single Sign-On

FIGURE 7–1 Deployment Architecture of Identity Provider Proxy

Considering Assumptions, Dependencies, and Constraints

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 2009108

Constraints
One protocol such as OASIS SAMLv2 or Liberty ID-FF must be used across all the
communications between the participating entities. Participating entities can include Service
Provider, intermediate Identity Provider Proxies, and the actual Identity Provider. Currently
there is no support for a heterogeneous environment that includes both SAMLv2–compliant
systems and non-SAMLv2 equivalents.

Understanding Typical Business Cases
The Identity Provider Proxy feature is designed to be used by two types of users. Administrators
configure the SAMLv2 Identity Provider Proxy. End–users access the services provided by
service providers that initiate the single sign-on process across different circles of trust.

The following are typical business cases:

■ Single Sign-On, Introduction Cookie not enabled
■ Single Sign-On, Introduction Cookie enabled
■ Single Logout

Single Sign-On, Introduction Cookie is Not Enabled
How the Identity Provider Proxy obtains the information about the actual Identity Provider is
determined by whether or not the Introduction Cookie is enabled. Introduction Cookie is
turned off, the Identity Provider Proxy retrieves an Identity Provider name from a list of
pre-configured Identity Providers specified in the configuration.

The following figure illustrates the process for this use case. In this example, persistent
federation is in place. In the transient federation mode, the Identity Provider Proxy does not
contain any user information. The Identity Provider Proxy is used for proxying. The user
information is only stored in the actual Identity Provider. The following figure illustrates the
process flow for this use case.

Understanding Typical Business Cases

Chapter 7 • Implementing a SAMLv2 Identity Provider Proxy 109

Single Sign-On (SSO) with Introduction Cookie
Enabled
When the Introduction Cookie is enabled at the Service Provider, the Identity Provider Proxy
relies on the com.sun.identity.SAMLv2.profile.SAMLv2IDPProxy plug-in to determine the
preferred Identity Provider to proxy the authentication request to. The default implementation
of this plug-in interface in OpenSSO Enterprise 8.0 is to consult the Identity Provider Discovery
Service to get the information about the preferred Identity Provider . The following figure
illustrates the process flow for this use case.

2. Service Provider sends <AuthnRequest> to Identity Provider
Proxy for authentication.

3. Identity Provider Proxy Sends to Identity Provider.<AuthnRequest>

4. Identity Provider sends
to Identity Provider Proxy..

<AuthnResponse>

Service ProviderUser
Identity Provider

Proxy
Identity Provider

If user previously authenticated to Identity Provider, then Identity Provider now
creates <AuthnResponse> containing

If user did not previously authenticate to Identity Provider, then Identity Provider prompts
user to authenticate. Upon successful authentication, Identity Provider creates

,
<AuthnResponse>.

<Assertion>.

Service Provider
creates a SAMLv2
<AuthnRequest>..

5. Identity Provider Proxy forms new and sends it to Service Provider.<AuthnResponse>

6. Service Provider verifies current policy setting against <AuthnResponse>
and grants user access to the service

1. User accesses the service hosted by Service Provider.

Identity Provider Proxy:
 • Processes the <AuthnRequest>.
 • Chooses an Identity Provider from a list in the Proxy configuration.
 • Forms a new <AuthnRequest>
 • Sends <AuthnRequest> to Identity Provider.

FIGURE 7–2 Process Flow for Single Sign-On When Introduction Cookie is Not Enabled

Understanding Typical Business Cases

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 2009110

Service
ProviderBrowser

Identity
Provider

Proxy

Identity Provider
Discovery Service

1. User accesses the service
hosted by Service Provider.

Service Provider creates a
SAMLv2 <AuthnRequest>

Identity
Provider

6. Identity Provider sends <AuthnResponse> to Identity Provider Proxy
.

4. Identity Provider Discovery Service returns the name of the preferred
 Identity Provider.

8. Service Proivder verifies current policy setting against the <AuthnResponse>
information and grants the user access to the service.

Identity Provider Proxy:
Detects the introduction cookie is enabled.

.Processes the including signature validation.<AuthnRequest>

3. Identity Provider Proxy redirects to Identity Provider
 Discovery Service.

5. Identity Provider Proxy forms new
<AuthnResponse> and sends it to Identity Provider.

If user previously authenticated to Identity Provider, then Identity Provider now creates
<AuthnResponse>containing <Assertion>.
If user did not previously authenticate to Identity Provider, then Identity Provider prompts user to .
authenticate Upon successful authentication, Identity Provider creates <AuthnResponse>

2. Service Provider sends
to Identity Provider Proxy for authentication.

<AuthnRequest>

7. Identity Provider Proxy forms new <AuthnResponse>
and sends it to Service Provider.

FIGURE 7–3 Process Flow for Single Sign-On (SSO) with Introduction Cookie Enabled

Understanding Typical Business Cases

Chapter 7 • Implementing a SAMLv2 Identity Provider Proxy 111

Single SAMLv2 Identity Provider Proxy Logout
The following figure illustrates the process for this use case.

3. Identity Provider Proxy sends <logoutRequest> to each partner provider such as
Identity Provider.

4. Identity Provider terminates the user session and sends <logoutRequest> to
Identity Provider Proxy.

Service ProviderBrowser Identity Provider Proxy Identity Provider

Identity Provider Proxy:
Checks the Identity Provider session.
Retrieves information about partner providers.
Creates a partner provider list which was created as result of
the original single sign-on process.

1. User initiates logout at Service Provider.

5. Identity Provider Proxy forms new
 and sends it to Service Provider.<logoutResponse>

6. User is redirected to the login page.

2. Service Provider creates
.

<logoutRequest> and sends it to Identity Provider Proxy.

Service Provider terminates the user session.

FIGURE 7–4 Process Flow for Single Logout

Understanding Typical Business Cases

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 2009112

Setting Up and Configuring SAMLv2 Identity Provider Proxy
The following provides a high-level description of setup and configuration steps. For more
detailed instructions, see the Sun OpenSSO Enterprise 8.0 Administration Guide.

There is no other software component is required to implement a SAMLv2 Identity Provider
Proxy. Everything you need is contained in the OpenSSO Enterprise fam.war file.

Setting Up a SAMLv2 Identity Provider Proxy
Install OpenSSO Enterprise instances on three separate host computers, preferably in different
domains:
■ One OpenSSO Enterprise instance to act as the Service Provider
■ At least one OpenSSO Enterprise instance to act as the Identity Provider Proxy.
■ One OpenSSO Enterprise instance to act as the actual Identity Provider.

Configuring the SAMLv2 Identity Provider Proxy with
No Introduction Cookie
This is the default configuration. You can use the OpenSSO Enterprise administration console
or the ssoadmin command-line interface to generate and import metadata (steps 3 through 6).

1. Create your own keystore using keytool.
You can also use the keystore.jks file created during deployment of OpenSSO Enterprise
instance. The keystore.jks file is located in the opensso/opensso directory. The
keystore.jks file contains a private key named test and an associated public certificate.

2. Encrypt the keystore password for each host machine.
If you use the keystore.jks file mentioned in step 1 and created during OpenSSO
Enterprise deployment, the cert alias test is already encoded. You can use test for both
security and encoding purposes. For example, for spscertalias, specertalias,
idpscertalias, and idpecertalias.

3. Generate Service Provider and Identity Provider metadata.
In each of the following substeps, save the standard and extended metadata in their
respective files.
a. Generate the Service Provider metadata, and upload these local metadata into its

console.
b. Generate the Identity Provider metadata, and upload these local metadata into its

console.
c. Generate the Identity Provider Proxy metadata, and upload these local metadata into its

console.

Setting Up and Configuring SAMLv2 Identity Provider Proxy

Chapter 7 • Implementing a SAMLv2 Identity Provider Proxy 113

http://docs.sun.com/doc/820-3885

4. Import the Service Provider and Identity Provider metadata.
a. In each of the extended meta XML files, in the EntityConfig element to be imported,

change hosted=1 to hosted=0. The value 0 means “remote.”
b. Import the Service Provider metadata to the Identity Provider Proxy.
c. Import the Identity Provider metadata to the Identity Provider Proxy.
d. Import the Service Provider portion of the Identity Provider proxy metadata to the

Identity Provider.
e. Import the Identity Provider portion of the Identity Provider Proxy metadata to the

Service Provider.
5. Create a circle of trust on each of the systems.
6. Import the metadata and create the provider entity.

Specify the name of the circle of trust into where you would like to import the metadata.
7. Enable the Identity Provider Proxy.

You can use the OpenSSO Enterprise console in both the Service Provider and Identity
Provider Proxy, or you can modify the SAMLv2 extended configuration metadata.
To Use the OpenSSO Enterprise Console:
a. Click on SP URL under Entity Providers, then click the Advanced tab.

IDP Proxy Mark the Enabled box.

Proxy Count Enter 1 or more.

IDP Proxy List Enter the Identity Provider Proxy URL as a new value.
b. Click Add.
c. Click on Proxy IDP URL under Entity Providers, then click the Advance tab for SP.

IDP Proxy Mark the Enabled box.

Proxy Count Enter 1 or more.

IDP Proxy List Enter the actual Identity Provider Proxy URL as a new value.

To modify the SAMLv2 extended configuration metadata

Edit the following entries for the Service Provider on the Service Provider host, and also on
the Service Provider portion of the Identity Provider Proxy on the Identity Provider Proxy
host:

EnabledIDProxy: The key to turn the SAMLv2 IDP proxy feature on or
off.

IdpProxyList: The Identity Providers trusted by the requester (the
Service Provider) to authenticate the presenter (the
user).

Setting Up and Configuring SAMLv2 Identity Provider Proxy

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 2009114

IdpProxyCount: The number of proxies permissible between the
Identity Provider that receives this <AuthnRequest>
and the actual Identity Provider that ultimately
authenticates the principals. A count of zero means no
proxying.

UseIntroductionForIDPProxy: When this key is on, the SAMLv2 Introduction Cookie
picks a preferred IDP instead of going through the
Identity Provider Proxy list.

8. After all the configuration steps are done, restart the web containers of all the servers on the
Service Provider, Identity Provider Proxy, and the actual Identity Provider.

9. As a verification step, on the Service Provider host, log in to the OpenSSO Enterprise
administration console and click the Federation tab.
You should see the profiles for both Service Provider and Identity Provider Proxy.
Perform the SAMLv2 test cases for single sign-on and single logout through a proxy.

Configuring the SAMLv2 Identity Provider Proxy with
the Introduction Cookie
You can use the OpenSSO Enterprise administration console or the ssoadmin command-line
interface to generate and import metadata (steps 5 through 8).

1. Deploy the Identity Provider Discovery Service.
Follow the steps 1 through 5 in Chapter 10, “Deploying the Identity Provider (IDP)
Discovery Service,” in Sun OpenSSO Enterprise 8.0 Installation and Configuration Guide. Do
not complete steps 6 through 11 in the section “Configuring the IDP Discovery Service.”

2. Once the Identity Provider Discovery Service WAR file is generated and deployed, make the
following changes on its Configurator page.
When http(s)://idpdiscoveryhost.example.com:8080/idpdiscovery is loaded, where
idpdiscoveryhost usually refers to the Identity Provider Proxy host name, specify the
following:

Debug Directory: Name of the debug directory.

Debug Level: Options are error (default), warning, message, or off.

Cookie Type: PERSISTENT (default) or SESSION. Use PERSISTENT for the
purpose of SAMLv2 Identity Proxying using the Introduction Cookie.

Cookie Domain: Name of the cookie domain.

Secure Cookie: True or False (default)

Setting Up and Configuring SAMLv2 Identity Provider Proxy

Chapter 7 • Implementing a SAMLv2 Identity Provider Proxy 115

http://docs.sun.com/doc/820-3320/ghgqq?a=view
http://docs.sun.com/doc/820-3320/ghgqq?a=view

Encode Cookie: True (default) or False

Click Configure.
3. Create your own keystore using keytool.

You can also use the keystore.jks file created during deployment of OpenSSO Enterprise
instance. The keystore.jks file is located in the opensso/opensso directory. The
keystore.jks file contains a private key named test and an associated public certificate.

4. Encrypt the keystore password for each host machine.
If you use the keystore.jks file mentioned in step 1 and created during OpenSSO
Enterprise deployment, the cert alias test is already encoded. You can use test for both
security and encoding purposes. For example, for spscertalias, specertalias,
idpscertalias, and idpecertalias.

5. Generate Service Provider and Identity Provider metadata.
In each of the following substeps, save the standard and extended metadata in their
respective files.
a. Generate the Service Provider metadata, and upload these local metadata into its

console.
b. Generate the Identity Provider metadata, and upload these local metadata into its

console.
c. Generate the Identity Provider Proxy metadata, and upload these local metadata into its

console.
6. Import the Service Provider and Identity Provider metadata.

a. In each of the extended meta XML files, in the EntityConfig element to be imported,
change hosted=1 to hosted=0. The value 0 means “remote.”

b. Import the Service Provider metadata to the Identity Provider Proxy.
c. Import the Identity Provider metadata to the Identity Provider Proxy.
d. Import the Service Provider portion of the Identity Provider proxy metadata to the

Identity Provider.
e. Import the Identity Provider portion of the Identity Provider Proxy metadata to the

Service Provider.
7. Create a circle of trust on each of the systems.
8. Import the metadata and create the provider entity.

Specify the name of the circle of trust into where you would like to import the metadata.
9. On both the Identity Provider Proxy console and the actual Identity Provider console, add

the Identity Provider Discovery Service URL for the SAML2 Reader and Writer Service
URLs for the Circle of Trust.

Setting Up and Configuring SAMLv2 Identity Provider Proxy

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 2009116

a. On the Identity Provider Proxy console and on each actual Identity Provider host
console, click the Circle of Trust.

b. Enter the values for the SAML2 Reader and Writer URLs as the Identity Provider Proxy
host name, and idpdiscovery as the URI, with the SAML2 Reader and Writer
appended. Examples:
http(s)://idp-proxy-server-host-name:port/idpdiscovery/saml2writer

http(s)://idp-proxy-server-host-name:port/idpdiscovery/saml2reader

10. On the Identity Provider Proxy console and on the actual Identity Provider console, under
Entity Providers, click the Identity Provider Proxy URL link. Then click the Advanced tab
for the Service Provider.

IDP Proxy Mark the Enabled box.

Introduction Mark the Enabled box.

Proxy Count. Enter 1 or more.

IDP Proxy List Leave this blank.
11. After all the configuration steps are done, restart the web containers of all the servers on the

Service Provider, Identity Provider Proxy, and the actual Identity Provider.
12. As a verification step, on the Service Provider host, log in to the OpenSSO Enterprise

administration console and click the Federation tab.
You should see the profiles for both Service Provider and Identity Provider Proxy.
Perform the SAMLv2 test cases for single sign-on and single logout through a proxy.

Evaluating Benefits and Tradeoffs
The following may help you determine whether SAMLv2 Identity Provider Proxy is suitable for
your environment.

Benefits
■ The Identity provider can proxy authentication requests from Service Provider to various

Identity Providers to which the user has authenticated.
■ Users are granted seamless access to all the available service providers as long as proper trust

relationships are established among those Service Providers, Identity Provider Proxies, and
the actual Identity Provider.

■ Using the SPI implementation, administrators can customize how the preferred Identity
Provider is determined.

Evaluating Benefits and Tradeoffs

Chapter 7 • Implementing a SAMLv2 Identity Provider Proxy 117

■ End-users can turn off Identity Provider proxying per each connection request.

Tradeoffs
■ There is a potential for increased performance overhead.

Adding intermediaries such as Identity Provider Proxies increase the likelihood of negative
impact on overall system performance.

■ Using SAMLv2 and non-SAML protocols in the same environment is not currently
supported. This can pose a limitation if non-SAML protocols are already in place. However,
support for Identity Provider Proxy using multiple protocols is planned for a future release
of OpenSSO Enterprise.

Evaluating Benefits and Tradeoffs

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 2009118

Using a Multi-Federation Protocol Hub

The Multi-Federation Protocol Hub enables you to use multiple single sign-on protocols such
as SAMLv2, IDFF1.2, or WS-Fed together within a circle of trust. In OpenSSO Enterprise 8.0,
the Multi-Federation Protocol Hub is supported only at the Identity Provider. The Identity
Provider can be configured to support multiple Service Providers, with each Service Provider
using a different federation protocol. The session is shared across these heterogeneous
protocols, providing single sign-on and single logout within the circle of trust.

The following topics are included in this chapter:

■ “About Identity and Web Services Federation Protocols” on page 119
■ “Analyzing the Deployment” on page 120
■ “Considering Assumptions, Dependencies, and Constraints” on page 121
■ “Understanding Typical Business Use Cases” on page 122
■ “Setting Up and Configuring a Multi-Federation Protocol Hub” on page 125
■ “Using the Sample JSP ” on page 125
■ “Evaluating Benefits and Tradeoffs” on page 126

About Identity and Web Services Federation Protocols
Sun OpenSSO identity federation is based on the Liberty Alliance specification which includes
the Identity Federation Framework (ID-FF) and SAMLv2 protocols. Microsoft Active Directory
Federation Service (ADFS) is based on the Web Services Architecture specification which uses
the Microsoft Web Browser Federated Sign-On (MS-MWBF) and Web Services Federation
(WS-Federation) protocols. OpenSSO Enterprise provides support for MS-MWBF so that
single sign-on can work among OpenSSO and ADFS-based environments. For more
information about identity and web service federation protocols, see the Sun OpenSSO
Enterprise 8.0 Technical Overview.

8C H A P T E R 8

119

http://docs.sun.com/doc/820-3740
http://docs.sun.com/doc/820-3740

Analyzing the Deployment
The typical configuration for Multi-Federation Protocol Hub requires one OpenSSO Enterprise
instance as an Identity Provider, and two or more OpenSSO Enterprise instances as Service
Providers. In this deployment example, the Multi-Federation Protocol Hub is configured with
three different Service Providers. Each Service Provider uses a different federation protocol to
connect to a single OpenSSO Enterprise instance. Single Logout occurs through a browser
redirect when the HTTP post profile is used. If the SOAP binding is used, then a direct SOAP
request is sent from the Identity Provider to the Service Provider.

The following illustration illustrates the major components that are involved in the
Multi-Federation Protocol Hub.

Analyzing the Deployment

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 2009120

Considering Assumptions, Dependencies, and Constraints
The following are issues you must resolve before choosing to use the Multi-Federation Protocol
Hub.

Constraints
The Multi-federation Protocol Hub in OpenSSO Enterprise can be configured with only the
following federation protocols:

Circle of Trust - HTTPS

Identity Provider Service Providers

Browser

OpenSSO Enterprise

Multi-Federation
Protocol Hub

SAMLv2

ID-FF1

WS-Federation

SOAP

SOAP

SOAP

Health Care Application

SAMLv2

Retirement Plan
Application

ID-FF1

Stock Options
Application

WS-Federation

FIGURE 8–1 Deployment Architecture for the Multi-Federation Protocol Hub

Considering Assumptions, Dependencies, and Constraints

Chapter 8 • Using a Multi-Federation Protocol Hub 121

■ SAMLv2
■ Liberty ID-FF1
■ WS-Federation

The Multi-Federation Protocol Hub in Open SSO Enterprise 8.0 is only supported on the
Identity Provider configuration.

Assumptions and Dependencies
■ Single Logout over HTTP post profile must be supported by the Service Providers running

HTTP.
■ Single Logout over SOAP must be supported by the Service Providers running SOAP.

Understanding Typical Business Use Cases
A company uses the following services and federation protocols to manage employee benefits:

■ Health Care Administration (SAMLv2)
■ Retirement Plan Administration (ID-FF1)
■ Stock Plan Administration (WS-Federation)

The company itself acts as an Identity Provider, managing employee information in its
corporate user database. The Identity Provider enables employees to access any of the three
Service Providers through an employee portal. The Health Care Service Provider uses the
SAMLv2 federation protocol. The Retirement Plan Service Provider uses ID-FF1, and the Stock
Plan Service Provider uses WS-Federation. The Identity Provider is configured as a
Multi-Federation Protocol Hub and provides single sign-on and single logout across all these
services.

The following figures illustrates a typical Multi-Federation Protocol Hub process flow.

Understanding Typical Business Use Cases

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 2009122

The following figure illustrates the process flow for Single Logout using the Multi-Federation
Protocol Hub.

Browser

Service Providers

15. Stock Option Service Provider grants access to employee.

Health Care
Administration

SAMLv2

Retirement Plan
Administration

ID-FF1 SAMLv2 ID-FF1

1. Employee logs into employee portal. OpenSSO Enterprise authenticates user.

2. Employee attempts to access Health Care service.

3. Health Care Service Provider initiates AuthNRequest
 to SAMLv2 endpoint in OpenSSO Enterprise.

4. OpenSSO Enterprise verifies that employee has already
 authenticated sends , AuthNResponse to Health Care

Service Provider.

5. Health Care Service Provider grants access to employee.

6. Employee access Health Care service.

7. Employee attempts to access Retirement Plan service.

8. Retirement Plan Service Provider initiates AuthNRequest
to ID-FF1 endpoint in OpenSSO Enterprise.

9. OpenSSO Enterprise verifies that employee has already
authenticated, sends AuthNResponse to Retirement
Plan Service Provider.

10. Retirement Plan Service Provider
grants access to employee.

11. Employee accesses Retirement Plan service.

12. Employee attempts to access Stock Options service.

13. Stock Options Service Provider initiates AuthNRequest
 to WS-Federation endpoint in OpenSSO Enterprise.

14. OpenSSO Enterprise verifies that employee has already authenticated,

sends AuthNResponse to Stock Options Service Provider.

16. Employee accesses Stock Options service.

Stock Options
Administration

WS-Federation

Identity Proivder

OpenSSO Enterprise

WS-
Federation

FIGURE 8–2 Process Flow for Single Sign-On Using a Multi-Federation Protocol Hub

Understanding Typical Business Use Cases

Chapter 8 • Using a Multi-Federation Protocol Hub 123

Browser

Service Providers

1. Employee clicks the logout link on the Stock
 Options administration page.

2. Stock Options Service Provider initiates a
 LogoutRequest to the WS -Federation
 endpoint in OpenSSO Enterprise.

3. OpenSSO Enterprise invokes multi-federation single logout SPI
 for WS-Federation.

 Single Logout is completed for WS-Federation.
OpenSSO Enterprise sends Single Logout
request to Retirement Plan Service Provider.

Health Care
Administration

SAMLv2

Retirement Plan
Administration

ID-FF1 SAMLv2 ID-FF1

4. OpenSSO Enterprise invokes multi-federation
 single logout SPI for ID-FF.

 Single Logout is completed for ID-FF.
OpenSSO Enterprise sends Single Logout
request to Health Care Service Provider.

5. OpenSSO Enterprise invokes multi-federation single logout SPI for
 SAMLv2.

Single Logout is completed for SAMLv2.
OpenSSO Enterprise destroys session.
OpenSSO Enterprise sends Single Logout
response to Stock Options Service Provider.

7. Stock Options Service Provider displays logout page to employee.

Stock Options
Administration

WS-Federation

Identity Proivder

OpenSSO Enterprise

WS-
Federation

FIGURE 8–3 Process Flow for Single Logout Using the Multi-Federation Protocol Hub

Understanding Typical Business Use Cases

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 2009124

Setting Up and Configuring a Multi-Federation Protocol Hub
The following information provides a high-level overview of setup and configuration
instructions. Before you can begin, OpenSSO Enterprise must be deployed on a supported web
container. You can configure the Multi-Federation Protocol Hub by importing the metadata
using either the OpenSSO Enterprise administration console, or using the ssoadmin
command-line interface. For detailed configuration steps, see the Sun OpenSSO Enterprise 8.0
Administration Guide. A code JSP file is contained in theopensso.war file. The sample JSP
demonstrates how to configure a Multi-Federation Protocol Hub.

Using the Sample JSP
1. Install and deploy OpenSSO Enterprise instances on four separate host computers, one

instance in each domain.
2. Locate the sample JSP on the Open SSO instance.

http://FQDN/opensso/samples/multiprotocol/index.html

3. Configure OpenSSO Enterprise instance 1 as a SAMLv2 Service Provider named SP1.
Run the sample JSP to create one hosted SAMLv2 Service Provider and one remote SAMLv2
Identity Provider in the same circle of trust.

4. Configure OpenSSO Enterprise instance 2 as an ID-FF Service Provider named Service
Provider 2.
Run the sample JSP to create one host ID-FF Service Provider and one remote ID-FF
Identity Provider in the same circle of trust.

5. Configure OpenSSO Enterprise instance 3 as a WS-Federation Service Provider named
Service Provider 3.
Run the sample JSP to created one hosted WS-Federation Service Provider and one remote
WS-Federation Identity Provider in one circle of trust.

6. Configure OpenSSO Enterprise instance 4 as an Identity Provider using the following
protocols: IDP, referred as IDP1, IDP2 and IDP3 respectively.
■ SAMLv2 (Identity Provider 1)
■ ID-FF (Identity Provider 2)
■ WS-Federation (Identity Provider 3)

Run the sample JSP to create three hosted Identity Providers (one each for SAMLv2, ID-FF
and WS-Federation), and three remote Service Providers (one each for SAMLv2, ID-FF and
WS-Federation) the same circle of trust.

7. Run single sign-on from Service Provider 1 to Identity Provider 2, then from Service
Provider 2 to Identity Provider 2 without logging in again, then Service Provider 3 to
Identity Provider 3 without logging in.

8. Run single logout from Service Provider 1.

Using the Sample JSP

Chapter 8 • Using a Multi-Federation Protocol Hub 125

http://docs.sun.com/doc/820-3885
http://docs.sun.com/doc/820-3885

All sessions on Service Provider 2, Service Provider 3, and on all Identity Providers are
destroyed.

9. Run single sign-on again, and then run single Logout from Identity Provider 1.
All sessions on Service Provider 1, Service Provider 2, Service Provider 3, and on Identity
Providers are destroyed.

Evaluating Benefits and Tradeoffs
The Multi-Federation Protocol Hub feature in OpenSSO Enterprise enables the Identity
Provider to integrate with any existing or future service provider or service partner. The
Multi-Federation Protocol Hub achieves single sign-on and single Logout regardless of which
federation protocol the service provider or partner uses. Without this feature, the Identity
Provider has to force the Service Providers to use a single federation protocol.

With the Multi-Federation Protocol Hub only one circle-of-trust is required when using
heterogeneous Service Providers and Identity Providers in the same circle of trust. Without this
feature, you must set up and configure multiple circles of trust, one for each federation protocol
used. The Identity Provider could require multiple OpenSSO Enterprise instances. Each
OpenSSO Enterprise would have to act as an Identity Provider, and each OpenSSO Enterprise
instance would require a different protocol. To achieve single sign-on and single Logout, you
would have to install some kind of intelligent proxy in front of the Identity Provider. The proxy
would have to be able to recognize the incoming protocol from the Service Provider, and route
the request to the correct Identity Provider instance accordingly.

The Multi-Federation Protocol Hub configuration steps are simple. The only configuration
required is one extra metadata file for each protocol to be supported by the Identity Provider.

Evaluating Benefits and Tradeoffs

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 2009126

Enabling Web Services Federation Between
Active Directory Federation Service and
OpenSSO Enterprise

Sun OpenSSO identity federation is based on the Liberty Alliance specification which includes
uses the Identity Federation Framework (ID-FF) and SAMLv2 protocols. Microsoft Active
Directory Federation Service (ADFS) is based on the Web Services Architecture specification
which uses the Microsoft Web Browser Federated Sign-On (MS-MWBF) and Web Services
Federation (WS-Federation) protocols.

OpenSSO Enterprise provides support for MS-MWBF so that single sign-on can work among
OpenSSO and ADFS-based environments. This interoperability is achieved by creating trust
relationships between different security realms, and exchanging security tokens using the Web
Services Federation protocol.

This chapter provides information about enabling web services federation between
ADFS-based and OpenSSO Enterprise. The following topics are contained in this chapter:

■ “Analyzing the Deployment Architecture” on page 127
■ “Considering Assumptions, Dependencies, and Constraints” on page 130
■ “Understanding Typical Business Use Cases” on page 130
■ “Setting up and Configuring Single Sign-On Among OpenSSO Enterprise and ADFS

Environments” on page 131
■ “Evaluating Benefits and Tradeoffs” on page 133
■ “Finding More Information” on page 134

Analyzing the Deployment Architecture
This deployment consists of two different environments:

■ An ADFS-based environment
■ A load-balanced, multi-server OpenSSO Enterprise environment

This deployment illustrates the interoperability between both environments, and also illustrates
the added constraints of a multi-server OpenSSO Enterprise solution.

9C H A P T E R 9

127

The ADFS environment is derived entirely from Step-by-Step Guide for Active Directory
Federation Services (http://www.dabcc.com/article.aspx?id=1566). In this deployment, a
web browser (client) interacts with a web resource to request a security token from a requestor
Identity Provider or Security Token Service. The request is communicated through a resource
partner such as an Identity Provider or Security Token Service.

OpenSSO Enterprise can play the role of either resource (Service Provider) or requestor
(Identity Provider). The following figure illustrates OpenSSO Enterprise acting as a Service
Provider, known in the MS-MWBF specification as a Resource Identity Provider/Security
Token Service (Resource IP/STS). The business use case for this architecture is described in
“OpenSSO Enterprise Acts as Service Provider” on page 130.

Service Provider - Company BIdentity Provider- Company A

RESOURCE
Identity Provider Secure

Token Service

OpenSSO Enterprise
--
Metadata Configuration

Web Policy Agent
--

Profile Configuration

RELYING PARTY
Web Service

Web Policy Agent
--

Profile Configuration

REQUESTOR
Identity Provider Security

Token Service

Active Directory
Federation Services

Server Configuration

TRUST

DERIVED
TRUST

TRUST

TRUST

REQUESTOR
Web Browser

Browser Configuration

Authentication Processes
Domain Configuration

Security Tokens

FIGURE 9–1 Deployment Architecture for ADFS Integration with OpenSSO Enterprise Acting as Service
Provider

Analyzing the Deployment Architecture

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 2009128

http://www.dabcc.com/article.aspx?id=1566
http://www.dabcc.com/article.aspx?id=1566

The following figure illustrates OpenSSO Enterprise acting as an Identity Provider, known in
the MS-MWBF specification as a Requestor Identity Provider/Security Token Service
(Requestor IP/STS). The business use case for this architecture is described in “OpenSSO
Enterprise Acts as Identity Provider” on page 131.

Service Provider - Company CIdentity Provider - Company B

RESOURCE
Identity Provider Secure

Token Service

RELYING PARTY Web Service

Active Directory Federation
Services Web Policy Agent

--
Profile Configuration

REQUESTOR
Identity Provider Security

Token Service

Active Directory
Federation Services

Server Configuration

TRUST

DERIVED
TRUST

TRUST TRUST

REQUESTOR
Web Browser

Browser Configuration

Authentication Processes

Security Tokens

OpenSSO Enterprise
--
Metadata Configuration

FIGURE 9–2 Deployment Architecture for ADFS Integration with OpenSSO Enterprise Acting as Identity
Provider

Analyzing the Deployment Architecture

Chapter 9 • Enabling Web Services Federation Between Active Directory Federation Service and OpenSSO
Enterprise

129

Considering Assumptions, Dependencies, and Constraints
The following are issues you must resolve before you can enable Web Service Federation among
ADFS and OpenSSO Enterprise.

Assumptions and Dependencies
■ The ADFS-based environment is already set up and running.

This chapter is based on the assumption that you are proficient in setting up and
ADFS-based environment as described in

■ OpenSSO Enterprise is already deployed.
This is a prerequisite for configuring OpenSSO Enterprise to act as an Identity Provider or
Service Provider in a circle of trust.

Constraints
■ The configuration requirements documented in this chapter include tools and procedures

that are not appropriate for a production deployment.
Examples are: the use of self-signed certificates, the modification of host files, local time
synchronization, and so forth. These are described for illustration purposes only. For
production deployments, you must use different solutions suitable for your environment.

■ OpenSSO Enterprise supports WS-Federation as it relates to its support within the ADFS
boundaries. Parts of the WS-Federation specification not required by ADFS may not be
supported in this release.

Understanding Typical Business Use Cases
This chapter describes two typical business use cases:

■ “OpenSSO Enterprise Acts as Service Provider” on page 130
■ “OpenSSO Enterprise Acts as Identity Provider” on page 131

OpenSSO Enterprise Acts as Service Provider
In this use case, Company A is acquired by Company B. The intranets for both companies have
been merged, but much of the network infrastructure remains as though they were still two
separate entities. Company A maintains an Active Directory domain, and Company B
maintains an OpenSSO Enterprise single sign-on infrastructure in its own domain.

Considering Assumptions, Dependencies, and Constraints

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 2009130

In order for Company A employees to access some internal applications available to Company
B employees, a trust relationship is created between the Company A domain and the Company
B domain. The trust relationship is created using the Web Services Federation protocol.
Company A employees, signed on to their Microsoft Windows computers, can now navigate to
the Company B paycheck application by using a Web Services Federation secure token.

OpenSSO Enterprise Acts as Identity Provider
In this use case, Company B wants to offer its employees a new online collaborative
environment based on Microsoft SharePoint Services. The collaboration solutions is an
outsourced model where Company C provides dedicated SharePoint Services to its customers.
In order to provide single sign-on to the Company B employees, Company C leverages the
federation services provided by ADFS. A trust relationship is created between created between
the Company B OpenSSO Enterprise Identity Provider and the Company C Resource Identity
Provider /Security Token Service.

Setting up and Configuring Single Sign-On Among OpenSSO
Enterprise and ADFS Environments

This chapter provides high-level deployment information for setting up and configuring single
sign-on among OpenSSO Enterprise and ADFS environments. For detailed information, see
the Microsoft Administering Active Directory Federation Services Guidehttp://
technet.microsoft.com/en-us/library/cc736337.aspx for instructions on configuring
Resource and Account Partners. See the Sun OpenSSO Enterprise 8.0 Administration Guide for
information about using the ssoadmin command or administration console to generate
metadata, create a circle of trust and import entities.

Enabling WS-Federation between an ADFS environment and an OpenSSO Enterprise
environment involves exchanging metadata to enable a trust relationship. Prior to this, the
following requirements must be met:

■ All communications between WS-Federation components must be made over SSL.
ADFS does not perform an HTTP POST of a WS-Federation RSTR to a non-HTTPS URL.

■ Name resolution is based on host files. Therefore, host files must be appropriately updated
with host names and IP addresses.

■ The ADFS environment can rely on DNS.
■ All servers must be time-synchronized.

This is essential to proper token validation.
■ Token signing certificates must be created and imported for both ADFS and OpenSSO

Enterprise endpoints.

Setting up and Configuring Single Sign-On Among OpenSSO Enterprise and ADFS Environments

Chapter 9 • Enabling Web Services Federation Between Active Directory Federation Service and OpenSSO
Enterprise

131

http://technet.microsoft.com/en-us/library/cc736337.aspx
http://technet.microsoft.com/en-us/library/cc736337.aspx
http://docs.sun.com/doc/820-3885

This process is automated in ADFS, but requires the use of the keytool command for
OpenSSO Enterprise.

The creation of a trust relationship relies on the exchange of metadata between the parties
involved. Importing this information is straightforward and can be done through the GUI on
the ADFS side. On the OpenSSO Enterprise side, to import the information you can use the
ssoadmin command-line utility or the ssoadmin.jsp.

Configuring OpenSSO Enterprise to Act as a Service
Provider
This use case requires that the ADFS server in the Company B domain be configured to
recognize the Company A OpenSSO Enterprise endpoint as a Resource Partner. The Company
B ADFS server must be recognized as a valid Identity Provider in a circle of trust that includes
the Company A OpenSSO Enterprise server as a Service Provider.

In the OpenSSO Enterprise environment:

Use the ADFS snap-in to create a new Resource Partner. The new Resource Partner must be
defined using the proper name and endpoint URL.

In the ADFS-based environment:

■ Create metatdata and extended metadata files to define the Company B ADFS server as the
Identity Provider, and the Company A OpenSSO Enterprise server as the Service Provider
in a WS-Federation protocol paradigm.

■ Create a new circle of trust and import each Identity Provider and Service Provider to
belong to this circle of trust.

This configuration currently works only if a user account with the same UPN is created in both
the ADFS domain and the OpenSSO Enterprise server. This is a major constraint.

Configuring OpenSSO Enterprise to Act as an Identity
Provider
This use case requires that the ADFS server in the Company C domain to be configured to
recognize the Company A server as an Account Partner. The Company A server must be
configured to recognize the Company C ADFS server as a Service Provider in a circle of trust.

In the OpenSSO Enterprise environment:

■ Configure a new keystore for the token signing certificate, or leverage the one provided by
the container.

Setting up and Configuring Single Sign-On Among OpenSSO Enterprise and ADFS Environments

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 2009132

■ Create metadata and extended metadata files to define the Company A OpenSSO Enterprise
server as the Identity Provider.

■ Create metadata and extended metadata files to define the Company B ADFS server as the
Identity Provider, and the Company C ADFS server as the Resource Provider in a
WS-Federation protocol paradigm.

■ Create a new circle of trust, and import each Identity Provider and Service Provider to
belong to this new circle of trust.

In the ADFS environment:

■ Create a new Account Partner using the ADFS snap-in.
The proper name and endpoint URL must be defined.

■ Import the OpenSSO Enterprise token signing certificate (DER format). For detailed
information, see the .Sun OpenSSO Enterprise 8.0 Administration Guide

Evaluating Benefits and Tradeoffs
The following information helps you decide whether enabling Web Services Federation
between ADFS and OpenSSO Enterprise is suitable for your needs.

Benefits

Using OpenSSO Enterprise as Service Provider
You are likely to leverage WS-Federation in a mixed environment involving Windows domains
and heterogeneous web service environments. In such cases, using WS-Federation eliminates
the need to complete the complicated setups involved with Desktop SSO (IWA, Kerberos, etc.).
This simplifies the integration of web services in the ADFS-based environments.

Using OpenSSO Enterprise as Identity Provider
The immediate benefit is the single sign-on to SharePoint Services from non-ADFs
environments. This can be extended to pure claims-based applications residing inside the
Resource Partner's domain.

Tradeoffs
The main drawback to using WS-Federation is that currently only limited support or
configuration help is offered for ADFS claims within OpenSSO Enterprise. For example, the
Microsoft Administering Active Directory Federation Services Guidehttp://

Evaluating Benefits and Tradeoffs

Chapter 9 • Enabling Web Services Federation Between Active Directory Federation Service and OpenSSO
Enterprise

133

http://docs.sun.com/doc/820-3885
http://technet.microsoft.com/en-us/library/cc736337.aspx

technet.microsoft.com/en-us/library/cc736337.aspx depicts the use of group claims and
their mapping between realms. The use of group claims eliminates the need to map user
principals information from one realm to the next in a federated environment. These claims,
based on group memberships, have not been tested in this deployment example configuration.

Finding More Information

Specifications
■ Microsoft Web Browser Federated Sign-on Protocol Specification

http://msdn.microsoft.com/en-us/library/cc236471.aspx

■ Web Services Federation Language
http://specs.xmlsoap.org/ws/2006/12/federation/ws-federation.pdf

Guides and Overviews
■ Understanding WS-Federation

http://msdn.microsoft.com/en-us/library/bb498017.aspx

■ Overview of ADFS
http://technet.microsoft.com/en-us/library/cc755828.aspx

■ Microsoft Administering Active Directory Federation Services Guide
http://technet.microsoft.com/en-us/library/cc736337.aspx

Case Study
OpenSSO, WS-Federation & IBM DataPower by Joachim Andre

https://opensso.dev.java.net/

files/documents/3676/79106/OpenSSO-WS-Fed-DataPower-FederationPoC.pdf

Finding More Information

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 2009134

http://technet.microsoft.com/en-us/library/cc736337.aspx
http://msdn.microsoft.com/en-us/library/cc236471.aspx
http://specs.xmlsoap.org/ws/2006/12/federation/ws-federation.pdf
http://msdn.microsoft.com/en-us/library/bb498017.aspx
http://technet.microsoft.com/en-us/library/cc755828.aspx
http://technet.microsoft.com/en-us/library/cc736337.aspx
https://opensso.dev.java.net/files/documents/3676/79106/OpenSSO-WS-Fed-DataPower-FederationPoC.pdf
https://opensso.dev.java.net/files/documents/3676/79106/OpenSSO-WS-Fed-DataPower-FederationPoC.pdf

Securing Web Services Using ID-WSF (Liberty
Alliance Specifications)

This chapter provides information about developing identity-based web services using the
Identity Web Services Framework (ID-WSF) developed in OpenSSO Enterprise. OpenSSO
Enterprise provides an implementation for the Liberty Personal Profile Service and typically
uses the default OpenSSO Enterprise configuration store for the Personal Profile Service
configuration. However, this chapter describes a new use case. With OpenSSO Enterprise 8.0,
you can develop a custom, identity-based web service using the OpenSSO Enterprise
infrastructure instead of using the Personal Profile Service as a data service.

The following topics are contained in this chapter:

■ “About the Identity Web Services Framework” on page 135
■ “Analyzing the Deployments” on page 138
■ “Considering Assumptions, Dependencies and Constraints” on page 142
■ “Understanding Typical Business Use Cases” on page 143
■ “Setting Up and Configuring ID-WSF” on page 145
■ “Evaluating Benefits and Tradeoffs” on page 145
■ “Finding More Information” on page 146

About the Identity Web Services Framework
Identity Web Services Framework (ID-WSF) is a set of specifications created by the Liberty
Alliance to promote secure web services. ID-WSF is part of Liberty's Phase 2 specifications
which augment the initial Identity Federation Framework (ID-FF) specifications. The ID-FF
focuses on federating the user's authentication and single sign-on. The ID-WSF defines
specifications for web services in a federated environment. The federated environment
establishes a trust between all the participating entities without revealing the end user's identity.
The following diagram illustrates the relationship between entities in such an environment,
known as a circle of trust.

10C H A P T E R 1 0

135

The ID-WSF defines specifications for the following Liberty components:

■ Discovery Service
■ SOAP Binding
■ Authentication Service
■ Security Mechanisms
■ Interaction Service
■ PAOS Binding
■ Data Service Template

The ID-WSF defines a concrete trust authority called the Liberty Discovery Service. The
framework is built around the Liberty Discovery Service. The Liberty Discovery Service not
only enables a web service to register, but also helps in generating security credentials for web
service clients that may be doing lookups for a specific service type.

The Liberty Interaction Service allows the user to interact during web services communication
for any authorization. Liberty Authentication Service allows the web services clients to
authenticate the principal in non-browsed based environments. As part of the Phase 2

Principal

Service Provider

Identity-based
Web Service Provider

Identity Provider

Circle of Trust

Customer
Employee
Game user
...

Web content
Games
Merchant site
...

Geolocation
Payment
...

Authentication
Federation
Discovery service
Personal profile
...

FIGURE 10–1 Major Components in a Circle of Trust

About the Identity Web Services Framework

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 2009136

specifications, Liberty Alliance also defined specifications for additional identity services such
as Liberty Personal Profile Service, Liberty Employee Personal Profile Service and others. These
Phase 2 specifications form the Liberty Service Instance Specifications (SIS) Specifications.

OpenSSO Enterprise fully implements ID-WSF1.x specifications and exposes the ID-WSF as a
pluggable framework which the user can leverage for increased security. OpenSSO Enterprise is
a self-contained, single WAR file built to industry standard specifications. The Identity Web
Services Framework in OpenSSO Enterprise enables developers to focus on the business logic of
their service while leaving the security aspect to OpenSSO Enterprise.

The following diagram represents the OpenSSO Enterprise ID-WSF framework from an
implementation point of view.

The OpenSSO Enterprise ID-WSF uses a simple servlet-based extension framework that any
identity based web service can plug into. OpenSSO Enterprise provides tools and APIs for two
distinct classes of developers: Identity Web Service Implementors (WSPs), and application
developers (WSCs) who use these web services . OpenSSO Enterprise also provides the hooks
required to quickly integrate the existing infrastructure with Liberty-enabled infrastructure.

OpenSSO
Enterprise Server

Security
Mechanism

Web Services
Client

(Soap Client API)

Discovery
Service

Personal
Profile
Service

Custom
Web Service

Soap Binding
Service

Soap Receiver

Request
Handler

FIGURE 10–2 OpenSSO Enterprise Identity Web Service Framework Implementation

About the Identity Web Services Framework

Chapter 10 • Securing Web Services Using ID-WSF (Liberty Alliance Specifications) 137

Any custom web service that is developed using the OpenSSO Enterprise ID-WSF must register
with the SOAP Binding Service. The SOAP Binding Service provides the validation of SOAP
message with respect to security such as XML Digital Signature and Encryption and other
Liberty processing rules. The Soap Binding Service then generates the OpenSSO Enterprise
single sign-on token for further authorization of the client by the web service.

Analyzing the Deployments
The Identity Web Services Framework can be used in either browser-based mode or desktop
mode. The browser-based client uses SAMLv2 or ID-FF protocols to find the Liberty Discovery
Service Resource Offering of an authenticated user, or bootstrap, into the ID-WSF framework.
The desktop clients can leverage the Liberty Authentication Service to bootstrap into the
ID-WSF. OpenSSO Enterprise supports ID-WSF boot strapping through the SAMLv2, ID-FF,
or ID-WSF -based authentication service, depending upon the client needs. This chapter
describes deployments for both browser-based clients and desktop clients

Browser-based ID-WSF Deployment
The following diagram represents the deployment architecture for ID-WSF using OpenSSO
Enterprise for browsed-based clients.

Both Service Provider and Identity Provider are used for authenticating the user's identity using
SAMLv2 protocols. OpenSSO Enterprise can be an Identity Provider or a Service Provider or a
hosting web service in this deployment. The Service Provider and Web Services Client are in the

OpenSSO Enterprise

Service Provider

OpenSSO Enterprise

Identity Provider
Trust Authority and
Discovery Service

Web Services Client

Client Application

OpenSSO Enterprise
Client SDK

Web Service Provider

OpenSSO Enterprise

Web Service

Discovery
Bootstrap

SAML2
SSO/HTTP

Trust and
Register

Lookup and
Credentials

SOAP/HTTP

FIGURE 10–3 Deployment Architecture for Browser-based Identity Web Services

Analyzing the Deployments

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 2009138

same domain in this deployment. The Web Service Provider registers its service resource
offering with the Discovery Service before it offers services to various clients. The registration
can be done through either the Discovery Service protocol or out of band. The OpenSSO
Enterprise can be deployed in various roles for this deployment as illustrated in the deployment
architecture diagram. The following figures shows the process flow among various entities in
the browser-based identity web services deployment.

Analyzing the Deployments

Chapter 10 • Securing Web Services Using ID-WSF (Liberty Alliance Specifications) 139

Desktop ID-WSF Deployment
The desktop mode ID-WSF deployment supports desktop mode clients, so they do not require
an application container. Desktop ID-WSF is useful for standalone Web Service Clients. The

2. Web Service Client redirects to Service Provider.

3. Service Provider redirects
to Identity Provider.

4. Identity Provider presents a login page.

7. The Web Service Client sends
a request to the Web Service
using the security token.

8. Upon credential validation, the
Web Service returns a response.

1. User access Web Service Client.

Browser Web Service
Provider

Service
Provider

Discovery
Service

Identity Provider

Web Service
Client

5. The Web Service Client sends
request to discovery service to retrieve
the web service resource offering.

6. The discovery service returns the
web service resource offering and
possibly a security token.

Browser:
• User enters user credentials.
• After successful SAML2 single sign-on, the Service
 Provider has user’s discovery resource offering
 and credentials.
• The Service Provider can now access the discovery service.

FIGURE 10–4 Process Flow for Browser-based Identity Web Services

Analyzing the Deployments

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 2009140

custom Web Service Clients can leverage the OpenSSO Enterprise Client SDK to enable a
secure connection for a given payload. The Web Services Client bundles the OpenSSO
Enterprise Client SDK that accesses the local OpenSSO Enterprise instance to secure web
service requests.

The Web Services package is contained in the OpenSSO Enterprise WAR file and must be
deployed along with the OpenSSO Enterprise server to leverage the ID-WSF security
framework. The configuration and user data is not required to be same data store as that of
OpenSSO Enterprise. The trust authority for ID-WSF is the Discovery Service. The Discovery
Service end point is exposed the same way as any data web service, and can fully leverage
OpenSSO Enterprise infrastructure components such as authentication, policies, and so forth
to serve web service clients and as well as web services. OpenSSO Enterprise is independent in
all these roles and can be deployed appropriately based on the customer or application
requirements. The following figure illustrates the process flow for desktop ID-WSF.

OpenSSO Enterprise

Trust Authority
Authentication and
Discovery Services

Web Services Client

Client Application

OpenSSO Enterprise
Client SDK

Web Service Provider

OpenSSO Enterprise

Web Service

Trust and
Register

Lookup and
Credentials

SOAP/HTTP

FIGURE 10–5 Desktop ID-WSF Deployment

Analyzing the Deployments

Chapter 10 • Securing Web Services Using ID-WSF (Liberty Alliance Specifications) 141

Considering Assumptions, Dependencies and Constraints
As you plan your deployment, consider the following assumptions, dependencies, and
constraints to determine if your environment is appropriate for using the ID-WSF.

Assumptions and Dependencies
The fundamental difference between ID-WSF and generic web services is that the ID-WSF
defines a security framework around user identity. The ID-WSF allows an end user to register
his service offerings with their trusted trust authorities. Generic web services advertise their

FIGURE 10–6 Process Flow for Desktop Identity Web Services

Considering Assumptions, Dependencies and Constraints

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 2009142

offerings through either a Web Service Description Language (WSDL) file or by the Enterprise
Universal Description, Discovery, and Integration (UDDI) registry. These use cases are driven
through Liberty ID-WSF and thus have a dependency on other Liberty protocols such as ID-FF
and SAMLv2.

Constraints
The majority of identity web services are deployed in the Mobile Communications industry.
For server-side web service providers OpenSSO Enterprise provides a comprehensive solution
for ID-WSF. However, solutions for Liberty enabled clients do not provide the same degree of
coverage. For example, the Client SDK is not J2ME-compatible and will not work with mobile
devices that typically use Midlets to invoke Identity Web Services. Also, the OpenSSO
Enterprise ID-WSF does not implement all profiles for the Liberty-enabled user agent or device
(LUAD) clients.

Understanding Typical Business Use Cases
The adoption of identity web services is widespread especially in mobile
communications-based businesses. Many of the telecommunication industries in Europe have
invested heavily in ID-WSF based architectures, although the adoption in US is relatively
smaller.

The following figure illustrates a simple E-commerce deployment using OpenSSO Enterprise.

Understanding Typical Business Use Cases

Chapter 10 • Securing Web Services Using ID-WSF (Liberty Alliance Specifications) 143

1. The customer is browsing the merchant site and initiates a purchase of some item.

2. The merchant who needs to authenticate the customer can request authentication through
one of the trusted Identity Providers. The authentication happens here through ID-FF or
SAMLv2, masking the real identity of the customer. This helps preserve the customer's
privacy.

3. The merchant requests the payment service to guarantee the transaction. First the merchant
site discovers the customer payment service through the Discovery Service. Then the
merchant site requests the payment services on behalf of the principal. This step leverages
the fact that the Liberty discovery mechanism is per principal-oriented, allowing merchants
to request payments without having to know the real customer identity.

4. The payment service validates the transaction. Before charging the customer, the payment
service may take a user consent. The payment service uses the Liberty Interaction Service for
doing this. With successful purchase, the merchant returns the confirmation of purchase
and delivers the service.

Principal

Service Provider

Identity-based
Web Service Provider

Identity Provider

Circle of Trust

Customer
Employee
Game User
...

Merchant site

Payment

Authentication
Federation
Discovery service
Personal profile
...

1

2

3

4

FIGURE 10–7 Identity Web Services Business Use Case

Understanding Typical Business Use Cases

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 2009144

Setting Up and Configuring ID-WSF
For demonstration purposes, this section describes the high-level setup of a simple web-based
service which was used as the basis for this chapter. OpenSSO Enterprise plays various roles in
this environment depending:

■ OpenSSO Enterprise is installed in the Web Services Client Domain.
■ OpenSSO Enterprise is installed in the Web Services Provider Domain.
■ OpenSSO Enterprise acts as a Trust Authority Service.

For browser-based deployment, the Liberty Personal Profile Web Service that is shipped with
OpenSSO Enterprise is used. The user profile information is stored in the LDAP user data store.

For desktop based deployment, a simple weather service web service is developed to
demonstrate the developer aspect.

Evaluating Benefits and Tradeoffs
The following lists are useful in helping you determine whether ID-WSF is suitable for your
environment.

Benefits
■ OpenSSO Enterprise provides an extensive, customizable framework for ID-WSF.
■ ID-WSF consumers can leverage not only use Identity Web Services security, but can also

leverage the OpenSSO Enterprise policy and access control features.
■ Processing a custom web service payload can totally be independent of the OpenSSO

Enterprise infrastructure.

Tradeoffs
■ Developers must develop and deploy their web services along with OpenSSO Enterprise.
■ If web services already exist in the environment, the developers must integrate them with

OpenSSO Enterprise.
OpenSSO Enterprise ID-WSF framework is tested in interoperable environments and
certified by the Liberty Alliance. So the web services are almost certain to work in
multi-vendor environments as long as the remote party is also a certified implementation.

■ The lack of mobile client support with the OpenSSO Enterprise Client SDK may be a
limitation. However, the primary use for OpenSSO Enterprise is in enterprise web service
deployments.

Evaluating Benefits and Tradeoffs

Chapter 10 • Securing Web Services Using ID-WSF (Liberty Alliance Specifications) 145

Finding More Information
■ Chapter 10, “Federation Management with OpenSSO Enterprise,” in Sun OpenSSO

Enterprise 8.0 Technical Overview
■ Liberty ID-WSF Specifications

http://www.projectliberty.org/

resource_center/specifications/liberty_alliance_id_wsf_1_1_specifications

Finding More Information

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 2009146

http://docs.sun.com/doc/820-3740/ggzgi?a=view
http://docs.sun.com/doc/820-3740/ggzgi?a=view
http://www.projectliberty.org/resource_center/specifications/liberty_alliance_id_wsf_1_1_specifications
http://www.projectliberty.org/resource_center/specifications/liberty_alliance_id_wsf_1_1_specifications

Securing Web Services Using the Security Token
Service (WS-* Specifications)

A web service is an application that exposes some type of business or infrastructure
functionality though a callable interface that is both language-neutral and
platform-independent. A company's web-based phonebook is an example of such an
application. This document provides information about how you can use OpenSSO Enterprise
to protect your web-base applications and services from unauthorized use or attack.

The following topics are included in this chapter:
■ “About Web Services Security Models” on page 147
■ “About OpenSSO Enterprise Web Services Security” on page 149
■ “Analyzing the Deployment Architecture” on page 150
■ “Understanding Typical Business Use Cases” on page 154
■ “Considering Assumptions, Dependencies, and Constraints” on page 159
■ “Evaluating Benefits and Tradeoffs” on page 161

About Web Services Security Models
A web service exposes its functionality using the Web Services Framework (WSF). The Web
Services Framework defines its interface using Web Service Description Language (WSDL), and
communicates using Simple Object Access Protocol (SOAP) and Extensible Markup Language
(XML) messages. Although web services enable open, flexible, and adaptive interfaces, this
openness create security risks. Without proper security measures in place, a web service can
expose vulnerabilities that could allow unauthorized entities access to the enterprise. You can
ensure the integrity, confidentiality and security of web services by using a comprehensive
security model. In a good security model, web services are secured either point-to-point as
provided by SSL/TLS, or end-to-end as specified by the Web Services Security (WS-Security)
Framework.

The WS-Security Framework was developed by the OASIS Security committee along with other
WS-* specifications such as WS-Trust and WSPolicy. Transport-layer or point-to-point
transport mechanisms transmit information over the wire between clients and providers.

11C H A P T E R 1 1

147

Transport-layer security relies on secure HTTP transport (HTTPS) using Secure Sockets Layer
(SSL). Transport security can be used for authentication, message integrity, and confidentiality.
When running over an SSL-protected session, the server and client can authenticate one
another and negotiate an encryption algorithm and cryptographic keys before the application
protocol transmits or receives its first byte of data. Security is enabled from the time data leaves
the consumer until the data arrives at the provider, or from the time the data leaves the provider
until the data arrives at the consumer. Sometimes security data transfer can transpire even
across intermediaries.

The following figure illustrates a security model that uses point-to-point security.

A drawback to using point-to-point security is that the message is not protected once it gets to
its destination. One solution is to encrypt the message before sending using application
security.

Using application-layer or end-to-end security, the message is secure even when the message is
not in transit. Additionally, in application-layer security, the security information is contained
within the SOAP message and the message attachment. This allows security information to
travel along with the message or attachment. For example, a portion of the message may be
signed by a sender and encrypted for a particular receiver. When the message is sent from the
initial sender, it may pass through intermediate nodes before reaching its intended receiver.
When this happens, the encrypted portions continue to be opaque to any intermediate nodes,
and can only be decrypted by the intended receiver. Message security can be used to decouple
message protection from message transport so that the message remains protected after
transmission. For this reason, application-layer security is also sometimes referred to as
end-to-end security .

The following figure illustrates a security model that uses end-to-end security.

Security
Context

Web Service
Provider (WSP)

Web Service
Client (WSC)

Intermediaries

Security
Context

Security
Context

FIGURE 11–1 Secure Communication Channel Providing Point-to-Point Security

About Web Services Security Models

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 2009148

Application-layer security provides the following: Confidentiality, by encrypting message parts,
integrity, by digital signatures , and authentication, by requiring username or X.509 tokens.

About OpenSSO Enterprise Web Services Security
You can configure OpenSSO Enterprise to act as a security token service, or as a web service
security provider. When you use OpenSSO Enterprise to act as a web service security provider,
you must configure both the web service client and at the web service provider.

Security Token Service
When configured as a security token service, OpenSSO Enterprise acts as a generic web service
that does the following:

■ Issues, renews, cancels, and validates security tokens.
■ Enables customers to write custom security token providers by extending the framework.
■ Provides standards-based APIs for clients and applications to access the security token

service.
■ Provides mechanisms to support additional security token types such as Kerberos and

others.

Web Service Security Provider
OpenSSO Enterprise 8.0 provides web service security support for client applications which are
based on Java API for XML Web Services (JAX-WS) or SOAP with Attachments API for Java
(SAAJ). For JAX-WS based clients, web services security can be enforced at either the web or
JavaEE container level using container-provided security authentication and authorization

Web Service
Provider (WSP)

Web Service
Client (WSC)

Intermediaries

Security Context

FIGURE 11–2 Secure Communication Channel Providing End-to-End Security

About OpenSSO Enterprise Web Services Security

Chapter 11 • Securing Web Services Using the Security Token Service (WS-* Specifications) 149

plug-ins, or using JAX-WS Handlers. The JSR 196 specification is one of the well known
authentication and authorization security SPIs, currently supported by the Sun Application
Server. Handlers are interceptors that can be easily plugged into the Java API for XML-Based
Web Services (JAX-WS) 2.0 runtime environment to do additional processing of inbound and
outbound messages.

For non-JAX-WS based client applications such as SAAJ-based, you can use the OpenSSO
Enterprise client SDK can to programmatically, explicitly secure and validate both outbound
and inbound messages between the web service client and web service provider.

Analyzing the Deployment Architecture
In this deployment example, messages are exchanged using the SOAP protocol to transfer
security tokens between the communicating web service client and web service provider
entities. The web service security providers can work independently of the OpenSSO Enterprise
instance which is deployed as security token service. Web service security providers can secure
the SOAP message by obtaining the security tokens from a vendor-neutral security token
service.

The following are the major components in this deployment example:

■ OpenSSO Enterprise configured as a security token service
■ OpenSSO Enterprise configured as a web service security provider on a web service client
■ OpenSSO Enterprise configured as a web service security provider on a web service provider
■ Browser

The following figure illustrates the deployment architecture for using OpenSSO Enterprise to
secure a web-based calendar service.

Analyzing the Deployment Architecture

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 2009150

In this deployment example, a company employee has a user account in the Example Company
identity system. The employee wants to access an internal calendar application to view a
calendar service. The calendar application is part of the Example Company portal. All Example
Company employees are required to authenticate themselves before accessing this internal
portal. Additionally, the individual employee's credentials, such as role or group membership,
must be validated before the employee can access the calendar application service.

Web Service Client Web Service Provider

Company A Portal

Calendar
Application

Company A
Employee

OpenSSO Enterprise

Trusted Authority
(Security Token Service)

Web Service Security
Provider Plug-In

OpenSSO Enterprise
Web Application

Calendar Web
Service

Web Service Security
Provider Plug-In

OpenSSO Enterprise
Web Application

Secure
Message

Request/Response

(Optional)
Register Security Mechanism

FIGURE 11–3 Deployment Architecture for Web Service Security Using Secure Token Service

Analyzing the Deployment Architecture

Chapter 11 • Securing Web Services Using the Security Token Service (WS-* Specifications) 151

The calendar application, on the employee's behalf, securely supplies the employee's credentials
to the remote calendar web service.

The following two figures illustrate the process flow for a Web Service Security using Secure
token Service.

Analyzing the Deployment Architecture

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 2009152

User
Secure Token

Service
Web Service

Client
Web Service

Provider

1. Authenticated user
invokes application on
Web Service Client.

6. Web Service Clients send Secure SOAP
request to Web Service Provider.

2. Application invokes
a Web Service. Web
Security Service Provider
intercepts SOAP request.

3. Web Security Service
Provider gets Web Service
Provider security tokens
from Secure Token Service.

4. Secure Token Service
returns security tokens to
Web Service Client.

5. Web Security Service
Provider inserts security
information in SOAP leader.

7. Web Security Service
Provider intercepts SOAP
request.

FIGURE 11–4 Process Flow for Web Service Security Using Secure Token Service (Continued on next page)

Analyzing the Deployment Architecture

Chapter 11 • Securing Web Services Using the Security Token Service (WS-* Specifications) 153

Understanding Typical Business Use Cases
The following are the types of users involved in transactions using Web Services Security and
Secure Token Service:

■ Developers

User
Secure Token

Service
Web Service

Client
Web Service

Provider

14. Authenticated user view results.

11. Web Service Provider sends Secure SOAP
response to Web Service Client.

8. Web Security Service Provider
validates security in SOAP request,
then forwards request to Web
Service Provider.

9. Web Security Service Provider
intercepts SOAP response from
Web Service.

12. SOAP response is
intercepted by Web Security
Service Provider.

13. Web Security Service
Provider validates signature
in SOAP response.

10. Web Security Service
Provider sends the SOAP
message response.

FIGURE 11–5 Process Flow for Web Service Security Using Secure Token Service (Continued)

Understanding Typical Business Use Cases

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 2009154

Developers are typically application owners who use the OpenSSO Enterprise Client SDK
APIs to communicate with a local security token service instance, or with web service
security providers, to secure the applications making web services calls.

■ System administrators

Administrators are responsible for the configuring the OpenSSO Enterprise secure token
service.

■ End users

End users such as company employees are exposed to OpenSSO Enterprise when they
access the published web services.

Use Case 1
The following figure illustrates the process flow for a secured stock quotes web service using a
Kerberos security token.

1. The Web Service Client authenticates to STS1 instance with the end user's Kerberos token .

Secure Token Service
STS1

Secure Token Service
STS2

(as Token Mapping Service)

Web Service Client
WSC

StockQuotes

Web Service Provider
WSP

StockService

Brokerage Trust

3. Original SAML assertion for end-user

4. Functional SAML assertion for end-user

2. Gets SAML
assertion for

end-user

1. Kerberos token
for end-user at

Web Service Client

5. Functional SAML
assertion for end-user

FIGURE 11–6 Process Flow for a Stock Quote Web Service Using Kerberos Security Token

Understanding Typical Business Use Cases

Chapter 11 • Securing Web Services Using the Security Token Service (WS-* Specifications) 155

The end user logs in to the Desktop at the Web Service Client. This can be viewed as a
Kerberos token for the Web Service Client, too.

2. The Web Service Client gets the SAML token for the end user (Web Service Client).

3. The Web Service Client then talks to the STS2 (Token Mapping Service) .

4. The Web Service Client converts the end user's (Web Service Client) SAML token to a
functional SAML token.

This is called an organizational SAML token, and used as an authentication token of the
Web Service Client to STS2. Here the functional SAML token has the same identity or
owner as the original SAML token, but with more attributes and privileges.

5. The Web Service Client then secures the web services request to the Web Service Provider
with the functional SAML token.

The following are configuration suggestions for this use case:

1. STS client agent - profile name is STS1

Security Mechanism: Kerberos

STS End Point: of STS1 service

STS Max End Point: of STS1 service
2. STS client agent - profile name is STS2

Security Mechanism: STSSecurity

STS config: STS1

STS End Point: of STS2 service

STS Max End Point: of STS2 service
3. WSC agent - profile name is StockService or WSC

Security Mechanism: STSSecurity

STS config: STS2

WSP End Point: Default

Use Case 2
The following figure illustrates the process flow for a bank loan web service using a SAML 1
security token.

Understanding Typical Business Use Cases

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 2009156

1. WSC1 authenticates to STS1 with its X509 token.
2. WSC1 gets to SAML1 token (owner is WSC1).
3. WSC1 secures web service to WSP1 with its SAML1 token.
4. WSP1 then authenticates to STS2 with its X509 token, and sends the SAML1 token of

WSC1.
5. The SAML1 token is sent on behalf of the X509 token in order to convert it to SAML2 token

for WSC1.
6. WSC2 just passes through this SAML2 token of WSC1 to WSP2.

WSC2 secures the web service to WSP2 with the SAML2 token of WSC1.

The following are configuration suggestions for the Bank Loan use case:

1. WSC agent - profile name is LoanRequestorService for WSC1

Security Mechanism: STSSecurity

STS config: SecurityTokenService
2. WSP agent - profile name is wsp for WSP1

WSP End Point: Default

Secure Token Service
STS1

Secure Token Service
STS2

Web Service
Client
WSC1

LoanRequestorClient

Web Service
Provider
WSP1

Web Service
Provider
WSC2

LoanRequestor

Web Service
Provider
WSP2

LoanProcessor

Brokerage Trust

4. X509 of WSP1
and SAML1 as On Behalf Of Token

5. SAML2 assertion for WSC1
2. SAML1

assertion for
Web Service

Client 1

1. X509 token
of Web Service

Client 1

3. SAML1
assertion for

WSC1

6. SAML2
assertion for

WSC1

FIGURE 11–7 Process Flow for a Bank Loan Web Service Using SAML1 Security Token

Understanding Typical Business Use Cases

Chapter 11 • Securing Web Services Using the Security Token Service (WS-* Specifications) 157

Authentication Chain: ldapService

Token Conversion Type: SAML2 token
3. WSC agent - profile name is LoanProcessorService for WSC2

Use Pass Through Security Token Enabled

Use Case 3
The following figure illustrates the process flow for a bank loan web service using a X509
security token.

1. WSC1 authenticates to STS1 with its X509 token.
2. WSC1 gets the SAML1 token (owner is WSC1).
3. WSC1 secures web service to WSP1 with its SAML1 token.
4. WSP1/WSC2 passes through just this SAML1 token of WSC1 to WSP2.

FIGURE 11–8 Process Flow for a Bank Loan Web Service Using an X509 Security Token

Understanding Typical Business Use Cases

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 2009158

Secures web service to WSP2 with SAML1 token of WSC1.
5. WSP2 then authenticates to STS2 with its X509 token.

Sends SAML1 token of WSC1 as On Behalf Of token in order to convert it to SAML2 token
for WSC1.

6. STS2 sends back to WSP2 the converted SAML token for WSC1.

The following are suggested configurations:

1. Web Service Client agent - profile name is LoanRequestorService for WSC1

Security Mechanism: STSSecurity

STS Configuration: SecurityTokenService
2. Web Service Provider agent - profile name is wsp for WSP2

Web Service Provider End Point: Default

Authentication Chain: ldapService

Token Conversion Type: SAML2 token
3. WSC agent - profile name is LoanProcessorService for WSC2

Use Pass Through Security Token: Enabled

Considering Assumptions, Dependencies, and Constraints
Before using OpenSSO Enterprise to secure web services, you must resolve the following issues:

Assumptions and Dependencies
■ Metadata exchange (MEX) between individual components has already been completed.
■ Users are authenticated to an Identity Provider.

Constraints
■ The scope of the current Web Service Security provider plug-ins is limited to JSR 196 SPI

implementation, and is only supported on Sun Application Server version 9.0 and above.
■ Clients using JAX-WS based applications on web or J2EE containers that do not support JSR

196 specifications must use handlers.
■ Clients using SAAJ based applications need to secure the messages programmatically using

the OpenSSO Enterprise Client SDK.

Considering Assumptions, Dependencies, and Constraints

Chapter 11 • Securing Web Services Using the Security Token Service (WS-* Specifications) 159

Setting Up and Configuring Web Services Security Using
Security Token Service

OpenSSO Enterprise ships with the StockQuoteClient and StockService sample applications.
These sample applications show you how the Web Service Client, Web Service Provider, and
Secure Token Service interact together in a demonstration environment. The sample
applications are available in the wssagents/openssowssproviders.zip on the OpenSSO
Enterprise download site.

To configure and deploy the sample applications, see the README files in the zipped archive.
The following steps describe the high-level tasks for setting up the deployment illustrated in
section “Use Case 1” on page 155. This deployment uses the StockQuoteClient (Web Service
Client) and StockService (Web Service Provider) applications, from the OpenSSO Enterprise
samples.

1. Create and configure a Secure Token Service instance, STS-1.
a. Install the STS-1 instance.
b. Configure a policy agent profile for the Web Service Provider.
c. Select security mechanisms.

2. Create and configure a second Secure Token Service instance, STS-2 instance.
a. Install the STS-2 instance.
b. Configure an policy agent profile for the STS-1 instance.

3. Create and configure the Configuration Instance for the Web Service Client and Web
Service Provider.
a. Install the WSC-WSP Configuration Instance.
b. Create And Configure a policy agent profile for the STS-2 instance.
c. Configure a policy agent profile for the STS-1 instance.
d. Configure a policy agent profile for the Web Service Client.
e. Configure a policy agent profile for the Web Service Provider.

4. Create and configure the Web Service Client instance.
a. Install the Web Service Client Instance.
b. Configure the Web Service Client as an OpenSSO Enterprise client.
c. Configure the Web Service Client GlassFish instance.

i. Update the GlassFish classpath.
ii. Configure for end-user authentication.

5. Create and configure the Web Service Provider instance.
a. Install the Web Service Provider instance.
b. The Web Service Provider as an OpenSSO Enterprise client.
c. Configure the Web Service Provider GlassFish instance.

Setting Up and Configuring Web Services Security Using Security Token Service

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 2009160

6. Build and deploy the Web Service Client application.
7. Build and deploy the Web Service Provider application.
8. Test to verify that the Web Service Security works as designed.

Evaluating Benefits and Tradeoffs
The following lists are designed to help you determine whether using OpenSSO Enterprise to
secure web services is suitable in your environment.

Benefits
■ Based on standards specification as developed by OASIS, Liberty Alliance Project, Web

Services Interoperability Organization, World Wide Web Consortium.
■ Secures the message over all hops and after the message arrives at its destination.
■ Security is fine-grained and can selectively be applied to different portions of a message (and

to attachments if using XWSS).
■ Can be used in conjunction with intermediaries over multiple hops.
■ Is independent of the application environment or transport protocol.
■ Securing web services interactions is transparent to the client applications when web service

security providers are configured in web or J2EE containers.

Tradeoff
The drawback to using message-level security is that it is relatively complex and adds some
overhead to processing.

Evaluating Benefits and Tradeoffs

Chapter 11 • Securing Web Services Using the Security Token Service (WS-* Specifications) 161

162

Enabling Single Sign-On Between Sun Identity
Manager and OpenSSO Enterprise

This chapter provides information about integrating Sun OpenSSO Enterprise 8.0 with Sun
Identity Manager 8.0. This information is useful when you want to enable single sign-on
between the two products, or when you want to use Identity Manager to provision users to
OpenSSO Enterprise.

The following topics are contained in this chapter:
■ “About Sun Identity Manager” on page 163
■ “Analyzing the Deployment Architecture” on page 164
■ “Considering the Deployment Assumptions, Dependencies, and Constraints” on page 167
■ “Understanding Typical Business Use Cases” on page 169
■ “Setting Up and Configuring Single Sign-On Between Identity Manager and OpenSSO

Enterprise” on page 169
■ “Evaluating Benefits and Tradeoffs” on page 170
■ “Finding More Information” on page 171

About Sun Identity Manager
Sun Identity Manager enables you to securely and efficiently manage and audit access to
accounts and resources, and to distribute access management overhead. By mapping Identity
Manager objects to the entities you manage such as users and resources, you significantly
increase the efficiency of your operations. The Identity Manager solution enables you to:
■ Manage account access to a large variety of systems and resources.
■ Securely manage dynamic account information for each user's array of accounts.
■ Set up delegated rights to create and manage user account data.
■ Handle large numbers of enterprise resources, as well as an increasingly large number of

extranet customers and partners.
■ Securely authorize user access to enterprise information systems.

Grant, manage, and revoke access privileges across internal and external organizations.

12C H A P T E R 1 2

163

■ Keep data in sync by not keeping data.

Analyzing the Deployment Architecture
This deployment requires an OpenSSO Enterprise server, an Identity Manager server, and a
Sun Policy Agent installed on the Identity Manager web container. The OpenSSO Enterprise
server is configured with two data stores: the OpenSSO configuration data store, and the Sun
Directory Server user data store. The user data store is configured in the OpenSSO Enterprise
subrealm. The Identity Manager server is configured to use a MySQL server for both Identity
Manager configuration and Identity Manager user data.

The following figure illustrates the main components of the deployment.

The Sun Policy Agent plays an important role in the single sign-on between OpenSSO
Enterprise and Identity Manager. In addition to protecting the Identity Manager content pages,
it helps map the OpenSSO Enterprise user ID to the Identity Manager user ID.

Browser

Identity Manager Server

J2EE Container

J2EE Policy Agent 2

OpenSSO
Enterprise

MySQL

User Data

(Sun Directory
Server)

(OpenSSO
Enterprise)

Configuration

FIGURE 12–1 Deployment Architecture for Enabling Single Sign-On Between OpenSSO Enterprise and
Identity Manager

Analyzing the Deployment Architecture

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 2009164

The following two figures illustrate a typical process flow.

FIGURE 12–2 Process Flow for Single Sign-On Between OpenSSO Enterprise and Identity Manager
(Continued on next page)

Analyzing the Deployment Architecture

Chapter 12 • Enabling Single Sign-On Between Sun Identity Manager and OpenSSO Enterprise 165

FIGURE 12–3 Process Flow for Single Sign-On Between OpenSSO Enterprise and Identity Manager
(Continued)

Analyzing the Deployment Architecture

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 2009166

The following UML use case diagram illustrates the provisioning and retrieval of objects in
Identity Manager.

Considering the Deployment Assumptions, Dependencies,
and Constraints

Before you can enable single sign-on between OpenSSO Enterprise and Identity Manager, you
must resolve the following issues.

Assumptions
■ OpenSSO Enterprise must already be installed.
■ OpenSSO Enterprise must be installed in the Realm mode of operation.
■ OpenSSO Enterprise must be configured with Sun OpenDS as the embedded configuration

data store.

SunAccess
Manager

RealmResource
Adapter

<<subsystem>>
Top Package::

openssoclientsdk.jar

OpenSSO Enterprise
idRepo API

(com.sun.identity.idm.*)

Identity Manager

<<uses>>

1

1

JAXRPC
calls

Write/
Retrieve

OpenSSO
Enterprise

User
Datastores

FIGURE 12–4 Provisioning and Retrieving Objects in Identity Manager

Considering the Deployment Assumptions, Dependencies, and Constraints

Chapter 12 • Enabling Single Sign-On Between Sun Identity Manager and OpenSSO Enterprise 167

■ OpenSSO Enterprise must contain a sub-realm named idm configured with Sun Directory
Server user data store.

■ The Directory Server user data store must also have the OpenSSO Enterprise schema loaded
in it.

Dependencies
■ If you require roles to be provisioned on Identity Manager to OpenSSO Enterprise, and you

are using the Sun Access Manager Resource Adapter, then the OpenSSO Enterprise user
data store must have the OpenSSO Enterprise schema loaded in it.
If the OpenSSO Enterprise data store plug-in for a generic LDAPv3 data store has no
OpenSSO Enterprise schema in it, the data store plug-in does not support the management
of either managed roles or filtered roles through it. The OpenSSO Enterprise data store
plug-in is designed to work this way. It is important to note here that you do not have to
provision roles in order to achieve single sign-on.

■ Because OpenSSO Enterprise is installed in the Realm mode of operation, the Identity
Manager resource adapter for Realm mode, SunAccessManagerRealmResourceAdapter,
must be configured on Identity Manager.
In earlier versions of OpenSSO Enterprise, previously known as Access Manager, the
product was installed in the Legacy mode of operation. In Legacy mode, a different Identity
Manager resource adapter, SunAccessManagerResourceAdapter, must be configured on
Identity Manager. Both types of adapters have the same functionality with one difference.
The SunAccessManagerResourceAdapter uses the legacy Access Manager AMSDK API, while
the SunAccessManagerRealmResourceAdapter uses the OpenSSO Enterprise idRepo API.
The idrepo APIs are the next-generation OpenSSO client APIs, and will eventually replace
the legacy AMSDKAPI.

Constraints
When testing the Sun Access Manager Resource Adapter, before the Policy Agent has been
installed, the client-side AMConfig.properties file must be configured with amadmin or a user
that has privileges to read the OpenSSO Enterprise configuration data, for the property
com.sun.identity.agents.app.username. If a different type of user is used in this
configuration, the configuration of the Sun Access Manager Resource Adapter fails. This
change is required only until the Policy Agent is installed. After the Policy Agent has been
installed, the AMConfig.properties file is not required and can be deleted from the filesystem.

Although this document describes the use case where Identity Manager and OpenSSO
Enterprise are configured for both single sign-on and provisioning, it is possible to configure
the deployment for either single sign-on or provisioning only. If single sign-on between
OpenSSO Enterprise and Identity Manager is not required, then the OpenSSO Enterprise

Considering the Deployment Assumptions, Dependencies, and Constraints

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 2009168

Policy Agent does not need to be installed and configured. You can ignore the steps that involve
configuring the OpenSSO Enterprise Policy Agent.

Understanding Typical Business Use Cases
The most common use case for this deployment is when a company uses OpenSSO Enterprise
with OpenSSO Enterprise Policy Agents to protect business applications, including Identity
Manager applications. The main objective is to streamline the login process for end-users who
are already logged in to OpenSSO Enterprise. For example, if a user is already logged in to
OpenSSO Enterprise, the user should experience a seamless transition into any Identity
Manager application without having to log in to Identity Manager. A secondary objective is to
provide a measure of controlled access to all Identity Manager applications.

Another typical use case for this deployment is provisioning. The company uses Identity
Manager to provision users into various business systems such as human resources or
accounting systems. This can also include provisioning users into the company's business
systems that are protected by OpenSSO Enterprise.

Setting Up and Configuring Single Sign-On Between Identity
Manager and OpenSSO Enterprise

The following components are used in this deployment:

■ Sun Solaris Operating System 10
■ Sun OpenSSO Enterprise 8.0
■ Sun Java Identity Manager 8.0
■ Sun Java Web Server 7.0
■ Sun Java Application Server 9.1
■ Sun Java Directory Server 6.1
■ MySQL 5.1
■ MySQL Connector 5.0
■ Sun Java AM Policy Agent 3.0 (for Sun Java Application Server 9.1) (Optional)
■ Netbeans IDE 6.0.1

See the Chapter 1, “Integrating Sun Identity Manager ,” in Sun OpenSSO Enterprise 8.0
Integration Guide for detailed installation steps. The following is a summary of high-level
procedures you must complete to enable single sign-on between OpenSSO Enterprise and
Identity Manager:

1. Installing And Configuring MYSQL
■ Install MySQL.
■ Complete post-installation tasks.

Setting Up and Configuring Single Sign-On Between Identity Manager and OpenSSO Enterprise

Chapter 12 • Enabling Single Sign-On Between Sun Identity Manager and OpenSSO Enterprise 169

http://docs.sun.com/doc/820-4729/ggsmu?a=view
http://docs.sun.com/doc/820-4729/ggsmu?a=view

2. Installing And Configuring Identity Manager Application Server
■ Install Application Server.
■ Install Identity Manager on Application Server.
■ Complete post-installation configuration on Application Server.

3. Create an OpenSSO Enterprise Realm Administrator in OpenSSO Enterprise.
4. Create an OpenSSO Enterprise Realm Resource Object in Identity Manager.
5. Provision identities from Identity Manager to OpenSSO Enterprise.

■ Provision a test user from Identity Manager into OpenSSO Enterprise.
■ Provision a test role from Identity Manager into OpenSSO Enterprise.
■ Provision an Admin-User from Identity Manager into OpenSSO Enterprise
■ Provision an Admin-Role from Identity Manager into OpenSSO Enterprise.

6. Install and Configure the OpenSSO Enterprise Policy Agent on Identity Manager.
■ Complete pre-installation tasks for the OpenSSO Enterprise Policy Agent.
■ Install the OpenSSO Enterprise Policy Agent on the Identity Manager server.
■ Configure the OpenSSO Enterprise Policy Agent on the OpenSSO Enterprise Server.
■ Disable OpenSSO Enterprise Policy Agent protection of the Identity Manager server.
■ Configure the OpenSSO Enterprise Policy Agent on the Identity Manager server.

7. Configure Identity Manager for single sign-on.
■ Configure Identity Manager Login Module Groups.
■ Configure the Identity Manager User Login Interface.
■ Configure the Identity Manager Admin Login Interface.

8. Test single sign-on from OpenSSO Enterprise to Identity Manager.
■ Re-Enable OpenSSO Enterprise Policy Agent protection of the Identity Manager server.
■ Test end-user single sign-on between OpenSSO Enterprise and Identity Manager.
■ Test Admin-User single sign between OpenSSO Enterprise and Identity Manager.

Evaluating Benefits and Tradeoffs
As you design your deployment architecture, be sure to consider the benefits, tradeoffs. The
following lists may help you determine if enabling single sign-on between Identity Manager and
OpenSSO Enterprise is appropriate to meet your business needs.

Benefits
■ If you use an OpenSSO Enterprise user store that has the OpenSSO Enterprise schema

loaded into it, you can provision managed-roles or filtered-roles into OpenSSO Enterprise.

Evaluating Benefits and Tradeoffs

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 2009170

■ If you configure OpenSSO Enterprise with a generic LDAP user datastore that does not have
the OpenSSO Enterprise schema loaded into it, then you could configure an LDAP Resource
Adapter instance instead of the Sun Access Manager Resource Adapter on Identity
Manager. The LDAP Resource Adapter on Identity Manager is a generic adapter that can be
used to provision or manage objects in any LDAP resource. This would potentially reduce
the number of different types of Resource Adapters, that an Identity Manager administrator
would have to maintain.

Tradeoffs
If the OpenSSO Enterprise user store does not have the OpenSSO Enterprise schema loaded
into it, OpenSSO Enterprise would use the generic LDAPv3 plug-in for this datastore. The
creation of managed-roles and filtered-roles is not supported on such a datastore.

Finding More Information
■ Sun Identity Manager 8.0 product documentation

http://docs.sun.com/app/docs/coll/1514.5

Finding More Information

Chapter 12 • Enabling Single Sign-On Between Sun Identity Manager and OpenSSO Enterprise 171

http://docs.sun.com/app/docs/coll/1514.5

172

Enabling Single Sign-On Using CA SiteMinder
and OpenSSO Enterprise

This chapter describes options for co-locating CA SiteMinder with Sun OpenSSO Enterprise in
the same environment. For more detailed information about configuring end-to-end
SiteMinder single sign-on using OpenSSO, see the Sun OpenSSO Enterprise 8.0 Integration
Guide.

The following topics are contained in this chapter:

■ “About CA SiteMinder” on page 173
■ “Analyzing the Deployment Architecture Options” on page 174
■ “Considering Assumptions, Dependencies, and Constraints” on page 174
■ “Understanding Typical Business Use Cases” on page 175
■ “Setting Up and Configuring Single Sign-On with SiteMinder and OpenSSO Enterprise” on

page 184
■ “Evaluating Benefits and Tradeoffs” on page 185
■ “Finding More Information” on page 186

About CA SiteMinder
Computer Associates (CA) SiteMinder, formerly Netegrity SiteMinder, is an enterprise
infrastructure product that enables centralized, secure Web access management. Its features
include user authentication and single sign-on, policy-based authorization, and identity
federation. One of the first single sign-on products to arrive on the market, legacy SiteMinder
installations still exist to protect enterprise applications in many company networks.

13C H A P T E R 1 3

173

http://docs.sun.com/doc/820-4729
http://docs.sun.com/doc/820-4729

Analyzing the Deployment Architecture Options
This chapter describes single sign-On between OpenSSO Enterprise and SiteMinder in both
intranet and federated extranet environments. The examples in this chapter describe single
sign-on, but do not include authorization.

SiteMinder and OpenSSO Enterprise typically co-exist in the following use cases:

■ Simple Single Sign-On
Major components are OpenSSO Enterprise, an OpenSSO Enterprise Policy Agent, a
custom OpenSSO Enterprise authentication module, SiteMinder, and a SiteMinder Policy
Agent.

■ Federated Single Sign-On in an Identity Provider Environment
Major components are OpenSSO Enterprise, an OpenSSO Enterprise Policy Agent, a
custom OpenSSO Enterprise authentication module, SiteMinder, and a SiteMinder Policy
Agent.

■ Federated Single Sign-On in a Service Provider Environment
Major components are OpenSSO Enterprise, a custom OpenSSO Enterprise authentication
module, SiteMinder, a custom SiteMinder plug-in, and SiteMinder Policy Agent.

Single logout for any these of these use cases can be implemented in many ways.

Logical architecture diagrams and process flow diagrams for these deployment options are
described in the following section “Understanding the Business Use Cases.”

Considering Assumptions, Dependencies, and Constraints
This chapter describes the conceptual integration between the two access management
products. However, in real deployments the use cases will vary. In all the deployment
architecture examples, the common data store is shared between two products when they are
co-located. This document focuses on mutual validation of user sessions. However, mutual
validation can be extended to attributes and other state information. The sessions are managed
independently, and managing session timeouts are outside the scope of this document. Also,
this document assumes the logout is relatively simple and involves invalidating both sessions as
POST Logout process. For federation single sign-on, this document assumes SAMLv2
protocols. However, similar functionality can be achieved using other federation protocols such
as ID-FF, WS-Federation, and SAML1.

Analyzing the Deployment Architecture Options

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 2009174

Understanding Typical Business Use Cases
The following use cases focus on single sign-on enablement and do not describe authorization
options:

■ “Simple Single Sign-On ” on page 175
■ “Federated Single Sign-On” on page 178

Simple Single Sign-On
In a simple single sign-on example, the SiteMinder instance is already deployed and configured
to protect some of the enterprise applications in a company intranet. In the architecture figure
below, the legacy application is contained in the Protected Resource . The company wants to
continue leveraging the legacy SiteMinder deployment as the authentication authority. The
company also wants to add OpenSSO Enterprise to the environment to leverage its advanced
features such as identity federation, XACML policies, web services, and so on. An OpenSSO
Enterprise policy agent protects the Protected Resource, while OpenSSO Enterprise itself is
protected by a SiteMinder policy agent. The following figure illustrates the deployment
architecture for single sign-on using both SiteMinder and OpenSSO Enterprise.

Understanding Typical Business Use Cases

Chapter 13 • Enabling Single Sign-On Using CA SiteMinder and OpenSSO Enterprise 175

The following figure illustrates the process flow in this deployment.

Browser

Protected Resource

Application

OpenSSO Enterprise
Policy Agent

LDAP

SiteMinder
Policy Server

OpenSSO Enterprise

SiteMinder Policy Agent

Custom Authentication
Module

FIGURE 13–1 Deployment Architecture for Simple Single Sign-On with SiteMinder

Understanding Typical Business Use Cases

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 2009176

FIGURE 13–2 Process Flow for Simple Single Sign-On with SiteMinder

Understanding Typical Business Use Cases

Chapter 13 • Enabling Single Sign-On Using CA SiteMinder and OpenSSO Enterprise 177

Federated Single Sign-On
The SAML, ID-FF, and WS-Federation protocols provide cross-domain single sign-on among
multiple trusted business entities. These protocols are also used in Identity Federation. Identity
Federation involves an Identity Provider, also known as an authentication provider, and a
Service Provider where the user authentication session at the Identity provider is consumed.
The following are common use cases in which SiteMinder is enabled for federation protocols:

■ Enabling SiteMinder for federation protocols in a Service Provider environment
■ Enabling SiteMinder for federation protocols in an Identity Provider environment

Federated Single Sign-On in an Identity Provider Environment
This is the most common of the deployments. This is a good approach when you want to use
OpenSSO Enterprise for establishing partner relations and still leverage the SiteMinder
authentication framework.

For example, as a company partners with external companies, the company deploys OpenSSO
in the Service Provider environment to leverage the SAMLv2 Federation protocols. The
following figure illustrates how SiteMinder can be enabled in an Identity Provider environment
using OpenSSO Enterprise for federation protocols.

Understanding Typical Business Use Cases

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 2009178

In this example, OpenSSO Enterprise provides federated single sign-on among enterprise
applications in partner environments, while SiteMinder continues to provide authentication.
The following two figures illustrates a typical transaction flow.

OpenSSO
Enterprise

SiteMinder Policy
Agent

Custom
Authentication

Module

SiteMinder

Common Data
Store

Service Provider Environment

Protected Resource

Application

OpenSSO Enterprise
Manager Policy Agent

OpenSSO
Enterprise

Service Provider

Directory

Browser

Identity Provider
Environment

SAMLv2

FIGURE 13–3 Deployment Architecture for Federated Single Sign-On in an Identity Provider Environment

Understanding Typical Business Use Cases

Chapter 13 • Enabling Single Sign-On Using CA SiteMinder and OpenSSO Enterprise 179

FIGURE 13–4 Process Flow for Federated Single Sign-On in an Identity Provider Environment

Understanding Typical Business Use Cases

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 2009180

Federated Single Sign-On Use Case in the Service Provider
Environment
In this example, the company uses SiteMinder in the Service Provider environment to protect
legacy applications. OpenSSO Enterprise is installed solely to invoke Federation protocols. This
deployment quickly enables partners (Service Providers) to establish federation environments
with their trusted Identity Providers where the authenticates must be delegated.

FIGURE 13–5 Process Flow for Federated Single Sign-On in an Identity Provider Environment (Continued)

Understanding Typical Business Use Cases

Chapter 13 • Enabling Single Sign-On Using CA SiteMinder and OpenSSO Enterprise 181

The following two figures illustrate the steps in the single sign-on flow:

Identity Provider
Environment

Service Provider Environment

Directory Common Data
Store

Identity
Provider

OpenSSO
Enterprise

spAdapter
Plug-In

SAMLv2

SiteMinder

OpenSSO
Enterprise

Browser

Protected Resource

Application

SiteMinder
Policy Agent

FIGURE 13–6 Deployment Architecture for Federated Single Sign-On In the Service Provider Environment

Understanding Typical Business Use Cases

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 2009182

FIGURE 13–7 Process Flow for SiteMinder Federation in the Service Provider Environment

Understanding Typical Business Use Cases

Chapter 13 • Enabling Single Sign-On Using CA SiteMinder and OpenSSO Enterprise 183

Setting Up and Configuring Single Sign-On with SiteMinder
and OpenSSO Enterprise

To co-locate both SiteMinder and OpenSSO Enterprise in the same federation environment,
you must install the OpenSSO Enterprise server and OpenSSO Enterprise policy agents. The
setup requires OpenSSO Enterprise 8.0 and the corresponding Policy Agents. OpenSSO
Enterprise is supported on various containers, however, you must choose a container where
both OpenSSO Enterprise and SiteMinder Policy Agents are supported.

FIGURE 13–8 Process Flow for SiteMinder Federation in the Service Provider Environment (continued)

Setting Up and Configuring Single Sign-On with SiteMinder and OpenSSO Enterprise

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 2009184

The SiteMinder software is not available online, and you must have an account with Computer
Associates to obtain the software. To validate this document, the following components were
deployed in a lab environment:

■ Sun OpenSSO Enterprise 8.0
■ Sun Web Server 6.1 SP5
■ Sun Directory Server 5.2 SP2
■ CA SiteMinder Server 6.0 SP5
■ CA SiteMinder Agent 6.0 for iPlanet Web Server 6.1
■ CA SiteMinder SDK 6.0 SP5
■ Custom codes (Bundled in the OpenSSO Enterprise zip)

The OpenSSO Enterprise bundle ships integration bits contained in the OpenSSO Enterprise
WAR file. Instructions for configuring the authentication modules are described in
corresponding README files. For more detailed steps for complete integration see the Chapter
2, “Integrating CA SiteMinder,” in Sun OpenSSO Enterprise 8.0 Integration Guide.

Evaluating Benefits and Tradeoffs
As you design your deployment architecture, be sure to consider the benefits, tradeoffs. The
following lists may help you determine if enabling federation using SiteMinder and OpenSSO
Enterprise is appropriate to meet your business needs.

Benefits
■ OpenSSO Enterprise allows you to continue using an existing SiteMinder deployment for

authentication while leveraging the more advanced features of Federation Access Manager.
■ OpenSSO Enterprise quickly enables federation protocols for SiteMinder without few

changes to the existing infrastructure.
■ OpenSSO Enterprise supports a variety of industry standard protocols such as SAMLv2 ,

ID-FF, ID-WSF, WS-Federation, XACML, WS-*, and others.
■ OpenSSO Enterprise supports any generic LDAP repository for users, and can work with

the existing SiteMinder database.
■ OpenSSO Enterprise leverages its own configuration data store, which minimizes the need

to migrate data from a different data store.

Evaluating Benefits and Tradeoffs

Chapter 13 • Enabling Single Sign-On Using CA SiteMinder and OpenSSO Enterprise 185

http://docs.sun.com/doc/820-4729/ggnzf?a=view
http://docs.sun.com/doc/820-4729/ggnzf?a=view

Tradeoffs
In general, when integrating any two access management products, you must consider the
increased costs in resources and maintenance.

■ When co-locating SiteMinder and OpenSSO, session management for both the products
must be synchronized.

■ Full integration requires you to set up session synchronization, possibly by using
notification mechanisms effectively

■ Administrators must be trained and proficient in the use of both products.

Finding More Information
See the Chapter 2, “Integrating CA SiteMinder,” in Sun OpenSSO Enterprise 8.0 Integration
Guide for detailed information about implementing single sign-on using CA SiteMinder and
OpenSSO Enterprise.

Finding More Information

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 2009186

http://docs.sun.com/doc/820-4729/ggnzf?a=view
http://docs.sun.com/doc/820-4729/ggnzf?a=view

Enabling Single Sign-On Using Oracle Access
Manager and OpenSSO Enterprise

This chapter describes options for co-locating Oracle Access Manager with Sun OpenSSO
Enterprise in the same environment. For more detailed information about configuring
end-to-end Oracle Access Manager single sign-on using OpenSSO, see the Sun OpenSSO
Enterprise 8.0 Integration Guide.

The following topics are contained in this chapter:

■ “About Oracle Access Manager” on page 187
■ “Analyzing the Deployment Architecture Options” on page 188
■ “Considering Assumptions, Dependencies, and Constraints” on page 188
■ “Understanding Typical Business Use Cases” on page 189
■ “Setting Up and Configuring Single Sign-On Using Oracle Access Manager and OpenSSO

Enterprise” on page 198
■ “Evaluating Benefits and Tradeoffs” on page 199

About Oracle Access Manager
Oracle Access Manager (previously known as Oblix NetPoint and Oracle COREid) is an
enterprise single sign-on product with many of the same features as Sun OpenSSO Enterprise
and CA SiteMinder (previously known as Netegrity SiteMinder). Many companies have Oracle
Access Manager already deployed and want to keep existing functionality even after installing
OpenSSO Enterprise.

14C H A P T E R 1 4

187

http://docs.sun.com/doc/820-4729
http://docs.sun.com/doc/820-4729

Analyzing the Deployment Architecture Options
Oracle has two solutions for web-based single sign-on. One solution is to use the legacy Oracle
Access Manager single sign-on product, previously known as Oblix Access, which is integrated
in the Oracle Application Server. This chapter focuses on this first solution.

Another solution is to use the Oracle Access Manager product with OpenSSO Enterprise.
Oracle Access Manager is usually used for both single sign-on and delegated administration.
This second solution is out of the scope of this document.

Oracle Access Manager and OpenSSO Enterprise typically co-exist in the following use cases:

■ Simple Single Sign-On
Major components are OpenSSO Enterprise, an OpenSSO Enterprise Policy Agent, a
custom OpenSSO Enterprise authentication module, Oracle Access Manager, and Oracle
WebGate.

■ Federated Single Sign-On in an Identity Provider Environment
Major components are OpenSSO Enterprise, an OpenSSO Enterprise Policy Agent, a
custom OpenSSO Enterprise authentication module, Oracle Access Manager, and Oracle
WebGate.

■ Federated Single Sign-On in a Service Provider Environment
Major components are OpenSSO Enterprise, a custom OpenSSO Enterprise authentication
module, Oracle Access Manager, a custom Oblix plug-in, and Oracle WebGate.

Single logout for any these of these use cases can be implemented in many ways.

Logical architecture diagrams and process flow diagrams for these deployment options are
described in the following section “Understanding the Business Use Cases.”

Considering Assumptions, Dependencies, and Constraints
This chapter describes the conceptual integration between the two products, OpenSSO
Enterprise and Oracle Access Manager. In real deployments the use cases vary widely. In the
deployment architecture diagrams below (see “Understanding Typical Business Use Cases” on
page 189), the common data store is used between two products when they are co-located. The
examples in this chapter focus primarily on mutual validation of user sessions. However, the
same model can be extended to attribute exchange and other state information. For example,
sessions can be managed independently. But and managing session timeouts are outside the
scope of this document.

In the deployment examples in this chapter, the logout is assumed to be relatively simple and
involves validating both OpenSSO Enterprise and Oracle Access Manager sessions as POST
Logout processes.

Analyzing the Deployment Architecture Options

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 2009188

For federated single sign-on, the examples in this chapter use SAMLv2 protocols. Similar
functionality can be achieved using other federation protocols such as ID-FF, WS-Federation,
SAML1 and so forth.

Understanding Typical Business Use Cases
The following use cases focus on single sign-on enablement and do not describe authorization
options:

■ “Simple Single Sign-On Use Case” on page 189
■ “Federated Single Sign-On Use Cases” on page 191

Simple Single Sign-On Use Case
Simple single sign-on integration is useful when an Oracle Access Manager instance is already
deployed and configured to protect intranet enterprise applications. Additionally, OpenSSO
Enterprise is deployed to protect the same intranet applications by honoring the user session
obtained by Oracle Access Manager. In the following illustration, both OpenSSO Enterprise
and Oracle Access Manager share the same user repository for user profile verification.
OpenSSO Enterprise can also be configured to use the Ignore Profile option if it relies on the
Oracle Access Manager session for attributes.

The following figure illustrates architecture in the simple single sign-on use case.

Understanding Typical Business Use Cases

Chapter 14 • Enabling Single Sign-On Using Oracle Access Manager and OpenSSO Enterprise 189

The following figure illustrates the process flow among components in the Identity Provider
environment and Service Provider environment.

Browser

Protected Resource

Application

OpenSSO Enterprise
Policy Agent

LDAP

Oracle
Access Manager

OpenSSO Enterprise

Oracle WebGate

Custom Authentication
Module

FIGURE 14–1 Simple Oracle Access Manager Single Sign-On

Understanding Typical Business Use Cases

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 2009190

Federated Single Sign-On Use Cases
The SAML, ID-FF, and WS-Federation protocols provide cross-domain single sign-on among
multiple trusted business entities. These protocols are also used in Identity Federation. Identity
Federation involves an Identity Provider, also known as an authentication provider, and a

FIGURE 14–2 Process Flow for Simple Oracle Access Manager Single Sign-On

Understanding Typical Business Use Cases

Chapter 14 • Enabling Single Sign-On Using Oracle Access Manager and OpenSSO Enterprise 191

Service Provider where the user authentication session at the Identity Provider is consumed.
The following are common use cases in which Oracle Access Manager is enabled for federation
protocols:

■ Enabling Oracle Access Manager for federation protocols in a Service Provider environment
■ Enabling Oracle Access Manager for federation protocols in an Identity Provider

environment

Using OpenSSO Enterprise to Enable Oracle Federation in an Identity
Provider Environment
In this example, Oracle Access Manager is the authentication provider in an Identity Provider
environment and protects some of the intranet applications. OpenSSO Enterprise in this
deployment resolves the single sign-on issues among enterprise applications in partner
environments while Oracle Access Manager provides authentication.

Understanding Typical Business Use Cases

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 2009192

The following two figures illustrate the process flow among components in the Identity
Provider environment and Service Provider environment.

Service Provider Environment

Protected Resource

Application

OpenSSO Enterprise
Policy Agent

OpenSSO
Enterprise

Oracle WebGate

Custom
Authentication

Module

Oracle
Access Manager

Common Data
Store

OpenSSO
Enterprise

Service Provider

Directory

Browser

Identity Provider
Environment

SAMLv2

FIGURE 14–3 Oracle Access Manager Federation in an Identity Provider Environment

Understanding Typical Business Use Cases

Chapter 14 • Enabling Single Sign-On Using Oracle Access Manager and OpenSSO Enterprise 193

FIGURE 14–4 Process flow for Oracle Access Manager Federation in an Identity Provider Environment

Understanding Typical Business Use Cases

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 2009194

Using OpenSSO Enterprise to Enable Oracle Federation in a Service
Provider Environment
In this deployment, Oracle Access Manager is installed and configured in Service Provider
Environment to protect legacy applications.

FIGURE 14–5 Process flow for Oracle Access Manager Federation in an Identity Provider Environment
(continued)

Understanding Typical Business Use Cases

Chapter 14 • Enabling Single Sign-On Using Oracle Access Manager and OpenSSO Enterprise 195

The following two figures illustrate the process flow among components in the Identity
Provider environment and Service Provider environment.

Identity Provider
Environment

Service Provider Environment

Protected Resource

Application

Oracle Access Manager
WebGate

Directory Common Data
Store

Identity
Provider

OpenSSO
Enterprise

spAdapter
Plug-In

SAMLv2

Oracle Access
Manager

OpenSSO
Enterprise

Browser

FIGURE 14–6 Oracle Access Manager Federation in a Service Provider Environment

Understanding Typical Business Use Cases

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 2009196

FIGURE 14–7 Process Flow for Oracle Access Manager Federation in a Service Provider Environment

Understanding Typical Business Use Cases

Chapter 14 • Enabling Single Sign-On Using Oracle Access Manager and OpenSSO Enterprise 197

Setting Up and Configuring Single Sign-On Using Oracle
Access Manager and OpenSSO Enterprise

The setup requires OpenSSO Enterprise 8.0 and the corresponding Policy Agents. OpenSSO
Enterprise is supported on various containers. But you have to choose a container that supports
both OpenSSO Enterprise and Oracle Access Manager Web Gate. The Oracle Access Manager
Software is available online for temporary evaluation. For validation, this document used
following software:

FIGURE 14–8 Process Flow for Oracle Access Manager Federation in a Service Provider Environment
(continued)

Setting Up and Configuring Single Sign-On Using Oracle Access Manager and OpenSSO Enterprise

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 2009198

■ Sun OpenSSO Enterprise 8.0
■ Sun Web Server 6.1 SP5 Sun Directory Server 5.2 SP2
■ Oracle Access Manager 10g (10.1.4.0.1)
■ Oracle Access Manager Agents (Web Gate) 10g (10.1.4.0.1)
■ Oracle Access Manager SDK 10g (10.1.4.0.1)
■ Custom codes (Bundled in the OpenSSO Enterprise zip)

The OpenSSO Enterprise bundle ships integration bits along with OpenSSO Enterprise WAR
file. The instructions on configuring the authentication modules are contained in the
corresponding README files.

Evaluating Benefits and Tradeoffs
As you design your deployment architecture, be sure to consider the benefits, tradeoffs. The
following lists may help you determine if enabling federation using Oracle Access Manager and
OpenSSO Enterprise is appropriate to meet your business needs.

Benefits
■ OpenSSO Enterprise allows you to continue using an existing Oracle Access Manager

deployment for authentication while leveraging the more advanced features of OpenSSO
Enterprise.

■ OpenSSO Enterprise quickly enables federation protocols for Oracle Access Manager with
few changes to the existing infrastructure.

■ OpenSSO Enterprise supports a variety of industry standard protocols such as SAMLv2 ,
ID-FF, ID-WSF, WS-Federation, XACML, WS-*, and others.

■ OpenSSO Enterprise supports any generic LDAP repository for users, and can work with
the existing Oracle Access Manager database.

■ OpenSSO Enterprise leverages its own configuration data store, which minimizes the need
to migrate data from a different data store.

Tradeoffs
In general, when integrating any two access management products, you must consider the
increased costs in resources and maintenance.

■ When co-locating Oracle Access Manager and OpenSSO Enterprise, session management
for both the products must be synchronized.

■ Full integration requires you to set up session synchronization, possibly by using
notification mechanisms effectively.

Evaluating Benefits and Tradeoffs

Chapter 14 • Enabling Single Sign-On Using Oracle Access Manager and OpenSSO Enterprise 199

■ Administrators must be trained and proficient in the use of both products.

Evaluating Benefits and Tradeoffs

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 2009200

Using the Embedded Configuration Data Store
for OpenSSO Enterprise

OpenSSO Enterprise uses an embedded configuration data store that stores information in a
hierarchical form. Clients can communicate with the embedded configuration data store using
the LDAP and DSML network protocols to retrieve and update information in a variety of ways.

The embedded configuration data store is run in embedded mode with OpenSSO under
J2EE-compliant web containers. The embedded configuration data store works as the default
configuration storage directory service. It also can be used as the user data storage directory
service for non-production purposes.

The following topics are contained in this chapter:

■ “Analyzing the Deployment Architecture” on page 201
■ “Understanding Typical Business Use Cases” on page 205
■ “Considering Assumptions, Dependencies, and Constraints” on page 205
■ “Configuring the Embedded Configuration Data Store for OpenSSO Enterprise” on page 207
■ “Evaluating Benefits and Tradeoffs” on page 207
■ “Finding More Information” on page 208

Analyzing the Deployment Architecture
Using the OpenSSO Enterprise embedded configuration data store can lower response time and
ensure service availability when machine failure occurs. You can deploy multiple OpenSSO
instances to serve as a single system, and their corresponding embedded configuration data
store instances will be automatically configured in data replication mode. Each embedded
configuration data store instance in the system will contain the same set of data. Any update
request in a single instance will be replayed in all other instances in the system. By using the
simplest architecture, the embedded configuration data store replication model uses
multi-master (peer-to- peer) network structure.

15C H A P T E R 1 5

201

Single-Server and Multiple-Servers Modes
The following figure illustrates OpenSSO Enterprise deployed with the embedded
configuration data store in single-server mode.

Under multiple-servers mode, every OpenSSO Enterprise instance works with its own
embedded configuration data store instance under the same memory space in the web
container. The embedded configuration data store replication mechanism uses the custom
replication protocol to maintain the data consistency between directory service instances.

The following figure illustrates OpenSSO Enterprise deployed with the embedded
configuration data store in multiple-servers mode.

Client Client

Web Container Instance

OpenSSO
Enterprise

Embedded
Configuration

Data Store

FIGURE 15–1 Single-Server Mode

Analyzing the Deployment Architecture

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 2009202

Replication Structure
Replication is entirely handled by OpenSSO Enterprise. The OpenSSO Enterprise embedded
configuration data store replication model supports multi-master network architecture. The
embedded configuration data store separates actual data from replication metadata. In this
model, the server that stores the configuration data is called the directory server. The server that
stores the replication metadata is called the replication server.

Even the smallest deployment must include two replication server instances, to ensure
availability when the replication server instances fails. Replication servers perform the
following functions:

■ Manage connections from directory servers
■ Connect to other replication servers
■ Listen for connections from other replication servers
■ Receive changes from directory servers
■ Forward changes to directory servers and to other replication servers

Client Client

Web Container Instance

OpenSSO
Enterprise

Embedded
Configuration

Data Store

Client Client

Web Container Instance

OpenSSO
EnterpriseEmbedded

Configuration
Data Store

FIGURE 15–2 Multiple-Servers Mode

Analyzing the Deployment Architecture

Chapter 15 • Using the Embedded Configuration Data Store for OpenSSO Enterprise 203

■ Save changes to stable storage and trimming older operations

Each replication server contains a list of all the other replication servers in the replication
topology. Replication servers are also responsible for providing other servers information with
information about the replication topology.

Directory servers perform the following functions:

■ Receiving read and write requests from client applications
■ Forwarding changes to specific replication servers

Each directory server contains a list of the suffix DNs to be synchronized. For each suffix DN to
be synchronized, each directory server contains a list of replication servers to connect to. When
a change is made on a directory server, that directory server forwards the change to the local
replication server. The replication server then relays the change to other replication servers in
the topology, which in turn relay the change to all other directory servers in the topology.

Applications should typically perform reads and writes on the same directory server instance.
This reduces the likelihood of consistency problems due to replication.

Every replication server instance maintains a message queue which is used to store pending
changes. When one of the directory servers is down, all the changes applied to other servers will
be stored in the corresponding message queue in the server instance which receives the
requests. Once the directory server instance is back online, the replication servers relay all the
changes to maintain data consistency. However, the size of the message queue and purge delay
time are limited. By default, the size of the message queue is 10000 changes. The purge delay
time is 24 hours. If one of the servers is down longer than the purge delay time, or if the changes
applied to a particular directory server exceeds the size of message queue, the replication system
will lose synchronization.

You can change the value of the purge delay and the size of message queue by adding the
entries ds-cfg-replication-purge-delay and ds-cfg-queue-size attributes to the file
config.ldif. The config.ldif file is under the directory OpenSSO base
directory/opends/config directory. The unit of ds-cfg-replication-purge-delay is
seconds, and the unit of ds-cfg-queue-size is integer. Once the embedded configuration data
store instance loses synchronization, the only way to bring the system back to synchronization
is to reconfigure OpenSSO Enterprise with the embedded configuration data.

To determine whether embedded configuration data store instances are synchronized,
OpenSSO Enterprise CLI tools ssoadm provides a command embedded-status to check the
status of embedded configuration data store instances. SeeChapter 1, “ssoadm Command Line
Interface Reference,” in Sun OpenSSO Enterprise 8.0 Administration Reference Alternatively,
you can check the embedded configuration data store logs when you suspect a problem with
configuration data store inconsistencies. The logs are under the directory OpenSSO base
directory/opends/logs. Current OpenSSO Enterprise embedded configuration data store
replication implementation is recommended for use with the server instances located within
the same geographical region.

Analyzing the Deployment Architecture

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 2009204

http://docs.sun.com/doc/820-3886/ssoadm?a=view
http://docs.sun.com/doc/820-3886/ssoadm?a=view

Summary of Actual Replication Test Results
Replication tests were run using up to four instances of the OpenSSO Enterprise embedded
configuration data store with Tomcat and GlassFish. The results show that replication was
successful among the four instances using 8000 policies. The following is a summary of the test
results:

■ When all four instances are online, the delay of synchronization of replication is generally
less than one second, which is negligible.

■ The time required to load the same amount of data in an embedded configuration data store
instance is longer when replication is enabled whether or not all instances are online.

■ The time required to load the data is incremental. The time required to load the second 1000
entries is longer that the time required to load the first 1000 entries.

■ Data loading time can be significantly reduced by breaking up the data and loading data at
the same time using multiple instances.

■ With the same amount of memory heap size (2GB), Tomcat performs better than GlassFish
v2 for smaller settings (one or two instances). GlassFish performs better in larger settings
(four instances).

Understanding Typical Business Use Cases
OpenSSO Enterprise customers usually want to use multiple instances of OpenSSO Enterprise
with embedded configuration data storage as a single system at their local site for the following
reasons:

■ They don't want to pay the extra cost of maintaining a separate configuration data store.
■ They need a fully tested solution for the configuration data store to avoid incompatibility

problems.
■ They want to deploy and use the system within a short timeframe.

Considering Assumptions, Dependencies, and Constraints

Assumptions
Software Requirements:

■ J2EE-compliant web container
■ Java Virtual Machine version 5 or newer

Hardware Requirement: 1GB of system memory (on top of other running applications)

Considering Assumptions, Dependencies, and Constraints

Chapter 15 • Using the Embedded Configuration Data Store for OpenSSO Enterprise 205

Dependencies and Constraints
OpenSSO Enterprise supports the use of the embedded OpenDS server in multi-master
network structure. In multi-master network structure, each embedded configuration data store
instance in the environment has its own replication server, and replication servers have direct
communication with each other. The following figure illustrates a multi-master network
structure

For more information about replication topologies, see the OpenDS Wiki home page.
(https://www.opends.org/wiki/page/TypicalReplicationDeployments)

Client Client

OpenSSO
Enterprise

Host 1

Configuration
Data Store

Replication
Server

Client Client

Replication
Server

Configuration
Data Store

OpenSSO
Enterprise

Host 2

FIGURE 15–3 Directory Servers and Replications Servers in a Multi-Master Network Structure

Considering Assumptions, Dependencies, and Constraints

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 2009206

https://www.opends.org/wiki/page/TypicalReplicationDeployments
https://www.opends.org/wiki/page/TypicalReplicationDeployments

Configuring the Embedded Configuration Data Store for
OpenSSO Enterprise

Use the OpenSSO Enterprise Configurator to configure the embedded configuration data store.

1. In a web browser, go to the following URL:
https://hostname.example.com:1081/opensso

2. On the Configurator page, under Custom Configuration, choose Create New
Configuration.

3. On the Step 1: General page, provide your user name and password. Then click Next.
4. On the Step 2: Server Settings page, provide the following, then click Next.

Server URL
Cookie Domain
Platform Locale
Configuration Directory

5. On the Step 3: Configuration and Data Store Settings page, choose “Add to Existing
Deployment.”
Provide the configuration data store server URL. Additional configuration data store
settings, including replication server settings, are displayed.

6. On the same page, after reviewing the configuration data store settings, click Finish.

For a detailed example of configuring the embedded configuration data store, see “To
Configure OpenSSO Enterprise 1” in Deployment Example: Single Sign-On, Load Balancing and
Failover Using Sun OpenSSO Enterprise 8.0.

Evaluating Benefits and Tradeoffs

Benefits
■ Service response time is improved.
■ Access load can be reduced in a single machine.
■ Replication provides horizontal read scalability.
■ Ensures availability of data and service in the event of machine failure.

Evaluating Benefits and Tradeoffs

Chapter 15 • Using the Embedded Configuration Data Store for OpenSSO Enterprise 207

http://docs.sun.com/doc/820-5985/gfbsd?a=view
http://docs.sun.com/doc/820-5985/gfbsd?a=view
http://docs.sun.com/doc/820-5985/gfbsd?a=view

Tradeoffs
■ More storage and system resources are required for data redundancy.
■ More network bandwidth is required for communication between servers.

Finding More Information
■ OpenDS Wiki

https://www.opends.org/wiki

■ OpenDS Replication Information
https://www.opends.org/wiki/page/OpenDSReplication

Finding More Information

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 2009208

https://www.opends.org/wiki
https://www.opends.org/wiki/page/OpenDSReplication

Implementing Cross-Domain Single Sign-On
with Cookie Hijacking Prevention

This chapter provides high-level instructions for deploying OpenSSO Enterprise in a
cross-domain single sign-on (CDSSO) environment and configuring the OpenSSO Enterprise
server and policy agents to prevent cookie highjacking. Topics include:

■ “About Cross-Domain Single Sign-On” on page 209
■ “The Policy Agent's Role in CDSSO” on page 211
■ “About Cookie Hijacking Prevention” on page 214
■ “Analyzing the Deployment Architecture” on page 218
■ “Considering Assumptions, Dependencies, and Constraints” on page 218
■ “Understanding Typical Business Use Cases” on page 219
■ “Configuring CDSSO and Cookie Hijacking Prevention” on page 228
■ “Evaluating Benefits and Trade-offs” on page 231

About Cross-Domain Single Sign-On
CDSSO extends single sign-on beyond a single domain. Basic single sign-on uses HTTP cookies
within a single DNS domain. In basic single sign-on, the OpenSSO Enterprise server and all
policy agent-protected resources reside in the same DNS domain. When a user successfully
authenticates to an OpenSSO Enterprise server, an SSO token, represented by an HTTP cookie,
is set to the user's browser with the OpenSSO Enterprise DNS domain as the cookie domain.
From this point until the session terminates or expires, the browser always presents the SSO
token to any server or policy agent in the same DNS domain based on the HTTP protocol. This
allows OpenSSO Enterprise and the policy agents to reexamine the validity of the user session
and identity, and then enforce security policies without re-authentication. But basic single
sign-on cannot be used in environments where OpenSSO Enterprise and its policy agents reside
in different DNS domains.

For example, OpenSSO Enterprise and some policy agents may reside in www.domain1.com

while some other policy agents reside in www.domain2.com. During authentication to OpenSSO
Enterprise, the SSO token is set to the browser with domain1.com as the cookie domain.

16C H A P T E R 1 6

209

However, when the browser accesses the resources protected by policy agents in domain2.com,
the browser does not present the SSO token to the policy agents. For the policy agents, no SSO
token means the user is not authenticated. The policy agents force the user to authenticate. The
OpenSSO Enterprise in the appropriate DNS domain sees that the browser does have a valid
session SSO token. OpenSSO Enterprise redirects the browser back to the original requested
resource in www.domain2.com creating a redirection loop.

To overcome this problem, you can configure the CDSSO feature in the OpenSSO Enterprise
server in its policy agents. CDSSO is a mechanism for passing SSO tokens to policy agents
protecting resources present in different DNS domains. CDSSO makes it possible for users to
authenticate once against OpenSSO Enterprise server in a primary DNS domain, and then
access resources protected by the policy agents present in other DNS domains without having to
re-authenticate. CDSSO is an OpenSSO Enterprise proprietary mechanism to support single
sign-on across multiple domains. Alternatively, you can use standards-based Federation
protocols to achieve single sign-on across multiple domains.

About Cross-Domain Single Sign-On

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 2009210

The Policy Agent's Role in CDSSO
■ “The Java EE Policy Agent's Role” on page 211
■ “The Web Policy Agent's Role in CDSSO” on page 213

The Java EE Policy Agent's Role
Based upon the appropriate HTTP protocols, an SSO token is presented to servers in the DNS
domain that is set in the cookie. A server may only set a cookie within their own domain. So
despite having a valid SSO token cookie in one domain, policy agent-protected servers in other
domains are never presented with this cookie.

CDSSO overcomes the problem with coordinated work between two components:
■ Cross-Domain Controller (CDC) servlet on the OpenSSO Enterprise server:

http(s)://opensso_host:port/opensso/cdcserlvet

FIGURE 16–1 Single Sign-On Failure When Policy Agents Reside in Different DNS Domains

The Policy Agent's Role in CDSSO

Chapter 16 • Implementing Cross-Domain Single Sign-On with Cookie Hijacking Prevention 211

■ CDSSO Redirect Servlet on the Java EE policy agent

http(s)://agent_host:port/agentapp/sunwCDSSORedirectURI

The CDSSO Redirect Servlet extracts the SSO Token sent by the CDC Servlet, and then sets the
same SSO Token cookie again. This time the SSO Token is set with the policy agent's fully
qualified host name as the cookie domain. This process essentially replicates the SSO Token in
the policy agent DNS domain from the OpenSSO Enterprise DNS domain. The following figure
illustrates the CDC servlet and CDSSO Redirect Servlet process flows.

FIGURE 16–2 Process flow for CDC Servlet and CDSSO Redirect Servlet

The Policy Agent's Role in CDSSO

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 2009212

The Web Policy Agent's Role in CDSSO
The Web Policy Agent works similarly as the Java EE Policy Agent except for a slight variance.
No CDSSO Redirect Servlet exists on the web policy agent because the agent is an NSAPI
plug-in. As a result, the web policy agent combines the above steps 11 through 13 into a single
step with no redirection.

FIGURE 16–3 Process flow for CDC Servlet and CDSSO Redirect Servlet (continued)

The Policy Agent's Role in CDSSO

Chapter 16 • Implementing Cross-Domain Single Sign-On with Cookie Hijacking Prevention 213

About Cookie Hijacking Prevention
A common concern for administrators who want to restrict access to web-based applications in
an OpenSSO Enterprise deployment is that hackers might use rogue or untrusted applications
to steal, or hijack, session cookies. The way OpenSSO Enterprise is configured influences the
way it sets the session cookies. By default OpenSSO Enterprise sets session cookies for the entire
domain. All applications hosted on the domain share the same session cookies. This scenario
could enable an untrusted application to intervene and gain access to the session cookies, which
in turn poses a security threat. To guard against potential threats posed by cookie hijacking,
configure CDSSO with cookie hijacking prevention. As a best practice, configure CDSSO with
cookie hijacking prevention even in the deployments where all OpenSSO Enterprise
components are in same domain. Having CDSSO and cookie hijacking prevention enabled
when the deployment involves a single domain may seem unnecessary. But ultimately security
is increased by taking advantage of both features.

Key Cookie Hijacking Security Issues and Solutions
The term “cookie hijacking” refers to a situation where an impostor gains unauthorized access
to cookies. The imposter could be a hacker using an untrusted application. Cookie hijacking, by
itself, does not refer to unauthorized access to protected web resources. When the cookies being
hijacked are session cookies, then cookie hijacking potentially increases the threat of
unauthorized access to protected web resources, depending upon how the system is configured.

Shared Session Cookies Security Issue
All applications share the same HTTP or HTTPS session cookie. This shared session-cookie
scenario enables hackers to intervene by using an untrusted application to hijack the session
cookie. With the hijacked session cookie, the untrusted application can impersonate the user
and access protected web resources.

OpenSSO Enterprise Solution

Unique SSO token is issued to each application or policy agent after the user has been
authenticated. The unique SSO token is referred to as a "restricted token." The restricted token
is inextricably connected to the application and to the policy agent. Since each user's SSO token
is unique for each application or policy agent, the increased security provided by this scenario
prevents an untrusted application, impersonating the user, from accessing other applications.
More specifically, the restricted SSO token assigned to a user as a part of the user's session is
associated with the policy agent that initiated the original redirection for authentication. So all
subsequent requests are checked to verify that they are coming from the same policy agent. If a
hacker tries to use the same restricted token to access another application, a security violation is
thrown.

About Cookie Hijacking Prevention

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 2009214

What makes the restricted token “restricted” is not related to the syntax of the token. The syntax
of a restricted token is the same as that of a regular SSO token. Instead, a specific constraint (IP
or DN) is associated with the restricted token. OpenSSO Enterprise server checks the validity of
the IP or DN before performing any operation using this restricted token. From OpenSSO
Enterprise 8.0 Update 1 onwards, you can configure the DN only restriction. The DN only
restriction is suitable if the agents are behind the firewall. This constraint is what ensures that
the restricted token is only used for an application that a given policy agent protects.

Access to User Profile Attributes Security Issue
The untrusted application can use the session cookie to obtain and possibly modify the profile
attributes of the user. If the user has administrative privileges, the application could do much
more damage.

OpenSSO Enterprise Solution

By issuing a restricted SSO token, the set of Session Service operations that can be performed
are limited using these tokens. This functionality enables OpenSSO Enterprise to prevent
applications from modifying profile attributes of the user. The following figure illustrates a
typical OpenSSO Enterprise deployment within an enterprise. While the figure illustrates
security issues related to cookie hijacking, the figure also illustrates the solution.

About Cookie Hijacking Prevention

Chapter 16 • Implementing Cross-Domain Single Sign-On with Cookie Hijacking Prevention 215

OpenSSO Enterprise Session Cookies Involved in
Issuing Unique SSO Tokens
When OpenSSO Enterprise is configured to issue unique SSO tokens for each application or
policy agent, the following cookies are involved:

FIGURE 16–4 Process Flow for Cookie Hijacking Prevention

About Cookie Hijacking Prevention

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 2009216

TABLE 16–1 Session Cookies in Unique SSO Tokens

Cookie Name Place Holder Cookie Value Domain

iPlanetDirectoryPro SSO-token

The actual cookie value is the value of the
token.

The domain is set to the host name of the
OpenSSO Enterprise instance where the
user was authenticated.

Example:

OpenssoHost.example.com

iPlanetDirectoryPro restricted-SSO-token

The actual cookie value is the value of the
token.

The domain is set to the host name of the
policy agent instance for which the
restricted token is issued.

Example:

agentHost.example.com

sunIdentityServerAuthNServer https://OpenssoHost.examplecom:8080

The cookie value is the URL of the OpenSSO
Enterprise instance where the user was
authenticated.

In this example, the protocol is HTTPS.

The domain must be set to cover all
instances of OpenSSO Enterprise installed
on the network.

Example:

.example.com

About Cookie Hijacking Prevention

Chapter 16 • Implementing Cross-Domain Single Sign-On with Cookie Hijacking Prevention 217

Analyzing the Deployment Architecture
The following figure illustrates a typical CDSSO deployment architecture.

Considering Assumptions, Dependencies, and Constraints

Assumptions and Dependencies
■ All the components in the deployment have the same GMT time stamp.
■ CDSSO must be enabled before configuring Cookie Hijacking Prevention.
■ The Cookie Hijacking Prevention configuration doesn't prevent cookies being viewed or

hijacked by hackers using network snooping applications. The only way to prevent this is by
using a secure communication protocol such as SSL.

FIGURE 16–5 Deployment Architecture

Analyzing the Deployment Architecture

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 2009218

■ All the agents in the deployment have a unique agent profile in the OpenSSO Enterprise
server.

Constraints
■ CDSSO and Cookie Hijacking Prevention can be used only if OpenSSO Enterprise and

policy agents are involved.
■ Policy agents must be configured to use the same OpenSSO Enterprise infrastructure where

multiple OpenSSO Enterprise instances can exist.
■ Multiple OpenSSO Enterprise instances configured for high-availability must all reside in a

single DNS domain. Only policy agents can reside in different DNS domains.

Understanding Typical Business Use Cases
This section describes actual protocol exchanges in four business use cases:

■ “Java EE Policy Agent Use Case 1: Accessing a Protected Resource in the Primary Domain
First” on page 220

■ “Java EE Policy Agent Use Case 2: Accessing a Protected Resource in a Non-Primary Domain
First ” on page 223

■ “Web Policy Agent Use Case 1: Accessing a Protected Resource in the Primary Domain First”
on page 224

■ “Web Policy Agent Use Case 2: Accessing a Protected Resource in the Non-Primary Domain
First” on page 227

All use cases are based on the same configuration:

■ The primary domain, DNS Domain 1, is where OpenSSO Enterprise resides. The
non-primary domain is DNS Domain 2.

■ In the primary domain, two OpenSSO Enterprise instances exist. Both are behind a load
balancer.

■ In the primary domain, Policy Agent 1 resides in host1.Domain1.com:7001 with CDSSO
disabled.

■ In the non-primary domain, Policy Agent 2 resides in host2.Domain2.com:80 with CDSSO
enabled.

■ A protected resource /app1/test1.html is deployed in host1.Domain1.com:7001.
■ A protected resource /app2/test2.html is deployed in host2.Domain2.com:80.

The following figure illustrates the configuration used for all four business use cases.

Understanding Typical Business Use Cases

Chapter 16 • Implementing Cross-Domain Single Sign-On with Cookie Hijacking Prevention 219

Java EE Policy Agent Use Case 1: Accessing a Protected
Resource in the Primary Domain First
In this use case, an unauthenticated user first accesses a resource under Policy Agent 1 in the
DNS Domain 1, the primary domain. After the authentication, the OpenSSO Enterprise sets an
SSO token in Domain 1. Then the user accesses another resource under Policy Agent 2 in DNS
Domain 2, a non-primary domain. The CDSSO sequence is invoked and access is allowed
without re-authentication.

1. An unauthenticated user attempts to access
http://Host1.Domain1.com:7001/app1/test1.html, a resource in Domain 1.
The Java EE policy agent intercepts the request and redirects to the OpenSSO Enterprise
server login page.

2. The browser follows the redirection to access the OpenSSO Enterprise login page.
3. The user provides the credentials and clicks Submit.

A login form is posted to OpenSSO Enterprise server.

FIGURE 16–6 Configuration for Business Use Cases

Understanding Typical Business Use Cases

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 2009220

■ If the user is not authenticated successfully, the server responds by displaying an “Access
Denied” message.

■ If the user authenticates successfully, the server responds by setting an SSO token
(represented by the iPlanetDirectoryPro cookie) in Domain 1. The response includes
a redirect to the original requested resource.

4. The browser follows the redirection to access
http://Host1.Domain1.com:7001/app1/test1.html.
a. The SSO token is sent in the HTTP request to the server.
b. The policy agent validates the SSO token and evaluates policies by interacting with the

OpenSSO Enterprise server in the background. If access is denied, the policy agent
displays an “Access Denied” message. If access is allowed, the policy agent allows the web
container to serve the requested protected resource.

5. The user tries to access another resource
http://Host2.Domain2.com:80/app2/test2.html in Domain 2.
a. The SSO token is not sent in the HTTP request because the server Host2.Domain2.com

does not match the cookie domain Domain1.com.
b. The policy agent, receiving no SSO token, responds by redirecting the browser to the

CDC servlet URL https://serverHost.Domain1.com:8443/opensso/cdcservlet.
c. The policy agent sets a cookie amFilterCDSSORequest to save the following:

■ The user-requested URL
■ Cookie access type, such as GET or POST
■ The value of the RequestID query parameter (AuthnRequestID)

This cookie is set before redirecting to the OpenSSO Enterprise CDC servlet.

Later, after getting the AuthnResponse from the CDC Servlet, the policy agent retrieves the
information from the amFilterCDSSORequest cookie to continue with the user's originally
requested URL. The redirection URL contains some parameters to be carried to the CDC
servlet. Some of these parameters are:

goto The URL to which CDC servlet will forward AuthNResponse.

MajorVersion The Liberty Federation Protocol major version. Set to 1 by default.

MinorVersion The Liberty Federation Protocol minor version. Set to 1 by default.

RequestID An AuthnRequestID.

This is a uniquely generated ID. It uses the form:

s<20-digit hexadecimal string>.

The AuthnRequestID is sent to the CDC Servlet so that the its
AuthnResponse later can contain this unique identifier. The RequestID

Understanding Typical Business Use Cases

Chapter 16 • Implementing Cross-Domain Single Sign-On with Cookie Hijacking Prevention 221

is used to tie the response coming back. The RequestID is verified when
the response comes back from the CDC servlet

ProviderID Identifies the provider, which is the policy agent. The value will be of the
form: http://agent-host:port/?Realm=<RealmName> where
RealmName is what is configured for the property
com.sun.identity.agents.config.organization.name in the policy
agent profile.

IssueInstant The time at which the AuthnRequest was created (being sent) in UTC
format.

6. The browser follows the redirection to access the CDC servlet.
a. The SSO token is sent in the HTTP request because the server DNS domain matches the

cookie domain.
b. The CDC servlet validates the SSO token and responds with an HTML page.

The page contains an HTML FORM which will be automatically posted to CDSSO
Redirect URL on the policy agent. Example:
http://Host2.Domain2.com:80/agentapp/sunwCDSSORedirectURI, based on the goto
parameter earlier. The form's hidden field LARES is an encoded Liberty-like
AuthnResponse that contains the existing SSO Token in Domain1.com.

7. The browser automatically posts the form with LARES to
http://Host2.Domain2.com:80/agentapp/sunwCDSSORedirectURI without user
interaction.
a. The policy agent responds by setting a new SSO token with the cookie domain value set

as the policy agent's fully qualified host name. Also note the cookie value is exactly the
same as the one set in Step 3 response by OpenSSO Enterprise server.

b. The HTTP response also redirects the browser to the original requested resource
http://Host2.Domain2.com:80/app2/test2.html.

c. In responding to this request, the policy agent goes through the following steps to
validate the received AuthnResponse:
i. First the requestID, saved in the amFilterCDSSORequest cookie, is verified against

the responseID of the AuthnResponse.
ii. The status code of the AuthnResponse is verified to see if it is successful.
iii. The assertion is extracted from the AuthnResponse. There should be only one

AuthnResponse.
iv. From the Assertion, the issuer is extracted and is verified against the policy agent list

of trusted ID providers.
If the issuer is not in the policy agent trusted list, then user request is blocked. These
trusted ID providers are governed by the property
com.sun.identity.agents.config.cdsso.trusted.id.provider[x]. See

Understanding Typical Business Use Cases

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 2009222

“Configuring CDSSO and Cookie Hijacking Prevention” on page 228. These IDs
should contain URLs of the actual OpenSSO Enterprise instances, and should not
contain the URL of the load balancer.

v. The conditions that are in the assertion are also validated.
The main condition is the date validity condition. The date validity attributes
(NotBefore and NotOnOrAfter) are verified to be sure the assertion has not expired.
So time synchronization between the OpenSSO Enterprise server and the policy
agent is essential. The skew factor provided in the policy agent profile
com.sun.identity.agents.config.cdsso.clock.skew also helps to overcome any
network latencies.

vi. In the response, cookie amFilterCDSSORequest is removed by setting the expiration
date in the past.

8. The browser follows the redirection to access the protected resource again at
http://Host2.Domain2.com:80/app2/test.html.
a. The new SSO token is sent to the policy agent.
b. The policy agent validates the SSO token and evaluates the policies.
c. The policy agent, upon successful validation, responds with the content of the protected

resource.

Java EE Policy Agent Use Case 2: Accessing a Protected
Resource in a Non-Primary Domain First
In this use case, an unauthenticated user first accesses a protected resource in the DNS Domain
2, the non-primary domain. The user then accesses a protected resource in the primary domain,
DNS Domain1.

1. An unauthenticated user attempts to access a resource in Domain 2. Example:
http://Host2.Domain2.com:80/app2/test2.html.

2. The policy agent intercepts the request and receives no SSO Token.
Because CDSSO is enabled, the policy agent responds with a redirection to the OpenSSO
Enterprise CDC servlet URL
https://serverHost1.Domain1.com:8443/opensso/cdcservlet.

3. The browser follows the redirection to access the CDC servlet without any SSO token. The
CDC servlet responds with a login page.

4. The user types his credentials on the login page and clicks Submit.
A login form is posted to the OpenSSO Enterprise server.
a. If the user authenticates successfully, the OpenSSO Enterprise responds by setting an

SSO token in Domain1.com.

Understanding Typical Business Use Cases

Chapter 16 • Implementing Cross-Domain Single Sign-On with Cookie Hijacking Prevention 223

b. The response also redirects the browser back to the CDC servlet
https://serverHost1.Domain1.com:8443/opensso/cdcservlet.

5. The browser follows the redirection to access the CDC servlet again.
This time the SSO token is sent in the HTTP request because the OpenSSO Enterprise server
DNS domain matches the cookie domain.

6. The CDC servlet validates the SSO Token and responds with an HTML page.
The page contains an HTML form which is automatically posted to CDSSO Redirect URL
on the policy agent http://Host2.Domain2.com:80/agentapp/sunwCDSSORedirectURI.
The form's hidden field LARES is an encoded Liberty-like AuthnResponse that contains the
existing SSO Token in Domain1.

7. The browser automatically posts the form with LARES to
http://Host2.Domain2.com:80/agentapp/sunwCDSSORedirectURI with no user
interaction.

8. The policy agent responds by setting a second SSO Token. The second SSO token domain is
the policy agent's fully-qualified host name. The cookie value is identical to the cookie value
set by the OpenSSO Enterprise server in step 4. The HTTP response also redirects the
browser to the original requested resource
http://Host2.Domain2.com:80/app2/test2.html.

9. The browser follows the redirection to access the protected resource again at
http://Host2.Domain2.com:80/app2/test2.html.
a. The second SSO Token is sent to the policy agent.
b. The policy agent validates the SSO token, and evaluates the policies.
c. The policy agent, upon successful validation, responds with the content of the protected

resource.
10. The user now attempts to access a resource in the primary domain, Domain 1. Example:

http://Host1.Domain1.com:7001/app1/test1.html.
An SSO Token is sent with the HTTP request. The browser now has two SSO Tokens, one
for each domain. The sent token was obtained in Step 4.

11. The policy agent intercepts the request and receives the SSO Token.
The policy agent validates the token and permits the server to serve the content of the
protected page.

Web Policy Agent Use Case 1: Accessing a Protected
Resource in the Primary Domain First
In this use case, an unauthenticated user first accesses a resource under Policy Agent 1 in the
DNS Domain 1, the primary domain. After the authentication, the OpenSSO Enterprise sets an

Understanding Typical Business Use Cases

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 2009224

SSO token in Domain 1. Then the user accesses another resource under Policy Agent 2 in DNS
Domain 2, a non-primary domain. The CDSSO sequence is invoked and access is allowed
without re-authentication.

1. An unauthenticated user attempts to access a resource in Domain 1. Example:
http://Host1.Domain1.com:7001/app1/test1.html.

2. The Web policy agent intercepts the request and receives no SSO Token. The policy agent
responds with a redirection to the OpenSSO Enterprise login page.

3. The browser follows the redirection to access the OpenSSO Enterprise login page.
4. The user provides the credentials and clicks Submit.

A login form posted to the OpenSSO Enterprise server.
■ If the user is not authenticated successfully, the server responds by displaying an “Access

Denied” message.
■ If the user authenticates successfully, the server responds by setting an SSO token

(represented by the iPlanetDirectoryPro cookie) in Domain 1. The response also
includes a redirect to the original requested resource
http://Host1.Domain1.com:7001/app1/test1.html.

5. The browser follows the redirection to access
http://Host1.Domain1.com:7001/app1/test1.html.
a. The SSO token is sent in the HTTP request to the server.
b. The policy agent validates the SSO token and evaluates policies by interacting with the

OpenSSO Enterprise server in the background. If access is denied, the policy agent
displays an “Access Denied” message. If access is allowed, the server responds with the
content of the protected resource.

6. The user tries to access another resource in the non-primary domain, Domain 2. Example:
http://Host2.Domain2.com:80/app2/test2.html.
a. The SSO token is not sent in the HTTP request because the policy agent domain

Domain2.com does not match the cookie domain Domain1.com.
b. The policy agent, receiving no SSO token, responds by redirecting the browser to the

CDC servlet URL https://serverHost.Domain1.com:8443/opensso/cdcservlet.

The redirection URL contains some parameters to be carried to the CDC servlet. Some of
these parameters are:

goto The URL to which CDC servlet will forward AuthNResponse.

This is the originally requested URL with the parameter
sunwmethod=GET appended to it.

MajorVersion The Liberty Federation Protocol major version. Set to 1 by default.

MinorVersion The Liberty Federation Protocol minor version. Set to 1 by default.

Understanding Typical Business Use Cases

Chapter 16 • Implementing Cross-Domain Single Sign-On with Cookie Hijacking Prevention 225

RequestID An AuthnRequestID.

This is a uniquely generated ID. It uses the following form:

s<20-digit hexadecimal string>.

The AuthnRequestID is sent to the CDC Servlet so that its
AuthnResponse later can contain this unique identifier. The RequestID
is used to tie the response coming back. The RequestID is verified when
the response comes back from the CDC servlet.

ProviderID Identifies the provider, which is the policy agent. The value will be of the
form: http(s)://agent-host:port/amagent?Realm=<RealmName>
where RealmName is what is configured for the property
com.sun.identity.agents.config.organization.name in the policy
agent profile.

IssueInstant The time at which the AuthnRequest was created in UTC format.
7. The browser follows the redirection to access the CDC servlet.

a. The SSO token is sent in the HTTP request because the OpenSSO Enterprise server
domain matches the cookie domain.

b. The CDC servlet validates the SSO token and responds with an HTML page.
The page contains an HTML FORM which will be automatically posted to the policy
agent with no user interaction. Example:
http://Host2.Domain2.com:80/app2/test2.html?sunwmethod=GET based on the
goto parameter.

8. The browser automatically posts the form with LARES to
http://Host2.Domain2.com:80/app2/test2.html?sunwmethod=Get with no user
interaction.
a. The policy agent responds by setting a second SSO Token. The second SSO token

domain is the policy agent's fully-qualified host name. The cookie value is identical to the
cookie value set by the OpenSSO Enterprise server in step 4.

b. The assertions are extracted from the AuthnResponse. There should only be one
AuthnResponse.

c. The policy agent also performs necessary session validation and policy evaluation. If the
session is validated, and the policy evaluation succeeds, then the user is allowed access
and the protected page is served in response.

Understanding Typical Business Use Cases

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 2009226

Web Policy Agent Use Case 2: Accessing a Protected
Resource in the Non-Primary Domain First
In this use case, an unauthenticated user first accesses a protected resource in the DNS Domain
2, the non-primary domain. The user then accesses a protected resource in the primary domain
DNS Domain1.

1. An unauthenticated user attempts to access a resource in the non-primary domain, Domain
2. Example: http://Host2.Domain2.com:80/app2/test2.html.

2. The policy agent intercepts the request and receives no SSO Token.
Because CDSSO is enabled, the policy agent responds with a redirection to the OpenSSO
Enterprise CDC servlet URL
https://serverHost1.Domain1.com:8443/opensso/cdcservlet.

3. The browser follows the redirection to access the CDC servlet without any SSO token. The
CDC servlet responds with a login page.

4. The user types his credentials on the login page and clicks Submit.
A login form is posted to the OpenSSO Enterprise server.
a. If the user authenticates successfully, the OpenSSO Enterprise server responds by setting

an SSO token in Domain1.com.
b. The response also redirects the browser back to the CDC servlet

https://serverHost1.Domain1.com:8443/opensso/cdcservlet.
5. The browser follows the redirection to access the CDC servlet again.

This time the SSO token is sent in the HTTP request because the server DNS domain
matches the cookie domain.

6. The CDC servlet validates the SSO Token and responds with an HTML page.
The page contains a HTML form which is automatically posted to the policy agent
http://Host2.Domain2.com:80/app2/test2.html?sunwMethod=GET.
This is derived from the goto and target parameters. The form's hidden field LARES is an
encoded Liberty-like AuthnResponse that contains the existing SSO Token in Domain1.

7. The browser automatically posts the form with LARES to
http://Host2.Domain2.com:80/app2/test2.html?sunwMethod=GET with no user
interaction.

8. The policy agent validates the AuthNResponse, and responds by setting a second SSO Token.
The second SSO token domain is the policy agent's fully-qualified host name. The cookie
value is identical to the cookie value set by the OpenSSO Enterprise server in step 4.

9. The policy agent performs necessary session validation and policy evaluation. If the session
is validated, and the policy evaluation succeeds, then the user is allowed access and the
protected page is served in response.

Understanding Typical Business Use Cases

Chapter 16 • Implementing Cross-Domain Single Sign-On with Cookie Hijacking Prevention 227

10. The user now attempts to access a resource in the primary domain, Domain 1. Example:
http://Host1.Domain1.com:7001/app1/test1.html.
An SSO Token is sent with the HTTP request. The browser now has two SSO Tokens, one
for each domain. The sent token was obtained in Step 4.

11. The policy agent intercepts the request and receives the SSO Token.
The policy agent validates the token and permits the server to serve the content of the
protected page.

Configuring CDSSO and Cookie Hijacking Prevention
■ “To Enable CDSSO and Cookie Hijacking Prevention in Java EE Policy Agent” on page 228
■ “To Enable CDSSO and Cookie Hijacking Prevention in the Web Policy Agent” on page 230

The configuration instructions in this section use the following mapping based on Figure 16–5:

TABLE 16–2 Mapping Fig 16–5 to Server Names

Figure Label Server Name Example

Load Balancer 1 lb1_server.hostname

Load Balancer 2 lb2_server.hostname

OpenSSO Enterprise Server 1 server1.hostname

OpenSSO Enterprise Server 2 server2.hostname

▼ To Enable CDSSO and Cookie Hijacking Prevention in
Java EE Policy Agent

Enable CDSSO for the Centralized Mode policy agent profile.

a. Log in to the OpenSSO Enterprise server as an administrator.

b. In the OpenSSO Enterprise administration console, go to Realm > Agents > J2EE Agents >
Agent_Name > SSO.

c. Enable the property Cross Domain SSO

d. Set the value for the CDSSO Redirect URI.

Example: /agentapp/sunwCDSSORedirectURI

1

Configuring CDSSO and Cookie Hijacking Prevention

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 2009228

e. Set the value for the CDSSO Servlet URL.

Example:
lb2_server_protocol://lb2_server.hostname:lb2_server.port/server-deployment-uri/cdcservlet

f. Set the CDSSO Clock Skew to 0.

g. Add the CDSSO Trusted ID Provider.

Example:
server1_protocol://server1.hostname:server1.port/server1-deployment-uri/cdcservlet
server2_protocol://server2.hostname:server2.port/server2-deployment-uri/cdcservlet

Enable CDSSO for the Local Mode policy agent profile:

Edit OpenSSOAgentConfiguration.properties and set CDSSO related parameters. Example:
com.sun.identity.agents.config.cdsso.enable = true

com.sun.identity.agents.config.cdsso.redirect.uri=/agentapp/sunwCDSSORedirectURI

com.sun.identity.agents.config.cdsso.cdcservlet.url[0] =

<lb2_server_protocol>://<lb2_server.hostname>:
<lb2_server.port>/<server-deployment-uri>/cdcservlet

com.sun.identity.agents.config.cdsso.clock.skew = 0

com.sun.identity.agents.config.cdsso.trusted.id.provider[0]=

<server1_protocol>://<srver1.hostname>:
<server1.port>/<server1-deployment-uri>/cdcservlet

com.sun.identity.agents.config.cdsso.trusted.id.provider[1] =

<server2_protocol>://<server2.hostname>:
<server2.port>/<server2-deployment-uri>/cdcservlet

Enable Cookie Hijacking Prevention in the OpenSSO Enterprise server.

a. Log in OpenSSO Enterprise server as an administrator.

b. In the OpenSSO Enterprise administration console, go to Configuration >Sites and Server
>Default server settings > Advanced and set the following properties:
com.sun.identity.enableUniqueSSOTokenCookie=true

com.sun.identity.authentication.uniqueCookieName=sunIdentityServerAuthNServer

com.sun.identity.authentication.uniqueCookieDomain=server domain

c. Go to Configuration > System > Platform .

Remove server domain and add the OpenSSO Enterprise server host name.

Caution – If OpenSSO Enterprise is deployed behind a load balancer, then in step 3c, do not
use the OpenSSO server host name. Instead, be sure to use the load balancer host name.

2

3

Configuring CDSSO and Cookie Hijacking Prevention

Chapter 16 • Implementing Cross-Domain Single Sign-On with Cookie Hijacking Prevention 229

d. Enable a unique SSO token cookie in the agent profile.
Do one of the following:

■ For the Centralized Mode policy agent, go to RootRealm > Agents> J2EE Agents >
AgentName > Advanced > Custom Properties, and add the following property:
com.sun.identity.enableUniqueSSOTokenCookie=true.

■ For the Local Mode policy agent, in the OpenSSOAgentConfiguration.properties file,
add the following property: com.sun.identity.enableUniqueSSOTokenCookie=true.

▼ To Enable CDSSO and Cookie Hijacking Prevention in
the Web Policy Agent

Enable CDSSO for the Centralized Mode policy agent profile.

a. Log in to the OpenSSO Enterprise server as an administrator.

b. In the OpenSSO Enterprise administration console, go to Realm > Agents > Web Agents >
Agent_Name > SSO.

c. Enable the property Cross Domain SSO.

d. Set the value for the CDSSO Servlet URL.
Example:
lb2_server_protocol://lb2_server.hostname:lb2_server.port/server-deployment-uri/cdservlet

Enable CDSSO for the Local Mode policy agent profile:
Edit OpenSSOAgentConfiguration.properties and set CDSSO related parameters. Example:
com.sun.identity.agents.config.cdsso.enable = true

com.sun.identity.agents.config.cdsso.cdcservlet.url[0] =

lb2_server_protocol://lb2_server.hostname:
lb2_server.port/server-deployment-uri/cdcservlet

Enable Cookie Hijacking Prevention in the OpenSSO Enterprise server.

a. Log in OpenSSO Enterprise server as an administrator.

b. In the OpenSSO Enterprise administration console, go to Configuration >Sites and Server
>Default server settings > Advanced and set the following properties:
com.sun.identity.enableUniqueSSOTokenCookie=true

com.sun.identity.authentication.uniqueCookieName=sunIdentityServerAuthNServer

com.sun.identity.authentication.uniqueCookieDomain= server domain

1

2

3

Configuring CDSSO and Cookie Hijacking Prevention

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 2009230

c. Go to Configuration > System > Platform .
Remove server domain and add the server host name.

Caution – If OpenSSO Enterprise is deployed behind a load balancer, then in step 3c, do not
use the OpenSSO server host name. Instead, be sure to use the load balancer host name.

Evaluating Benefits and Trade-offs
The benefit of using CDSSO with Cookie Hijacking Prevention is that resources are protected
among multiple domains. Security is significantly increased. The trade-off is that the CDSSO
solution is proprietary to OpenSSO Enterprise. Integrating the CDSSO solution with other
single sign-on products is not possible.

Evaluating Benefits and Trade-offs

Chapter 16 • Implementing Cross-Domain Single Sign-On with Cookie Hijacking Prevention 231

232

Configuring System Failover and Session
Failover for High Availability

This chapter provides information to help you architect your OpenSSO Enterprise deployment
to achieve the highest levels of system and session availability. High availability ensures
continuous service for your end-users, protects against loss of data due to interrupted user
sessions, and increases transaction throughput for optimized system performance.

This chapter includes the following topics:

■ “About High Availability” on page 233
■ “Analyzing the Deployment Architecture” on page 235
■ “Understanding High Availability Configuration Examples” on page 240
■ “Considering Assumptions and Dependencies” on page 257
■ “Configuring OpenSSO Enterprise for High Availability” on page 258
■ “Evaluating Benefits and Trade-Offs” on page 258

About High Availability
Two key high-availability elements in an OpenSSO Enterprise deployment are system failover
and session failover. These two features help to ensure that no single point of failure exists in the
deployment, and that OpenSSO Enterprise service is always available to end-users. You can also
configure OpenSSO Enterprise sites to meet more complex business requirements.

System Failover
In this chapter, system failure refers to a hardware or process failure at the OpenSSO Enterprise
server, at the Policy Agent, or at a load balancer. Hardware fails due to a mechanical problem or
power outage. A web container application crashes causing OpenSSO Enterprise to become
inaccessible. These are examples of system failure. Whenever possible, you should install
redundant OpenSSO Enterprise servers, OpenSSO Policy Agents, and load balancers to serve as
backups, or to fail over to, in the event of a system failure. This helps to ensure that no single

17C H A P T E R 1 7

233

point of failure exists in your deployment. Load balancers distribute the workload among
OpenSSO Enterprise servers. If a Policy Agent fails, requests are redirected to another Policy
Agent. If server hardware fails, requests are routed to other server hardware. Without system
failover, a single hardware failure or process failure can cause OpenSSO Enterprise downtime.

Session Failover
Session failover ensures that session data remains accessible to OpenSSO Enterprise servers and
OpenSSO Enterprise Policy Agents. Service requests are routed to a failover server, the user's
session continues uninterrupted, and no user data is lost. The OpenSSO Enterprise Session
Service maintains authenticated session states and continues processing new client requests
subsequent to the failure. In most cases, without session failover, after system failure and
subsequent service recovery, the user would have to re-authenticate.

Session failover is critical when end-users' transactions involve financial data or other sensitive
information that is difficult to recover when a system failure occurs. With session failover, when
a system failover occurs, the user's transaction can proceed uninterrupted. Session failover is
less important if end-users are, for example, reading but not writing data.

OpenSSO Enterprise Sites
The most basic OpenSSO Enterprise site consists of two or more OpenSSO Enterprise servers
and one or more load balancers. When you configure all the components in the site to work
under a single site identifier, or name, all components in the site act as one unit. The load
balancers in the site are associated with a site identifier. When a component such as a Policy
Agent accesses a site, it communicates through the load balancer associated with that site,
instead of directly accessing individual OpenSSO Enterprise servers in the site. All the client
requests are passed through the load balancer to the OpenSSO Enterprise servers located
behind a firewall. Individual OpenSSO Enterprise servers are never directly exposed to entities
outside the firewall. The only client that can access the OpenSSO Enterprise servers is a load
balancer.

Single-Site Configuration
A single site configuration usually includes two or more OpenSSO servers which are centrally
managed and configured under a single site identifier. The single-site configuration is typically
used when the OpenSSO Enterprise servers are managed as a single operational unit such as in a
LAN environment.

Multiple-Site configuration
In a multiple-site configuration, two or more OpenSSO Enterprise servers are configured in
each site. A multiple-site configuration is useful when you need to centrally manage OpenSSO

About High Availability

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 2009234

Enterprise servers located in distant geographical locations. Multiple-site configuration is
usually used in WAN environments, or where sites are managed as separate operational units
within a LAN environment. Each site can have one or more load balancers.

While system failover can be configured among all sites in the deployment, session failover is
possible only within each site. WAN environments are subject to speed, network latency,
firewall, and bandwidth issues. For these reasons, OpenSSO Enterprise session failover is not
supported across multiple sites within a LAN or WAN environment.

The following are typical reasons to use a multiple-site configuration:
■ Close proximity of OpenSSO Enterprise servers in a LAN environment
■ Underlying network infrastructure limitations exist.
■ Operational domains are managed as independent units.
■ OpenSSO Enterprise servers span across network boundaries as in the case of a WAN

environment.

Analyzing the Deployment Architecture
Figure 17–1 illustrates the components you need for basic system failover and session failover in
an OpenSSO Enterprise deployment. Key components in this high availability deployment are:
■ Multiple OpenSSO Enterprise Policy Agents serve as backups when system failure occurs.
■ A single load balancer distributes the workload among multiple OpenSSO Enterprise Policy

Agents. This increases transaction throughput, and ensures failover when a system failure
occurs.

■ Multiple OpenSSO Enterprise servers with respective embedded Directory Servers act as
backups when system failure occurs. Embedded Directory Servers ensure that replicated
configuration data is always available even during system failure.

■ Multiple load balancers distribute the workload among multiple OpenSSO Enterprise
servers. This increases transaction throughput, and ensures failover when system failure
occurs. Additionally, the Policy Agents can be configured to failover among OpenSSO
Enterprise server load balancers when system failure occurs.

■ When OpenSSO Enterprise is configured for session failover, a Java Message Queue Broker
Cluster replicates session data and stores it in the Berkeley Database. When a system failure
occurs, the replicated session data is made available to Policy Agents so that the end-user
does not lose data and does not have to re-authenticate after system recovery.

■ Multiple Berkeley Databases are used to store session data, and are configured for session
failover. If one Berkeley Database fails, the working Berkeley Database can provide session
data to the OpenSSO Enterprise servers for session validation.

In all examples in this chapter, load balancers represent the only access points to OpenSSO
Enterprise servers. An access point can be any hardware or software that acts as a load balancer,

Analyzing the Deployment Architecture

Chapter 17 • Configuring System Failover and Session Failover for High Availability 235

and is associated with a site, that is installed in front of OpenSSO Enterprise servers. Policy
Agents interact with OpenSSO Enterprise servers through these access points.

The following figure illustrates the components required for basic system failover and session
failover in a single-site deployment.

Analyzing the Deployment Architecture

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 2009236

FIGURE 17–1 Basic OpenSSO Enterprise High Availability Deployment Architecture

Analyzing the Deployment Architecture

Chapter 17 • Configuring System Failover and Session Failover for High Availability 237

Understanding a Typical High-Availability Transaction
In any transaction, OpenSSO Enterprise must determine three things:

1. Is a valid user session token present?
2. Is the user authenticated?
3. Is the user authorized?

At any time during the transaction, if the OpenSSO Enterprise server or the OpenSSO
Enterprise Policy Agent is unable to access the information required to determine these three
things, then system failover or session failover may occur.

Figure 17–2 illustrates the first part of a typical high-availability process flow. In the figure, a
user attempts to access a protected resource and is successfully authenticated. No system
failover or session failover occurs in this first transaction.

The second part of the process flow describes how sessions are handled during subsequent
requests by the same user. This second part of the process flow is influenced by two factors:

■ How OpenSSO Enterprise is configured for high availability
■ Availability of load balancers and servers

The following figure illustrates a user's first request in a typical high-availability transaction.
Process flows for subsequent requests by the same user are presented in detail, and discussed
along with their respective configuration examples, in the following sections.

Analyzing the Deployment Architecture

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 2009238

FIGURE 17–2 Process Flow for High Availability (part 1)

Analyzing the Deployment Architecture

Chapter 17 • Configuring System Failover and Session Failover for High Availability 239

Understanding High Availability Configuration Examples
Businesses use various combinations of single or multiple OpenSSO Enterprise servers and load
balancers, in single or multiple sites, to achieve system failover and session failover. The
following examples illustrate typical high-availability configurations and their respective
process flows:

■ “Single OpenSSO Enterprise Server Load Balancer in Single Site, No Session Failover” on
page 241

■ “Multiple OpenSSO Enterprise Server Load Balancers in a Single Site, No Session Failover ”
on page 243

■ “Multiple OpenSSO Enterprise Server Load Balancers in Multiple Sites, No Session Failover ”
on page 245

■ “Single OpenSSO Enterprise Server Load Balancer in a Single Site with Session Failover ” on
page 248

■ “Multiple OpenSSO Enterprise Server Load Balancers in a Single Site with Session Failover”
on page 250

■ “Multiple OpenSSO Enterprise Server Load Balancers in Multiple Sites with Session Failover”
on page 253

The following table summarizes the OpenSSO Enterprise features associated with each
configuration example.

Understanding High Availability Configuration Examples

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 2009240

Single OpenSSO Enterprise Server Load Balancer in
Single Site, No Session Failover
This is the most basic high-availability configuration. The single OpenSSO Enterprise server
load balancer increases transaction throughput. When one OpenSSO Enterprise server is
inaccessible, requests are automatically routed to other servers. However, the single load
balancer can be a single point of failure. When this load balancer is inaccessible, no OpenSSO
Enterprise services or session data are available to the Policy Agents.

FIGURE 17–3 Comparison of High Availability Configuration Examples

Understanding High Availability Configuration Examples

Chapter 17 • Configuring System Failover and Session Failover for High Availability 241

The following figure illustrates the session handling part of the process flow. See Figure 17–2 for
a detailed illustration of steps 1 through 13.

FIGURE 17–4 Single OpenSSO Enterprise Server Load Balancer in a Single Site Configuration

Understanding High Availability Configuration Examples

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 2009242

Multiple OpenSSO Enterprise Server Load Balancers in
a Single Site, No Session Failover
The following figure illustrates a deployment with multiple OpenSSO Enterprise server load
balancers in front of redundant OpenSSO Enterprise servers. In this example, both OpenSSO
Enterprise server load balancers are specified in each Policy Agent bootstrap configuration. The
load balancers are also configured as login URL's in each Policy Agent configuration. Policy

FIGURE 17–5 Process Flow for Single OpenSSO Enterprise Server Load Balancer in a Single Site, No Session
Failover

Understanding High Availability Configuration Examples

Chapter 17 • Configuring System Failover and Session Failover for High Availability 243

Agent configuration can reside on the same host as the Policy Agent, or can reside in the
OpenSSO Enterprise embedded configuration data store. Regardless of where the configuration
is hosted, when one OpenSSO Enterprise server load balancer is inaccessible, all requests are
automatically routed to the other load balancer.

The following figure illustrates the session handling part of the process flow. See Figure 17–2 for
a detailed illustration of steps 1 through 13.

FIGURE 17–6 Multiple OpenSSO Enterprise Server Load Balancers in a Single Site, No Session Failover

Understanding High Availability Configuration Examples

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 2009244

Multiple OpenSSO Enterprise Server Load Balancers in
Multiple Sites, No Session Failover
This deployment is useful if you want to logically group redundant OpenSSO Enterprise servers
in a LAN or WAN environment. For example, you can configure redundant OpenSSO
Enterprise servers to work as a single unit under a single site identifier. The redundant
OpenSSO Enterprise servers provide one level of system failover. When you deploy multiple
sites this way, the OpenSSO Enterprise servers in one site are logically isolated from the
OpenSSO Enterprise servers in other sites.

FIGURE 17–7 Process Flow for Multiple OpenSSO Enterprise Server Load Balancers in a Single Site, No
Session Failover

Understanding High Availability Configuration Examples

Chapter 17 • Configuring System Failover and Session Failover for High Availability 245

In this example, both OpenSSO Enterprise server load balancers are specified in each Policy
Agent bootstrap configuration. The load balancers are also configured as login URL's in each
Policy Agent configuration. Policy Agent configuration can reside on the same host as the Policy
Agent, or can reside in the OpenSSO Enterprise embedded configuration data store. When
system failure occurs at the load balancer, one site fails over to another site.

The following figure illustrates minimum components required for a multiple-site
configuration.

The following figure illustrates the session handling part of the process flow. See Figure 17–2 for
a detailed illustration of steps 1 through 13.

FIGURE 17–8 Multiple OpenSSO Enterprise Load Balancers in Multiple Sites, No Session Failover

Understanding High Availability Configuration Examples

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 2009246

FIGURE 17–9 Process Flow for Multiple OpenSSO Enterprise Server Load Balancers in Multiple Sites, No
Session Failover

Understanding High Availability Configuration Examples

Chapter 17 • Configuring System Failover and Session Failover for High Availability 247

Single OpenSSO Enterprise Server Load Balancer in a
Single Site with Session Failover
When you configure OpenSSO Enterprise for session failover, the user's authenticated session
state is stored in the Berkeley Database in the event of a single hardware or software failure. In
session failover deployments, you configure the OpenSSO Enterprise servers to communicate
with Message Queue brokers which manage session state persistence in the Berkeley Database.
This configuration enables the users session to fail over to a backup OpenSSO Enterprise server
without losing any session state information. The user does not have to login again. The backup
OpenSSO Enterprise server is determined among the available servers in the configuration list
by an internal algorithm.

This type of deployment ensures the state availability even if one of the OpenSSO Enterprise
servers is inaccessible due to scheduled maintenance, hardware failure, or software failure.
However, the single load balancer can be a single point of failure. When this load balancer is
inaccessible, no OpenSSO Enterprise services or session data are available to the Policy Agents.

The following figure illustrates the components in a basic OpenSSO Enterprise deployment
using session failover.

Understanding High Availability Configuration Examples

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 2009248

The following figure illustrates the session handling part of the process flow. See Figure 17–2 for
a detailed illustration of steps 1 through 13.

FIGURE 17–10 Single OpenSSO Enterprise Server Load Balancer in a Single Site with Session Failover

Understanding High Availability Configuration Examples

Chapter 17 • Configuring System Failover and Session Failover for High Availability 249

Multiple OpenSSO Enterprise Server Load Balancers in
a Single Site with Session Failover
This deployment is very similar to “Single OpenSSO Enterprise Server Load Balancer in a Single
Site with Session Failover ” on page 248, but with two important differences. In this deployment
multiple OpenSSO Enterprise server load balancers exist. Additionally, the OpenSSO

FIGURE 17–11 Single OpenSSO Enterprise Server Load Balancer in a Single Site with Session Failover

Understanding High Availability Configuration Examples

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 2009250

Enterprise server load balancers are specified in each Policy Agent bootstrap configuration.
This deployment provides load balancer failover to ensure continuous service when system
failure occurs. When system failure occurs at the load balancer, one site fails over to another
site.

The load balancers are also configured as login URL's in each Policy Agent configuration. Policy
Agent configuration can reside on the same host as the Policy Agent, or can reside in the
OpenSSO Enterprise embedded configuration data store.

The following figure illustrates a deployment with multiple OpenSSO Enterprise server load
balancers with session failover.

Understanding High Availability Configuration Examples

Chapter 17 • Configuring System Failover and Session Failover for High Availability 251

The following figure illustrates the session handling part of the process flow. See Figure 17–2 for
a detailed illustration of steps 1 through 13.

FIGURE 17–12 Multiple OpenSSO Enterprise Server Load Balancers in a Single Site with Session Failover

Understanding High Availability Configuration Examples

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 2009252

Multiple OpenSSO Enterprise Server Load Balancers in
Multiple Sites with Session Failover
This deployment is useful if you want to logically group redundant OpenSSO Enterprise servers
in a LAN or WAN environment. For example, you can configure redundant OpenSSO
Enterprise servers to work as a single unit under a single site identifier. Redundant OpenSSO
Enterprise servers provide one level of system failover. When you deploy multiple sites this way,
the OpenSSO Enterprise servers in one site are logically isolated from the OpenSSO Enterprise
servers in other sites.

FIGURE 17–13 Multiple OpenSSO Enterprise Server Load Balancers in a Single Site with Session Failover

Understanding High Availability Configuration Examples

Chapter 17 • Configuring System Failover and Session Failover for High Availability 253

For an added level of system failover, you can configure one site to fail over to another site. In
this example, both OpenSSO Enterprise server load balancers are specified in each Policy Agent
bootstrap configuration. The load balancers are also configured as login URL's in each Policy
Agent configuration. Policy Agent configuration can reside on the same host as the Policy
Agent, or can reside in the OpenSSO Enterprise embedded configuration data store. When
system failure occurs at the load balancer, one site fails over to another site.

This deployment ensures both system failover and session failover if one of the OpenSSO
Enterprise load balancers or one of the OpenSSO Enterprise servers is inaccessible for any
reason. The following issues are addressed in this deployment:

■ Logical grouping of OpenSSO servers can be achieved across distant geographic locations
within a WAN environment or locally within a LAN environment.

■ The Message Queue broker and Berkeley Database provide the means for session failover.
■ Session failover is not supported among multiple sites.
■ The user's authenticated session state is maintained in the event of a single hardware or

software failure. This allows the user session to fail over to a backup OpenSSO Enterprise
server without losing session information. If system failure occurs within the site, the user
does not have to log in again.

■ The backup OpenSSO Enterprise server is determined by an internal algorithm. The
internal algorithm selects from the server configuration list one of the available servers from
same site.

■ System failover works among OpenSSO Enterprise servers in different sites.

The following figure illustrates a complex high availability deployment using both system
failover and session failover in multiple sites.

Understanding High Availability Configuration Examples

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 2009254

The following figure illustrates the session handling part of the process flow. See Figure 17–2 for
a detailed illustration of steps 1 through 13.

FIGURE 17–14 Multiple OpenSSO Enterprise Server Load Balancer in Multiple Sites with Session Failover

Understanding High Availability Configuration Examples

Chapter 17 • Configuring System Failover and Session Failover for High Availability 255

FIGURE 17–15 Multiple OpenSSO Enterprise Server Load Balancers with Session Failover in Each Site

Understanding High Availability Configuration Examples

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 2009256

Considering Assumptions and Dependencies
As you plan your deployment, consider the following assumptions to determine if your
environment is appropriate for using system failover and session failover.

Assumptions
■ Redundant OpenSSO Enterprise servers and Policy Agents are installed for basic

load-balancing. Additionally, you must manually configure each instance for system
failover and session failover.

■ All OpenSSO Enterprise servers must share the same configuration data. This can be
achieved by setting up configuration data replication among multiple instances of OpenDS,
or by configuring each OpenSSO Enterprise server to point to the same instance of Sun
Directory Server.

■ You can configure system failover at either the OpenSSO Enterprise Policy Agent or at the
OpenSSO Enterprise Client SDK.

■ When configuring session failover, you must deploy Java Message Queue and the Berkeley
Database on a machine other than the one hosting the OpenSSO Enterprise servers. You can
configure a single Message Queue with a single Berkeley Database, or you can configure
multiple instance of both.

Using Java Message Queue Broker and Berkeley
Database for Session Failover
If you configure a single instance of Java Message Queue Broker and as single instance of
Berkeley Database to provide session failover for your deployment, no session data replication
is possible. If either Message Queue Broker or Berkeley Database fails, then all the stored user
sessions are lost. The OpenSSO Enterprise server would operate as if session failover was not
configured.

A good practice is to use two instances of Message Queue Broker configured with two instances
of Berkeley Database. User sessions are replicated among the Berkeley Database instances. This
dual-host configuration is for failover purposes and not for load sharing. Adding more Message
Queue Broker instances and Berkeley Database instances does not increase processing capacity.
Adding more instances actually reduces the overall session failover processing capacity due to
the extra data replication overhead.
■ The Java Message Queue Broker and Berkeley Database pair should be configured in an

active-standby mode so that at any given time only one of the pair is up and running.
■ The Java Message Queue Broker and Berkeley Database pair on the backup host is be used

only for failover purposes.

Considering Assumptions and Dependencies

Chapter 17 • Configuring System Failover and Session Failover for High Availability 257

■ When the primary Java Message Queue Broker and Berkeley Database pair fail, other pair
on the backup host can be started to provide uninterrupted session service.

Configuring OpenSSO Enterprise for High Availability
A good source of high-availability configuration information is the manual Deployment
Example: Single Sign-On, Load Balancing and Failover Using Sun OpenSSO Enterprise 8.0. In
particular, the following chapters provide examples with detailed step-by-step instructions for
configuring load balancers, OpenSSO Enterprise sites, and OpenSSO Enterprise for system
failover and session failover.
■ “Configuring Load Balancer 2 for OpenSSO Enterprise” in Deployment Example: Single

Sign-On, Load Balancing and Failover Using Sun OpenSSO Enterprise 8.0
■ “Configuring the OpenSSO Enterprise Platform Service” in Deployment Example: Single

Sign-On, Load Balancing and Failover Using Sun OpenSSO Enterprise 8.0
■ “To Create a Site on OpenSSO Enterprise 1” in Deployment Example: Single Sign-On, Load

Balancing and Failover Using Sun OpenSSO Enterprise 8.0
■ Chapter 8, “Configuring the Protected Resource Host Machines,” in Deployment Example:

Single Sign-On, Load Balancing and Failover Using Sun OpenSSO Enterprise 8.0
■ Chapter 9, “Setting Up Load Balancers for the Policy Agents,” in Deployment Example:

Single Sign-On, Load Balancing and Failover Using Sun OpenSSO Enterprise 8.0

The following are additional resources for configuring system failover and session failover:
■ “Authentication Service Failover” in Sun OpenSSO Enterprise 8.0 Administration Guide
■ Chapter 8, “Implementing OpenSSO Enterprise Session Failover,” in Sun OpenSSO

Enterprise 8.0 Installation and Configuration Guide

Evaluating Benefits and Trade-Offs

Benefits
■ System failover provides continuous OpenSSO Enterprise service when hardware or

software fails.
■ Session failover ensures uninterrupted transactions and no user data loss during system

failure.
■ In most cases, user does not have to re-authenticate after system recovery.
■ Increased transaction throughput through load sharing.
■ Increased security because Policy Agents never interact directly with OpenSSO Enterprise

servers.

Configuring OpenSSO Enterprise for High Availability

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 2009258

http://docs.sun.com/doc/820-5985
http://docs.sun.com/doc/820-5985
http://docs.sun.com/doc/820-5985/gdssd?a=view
http://docs.sun.com/doc/820-5985/gdssd?a=view
http://docs.sun.com/doc/820-5985/gdssb?a=view
http://docs.sun.com/doc/820-5985/gdssb?a=view
http://docs.sun.com/doc/820-5985/gdhbm?a=view
http://docs.sun.com/doc/820-5985/gdhbm?a=view
http://docs.sun.com/doc/820-5985/gdsri?a=view
http://docs.sun.com/doc/820-5985/gdsri?a=view
http://docs.sun.com/doc/820-5985/gduff?a=view
http://docs.sun.com/doc/820-5985/gduff?a=view
http://docs.sun.com/doc/820-3885/gbarl?a=view
http://docs.sun.com/doc/820-3320/gcdup?a=view
http://docs.sun.com/doc/820-3320/gcdup?a=view

Trade-Offs
■ Slight impact to performance when OpenSSO Enterprise is configured for session failover.
■ Firewall must be open between OpenSSO Enterprise communicating components.

Evaluating Benefits and Trade-Offs

Chapter 17 • Configuring System Failover and Session Failover for High Availability 259

260

Using the Windows Desktop Single Sign-On
Authentication Module

The OpenSSO Enterprise Windows Desktop SSO Authentication module is a Kerberos-based
plug-in you can use with a Windows domain controller to achieve single sign-on (SSO). The
plug-in enables a Windows client user, who has already authenticated to a Kerberos
Distribution Center (KDC), to authenticate to OpenSSO Enterprise without re-submiting user
credentials.

This chapter provides high-level instructions for configuring the OpenSSO Enterprise
Windows Desktop SSO Authentication module, the Kerberos domain controller, and Windows
Active Directory to achieve single sign-on using the Simple and Protected GSS-API Negotiation
Mechanism (SPNEGO) protocol. The following topics are included in this chapter:

■ “About Kerberos Authentication and the SPNEGO Protocol” on page 261
■ “About the OpenSSO Windows Desktop SSO Authentication Module” on page 262
■ “Analyzing the Deployment Architecture” on page 262
■ “Considering Dependencies and Constraints” on page 265
■ “Understanding Typical Business Use Cases” on page 265
■ “Evaluating Benefits and Tradeoffs” on page 265
■ “Configuring Basic Windows Desktop SSO Authentication” on page 266
■ “Complex Configurations” on page 277
■ “Using the Debugging Tools” on page 281
■ “Troubleshooting Windows Desktop SSO Authentication Issues” on page 286

About Kerberos Authentication and the SPNEGO Protocol
Kerberos is an authentication protocol developed by the Massachusetts Institute of Technology.
The Key Distribution Center (KDC) is the component of Kerberos that is responsible for
issuing credentials. A credential is a packet of information that includes a ticket-granting ticket
(TGT) and a matching session key. A ticket is an information packet that is used to securely pass
the identity of a user to a server or service. After a ticket has been issued, it can be reused until
the ticket expires. The session key contains information that is specific to the user and the

18C H A P T E R 1 8

261

service that is being accessed. The session key is shared between the client and service to secure
transactions between them. The credential is encrypted with the requesting principal's key. For
more information about Kerberos authentication, see Kerberos V5 Administrator's Guide
(http://web.mit.edu/Kerberos/krb5-1.3/krb5-1.3.6/doc/krb5-admin.html).

The SPNEGO protocol is described in the abstract IETF RFC 2478 (http://www.ietf.org/
rfc/rfc2478.txt). The SPNEGO protocol is intended to be used in environments where
multiple GSS-API mechanisms are available to the client or server, and neither side knows what
mechanisms are supported by the other.

About the OpenSSO Windows Desktop SSO Authentication
Module

The Windows Desktop SSO Authentication Module enables OpenSSO Enterprise to work with
Kerberos tokens. The user presents the Kerberos token, previously issued by a Kerberos
Distribution Center, to OpenSSO Enterprise using the SPNEGO protocol. The client browser
sends back a SPNEGO token embedded with a Kerberos token. The OpenSSO Windows
Desktop SSO Authentication module retrieves the Kerberos token and authenticates the user
using the Java GSS API. If authentication is successful, the OpenSSO Windows Desktop SSO
Authentication module returns an SSOToken to the client.

Analyzing the Deployment Architecture
The following figure illustrates a basic deployment architecture that includes the OpenSSO
Windows Desktop SSO Authentication module.

About the OpenSSO Windows Desktop SSO Authentication Module

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 2009262

http://web.mit.edu/Kerberos/krb5-1.3/krb5-1.3.6/doc/krb5-admin.html
http://web.mit.edu/Kerberos/krb5-1.3/krb5-1.3.6/doc/krb5-admin.html
http://www.ietf.org/rfc/rfc2478.txt
http://www.ietf.org/rfc/rfc2478.txt

An OpenSSO Windows Desktop SSO Authentication deployment includes the following
components:

Windows 2003 Server with Domain Controller
The Windows Domain Controller contains configuration information for the Windows XP
workstation and the workstation users. If the configured domain-user authenticates to the
domain with proper user principal and credentials, the Windows Domain Controller
generates a TGT Kerberos ticket and sends the ticket to the authenticated user account.

Windows XP with SPNEGO-supported Browser
When the user accesses a resource that is protected with an authentication, an
Authenticate:Negotiate response is sent to the browser. The browser obtains the Keberos
Service ticket with the TGT that was generated in authentication time. This Service Kerberos
ticket can be validated by the OpenSSO Enterprise server.

Sun Directory Server 6.3
Contains user profile information.

OpenSSO Windows Desktop SSO Authentication Module
The OpenSSO Windows Desktop SSO Authentication module is a server-side SPNEGO
implementation that uses the Java GSS-API to process a Kerberos token sent by a
SPNEGO-supported browser.

FIGURE 18–1 Deployment Architecture for OpenSSO Windows Desktop SSO Authentication Module

Analyzing the Deployment Architecture

Chapter 18 • Using the Windows Desktop Single Sign-On Authentication Module 263

The following figure illustrates a typical process flow for Kerberos authentication using the
Windows Desktop SSO Authentication module.

FIGURE 18–2 Process Flow for Windows Desktop SSO Authentication

Analyzing the Deployment Architecture

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 2009264

Considering Dependencies and Constraints
In order to perform Kerberos-based single sign-on to OpenSSO Enterprise, the user client must
support the SPNEGO protocol. Any client that supports the SPNEGO protocol should be
compatible with the OpenSSO Windows Desktop SSO Authentication module. For example,
Microsoft Internet Explorer (5.01 or later) running on Windows 2000 (or later) currently
supports the SPNEGO protocol. Additionally, Mozilla 1.5 (or later) and Safari 2.0 (or later) also
support SPNEGO.

The current implementation of the Windows Desktop SSO Authentication module supports
only Kerberos tokens using on the SPNEGO protocol, and does not support the Windows
Challenge/Response (NTLM) token at all. If the user's browser submits an NTLM token instead
of a Kerberos token, the Windows Desktop SSO Authentication module returns a 401 error
back to the browser.

Understanding Typical Business Use Cases
You can use the OpenSSO Enterprise Windows Desktop SSO Authentication module in any
environment where end-users are using Windows clients, such as desktop or laptop computers,
with SPNEGO-enabled browsers. The most common use of this authentication module is to
implement single sign-on within an intranet for Windows client users. Once the user has
successfully authenticated against OpenSSO Enterprise, the user can keep the intranet session
open all day without having to re-authenticate.

A second business use case is to implement cross-domain single sign-on (CDSSO) or internet
single sign-on. CDSSO is not possible with Kerberos authentication alone. But by using the
OpenSSO Enterprise SSO Token with the SPNEGO protocol, the SSO Token can be passed to
multiple domains without the user having to re-authenticate. This enables a user to enjoy the
benefit of single sign-on among trusted domains within an extranet.

Evaluating Benefits and Tradeoffs
The main benefits in using the OpenSSO Enterprise Windows Desktop SSO Authentication
module are described in the “Understanding Typical Business Use Cases” on page 265 above.
There is no alternative that enables you to integrate Kerberos authentication for Windows users
with OpenSSO Enterprise.

Evaluating Benefits and Tradeoffs

Chapter 18 • Using the Windows Desktop Single Sign-On Authentication Module 265

http://msdn.microsoft.com/en-us/library/aa378749.aspx
http://msdn.microsoft.com/en-us/library/aa378749.aspx

Configuring Basic Windows Desktop SSO Authentication
The following is an overview of steps you must complete to achieve single sign-on using the
OpenSSO Enterprise Windows Desktop SSO Authentication module:

1. Configure a Kerberos Domain Controller in Windows or UNIX.
2. Synchronize OpenSSO Enterprise and the Kerberos Domain Controller Clocks.
3. Configure DNS (Windows Platform Only)
4. Configure a Windows XP Workstation to join the Kerberos Domain Controller Realm if the

Kerberos Controller is on UNIX.
5. Configure an Windows XP Workstation to join an Active Directory Domain Controller if

the Kerberos Controller is on Windows.
6. Create the Windows XP User's Local Account.
7. Configure an Existing Windows XP Workstation to join an Active Directory Controller

Domain if the Kerberos Controller is on Windows.
8. Configure an Existing Window XP Workstation to join a UNIX Kerberos Domain

Controller Domain if the Kerberos Controllers is on UNIX.
9. Configure the Browser.
10. Configure the OpenSSO Enterprise Windows Desktop SSO Authentication Module.

The basic configuration instructions described in this document are based on the components
described in the following table.

TABLE 18–1 Components Used in the Configuration and Setup Examples

Component Product Name Platform Host Name

OpenSSO server Sun OpenSSO Enterprise
8.0

Solaris 10 SPARC opensso.example.com

Windows Domain
Controller

Windows 2003 Domain
Controller

Windows 2003 domaincontroller.example.com

Kerberos Domain
Controller (KDC)

Not applicable Solaris 10 SPARC kerberos.example.com

Windows XP client Windows XP SP3 Windows XP winXP.example.com

Configuring a Kerberos Domain Controller on
Windows or UNIX
The Kerberos Key Distribution Center issues security keys, also called tickets, for
authentication. A Kerberos domain controller recognizes the tickets issued by the Key

Configuring Basic Windows Desktop SSO Authentication

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 2009266

Distribution Center, and extends Kerberos authentication to multiple resources within an
intranet. A Kerberos domain controller must be running on a UNIX system, or on a Windows
2000 or Windows 2003 system that supports the Kerberos Domain Controller within the
intranet. Microsoft Windows Active Directory and a Windows Domain Controller together
form the Windows equivalent of the UNIX Kerberos domain controller. An administrator can
use the Active Directory Domain Controller wizard to create a domain controller realm on a
Windows server host. Once the administrator completes creates a working Kerberos realm,
both Windows and Unix computer systems can participate as clients in the single sign-on
environment. The following instructions are included in this document:

For detailed information about installing and configuring Kerberos components, see the
Kerberos V5 Installation Guide and the Kerberos V5 Administrator's Guide .

▼ To Configure a UNIX Kerberos Domain Controller
Edit the krb5.conf and kdc.conf files to specify where and how the Kerberos Domain
Controller is running.

Modify the krb5.conffile.
For detailed information about the krb5.conf, see the Kerberos V5 Administrator's Guide.

Example:
[logging]

default = FILE:/var/log/krb5libs.log

kdc = FILE:/var/log/krb5kdc.log

admin_server = FILE:/var/log/kadmind.log

[libdefaults]

dns_lookup_realm = false

dns_lookup_kdc = false

default_keytab_name = /etc/krb5/krb5.keytab

default_realm = DEMO.IDENTITY.COM

default_tkt_enctypes = des-cbc-md5

default_tgs_enctypes = des-cbc-md5

default_checksum = rsa-md5

kdc_timesync = 0

kdc_default_options = 0x40000010

clockskew = 300

check_delegate = 0

ccache_type = 3

kdc_timeout = 60000

[realms]

DEMO.IDENTITY.COM = {

kdc = demo1.identity.com:88

admin_server = demo1.identity.com:749

default_domain = identity.com

1

Configuring Basic Windows Desktop SSO Authentication

Chapter 18 • Using the Windows Desktop Single Sign-On Authentication Module 267

http://www.crypt.gen.nz/kerberos/install.html
http://web.mit.edu/Kerberos/krb5-1.3/krb5-1.3.6/doc/krb5-admin.html
http://web.mit.edu/kerberos/www/krb5-1.2/krb5-1.2.6/doc/admin.html#SEC17

}

[domain_realm]

.identity.com = DEMO.IDENTITY.COM

identity.com = DEMO.IDENTITY.COM

[appdefaults]

pam = {

debug = true

ticket_lifetime = 36000

renew_lifetime = 36000d

forwardable = true

krb4_convert = false

}

Modify the kdc.conffile.

For detailed information about the kdc.conf file, see the Kerberos V5 Administrator's Guide.

Example:
[kdcdefaults]

acl_file = /var/kerberos/krb5kdc/kadm5.acl

dict_file = /usr/share/dict/words

admin_keytab = /var/kerberos/krb5kdc/kadm5.keytab

v4_mode = nopreauth

[realms]

DEMO.IDENTITY.COM = {

master_key_type = des-cbc-crc

supported_enctypes = arcfour-hmac:normal arcfour-hmac:norealm arcfourhmac:

onlyrealm des3-hmac-sha1:normal des-hmac-sha1:normal des-cbcmd5:

normal des-cbc-crc:normal des-cbc-crc:v4 des-cbc-crc:afs3

}

Create the Kerberos Domain Controller database using the kdb5_util command.

This database will store information about all the principals and associated secrets contained in
the realm.

Example:
/etc/krb5/% kdb5_util create -s

Initializing database ’/var/krb5/principal’ for realm ’DEMO.IDENTITY.COM’,

master key name ’K/M@DEMO.IDENTITY.COM’

You will be prompted for the database Master Password.

It is important that you NOT FORGET this password.

Enter KDC database master key:

Re-enter KDC database master key to verify:

2

3

Configuring Basic Windows Desktop SSO Authentication

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 2009268

http://web.mit.edu/kerberos/www/krb5-1.2/krb5-1.2.6/doc/admin.html#SEC25

Create a new user account.

a. Add a user principal with kadmin.localcommand.
kadmin.local

Authenticating as principal admin/admin@DEMO.IDENTITY.COM with password.

kadmin.local: addprinc demouser1

WARNING: no policy specified for demouser1@ DEMO.IDENTITY.COM;

defaulting to no policy

Enter password for principal "demouser1@ DEMO.IDENTITY.COM ":
Re-enter password for principal "demouser1@ DEMO.IDENTITY.COM ":
Principal "demouser1@ DEMO.IDENTITY.COM " created.

b. Verify that the user account is added correctly to the database.
Authenticate the user to the Kerberos domain. Example:
kinit demouser1

Password for demouser1@ DEMO.IDENTITY.COM:

c. Validate the user's Kerberos ticket in the ticket cache.
klist

Ticket cache: FILE:/tmp/krb5cc_0

Default principal: demouser1@ DEMO.IDENTITY.COM

Valid starting Expires Service principal

06/22/07 11:10:16 06/23/07 11:10:16 krbtgt/ DEMO.IDENTITY.COM @

DEMO.IDENTITY.COMM

Create a new user account for the Kerberos service user.

a. Add a service principal for OpenSSO Enterprise.
Example:
kadmin.local: addprinc -randkey HTTP/amserver.identity.com

WARNING: no policy specified for HTTP/amserver.identity.com@DEMO.IDENTITY.COM;

defaulting to no policy Principal

"HTTP/amserver.identity.com@ DEMO.IDENTITY.COM" created.

b. Generate a keytab file for OpenSSO Enterprise.
kadmin.local: ktadd -k amserver1.HTTP.keytab HTTP/amserver.identity.com

Entry for principal HTTP/amserver.identity.com with kvno 4,

encryption type ArcFour with HMAC/md5 added to keytab

WRFILE:amserver1.HTTP.keytab.

Entry for principal HTTP/amserver.identity.com with kvno 4,

encryption type Triple DES cbc mode with HMAC/sha1 added to

keytab WRFILE:amserver1.HTTP.keytab.

Entry for principal HTTP/amserver.identity.com with kvno 4,

encryption type DES with HMAC/sha1 added to

keytab WRFILE:amserver1.HTTP.keytab.

4

5

Configuring Basic Windows Desktop SSO Authentication

Chapter 18 • Using the Windows Desktop Single Sign-On Authentication Module 269

Entry for principal HTTP/amserver.identity.com with kvno 4,

encryption type DES cbc mode with RSA-MD5 added to keytab

WRFILE:amserver1.HTTP.keytab.

c. Verify that the Kerberos service account is added correctly to the database.
Use the kinit and klist commands to validate the Kerberos service account. Authenticate
the service principal to the Kerberos domain with the keytab file. Example:
- # kinit ?k ?t amserver1.HTTP.keytab HTTP/amserver.identity.com

d. Validate the keytab file for the Kerberos service principal.
Example:
klist -k amserver1.HTTP.keytab

Keytab name: FILE:amserver1.HTTP.keytab

KVNO Principal

--

4 HTTP/amserver.identity.com@DEMO.IDENTITY.COM

4 HTTP/amserver.identity.com@DEMO.IDENTITY.COM

4 HTTP/amserver.identity.com@DEMO.IDENTITY.COM

4 HTTP/amserver.identity.com@DEMO.IDENTITY.COM

▼ To Configure Windows Active Directory and Domain
Controller
Log in as an administrator to the Windows 2000 or 2003 server host.

From the Start menu, go to Administrative Tools > Manage Your Server.

a. On the Manage Your Server wizard, choose Adding Roles to Your Sever.

b. In the Server Role window, choose Domain Controller (Active Directory).

c. Accept the default values by clicking Next.

d. Continue to accept the default values and clicking Next until the Report DNS Issue window is
displayed.

e. This window is displayed when no properly configured DNS exists for Active Directory.
Choose“Install and Configure DNS”to proceed to the next window.

f. Continue to accept the default values and clicking Next until the Summary window is
displayed, then click Next.
The Active Directory Installation wizard is invoked.

1

2

Configuring Basic Windows Desktop SSO Authentication

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 2009270

Install the Active Directory Domain Controller.

For detailed instructions, see Install Active Directory Domain Services on the Windows Server
2008-Based Member Server

Install Windows Support Tools.

Windows Support Tools contains the ktpass Kerberos tool you need to map a service principal
with an Active Directory account. For information about ktpass, see the Ktpass Overview. For
detailed instructions on installing Windows Support Tools, see How to install the Windows
2000 Support Tools to a Windows 2000 Server-based computer.

Create a new user account.

a. From the Start menu, go to Programs > Administration Tools.

b. Choose“Active Directory Users and Computers.”

c. Enter a user name and password for the new user, and create the user.

d. Verify that the Kerberos ticket is returned by the Kerberos Authentication Server properly.

Log into the new domain account from any Windows XP workstation belonging to the
domain. You can use the Windows Support Tools to verify that the Kerberos ticket is
returned by the Kerberos Authentication Server and cached into the ticket cache. For
information about Windows Support Tools, see Windows Support Tools.

Create a user account to map to the Kerberos service.

a. From the Start menu, go to Programs > Administration Tools.

b. Choose“Active Directory Users and Computers.”

c. Crete a new user with a name that is meaningful to you.

In this example, the name is openSSOhost.

d. Use the ktpass command to associate this user account with a service principal.

Example:
C:\Documents and Settings\Administrator>ktpass /pass password /mapuser openSSOhost

/princ HTTP/openSSOhost.identity.com@OPENSSOHOST.EXAMPLE.COM +DesOnly /ptype

KRB5_NT _PRINCIPAL /Target OPENSSOHOST.EXAMPLE.COM

Using legacy password setting method

Successfully mapped HTTP/openSSOhost.example.com to openSSOhost.

Key created.

Account openSSOhost has been set for DES-only encryption.

3

4

5

6

Configuring Basic Windows Desktop SSO Authentication

Chapter 18 • Using the Windows Desktop Single Sign-On Authentication Module 271

http://technet.microsoft.com/en-us/library/cc755103.aspx
http://technet.microsoft.com/en-us/library/cc755103.aspx
http://technet.microsoft.com/en-us/library/cc779157.aspx
http://support.microsoft.com/kb/301423
http://support.microsoft.com/kb/301423
http://technet.microsoft.com/en-us/library/cc758202.aspx

If OpenSSO Enterprise is configured with Java version 1.5_ 08 or higher, you don't need to
specify the +DesOnly parameter here.

e. Export the keytab file and copy it to the system where OpenSSO Enterprise is installed.
Example:
C:\Documents and Settings\Administrator>ktpass /out demo1.HTTP.keytab /princ

HTTP/demo1.identity.com@DEMO.IDENTITY.COM /ptype KRB5_NT_PRINCIPAL /crypto

DES-CBC-CRC /Target DEMO.IDENTITY.COM

NOTE: creating a keytab but not mapping principal to any user.

For the account to work within a Windows domain, the

principal must be mapped to an account, either at the

domain level (with /mapuser) or locally (using ksetup)

If you intend to map HTTP/demo1.identity.com@DEMO.IDENTITY.COM

to an account through other means or don’t need to map the user,

this message can safely be ignored.

Key created.

Output keytab to demo1.HTTP.keytab:

Keytab version: 0x502

keysize 70 HTTP/demo1.identity.com@DEMO.IDENTITY.COM ptype 1

(KRB5_NT_PRINCIPAL) vno 1 etype 0x1 (DES-CBC-CRC) keylength 8

(0xa1c4e6203e3b0d34)

If OpenSSO Enterprise is configured with Java version 1.5 or higher, you don't need to
specify the /crypto DES-CBC-CRC parameter here.

You can test if this keytab file will work for OpenSSO Enterprise by using the Windows
Support Tools, and specifying the /crypto DES-CBC-CRC parameter.

To Synchronize the OpenSSO Enterprise and Kerberos
Domain Controller Clocks
Set the clocks on the OpenSSO Enterprise host and on the Kerberos Domain Controller host so
that they both display the same time. Without time synchronization, the OpenSSO Enterprise
Windows Desktop SSO Authentication module may fail to authenticate to the Kerberos
domain.

Configuring the Domain Controller
Depending upon the domain controller you are using, do one of the following:

■ Configure DNS Mapping on the Windows Domain Controller
■ Configure a Windows XP Workstation to Join the Kerberos Domain Controller Realm

Configuring Basic Windows Desktop SSO Authentication

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 2009272

Configuring DNS Mapping on the Windows Domain Controller
■ Configure valid forward and reverse DNS mapping for the computer systems in your

domain.
For example OpenSSO Enterprise and the Kerberos Domain Controller must have proper A
(IP-Name lookup) and PTR (Reverse IP-Address lookup) records in the DNS database.

■ If you use the /etc/hosts file instead of using DNS, all host names point to real,
network-accessible IP addresses.
For example, if the IP address for host1.example.org is 15.168.120.15, then the
/etc/hosts file should contain the following entries:

127.0.0.1 localhost openSSOhost

15.168.120.15 openSSOhost.example.com openSSOhost

Configuring a Windows XP Workstation to Join the Kerberos Domain
Controller Realm
A Window XP workstation must be configured to work with a UNIX Kerberos Domain
Controller or Windows 2003 Domain Controller. You can add the workstation to the Kerberos
or Windows Domain Controller when installing Windows XP, or when modifying the network
configuration that already exists on the Window XP workstation.

■ “To Configure an Windows XP Workstation to Join an Active Directory Domain Controller
During Installation” on page 273

■ “To Configure an Existing Window XP Workstation to Join a UNIX Kerberos Domain ” on
page 274

▼ To Configure an Windows XP Workstation to Join an
Active Directory Domain Controller During
Installation

Follow the instructions in How to install or upgrade to Windows XP to start the Windows XP
Setup wizard.

Follow the onscreen instructions in the Windows XP Setup wizard until you get to the
“Workgroup or Computer Domain”window.

■ Enter the Active Directory domain you want the Windows XP workstation to join, then
click Next.

■ If the Windows XP Setup wizard cannot find the domain controller for this domain, enter
the IP address of the domain controller in the Internet Protocol (TCP/IP) Properties
window.

1

2

Configuring Basic Windows Desktop SSO Authentication

Chapter 18 • Using the Windows Desktop Single Sign-On Authentication Module 273

http://support.microsoft.com/kb/316941

a. From the Start menu, choose Control Panel. Go to Network and Internet Connections >
Network Connections.

b. Right-click the local area connection that you want to modify, and then click Properties.
c. On the General tab, in the “This connection uses the following items list,” click Internet

Protocol (TCP/IP), and then click Properties.

For more information, see How to troubleshoot TCP/IP connectivity with Windows XP.

Continue to follow the onscreen instructions in the Windows XP Setup wizard until all steps are
completed.

To Create the Windows XP User's Local Account
Before you begin, be sure the user has already been added to the Active Directory domain.

Follow the instructions for creating the user's local account in How to create and configure user
accounts in Windows XP.

To Configure an Existing Windows XP Workstation to
Join an Active Directory Controller
Follow the instructions in

How to change a computer name, join a domain, and add a computer description in Windows XP
or in Windows Server 2003.

▼ To Configure an Existing Window XP Workstation to
Join a UNIX Kerberos Domain
Once the host account is added successfully, you can change the network configuration for the
Window XP workstation. You must be logged into Windows XP as an administrator to run the
following commands.

Run the kadmin.local command to add the host account for Window XP workstation first on
the UNIX side.
Example:
kadmin.local addprinc -pw password -policy hosts -e

des-cbc-crc:normal host/demoxp. openSSOhost.example.com

3

1

Configuring Basic Windows Desktop SSO Authentication

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 2009274

http://support.microsoft.com/kb/314067
http://support.microsoft.com/kb/279783
http://support.microsoft.com/kb/279783
http://support.microsoft.com/kb/295017
http://support.microsoft.com/kb/295017

Run the ksetup command.
ksetup /SetRealm OPENSSOHOST.EXAMPLE.COM

ksetup /AddKDC openSSOhost.example.com

Set the local computer system password.
This password must match the password you specified when you ran kadmin.local in step 1.
ksetup /SetComputerPassword password

Set up user mapping.
Example:
ksetup /mapuser * *

Configuring the Browser
Any client browser used in the intranet must be configured to work with the Kerberos Domain
Controller.

To Configure Microsoft Internet Explorer
1. In the Tool menu, go to Internet Options > Security.
2. Choose Local Intranet, and then click Site.
3. Mark the “Automatically detect intra network” checkbox, and then click Advanced.
4. Add the OpenSSO Enterprise URL to the Websites list if the URL is not already on the list.

Example: http:/openSSOhost.example.com
For pre-6.0 Internet Explorer versions, be sure the Identity Server is in the browser's intranet
zone and that native Windows Authentication is enabled. For more information, see
Enabling Windows Authentication.

To Configure Mozilla or FireFox
1. Open the Firefox browser, and enter about:config in the address bar.

This will display a large number of configuration entries, called Preference Names, for
Firefox .

2. Double-click the Preference Name network.negotiate-auth.trusted-uris.
3. Enter http://, https://.

To Configure Apple Safari
Safari has built-in native support for Kerberos single sign on and no configuration is needed.

2

3

4

Configuring Basic Windows Desktop SSO Authentication

Chapter 18 • Using the Windows Desktop Single Sign-On Authentication Module 275

http://msdn.microsoft.com/en-us/library/ms956115.aspx

▼ To Configure the OpenSSO Enterprise Windows
Desktop SSO Authentication Module

Copy the keytab files you created in the section“To Configure a UNIX Kerberos Domain
Controller”on page 267 or the section “To Configure Windows Active Directory and Domain
Controller”on page 270.

Place the copied files in the OpenSSO Enterprise host, in a directory such as
/etc/opt/SUNWam/config.

Log into the OpenSSO Enterprise administration console as amadmin.

Go to Access Control > Default Realm > Authentication.

In the Module Instances page, click New.

Enter a name for the new login module, and then select Windows Desktop SSO. Click OK.

In the Module Instances page, click the name of the new login module and provide the
following information:
Service Principal HTTP/ openSSOhost.example.com@EXAMPLE.COM

Keytab File Name /etc/opt/SUNWam/config/openSSOhost.HTTP.keytab

Kerberos Realm OPENSSOHOST.EXAMPLE.COM

Kerberos Server Name Kerberos.example.com

If multiple Kerberos Domain Controllers exist for
failover purposes, all Kerberos Domain Controllers
can be set using a colon (:) as the separator.

Return Principal with Domain Name False

Authentication Level 0

Restart the OpenSSO Enterprise server.

■ If OpenSSO Enterprise is deployed on IBM Websphere, then Keytab File Name has to be
specified in FILE:// format. Example:
FILE:///etc/opt/SUNWam/config/openSSOhost.HTTP.keytab.

■ If OpenSSO Enterprise is deployed on IBM Websphere, the keytab file has to use the
DES-CBC-MD5 crypto option. After restarting the server, the administrator can access the
module with a browser pointing to this URL:
http://openSSOhost.example.com/amserver/UI/Login?module=WinSSO.The browser
should no longer prompt the user for userid and password.

1

2

3

4

5

6

7

Configuring Basic Windows Desktop SSO Authentication

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 2009276

Complex Configurations
Once you've set up and verified that basic Windows Desktop SSO Authentication works, you
can deploy the module in more complex configurations:

■ “Chaining Multiple Authentication Modules ” on page 277
■ “To Use the Windows Desktop SSO Authentication Module with a Load Balancer” on

page 278
■ “Using the Windows Desktop SSO Authentication Module with Multiple Kerberos Domain

Controllers” on page 279

Chaining Multiple Authentication Modules
You can use the administration console to chain multiple authentication modules to work
together as single a authentication service . When multiple authentication modules are chained
together, the end-user must authenticate at least one of authentication modules in defined in
the authentication group. Or the user may be required to authenticate to all of the modules,
depending upon on how authentication chaining is configured.

The following instructions demonstrate chaining the DataStore Authentication module and
Windows Desktop SSO Authentication module to work together as an authentication service.
Using this configuration, an end-user can access OpenSSO Enterprise using the authentication
service name. Example:
http://openSSO.example.com/amserver/UI/Login?service=WinSSOService.

▼ To Configure Authentication Chaining
Log in to the OpenSSO Enterprise admnistration console as amadmin.

Go to Access Control > Default Realm > Authentication.

Define a new instance of the Windows Desktop SSO Authentication module.

Go to Access Control? > Default Realm > Authentication.

Define new instance of Authentication Chaining.

a. Click the New button for Authentication Chaining.
Provide a name for this chain, and then click OK. Example name: WinSSOService.

1

2

3

4

5

Complex Configurations

Chapter 18 • Using the Windows Desktop Single Sign-On Authentication Module 277

b. Click Add, and then choose the first authentication module to be executed in this chain.
In this example, Windows Desktop SSO is the first module to be executed.

c. For Criteria, choose Sufficient.

d. Click Add, and then choose the next authentication module in the chain to be executed.
In this example, Data Store is the next module to be executed.

e. For Criteria, choose Sufficient.

Go to Access Control > Default Realm> Authentication, and save this new chaining
configuration.

▼ To Test Authentication Chaining
Log in to a Windows XP Domain Controller and start any browser that is enabled for the SPNEGO
protocol.

Go to the OpenSSO Enterprise URL configured with the authentication service name.
Example : http://am.demo.identity.com/amserver/UI/Login?service=WinSSOService.

If a user can log into Windows XP Domain Controller successfully, the browser sends a
Kerberos ticket to the OpenSSO Enterprise server, and the user is successfully authenticated
using the Windows Desktop SSO Authentication module. .

If the user cannot authenticate to the first authentication module, then OpenSSO Enterprise
prompts for user name and password and tries to authenticate using the Data Store
Authentication module. If authentication fails, then the administrator should troubleshoot the
authentication failure. For a short list of solutions for the most common error messages related
to Windows Desktop SSO Authentication, see “Troubleshooting Windows Desktop SSO
Authentication Issues” on page 286.

▼ To Use the Windows Desktop SSO Authentication
Module with a Load Balancer
All OpenSSO Enterprise authentication modules, including the Windows Desktop SSO
Authentication module, can be accessed through a load balancer. The Windows Desktop SSO
Authentication module requires some special configuration.

Create an Active Directory domain account in Windows 2003 or in the Kerberos service principal.

6

1

2

1

Complex Configurations

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 2009278

When you generate the keytab file for he Windows Desktop SSO Authentication, you have to
specify the load balancer FQDN.
Example: HTTP://opensso-lb.example.com. If you don't specify the fully-qualified domain
name, authentication will fail.

Copy the keytab file to all OpenSSO Enterprise servers, and put place in under the same
directory in each server.
Example location: /etc/ SUNWam/config.

Create a new Windows Desktop SSO Authentication module and Configure it with the newly
copied keytab file.

Restart all the OpenSSO Enterprise servers and test the new module through the load balancer.

Using the Windows Desktop SSO Authentication
Module with Multiple Kerberos Domain Controllers
You can configure the Windows Desktop SSO authentication module to work with multiple
Kerberos Domain Controllers. This is useful for deploying a failover Kerberos server.

When you configure the Windows Desktop SSO authentication module with a keytab file from
one of the trusted domain controllers, any user belonging to any of the trusted domains can
authenticate through the Windows Desktop SSO authentication module. Administrators can
configure and manage trust relationships in environments containing multiple Active
Directories.

To make the Windows domain controller a part of the trusted nodes, and to make the Windows
domain controller work with the Windows Desktop SSO authentication module, the following
conditions must be met:

■ You must use Windows 2003 or a later version.
■ The domain controller functional level must be set at Windows Server 2003.
■ Trust must be configured.

Trust configuration is beyond the scope of this document. The following links provide useful
related information:

■ “Configuring KDC Servers” in System Administration Guide: Security Services
■ “Configuring Cross-Realm Authentication” in System Administration Guide: Security

Services

The following procedures will help you navigate to the configuration areas of the Windows
domain controller:

2

3

4

5

Complex Configurations

Chapter 18 • Using the Windows Desktop Single Sign-On Authentication Module 279

http://docs.sun.com/doc/816-4557
http://docs.sun.com/doc/816-4557
http://docs.sun.com/doc/816-4557

■ “To Locate the Trust Configuration Window” on page 280
■ “To Promote the Domain Controller Functional Level” on page 280

▼ To Locate the Trust Configuration Window

From the Windows Start menu, choose Administrative Tools > Active Directory Domains and
Trusts.

In the Active Directory Domains and Trusts window, right-click the domain name and click
Properties.

Click the Trusts tab.

Click New.

▼ To Promote the Domain Controller Functional Level

From the Windows Start menu, go to Administrative Tools > Active Directory Domains and
Trusts.

In the Active Directory Domains and Trusts window, right-click the domain name, and choose
the Raise Domain Functional Level menu.

1

2

3

4

1

2

Complex Configurations

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 2009280

Choose windows Server 2003 as the new functional level.

Using the Debugging Tools
After you configure the UNIX Kerberos Domain Controller or the and Windows 2003 Active
Directory Domain Contoller are configured, you can test them with various tools to validate
that they are configured properly.

Network Identity Manager
Network Identity Manager is a graphical tool designed by MIT to simplify the management of
network identities and their credentials. When Network Identity Manger is used with Kerberos
v5, each network identity is a unique Kerberos principal name, and the credentials are Kerberos
version 5 tickets. Network Identity Manger enables you to manage any Kerberos ticket returned
from a Kerberos Domain Controller. For detailed information, see the Network Identity
Manager 1.3.1 User Documentation.

kinit
An administrator can obtain an initial Kerberos ticket for a specified principal using the kinit
command, and then cache the initial ticket into the ticket cache. Once kinit is executed
successfully, any existing tickets for the principal are overwritten. You can use the kinit
command to verify that a generated keytab file is working with the Kerberos and Active
Directory Domain Controllers. Usage:

kinit [-5] [-4] [-V] [-l lifetime] [-s start_time]

[-r renewable_life][-f | -F] [-p | -P] [-A] [-v] [-R] [-k [-t keytab_file]]

[-c cachename] [-S service_name] [principal]

3

Using the Debugging Tools

Chapter 18 • Using the Windows Desktop Single Sign-On Authentication Module 281

http://web.mit.edu/Kerberos/kfw-3.2/kfw-3.2.2/netidmgr_userdoc.pdf
http://web.mit.edu/Kerberos/kfw-3.2/kfw-3.2.2/netidmgr_userdoc.pdf

TABLE 18–2 kinitOptions

Option Description Kerberos Version

-5 Use Kerberos 5 By default, Kerberos version 5 is used.

-4 Use Kerberos 4 4, if available

-V Verbose 4, 5

-l Lifetime 4, 5

-s Start time 5

-r Renewable lifetime 5

-f Forwardable 5

-F Not forwardable 5

-p Can be proxied 5

-P Cannot be proxied 5

-A Do not include addresses 5

-v Validate 5

-R Renew 5, or both 5 and 4

-k Use keytab 5, or both 5 and 4

-t Filename of keytab to use 5, or both 5 and 4

-c Kerberos 5 cache name 5

-S Service 5, or both 5 and 4 5.3

klist
Theklist command displays the contents of a Kerberos credentials cache or key table. You can
use the klist command to verifty that the generated keytab file has the right principal for
OpenSSO Enterprise. Usage:

klist [-5] [-4] [-e] [[-c] [-f] [-s] [-a [-n]]] [-k [-t] [-K]] [name] -5

TABLE 18–3 klistCommand Options

Option Description

-5 Use Kerberos 5

-4 Use Keberos 4

Using the Debugging Tools

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 2009282

TABLE 18–3 klistCommand Options (Continued)
Option Description

-c Specifies credentials cache

-k Specifies keytab file

Default is credentials cache.

-e Shows the encryption type options for credential caches:
■ -f shows credentials flags
■ -s sets exit status based on valid tgt existence
■ -a displays the address list
■ -n do not reverse-resolve options for keytabs:

options for keytabs
■ -t shows keytab entry timestamps
■ -K shows keytab entry DES keys

ktpass
You can use the ktpass command to configure services running on UNIX systems to work with
with service instance accounts in Active Directory. You can also use the ktpass command to
generate Kerberos keytab files for services. Before you map an Active Directory user account
with OpenSSO Enterprise, first check the Java version that is configured for OpenSSO. If the
Java version is 1.5_08 or higher, you can generate the Kerberos keytab file using all default
values for account encryption and cryptosystem. Java versions 1.5_08 or higher support the
RC4-HMAC crypto system that is default for the Windows Kerberos Domain Controller. If the
Java version is lower than 1.5_08, you have must use the DesOnly option. Options:

TABLE 18–4 ktpassCommand Options

Option Description

[- or /] out Keytab to produce

[- or /] princ Principal name (user@REALM)

[- or /] pass Password to use. Use "*" to prompt for password.

[- or +] rndPass Generate a random password

[- or /] minPass Minimum length for random password. (def:15)

[- or /] maxPass Maximum length for random password (def:256)

[- or /] mapuser : Map principal to this user account (Default is no mapping)

Using the Debugging Tools

Chapter 18 • Using the Windows Desktop Single Sign-On Authentication Module 283

TABLE 18–4 ktpassCommand Options (Continued)
Option Description

[- or /] mapOp :

■ [- or /] mapOp add

■ [- or /] mapOp set

Set the mapping attribute
■ add value (default)
■ set value

[- or +] DesOnly Set account for DES-only encryption (default:don't)

[-or /] in Set keytab to read/digest

Key Generation

[- or /] crypto

■ [- or /] crypto DES-CBC-CRC

■ [-or /] crypto DES-CBC-MD5

■ [- or /] crypto RC4-HMAC-NT

Cryptosystem to use
■ for compatibility
■ for compatibliity
■ default 128-bit encryption

[-or /] ptype
■ [- or /] ptype :KRB5_NT_PRINCIPAL

■ [- or /] ptype : KRB5_NT_SRV_INST

■ [- or /] ptype : KRB5_NT_SRV_HST

Use one of the following ptypes:
■ the general ptype-- recommended
■ user service instance
■ host service instance

[-or /] kvno Override Key Version Number Default: query DC for kvno. Use
/kvno 1 for Windows 2000 compatibility

[- or +] Answer

■ +Answer

■ -Answer

[- or +] Answer

■ Answers YES to prompts
■ Answers NO to prompts

[- or /] Target Which domain controller to use. Default is to detect the domain
contoller.

Options for Trust Attribtues (Windows Server 2003 SP1 Only)

[- or /] MitRealmName MIT Realm to enable RC4 trust on.

[-or /] TrustEncryp Trust Encryption to use. DES is default.

[- or /] TrustEncryp

■ [- or /] RC4

■ [- or /] DES

[- /] TrustEncryp
■ RC4 Realm Trusts (default)
■ Revert to DES

ksetup
Use these commands to create the configuration entries in the Windows host's registry for the
Kerberos realm. The registry entries function similarly to the krb5.conf file used by Unix
Kerberos to define the Kerberos Domain Controller information for Kerberos realms.

Using the Debugging Tools

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 2009284

TABLE 18–5 ksetup Options

Option Description

/SetRealm DnsDomainName Makes this computer a member of an RFC1510
Kerberos Realmp

/MapUser Principal [Account] Maps a Kerberos Principal ('*' = any principal) to an
account ('*' = an account by same name); If account
name is omitted, mapping is deleted for the specified
principal.

/AddKdc RealmName [KdcName] Defines a Kerberos Domain Controller entry for the
given realm. If KdcName omitted, DNS mapping may
be used to locate Kerberos Domain Controllers.

/DelKdc RealmName [KdcName] Deletes a Kerberos Domain Controller entry from the
realm. If KdcName omitted, the realm entry itself is
deleted.

/AddKpasswd Realmname KpasswdName Add Kpasswd server address for a realm

/DelKpasswd Realmname KpasswdName Delete Kpasswd server address for a realm

/Server Servername Specifies name of a Windows machine to target the
changes

/SetComputerPassword Password Sets the password for the computer's domain account
or host principal

/RemoveRealm RealmName Deletes all information for this realm from the registry

/Domain [DomainName] Uses this domain (if DomainName is unspecified,
detects domain)

/ChangePassword OldPasswd NewPasswd Use Kpasswd to change the logged-on user's password.
Use '*' to be prompted for passwords.

/ListRealmFlags (no args) Lists the available Realm flags that ksetup knows

/SetRealmFlags <realm> <flag> [flag] [flag]

[...]

Sets RealmFlagsfor a specific realm

/AddRealmFlags realm flag [flag] [flag] [...] Adds additional RealmFlags to a realm

/DelRealmFlags realm flag [flag] [flag] [...] Deletes RealmFlags from a realm

/DumpState (no arguments) Analyze the Kerberos configuration on the given
machine

Using the Debugging Tools

Chapter 18 • Using the Windows Desktop Single Sign-On Authentication Module 285

Troubleshooting Windows Desktop SSO Authentication Issues
If you have trouble accessing the Windows Desktop SSO Authentication module, first inspect
the debug log files amAuthWindowsDesktopSSO or amAuth file. Errors or exceptions that users
may encounter when Windows Desktop SSO Authentication doesn't work properly include the
following:

■ “Error Message: Unauthorized Access” on page 286
■ “Error Message: Service Login Error” on page 287
■ “LoginException: Clock skew too great” on page 287
■ “LoginException: kdc.example.com ” on page 288
■ “LoginException: Client not found in Kerberos database” on page 288
■ “GSSException: Failure unspecified at GSS-API level” on page 288
■ “Exception: Pre-authentication information was invalid” on page 289
■ “Error Message: Cannot establish context” on page 289
■ “Error Message: Authentication failed” on page 290
■ “Error Message: User has no profile in this organization” on page 290
■ “Authentication Doesn't Work with Load Balancer” on page 290

Error Message: Unauthorized Access
The problem occurs when you try to access Windows Desktop SSO Authentication module
directly. Example URL: http://openSSOhost.domain/UI/Login?module=WinSSO. An
“Unauthorized Access” message is displayed. The message may also indicate that “The Kerberos
token is not valid.” The following is displayed in the server-side debug log
amAuthWindowsDesktopSSO:

06/20/2007 11:06:03:974 AM PDT: Thread[WebContainer : 1,5,main]

WindowsDesktopSSO params:

principal: HTTP/veet.red.iplanet.com@RED.IPLANET.COM

keytab file:///tmp/keytab/veet.HTTP.keytab

realm : RED.IPLANET.COM kdc

server: cerberus.red.iplanet.com domain

principal: false

auth level: 0

06/20/2007 11:06:03:977 AM PDT: Thread[WebContainer : 1,5,main]

Retrieved config params from cache.

06/20/2007 11:06:04:000 AM PDT: Thread[WebContainer : 1,5,main]

SPNEGO token: 4e 54 4c 4d 53 53 50 00 01 00 00 00 07 82 08 a2 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 05 01 28 0a 00 00 00 0f

06/20/2007 11:06:04:000 AM PDT: Thread[WebContainer : 1,5,main]

token tag:4e 06/20/2007 11:06:04:006 AM PDT: Thread[WebContainer : 1,5,main]

kerberos token is not valid.

■ Be sure that the browser is configured correctly.

Troubleshooting Windows Desktop SSO Authentication Issues

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 2009286

■ Be sure that your XP domain login has the Kerberos ticket from the Kerberos Domain
Controller.

Error Message: Service Login Error
When attempting the log in, the message “LoginException: Unable to obtain password from
user” is displayed. The following is displayed in the server-side debug log
amAuthWindowsDesktopSSO:

06/20/2007 01:08:08:614 PM PDT: Thread[service-j2ee,5,main]

ERROR: Service Login

Error: 06/20/2007 01:08:08:614 PM PDT: Thread[service-j2ee,5,main]

Stack trace: javax.security.auth.login.LoginException:

Unable to obtain password from user at com.sun.security.auth.module.

Krb5LoginModule.promptForPass(Krb5LoginM odule.java:745)

at com.sun.security.auth.module.Krb5LoginModule.attemptAuthentication

(Kr b5LoginModule.java:624) at com.sun.security.auth.module.

Krb5LoginModule.login(Krb5LoginModule.ja va:512)

at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)

■ Be sure the appropriate cryptosystem is being used for generating the keytab file.
■ Be sure the appropriate version of Java is configured for the OpenSSO Enterprise server.
■ Be sure the configured service principal is identical to the principal in the keytab file. You

can use klist command view the keytab file information.

LoginException: Clock skew too great
The following is displayed in the server-side debug log amAuthWindowsDesktopSSO :

ERROR: Service Login Error: 06/20/2007 02:04:33:181 PM PDT:

Thread[service-j2ee,5,main] Stack trace: javax.security.auth.login.LoginException:

Clock skew too great (37)

at com.sun.security.auth.module.Krb5LoginModule.attemptAuthentication

(Kr b5LoginModule.java:696)

at com.sun.security.auth.module.Krb5LoginModule.login(Krb5LoginModule.ja va:542)

at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)

at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl. java:39)

at sun.reflect.DelegatingMethodAccessorImpl.invoke

(DelegatingMethodAcces sorImpl.java:25)

at java.lang.reflect.Method.invoke(Method.java:585)

at javax.security.auth.login.LoginContext.invoke(LoginContext.java:769)

at javax.security.auth.login.LoginContext.access$000(LoginContext.java:1 86)

Be sure that the clocks of OpenSSO Enterprise server host and the Kerberos or Active Directory
Domain Controller host are synchronized properly.

Troubleshooting Windows Desktop SSO Authentication Issues

Chapter 18 • Using the Windows Desktop Single Sign-On Authentication Module 287

LoginException: kdc.example.com
The following will be display in the server-side debug log amAuthWindowsDesktopSSO :

ERROR: Service Login Error:

06/20/2007 04:42:16:265 PM PDT: Thread[service-j2ee,5,main]Stack trace:

javax.security.auth.login.LoginException: kdc.red.iplanet.com: kdc.red.iplanet.com

at com.sun.security.auth.module.Krb5LoginModule.attemptAuthentication

(Krb5LoginModule.java:700)

at com.sun.security.auth.module.Krb5LoginModule.login(Krb5LoginModule.java:542)

Be sure the Kerberos Server Name is configured using the FQDN for the Kerberos Domain
Controller host. Use the ping command to verify that the Kerberos Domain Controller host is
accessible from the OpenSSO host.

LoginException: Client not found in Kerberos
database
The following will be displayed in the server-side debug log amAuthWindowsDesktopSSO :

ERROR: Service Login Error:

02/24/2009 11:17:37:212 PM JST: Thread[service-j2ee-1,5,main]

Stack trace:

javax.security.auth.login.LoginException: Client not found in Kerberos database (6)

at

com.sun.security.auth.module.Krb5LoginModule.attemptAuthentication(Krb5LoginModule.jav

a:696)

at com.sun.security.auth.module.Krb5LoginModule.login(Krb5LoginModule.java:542)

at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)

at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39)

at

sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25)

at java.lang.reflect.Method.invoke(Method.java:585)

Test the keytab file with kinit command. The keytab file may have been generated or mapped
improperly.

GSSException: Failure unspecified at GSS-API level
The following is displayed in the server-side debug log amAuth:

09/14/2005 05:41:58:182 PM SGT:

Thread[service-j2ee-3,5,main]Exception

com.sun.identity.authentication.spi.AuthLoginException(1):null

Troubleshooting Windows Desktop SSO Authentication Issues

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 2009288

com.sun.identity.authentication.spi.AuthLoginException(2):null

java.security.PrivilegedActionException(3):null

java.security.PrivilegedActionException: GSSException: Failure unspecified at

GSS-API level (Mechanism level: Integrity check on decrypted field failed(31))

at java.security.AccessController.doPrivileged(NativeMethod)

at javax.security.auth.Subject.doAs(Subject.java:396)

at com.sun.identity.authentication.modules.windowsdesktopsso.WindowsDesktopSSO.process

(WindowsDesktopSSO.java:156)

at com.sun.identity.authentication.spi.AMLoginModule.wrapProcess

(AMLoginModule.java:723)

at com.sun.identity.authentication.spi.AMLoginModule.login(AMLoginModule.java:871)

at sun.reflect.NativeMethodAccessorImpl.invoke0(NativeMethod)

at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39)

at sun.reflect.DelegatingMethodAccessorImpl.invoke

(DelegatingMethodAccessorImpl.java:25)

at java.lang.reflect.Method.invoke(Method.java:585)

at com.sun.identity.authentication.jaas.LoginContext.invoke(LoginContext.java:215)

JDK1.5_08 and higher support RC4-HMAC, and earlier JDK versions support 3DES and DES
enctypes only. Be sure to select +DesOnly encryption for mapping the account with the service
principal in the Windows Kerberos Domain Controller. Also, be sure to use DES-CBC-CRC or
DES-CBC-MD5 for cryptosystem when generating the service principal keytab file

Be sure the appropriate crypto system is used for generating keytab file. Be sure the appropriate
version of Java is configured for OpenSSO Server.

Exception: Pre-authentication information was
invalid
Java may not be handling the Kerberospre-auth correctly. This can occur if the principal name
does not match what is stored in Active Directory, and what the principal name was when the
password was last changed. This mismatch is not a problem for Active Directory, but it is a
problem for Kerberos or a renamed account where the password has not been changed. Java 1.6
is reported to have a fix for this problem. The fix will accept the pre-authentication hint from
the Kerberos Domain Controller as to what "salt" to use when doing the string to key function.
The "salt" is derived from the principal name at the time the password was changed. Older Java
versions assumed they know the salt and tried to skip the first step in the pre-authentication.

Error Message: Cannot establish context
See the information at the end of the procedure “To Configure the OpenSSO Enterprise
Windows Desktop SSO Authentication Module” on page 276 about using IBM WebSphere.

Troubleshooting Windows Desktop SSO Authentication Issues

Chapter 18 • Using the Windows Desktop Single Sign-On Authentication Module 289

Error Message: Authentication failed
The following message is displayed in the server-side debug log amAuthWindowsDesktopSSO :

06/20/2007 03:49:20:704 PM PDT: Thread[service-j2ee,5,main]

WindowsDesktopSSO params:

principal: HTTP/am-v1280-01.red.iplanet.com@RED.IPLANET.COM

keytab file: /tmp/keytab/wsso.HTTP.keytab

realm : RED.IPLANET.COM

kdc server: cerberus.red.iplanet.com

domain principal: false

auth level: 0

06/20/2007 03:49:20:704 PM PDT: Thread[service-j2ee,5,main]

Init WindowsDesktopSSO.

This should not happen often. Be sure the keytab file uses the same filename and directory as
specified in the user account.

Error Message: User has no profile in this organization
Kerberos Authentication is successful, but OpenSSO Enterprise cannot find the user profile.
This is a configuration issue. Be sure the user exists in the user repository.

Authentication Doesn't Work with Load Balancer
The Windows Desktop SSO Authentication module worked fine. Then it stopped working after
the OpenSSO Enterprise server was configured as a server in a site configuration with a load
balancer. .

The following message trace is displayed in the server-side debug log
amAuthWindowsDesktopSSO:

......

02 a6 ff 1d 1c 3c e2 dc d4 89 66 b0 70 dd 6b b0

c1 a4 69 bd 29 29 54 05 04 e8 75

06/25/2007 09:13:56:559 AM PDT: Thread[service-j2ee,5,main]

In authenticationToken ...

06/25/2007 09:13:56:561 AM PDT: Thread[service-j2ee,5,main]

Context created.

06/25/2007 09:13:56:565 AM PDT: Thread[service-j2ee,5,main]

Authentication failed with GSSException.

You will also see a bigger Kerberos token than a normal token. Be sure the defined principal for
the OpenSSO Enterprise server has load balancer fully-qualified domain name (FQDN).
Example: HTTP/amlb. openSSOhost.example.com.

Troubleshooting Windows Desktop SSO Authentication Issues

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 2009290

Accessing OpenSSO from Outside a Secure
Intranet

One of the major decisions in deployment planning is how to set up access to OpenSSO
Enterprise from outside a secure intranet. This chapter discusses two options: using a reverse
proxy or using the Distributed Authentication User Interface (DAUI). Both options allow
Authentication Service pages to be served to users over a firewall (for example) thus preventing
direct access to OpenSSO Enterprise by unauthorized users.

This chapter includes the following topics:

■ “Using OpenSSO Distributed Authentication User Interface” on page 291
■ “Using a Reverse Proxy” on page 293
■ “Using Policy Agents with Reverse Proxy” on page 295

Using OpenSSO Distributed Authentication User Interface
OpenSSO Enterprise provides an authentication interface that can be deployed between the
outer internet firewall and the inner intranet firewall - in the DMZ - to enable secure
authentication communications to the OpenSSO Enterprise server. Deploying the Distributed
Authentication User Interface (DAUI) to one or more web containers within a non-secure layer
eliminates the exposure of service URLs to the end user, and prevents direct access to the
OpenSSO configuration and user data stores by unauthorized users. The following diagram
illustrates the deployment.

19C H A P T E R 1 9

291

The DAUI is best used when various authentication modules/chains are configured and thus
customized content needs to be presented to different user clients and/or agents. The DAUI is a
flexible option for customizing content in the DMZ. The OpenSSO server is completely hidden
from the external clients because all communication is mediated by the OpenSSO Client SDK
calls. Benefits of the DAUI include:

■ Eliminate direct client/server traffic The DAUI receives all client authentication requests
and, in turn, sends them to the back-end OpenSSO server, even eliminating encrypted
traffic between the external clients and the OpenSSO Enterprise server.

■ Authentication Service support All authentication modules are supported via the DAUI.
■ Dynamic customization of pages Each incoming request can be routed to different DAUI

pages, dependent on the authentication chain or module being used. These DAUI pages are
customized in the DMZ so access to the back-end OpenSSO Enterprise server is not
necessary.

See Chapter 7, “Installing and Configuring the Distributed Authentication User Interface,” in
Deployment Example: Single Sign-On, Load Balancing and Failover Using Sun OpenSSO
Enterprise 8.0 for more information.

Using OpenSSO Distributed Authentication User Interface

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 2009292

http://docs.sun.com/doc/820-5985/gdssg?a=view
http://docs.sun.com/doc/820-5985/gdssg?a=view
http://docs.sun.com/doc/820-5985/gdssg?a=view

Note – The DAUI WAR cannot be used for federation communications between the client SDK
in the DMZ and the back-end OpenSSO server. All federation API calls (including SAMLv2,
Liberty ID-FF, and Web Services Security) must communicate directly with OpenSSO.

Using a Reverse Proxy
As an application proxy does, a reverse proxy acts as a gateway between a protected HTTP
server and requests to the HTTP server that originate from outside the secure intranet. A
reverse proxy is installed between the outer internet firewall and the inner intranet firewall -
referred to as the demilitarized zone (DMZ) - to prevent direct access to the OpenSSO
configuration and user data stores by unauthorized users. A reverse proxy can be implemented
as Sun Web Proxy Server 4.0.9 or as Sun Web Server 7.0 Update 3 or later with the reverse proxy
plugin. It requires an SSL-enabled port for communication between the external client and the
back-end OpenSSO Enterprise server. The following diagram illustrates the deployment.

Using a Reverse Proxy

Chapter 19 • Accessing OpenSSO from Outside a Secure Intranet 293

A reverse proxy is best used when the content to be presented is uniform. This is generally the
case when there is only one authentication module or authentication chain configured thus
only one user interface page is served and that page is hardly changed. Taking advantage of the
caching and compression capabilities of the reverse proxy, the page can be served very quickly.
Also using a reverse proxy can be an acceptable and efficient way of distributing the load among
web servers. Benefits of reverse proxy servers include:

■ Caching for improved performance When static content is cached, the reverse proxy
would not forward a request for the content to OpenSSO Enterprise; it would respond to the
request by serving the content itself. This could lower the request load, thereby improving
performance of the server and potentially lower response times to the client.

■ Additional layer of security By introducing an additional layer of security, access to the
OpenSSO Enterprise server is further limited. This additional layer offers the opportunity to
monitor traffic, to perform a wider set of checks (for example, malformed URL strings can
be stopped at the proxy), and to react to attacks sooner.

Using a Reverse Proxy

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 2009294

■ Persistent load balancing Configure the name of a sticky cookie or sticky URI parameter
(in the reverse proxy configuration) to allow subsequent requests to stick to the same
OpenSSO server that responded to the first request. Stickiness affects OpenSSO Enterprise
performance positively.

■ Compression for speedy load times Outgoing traffic can be transparently compressed thus
lowering total bandwidth requirements. A reverse proxy supports various compression
levels and fragment sizes, allowing the administrator to select a level of compromise
between speed and compression.

■ Spoon feeding dynamic content Dynamically generated content can be returned from the
back end server a little at a time.

Note – As most reverse proxies have limited load balancing capabilities, thought should be put
into whether you would use a reverse proxy or a reverse proxy capable load balancer. For
example, reverse proxy software would require additional hardware whereas load balancers are
fairly common.

See Sun Java System Web Proxy Server 4.0.12 Installation and Migration Guide and chapters 3
and 4 in Using the Java System Web Server as a Reverse Proxy for Improved Security for more
information.

Using Policy Agents with Reverse Proxy
If your OpenSSO deployment architecture includes a reverse proxy server (as described in
“Using a Reverse Proxy” on page 293), you have the option of protecting the content servers by
installing a policy agent on the proxy itself, or installing multiple policy agents on the content
servers behind the reverse proxy server. The choice is dependent on the relative uniformity or
variability of the hosted/protected content and the access-denied URLs. The following sections
have more information.

■ “Using a Single Policy Agent” on page 296
■ “Using Multiple Policy Agents” on page 296

A reverse proxy server or a load balancer with a reverse proxy feature is usually installed
between the outer firewall and the inner firewall - in the DMZ between the internet and the
secure intranet. See Chapter 8, “Configuring the Protected Resource Host Machines,” in
Deployment Example: Single Sign-On, Load Balancing and Failover Using Sun OpenSSO
Enterprise 8.0, Chapter 9, “Setting Up Load Balancers for the Policy Agents,” in Deployment
Example: Single Sign-On, Load Balancing and Failover Using Sun OpenSSO Enterprise 8.0 and
Sun OpenSSO Enterprise Policy Agent 3.0 Guide for Sun Java System Web Proxy Server 4.0.x for
installation and configuration information.

Using Policy Agents with Reverse Proxy

Chapter 19 • Accessing OpenSSO from Outside a Secure Intranet 295

http://docs.sun.com/doc/821-0565
http://www.sun.com/software/whitepapers/javaenterprisesystem/web_infra_reverse_proxy.pdf
http://docs.sun.com/doc/820-5985/gdsri?a=view
http://docs.sun.com/doc/820-5985/gdsri?a=view
http://docs.sun.com/doc/820-5985/gdsri?a=view
http://docs.sun.com/doc/820-5985/gduff?a=view
http://docs.sun.com/doc/820-5985/gduff?a=view
http://docs.sun.com/doc/820-7797

Using a Single Policy Agent
When there is a uniformity in the configuration of the content servers in the back end
(including access denied URLs, application logout URLs, profile, session and response
attributes, and the web container type), a single policy agent for the reverse proxy server would
be the efficient way of protecting the content. The following diagram illustrates this.

Regardless of the number of content servers being fronted by the reverse proxy, only one agent
is installed on the reverse proxy machine. The footprint of this configuration is less cost (fewer
agents to maintain) and less memory (a single agent requires less memory to cache). With one
agent no communication will occur between the content servers and the OpenSSO server. The
policy agent will have back channel communications with the OpenSSO load balancer to
update cache entries, perform session validation, and make policy requests but, since the agent
is installed on the reverse proxy server and not on the content servers, only the reverse proxy
server would communicate with the OpenSSO load balancer. This effectively reduces the
number of communication channels which would result in fewer firewall rules, tighter control
over server-to-server communications, and a higher level of security. On the other hand, one
agent does not allow identification of content servers which may impact application usage
reports. One agent also uses the same session identifier introducing the risk of cookie hijacking.

Using Multiple Policy Agents
When a number of content servers use different types of web containers or each content server
has different access denied URLs, agent profiles, session and response attributes, and

Using Policy Agents with Reverse Proxy

Sun OpenSSO Enterprise 8.0 Deployment Planning Guide • February 2009296

application logout URLs, the only choice is to install multiple policy agents. Each agent will
have its own customized agent profile. The following diagram illustrates this.

Unlike in the case of the single reverse proxy server policy agent where the same session
identifier is used to access many applications protected by the agent, multiple policy agents do
not use the same session identifier (when the agents are configured in cookie hijacking
prevention mode). With multiple agents, it is now easy to customize agent properties per
content server; for example, customize profile attributes to be fetched, session attributes to be
fetched, response attributes to be added to the header, URL of the access denied page,
customized application error pages, and application logout URLs. By customizing each
application's logout URL, it is possible to perform cleanup tasks — such as destroying the user's
session or resetting cookies — per application. (Customizing certain agent properties with only
one policy agent might create a security risk.)

Using Policy Agents with Reverse Proxy

Chapter 19 • Accessing OpenSSO from Outside a Secure Intranet 297

298

	Sun OpenSSO Enterprise 8.0 Deployment Planning Guide
	Preface
	Who Should Use This Guide
	Before You Read This Guide
	How This Guide Is Organized
	Related Documentation
	OpenSSO Enterprise Documentation Set
	Related Product Documentation

	Searching Sun Product Documentation
	Related Third-Party Web Site References
	Documentation, Support, and Training
	Sun Welcomes Your Comments
	Typographic Conventions
	Shell Prompts in Command Examples
	Default Paths and Directory Names
	Sun Welcomes Your Comments

	Planning the Overall Deployment
	Seeing the Big Picture
	Understanding Identity and Access Management
	Dealing with Widely Distributed Identity Information
	Eliminating Ad Hoc Security Strategies
	Reducing Operational Inefficiency
	Enabling Effective Access Management

	Leveraging Identity Federation
	Why We Need It
	How It Works
	How Identity Federation Can Benefit Your Business

	Securing Web Services
	Web Services Security Industry Specifications
	Security Infrastructure Requirements
	Security Token Service
	Web Service Client
	Web Service Provider

	Using Identity as a Service
	Simplifying Deployment and System Administration

	Building the Deployment Architecture
	Setting Deployment Goals
	Security
	High Availability
	Scalability
	Dedicated Data Stores
	Configuration Data Store
	User Data Store
	Additional Information About Using IBM Tivoli Directory Server Configured as the IDRepo Data Store
	Additional Information for Determining Which User Data Store to Use

	Notification Support for the User Data Store

	Examining a Single Sign-On Deployment Example
	Identifying the Major Components
	Designing the Single Sign-On Deployment Architecture

	Examining a SAMLv2 Identity Federation Deployment Example
	Identifying the Major Components
	Identity Provider Deployment
	Service Provider Deployment

	Designing the SAMLv2 Identity Federation Architecture

	Designing the Deployment Architecture

	Building the Implementation Plan
	Contacting Sun

	Determining Which Features to Deploy
	Using a Policy Agent and the Client SDK to Integrate Applications with OpenSSO Enterprise
	About the OpenSSO Enterprise Client SDK
	About the Centralized Policy Agent Configuration
	Analyzing the Deployment
	Considering Assumptions, Dependencies, and Constraints
	Understanding Typical Business Use Cases
	Using Non-Intrusive, Policy Agent-Based Approaches to Web Resources
	Leveraging Fat Clients, Custom Web Applications, and Enterprise JavaBeans
	Complementing Policy Agent Functionality
	Enabling Identity Federation
	Enabling Web Services Security
	Enabling Identity Services
	Coexisting with Non-Sun Deployments

	Setting Up and Configuring the Integrated Environment
	Deployment Planning
	Required Hardware and Software
	Downloading the Client SDK
	Downloading the OpenSSO Enterprise Policy Agent 3.0

	Evaluating Benefits and Tradeoffs
	Benefits of Using the Client SDK
	Tradeoffs Using the Client SDK
	Benefits of Using a Policy Agent

	Finding More Information

	Using the OpenSSO Enterprise Fedlet to Enable Identity Federation
	About the OpenSSO Enterprise Fedlet
	Using The Fedlet with Multiple Identity Providers
	Using an Identity Provider Discovery Service with Multiple Identity Providers

	Analyzing the Deployment Architecture
	Identity Provider-Initiated Single Sign-On
	Fedlet Service Provider-Initiated Single Sign-On

	Considering Deployment Assumptions, Dependencies, and Constraints
	Assumptions and Dependencies
	Constraints

	Understanding Typical Business Use Cases
	Saving Time and Reducing Overhead
	Customizing Content Based on User Attributes

	Setting Up and Configuring the Fedlet
	Technical Requirements
	Obtaining and Deploying the OpenSSO Fedlet Bundle
	To Use the OpenSSO Enterprise Console to Create the Fedlet bundle
	To Use the Pre-Built Fedlet

	To Set Up the Workflow-based Fedlet
	To Use the Pre-Built Fedlet
	To Use the Fedlet with Multiple Identity Providers
	To Use the Fedlet with an Identity Discovery Service
	Embedding the Fedlet into Service Provider Applications

	Evaluating Benefits and Tradeoffs
	Benefits
	Tradeoffs

	Finding More Information

	Implementing a Virtual Federation Proxy (Secure Attributes Exchange)
	About Virtual Federation Proxy (Secure Attributes Exchange)
	Analyzing the Deployment
	Considering Assumptions, Dependencies, and Constraints
	Assumptions
	Constraints

	Secure Attributes Exchange Client APIs
	Understanding Typical Business Use Cases
	Authentication at Identity Provider
	Secure Attribute Exchange at the Identity Provider
	Secure Attribute Exchange at the Service Provider
	Global Single Logout

	Setting Up and Configuring Secure Attributes Exchange
	About Cryptography Type
	Overview of Setup Steps

	Configuring Secure Attributes Exchange
	About the Software Binaries
	High-level Configuration Steps

	Evaluating Benefits and Tradeoffs
	Benefits
	Tradeoffs

	Implementing a SAMLv2 Identity Provider Proxy
	About the SAMLv2 Identity Provider Proxy Specification
	About the OpenSSO Enterprise Identity Provider Proxy
	Analyzing the Deployment Architecture
	Considering Assumptions, Dependencies, and Constraints
	Assumptions and Dependencies
	Constraints

	Understanding Typical Business Cases
	Single Sign-On, Introduction Cookie is Not Enabled
	Single Sign-On (SSO) with Introduction Cookie Enabled
	Single SAMLv2 Identity Provider Proxy Logout

	Setting Up and Configuring SAMLv2 Identity Provider Proxy
	Setting Up a SAMLv2 Identity Provider Proxy
	Configuring the SAMLv2 Identity Provider Proxy with No Introduction Cookie
	Configuring the SAMLv2 Identity Provider Proxy with the Introduction Cookie

	Evaluating Benefits and Tradeoffs
	Benefits
	Tradeoffs

	Using a Multi-Federation Protocol Hub
	About Identity and Web Services Federation Protocols
	Analyzing the Deployment
	Considering Assumptions, Dependencies, and Constraints
	Constraints
	Assumptions and Dependencies

	Understanding Typical Business Use Cases
	Setting Up and Configuring a Multi-Federation Protocol Hub
	Using the Sample JSP
	Evaluating Benefits and Tradeoffs

	Enabling Web Services Federation Between Active Directory Federation Service and OpenSSO Enterprise
	Analyzing the Deployment Architecture
	Considering Assumptions, Dependencies, and Constraints
	Assumptions and Dependencies
	Constraints

	Understanding Typical Business Use Cases
	OpenSSO Enterprise Acts as Service Provider
	OpenSSO Enterprise Acts as Identity Provider

	Setting up and Configuring Single Sign-On Among OpenSSO Enterprise and ADFS Environments
	Configuring OpenSSO Enterprise to Act as a Service Provider
	Configuring OpenSSO Enterprise to Act as an Identity Provider

	Evaluating Benefits and Tradeoffs
	Benefits
	Using OpenSSO Enterprise as Service Provider
	Using OpenSSO Enterprise as Identity Provider

	Tradeoffs

	Finding More Information
	Specifications
	Guides and Overviews
	Case Study

	Securing Web Services Using ID-WSF (Liberty Alliance Specifications)
	About the Identity Web Services Framework
	Analyzing the Deployments
	Browser-based ID-WSF Deployment
	Desktop ID-WSF Deployment

	Considering Assumptions, Dependencies and Constraints
	Assumptions and Dependencies
	Constraints

	Understanding Typical Business Use Cases
	Setting Up and Configuring ID-WSF
	Evaluating Benefits and Tradeoffs
	Benefits
	Tradeoffs

	Finding More Information

	Securing Web Services Using the Security Token Service (WS-* Specifications)
	About Web Services Security Models
	About OpenSSO Enterprise Web Services Security
	Security Token Service
	Web Service Security Provider

	Analyzing the Deployment Architecture
	Understanding Typical Business Use Cases
	Use Case 1
	Use Case 2
	Use Case 3

	Considering Assumptions, Dependencies, and Constraints
	Assumptions and Dependencies
	Constraints

	Setting Up and Configuring Web Services Security Using Security Token Service
	Evaluating Benefits and Tradeoffs
	Benefits
	Tradeoff

	Enabling Single Sign-On Between Sun Identity Manager and OpenSSO Enterprise
	About Sun Identity Manager
	Analyzing the Deployment Architecture
	Considering the Deployment Assumptions, Dependencies, and Constraints
	Assumptions
	Dependencies
	Constraints

	Understanding Typical Business Use Cases
	Setting Up and Configuring Single Sign-On Between Identity Manager and OpenSSO Enterprise
	Evaluating Benefits and Tradeoffs
	Benefits
	Tradeoffs

	Finding More Information

	Enabling Single Sign-On Using CA SiteMinder and OpenSSO Enterprise
	About CA SiteMinder
	Analyzing the Deployment Architecture Options
	Considering Assumptions, Dependencies, and Constraints
	Understanding Typical Business Use Cases
	Simple Single Sign-On
	Federated Single Sign-On
	Federated Single Sign-On in an Identity Provider Environment
	Federated Single Sign-On Use Case in the Service Provider Environment

	Setting Up and Configuring Single Sign-On with SiteMinder and OpenSSO Enterprise
	Evaluating Benefits and Tradeoffs
	Benefits
	Tradeoffs

	Finding More Information

	Enabling Single Sign-On Using Oracle Access Manager and OpenSSO Enterprise
	About Oracle Access Manager
	Analyzing the Deployment Architecture Options
	Considering Assumptions, Dependencies, and Constraints
	Understanding Typical Business Use Cases
	Simple Single Sign-On Use Case
	Federated Single Sign-On Use Cases
	Using OpenSSO Enterprise to Enable Oracle Federation in an Identity Provider Environment
	Using OpenSSO Enterprise to Enable Oracle Federation in a Service Provider Environment

	Setting Up and Configuring Single Sign-On Using Oracle Access Manager and OpenSSO Enterprise
	Evaluating Benefits and Tradeoffs
	Benefits
	Tradeoffs

	Using the Embedded Configuration Data Store for OpenSSO Enterprise
	Analyzing the Deployment Architecture
	Single-Server and Multiple-Servers Modes
	Replication Structure
	Summary of Actual Replication Test Results

	Understanding Typical Business Use Cases
	Considering Assumptions, Dependencies, and Constraints
	Assumptions
	Dependencies and Constraints

	Configuring the Embedded Configuration Data Store for OpenSSO Enterprise
	Evaluating Benefits and Tradeoffs
	Benefits
	Tradeoffs

	Finding More Information

	Implementing Cross-Domain Single Sign-On with Cookie Hijacking Prevention
	About Cross-Domain Single Sign-On
	The Policy Agent's Role in CDSSO
	The Java EE Policy Agent's Role
	The Web Policy Agent's Role in CDSSO

	About Cookie Hijacking Prevention
	Key Cookie Hijacking Security Issues and Solutions
	Shared Session Cookies Security Issue
	OpenSSO Enterprise Solution

	Access to User Profile Attributes Security Issue
	OpenSSO Enterprise Solution

	OpenSSO Enterprise Session Cookies Involved in Issuing Unique SSO Tokens

	Analyzing the Deployment Architecture
	Considering Assumptions, Dependencies, and Constraints
	Assumptions and Dependencies
	Constraints

	Understanding Typical Business Use Cases
	Java EE Policy Agent Use Case 1: Accessing a Protected Resource in the Primary Domain First
	Java EE Policy Agent Use Case 2: Accessing a Protected Resource in a Non-Primary Domain First
	Web Policy Agent Use Case 1: Accessing a Protected Resource in the Primary Domain First
	Web Policy Agent Use Case 2: Accessing a Protected Resource in the Non-Primary Domain First

	Configuring CDSSO and Cookie Hijacking Prevention
	To Enable CDSSO and Cookie Hijacking Prevention in Java EE Policy Agent
	To Enable CDSSO and Cookie Hijacking Prevention in the Web Policy Agent

	Evaluating Benefits and Trade-offs

	Configuring System Failover and Session Failover for High Availability
	About High Availability
	System Failover
	Session Failover
	OpenSSO Enterprise Sites
	Single-Site Configuration
	Multiple-Site configuration

	Analyzing the Deployment Architecture
	Understanding a Typical High-Availability Transaction

	Understanding High Availability Configuration Examples
	Single OpenSSO Enterprise Server Load Balancer in Single Site, No Session Failover
	Multiple OpenSSO Enterprise Server Load Balancers in a Single Site, No Session Failover
	Multiple OpenSSO Enterprise Server Load Balancers in Multiple Sites, No Session Failover
	Single OpenSSO Enterprise Server Load Balancer in a Single Site with Session Failover
	Multiple OpenSSO Enterprise Server Load Balancers in a Single Site with Session Failover
	Multiple OpenSSO Enterprise Server Load Balancers in Multiple Sites with Session Failover

	Considering Assumptions and Dependencies
	Assumptions
	Using Java Message Queue Broker and Berkeley Database for Session Failover

	Configuring OpenSSO Enterprise for High Availability
	Evaluating Benefits and Trade-Offs
	Benefits
	Trade-Offs

	Using the Windows Desktop Single Sign-On Authentication Module
	About Kerberos Authentication and the SPNEGO Protocol
	About the OpenSSO Windows Desktop SSO Authentication Module
	Analyzing the Deployment Architecture
	Considering Dependencies and Constraints
	Understanding Typical Business Use Cases
	Evaluating Benefits and Tradeoffs
	Configuring Basic Windows Desktop SSO Authentication
	Configuring a Kerberos Domain Controller on Windows or UNIX
	To Configure a UNIX Kerberos Domain Controller
	To Configure Windows Active Directory and Domain Controller
	To Synchronize the OpenSSO Enterprise and Kerberos Domain Controller Clocks
	Configuring the Domain Controller
	Configuring DNS Mapping on the Windows Domain Controller
	Configuring a Windows XP Workstation to Join the Kerberos Domain Controller Realm

	To Configure an Windows XP Workstation to Join an Active Directory Domain Controller During Installation
	To Create the Windows XP User's Local Account
	To Configure an Existing Windows XP Workstation to Join an Active Directory Controller
	To Configure an Existing Window XP Workstation to Join a UNIX Kerberos Domain
	Configuring the Browser
	To Configure Microsoft Internet Explorer
	To Configure Mozilla or FireFox
	To Configure Apple Safari

	To Configure the OpenSSO Enterprise Windows Desktop SSO Authentication Module

	Complex Configurations
	Chaining Multiple Authentication Modules
	To Configure Authentication Chaining
	To Test Authentication Chaining
	To Use the Windows Desktop SSO Authentication Module with a Load Balancer
	Using the Windows Desktop SSO Authentication Module with Multiple Kerberos Domain Controllers
	To Locate the Trust Configuration Window
	To Promote the Domain Controller Functional Level

	Using the Debugging Tools
	Network Identity Manager
	kinit
	klist
	ktpass
	ksetup

	Troubleshooting Windows Desktop SSO Authentication Issues
	Error Message: Unauthorized Access
	Error Message: Service Login Error
	LoginException: Clock skew too great
	LoginException: kdc.example.com
	LoginException: Client not found in Kerberos database
	GSSException: Failure unspecified at GSS-API level
	Exception: Pre-authentication information was invalid
	Error Message: Cannot establish context
	Error Message: Authentication failed
	Error Message: User has no profile in this organization
	Authentication Doesn't Work with Load Balancer

	Accessing OpenSSO from Outside a Secure Intranet
	Using OpenSSO Distributed Authentication User Interface
	Using a Reverse Proxy
	Using Policy Agents with Reverse Proxy
	Using a Single Policy Agent
	Using Multiple Policy Agents

